
DB2 11 for z/OS

SQL Reference

SC19-4066-00

���

DB2 11 for z/OS

SQL Reference

SC19-4066-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

First edition (October 2013)

This edition applies to DB2 11 for z/OS (product number 5615-DB2), DB2 11 for z/OS Value Unit Edition (product
number 5697-P43), and to any subsequent releases until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright IBM Corporation 1982, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information. xix
Who should read this information . xix
DB2 Utilities Suite . xix
Terminology and citations . xx
Accessibility features for DB2 11 for z/OS . xx
How to send your comments . xxi
How to read syntax diagrams . xxii
Conventions for describing mixed data values . xxiv
Industry standards . xxv

Chapter 1. DB2 concepts . 1
Structured query language. 1

Static SQL . 2
Dynamic SQL . 3
Deferred embedded SQL . 3
Interactive SQL . 3
SQL Call Level Interface and Open Database Connectivity 3
Java database connectivity and embedded SQL for Java . 4

DB2 data structures . 4
DB2 tables . 6
DB2 indexes . 6
DB2 keys . 7
DB2 views . 9
DB2 schemas and schema qualifiers . 11
DB2 storage groups. 13
DB2 databases . 14

Storage structures . 16
DB2 table spaces. 16
DB2 index spaces . 17

DB2 hash spaces. 17
DB2 system objects . 18

DB2 catalog . 18
DB2 directory. 19
Active and archive logs . 20
Bootstrap data set . 20
Buffer pools . 21
Data definition control support database . 21
Resource limit facility tables . 22
Work file database . 22

DB2 and data integrity . 23
Constraints . 23
Triggers . 28

Application processes, concurrency, and recovery. 28
Locking, commit, and rollback . 28
Unit of work . 29
Unit of recovery . 30
Rolling back work . 30
Packages and application plans . 31

Routines . 32
Functions . 32
Stored procedures . 33

Sequences . 34
User-defined types . 35
Distributed data . 35

Connections . 36

© Copyright IBM Corp. 1982, 2013 iii

Distributed unit of work . 37
Remote unit of work . 40

Character conversion . 42
Character sets and code pages . 45
Coded character sets and CCSIDS . 47
Determining the encoding scheme and CCSID of a string 47
Expanding conversions . 51
Contracting conversions . 51

Chapter 2. Language elements . 53
Characters . 53
Tokens . 54
Identifiers . 55

SQL identifiers . 55
Host identifiers . 57
Restrictions for distributed access . 57

Naming conventions . 57
SQL path . 64
Resolution of unqualified object names . 65
Qualification of unqualified object names . 65

Unqualified alias, index, JAR file, sequence, table, trigger, and view names 66
Unqualified type, function, procedure, global variable, and specific names 66

Aliases . 67
Synonyms . 68
Authorization, privileges, permissions, masks, and object ownership 70
Authorization IDs, roles, and authorization names . 72

Authorization IDs and schema names . 74
Authorization IDs and statement preparation . 74
Authorization IDs and dynamic SQL . 75
Authorization IDs and remote execution. 77

Data types. 80
Nulls . 81
Numbers . 81
Character strings . 84
Graphic strings . 94
Binary strings . 95
Large objects (LOBs) . 96
Datetime values . 98
Row ID values . 105
XML values . 106
User-defined data types . 107

Promotion of data types . 110
Casting between data types. 111

Implicit cast from numeric data to string data . 119
Implicit cast from string data to numeric data . 119

Assignment and comparison . 121
Numeric assignments. 122
String assignments . 126
Datetime assignments . 129
Row ID assignments . 131
XML assignments . 131
User-defined type assignments . 131
Assignments to LOB locators . 134
Numeric comparisons . 134
String comparisons . 135
Datetime comparisons . 136
Row ID comparisons . 138
XML comparisons . 138
Conversion rules for comparisons . 138
User-defined type comparisons . 142

Rules for result data types . 144

iv SQL Reference

|
||
||

||

||

||

Numeric operands. 145
Character and graphic string operands . 146
Binary string operands . 146
Datetime operands . 147
Row ID operands . 148
XML operands . 148
Distinct type operands . 148

Constants . 148
Integer constants . 148
Floating-point constants . 148
Decimal constants . 149
Decimal floating-point constants . 149
Character string constants . 150
Binary string constants . 151
Datetime constants . 151
Graphic string constants . 154

Special registers . 156
General rules for special registers. 158
CURRENT APPLICATION COMPATIBILITY . 161
CURRENT APPLICATION ENCODING SCHEME . 162
CURRENT CLIENT_ACCTNG . 163
CURRENT CLIENT_APPLNAME . 164
CURRENT CLIENT_CORR_TOKEN. 166
CURRENT CLIENT_USERID . 167
CURRENT CLIENT_WRKSTNNAME . 168
CURRENT DATE . 170
CURRENT DEBUG MODE . 171
CURRENT DECFLOAT ROUNDING MODE . 172
CURRENT DEGREE . 174
CURRENT EXPLAIN MODE . 175
CURRENT GET_ACCEL_ARCHIVE . 176
CURRENT LOCALE LC_CTYPE . 177
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION 179
CURRENT MEMBER . 180
CURRENT OPTIMIZATION HINT . 181
CURRENT PACKAGE PATH . 182
CURRENT PACKAGESET . 183
CURRENT PATH . 184
CURRENT PRECISION . 185
CURRENT QUERY ACCELERATION . 186
CURRENT REFRESH AGE . 187
CURRENT ROUTINE VERSION . 188
CURRENT RULES. 189
CURRENT SCHEMA . 191
CURRENT SERVER . 192
CURRENT SQLID . 193
CURRENT TEMPORAL BUSINESS_TIME . 194
CURRENT TEMPORAL SYSTEM_TIME . 196
CURRENT TIME . 198
CURRENT TIMESTAMP . 199
CURRENT TIME ZONE . 200
ENCRYPTION PASSWORD . 201
SESSION_USER . 202
SESSION TIME ZONE . 203
USER . 204
Special registers in a user-defined function or a stored procedure 205

Column names . 208
Qualified column names. 208
Correlation names . 209
Column name qualifiers to avoid ambiguity . 209
Column name qualifiers in correlated references . 211

Contents v

||

||

||
||

Resolution of column name qualifiers and column names 212
References to variables . 214

References to host variables . 215
Host variables in dynamic SQL . 217
References to LOB host variables . 218
References to LOB locator variables . 218
References to XML host variables. 219
References to file reference variables. 220
References to stored procedure result sets . 221
References to result set locator variables . 222
References to built-in global variables . 223
References to built-in session variables . 225
References to array variables . 228

Host structures in PL/I, C, and COBOL . 229
Host-variable-arrays in PL/I, C, C++, and COBOL . 230
Functions. 231

Types of functions . 231
Function invocation . 233
Function resolution . 234

Expressions . 240
Expressions without operators. 243
Expressions with arithmetic operators . 243
Expressions with the concatenation operator . 250
Scalar-fullselect . 253
Datetime operands and durations . 254
Time zone specific expressions . 255
Datetime arithmetic in SQL. 257
Precedence of operations . 261
CASE expressions . 263
CAST specification . 267
XMLCAST specification . 276
Array element specification. 278
Array constructor . 280
OLAP specification . 282
ROW CHANGE expression. 289
Sequence reference . 291

Predicates . 296
Basic predicate . 298
Quantified predicate . 300
ARRAY_EXISTS predicate . 303
BETWEEN predicate . 304
DISTINCT predicate . 305
EXISTS predicate . 307
IN predicate . 309
LIKE predicate . 312
NULL predicate . 320
XMLEXISTS predicate . 321

Search conditions . 324
Options affecting SQL . 325

SQL processing options for dynamic statements . 327
DECFLOAT rounding mode . 328
Decimal point representation . 328
Apostrophes and quotation marks as string delimiters. 330
Katakana characters for EBCDIC . 331
Mixed data in character strings . 331
Formatting of datetime strings. 332
SQL standard language . 332
Positioned updates of columns . 333

Mappings from SQL to XML . 334
Mapping SQL character sets to XML character sets . 334
Mapping SQL identifiers to XML names . 334

vi SQL Reference

||

||

||
||

||

Mapping SQL data values to XML data values . 334

Chapter 3. Functions . 337
Aggregate functions . 345

ARRAY_AGG . 347
AVG . 350
CORRELATION . 351
COUNT . 352
COUNT_BIG . 353
COVARIANCE or COVARIANCE_SAMP . 355
MAX . 356
MIN . 357
STDDEV or STDDEV_SAMP . 358
SUM . 360
VARIANCE or VARIANCE_SAMP . 361
XMLAGG . 363

Scalar functions . 365
ABS . 366
ACOS . 367
ADD_MONTHS . 368
ARRAY_DELETE . 370
ARRAY_FIRST . 372
ARRAY_LAST . 374
ARRAY_NEXT . 376
ARRAY_PRIOR. 378
ASCII . 380
ASCII_CHR . 381
ASCII_STR . 382
ASIN . 383
ATAN . 384
ATANH . 385
ATAN2 . 386
BIGINT . 387
BINARY . 389
BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT 391
BLOB . 393
CARDINALITY . 395
CCSID_ENCODING . 396
CEILING . 397
CHAR. 398
CHARACTER_LENGTH . 407
CLOB . 409
COALESCE . 412
COLLATION_KEY . 414
COMPARE_DECFLOAT . 417
CONCAT. 419
CONTAINS . 420
COS . 423
COSH . 424
DATE . 425
DAY . 427
DAYOFMONTH . 429
DAYOFWEEK . 430
DAYOFWEEK_ISO . 432
DAYOFYEAR . 434
DAYS . 435
DBCLOB . 436
DECFLOAT . 440
DECFLOAT_FORMAT . 442
DECFLOAT_SORTKEY . 445
DECIMAL or DEC . 447

Contents vii

||

||
||
||
||
||

||

DECODE . 449
DECRYPT_BINARY, DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB 451
DEGREES . 455
DIFFERENCE . 456
DIGITS . 457
DOUBLE_PRECISION or DOUBLE . 458
DSN_XMLVALIDATE . 460
EBCDIC_CHR . 462
EBCDIC_STR . 463
ENCRYPT_TDES . 464
EXP . 467
EXTRACT . 468
FLOAT . 472
FLOOR . 473
GENERATE_UNIQUE . 474
GETHINT . 476
GETVARIABLE. 477
GRAPHIC . 479
HEX . 483
HOUR. 484
IDENTITY_VAL_LOCAL . 486
IFNULL . 491
INSERT . 492
INTEGER or INT . 496
JULIAN_DAY . 498
LAST_DAY . 500
LCASE . 502
LEFT . 503
LENGTH . 507
LN . 509
LOCATE . 510
LOCATE_IN_STRING . 513
LOG10 . 516
LOWER . 517
LPAD . 520
LTRIM . 522
MAX . 524
MAX_CARDINALITY . 525
MICROSECOND . 526
MIDNIGHT_SECONDS . 528
MIN . 530
MINUTE . 531
MOD . 533
MONTH . 535
MONTHS_BETWEEN . 537
MQREAD . 539
MQREADCLOB . 541
MQRECEIVE . 543
MQRECEIVECLOB . 545
MQSEND . 547
MULTIPLY_ALT . 550
NEXT_DAY . 551
NORMALIZE_DECFLOAT . 553
NORMALIZE_STRING . 554
NULLIF . 556
NVL . 557
OVERLAY . 558
PACK . 562
POSITION . 566
POSSTR . 569
POWER . 572

viii SQL Reference

||

QUANTIZE . 573
QUARTER . 575
RADIANS . 577
RAISE_ERROR . 578
RAND. 579
REAL . 580
REPEAT . 582
REPLACE . 584
RID . 587
RIGHT . 588
ROUND . 590
ROUND_TIMESTAMP . 592
ROWID . 595
RPAD . 596
RTRIM . 598
SCORE . 600
SECOND . 603
SIGN . 605
SIN. 606
SINH . 607
SMALLINT . 608
SOUNDEX . 610
SOAPHTTPC and SOAPHTTPV . 611
SOAPHTTPNC and SOAPHTTPNV . 613
SPACE . 615
SQRT . 616
STRIP . 617
SUBSTR . 618
SUBSTRING. 621
TAN . 627
TANH. 628
TIME . 629
TIMESTAMP . 630
TIMESTAMPADD . 633
TIMESTAMP_FORMAT . 635
TIMESTAMP_ISO . 641
TIMESTAMPDIFF . 642
TIMESTAMP_TZ . 645
TO_CHAR . 647
TO_DATE . 648
TO_NUMBER . 649
TOTALORDER . 650
TRANSLATE . 652
TRIM . 656
TRIM_ARRAY . 658
TRUNCATE or TRUNC . 659
TRUNC_TIMESTAMP . 661
UCASE . 664
UNICODE . 665
UNICODE_STR . 666
UPPER . 668
VALUE . 670
VARBINARY . 671
VARCHAR . 673
VARCHAR_FORMAT . 680
VARGRAPHIC . 690
VERIFY_GROUP_FOR_USER . 694
VERIFY_ROLE_FOR_USER. 696
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER . 698
WEEK . 700
WEEK_ISO . 701

Contents ix

||

XMLATTRIBUTES. 703
XMLCOMMENT . 704
XMLCONCAT . 705
XMLDOCUMENT . 706
XMLELEMENT. 707
XMLFOREST . 712
XMLMODIFY . 715
XMLNAMESPACES . 718
XMLPARSE . 720
XMLPI . 722
XMLQUERY. 723
XMLSERIALIZE . 727
XMLTEXT . 730
XMLXSROBJECTID . 731
YEAR . 732

Table functions . 733
ADMIN_TASK_LIST . 734
ADMIN_TASK_OUTPUT . 739
ADMIN_TASK_STATUS . 741
MQREADALL . 745
MQREADALLCLOB . 747
MQRECEIVEALL . 749
MQRECEIVEALLCLOB . 752
XMLTABLE . 755

Row functions . 759
UNPACK. 760

Chapter 4. Queries . 761
Authorization . 762
subselect . 764

select-clause . 765
from-clause . 773
where-clause . 795
group-by-clause . 797
having-clause . 799
order-by-clause . 800
fetch-first-clause . 803
Examples of subselects . 805

fullselect . 811
Character conversion in set operations and concatenations 816
Selecting the result CCSID . 817

select-statement . 819
common-table-expression . 820
update-clause . 823
read-only-clause . 825
optimize-clause. 826
isolation-clause . 827
queryno-clause . 829
SKIP LOCKED DATA . 830
Examples of select statements . 831

Chapter 5. Statements . 833
How SQL statements are invoked . 838

Embedding a statement in an application program . 839
Dynamic preparation and execution . 840
Static invocation of a SELECT statement . 841
Dynamic invocation of a SELECT statement . 842
Interactive invocation. 842
SQL diagnostics information . 843
Detecting and processing error and warning conditions in host language applications 843

x SQL Reference

SQL comments . 846
ALLOCATE CURSOR . 847
ALTER DATABASE . 849
ALTER FUNCTION (external) . 852
ALTER FUNCTION (SQL scalar) . 871
ALTER FUNCTION (SQL table) . 899
ALTER INDEX . 907
ALTER MASK . 926
ALTER PERMISSION. 928
ALTER PROCEDURE (external) . 930
ALTER PROCEDURE (SQL - external) . 941
ALTER PROCEDURE (SQL - native). 947
ALTER SEQUENCE . 975
ALTER STOGROUP . 981
ALTER TABLE . 984
ALTER TABLESPACE . 1074
ALTER TRIGGER . 1094
ALTER TRUSTED CONTEXT . 1097
ALTER VIEW . 1109
ASSOCIATE LOCATORS . 1111
BEGIN DECLARE SECTION . 1115
CALL . 1117
CLOSE . 1131
COMMENT . 1133
COMMIT . 1143
CONNECT . 1147
CREATE ALIAS . 1154
CREATE AUXILIARY TABLE. 1158
CREATE DATABASE . 1162
CREATE FUNCTION . 1165
CREATE FUNCTION (external scalar) . 1166
CREATE FUNCTION (external table) . 1191
CREATE FUNCTION (sourced) . 1210
CREATE FUNCTION (SQL scalar) . 1224
CREATE FUNCTION (SQL table) . 1251
CREATE GLOBAL TEMPORARY TABLE. 1261
CREATE INDEX . 1267
CREATE MASK . 1299
CREATE PERMISSION . 1310
CREATE PROCEDURE . 1318
CREATE PROCEDURE (external) . 1319
CREATE PROCEDURE (SQL - external) . 1338
CREATE PROCEDURE (SQL - native) . 1350
CREATE ROLE . 1374
CREATE SEQUENCE . 1375
CREATE STOGROUP . 1383
CREATE SYNONYM . 1386
CREATE TABLE . 1388
CREATE TABLESPACE. 1455
CREATE TRIGGER . 1482
CREATE TRUSTED CONTEXT . 1500
CREATE TYPE . 1510
CREATE TYPE (array) . 1511
CREATE TYPE (distinct) . 1516
CREATE VARIABLE . 1524
CREATE VIEW . 1527
DECLARE CURSOR. 1535
DECLARE GLOBAL TEMPORARY TABLE . 1547
DECLARE STATEMENT . 1562
DECLARE TABLE . 1563
DECLARE VARIABLE . 1570

Contents xi

||
||

||

DELETE. 1573
DESCRIBE . 1590
DESCRIBE CURSOR . 1591
DESCRIBE INPUT . 1593
DESCRIBE OUTPUT . 1596
DESCRIBE PROCEDURE . 1603
DESCRIBE TABLE . 1606
DROP . 1609
END DECLARE SECTION . 1631
EXCHANGE . 1632
EXECUTE . 1633
EXECUTE IMMEDIATE . 1639
EXPLAIN . 1642
FETCH . 1650
FREE LOCATOR . 1678
GET DIAGNOSTICS . 1679
GRANT . 1695
GRANT (collection privileges) . 1699
GRANT (database privileges). 1700
GRANT (function or procedure privileges) . 1703
GRANT (package privileges) . 1708
GRANT (plan privileges) . 1711
GRANT (schema privileges) . 1712
GRANT (sequence privileges) . 1714
GRANT (system privileges) . 1715
GRANT (table or view privileges) . 1721
GRANT (type or JAR file privileges) . 1725
GRANT (variable privileges) . 1727
GRANT (use privileges) . 1728
HOLD LOCATOR . 1730
INCLUDE . 1732
INSERT . 1734
LABEL . 1755
LOCK TABLE . 1757
MERGE . 1760
OPEN . 1775
PREPARE . 1781
REFRESH TABLE . 1803
RELEASE (connection) . 1805
RELEASE SAVEPOINT . 1807
RENAME . 1808
REVOKE . 1812
REVOKE (collection privileges) . 1819
REVOKE (database privileges) . 1821
REVOKE (function or procedure privileges) . 1824
REVOKE (package privileges) . 1831
REVOKE (plan privileges) . 1834
REVOKE (schema privileges) . 1836
REVOKE (sequence privileges) . 1839
REVOKE (system privileges) . 1841
REVOKE (table or view privileges) . 1847
REVOKE (type or JAR file privileges) . 1851
REVOKE (variable privileges) . 1854
REVOKE (use privileges) . 1856
ROLLBACK . 1859
SAVEPOINT . 1863
SELECT . 1865
SELECT INTO. 1866
SET CONNECTION . 1872
SET assignment-statement . 1875
SET CURRENT APPLICATION COMPATIBILITY . 1882

xii SQL Reference

||

||

||
||

SET CURRENT APPLICATION ENCODING SCHEME . 1883
SET CURRENT DEBUG MODE . 1884
SET CURRENT DECFLOAT ROUNDING MODE . 1886
SET CURRENT DEGREE . 1889
SET CURRENT EXPLAIN MODE . 1891
SET CURRENT GET_ACCEL_ARCHIVE . 1893
SET CURRENT LOCALE LC_CTYPE . 1894
SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION 1896
SET CURRENT OPTIMIZATION HINT . 1898
SET CURRENT PACKAGE PATH . 1899
SET CURRENT PACKAGESET . 1903
SET CURRENT PRECISION . 1905
SET CURRENT QUERY ACCELERATION . 1906
SET CURRENT REFRESH AGE . 1908
SET CURRENT ROUTINE VERSION . 1910
SET CURRENT RULES. 1912
SET CURRENT SQLID . 1913
SET CURRENT TEMPORAL BUSINESS_TIME . 1915
SET CURRENT TEMPORAL SYSTEM_TIME . 1917
SET ENCRYPTION PASSWORD . 1919
SET PATH . 1921
SET SCHEMA. 1924
SET SESSION TIME ZONE . 1927
SIGNAL. 1928
TRUNCATE . 1929
UPDATE . 1933
VALUES. 1955
VALUES INTO . 1956
WHENEVER . 1961

Chapter 6. SQL control statements for SQL routines 1963
References to SQL parameters and SQL variables . 1964
References to SQL condition names. 1965
References to SQL cursor names. 1965
References to labels . 1965
Nested compound statements and scope of names . 1966
SQL-procedure-statement . 1968
assignment-statement . 1971
CALL statement . 1973
CASE statement . 1975
compound-statement . 1977
FOR statement . 1986
GET DIAGNOSTICS statement . 1988
GOTO statement . 1989
IF statement . 1991
ITERATE statement . 1992
LEAVE statement. 1994
LOOP statement . 1996
REPEAT statement . 1998
RESIGNAL statement . 2000
RETURN statement . 2003
SIGNAL statement . 2006
WHILE statement . 2010

Appendix. Additional information for DB2 SQL 2011
Limits in DB2 for z/OS . 2012
Reserved schema names and reserved words . 2019

Reserved schema names . 2020
Reserved words . 2021

Characteristics of SQL statements in DB2 for z/OS . 2025

Contents xiii

||
||

Actions allowed on SQL statements . 2026
SQL statements allowed in external functions and stored procedures 2030

SQL control statements for external SQL procedures . 2032
References to SQL parameters and SQL variables . 2033
SQL-procedure-statement . 2035
assignment-statement (SQL control statements for external routines). 2036
CALL statement . 2038
CASE statement . 2040
compound-statement . 2043
GET DIAGNOSTICS statement . 2049
GOTO statement . 2050
IF statement . 2052
ITERATE statement . 2054
LEAVE statement. 2055
LOOP statement . 2056
REPEAT statement . 2058
RESIGNAL statement . 2059
RETURN statement . 2062
SIGNAL statement . 2064
WHILE statement . 2068

SQL communication area (SQLCA) . 2069
Description of SQLCA fields . 2070
The included SQLCA . 2075
The REXX SQLCA . 2077

SQL descriptor area (SQLDA) . 2079
Description of SQLDA fields . 2081
Unrecognized and unsupported SQLTYPES . 2094
The included SQLDA . 2095
Identifying an SQLDA in C or C++. 2099
The REXX SQLDA . 2100

DB2 catalog tables . 2102
Table spaces and indexes . 2104
New and changed catalog tables . 2116
SYSIBM.IPLIST table . 2119
SYSIBM.IPNAMES table . 2120
SYSIBM.LOCATIONS table . 2123
SYSIBM.LULIST table . 2125
SYSIBM.LUMODES table . 2126
SYSIBM.LUNAMES table . 2127
SYSIBM.MODESELECT table . 2130
SYSIBM.SYSAUDITPOLICIES table. 2131
SYSIBM.SYSAUTOALERTS table . 2135
SYSIBM.SYSAUTOALERTS_OUT table . 2137
SYSIBM.SYSAUTORUNS_HIST table . 2138
SYSIBM.SYSAUTORUNS_HISTOU table . 2139
SYSIBM.SYSAUTOTIMEWINDOWS table . 2140
SYSIBM.SYSAUXRELS table . 2141
SYSIBM.SYSCHECKDEP table . 2142
SYSIBM.SYSCHECKS table . 2143
SYSIBM.SYSCHECKS2 table . 2144
SYSIBM.SYSCOLAUTH table. 2145
SYSIBM.SYSCOLDIST table . 2147
SYSIBM.SYSCOLDISTSTATS table . 2149
SYSIBM.SYSCOLDIST_HIST table . 2151
SYSIBM.SYSCOLSTATS table . 2153
SYSIBM.SYSCOLUMNS table. 2155
SYSIBM.SYSCOLUMNS_HIST table . 2166
SYSIBM.SYSCONSTDEP table . 2170
SYSIBM.SYSCONTEXT table . 2171
SYSIBM.SYSCONTEXTAUTHIDS table . 2173
SYSIBM.SYSCONTROLS table . 2174

xiv SQL Reference

SYSIBM.SYSCOPY table . 2176
SYSIBM.SYSCTXTTRUSTATTRS table . 2188
SYSIBM.SYSDATABASE table . 2189
SYSIBM.SYSDATATYPES table . 2191
SYSIBM.SYSDBAUTH table . 2193
SYSIBM.SYSDBRM table . 2196
SYSIBM.SYSDEPENDENCIES table. 2198
SYSIBM.SYSDUMMY1 table . 2201
SYSIBM.SYSDUMMYA table . 2202
SYSIBM.SYSDUMMYE table . 2203
SYSIBM.SYSDUMMYU table . 2204
SYSIBM.SYSENVIRONMENT table. 2205
SYSIBM.SYSFIELDS table . 2207
SYSIBM.SYSFOREIGNKEYS table . 2209
SYSIBM.SYSINDEXCLEANUP table . 2210
SYSIBM.SYSINDEXES table . 2211
SYSIBM.SYSINDEXES_HIST table . 2217
SYSIBM.SYSINDEXES_RTSECT table . 2219
SYSIBM.SYSINDEXES_TREE table . 2220
SYSIBM.SYSINDEXPART table . 2221
SYSIBM.SYSINDEXPART_HIST table . 2226
SYSIBM.SYSINDEXSPACESTATS table . 2229
SYSIBM.SYSINDEXSTATS table . 2235
SYSIBM.SYSINDEXSTATS_HIST table . 2237
SYSIBM.SYSJARCLASS_SOURCE table . 2239
SYSIBM.SYSJARCONTENTS table . 2240
SYSIBM.SYSJARDATA table . 2241
SYSIBM.SYSJAROBJECTS table . 2242
SYSIBM.SYSJAVAOPTS table . 2243
SYSIBM.SYSJAVAPATHS table . 2244
SYSIBM.SYSKEYCOLUSE table . 2245
SYSIBM.SYSKEYS table . 2246
SYSIBM.SYSKEYTARGETS table. 2247
SYSIBM.SYSKEYTARGETSTATS table . 2251
SYSIBM.SYSKEYTARGETS_HIST table . 2253
SYSIBM.SYSKEYTGTDIST table . 2256
SYSIBM.SYSKEYTGTDISTSTATS table. 2258
SYSIBM.SYSKEYTGTDIST_HIST table . 2260
SYSIBM.SYSLOBSTATS table . 2262
SYSIBM.SYSLOBSTATS_HIST table . 2263
SYSIBM.SYSOBJROLEDEP table . 2264
SYSIBM.SYSPACKAGE table . 2265
SYSIBM.SYSPACKCOPY table . 2275
SYSIBM.SYSPACKAUTH table . 2285
SYSIBM.SYSPACKDEP table . 2287
SYSIBM.SYSPACKLIST table . 2289
SYSIBM.SYSPACKSTMT table . 2290
SYSIBM.SYSPACKSTMT_STMB table . 2295
SYSIBM.SYSPACKSTMT_STMT table . 2296
SYSIBM.SYSPARMS table . 2297
SYSIBM.SYSPENDINGDDL table . 2301
SYSIBM.SYSPENDINGOBJECTS table . 2303
SYSIBM.SYSPKSYSTEM table . 2304
SYSIBM.SYSPLAN table . 2306
SYSIBM.SYSPLANAUTH table . 2311
SYSIBM.SYSPLANDEP table . 2313
SYSIBM.SYSPLSYSTEM table. 2314
SYSIBM.SYSQUERY table . 2315
SYSIBM.SYSQUERY_AUX table . 2318
SYSIBM.SYSQUERYOPTS table . 2319
SYSIBM.SYSQUERYPLAN table . 2321

Contents xv

||

SYSIBM.SYSQUERYPREDICATE table. 2332
SYSIBM.SYSQUERYSEL table. 2337
SYSIBM.SYSRELS table . 2339
SYSIBM.SYSRESAUTH table . 2341
SYSIBM.SYSROLES table . 2343
SYSIBM.SYSROUTINEAUTH table . 2344
SYSIBM.SYSROUTINES table. 2346
SYSIBM.SYSROUTINESTEXT table . 2357
SYSIBM.SYSROUTINES_OPTS table . 2358
SYSIBM.SYSROUTINES_TREE table . 2360
SYSIBM.SYSROUTINES_SRC table . 2361
SYSIBM.SYSSCHEMAAUTH table . 2362
SYSIBM.SYSSEQUENCEAUTH table . 2364
SYSIBM.SYSSEQUENCES table . 2366
SYSIBM.SYSSEQUENCESDEP table . 2369
SYSIBM.SYSSTATFEEDBACK table . 2370
SYSIBM.SYSSTMT table . 2373
SYSIBM.SYSSTOGROUP table . 2377
SYSIBM.SYSSTRINGS table . 2379
SYSIBM.SYSSYNONYMS table . 2382
SYSIBM.SYSTABAUTH table . 2383
SYSIBM.SYSTABCONST table . 2386
SYSIBM.SYSTABLEPART table . 2387
SYSIBM.SYSTABLEPART_HIST table . 2393
SYSIBM.SYSTABLES table . 2396
SYSIBM.SYSTABLESPACE table . 2404
SYSIBM.SYSTABLESPACESTATS table. 2410
SYSIBM.SYSTABLES_HIST table. 2416
SYSIBM.SYSTABLES_PROFILES table . 2418
SYSIBM.SYSTABLES_PROFILE_TEXT table . 2419
SYSIBM.SYSTABSTATS table . 2420
SYSIBM.SYSTABSTATS_HIST table . 2421
SYSIBM.SYSTRIGGERS table . 2422
SYSIBM.SYSTRIGGERS_STMT table . 2424
SYSIBM.SYSUSERAUTH table . 2425
SYSIBM.SYSVARIABLES table . 2429
SYSIBM.SYSVARIABLEAUTH table . 2432
SYSIBM.SYSVARIABLES_DESC table . 2434
SYSIBM.SYSVARIABLES_TEXT table . 2435
SYSIBM.SYSVIEWDEP table . 2436
SYSIBM.SYSVIEWS table . 2437
SYSIBM.SYSVIEWS_STMT table . 2439
SYSIBM.SYSVIEWS_TREE table . 2440
SYSIBM.SYSVOLUMES table . 2441
SYSIBM.SYSXMLRELS table . 2442
SYSIBM.SYSXMLSTRINGS table. 2443
SYSIBM.USERNAMES table . 2444
SYSIBM.SYSXMLTYPMOD table . 2445
SYSIBM.SYSXMLTYPMSCHEMA table . 2446

DB2 directory tables . 2447
Directory table spaces and indexes . 2448
SYSIBM.DBDR table. 2449
SYSIBM.SYSDBD_DATA table . 2450
SYSIBM.SCTR table . 2451
SYSIBM.SPTR table . 2452
SYSIBM.SYSSPTSEC_DATA table . 2453
SYSIBM.SYSSPTSEC_EXPL table . 2454
SYSIBM.SYSLGRNX table . 2455
SYSIBM.SYSUTIL table . 2456
SYSIBM.SYSUTILX table . 2458

Performance information for SQL application programming 2458

xvi SQL Reference

||
||

||

||
||
||
||

||

DB2 XML schema repository tables. 2460
XML schema repository (XSR) table spaces and indexes 2461
SYSIBM.XSRCOMPONENT table . 2462
SYSIBM.XSROBJECTS table . 2463
SYSIBM.XSROBJECTCOMPONENTS table . 2465
SYSIBM.XSROBJECTGRAMMAR table . 2466
SYSIBM.XSROBJECTHIERARCHIES table . 2467
SYSIBM.XSROBJECTPROPERTY table . 2468
SYSIBM.XSRPROPERTY table . 2469

EXPLAIN tables . 2470
PLAN_TABLE. 2471
DSN_COLDIST_TABLE . 2488
DSN_DETCOST_TABLE . 2494
DSN_FILTER_TABLE . 2504
DSN_FUNCTION_TABLE . 2509
DSN_KEYTGTDIST_TABLE . 2514
DSN_PGRANGE_TABLE . 2520
DSN_PGROUP_TABLE. 2524
DSN_PREDICAT_TABLE . 2530
DSN_PREDICATE_SELECTIVITY table . 2538
DSN_PTASK_TABLE . 2544
DSN_QUERYINFO_TABLE . 2549
DSN_QUERY_TABLE . 2554
DSN_SORTKEY_TABLE . 2558
DSN_SORT_TABLE . 2563
DSN_STATEMENT_CACHE_TABLE . 2567
DSN_STATEMNT_TABLE . 2573
DSN_STAT_FEEDBACK . 2578
DSN_STRUCT_TABLE . 2582
DSN_VIEWREF_TABLE . 2587

Tables that are used by accelerators . 2591
SYSACCEL.SYSACCELERATORS table . 2592
SYSACCEL.SYSACCELERATEDTABLES table . 2593

Tables that are used for program authorization . 2594
Table spaces and indexes for program authorization . 2595
SYSIBM.DSNPROGAUTH table . 2596

Using the catalog in database design . 2596
Retrieving catalog information about DB2 storage groups 2597
Retrieving catalog information about a table. 2597
Retrieving catalog information about partition order . 2598
Retrieving catalog information about aliases. 2598
Retrieving catalog information about columns . 2599
Retrieving catalog information about indexes . 2600
Retrieving catalog information about views . 2600
Retrieving catalog information about authorizations . 2601
Retrieving catalog information about primary keys . 2601
Retrieving catalog information about foreign keys . 2602
Retrieving catalog information about check pending . 2603
Retrieving catalog information about check constraints 2603
Retrieving catalog information about LOBs . 2604
Retrieving catalog information about user-defined functions and stored procedures 2605
Retrieving catalog information about triggers . 2605
Retrieving catalog information about sequences . 2606
Adding and retrieving comments . 2606
Verifying the accuracy of the database definition . 2607

Sample user-defined functions . 2607
ALTDATE . 2609
ALTTIME . 2612
BASE64ENCODE and BASE64DECODE . 2614
CURRENCY . 2615
DAYNAME . 2617

Contents xvii

||

||

||
||
||

||

HTTPBLOB . 2618
HTTPCLOB . 2619
HTTPDELETEBLOB and HTTPDELETECLOB . 2621
HTTPGETBLOB and HTTPGETCLOB . 2622
HTTPGETBLOBFILE and HTTPGETCLOBFILE. 2624
HTTPHEAD . 2625
HTTPPOSTBLOB and HTTPPOSTCLOB . 2626
HTTPPUTBLOB and HTTPPUTCLOB . 2627
MONTHNAME . 2628
TABLE_LOCATION . 2629
TABLE_NAME . 2631
TABLE_SCHEMA . 2633
URLENCODE and URLDECODE . 2635
WEATHER . 2636

Information resources for DB2 for z/OS and related products 2639

Notices . 2641
Programming interface information . 2643
Trademarks . 2643
Privacy policy considerations. 2644

Glossary . 2645

Index . 2647

xviii SQL Reference

||
||
||
||
||
||
||
||

||

About this information

This book is a reference for Structured Query Language (SQL) for DB2 Universal
Database™ for z/OS®. Unless otherwise stated, references to SQL in this book
imply SQL for DB2® UDB for z/OS, and all objects described in this book are
objects of DB2 UDB for z/OS.

This information assumes that your DB2 subsystem is running in Version 11
new-function mode. Generally, new functions that are described, including changes
to existing functions, statements, and limits, are available only in new-function
mode, unless explicitly stated otherwise. Exceptions to this general statement
include optimization and virtual storage enhancements, which are also available in
conversion mode unless stated otherwise.

The syntax and semantics of most SQL statements are essentially the same in all
IBM® relational database products, and the language elements common to the
products provide a base for the definition of IBM SQL. Consult IBM DB2 Universal
Database SQL Reference for Cross-Platform Development if you intend to develop
applications that adhere to IBM SQL.

Who should read this information
This information is intended for end users, application programmers, system and
database administrators, and for persons involved in error detection and diagnosis.

This information is a reference rather than a tutorial. It assumes that you are
already familiar with SQL programming concepts.

When you first use this information, consider reading Chapters 1 and 2
sequentially. These chapters describe the basic concepts of relational databases and
SQL, the basic syntax of SQL, and the language elements that are common to
many SQL statements. The rest of the chapters and appendixes are designed for
the quick location of answers to specific SQL questions. They provide you with
query forms, SQL statements, SQL procedure statements, DB2 limits, SQLCA,
SQLDA, catalog tables, and SQL reserved words.

DB2 Utilities Suite

Important: In this version of DB2 for z/OS, the DB2 Utilities Suite is available as
an optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not intended
to otherwise imply that you have a license to them.

The DB2 Utilities Suite can work with DB2 Sort and the DFSORT program. You are
licensed to use DFSORT in support of the DB2 utilities even if you do not
otherwise license DFSORT for general use. If your primary sort product is not
DFSORT, consider the following informational APARs mandatory reading:
v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES
v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL

ARCHITECTURE

These informational APARs are periodically updated.

© Copyright IBM Corp. 1982, 2013 xix

Related information

DB2 utilities packaging (Utility Guide)

Terminology and citations
When referring to a DB2 product other than DB2 for z/OS, this information uses
the product's full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

OMEGAMON®

Refers to any of the following products:
v IBM Tivoli® OMEGAMON XE for DB2 Performance Expert on z/OS
v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS
v IBM DB2 Performance Expert for Multiplatforms and Workgroups
v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS.

IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®

Represents the functions that are provided by the RACF component of the
z/OS Security Server.

Accessibility features for DB2 11 for z/OS
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 11 for z/OS. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size

Tip: The Information Management Software for z/OS Solutions Information
Center (which includes information for DB2 11 for z/OS) and its related
publications are accessibility-enabled for the IBM Home Page Reader. You can
operate all features using the keyboard instead of the mouse.

Keyboard navigation

You can access DB2 11 for z/OS ISPF panel functions by using a keyboard or
keyboard shortcut keys.

xx SQL Reference

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utlpackaging.htm

For information about navigating the DB2 11 for z/OS ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS
ISPF User's Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for DB2 11 for z/OS is available in the Information
Management Software for z/OS Solutions Information Center, which is available at
the following website: http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the commitment that IBM has to accessibility.

How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.
You can use the following methods to provide comments:
v Send your comments by email to db2zinfo@us.ibm.com and include the name of

the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

v You can also send comments by using the Feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp.

About this information xxi

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM
documentation.

Apply the following rules when reading the syntax diagrams that are used in DB2
for z/OS documentation:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

xxii SQL Reference

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

required_item
optional_name

v With the exception of XPath keywords, keywords appear in uppercase (for
example, FROM). Keywords must be spelled exactly as shown. XPath keywords
are defined as lowercase names, and must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent
user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

About this information xxiii

Conventions for describing mixed data values
When mixed data values are shown in examples, certain conventions are used to
represent these values.

At sites using a double-byte character set (DBCS), character strings can include a
mixture of single-byte and double-byte characters. When mixed data values are
shown in the examples, the conventions shown in the following example apply:

Figure 1. Conventions used when mixed data values are shown in examples

xxiv SQL Reference

Industry standards
DB2 for z/OS is developed based on specific industry standards for SQL.
v ISO/IEC FCD 9075-1:2003, Information technology - Database languages - SQL - Part

1: Framework (SQL/Framework)

v ISO/IEC FCD 9075-2:2003, Information technology - Database languages - SQL - Part
2: Foundation (SQL/Foundation)

v ISO/IEC FCD 9075-3:2003, Information technology - Database languages - SQL - Part
3: Call-Level Interface (SQL/CLI)

v ISO/IEC FCD 9075-4:2003, Information technology - Database languages - SQL - Part
4: Persistent Stored Modules (SQL/PSM)

v ISO/IEC FCD 9075-5:2003, Information technology - Database languages - SQL- Part
5: Host Language Bindings (SQL/Bindings)

v ISO/IEC FCD 9075-9:2003, Information technology - Database languages - SQL - Part
9: Management of External Data (SQL/MED)

v ISO/IEC FCD 9075-10:2003, Information technology - Database languages - SQL - Part
10: Object Language Bindings (SQL/OLB)

v ISO/IEC FCD 9075-11:2003, Information technology - Database languages - SQL - Part
11: Information and Definition Schemas (SQL/Schemata)

v ISO/IEC FCD 9075-13:2003, Information technology - Database languages - SQL - Part
13: Java Routines and Types (SQL/JRT)

v ISO/IEC FCD 9075-14:2006, Information technology - Database languages - SQL - Part
14: XML-Related Specifications (SQL/XML)

v ANSI (American National Standards Institute) X3.135-1999, Database Language - SQL

About this information xxv

xxvi SQL Reference

Chapter 1. DB2 concepts

Certain DB2 concepts are important to understand when using Structured Query
Language (SQL).

The following topics provide information on these concepts:
v “Structured query language”
v “DB2 schemas and schema qualifiers” on page 11
v “DB2 tables” on page 6
v “DB2 indexes” on page 6
v “DB2 keys” on page 7
v “Constraints” on page 23
v “Triggers” on page 28
v “Storage structures” on page 16
v “DB2 storage groups” on page 13
v “DB2 databases” on page 14
v “DB2 catalog” on page 18
v “DB2 views” on page 9
v “Sequences” on page 34
v “Routines” on page 32
v “Application processes, concurrency, and recovery” on page 28
v “Packages and application plans” on page 31
v “Distributed data” on page 35
v “Character conversion” on page 42

Structured query language
The language that you use to access the data in DB2 tables is the structured query
language (SQL). SQL is a standardized language for defining and manipulating data
in a relational database.

The language consists of SQL statements. SQL statements let you accomplish the
following actions:
v Define, modify, or drop data objects, such as tables.
v Retrieve, insert, update, or delete data in tables.

Other SQL statements let you authorize users to access specific resources, such as
tables or views.

When you write an SQL statement, you specify what you want done, not how to
do it. To access data, for example, you need only to name the tables and columns
that contain the data. You do not need to describe how to get to the data.

In accordance with the relational model of data:
v The database is perceived as a set of tables.
v Relationships are represented by values in tables.

© Copyright IBM Corp. 1982, 2013 1

v Data is retrieved by using SQL to specify a result table that can be derived from
one or more tables.

DB2 transforms each SQL statement, that is, the specification of a result table, into
a sequence of operations that optimize data retrieval. This transformation occurs
when the SQL statement is prepared. This transformation is also known as binding.

All executable SQL statements must be prepared before they can run. The result of
preparation is the executable or operational form of the statement.

As the following example illustrates, SQL is generally intuitive.

Example: Assume that you are shopping for shoes and you want to know what
shoe styles are available in size 8. The SQL query that you need to write is similar
to the question that you would ask a salesperson, "What shoe styles are available
in size 8?" Just as the salesperson checks the shoe inventory and returns with an
answer, DB2 retrieves information from a table (SHOES) and returns a result table.
The query looks like this:
SELECT STYLE

FROM SHOES
WHERE SIZE = 8;

Assume that the answer to your question is that two shoe styles are available in a
size 8: loafers and sandals. The result table looks like this:
STYLE
=======
LOAFERS
SANDALS

You can send an SQL statement to DB2 in several ways. One way is interactively,
by entering SQL statements at a keyboard. Another way is through an application
program. The program can contain SQL statements that are statically embedded in
the application. Alternatively the program can create its SQL statements
dynamically, for example, in response to information that a user provides by filling
in a form. In this information, you can read about each of these methods.

Application programming for DB2 (Introduction to DB2 for z/OS)

SQL: The language of DB2 (Introduction to DB2 for z/OS)

Programming applications for performance (DB2 Performance)

Static SQL
The source form of a static SQL statement is embedded within an application
program written in a host language such as COBOL. The statement is prepared
before the program is executed and the operational form of the statement persists
beyond the execution of the program.

Static SQL statements in a source program must be processed before the program
is compiled. This processing can be accomplished through the DB2 precompiler or
the DB2 coprocessor. The DB2 precompiler or the coprocessor checks the syntax of
the SQL statements, turns them into host language comments, and generates host
language statements to invoke DB2.

2 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_applicationprogrammingfordb2.htm#db2z_applicationprogrammingfordb2
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_sqllanguagedb2.htm#db2z_sqllanguagedb2
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapplicationperformance.htm#db2z_programapplicationperformance

The preparation of an SQL application program includes precompilation, the
preparation of its static SQL statements, and compilation of the modified source
program.

Dynamic SQL
Programs that contain embedded dynamic SQL statements must be precompiled
like those that contain static SQL, but unlike static SQL, the dynamic statements
are constructed and prepared at run time.

The source form of a dynamic statement is a character string that is passed to DB2
by the program using the static SQL PREPARE or EXECUTE IMMEDIATE
statement. A statement that is prepared using the PREPARE statement can be
referenced in a DECLARE CURSOR, DESCRIBE, or EXECUTE statement. Whether
the operational form of the statement is persistent depends on whether dynamic
statement caching is enabled.

SQL statements embedded in a REXX application are dynamic SQL statements.
SQL statements submitted to an interactive SQL facility and to the CALL Level
Interface (CLI) are also dynamic SQL.

Deferred embedded SQL
A deferred embedded SQL statement is neither fully static nor fully dynamic.

Like a static statement, it is embedded within an application, but like a dynamic
statement, it is prepared during the execution of the application. Although
prepared at run time, a deferred embedded SQL statement is processed with
bind-time rules such that the authorization ID and qualifier determined at bind
time for the plan or package owner are used.

Interactive SQL
Interactive SQL refers to SQL statements submitted using SPUFI (SQL processor
using file input) or the command line processor.

SPUFI and the command line processor prepares and executes these statements
dynamically.
Related concepts:

Command line processor (DB2 Commands)
Related tasks:

Executing SQL by using SPUFI (DB2 Application programming and SQL)

SQL Call Level Interface and Open Database Connectivity
The DB2 Call Level Interface (CLI) is an application programming interface in
which functions are provided to application programs to process dynamic SQL
statements.

DB2 CLI allows users to access SQL functions directly through a call interface. CLI
programs can also be compiled using an Open Database Connectivity (ODBC)
Software Developer's Kit, available from Microsoft or other vendors, enabling
access to ODBC data sources. Unlike using embedded SQL, no precompilation is
required. Applications developed using this interface can be executed on a variety
of databases without being compiled against each of databases. Through the

Chapter 1. DB2 concepts 3

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_commandlineprocessor.htm#db2z_commandlineprocessor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_executesqlspufi.htm#db2z_executesqlspufi

interface, applications use procedure calls at execution time to connect to
databases, to issue SQL statements, and to get returned data and status
information.

Java database connectivity and embedded SQL for Java
DB2 provides two standards-based Java™ programming APIs: Java Database
Connectivity (JDBC) and embedded SQL for Java (SQL/OLB or SQLJ). Both can be
used to create Java applications and applets that access DB2.

Static SQL cannot be used by JDBC. SQLJ applications use JDBC as a foundation
for such tasks as connecting to databases and handling SQL errors, but can contain
embedded static SQL statements in the SQLJ source files. An SQLJ file has to be
translated with the SQLJ translator before the resulting Java source code can be
compiled.

DB2 data structures
Data structures are elements that are required to use DB2. You can access and use
these elements to organize your data. Examples of data structures include tables,
table spaces, indexes, index spaces, keys, views, and databases.

The brief descriptions here show how the structures fit into an overall view of
DB2. The following figure shows how some DB2 structures contain others. To some
extent, the notion of “containment” provides a hierarchy of structures.

4 SQL Reference

The DB2 structures from the most to the least inclusive are:

Databases
A set of DB2 structures that include a collection of tables, their associated
indexes, and the table spaces in which they reside.

Storage groups
A set of volumes on disks that hold the data sets in which tables and
indexes are stored.

Table spaces
A set of volumes on disks that hold the data sets in which tables and
indexes are stored.

Tables All data in a DB2 database is presented in tables, which are collections of
rows all having the same columns. A table that holds persistent user data
is a base table. A table that stores data temporarily is a temporary table.

Views A view is an alternative way of representing data that exists in one or more
tables. A view can include all or some of the columns from one or more
base tables.

Indexes
An index is an ordered set of pointers to the data in a DB2 table. The index
is stored separately from the table.

Figure 2. A hierarchy of DB2 structures

Chapter 1. DB2 concepts 5

Related concepts:
“DB2 system objects” on page 18

Implementing your database design (DB2 Administration Guide)
“Storage structures” on page 16

DB2 tables
Tables are logical structures that DB2 maintains. DB2 supports several different
types of tables.

Tables are made up of columns and rows. The rows of a relational table have no
fixed order. The order of the columns, however, is always the order in which you
specified them when you defined the table.

At the intersection of every column and row is a specific data item, which is called
a value. A column is a set of values of the same type. A row is a sequence of values
such that the nth value is a value of the nth column of the table. Every table must
have one or more columns, but the number of rows can be zero.

DB2 accesses data by referring to its content instead of to its location or
organization in storage.

DB2 supports several different types of tables:
v Archive tables
v Archive-enabled tables
v Auxiliary tables
v Base tables
v Clone tables
v Empty tables
v History tables
v Materialized query tables
v Result tables
v Temporal tables
v Temporary tables
v XML tables

Creation of tables (Introduction to DB2 for z/OS)

Types of tables (Introduction to DB2 for z/OS)

DB2 indexes
An index is an ordered set of pointers to rows of a table. DB2 can use indexes to
improve performance and ensure uniqueness. Understanding the structure of DB2
indexes can help you achieve the best performance for your system.

Conceptually, you can think of an index to the rows of a DB2 table like you think
of an index to the pages of a book. Each index is based on the values of data in
one or more columns of a table.

DB2 can use indexes to ensure uniqueness and to improve performance by
clustering data, partitioning data, and providing efficient access paths to data for
queries. In most cases, access to data is faster with an index than with a scan of the
data. For example, you can create an index on the DEPTNO column of the sample
DEPT table to easily locate a specific department and avoid reading through each
row of, or scanning, the table.

6 SQL Reference

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_implementingdesign.htm#db2z_implementingdesign
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_creationoftables.htm#db2z_creationoftables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_typesoftables.htm#db2z_typesoftables

An index is stored separately from the data in the table. Each index is physically
stored in its own index space. When you define an index by using the CREATE
INDEX statement, DB2 builds this structure and maintains it automatically.
However, you can perform necessary maintenance such as reorganizing it or
recovering the index.

The main purposes of indexes are:
v To improve performance. Access to data is often faster with an index than

without.
v To ensure that a row is unique. For example, a unique index on the employee

table ensures that no two employees have the same employee number.
v To cluster the data.
v To determine which partition the data goes into.
v To provide index-only access to data.

Except for changes in performance, users of the table are unaware that an index is
in use. DB2 decides whether to use the index to access the table. Some techniques
enable you to influence how indexes affect performance when you calculate the
storage size of an index and determine what type of index to use.

An index can be either partitioning or nonpartitioning, and either type can be
clustered. For example, you can apportion data by last names, possibly using one
partition for each letter of the alphabet. Your choice of a partitioning scheme is
based on how an application accesses data, how much data you have, and how
large you expect the total amount of data to grow.

Be aware that indexes have both benefits and disadvantages. A greater number of
indexes can simultaneously improve the access performance of a particular
transaction and require additional processing for inserting, updating, and deleting
index keys. After you create an index, DB2 maintains the index, but you can
perform necessary maintenance, such as reorganizing it or recovering it, as
necessary.

Creation of indexes (Introduction to DB2 for z/OS)
“CREATE INDEX” on page 1267

DB2 keys
A key is a column or an ordered collection of columns that is identified in the
description of a table, an index, or a referential constraint. Keys are crucial to the
table structure in a relational database.

Keys are important in a relational database because they ensure that each record in
a table is uniquely identified, they help establish and enforce referential integrity,
and they establish relationships between tables. The same column can be part of
more than one key.

A composite key is an ordered set of two or more columns of the same table. The
ordering of the columns is not constrained by their actual order within the table.
The term value, when used with respect to a composite key, denotes a composite
value. For example, consider this rule: “The value of the foreign key must be equal
to the value of the primary key.” This rule means that each component of the value
of the foreign key must be equal to the corresponding component of the value of
the primary key.

Chapter 1. DB2 concepts 7

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_creationofindexes.htm#db2z_creationofindexes

DB2 supports several types of keys.

Unique keys

A unique constraint is a rule that the values of a key are valid only if they are
unique. A key that is constrained to have unique values is a unique key. DB2 uses a
unique index to enforce the constraint during the execution of the LOAD utility and
whenever you use an INSERT, UPDATE, or MERGE statement to add or modify
data. Every unique key is a key of a unique index. You can define a unique key by
using the UNIQUE clause of either the CREATE TABLE or the ALTER TABLE
statement. A table can have any number of unique keys.

The columns of a unique key cannot contain null values.

Primary keys

A primary key is a special type of unique key and cannot contain null values. For
example, the DEPTNO column in the DEPT table is a primary key.

A table can have no more than one primary key. Primary keys are optional and can
be defined in CREATE TABLE or ALTER TABLE statements.

The unique index on a primary key is called a primary index. When a primary key
is defined in a CREATE TABLE statement or ALTER TABLE statement, DB2
automatically creates the primary index if one of the following conditions is true:
v DB2 is operating in new-function mode, and the table space is implicitly created.
v DB2 is operating in new-function mode, the table space is explicitly created, and

the schema processor is running.
v DB2 is operating in conversion mode, and the schema processor is running.

If a unique index already exists on the columns of the primary key when it is
defined in the ALTER TABLE statement, this unique index is designated as the
primary index when DB2 is operating in new-function mode and implicitly created
the table space.

Parent keys

A parent key is either a primary key or a unique key in the parent table of a
referential constraint. The values of a parent key determine the valid values of the
foreign key in the constraint.

Foreign keys

A foreign key is a key that is specified in the definition of a referential constraint in
a CREATE or ALTER TABLE statement. A foreign key refers to or is related to a
specific parent key.

Unlike other types of keys, a foreign key does not require an index on its
underlying column or columns. A table can have zero or more foreign keys. The
value of a composite foreign key is null if any component of the value is null.

The following figure shows the relationship between some columns in the DEPT
table and the EMP table.

8 SQL Reference

Figure notes: Each table has a primary key:
v DEPTNO in the DEPT table
v EMPNO in the EMP table

Each table has a foreign key that establishes a relationship between the tables:
v The values of the foreign key on the DEPT column of the EMP table match

values in the DEPTNO column of the DEPT table.
v The values of the foreign key on the MGRNO column of the DEPT table match

values in the EMPNO column of the EMP table when an employee is a manager.

To see a specific relationship between rows, notice how the shaded rows for
department C01 and employee number 000030 share common values.
Related concepts:
“Referential constraints” on page 23

DB2 views
A view is an alternative way of representing data that exists in one or more tables.
A view can include all or some of the columns from one or more base tables.

A view is a named specification of a result table. Conceptually, creating a view is
somewhat like using binoculars. You might look through binoculars to see an
entire landscape or to look at a specific image within the landscape, such as a tree.

You can create a view that:
v Combines data from different base tables
v Is based on other views or on a combination of views and tables
v Omits certain data, thereby shielding some table data from users

In fact, these are common underlying reasons to use a view. Combining
information from base tables and views simplifies retrieving data for a user, and
limiting the data that a user can see is useful for security. You can use views for a
number of different purposes. A view can:
v Control access to a table

Primary
key

Primary
key

Foreign
key

Foreign
key

DEPT

EMP

DEPTNO DEPTNAME MGRNO ADMRDEPT

C01 INFORMATION CENTER 000030 A00

D11 MANUFACTURING SYSTEMS 000060 D11

E21 SOFTWARE SUPPORT ------ D11

EMPNO LASTNAME DEPT JOB

000030 KWAN C01 MGR

000200 BROWN D11 DES

200340 ALONZO E21 FLD

Figure 3. Relationship between DEPT and EMP tables

Chapter 1. DB2 concepts 9

v Make data easier to use
v Simplify authorization by granting access to a view without granting access to

the table
v Show only portions of data in the table
v Show summary data for a given table
v Combine two or more tables in meaningful ways
v Show only the selected rows that are pertinent to the process that uses the view

To define a view, you use the CREATE VIEW statement and assign a name (up to
128 characters in length) to the view. Specifying the view in other SQL statements
is effectively like running an SQL SELECT statement. At any time, the view
consists of the rows that would result from the SELECT statement that it contains.
You can think of a view as having columns and rows just like the base table on
which the view is defined.

You also can specify a period specification for a view, subject to certain restrictions.

Example

Example 1: The following figure shows a view of the EMP table that omits
sensitive employee information and renames some of the columns.

Figure note: The EMPINFO view represents a table that includes columns named
EMPLOYEE, FIRSTNAME, LASTNAME, TEAM, and JOBTITLE. The data in the
view comes from the columns EMPNO, FIRSTNME, LASTNAME, DEPT, and JOB
of the EMP table.

Example 2: The following CREATE VIEW statement defines the EMPINFO view
that is shown in the preceding figure:
CREATE VIEW EMPINFO (EMPLOYEE, FIRSTNAME, LASTNAME, TEAM, JOBTITLE)

AS SELECT EMPNO, FIRSTNME, LASTNAME, DEPT, JOB
FROM EMP;

When you define a view, DB2 stores the definition of the view in the DB2 catalog.
However, DB2 does not store any data for the view itself, because the data exists in
the base table or tables.

Example 3: You can narrow the scope of the EMPINFO view by limiting the
content to a subset of rows and columns that includes departments A00 and C01
only:

Base table, EMP:

View of EMP EMPINFO:, named

EMPNO FIRSTNME LASTNAME DEPT HIREDATE JOB EDL SALARY COMM

EMPLOYEE FIRSTNAME LASTNAME TEAM JOBTITLE

Figure 4. A view of the EMP table

10 SQL Reference

|

CREATE VIEW EMPINFO (EMPLOYEE, FIRSTNAME, LASTNAME, TEAM, JOBTITLE)
AS SELECT EMPNO, FIRSTNME, LASTNAME, DEPT, JOB
WHERE DEPT = ’AOO’ OR DEPT = ’C01’

FROM EMP;

In general, a view inherits the attributes of the object from which it is derived.
Columns that are added to the tables after the view is defined on those tables do
not appear in the view.

Restriction: You cannot create an index for a view. In addition, you cannot create
any form of a key or a constraint (referential or otherwise) on a view. Such
indexes, keys, or constraints must be built on the tables that the view references.

To retrieve or access information from a view, you use views like you use base
tables. You can use a SELECT statement to show the information from the view.
The SELECT statement can name other views and tables, and it can use the
WHERE, GROUP BY, and HAVING clauses. It cannot use the ORDER BY clause or
name a host variable.

Whether a view can be used in an insert, update, or delete operation depends on
its definition. For example, if a view includes a foreign key of its base table,
INSERT and UPDATE operations that use the view are subject to the same
referential constraint as the base table. Likewise, if the base table of a view is a
parent table, DELETE operations that use the view are subject to the same rules as
DELETE operations on the base table. Read-only views cannot be used for insert,
update, and delete operations.
Related information:

Implementing DB2 views (DB2 Administration Guide)

Creation of views (Introduction to DB2 for z/OS)

Referential constraints (Introduction to DB2 for z/OS)

Employee table (DSN8B10.EMP) (Introduction to DB2 for z/OS)
“CREATE VIEW” on page 1527

DB2 schemas and schema qualifiers
The objects in a relational database are organized into sets called schemas. A
schema is a collection of named objects that provides a logical classification of
objects in the database. The first part of a schema name is the qualifier.

A schema provides a logical classification of objects in the database. The objects
that a schema can contain include tables, indexes, table spaces, distinct types,
functions, stored procedures, and triggers. An object is assigned to a schema when
it is created.

The schema name of the object determines the schema to which the object belongs.
A user object, such as a distinct type, function, procedure, sequence, or trigger
should not be created in a system schema, which is any one of a set of schemas that
are reserved for use by the DB2 subsystem.

When a table, index, table space, distinct type, function, stored procedure, or
trigger is created, it is given a qualified two-part name. The first part is the schema

Chapter 1. DB2 concepts 11

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_viewimplementation.htm#db2z_viewimplementation
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_creationofviews.htm#db2z_creationofviews
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_integrity.htm#db2z_integrity
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_sampletablesemployeemain.htm#db2z_sampletablesemployeemain

name (or the qualifier), which is either implicitly or explicitly specified. The default
schema is the authorization ID of the owner of the plan or package. The second
part is the name of the object.

In previous versions, CREATE statements had certain restrictions when the value
of CURRENT SCHEMA was different from CURRENT SQLID value. Although
those restrictions no longer exist, you now must consider how to determine the
qualifier and owner when CURRENT SCHEMA and CURRENT SQLID contain
different values. The rules for how the owner is determined depend on the type of
object being created.

CURRENT SCHEMA and CURRENT SQLID affect only dynamic SQL statements.
Static CREATE statements are not affected by either CURRENT SCHEMA or
CURRENT SQLID.

The following table summarizes the effect of CURRENT SCHEMA in determining
the schema qualifier and owner for these objects:
v Alias
v Auxiliary table
v Created global temporary table
v Table
v View

Table 1. Schema qualifier and owner for objects

Specification of name for
new object being created

Schema qualifier of new
object Owner of new object

name (no qualifier) value of CURRENT
SCHEMA

value of CURRENT SQLID

abc.name (single qualifier) abc abc

......abc.name (multiple
qualifiers)

abc abc

The following table summarizes the effect of CURRENT SCHEMA in determining
the schema qualifier and owner for these objects:
v User-defined distinct type
v User-defined function
v Procedure
v Sequence
v Trigger

Table 2. Schema qualifier and owner for additional objects

Specification of name for
new object being created

Schema qualifier of new
object Owner of new object

name (no qualifier) value of CURRENT
SCHEMA

value of CURRENT SQLID

abc.name (single qualifier) abc value of CURRENT SQLID

......abc.name (multiple
qualifiers)

abc value of CURRENT SQLID

“Reserved schema names” on page 2020

12 SQL Reference

DB2 storage groups
DB2 storage groups are a set of volumes on disks that hold the data sets in which
tables and indexes are stored.

The description of a storage group names the group and identifies its volumes and
the VSAM (Virtual Storage Access Method) catalog that records the data sets. The
default storage group, SYSDEFLT, is created when you install DB2.

Within the storage group, DB2 does the following actions:
v Allocates storage for table spaces and indexes
v Defines the necessary VSAM data sets
v Extends and deletes VSAM data sets
v Alters VSAM data sets

All volumes of a given storage group must have the same device type. However,
parts of a single database can be stored in different storage groups.

DB2 can manage the auxiliary storage requirements of a database by using DB2
storage groups. Data sets in these DB2 storage groups are called DB2-managed data
sets.

These DB2 storage groups are not the same as storage groups that are defined by
the DFSMS storage management subsystem (DFSMSsms).

You have several options for managing DB2 data sets:
v Let DB2 manage the data sets. This option means less work for DB2 database

administrators.
After you define a DB2 storage group, DB2 stores information about it in the
DB2 catalog. (This catalog is not the same as the integrated catalog facility
catalog that describes DB2 VSAM data sets). The catalog table
SYSIBM.SYSSTOGROUP has a row for each storage group, and
SYSIBM.SYSVOLUMES has a row for each volume. With the proper
authorization, you can retrieve the catalog information about DB2 storage
groups by using SQL statements.
When you create table spaces and indexes, you name the storage group from
which space is to be allocated. You can also assign an entire database to a
storage group. Try to assign frequently accessed objects (indexes, for example) to
fast devices, and assign seldom-used tables to slower devices. This approach to
choosing storage groups improves performance.
If you are authorized and do not take specific steps to manage your own
storage, you can still define tables, indexes, table spaces, and databases. A
default storage group, SYSDEFLT, is defined when DB2 is installed. DB2 uses
SYSDEFLT to allocate the necessary auxiliary storage. Information about
SYSDEFLT, as with any other storage group, is kept in the catalog tables
SYSIBM.SYSSTOGROUP and SYSIBM.SYSVOLUMES.
For both user-managed and DB2-managed data sets, you need at least one
integrated catalog facility (ICF) catalog; this catalog can be either a user catalog
or a master catalog. These catalogs are created with the ICF. You must identify
the catalog of the ICF when you create a storage group or when you create a
table space that does not use storage groups.

v Let SMS manage some or all the data sets, either when you use DB2 storage
groups or when you use data sets that you have defined yourself. This option

Chapter 1. DB2 concepts 13

offers a reduced workload for DB2 database administrators and storage
administrators. You can specify SMS classes when you create or alter a storage
group.

v Define and manage your own data sets using VSAM Access Method Services.
This option gives you the most control over the physical storage of tables and
indexes.

Recommendation: Use DB2 storage groups and whenever you can, either
specifically or by default. Also use SMS managed DB2 storage groups whenever
you can.
Related tasks:

Choosing data page sizes for LOB data (DB2 Performance)

DB2 databases
DB2 databases are a set of DB2 structures that include a collection of tables, their
associated indexes, and the table spaces in which they reside. You define a
database by using the CREATE DATABASE statement.

Whenever a table space is created, it is explicitly or implicitly assigned to an
existing database. If you create a table space and do not specify a database name,
the table space is created in the default database, DSNDB04. In this case, DB2
implicitly creates a database or uses an existing implicitly created database for the
table. All users who have the authority to create table spaces or tables in database
DSNDB04 have authority to create tables and table spaces in an implicitly created
database. If the table space is implicitly created, and you do not specify the IN
clause in the CREATE TABLE statement, DB2 implicitly creates the database to
which the table space is assigned.

A single database, for example, can contain all the data that is associated with one
application or with a group of related applications. Collecting that data into one
database allows you to start or stop access to all the data in one operation. You can
also grant authorization for access to all the data as a single unit. Assuming that
you are authorized to access data, you can access data that is stored in different
databases.

Recommendation: Keep only a minimal number of table spaces in each database,
and a minimal number of tables in each table space. Excessive numbers of table
spaces and tables in a database can cause decreases in performance and
manageability issues. If you reduce the number of table spaces and tables in a
database, you improve performance, minimize maintenance, increase concurrency,
and decrease log volume.

The following figure shows how the main DB2 data structures fit together. Two
databases, A and B, are represented as squares. Database A contains a table space
and two index spaces. The table space is segmented and contains tables A1 and
A2. Each index space contains one index, an index on table A1 and an index on
table A2. Database B contains one table space and one index space. The table space
is partitioned and contains table B1, partitions 1 through 4. The index space
contains one partitioning index, parts 1 - 4.

14 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_lobpagesize.htm#db2z_lobpagesize

When you migrate to the current version, DB2 adopts the default database and
default storage group that you used in the previous version. You have the same
authority for the current version as you did in the previous version.

Reasons to define a database

In DB2 for z/OS, a database is a logical collection of table spaces and index spaces.
Consider the following factors when deciding whether to define a new database
for a new set of objects:
v You can start and stop an entire database as a unit; you can display the statuses

of all its objects by using a single command that names only the database.
Therefore, place a set of tables that are used together into the same database.
(The same database holds all indexes on those tables.)

v Some operations lock an entire database. For example, some phases of the
LOAD utility prevent some SQL statements (CREATE, ALTER, and DROP) from
using the same database concurrently. Therefore, placing many unrelated tables
in a single database is often inconvenient.
When one user is executing a CREATE, ALTER, or DROP statement for a table,
no other user can access the database that contains that table. QMF™ users,
especially, might do a great deal of data definition; the QMF operations SAVE
DATA and ERASE data-object are accomplished by creating and dropping DB2
tables. For maximum concurrency, create a separate database for each QMF user.

v The internal database descriptors (DBDs) might become inconveniently large.
DBDs grow as new objects are defined, but they do not immediately shrink
when objects are dropped; the DBD space for a dropped object is not reclaimed
until the MODIFY RECOVERY utility is used to delete records of obsolete copies

Database A

Database B

Table space 1 (segmented)

Table space 2
(partitioned)

Part 2

Part 4

Part 3

Partitioning
index Part 1

Index
on Table

A1

Index
on Table

A2

Index space Index space

Index space

Table A1 Table A2

Table B1
Part 1

Part 2

Part 3

Part 4

Figure 5. Data structures in a DB2 database

Chapter 1. DB2 concepts 15

from SYSIBM.SYSCOPY. DBDs occupy storage and are the objects of occasional
input and output operations. Therefore, limiting the size of DBDs is another
reason to define new databases.

Creation of databases (Introduction to DB2 for z/OS)

Storage structures
In DB2, a storage structure is a set of one or more VSAM data sets that hold DB2
tables or indexes. A storage structure is also called a page set.

The two primary types of storage structures in DB2 for z/OS are table spaces and
index spaces.
Related concepts:
“DB2 data structures” on page 4
Related information:

Implementing DB2 table spaces (DB2 Administration Guide)

Implementing DB2 indexes (DB2 Administration Guide)

DB2 table spaces
A DB2 table space is a set of volumes on disks that hold the data sets in which
tables are actually stored. All tables are kept in table spaces. A table space can have
one or more tables.

A table space can consist of a number of VSAM data sets. Data sets are VSAM
linear data sets (LDSs). Table spaces are divided into equal-sized units, called pages,
which are written to or read from disk in one operation. You can specify page sizes
(4 KB, 8 KB, 16 KB, or 32 KB in size) for the data; the default page size is 4 KB. As
a general rule, you should have only one table in each table space. It is also best to
keep only one table space in each database. If you must have more than one table
space in a database, keep no more than 20 table spaces in that database.

Data in most table spaces can be compressed, which can allow you to store more
data on each data page.

You can explicitly define a table space by using the CREATE TABLESPACE
statement, which can specify the database to which the table space belongs and the
storage group that it uses.

Alternatively, you can let DB2 implicitly create a table space for you by issuing a
CREATE TABLE statement that does not specify an existing table space. In this
case, DB2 assigns the table space to the default database and the default storage
group. If DB2 is operating in conversion mode, a segmented table space is created.
In new-function mode, DB2 creates a partition-by-growth table space.

The maximum number of partitions for a table space depends on the page size and
on the DSSIZE. The size of the table space depends on how many partitions are in
the table space and on the DSSIZE. The maximum number of partitions for a
partition-by-growth table space depends on the value that is specified for the
MAXPARTITIONS option of the CREATE TABLESPACE or ALTER TABLESPACE
statement.

When you create a table space, you can specify what type of table space is created.
DB2 supports different types of table spaces:

16 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_creationofdatabases.htm#db2z_creationofdatabases
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_tablespaceimplentation.htm#db2z_tablespaceimplentation
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_indeximplementation.htm#db2z_indeximplementation

Universal table spaces
Provide better space management (for varying-length rows) and improved
mass delete performance by combining characteristics of partitioned and
segmented table space schemes. A universal table space can hold one table.

Partitioned table spaces
Divide the available space into separate units of storage called partitions.
Each partition contains one data set of one table.

Segmented table spaces
Divide the available space into groups of pages called segments. Each
segment is the same size. A segment contains rows from only one table.

Large object table spaces
Hold large object data such as graphics, video, or very large text strings. A
LOB table space is always associated with the table space that contains the
logical LOB column values.

Simple table spaces
Can contain more than one table. The rows of different tables are not kept
separate (unlike segmented table spaces).

Restriction: Starting in DB2 Version 9.1, you cannot create a simple table
space. Simple table spaces that were created with an earlier version of DB2
are still supported.

XML table spaces
Hold XML data. An XML table space is always associated with the table
space that contains the logical XML column value.

Related tasks:

Choosing data page sizes (DB2 Performance)
Related reference:

Examples of table space definitions (DB2 Administration Guide)
“ALTER TABLESPACE” on page 1074
“CREATE TABLESPACE” on page 1455
Related information:

Implementing DB2 table spaces (DB2 Administration Guide)

DB2 index spaces
An index space is a DB2 storage structure that contains a single index.

When you create an index by using the CREATE INDEX statement, an index space
is automatically defined in the same database as the table. You can define a unique
name for the index space, or DB2 can derive a unique name for you. Under certain
circumstances, DB2 implicitly creates index spaces.

DB2 hash spaces
A hash space is a defined disk space that organizes table data for hash access.

When you enable hash access on a table, DB2 requires a defined amount of disk
space to contain table data. You can specify the amount of disk space to allocate to
the hash space when you create a table or alter an existing table. The hash space
on a table must be large enough to contain new rows that are added to the table. If
a hash space is full, new rows are relocated to the overflow index, which reduces

Chapter 1. DB2 concepts 17

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_pagesizerecommendations.htm#db2z_pagesizerecommendations
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exampletablespacedefinitions.htm#db2z_exampletablespacedefinitions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_tablespaceimplentation.htm#db2z_tablespaceimplentation

the performance of hash access on that table. Hash spaces can contain only a single
table in a universal table space, and can be partitioned by range or partitioned by
growth.
Related tasks:

Managing space and page size for hash-organized tables (DB2 Performance)

Fine-tuning hash space and page size (DB2 Performance)

Creating tables that use hash organization (DB2 Administration Guide)

Altering tables to enable hash access (DB2 Administration Guide)

Organizing tables by hash for fast access to individual rows (DB2 Performance)

Monitoring hash access (DB2 Performance)

Database design with hash access (Introduction to DB2 for z/OS)

Hash access paths (Introduction to DB2 for z/OS)

DB2 system objects
Unlike the DB2 data structures that users create and access, DB2 controls and
accesses system objects.

DB2 has a comprehensive infrastructure that enables it to provide data integrity,
performance, and the ability to recover user data. In addition, Parallel Sysplex®

data sharing uses shared system objects.
Related concepts:
“DB2 data structures” on page 4

DB2 catalog
DB2 maintains a set of tables that contain information about the data that DB2
controls. These tables are collectively known as the catalog.

The catalog tables contain information about DB2 objects such as tables, views, and
indexes. When you create, alter, or drop an object, DB2 inserts, updates, or deletes
rows of the catalog that describe the object.

The DB2 catalog consists of tables of data about everything defined to the DB2
system, including table spaces, indexes, tables, copies of table spaces and indexes,
and storage groups. The system database DSNDB06 contains the DB2 catalog.

When you create, alter, or drop any structure, DB2 inserts, updates, or deletes rows
of the catalog that describe the structure and tell how the structure relates to other
structures. For example, SYSIBM.SYSTABLES is one catalog table that records
information when a table is created. DB2 inserts a row into SYSIBM.SYSTABLES
that includes the table name, its owner, its creator, and the name of its table space
and its database.

To understand the role of the catalog, consider what happens when the EMP table
is created. DB2 records the following data:

Table information
To record the table name and the name of its owner, its creator, its type,
the name of its table space, and the name of its database, DB2 inserts a
row into the catalog.

18 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_managehashspace.htm#db2z_managehashspace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_estimatehashspacesize.htm#db2z_estimatehashspacesize
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_creatingtablesforhash.htm#db2z_creatingtablesforhash
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_alteringtablesforhash.htm#db2z_alteringtablesforhash
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_enablinghashaccess.htm#db2z_enablinghashaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_monitoringhashaccess.htm#db2z_monitoringhashaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_hashesforperformance.htm#db2z_hashesforperformance
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_hashaccess.htm#db2z_hashaccess

Column information
To record information about each column of the table, DB2 inserts the
name of the table to which the column belongs, its length, its data type,
and its sequence number by inserting a row into the catalog for each
column of the table.

Authorization information
To record that the owner of the table has authorization to create the table,
DB2 inserts a row into the catalog.

Tables in the catalog are like any other database tables with respect to retrieval. If
you have authorization, you can use SQL statements to look at data in the catalog
tables in the same way that you retrieve data from any other table in the DB2
database. DB2 ensures that the catalog contains accurate object descriptions. If you
are authorized to access the specific tables or views on the catalog, you can
SELECT from the catalog, but you cannot use INSERT, UPDATE, DELETE,
TRUNCATE, or MERGE statements on the catalog.

The communications database (CDB) is part of the DB2 catalog. The CDB consists of
a set of tables that establish conversations with remote database management
systems (DBMSs). The distributed data facility (DDF) uses the CDB to send and
receive distributed data requests.

“DB2 catalog tables” on page 2102

DB2 directory
The DB2 directory contains information that DB2 uses during normal operation.

You cannot access the directory by using SQL, although much of the same
information is contained in the DB2 catalog, for which you can submit queries. The
structures in the directory are not described in the DB2 catalog.

The directory consists of a set of DB2 tables that are stored in table spaces in
system database DSNDB01. Each of the table spaces that are listed in the following
table is contained in a VSAM linear data set.

Table 3. Directory table spaces

Table space name Description

SCT02 Contains the internal form of SQL statements that
are contained in an application. If you bound a
plan with SQL statements in a prior release, DB2
created a structure in SCT02.

SPT01
Skeleton package

Contains the internal form of SQL statements that
are contained in a package.

SYSSPUXA Contains the contents of a package selection.

SYSSPUXB Contains the contents of a package explain block.

SYSLGRNX
Log range

Tracks the opening and closing of table spaces,
indexes, or partitions. By tracking this information
and associating it with relative byte addresses
(RBAs) as contained in the DB2 log, DB2 can
reduce recovery time by reducing the amount of
log that must be scanned for a particular table
space, index, or partition.

Chapter 1. DB2 concepts 19

Table 3. Directory table spaces (continued)

Table space name Description

SYSUTILX
System utilities

Contains a row for every utility job that is
running. The row persists until the utility is
finished. If the utility terminates without
completing, DB2 uses the information in the row
when you restart the utility.

DBD01
Database descriptor (DBD)

Contains internal information, called database
descriptors (DBDs), about the databases that exist
within the DB2 subsystem.

Each database has exactly one corresponding DBD
that describes the database, table spaces, tables,
table check constraints, indexes, and referential
relationships. A DBD also contains other
information about accessing tables in the database.
DB2 creates and updates DBDs whenever their
corresponding databases are created or updated.

SYSDBDXA Contains the contents of a DBD section.

Active and archive logs
DB2 records all data changes and other significant events in a log.

If you keep these logs, DB2 can re-create those changes for you in the event of a
failure or roll the changes back to a previous point in time.

DB2 writes each log record to a disk data set called the active log. When the active
log is full, DB2 copies the contents of the active log to a disk or magnetic tape data
set called the archive log.

You can choose either single logging or dual logging.
v A single active log contains up to 93 active log data sets.
v With dual logging, the active log has twice the capacity for active log data sets,

because two identical copies of the log records are kept.

Each DB2 subsystem manages multiple active logs and archive logs. The following
facts are true about each DB2 active log:
v Each log can be duplexed to ensure high availability.
v Each active log data set is a VSAM linear data set (LDS).
v DB2 supports striped active log data sets.
Related tasks:

Managing the log and the bootstrap data set (DB2 Administration Guide)
Related information:

Reading log records (DB2 Administration Guide)

Bootstrap data set
The bootstrap data set (BSDS) is a VSAM key-sequenced data set (KSDS). This KSDS
contains information that is critical to DB2, such as the names of the logs. DB2 uses
information in the BSDS for system restarts and for any activity that requires
reading the log.

20 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_managebsds.htm#db2z_managebsds
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_logrecord.htm#db2z_logrecord

Specifically, the BSDS contains:
v An inventory of all active and archive log data sets that are known to DB2. DB2

uses this information to track the active and archive log data sets. DB2 also uses
this information to locate log records to satisfy log read requests during normal
DB2 system activity and during restart and recovery processing.

v A wrap-around inventory of all recent DB2 checkpoint activity. DB2 uses this
information during restart processing.

v The distributed data facility (DDF) communication record, which contains
information that is necessary to use DB2 as a distributed server or requester.

v Information about buffer pools.

Because the BSDS is essential to recovery in the event of subsystem failure, during
installation DB2 automatically creates two copies of the BSDS and, if space permits,
places them on separate volumes.

The BSDS can be duplexed to ensure availability.
Related tasks:

Managing the log and the bootstrap data set (DB2 Administration Guide)

Buffer pools
Buffer pools are areas of virtual storage that temporarily store pages of table spaces
or indexes.

When an application program accesses a row of a table, DB2 places the page that
contains that row in a buffer. Access to data in this temporary storage is faster than
accessing data on a disk. If the required data is already in a buffer, the application
program does not need to wait for it to be retrieved from disk, so the time and
cost of retrieving the page is reduced.

Buffer pools require monitoring and tuning. Buffer pool sizes are critical to the
performance characteristics of an application or group of applications that access
data in those buffer pools.

You can specify default buffer pools for user data and for indexes. A special type
of buffer pool that is used only in Parallel Sysplex data sharing is the group buffer
pool, which resides in the coupling facility. Group buffer pools reside in a special
PR/SM™ LPAR logical partition called a coupling facility, which enables several DB2
subsystems to share information and control the coherency of data.

Buffer pools reside in the DB2 DBM1 primary address space. This option offers the
best performance. The maximum size of a buffer pool is 1 TB.
Related tasks:

Tuning database buffer pools (DB2 Performance)

Calculating buffer pool size (DB2 Installation and Migration)

Enabling automatic buffer pool size management (DB2 Performance)

Data definition control support database
The data definition control support (DDCS) database refers to a user-maintained
collection of tables that are used by data definition control support to restrict the
submission of specific DB2 DDL (data definition language) statements to selected
application identifiers (plans or collections of packages).

Chapter 1. DB2 concepts 21

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_managebsds.htm#db2z_managebsds
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedbbufferpools.htm#db2z_tunedbbufferpools
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_calcbpsize.htm#db2z_calcbpsize
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_enableautobpsize.htm#db2z_enableautobpsize

This database is automatically created during installation. After this database is
created, you must populate the tables to use this facility. The system name for this
database is DSNRGFDB.

Resource limit facility tables
The resource limit facility enables you to control the amount of processor resources
that are used by SQL statements.

For example, you might choose to disable bind operations during critical
times of day to avoid contention with the DB2 catalog.

Resource limits apply to the following types of SQL statements:
v SELECT
v INSERT
v UPDATE
v MERGE
v TRUNCATE
v DELETE

Resource limits apply only to dynamic SQL statements. The resource limit facility
does not control static SQL statements regardless of whether they are issued locally
or remotely, and no limits apply to primary or secondary authorization IDs that
have installation SYSADM or installation SYSOPR authority.

You can establish a single limit for all users, different limits for individual users, or
both. You can choose to have these limits applied before the statement is executed
through predictive governing, or while a statement is running , through reactive
governing. You can also use reactive and predictive governing in combination. You
define these limits in one or more resource limit tables, named DSNRLSTxx or

DSNRLMTxx, depending on the monitoring purpose.
Related concepts:

Controlling the resource limit facility (DB2 Administration Guide)
Related tasks:

Setting limits for system resource usage by using the resource limit facility
(DB2 Performance)

Limiting resources for SQL statements reactively (DB2 Performance)

Limiting resources for SQL statements predictively (DB2 Performance)

Combining reactive and predictive governing (DB2 Performance)
Related reference:

Resource limit facility tables (DB2 Performance)

Work file database
Use the work file database as storage for processing SQL statements that require
working space, such as that required for a sort.

22 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_controlgovernor.htm#db2z_controlgovernor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_setsystemresourcelimit.htm#db2z_setsystemresourcelimit
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_setsystemresourcelimit.htm#db2z_setsystemresourcelimit
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reactivegovern.htm#db2z_reactivegovern
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_predictgovern.htm#db2z_predictgovern
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_combinereactpredictgovern.htm#db2z_combinereactpredictgovern
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_resourcelimittables.htm#db2z_resourcelimittables

The work file database is used as storage for DB2 work files for processing SQL
statements that require working space (such as the space that is required for a
sort), and as storage for created global temporary tables and declared global
temporary tables.

DB2 creates a work file database and some table spaces in it for you at installation
time. You can create additional work file table spaces at any time. You can drop,
re-create, and alter the work file database or the table spaces in it, or both, at any
time.

In a non-data-sharing environment, the work file database is named DSNDB07. In
a data sharing environment, each DB2 member in the data sharing group has its
own work file database.

You can also use the work file database for all temporary tables.

DB2 and data integrity
Referential integrity ensures data integrity by enforcing rules with referential
constraints, check constraints, and triggers. You can rely on constraints and triggers
to ensure the integrity and validity of your data, rather than relying on individual
applications to do that work.

Constraints
Constraints are rules that control values in columns to prevent duplicate values or
set restrictions on data added to a table.

Constraints fall into the following three types:
v Unique constraints
v Referential constraints
v Check constraints

Unique constraints
A unique constraint is a rule that the values of a key are valid only if they are
unique in a table.

Unique constraints are optional and can be defined in the CREATE TABLE or
ALTER TABLE statements with the PRIMARY KEY clause or the UNIQUE clause.
The columns specified in a unique constraint must be defined as NOT NULL. A
unique index enforces the uniqueness of the key during changes to the columns of
the unique constraint.

A table can have an arbitrary number of unique constraints, with at most one
unique constraint defined as a primary key. A table cannot have more than one
unique constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential constraint
is called the parent key.

Referential constraints
DB2 ensures referential integrity between your tables when you define referential
constraints.

Referential integrity is the state in which all values of all foreign keys are valid.
Referential integrity is based on entity integrity. Entity integrity requires that each

Chapter 1. DB2 concepts 23

entity have a unique key. For example, if every row in a table represents
relationships for a unique entity, the table should have one column or a set of
columns that provides a unique identifier for the rows of the table. This column (or
set of columns) is called the parent key of the table. To ensure that the parent key
does not contain duplicate values, a unique index must be defined on the column
or columns that constitute the parent key. Defining the parent key is called entity
integrity.

A referential constraint is the rule that the nonnull values of a foreign key are valid
only if they also appear as values of a parent key. The table that contains the
parent key is called the parent table of the referential constraint, and the table that
contains the foreign key is a dependent of that table.

The relationship between some rows of the DEPT and EMP tables, shown in the
following figure, illustrates referential integrity concepts and terminology. For
example, referential integrity ensures that every foreign key value in the DEPT
column of the EMP table matches a primary key value in the DEPTNO column of
the DEPT table.

Two parent and dependent relationships exist between the DEPT and EMP tables.
v The foreign key on the DEPT column establishes a parent and dependent

relationship. The DEPT column in the EMP table depends on the DEPTNO in
the DEPT table. Through this foreign key relationship, the DEPT table is the
parent of the EMP table. You can assign an employee to no department (by
specifying a null value), but you cannot assign an employee to a department
that does not exist.

v The foreign key on the MGRNO column also establishes a parent and dependent
relationship. Because MGRNO depends on EMPNO, EMP is the parent table of
the relationship, and DEPT is the dependent table.

You can define a primary key on one or more columns. A primary key that
includes two or more columns is called a composite key. A foreign key can also
include one or more columns. When a foreign key contains multiple columns, the
corresponding primary key must be a composite key. The number of foreign key
columns must be the same as the number of columns in the parent key, and the

Primary
key

Primary
key

Foreign
key

Foreign
key

DEPT

EMP

DEPTNO DEPTNAME MGRNO ADMRDEPT

C01 INFORMATION CENTER 000030 A00

D11 MANUFACTURING SYSTEMS 000060 D11

E21 SOFTWARE SUPPORT ------ D11

EMPNO LASTNAME DEPT JOB

000030 KWAN C01 MGR

000200 BROWN D11 DES

200340 ALONZO E21 FLD

Figure 6. Referential integrity of DEPT and EMP tables

24 SQL Reference

data types of the corresponding columns must be compatible. (The sample project
activity table, DSN8B10.PROJACT, is an example of a table with a primary key on
multiple columns, PROJNO, ACTNO, and ACSTDATE.)

A table can be a dependent of itself; this is called a self-referencing table. For
example, the DEPT table is self-referencing because the value of the administrative
department (ADMRDEPT) must be a department ID (DEPTNO). To enforce the
self-referencing constraint, DB2 requires that a foreign key be defined.

Similar terminology applies to the rows of a parent-and-child relationship. A row
in a dependent table, called a dependent row, refers to a row in a parent table, called
a parent row. But a row of a parent table is not always a parent row—perhaps
nothing refers to it. Likewise, a row of a dependent table is not always a
dependent row—the foreign key can allow null values, which refer to no other
rows.

Referential constraints are optional. You define referential constraints by using
CREATE TABLE and ALTER TABLE statements.

DB2 enforces referential constraints when the following actions occur:
v An INSERT statement is applied to a dependent table.
v An UPDATE statement is applied to a foreign key of a dependent table or to the

parent key of a parent table.
v A MERGE statement that includes an insert operation is applied to a dependent

table.
v A MERGE statement that includes an update operation is applied to a foreign

key of a dependent table or to the parent key of a parent table.
v A DELETE statement is applied to a parent table. All affected referential

constraints and all delete rules of all affected relationships must be satisfied in
order for the delete operation to succeed.

v The LOAD utility with the ENFORCE CONSTRAINTS option is run on a
dependent table.

v The CHECK DATA utility is run.

Another type of referential constraint is an informational referential constraint. This
type of constraint is not enforced by DB2 during normal operations. An application
process should verify the data in the referential integrity relationship. An
informational referential constraint allows queries to take advantage of
materialized query tables.

The order in which referential constraints are enforced is undefined. To ensure that
the order does not affect the result of the operation, there are restrictions on the
definition of delete rules and on the use of certain statements. The restrictions are
specified in the descriptions of the SQL statements CREATE TABLE, ALTER
TABLE, INSERT, UPDATE, MERGE, and DELETE.

The rules of referential integrity involve the following concepts and terminology:

parent key
A primary key or a unique key of a referential constraint.

parent table
A table that is a parent in at least one referential constraint. A table can be
defined as a parent in an arbitrary number of referential constraints.

Chapter 1. DB2 concepts 25

dependent table
A table that is a dependent in at least one referential constraint. A table can
be defined as a dependent in an arbitrary number of referential constraints.
A dependent table can also be a parent table.

descendent table
A table that is a dependent of another table or a table that is a dependent
of a descendent table.

referential cycle
A set of referential constraints in which each associated table is a
descendent of itself.

parent row
A row that has at least one dependent row.

dependent row
A row that has at least one parent row.

descendent row
A row that is dependent on another row or a row that is a dependent of a
descendent row.

self-referencing row
A row that is a parent of itself.

self-referencing table
A table that is both parent and dependent in the same referential
constraint. The constraint is called a self-referencing constraint.

The following rules provide referential integrity:

insert rule
A nonnull insert value of the foreign key must match some value of the
parent key of the parent table. The value of a composite foreign key is null
if any component of the value is null.

update rule
A nonnull update value of the foreign key must match some value of the
parent key of the parent table. The value of a composite foreign key is
treated as null if any component of the value is null.

delete rule
Controls what happens when a row of the parent table is deleted. The
choices of action, made when the referential constraint is defined, are
RESTRICT, NO ACTION, CASCADE, or SET NULL. SET NULL can be
specified only if some column of the foreign key allows null values.

More precisely, the delete rule applies when a row of the parent table is the object
of a delete or propagated delete operation and that row has dependents in the
dependent table of the referential constraint. A propagated delete refers to the
situation where dependent rows are deleted when parent rows are deleted. Let P
denote the parent table, let D denote the dependent table, and let p denote a parent
row that is the object of a delete or propagated delete operation. If the delete rule
is:
v RESTRICT or NO ACTION, an error occurs and no rows are deleted.
v CASCADE, the delete operation is propagated to the dependent rows of p in D.
v SET NULL, each nullable column of the foreign key of each dependent row of p

in D is set to null.

26 SQL Reference

Each referential constraint in which a table is a parent has its own delete rule, and
all applicable delete rules are used to determine the result of a delete operation.
Thus, a row cannot be deleted if it has dependents in a referential constraint with a
delete rule of RESTRICT or NO ACTION or the deletion cascades to any of its
descendents that are dependents in a referential constraint with the delete rule of
RESTRICT or NO ACTION.

The deletion of a row from parent table P involves other tables and can affect rows
of these tables:
v If D is a dependent of P and the delete rule is RESTRICT or NO ACTION, D is

involved in the operation but is not affected by the operation and the deletion
from the parent table P does not take place.

v If D is a dependent of P and the delete rule is SET NULL, D is involved in the
operation and rows of D might be updated during the operation.

v If D is a dependent of P and the delete rule is CASCADE, D is involved in the
operation and rows of D might be deleted during the operation. If rows of D are
deleted, the delete operation on P is said to be propagated to D. If D is also a
parent table, the actions described in this list apply, in turn, to the dependents of
D.

Any table that can be involved in a delete operation on P is said to be
delete-connected to P. Thus, a table is delete-connected to table P if it is a dependent
of P or a dependent of a table to which delete operations from P cascade.

Department table (DSN8B10.DEPT) (Introduction to DB2 for z/OS)

Employee table (DSN8B10.EMP) (Introduction to DB2 for z/OS)

Project activity table (DSN8B10.PROJACT) (Introduction to DB2 for z/OS)

Referential constraints (DB2 Application programming and SQL)

Check constraints
A check constraint is a rule that specifies the values that are allowed in one or more
columns of every row of a base table.

Like referential constraints, check constraints are optional and you define them by
using the CREATE TABLE and ALTER TABLE statements. The definition of a
check constraint restricts the values that a specific column of a base table can
contain.

A table can have any number of check constraints. DB2 enforces a check constraint
by applying the restriction to each row that is inserted, loaded, or updated. One
restriction is that a column name in a check constraint on a table must identify a
column of that table.

Example: You can create a check constraint to ensure that all employees earn a
salary of $30 000 or more:
CHECK (SALARY>= 30000)

Chapter 1. DB2 concepts 27

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_sampletablesdepartment.htm#db2z_sampletablesdepartment
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_sampletablesemployeemain.htm#db2z_sampletablesemployeemain
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_sampletablesprojectactivity.htm#db2z_sampletablesprojectactivity
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_referentialconstraintsampapp.htm#db2z_referentialconstraintsampapp

Related concepts:

Check constraints (DB2 Application programming and SQL)

Triggers
A trigger defines a set of actions that are executed when a delete, insert, or update
operation occurs on a specified table or view. When an SQL operation is executed,
the trigger is activated. You can use triggers with referential constraints and check
constraints to enforce data integrity rules.

When an insert, load, update, or delete is executed, the trigger is activated.

You can use triggers along with referential constraints and check constraints to
enforce data integrity rules. Triggers are more powerful than constraints because
you can use them to do the following things:
v Update other tables
v Automatically generate or transform values for inserted or updated rows
v Invoke functions that perform operations both inside and outside of DB2

For example, assume that you need to prevent an update to a column when a new
value exceeds a certain amount. Instead of preventing the update, you can use a
trigger. The trigger can substitute a valid value and invoke a procedure that sends
a notice to an administrator about the attempted invalid update.

You can define triggers with the CREATE TRIGGER statement.

INSTEAD OF triggers are triggers that execute instead of the INSERT, UPDATE, or
DELETE statement that activates the trigger. Unlike other triggers, which are
defined on tables only, INSTEAD OF triggers are defined on views only. INSTEAD
OF triggers are particularly useful when the triggered actions for INSERT,
UPDATE, or DELETE statements on views need to be different from the actions for
SELECT statements. For example, an INSTEAD OF trigger can be used to facilitate
an update through a join query or to encode or decode data in a view.

Triggers move the business rule application logic into the database, which results
in faster application development and easier maintenance. The business rule is no
longer repeated in several applications, and the rule is centralized to the trigger.
DB2 checks the validity of the changes that any application makes to the salary
column, and you are not required to change application programs when the logic
changes.

Creation of triggers (Introduction to DB2 for z/OS)

Application processes, concurrency, and recovery
All SQL programs execute as part of an application process. An application process
involves the execution of one or more programs, and it is the unit to which DB2
allocates resources and locks.

Different application processes might involve the execution of different programs,
or different executions of the same program. The means of initiating and
terminating an application process are dependent on the environment.

Locking, commit, and rollback
More than one application process might request access to the same data at the
same time. Furthermore, under certain circumstances, an SQL statement can

28 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_checkconstraintenforcement.htm#db2z_checkconstraintenforcement
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_creationoftriggers.htm#db2z_creationoftriggers

execute concurrently with a utility on the same table space. Locking is used to
maintain data integrity under such conditions, preventing, for example, two
application processes from updating the same row of data simultaneously.

DB2 implicitly acquires locks to prevent uncommitted changes made by one
application process from being perceived by any other. DB2 will implicitly release
all locks it has acquired on behalf of an application process when that process
ends, but an application process can also explicitly request that locks be released
sooner. A commit operation releases locks acquired by the application process and
commits database changes made by the same process.

DB2 provides a way to back out uncommitted changes made by an application
process. This might be necessary in the event of a failure on the part of an
application process, or in a deadlock situation. An application process, however, can
explicitly request that its database changes be backed out. This operation is called
rollback.

The interface used by an SQL program to explicitly specify these commit and
rollback operations depends on the environment. If the environment can include
recoverable resources other than DB2 databases, the SQL COMMIT and
ROLLBACK statements cannot be used. Thus, these statements cannot be used in
an IMS, CICS, or WebSphere® environment.

Unit of work
A unit of work is a recoverable sequence of operations within an application
process. A unit of work is sometimes called a logical unit of work.

At any time, an application process has a single unit of work, but the life of an
application process can involve many units of work as a result of commit or full
rollback operations.

A unit of work is initiated when an application process is initiated. A unit of work
is also initiated when the previous unit of work is ended by something other than
the end of the application process. A unit of work is ended by a commit operation,
a full rollback operation, or the end of an application process. A commit or rollback
operation affects only the database changes made within the unit of work it ends.
While these changes remain uncommitted, other application processes are unable
to perceive them unless they are running with an isolation level of uncommitted
read. The changes can still be backed out. Once committed, these database changes
are accessible by other application processes and can no longer be backed out by a
rollback. Locks acquired by DB2 on behalf of an application process that protects
uncommitted data are held at least until the end of a unit of work.

The initiation and termination of a unit of work define points of consistency within
an application process. A point of consistency is a claim by the application that the
data is consistent. For example, a banking transaction might involve the transfer of
funds from one account to another. Such a transaction would require that these
funds be subtracted from the first account, and added to the second. Following the
subtraction step, the data is inconsistent. Only after the funds have been added to
the second account is consistency reestablished. When both steps are complete, the
commit operation can be used to end the unit of work, thereby making the
changes available to other application processes. The following figure illustrates
this concept.

Chapter 1. DB2 concepts 29

Unit of recovery
A DB2 unit of recovery is a recoverable sequence of operations executed by DB2 for
an application process.

If a unit of work involves changes to other recoverable resources, the unit of work
will be supported by other units of recovery. If relational databases are the only
recoverable resources used by the application process, then the scope of the unit of
work and the unit of recovery are the same and either term can be used.

Rolling back work
DB2 can back out all changes made in a unit of recovery or only selected changes.
Only backing out all changes results in a point of consistency.

Rolling back all changes

The SQL ROLLBACK statement without the TO SAVEPOINT clause specified
causes a full rollback operation. If such a rollback operation is successfully
executed, DB2 backs out uncommitted changes to restore the data consistency that
existed when the unit of work was initiated.

That is, DB2 undoes the work, as shown in the following figure:

Time
line

Point of
consistency

New point of
consistency

One unit of work

Database updates

Begin
unit of work

COMMIT;
End

unit of work

Figure 7. Unit of work with a commit operation

Point of
consistency

New point of
consistency

Unit of work

Database updates

Begin
unit of work

Data is returned
to its initial state;
end unit of work

Back out updates

ROLLBACK,
failure, or
deadlock;

begin rollback

Time
line

Figure 8. Rolling back all changes from a unit of work

30 SQL Reference

Rolling back selected changes using savepoints

A savepoint represents the state of data at some particular time during a unit of
work. An application process can set savepoints within a unit of work, and then as
logic dictates, roll back only the changes that were made after a savepoint was set.

For example, part of a reservation transaction might involve booking an airline
flight and then a hotel room. If a flight gets reserved but a hotel room cannot be
reserved, the application process might want to undo the flight reservation without
undoing any database changes made in the transaction prior to making the flight
reservation. SQL programs can use the SQL SAVEPOINT statement to set
savepoints, the SQL ROLLBACK statement with the TO SAVEPOINT clause to
undo changes to a specific savepoint or the last savepoint that was set, and the
SQL RELEASE SAVEPOINT statement to delete a savepoint. The following figure
illustrates this concept.

Packages and application plans
A package contains control structures that DB2 uses when it runs SQL statements.
An application plan relates an application process to a local instance of DB2 and
specifies processing options.

Packages are produced during program preparation. You can think of the control
structures as the bound or operational form of SQL statements. All control
structures in a package are derived from the SQL statements that are embedded in
a single source program.

An application plan contains one or both of the following elements:
v A list of package names

DB2 applications require an application plan. Packages make application programs
more flexible and easier to maintain.

Example: The following figure shows an application plan that contains two
packages. Suppose that you decide to change the SELECT statement in package
AA to select data from a different table. In this case, you need to bind only

package AA again and not package AB.

Unit of work

Begin
unit of work

Savepoint A COMMIT
End unit of work

Rollback to A;
database updates

made between
times T1 and T2
are rolled back

Time
line T 1 T 2

Figure 9. Rolling back changes to a savepoint within a unit of work

Chapter 1. DB2 concepts 31

In general, you create plans and packages by using the DB2 commands BIND
PLAN and BIND PACKAGE.

A trigger package is a special type of package that is created when you execute a
CREATE TRIGGER statement. A trigger package executes only when the trigger
with which it is associated is activated.

Packages for JDBC, SQLJ, and ODBC applications serve different purposes that you
can read more about later in this information.

Application programming for DB2 (Introduction to DB2 for z/OS)

Preparation process for an application program (Introduction to DB2 for
z/OS)
“CREATE PROCEDURE (SQL - native)” on page 1350
“CREATE TRIGGER” on page 1482
“SET CURRENT PACKAGE PATH” on page 1899
“SET CURRENT PACKAGESET” on page 1903

Routines
A routine is an executable SQL object. The two types of routines are functions and
stored procedures.

Functions
A function is a routine that can be invoked from within other SQL statements and
that returns a value or a table.

Functions are classified as either SQL functions or external functions. SQL
functions are written using SQL statements, which are also known collectively as
SQL procedural language. External functions reference a host language program.
The host language program can contain SQL, but does not require SQL.

Plan A
Package AA

Package AB

.

.

.
SELECT * FROM.

.

.

TABLE1

.

.

.
SELECT * FROM TABLE2.

.

.

.

.

.

.
Package AA

.
Package AB

.

.

.

.

.

TABLE3

Figure 10. Application plan and packages

32 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_applicationprogrammingfordb2.htm#db2z_applicationprogrammingfordb2
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_programprepprocesses.htm#db2z_programprepprocesses
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_programprepprocesses.htm#db2z_programprepprocesses

You define functions by using the CREATE FUNCTION statement. You can classify
functions as built-in functions, user-defined functions, or cast functions that are
generated for distinct types. Functions can also be classified as aggregate, scalar, or
table functions, depending on the input data values and result values.

A table function can be used only in the FROM clause of a statement. Table
functions return columns of a table and resemble a table that is created through a
CREATE TABLE statement. Table functions can be qualified with a schema name.

Creation of user-defined functions (Introduction to DB2 for z/OS)
Chapter 3, “Functions,” on page 337

Stored procedures
A procedure, also known as a stored procedure, is a routine that you can call to
perform operations that can include SQL statements.

Procedures are classified as either SQL procedures or external procedures. SQL
procedures contain only SQL statements. External procedures reference a host
language program that might or might not contain SQL statements.

DB2 for z/OS supports the following types of SQL procedures:

External stored procedures
External stored procedures are procedures that are written in a host
language and can contain SQL statements. The source code for an external
stored procedure is separate from the definition. You can write an external
stored procedure in Assembler, C, C++, COBOL, Java, REXX, or PL/I. All
programs must be designed to run using Language Environment®. Your
COBOL and C++ stored procedures can contain object-oriented extensions.

External SQL procedures
External SQL procedures are procedures whose body is written in SQL.
DB2 supports them by generating an associated C program for each
procedure. All SQL procedures that were created prior to Version 9.1 are
external SQL procedures. Starting in Version 9.1, you can create an external
SQL procedure by specifying FENCED or EXTERNAL in the CREATE
PROCEDURE statement.

Native SQL procedures
Native SQL procedures are procedures whose body is written in SQL. For
native SQL procedures, DB2 does not generate an associated C program.
Starting in Version 9.1, all SQL procedures that are created without the
FENCED or EXTERNAL options in the CREATE PROCEDURE statement
are native SQL procedures. You can create native SQL procedures in one
step. Native SQL statements support more functions and usually provide
better performance than external SQL statements.

SQL control statements are supported in SQL procedures. Control statements are
SQL statements that allow SQL to be used in a manner similar to writing a
program in a structured programming language. SQL control statements provide
the capability to control the logic flow, declare and set variables, and handle
warnings and exceptions. Some SQL control statements include other nested SQL
statements.

SQL procedures provide the same benefits as procedures in a host language. That
is, a common piece of code needs to be written and maintained only once and can
be called from several programs.

Chapter 1. DB2 concepts 33

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_creationofudfs.htm#db2z_creationofudfs

SQL procedures provide additional benefits when they contain SQL statements. In
this case, SQL procedures can reduce or eliminate network delays that are
associated with communication between the client and server and between each
SQL statement. SQL procedures can improve security by providing a user the
ability to invoke only a procedure instead of providing them with the ability to
execute the SQL that the procedure contains.

You define procedures by using the CREATE PROCEDURE statement.

Use of an application program as a stored procedure (Introduction to DB2
for z/OS)

External stored procedures (DB2 Application programming and SQL)
“SQL control statements for external SQL procedures” on page 2032
Chapter 6, “SQL control statements for SQL routines,” on page 1963

Sequences
A sequence is a stored object that simply generates a sequence of numbers in a
monotonically ascending (or descending) order. A sequence provides a way to have
DB2 automatically generate unique integer primary keys and to coordinate keys
across multiple rows and tables.

A sequence can be used to exploit parallelization, instead of programmatically
generating unique numbers by locking the most recently used value and then
incrementing it.

Sequences are ideally suited to the task of generating unique key values. One
sequence can be used for many tables, or a separate sequence can be created for
each table requiring generated keys. A sequence has the following properties:
v Guaranteed, unique values, assuming that the sequence is not reset and does not

allow the values to cycle
v Monotonically increasing or decreasing values within a defined range
v Can increment with a value other than 1 between consecutive values (the default

is 1).
v Recoverable. If DB2 should fail, the sequence is reconstructed from the logs so

that DB2 guarantees that unique sequence values continue to be generated
across a DB2 failure.

Values for a given sequence are automatically generated by DB2. Use of DB2
sequences avoids the performance bottleneck that results when an application
implements sequences outside the database. The counter for the sequence is
incremented (or decremented) independently of the transaction. In some cases,
gaps can be introduced in a sequence. A gap can occur when a given transaction
increments a sequence two times. The transaction might see a gap in the two
numbers that are generated because there can be other transactions concurrently
incrementing the same sequence. A user might not realize that other users are
drawing from the same sequence. Furthermore, it is possible that a given sequence
can appear to have generated gaps in the numbers, because a transaction that
might have generated a sequence number might have rolled back or the DB2
subsystem might have failed. Updating a sequence is not part of a transaction's
unit of recovery.

A sequence is created with a CREATE SEQUENCE statement. A sequence can be
referenced using a sequence-reference. A sequence reference can appear most places

34 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_applicationprogramasstoredprocedure.htm#db2z_applicationprogramasstoredprocedure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_applicationprogramasstoredprocedure.htm#db2z_applicationprogramasstoredprocedure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_externalsp.htm#db2z_externalsp

that an expression can appear. A sequence reference can specify whether the value
to be returned is a newly generated value, or the previously generated value.

Although there are similarities, a sequence is different than an identity column. A
sequence is an object, whereas an identity column is a part of a table. A sequence
can be used with multiple tables, but an identity column is tied to a single table.

“CREATE SEQUENCE” on page 1375

User-defined types
A user-defined data type is a data type that is defined to the database using a
CREATE statement.

A user-defined data types is a distinct type or an array type.

A distinct type is a user-defined type that shares its internal representation with a
built-in data type (its source type), but is considered to be a separate and
incompatible data type for most operations. A distinct type is created with an SQL
CREATE TYPE (distinct) statement. A distinct type can be used to define a column
of a table, or a parameter of a routine.

An array type is a user-defined data type that consists of an ordered set of elements
of a single built-in data type. Elements can be accessed and modified by their
index position. An array type is created with an SQL CREATE TYPE (array)
statement. An array type can be used as a parameter of a procedure and as a
variable in an SQL procedure.
Related concepts:
“Array types” on page 108
“Distinct types” on page 107
Related reference:
“CREATE TYPE” on page 1510

Distributed data
The database managers in a distributed relational database communicate and
cooperate with each other in a way that allows a DB2 application program to use
SQL to access data at any of the interconnected computer systems.

A distributed relational database consists of a set of tables and other objects that are
spread across different, but interconnected, computer systems. Each computer
system has a relational database manager, such as DB2, that manages the tables in
its environment. The database managers communicate and cooperate with each
other in a way that allows a DB2 application program to use SQL to access data at
any of the computer systems. The DB2 subsystem where the application plan is
bound is known as the local DB2 subsystem. Any database server other than the
local DB2 subsystem is considered a remote database server, and access to its data is
a distributed operation.

Distributed relational databases are built on formal requester-server protocols and
functions. An application requester component supports the application end of a
connection. It transforms an application's database request into communication
protocols that are suitable for use in the distributed database network. These
requests are received and processed by an application server component at the
database server end of the connection. Working together, the application requester

Chapter 1. DB2 concepts 35

|

|
|
|
|
|

and application server handle the communication and location considerations so
that the application is isolated from these considerations and can operate as if it
were accessing a local database.

For more information on Distributed Relational Database Architecture™ (DRDA®)
communication protocols, see Open Group Technical Standard, DRDA Version 3 Vol. 1:
Distributed Relational Database Architecture.
Related concepts:

Distributed data access (Introduction to DB2 for z/OS)
Related tasks:

Improving performance for applications that access distributed data (DB2
Performance)

Connections
A connection is an association between an application process and a local or remote
database server. Connections are managed by applications.

An application process must be connected to the application server facility of a
database manager before SQL statements that reference tables or views can be
executed. An application can use the CONNECT statement to establish a
connection to a database server and make that database server the current server
of the application process.

Commit processing: When DB2 for z/OS acts as a requester, it negotiates with the
database server during the connection process to determine how to perform
commits. If the remote server does not support two-phase commit protocol, DB2
downgrades to perform one-phase commits. Otherwise, DB2 always performs
two-phase commits, which allow applications to update one or more databases in a
single unit of work and are more reliable than one-phase commits. Two-phase
commit is a two-step process:
1. First, all database managers involved in the same unit of work are pooled to

determine whether they are ready to commit.
2. Then, if all database managers respond positively, they are directed to execute

commit processing. If all database managers do not respond positively, they are
directed to execute backout processing.

DB2 can also provide coordination for transactions that include both two-phase
commit resources and one-phase commit resources. If an application has multiple
connections to several different database servers, and if any of the connections are
one-phase commit connections, then only one database that is involved in the
transaction can be updated. The connections to all the other databases that are
involved in the transaction are read-only.

Supported SQL statements and clauses: For the most part, an application can use
the statements and clauses that are supported by the database manager of the
current server, even though that application might be running via the application
requester of a database manager that does not support some of those statements
and clauses. Restrictions to this general rule for DB2 for z/OS are documented in
IBM DB2 SQL Reference for Cross-Platform Development.

36 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_distributeddataaccess.htm#db2z_distributeddataaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps

To execute a static SQL statement that references tables or views, the bound form
of the statement is taken from a package that the database manager previously
created through a bind operation or when a version of a native SQL procedure was
defined.

Distributed unit of work
The distributed unit of work facility provides for the remote preparation and
execution of SQL statements.

An application process at computer system A can connect to a database server at
computer system B and, within one or more units of work, execute any number of
static or dynamic SQL statements that reference objects at B. All objects referenced
in a single SQL statement must be managed by the same database server. Any
number of database servers can participate in the same unit of work, and any
number of connections can exist between an application process and a database
server. A commit or rollback operation that does not specify a savepoint ends the
unit of work.

Connection management
How connections are managed depends on what states the SQL connection and the
application process are in.

At any time:
v An SQL connection is in one of the following states:

– Current and held
– Current and release-pending
– Dormant and held
– Dormant and release-pending

v An application process is in the connected or unconnected state, and has a set of
zero or more SQL connections. Each SQL connection is uniquely identified by
the name of the database server at the other end of the connection. Only one
SQL connection is active (current) at a time.

Initial state of an application process: An application process is initially in the
connected state, and it has exactly one SQL connection. The server of that
connection is the local DB2 subsystem.

Initial state of an SQL connection: An SQL connection is initially in the current
and held state.

The following figure shows the state transitions:

Chapter 1. DB2 concepts 37

SQL connection states
If an application process successfully executes a CONNECT statement, the SQL
connection states of the connections change.

If an application process successfully executes a CONNECT statement:
v The current connection is placed in the dormant and held state.
v The new connection is placed in the current and held state.
v The location name is added to the set of existing connections.

If the location name is already in the set of existing connections, an error is
returned.

An SQL connection in the dormant state is placed in the current state using:
v The SET CONNECTION statement, or
v The CONNECT statement, if the SQLRULES(DB2) bind option is in effect.

When an SQL connection is placed in the current state, the previously-current SQL
connection, if any, is placed in the dormant state. No more than one SQL
connection in the set of existing connections of an application process can be
current at any time. Changing the state of an SQL connection from current to
dormant or from dormant to current has no effect on its held or release-pending
state.

An SQL connection is placed in the release-pending state by the RELEASE
statement. When an application process executes a commit operation, every

Successful CONNECT
or SET CONNECTION specifying

the existing dormant SQL connection

Current Dormant

Held
Release
Pending

RELEASE

Application Process Connection States

The current SQL connection
is intentionally ended, or a

failure occurs that causes the
loss of the connection

Successful CONNECT or
SET CONNECTION

Connected Unconnected

Begin Process

SQL Connection States

Successful CONNECT
or SET CONNECTION specifying

another SQL connection

Figure 11. State transitions for an SQL connection and an application process connection in a
distributed unit of work

38 SQL Reference

release-pending connection of the process is ended. Changing the state of an SQL
connection from held to release-pending has no effect on its current or dormant
state. Thus, an SQL connection in the release-pending state can still be used until
the next commit operation. No way exists to change the state of a connection from
release-pending to held.

Application process connection states
In a distributed unit of work, an application process can be in a connected or
unconnected state. Depending on the state, the application process can execute
only certain SQL statements successfully.

A connection to a different database server can be established by the explicit or
implicit execution of a CONNECT statement. The following rules apply:
v An application process cannot have more than one SQL connection to the same

database server at the same time.
v When an application process executes a SET CONNECTION statement, the

specified location name must be in the set of existing connections of the
application process.

v When an application process executes a CONNECT statement and the
SQLRULES(STD) bind option is in effect, the specified location must not be in
the set of existing connections of the application process.

If an application process has a current SQL connection, the application process is
in a connected state. The CURRENT SERVER special register contains the name of
the database server of the current SQL connection. The application process can
execute SQL statements that refer to objects managed by that server. If the server is
a DB2 subsystem, the application process can also execute certain SQL statements
that refer to objects managed by a DB2 subsystem with which that server can
establish a connection.

An application process in an unconnected state enters a connected state when it
successfully executes a CONNECT or SET CONNECTION statement.

If an application process does not have a current SQL connection, the application
process is in an unconnected state. The CURRENT SERVER special register contains
blanks. The only SQL statements that can be executed successfully are CONNECT,
RELEASE, COMMIT, ROLLBACK, and any of the following local SET statements.
v SET CONNECTION
v SET CURRENT APPLICATION ENCODING SCHEME
v SET CURRENT PACKAGE PATH
v SET CURRENT PACKAGESET
v SET host-variable = CURRENT APPLICATION ENCODING SCHEME
v SET host-variable = CURRENT PACKAGESET
v SET host-variable = CURRENT SERVER

Because the application process is in an unconnected state, a COMMIT or
ROLLBACK statement is processed by the local DB2 subsystem.

An application process in a connected state enters an unconnected state when its
current SQL connection is intentionally ended, or the execution of an SQL
statement is unsuccessful because of a failure that causes a rollback operation at
the current server and loss of the SQL connection. SQL connections are
intentionally ended when an application process successfully executes a commit
operation and either of the following are true:

Chapter 1. DB2 concepts 39

v The SQL connection is in the release-pending state.
v The SQL connection is not in the release-pending state, but it is a remote

connection and either of the following are true:
– The DISCONNECT(AUTOMATIC) bind option is in effect
– The DISCONNECT(CONDITIONAL) bind option is in effect and an open

WITH HOLD cursor is not associated with the connection

An implicit CONNECT to a default DB2 subsystem is executed when an
application process executes an SQL statement other than COMMIT, CONNECT
TO, CONNECT RESET, SET CONNECTION, RELEASE, or ROLLBACK, and if all
of the following conditions apply:
v The CURRENTSERVER bind option was specified when creating the application

plan of the application process and the identified server is not the local DB2.
v An explicit CONNECT statement has not already been successfully or

unsuccessfully executed by the application process.
v An implicit connection has not already been successfully or unsuccessfully

executed by the application process. An implicit connection occurs as the result
of execution of an SQL statement that contains a three-part name in a package
that is bound with the DBPROTOCOL(DRDA) option.

If the implicit CONNECT fails, the application process is placed in an unconnected
state.

When a connection is ended, all resources that were acquired by the application
process through the connection and all resources that were used to create and
maintain the connection are returned to the connection pool. For example, if
application process P placed the connection to application server X in the
release-pending state, all cursors of P at X are closed and returned to the
connection pool when the connection is ended during the next commit operation.

When a connection is ended as a result of a communications failure, the
application process is placed in an unconnected state.

All connections of an application process are ended when the process ends.

Remote unit of work
The remote unit of work facility also provides for the remote preparation and
execution of SQL statements, but in a much more restricted fashion than the
distributed unit of work facility.

An application process at computer system A can connect to a database server at
computer system B and, within one or more units of work, execute any number of
static or dynamic SQL statements that reference objects at B. All objects referenced
in a single SQL statement must be managed by the same database server, and all
SQL statements in the same unit of work must be executed by the same database
server. However, unlike a distributed unit of work, an application process can have
only one connection at a time. The process cannot connect to a new server until it
executes a commit or rollback operation on the current server to end that unit of
work. This restricts the situations in which a CONNECT statement can be
executed.

Connection management
How connections are managed depends on what states the SQL connection and the
application process are in.

40 SQL Reference

An application process is in one of four states at any time:
v Connectable and connected
v Unconnectable and connected
v Connectable and unconnected
v Unconnectable and unconnected

Initial state of an application process: An application process is initially in the
connectable and connected state. The database server to which the application
process is connected is determined by a product-specific option that might involve
an implicit CONNECT operation. An implicit connect operation cannot occur if an
implicit or explicit connect operation has already successfully or unsuccessfully
occurred. Thus, an application process cannot be implicitly connected to a database
server more than once. Other rules for implicit connect operations are
product-specific.

Figure 12 shows the state transitions:

In the following descriptions of application process connections, CONNECT can
mean:
v CONNECT TO
v CONNECT RESET
v CONNECT authorization

It cannot mean CONNECT with no operand, which is used to return information
about the current server.

Consecutive CONNECT statements can be executed successfully because
CONNECT does not remove an application process from the connectable state. A
CONNECT statement does not initiate a new unit of work; a unit of work is
initiated by the first SQL statement that accesses data. CONNECT cannot execute
successfully when it is preceded by any SQL statement other than CONNECT,

Connectable
and
Connected

CONNECT with system failure
Connectable
and
UnconnectedSuccessful CONNECT

ROLLBACK
only

Begin process

SQL other than
CONNECT, COMMIT
ROLLBACK, and
local SETs

System failure except
during COMMIT or ROLLBACK

System failure
during COMMIT
or ROLLBACK

ROLLBACK or

COMMIT
successful

Unconnectable
and
Connected

Unconnectable
and
Unconnected

Figure 12. State transitions for an application process connection in a remote unit of work

Chapter 1. DB2 concepts 41

COMMIT, RELEASE, ROLLBACK, or SET CONNECTION. To avoid an error,
execute a commit or rollback operation before a CONNECT statement is executed.

Connectable and connected state: In the connectable and connected state, an
application process is connected to a database server, and CONNECT statements
that target the current server can be executed. An application process re-enters this
state when either of the following is true:
v The process completes a rollback or a successful commit from an unconnectable

and connected state.
v The process successfully executes a CONNECT statement from a connectable

and unconnected state.

Unconnectable and connected state: In the unconnectable and connected state, an
application process is connected to a database server, and only a CONNECT
statement with no operands can be executed. An application process enters this
state from a connectable and connected state when it executes any SQL statement
other than CONNECT, COMMIT, or ROLLBACK.

Connectable and unconnected state: In the connectable and unconnected state, an
application process is not connected to a database server. The only SQL statement
that can be executed is CONNECT. An application process enters this state if any
of the following is true:
v The process does not successfully execute a CONNECT statement from a

connectable and connected state.
v The process executes a COMMIT statement when the SQL connection is in a

release-pending state.
v A system failure occurs during a COMMIT or ROLLBACK from an

unconnectable and connected state.
v The process executes a ROLLBACK statement from an unconnectable and

unconnected state.

Other product-specific reasons can also cause an application process to enter the
connectable and unconnected state.

Unconnectable and unconnected state: In the unconnectable and unconnected state,
an application process is not connected to a database server and CONNECT
statements cannot be executed. The only SQL statement that can be executed is
ROLLBACK. An application process enters this state from an unconnectable and
connected state as a result of a system failure, except during a COMMIT or
ROLLBACK, at the server.

Character conversion
A string is a sequence of bytes that can represent characters. Within a string, all the
characters are represented by a common encoding representation. In some cases, it
might be necessary to convert these characters to a different encoding
representation. The process of conversion is known as character conversion.

Character conversion, when required, is automatic, and when successful, it is
transparent to the application.

42 SQL Reference

In client/server environments, character conversion can occur when an SQL
statement is executed remotely. Consider, for example, the following two cases. In
either case, the data could have a different representation at the sending and
receiving systems.
v The values of data sent from the requester to the current server
v The values of data sent from the current server to the requester

Conversion can also occur during string operations on the same system, as in the
following examples:
v An overriding CCSID is specified.

For example, an SQL statement with a descriptor, which requires an SQLDA. In
the SQLDA, the CCSID is in the SQLNAME field for languages other than
REXX, and in the SQLCCSID field for REXX. (For more information, see “SQL
descriptor area (SQLDA)” on page 2079). A DECLARE VARIABLE statement can
also be issued to associate a CCSID with the host variables into which data is
retrieved from a table.

v The value of the ENCODING bind option or the APPLICATION ENCODING
SCHEMA option of the CREATE PROCEDURE or ALTER PROCEDURE
statement for a native SQL procedure (static SQL statements) or the CURRENT
APPLICATION ENCODING SCHEME special register (for dynamic SQL) is
different than encoding scheme of the data being retrieved.

v A mixed character string is assigned to an SBCS column or host variable.
v An SQL statement refers to data that is defined with different CCSIDs.

The text of an SQL statement is also subject to character conversion because it is a
character string.

The following list defines some of the terms used for character conversion.

ASCII Acronym for American Standard Code for Information Interchange, an
encoding scheme used to represent characters. The term ASCII is used
throughout this information to refer to IBM-PC Data or ISO 8-bit data.

character set
A defined set of characters, a character being the smallest component of
written language that has semantic value. For example, the following
character set appears in several code pages:
v 26 nonaccented letters A through Z
v 26 nonaccented letters a through z
v digits 0 through 9
v . , : ; ? () ' " / - _ & + % * = < >

code page
A set of assignments of characters to code points. For example, in EBCDIC,
“A” is assigned code point X'C1', and “B” is assigned code point X'C2'. In
Unicode UTF-8, “A” is assigned code point X'41', and “B” is assigned code
point X'42'. Within a code page, each code point has only one specific
meaning.

code point
A unique bit pattern that represents a character. It is a numerical index or
position in an encoding table used for encoding characters.

coded character set
A set of unambiguous rules that establishes a character set and the

Chapter 1. DB2 concepts 43

one-to-one relationships between the characters of the set and their coded
representations. It is the assignment of each character in a character set to a
unique numeric code value.

coded character set identifier (CCSID)
A two-byte, unsigned binary integer that uniquely identifies an encoding
scheme and one or more pairs of character sets and code pages.

EBCDIC
Acronym for Extended Binary-Coded Decimal Interchange Code, an
encoding scheme used to represent character data, a group of coded
character sets that consist of 8 bit coded characters. EBCDIC coded
character sets use the first 64 code positions (X'00' to X'3F') for control
codes. The range X'41' to X'FE' is used for single-byte characters. For
double-byte characters, the first byte is in the range X'41' to X'FE' and the
second byte is also in the range X'41' to X'FE', while X'4040' represents a
double-byte space.

encoding scheme
A set of rules used to represent character data. All string data stored in a
table must use the same encoding scheme and all tables within a table
space must use the same encoding scheme, except for global temporary
tables, declared temporary tables, and work file table spaces. DB2 supports
these encoding schemes:
v ASCII
v EBCDIC
v Unicode

substitution character
A unique character that is substituted during character conversion for any
characters in the source encoding representation that do not have a match
in the target encoding representation.

Unicode
A universal encoding scheme for written characters and text that enables
the exchange of data internationally. It provides a character set standard
that can be used all over the world. It provides the ability to encode all
characters used for the written languages of the world and treats
alphabetic characters, ideographic characters, and symbols equivalently
because it specifies a numeric value and a name for each of its characters.
It includes punctuation marks, mathematical symbols, technical symbols,
geometric shapes, and dingbats. DB2 supports these two encoding forms:
v UTF-8: Unicode Transformation Format, a 8 bit encoding form designed

for ease of use with existing ASCII-based systems. UTF-8 can encode any
of the Unicode characters. A UTF-8 character is 1,2,3, or 4 bytes in
length. A UTF-8 data string can contain any combination of SBCS and
MBCS data, including supplementary characters. The CCSID value for
data in UTF-8 format is 1208.

v UTF-16: Unicode Transformation Format, a 16 bit encoding form
designed to provide code values for over a million characters and a
superset of UCS-2. UTF-16 can encode any of the Unicode characters. In
UTF-16 encoding, characters are 2 bytes in length, except for
supplementary characters, which take two 2 byte string units per
character. The CCSID value for data in UTF-16 format is 1200.

Character data (CHAR, VARCHAR, and CLOB) is encoded in Unicode
UTF-8. Character strings are also used for mixed data (that is a mixture of
single-byte characters and multi-byte characters) and for data that is not

44 SQL Reference

associated with any character set (called bit data). Graphic data
(GRAPHIC, VARGRAPHIC, and DBCLOB) is encoded in Unicode UTF-16.
For a comparison of some UTF-8 and UTF-16 code points for some sample
characters, see Figure 15 on page 46. This table shows how a UTF-8
character can be 1 to 4 bytes in length, a non-supplementary UTF-16
character is 2 bytes in length, and how a supplementary character in either
UTF-8 or UTF-16 takes two 2 byte code points.

Character conversion can affect the results of several SQL operations. In this
information, the effects are described in:

“Conversion rules for string assignment” on page 129
“Conversion rules for comparisons” on page 138
“Character conversion in set operations and concatenations” on page 816

Character sets and code pages
Even with the same encoding scheme, different CCSIDs exist, and the same code
point can represent a different character in different CCSIDs. Furthermore, a byte
in a character string does not necessarily represent a character from a single-byte
character set (SBCS).

The following figure shows how a typical character set might map to different
code points in two different code pages.

For Unicode, there is only one CCSID for UTF-8 and only one CCSID for UTF-16.
The following figure shows how the first 127 single code points for UTF-8 are the
same as ASCII with a CCSID of 367. For example, in both UTF-8 and ASCII CCSID

Figure 13. Code page mappings for character set ss1 in ASCII and EBCDIC

Chapter 1. DB2 concepts 45

367, an A is X'41' and a 1 is X'31'.

The following figure shows a comparison of how some UTF-16 and UTF-8 code
points map to some sample characters. The character for the eighth note musical
symbol takes two 2 byte code points because it is a supplementary character.

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 1 2 3 4 5 6 7

(SP)

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

l

}

~

code point: 2F

`

First 127 code points for UTF-8 code page

Figure 14. Code point mapping for the first 127 code points for UTF-8 single-byte characters
(CCSID 1208)

Character glyph UTF-8 code point UTF-16 code point

004D

00C4

4E8B

D834DD60*

4D

C384

E4BA8B

F09D85A0

Figure 15. A comparison of how some UTF-8 and UTF-16 code points map to some sample
characters

46 SQL Reference

Related information:

Unicode Consortium

Character Data Representation Architecture Reference

Coded character sets and CCSIDS
IBM's character data representation architecture (CDRA) deals with the differences
in string representation and encoding. The Coded Character Set Identifier (CCSID) is
a key element of this architecture. A CCSID is a 2 byte (unsigned) binary number
that uniquely identifies an encoding scheme and one or more pairs of character
sets and code pages.

A CCSID is an attribute of strings, just as length is an attribute of strings. All
values of the same string column have the same CCSID.

Character conversion is described in terms of CCSIDs of the source and target.
With DB2 for z/OS, two methods are used to identify valid source and target
combinations and to perform the conversion from one coded character set to
another:
v DB2 catalog table SYSIBM.SYSSTRINGS

Each row in the catalog table describes a conversion from one coded character
set to another.

v z/OS support for Unicode
For more information about the conversion services that are provided, including
a complete list of the IBM-supplied conversion tables, see z/OS Support for
Unicode: Using Conversion Services.

In some cases, no conversion is necessary even though the strings involved have
different CCSIDs.

Different types of conversions might be supported by each database manager.
Round-trip conversions attempt to preserve characters in one CCSID that are not
defined in the target CCSID so that if the data is subsequently converted back to
the original CCSID, the same original characters result. Enforced subset match
conversions do not attempt to preserve such characters. Which type of conversion
is used for a specific source and target CCSID is product-specific.

For more information on character conversion, see DB2 Installation Guide.

Determining the encoding scheme and CCSID of a string
An encoding scheme and a CCSID are attributes of strings, just as length is an
attribute of strings. All values of the same string column have the same encoding
scheme and CCSID.

Every string has an encoding scheme and a CCSID that identifies the manner in
which the characters in the string are encoded. Strings can be encoded in ASCII,
EBCDIC, or Unicode.

The CCSID that is associated with a string value depends on the SQL statement in
which the data is referenced and the type of expression. Table 4 on page 48
describes the rules for determining the CCSID that is associated with a string
value. Use the Type 1 rules when the SQL statement meets the following
conditions:

Chapter 1. DB2 concepts 47

http://www.unicode.org
http://www.ibm.com/software/globalization/cdra/index.jsp

v The SQL statement operates with a single set of CCSIDs (SBCS, mixed, and
graphic). An SQL statement that does not contain any of the following items
operates with a single set of CCSIDs:
– References to columns from multiple tables or views that are defined with

CCSIDs from more than one set of CCSIDs (SBCS, mixed, and graphic)
– References to an EBCDIC table that contains a Unicode column
– Graphic hexadecimal (GX) or hexadecimal Unicode (UX) string constants
– References to the XMLCLOB built-in function
– Cast specifications with a CCSID clause
– User-defined table functions

v The SQL statement is not one of the following statements:
– CALL statement
– SET assignment statement
– SET special register
– VALUE statement
– VALUES INTO statement

v One of the following built-in functions is not referenced:
– XMLSERIALIZE
– GETVARIABLE
– DECRYPT_CHAR
– DECRYPT_DB
– DECRYPT_BIT
– NORMALIZE_STRING
– ASCII_CHR
– CHAR
– ASCII_STR (or ASCIISTR)
– EBCDIC_CHR
– EBCDIC_STR
– UNICODE_STR (or UNISTR)

v The SQL statement does not include a collection-derived table (UNNEST).

Use the Type 2 rules when the statement does not meet the conditions for Type 1
rules.

Table 4. Rules for determining the CCSID that is associated with string data

Source of the string data Type 1 rules Type 2 rules

String constant If the statement references a table or view,
the encoding scheme of that table or view
determines the encoding scheme for the
string constant.

Otherwise, the default EBCDIC encoding
scheme is used for the string constant.

The CCSID is the appropriate character
string CCSID for the encoding scheme.

The CCSID is the appropriate character
string CCSID for the application encoding
scheme.1

48 SQL Reference

|

|

Table 4. Rules for determining the CCSID that is associated with string data (continued)

Source of the string data Type 1 rules Type 2 rules

Datetime constant If the statement references a table or view,
the encoding scheme of that table or view
determines the encoding scheme for the
string constant.

Otherwise, the default EBCDIC encoding
scheme is used for the string constant.

The CCSID is the appropriate character
string CCSID for the encoding scheme.

The CCSID is the appropriate character
string CCSID for the application encoding
scheme.1

Hexadecimal string constant
(X'...')

If the statement references a table or view,
the encoding scheme of that table or view
determines the encoding scheme for the
string constant.

Otherwise, the default EBCDIC encoding
scheme is used for the string constant.

The CCSID is the appropriate graphic
string CCSID for the encoding scheme.

The CCSID is the appropriate character
string CCSID for the application encoding
scheme.1

Graphic string
constant

(G'...')

If the statement references a table or view,
the encoding scheme of that table or view
determines the encoding scheme for the
graphic string constant.

Otherwise, the default EBCDIC encoding
scheme is used for the graphic string
constant.

The CCSID is the graphic string CCSID
for the encoding scheme.

The CCSID is the graphic string CCSID
for the application encoding scheme.1

Graphic hexadecimal
constant (GX'...')

Not applicable. The CCSID is the graphic string CCSID
for the application encoding scheme,
which must be ASCII or EBCDIC.

Hexadecimal Unicode string
constant (UX'....')

Not applicable. The CCSID is 1200 (UTF-16).

Special register If the statement references a table or view,
the encoding scheme of that table or view
determines the encoding scheme for the
special register.

Otherwise, the default EBCDIC encoding
scheme is used for the special register.

The CCSID is the appropriate character
string CCSID for the encoding scheme.

The CCSID is the appropriate CCSID for
the application encoding scheme.1

Column of a table The CCSID is the CCSID that is associated
with the column of the table.

The CCSID is the CCSID that is associated
with the column of the table.

Column of a view The CCSID is the CCSID of the column of
the result table of the fullselect of the
view definition.

The CCSID is the CCSID of the column of
the result table of the fullselect of the
view definition.

Expression The CCSID is the CCSID of the result of
the expression.

The CCSID is the CCSID of the result of
the expression.

Chapter 1. DB2 concepts 49

Table 4. Rules for determining the CCSID that is associated with string data (continued)

Source of the string data Type 1 rules Type 2 rules

Result of a built-in function If the description of the function, in
Chapter 3, “Functions,” on page 337,
indicates what the CCSID of the result is,
the CCSID is that CCSID.

Otherwise, if the description of the
function refers to this table for the CCSID,
the CCSID is the appropriate CCSID of
the CCSID set that is used by the
statement for the data type of the result.

If the description of the function, in
Chapter 3, “Functions,” on page 337,
indicates what the CCSID of the result is,
the CCSID is that CCSID.

Otherwise, if the description of the
function refers to this table for the CCSID,
the CCSID is the appropriate CCSID of
the application encoding scheme for the
data type of the result.1

Parameter of a user-defined
routine

The CCSID is the CCSID that was
determined when the function or
procedure was created.

The CCSID is the CCSID that was
determined when the function or
procedure was created.

The expression in the
RETURN statement of a
CREATE statement for a
user-defined SQL scalar
function

If the expression in the RETURN
statement is string data, the encoding
scheme is the same as for the parameters
of the function. The CCSID is determined
from the encoding scheme and the
attributes of the data.

The CCSID is determined from the CCSID
of the result of the expression specified in
the RETURN statement.

String host variable If the statement references a table or view,
the encoding scheme of that table or view
determines the encoding scheme for the
host variable.

Graphic variables are an exception if the
table or view is ECDIC or ASCII and the
value of the MIXED DATA field on the
DSNTIPF panel is NO. In this case, the
Unicode encoding scheme is used for the
host variable.

Otherwise, the default EBCDIC encoding
scheme is used for the host variable.

The CCSID is the appropriate CCSID for
the data type of the host variable.

At package prepare time, the CCSID is the
appropriate CCSID for the data type of
the host variable for the application
encoding scheme.

Graphic variables are an exception if the
table or view is ECDIC or ASCII and the
value of the MIXED DATA field on the
DSNTIPF panel is NO. In this case, the
Unicode encoding scheme is used for the
host variable.

At run time, the CCSID specified in the
declare variable statement, or as an
override in the SQLDA. Otherwise, the
CCSID is the appropriate CCSID for the
data type of the host variable for the
application encoding scheme.

Note: If the context is within a check constraint or trigger package, the CCSID is the appropriate CCSID for Unicode
instead of the application encoding scheme.

The following examples show how these rules are applied.

Example 1: Assume that the default encoding scheme for the installation is EBCDIC
and that the installation does not support mixed and graphic data. The following
statement conforms to the rules for Type 1 in Table 4 on page 48. Therefore, the
X'40' is interpreted as EBCDIC SBCS data because the statement references a table
that is in EBCDIC. The CCSID for X'40' is the default EBCDIC SBCS CCSID for the
installation.
SELECT * FROM EBCDIC_TABLE WHERE COL1 = X’40’;

the result of the query includes each row that has a value in column COL1 that is
equal to a single EBCDIC blank.

50 SQL Reference

Example 2: The following statement references data from two different tables that
use different encoding schemes. This statement does not conform to the rules for
Type 1 statements in Table 4 on page 48. Therefore, the rules for Type 2 statements
are used. The CCSID for X'40' is dependent on the current application encoding
scheme. Assuming that the current application encoding scheme is EBCDIC, X'40'
represents a single EBCDIC blank.
SELECT * FROM EBCDIC_TABLE, UNICODE_TABLE WHERE COL1 = X’40’;

as with Example 1, the result of the query includes each row that has a value in
column COL1 that is equal to a single EBCDIC blank. If the current application
encoding scheme were ASCII or Unicode, X'40' would represent something
different and the results of the query would be different.

Expanding conversions
An expanding conversion occurs when the length of the converted string is greater
than that of the source string.

For example, an expanding conversion occurs when an ASCII mixed data string
that contains DBCS characters is converted to EBCDIC mixed data. To prevent the
loss of data on expanding conversions, use a varying-length string variable with a
maximum length that is sufficient to contain the expansion.

Expanding conversions also can occur when string data is converted to or from
Unicode. It can also occur between UTF-8 and UTF-16, depending on the data
being converted. UTF-8 uses 1, 2, 3, or 4 bytes per character. UTF-16 uses 2 bytes
per character, except for supplementary characters, which use two 2 byte code
points for each character. If UTF-8 were being converted to UTF-16, a 1 byte
character would be expanded to 2 bytes.

Contracting conversions
A contracting conversion occurs when the length of the converted string is smaller
than that of the source string.

For example, a contracting conversion occurs when an EBCDIC mixed data string
that contains DBCS characters is converted to ASCII mixed data due to the
removal of shift codes.

Contracting conversions also can occur when string data is converted to or from
Unicode data. It can also occur between UTF-8 and UTF-16, depending on the data
being converted.

Chapter 1. DB2 concepts 51

52 SQL Reference

Chapter 2. Language elements

An understanding of the basic syntax of SQL and language elements that are
common to many SQL statements can be helpful in using SQL with DB2 for z/OS.

The following topics provide information about these language elements:
v “Characters”
v “Tokens” on page 54
v “Identifiers” on page 55
v “Naming conventions” on page 57
v “SQL path” on page 64
v “Qualification of unqualified object names” on page 65
v “Authorization IDs, roles, and authorization names” on page 72
v “Data types” on page 80
v “Promotion of data types” on page 110
v “Casting between data types” on page 111
v “Assignment and comparison” on page 121
v “Rules for result data types” on page 144
v “Constants” on page 148
v “Special registers” on page 156
v “Column names” on page 208
v “References to variables” on page 214
v “Host structures in PL/I, C, and COBOL” on page 229
v “Host-variable-arrays in PL/I, C, C++, and COBOL” on page 230
v “Functions” on page 231
v “Expressions” on page 240
v “Predicates” on page 296
v “Search conditions” on page 324
v “Options affecting SQL” on page 325
v “Mappings from SQL to XML” on page 334

Characters
The basic symbols of keywords and operators in the SQL language are characters
that are classified as letters, digits, or special characters.
v A letter is any of the 26 uppercase (A through Z) and 26 lowercase (a through z)

letters of the English alphabet.1

v A digit is any one of the characters 0 through 9.
v A special character is any character other than a letter or a digit.

1. Letters also include three code points reserved as alphabetic extenders for national languages ($, #, and @ in the United States).
These three code points (X'5B', X'7B', and X'7C') should be avoided because they represent different characters depending on the
CCSID.

© Copyright IBM Corp. 1982, 2013 53

Tokens
The basic syntactical units of the SQL language are called tokens. A token consists
of one or more characters of which none are blanks, control characters, or
characters within a string constant or delimited identifier.

Tokens are classified as ordinary or delimiter tokens:
v An ordinary token is a numeric constant, an ordinary identifier, a host identifier,

or a keyword.
Examples:

1 .1 +2 SELECT E 3

v A delimiter token is a string constant, a delimited identifier, an operator symbol,
or any of the special characters shown in the syntax diagrams. A question mark
(?) is also a delimiter token when it serves as a parameter marker, as explained
in “PREPARE” on page 1781.
Examples:

, ’string’ "fld1" = .

Spaces

A space is a sequence of one or more blank characters.

Control characters

A control character is a special character that is used for string alignment. Treated
similar to a space, a control character does not cause a particular action to occur.
The following table shows the control characters that DB2 recognizes and their
hexadecimal values.

In an SQL procedure, a new line control character is a special character that is used
for a new line. The carriage return, new line or next line, and line feed (new line)
characters, or the combination of carriage return followed by new line characters,
and the combination of carriage return followed by line feed characters, as shown
in the following table, are the new line control characters for SQL procedures.

Table 5. Hexadecimal values for the control characters that DB2 recognizes

Control character EBCDIC hex value Unicode hex value

Tab 05 09

Form feed 0C 0C

Carriage return 0D 0D

New line or next line 15 C285

Line feed (new line) 25 0A

Tokens, other than string constants and certain delimited identifiers, must not
include a control character or space. A control character or space can follow a
token. A delimiter token, control character, or a space must follow every ordinary
token. If the syntax does not allow a delimiter token to follow an ordinary token, a
control character or a space must follow that ordinary token.

54 SQL Reference

Trigraphs

The left bracket ([) and right bracket (]) characters are used in syntax to refer to an
array element. Those characters cannot be specified with some CCSIDs. The
following trigraphs can be used as an alternative way to specify left and right
brackets:
v The string ??(can be specified in place of a left bracket ([).
v The string ??) can be specified in place of a right bracket (]).

Comments

Dynamic SQL statements can include SQL comments. Static SQL statements can
include host language comments or SQL comments. Comments can be specified
wherever a space can be specified, except within a delimiter token or between the
keywords EXEC and SQL. In Java, SQL comments are not allowed within
embedded Java expressions. There are two types of SQL comments:

simple comments
Simple comments are introduced with two consecutive hyphens (--).
Simple comments cannot continue past the end of the line. For additional
information, see “SQL comments” on page 846.

bracketed comments
Bracketed comments are introduced with /* and end with */. A bracketed
comment can continue past the end of the line. For additional information,
see “SQL comments” on page 846.

Uppercase and lowercase

A token in an SQL statement can include lowercase letters, but lowercase letters in
an ordinary token are folded to uppercase. However, lowercase letters are folded to
uppercase in a C or Java program only if the appropriate precompiler option is
specified. Delimiter tokens are never folded to uppercase.

Example: The following two statements, after folding, are equivalent:
select * from DSN8B10.EMP where lastname = ’Smith’;

SELECT * FROM DSN8B10.EMP WHERE LASTNAME = ’Smith’;

Identifiers
An identifier is a token used to form a name. An identifier in an SQL statement is
an SQL identifier or a host identifier.

See “Limits in DB2 for z/OS” on page 2012 for the identifier length limits that DB2
imposes.

SQL identifiers
SQL identifiers can be ordinary identifiers or delimited identifiers.

Ordinary identifiers
An ordinary identifier is an uppercase letter followed by zero or more characters,
each of which is an uppercase letter, a digit, or the underscore character.

An ordinary identifier should not be a reserved word. If a reserved word is used
as an identifier in SQL, it must be specified in uppercase and must be a delimited

Chapter 2. Language elements 55

|

|
|
|
|
|
|

identifier or specified in a host variable. For a list of reserved words, see “Reserved
schema names and reserved words” on page 2019.

SQL ordinary identifiers can contain DBCS characters unless otherwise specified.
However, an SQL ordinary identifier cannot contain a mixture of SBCS and DBCS
characters.

The following list shows the rules for forming SQL ordinary identifiers:
v The UTF-8 representation of the name must not exceed 128 bytes.
v Continuation to the next line is not allowed.

If the SQL ordinary identifier contains DBCS characters, the following additional
rules apply:
v The identifier, if encoded in EBCDIC, must start with a shift-out (X'0E') and end

with a shift-in (X'0F'). There must be an even number of bytes between the
shift-out and the shift-in. An odd-numbered byte between those shifts must not
be a shift-out. DBCS blanks (X'4040' in EBCDIC) are not acceptable between the
shift-out and the shift-in.

v The identifiers are not folded to uppercase or changed in any other way.

Example: The following example is an ordinary identifier:
SALARY

Delimited identifiers
A delimited identifier is a sequence of one or more characters enclosed within escape
characters.

The escape character is the quotation mark (")2 except for:
v Dynamic SQL when the field SQL STRING DELIMITER on installation panel

DSNTIPF is set to the quotation mark (") and either of these conditions is true:
– DYNAMICRULES run behavior applies. For a list of the DYNAMICRULES

option values that specify run, bind, define, or invoke behavior, see Table 6 on
page 75.

– DYNAMICRULES bind, define, or invoke behavior applies and installation
panel field USE FOR DYNAMIC RULES is YES.

In this case, the escape character is the apostrophe (').
However, for COBOL application programs, if DYNAMICRULES run behavior
does not apply and installation panel field USE FOR DYNAMICRULES is NO, a
COBOL compiler option specifies whether the escape character is the quotation
mark or apostrophe.

v Static SQL in COBOL application programs. A COBOL compiler option specifies
whether the escape character is the quotation mark (") or the apostrophe (').

A delimited identifier can be used when the sequence of characters does not
qualify as an ordinary identifier. Such a sequence, for example, could be an SQL
reserved word, or it could begin with a digit. Two consecutive escape characters
are used to represent one escape character within the delimited identifier. A
delimited identifier that contains EBCDIC DBCS characters also must contain the
necessary shift characters.

2. In CCSID 1026 and CCSID 1155, the code point for the quotation mark can be X'7F' or X'FC'. However, if the beginning delimiter
is X'7F', the ending delimiter must also be X'7F'. If the beginning delimiter is X'FC', ending delimiter must also be X'FC'.

56 SQL Reference

Leading and embedded blanks in the sequence are significant. Trailing blanks in
the sequence are not significant. The length of a delimited identifier does not
include the starting and ending escape characters. Embedded escape characters
(that appear as two characters) are counted in the length as a single character.

Example: If the escape character is the quotation mark, the following example is a
delimited identifier:
"VIEW"

Host identifiers
A host identifier is a name declared in the host program.

The rules for forming a host identifier are the rules of the host language. In
non-Java programs, do not use names beginning with 'DB2', 'SQ'3, 'SQL', 'sql', 'RDI',
or 'DSN' because precompilers generate host variable names that begin with these
characters. In Java, do not use names beginning with '__sJT_'.

Restrictions for distributed access
To use certain identifiers in distributed access, those identifiers need to be
restricted to certain characters.

DB2's internal processing of distributed access must sometimes convert the
identifiers for authorization-name, procedure-name, and schema-name between CCSIDs.
If there is any possibility that these identifiers will be used in distributed access,
restrict the identifiers to characters whose representation in Unicode UTF-8 have
code points in the range 0 through 127. You do not need to enter the identifiers in
Unicode; this restriction refers to conversion that DB2 performs internally.

Naming conventions
The rules for forming a name depend on the type of the object designated by the
name.

The syntax diagrams use different terms for different types of names. The
following list defines these terms.

alias-name
A qualified or unqualified name that designates an alias. A fully qualified
alias name is a three-part name. The first part is a location name that
designates the DBMS at which the sequence is defined. The second part is
a schema name. The third part is an SQL identifier. A period must separate
each of the parts.

A two-part sequence is implicitly qualified by the location name of the
current server. The first part is a schema name. The second part is an SQL
identifier. A period must separate the two parts.

A one-part or unqualified sequence name is an SQL identifier with two
implicit qualifiers. The first implicit qualifier is the location name of the
current server. The second is a schema name, which is determined by the
rules specified in “Unqualified alias, index, JAR file, sequence, table,
trigger, and view names” on page 66.

See “Aliases” on page 67 for additional information about aliases.

3. 'SQ' is allowed in C, COBOL, and REXX.

Chapter 2. Language elements 57

|
|
|
|
|

|
|
|

|
|
|
|
|

|

array-type-name
A qualified or unqualified name that designates an array type.

A qualified array type name is a two-part name. The first part is the
schema name of the array type. The second part is an SQL identifier. A
period must separate each of the parts.

An unqualified array type name is an SQL identifier with an implicit
qualifier. The implicit qualifier is the schema name, which is determined
by the context in which the array type appears, as described by the rules in
“Qualification of unqualified object names” on page 65.

authorization-name
An SQL identifier that designates a set of privileges. It can also designate a
user, a group of users, or a role. For a user or a group of users, DB2 does
not control this property. For a role, DB2 does control this property. See
“Authorization IDs, roles, and authorization names” on page 72 for the
distinction between an authorization name and an authorization ID.

aux-table-name
A qualified or unqualified name that designates an auxiliary table. The
rules for the name are the same as the rules for table-name. See table-name.

bpname
A name that identifies a buffer pool. The following list shows the names of
the different buffer pool sizes.
4KB BP0, BP1, BP2, ..., BP49
8KB BP8K0, BP8K1, BP8K2, ..., BP8K9
16KB BP16K0, BP16K1, BP16K2, ..., BP16K9
32KB BP32K, BP32K1, BP32K2, ..., BP32K9

built-in-type
A qualified or unqualified name that identifies an IBM-supplied data type.
A qualified name is SYSIBM followed by a period and the name of the
built-in data type. An unqualified name has an implicit qualifier, the
schema name, which is determined by the rules in “Qualification of
unqualified object names” on page 65.

catalog-name
An SQL identifier that designates an integrated catalog facility catalog. The
identifier must start with a letter and must not include special characters.

clone-table-name
A qualified or unqualified name that designates the name of a clone table.
See the definition of table-name for more information about qualification of
table names.

collection-id
An SQL identifier that identifies a collection of packages, such as a
collection ID as a qualifier for a package ID. Refer to DB2 Command
Reference for naming conventions.

column-name
A qualified or unqualified name that designates a column of a table or
view.

A qualified column name is a qualifier followed by a period and an SQL
identifier. The qualifier is a table name, a view name, a synonym, an alias,
or a correlation name. The unqualified column name is an SQL identifier.

58 SQL Reference

|
|

|
|
|

|
|
|
|

constraint-name
An SQL identifier that designates a primary key, check, referential, or
unique constraint on a table.

correlation-name
An SQL identifier that designates a table, a view, or individual rows of a
table or view.

context-name
An unqualified SQL identifier that designates a trusted context.

cursor-name
An SQL identifier that designates an SQL cursor. In SQLJ, cursor-name is a
host variable (with no indicator variable) that identifies an instance of an
iterator.

database-name
An SQL identifier that designates a database. The identifier must start with
a letter and must not include special characters.

descriptor-name
A host identifier that designates an SQL descriptor area (SQLDA). See
“References to host variables” on page 215 for a description of a host
identifier. A descriptor name never includes an indicator variable.

distinct-type-name
A qualified or unqualified name that designates a distinct type.

A qualified distinct type name is a two-part name. The first part is the
schema name of the distinct type. The second part is an SQL identifier. A
period must separate each of the parts.

An unqualified distinct type name is an SQL identifier with an implicit
qualifier. The implicit qualifier is the schema name, which is determined
by the context in which the distinct type appears as described by the rules
in “Unqualified type, function, procedure, global variable, and specific
names” on page 66.

external-program-name
A name that specifies the program that runs when the function is invoked
or the procedure name is specified in a CALL statement.

function-name
A qualified or unqualified name that designates a user-defined function, a
cast function that was generated when a distinct type was created, or a
built-in function.

A qualified function name is a two-part name. The first part is the schema
name of the function. The second part is an SQL identifier. A period must
separate each of the parts.

An unqualified function name is an SQL identifier with an implicit
qualifier. The implicit qualifier is the schema name, which is determined
by the context in which the unqualified name appears as described by the
rules in “Unqualified type, function, procedure, global variable, and
specific names” on page 66.

host-label
A token that designates a label in a host program.

Chapter 2. Language elements 59

|
|

|
|

host-variable
A sequence of tokens that designates a host variable. A host variable
includes at least one host identifier, as explained in “References to host
variables” on page 215.

index-name
A qualified or unqualified name that designates an index.

A qualified index name is an authorization ID or schema name followed
by a period and an SQL identifier.

An unqualified index name is an SQL identifier with an implicit qualifier.
The implicit qualifier is an authorization ID, which is determined by the
context in which the unqualified name appears as described by the rules in
“Qualification of unqualified object names” on page 65.

For an index on a declared temporary table, the qualifier must be
SESSION.

location-name
An SQL identifier that designates the name of a location. A location name
is 1 to 16 bytes, does not include alphabetic extenders, lowercase letters, or
Katakana characters. The characters allowed in the delimited form are the
same as those allowed in the ordinary form.

mask-name
A qualified or unqualified name that designates a mask.

A qualified mask name is a two-part name. The first part is the schema
name. The second part is an SQL identifier. A period must separate each of
the parts.

A one-part or unqualified mask name is an SQL identifier with an implicit
qualifier. The implicit qualifier is an authorization ID, which is determined
by the context in which the unqualified name appears as described by the
rules in “Qualification of unqualified object names” on page 65.

package-name
A qualified or unqualified name that designates a package. The unqualified
form of a package-name is an SQL identifier. A package-name must not be a
delimited identifier that includes lowercase letters or special characters. A
package-name in an SQL statement must be qualified. In some contexts
outside of SQL, a package name can be specified as an unqualified name.

parameter-name
An SQL identifier that designates a parameter in an SQL procedure or SQL
function.

permission-name
A qualified or unqualified name that designates a permission.

A qualified permission name is a two-part name. The first part is the
schema name. The second part is an SQL identifier. A period must separate
each of the parts.

A one-part or unqualified permission name is an SQL identifier with an
implicit qualifier. The implicit qualifier is an authorization ID, which is
determined by the context in which the unqualified name appears as
described by the rules in “Qualification of unqualified object names” on
page 65.

60 SQL Reference

plan-name
An SQL identifier that designates an application plan. The identifier must
not be a delimited identifier that includes lowercase letters or special
characters.

procedure-name
A qualified or unqualified name that designates a stored procedure.

A fully qualified procedure name is a three-part name. The first part is a
location name that identifies the DBMS at which the procedure is stored.
The second part is the schema name of the stored procedure. The third
part is an SQL identifier. A period must separate each of the parts in a
qualified name.

A two-part procedure name is implicitly qualified with the location name
of the current server. The first part is the schema name of the stored
procedure. The second part is an SQL identifier. A period must separate
the two parts.

A one part, or unqualified, procedure name is an SQL identifier with two
implicit qualifiers. The first implicit qualifier is the location name of the
current server. The second implicit qualifier is the schema name, which is
determined by the context in which the unqualified name appears, as
described by the rules in “Qualification of unqualified object names” on
page 65.

The SQL identifier in a qualified or unqualified name must not be an
asterisk (*).

profile-name
An SQL identifier that corresponds to a RACF profile name.

program-name
An SQL identifier that designates an exit routine.

role-name
An unqualified SQL identifier that designates a role. The identifier cannot
begin with the characters SYS and cannot be ACCESSCTRL,
DATAACCESS, DBADM, DBCTRL, DBMAINT, NONE, NULL, PACKADM,
PUBLIC, SECADM, or SQLADM.

routine-version-id
An SQL identifier of up to 64 EBCDIC bytes that designates a version of a
routine. The UTF-8 representation of the name must not exceed 122 bytes.

savepoint-name
An unqualified SQL identifier that designates a savepoint.

schema-name
An SQL identifier that provides a logical grouping for SQL objects. A
schema-name is used as a qualifier of the name of SQL objects.

seclabel-name
A string that corresponds to the value of the RACF security label. It is
recommended that name not include national characters (@ (X'7C'), #
(X'7B'), or $ (X'5B')). If the table is a Unicode table and the security label
name does include national characters, an error might be issued if
substitution occurs when DB2 converts the value from EBCDIC to Unicode.

sequence-name
A qualified or unqualified name that designates a sequence.

Chapter 2. Language elements 61

A qualified sequence name is a two-part name. The first part is the schema
name. The second part is an SQL identifier. A period must separate each of
the parts.

A one-part or unqualified sequence name is an SQL identifier with an
implicit qualifier. The implicit qualifier is an authorization ID, which is
determined by the context in which the unqualified name appears as
described by the rules in “Unqualified alias, index, JAR file, sequence,
table, trigger, and view names” on page 66.

server-name
An SQL identifier that designates an application server. The identifier must
start with a letter and must not include lowercase letters or special
characters.

session-variable-name
A qualified or unqualified name that designates a global variable.

A qualified global variable name is a two-part name. The first part is the
schema name of the global variable. The second part is an SQL identifier. A
period must separate each of the parts.

An unqualified global variable name is an SQL identifier with an implicit
qualifier. The implicit qualifier is the schema name, which is determined
by the context in which the unqualified name appears as described by the
rules in “Unqualified type, function, procedure, global variable, and
specific names” on page 66.

specific-name
A qualified or unqualified name that designates a unique name for a
user-defined function.

A qualified specific name is a two-part name. The first part is the schema
name. The second part is an SQL identifier, and it must not be an asterisk
(*). A period must separate each of the parts.

An unqualified specific name is an SQL identifier with an implicit qualifier.
The implicit qualifier is the schema name, which is determined by the
context in which the unqualified name appears as described by the rules in
“Unqualified type, function, procedure, global variable, and specific
names” on page 66.

A specific name can be used to identify a function to alter, comment on,
drop, grant privileges on, revoke privileges from, or be the source function
for another function. A specific name cannot be used to invoke a function.
In addition to being used in certain SQL statements, a specific name must
be used in DB2 commands to uniquely identify a function.

SQL-condition-name
An SQL identifier that designates a condition in an SQL function or an
SQL procedure.

SQL-label
An SQL identifier that designates a label in an SQL function or an SQL
procedure.

SQL-parameter-name
A qualified or unqualified name that designates a parameter in the SQL
routine body of an SQL function or SQL procedure. The unqualified form
of an SQL-parameter-name is an SQL identifier. The qualified form is a
function-name or procedure-name followed by a period and an SQL identifier.

62 SQL Reference

|
|

|
|
|

|
|
|
|
|

|
|

SQL-variable-name
A qualified or unqualified name that designates a variable in an SQL
routine body. The unqualified form of an SQL-variable-name is an SQL
identifier. The qualified form is an SQL-label followed by a period (.) and
an SQL identifier.

statement-name
An SQL identifier that designates a prepared SQL statement.

stogroup-name
An SQL identifier that designates a storage group.

synonym
An SQL identifier that designates a synonym, a table, or a view. The table
or view must exist at the current server. A qualified name is never
interpreted as a synonym.

table-name
A qualified or unqualified name that designates a table.

A fully qualified table name is a three-part name. The first part is a
location name that designates the DBMS at which the table is stored. The
second part is a schema name. The third part is an SQL identifier. A period
must separate each of the parts.

A two-part table name is implicitly qualified by the location name of the
current server. The first part is a schema name. The second part is an SQL
identifier. A period must separate the two parts.

A one-part or unqualified table name is an SQL identifier with two implicit
qualifiers. The first implicit qualifier is the location name of the current
server. The second is a schema name, which is determined by the rules set
forth in “Unqualified alias, index, JAR file, sequence, table, trigger, and
view names” on page 66. For a declared temporary table, the qualifier (the
second part in a three-part name and the first part in a two-part name)
must be SESSION. For complete details on specifying a name when a
declared temporary table is defined and then later referring to that
declared temporary table in other SQL statements, see “DECLARE
GLOBAL TEMPORARY TABLE” on page 1547.

table-space-name
An SQL identifier that designates a table space of an identified database.
The identifier must start with a letter and must not include special
characters. If a database is not identified, DSNDB04 is implicit.

trigger-name
A qualified or unqualified name that designates a trigger.

A qualified trigger name is a two-part name. The first part is the schema
name of the trigger. The second part is an SQL identifier. A period must
separate each of the parts.

An unqualified trigger name is an SQL identifier with an implicit qualifier.
The implicit qualifier is the schema name, which is determined by the
context in which the unqualified name appears as described by the rules in
“Unqualified alias, index, JAR file, sequence, table, trigger, and view
names” on page 66.

view-name
A qualified or unqualified name that designates a view.

Chapter 2. Language elements 63

A fully qualified view name is a three-part name. The first part is a
location name that designates the DBMS where the view is defined. The
second part is a schema name. The third part is an SQL identifier. A period
must separate each of the parts.

A two-part view name is implicitly qualified by the location name of the
current server. The first part is a schema name. The second part is an SQL
identifier. A period must separate the two parts.

A one-part or unqualified view name is an SQL identifier with two implicit
qualifiers. The first implicit qualifier is the location name of the current
server. The second is a schema name, which is determined by the context
in which the unqualified name appears as described by the rules in
“Unqualified alias, index, JAR file, sequence, table, trigger, and view
names” on page 66.

XML-attribute-name
An identifier that is used as an XML attribute name.

XML-element-name
An identifier that is used as an XML element name.

SQL path
The SQL path is an ordered list of schema names. DB2 uses the path to resolve the
schema name for certain unqualified object names that appear in any context other
than as the main object of an ALTER, CREATE, DROP, COMMENT, GRANT,
RENAME, or REVOKE statement.

DB2 uses the path to resolve the schema name for the following object names:
v data types (both built-in types and distinct types)
v functions
v stored procedures
v global variables

Searching through the path from left to right, DB2 implicitly qualifies the object
name with the first schema name in the SQL path that contains the same object
with the same unqualified name for which the user has appropriate authorization.
For functions, DB2 uses a process called function resolution in conjunction with the
SQL path to determine which function to choose because several functions with the
same name and number of parameters but different parameter data types might be
defined in the same schema or other schemas in the SQL path. (For details, see
“Function resolution” on page 234.) For procedures, DB2 selects a matching
procedure name only if the number of parameters is also the same.

The SQL path does not apply to unqualified procedure names in ASSOCIATE
LOCATOR and DESCRIBE PROCEDURE statements. For these statements, an
implicit schema name is not generated.

For an example of how DB2 uses the SQL path to resolve the schema name,
assume that the SQL path is SMITH, XGRAPHIC, SYSIBM, and that an unqualified
distinct type name MYTYPE was specified. DB2 looks for MYTYPE first in schema
SMITH, then XGRAPHIC, and then SYSIBM.

The PATH option establishes the SQL path that is used to resolve:
v Unqualified data type, global variable, and function names in static SQL

statements

64 SQL Reference

|

|
|

v Unqualified procedure names in SQL CALL statements that specify the
procedure name as an identifier token (CALL procedure-name)

If the PATH option was not specified when the plan or package was created or last
rebound or when native SQL procedure was defined or last changed, the default
value of the SQL path is: SYSIBM, SYSFUN, SYSPROC, plan or package qualifier.

The CURRENT PATH special register determines the SQL path used to resolve:
v Unqualified data type, global variable, and function names in dynamic SQL

statements
v Unqualified procedure names in SQL CALL statements that specify the

procedure name in a host variable (CALL host-variable)

Generally, the initial value of the CURRENT PATH special register is one of the
following:
v The value of the PATH option
v "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", value of CURRENT SQLID

special register if the PATH option was not specified.

If schema "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM" is not explicitly
specified in the SQL path, the schema is implicitly assumed at the front of the
path; if all are not specified, they are assumed in the order of "SYSIBM",
"SYSFUN", "SYSPROC", "SYSIBMADM".

For example, assume that the SQL path is explicitly specified as SYSIBM,
GEORGIA, SMITH. As implicitly assumed schemas, SYSFUN, SYSPROC, and
SYSIBMADM are added to the beginning of the explicit path effectively making
the path:

SYSFUN, SYSPROC, SYSIBMADM, SYSIBM, GEORGIA, SMITH

For more information about the SQL path for dynamic SQL, see “CURRENT
PATH” on page 184 and “SET PATH” on page 1921.

Resolution of unqualified object names
Most object names are implicitly or explicitly qualified with a schema name.
Synonyms are an exception.

A synonym has a single part name. When DB2 encounters an unqualified name,
DB2 must determine which object to process. This process is called name resolution.

When DB2 encounters a single part name in a context where an alias, table, view,
or synonym can be specified, DB2 first checks to see if the name refers to a
synonym that is defined by the current user.

Qualification of unqualified object names
Unqualified object names, other than synonyms, are implicitly qualified. The rules
for qualifying a name differ depending on the type of object that the name
identifies.

Chapter 2. Language elements 65

|
|

|
|
|
|

|
|
|
|

|

Unqualified alias, index, JAR file, sequence, table, trigger, and
view names

Unqualified alias, index, JAR file, sequence, table, trigger, and view names are
implicitly qualified by the default schema.

The default schema is determined as follows:
v For static SQL statements, the default schema is the identifier specified in the

QUALIFIER option of the BIND subcommand or the CREATE PROCEDURE or
ALTER PROCEDURE statement (for a native SQL procedure). If this option is
not in effect for the plan, package, or native SQL procedure, the default schema
is the authorization ID of the owner of the plan, package, or native SQL
procedure.

v For dynamic SQL statements, the behavior as specified by the combination of the
DYNAMICRULES option and the run time environment determines the default
schema. (For a list of these behaviors and the DYNAMICRULES values that
determine them, see Table 6 on page 75).
– If DYNAMICRULES run behavior applies, the default schema is the schema in

the CURRENT SCHEMA special register. Run behavior is the default.
– If bind behavior applies, the default schema is the identifier that is implicitly or

explicitly specified in the QUALIFIER option, as explained for static SQL
statements.

– If define behavior applies, the default schema is the owner of the function or
stored procedure (the owner is the definer).

– If invoke behavior applies, the default schema is the authorization ID of the
invoker of the function or stored procedure.

Exception: For bind, define, and invoke behavior, the default schema of
PLAN_TABLE, DSN_STATEMNT_TABLE, and DSN_FUNCTION_TABLE (output
from the EXPLAIN statement) is always the value in special register CURRENT
SQLID.

Related reference:

QUALIFIER bind option (DB2 Commands)

DYNAMICRULES bind option (DB2 Commands)
“CREATE PROCEDURE (SQL - native)” on page 1350
“ALTER PROCEDURE (SQL - native)” on page 947
“CURRENT SQLID” on page 193
“EXPLAIN” on page 1642

Unqualified type, function, procedure, global variable, and
specific names

The qualification of unqualified type (built-in type, distinct type, or array type),
function, stored procedure, global variable, and specific names depends on the SQL
statement in which the unqualified name appears.
v If an unqualified name is the main object of an ALTER, CREATE, COMMENT,

DROP, GRANT, or REVOKE statement, the name is implicitly qualified with a
schema name as follows:
– In a static statement, the implicit schema name is the identifier specified in

the QUALIFIER option of the BIND subcommand or the CREATE
PROCEDURE or ALTER PROCEDURE statement (for a native SQL

66 SQL Reference

|

|

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptqualifier.htm#db2z_bindoptqualifier
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptdynamicrules.htm#db2z_bindoptdynamicrules

procedure). If this option is not in effect for the package or procedure, the
implicit qualifier is the authorization ID of the owner of the package or
procedure.

– In a dynamic statement, the implicit schema name is the schema in the
CURRENT SCHEMA special register.

v Otherwise, the implicit schema name for the unqualified name is determined as
follows:
– For distinct type and array type names, DB2 searches the SQL path and

selects the first schema in the path such that the data type exists in the
schema and the user has authorization to use the type.

– For global variable names, DB2 searches the SQL path and selects the first
schema in the path such that the global variable exists in the schema and the
user has authorization to use the global variable.

– For function names, DB2 uses the SQL path in conjunction with function
resolution, as described in “Function resolution” on page 234.

– For stored procedure names in CALL statements, DB2 searches the SQL path
and selects the first schema in the path such that the schema contains a
procedure with the same name and number of parameters and the user has
authorization to use the procedure.

– For stored procedure names in ASSOCIATE LOCATORS and DESCRIBE
PROCEDURE statements, DB2 does not use the SQL path because an implicit
schema name is not generated for these statements.

For information about the SQL path, see “SQL path” on page 64.

Aliases
An alias is an alternative name for an object such as a table, view, sequence, or
another alias. It can be used to reference an object wherever that object can be
referenced directly.

The option of referencing an object by an alias is not explicitly shown in the syntax
diagrams or mentioned in the description of SQL statements.

Like tables, views, and sequences, an alias can be created, dropped, and associated
with a comment. No authority is necessary to use an alias. However, access to the
objects that are referred to by the alias still requires the appropriate authorization
for the current statement.

An alias is created using the CREATE ALIAS statement.

An alias name designates an alias when it is preceded by the keyword ALIAS, as
in CREATE ALIAS, DROP ALIAS, COMMENT ON ALIAS, and LABEL for an
ALIAS. In all other contexts, an alias name designates a table, a view, or a
sequence. For example, COMMENT ON ALIAS A specifies a comment about the alias A,
whereas COMMENT ON TABLE A specifies a comment about the table or view
designated by A.

An alias for a table or a view can be defined at a local server to refer to a table or
a view that is at the current server or a remote server. An alias name for a table or
view can be used wherever the table name or view name can be used to refer to
the table or view in an SQL statement. The rules for forming an alias name for a
table or view are the same as the rules for forming a table name or a view name. A

Chapter 2. Language elements 67

|
|
|

|
|
|

|

|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

fully qualified alias name (a three-part name) can refer to an alias at a remote
server. However, the table or view identified by the alias at the remote server must
exist at the remote server.

An alias for a sequence can be defined at the current server. An alias name for a
sequence can be used wherever the sequence name can be used to refer to the
sequence in an SQL statement. The rules for forming an alias name for a sequence
are the same as the rules for forming a sequence name.

Statements that use three-part names and refer to distributed data result in DRDA
access to the remote site. DRDA access for three-part names is used when the
package that contains the query to distributed data is bound using the bind option
DBPROTOCOL(DRDA), or the value of the DATABASE PROTOCOL field on
installation panel DSNTIP5 is DRDA. When an application program uses three-part
name aliases for remote table or view objects and DRDA access, the application
program must be bound at each location that is specified in the three-part name.
Also, each alias must be defined at the local site. An alias at a remote site can refer
to another server if a referenced alias eventually refers to a table or view.

The effect of using an alias in an SQL statement is the same as text substitution.
For example, if A is an alias for table Q.T, one of the steps involved in the
preparation of SELECT * FROM A is the replacement of 'A' by 'Q.T'.

If an alias is defined as a public alias, it can be referenced by its unqualified name
without any impact from the current default schema name. It can also be
referenced using the schema qualifier SYSPUBLIC.
Related concepts:
“Synonyms”
Related reference:
“CREATE ALIAS” on page 1154

Synonyms
A synonym is an alternate name for a table or view. A synonym can be used to
reference a table or view in cases where an existing table or view can be
referenced.

Important: Synonyms are similar to aliases, but are only supported for
compatibility with previous releases. Synonyms behave differently with DB2 for
z/OS than with the other DB2 family products. Do not use synonyms when
writing new SQL statements or when creating portable applications. Use aliases
instead.

The option of referencing a table or view by an synonym is not explicitly shown in
the syntax diagrams or mentioned in the description of SQL statements. But
synonyms can be referred to in an SQL statement, with one exception: a synonym
cannot be used in the CREATE SYNONYM statement.

Like tables and views, a synonym can be created, dropped, and associated with a
comment. No authority is necessary to use a synonym. However, access to the
tables and views that are referenced by the synonym still requires the appropriate
authorization for the current statement.

A synonym is created with the CREATE SYNONYM statement.

68 SQL Reference

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|

|

|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|

A synonym name designates a synonym when it is preceded by the keyword
SYNONYM, as in CREATE SYNONYM and DROP SYNONYM. In all other
contexts, a synonym designates a table or a view. In all other contexts, a synonym
designates a local table or view and can be used wherever the name of a table or
view can be used in an SQL statement.

The effect of using a synonym in an SQL statement is the same as text substitution.
For example, if S is a synonym for Q.T, one of the steps involved in the
preparation of SELECT * FROM S is the replacement of 'S' by 'Q.T'.

The differences between aliases and synonyms are as follows:
v Authorization or the CREATE ALIAS privilege is required to define an alias. No

authorization is required to define a synonym.
v An alias can be defined on the name of a table or view, including tables and

views that are not at the current server. A synonym can only be defined on the
name of a table or view at the current server.

v An alias can be defined on an undefined name. A synonym can only be defined
on the name of an existing table or view.

v Dropping a table or view has no effect on its aliases. But dropping a table or
view does drop its synonyms.

v An alias is a qualified name that can be used by any authorization ID. A new
alias cannot have the same fully qualified name as an existing alias, table, or
view, and a new unqualified alias name cannot have the same name as an
existing synonym.

v A synonym is an unqualified name that can only be used by the authorization
ID that created it. A new synonym cannot have the same name as an existing
synonym, or the unqualified name of an existing alias, table, or view.

v An alias defined at one DB2 subsystem can be used at another DB2 subsystem.
A synonym can only be used at the DB2 subsystem where it is defined.

v When an alias is used, an error occurs if the name that it designates is undefined
or is the name of an alias at the current server. (The alias can represent another
alias at a different server, which can represent yet another alias at yet another
server as long as eventually a referenced alias represents a table or view.) When
a synonym is used, this error cannot occur.

v A synonym cannot be created in a trusted context that has ROLE AS OBJECT
OWNER in effect.

v An alias specified in the CREATE SYNONYM statement must identify a table or
view at the current server. The synonym is defined on the name of that table or
view.

v A synonym specified in the CREATE ALIAS statement defines an alias on the
name of the table or view identified by the synonym.

Chapter 2. Language elements 69

|
|
|
|
|

|
|
|

|

|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|

Related concepts:
“Aliases” on page 67
Related reference:
“CREATE SYNONYM” on page 1386

Authorization, privileges, permissions, masks, and object ownership
Users (as identified by an authorization ID) can successfully execute SQL
statements only if they have the authority to perform the specified operation. For
example, to create a table, a user must be authorized to create tables.

The two forms of authorization are administrative authority and privileges.

Administrative authority
The holder of administrative authority is charged with the task of
controlling DB2 and is responsible for the safety and integrity of the data.

Those with SYSADM authority implicitly have all privileges on all objects
and control who will have access to DB2 and the extent of this access.

Those with SECADM authority manage security policies by enforcing row
and column access control for tables that contain sensitive data. They
define row permissions and column masks, which describe how tables that
use row or column access controls should be accessed and which
determine whether a trigger or a user-defined function is considered secure
for those tables.

Privileges
Privileges are those activities that a user is allowed to perform. Authorized
users can create objects, have access to objects that they own, and can pass
on privileges on the objects that they own to other users by using the
GRANT statement. Privileges can be granted to specific users or to
PUBLIC. PUBLIC specifies that a privilege is granted to all users (including
to future users).

The REVOKE statement can be used to revoke previously granted
privileges.

Row permissions and column masks
A row permission is a database object that expresses an access control rule
for a row of a specific table. A row permission is in the form of a search
condition that describes to which rows users have access. Row permissions
are applied after table privileges (like SELECT or INSERT) are checked.

A column mask is a database object that expresses an access control rule for
a specific column in a table. A column mask is in the form of a CASE
expression that describes to which column values users have access.
Column masks are applied after table privileges (like SELECT or INSERT)
are checked.

Row permissions and column masks can be created, changed, and dropped
only by those with SECADM authority by using the CREATE MASK,
CREATE PERMISSION, and DROP statements. The definition of a
permission or a mask can reference other objects. Those with SECADM
authority do not need additional privileges to reference those objects, such
as SELECT privilege to retrieve from a table or EXECUTE privilege to
invoke a user-defined function, in the definition of the row permission or
column mask. Multiple row permissions and column masks can be created
for a table. Only one column mask can be created for each column in a

70 SQL Reference

|

|

|

|

table. A row permission or a column mask can be created before row or
column access control is enforced for a table. The definition of the row
permission and the column mask is stored in the DB2 catalog. However,
the permission and the mask do not take effect until the ALTER TABLE
statement with the ACTIVATE ROW ACCESS CONTROL clause is used to
enforce row access control or the ACTIVATE COLUMN ACCESS
CONTROL clause is used to enforce column access control on the table.

When an ALTER TABLE statement is used to explicitly activate row access
control for a table, a default row permission is implicitly created for the
table which prevents all access to the table. After row access controls have
been activated for a table, if the table is referenced explicitly in a data
change statement and if multiple row permissions are defined for the table,
a row access control search condition is derived by using the logical OR
operator with the search condition of each defined row permission.

When an ALTER TABLE statement is used to explicitly activate column
access control for a table, access to the table is not restricted. However, if
the table is referenced in a data change statement, all column masks that
have been created for the table are applied to mask the column values that
are referenced in the output of the queries or to determine the column
values that are used in the data change statements.

The authorization ID or role for the statement does not need authority to
reference objects that are specified in the definition of the row permission
or column mask.

Object ownership
When an object is created, one authorization ID is assigned ownership of
the object. Ownership means that the user is authorized to reference the
object in any applicable SQL statement. The privileges on the object can be
granted by the owner, and cannot be revoked from the owner. Owners of
views only receive the level of privileges that they have on the underlying
table or view. The owner of the object that is being created is determined
as follows:
v If the schema qualifier is not explicitly specified, the owner depends on

how the CREATE statement is issued:
– If the CREATE statement is embedded in a program, the owner of the

object that is being created is the authorization ID that serves as the
implicit qualifier for unqualified object names. This is the
authorization ID that is in the QUALIFIER option when the plan,
package, or native SQL procedure (that contains the CREATE
statement) is created or last changed. If the QUALIFIER option is not
used, the owner of the object is the authorization ID in the OWNER
option when the plan, package, or native SQL procedure is created or
last changed. If the OWNER option is not used, the owner is the
owner of the plan, package, or native SQL procedure. If the plan or
package was last bound in a trusted context that is defined with the
ROLE AS OBJECT OWNER clause, a role is the owner.

– If the CREATE statement is dynamically prepared, the owner of the
object that is being created is the authorization ID of the process.

– If the CREATE statement is execute in a trusted context that is
defined with the ROLE AS OBJECT OWNER clause, the role of the
primary authorization ID is the owner.

v If the schema qualifier is explicitly specified, the owner depends on the
type of object that is being created unless the CREATE statement is
executed in a trusted context that is defined with the ROLE AS OBJECT

Chapter 2. Language elements 71

OWNER clause. When the CREATE statement is executed in a trusted
context that is defined with the ROLE AS OBJECT OWNER clause, the
owner of the object is determined as follows:
– If the CREATE statement is embedded in a program, the role that

owns the plan or package is the owner of the object.
– If the CREATE statement is dynamically prepared, the primary

authorization ID is the owner.

If the schema qualifier is explicitly specified, and the CREATE statement
is not executed in a trusted context that is defined with the ROLE AS
OBJECT OWNER clause, the owner depends on the type of object that is
being created: :
– For an alias, auxiliary table, created global temporary table, table, or

view, the owner of the object that is being created is the same as the
explicit schema name.

– For a user-defined distinct type, user-defined function, procedure,
sequence, JAR files, or trigger, the owner of the object that is being
created is the authorization ID of the process.

The rules that determine ownership of row permissions and column masks
are the same as those that determine ownership of objects like user-defined
distinct types, user-defined functions, procedures, sequences, JAR files, or
trigger.

The owner of a row permission or a column mask does not have implicit
owner privileges. Only users with SECADM authority can manage and
maintain row permissions and column masks.

Authorization IDs, roles, and authorization names
Processes can successfully execute SQL statements only if they have the necessary
authority. A process derives this authority from its authorization IDs. An
authorization ID can also designate a user, a group of users, or a role.

An authorization ID is a character string that is associated with a process that is
checked to determine the authority to perform a specified operation.

DB2 does not control the association of users to user groups. However, DB2 does
control the association between users and roles when a trusted context is defined.

DB2 uses authorization IDs to provide authorization checking of SQL statements.

Whenever a connection is established between DB2 and a process, DB2 obtains an
authorization ID and passes it to the authorization connection or sign-on exit
routine. The list of one or more authorization IDs that is returned by the exit
routine are used as the authorization IDs of the process. If the process is running
in a trusted context with a role, the authorization IDs of the process includes this
role.

Every process has exactly one primary authorization ID. Any other authorization
IDs of a process are secondary authorization IDs. The use of these authorization
IDs depends on the type of process (bind process, application process, or process
involved in the creation of objects).

Primary authorization ID
An authorization ID that is used to established a connection between DB2
and an application process.

72 SQL Reference

Secondary authorization ID
An authorization ID that is associated with a primary authorization ID.

Secondary authorization IDs includes all the authorization IDs that have
been associated with a primary authorization ID by the connection or
sign-on authorization exit routine, the CURRENT SQLID (when different
from the primary authorization ID), and other authorization IDs like the
stored procedure definer and call package owner for stored procedure
package checking.

Authorization ID of the process
The user's primary and secondary authorization IDs. If the process is
running in a trusted context with a role, the authorization IDs of the
process includes this role.

A role is a database entity that groups together one or more privileges. A role is
available only when the process is run in a trusted context. Users are associated
with a role in the definition of a trusted context.

A trusted context can have a default role, specific roles for individual users, or no
roles at all. A user in a trusted context can have only one active role. This is the
role that is specifically defined for the user or the default role of the trusted
context. The following restrictions apply to roles:
v A role cannot be a primary authorization ID.
v A role cannot be set by using a SET CURRENT SQLID statement.
v A role can be the schema qualifier of an object. However, when it is used as a

schema qualifier, a role is considered to be a character string and does not add
any implicit schema privileges (ALTERIN, CREATEIN, or DROPIN) to this role.

v A role must already exist for privileges to be granted to it.

The role that is in effect for a user is considered to be one of the secondary
authorization IDs of the user.

Do not confuse an authorization-name that is specified in an SQL statement with an
authorization ID of a process.

Example: Assume that SMITH is your TSO logon, DYNAMICRULES run behavior
is in effect, and you execute the following statements interactively:

CREATE TABLE TDEPT LIKE DSN8B10.DEPT;
GRANT SELECT ON TDEPT TO KEENE;

Also assume that your site has not replaced the default exit routine for connection
authorization and that you have not executed the SET CURRENT SQLID
statement. Thus, when the GRANT statement is prepared and executed by SPUFI,
the SQL authorization ID is SMITH. KEENE is an authorization name that is
specified in the GRANT statement.

Authorization to execute the GRANT statement is checked against SMITH. The
authorization rule is that the privilege set that is designated by SMITH must
include the SELECT privilege with the GRANT option on SMITH.TDEPT. No
check that involves KEENE is performed. If the GRANT statement specifies a role,
the existence of the role is checked.

Chapter 2. Language elements 73

Authorization IDs and schema names
An authorization ID that has the same name as the name of a schema implicitly
has certain privileges for that schema.

If an authorization ID is not a role and has the same name as the name of a
schema, that authorization ID implicitly has the following privileges for that
schema:
v CREATEIN privilege
v ALTERIN privilege
v DROPIN privilege

Authorization IDs and statement preparation
The authorization ID that is specified as the owner of the plan or package must be
one of the authorization IDs of the bind process. The owner can be set to any
value if one of the authorization IDs of the bind process has SYSADM or SYSCTRL
authority.

A process that creates a plan or package is called a bind process. The connection
with DB2 is the result of the execution of a BIND or REBIND subcommand. Both
subcommands allow for the specification of the authorization ID of the owner of
the plan or package.

BINDAGENT can specify an owner other than himself (or one of his
representatives), but it has to be someone that granted him BINDAGENT. The
default owner for BIND is the primary authorization ID. The default owner for
REBIND is the previous owner of the plan or package (ownership is unchanged if
an owner is not explicitly specified). If the BIND or REBIND is performed in a
trusted context that is defined with the ROLE AS OBJECT OWNER clause, the
owner of the plan or package is a role. If the OWNER bind option is specified, the
role that is specified in it is the owner, otherwise the role that performs the bind or
rebind becomes the owner.

The authorization ID that is used for the authorization checking of embedded SQL
statements is that of the owner of the plan or package. If the application is bound
in a trusted context using the ROLE AS OBJECT OWNER clause, the authorization
ID that is used for authorization checking is the role that owns the plan or
package, otherwise the authorization ID is the authorization ID of the owner of the
plan or package. If an embedded SQL statement refers to tables or views at a DB2
subsystem other than the one at which the plan or package is bound, the
authorization checking is deferred until run time. For more information on this, see
“Authorization IDs and remote execution” on page 77.

If VALIDATE(BIND) is specified, the privileges required to use or manipulate
objects at the DB2 subsystem at which the plan or package is bound must exist at
bind time. If the privileges or the referenced objects do not exist and
SQLERROR(NOPACKAGE) is in effect, the bind operation is unsuccessful. If
SQLERROR(CONTINUE) is specified, then the bind is successful and any
statements in error are flagged. If any statements in error are flagged, an error will
occur when you attempt to execute them at run time.

If a plan or package is bound with VALIDATE(RUN), authorization checking is
still performed at bind time, but the referenced objects and the privileges required
to use these objects need not exist at this time. If any privilege required for a
statement does not exist at bind time, an authorization check is performed

74 SQL Reference

whenever the statement is first executed within a unit of work, and all privileges
required for the statement must exist at that time. If any privilege does not exist,
execution of the statement is unsuccessful. When the authorization check is
performed at run time, it is performed against the plan or package owner, not the
SQL authorization ID. For the effect of this option on cursors, see “DECLARE
CURSOR” on page 1535.
Related reference:

The DSN command and its subcommands (DB2 Commands)

Authorization IDs and dynamic SQL
The bind option DYNAMICRULES determines the authorization ID that is used for
checking authorization when dynamic SQL statements are processed. The set of
values for the authorization ID and other dynamic SQL attributes is called the
dynamic SQL statement behavior. The four possible behaviors are run, bind, define,
and invoke.

This discussion applies to dynamic SQL statements that refer to objects at the
current server. For those that refer to objects elsewhere, see “Authorization IDs and
remote execution” on page 77.

In addition to determining the authorization ID, DYNAMICRULES also controls
other dynamic SQL attributes such as the implicit qualifier that is used for
unqualified alias, index, sequence, table, trigger, and view names; the source for
application programming options; and whether certain SQL statements can be
invoked dynamically.

As the following table shows, the combination of the value of the
DYNAMICRULES option and the run time environment determines which of the
four SQl statement behavior is used. DYNAMICRULES(RUN), which implies run
behavior, is the default.

Table 6. How DYNAMICRULES and the run time environment determine dynamic SQL
statement behavior

DYNAMICRULES value

Behavior of dynamic SQL statements

Stand-alone program
environment

User-defined function or
stored procedure
environment

RUN Run behavior Run behavior

BIND Bind behavior Bind behavior

DEFINERUN Run behavior Define behavior

DEFINEBIND Bind behavior Define behavior

INVOKERUN Run behavior Invoke behavior

INVOKEBIND Bind behavior Invoke behavior

Note: BIND and RUN values can be specified for packages, plans, and native SQL
procedures. The other values can be specified for packages and native SQL procedures but
not for plans.

In the following behavior descriptions, a package that runs under a user-defined
function or stored procedure package is a package whose associated program
meets one of the following conditions:
v The program is called by a user-defined function or stored procedure.

Chapter 2. Language elements 75

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_dsnandsubcommands.htm#db2z_dsnandsubcommands

v The program is in a series of nested calls that start with a user-defined function
or stored procedure.

Run behavior
DB2 uses the authorization IDs of the application process and the SQL
authorization ID (the value of special register CURRENT SQLID) for
authorization checking of dynamic SQL statements. If the process is
running in a trusted context with a role associated with the primary
authorization ID, the authorization IDs of the application process include
this role.

A process that uses a plan and its associated packages is called an
application process. At any time, the SQL authorization ID is the value of
CURRENT SQLID. This SQL special register can be initialized by the
connection or sign-on exit routine. If the exit routine does not set a value,
the initial value of CURRENT SQLID is the primary authorization ID of
the process. You can use the SQL statement SET CURRENT SQLID to
change the value of CURRENT SQLID. Unless some authorization ID of
the process has SYSADM authority, the new value must be one of the
authorization IDs of the process. Thus, CURRENT SQLID usually contains
either the primary authorization ID of the process or one of its secondary
authorization IDs. The CURRENT SQLID cannot contain a role.

Privilege set: If the dynamically prepared statement is other than an
ALTER, CREATE, COMMENT, DROP, GRANT, RENAME, or REVOKE
statement, each privilege required for the statement can be a privilege
designated by any authorization ID of the process. Therefore, the privilege
set is the union of the set of privileges held by each authorization ID of the
process. When the process is running in a trusted context with a role, the
authorization IDs of the process include this role.

If the dynamic SQL statement is an ALTER, CREATE, COMMENT, DROP,
GRANT, RENAME, or REVOKE statement, the only authorization ID that
is used for authorization checking is the SQL authorization ID. Therefore,
the privilege set is the privileges held by that single authorization ID of the
process. If the process is running in a trusted context using the ROLE AS
OBJECT OWNER clause for the a CREATE, GRANT, or REVOKE
statement, the single authorization ID of the process that is checked is the
role that is in effect.

Implicit qualification: As explained under “Qualification of unqualified
object names” on page 65, when an SQL statement is dynamically
prepared, the values of the CURRENT SCHEMA special register is used as
the implicit qualifier. For example, it is used as the implicit qualifier for all
unqualified tables, aliases, views, indexes, and sequences.

Bind behavior
The same rules that are used to determine the authorization ID for static
(embedded) statements are used for dynamic statements. DB2 uses the
authorization ID of the owner of the package or plan for authorization
checking of dynamic SQL statements, as explained in detail under
“Authorization IDs and statement preparation” on page 74.

Privilege set: The privilege set is the privileges that are held by the owner
of the package or plan.

Implicit qualification: The identifier specified in the QUALIFIER option of
the bind command that is used to bind the SQL statements, or the CREATE
PROCEDURE or ALTER PROCEDURE statement that is used to create a
version of an SQL procedure is the implicit qualifier for all unqualified

76 SQL Reference

tables, views, aliases, indexes, and sequences. If the QUALIFIER option
was not used when the plan, package, or native SQL procedure was
created or last changed, the implicit qualifier is the owner of the plan,
package, or native SQL procedure.

Define behavior
Define behavior applies only if the dynamic SQL statement is in a package
that is run as a stored procedure or user-defined function (or runs under a
stored procedure or user-defined function package), and the package was
bound with DYNAMICRULES(DEFINEBIND) or
DYNAMICRULES(DEFINERUN). DB2 uses the authorization ID of the
stored procedure or user-defined function owner (the definer) for
authorization checking of dynamic SQL statements in the application
package.

Privilege set: The privilege set is the privileges that are held by the
authorization ID of the owner.

Implicit qualification: The stored procedure or user-defined function
owner is also the implicit qualifier. For example, the owner is the implicit
qualifier for unqualified table, view, alias, index, and sequence names.

Invoke behavior
Invoke behavior applies only if the dynamic SQL statement is in a package
that is run as a stored procedure or user-defined function (or runs under a
stored procedure or user-defined function package), and the package was
bound with DYNAMICRULES(INVOKEBIND) or
DYNAMICRULES(INVOKERUN). DB2 uses the stored procedure or
user-defined function invoker for authorization checking of dynamic SQL
statements in the application package. The invoker can also be a role.

Privilege set: The privilege set is the privileges that are held by the
invoker. However, if the invoker is the primary authorization ID of the
process or the CURRENT SQLID value, secondary authorization IDs are
also checked. This includes the role of the primary authorization ID, if
running in a trusted context with a role. In that case, the privilege set is
the union of the set of privileges held by each authorization ID of the
process.

Implicit qualification: The stored procedure or user-defined function
invoker is also the implicit qualifier. For example, it is the implicit qualifier
for unqualified table, view, alias, index, and sequence names. The invoker
can also be a role.

Restricted statements when run behavior does not apply: When bind, define, or
invoke behavior is in effect, you cannot use the following dynamic SQL statements:
ALTER, CREATE, COMMENT, DROP, GRANT, RENAME, and REVOKE.
Related reference:

BIND and REBIND options (DB2 Commands)

Privileges required for using dynamic SQL statements (Managing Security)

Authorization IDs and remote execution
The authorization rules for remote execution depend on whether the distributed
operation is DRDA access with a DB2 for z/OS server and requester. DRDA access
with a server and requester other than DB2 can also effect the authorization rules
for remote execution.

Chapter 2. Language elements 77

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_privilege4dynamicsql.htm#db2z_privilege4dynamicsql

DRDA access with DB2 for z/OS only
To prepare and execute SQL statements using DRDA access, certain privileges are
required by the package owner and additional privileges are required by the user
who invokes the application.

Any static statement executed using DRDA access is in a package bound at a
server other than the local DB2 subsystem. Before the package can be bound, its
owner must have the BINDADD privilege and the CREATE IN privilege for the
package's collection. Also required are enough privileges to execute the package's
static SQL statements that refer to data on that server. All these privileges are
recorded in the DB2 catalog of the server, not in the catalog of the local DB2
subsystem. Such privileges must be granted by GRANT statements executed at the
server. This allows the server to control the creation and use of packages that are
run from other DBMSs.

A user who invokes an application that has a plan at the local DB2 subsystem
must have the EXECUTE privilege on the plan recorded in the DB2 catalog of the
local subsystem. If that application uses a package that is bound at a DB2 server
other than the local DB2 requester, the EXECUTE privilege on the package must
also be recorded in the DB2 catalog of the server. The ID that must hold the
authorization to run the package at the DB2 server depends on the value of the
PRIVATE_PROTOCOL subsystem parameter at the DB2 server:
v If PRIVATE_PROTOCOL is set to NO, EXECUTE authority on the package must

be explicitly granted to the primary user ID or an associated secondary ID at the
DB2 server. If the local requester application invokes a stored procedure that
resides at the DB2 server, EXECUTE authority on the stored procedure package
must be explicitly granted at the DB2 server to the owner of the package that
issues the CALL statement if either of the following is true:
– The owner of the stored procedure does not have the authority to execute the

remote stored procedure package.
– The CALL statement is in the form of CALL: host-variable and neither the

primary user ID nor an associated secondary ID has the authority to execute
the remote stored procedure package.

v If PRIVATE_PROTOCOL is not set to NO, EXECUTE authority on the package
must be explicitly granted to the local requester plan owner at the DB2 server.
The plan owner needs no other privilege to execute the package. If the local
requester application invokes a stored procedure that resides at the DB2 server,
EXECUTE authority on the stored procedure package must be explicitly granted
at the DB2 server to the DB2 requester plan owner of the application that issues
the CALL statement if either of the following is true:
– The owner of the stored procedure does not have the authority to execute the

remote stored procedure package.
– The CALL statement is in the form of CALL: host-variable and neither the

primary user ID nor an associated secondary ID has the authority to execute
the remote stored procedure package.

EXECUTE authority is also required to use a package for a user-defined function,
trigger, or stored procedure that resides at the DB2 server. However, except as
previously described for a specific stored procedure case, the
PRIVATE_PROTOCOL subsystem parameter is not used to determine the ID that is
required to hold the EXECUTE privilege on that package. In the case of trigger
packages, the authorization ID of the SQL statement that activates the trigger must
have the EXECUTE privilege on the trigger. Again, all these privileges must be
recorded in the DB2 catalog of the server.

78 SQL Reference

Having the appropriate privileges recorded as described above allows the
execution of the static SQL statements in the package, and the execution of
dynamic SQL statements if DYNAMICRULES bind, define, or invoke behavior is in
effect. If DYNAMICRULES run behavior is in effect, the authorization rules for
dynamic SQL statements is different. Authorization for the execution of dynamic
SQL statements must come from the set of authorization IDs that are derived
during connection processing, and, if the process is running in a trusted
connection, the role that is in effect. An application goes through connection
processing when it first connects to a server or when it reuses a CICS or IMS
thread that has a different primary authorization ID.

If an application uses Recoverable Resources Manager Services attachment facility
(RRSAF) and has no plan, authority to execute the package is determined in the
same way as when the requester is not DB2 for z/OS.
Related concepts:

Managing connection requests from local applications (Managing Security)
“DRDA access with a server or requester other than DB2”
Related tasks:

Checking authorization at a DB2 database server (Managing Security)

DRDA access with a server or requester other than DB2
Specific privileges are required depending on whether DB2 is the server or the
requester involved in DRDA access.

DB2 for z/OS as the server: If the requester is not a DB2 for z/OS subsystem, there
is no DB2 application plan involved. In this case, the privilege set of the
authorization ID, which is determined by the DYNAMICRULES behavior, must
have the EXECUTE privilege on the package. Dynamic SQL statements in the
package are executed according to the DYNAMICRULES behavior, as described in
“Authorization IDs and dynamic SQL” on page 75.

DB2 for z/OS as the requester: The authorization rules for remote execution are
those of the server.

Authorization ID translations
When certain authorization IDs are sent to a remote DBMS, those authorization IDs
might undergo translation before being used.

Translation can occur for a primary authorization ID, the authorization ID of the
owner of an application plan, or the authorization ID of the owner of a package.
For example, a user known as SMITH at the local DBMS could be known, after
translation, as JONES at the server. Likewise, a package owner known as GRAY
could be known as WINTERS at the server. If so, JONES or WINTERS would be
used, instead of SMITH or GRAY, to determine the authorization ID for dynamic
SQL statements in the package. If the DYNAMICRULES run behavior applies,
JONES, who is executing the dynamic statement at the server, is used. If
DYNAMICRULES bind behavior applies, WINTERS, the package owner at the
server, is used.

Two sets of communications database (CDB) catalog tables control the translations.
One set is at the local DB2, and the other set is at the remote DB2. Translation can
take place at either or both sites.

Chapter 2. Language elements 79

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_localrequest.htm#db2z_localrequest
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_checkauth4hopdb2serv.htm#db2z_checkauth4hopdb2serv

Related concepts:

Communications database for the requester (Managing Security)

Communications database for the server (Managing Security)

Other security measures
Even if DB2 authority requirements are satisfied, other security measures can be in
effect when distributed data is accessed.

The fact that DB2 authority requirements are satisfied does not guarantee that a
user has access to a given server. Other security measures can also come into play.
For example, requests to execute remote SQL statements could be denied based on
Resource Access Control Facility (RACF) considerations. Developing such security
measures is discussed in DB2 Administration Guide.

Data types
DB2 supports both IBM-supplied data types (built-in data types) and user-defined
data types (distinct types).

The smallest unit of data that can be manipulated in SQL is called a value. How
values are interpreted depends on the data type of their source. The sources of
values are:

Columns
Constants
Expressions
Functions
Special registers
Variables (such as host variables, SQL variables, global variables, parameter
markers, and parameters of routines)

The following topics describes the built-in data types and distinct types.

Figure 16 on page 81 shows the built-in data types that DB2 supports.

80 SQL Reference

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_cdb4requester.htm#db2z_cdb4requester
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_cdb4server.htm#db2z_cdb4server

Nulls
All data types include the null value. Distinct from all nonnull values, the null
value is a special value that denotes the absence of a (nonnull) value.

Although all data types include the null value, some sources of values cannot
provide the null value. For example, constants, columns that are defined as NOT
NULL, and special registers cannot contain null values; the COUNT and
COUNT_BIG functions cannot return a null value; and ROWID columns cannot
store a null value although a null value can be returned for a ROWID column as
the result of a query.

Numbers
The numeric data types are categorized as exact numerics: binary integer and
decimal; decimal floating point; and approximate numerics: floating-point

Binary integer includes small integer, large integer, and big integer. Binary
numbers are exact representations of integers. Decimal numbers are exact
representations of real numbers. Binary and decimal numbers are considered exact
numeric types. Decimal floating point numbers include DECFLOAT(16) and
DECFLOAT(34), which are capable of representing either 16 or 34 significant digits.
Floating-point includes single precision and double precision. Floating-point
numbers are approximations of real numbers and are considered approximate
numeric types.

All numbers have a sign, a precision, and a scale. If a column value is zero, the
sign is positive. Decimal floating point has distinct values for a number and the
same number with various exponents (for example: 0.0, 0.00, 0.0E5, 1.0, 1.00,
1.0000). The precision is the total number of binary or decimal digits excluding the

Built-in data types

floating point

DECIMAL

ROWID

16 bit 32 bit

single
precision

double
precision

fixed
length

varying
length

fixed
length

fixed length

varying
length

varying length

row identifier

exact approximate

SMALLINT INTEGER

REAL DOUBLE

TIME

GRAPHIC

BINARY

VARGRAPHIC

VARBINARY

VARCHAR DBCLOB

BLOB

CLOB

CHAR

DATE

DECFLOAT

decimal
floating point

XML

XML

64 bit

BIGINT

graphiccharacter

string

timestamp without
time zone

signed numeric

time timestampdate

datetime

timestamp
with time zone

TIMESTAMP WITHOUT
TIME ZONE

TIMESTAMP
WITH TIME ZONE

packed

decimalbinary integer

binary

Figure 16. Built-in data types supported by DB2

Chapter 2. Language elements 81

sign. The scale is the total number of binary or decimal digits to the right of the
decimal point. If there is no decimal point, the scale is zero.

Small integer (SMALLINT)
A small integer is a binary integer with a precision of 15 bits. The range of small
integers is -32768 to +32767.

Large integer (INTEGER)
A large integer is a binary integer with a precision of 31 bits.

The range of large integers is -2147483648 to +2147483647.

Big integer (BIGINT)
A big integer is a binary integer with a precision of 63 bits.

The range of big integers is -9223372036854775808 to +9223372036854775807.

Single precision floating-point (REAL)
A single precision floating-point number is a short (32 bits) floating-point number.

The range of single precision floating-point numbers is about -7.2E+75 to 7.2E+75.
In this range, the largest negative value is about -5.4E-79, and the smallest positive
value is about 5.4E-079.

Double precision floating-point (DOUBLE or FLOAT)
A double precision floating-point number is a long (64 bits) floating-point number.

The range of double precision floating-point numbers is about -7.2E+75 to 7.2E+75.
In this range, the largest negative value is about -5.4E-79, and the smallest positive
value is about 5.4E-079.

Decimal (DECIMAL or NUMERIC)
A decimal number is a packed decimal number with an implicit decimal point.

The position of the decimal point is determined by the precision and the scale of
the number. The scale, which is the number of digits in the fractional part of the
number, cannot be negative or greater than the precision. The maximum precision
is 31 digits.

All values of a decimal column have the same precision and scale. The range of a
decimal variable or the numbers in a decimal column is -n to +n, where n is the
largest positive number that can be represented with the applicable precision and
scale. The maximum range is 1 - 1031 to 1031 - 1.

Decimal floating-point (DECFLOAT)
A decimal floating-point value is an IEEE 754r number with a decimal point. The
position of the decimal point is stored in each decimal floating-point value.

The maximum precision is 34 digits.

The range of a decimal floating point number is either 16 or 34 digits of precision,
and an exponent range of respectively 10-383 to 10+384 or 10-6143 to 10+6144.

In addition to the finite numbers, decimal floating point numbers are able to
represent one of the following named special values:
v Infinity - a value that represents a number whose magnitude is infinitely large.

82 SQL Reference

v Quiet NaN - a value that represents undefined results which does not cause an
invalid number condition.

v Signaling NaN - a value that represents undefined results which will cause an
invalid number condition if used in any numerical operation.

When a number has one of these special values, its coefficient and exponent are
undefined. The sign of an infinity is significant (that is, it is possible to have both
positive and negative infinity). The sign of a NaN has no meaning for arithmetic
operations. INF can be used in place of INFINITY.

Numeric host variables
Numeric host variables can be defined in all languages with a few exceptions.

Binary integer variables can be defined in all host languages.

Floating-point variables can be defined in all host languages. All languages, except
Java, support System/390® floating-point format. Assembler, C, C++, PL/I, and
Java also support IEEE floating-point format. In assembler, C, C++, and PL/I
programs, the SQL processing option FLOAT tells DB2 whether floating-point
variables contain data in System/390 floating-point format or IEEE floating-point
format. The contents of floating-point host variables must match the format that is
specified with the FLOAT SQL processing option.

Decimal variables can be defined in all host languages except Fortran.

In COBOL, decimal numbers can be represented in the following formats:
v Packed decimal format, denoted by USAGE PACKED-DECIMAL or COMP-3
v External decimal format, denoted by USAGE DISPLAY with SIGN LEADING

SEPARATE
v NATIONAL decimal format denoted by USAGE NATIONAL and SIGN

LEADING SEPARATE

Decimal floating-point variables can be defined in Assembler, C, C++, PL/I, and
Java.

String representations of numeric values
String representations of numeric values can be used in some contexts. A valid
string representation of a numeric value must conform to the rules for numeric
constants.

The encoding scheme in use determines what type of strings can be used for string
representation of numeric values. For ASCII and EBCDIC, a string representation
of a numeric value must be a character string. For UNICODE, a string
representation of a numeric value can be either a character string or a graphic
string. Thus, the only time a graphic string can be used for a numeric value is
when the encoding scheme is UNICODE.

When a decimal, decimal floating-point, or floating-point number is cast to a string
(for example, using a CAST specification), the implicit decimal point is replaced by
the default decimal separator character that is in effect when the statement is
prepared. When a string is cast to a decimal, decimal floating-point, or
floating-point value (for example, using a CAST specification), the default decimal
separator character in effect when the statement was prepared is used to interpret
the string.

Chapter 2. Language elements 83

For more information, see “Constants” on page 148.

Subnormal numbers and underflow
The decimal floating-point data type has a set of non-zero numbers that fall
outside the range of normal decimal floating-point values. These numbers are
called subnormal.

Non-zero numbers whose adjusted exponents are less than Emin
4 are called

subnormal numbers. These subnormal numbers are accepted as operands for all
operations and can result from any operation. If a result is subnormal before any
rounding occurs, the subnormal condition is returned.

For a subnormal result, the minimum values of the exponent becomes Emin -
(precision-1), called Etiny, where precision is the working precision. If necessary,
the result will be rounded to ensure that the exponent is no smaller than Etiny. If
the result becomes inexact during rounding, an underflow condition is returned. A
subnormal result does not always return the underflow condition but will always
return the subnormal condition.

When a number underflows to zero during a calculation, its exponent will be Etiny.
The maximum value of the exponent is unaffected.

The maximum value of the exponent for subnormal numbers is the same as the
minimum value of the exponent which can arise during operations that do not
result in subnormal numbers. This occurs where the length of the coefficient in
decimal digits is equal to the precision.

Character strings
A character string is a sequence of bytes. The length of the string is the number of
bytes in the sequence. If the length is zero, the value is called the empty string. The
empty string should not be confused with the null value.

Default CCSIDs
The value of the field MIXED DATA (on installation panel DSNTIPF) determines
the default CCSIDs for a character string.

The following table shows how the value of the field MIXED DATA (on installation
panel DSNTIPF) determines the default CCSIDs for a character string.

Table 7. Default CCSIDs for character strings

Encoding scheme Value of MIXED
DATA field

Default attribute

ASCII or EBCDIC NO Character: SBCS

The value of the ASCII CCSID or EBCDIC
CCSID field on installation panel determines
the system CCSID for SBCS data.

ASCII or EBCDIC YES Character: MIXED

The value of the ASCII CCSID or EBCDIC
CCSID field on installation panel DSNTIPF
determines the system CCSID for SBCS data,
MIXED, and graphic data.

84 SQL Reference

Table 7. Default CCSIDs for character strings (continued)

Encoding scheme Value of MIXED
DATA field

Default attribute

Unicode Not applicable Character: MIXED

The CCSIDs are:
v 367 for SBCS data
v 1208 for MIXED data
v 1200 for graphic data

Fixed-length character strings
When fixed-length character string distinct types, columns, and variables are
defined, the length attribute is specified, and all values have the same length. For a
fixed-length character string, the length attribute must be between 1 and 255
inclusive.

Varying-length character strings
The types of varying-length character strings are VARCHAR and character large
object (CLOB). A CLOB is a type of LOB. A CLOB column is useful for storing large
amounts of character data, such as documents written with a single character set.

When varying-length character strings, distinct types, columns, and variables are
defined, the maximum length is specified and this length becomes the length
attribute except for C NUL-terminated strings. Actual values might have a smaller
value. For varying-length character strings, the length specifies the number of
bytes.

For a VARCHAR string, the length attribute must be between 1 and 32704. For a
VARCHAR column, the maximum for the length attribute is determined by the
record size that is associated with the table, as described in Maximum record size
the description of the CREATE TABLE statement. For a CLOB string, the length
attribute must be between 1 and 2 147 483 647 inclusive. (2 147 483 647 is 2
gigabytes minus 1 byte.) For more information about CLOBs, see “Large objects
(LOBs)” on page 96.

Character string variables
Character string variables follow specific rules for use in host languages.
v Fixed-length character string variables can be used in all languages except REXX

and Java. In C, CHAR string variables are limited to a length of 1.
v Varying-length character string variables can be used in all host languages with

the following exceptions:
– Fortran: varying-length non-LOB character strings cannot be used.
– Assembler, C, and COBOL: varying-length non-LOB strings are simulated as

described in DB2 Application Programming and SQL Guide. In C,
NUL-terminated strings can also be used.

– REXX: CLOBs and DBCLOBs cannot be used.

Character string encoding schemes
The method of representing DBCS and MBCS characters within a mixed string
differs among the encoding schemes.

Each character string is further defined as one of the following subtypes:

Chapter 2. Language elements 85

Bit data
Data that is not associated with a coded character set and, therefore, is
never converted. The CCSID for bit data is X'FFFF' (65535). The bytes do
not represent characters.

Bit data is a form of character data. The pad character is a blank for
assignments to bit data; the pad character is X'00' for assignments to binary
data. It is recommended that binary data be used instead of character for
bit data.

If both operands in a predicate are EBCDIC, both operands are padded
with X'40'. Otherwise, both operands are padded with X'20'. For example,
if both operands are ASCII, or if one operand is ASCII and the other
operand is EBCDIC, both are padded with X'20'.

SBCS data
Data in which every character is represented by a single byte. Each SBCS
string has an associated CCSID. If necessary, an SBCS string is converted
before it is used in an operation with a character string that has a different
CCSID.

Mixed data
Data that can contain a mixture of characters from a single-byte character
set (SBCS) and a multiple-byte character set (MBCS). Each mixed string has
an associated CCSID. If necessary, a mixed string is converted before an
operation with a character string that has a different CCSID. If a mixed
data string contains an MBCS character, it cannot be converted to SBCS
data.

EBCDIC mixed data can contain shift characters, which are not MBCS data.

When the encoding scheme is Unicode or the DB2 installation is defined to
support mixed data, DB2 recognizes MBCS sequences within mixed data
string when performing character sensitive operations. These operations
include parsing, character conversion, and the pattern matching specified
by the LIKE predicate.

Character strings with a CLOB data type can only be SBCS or MIXED. BLOB
should be used for binary strings.

The method of representing DBCS and MBCS characters within a mixed string
differs among the encoding schemes.
v ASCII reserves a set of code points for SBCS characters and another set as the

first half of DBCS characters. When it encounters the first half of a DBCS
character, the system reads the next byte in order to obtain the complete
character.

v EBCDIC makes use of two special code points:
– A shift-out character (X'0E') to introduce a string of DBCS characters.
– A shift-in character (X'0F') to end a string of DBCS characters.

DBCS sequences within mixed data strings are recognized as the string is read
from left to right. At any time, the reading of the string is in SBCS mode or
DBCS mode. In SBCS mode, which is the initial mode, any byte other than a
shift-out is interpreted as an SBCS character. When a shift-out is read, the mode
switches to DBCS mode. In DBCS mode, the next byte and every second byte
after that byte is interpreted as the first byte of a DBCS character unless it is a
shift character. If the byte is a shift-out, an error occurs. If the byte is a shift-in,
the mode returns to SBCS mode. An error occurs if the mode is still DBCS mode

86 SQL Reference

after processing the last byte of the string. Because of the shift characters,
EBCDIC mixed data requires more storage than ASCII mixed data.

v UTF-8 is a varying-length encoding of byte sequences. The high bits indicate the
part of the sequence to which a byte belongs. The first byte indicates the number
of bytes to follow in a byte sequence.

Examples
The same mixed date character string can be represented as character and
hexadecimal data in different encoding schemes.

For the same mixed data character string, the following table shows character and
hexadecimal representations of the character string in different encoding schemes.
In EBCDIC, the shift-out and shift-in characters are needed to delineate the
double-byte characters.

Table 8. Example of a character string in different encoding schemes

Data type and encoding
scheme

Character representation Hexadecimal representation (with
spaces separating each character)

9 bytes in ASCII 8CB3 67 65 6E 8B43 6B 69

13 bytes in EBCDIC 0E 4695 0F 87 85 95 0E 45B9 0F 92
89

11 bytes in Unicode
UTF-8

E58583 67 65 6E E6B097 6B 69

Because of the differences of the representation of mixed data strings in ASCII,
EBCDIC, and Unicode, mixed data is not transparently portable. To minimize the
effects of these differences, use varying-length strings in applications that require
mixed data and operate on ASCII, EBCDIC, and Unicode data.

String unit specifications
The ability to specify string units for certain built-in functions and on the CAST
specification allows you to process string data in a more "character-based manner"
than a "byte-based manner". The string unit determines the length in which the
operation is to occur. You can specify CODEUNITS32, CODEUNITS16, or OCTETS
as the units for the operation.

CODEUNITS32
Specifies that Unicode UTF-32 is the units for the operation.
CODEUNITS32 is useful when an application wants to process data in a
simple fixed-length format and needs the same answer regardless of the
storage format of the data (ASCII, EBCDIC, UTF-8, or UTF-16). Although
the answers are in terms of CODEUNITS32, the data is not converted to
UTF-32 to perform the function.

CODEUNITS16
Specifies that Unicode UTF-16 is the units for the operation.
CODEUNITS16 is useful when an application wants to know how many
double-byte characters are in a string.

OCTETS
Specifies that bytes are the units for the operation. OCTETS is often used
when an application is interested in allocation buffer space or when
operations need to use simple byte processing.

Chapter 2. Language elements 87

Determining the length of a string by counting in string units (CODEUNITS16 or
CODEUNITS32) or bytes (OCTETS) can result in different answers. When OCTETS
is specified, the length of a string is determined by simply counting the number of
bytes in the string. Counting by CODEUNITS16 or CODEUNITS32 gives the same
answer unless the data contains supplementary characters. For information about
the difference between CODEUNITS16 and CODEUNITS32 when the data contains
supplementary characters, see “Difference between CODEUNITS16 and
CODEUNITS32” on page 89.

Example: Assume that NAME is a VARCHAR(128) column, encoded in Unicode
UTF-8, that contains the value 'Jürgen'. The first two queries, which count the
length of the string in CODEUNITS32 and CODEUNITS16, returns the same value,
6. The third query, which counts the length of the string in OCTETS, returns the
value 7. These values are the length of the string as expressed in the string units
that are specified.
SELECT CHARACTER_LENGTH(NAME,CODEUNITS32)

FROM T1 WHERE NAME = ’Jürgen’;

SELECT CHARACTER_LENGTH(NAME,CODEUNITS16)
FROM T1 WHERE NAME = ’Jürgen’;

SELECT CHARACTER_LENGTH(NAME,OCTETS)
FROM T1 WHERE NAME = ’Jürgen’;

The following table shows the UTF-8, UTF-16, and UTF-32 representations of
'Jürgen'.

Format Representation of the name 'Jürgen'

UTF-8 x'4AC3BC7267656E'

UTF-16 x'004A00FC007200670065006E'

UTF-32 x'0000004A000000FC0000007200000067000000650000006E'

The bold highlighting in the table demonstrates how the representation of the
character ü in 'Jürgen' differs between the three string units:
v The UTF-8 representation of the character ü is X'C3BC'. In UTF-8, characters that

are not in the Latin-1 subset (essentially a through z, A through Z, and 0
through 9), such as accented characters or Japanese characters, are represented
by multiple bytes.

v The UTF-16 representation of the character ü is X'00FC'. In UTF-16, each
character is represented in 2 bytes. UTF-16 supplementary characters take two
2-byte code points.

v The UTF-32 representation of the character ü is X'000000FC'. In UTF-32, each
character is represented in 4 bytes.

Specifying the string units on a built-in function does not affect the data type or
the CCSID of the result of the function. If necessary, DB2 converts the data to
Unicode for evaluation when CODEUNITS32 or CODEUNITS16 is specified. DB2
always evaluates the data in the encoding scheme of the output data when
OCTETS is specified. For more information about the data types and CCSIDs of
the results of functions, see the description of each function.

Differences between the way that characters are represented in ASCII, EBCDIC,
and Unicode can affect the results of your queries.

Example: Assume that NAME is a VARCHAR(128) column, encoded in EBCDIC
(CCSID 37), that contains the value 'Mit freundlichen Grüßen, Jürgen'. The
following query returns the string 'Mit freundlichen Grüß':

88 SQL Reference

SELECT SUBSTRING(C1,1,21,CODEUNITS16)
FROM T1 WHERE C1 = ’Mit freundlichen Grüßen, Jürgen’;

The following table shows the result data in more detail:

Format Representation of 'Mit freundlichen Grüß'

EBCDIC D489A340869985A4958493898388859540C799DC59

UTF-8 4D697420667265756E646C696368656E204772C3BCC39F

UTF-16 004D0069007400200066007200650075006E0064006C0069006300680
065006E00200047007200FC00DF

The bold highlighting in the table shows that the representation of the characters ü
and ß in UTF-8 and UTF-16 each require two bytes. If OCTETS had been specified
on the SUBSTRING function to have the string evaluated in UTF-8 bytes instead of
EBCDIC OCTETS or CODEUNITS16, the result would have been 'Mit freundlichen
Grü'. The character ß would have been lost.

Difference between CODEUNITS16 and CODEUNITS32:

CODEUNITS16 and CODEUNITS32 return the same answer unless the data
contains supplementary characters.

A supplementary character is represented as two UTF-16 code units or one UTF-32
code unit. In UTF-8, a non-supplementary character is represented by 1 to 3 bytes
and a supplementary character is represented by 4 bytes. In UTF-16, a
non-supplementary character is represented by one CODEUNIT16 code unit or 2
bytes, and a supplementary character is represented by two CODEUNIT16 code
units or 4 bytes. In UTF-32, a character is represented by one CODEUNIT32 code
unit or 4 bytes. Thus, CODEUNITS16 and CODEUNITS32 return different answers
when the data contains supplementary characters.

Example 1: The following table shows the hexadecimal values for the mathematical
bold capital A and the Latin capital letter A. The mathematical bold capital A is a
supplementary character that is represented by 4 bytes in UTF-8, UTF-16, and
UTF-32.

Character
UTF-8
representation

UTF-16
representation

UTF-32
representation

Unicode value \u1D400 - 'A'

MATHEMATICAL BOLD
CAPITAL A

X'F09D9080' X'D835DC00' X'0001D400'

Unicode value \u0041 - 'A'

LATIN CAPITAL LETTER A

X'41' X'0041' X'00000041'

Assume that C1 is a VARCHAR(128) column, encoded in Unicode UTF-8, and that
table T1 contains one row with the value of the mathematical bold capital A
(X'F09D9080'). The following similar queries return different answers:
-- Query: -- Returns the value:
SELECT CHARACTER_LENGTH(C1,CODEUNITS32) FROM T1; -- 1
SELECT CHARACTER_LENGTH(C1,CODEUNITS16) FROM T1; -- 2
SELECT CHARACTER_LENGTH(C1,OCTETS) FROM T1; -- 4

Chapter 2. Language elements 89

Example 2: Assume that C1 is a VARCHAR(128) column, encoded in Unicode
UTF-8, and that table T1 contains one row with the value of the mathematical bold
capital A (X'F09D9080'). The following similar queries return different answers.
-- Query: -- Returns the value:
SELECT HEX(SUBSTRING(C1,1,1,CODEUNITS32)) FROM T1; -- X’F09D9080’
SELECT HEX(SUBSTRING(C1,1,1,CODEUNITS16)) FROM T1; -- X’20’
SELECT HEX(SUBSTRING(C1,1,2,CODEUNITS16)) FROM T1; -- X’F09D9080’
SELECT HEX(SUBSTRING(C1,1,1,OCTETS)) FROM T1; -- X’20’
SELECT HEX(SUBSTR(C1,1,1)) FROM T1; -- X’F0’

The value X'20' is the pad (blank) character.

Determining the length attribute of the final result:

When CODEUNITS32, CODEUNITS16, or OCTETS is specified for a function or
the CAST specification, the length attribute of the final result string is calculated by
applying specific formulas depending on which function is specified.

To determine the final result of a function or the CAST specification, DB2 might
need to use an intermediate result string if CODEUNITS32 or CODEUNITS16 is
specified, depending on the encoding scheme of the data:
v ASCII and EBCDIC data require the use of a UTF-16 intermediate result string

when either CODEUNITS32 or CODEUNITS16 is specified.
v UTF-8 data requires the use of a UTF-16 intermediate result string only when

CODEUNITS16 is specified.

Regardless of whether an intermediate string is used, when CODEUNITS32,
CODEUNITS16, or OCTETS is specified for a function or the CAST specification,
the length attribute of the final result string is calculated by applying the formulas
that are described in the following table. The length attributes that are calculated at
each step in the formulas are measured in bytes, unless indicated otherwise.

90 SQL Reference

Table 9. Formulas for the length attribute of the final result string

Function Determination of the length attribute of the string1

CAST specification

CHAR

CLOB

DBCLOB

GRAPHIC

VARCHAR

VARGRAPHIC

Follow these three steps to determine the length attribute of the final result:

1. Length of the intermediate string (IML)

When CODEUNITS32 or CODEUNITS16 is specified:

v If the source string is not in Unicode CCSID 1200, 1208, or 367, convert the source
string to CCSID 1200, using the formulas in Table 30 on page 142 to determine the
result length of the intermediate string (IML).

v If source string is in Unicode CCSID 1208 or 367, and CODEUNITS16 is specified,
convert the source string to CCSID 1200, using the formulas in Table 30 on page
142 to determine the result length of the intermediate string (IML).

v Otherwise, the intermediate string is the same as the source string.

When OCTETS is specified:

v If the CCSID of the source string is different from the CCSID of the result of the
function, convert the source string to the CCSID of the result of the function,
using the formulas in Table 30 on page 142 to determine the result length of the
intermediate string (IML).

v Otherwise, the intermediate string is the same as the source string.

Exception: For the GRAPHIC and VARGRAPHIC function, if the source string is
EBCDIC, the source is widened with prefix X'42' before the source string is
converted to CCSID 1200 and the length of the intermediate string is determined.

2. Result length attribute of the intermediate string (rl)
The result length (rl) of the intermediate string depends on whether a length
argument was explicitly specified.

If length was not specified, the result length (rl) attribute is:

rl = IML

If length was specified, the result length (rl) attribute is:

IF (ol * n) < r_IML THEN
rl = ol * n

ELSE
IF intermediate string is in CCSID 1200
(UTF-16) THEN

rl = MIN(ol * n , IML + (r * 2))
ELSE

rl = MIN(ol * n , IML + r)

Where:

v ol = original length argument, expressed in the specified string units
n = 4 bytes for CODEUNITS32

2 bytes for CODEUNITS16

v IML = length of the intermediate string

v r_IML = IML rounded up to next multiple of n

v r = ol - (r_IML/n), expressed in the specified string units

The calculation for r is an estimate of the difference between the length argument
and the estimated number of characters of the input argument, expressed in the
specified string units.

3. Length of the final result string (the result of the function)
The result length attribute of the final string is determined by converting the result
length (rl) of the intermediate string to the CCSID of the result of the function, using
the formulas in Table 30 on page 142, if CCSID conversion is necessary. Otherwise,
the result length attribute of the final string is rl.

Chapter 2. Language elements 91

Table 9. Formulas for the length attribute of the final result string (continued)

Function Determination of the length attribute of the string1

CHARACTER_
LENGTH

LOCATE
LOCATE_
IN_STRING

POSITION

Follow these three steps to determine the length attribute of the final result:

1. Length of the intermediate string (IML)
The length of the intermediate string (IML) is determined the same way as for the
CAST specification. (See Length of the intermediate string (IML).)

For the LOCATE, LOCATE_IN_STRING, and POSITION functions, this applies to
both the source-string and search-string. If the CCSIDs of intermediate strings for the
converted source-string and search-string differ, the intermediate string for the
search-string is converted to the CCSID of intermediate string for the source-string.

2. Result length attribute of the intermediate string (rl)
The result length (rl) attribute is always 4 (the length of an integer):

rl = 4

3. Length of the final result string (the result the function)
The length of the final result of the function is always an integer.

INSERT
OVERLAY

Follow these three steps to determine the length attribute of the final result:

1. Length of the intermediate string (IML)
The length of the intermediate string (IML) for both the source-string and the
insert-string is determined the same way as for the CAST specification. (See Length
of the intermediate string (IML).)

If the CCSIDs of the intermediate strings for the converted source-string and
insert-string differ, the intermediate string for the insert-string is converted to the
CCSID of the intermediate string for the source-string.

2. Result length attribute of the intermediate string (rl)
The result length (rl) attribute of the intermediate string depends on whether the
start and length arguments are constants.

If the start and length arguments are both constants, the result length attribute is:

rl = L1 - MIN (MAX (0, L1 - (V2 - 1)
* n), V3 * m) + L4

If at least one argument (the start or length argument) is not a constant, the result
length attribute is:

rl = L1 + L4

Where:

v L1 and L4 are the length attributes of the intermediate strings of the source-string
and insert-string, respectively.

v V2 and V3 are the start and length values, respectively, expressed in the specified
string units.
m= 1 if the intermediate string of the source-string is not CCSID 1200

(UTF-16)
2 if the intermediate string of the source-string is CCSID 1200 (UTF-16)

n= 4 bytes for CODEUNITS32
2 bytes for CODEUNITS16

3. Length of the final result string (the result the function)
The length of the final result is the same as the length of the final result for the
CAST specification. (See Length attribute of the final result string (the result of the
function).)

92 SQL Reference

Table 9. Formulas for the length attribute of the final result string (continued)

Function Determination of the length attribute of the string1

LEFT

RIGHT

Follow these three steps to determine the length attribute of the final result:

1. Length of the intermediate string (IML)
The length of the intermediate string (IML) is determined the same way as for the
CAST specification. (See Length of the intermediate string (IML).)

2. Result length attribute of the intermediate string (rl)
The result length (rl) attribute is the same as the length of the intermediate string:

rl = IML

3. Length of the final result string (the result of the function)
The result length attribute of the final string is determined by converting the result
length (rl) of the intermediate string to the CCSID of the result of the function, using
the formulas in Table 30 on page 142, if CCSID conversion is necessary. Otherwise,
the result length attribute of the final string is rl.

The result length attribute of the final string is:

MIN(length of source string, length of CCSID
converted string)

SUBSTRING Follow these three steps to determine the length attribute of the final result:

1. Length of the intermediate string (IML)
The length of the intermediate string (IML) is determined the same way as for the
CAST specification. (See Length of the intermediate string (IML).)

2. Result length attribute of the intermediate string (rl)
The result length (rl) of the intermediate string depends on whether a length
argument was explicitly specified.

If length was not specified, the result length (rl) attribute is:

rl = IML

If length was specified, the result length (rl) attribute is:

rl = MIN(ol * n, IML)

Where:

v ol = original length argument, expressed in the specified string units
n = 4 bytes for CODEUNITS32

2 bytes for CODEUNITS16

v IML = length of the intermediate string

3. Length of the final result string (the result of the function)
The length of the final result string is the same as for LEFT built-in function.

Note:

1. The final value of the calculation for each length attribute (IML, rl, and the final result of the function) is limited
by the maximum length of the function or by the maximum length of the corresponding data type of the result,
whichever is applicable. Each length attribute is expressed in terms of bytes.

Example 1: Assume that T1 is a table encoded in EBCDIC and C1 is a CHAR(26)
column (SBCS data with EBCDIC CCSID 37). The CHAR function is invoked in the
following statement:
SELECT CHAR(C1,10,CODEUNITS32) as COL1 FROM T1;

DB2 uses an intermediate string to evaluate the function and determines the
intermediate and final result string lengths using these steps:

Chapter 2. Language elements 93

1. C1, which is SBCS EBCDIC 37 data, is converted to Unicode 1200 (UTF-16). The
result length of the conversion (using the formula from Table 30 on page 142, X
* 2) is 26 * 2. Thus, the length of the intermediate string is 52 bytes (IML = 52).

2. The CHAR function is evaluated against the first 10 UTF-32 characters in this
string. The result length attribute is 40 bytes (rl = ol * n or 10 * 4) because
ol * n < r_IML or 40 < 52.

3. The 40 bytes of the string are converted back to SBCS EBCDIC 37. The result
length of the conversion (using the formula from Table 30 on page 142, X * .5)
is 40 * .5. Thus, the length of the final result of the functions is 20 bytes.

Example 2: This example is similar to the first example, except that the specified
length for the function is 20 instead of 10. Assume that T1 is a table encoded in
EBCDIC and C1 is a CHAR(26) column (SBCS data with EBCDIC CCSID 37). The
CHAR function is invoked in the following statement:
SELECT CHAR(C1,20,CODEUNITS32) as COL1 FROM T1;

DB2 uses an intermediate string to evaluate the function and determines the
intermediate and final result string lengths using these steps:
1. C1, which is SBCS EBCDIC 37 data, is converted to Unicode 1200 (UTF-16). The

result length of the conversion (using the formula from Table 30 on page 142, X
* 2) is 26 * 2. Thus, the length of the intermediate result string is 52 bytes (IML
= 52).

2. The CHAR function is evaluated against the first 20 UTF-32 characters in this
intermediate string. However, because the estimated number of characters in
the intermediate string, as expressed in the specified string units, is only 13
characters (r_IML/n or 52/4), the intermediate string must be padded with 7
padding characters to satisfy the 20 characters that are requested (r = ol -
(r_IML/n) or 20 - 13). In Unicode 1200 (UTF-16), each padding character takes
2 bytes.
The result length attribute is then calculated to be 66 bytes (rl = MIN(ol * n,
IML + (r * 2)) or MIN(20 * 4, 52 + 14)) because ol * n < r_IML or 80 < 52
is not true.

3. The 66 bytes of the string are converted back to SBCS EBCDIC 37. The result
length of the conversion (using the formula from Table 30 on page 142, X * .5)
is 66 * .5. Thus, the length of the final result of the function is 33 bytes.

Graphic strings
A graphic string is a sequence of double-byte characters.

The length of the string is the number of characters in the sequence. Like character
strings, graphic strings can be empty. An empty string should not be confused
with the null value.

Fixed-length graphic strings
When fixed-length graphic string distinct types, columns, and variables are
defined, the length attribute is specified and all values have the same length. For a
fixed-length graphic string, the length attribute must be between 1 and 127
inclusive. A fixed-length graphic string column can also be called a GRAPHIC
column.

Varying-length graphic strings
The types of varying-length graphic strings are VARGRAPHIC and double-byte
character large object (DBCLOB). DBCLOB is a type of LOB. A DBCLOB column is

94 SQL Reference

useful for storing large amounts of double-byte character data, such as documents
written with a single double-byte character set.

When varying-length graphic strings, distinct types, columns, and variables are
defined, the maximum length is specified and this length becomes the length
attribute. Actual values might have a smaller value. For a varying-length graphic
string, the length attribute must between 1 and 16352.

For a varying-length graphic string column, the maximum for the length attribute
is determined by the record size associated with the table, as described Maximum
record size in the description of the CREATE TABLE statement. For a DBCLOB
string, the length attribute must be between 1 and 1 073 741 823 inclusive. In
UTF-16, although supplementary characters use two 2-byte code points,
supplementary characters are still considered double-byte characters. For more
information about DBCLOBs, see “Large objects (LOBs)” on page 96.

Graphic string variables
Graphic string variables must follow certain rules.

Variables with a graphic string type cannot be defined in Fortran. In addition,
graphic string variables follow these rules:
v Fixed-length graphic string host variables can be defined in all host languages,

except REXX and Java. In C, fixed-length graphic-string variables are limited to
a length of 1.

v Varying-length graphic string variables can be defined in all host languages,
with the exception of DBCLOBs which cannot be used in REXX.

Graphic string encoding schemes
Each graphic string can be further defined as either double-byte data or Unicode
data.

Double-byte data
Data in which every character is represented by a character from the
double-byte character set (DBCS) that does not include shift-out or shift-in
characters. Each double-byte graphic string has an associated ASCII or
EBCDIC CCSID.

Unicode data
Data that contains characters represented by two bytes, except
supplementary characters, which take two 2-byte code points per character.
Each Unicode graphic string is encoded using UTF-16. The CCSID for
UTF-16 is 1200.

String units in built-in functions
When working with graphic strings, you can specify the string unit in which the
operation is to take place for certain built-in functions and the CAST specification.
The string unit determines the length in which the operation is to occur.

For more information about string units, see “String unit specifications” on page
87.

Binary strings
A binary string is a sequence of bytes.

Chapter 2. Language elements 95

The length of a binary string is the number of bytes in the sequence. Binary strings
are not associated with any CCSID. There are three binary string data types:
BINARY, VARBINARY (BINARY VARYING) and BLOB (BINARY LARGE
OBJECT).

Fixed-length binary strings
The type of fixed-length binary strings is BINARY. When fixed-length binary string
distinct types, columns, and variables are defined, the length attribute is specified,
and all values have the same length. For a fixed-length binary string, the length
attribute must be between 1 and 255 inclusive.

Varying-length binary strings
The types of varying-length binary strings are VARBINARY (BINARY VARYING)
and BLOB (BINARY LARGE OBJECT)

When varying-length binary strings, distinct types, columns, and variables are
defined, the maximum length is specified and this length becomes the length
attribute. Actual length values might have a smaller value than the length attribute
value. For varying-length binary strings, the actual length specifies the number of
bytes in the string.

For a VARBINARY string, the length attribute must be between 1 and 32704. For a
VARBINARY string column, the maximum for the length attribute is determined
by the record size that is associated with the table, as described in "Maximum
record size" on the description of the CREATE TABLE statement. Like a
varying-length character string, varying-length binary string could be an empty
string.

A binary string column is useful for storing non-character data, such as encoded or
compressed data, pictures, voice, and mixed media. Another use is to hold
structured data for exploitation by distinct types, user-defined functions, and
stored procedures. Note, that although binary strings and FOR BIT DATA character
strings might be used for similar purposes, the two data types are not compatible.
The BINARY, BLOB, VARBINARY built-in functions and CAST specification can be
used to change a FOR BIT DATA character string into a binary string.

Large objects (LOBs)
The term large object (LOB) refers to any of the following data types: CLOB,
DBCLOB, or BLOB.

CLOB A character large object (CLOB) is a varying-length string with a maximum
length of 2 147 483 647 bytes (2 gigabytes minus 1 byte). A CLOB is
designed to store large SBCS data or mixed data, such as lengthy
documents. For example, you can store information such as an employee
resume, the script of a play, or the text of novel in a CLOB. Alternatively,
you can store such information in UTF-8 in a mixed CLOB. A CLOB is a
varying-length character string.

DBCLOB
A double-byte character large object (DBCLOB) is a varying-length string with
a maximum length of 1 073 741 823 double-byte characters. A DBCLOB is
designed to store large DBCS data. For example, you could store the
information mentioned for CLOB (an employee resume, the script for a
play, or the text of a novel) in UTF-16 in a DBCLOB. A DBCLOB is a
varying-length graphic string.

BLOB A binary large object (BLOB) is a varying-length string with a maximum

96 SQL Reference

length of 2 147 483 647 bytes (2 gigabytes minus 1 byte). A BLOB is
designed to store non-traditional data such as pictures, voice, and mixed
media. BLOBs can also store structured data for use by distinct types and
user-defined functions. A BLOB is a binary string.

Although BLOB strings and FOR BIT DATA character strings might be
used for similar purposes, the two data types are not compatible. The
BLOB function can be used to change a FOR BIT DATA character string
into a BLOB string.

Restrictions using LOBs
With a few exceptions, you can use LOBs in the same contexts in which you can
use other varying-length strings.

The following table shows the contexts in which LOBs cannot be used.

Table 10. Contexts in which LOBs cannot be used

Context of usage LOB (CLOB, DBCLOB, or BLOB)

A GROUP BY clause Not allowed

An ORDER BY clause Not allowed

A CREATE INDEX statement that creates an index using
an expression

Not allowed except when the index is created using an
expression, in which case an inline LOB column can be
referenced as the source data type for the SUBSTR ad
SUBSTRING built-in functions.

A SELECT DISTINCT statement Not allowed

A MERGE statement Cannot be used in the context of an INCLUDE
column-name clause

A subselect of a set operation except UNION ALL Not allowed

Predicates Cannot be used in any predicate except EXISTS, LIKE,
and NULL. This restriction includes a simple-when-clause
in a CASE expression. expression WHEN expression in a
simple-when-clause is equivalent to a predicate with
expression=expression.

The definition of primary, unique, and foreign keys Not allowed

Check constraints Not allowed

Manipulating LOBs using locators
A LOB locator is a host variable with a value that represents a single LOB value in
the database server. LOB locators provide a mechanism for you to easily
manipulate very large objects in application programs without having to store the
entire LOB value on the client machine where the application program might be
running.

Because LOB values can be very large, the transfer of these values from the
database server to host variables in client application programs can be time
consuming. Also, application programs typically process LOB values a piece at a
time, rather than as a whole. For these cases, the application can use a large object
locator (LOB locator) to reference the LOB value.

For example, when selecting a LOB value, an application program could handle
the value in either of these two ways:

Chapter 2. Language elements 97

v Select the entire LOB value and place it into an equally large host variable. This
method is acceptable if the application program is going to process the entire
LOB value at once.

v Select the LOB value into a LOB locator. Then, using the LOB locator, the
application program can issue subsequent database operations on the LOB value
(such as using it as a parameter to the scalar functions SUBSTR, CONCAT,
COALESCE, LENGTH, doing an assignment, searching the LOB value with
LIKE or POSSTR, or using it as a parameter to a user-defined function or
procedure) by supplying the LOB locator value as input. The resulting output of
the LOB locator operation, for example, the amount of data that is assigned to a
client host variable, would then typically be a small subset of the input LOB
value.

LOB locators can also represent more than just base values; they can also represent
the value associated with a LOB expression. For example, a LOB locator might
represent the value associated with:

SUBSTR(lob_value_1 CONCAT lob_value_2 CONCAT lob_value_3 , 42, 6000000)

For non-locator-based host variables in an application program, when a null value
is selected into that host variable, the indicator variable is set to -1, signifying that
the value is null. For LOB locators, however, the meaning of indicator variables is
slightly different. Because a LOB locator host variable itself can never be null, a
negative indicator variable value indicates that the LOB value represented by the
LOB locator is null. The null information is kept local to the client by virtue of the
indicator variable value (the server does not track null values with valid LOB
locators).

A LOB locator represents a value, not a row or location in the database. Therefore,
after a value is selected into a LOB locator, no action that is subsequently
performed on the original row or table will affect the value that is referenced by
the LOB locator. The value associated with a LOB locator is valid until the
transaction ends, or until the LOB locator is explicitly freed, whichever comes first.

A LOB locator is also not a database type, and it is never stored in the database.
As a result, it cannot participate in views or check constraints. However, values for
the SQLTYPE field of the SQLDA exist for LOB locators so that they can be
described within an SQLDA structure that is used by FETCH, OPEN, CALL and
EXECUTE statements.

For more information about manipulating LOBs with LOB locators, see DB2
Application Programming and SQL Guide.

Datetime values
Datetime values are neither strings nor numbers. Nevertheless, datetime values can
be used in certain arithmetic and string operations and are compatible with certain
strings.

Moreover, strings can represent datetime values, as discussed in “String
representations of datetime values” on page 101.

Date
A date is a three-part value (year, month, and day) designating a point in time
using the Gregorian calendar, which is assumed to have been in effect from the
year 1 A.D.

98 SQL Reference

4 The range of the year part is 0001 to 9999. The range of the month part is 1 to 12.
The range of the day part is 1 to 28, 29, 30, or 31, depending on the month and
year.

The internal representation of a date is a string of 4 bytes. Each byte consists of
two packed decimal digits. The first 2 bytes represent the year, the third byte the
month, and the last byte the day.

The length of a DATE column as described in the catalog is the internal length,
which is 4 bytes. The length of a DATE column as described in the SQLDA is the
external length, which is 10 bytes unless a date exit routine was specified when
your DB2 subsystem was installed. (Writing a date exit routine is described in DB2
Administration Guide.) In that case, the string format of a date can be up to 255
bytes in length. Accordingly, DCLGEN5 defines fixed-length string variables for
DATE columns with a length equal to the value of the field LOCAL DATE
LENGTH on installation panel DSNTIP4, or a length of 10 bytes if a value for the
field was not specified.

A character-string representation must have an actual length that is not greater
than 255 bytes and must not be a CLOB or DBCLOB.

Time
A time is a three-part value (hour, minute, and second) designating a time of day
using a 24-hour clock. The range of the hour part is 0 to 24. The range of the
minute and second parts is 0 to 59. If the hour is 24, the minute and second parts
are both zero.

The internal representation of a time is a string of 3 bytes. Each byte consists of
two packed decimal digits. The first byte represents the hour, the second byte the
minute, and the last byte the second.

The length of a TIME column as described in the catalog is the internal length
which is 3 bytes. The length of a TIME column as described in the SQLDA is the
external length which is 8 bytes unless a time exit routine was specified when the
DB2 subsystem was installed. (Writing a time exit routine is described in DB2
Administration Guide.) In that case, the string format of a time can be up to 255
bytes in length. Accordingly, DCLGEN5 defines fixed-length string variables for
TIME columns with a length equal to the value of the field LOCAL TIME
LENGTH on installation panel DSNTIP4, or a length of 8 bytes if a value for the
field was not specified.

A character-string representation must have an actual length that is not greater
than 255 bytes and must not be a CLOB or DBCLOB.

Timestamp
A timestamp is a six-part or seven-part value (year, month, day, hour, minute,
second, and optional fractional second) with an optional time zone specification,
that represents a date and time.

The time portion of a timestamp value can includes a specification of fractional
seconds. The number of digits in the fractional seconds portion is specified using

4. Historical dates do not always follow the Gregorian calendar. Dates between 1582-10-04 and 1582-10-15 are accepted as valid
dates although they never existed in the Gregorian calendar.

5. DCLGEN is a DB2 DSN subcommand for generating table declarations for designated tables or views. The declarations are stored
in z/OS data sets, for later inclusion in DB2 source programs.

Chapter 2. Language elements 99

an attribute in the range from 0 to 12 with a default of 6. The time zone is the
difference in hours and minutes between local time and UTC. The range of the
hour offset is -12 to 14, and the minute offset is 00 to 59. The optional time zone is
specified in the format ±th.tm, with values ranging from -12.59 to +14.00. A
timestamp data type is TIMESTAMP WITHOUT TIME ZONE (generically referred
to as TIMESTAMP) or TIMESTAMP WITH TIME ZONE.

TIMESTAMP WITHOUT TIME ZONE
The internal representation of a timestamp is a string of 7 to 13 bytes, each
of which consists of two packed decimal digits. The first 4 bytes represent
the date, the next 3 bytes the time, and the remaining bytes the fractional
seconds based on the precision of the timestamp.

The length of a TIMESTAMP WITHOUT TIME ZONE column as described
in the catalog is the internal length, which is 7 to 13 bytes.

The length of a TIMESTAMP WITHOUT TIME ZONE column as described
in the SQLDA is between 19 and 32 bytes, which corresponds to the length
for the character-string representation of the value. For example, a 19 byte
character-string representation has no fractional seconds; a 26 byte
character-string representation has 6 digits of fractional seconds; and a 29
byte character-string representation has 9 digits of fractional seconds.

A character-string representation must have an actual length that is not
greater than 255 bytes and must not be a CLOB or DBCLOB.

TIMESTAMP WITH TIME ZONE
The external representation of a TIMESTAMP WITH TIME ZONE value is
the local timestamp followed by the time zone offset. For example, New
York is 5 hours behind London during standard time, so New York time
"8:15" on 2010-02-10 can be represented as '2010-02-10-08.15.00-5:00'. This
timestamp with time zone value represents a UTC value
'2010-02-10-13.15.00', which is derived by subtracting the time zone offset
from local timestamp.

The internal representation of a timestamp is a string of 9 to 15 bytes that
contains the UTC timestamp followed by the time zone. Each byte consists
of 2 packed decimal digits. The first byte consists of two packed decimal
digits representing time zone hour and the first bit is used to represent the
sign of the time zone offset. The second byte of time zone, representing the
time zone minute, also consists of two packed decimal digits. For example,
time zone "-3:30" is represented as X'8330' and time zone "5:30" is
represented as X'0530'.

The length of a TIMESTAMP WITH TIME ZONE column as described in
the catalog is the internal length, which is between 9 to 15 bytes (a 7 to 13
bytes timestamp followed by 2 bytes time zone).

The length of a TIMESTAMP WITH TIME ZONE column as described in
the SQLDA is the external length, which is between 147 and 160 bytes and
corresponds to the length for the character-string representation of the
value. For example, a 147 byte character representation has no fractional
seconds, and a 160 byte character-string representation has 12 digits of
fractional seconds, where the time zone component is 7 bytes.

A character-string representation must have an actual length that is not
greater than 255 bytes and must not be a CLOB or DBCLOB. DCLGEN
therefore defines 147 to 160 byte, varying-length string variables for
TIMESTAMP WITH TIME ZONE columns.

100 SQL Reference

Datetime host variables
Character-string host variables are normally used to contain date, time, and
timestamp values. However, date, time, and timestamp host variables can also be
specified in Java as java.sql.Date, java.sql.Time, and java.sql.Timestamp,
respectively.

String representations of datetime values
Dates, times, and timestamp values can be represented by strings. For many host
languages, there are no special SQL constants for datetime values and, except for
Java, no host variables with a data type of date, time, or timestamp. Thus, to be
retrieved, a datetime value must be assigned to a string variable.

Values whose data types are DATE, TIME, TIMESTAMP WITHOUT TIME ZONE,
or TIMESTAMP WITH TIME ZONE are represented in a form that is transparent
to the user of SQL. Dates, times, and timestamps (with or without time zones) can
also be represented by strings. These representations directly concern the SQL user
because, for many host languages there are no special SQL constants or host
variables with a data type for DATE, TIME, TIMESTAMP WITHOUT TIME ZONE,
or TIMESTAMP WITH TIME ZONE values (for variables with Java). Thus, to be
retrieved, a datetime value must be assigned to a string variable. The format of the
resulting string depends on the default date format and the default time format
that is in effect when the statement is prepared.

Each datetime value is assigned an encoding scheme. This encoding scheme is
used when the datetime value is converted from its internal form to the string
representation in the form of the mixed CCSID if the field MIXED DATA is YES on
installation panel DSNTIPF. Otherwise the SBCS CCSID of the assigned encoding
scheme is used. For Unicode, the mixed CCSID is always used. The following table
shows how the encoding scheme is determined:

Table 11. The encoding scheme of datetime values

Datetime expression Result encoding scheme

Columns The same encoding scheme as the table that
contains the column

Host variables If the statement references:

v A single encoding scheme - The same
encoding scheme

v Multiple encoding schemes - The
application encoding scheme

Special registers If the statement references:

v A single encoding scheme - The same
encoding scheme

v Multiple encoding schemes - The
application encoding scheme

Expressions If the statement references:

v A single encoding scheme - The same
encoding scheme

v Multiple encoding schemes - The
application encoding scheme

For ASCII and EBCDIC, a string representation of a datetime value must be a
character string. For Unicode, a string representation of a datetime value can be

Chapter 2. Language elements 101

either a character string or a graphic string. Thus, the only time a graphic string
can be used for a datetime value is when the encoding scheme is Unicode.

In host languages other than Java, a datetime value must be assigned to a string
variable. When a date or time is assigned to a string variable, the string format is
determined by a precompiler option or subsystem parameter. When a string
representation of a datetime value is used in other operations, it is converted to a
datetime value. However, this can be done only if the string representation is
recognized by DB2 or an exit provided by the installation and the other operand is
a compatible datetime value. An input string representation of a date or time with
LOCAL specified must have an actual length that is not greater than 255 bytes.

Datetime values that are represented by strings can appear in contexts that require
values whose data types are DATE, TIME, TIMESTAMP WITHOUT TIME ZONE,
or TIMESTAMP WITH TIME ZONE. A string representation of a date, time or
timestamp (with or without time zone) can be passed as an argument to the DATE,
TIME, TIMESTAMP, or TIMESTAMP_TZ function to obtain a datetime value. A
CAST specification can also be used to turn a character representation of a date,
time, or timestamp (with or without time zone) into a datetime value.

Date strings:
A string representation of a date is a string that starts with a digit and has
a length of at least 8 characters. Trailing blanks can be included, leading
blanks are not allowed, and leading zeros can be omitted in the month and
day portions.

The following table shows the valid string formats for dates. Each format
is identified by name and includes an associated abbreviation (for use by
the CHAR function) and an example of its use. For an installation-defined
date string format, the format and length must have been specified when
DB2 was installed. They cannot be listed here.

Table 12. Formats for string representations of dates

Format name Abbreviation Date format Example

International Standards Organization ISO yyyy-mm-dd 1987-10-12

IBM USA standard USA mm/dd/yyyy 10/12/1987

IBM European standard EUR dd.mm.yyyy 12.10.1987

Japanese industrial standard
Christian era

JIS yyyy-mm-dd 1987-10-12

Installation-defined LOCAL Any
installation-
defined form

—

Time strings:
A string representation of a time is a string that starts with a digit, and has
a length of at least 4 characters. Trailing blanks can be included, leading
blanks are not allowed, and leading zeros can be omitted in the hour part
of the time; seconds can be omitted entirely. If you choose to omit seconds,
an implicit specification of 0 seconds is assumed. Thus 13.30 is equivalent
to 13.30.00.

The following table shows the valid string formats for times. Each format
is identified by name and includes an associated abbreviation (for use by
the CHAR function) and an example of its use. In the case of an

102 SQL Reference

installation-defined time string format, the format and length must have
been specified when your DB2 subsystem was installed. They cannot be
listed here.

Table 13. Formats for string representations of times

Format name Abbreviation Time format Example

International Standards Organization
1

ISO1 hh.mm.ss 13.30.05

IBM USA standard USA hh:mm AM or
PM

1:30 PM

IBM European standard EUR hh.mm.ss 13.30.05

Japanese industrial standard
Christian era

JIS hh:mm:ss 13:30:05

Installation-defined LOCAL Any
installation-
defined form

—

Note: 1. This is an earlier version of the ISO format. JIS can be used to get the current ISO
format.

In the USA format:
v The minutes can be omitted, thereby specifying 00 minutes. For example,

1 PM is equivalent to 1:00 PM.
v The letters A, M, and P can be lowercase.
v A single blank must precede the AM or PM.
v The hour must not be greater than 12 and cannot be 0 except for the

special case of 00:00 AM.

Using the ISO format of the 24-hour clock, the correspondence between the
USA format and the 24-hour clock is as follows:
v 12:01 AM through 12:59 AM correspond to 00.01.00 through 00.59.00
v 01:00 AM through 11:59 AM correspond to 01.00.00 through 11.59.00
v 12:00 PM (noon) through 11:59 PM correspond to 12.00.00 through

23.59.00
v 12:00 AM (midnight) corresponds to 24.00.00
v 00:00 AM (midnight) corresponds to 00.00.00

Timestamp strings:
A string representation of a timestamp is a character or graphic string that
starts with a digit and has a length of at least 16 characters.

The character or graphic string must contain a value that conforms to one
of the formats listed in “Datetime constants” on page 151, subject to the
following rules:
v leading blanks are not allowed
v trailing blanks can be included
v leading zeros can be omitted from the month, day, hour, and time zone

hour elements of the timestamp. An implicit specification of 0 is
assumed for any digit that is omitted.

v the hour can be 24 if the minutes, seconds, and any fractional seconds
are all zeroes.

v leading zeros must be included for the minute, second, and time zone
minute elements of the timestamp.

Chapter 2. Language elements 103

v the number of digits of fractional seconds can vary from 0 to 12. An
implicit specification of 0 is assumed if fractional seconds are omitted.

v the separator character that follows the seconds element can be omitted
if fractional seconds are not included.

v an optional single blank can be included between the time and the time
zone.

v an optional time zone can be included, in one of the following formats:
– ±th:tm, with values ranging from -24:00 to +24:00. A value of -0:00 is

treated the same as a value of +0:00.
– ±th, with values ranging from -24 to +24, and an implicit specification

of 00 is assumed for the time zone minute element.
– uppercase Z to specify UTC

If a string representation of a timestamp is implicitly cast to a value with a
timestamp data type, the timestamp precision is assumed to be 6,
regardless of the number of digits of fractional seconds in the string.
Beyond the sixth digit that represents fractional seconds, the digits are
truncated and the missing digits are assumed to be zeros. For example,
1990-3-2-8.30.00.10 is equivalent to 1990-03-02-08.30.00.100000. A
string representation of a timestamp can be given a different timestamp
precision by explicitly casting the value to a timestamp with a specified
precision or, in the case of a constant, preceding the string with the
TIMESTAMP keyword (for example, TIMESTAMP 2007-03-28-14.50.35.123;
has the TIMESTAMP(3) data type).

If a string representation of a timestamp is implicitly cast to a TIMESTAMP
WITHOUT TIME ZONE value, the string must not contain a time zone.

SQL statements also support the ODBC or JDBC string representation of a
timestamp as an input value only. The ODBC and JDBC string
representation of a timestamp has the form yyyy-mm-dd hh:mm:ss.nnnnnn.

LOCAL date and time exits: For LOCAL, the date exit for ASCII data is
DSNXVDTA, the date exit for EBCDIC is DSNXVDTX, and the date exit for
Unicode is DSNXVDTU. For LOCAL, the time exit for ASCII data is DSNXVTMA,
the time exit for EBCDIC is DSNXVTMX, and the time exit for Unicode is
DSNXVTMU.

Determination of the implicit time zone
DB2 uses the IMPLICIT_TIMEZONE parameter of DSNHDECP to implicitly
determines the time zone to associate with a value that does not have a time zone
on assignment to a TIMESTAMP WITH TIME ZONE column or variable.

The IMPLICIT_TIMEZONE parameter of DSNHDECP is used to support
operations that combine TIMESTAMP WITHOUT TIME ZONE values and
TIMESTAMP WITH TIME ZONE values and indicates the time zone to associate
with TIMESTAMP WITHOUT TIME ZONE values. For example, on assignment of
a value that does not have time zone information (the TIMESTAMP WITHOUT
TIME ZONE data type, or a string representation of a timestamp without a time
zone) to a TIMESTAMP WITH TIME ZONE target such as a column or variable,
DB2 implicitly determines the time zone to associate with the value. The implicit
time zone is determined as follows:
v If IMPLICIT_TIMEZONE is not specified or is specified as CURRENT, the

implicit time zone is the value of the CURRENT TIME ZONE special register.
v If IMPLICIT_TIMEZONE is specified as SESSION, the implicit time zone is the

value of the SESSION TIME ZONE special register.

104 SQL Reference

v If IMPLICIT_TIMEZONE is specified as a character string in the format of
'±th:tm' , the implicit time zone is the time zone value represented by the
character string.

Restrictions on the use of local datetime formats
Certain restrictions apply on the use of date and time values as input, as output,
and for use in binding a package.

The following rules apply to the character-string representation of dates and times:

For input: In distributed operations, DB2 as a server uses its local date or time
routine to evaluate host variables and constants. This means that character-string
representation of dates and times can be:
v One of the standard formats
v A format recognized by the server's local date/time exit

For output: With DRDA access, DB2 as a server returns date and time host
variables in the format defined at the server. To have date and time host variables
returned in another format, use CHAR(date-expression, XXXX) where XXXX is JIS,
EUR, USA, ISO, or LOCAL to explicitly specify the specific format.

For BIND PACKAGE COPY: When binding a package using the COPY option, DB2
uses the ISO format for output values unless the SQL statement explicitly specifies
a different format. Input values can be specified in the format described previously.

Row ID values
A row ID is a value that uniquely identifies a row in a table. A column or a host
variable can have a row ID data type.

A ROWID column enables queries to be written that navigate directly to a row in
the table because the column implicitly contains the location of the row. Each value
in a ROWID column must be unique. Although the location of the row might
change, for example across a table space reorganization, DB2 maintains the internal
representation of the row ID value permanently. When a row is inserted into the
table, DB2 generates a value for the ROWID column unless one is supplied. If a
value is supplied, it must be a valid row ID value that was previously generated
by DB2 and the column must be defined as GENERATED BY DEFAULT. Users
cannot update the value of a ROWID column.

The internal representation of a row ID value is transparent to the user. The value
is never subject to character conversion because it is considered to contain BIT
data. The length of a ROWID column as described in the LENGTH column of
catalog table SYSCOLUMNS is the internal length, which is 17 bytes. The length as
described in the LENGTH2 column of catalog table SYSCOLUMNS is the external
length, which is 40 bytes.

A ROWID column can be either user-defined or implicitly generated by DB2. You
can use the CREATE TABLE statement or the ALTER TABLE statement to define a
ROWID column. If you define a LOB column in a table and the table does not
have a ROWID column, DB2 implicitly generates a ROWID column. DB2:
v Creates the column with a name of DB2_GENERATED_ROWID_FOR_LOBSnn.

DB2 appends nn only if the column name already exists in the table, replacing
nn with '00' and incrementing by '1' until the name is unique within the row.

v Defines the column as GENERATED ALWAYS.

Chapter 2. Language elements 105

v Appends the column to the end of the row after all the other explicitly defined
columns.

An implicitly hidden ROWID column is called a hidden ROWID column. A hidden
ROWID column is not visible in SQL statements unless you refer to the column
directly by name. For example, assume that DB2 generated a hidden ROWID
column named DB2_GENERATED_ROWID_FOR_LOBS for table MYTABLE. The
result table for a SELECT * statement for table MYTABLE would not contain that
ROWID column. However, the result table for SELECT COL1,
DB2_GENERATED_ROWID_FOR_LOBS would include the hidden ROWID column.

If you add a ROWID column to a table that already has a hidden ROWID column,
DB2 ensures that the corresponding values in each column are identical. If the
ROWID column that you add is defined as GENERATED BY DEFAULT, DB2
changes the attribute of the hidden ROWID column to GENERATED BY
DEFAULT.

For information about using row IDs, see DB2 Application Programming and SQL
Guide.

XML values
An XML value represents well-formed XML in the form of an XML document,
XML content, or a sequence of XML nodes.

An XML value that is stored in a table as the value of a column that is defined
with the XML data type must be a well-formed XML document. XML values are
processed in an internal representation that is not comparable to any string value.
The only predicates that can be applied to the XML data type are the XMLEXISTS
predicate and the NULL predicate.

An XML value can be transformed into a serialized string value that represents the
XML document by using the XMLSERIALIZE function. Similarly, a string value
that represents an XML document can be transformed to an XML value by using
the XMLPARSE function.

The XML data type has a variable length and allows for a wide range of sizes.
Although data of this type has no defined maximum length, it does have an
effective maximum length limit when treated as a serialized string value that
represents XML. The maximum effective length is the same as the DB2 limit for a
LOB data value. DB2 treats XML string data in a similar manner as LOB data to
accommodate very large XML values. Thus, XML values are constrained by the
same maximum length limit as LOB data. Unlike the LOB data type which has a
LOB locator type, there is no XML locator type.

Restrictions when using XML values: With a few exceptions, you can use XML
values in the same contexts in which you can use other data type. XML values
cannot be used in the following contexts:
v SELECT lists that are preceded by the DISTINCT clause
v GROUP BY clauses
v ORDER BY clauses
v A subselect of a fullselect with a set operator that is not UNION ALL
v Basic predicates, quantified predicates, BETWEEN predicates, DISTINCT

predicates, IN predicates, or LIKE predicates
v Aggregate functions with the DISTINCT keyword

106 SQL Reference

v Primary, unique, or foreign keys
v CREATE TYPE statements

No host languages have any built-in support for an XML data type.

User-defined data types
A user-defined data type is a data type that is defined using a CREATE TYPE
statement.

The following types of user-defined data type are supported:
v Distinct type
v Array type

Distinct types
A distinct type is a user-defined data type that shares its internal representation
with a built-in data type (its source type), but is considered to be a separate and
incompatible data type for most operations.

For example, the semantics for a picture type, a text type, and an audio type that
all use the built-in data type BLOB for their internal representation are quite
different. A distinct type is created with the SQL statement CREATE TYPE.

For example, the following statement creates a distinct type named AUDIO:
CREATE TYPE AUDIO AS BLOB (1M);

Although AUDIO has the same representation as the built-in data type BLOB, it is
a separate data type that is not comparable to a BLOB or to any other data type.
This inability to compare AUDIO to other data types allows functions to be created
specifically for AUDIO and assures that these functions cannot be applied to other
data types.

The name of a distinct type is qualified with a schema name. The implicit schema
name for an unqualified name depends on the context in which the distinct type
appears. If an unqualified distinct type name is used:
v In a CREATE TYPE statement or the object of DROP, COMMENT, GRANT, or

REVOKE statement, DB2 uses the normal process of qualification by
authorization ID to determine the schema name.

v In any other context, DB2 uses the SQL path to determine the schema name.
DB2 searches the schemas in the path, in sequence, and selects the first schema
in the path such that the distinct type exists in the schema and the user has
authorization to use the data type. For a description of the SQL path, see “SQL
path” on page 64.

A distinct type does not automatically acquire the functions and operators of its
source type because they might not be meaningful. (For example, it might make
sense for a “length” function of the AUDIO type to return the length in seconds
rather than in bytes.) Instead, distinct types support strong typing. Strong typing
ensures that only the functions and operators that are explicitly defined on a
distinct type can be applied to that distinct type. However, a function or operator
of the source type can be applied to the distinct type by creating an appropriate
user-defined function. The user-defined function must be sourced on the existing
function that has the source type as a parameter. For example, the following series
of SQL statements shows how to create a distinct type named MONEY based on

Chapter 2. Language elements 107

|

|
|

|

|

|

|
|
|
|

|
|
|

|

|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

data type DECIMAL(9,2), how to define the + operator for the distinct type, and
how the operator might be applied to the distinct type:
CREATE TYPE MONEY AS DECIMAL(9,2);
CREATE FUNCTION "+"(MONEY,MONEY)

RETURNS MONEY
SOURCE SYSIBM."+"(DECIMAL(9,2),DECIMAL(9,2));

CREATE TABLE SALARY_TABLE
(SALARY MONEY,
COMMISSION MONEY);

SELECT SALARY + COMMISSION FROM SALARY_TABLE;

A distinct type is subject to the same restrictions as its source type. For example, if
a CLOB value is not allowed as input to a function, you cannot specify a distinct
type that is based on a CLOB as input.

The comparison operators are automatically generated for distinct types, except
those that are based on a CLOB, DBCLOB, or BLOB. In addition, DB2
automatically generates functions for every distinct type that support casting from
the source type to the distinct type and from the distinct type to the source type.
For example, for the AUDIO type created above, these are generated cast functions:
FUNCTION schema-name.BLOB (schema-name.AUDIO) RETURNS SYSIBM.BLOB (1M)
FUNCTION schema-name.AUDIO (SYSIBM.BLOB (1M)) RETURNS schema-name.AUDIO

Array types
A user-defined array type is a data type that is defined as an array of elements. A
user-defined array type can be either an ordinary array or associative array.

A user-defined ordinary array type has a maximum cardinality, which is specified
on the CREATE TYPE (array) statement. A user-defined associative array has a
maximum cardinality of 2 billion.

Array values:

An array value is a structure that contains an ordered collection of elements.

All elements of an array value must have the same data type. The cardinality of
the array is equal to the number of elements in the array.

An array value can be non-empty, empty (cardinality zero), or null. The individual
elements in the array can be null or not null. An empty array, an array value of
null, and an array for which all elements are the null value are different from each
other. An uninitialized array is a null array.

The following example demonstrates the difference between an empty array, a null
array, and an array for which individual elements are null.
SET PHONELIST = ARRAY[];

/* Set an entire array to empty */
SET PHONELIST = NULL;

/* Set an entire array to the NULL value */
SET PHONELIST = ARRAY[NULL];

/* Set one element of an array to NULL */
SET PHONELIST = ARRAY[NULL, NULL, NULL];

/* Set three elements of an array to NULL */

An ordinary array has a defined upper bound on the number of elements, which is
known as the maximum cardinality. Each element in the array is referenced by an
associated index value that represents the position of that element in the array. The
data type of the index values is INTEGER. If n is the number of elements in an

108 SQL Reference

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|

|

|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|

ordinary array, the ordinal position that is associated with each element is an
integer value greater than or equal to 1 and less than or equal to n.

Unlike the maximum cardinality of an array in programming languages such as C,
the maximum cardinality of an ordinary array in SQL is not related to the physical
representation of the array. The amount of memory that is required to represent the
value of an ordinary array is usually proportional to the cardinality of the array,
and not to the maximum cardinality of the array type. When an ordinary array is
referenced, all of the values in the array are stored in main memory. Therefore,
ordinary arrays that contain a large amount of data consume large amounts of
main memory.

An associative array has no predefined upper bound on the number of elements. An
associative array contains an ordered set of zero or more elements, where each
element in the array is ordered by and can be referenced by an associated index
value. The data type of the index values can be an integer or a character string
other than a CLOB, but all index values for the array must have the same data
type. The index values of an associative array are unique, and do not need to be
contiguous.

A user-defined array type is a user-defined data type that is defined as an array. An
SQL variable or SQL parameter can be defined as a user-defined array type.
Additionally, the result of an invocation of the built-in ARRAY_DELETE or
TRIM_ARRAY functions, or the result of a CAST specification, can be a
user-defined array type. An element of a user-defined array type can be referenced
anywhere that an expression that returns the same data type as an element of that
array can be used.

An unnamed array type is an array without an associated user-defined data type.
The result of invocation of the aggregate built-in function ARRAY_AGG or of an
array constructor is an array without an associated user-defined data type. An
element of an array without an associated user-defined array type cannot be
directly referenced.

The value of an array index can be specified by an expression. That expression can
include a reference to a column. If a column is defined with a column mask, the
column mask is applied using the normal rules for applying a column mask.

The value of an index for an array element is never null. If an expression specifies
a value for an index, and the expression evaluates to the null value, the null value
is returned for the array value.

An array value can be specified using one of the following methods:
v A simple reference to an SQL variable, or SQL parameter that is a user-defined

array type.
v Invocation of the ARRAY_AGG function.
v Invocation of the ARRAY_DELETE or TRIM_ARRAY built-in functions.
v Use of an array constructor.
v Invocation of a CAST specification that returns an array value.

An array value cannot be stored in a table. An array value can be used only within
an SQL PL routine, or when an SQL PL routine is connected to a DRDA server that
supports ordinary arrays.

Chapter 2. Language elements 109

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|

|
|

|

|

|

|

|
|
|

Datetime data in the elements of an array is considered to be CCSID UNICODE
(1208).
Related reference:
“Array constructor” on page 280
“ARRAY_AGG” on page 347
“TRIM_ARRAY” on page 658
“CREATE MASK” on page 1299
“CALL” on page 1117

Promotion of data types
Data types can be classified into groups of related data types. Within such groups,
an order of precedence exists in which one data type is considered to precede
another data type. This precedence enables DB2 to support the promotion of one
data type to another data type that appears later in the precedence order.

For example, DB2 can promote the data type CHAR to VARCHAR and the data
type INTEGER to DOUBLE PRECISION; however, DB2 cannot promote a CLOB to
a VARCHAR.

DB2 considers the promotion of data types when:
v Performing function resolution (see “Function resolution” on page 234)
v Casting distinct types (see “Casting between data types” on page 111)
v Assigning built-in data types to distinct types (see “Distinct type assignments”

on page 131)

For each data type, the following table shows the precedence list (in order) that
DB2 uses to determine the data types to which the data type can be promoted. The
table indicates that the best choice is the same data type and not promotion to
another data type. The table also shows data types that are considered equivalent
during the promotion process. For example, CHARACTER and GRAPHIC are
considered to be equivalent data types.

Table 14. Precedence of data types

Data type1,2 Data type precedence list (in best-to-worst order)

SMALLINT3 SMALLINT, INTEGER, BIGINT, decimal, real, double, DECFLOAT

INTEGER3 INTEGER, BIGINT, decimal, real, double, DECFLOAT

BIGINT3 BIGINT, decimal, real, double, DECFLOAT

decimal3 decimal, real, double, DECFLOAT

real real, double, DECFLOAT

double double, DECFLOAT

DECFLOAT DECFLOAT

CHAR or GRAPHIC CHAR or GRAPHIC, VARCHAR or VARGRAPHIC, CLOB or
DBCLOB

VARCHAR or
VARGRAPHIC

VARCHAR or VARGRAPHIC, CLOB or DBCLOB

CLOB or DBCLOB CLOB or DBCLOB

BINARY BINARY, VARBINARY, BLOB

VARBINARY VARBINARY, BLOB

110 SQL Reference

|
|

|

|

|

|

|

|

Table 14. Precedence of data types (continued)

Data type1,2 Data type precedence list (in best-to-worst order)

BLOB BLOB

DATE DATE

TIME TIME

TIMESTAMP
WITHOUT
TIME ZONE

TIMESTAMP WITHOUT TIME ZONE or TIMESTAMP WITH TIME
ZONE

TIMESTAMP
WITH
TIME ZONE

TIMESTAMP WITHOUT TIME ZONE or TIMESTAMP WITH TIME
ZONE

ROWID ROWID

XML XML

A distinct type The same distinct type

Notes:

1. The data types in lowercase letters represent the following data types:

decimal
DECIMAL(p,s) or NUMERIC(p,s)

real REAL or FLOAT(n) where n is not greater than 21

double DOUBLE, DOUBLE PRECISION, FLOAT or FLOAT(n) where n is greater than
21

2. Other synonyms for the listed data types are considered to be the same as the synonym
listed.

3. Real and double are checked for function resolution purposes only. Additionally, the
number of significant digits (even for DECFLOAT(16)), and the exponent range of
DECFLOAT exceeds that of real and double (double has 16 significant digits). Therefore,
DECFLOAT values will not be promoted to real or double.

Casting between data types
There are many occasions when a value with a given data type needs to be cast
(changed) to a different data type or to the same data type with a different length,
precision, or scale.

Data type promotion is one example where the promotion of one data type to
another data type requires that the value be cast to the new data type. A data type
that can be changed to another data type is castable from the source data type to
the target data type.

The casting of one data type to another can occur implicitly or explicitly. The cast
functions, CAST specification, or XMLCAST specification can be used to explicitly
change a data type, depending on the data types involved. In addition, when a
sourced user-defined function is created, the data types of the parameters of the
source function must be castable to the data types of the function that is being
created.

If truncation occurs when a character or graphic string is cast to another data type,
a warning occurs if any non-blank characters are truncated. This truncation
behavior is similar to retrieval assignment of character or graphic strings. See
“Retrieval assignment” on page 128.

Chapter 2. Language elements 111

If truncation occurs when casting to a binary string, an error is returned.

For casts that involve a distinct type as either the data type to be cast to or from,
Table 15 shows the supported casts.

For casting a parameter marker or NULL value to the XML data type, the CAST
specification can be used. XML input can also be specified for the CAST
specification when the result data type is XML.

Casts that involve an array type as the target and a non-null source value must
conform to the following rules:
v If the source value is a user-defined array type:

– A value of a user-defined array type can only be cast to another user-defined
array type of the same type.

– If the target user-defined array type is an ordinary array, the cardinality of the
source array value must be less than or equal to the maximum cardinality of
the target array type.

v If the source value is the result of the ARRAY_AGG function or an
array_constructor, it is an array without an associated user-defined array type. If
the source value is an array without an associated user-defined array type:
– The target user-defined array type must be an ordinary array. The cardinality

of the source array value must be less than or equal to the maximum
cardinality of the target array type.

– The elements in the source array value must be castable to the data type of
the elements of the target array type. The index values for the source array
value must be castable to the data type of the index of the target array type.

Table 15. Supported casts when a distinct type is involved

Data type ... Is castable to data type ...

Distinct type DT Source data type of distinct type DT

Source data type of distinct type DT Distinct type DT

Distinct type DT Distinct type DT

Data type A Distinct type DT where A is promotable to the source data type of distinct
type DT (see “Promotion of data types” on page 110)

INTEGER Distinct type DT if DT's source data type is SMALLINT

DOUBLE Distinct type DT if DT's source data type is REAL

VARCHAR Distinct type DT if DT's source data type is CHAR or GRAPHIC

VARGRAPHIC Distinct type DT if DT's source data type is GRAPHIC or CHAR

VARBINARY Distinct type DT if DT's source data type is BINARY

When a distinct type is involved in a cast, a cast function that was generated when
the distinct type was created is used. How DB2 chooses the function depends on
whether function notation or CAST specification syntax is used. (For details, see
“Function resolution” on page 234 and “CAST specification” on page 267,
respectively.) Function resolution is similar for both. However, in CAST
specification, when an unqualified distinct type is specified as the target data type,
DB2 first resolves the schema name of the distinct type and then uses that schema
name to locate the cast function.

For casts between built-in data types, the following table shows the supported
casts.

112 SQL Reference

|
|

|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

Table 16. Supported casts between built-in data types

Cast from
data type –

To data type1

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I

M
A
L

D
E
C
F
L
O
A
T

R
E
A
L

D
O
U
B
L
E

C
H
A
R

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

B
L
O
B

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

W
I
T
H
O
U
T

T
I

M
E

Z
O
N
E

T
I

M
E
S
T
A
M
P

W
I
T
H

T
I

M
E

Z
O
N
E

R
O
W
I
D

X
M
L

SMALLINT Y Y Y Y Y Y Y Y Y

INTEGER Y Y Y Y Y Y Y Y Y

BIGINT Y Y Y Y Y Y Y Y Y

DECIMAL Y Y Y Y Y Y Y Y Y

DECFLOAT Y Y Y Y Y Y Y Y Y

REAL Y Y Y Y Y Y Y Y Y

DOUBLE Y Y Y Y Y Y Y Y Y

CHAR Y

VARCHAR Y

CLOB Y Y Y Y Y Y Y Y Y

GRAPHIC Y Y Y Y Y Y Y Y2 Y2 Y2 Y Y Y Y Y Y Y3 Y3 Y3 Y3

VARGRAPHIC Y Y Y Y Y Y Y Y2 Y2 Y2 Y Y Y Y Y Y Y Y Y Y3

DBCLOB Y2 Y2 Y2 Y Y Y Y Y Y

BINARY Y Y Y

VARBINARY Y Y Y

BLOB Y Y Y

DATE Y Y Y Y

TIME Y Y Y

TIMESTAMP
WITHOUT
TIME ZONE

Y Y Y Y Y Y

Chapter 2. Language elements 113

Table 16. Supported casts between built-in data types (continued)

Cast from
data type –

To data type1

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I

M
A
L

D
E
C
F
L
O
A
T

R
E
A
L

D
O
U
B
L
E

C
H
A
R

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

B
L
O
B

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

W
I
T
H
O
U
T

T
I

M
E

Z
O
N
E

T
I

M
E
S
T
A
M
P

W
I
T
H

T
I

M
E

Z
O
N
E

R
O
W
I
D

X
M
L

TIMESTAMP
WITH TIME
ZONE

Y Y Y Y Y Y

ROWID Y Y Y Y Y Y

XML Y

Note:

1. Other synonyms for the listed data types are considered to be the same as the synonym listed. Some exceptions
exist when the cast involves character string data if the subtype is FOR BIT DATA.

2. The result length for these casts is 3 * LENGTH(graphic string).

3. These data types are castable between each other only if the data is Unicode.

Table 17 shows where to find information about the rules that apply when casting
to the identified target data types.

Table 17. Rules for casting to a data type

Target data type Rules

SMALLINT “SMALLINT” on page 608

INTEGER “INTEGER or INT” on page 496

BIGINT “BIGINT” on page 387

DECIMAL “DECIMAL or DEC” on page 447

NUMERIC “DECIMAL or DEC” on page 447

REAL “REAL” on page 580

114 SQL Reference

Table 17. Rules for casting to a data type (continued)

Target data type Rules

DOUBLE “DOUBLE_PRECISION or DOUBLE” on page 458

DECFLOAT “DECFLOAT” on page 440

CHAR “CHAR” on page 398

VARCHAR “VARCHAR” on page 673

CLOB “CLOB” on page 409

GRAPHIC “GRAPHIC” on page 479

VARGRAPHIC “VARGRAPHIC” on page 690

DBCLOB “DBCLOB” on page 436

BINARY “BINARY” on page 389

VARBINARY “VARBINARY” on page 671

BLOB “BLOB” on page 393

DATE “DATE” on page 425

TIME “TIME” on page 629

TIMESTAMP
WITHOUT TIME
ZONE

If the source data type is a character or graphic string, see
“TIMESTAMP” on page 630, where one operand is specified. If the
string contains a time zone, an error is returned.

If the source data type is a DATE, the timestamp is composed of the
specified date and a time of 00:00:00.

If the source is a TIMESTAMP WITH TIME ZONE, the resulting
timestamp is the timestamp without time zone element of the
specified datetime value, which is the local timestamp in the
corresponding time zone. For example: cast(’2008-04-12-
07.30.00.0-6:00’ as TIMESTAMP) returns 2008-04-12-07.30.00.0.

If the source type is a TIMESTAMP WITHOUT TIME ZONE the
timestamp is the specified value.

TIMESTAMP WITH
TIME ZONE

If the source data type is a character or graphic string or
TIMESTAMP WITHOUT TIME ZONE, see “TIMESTAMP_TZ” on
page 645, where one operand is specified. If the string contains a
time zone, an error is returned.

If the source type is a TIMESTAMP WITH TIME ZONE, the
timestamp is the specified value.

ROWID “ROWID” on page 595

Table 18. The derived length of an argument when a built-in scalar function is invoked and implicit casting is required.
Target data type

Source data
type CHAR GRAPHIC VARCHAR

VAR-
GRAPHIC CLOB DBCLOB BLOB

TIME
STAMP
(precision) DECFLOAT

SMALLINT 6 6 6 6

INTEGER 11 11 11 11

BIGINT 20 20 20 20

DECIMAL
(p,s)

2+p 2+p 2+p 2+p

REAL 24 24 24 24

DOUBLE 24 24 24 24

DECFLOAT 42 42 42 42

Chapter 2. Language elements 115

Table 18. The derived length of an argument when a built-in scalar function is invoked and implicit casting is
required. (continued)

Target data type

Source data
type CHAR GRAPHIC VARCHAR

VAR-
GRAPHIC CLOB DBCLOB BLOB

TIME
STAMP
(precision) DECFLOAT

CHAR(n) 12 34

VARCHAR
(n)

min(n,254) 12 34

CLOB(n)

GRAPHIC
(n)

12 34

VARGRAPHIC
(n)

12 34

DBCLOB
(n)

BLOB(n)

TIME 8 8 8 8

DATE 10 10 10 10

TIME-
STAMP(p)
WITHOUT
TIME
ZONE

If p=0 then
19,
otherwise
20+p

If p=0 then
19, otherwise
20+p

If p=0 then
19, otherwise
20+p

If p=0 then
19, otherwise
20+p

TIME-
STAMP(p)
WITH
TIME
ZONE

If p=0 then
148,
otherwise
149+p

If p=0 then
148,
otherwise
149+p

If p=0 then
148,
otherwise
149+p

If p=0 then
148,
otherwise
149+p

Casting non-XML values to XML values

Table 19. Supported Casts from Non-XML Values to XML Values

Source Data Type

Target Data Type

XML Resulting XML Schema Type

SMALLINT Y xs:short

INTEGER Y xs:int

BIGINT Y xs:long

DECIMAL Y xs:decimal

DECFLOAT N

REAL N

FLOAT Y xs:double

DOUBLE Y xs:double

CHAR Y xs:string

VARCHAR Y xs:string

CLOB Y xs:string

GRAPHIC Y xs:string

VARGRAPHIC Y xs:string

DBCLOB Y xs:string

BINARY N

VARBINARY N

BLOB N

116 SQL Reference

Table 19. Supported Casts from Non-XML Values to XML Values (continued)

Source Data Type

Target Data Type

XML Resulting XML Schema Type

character type FOR BIT DATA N

DATE N

TIME N

TIMESTAMP WITHOUT TIME ZONE N

TIMESTAMP WITH TIME ZONE N

ROWID N

distinct type N

When character string values are cast to XML values, the resulting xs:string atomic
value cannot contain illegal XML characters. If the input character string is not in
Unicode, the input characters are converted to Unicode.

Casting XML values to non-XML values

An XMLCAST from an XML value to a non-XML value can be described as two
casts: an XQuery cast that converts the source XML value to a target XQuery data
type that corresponds to the SQL target type, followed by a cast from the
corresponding XQuery data type to the actual SQL type. The target XQuery data
type is an XML schema data type like xs:decimal or xs:string, as shown in the
follow table.

An XMLCAST is supported if the target type has a corresponding XQuery target
type that is supported, and if there is a supported XQuery cast from the type of
the source value to the corresponding XQuery target type. The target type that is
used in the XQuery cast is based on the corresponding XQuery target type and
might contain some additional restrictions.

The following table lists the XQuery types that result from such conversion.

Table 20. Supported Casts from XML Values to Non-XML Values

Target Data Type

Source Data Type

XML Corresponding XQuery Target Type

SMALLINT Y xs:integer

INTEGER Y xs:integer

BIGINT Y xs:integer

DECIMAL Y xs:decimal

DECFLOAT Y xs:double

REAL Y xs:double

FLOAT Y xs:double

DOUBLE Y xs:double

CHAR Y xs:string

VARCHAR Y xs:string

CLOB Y xs:string

GRAPHIC Y xs:string

Chapter 2. Language elements 117

Table 20. Supported Casts from XML Values to Non-XML Values (continued)

Target Data Type

Source Data Type

XML Corresponding XQuery Target Type

VARGRAPHIC Y xs:string

DBCLOB Y xs:string

BINARY N

VARBINARY N

BLOB N

character type FOR BIT DATA N

DATE Y xs:date

TIME Y xs:time

TIMESTAMP Y xs:dateTime

ROWID N

distinct type N

The following restrictions are in effect when a value is cast from an XQuery target
data type to a target SQL data type:
v If the target type is one of the character or graphic string types, the resulting

XML value is converted, if necessary, to the CCSID of the target data type using
the rules described in “Conversion rules for string assignment” on page 129,
before it is converted to the target type with a limited length. Truncation occurs
if the specified length limit is smaller than the length of the resulting string after
CCSID conversion. A warning occurs if any non-blank characters are truncated.
If the target type is a fixed-length string type (CHAR or GRAPHIC) and the
specified length of the target type is greater than the length of the resulting
string from CCSID conversion, blanks are padded at the end. This truncation
and padding behavior is similar to retrieval assignment of character or graphic
strings.

v If the target type is DOUBLE or REAL and the source XML value after the
XQuery cast is an xs:double value of INF, -INF, or NaN, an error is returned. If
the source value is an xs:double negative zero, the value is converted to positive
zero. If the source value is beyond the range of the target data type, an overflow
error is returned. If the source value contains more significant digits than the
precision of the target data type, the source value is rounded to the precision of
the target data type.

v If the target type is DECFLOAT and the source XML value is an xs:double value
of INF, -INF, or NaN, the result will be the corresponding special DECFLOAT
values INF, -INF, or NaN. If the source value is an xs:double negative zero, the
result is negative zero. If the target type is DECFLOAT(16) and the source value
is beyond the range of DECFLOAT(16), an overflow error is returned. If the
source value has more than 16 significant digits, the value is rounded according
to the ROUNDING mode that is in effect. This rounding behavior is the same as
what is used during the cast of DECFLOAT(34) to DECFLOAT(16).

v If the target type is DECIMAL, the resulting xs:decimal value is converted, if
necessary, to the precision and scale of the target data type. The necessary
number of leading zeros is added or removed. In the fractional part of the
number, the necessary number of trailing zeros is added or the necessary
number of digits is eliminated. This truncation behavior is similar to the
behavior of the cast from DECIMAL to DECIMAL.

118 SQL Reference

v If the target type is DATE, TIME, or TIMESTAMP WITHOUT TIME ZONE, the
resulting XML value is adjusted to UTC time and the time zone component is
removed. If the source does not include a time zone and the target data type is
TIMESTAMP WITH TIME ZONE, zeroes are used for the time zone component.
If the target type is TIME and the resulting XML value contains a seconds
component with non-zero digits after the decimal point, those digits are
truncated. If the target type is DATE or timestamp, the year part of the resulting
xs:date or xs:dateTime value must be in the range of 0001 to 9999. If the target
type is timestamp and the precision of the target timestamp is less than 12, the
fractional seconds part of the xs:dateTime value will be truncated to the target
timestamp precision.

Implicit cast from numeric data to string data
When DB2 implicitly casts a numeric value to a string value, the target type is
VARCHAR value which is then compatible with other character string or graphic
string data types.

The length attribute and the CCSID attribute of the result of the cast are
determined in the same way as the VARCHAR function. When GRAPHIC or
VARGRAPHIC data types are involved, the encoding scheme must be UNICODE.
The following table shows the target type and length:

Table 21. Target type and length attribute for implicit cast from numeric types to string types

Source data type Target data type

SMALLINT VARCHAR(6)

INTEGER VARCHAR(11)

BIGINT VARCHAR(20)

NUMERIC or DECIMAL VARCHAR(precision+2)

REAL VARCHAR(24)

FLOAT VARCHAR(24)

DOUBLE VARCHAR(24)

DECFLOAT VARCHAR(42)

Implicit conversion from a numeric value to a string value can happen during:
v Assignment (where the source value is a number and the target operand is a

character string or graphic string data type).
Among assignment statements, implicit casting is not supported for the SET
statements for special registers, the RETURNS clause and RETURN statement for
functions, and the SQL control statements: RETURN, SIGNAL, and RESIGNAL.

v Application of concatenation operators (CONCAT and ||)
v Application of set operators.

Implicit conversion from a numeric value to a string value is not supported for
an operand of a set operator.

Implicit cast from string data to numeric data
When DB2 implicitly casts a character string or graphic string value to a numeric
value, the target type is DECFLOAT(34) which is compatible with other numeric
data types.

Chapter 2. Language elements 119

When GRAPHIC or VARGRAPHIC data types are involved, the encoding scheme
must be UNICODE. The following table shows the target type and length:

Table 22. Target type and length attribute for implicit cast from string types to numeric types

Source data type Target data type

CHAR DECFLOAT(34)

VARCHAR DECFLOAT(34)

GRAPHIC DECFLOAT(34)

VARGRAPHIC DECFLOAT(34)

CHAR FOR BIT DATA or
VARCHAR FOR BIT DATA

N/A

BINARY N/A

VARBINARY N/A

BLOB N/A

CLOB N/A

DBCLOB N/A

Implicit conversion from a string value to a numeric value can happen during:
v Assignment (where the source value is a character string or graphic string and

the target operand is a numeric data type).
v Comparisons

When a character string or graphic string value is compared with a numeric
value, DB2 implicitly converts the string value to DECFLOAT(34) and applies
numeric comparison rule between the DECFLOAT(34) value and the other
numeric value.
– Basic predicates, quantified predicates, and DISTINCT predicates (one

operand is numeric value and the other operand is character string or graphic
string value)
Numeric is the dominant data type. The character or graphic string value is
cast to DECFLOAT(34) value.

– BETWEEN predicates
Numeric is the dominant data type. If any of the three operands is a numeric
value, DB2 implicitly casts the character or graphic string operands to
DECFLOAT data type.

– IN predicates
Numeric is the dominant data type. If any of the operands is a numeric value,
DB2 implicitly casts the character or graphic string operands to DECFLOAT
data type.

– Searched-when-clause of CASE expression
Pair-wise comparison is performed. Implicit cast of each pair follows the same
rule as for a basic predicate. Implicit string and numeric cast is supported on
searched-when-clause of CASE expression.

– Search conditions in SQL control statements (one operand is numeric value
and the other operand is character string or graphic string value)
The search condition can appear in SQL control statements like the CASE
statement, the IF statement, the REPEAT statement, and the WHILE
statement. For comparisons in the search condition, numeric is the dominant
data type. The character string or graphic string value is cast to a

120 SQL Reference

DECFLOAT(34) value. Implicit string and numeric cast is supported on the
searched-when-clause of the CASE statement.

v Arithmetic operators (unary arithmetic operators + and - and infix arithmetic
operators +, -, *, and /)
If the operand of unary arithmetic operators is of a character string or graphic
string data type, that operand is implicitly cast to DECFLOAT(34). For infix
arithmetic operators, if one operand is a numeric value or both operands are
character or graphic string values, DB2 implicitly casts the character string or
graphic string operand to the DECFLOAT data type.

Implicit conversion from a string value to a numeric value is not supported for an
operand of a set operator.

Assignment and comparison
The basic operations of SQL are assignment and comparison.

Assignment operations are performed during the execution of statements such as
CALL, INSERT, UPDATE, MERGE, FETCH, SELECT INTO, SET host-variable or
SET assignment-statement, and VALUES INTO statements. In addition, when a
function is invoked or a stored procedure is called, the arguments of the function
or stored procedure are assigned. Comparison operations are performed during the
execution of statements that include predicates and other language elements such
as MAX, MIN, DISTINCT, GROUP BY, and ORDER BY.

The basic rule for both operations is that data types of the operands must be
compatible. The compatibility rule also applies to other operations that are
described under “Rules for result data types” on page 144.

The following table shows the compatibility of data types for assignments and
comparisons.

Table 23. Data Type Compatibility for Assignments and Comparisons

Operand
Binary
integer

Decimal
number

Floating
point

Decimal
floating
point

Character
string

Graphic
string

Binary
string Date Time

Timestamp
without
time zone

Timestamp
with time
zone

Row
ID

User-
defined
type XML8

Binary
integer

Yes Yes Yes Yes 1 1 No No No No No No 2 No

Decimal
number

Yes Yes Yes Yes 1 1 No No No No No No 2 No

Floating
point

Yes Yes Yes Yes 1 1 No No No No No No 2 No

Decimal
floating
point

Yes Yes Yes Yes 1 1 No No No No No No 2 No

Character
string

1 1 1 1 Yes Yes 3,4 No 5 Yes Yes Yes Yes No 2 No

Graphic
string

6 6 6 6 Yes 3,4 Yes No 3 3 3 3 No 2 No

Binary
string

No No No No No 5 No Yes No No No No No 2 No

Date No No No No 7 3,7 No Yes No No No No 2 No

Time No No No No 7 3,7 No No Yes No No No 2 No

Timestamp
without
time zone

No No No No 7 3,7 No No No Yes Yes No 2 No

Timestamp
with time
zone

No No No No 7 3,7 No No No Yes Yes No 2 No

Row ID No No No No No No No No No No No Yes 2 No

User-
defined
type

2 2 2 2 2 2 2 2 2 2 2 2 Yes2 No

Chapter 2. Language elements 121

Table 23. Data Type Compatibility for Assignments and Comparisons (continued)

Operand
Binary
integer

Decimal
number

Floating
point

Decimal
floating
point

Character
string

Graphic
string

Binary
string Date Time

Timestamp
without
time zone

Timestamp
with time
zone

Row
ID

User-
defined
type XML8

XML8 No No No No No No No No No No No No No Yes

1. LOBs and bit data are not supported.

2. The compatibility rules for user-defined types are as follows:

v A user-defined distinct type value is only comparable to a value that is defined with the same user-defined distinct type. In general, assignments are supported between a
distinct type value and its source data type.

v A user-defined array type value is only comparable to a value that is defined with the same user-defined array type.

This means that in general, an ordinary array type is not compatible with an associative array type. The following exceptions apply only to a CALL statement for a
remote stored procedure:

– A source value that is an ordinary array with an integer index can be specified for a target that is defined as an associative array, if the definitions of the array elements
of the two arrays are compatible. DB2 transforms the ordinary array into an associative array with an integer index, preserving the ordering of the elements in the
original ordinary array. However, if the associative array is defined with a VARCHAR index, an SQL error code is returned.

– A source value that is an associative array can be specified for a target defined as an ordinary array . DB2 transforms the associative array into an ordinary array, by
assigning the values of the array elements in the associative array in the same order in the target ordinary array, and assigning appropriate index values.

For additional information, see “User-defined type assignments” on page 131.

3. On assignment and comparison from Graphic to Character, the resulting length in bytes is 3 * (LENGTH(graphic-string)), depending on the CCSIDs.

4. Character strings with subtype FOR BIT DATA are not compatible with Graphic Data.

5. All character strings, even those with subtype FOR BIT DATA, are not compatible with binary strings.

6. LOBs are not supported.

7. The compatibility of datetime values is limited to assignment and comparison:
v Datetime values can be assigned to string columns and to string variables that are not LOB values, as explained in “Datetime assignments” on page 129.
v A valid string representation of a date can be assigned to a date column or compared to a date.
v A valid string representation of a time can be assigned to a time column or compared to a time.
v A valid string representation of a timestamp (without or with time zone) can be assigned to a timestamp column (without or with time zone) or compared to a timestamp

(without or with time zone).

8. Character and graphic strings, including LOBs, can be assigned to XML columns. For comparison, XML can only be compared using the XMLEXISTS and NULL predicates.

Compatibility with a column that has a field procedure is determined by the data
type of the column, which applies to the decoded form of its values.

A basic rule for assignment operations is that a null value cannot be assigned to:
v A column that cannot contain null values
v A non-Java host variable that does not have an associated indicator variable

For a host variable that does have an associated indicator variable, a null value
is assigned by setting the indicator variable to a negative value. See “References
to host variables” on page 215 for a discussion of indicator variables.

v A Java host variable that is a primitive type
For a Java host variable that is not a primitive type, the value of that variable is
set to a Java null value.

Numeric assignments
The basic rule for numeric assignments is that the whole part of a decimal or
integer number cannot be truncated. If necessary, the fractional part of a decimal
number is truncated.

Decimal or integer to floating-point
Because floating-point numbers are only approximations of real numbers, the result
of assigning a decimal or integer number to a floating-point column or variable
might not be identical to the original number.

Floating-point or decimal to integer
When a single precision floating-point number is converted to integer, rounding
occurs on the seventh significant digit, zeros are added to the end of the number, if
necessary, starting from the seventh significant digit, and the fractional part of the
number is eliminated. When a double precision floating-point or decimal number
is converted to integer, the fractional part of the number is eliminated.

122 SQL Reference

Example 1: The following example shows single precision floating-point numbers
converted to an integer:
Floating-point number: Results when assigned to an integer column

or host variable:
2.0000045E6 2000000
2.00000555E8 200001000

Example 2: The following example shows a double precision floating-point number
converted to an integer:
Floating-point number: Results when assigned to an integer column

or host variable:
2.0000045E6 2000004
2.00000555E8 200000555

Example 3: The following example shows a decimal number converted to an
integer:
Decimal number: Results when assigned to an integer column

or host variable:
2000004.5 2000004
200000555.0 200000555

Decimal to decimal
When a decimal number is assigned to a decimal column or variable, the number
is converted, if necessary, to the precision and the scale of the target.

The necessary number of leading zeros is added or eliminated, and, in the
fractional part of the number, the necessary number of trailing zeros is added, or
the necessary number of trailing digits is eliminated.

Decimal to DECFLOAT
When a decimal number is assigned to a DECFLOAT column or variable, the
number is converted to the precision (16 or 34) of the target. Leading zeros are
eliminated.

Depending on the precision and scale of the decimal number, and the precision of
the target, the value might be rounded to fit.

For static SQL statements other than CREATE VIEW, the ROUNDING bind option
or the native SQL procedure option determines the rounding mode.

For dynamic SQL statements (and static CREATE VIEW statements), the special
register CURRENT DECFLOAT ROUNDING MODE determines the rounding
mode.

Integer to decimal
When an integer is assigned to a decimal column or variable, the number is
converted first to a temporary decimal number and then, if necessary, to the
precision and scale of the target.

The precision and scale of the temporary decimal number is 5,0 for a small integer,
11,0 for a large integer, or 19,0 for a big integer.

Integer to DECFLOAT
When an integer is assigned to a DECFLOAT column or variable, the number is
converted first to a temporary decimal number and then to DECFLOAT.

Chapter 2. Language elements 123

The precision and scale of the temporary decimal number is 5,0 for a small integer,
11,0 for a large integer, or 19,0 for a big integer. The decimal number is then
converted to DECFLOAT using the rules for “Decimal to DECFLOAT” on page
123.

Floating-point to floating-point
When a single precision floating-point number is assigned to a double precision
floating-point column or variable, the single precision data is padded with eight
hex zeros. When a double precision floating-point number is assigned to a single
precision floating-point column or variable, the double precision data is converted
and rounded up on the seventh hex digit.

In assembler, C, or C++ applications that are prepared with the FLOAT(IEEE) SQL
processing option, floating-point constants and values in host variables are
assumed to have IEEE floating-point format. All floating-point data is stored in
DB2 in System/390 floating-point format. Therefore, when the FLOAT(IEEE) SQL
processing option is in effect, DB2 performs the following conversions:
v When a number in short or long IEEE floating-point format is assigned to a

single-precision or double-precision floating-point column, DB2 converts the
number to System/390 floating-point format.

v When a single-precision or double-precision floating-point column value is
assigned to a short or long floating-point host variable, DB2 converts the column
value to IEEE floating-point format.

Floating-point to decimal
When a single precision floating-point number is assigned to a decimal column or
variable, the number is first converted to a temporary decimal number.

When a single precision floating-point number is assigned to a decimal column or
variable, the number is first converted to a temporary decimal number of precision
6 by rounding on the seventh decimal digit. Twenty five zeros are then appended
to the number to bring the precision to 31. Because of rounding, a number less
than 0.5×10-6 is reduced to 0.

When a double precision floating-point number is assigned to a decimal column or
variable, the number is first converted to a temporary decimal number of precision
15, and then, if necessary, truncated to the precision and scale of the target. In this
conversion, zeros are added to the end of the number, if necessary, to bring the
precision to 16. The number is then rounded (using floating-point arithmetic) on
the sixteenth decimal digit to produce a 15-digit number. Because of rounding, a
number less in magnitude than 0.5×10-15 is reduced to 0. If the decimal number
requires more than 15 digits to the left of the decimal point, an error is reported.
Otherwise, the scale is given the largest possible value that allows the whole part
of the number to be represented without loss of significance.

The following examples show the effect of converting a double precision
floating-point number to decimal:

Example 1: The floating-point number, .123456789098765E-05 in decimal notation is,
.00000123456789098765. Rounding adds 5 in the 16th position, so the number
becomes .00000123456789148765 and truncates the result to .000001234567891.
Zeros are then added to the end of a 31-digit result, and the number becomes
.0000012345678910000000000000000.

Example 2: The floating-point number, 1.2339999999999E+01 in decimal notation is,
12.33999999999900. Rounding adds 5 in the 16th position, so the number becomes

124 SQL Reference

12.33999999999905 and truncates the result to 12.3399999999990. Zeros are then
added to the end of a 31-digit result and the number becomes
12.33999999999900000000000000000.

Floating point to DECFLOAT
When a single or double precision floating-point number is assigned to a
DECFLOAT column or variable, the number is first converted to a temporary
string representation of the floating point number. The string representation of the
number is then converted to DECFLOAT.

DECFLOAT to integer
When a DECFLOAT is assigned to a binary integer column or variable, the
fractional part of the number is lost.

Example 1: The following example shows decimal floating-point numbers converted
to an integer:
Decimal floating-point number: Results when assigned to an integer column

or host variable:
2.0000045E6 2000004
2.00000555E8 200000555

DECFLOAT to decimal
When a DECFLOAT value is assigned to a decimal column or variable, the
DECFLOAT value is converted, if necessary, to the precision and the scale of the
target.

During the assignment, the necessary number of leading zeros is added and, in the
fractional part of the number, the necessary number of trailing zeros is added, or
rounding occurs.

For static SQL statements other than CREATE VIEW, the ROUNDING bind option
or the native SQL procedure option determines the rounding mode.

For dynamic SQL statements (and static CREATE VIEW statements), the special
register CURRENT DECFLOAT ROUNDING MODE determines the rounding
mode.

Example 1: The following example shows decimal floating-point numbers converted
to a decimal value:
Decimal floating-point number: Results when assigned to an decimal(15,0)

column or host variable:
2.0000045E6 2000005
Decimal floating-point number: Results when assigned to an decimal(15,2)

column or host variable:
2.0000045E6 2000004.50
2.00000555E8 200000555.00

DECFLOAT to floating-point
Because floating-point numbers are only approximations of real numbers, the result
of assigning a DECFLOAT value to a floating-point column or variable might not
be identical to the original number.

The DECFLOAT value is first converted to a string representation, and is then
converted to floating-point number.

Chapter 2. Language elements 125

DECFLOAT(16) to DECFLOAT(34)
When a DECFLOAT(16) is assigned to a DECFLOAT(34) column or variable, the
exponent of the source is converted to the corresponding exponent in the result
format, and the coefficient is extended by appending zeros on the left.

DECFLOAT(34) to DECFLOAT(16)
When a DECFLOAT(34) is assigned to a DECFLOAT(16) column or variable, the
exponent of the source is converted to the corresponding exponent in the result
format.

The source coefficient is rounded to the precision of the target.

For static SQL statements, the ROUNDING bind option or the native SQL procedure
option determines the rounding mode.

For static SQL statements other than CREATE VIEW, the ROUNDING bind option
or the native SQL procedure option determines the rounding mode.

For dynamic SQL statements (and static CREATE VIEW statements), the special
register CURRENT DECFLOAT ROUNDING MODE determines the rounding
mode.

To COBOL integers
Assignment to COBOL integer variables uses the full size of the integer.

Thus, the value placed in the COBOL data item might be out of the range of
values.

COBOL supports some data types with no SQL equivalent (BINARY decimal and
DISPLAY decimal data items, for example). In most cases, you can use COBOL
statements to convert between the unsupported COBOL data types and the data
types that SQL supports.

For DB2 for z/OS, the only BINARY numeric variables allowed as HOST variable
are integer binary variables. The only DECIMAL host variables supported by SQL
are packed decimal host variables.

Example 1: If COL1 contains a value of 12345, the following statements cause the
value 12345 to be placed in A, even though A has been defined with only 4 digits:

01 A PIC S9999 BINARY.
EXEC SQL SELECT COL1

INTO :A
FROM TABLEX

END-EXEC.

Example 2: The following COBOL statement results in 2345 being placed in A:
MOVE 12345 TO A.

String assignments
There are two types of string assignments; storage assignment and retrieval
assignment.
v Storage assignment is when a value is assigned to a column or a parameter of a

function or stored procedure.
v Retrieval assignment is when a value is assigned to a variable.

126 SQL Reference

The rules differ for storage and retrieval assignment.

Binary string assignment
Binary string assignment involves assignment at both the storage and the retrieval
of binary strings.

Storage assignment:
The length of a string that is assigned to a column or parameter of a
function or procedure must not be greater than the length attribute of the
column or parameter. If the string is longer than the length attribute of that
column or parameter, an error is returned.

When the string is assigned to a fixed-length binary string column or
parameter of a function or procedure, and the length of the string is less
than the length attribute of that column or parameter, the string is padded
to the right with the necessary number of binary zeros.

Retrieval assignment:
The length of a string that is assigned to a variable can be greater than the
length attribute of the variable. When a string is assigned to a variable and
the string is longer than the length attribute of the variable, the string is
truncated on the right by the necessary number of bytes. When this occurs,
a warning is returned.

Character and graphic string assignment
The rules for storage and retrieval assignment apply when both the source and the
target are strings.

When a datetime data type is involved, see “Datetime assignments” on page 129.
For the special considerations that apply when a distinct type is involved in an
assignment, especially to a variable, see “Distinct type assignments” on page 131.

Storage assignment:

The basic rule for character storage assignment is that the length of a string that is
assigned to a column or parameter of a function or stored procedure must not be
greater than the length attribute of the column or the parameter.

Trailing blanks are included in the length of the string. When the length of the
string is greater than the length attribute of the column or the parameter, the
following actions occur:
v If all of the trailing characters that must be truncated to make a string fit the

target are blanks and the string is a character or graphic string, the string is
truncated and assigned without warning.

v Otherwise, the string is not assigned and an error occurs to indicate that at least
one of the excess characters is non-blank.

When a string is assigned to a fixed-length column or parameter and the length of
the string is less than the length attribute of the target, the string is padded to the
right with the necessary number of SBCS or DBCS blanks. The pad character is
always a blank even for columns or parameters that are defined with the FOR BIT
DATA attribute.

Chapter 2. Language elements 127

Retrieval assignment:

The length of a string that is assigned to a host variable can be greater than the
length attribute of the variable. When the length of the string is greater than the
length of the variable, the string is truncated on the right by the necessary number
of SBCS or DBCS characters.

When truncation occurs, the value W is assigned to the SQLWARN1 field of the
SQLCA. Furthermore, if an indicator variable is provided and the source of the
value is not a LOB, the indicator variable is set to the original length of the string.
The truncation result of an improperly formed mixed string is unpredictable.

When a character string is assigned to a fixed-length variable and the length of the
string is less than the length attribute of the target, the string is padded to the right
with the necessary number of blanks. The pad character is always a blank even for
strings defined with the FOR BIT DATA attribute.

When a string of length n is assigned to a varying-length string variable with a
maximum length greater than n, the characters after the nth character of the
variable are undefined.

Assignments involving mixed data strings
A mixed data string that contains MBCS characters cannot be assigned to an SBCS
column, SBCS parameter, or SBCS variable.

The following rules apply when a mixed data string is assigned to a variable and
the string is longer than the length attribute of the variable:
v If the string is not well-formed mixed data, it is truncated as if it were BIT or

graphic data.
v If the string is well-formed mixed data, it is truncated on the right such that it is

well-formed mixed data with a length that is the same as the length attribute of
the variable and the number of characters lost is minimal.

Assignments involving C NUL-terminated strings
A C NUL-terminated string variable that is referenced in a CONNECT statement
does not need to contain a NUL. Otherwise, DB2 enforces the convention that the
value of a NUL-terminated string variable, either character or graphic, is
NUL-terminated.

An input variable that does not contain a NUL will cause an error. A value that is
assigned to an output variable will always be NUL-terminated even if a character
must be truncated to make room for the NUL.

When a string of length n is assigned to a C NUL-terminated string variable with a
length greater than n+1, the rules depend on whether the source string is a value
of a fixed-length string or a varying-length string:
v If the source is a fixed-length string and the value of field PAD

NUL-TERMINATED on installation panel DSNTIP4 is YES, the string is padded
on the right with x-n-1 blanks, where x is the length of the variable. The padded
string is then assigned to the variable and a NUL is appended at the end of the
variable. If the value of field PAD NUL-TERMINATED is NO, the string is
assigned to the first n bytes of the variable and a NUL is appended at the end of
the variable.

v If the source is a varying-length string, the string is assigned to the first n bytes
of the variable and a NUL is appended at the end of the variable.

128 SQL Reference

Conversion rules for string assignment
A character or graphic string that is assigned to a column or variable is first
converted, if necessary, to the coded character set of the target. Conversion is
necessary only if certain conditions apply.

Conversion is necessary only if all the following are true:
v The CCSIDs of string and target are different.
v Neither CCSID is X'FFFF' (neither the string nor the target is defined as BIT

data).
v The string is neither null nor empty.

An error occurs if:
v The SYSSTRINGS table is used but contains no information about the pair of

CCSIDs and DB2 cannot do the conversion through z/OS support for Unicode.
v A character of the string cannot be converted and the operation is assignment to

a column or to a host variable that has no indicator variable. For example, a
DBCS character cannot be converted to a variable with an SBCS CCSID.

A warning occurs if:
v A character of the string is converted to a substitution character. A substitution

character is the character that is used when a character of the source character set
is not part of the target character set. For example, assuming an EBCDIC target
character set, if the source character set includes Katakana characters and the
target character set does not, a Katakana character is converted to the EBCDIC
SUB X'3F'.

v A character of the string cannot be converted and the operation is assignment to
a variable that has an indicator variable. For example, a DBCS character cannot
be converted if the variable has an SBCS CCSID. In this case, the string is not
assigned to the variable and the indicator variable is set to -2.

Datetime assignments
A value that is assigned to a date, time, or timestamp column, variable, or
parameter must be a valid string representation of a date, a time, or a timestamp.

A value that is assigned to a DATE column, a DATE variable, or a DATE must be a
date or a valid string representation of a date. A date can be assigned only to the
following items:
v a DATE column
v a character-string column
v a character-string variable
v a date global variable

A value that is assigned to a TIME column, a TIME variable, or a TIME parameter
must be a time or a valid string representation of a time. A time can be assigned
only to the following items:
v a TIME column
v a character-string column
v a character-string variable
v a time global variable

Chapter 2. Language elements 129

|

|

A value that is assigned to a timestamp column, a timestamp variable, or a
timestamp parameter must be a timestamp, a TIMESTAMP constant, or a valid
string representation of a timestamp. A timestamp can be assigned only to the
following items:
v a TIMESTAMP column
v a character-string or graphic-string column
v a timestamp variable
v a character-string or graphic-string variable
v a timestamp global variable

A valid string representation of a datetime value must not be a BLOB, CLOB, or
DBCLOB. A datetime value cannot be assigned to a column that has a field
procedure. If the timestamp precision of the target is less than the timestamp
precision of the assigned value, the excessive fractional seconds are truncated.

When a datetime value is assigned to a character-string variable or column, it is
converted to its string representation. Leading zeros are not omitted from any part
of the date, time, or timestamp. The required length of the target varies depending
on the format of the string representation. If the length of the fixed length
character-string target is greater than required, it is padded on the right with
blanks. If the length of the target is less than required, the result depends on the
type of datetime value involved, and the type of the target.

When a datetime value is assigned to a timestamp variable or column, it is
converted to the target timestamp data type. If the source data type is not the same
as the target data type, the source value is implicitly cast to the target data type.
DB2 might implicitly cast data types during assignments that involve a distinct
type.
v If the target is not a variable and has a character-string or graphic-string data

type (except for BLOB, CLOB, or DBCLOB), truncation is not allowed. The
length of the column must be at least the following values:
– 10 for a DATE

– 8 for a TIME

– 19 for a TIMESTAMP WITHOUT TIME ZONE with a precision of 0, 20+p
with precision of p

– Sufficient to include the time zone (truncation is not allowed), for a
TIMESTAMP WITH TIME ZONE

v When the target is a variable, the following rules apply:
– For a DATE: The length of the variable must not be less than 10.
– For a TIME: If the USA format is used, the length of the variable must not be

less than 8. This format does not include seconds.
If the ISO, EUR, or JIS format is used, the length of the variable must not be
less than 5. If the length is 5, 6, or 7, the seconds part of the time is omitted
from the result and SQLWARN1 is set to 'W'. In this case, the seconds part of
the time is assigned to the indicator variable if one is provided, and, if the
length is 6 or 7, the value is padded with blanks so that it is a valid string
representation of a time.

– For a timestamp: The length of the variable must not be less than 19. If the
source is TIMESTAMP WITH TIME ZONE, the length of the variable must be
sufficient to include the time zone, truncation is not allowed.

130 SQL Reference

|

- If the length is between 19 and 31, the timestamp is truncated like a string,
which causes the omission of one or more digits of the fractional seconds
part of a timestamp.

- If the length is 20, the trailing decimal point is excluded so that the value is
a valid string representation of a timestamp with precision 0.

Row ID assignments
A row ID value can be assigned only to a column, parameter, or host variable with
a row ID data type.

For the value of the ROWID column, the column must be defined as GENERATED
BY DEFAULT and the column must have a unique, single-column index. The value
that is specified for the column must be a valid row ID value that was previously
generated by DB2.

XML assignments
XML data can be assigned to a column, but when the target is not a column, the
XML data type can only be assigned to another XML data type.

When the target is a column (for example, data change statements), the source can
be the XML data type, or CHAR, VARCHAR, CLOB, GRAPHIC, VARGRAPHIC,
DBCLOB, BINARY, VARBINARY, or BLOB data types. When the source is not
XML data, the source is implicitly parsed as if the XMLPARSE function is invoked
with the STRIP WHITESPACE option. If the source data is graphic data, the
encoding scheme must be Unicode.

All other data types cannot be assigned to a target of the XML data type.

User-defined type assignments
User-defined type assignments include distinct type assignments and array
assignments.

Distinct type assignments
The rules that apply to the assignments of distinct types to host variables are
different than the rules for all other assignments that involve distinct types.

Assignments to host variables: The assignment of distinct type to a host variable is
based on the source data type of the distinct type. Therefore, the value of a distinct
type is assignable to a host variable only if the source data type of the distinct type
is assignable to the host variable.

Example: Assume that distinct type AGE was created with the following SQL
statement:

CREATE TYPE AGE AS SMALLINT;

When the statement was executed, DB2 also generated these cast functions:
AGE (SMALLINT) RETURNS AGE
AGE (INTEGER) RETURNS AGE
SMALLINT (AGE) RETURNS SMALLINT

Next, assume that column STU_AGE was defined in table STUDENTS with distinct
type AGE. Now, consider this valid assignment of a student's age to host variable
HV_AGE, which has an INTEGER data type:

SELECT STU_AGE INTO :HV_AGE FROM STUDENTS WHERE STU_NUMBER = 200;

Chapter 2. Language elements 131

|

|
|

|
|
|

|
|
|
|

|
|

|

|

|
|
|

|
|
|

|

The distinct type value is assignable to host variable HV_AGE because the source
data type of the distinct type (SMALLINT) is assignable to the host variable
(INTEGER). If distinct type AGE had been based on a character data type such as
CHAR(5), the above assignment would be invalid because a character type cannot
be assigned to an integer type.

Assignments other than to host variables: A distinct type can be the source or
target of an assignment. Assignment is based on whether the data type of the
value to be assigned is castable to the data type of the target. (Table 15 on page 112
shows which casts are supported when a distinct type is involved). Therefore, a
distinct type value can be assigned to any target other than a host variable when:
v The target of the assignment has the same distinct type, or
v The distinct type is castable to the data type of the target

Any value can be assigned to a distinct type when:
v The value to be assigned has the same distinct type as the target, or
v The data type of the assigned value is castable to the target distinct type

Example: Assume that the source data type for distinct type AGE is SMALLINT:
CREATE TYPE AGE AS SMALLINT;

Next, assume that two tables TABLE1 and TABLE2 were created with four
identical column descriptions:
AGECOL AGE
SMINTCOL SMALLINT
INTCOL INTEGER
DECCOL DEC(6,2)

Using the following SQL statement and substituting various values for X and Y to
insert values into various columns of TABLE1 from TABLE2, the following table
shows whether the assignments are valid. DB2 uses assignment rules in this
INSERT statement to determine if X can be assigned to Y.

INSERT INTO TABLE1 (Y)
SELECT X FROM TABLE2;

Table 24. Assessment of various assignments for example INSERT statement

X (column
in TABLE2)

Y (column
in TABLE1) Valid Reason

AGECOL AGECOL Yes Source and target are same distinct type

SMINTCOL AGECOL Yes SMALLINT can be cast to AGE

INTCOL AGECOL Yes INTEGER can be cast to AGE (because
AGE's source type is SMALLINT)

DECCOL AGECOL No DECIMAL cannot be cast to AGE

AGECOL SMINTCOL Yes AGE can be cast to its source type of
SMALLINT

AGECOL INTCOL No AGE cannot be cast to INTEGER

AGECOL DECCOL No AGE cannot be cast to DECIMAL

Array type assignments
An array value can only be assigned to a variable or parameter with a compatible
user-defined array type.

132 SQL Reference

|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|

|
|

|
|
|
|

|
|
|
|

|
|

||

|
|
|
|||

||||

||||

||||
|

||||

||||
|

||||

||||
|

|
|
|

The following values can be assigned to an array variable:
v The null value.
v The value of an array with a user-defined array type, where the source and

target arrays have the same user-defined array type. The source value can be an
array variable, an invocation of the TRIM_ARRAY function, an invocation of the
ARRAY_DELETE function, or a CAST specification. The value of an ordinary
array variable or parameter can only be assigned to an ordinary array target.
The value of an associative array variable or parameter can only be assigned to
an associative array target.

v The value of an array without a user-defined array type. The result of an
invocation of aggregate built-in function ARRAY_AGG or of an array constructor
is an array without an associated user-defined data type.
For an assignment with a FETCH statement, the elements in the source array
value must have the same data type as the elements of the user-defined array
type of the target array. The index values of the source array value must have
the same data type as the index of the user-defined array type of the target
array.
For an assignment that is the result of a statement other than FETCH, the source
array value is implicitly cast to the target array type.

Assignment of a value to an array element might affect the cardinality of the array,
and might result in initializing other new array elements with the null value.
Suppose that A is the target array variable, c is the cardinality of array A, idx is an
expression that is used as the array index, and SV is the source value. DB2 assigns
the values to the elements of the array as follows:
v If array A is the null value, A is set to an empty array.
v If A is an ordinary array:

– If idx is less than or equal to c, the value in the element of A with array index
idx is replaced by the value of SV.

– If idx greater than c:
- Each element of A with array index i, for every i that is greater than c and

less than idx, is set to the null value.
- The element of A with array index idx is set to the value of SV.
- The cardinality of A is set to idx.

v If A is an associative array:
– If idx matches an existing value of the array index for A, the value of the

element with array index idx is replaced by the value of SV.
– If idx does not match an existing value of the array index for A:

- The element of A with array index idx is set to the value of SV.
- The cardinality of A is incremented by 1.

The following values can be assigned to an element of an array variable:
v The null value
v The value of an expression, where the data type of the expression is assignable

to the data type of the elements in the target array

Examples

Example: Assigning an array to another array
Suppose that arrays PHONELIST and HOMEPHONELIST are defined with
the same user-defined array type named PLIST. PLIST is defined with

Chapter 2. Language elements 133

|

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|

|

|
|

|

|
|

|

|

|

|
|

|

|

|

|

|

|
|

|

|
|
|

VARCHAR(12) elements. The following statement assigns the values of the
HOMEPHONELIST array to the PHONELIST array:
SET PHONELIST = HOMEPHONELIST;

Example: Assigning elements of an array to another array
Suppose that array V is defined with user-defined type MYARRAY. The
following statement assigns the values 1, 2, and 3 to array V using an
array constructor.
SET V = ARRAY[1,2,3];

This statement is equivalent to the following statement:
SET V = CAST(ARRAY[1,2,3] AS MYARRAY);

Example: Assigning values from a column to an array
Suppose that array V is defined with user-defined type MYARRAY. The
following statement assigns the values from the column C1 in table T to
array V using the ARRAY_AGG function.
SELECT ARRAY_AGG(C1) INTO V FROM T;

This statement is equivalent to the following statement:
SELECT CAST(ARRAY_AGG(C1) AS MYARRAY) INTO V FROM T;

Assignments to LOB locators
When a LOB locator is used, it can refer only to LOB data. If a LOB locator is used
for the first fetch of a cursor, LOB locators must be used for all subsequent fetches.

Numeric comparisons
Numbers are compared algebraically, that is, with regard to sign. For example, -2 is
less than +1. When numbers of different data types are compared, certain rules are
in effect as to how the comparison is performed.

If one number is an integer and the other is decimal, the comparison is made with
a temporary copy of the integer, which has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is
made with a temporary copy of one of the numbers that has been extended with
trailing zeros so that its fractional part has the same number of digits as the other
number.

If one number is double precision floating-point and the other is integer, decimal,
or single precision floating-point, the comparison is made with a temporary copy
of the other number which has been converted to double precision floating-point.
However, if a single precision floating-point number is compared with a
floating-point constant, the comparison is made with a single precision form of the
constant.

Two floating-point numbers are equal only if the bit configurations of their
normalized forms are identical.

If one number is DECFLOAT and the other number is integer, decimal, single
precision floating-point, or double precision floating-point, the comparison is made
with a temporary copy of the other number which has been converted to
DECFLOAT.

134 SQL Reference

|
|

|

|
|
|
|

|

|

|

|
|
|
|

|

|

|

|

If one number if DECFLOAT(16) and the other number is DECFLOAT(34), the
DECFLOAT(16) value is converted to DECFLOAT(34) before the comparison.

Additionally, the DECFLOAT data type supports both positive and negative zero.
Positive and negative zero have different binary representations, but the equal (=)
predicate will return true for comparisons of positive and negative zero.

The functions, COMPARE_DECFLOAT and TOTALORDER can be used to perform
comparisons at a binary level. For example, for a comparison of 2.0<>2.00.

The DECFLOAT data type also supports the specification of negative and positive
NaN (quiet and signaling), and negative and positive infinity. From an SQL
perspective, infinity = infinity, NaN = NaN, and sNaN = sNaN.

The following rules are the comparison rules for these special values:
v Infinity compares equal only to infinity of the same sign (positive or negative)
v NaN compares equal only to NaN of the same sign (positive or negative)
v sNaN compares equal only to sNaN of the same sign (positive or negative)

The ordering among the different special values is as follows: -NAN < -SNAN <
-INFINITY < 0 < INFINITY < SNAN <NAN

String comparisons
String comparisons can occur with binary string, character strings, and graphic
strings.

Binary string comparisons
Binary string comparisons are always performed according to the binary values.

Two binary strings are equal only if the lengths of the two strings are identical. If
the strings are equal up to the length of the shorter string length, the shorter string
is considered less than the longer string even when the remaining bytes in the
longer string are hexadecimal zeros. This is illustrated in the following table:

Table 25. Binary string comparison where one operand is longer because of hexadecimal
zeros

Hexadecimal value of the
first operand relationship

Hexadecimal value of the
second operand

X'4100' < X'410000'

X'4100' < X'42'

X'4100' = X'4100'

X'4100' > X'41'

X'4100' > X'400000'

Binary strings cannot be compared to character strings (even FOR BIT DATA)
unless the character string is cast to a binary string.

Character and graphic string comparisons
Two strings are compared by comparing the corresponding bytes of each string. If
the strings do not have the same length, the comparison is made with a temporary
copy of the shorter string that has been padded on the right with blanks so that it
has the same length as the other string.

Chapter 2. Language elements 135

Two strings are equal if they are both empty or if all corresponding bytes are
equal. An empty string is equal to a blank string. If two strings are not equal, their
relationship (that is, which has the greater value) is determined by the comparison
of the first pair of unequal bytes from the left end of the strings. This comparison
is made according to the collating sequence associated with the encoding scheme
of the data. For ASCII data, characters A through Z (both upper and lowercase)
have a greater value than characters 0 through 9. For EBCDIC data, characters A
through Z (both upper and lowercase) have a lesser value than characters 0
through 9.

Varying-length strings with different lengths are equal if they differ only in the
number of trailing blanks. In operations that select one value from a collection of
such values, the value selected is arbitrary. The operations that can involve such an
arbitrary selection are DISTINCT, MAX, MIN, and references to a grouping
column. See the description of GROUP BY for further information about the
arbitrary selection involved in references to a grouping column.
Related concepts:

Objects with different CCSIDs in the same SQL statement (DB2
Internationalization Guide)

String comparisons with field procedures:

The rules for string comparisons with field procedures depend on the values being
compared.

If a column with a field procedure is compared with the value of a variable or a
constant, the variable or constant is encoded by the field procedure before the
comparison is made. If the comparison operator is LIKE, the variable or constant is
not encoded and the column value is decoded.

If a column with a field procedure is compared with another column, that column
must have the same field procedure and both columns must have the same CCSID
set. The comparison is performed on the encoded form of the values in the
columns. If the encoded values are numeric, their data types must be identical; if
they are strings, their data types must be compatible.

If two encoded strings of different lengths are compared, the shorter is temporarily
padded with encoded blanks so that it has the same length as the other string.

In a CASE expression, if a column with a field procedure is used as the
result-expression in a THEN or ELSE clause, all other columns that are used as
result-expressions must have the same field procedure. Otherwise, no column used
in a result-expression can name a field procedure.

Datetime comparisons
A date, time, or timestamp value can be compared with another value of the same
data type, a datetime constant of the same data type, or with a string
representation of a value of that data type. Additionally, a TIMESTAMP WITHOUT
TIME ZONE value can be compared with a TIMESTAMP WITH TIME ZONE
value.

All comparisons are chronological, which means the further a point in time is from
January 1, 0001, the greater the value of that point in time. The time 24:00:00
compares greater than the time 00:00:00.

136 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.char/src/tpc/db2z_objdiffccsid.htm#db2z_objdiffccsid
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.char/src/tpc/db2z_objdiffccsid.htm#db2z_objdiffccsid

Comparisons that involve TIME values and string representations of time values
always include seconds. If the string representation omits seconds, zero seconds
are implied.

Comparisons that involve timestamp values are evaluated according to the
following rules:
v When comparing timestamp values with different precisions, the higher

precision is used for the comparison and any missing digits for fractional
seconds are assumed to be zero.

v When comparing a TIMESTAMP WITH TIME ZONE value to a TIMESTAMP
WITHOUT TIME ZONE value, the TIMESTAMP WITHOUT TIME ZONE value
is cast to TIMESTAMP WITH TIME ZONE before the comparison is made.

v When comparing two TIMESTAMP WITH TIME ZONE values, the comparison
is made using the UTC representations of the values. Two TIMESTAMP WITH
TIME ZONE values are considered equal if they represent the same instance in
UTC, regardless of the time zone offsets that are stored in the values. For
example, '1999-04-15-08.00.00-08:00' (8:00 a.m. Pacific Standard Time) is the same
as '1999-04-15-11.00.00-05:00' (11:00 a.m. Eastern Standard Time).

v When comparing a timestamp value with a string representation of a timestamp,
the string representation is first converted to a the data type of the timestamp
operand. With the except that the converted value has a precision of 12. If the
timestamp operand is TIMESTAMP WITHOUT TIME ZONE, the string must not
contain a specification of time zone.

v Timestamp comparisons are chronological without regard to representations that
might be considered equivalent. For example, the following predicate is true:
TIMESTAMP(’1990-02-23-00.00.00’) > ’1990-02-22-24.00.00’

Example 1: Table TABLE1 has 2 columns: C1, which is defined as TIMESTAMP
WITH TIME ZONE; and C2, which is defined as TIMESTAMP WITHOUT TIME
ZONE:
CREATE TABLE TABLE1 (C1 TIMESTAMP WITH TIME ZONE, C2 TIMESTAMP);

A row is inserted into the table with the following INSERT statement. The input
values are provided by character-string representations of a timestamp with a time
zone.
INSERT INTO TABLE1 VALUES (’2007-11-05-08.00.00-08:00’, ’2007-11-05-08.00.00’);

Assuming that the implicit time zone is -5:00, the following SELECT statement
will not return any rows. The string representation of the TIMESTAMP WITHOUT
TIME ZONE value is cast to a TIMESTAMP WITH TIME ZONE value, which
results in a timestamp with time zone value of ’2007-11-05-08.00.00-05:00’ for
column C2. The comparison predicate is false because the two values are not equal.
SELECT 1 FROM TABLE1 WHERE C1 = C2;

Example 2: When a TIMESTAMP WITHOUT TIME ZONE value is compared with
a string representation of a TIMESTAMP WITHOUT TIME ZONE or a
TIMESTAMP WITH TIME ZONE value, the string representation is cast to
TIMESTAMP WITHOUT TIME ZONE (regardless of whether the string contains a
time zone). The comparison is performed using the two TIMESTAMP WITHOUT
TIME ZONE values. Assume that string_hv contains a timestamp with time zone
value of ’2007-11-05-08.00.00-08:00’. The string value is cast to a TIMESTAMP
WITHOUT TIME ZONE value of ’2007-11-05-08.00.00’, which is compared with

Chapter 2. Language elements 137

the value that is stored in column C2. The following SELECT statement returns a
single row because a row exists in the table with a timestamp without time zone
value of ’2007-11-05-08.00.00’.
SELECT 1 FROM TABLE1 WHERE C2 = :string_hv;

Row ID comparisons
A value with a row ID type can only be compared to another row ID value.

The comparison of the row ID values is based on their internal representations.
The maximum number of bytes that are compared is 17 bytes, which is the number
of bytes in the internal representation. Therefore, row ID values that differ in bytes
beyond the 17th byte are considered to be equal.

XML comparisons
The XML data type cannot be directly compared to any data type, including the
XML data type. The method for doing comparison is through the use of the
XMLEXISTS predicate.

Conversion rules for comparisons
When two strings are compared, one of the strings is first converted, if necessary,
to the coded character set of the other string. Conversion is necessary only if
certain rules apply.

Conversion is necessary only if all of the following are true:
v The CCSIDs of the two strings are different.
v Neither CCSID is X'FFFF' (neither string is defined as a binary string).
v The string selected for conversion is neither null nor empty.
v The following conversion tables (Table 27 on page 140 or Table 28 on page 140)

indicate when conversion is necessary.

The string selected for conversion depends on the type of the operands. For the
purpose of CCSID determination, string expressions in a statement are divided into
6 types, as described in the following table.

Table 26. Operand types

Type of operand CCSID of the operand type

Columns CCSID from the containing table

String constants CCSID associated with the application encoding scheme. For dynamic
statements, this is the CURRENT APPLICATION ENCODING SCHEME
special register. For static statements, this is the ENCODING bind option or
the APPLICATION ENCODING SCHEME option of the CREATE
PROCEDURE or ALTER PROCEDURE statement for native SQL
procedures..

Special registers CCSID associated with the application encoding scheme. For dynamic
statements, this is the CURRENT APPLICATION ENCODING SCHEME
special register. For static statements, this is the ENCODING bind option or
the APPLICATION ENCODING SCHEME option of the CREATE
PROCEDURE or ALTER PROCEDURE statement for native SQL
procedures.

Host variables CCSID specified in the DECLARE VARIABLE statement, associated with
the application encoding scheme, or specified in SQLDAID or SQLDA

Global variables CCSID of UNICODE

138 SQL Reference

||

Table 26. Operand types (continued)

Type of operand CCSID of the operand type

Derived value based on a column CCSID derived from the source of the derived value. A derived value
based on a column is an expression whose source is directly or indirectly
based on columns. The CCSID of such an expression is the CCSID derived
from its source.

For example:

v The CCSID of SUBSTR(column_1, 5, length(column_2)) is the CCSID of
column_1. Note that the CCSID of column_2 has no influence on the
CCSID of SUBSTR.

v The CCSID of column_1 || ’ABC’ is the CCSID of column_1, derived
from the rules described in Table 27 on page 140.

v The CCSID of column_1 || GX’42C1’ is the DBCS CCSID from the
CCSID set of column_1, derived from the rules described in Table 27 on
page 140 and Table 28 on page 140.

v The CCSID of COALESCE(EBCDIC_column_1, ASCII_column_1) is the
UNICODE CCSID, derived from the rules described in Table 27 on page
140.

v The CCSID of CAST(string_column_1 AS GRAPHIC(10)) is the DBCS
CCSID from the CCSID set of string_column_1.

v The CCSID of CAST(EBCDIC_string_column_1 AS VARCHAR(10) CCSID
UNICODE) is the UNICODE CCSID derived from the rules described in
Table 27 on page 140.

v The CCSID of CASE WHEN(1=1) THEN ’1’ ELSE ASCII_column_1 END is the
CCSID of ASCII_column_1, derived from the rules described in Table 27
on page 140.

v The CCSID of CASE WHEN(1=1) THEN EBCDIC_column_1 ELSE
ASCII_column_1 END is the UNICODE CCSID derived from the rules
described in Table 27 on page 140.

v The CCSID of a scalar fullselect (SELECT column_1 FROM table_1) is the
CCSID of column_1.

Derived value not based on a column CCSID derived from the source of the derived value. A derived value not
based on a column is an expression whose source is not directly or
indirectly based on any column. The CCSID of such an expression is the
CCSID derived from its source.

v For example, the CCSID of SUBSTR(’ABDC’, 1, length(’AB")) is the
CCSID of the string constant 'ABCD'. Note that the CCSID of column_1
has no influence on the CCSID of SUBSTR.

v the CCSID of user_defined_function1(column1) is the output CCSID
defined by user_defined_function1.

v the CCSID of the cast function of distinct type, shape, is the CCSID of
distinct type, shape.

v the CCSID of CURRENT SQLID || UX’0041’ is the UNICODE DBCS
CCSID, derived from the rules described in Table 27 on page 140 and
Table 28 on page 140.

v the CCSID of CAST(’abc’ as CHAR(10) CCSID UNICODE) is the UNICODE
CCSID.

The following table shows which operand supplies the target CCSID set when the
comparison is part of an SQL statement involving multiple tables with different
CCSID sets.

Chapter 2. Language elements 139

Table 27. Operand that supplies the CCSID for character conversion

First operand

Second operand

Column
value

String
constant

Special
register

Host
variable

Derived
value
based on a
column

Derived
value not
based on a
column

Column value 1
first

operand
first

operand
first

operand, 2 1
first

operand

String constant
second

operand 1 1 1
second

operand 1

Special register
second

operand 1 1 1
second

operand 1

Host variable
second

operand 1 1 1
second

operand, 2 1

global variable
second

operand

Derived value
based on a
column 1

first
operand

first
operand

first
operand, 2 1

first
operand

Derived value
not based on a
column

second
operand 1 1 1

second
operand 1

Note:

1. If the CCSID sets are different, both operands are converted, if necessary, to Unicode.
SBCS and Mixed are converted to UTF-8. DBCS is converted to UTF-16. See the next
table to determine which operand supplies the CCSID for character conversion.

2. If the host variable is Unicode graphic, and the value of the field MIXED DATA on
installation panel DSNTIPF is NO, the column or the derived value based on a column
supplies the target CCSID set.

The following table shows which operand is selected for conversion when both
operands are based on a column or are not based on a column as represented in
the previous table.

Table 28. Operand that supplies the CCSID for character conversion when both operands are
based or not based on a column

First operand

Second operand

SBCS data Mixed data DBCS data

SBCS data second operand1 second operand

Mixed data first operand1 second operand

DBCS data first operand first operand

Note:

1. For ASCII and EBCDIC data, the conversion depends on the value of the field MIXED
DATA on installation panel DSNTIPF at the DB2 that does the comparison. If MIXED
DATA = YES, the SBCS operand is converted to MIXED. If MIXED DATA = NO, the
MIXED operand is converted to SBCS

For example, assume a comparison of the form:
string-constant-SBCS =derived-value-not-based-on-column-DBCS

140 SQL Reference

|
|
||||||

Assume that the operands have different encoding schemes. First look at Table 27
on page 140. The relevant table entry is in the third row and second column. The
value for this entry shows that if the CCSID sets are different, the operands are
converted to Unicode. The first operand (string-constant-SBCS) is converted to
UTF-8 (Mixed) if it is not already Unicode. In addition, the second operand
(derived-value-not-based-on-column-DBCS) is converted to UTF-16 (Unicode
DBCS) if necessary. After the operands have been converted to Unicode, Table 28
on page 140 is used to determine which operand supplies the specific CCSID for
the conversion. The relevant table entry is in the second row and third column. It
indicates that the second operand (derived-value-not-based-on-column-DBCS)
determines the CCSID because DBCS data takes precedence over Mixed data.

An error occurs if a character of the string cannot be converted, the SYSSTRINGS
table is used but contains no information about the pair of CCSIDs of the operands
being compared, or DB2 cannot do the conversion through z/OS support for
Unicode. A warning occurs if a character of the string is converted to a substitution
character.

A derived value based on a column is an expression that includes columns that
affects the result CCSID of the expression. For example, in the expression
COL1||’abc’, COL1 determines the result CCSID. Therefore, the expression
COL1||’abc’ is considered to be a derived value based on a column that continues
to give the column precedence in any further comparisons. The expression CASE
WHEN COL1 > 1 THEN ’abc’ ELSE ’def’ END contains a column that does not affect
the result CCSID of the expression and is therefore not considered to be a derived
value based on a column.

The following table defines which expressions are considered to be a derived value
based on a column.

Table 29. Derived values based on a column

Expression Condition

expression1 || expression2 expression1 or expression2 is a column or a derived
value based on a column

CASE when-clause THEN result-expression ELSE result-expression
END

any result-expression is a string-expression that is a
column or derived value based on a column

CAST(expression as data-type) expression is a string-expression that is a column or a
derived value based on a column and data-type is a
string data type

Scalar-fullselect: (SELECT expression FROM table) expression is a string-expression that is a column or a
derived value based on a column and data-type is a
string data type

When a statement contains multiple CCSID sets, if the length of one of the strings
changes after CCSID conversion, the string becomes a varying-length string. That
is, the data type becomes VARCHAR, CLOB, VARGRAPHIC, or DBCLOB. The
following table shows the worse case resulting lengths of CCSID conversion, where
X is length in bytes.

Chapter 2. Language elements 141

Table 30. Worst case result length of CCSID conversion, where X represents LENGTH(string in bytes)

From CCSID

To CCSID

EBCDIC ASCII Unicode

SBCS Mixed DBCS SBCS Mixed DBCS SBCS UTF-8 UTF-16

EBCDIC

SBCS X X X*21 X X X*21 X1 X*3 X*2

Mixed X X X*21 X X X*21 X1 X*3 X*2

DBCS X*0.51 X+2 X X*0.51 X X X*0.5 X*1.5 X

ASCII

SBCS X X X*21 X X X*21 X1 X*3 X*2

Mixed X X*1.8 X*21 X X X*21 X1 X*3 X*2

DBCS X*0.51 X+2 X X*0.51 X X X*0.5 X*1.5 X

Unicode

SBCS X X X*2 X X X*2 X X X*2

UTF-8 X X*1.25 X X X X X X X*2

UTF-16 X*0.5 X+2 X X*0.5 X X X*0.5 X*1.5 X

Note:

1. Because of the high probability of data loss, IBM does not provide conversion tables for this combination of two
CCSIDs and data subtypes.

User-defined type comparisons
User-defined type comparisons include distinct type comparisons and array
comparisons.

Distinct type comparisons
A value with a distinct type can only be compared to another value with exactly
the same type because distinct types have strong typing, which means that a
distinct type is compatible only with its own type.

To compare a distinct type to a value with a different data type, the distinct type
value must be cast to the data type of the comparison value or the comparison
value must be cast to the distinct type. For example, because constants are built-in
data types, a constant can be compared to a distinct type value only if it is first
cast to the distinct type or vice versa.

The following table shows examples of valid and invalid comparisons, assuming
the following SQL statements were used to define two distinct types AGE_TYPE
and CAMP_DATE and table CAMP_ROSTER table.

CREATE TYPE AGE_TYPE AS INTEGER;
CREATE TYPE CAMP_DATE AS DATE;
CREATE TABLE CAMP_ROSTER

(NAME VARCHAR(20),
ATTENDEE_NUMBER INTEGER NOT NULL,
AGE AGE_TYPE,
FIRST_CAMP_DATE CAMP_DATE,
LAST_CAMP_DATE CAMP_DATE,
BIRTHDATE DATE);

Table 31. Examples of valid and invalid comparisons involving distinct types

SQL statement Valid Reason

Distinct types with distinct types

SELECT * FROM CAMP_ROSTER
WHERE FIRST_CAMP_DATE < LAST_CAMP_DATE;

Yes Both values are the same distinct type.

142 SQL Reference

|

|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

||

|||

|

|
|
||

Table 31. Examples of valid and invalid comparisons involving distinct types (continued)

SQL statement Valid Reason

Distinct types with columns of the same source data type

SELECT * FROM CAMP_ROSTER
WHERE AGE > ATTENDEE_NUMBER;

No A distinct type cannot be compared to integer.

SELECT * FROM CAMP_ROSTER
WHERE INTEGER(AGE) > ATTENDEE_NUMBER;

SELECT * FROM CAMP_ROSTER
WHERE CAST(AGE AS INTEGER) > ATTENDEE_NUMBER;

Yes The distinct type is cast to an integer, making the
comparison of two integers.

SELECT * FROM CAMP_ROSTER
WHERE AGE > AGE_TYPE(ATTENDEE_NUMBER);

SELECT * FROM CAMP_ROSTER
WHERE AGE > CAST(ATTENDEE_NUMBER as AGE_TYPE);

Yes Integer ATTENDEE_NUMBER is cast to the
distinct type AGE_TYPE, making both values the
same distinct type.

Distinct types with constants

SELECT * FROM CAMP_ROSTER
WHERE AGE IN (15,16,17);

No A distinct type cannot be compared to a
constant.

SELECT * FROM CAMP_ROSTER
WHERE INTEGER(AGE) IN (15,16,17);

Yes The distinct type is cast to the data type of
constants, making all the values in the
comparison integers.

SELECT * FROM CAMP_ROSTER
WHERE AGE IN
(AGE_TYPE(15),AGE_TYPE(16),AGE_TYPE(17));

Yes Constants are cast to distinct type AGE_TYPE,
making all the values in the comparison the
same distinct type.

SELECT * FROM CAMP_ROSTER
WHERE FIRST_CAMP_DATE > ’06/12/99’;

No A distinct type cannot be compared to a
constant.

SELECT * FROM CAMP_ROSTER
WHERE FIRST_CAMP_DATE >
CAST(’06/12/99’ AS CAMP_DATE);

No The string constant '06/12/99', a VARCHAR data
type, cannot be cast directly to distinct type
CAMP_DATE, which is based on a DATE data
type. As illustrated in the next row, the constant
must be cast to a DATE data type and then to
the distinct type.

SELECT * FROM CAMP_ROSTER
WHERE FIRST_CAMP_DATE >
CAST(DATE(’06/12/1999’) AS CAMP_DATE);

Yes The string constant '06/12/99' is cast to the
distinct type CAMP_DATE, making both values
the same distinct type. To cast a string constant
to a distinct type that is based on a DATE, TIME,
or TIMESTAMP data type, the string constant
must first be cast to a DATE, TIME, or
TIMESTAMP data type.

Distinct types with host variables

SELECT * FROM CAMP_ROSTER
WHERE AGE BETWEEN :HV_INTEGER AND :HV_INTEGER2;

No The host variables have integer data types. A
distinct type cannot be compared to an integer.

SELECT * FROM CAMP_ROSTER
WHERE AGE
BETWEEN CAST(:HV_INTEGER AS AGE_TYPE)
AND AGE_TYPE(:HV_INTEGER2);

Yes The host variables are cast to distinct type
AGE_TYPE, making all the values the same
distinct type.

SELECT * FROM CAMP_ROSTER
WHERE FIRST_CAMP_DATE > :HV_VARCHAR;

No The host variable has a VARCHAR data type. A
distinct type cannot be compared to a
VARCHAR.

Chapter 2. Language elements 143

|

|||

|

|
|
||

|
|

|
|

||
|

|
|

|
|

||
|
|

|

|
|
||
|

|
|
||
|
|

|
|
|

||
|
|

|
|
||
|

|
|
|

||
|
|
|
|
|

|
|
|

||
|
|
|
|
|
|

|

|
|
||
|

|
|
|
|

||
|
|

|
|
||
|
|

Table 31. Examples of valid and invalid comparisons involving distinct types (continued)

SQL statement Valid Reason

SELECT * FROM CAMP_ROSTER
WHERE FIRST_CAMP_DATE >
CAST(DATE(:HV_VARCHAR) AS CAMP_DATE);

Yes The host variable is cast to the distinct type
CAMP_DATE, making both values the same
distinct type. To cast a VARCHAR host variable
to a distinct type that is based on a DATE, TIME,
or TIMESTAMP data type, the host variable
must first be cast to a DATE, TIME, or
TIMESTAMP data type.

Array type comparisons
Comparisons of array values are not supported.

Elements of arrays can be compared based on the comparison rules for the data
types of the elements of the arrays.

Rules for result data types
Rules that are applied to the operands of an operation determine the data type of
the result. Certain rules apply in certain situations and apply depending on the
data type of operands.

The rules apply to:
v Corresponding columns in set operations (UNION, INTERSECT, or EXCEPT)
v Result expressions of a CASE expression
v Arguments of the scalar functions COALESCE, IFNULL, MAX, and MIN
v Expression values of the IN list of an IN predicate
v Expression values for the elements in an array constructor
v Expression values for the arguments for a collection-derived table (UNNEST

specification)
v Arguments of a BETWEEN predicate, except if the data types of all operands are

numeric
v Arguments for the aggregation group ranges in OLAP specifications

For the result data type of expressions that involve the operators '/', '*', '+' and '-',
see “Expressions with arithmetic operators” on page 243.

For the result data type of expressions that involve the CONCAT operator, see
“Expressions with the concatenation operator” on page 250.

Evaluation of the operands of an operation determines the data type of the result.
If an operation has more than one pair of operands, DB2 determines the result type
of the first pair, uses this result type with the next operand to determine the next
result type, and so on. The last intermediate result type and the last operand
determine the result type of the operation.

With the exception of the COALESCE function, the result of an operation can be
null unless the operands do not allow nulls.

If the data type and attributes of any operand column are not the same as those of
the result, the operand column values are converted to conform to the data type
and attributes of the result. The conversion operation is exactly the same as if the
values were assigned to the result. For example:

144 SQL Reference

|

|||

|
|
|

||
|
|
|
|
|
|
|

|
|

|
|

|

|
|

v If one operand column is CHAR(10), and the other operand column is CHAR(5),
the result is CHAR(10), and the values derived from the CHAR(5) column are
padded on the right with five blanks.

v If the whole part of a number cannot be preserved then an error is returned.
Related concepts:
“Conversion rules for comparisons” on page 138

Numeric operands
Numeric types are compatible only with other numeric types.

Table 32. Result data types with numeric operands

One operand Other operand Data type of the result

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

INTEGER SMALLINT INTEGER

BIGINT SMALLINT BIGINT

BIGINT INTEGER BIGINT

BIGINT BIGINT BIGINT

DECIMAL(w,x) SMALLINT
DECIMAL(p,x) where
p = x+max(w-x,5)1

DECIMAL(w,x) INTEGER
DECIMAL(p,x) where
p = x+max(w-x,11)1

DECIMAL(w,x) BIGINT
DECIMAL(p,x) where
p = x+max(w-x,19)1

DECIMAL(w,x) DECIMAL(y,z)
DECIMAL(p,s) where
p = max(x,z)+max(w-x,y-z)1s = max(x,z)

REAL REAL REAL

REAL DECIMAL, BIGINT,
INTEGER, or
SMALLINT

DOUBLE

REAL BIGINT DOUBLE

DOUBLE DOUBLE, REAL,
DECIMAL, BIGINT,
INTEGER, or
SMALLINT

DOUBLE

DECFLOAT(n) SMALLINT DECFLOAT(n)

DECFLOAT(n) INTEGER DECFLOAT(n)

DECFLOAT(n) BIGINT DECFLOAT(34)

DECFLOAT(n) DECIMAL(<=16,s) DECFLOAT(n)

DECFLOAT(n) DECIMAL(>16,s) DECFLOAT (34)

DECFLOAT(n) REAL DECFLOAT(n)

DECFLOAT(n) DOUBLE DECFLOAT(n)

DECFLOAT(n) DECFLOAT(m) DECFLOAT(max(n,m))

Chapter 2. Language elements 145

Table 32. Result data types with numeric operands (continued)

One operand Other operand Data type of the result

Notes:

1. Precision cannot exceed 31.

Character and graphic string operands
Character and graphic strings are compatible with other character and graphic
strings as long as there is a conversion between their corresponding CCSIDs.

Table 33. Result data types with string operands

One operand Other operand Data type of the result

CHAR(x) CHAR(y) CHAR(z) where z = max(x,y)

GRAPHIC(x) CHAR(y) VARGRAPHIC(y) where y > maximum
length of a graphic

GRAPHIC(x) CHAR(y) GRAPHIC(z) where z = max(x,y)

VARCHAR(x) VARCHAR(y) or
CHAR(y)

VARCHAR(z) where z = max(x,y)

VARCHAR(x) GRAPHIC(y) VARGRAPHIC(z) where z = max(x,y)

VARGRAPHIC(x) VARGRAPHIC(y),
GRAPHIC(y),
VARCHAR(y), or
CHAR(y)

VARGRAPHIC(z) where z = max(x,y)

CLOB(x) CLOB(y), VARCHAR(y),
or CHAR(y)

CLOB(z) where z = max(x,y)

CLOB(x) GRAPHIC(y) or
VARGRAPHIC(y)

DBCLOB(z) where z = max(x,y)

DBCLOB(x) CHAR(y),
VARCHAR(y), CLOB(y),
GRAPHIC(y),
VARGRAPHIC(y), or
DBCLOB(y)

DBCLOB(z) where z = max(x,y)

Character string subtypes are determined as indicated in the following table:

Table 34. Result data types with character string operands

One operand Other operand Data type of the result

Bit data Mixed, SBCS, or bit
data

Bit data

Mixed data Mixed or SBCS data Mixed data

SBCS data SBCS data SBCS data

Binary string operands
Binary strings are compatible with other binary strings. Binary strings include
BINARY, VARBINARY, and BLOB.

Table 35. Result data types with binary string operands

One operand Other operand Data type of the result

BINARY(x) BINARY(y) BINARY(z) where z = max(x,y)

146 SQL Reference

Table 35. Result data types with binary string operands (continued)

One operand Other operand Data type of the result

VARBINARY(x) BINARY(y) or
VARBINARY(y)

VARBINARY(z) where z = max(x,y)

BLOB(x) BINARY(y),
VARBINARY(y), or
BLOB(y)

BLOB(z) where z = max(x,y)

Datetime operands
A date, time, or timestamp value is compatible with another value of the same
type or any string expression that contains a valid string representation of the
same type.

A DATE type is compatible with another DATE type or any string expression that
contains a valid string representation of a date. A string representation is a value
that is a built-in character string data type or graphic string data type. A string
representation must not be a CLOB or DBCLOB and must have an actual length
that is not greater than 255 bytes. The data type of the result is DATE.

A TIME type is compatible with another TIME type or any string expression that
contains a valid string representation of a time. A string representation is a value
that is a built-in character string data type or graphic string data type. A string
representation must not be a CLOB or DBCLOB and must have an actual length
that is not greater than 255 bytes. The data type of the result is TIME.

A timestamp type is compatible with another timestamp type, a timestamp
constant, or any string expression that contains a valid string representation of a
timestamp. A string representation is a value that is a built-in character string data
type or graphic string data type. A string representation must not be a CLOB or
DBCLOB and must have an actual length that is not greater than 255 bytes. The
data type of the result is a timestamp as determined in the following table.

Table 36. Result data types with datetime operands

One operand Other operand Data type of the result

TIMESTAMP(x) WITHOUT
TIME ZONE

TIMESTAMP(y) WITHOUT
TIME ZONE

TIMESTAMP(max(x,y))
WITHOUT TIME ZONE

TIMESTAMP(x) WITHOUT
TIME ZONE

CHAR(y) or VARCHAR(y) TIMESTAMP(x) WITHOUT
TIME ZONE 1

TIMESTAMP(x) WITH TIME
ZONE

TIMESTAMP(y) WITH TIME
ZONE

TIMESTAMP(max(x,y)) WITH
TIME ZONE

TIMESTAMP(x) WITH TIME
ZONE

CHAR(y) or VARCHAR(y) TIMESTAMP(x) WITH TIME
ZONE

TIMESTAMP(x) WITH TIME
ZONE

TIMESTAMP(y) WITHOUT
TIME ZONE

TIMESTAMP(max(x,y)) WITH
TIME ZONE

Note: If one operand is TIMESTAMP(x) WITHOUT TIME ZONE and the other operand is
CHAR(y) or VARCHAR(y), the result data type is TIMESTAMP(x) WITHOUT TIME ZONE
even if the string representation contains a time zone.

If both operands are in the same encoding scheme, the result is in that encoding
scheme. Otherwise the result is in the application encoding scheme.

Chapter 2. Language elements 147

Row ID operands
A row ID data type is compatible only with itself. The result has a row ID data
type.

XML operands
XML data is compatible only with other XML data. The data type of the result is
XML.

Other data types can be treated as an XML data type by using the CAST
specification or XMLPARSE functions to cast character, graphic, or binary data to
XML data.

Distinct type operands
A distinct type is compatible only with itself. The data type of the result is the
distinct type.

Constants
A constant (also called a literal) specifies a value. Constants are classified as string
constants or numeric constants. Numeric constants are further classified as integer,
floating-point, decimal, or decimal floating-point. String constants are classified as
character, graphic, or binary.

All constants have the attribute NOT NULL. A negative sign in a numeric constant
with a value of zero is ignored, except for a decimal floating-point constant.

Constants have a built-in data type. Therefore, an operation that involves a
constant and a distinct type requires that the distinct type be cast to the built-in
data type of the constant or the constant be cast to the distinct type. For example,
see Table 31 on page 142, which contains an example of casting data types to
compare a constant to a distinct type.

Integer constants
An integer constant specifies an integer as a signed or unsigned number with a
maximum of 19 digits that does not include a decimal point.

The data type of an integer constant is large integer if its value is within the range
of a large integer. The data type of an integer constant is big integer if its value is
outside the range of a large integer, but within the range of a big integer. A
constant that is defined outside the range of big integer values is considered a
decimal constant.

Examples:
64 -15 +100 32767 720176

In syntax diagrams, the term integer is used for a large integer constant that must
not include a sign.

Floating-point constants
A floating-point constant specifies a double-precision floating-point number as two
numbers separated by an E.

148 SQL Reference

The first number can include a sign and a decimal point. The second number can
include a sign but not a decimal point. The value of the constant is the product of
the first number and the power of 10 specified by the second number. It must be
within the range of floating-point numbers. The number of characters in the
constant must not exceed 30. Excluding leading zeros, the number of digits in the
first number must not exceed 17 and the number of digits in the second must not
exceed 2.

Examples: The following floating-point constants represent the numbers '150',
'200000', -0.22, and '500':

15E1 2.E5 -2.2E-1 +5.E+2

Decimal constants
A decimal constant is a signed or unsigned number of no more than 31 digits and
either includes a decimal point or is not within the range of binary integers.

The precision is the total number of digits, including those, if any, to the right of
the decimal point. The total includes all leading and trailing zeros. The scale is the
number of digits to the right of the decimal point, including trailing zeros.

Examples: The following decimal constants have, respectively, precisions and scales
of 5 and 2; 4 and 0; 2 and 0; and 23 and 2:
025.50 1000. -15. +375893333333333333333.33

Decimal floating-point constants
A decimal floating-point constant specifies a decimal floating-point number as two
numbers separated by an E. The first number can include a sign and a decimal
point. The second number can include a sign but not a decimal point.

The value of the constant is the product of the first number and the power of 10
specified by the second number. The value must be within the range of
DECFLOAT(34). The number of characters in the constant must not exceed 42.
Excluding leading zeros, the number of digits in the first number must not exceed
34 and the number of digits in the second number must not exceed 4.

A constant that is specified as two numbers separated by an E is a decimal-floating
point constant only is the value is outside the range of a floating-point constant. A
constant that is specified as a number that does not contain an E, and has more
than 31 digits, is also a decimal-floating point constant.

In addition to numeric constants, the following special values can be used to
specify decimal-floating point special values:
v INF or INFINITY - represents infinity
v NAN - represents quiet not-a-number
v SNAN - represents signaling not-a-number

The special values can be any combination of uppercase or lowercase letters and
can be preceded by an operational sign (+ or -).

SNAN results in a warning or exception when it is used in a numerical operation;
NAN does not. SNAN can be used in non-numerical operations without causing a
warning or exception. For example, SNAN can be used in the VALUES list of an
insert operation or as a constant used in a comparison in a predicate.

Chapter 2. Language elements 149

When the special values are used in a predicate, the following order of precedence
applies:
-NAN < -SNAN < -INFINITY < -0 < 0 < INFINITY < SNAN < NAN

Examples: The following decimal floating-point constants represent the numbers
123456789012345678, sNaN, and negative infinity:

123456789012345678E0 SNAN -INFINITY

When one of the special values is used in a context where it could be interpreted
as an identifier, such as a column name, cast a string constant that represents the
special value to decimal-floating point.
CAST (’snan’ AS DECFLOAT)
CAST (’INF’ AS DECFLOAT)
CAST (’Nan’ AS DECFLOAT)

Character string constants
A character string constant specifies a varying-length character string. There are two
forms of character string constant.
v A sequence of characters that starts and ends with a string delimiter, which is

either an apostrophe (') or a quotation mark ("). For the factors that determine
which is applicable, see “Apostrophes and quotation marks as string delimiters”
on page 330. This form of string constant specifies the character string contained
between the string delimiters. The number of bytes between the delimiters must
not be greater than 32704. The limit of 32704 refers to the length (in bytes) of the
UTF-8 representation of the string. If you produced the string in a CCSID other
than UTF-8 (for example, an EBCDIC CCSID), the length of the UTF-8
representation might differ from the length of the string's representation in the
source CCSID. Two consecutive string delimiters are used to represent one string
delimiter within the character string.

v An X followed by a sequence of characters that starts and ends with a string
delimiter. This form of a character string constant is also called a hexadecimal
constant. The characters between the string delimiters must be an even number
of hexadecimal digits. The number of hexadecimal digits must not exceed 32704.
A hexadecimal digit is a digit or any of the letters A through F. If the MIXED
DATA subsystem parameter is set to YES, hexadecimal digits in a hexadecimal
constant must be specified in upper case. Otherwise, an error might be returned
when SQL statements are processed. Under the conventions of hexadecimal
notation, each pair of hexadecimal digits represents a character. A hexadecimal
constant allows you to specify characters that do not have a keyboard
representation.

Examples:
’12/14/1985’ ’32’ ’DON’’T CHANGE’ X’FFFF’ ’’

The right most string in the example ('') represents an empty character string
constant, which is a string of zero length.

A character string constant is classified as mixed data if it includes a DBCS
substring. In all other cases, a character string constant is classified as SBCS data.
For information about the CCSID that is assigned to the constant, see
“Determining the encoding scheme and CCSID of a string” on page 47. A mixed
string constant can be continued from one line to the next only if the break occurs
between single byte characters. A Unicode string is always considered mixed
regardless of the content of the string.

150 SQL Reference

For Unicode, character constants can be assigned to UTF-8 and UTF-16. The form
of the constant does not matter. Typically, character string constants are used only
with character strings, but they also can be used with graphic UTF-16 data.
However, hexadecimal constants are just character data. Thus, hexadecimal
constants being used to insert data into UTF-16 data strings should be in UTF-8
format, not UTF-16 format. For example, if you wanted to insert the number 1 into
a UTF-16 column, you would use X'31', not X'0031'. Even though X'0031' is a
UTF-16 value, DB2 treats it as two separate UTF-8 code points. Thus, X'0031'
would become X'00000031'.

Binary string constants
A binary-string constant specifies a varying-length binary string.

A binary-string constant is formed by specifying a BX followed by a sequence of
characters that starts and ends with a string delimiter. The characters between the
string delimiters must be an even number of hexadecimal digits. The number of
hexadecimal digits must not exceed 32704.

A hexadecimal digit is a digit or any of the letters A through F (upper case or
lower case). Under the conventions of hexadecimal notation, each pair of
hexadecimal digits represents one byte. Note that this representation is similar to
the representation of the character-constant that uses the X'' form; however
binary-string constant and character-string constant are not compatible and the X''
form can not be used to specify a binary-string constant, just as the BX'' form
cannot be used to specify a character-string constant.

Examples of binary-string constants:
BX’0000’ BX’C141C242’ BX’FF00FF01FF’

Datetime constants
A datetime constant is a character string constant of a particular format.

Character-string constants are described under “Character string constants” on
page 150.

For information about the valid string formats, see “String representations of
datetime values” on page 101.

Typically, character-string constants are used to represent constant datetime values
in assignments and comparisons. However, the ANSI/ISO SQL standard form of a
datetime constant can be used to specifically denote the constant as a datetime
constant instead of a character-string constant. The format for the ANSI/ISO SQL
standard datetime constants are as follows:

DATE string-constant
string-constant must contain a value that conforms to one of the valid
formats for string representations of dates, subject to the following rules:
v leading blanks are not allowed.
v leading zeros can be omitted from the month and day elements of the

date. An implicit specification of 0 is assumed for any digit that is
omitted.

v leading zeros must be included for the year element of the date.
v trailing blanks can be included.

The data type of the value is DATE.

Chapter 2. Language elements 151

TIME string-constant
string-constant must contain a value that conforms to one of the valid
formats for string representations of times, subject to the following rules:
v leading blanks are not allowed.
v leading zeros can be omitted from the hour elements of the time.
v the seconds element of the time can be omitted.
v trailing blanks can be included.
v if the USA format is not used and the minutes and seconds are all zeros,

the hour can be 24.
v If the format is USA, the following additional rules apply:

– the minutes element of the time can be omitted. For example, 1 PM is
equivalent to 1:00 PM.

– the letters A, M, and P can be specified in lowercase.
– a single blank must precede the AM or PM.
– the hour must not be greater than 12 and cannot be 0 except when

the time is specified as 00:00 AM.

An implicit specification of 0 is assumed for any digit that is omitted.

The correspondence between the USA format and the ISO format (24-hour
clock) is as follows:
v 12:01 AM through 12:59 AM correspond to 00.01.00 through 00.59.00
v 01:00 AM through 11:59 AM correspond to 01.00.00 through 11.59.00
v 12:00 PM (noon) through 11:59 PM correspond to 12.00.00 through

23.59.00
v 12:00 AM (midnight) corresponds to 24.00.00
v 00:00 AM (midnight) corresponds to 00.00.00

The data type of the value is TIME.

TIMESTAMP string-constant
string-constant must contain a value that conforms to one of the formats
listed in the following tables, subject to the following rules:
v leading blanks are not allowed.
v trailing blanks can be included.
v leading zeros can be omitted from the month, day, hour, and time zone

hour elements of the timestamp. An implicit specification of 0 is
assumed for any digit that is omitted.

v leading zeros must be included for the minute, second, and time zone
minute elements of the timestamp

v the hour can be 24 if the minutes, seconds, and any fractional seconds
are all zeroes.

v the separator character that follows the seconds element can be omitted
if fractional seconds are not included.

v the number of digits of fractional seconds can vary from 0 to 12. An
implicit specification of 0 is assumed if fractional seconds are omitted.
The number of digits of fractional seconds determines the precision of
the timestamp value.

v an optional single blank can be included between the time and the time
zone elements.

v an optional time zone can be included, in one of the following formats:

152 SQL Reference

– ±th:tm, with values ranging from -24:00 to +24:00. A value of -0:00 is
treated the same as +0:00.

– ±th, with values ranging from -24 to +24 (an implicit specification of
00 is assumed for the time zone minute element)

– uppercase Z to specify UTC

The data type of the value depends on the content of the string constant
(where p is the number of digits of fractional seconds in the constant):
v TIMESTAMP(p) WITHOUT TIME ZONE if the content of the string

constant conforms to the rules in the Table 37 table.
v TIMESTAMP(p) WITH TIME ZONE if the content of the string

constant conforms to the rules in the Table 38 table.

Table 37. Formats used to specify a value for a data type of TIMESTAMP WITHOUT TIME
ZONE

Description
TIMESTAMP(0) WITHOUT
TIME ZONE 13

TIMESTAMP(p) WITHOUT
TIME ZONE 23

Blank between date and time
portions and colons in time
portion.

v yyyy-mm-dd hh:mm:ss

v yyyy-mm-dd hh:mm:ss.

yyyy-mm-dd
hh:mm:ss.nnnnnnnnnnnn

Minus sign between date and
time portions and periods in
time portion.

v yyyy-mm-dd-hh.mm.ss

v yyyy-mm-dd-hh.mm.ss.

yyyy-mm-dd-
hh.mm.ss.nnnnnnnnnnnn

Blank between date and time
portions and periods in time
portion.

v yyyy-mm-dd hh.mm.ss

v yyyy-mm-dd hh.mm.ss.

yyyy-mm-dd
hh.mm.ss.nnnnnnnnnnnn

Notes:

1. No fractional seconds; shown with and without optional trailing period after seconds

2. p is the number of digits of fractional seconds. nnnnnnnnnnnn can range from 1 to 12
instances of n

3. As an additional format, the character T can be substituted as the separator between the
date and time portions of the value.

Table 38. Formats used to specify a value for a data type of TIMESTAMP WITH TIME ZONE

Description
TIMESTAMP(0) WITH
TIME ZONE13

TIMESTAMP(p) WITH
TIME ZONE 23

Blank between date and time
portions and colons in time
portion, no space between
time and time zone.

v yyyy-mm-dd
hh:mm:ss±th:tm

v yyyy-mm-dd hh:mm:ss±th

v yyyy-mm-dd
hh:mm:ss.±th:tm

v yyyy-mm-dd hh:mm:ss.±th

v yyyy-mm-dd
hh:mm:ss.nnnnnnnnnnnn
±th:tm

v yyyy-mm-dd
hh:mm:ss.nnnnnnnnnnnn
±th

Minus sign between date and
time portions and periods in
time portion.

v yyyy-mm-dd-
hh.mm.ss±th:tm

v yyyy-mm-dd-hh.mm.ss±th

v yyyy-mm-dd-
hh.mm.ss.±th:tm

v yyyy-mm-dd-hh.mm.ss.±th

v yyyy-mm-dd-
hh.mm.ss.nnnnnnnnnnnn
±th:tm

v yyyy-mm-dd-
hh.mm.ss.nnnnnnnnnnnn
±th

Chapter 2. Language elements 153

Table 38. Formats used to specify a value for a data type of TIMESTAMP WITH TIME
ZONE (continued)

Description
TIMESTAMP(0) WITH
TIME ZONE13

TIMESTAMP(p) WITH
TIME ZONE 23

Blank between date and time
portions, colons in time
portion, blank between
fractional seconds and sign
for time zone.

v yyyy-mm-dd hh:mm:ss
±th:tm

v yyyy-mm-dd hh:mm:ss ±th

v yyyy-mm-dd hh:mm:ss.
±th:tm

v yyyy-mm-dd hh:mm:ss.
±th

v yyyy-mm-dd
hh:mm:ss.nnnnnnnnnnnn

±th:tm

v yyyy-mm-dd
hh:mm:ss.nnnnnnnnnnnn

±th

Blank between date and time
portions and periods in time
portion.

v yyyy-mm-dd
hh.mm.ss±th:tm

v yyyy-mm-dd hh.mm.ss±th

v yyyy-mm-dd
hh.mm.ss.±th:tm

v yyyy-mm-dd hh.mm.ss.±th

v yyyy-mm-dd
hh.mm.ss.nnnnnnnnnnnn
±th:tm

v yyyy-mm-dd
hh.mm.ss.nnnnnnnnnnnn
±th

Notes:

1. No fractional seconds; shown with and without optional trailing period after seconds

2. p is the number of digits of fractional seconds. nnnnnnnnnnnn can range from 1 to 12
instances of n

3. As an additional format, the character T can be substituted as the separator between the
date and time portions of the value.

Graphic string constants
A graphic string constant specifies a varying-length graphic string.

In EBCDIC environments, the forms of graphic string constants are shown in the
following figure. (Shift-in and shift-out characters for EBCDIC data are discussed
in “Character strings” on page 84.)6

6. The PL/I form of graphic string constants is supported only in static SQL statements.

154 SQL Reference

In SQL statements and in host language statements in a source program, graphic
string constants cannot be continued from one line to the next. A graphic string
constant must be short enough so that its UTF-8 representation requires no more
than 32704 bytes.

DB2 supports two types of hexadecimal graphic string constants.
v UX'xxxx' represents a string of graphic Unicode UTF-16 characters, where x is a

hexadecimal digit. The number of digits must be a multiple of 4 and must not
exceed 32704. Each group of 4 digits represents a single UTF-16 graphic
character. For example, the UX constant for 'ABC' is UX'004100420043'.

v GX'xxxx' represents a string of graphic characters, where x is a hexadecimal
digit. The number of digits must be a multiple of 4. Each group of 4 digits
represents a single double-byte graphic character. The hexadecimal shift-in and
shift-out ('OE'X and 'OF'X), which apply to EBCDIC only, are not included in the
string.
If the MIXED DATA installation option is set to NO, a GX constant cannot be
used. Instead, a UX constant should be used. A GX constant cannot be used
when the encoding scheme is UNICODE.

For information about the CCSID that is assigned to a graphic string constant,
including UX'xxxx' and GX'xxxx' string constants, see “Determining the encoding
scheme and CCSID of a string” on page 47.

dbcs-string

dbcs-stringG GG' '

G''

g' '

g''

dbcs-string ' '

''

' '

' '

N

N

n

n

' '

''

' '

N

PL/I

All other
contexts

dbcs-string G G

Context Graphic String Constant Empty String Example

G G GS
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

G represents a
DBCS G (X'42C7')

represents a
DBCS apostrophe
(X'427D')

Figure 17. Graphic string constants in EBCDIC

Chapter 2. Language elements 155

Special registers
A special register is a storage area that is defined for an application process by
DB2 and is used to store information that can be referenced in SQL statements. A
reference to a special register is a reference to a value provided by the current
server. If the value is a string, its CCSID is a default CCSID of the current server.

The special registers can be referenced as follows:

special registers

156 SQL Reference

�� CURRENT APPLICATION COMPATIBILITY
CURRENT APPLICATION ENCODING SCHEME
CURRENT CLIENT_ACCTNG
CURRENT CLIENT_APPLNAME
CURRENT CLIENT_CORR_TOKEN
CURRENT CLIENT_USERID
CURRENT CLIENT_WRKSTNNAME

CURRENT DATE
(1)

CURRENT_DATE
CURRENT DEBUG MODE
CURRENT DECFLOAT ROUNDING MODE
CURRENT DEGREE
CURRENT EXPLAIN MODE
CURRENT GET_ACCEL_ARCHIVE

LOCALE
CURRENT LC_CTYPE
CURRENT_LC_CTYPE

TABLE FOR OPTIMIZATION
CURRENT MAINTAINED TYPES
CURRENT MEMBER
CURRENT OPTIMIZATION HINT
CURRENT PACKAGE PATH
CURRENT PACKAGESET

CURRENT PATH
CURRENT_PATH

CURRENT PRECISION
CURRENT QUERY ACCELERATION
CURRENT REFRESH AGE
CURRENT ROUTINE VERSION
CURRENT RULES

CURRENT SCHEMA
(1)

CURRENT_SCHEMA
CURRENT SERVER
CURRENT SQLID

CURRENT TIME
(1)

CURRENT_TIME
(6) WITHOUT TIME ZONE

CURRENT TIMESTAMP
(1) (integer) WITH TIME ZONE

CURRENT_TIMESTAMP
CURRENT TIME ZONE
SESSION TIME ZONE

(2)
ENCRYPTION PASSWORD

SESSION_USER
USER

CURRENT TEMPORAL SYSTEM_TIME
CURRENT TEMPORAL BUSINESS_TIME

��

Notes:

1 The SQL standard uses the form with the underline.

2 The ENCRYPTION PASSWORD special register can only be explicitly referenced in the SET
ENCRYPTION PASSWORD statement. It is used implicitly used by the encryption and
decryption functions.

Chapter 2. Language elements 157

||||

General rules for special registers

Changing register values

A commit operation might cause special registers to be re-initialized. Whether a
special register is affected by a commit depends on whether the special register has
been explicitly set within the application process. For example, assume that the
PATH special register has not been explicitly set with a SET PATH statement in the
application process. After a commit, the value of PATH is re-initialized. For
information on the initialization of PATH, which can take the current value of
CURRENT SQLID into consideration, see “CURRENT SQLID” on page 193.

A rollback operation has no effect on the values of special registers. Nor does any
SQL statement, with the following exceptions:
v SQL SET statements can change the values of the following special registers:

– CURRENT APPLICATION COMPATIBILITY
– CURRENT APPLICATION ENCODING SCHEME
– CURRENT DEBUG MODE
– CURRENT DECFLOAT ROUNDING MODE
– CURRENT DEGREE
– CURRENT EXPLAIN MODE
– CURRENT GET_ACCEL_ARCHIVE
– CURRENT LOCALE LC_CTYPE
– CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
– CURRENT OPTIMIZATION HINT
– CURRENT PACKAGE PATH
– CURRENT PACKAGESET
– CURRENT PATH
– CURRENT PRECISION
– CURRENT QUERY ACCELERATION
– CURRENT REFRESH AGE
– CURRENT ROUTINE VERSION
– CURRENT RULES
– CURRENT SCHEMA
– CURRENT SQLID7

– CURRENT TEMPORAL BUSINESS_TIME
– CURRENT TEMPORAL SYSTEM_TIME
– ENCRYPTION PASSWORD
– SESSION TIME ZONE

v SQL CONNECT statements can change the value of CURRENT SERVER.

7. If the SET CURRENT SQLID statement is executed in a stored procedure or user-defined function package that has a dynamic
SQL behavior other than run behavior, the SET CURRENT SQLID statement does not affect the authorization ID that is used for
dynamic SQL statements in the package. The dynamic SQL behavior determines the authorization ID. For more information, see
DYNAMICRULES bind option (DB2 Commands).

158 SQL Reference

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptdynamicrules.htm#db2z_bindoptdynamicrules

Changing register values from IBM Data Server clients and
drivers

In addition to using SQL SET statements, you can use the following IBM Data
Server client and driver interfaces to change the values of most of the special
registers that are listed under “Changing register values” on page 158:
v IBM Data Server Driver for JDBC and SQLJ method

DB2DataSource.setSpecialRegisters
v For non-Java clients, the <specialregisters> subsection in the in db2dsdriver.cfg

file

Use of these interfaces has the following restrictions:
v You cannot change the values of the following special registers:

– CURRENT APPLICATION ENCODING SCHEME
– CURRENT PACKAGESET

v The special register name must be in uppercase, and have no extraneous blanks.
For example, the following strings are invalid:
– CURRENT Application compatibility

The special register name must be specified with all uppercase characters:
CURRENT APPLICATION COMPATIBILITY.

– CURRENT FUNCTION PATH
The special register name must be specified with only one space between
words: CURRENT FUNCTION PATH.

v For CURRENT REFRESH AGE, the value 99999999999999 is not supported. Use
the value ANY instead.

Determining register values

You can use various statements to determine the value of a special register. For
instance, a SELECT statement, a SET statement, the VALUES statement (if the
statement is within a trigger action) will provide the value of a special register. The
following examples find the value of the CURRENT PRECISION special register:
SELECT CURRENT PRECISION FROM SYSIBM.SYSDUMMY1;
SET :hv = CURRENT PRECISION
VALUES(CURRENT PRECISION)

CCSIDS for register values

Special registers that contain character strings have an associated CCSID. The
particular CCSID depends on the context in which the special register is
referenced. For more information, see “Determining the encoding scheme and
CCSID of a string” on page 47.

Datetime special registers

The datetime registers are named CURRENT DATE, CURRENT TIME, and
CURRENT TIMESTAMP. Datetime special registers are stored in an internal
format. When two or more of these registers are implicitly or explicitly specified in
a single SQL statement, they represent the same point in time. A datetime special
register is implicitly specified when it is used to provide the default value of a
datetime column.

Chapter 2. Language elements 159

|
|

|
|
|

|
|

|
|

|

|

|

|

|
|

|

|
|

|

|
|

|
|

If the SQL statement in which a datetime special register is used is in a
user-defined function or stored procedure that is within the scope of a trigger, DB2
uses the timestamp for the triggering SQL statement to determine the special
register value.

The values of these special registers are based on:
v The time-of-day clock of the processor for the server executing the SQL

statement
v The TIMEZONE parameter for this processor. The TIMEZONE parameter is in

SYS1.PARMLIB(CLOCKXX).

To evaluate the references when the statement is being executed, a single reading
from the time-of-day clock is incremented by the number of hours, minutes, and
seconds specified by the TIMEZONE parameter. The values derived from this are
assumed to be the local date, time, or timestamp, where local means local to the
DB2 that executes the statement. This assumption is correct if the clock is set to
local time and the TIMEZONE parameter is zero or the clock is set to UTC
(Coordinated Universal Time) and the TIMEZONE parameter gives the difference
from UTC.

Because the datetime special registers and the CURRENT TIMEZONE special
register depend on the parameter PARMTZ(SYS1.PARMLIB(CLOCKXX)), their
values are affected if the local time at the server is changed by the z/OS system
command SET CLOCK. The values of the CURRENT DATE and CURRENT
TIMESTAMP special registers might be affected if the local date at the server is
changed by the system command SET DATE8.

Where special registers are processed

In distributed applications, CURRENT APPLICATION ENCODING SCHEME,
CURRENT SERVER, and CURRENT PACKAGESET are processed locally. All other
special registers are processed at the server.

8. Whether the SET DATE command affects these special registers depends on the system level and the program temporary fix
(PTF) level of the system.

160 SQL Reference

CURRENT APPLICATION COMPATIBILITY
CURRENT APPLICATION COMPATIBILITY specifies the compatibility level
support for dynamic SQL.

The data type is VARCHAR(10).

The initial value of CURRENT APPLICATION COMPATIBILITY is determined by
the value of the APPLCOMPAT bind parameter for the package. The initial value
of CURRENT APPLICATION COMPATIBILITY in a user-defined function or stored
procedure is inherited according to the rules in Table 40 on page 205. Set the value
with the SET APPLICATION COMPATIBILITY statement.

The following values are supported:

V10R1 The dynamic SQL statements in the package have V10R1 compatibility
behavior.

V11R1 The dynamic SQL statements in the package have V11R1 compatibility
behavior. This value is only allowed in new-function mode.

Example: Set the host variable CS to the compatibility level.
EXEC SQL SET :CS = CURRENT APPLICATION COMPATIBILITY;

Related reference:

BIND and REBIND options (DB2 Commands)
“SET CURRENT APPLICATION COMPATIBILITY” on page 1882

APPL COMPAT LEVEL field (APPLCOMPAT subsystem parameter) (DB2
Installation and Migration)

Chapter 2. Language elements 161

|

|
|

|

|
|
|
|
|

|

||
|

||
|

|

|

|

|

|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_applcompat.htm#db2z_ipf_applcompat
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_applcompat.htm#db2z_ipf_applcompat

CURRENT APPLICATION ENCODING SCHEME
CURRENT APPLICATION ENCODING SCHEME specifies which encoding
scheme is to be used for dynamic statements. It allows an application to indicate
the encoding scheme that is used to process data. This register is not supported in
REXX applications or in stored procedures written in REXX

The initial value of CURRENT APPLICATION ENCODING SCHEME is
determined by the value of the ENCODING bind option or the APPLICATION
ENCODING SCHEME option of the CREATE PROCEDURE or ALTER
PROCEDURE statement for native SQL procedures if the option is specified. If the
option was not specified, the initial value is the value of field DEFAULT
APPLICATION ENCODING SCHEME on installation panel DSNTIPF. You can
changes the value of the register by executing the statement SET CURRENT
APPLICATION ENCODING SCHEME.

The value contained in the special register is a character representation of a CCSID.
Although you can use the values ASCII, EBCDIC, or UNICODE to set the special
register, what is stored in the special register is a character representation of the
numeric CCSID that corresponds to the value used in the SET CURRENT
APPLICATION ENCODING SCHEME statement. The value ASCII, EBCDIC, or
UNICODE is not stored. The CCSID_ENCODING scalar function can be used to
get a value of ASCII, EBCDIC, or UNICODE from a numeric CCSID value.

The data type is CHAR(8). If necessary, the value is padded on the right with
blanks so that its length is 8 bytes.

For stored procedures and user-defined functions, the initial value of the
CURRENT APPLICATION ENCODING SCHEME special register is determined by
the value of the ENCODING bind option for the package that is associated with
the procedure or function or by the APPLICATION ENCODING SCHEME option
of the CREATE PROCEDURE or ALTER PROCEDURE statement for a native SQL
procedure. If the option was not specified, the initial value is the value of the field
DEFAULT APPLICATION ENCODING SCHEME field on installation panel
DSNTIPF.

For triggers, the initial value of the CURRENT APPLICATION ENCODING
SCHEME special register is the value of field DEFAULT APPLICATION
ENCODING SCHEME on installation panel DSNTIPF.

Example: The CURRENT APPLICATION ENCODING SCHEME special register can
be used like any other special register:

EXEC SQL VALUES(CURRENT APPLICATION ENCODING SCHEME) INTO :HV1;
EXEC SQL INSERT INTO T1 VALUES (CURRENT APPLICATION ENCODING SCHEME);
EXEC SQL SET :HV1 = CURRENT APPLICATION ENCODING SCHEME;
EXEC SQL SELECT C1 FROM T1 WHERE C1 = CURRENT APPLICATION ENCODING SCHEME;

Related reference:
“SET CURRENT APPLICATION ENCODING SCHEME” on page 1883

162 SQL Reference

CURRENT CLIENT_ACCTNG
CURRENT CLIENT_ACCTNG contains the value of the accounting string from the
client information that is specified for the connection.

The data type is VARCHAR(255).

The value of the special register can be changed by using one of the following
application programming interfaces (APIs):
v Set Client Information (sqleseti)
v SQLSetConnectAttr (ODBC)
v java.sql.Connection.setClientInfo (JDBC)
v The RRS DSNRLI SIGNON, AUTH SIGNON, CONTEXT SIGNON, or

SET_CLIENT_ID function
v The WLM_SET_CLIENT_INFO stored procedure

The value for the accounting string will be obtained first from the accounting
string that is set by the SET_CLIENT_ID function, AUTH SIGNON function, or the
Set Client Information (sqleseti) API, or alternatively from the accounting token set
by RRSAF if accounting string has not been set.

The application compatibility value of the package determines the length and
blank padding of the CURRENT CLIENT_ACCTNG special register returned.

If one of these APIs is not used to set the value of the special register, an empty
string is returned when the special register is referenced.

Example: Get the current value of the accounting string for this connection.
SET :ACCT_STRING = CURRENT CLIENT_ACCTNG

Related concepts:

RRSAF connection functions (DB2 Application programming and SQL)

Application compatibility of packages (DB2 Application programming and
SQL)
Related tasks:

Providing extended client information to the data source with IBM Data Server
Driver for JDBC and SQLJ-only methods (DB2 Application Programming for Java)
Related reference:

WLM_SET_CLIENT_INFO stored procedure (DB2 Application programming
and SQL)

sqle_client_info data structure

Chapter 2. Language elements 163

|

|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_rrsafconnectionfunctions.htm#db2z_rrsafconnectionfunctions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_tjvstcli.htm#imjcc_tjvstcli
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_tjvstcli.htm#imjcc_tjvstcli
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_sp_wlmsetclientinfo.htm#db2z_sp_wlmsetclientinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_sp_wlmsetclientinfo.htm#db2z_sp_wlmsetclientinfo
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.apdv.api.doc/doc/r0001905.html

CURRENT CLIENT_APPLNAME
CURRENT CLIENT_APPLNAME contains the value of the application name from
the client information that is specified for the connection.

The data type is VARCHAR(255).

The default application name varies, depending on the connection:
v If the connection is from a remote application client driver, the default is the

application name as supplied by the driver. Default values set by the IBM Data
Server Driver for JDBC and SQLJ can be obtained from the
DatabaseMetaData.getClientInfoProperties method.

v If the connection is from a remote DB2 11 for z/OS application, the default
varies depending on which attachment facility is used:

TSO attachment facility
The default application name is one of the following cases:
– The TSO logon user ID when the application runs in TSO foreground

using TSO online applications like SPUFI.
– The job name when the application runs in TSO background using

TSO batch applications like DSNTEP2.

RRS attachment facility interface
The correlation ID that is provided at the call of the RRS DSNRLI
SIGNON function.

Call attachment facility
The job name.

CICS attachment facility
The first 8 bytes of the correlation ID. In particular the correlation ID is a
12-byte string for a CICS transaction, where the first 8 bytes are used as
the default application name.

IMS Attachment facility
An 8-byte string, the Program Specification Block (PSB) name, or the
program name.

The value of the special register can be changed by using one of the following
application programming interfaces (APIs):
v SQLE_CLIENT_INFO_APPLNAME (sqleseti)
v SQLSetConnectAttr (ODBC)
v java.sql.Connection.setClientInfo (JDBC)
v The RRS DSNRLI SIGNON, AUTH SIGNON, CONTEXT SIGNON, or

SET_CLIENT_ID function
v The WLM_SET_CLIENT_INFO stored procedure

When the client application name is explicitly set, it overwrites the default
application name described above and is used as the client application name.

The application compatibility value of the package determines the length and
blank padding of the CURRENT CLIENT_APPLNAME special register returned.

If one of these APIs is not used to set the value of the special register, an empty
string is returned when the special register is referenced.

164 SQL Reference

|

|

|

|
|

Example: Select the departments that are allowed to use the application that is
being used in this connection.

SELECT DEPT
FROM DEPT_APPL_MAP
WHERE APPL_NAME = CURRENT CLIENT_APPLNAME

Related concepts:

RRSAF connection functions (DB2 Application programming and SQL)

Application compatibility of packages (DB2 Application programming and
SQL)
Related tasks:

Providing extended client information to the data source with IBM Data Server
Driver for JDBC and SQLJ-only methods (DB2 Application Programming for Java)
Related reference:

WLM_SET_CLIENT_INFO stored procedure (DB2 Application programming
and SQL)

sqle_client_info data structure

Chapter 2. Language elements 165

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_rrsafconnectionfunctions.htm#db2z_rrsafconnectionfunctions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_tjvstcli.htm#imjcc_tjvstcli
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_tjvstcli.htm#imjcc_tjvstcli
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_sp_wlmsetclientinfo.htm#db2z_sp_wlmsetclientinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_sp_wlmsetclientinfo.htm#db2z_sp_wlmsetclientinfo
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.apdv.api.doc/doc/r0001905.html

CURRENT CLIENT_CORR_TOKEN
CURRENT CLIENT_CORR_TOKEN contains the value of the client correlation
token from the client information that is specified for the connection.

The data type is VARCHAR(255).

The value of the special register can be changed by using one of the following
application programming interfaces (APIs):
v SQLE_CLIENT_INFO_PROGRAMID (sqleseti)
v java.sql.Connection.setClientInfo (JDBC)
v The RRS DSNRLI SIGNON, AUTH SIGNON, CONTEXT SIGNON, or

SET_CLIENT_ID function

If one of these APIs is not used to set the value of the special register, the value
defaults to the correlation identifier from the client driver such as an application
identifier. If a correlation identifier is not provided by the client system, an LUWID
(Logical Unit of Work ID) is generated which becomes the correlation token.

Example: Select the departments that are allowed to use the correlation token that is
being used in this connection.

SELECT DEPT
FROM DEPT_CORR_TOKEN_MAP
WHERE CORR_TOKEN_NAME = CURRENT CLIENT_CORR_TOKEN

Related concepts:

RRSAF connection functions (DB2 Application programming and SQL)
Related tasks:

Providing extended client information to the data source with IBM Data Server
Driver for JDBC and SQLJ-only methods (DB2 Application Programming for Java)
Related reference:

WLM_SET_CLIENT_INFO stored procedure (DB2 Application programming
and SQL)

sqle_client_info data structure

166 SQL Reference

|

|
|

|

|
|

|

|

|
|

|
|
|
|

|
|

|
|
|

|

|

|

|
|

|

|
|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_rrsafconnectionfunctions.htm#db2z_rrsafconnectionfunctions
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_tjvstcli.htm#imjcc_tjvstcli
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_tjvstcli.htm#imjcc_tjvstcli
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_sp_wlmsetclientinfo.htm#db2z_sp_wlmsetclientinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_sp_wlmsetclientinfo.htm#db2z_sp_wlmsetclientinfo
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.apdv.api.doc/doc/r0001905.html

CURRENT CLIENT_USERID
CURRENT CLIENT_USERID contains the value of the client user ID from the
client information that is specified for the connection.

The default client user ID is the primary authorization ID used to establish the
connection.

The data type is VARCHAR(255).

The value of the special register can be changed by using one of the following
application programming interfaces (APIs):
v SQLE_CLIENT_INFO_USERID (sqleseti)
v SQLSetConnectAttr (ODBC)
v java.sql.Connection.setClientInfo (JDBC)
v The RRS DSNRLI SIGNON, AUTH SIGNON, CONTEXT SIGNON, or

SET_CLIENT_ID function
v The WLM_SET_CLIENT_INFO stored procedure

When the client user ID is explicitly set, it overwrites the primary authorization id
described above and is used as the client user ID.

If one of these APIs is not used to set the value of the special register, an empty
string is returned when the special register is referenced.

If the value set by the API exceeds 128 bytes, it is truncated to 128 bytes.

The application compatibility value of the package determines the length and
blank padding of the CURRENT CLIENT_USERID special register returned.

Example: Find out in which department the current client user ID works.
SELECT DEPT

FROM DEPT_USERID_MAP
WHERE USER_ID = CURRENT CLIENT_USERID

Related concepts:

RRSAF connection functions (DB2 Application programming and SQL)

Application compatibility of packages (DB2 Application programming and
SQL)
Related tasks:

Providing extended client information to the data source with IBM Data Server
Driver for JDBC and SQLJ-only methods (DB2 Application Programming for Java)
Related reference:

WLM_SET_CLIENT_INFO stored procedure (DB2 Application programming
and SQL)

sqle_client_info data structure

Client info properties support by the IBM Data Server Driver for JDBC and
SQLJ (DB2 Application Programming for Java)

Chapter 2. Language elements 167

|

|

|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_rrsafconnectionfunctions.htm#db2z_rrsafconnectionfunctions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_tjvstcli.htm#imjcc_tjvstcli
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_tjvstcli.htm#imjcc_tjvstcli
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_sp_wlmsetclientinfo.htm#db2z_sp_wlmsetclientinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_sp_wlmsetclientinfo.htm#db2z_sp_wlmsetclientinfo
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.apdv.api.doc/doc/r0001905.html
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_r0052001.htm#imjcc_r0052001
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_r0052001.htm#imjcc_r0052001

CURRENT CLIENT_WRKSTNNAME
CURRENT CLIENT_WRKSTNNAME contains the value of the workstation name
from the client information that is specified for the connection.

The data type is VARCHAR(255).

The default workstation name varies, depending on the connection:
v If the connection originates from a DB2 11 for z/OS requester, it is the client

host name.
v If the connection is from a remote application client driver, it is the client host

name where the request is submitted. Default values that are set by the IBM
Data Server Driver for JDBC and SQLJ can be obtained from the
DatabaseMetaData.getClientInfoProperties method.

v If the connection is from a remote DB2 11 for z/OS application, the default
varies depending on which attachment facility is used:

TSO attachment facility
The default workstation name is one of the following cases:
– The default workstation name is 'TSO' when the application runs in

TSO foreground with TSO online applications like SPUFI.
– The default workstation name is 'BATCH' when the application runs

in TSO background with TSO batch applications like DSNTEP2.

RRS attachment facility interface
The default workstation name is 'RRSAF

Call attachment facility
The default workstation name is 'DB2CALL'.

CICS attachment facility
The default workstation name is the CICS region name.

IMS Attachment facility
The default workstation name is IMS region ID.

The value of the special register can be changed by using one of the following
application programming interfaces (APIs):
v SQLE_CLIENT_INFO_WRKSTNNAME (sqleseti)
v SQLSetConnectAttr (ODBC)
v java.sql.Connection.setClientInfo (JDBC)
v The RRS DSNRLI SIGNON, AUTH SIGNON, CONTEXT SIGNON, or

SET_CLIENT_ID function
v The WLM_SET_CLIENT_INFO stored procedure

When the client workstation name is explicitly set, it overwrites the default
workstation name described above and is used as the client workstation name.

The application compatibility value of the package determines the length and
blank padding of the CURRENT CLIENT_WRKSTNNAME special register
returned.

If one of these APIs is not used to set the value of the special register, an empty
string is returned when the special register is referenced.

Example: Get the name of the workstation that is being used in this connection.

168 SQL Reference

|

|

|

|
|
|

SET :WS_NAME = CURRENT CLIENT_WRKSTNNAME

Related concepts:

RRSAF connection functions (DB2 Application programming and SQL)

Application compatibility of packages (DB2 Application programming and
SQL)
Related tasks:

Providing extended client information to the data source with IBM Data Server
Driver for JDBC and SQLJ-only methods (DB2 Application Programming for Java)
Related reference:

WLM_SET_CLIENT_INFO stored procedure (DB2 Application programming
and SQL)

sqle_client_info data structure

Client info properties support by the IBM Data Server Driver for JDBC and
SQLJ (DB2 Application Programming for Java)

Chapter 2. Language elements 169

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_rrsafconnectionfunctions.htm#db2z_rrsafconnectionfunctions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_tjvstcli.htm#imjcc_tjvstcli
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_tjvstcli.htm#imjcc_tjvstcli
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_sp_wlmsetclientinfo.htm#db2z_sp_wlmsetclientinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_sp_wlmsetclientinfo.htm#db2z_sp_wlmsetclientinfo
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.apdv.api.doc/doc/r0001905.html
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_r0052001.htm#imjcc_r0052001
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_r0052001.htm#imjcc_r0052001

CURRENT DATE
The CURRENT DATE special register specifies a date that is based on a reading of
the time-of-day clock when the SQL statement is executed at the current server.

If this special register is used more than one time within a single SQL statement, or
used with CURRENT TIME or CURRENT TIMESTAMP within a single statement,
all values are based on a single clock reading.9

The value of CURRENT DATE in a user-defined function or stored procedure is
inherited according to the rules in Table 40 on page 205. For other applications, the
date is derived by the DB2 that executes the SQL statement that refers to the
special register. For a description of how the date is derived, see Datetime special
registers.

Specifying CURRENT_DATE is equivalent to specifying CURRENT DATE.

Example: Display the average age of employees.
SELECT AVG(YEAR(CURRENT DATE - BIRTHDATE))

FROM DSN8B10.EMP;

9. Except for the case of a non-atomic multiple row INSERT or MERGE statement.

170 SQL Reference

CURRENT DEBUG MODE
CURRENT DEBUG MODE specifies the default value for the DEBUG MODE
option when certain routines are created. The DEBUG MODE option specifies
whether the routine should be built with the ability to run in debugging mode.

CURRENT DEBUG MODE specifies the default value for the DEBUG MODE
option of the following statements:
v ALTER FUNCTION for a new version of an SQL scalar function
v ALTER PROCEDURE for a new version of a native SQL procedure
v CREATE FUNCTION for an SQL scalar function
v CREATE PROCEDURE for a Java procedure
v CREATE PROCEDURE for a native SQL procedure

The data type is VARCHAR(8). The following values are valid:
v ALLOW — Specifies that the routine can be run in debugging mode.
v DISALLOW — Specifies that the routine cannot be run in debugging mode. A

subsequent ALTER statement can change the DEBUG MODE option to allow the
routine to run in debugging mode.

v DISABLE — Specifies that the routine can never be run in debugging mode.
When DISABLE is in effect, the routine cannot be changed to run in debugging
mode. A subsequent ALTER statement cannot change the DEBUG MODE option
to allow or disallow the routine to run in debugging mode.

The value of CURRENT DEBUG MODE in a user-defined function or stored
procedure is inherited according to the rules in Table 40 on page 205. In other
contexts the initial value of CURRENT DEBUG MODE is DISALLOW.

You can change the value of the CURRENT DEBUG MODE special register by
running the SET CURRENT DEBUG MODE statement.

Example: Set the host variable DEBUG_MODE_OPT to the value of the CURRENT
DEBUG MODE special register:

VALUES CURRENT DEBUG MODE INTO :DEBUG_MODE_OPT;

Related reference:
“SET CURRENT DEBUG MODE” on page 1884

Chapter 2. Language elements 171

CURRENT DECFLOAT ROUNDING MODE
CURRENT DECFLOAT ROUNDING MODE specifies the default rounding mode
that is used for DECFLOAT values.

The data type is VARCHAR(128). The following rounding modes are supported:
v ROUND_CEILING — rounds the value towards positive infinity. If all of the

discarded digits are zero or if the sign is negative the result is unchanged other
than the removal of the discarded digits. Otherwise, the result coefficient is
incremented by 1.

v ROUND_DOWN — rounds the value towards 0 (truncation). The discarded
digits are ignored.

v ROUND_FLOOR — rounds the value towards negative infinity. If all of the
discarded digits are zero or if the sign is positive the result is unchanged other
than the removal of discarded digits. Otherwise, the sign is negative and the
result coefficient is incremented by 1.

v ROUND_HALF_DOWN — rounds the value to the nearest value; if the values
are equidistant, rounds the value towards zero. If the discarded digits represent
greater than half (0.5) of the value of a one in the next left position then the
result coefficient is incremented by 1. Otherwise the discarded digits are ignored.
This rounding mode is not recommended when creating a portable application
because it is not supported by the IEEE draft standard for floating-point
arithmetic.

v ROUND_HALF_EVEN — rounds the value to the nearest value; if the values are
equidistant, rounds the value so that the final digit is even. If the discarded
digits represents greater than half (0.5) of the value of one in the next left
position then the result coefficient is incremented by 1. If they represent less
than half, then the result coefficient is not adjusted (that is, the discarded digits
are ignored). Otherwise the result coefficient is unaltered if its rightmost digit is
even, or is incremented by 1 if its rightmost digit is odd (to make an even digit).

v ROUND_HALF_UP — rounds the value to the nearest value; if the values are
equidistant, rounds the value away from zero. If the discarded digits represent
greater than or equal to half (0.5) of the value of one in the next left position
then the result coefficient is incremented by 1. Otherwise the discarded digits are
ignored.

v ROUND_UP — rounds the value away from 0. If all of the discarded digits are
zero the result is unchanged other than the removal of discarded digits.
Otherwise, the result coefficient is incremented by 1. This rounding mode is not
recommended when creating a portable application because it is not supported
by the IEEE draft standard for floating-point arithmetic.

The initial value of CURRENT DECFLOAT ROUNDING MODE is the value of the
ROUNDING bind option or the native SQL procedure option. If the ROUNDING
option is not specified, the initial value is the value of the DEF DECFLOAT
ROUND MODE field on installation panel DSNTIPF.

The value of CURRENT DECFLOAT ROUNDING MODE in a user-defined
function or stored procedure is inherited according to the rules in Table 40 on page
205.

You can change the value of the CURRENT DECFLOAT ROUNDING MODE by
executing the statement SET CURRENT DECFLOAT ROUNDING MODE.

Example: Set the DECFLOAT rounding mode to ROUND_CEILING:
SET CURRENT DECFLOAT ROUNDING MODE = ’ROUND_CEILING’;

172 SQL Reference

Related reference:
“SET CURRENT DECFLOAT ROUNDING MODE” on page 1886

Chapter 2. Language elements 173

CURRENT DEGREE
CURRENT DEGREE specifies the degree of parallelism for the execution of queries
that are dynamically prepared by the application process.

The data type of the register is CHAR(3) and the only valid values are 1 (padded
on the right with two blanks) and ANY.

If the value of CURRENT DEGREE is 1 when a query is dynamically prepared, the
execution of that query will not use parallelism. If the value of CURRENT
DEGREE is ANY when a query is dynamically prepared, the execution of that
query can involve parallelism.

The initial value of CURRENT DEGREE is determined by the value of field
CURRENT DEGREE on installation panel DSNTIP8. The default for the initial
value of that field is 1 unless your installation has changed it to be ANY by
modifying the value in that field. The initial value of CURRENT DEGREE in a
user-defined function or stored procedure is inherited according to the rules in
Table 40 on page 205.

You can change the value of the register by executing the statement SET
CURRENT DEGREE.

CURRENT DEGREE is a register at the database server. Its value applies to queries
that are dynamically prepared at that server and to queries that are dynamically
prepared at another DB2 subsystem as a result of the use of a DB2 private
connection between that server and that DB2 subsystem.

Example: The following statement inhibits parallelism:
SET CURRENT DEGREE = ’1’;

Related concepts:

Parallel processing (DB2 Performance)
Related tasks:

Enabling parallel processing (DB2 Performance)

Disabling query parallelism (DB2 Performance)
Related reference:
“SET CURRENT DEGREE” on page 1889

CURRENT DEGREE field (CDSSRDEF subsystem parameter) (DB2 Installation
and Migration)

174 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_parallelprocessing.htm#db2z_parallelprocessing
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_enableparallelprocess.htm#db2z_enableparallelprocess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_disablequeryparallel.htm#db2z_disablequeryparallel
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_cdssrdef.htm#db2z_dsntip801
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_cdssrdef.htm#db2z_dsntip801

CURRENT EXPLAIN MODE
The CURRENT EXPLAIN MODE special register contains the values that control
the behavior EXPLAIN in regard to eligible dynamic SQL statements.

This facility generates and inserts EXPLAIN information into the EXPLAIN tables.
Possible values for the CURRENT EXPLAIN MODE special register are YES, NO,
and EXPLAIN. The data type is VARCHAR(128).

NO Disable the ability to use EXPLAIN. No EXPLAIN information is kept. NO is
the initial value of the EXPLAIN MODE special register.

YES
Enables the EXPLAIN facility and causes EXPLAIN information to be inserted
into the EXPLAIN tables for eligible dynamic SQL statements after the
statement is prepared and executed. All dynamic SQL statements are compiled
and executed normally.

EXPLAIN
Enables the EXPLAIN facility and causes EXPLAIN information to be captured
for any eligible dynamic SQL statement after the statement is prepared. This
setting behaves similarly to YES, however, dynamic statements, except for SET
statements, are not executed.

For values YES and EXPLAIN, prepared statements are not saved into the dynamic
statement cache.

The initial value is NO. The initial value of CURRENT EXPLAIN MODE in a
user-defined function or stored procedure is inherited according to the rules in
Table 40 on page 205.

The value can be changed using the SET CURRENT EXPLAIN MODE statement.

Prerequisites for using CURRENT EXPLAIN MODE:

v Both the PLAN_TABLE and DSN_STATEMENT_CACHE_TABLE exist
on the DB2 server and the table names are qualified with the current
SQLID that is used when running the application.

v The Dynamic statement cache is enabled.
v The client application contains some explainable statements.

Required authorization for using CURRENT EXPLAIN MODE:
If CURRENT EXPLAIN MODE is set to YES or EXPLAIN, the privilege set
for the underlying statement must have the necessary authorization to use
the EXPLAIN facility.

When the EXPLAIN privilege is in effect and CURRENT EXPLAIN MODE
is set to EXPLAIN, any SQLCODE that is returned due to the EXPLAIN
privilege override any SQLCODE that is returned due to CURRENT
EXPLAIN MODE being set to EXPLAIN.

Related reference:
“SET CURRENT EXPLAIN MODE” on page 1891

Chapter 2. Language elements 175

CURRENT GET_ACCEL_ARCHIVE
The CURRENT GET_ACCEL_ARCHIVE special register specifies whether a query
that references a table that is archived in an accelerator server uses the archived
data.

The data type is VARCHAR(255).

Valid values are:

NO Specifies that if a table is archived in an accelerator server, and a query
references that table, the query does not use the data that is archived.

YES
Specifies that if a table is archived in an accelerator server, and a query
references that table, the query uses the data that is archived.

The initial value of CURRENT GET_ACCEL_ARCHIVE is determined by the value
of DB2 subsystem parameter GET_ACCEL_ARCHIVE. The default for the initial
value of that subsystem parameter is NO unless your installation has changed the
value. The initial value of CURRENT GET_ACCEL_ARCHIVE in a user-defined
function or stored procedure is inherited according to the rules in Table 40 on page
205.

You can change the value of the register by executing the SET CURRENT
GET_ACCEL_ARCHIVE statement.

Example: The following statement sets the CURRENT GET_ACCEL_ARCHIVE
special register so that when a table is archived in an accelerator server, the table
reference does not include the archived data.

SET CURRENT GET_ACCEL_ARCHIVE=NO;

Related reference:
“SET CURRENT GET_ACCEL_ARCHIVE” on page 1893

176 SQL Reference

CURRENT LOCALE LC_CTYPE
CURRENT LOCALE LC_CTYPE specifies the LC_CTYPE locale that will be used
to execute SQL statements that use a built-in function that references a locale.
Functions LCASE, UCASE, and TRANSLATE (with a single argument) refer to the
locale when they are executed.

The data type is CHAR(50). If necessary, the value is padded on the right with
blanks so that its length is 50 bytes. The following values are supported:
v blank — For a conversion to lowercase, SBCS uppercase characters A-Z are

converted to SBCS lowercase characters a-z, and characters with diacritical
marks are not converted. If the string contains MIXED or DBCS characters,
full-width Latin uppercase characters A-Z are converted to full-width lowercase
characters a-z.
For a conversion to uppercase, SBCS lowercase characters a-z are converted to
SBCS uppercase characters A-Z, and characters with diacritical marks are not
converted. If the string contains MIXED or DBCS characters, full-width Latin
lowercase characters a-z are converted to full-width uppercase characters A-Z.
For optimal performance, specify a blank string unless your data must be
processed by using rules that are defined by a specific locale.

v UNI — Case conversions use both the NORMAL and SPECIAL casing
capabilities as described in z/OS Support for Unicode: Using Unicode Services. UNI
cannot be used with EBCDIC data.

v locale name — The locale defines the rules for conversion to uppercase or
lowercase characters. For information on locales and their naming conventions
for EBCDIC data, see z/OS C/C++ Programming Guide. For information on locales
and their naming conventions for Unicode and ASCII data, see z/OS Support for
Unicode: Using Unicode Services.

The initial value of CURRENT LOCALE LC_CTYPE is determined by the value of
field LOCALE LC_CTYPE on installation panel DSNTIPF. The default for the initial
value of that field is blank unless your installation has changed the value of that
field. The initial value of CURRENT LOCALE LC_CTYPE in a user-defined
function or stored procedure is inherited according to the rules in Table 40 on page
205.

You can change the value of the register by executing the statement SET
CURRENT LOCALE LC_CTYPE.

Some examples of locales for EBCDIC data include:

Fr_BE
Fr_FR@EURO
En_US
Ja_JP

Example: Save the value of current register CURRENT LOCALE LC_CTYPE in host
variable HV1, which is defined as VARCHAR(50).

EXEC SQL VALUES(CURRENT LOCALE LC_CTYPE) INTO :HV1;

Chapter 2. Language elements 177

Related concepts:

z/OS: Unicode Services User’s Guide and Reference
Related reference:
“SET CURRENT LOCALE LC_CTYPE” on page 1894

z/OS XL C/C++ Programming Guide

178 SQL Reference

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/CONTENTS?DN=SA22-7649-14&DT=20110614141050&SHELF=&CASE=&FS=TRUE&PATH=/bookmgr/
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/CONTENTS?DN=SC09-4765-13&DT=20120802234732&SHELF=&CASE=&PATH=/bookmgr/

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION specifies a value
that identifies the types of objects that can be considered to optimize the
processing of dynamic SQL queries. This register contains a keyword representing
table types.

The data type is VARCHAR(255).

The initial value of CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION is determined by the value of field CURRENT MAINT TYPES on
installation panel DSNTIP81. The default for the initial value of that field is
SYSTEM unless your installation has changed the value of that field. The initial
value of CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION in a
user-defined function or stored procedure is inherited according to the rules in
Table 40 on page 205.

You can change the value of the register by executing the SET CURRENT
MAINTAINED TABLE TYPES FOR OPTIMIZATION statement. The object types
controlled by this special register are never considered by static embedded SQL
queries.

Example: Set the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
special register so that all materialized query tables are considered.

SET CURRENT MAINTAINED TABLE TYPES ALL;

Related reference:
“SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION” on page
1896

Chapter 2. Language elements 179

CURRENT MEMBER
CURRENT MEMBER specifies the member name of a current DB2 data sharing
member on which a statement is executing. The value of CURRENT MEMBER is a
character string.

The data type is CHAR(8). If necessary, the member name is padded to the right
with blanks so that its length is 8 bytes.

The value of a CURRENT MEMBER is a string of blanks when the application
process is connected to a DB2 subsystem that is not a member of a data sharing
group.

The SQL SET statement cannot change the value of CURRENT MEMBER.

Example: Use one of the following statements to set the host variable MEM to the
name of the current DB2 member.

EXEC SQL SET :MEM = CURRENT MEMBER;

EXEC VALUES (CURRENT MEMBER) into :MEM;

180 SQL Reference

CURRENT OPTIMIZATION HINT
CURRENT OPTIMIZATION HINT specifies the user-defined optimization hint that
DB2 should use to generate the access path for dynamic statements.

The data type is VARCHAR(128).

The value of the register identifies the rows in owner.PLAN_TABLE that DB2 uses
to generate the access path. DB2 uses information in the rows in
owner.PLAN_TABLE for which the value of the OPTHINT column matches the
value of the CURRENT OPTIMIZATION special register. If the value of the register
is an empty string or all blanks, DB2 uses normal optimization and ignores
optimization hints. If the value of the register includes any non-blank characters
and DB2 was installed without optimization hints enabled (field OPTIMIZATION
HINTS on installation panel DSNTIP8), a warning occurs.

The initial value of CURRENT OPTIMIZATION HINT is the value of the
OPTHINT bind option or of the native SQL procedure option. The initial value of
CURRENT OPTIMIZATION HINT in a user-defined function or stored procedure
is inherited according to the rules in Table 40 on page 205. You can change the
value of the special register by executing the statement SET CURRENT
OPTIMIZATION HINT.

Example: Set the CURRENT OPTIMIZATION HINT special register so that DB2
uses the optimization plan hint that is identified by host variable NOHYB when
generating the access path for dynamic statements.

SET CURRENT OPTIMIZATION HINT = :NOHYB

Related tasks:

Specifying access paths in a PLAN_TABLE instance (DB2 Performance)

Preparing to influence access paths (DB2 Performance)
Related reference:
“SET CURRENT OPTIMIZATION HINT” on page 1898

Chapter 2. Language elements 181

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_createuseropthints.htm#db2z_createuseropthints
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_enablehints.htm#db2z_enablehints

CURRENT PACKAGE PATH
CURRENT PACKAGE PATH specifies a value that identifies the path used to
resolve references to packages that are used to execute SQL statements. This special
register applies to both static and dynamic statements.

The data type is VARCHAR(4096). The value can be an empty or blank string, or a
list of one or more collection IDs, where the collection IDs are enclosed in double
quotation marks and separated by commas. Any quotation marks within the string
are repeated as they are in any delimited identifier. The delimiters and commas are
included in the length of the special register.

The initial value of CURRENT PACKAGE PATH is an empty string. The value is a
list of collections only if the application process has explicitly specified a list of
collections by means of the SET CURRENT PACKAGE PATH statement.

The initial value of CURRENT PACKAGE PATH in a user-defined function or
procedure is inherited according to the rules in Table 40 on page 205.

When CURRENT PACKAGE PATH or CURRENT PACKAGESET is set, DB2 uses
the values in these registers to resolve the collection for a package. The value of
CURRENT PACKAGE PATH takes priority over CURRENT PACKAGESET. In a
distributed environment, the value of CURRENT PACKAGE PATH at the remote
server takes precedence of the value of CURRENT PACKAGE PATH at the local
server (the requester). For more information on package resolution, see DB2
Application Programming and SQL Guide.

Example: In an application that is using SQLJ packages (in collection SQLJ1 and
SQLJ2) and a JDBC package in DB2JAVA, set the CURRENT PACKAGE PATH
special register to check SQLJ1 first, followed by SQLJ2, and DB2JAVA:
SET CURRENT PACKAGE PATH = SQLJ1, SQLJ2, DB2JAVA;

The following statement sets the host variable to the value of the resulting list:
SET :HVPKLIST = CURRENT PACKAGE PATH;

The value of the host variable would be "SQLJ1", "SQLJ2", "DB2JAVA".
Related reference:
“SET CURRENT PACKAGE PATH” on page 1899

182 SQL Reference

CURRENT PACKAGESET
CURRENT PACKAGESET specifies an empty string, a string of blanks, or the
collection ID of the package that will be used to execute SQL statements.

The data type is VARCHAR(128).

The initial value of CURRENT PACKAGESET is an empty string. The value is a
collection ID only if the application process has explicitly specified a collection ID
by means of the SET CURRENT PACKAGESET statement.

The initial value of CURRENT PACKAGESET in a user-defined function or stored
procedure is inherited according to the rules in Table 40 on page 205.

Example: Before passing control to another program, identify the collection ID for
its package as ALPHA.

EXEC SQL SET CURRENT PACKAGESET = ’ALPHA’;

Related reference:
“SET CURRENT PACKAGESET” on page 1903

Chapter 2. Language elements 183

CURRENT PATH
CURRENT PATH specifies the SQL path used to resolve unqualified data type
names and function names in dynamically prepared SQL statements. It is also used
to resolve unqualified procedure names that are specified as host variables in SQL
CALL statements (CALL host-variable).

The data type is VARCHAR(2048).

The CURRENT PATH special register contains a list of one or more schema names,
where each schema name is enclosed in delimiters and separated from the
following schema by a comma (any delimiters within the string are repeated as
they are in any delimited identifier). The delimiters and commas are included in
the 2048 character length.

For information on when the SQL path is used to resolve unqualified names in
both dynamic and static SQL statements and the effect of its value, see “SQL path”
on page 64.

The initial value of the CURRENT PATH special register is either:
v The value of the PATH bind option
v The SQL PATH option of the CREATE PROCEDURE or ALTER PROCEDURE

statement for native SQL procedures
v "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", "value of CURRENT SQLID

special register" if the PATH bind option or SQL PATH option was not specified
v "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", "value of the role name that is

associated with the user in the trusted context" if the PATH bind option or SQL
PATH option was not specified and if the connection is trusted with the role as
object owner and qualifier options are in effect.

If the value of the CURRENT SQLID special register changes after the initial value
of PATH special register is established, the value of the PATH special register is
unaffected when the CURRENT SQLID is updated. However, if a commit later
occurs and a SET PATH statement has not been processed, the value of PATH
special register is reinitialized taking into consideration the current value of the
CURRENT SQLID special register.

The initial value of CURRENT PATH in a user-defined function or stored
procedure is inherited according to the rules in Table 40 on page 205.

You can change the value of the register by executing the statement SET PATH. For
portability across the platforms, it is recommended that a SET PATH statement be
issued at the beginning of an application.

Example: Set the special register so that schema SMITH is searched before the
system schemas:

SET PATH = SMITH, SYSTEM PATH;

Related reference:
“SET PATH” on page 1921

184 SQL Reference

|
|

|
|
|
|

CURRENT PRECISION
CURRENT PRECISION specifies the rules to be used when both operands in a
decimal operation have precisions of 15 or less.

The data type of the register is CHAR(5).

Valid values for the CURRENT PRECISION special register include 'DEC15',
'DEC31', or 'Dpp.s' where 'pp' is either 15 or 31 and 's' is a number between 1 and 9.
DEC15 specifies the rules that do not allow a precision greater than 15 digits, and
DEC31 specifies the rules that allow a precision of up to 31 digits. The rules for
DEC31 are always used if either operand has a precision greater than 15. If the
form 'Dpp.s' is used, 'pp' represents the precision that will be used as the rules
where DEC15 and DEC31 rules are used, and 's' represents the minimum divide
scale to use for division operations. The separator used in the form 'Dpp.s' can be
either the '.' or the ',' character, regardless of the setting of the default decimal
point.

The initial value of CURRENT PRECISION is determined by the value of field
DECIMAL ARITHMETIC on installation panel DSNTIP4. The default for the initial
value is DEC15 unless your installation has changed it to be DEC31 by modifying
the value in that field. The initial value of CURRENT PRECISION in a
user-defined function or stored procedure is inherited according to the rules in
Table 40 on page 205.

You can change the value of the register by executing the statement SET
CURRENT PRECISION.

CURRENT PRECISION only affects dynamic SQL. When an SQL statement is
dynamically prepared and the value of CURRENT PRECISION is DEC15 or D15.s,
where 's' is a number between 1 and 9, DEC15 rules will apply. When an SQL
statement is dynamically prepared and the value of CURRENT PRECISION is
DEC31 or D31.s, where 's' is a number between 1 and 9, DEC31 rules will apply.
Preparation of a statement with DEC31 instead of DEC15 is more likely to result in
an error, especially for division operations. Specification of CURRENT PRECISION
in the form 'Dpp.s' where 'pp' is either 15 or 31 and 's' represents the minimum
divide scale, will in some cases make division errors less likely when 'pp' is set to
31. For more information, see “Arithmetic with two decimal operands” on page
244.

Example 1: Set CURRENT PRECISION so that subsequent statements that are
prepared use DEC31 rules for decimal arithmetic:

SET CURRENT PRECISION = ’DEC31’;

Example 2: Set CURRENT PRECISION so that subsequent statements that are
prepared use DEC31 rules for decimal arithmetic with a minimum divide scale of
3:

SET CURRENT PRECISION = ’D31.3’;

Related reference:
“SET CURRENT PRECISION” on page 1905

Chapter 2. Language elements 185

CURRENT QUERY ACCELERATION
The CURRENT QUERY ACCELERATION special register specifies a value that
identifies when DB2 sends queries to an accelerator server and what DB2 does if
the accelerator server fails.

The data type is VARCHAR(255).

Valid values are:

NONE
Specifies that no queries are sent to an accelerator server.

ENABLE
Specifies that queries are accelerated only if DB2 determines that it is
advantageous to do so. If an accelerator failure occurs while a query is running
or if the accelerator returns an error, DB2 returns a negative SQLCODE to the
application.

ENABLE WITH FAILBACK
Specifies that queries are accelerated only if DB2 determines that it is
advantageous to do so. If the accelerator returns an error during the PREPARE
or first OPEN for the query, DB2 executes the query without the accelerator. If
the accelerator returns an error during a FETCH or a subsequent OPEN, DB2
returns the error to the user and does not execute the query.

ELIGIBLE
Specifies that queries are accelerated if they are eligible for acceleration. DB2
does not use cost information to determine whether to accelerate the queries.
Queries that are not eligible for acceleration are executed by DB2. If an
accelerator failure occurs while a query is running or if the accelerator returns
an error, DB2 returns a negative SQLCODE to the application.

ALL
Specifies that queries are accelerated if they are eligible for acceleration. DB2
does not use cost information to determine whether to accelerate the queries.
Queries that are not eligible for acceleration are not executed by DB2, and an
SQL error is returned. If an accelerator failure occurs while a query is running
or if the accelerator returns an error, DB2 returns a negative SQLCODE to the
application.

The initial value of CURRENT QUERY ACCELERATION is determined by the
value of DB2 subsystem parameter QUERY_ACCELERATION. The default for the
initial value of that subsystem parameter is NONE unless your installation has
changed the value. The initial value of CURRENT QUERY ACCELERATION in a
user-defined function or stored procedure is inherited according to the rules in
Table 40 on page 205.

You can change the value of the register by executing the SET CURRENT QUERY
ACCELERATION statement.

Example: The following statement sets the CURRENT QUERY ACCELERATION
special register so that no query acceleration occurs.

SET CURRENT QUERY ACCELERATION NONE;

Related reference:
“SET CURRENT QUERY ACCELERATION” on page 1906

186 SQL Reference

CURRENT REFRESH AGE
CURRENT REFRESH AGE specifies a timestamp duration value. This duration is
the maximum duration since a REFRESH TABLE statement has been processed on
a system-maintained REFRESH DEFERRED materialized query table such that the
materialized query table can be used to optimize the processing of a query. This
special register affects dynamic statement cache matching.

The data type of the register is DECIMAL(20,6). For a description of durations, see
“Datetime operands and durations” on page 254.

If CURRENT REFRESH AGE has a value of 99999999999999 (ANY), REFRESH
DEFERRED materialized query tables are considered to optimize the processing of
a dynamic SQL query. This value represents 9999 years, 99 months, 99 days, 99
hours, and 99 seconds.

The initial value of CURRENT REFRESH AGE is determined by the value of field
CURRENT REFRESH AGE on installation panel DSNTIP81. The default for the
initial value of that field is 0 unless your installation has changed it to ANY by
modifying the value of that field. The initial value of CURRENT REFRESH AGE in
a user-defined function or stored procedure is inherited according to the rules in
Table 40 on page 205.

You can change the value of the register by executing the SET CURRENT
REFRESH AGE statement.

Example : The following example retrieves the current value of the CURRENT
REFRESH AGE special register into the host variable, CURMAXAGE:

EXEC SQL VALUES (CURRENT REFRESH AGE) INTO :CURMAXAGE;

The value would be '99999999999999.000000'.
Related reference:
“SET CURRENT REFRESH AGE” on page 1908

Chapter 2. Language elements 187

CURRENT ROUTINE VERSION
CURRENT ROUTINE VERSION specifies the version identifier that is to be used
when invoking a native SQL procedure. CURRENT ROUTINE VERSION is used
for CALL statements that use a host variable to specify the procedure name.

The data type of CURRENT ROUTINE VERSION is VARCHAR(64).

The initial value of CURRENT ROUTINE VERSION in a user-defined function or
stored procedure is inherited according to the rules in Table 40 on page 205. In
other contexts the initial value of CURRENT ROUTINE VERSION is an empty
string. An empty string indicates that a version identifier is not in effect for the
SQL routine. When an SQL routine that does not have a version identifier in effect
is invoked, the currently active version (as indicated in the catalog) of that routine
is used.

You can change the value of the CURRENT ROUTINE VERSION by executing the
statement SET CURRENT ROUTINE VERSION.

Setting the CURRENT ROUTINE VERSION special register to a version identifier
might affect native SQL procedures that are invoked until the value of CURRENT
ROUTINE VERSION is changed. If a version of an SQL procedure has a version
identifier that matches the version identifier in the special register, that version of
the SQL procedure is used when the SQL procedure is invoked. If an SQL
procedure does not have a version identifier that matches the version identifier in
the special register, the currently active version of the SQL procedure (as defined in
the catalog) is used when the SQL procedure is invoked.

Example: Set the host variable ROUTINE_VER to the value of the CURRENT
ROUTINE VERSION special register:

VALUES CURRENT ROUTINE VERSION INTO :ROUTINE_VER;

Related reference:
“SET CURRENT ROUTINE VERSION” on page 1910

188 SQL Reference

CURRENT RULES
CURRENT RULES specifies whether certain SQL statements are executed in
accordance with DB2 rules or the rules of the SQL standard.

The data type of the register is CHAR(3), and the only valid values are 'DB2' and
'STD'.

CURRENT RULES is a register at the database server. If the server is not the local
DB2, the initial value of the register is 'DB2'. Otherwise, the initial value is the
same as the value of the SQLRULES bind option. The initial value of CURRENT
RULES in a user-defined function or stored procedure is inherited according to the
rules in Table 40 on page 205.

You can change the value of the register by executing the statement SET
CURRENT RULES.

CURRENT RULES affects the statements listed in the following table. The table
summarizes when the statements are affected and shows where to find detailed
information. CURRENT RULES also affects whether DB2 issues an existence error
(SQLCODE -204) or an authorization error (SQLCODE -551) when an object does
not exist. For CURRENT RULES 'STD', DB2 issues an authorization error
(SQLCODE -551) when an object does not exist instead of the existence error
(SQLCODE -204).

Table 39. Summary of statements affected by CURRENT RULES

Statement What is affected
Details in
topic

ALTER TABLE Enforcement of check constraints added.

Default value of the delete rule for referential
constraints.

Whether DB2 creates LOB table spaces, auxiliary
tables, and indexes on auxiliary tables for added
LOB columns.

Whether DB2 creates an index for an added
ROWID column that is defined with GENERATED
BY DEFAULT.

“ALTER
TABLE” on
page 984

CREATE TABLE Default value of the delete rule for referential
constraints.

Whether DB2 creates LOB table spaces, auxiliary
tables, and indexes on auxiliary tables for LOB
columns if the table is explicitly created.

Whether DB2 creates an index for a ROWID
column that is defined with GENERATED BY
DEFAULT if the table is explicitly created.

“CREATE
TABLE” on
page 1388

GRANT Granting privileges to yourself. “GRANT”
on page
1695

REVOKE Revoking privileges from authorization IDs “REVOKE”
on page
1812

Chapter 2. Language elements 189

Example: Set CURRENT RULES so that a later ALTER TABLE statement is executed
in accordance with the rules of the SQL standard:

SET CURRENT RULES = ’STD’;

Related reference:
“SET CURRENT RULES” on page 1912

190 SQL Reference

CURRENT SCHEMA
The CURRENT SCHEMA special register specifies the schema name used to
qualify unqualified database object references in dynamically prepared SQL
statements.

The data type is VARCHAR(128).

For information on when the CURRENT SCHEMA is used to resolve unqualified
names in dynamic SQL statements and the effect of its value, see “Qualification of
unqualified object names” on page 65.

The CURRENT SCHEMA special register contains a value that is a single identifier
without delimiters.

The initial value of the special register is the value of CURRENT SQLID at the
time the connection is established. If the connection is established as a trusted
connection with a role as the object owner and qualifier, the initial value of the
special register is the value of the role name that is associated with the user in the
trusted context. The initial value of the special register in a user-defined function
or procedure is inherited according to the rules in Table 40 on page 205.

The value of the special register can be changed by executing the SET SCHEMA
statement. The value of CURRENT SCHEMA is the same as the value of
CURRENT SQLID unless a SET SCHEMA statement has been issued specifying a
different value. After a SET SCHEMA statement has been issued in an application,
the values of CURRENT SCHEMA and CURRENT SQLID are separate. Therefore,
if the value of CURRENT SCHEMA needs to be changed, a SET SCHEMA
statement must be issued.

Specifying CURRENT_SCHEMA is equivalent to specifying CURRENT SCHEMA.

Example: Set the schema for object qualification to 'D123'.
SET SCHEMA = ’D123’

Chapter 2. Language elements 191

CURRENT SERVER
CURRENT SERVER specifies the location name of the current server.

The data type is CHAR(16). If necessary, the location name is padded on the right
with blanks so that its length is 16 bytes.

The initial value of CURRENT SERVER depends on the CURRENTSERVER bind
option. If CURRENTSERVER X is specified on the bind subcommand, the initial
value is X. If the option is not specified, the initial value is the location name of
the local DB2. The initial value of CURRENT SERVER in a user-defined function or
stored procedure is inherited according to the rules in Table 40 on page 205. The
value of CURRENT SERVER is changed by the successful execution of a
CONNECT statement.

The value of CURRENT SERVER is a string of blanks when either of the following
conditions apply:
v The application process is in the unconnected state
v The application process is connected to a local DB2 subsystem that does not

have a location name.

Example: Set the host variable CS to the location name of the current server.
EXEC SQL SET :CS = CURRENT SERVER;

192 SQL Reference

CURRENT SQLID
CURRENT SQLID specifies the SQL authorization ID of the process.

The data type is VARCHAR(128).

The SQL authorization ID is:
v The authorization ID used for authorization checking on dynamically prepared

CREATE, GRANT, and REVOKE SQL statements.
v The owner of a table space, database, storage group, or synonym created by a

dynamically issued CREATE statement.

The initial value of CURRENT SQLID can be provided by the connection or
sign-on exit routine. If not, the initial value is the primary authorization ID of the
process. The value remains in effect until one of the following events occurs:
v The SQL authorization ID is changed by the execution of a SET CURRENT

SQLID statement.
v A SIGNON or re-SIGNON request is received from a CICS transaction subtask

or an IMS independent region.
v The DB2 connection is ended.
v When running in a trusted connection, the user is switched.

The initial value of CURRENT SQLID in a user-defined function or stored
procedure is inherited according to the rules in Table 40 on page 205.

CURRENT SQLID can only be referred to in an SQL statement that is executed by
the current server.

CURRENT SQLID cannot be a role.

Example: Set the SQL authorization ID to 'GROUP34' (one of the authorization IDs
of the process).

SET CURRENT SQLID = ’GROUP34’;

Chapter 2. Language elements 193

CURRENT TEMPORAL BUSINESS_TIME

Examples

When a query references an application-period temporal table and the value of the
CURRENT TEMPORAL BUSINESS_TIME special register is not the null value, the
query is affected as follows:
v If the columns of a BUSINESS_TIME period are defined as TIMESTAMP, the

following period specification is implicit:
FOR BUSINESS_TIME AS OF CURRENT TEMPORAL BUSINESS_TIME

v If the columns of a BUSINESS_TIME period are defined as DATE, the following
period specification is implicit: :
FOR BUSINESS_TIME AS OF CAST(CURRENT TEMPORAL BUSINESS_TIME AS DATE)

The initial value of the special register depends on the context as follows:
v If the special register is in a trigger, the initial value is inherited from the

invoking application.
v If the special register is in a user-defined function or procedure that is defined

with the INHERIT SPECIAL REGISTERS option, the initial value is inherited
from the invoking application.

v If the special register is in a user-defined function or procedure that is defined
with the DEFAULT SPECIAL REGISTERS option, the initial value is the null
value.

v In other contexts, the initial value of the special register is the null value.

You can change the value of the special register by using the SET CURRENT
TEMPORAL BUSINESS_TIME statement. If you change the value within a routine,
that new value is not passed back to the invoking application.

Example of a query that references an application-period temporal table
Assume the following conditions:
v ATT is an application-period temporal table and POLICY_ID is a column

in ATT.
v The value of the BUSTIMESENSITIVE bind option is YES.
v The value of CURRENT TEMPORAL BUSINESS_TIME is not null.

Then, suppose that you issue the following query:
SELECT * FROM ATT
WHERE POLICY_ID = 123;

DB2 generates an implicit BUSINESS_TIME period specification for the
query as follows:
SELECT * FROM ATT
FOR BUSINESS_TIME AS OF CURRENT TEMPORAL BUSINESS_TIME
WHERE POLICY_ID = 123;

Example of a procedure that uses CURRENT TEMPORAL BUSINESS_TIME
Suppose that procedure MYPROC is defined as follows:
CREATE PROCEDURE MYPROC(OUT VAR1 VARCHAR(40), OUT VAR2 VARCHAR(40))
BEGIN
SELECT CURRENT TEMPORAL BUSINESS_TIME INTO VAR1
FROM SYSIBM.SYSDUMMY1;

SET CURRENT TEMPORAL BUSINESS_TIME = TIMESTAMP(’2011-01-01’) + 5 DAYS ;

194 SQL Reference

|

|

|
|
|

|
|

|

|
|

|

|

|
|

|
|
|

|
|
|

|

|
|
|

|
|

|
|

|

|

|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

SELECT CURRENT TEMPORAL BUSINESS_TIME INTO VAR2
FROM SYSIBM.SYSDUMMY1;
END!

Suppose that the application defines string variables VAR1, VAR2, and
VAR3 and contains the following SQL statements:
SET CURRENT TEMPORAL BUSINESS_TIME = TIMESTAMP(’2008-01-01’) + 5 DAYS ;

CALL MYPROC(VAR1, VAR2);

SELECT CURRENT TEMPORAL BUSINESS_TIME INTO VAR3
FROM SYSIBM.SYSDUMMY1;

After the execution of the SQL statements, the variables have the following
values:
v VAR1 has value '2008-01-06-00.00.00.000000000000', which is the

CURRENT TEMPORAL BUSINESS_TIME value that is set before the
CALL statement invoked the procedure.

v VAR2 has value '2011-01-06-00.00.00.000000000000', which is the
CURRENT TEMPORAL BUSINESS_TIME value that is set during the
CALL statement.

v VAR3 has value '2008-01-06-00.00.00.000000000000', which is the
CURRENT TEMPORAL BUSINESS_TIME value that is set before the
CALL statement. The changes of the register value inside the procedure
have no affect on the invoking application.

Example of a query that references CURRENT TEMPORAL BUSINESS_TIME
Assume that IN_TRAY is an application-period temporal table that
contains users and subject lines for notes in the inbox. The following query
returns the user ID and subject line for notes in the IN_TRAY table that
were sent on the date that the CURRENT TEMPORAL BUSINESS_TIME
special register is set to.
SELECT SOURCE, SUBJECT
FROM IN_TRAY
WHERE DATE (CURRENT TEMPORAL BUSINESS_TIME) = DATE (RECEIVED)

Related tasks:

Querying temporal tables (DB2 Administration Guide)
Related reference:
“table-reference” on page 773

BIND and REBIND options (DB2 Commands)
“SET CURRENT TEMPORAL BUSINESS_TIME” on page 1915
“Special registers in a user-defined function or a stored procedure” on page 205

Chapter 2. Language elements 195

|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_queryingtemporaltables.htm#db2z_queryingtemporaltables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

CURRENT TEMPORAL SYSTEM_TIME
The CURRENT TEMPORAL SYSTEM_TIME special register specifies a
TIMESTAMP(12) value that is used in the default SYSTEM_TIME period
specification for references to system-period temporal tables.

Examples

When a query references a system-period temporal table and the value of the
CURRENT TEMPORAL SYSTEM_TIME special register is not the null value, the
following period specification is implicit:
FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME

The initial value of the special register depends on the context as follows:
v If the special register is in a trigger, the initial value is inherited from the

invoking application.
v If the special register is in a user-defined function or procedure that is defined

with the INHERIT SPECIAL REGISTERS option, the initial value is inherited
from the invoking application.

v If the special register is in a user-defined function or procedure that is defined
with the DEFAULT SPECIAL REGISTERS option, the initial value is the null
value.

v In other contexts, the initial value of the special register is the null value.

You can change the value of the special register by using the SET CURRENT
TEMPORAL SYSTEM_TIME statement. If you change the value within a routine,
that new value is not passed back to the invoking application.

Example of a query that references a system-period temporal table
Assume the following conditions:
v STT is a system-period temporal table, and POLICY_ID is a column of

STT.
v The value of the SYSTIMESENSITIVE bind option is YES.
v The value of CURRENT TEMPORAL SYSTEM_TIME is not null.

Then, suppose that you issue the following query:
SELECT * FROM STT
WHERE POLICY_ID = 123;

DB2 generates an implicit SYSTEM_TIME period specification for the
query as follows:
SELECT * FROM STT
FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME
WHERE POLICY_ID = 123;

Example of a procedure that uses CURRENT TEMPORAL SYSTEM_TIME
Suppose that procedure MYPROC is defined as follows:
CREATE PROCEDURE MYPROC(OUT VAR1 VARCHAR(40), OUT VAR2 VARCHAR(40))
BEGIN
SELECT CURRENT TEMPORAL SYSTEM_TIME INTO VAR1
FROM SYSIBM.SYSDUMMY1;

SET CURRENT TEMPORAL SYSTEM_TIME = TIMESTAMP(’2011-01-01’) + 5 DAYS ;

SELECT CURRENT TEMPORAL SYSTEM_TIME INTO VAR2
FROM SYSIBM.SYSDUMMY1;
END!

196 SQL Reference

|

|
|
|

|

|
|
|

|

|

|
|

|
|
|

|
|
|

|

|
|
|

|
|

|
|

|

|

|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

Suppose that the application defines string variables VAR1, VAR2, and
VAR3 and contains the following SQL statements:
SET CURRENT TEMPORAL SYSTEM_TIME = TIMESTAMP(’2008-01-01’) + 5 DAYS ;

CALL MYPROC(VAR1, VAR2);

SELECT CURRENT TEMPORAL SYSTEM_TIME INTO VAR3
FROM SYSIBM.SYSDUMMY1

After the execution of the SQL statements, the variables have the following
values:
v VAR1 has value '2008-01-06-00.00.00.000000000000', which is the

CURRENT TEMPORAL SYSTEM_TIME value that is set before the
CALL statement invoked the procedure.

v VAR2 has value '2011-01-06-00.00.00.000000000000', which is the
CURRENT TEMPORAL SYSTEM_TIME value that is set during the
CALL statement.

v VAR3 has value '2008-01-06-00.00.00.000000000000', which is the
CURRENT TEMPORAL SYSTEM_TIME value that is set before the
CALL statement. The changes of the register value inside the procedure
have no affect on the invoking application.

Example of a query that references a system-period temporal table
Assume that IN_TRAY is a system-period temporal table that contains
users and subject lines for notes in the inbox. The following query returns
the user IDs and subject lines based on the state of the messages in
IN_TRAY as of the date that is specified by the CURRENT TEMPORAL
SYSTEM_TIME special register.
SELECT SOURCE, SUBJECT
FROM IN_TRAY

If the special register is set to a non-null value, the previous statement is
equivalent to the following statement:
SELECT SOURCE, SUBJECT
FROM IN_TRAY
FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME

Related tasks:

Querying temporal tables (DB2 Administration Guide)
Related reference:
“table-reference” on page 773

BIND and REBIND options (DB2 Commands)
“SET CURRENT TEMPORAL SYSTEM_TIME” on page 1917
“Special registers in a user-defined function or a stored procedure” on page 205

Chapter 2. Language elements 197

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|

|

|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_queryingtemporaltables.htm#db2z_queryingtemporaltables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

CURRENT TIME
The CURRENT TIME special register specifies a time that is based on a reading of
the time-of-day clock when the SQL statement is executed at the current server.

If this special register is used more than one time within a single SQL statement, or
used with CURRENT DATE or CURRENT TIMESTAMP within a single statement,
all values are based on a single clock reading.10

The value of CURRENT TIME in a user-defined function or stored procedure is
inherited according to the rules in Table 40 on page 205. For other applications, the
time is derived by the DB2 that executes the SQL statement that refers to the
special register. For a description of how the date is derived, see Datetime special
registers.

Specifying CURRENT_TIME is equivalent to specifying CURRENT TIME.

Example: Display information about all project activities and include the current
date and time in each row of the result.

SELECT DSN8B10.PROJACT.*, CURRENT DATE, CURRENT TIME
FROM DSN8B10.PROJACT;

10. Except for the case of a non-atomic multiple row INSERT or MERGE statement.

198 SQL Reference

CURRENT TIMESTAMP
The CURRENT TIMESTAMP special register specifies a timestamp that is based on
a reading of the time-of-day clock when the SQL statement is executed at the
current server.

If this special register is used more than one time within a single SQL statement, or
used with CURRENT DATE or CURRENT TIME within a single statement, all
values are based on a single clock reading.11

The value of CURRENT TIMESTAMP in a user-defined function or stored
procedure is inherited according to the rules in Table 40 on page 205.

Specifying CURRENT_TIMESTAMP is equivalent to specifying CURRENT
TIMESTAMP.

If you want a timestamp with a specified precision, the special register can be
referenced as CURRENT TIMESTAMP(integer), where integer can range from 0 to
12. The default precision is 6. SYSDATE can also be specified as a synonym for
CURRENT TIMESTAMP(0).

If you want a timestamp with a time zone, the special register can be referenced as
CURRENT TIMESTAMP (integer) WITH TIME ZONE, or CURRENT TIMESTAMP
WITH TIME ZONE. SYSTIMESTAMP can be specified as an alternative to
CURRENT TIMESTAMP(12) WITH TIME ZONE. The time zone is determined
from the CURRENT TIME ZONE special register.

Note: If the CURRENT TIMESTAMP special register is referenced in a timestamp
with time zone context (for example, when compared with a timestamp with time
zone column) the implicit time zone for the CURRENT TIMESTAMP special
register will be based on the implicit time zone system parameter, which could be
a different value from the CURRENT TIME ZONE special register. To avoid
misinterpretation of the time zone in this case, CURRENT TIMESTAMP WITH
TIME ZONE should be used.

Example 1: Display information about the full image copies that were taken in the
last week.

SELECT * FROM SYSIBM.SYSCOPY
WHERE TIMESTAMP > CURRENT TIMESTAMP - 7 DAYS;

Example 2: Insert a row into the IN_TRAY table. The value of the RECEIVED
column should be a timestamp that indicates when the row was inserted. The
values for the other three columns come from the host variables SRC (CHAR(8)),
SUB (CHAR(64)), and TXT (VARCHAR(200)).
INSERT INTO IN_TRAY
VALUES (CURRENT TIMESTAMP, :SRC, :SUB, :TXT)

Example 3: Retrieve the value of the CURRENT TIMESTAMP special register with a
precision of 8 and include the time zone:
SELECT CURRENT TIMESTAMP(8) WITH TIME ZONE
FROM SYSIBM.SYSDUMMY1;

11. Except for the case of a non-atomic multiple row INSERT or MERGE statement.

Chapter 2. Language elements 199

CURRENT TIME ZONE
The CURRENT TIME ZONE special register specifies a value that contains the
difference between UTC and local time at the current server, if the SESSION TIME
ZONE special register has not been set.

The data type is DECIMAL(6,0).

The difference between UTC and local time at the current server is represented by
a time duration. A time duration is a decimal number in which the first two digits
are the number of hours, the next two digits are the number of minutes, and the
last two digits are the number of seconds. The number of hours is adjusted, if
necessary, to fit in the range between -24 and 24 exclusive.

Subtracting CURRENT TIME ZONE from a local time converts that local time to
UTC.

CURRENT TIMEZONE can be specified as an alternative to CURRENT TIME
ZONE.

Example: Select all the rows of the IN_TRAY table. Assume that the RECEIVED
column is defined as TIMESTAMP WITHOUT TIME ZONE. Adjust the timestamp
value in the RECEIVED column to UTC by subtracting the value of the CURRENT
TIME ZONE special register.

SELECT RECEIVED - CURRENT TIME ZONE, SOURCE, SUBJECT, NOTE_TEXT
FROM IN_TRAY;

200 SQL Reference

ENCRYPTION PASSWORD
The ENCRYPTION PASSWORD special register specifies the encryption password
and the password hint (if one exists) that are used by the encryption and
decryption built-in functions.

This special register can only be set, by using the SET ENCRYPTION PASSWORD
statement, and cannot be referenced directly. The ENCRYPTION PASSWORD
special register contains the value of the password that is used by the
ENCRYPTION and DECRYPTION built-in functions to encrypt and decrypt data
when a password is not explicitly specified as a function argument. The
ENCRYPTION PASSWORD special register can also contain a password hint which
is associated with the values that are encrypted using the encryption password.
The password hint is a character string that is used to help in remembering the
password. The GETHINT function is used to return the password hint for an
encrypted value.

The initial value of the ENCRYPTION PASSWORD special register is the empty
string (' ').

The initial value of the ENCRYPTION PASSWORD special register in a
user-defined function or procedure is inherited from the invoking application. In
other contexts, the initial value of the special register is the empty string.

The password is not related to DB2 authentication and is used only for data
encryption.
Related reference:
“SET ENCRYPTION PASSWORD” on page 1919

Chapter 2. Language elements 201

SESSION_USER
SESSION_USER specifies the primary authorization ID of the process.

The data type is VARCHAR(128).

If SESSION_USER is referred to in an SQL statement that is executed at a remote
DB2 and the primary authorization ID has been translated to a different
authorization ID, SESSION_USER specifies the translated authorization ID. For an
explanation of authorization ID translation, see DB2 Administration Guide. The
value of SESSION_USER in a user-defined function or stored procedure is
determined according to the rules in Table 40 on page 205.

USER can be specified as a synonym for SESSION_USER.

Example: Display information about tables, views, and aliases that are owned by
the primary authorization ID of the process.

SELECT * FROM SYSIBM.SYSTABLES WHERE CREATOR = SESSION_USER;

202 SQL Reference

SESSION TIME ZONE
The SESSION TIME ZONE special register specifies a value that identifies the time
zone of the application process.

The data type is VARCHAR(128).

The time zone value is in the format of ±th:tm. th represents the time zone hour
offset. tm represents the time zone minute offset. Valid values for th are between
-12 and +14. Valid values for tm are between 0 and 59. SESSION TIMEZONE can
be specified as an alternative to SESSION TIME ZONE.

The initial value of the special register in a user-defined function or stored
procedure is inherited according to the rules in “Special registers in a user-defined
function or a stored procedure” on page 205. In other contexts the initial value of
the special register represents the same time zone as the CURRENT TIME ZONE
special register.

The value of the special register can be changed by executing the SET SESSION
TIME ZONE statement. After a SET SESSION TIME ZONE statement has been
processed, the values of the SESSION TIME ZONE and CURRENT TIME ZONE
special register might not reflect the same value.

Example: Set the session time zone to '-8:00':
SET SESSION TIME ZONE = ’-8:00’;

Related reference:
“SET SESSION TIME ZONE” on page 1927

Chapter 2. Language elements 203

USER
USER specifies the primary authorization ID of the process. The data type is
VARCHAR(128). SESSION_USER is the preferred spelling.

If USER is referred to in an SQL statement that is executed at a remote DB2 and
the primary authorization ID has been translated to a different authorization ID,
USER specifies the translated authorization ID. For an explanation of authorization
ID translation, see DB2 Administration Guide. The value of USER in a user-defined
function or stored procedure is determined according to the rules in Table 40 on
page 205.

Example: Display information about tables, views, and aliases that are owned by
the primary authorization ID of the process.

SELECT * FROM SYSIBM.SYSTABLES WHERE CREATOR = USER;

204 SQL Reference

Special registers in a user-defined function or a stored
procedure

You can use all special registers in a user-defined function or a stored procedure.
However, you can modify only some of those special registers.

After a user-defined function or a stored procedure completes, DB2 restores all
special registers to the values they had before invocation.

The following table shows information that you need when you use special
registers in a user-defined function or stored procedure.

Table 40. Characteristics of special registers in a user-defined function or a stored procedure

Special register

Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Routine can
use SET
statement to
modify?

CURRENT APPLICATION
COMPATIBILITY

The value of bind option
APPLCOMPAT for the
user-defined function or stored
procedure package

The value of bind option
APPLCOMPAT for the
user-defined function or stored
procedure package

Yes

CURRENT APPLICATION
ENCODING SCHEME

The value of bind option
ENCODING for the
user-defined function or stored
procedure package

The value of bind option
ENCODING for the
user-defined function or stored
procedure package

Yes

CURRENT CLIENT_ACCTNG Inherited from the invoking
application

Inherited from the invoking
application

Not applicable5

CURRENT
CLIENT_APPLNAME

Inherited from the invoking
application

Inherited from the invoking
application

Not applicable5

CURRENT CLIENT_USERID Inherited from the invoking
application

Inherited from the invoking
application

Not applicable5

CURRENT
CLIENT_WRKSTNNAME

Inherited from the invoking
application

Inherited from the invoking
application

Not applicable5

CURRENT DATE New value for each SQL
statement in the user-defined
function or stored procedure
package1

New value for each SQL
statement in the user-defined
function or stored procedure
package1

Not applicable5

CURRENT DEBUG MODE Inherited from the invoking
application

DISALLOW Yes

CURRENT DECFLOAT
ROUNDING MODE

Inherited from the invoking
application

The value of bind option
ROUNDING for the
user-defined function or stored
procedure package

Yes

CURRENT DEGREE CURRENT DEGREE2 The value of field CURRENT
DEGREE on installation panel
DSNTIP8

Yes

CURRENT EXPLAIN MODE Inherited from the invoking
application

NO Yes

CURRENT
GET_ACCEL_ARCHIVE

Inherited from the invoking
application

System default value Yes

CURRENT LOCALE LC_CTYPE Inherited from the invoking
application

The value of field CURRENT
LC_CTYPE on installation panel
DSNTIPF

Yes

Chapter 2. Language elements 205

|
|
|
|
|
|

|
|
|
|

|

Table 40. Characteristics of special registers in a user-defined function or a stored procedure (continued)

Special register

Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Routine can
use SET
statement to
modify?

CURRENT MAINTAINED
TABLE TYPES FOR
OPTIMIZATION

Inherited from the invoking
application

System default value Yes

CURRENT MEMBER New value for each SET
host-variable=CURRENT
MEMBER statement

New value for each SET
host-variable=CURRENT
MEMBER statement

Not applicable5

CURRENT OPTIMIZATION
HINT

The value of bind option
OPTHINT for the user-defined
function or stored procedure
package or inherited from the
invoking application6

The value of bind option
OPTHINT for the user-defined
function or stored procedure
package

Yes

CURRENT PACKAGE PATH An empty string if the routine
was defined with a COLLID
value; otherwise, inherited from
the invoking application4

An empty string, regardless of
whether a COLLID value was
specified for the routine4

Yes

CURRENT PACKAGESET Inherited from the invoking
application3

Inherited from the invoking
application3

Yes

CURRENT PATH The value of bind option PATH
for the user-defined function or
stored procedure package or
inherited from the invoking
application6

The value of bind option PATH
for the user-defined function or
stored procedure package

Yes

CURRENT PRECISION Inherited from the invoking
application

The value of field DECIMAL
ARITHMETIC on installation
panel DSNTIP4

Yes

CURRENT QUERY
ACCELERATION

Inherited from the invoking
application

System default value Yes

CURRENT REFRESH AGE Inherited from the invoking
application

System default value Yes

CURRENT ROUTINE VERSION Inherited from the invoking
application

The empty string Yes

CURRENT RULES Inherited from the invoking
application

The value of bind option
SQLRULES for the plan that
invokes a user-defined function
or stored procedure

Yes

CURRENT SCHEMA Inherited from the invoking
application

The value of CURRENT
SCHEMA when the routine is
entered

Yes

CURRENT SERVER Inherited from the invoking
application

Inherited from the invoking
application

Yes

CURRENT SQLID The primary authorization ID of
the application process or
inherited from the invoking
application7

The primary authorization ID of
the application process

Yes8

CURRENT TEMPORAL
BUSINESS_TIME

Inherited from the invoking
application

NULL Yes

CURRENT TEMPORAL
SYSTEM_TIME

Inherited from the invoking
application

NULL Yes

206 SQL Reference

|
|
|
|
||

|
|
|
|
||

Table 40. Characteristics of special registers in a user-defined function or a stored procedure (continued)

Special register

Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Routine can
use SET
statement to
modify?

CURRENT TIME New value for each SQL
statement in the user-defined
function or stored procedure
package1

New value for each SQL
statement in the user-defined
function or stored procedure
package1

Not applicable5

CURRENT TIMESTAMP New value for each SQL
statement in the user-defined
function or stored procedure
package1

New value for each SQL
statement in the user-defined
function or stored procedure
package1

Not applicable5

CURRENT TIMESTAMP WITH
TIME ZONE

New value for each SQL
statement in the user-defined
function or stored procedure
package1

New value for each SQL
statement in the user-defined
function or stored procedure
package1

Not applicable5

CURRENT TIME ZONE Inherited from the invoking
application

Inherited from the invoking
application

Not applicable5

ENCRYPTION PASSWORD Inherited from the invoking
application

Inherited from the invoking
application

Yes

SESSION TIME ZONE Inherited from the invoking
application

The value of CURRENT TIME
ZONE when the routine is
entered

Yes

SESSION_USER or USER Primary authorization ID of the
application process

Primary authorization ID of the
application process

Not applicable5

Notes:

1. If the user-defined function or stored procedure is invoked within the scope of a trigger, DB2 uses the timestamp
for the triggering SQL statement as the timestamp for all SQL statements in the package.

2. DB2 allows parallelism at only one level of a nested SQL statement. If you set the value of the CURRENT
DEGREE special register to ANY, and parallelism is disabled, DB2 ignores the CURRENT DEGREE value.

3. If the routine definition includes a specification for COLLID, DB2 sets CURRENT PACKAGESET to the value of
COLLID. If both CURRENT PACKAGE PATH and COLLID are specified, the CURRENT PACKAGE PATH value
takes precedence and COLLID is ignored.

4. If the function definition includes a specification for PACKAGE PATH, DB2 sets CURRENT PACKAGE PATH to
the value of PACKAGE PATH.

5. Not applicable because no SET statement exists for the special register.

6. If a program within the scope of the invoking program issues a SET statement for the special register before the
user-defined function or stored procedure is invoked, the special register inherits the value from the SET
statement. Otherwise, the special register contains the value that is set by the bind option for the user-defined
function or stored procedure package.

7. If a program within the scope of the invoking program issues a SET CURRENT SQLID statement before the
user-defined function or stored procedure is invoked, the special register inherits the value from the SET
statement. Otherwise, CURRENT SQLID contains the authorization ID of the application process.

8. If the user-defined function or stored procedure package uses a value other than RUN for the DYNAMICRULES
bind option, the SET CURRENT SQLID statement can be executed. However, it does not affect the authorization
ID that is used for the dynamic SQL statements in the package. The DYNAMICRULES value determines the
authorization ID that is used for dynamic SQL statements.

Chapter 2. Language elements 207

Related concepts:

DYNAMICRULES bind option (DB2 Application programming and SQL)
Related reference:

BIND and REBIND options (DB2 Commands)
“Special registers” on page 156

Column names
The meaning of a column name depends on its context.

A column name can be used to:
v Declare the name of a column, as in a CREATE TABLE statement.
v Specify the name of a column, as in a CREATE FUNCTION statement to name a

column of the result table of a table function.
v Identify a column, as in a CREATE INDEX statement.
v Specify values of the column, as in the following contexts:

– In an aggregate function, a column name specifies all values of the column in
the group or intermediate result table to which the function is applied.
(Groups and intermediate result tables are explained in Chapter 4, “Queries,”
on page 761.) For example, MAX(SALARY) applies the function MAX to all
values of the column SALARY in a group.

– In a GROUP BY or ORDER BY clause, a column name specifies all values in
the intermediate result table to which the clause is applied. For example,
ORDER BY DEPT orders an intermediate result table by the values of the
column DEPT.

– In an expression, a search condition, or a scalar function, a column name specifies
a value for each row or group to which the construct is applied. For example,
when the search condition CODE = 20 is applied to some row, the value
specified by the column name CODE is the value of the column CODE in that
row.

v Provide a column name for an expression to temporarily rename a column, as in
the correlation-clause of a table-reference in a FROM clause or as in the AS clause
in the select-clause.

Qualified column names
A qualifier for a column name can be a table name, a view name, an alias name, a
synonym, or a correlation name. Whether a column name can be qualified
depends, like its meaning, on its context.
v In some forms of the COMMENT and LABEL statements, a column name must

be qualified. This is shown in the syntax diagrams.
v Where the column name specifies values of the column, a column name can be

qualified at the user's option.
v In the column list of an INSERT statement, a column name can be qualified.
v In the assignment-clause of an UPDATE or a MERGE statement, a column name

can be qualified.
v In all other contexts, a column name must not be qualified. This rule will be

mentioned in the discussion of each statement to which it applies.

208 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_dynamicrulesbindoption.htm#db2z_dynamicrulesbindoption
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

Where a qualifier is optional, it can serve two purposes. See “Column name
qualifiers to avoid ambiguity” and “Column name qualifiers in correlated
references” on page 211 for details.

Correlation names
A correlation name can be defined in the FROM clause of a query and after the
name of the target table or view in an UPDATE, MERGE, or DELETE statement.

For example, the following clause establishes Z as a correlation name for
X.MYTABLE:
FROM X.MYTABLE Z

With Z defined as a correlation name for table X.MYTABLE, only Z should be used
to qualify a reference to a column of X.MYTABLE in that SELECT statement.

A correlation name is associated with a table, view, nested table expression or table
function only within the context in which it is defined. Hence, the same correlation
name can be defined for different purposes in different statements. In a nested
table expression or table function, a correlation name is required.

As a qualifier, a correlation name can be used to avoid ambiguity or to establish a
correlated reference. It can also be used merely as a shorter name for a table or
view. In the example, Z might have been used merely to avoid having to enter
X.MYTABLE more than once.

Names that are specified in a FROM clause are either exposed or non-exposed. A
correlation name is always an exposed name. A table name or view name is said to
be exposed in that FROM clause if a correlation name is not specified. For
example, in the following FROM clause, a correlation name is specified for
EMPLOYEE, but not for DEPARTMENT; therefore, DEPARTMENT is an exposed
name, and EMPLOYEE is not an exposed name:
FROM EMPLOYEE E, DEPARTMENT

The use of a correlation name in the FROM clause also allows the option of
specifying a list of column names to be associated with the columns of the result
table. As with a correlation name, the listed column names should be the names
that are used to reference the columns in that SELECT statement. For example,
assume that the name of the first column in the DEPT table is DEPTNO. Given this
FROM clause in a SELECT statement:

FROM DEPT D (NUM,NAME,MGR,ANUM,LOC)

You should use D.NUM instead of D.DEPTNO to reference the first column of the
table.

If a list of columns is specified, it must consist of as many names as there are
columns in the table-reference. Each column must be unique and unqualified.

Column name qualifiers to avoid ambiguity
In the context of a function, a GROUP BY clause, an ORDER BY clause, an
expression, or a search condition, a column name refers to values of a column in
some table or view in a DELETE or UPDATE statement or table-reference in a
FROM clause.

Chapter 2. Language elements 209

The tables, views, and table-references12 that might contain the column are called the
object tables of the context. Two or more object tables might contain columns with
the same name. One reason for qualifying a column name is to designate the object
from which the column comes. For information on avoiding ambiguity between
SQL parameters and variables and column names, see “References to SQL
parameters and SQL variables” on page 2033.

A nested table expression which is preceded by a TABLE keyword will consider
table-references that precede it in the FROM clause as object tables. The
table-references that follow it are not considered as object tables.

Table designators: A qualifier that designates a specific object table is called a table
designator. The clause that identifies the object tables also establishes the table
designators for them. For example, the object tables of an expression in a SELECT
statement are named in the FROM clause that follows it, as in the following
statement:

SELECT DISTINCT Z.EMPNO, EMPTIME, PHONENO
FROM DSN8B10.EMP Z, DSN8B10.EMPPROJACT
WHERE WORKDEPT = ’D11’

AND EMPTIME > 0.5
AND Z.EMPNO = DSN8B10.EMPPROJACT.EMPNO;

Table designators in the FROM clause are established as follows:
v A name that follows a table or view name is both a correlation name and a table

designator. Thus, Z is a table designator and qualifies the first column name in
the select list.

v An exposed table or view name is a table designator. Thus, the qualified table
name, Thus, the qualified table name, DSN8B10.EMPPROJACT is a table
designator and qualifies the second column name in the select list.

Two or more object tables can be instances of the same table. In this case, distinct
correlation names must be used to unambiguously designate the particular
instance of the table. In the following example, the X and Y in the FROM clause
are defined to refer, respectively, to the first and second instances of the
DSN8B10.EMP table:

SELECT *
FROM DSN8B10.EMP X, DSN8B10.EMP Y;

Avoiding undefined or ambiguous references in DB2 SQL: When a column name
refers to values of a column, the following situations result in errors:
v No object table contains a column with the specified name. The reference is

undefined.
v The column name is qualified by a table designator, but the table named does

not include a column with the specified name. Again, the reference is undefined.
v The name is unqualified and more than one object table includes a column with

that name. The reference is ambiguous.

Avoid ambiguous references by qualifying a column name with a uniquely defined
table designator. If the column is contained in several object tables with different
names, the table names can be used as designators. Ambiguous references can also
be avoided without the use of the table designator by giving unique names to the
columns of one of the object tables using the column name list following the
correlation name.

12. In the case of a joined-table, each table-reference within the joined-table is an object table.

210 SQL Reference

Two or more object tables can be instances of the same table. A FROM clause that
includes n references to the same table should include at least n - 1 unique
correlation names.

For example, in the following FROM clause X and Y are defined to refer,
respectively, to the first and second instances of the table EMP.

SELECT X.LASTNAME, Y.LASTNAME
FROM DSN8B10.EMP X, DSN8B10.EMP Y
WHERE Y.JOB = ’MANAGER’

AND X.WORKDEPT = Y.WORKDEPT
AND X.JOB <> ’MANAGER’;

When qualifying a column with the exposed table name form of a table designator,
either the qualified or unqualified form of the exposed table name can be used.
However, the qualifier used and the table used must be the same after fully
qualifying the table name or view name and the table designator.

Example 1: If the authorization ID of the statement is CORPDATA, the following
statement is valid:

SELECT CORPDATA.EMPLOYEE.WORKDEPT
FROM EMPLOYEE;

Example 2: If the authorization ID of the statement is REGION, the following
statement is invalid because EMPLOYEE represents the table REGION.EMPLOYEE,
but the qualifier for WORKDEPT represents a different table,
CORPDATA.EMPLOYEE:

SELECT CORPDATA.EMPLOYEE.WORKDEPT -- Incorrect
FROM EMPLOYEE;

Example 3: If the authorization ID of the statement is REGION, the following
statement is invalid because EMPLOYEE in the select list represents the table
REGION.EMPLOYEE, but the explicitly qualified table name in the FROM clause
represents a different table, CORPDATA.EMPLOYEE.

SELECT EMPLOYEE.WORKDEPT -- Incorrect
FROM CORPDATA.EMPLOYEE;

Column name qualifiers in correlated references
A reference to a column of a table identified at a higher level is called a correlated
reference. Because the same table or view can be identified at many levels, unique
correlation names are recommended as table designators. It is good practice to use
these unique correlation names to qualify column names.

A subselect is a form of a query that can be used as a component of various SQL
statements. A subquery is a form of a fullselect that is enclosed within parenthesis.
For example, a subquery can be used in a search condition. A fullselect that is used
to retrieve a single value as an expression within a statement is called a scalar
fullselect or a scalar subquery. A fullselect that is used in the FROM clause of a query
is called a nested table expression.

A subquery can include search conditions of its own, and these search conditions
can, in turn, include subqueries. Thus, an SQL statement can contain a hierarchy of
subqueries. Those elements of the hierarchy that contain subqueries are said to be
at a higher level than the subqueries they contain.

Every element of the hierarchy has a clause that establishes one or more table
designators. This is the FROM clause, except in the highest level of an UPDATE,

Chapter 2. Language elements 211

where it is the table or view being updated. A search condition of a subquery can
reference not only columns of the tables identified by the FROM clause of its own
element of the hierarchy, but also columns of tables identified at any level along
the path from its own element to the highest level of the hierarchy.

A correlated reference to column C of table T can be of the form C, T.C, or Q.C, if
Q is a correlation name defined for T. However, a correlated reference in the form
of an unqualified column name is not good practice. The following explanation is
based on the assumption that a correlated reference is always in the form of a
qualified column name and that the qualifier is a correlation name.

A qualified column name, Q.C, is a correlated reference only if these three
conditions are met:
v Q.C is used in a search condition or in a select list of a subquery.
v Q does not name a table used in the FROM clause of that subquery.
v Q does name a table used at some higher level.

Q.C refers to column C of the table or view at the level where Q is used as the
table designator of that table or view. Because the same table or view can be
identified at many levels, unique correlation names are recommended as table
designators. If Q is used to name a table at more than one level, Q.C refers to the
lowest level that contains the subquery that includes Q.C.

If a correlation name is defined as the table designator of the table or view, but the
table or view name is used as the column qualifier instead of the correlation name,
an error is returned.

For example, in the following statement, the correlated reference X.WORKDEPT (in
the last line) refers to the value of WORKDEPT in table DSN8B10.EMP at the level
of the first FROM clause (which establishes X as a correlation name for
DSN8B10.EMP.). The statement lists employees who make less than the average
salary for their department.

SELECT EMPNO, LASTNAME, WORKDEPT
FROM DSN8B10.EMP X
WHERE SALARY < (SELECT AVG(SALARY)

FROM DSN8B10.EMP
WHERE WORKDEPT = X.WORKDEPT);

The following example shows a correlated reference in the select list of the
subquery.

SELECT T1.KEY1
FROM BP1TBL T1
GROUP BY T1.KEY1
HAVING MAX(T1.KEY1) = (SELECT MIN(T1.KEY1) + MIN(T2.KEY1)

FROM BP2TBL T2);

Related concepts:
Chapter 4, “Queries,” on page 761

Resolution of column name qualifiers and column names
The rules for resolving column name qualifiers apply to every SQL statement that
includes a subselect and are applied before synonyms and aliases are resolved.

Names in a FROM clause are either exposed or non-exposed. A correlation name for a
table name, view name, nested table expression, or reference to a table function is
always exposed. A table name or a view name that is not followed by a correlation
name is also exposed.

212 SQL Reference

Although DB2 for z/OS does not enforce this rule strictly, in IBM SQL and
ANSI/ISO SQL, the exposed names in a FROM clause must be unique, and the
qualifier of a column name must be an exposed name. Therefore, for good
programming practices, ensure that all exposed names are unique and that all
qualified column names are qualified with the appropriate exposed name.

The rules for finding the referent of a column name qualifier are as follows:
1. Let Q be a one-, two-, or three-part name, and let Q.C denote a column name

in subselect S. Q must designate a table or view identified in the statement that
includes S and that table or view must have a column named C. An additional
requirement differs for two cases:
v If Q.C is not in a search-condition or S is not a subquery, Q must designate a

table or view identified in the FROM clause of S. For example, if Q.C is in a
SELECT clause, Q refers to a table or view in the following FROM clause.

v If Q.C is in a search-condition and S is a subquery, Q must designate a table or
view identified either in the FROM clause of S or in a FROM clause of a
subselect that directly or indirectly includes S. For example, if Q.C is in a
WHERE clause and S is the only subquery in the statement, the table or view
that Q refers to is either in the FROM clause of S or the FROM clause of the
subselect that includes S.

2. The same table or view can be identified more than once in the same statement.
The particular occurrence of the table or view that Q refers to is determined by
a procedure equivalent to the following steps:
a. The one- and two-part names in every FROM clause and the one- and

two-part qualifiers of column names are expanded into a fully-qualified
form.
For example, if a dynamic SQL statement uses FROM Q and
DYNAMICRULES run behavior (RUN) is in effect, Q is expanded to S.A.Q,
where S is the value of CURRENT SERVER and A is the value of
CURRENT SCHEMA. (If DYNAMICRULES bind behavior is in effect
instead, A is the plan or package qualifier as determined during the bind
process or the qualifier for the native SQL procedure as determined when
the procedure was defined.) This step is later referred to as “name
completion”. An error occurs if the first part of every name (the location) is
not the same.

b. Q, now a three-part name, is compared with every name in the FROM
clause of S. If Q.C is in a search-condition and S is a subquery, Q is next
compared with every name in the FROM clause of the subselect that
contains S. If that subselect is a subquery, Q is then compared with every
name in the FROM clause of the subselect containing that subquery, and so
on. If a FROM clause includes multiple names, the comparisons in that
clause are made in order from left to right.

c. The referent of Q is selected by these rules:
v If Q matches exactly one name, that name is selected.
v If Q matches more than one name, but only one exposed name, that

exposed name is selected.
v If Q matches more than one exposed name, the first of those names is

selected.
v If Q matches more than one name, none of which are exposed names, the

first of those names is selected.
If Q does not match any name, or if the table or view designated by Q does
not include a column named C, an error occurs.

Chapter 2. Language elements 213

d. Otherwise, Q.C is resolved to column C of the occurrence of the table or
view identified by the selected name.

3. A warning occurs for any of these cases:
v The selected name is not an exposed name.
v The selected name is an exposed name that has an unexposed duplicate that

appears before the selected name in the ordered list of names to which Q is
compared.

v The selected name is an exposed name that has an exposed duplicate in the
same FROM clause.

v Another name would have been selected had the matching been performed
before name completion.

The rules for resolving column name qualifiers apply to every SQL statement
that includes a subselect and are applied before synonyms and aliases are
resolved. In the case of a searched UPDATE or DELETE statement, the first
clause of the statement identifies the table or view to be updated or deleted.
That clause can include a correlation name and, with regard to name resolution,
is equivalent to the first FROM clause of a SELECT statement. For example, a
subquery in the search condition of an UPDATE statement can include a
correlated reference to a column of the updated rows.
The rules for column names in the ORDER BY clause are the same as other
clauses.

References to variables
A variable in an SQL statement specifies a value that can be changed when the SQL
statement is executed. There are several types of variables used in SQL statements.

host variable
Host variables are defined by statements of a host language. For more
information about how to refer to host variables, see “References to host
variables” on page 215.

transition variable
Transition variables are defined in a trigger and refer to either the old or
new values of columns of the subject table of a trigger. For more
information about how to refer to transition variables, see “CREATE
TRIGGER” on page 1482.

SQL variable
SQL variables are defined by an SQL compound statement in an SQL
function or SQL procedure. For more information about SQL variables, see
“References to SQL parameters and SQL variables” on page 1964.

SQL parameter
SQL parameters are defined in an CREATE FUNCTION (SQL Scalar) or
CREATE PROCEDURE (SQL) statement. For more information about SQL
parameters, see “References to SQL parameters and SQL variables” on
page 1964.

parameter marker
Parameter markers are specified in an SQL statement that is dynamically
prepared instead of host variables. For more information about parameter
markers, see Parameter markers. in the PREPARE statement.

Unless otherwise noted, the term host variable in syntax diagrams is used to
describe where a host variable, transition variable, SQL variable, SQL parameter, or
parameter marker can be used.

214 SQL Reference

References to host variables
Host variables are defined directly by statements of the host language or indirectly
by SQL extensions. A host-variable in an SQL statement must identify a host
variable that is described in the program according to the rules for declaring host
variables. Host variables cannot be referenced in dynamic SQL statements;
parameter markers must be used instead.

A host variable is either of these items that is referred to in an SQL statement:
v A variable in a host language such as a PL/I variable, C variable, Fortran

variable, REXX variable, Java variable, COBOL data item, or Assembler language
storage area

v A host language construct that was generated by an SQL precompiler from a
variable declared using SQL extensions

Host variables are defined directly by statements of the host language or indirectly
by SQL extensions as described in DB2 Application Programming and SQL Guide.
Host variables cannot be referenced in dynamic SQL statements; parameter
markers must be used instead. For more information about parameter markers, see
“Host variables in dynamic SQL” on page 217.

A host-variable in an SQL statement must identify a host variable that is described
in the program according to the rules for declaring host variables.

In PL/I, C, and COBOL, host variables can be referred to in ways that do not
apply to Fortran and Assembler language. This is explained in “Host structures in
PL/I, C, and COBOL” on page 229. The following applies to all host languages.

The term host-variable, as used in the syntax diagrams, shows a reference to a host
variable. In a SET host variable statement and the INTO clause of a FETCH,
SELECT INTO, or VALUES INTO statement, a host variable is an output variable
to which a value is assigned by DB2. In a CALL statement, a host variable can be
an output argument that is assigned a value after execution of the procedure, an
input argument that provides an input value for the procedure, or both an input
and output argument. In all other contexts, a host variable is an input variable
which provides a value to DB2.

Non-Java variable references

The general form of a host variable reference in all languages other than
Java is:

�� :host-identifier
INDICATOR

:host-identifier

��

Each host identifier must be declared in the source program, except in a
program written in REXX. The first host identifier designates the main
variable; the second host identifier designates its indicator variable. The
variable designated by the second host identifier must be a small integer.
Indicator variables appear in two forms, normal indicator variables and
extended indicator variables.

The purposes of normal indicator variable are to:

Chapter 2. Language elements 215

v Specify a non-null value. A 0 (zero), or positive value of the indicator
variable specifies that the associated, first host-identifier provides the
value of this host variable reference.

v Specify the null value. A negative value of the indicator variable
specifies the null value.

In addition, on output, an indicator variable can indicate the following :
v A numeric conversion error (such as a divide by 0 or overflow) has

occurred. A value of -2 for the indicator variable indicates a null result
because of either numeric truncation or arithmetic warnings.

v A character could not be converted. A value of -2 for the indicator
variable indicates a null result because of character string conversion
warnings.

v No value was returned. A value of -3 for the indicator variable indicates
a null result because the current row of the cursor is on a hole that is
detected during a multiple row FETCH.

v Report the original length of a truncated string, if the string is not a
LOB.

v Report the seconds portion of a time if the time is truncated on
assignment to a host variable.

Extended indicator variables are limited to the input of host variables, and
can specify the following:
v A non-null value. A 0 (zero), or positive value specifies that the

associated, first host-identifier provides the value of this host variable
reference.

v The null value. A -1, -2, -3, -4, or -6 value specifies the null value.
v The default value. A -5 value specifies that the target column for this

host variable is to be set to its default value.
v An unassigned value. A -7 value specifies that the target column for this

host variable is to be treated as if it had not been specified in the
statement.

Extended indicator variables are only enabled if requested, and all
indicator variables are otherwise normal indicator variables. Extended
indicator variables are enabled when EXTENDEDINDICATOR(YES) is
used, or when the WITH EXTENDED INDICATORS prepare attribute has
been specified for the statement. In comparison to normal indicator
variables, extended indicator variables have no additional restrictions for
where the values for null and non-null can be used. There are no
restrictions against using extended indicator variable values in indicator
structures with host structures. There are no restrictions that result from
the use of extended indicator variable values with host arrays in
multiple-row statements. Restrictions on where the extended indicator
variable values of default and unassigned are allowed apply uniformly, no
matter how they are represented in the host application. The default and
unassigned extended indicator variable values can only appear in limited,
specified uses. Output indicator variables are never extended indicator
variables.

When extended indicator variables are enabled, there are no restrictions
against use of 0 (zero), or positive indicator variable values. However,
negative indicator variable values outside the range -1 through -7 must not

216 SQL Reference

be specified. When extended indicator variables are enabled, the default
and unassigned extended indicator values must not appear in contexts in
which they are not supported.

When extended indicator variables are enabled, if the value of an extended
indicator variable is greater than or equal to zero, the data type of the
input host variable must be compatible with the data type of the target
column. If the value of an extended indicator variable is less than zero,
DB2 does not test for data type compatibility between the input host
variable and the target column.

Java variable references

The general form of a host variable reference in Java is:

�� :
IN
OUT
INOUT

Java-identifier
(Java-expression) INDICATOR

: Java-identifier

��

Each Java-identifier must be declared in the source program. The variable
designated by the second Java-identifier is called an indicator variable and
must be a short.

In Java, indicator variables are not always needed. Instead, instances of a
Java class can be set to a null value. Variables defined as Java primitive
types can not be set to a null value. When using an extended indicator
variable, or when using a Java primitive type in assigning a null value or
where the Java primitive type might be assigned null on output, indicator
variables must be used.

If IN, OUT, or INOUT is not specified, the default depends on the context
in which the variable is used. If the Java variable is used in an INTO
clause, OUT is the default. Otherwise, IN is the default.

An SQL statement that refers to host variables must be within the scope of the
declaration of those host variables. For host variables referred to in the SELECT
statement of a cursor, the OPEN statement, and the DECLARE CURSOR statement
have to be in the same scope.

All references to host variables must be preceded by a colon. If an SQL statement
references a host variable without a preceding colon, the precompiler issues an
error for the missing colon or interprets the host variable as an unqualified column
name, which might lead to unintended results. The interpretation of a host variable
without a colon as a column name occurs when the host variable is referenced in a
context in which a column name can also be referenced.

Host variables in dynamic SQL
In dynamic SQL statements, parameter markers are used instead of host variables.

A parameter marker is a question mark (?) that represents a position in a dynamic
SQL statement where the application will provide a value; that is, where a host
variable would be found if the statement string were a static SQL statement. The
following examples show a static SQL statement that uses host variables and a
dynamic statement that uses parameter markers:

Chapter 2. Language elements 217

INSERT INTO DEPT VALUES (:HV_DEPTNO, :HV_DEPTNAME, :HV_MGRNO, :HV_ADMRDEPT)
INSERT INTO DEPT VALUES (?, ?, ?, ?)

For more information on parameter markers, see Parameter markers under the
PREPARE statement.

References to LOB host variables
Regular LOB variables (CLOB, DBCLOB, and BLOB), LOB locator variables and
LOB file reference variables can be defined in all host languages with a few
exceptions.

Where LOBs are allowed, the term host-variable in a syntax diagram can refer to a
regular host variable, a locator variable, or a file reference variable. Since these
variables are not native data types in host programming languages, SQL extensions
are used and the precompilers generate the host language constructs necessary to
represent each variable.
v REXX supports LOB locators and LOB file reference variables.
v Java supports LOBs and LOB file references, but not LOB locators.

When it is possible to define a host variable that is large enough to hold an entire
LOB value and the performance benefit of delaying the transfer of data from the
server is not required, a LOB locator or LOB file reference is not needed. However,
it is often not acceptable to store an entire LOB value in temporary storage due to
host language restrictions, storage restrictions, or performance requirements. When
storing an entire LOB value at one time is not acceptable, a LOB value can be
referenced using a LOB locator and portions of the LOB value can be accessed or
the entire LOB value can be stored in a file and a LOB file reference can be used to
access the LOB data.

References to LOB locator variables
A LOB locator variable is a host variable that contains the locator representing a
LOB value on the database server.

A locator variable in an SQL statement must identify a LOB locator variable
described in the program according to the rules for declaring locator variables.
This is always indirectly through an SQL statement. For example, in C:

static volatile SQL TYPE IS CLOB_LOCATOR *loc1;

The term locator-variable, as used in the syntax diagrams, shows a reference to a
LOB locator variable. The meta-variable locator-variable can be expanded to include
a host-identifier the same as that for host-variable.

Like all other host variables, a LOB locator variable can have an associated
indicator variable. Indicator variables for LOB locator variables behave in the same
way as indicator variables for other data types. When a null value is returned from
the database, the indicator variable is set and the locator host variable is
unchanged. This means a locator can never represent a null value. However, when
the indicator variable associated with a LOB locator is null, the value of the
referenced LOB value is null.

If a locator variable does not currently represent any value, an error occurs when
the locator variable is referenced.

218 SQL Reference

When a transaction commits, LOB locators that were acquired by the transaction
are released unless a HOLD LOCATOR statement was issued for the LOB locator.
When the transaction ends, all LOB locators are released.

It is the application programmer's responsibility to guarantee that any LOB locator
is used only in SQL statements that are executed at the same server that originally
generated the LOB locator. For example, assume that a LOB locator is returned
from one server and assigned to a LOB locator variable. If that LOB locator
variable is subsequently used in an SQL statement that is executed at a different
server unpredictable results will occur.

References to XML host variables
XML host variables can be declared as another host variable type. This allows XML
data to be declared in host languages that do not support XML data as a native
data type.

XML host variables can be declared as the following host variable types:
v XML AS CLOB(n)

Declares a CLOB host variable that contains XML data that is encoded in the
CCSID for the host variable.

v XML AS DBCLOB(n)
Declares a DBCLOB host variable that contains XML data that is encoded in the
graphic CCSID for the host variable.

v XML AS BLOB(n)
Declares a BLOB host variable that contains XML data that is encoded as
specified within the data according to the XML 1.0 specification for determining
encoding.

v XML AS CLOB_FILE
Declares a CLOB file reference variable that contains XML data that is encoded
in the CCSID for the file reference variable.

v XML AS DBCLOB_FILE
Declares a DBCLOB file reference variable that contains XML data that is
encoded in the CCSID for the file reference variable.

v XML AS BLOB_FILE
Declares a BLOB file reference variable that contains XML data that is encoded
in the CCSID for the file reference variable.

See “References to file reference variables” on page 220 for additional information
about file reference variables.

Although the application XML host variable declaration includes a LOB type
specification, the host variable declarations all map to the XML data type, not the
LOB type that is used in the application declaration. The application might also
use non-XML host variables in place of XML host variables. For example, when a
prepared statement is executed, the application might use a character host variable
to replace an XML parameter marker in the statement.

Although the XML data type is incompatible with all other data types, both XML
and non-XML data types can be used for input to and output from XML data.
Applications can use either XML host variables, character host variables, or binary
string host variables to input to and output from XML data by using SQL
statements.

Chapter 2. Language elements 219

The following table summarizes the conversions built-in data types (including
XML) to and from the supported host variable data types within embedded
applications. The built-in data types are specified in the rows. A Y indicates that
the built-in data type can be assigned to or assigned from the host variable type.

Table 41. Application host variable compatibility with the built-in data types for applications that contain embedded SQL

built-in data
type

application host variable data type

CHAR,
VARCHAR,
CLOB,
CLOB_FILE

GRAPHIC,
VARGRAPHIC,
DBCLOB,
DBCLOB_FILE

BINARY,
VARBINARY,
BLOB,
BLOB_FILE

XML AS CLOB,
XML AS
CLOB_FILE

XML AS
DBCLOB, XML
AS
DBCLOB_FILE

XML AS BLOB,
XML AS
BLOB_FILE

CHAR Y Y

VARCHAR Y Y

CLOB Y Y

GRAPHIC Y Y

VARGRAPHIC Y Y

DBCLOB Y Y

BINARY Y

VARBINARY Y

BLOB Y

XML Y Y Y Y Y Y

References to file reference variables
File reference variables and arrays are used for direct file input and output for
LOB and XML values (when the XML value is declared using XML AS
variable-type), and can be defined in all host languages.

Since these are not native data types, SQL extensions are used and the DB2
precompiler or coprocessor generates the host language constructs necessary to
represent each variable or array. In the case of REXX, LOB values are mapped to
strings. See “References to XML host variables” on page 219 for more information
about XML host variables.

A file reference variable represents (rather than contains) the file, just as a LOB
locator represents, rather than contains, the LOB data. Database queries, updates,
and inserts can use file reference variables to store or to retrieve single column
values. As with all other host variables, file reference variables can have an
associated indicator variable.

A file reference variable has the following properties:

Data type
BLOB, CLOB, or DBCLOB. This property is specified when the variable is
declared using BLOB_FILE, CLOB_FILE, or DBCLOB_FILE.

Direction
This must be specified by the application program at run time (it is
implicitly specified as part of the File options value). The direction can be
either of the following:
v Input

Input is used as a source of data on an EXECUTE statement, an OPEN
statement, an update operation, an insert operation, or a delete
operation.

v Output

220 SQL Reference

Output is used as the target of data. For example, on a FETCH statement
or a SELECT INTO statement.

File name
This must be specified by the application program at run time. It must be
the complete path name of the file. Within an application, a file should
only be referenced one time in a file reference variable.

File name length
This must be specified by the application program at run time. It is the
length of the file name in bytes.

Data length
Sets the data length to the length of the new data that is written to the file.
The length is in bytes. Data length is unused on input.

File options
Options are set by an INTEGER value in a field in the file reference
variable structure. One of the following values must be specified in an
application for each file reference variable before that file reference variable
can be used in the application:

SQL_FILE_READ
This is a regular file that can be opened, read and closed. (The option
is SQL-FILE-READ in COBOL, sql_file_read in FORTRAN, and READ
in REXX.) SQL_FILE_READ is an input (from client to server) file
option.

SQL_FILE_CREATE
Create a new file. If the file already exists, an error is returned. (The
option is SQL-FILE-CREATE in COBOL, sql_file_create in FORTRAN,
and CREATE in REXX.) SQL_FILE_CREATE is an output (from server
to client) file option.

SQL_FILE_OVERWRITE
If an existing file with the specified name exists, it is overwritten;
otherwise a new file is created. (The option is SQL-FILE-OVERWRITE
in COBOL, sql_file_overwrite in FORTRAN, and OVERWRITE in
REXX.). SQL_FILE_OVERWRITE is an output (from server to client)
file option.

SQL_FILE_APPEND
If an existing file with the specified name exists, the output is
appended to it; otherwise a new file is created. (The option is
SQL-FILE-APPEND in COBOL, sql_file_append in FORTRAN, and
APPEND in REXX.) SQL_FILE_APPEND is an output (from server to
client) file option.

The encoding scheme CCSID of the file name is based on the encoding scheme of
the application. The CCSID of the LOB or XML data (the contents of the file) can
be set by the application by using a DECLARE host-variable CCSID statement if the
CCSID of the LOB or XML data is different from the CCSID of the application.
DB2 will perform any character conversion that is required prior to the LOB or
XML data being inserted into a table or written to a file.

References to stored procedure result sets
An application, written in a programming language other than Java, can access a
result set that is returned from a stored procedure. A result set locator is used by
the invoking application to access the result set.

Chapter 2. Language elements 221

A result set locator value for a result set can be obtained from an ASSOCIATE
LOCATOR statement or with the DESCRIBE PROCEDURE statement. For more
information, see “ASSOCIATE LOCATORS” on page 1111 and “DESCRIBE
PROCEDURE” on page 1603.

The result set locator value is specified on an ALLOCATE CURSOR statement to
define a cursor in the invoking application and to associate it with a stored
procedure result set. For more information, see “ALLOCATE CURSOR” on page
847.

A DESCRIBE CURSOR statement can be used in the invoking application to obtain
information on the characteristics of the columns of a stored procedure result set.
For more information, see “DESCRIBE CURSOR” on page 1591.

The application can then access the rows of the result set using FETCH statements
with the allocated cursor.

References to result set locator variables
A result set locator variable is a variable that contains the locator that identifies a
stored procedure result set. A result set locator variable in an SQL statement must
identify a result set locator variable described in the program according to the
rules for declaring result set locator variables. This is always indirectly through an
SQL statement.

For example, in C:
static volatile SQL TYPE IS RESULT_SET_LOCATOR *loc1;

A result set locator variable in an SQL procedure is defined with the
RESULT_SET_LOCATOR VARYING in a compound statement. See
“compound-statement” on page 1977 for additional information.

The term rs-locator-variable, as used in the syntax diagrams, shows a reference to a
result set locator variable. The meta-variable rs-locator-variable can be expanded to
include a host-identifier the same as that for host-variable.

When the indicator variable associated with a result set locator is null, the
referenced result set is not defined.

If a result set locator variable does not currently represent any stored procedure
result set, an error occurs when the locator variable is referenced.

A commit operation destroys all open cursors that were declared in the stored
procedure without the WITH HOLD option and the result set locators that are
associated with those cursors. Otherwise, a cursor and its associated result set
locator persist past the commit.

222 SQL Reference

References to built-in global variables
DB2 provides several built-in global variables.

SYSIBMADM.GET_ARCHIVE
Contains a string value that indicates whether a reference to an
archive-enabled table in a table-reference should include rows in the
associated archive table.

This global variable is defined with the following characteristics:
v It is updatable, with values maintained by the user.
v The type is CHAR(1).
v The schema is SYSIBMADM.
v The scope of this global variable is session.

The global variable can be set to the following:

Y Specifies that when a table-reference is an archive-enabled table,
the table reference includes rows in the associated archive table.

If the SYSIBMADM.GET_ARCHIVE global variable is set to 'Y' and
the ARCHIVESENSITIVE bind option is set to 'Y', an
archive-enabled table cannot be referenced in an inline SQL table
function or in the definition of a row permission or column mask
that is activated by a data change statement or query.

N Specifies that when a table-reference is an archive-enabled table,
the table reference does not include rows in the associated archive
table. This is the default value.

Related information:

“table-reference” on page 773
Archive-enabled tables and archive tables (Introduction to DB2 for
z/OS)

SYSIBMADM.MOVE_TO_ARCHIVE
Contains a string value that indicates whether the deletion of a row of an
archive-enabled table should result in storing a copy of the deleted row in
the associated archive table.

This global variable has the following characteristics:
v It is updatable, with values maintained by the user.
v The type is CHAR(1).
v The schema is SYSIBMADM.
v The scope of this global variable is session.

The global variable can be set to the following:

Y Specifies that a delete of a row in an archive-enabled table will
result in storing a copy of the deleted row in the associated archive
table. Additionally, when the global variable is set to 'Y', an insert
or update operation that specifies the archive-enabled table as the
target of the statement will return an error.

E Specifies that a delete of a row in an archive-enabled table will
result in storing a copy of the deleted row in the associated archive
table.

Chapter 2. Language elements 223

|

|

|
|
|
|

|

|

|

|

|

|

||
|

|
|
|
|
|

||
|
|

|

|

|
|

|
|
|
|

|

|

|

|

|

|

||
|
|
|
|

||
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_archivetables.htm#db2z_archivetables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_archivetables.htm#db2z_archivetables

N Specifies that a delete of a row in an archive-enabled table will not
result in storing a copy of a deleted row in the associated archive
table. This is the default value.

Related information:

Archive-enabled tables and archive tables (Introduction to DB2 for
z/OS)

SYSIBM.CLIENT_IPADDR
Contains the value of the client IP address for the connection. For remote
client connections, the value is the host IP address of the application that is
used to establish the connection. For local host applications, the value is
NULL. For remote host applications, the value is the IP address that is
associated with the DB2 subsystem used to establish the connection as
shown by issuing the -DISPLAY DDF command.

This global variable has the following characteristics:
v The data type is CHAR(39).
v The value is set by DB2 as obtained from the network.
v The value is NULL if the client did not connect with TCP/IP or SSL

protocol.
v The format of the client IP address is TCP/IP IPv6 which is left-aligned

with a colon separated hexadecimal address:
1111:2222:3333:4444:5555:6666:7777:8888

Or IPv4 mapped IPv6 to format:
::FFF:9.30.115.135

Related information:

-DISPLAY DDF (DB2) (DB2 Commands)
DSNL085I (DB2 Messages)
DSNL089I (DB2 Messages)

224 SQL Reference

||
|
|

|

|
|

|
|
|
|
|
|
|

|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_archivetables.htm#db2z_archivetables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_archivetables.htm#db2z_archivetables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_displayddf.htm#db2z_cmd_displayddf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnl085i.htm#dsnl085i
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnl089i.htm#dsnl089i

References to built-in session variables
DB2 provides several built-in session variables that contain information about the
server and application process. The value of a built-in session variable can be
obtained by invoking the GETVARIABLE function with the name of the built-in
session variable.

DB2 provides the following built-in session variables:

SYSIBM.APPLICATION_ENCODING_SCHEME
Contains a string that corresponds to the value that is specified for the
APPLICATION ENCODING field on the DSNTIPF installation panel. The
value will be EBCDIC, ASCII, UNICODE, or 1-65533, and this session
variable can never be null.

SYSIBM.COBOL_STRING_DELIMITER
Contains a string that corresponds to the value that is specified for the
STRING DELIMITER field on the DSNTIPF installation panel. The value
will be DEFAULT, ", or ', and this session variable can never be null.

SYSIBM.DATA_SHARING_GROUP_NAME
Contains a string that corresponds to the name of the data sharing group
for this DB2 subsystem. If the subsystem is not part of data sharing group,
the null value is returned.

SYSIBM.DATE_FORMAT
Contains a string that corresponds to the value that is specified for the
DATE FORMAT field on the DSNTIP4 installation panel. The value will be
ISO, JIS, USA, EUR, or LOCAL, and this session variable can never be null.

SYSIBM.DATE_LENGTH
Contains a string that corresponds to the value that is specified for the
LOCAL DATE LENGTH field on the DSNTIP4 installation panel. The
value will be 10-254, or 0 for no exit, and this session variable can never be
null.

SYSIBM.DECIMAL_ARITHMETIC
Contains a string that corresponds to the value that is specified for the
DECIMAL ARITHMETIC field on the DSNTIP4 installation panel. The
value will be DEC15, DEC31, 15, or 31, and this session variable can never
be null.

SYSIBM.DECIMAL_POINT
Contains a string that corresponds to the value that is specified for the
DECIMAL POINT IS field on the DSNTIPF installation panel. The value
will be '.' or ',' and this session variable can never be null.

SYSIBM.DEFAULT_DECFLOAT_ROUND_MODE
Contains a string that corresponds to the value that is specified for the
DECFLOAT ROUNDING MODE field on the DSNTIPF installation panel.
This session variable can never be null.

SYSIBM.DEFAULT_SSID
Contains a string that corresponds to the value that is specified for the
GROUP ATTACH field on the DSNTIPK installation panel or the
SUBSYSTEM NAME field on the DSNTIPM installation panel. This session
variable can never be null.

SYSIBM.DEFAULT_LANGUAGE
Contains a string that corresponds to the value that is specified for the

Chapter 2. Language elements 225

LANGUAGE DEFAULT field on the DSNTIPF installation panel. The value
will be ASM, C, CPP, IBMCOB, FORTRAN, or PL/I, and this session
variable can never be null.

SYSIBM.DEFAULT_LOCALE_LC_CTYPE
Contains a string that corresponds to the value that is specified for the
LOCALE LC_CTYPE field on the DSNTIPF installation panel. This session
variable can never be null.

SYSIBM.DISTRIBUTED_SQL_STRING_DELIMITER
Contains a string that corresponds to the value that is specified for the
DIST SQL STR DELIMTR field on the DSNTIPF installation panel. The
value will be ", or ', and this session variable can never be null.

SYSIBM.DSNHDECP_NAME
Contains a string that corresponds to the fully qualified data set name of
the data set from which the DSNHDECP or a user-specified application
defaults module was loaded. For instance,
'DSN910.SDSNEXIT(DSNHDECP)'. This session variable can never be null.

SYSIBM.DYNAMIC_RULES
Contains a string that corresponds to the value that is specified for the USE
FOR DYNAMICRULES field on the DSNTIP4 installation panel. The value
will be YES or NO, and this session variable can never be null.

SYSIBM.ENCODING_SCHEME
Contains a string that corresponds to the value that is specified for the
DEF ENCODING SCHEME field on the DSNTIPF installation panel. The
value will be EBCDIC, ASCII, or UNICODE, and this session variable can
never be null.

SYSIBM.MIXED_DATA
Contains a string that corresponds to the value that is specified for the
MIXED DATA field on the DSNTIPF installation panel. The value will be
YES or NO, and this session variable can never be null.

SYSIBM.NEWFUN
Contains a string that corresponds to the value that is specified for the
INSTALL TYPE field on the DSNTIPA1 installation panel. The value will
be INSTALL, UPDATE, MIGRATE, or ENFM, and this session variable can
never be null. The value reflects the setting of the DSNHDECP variable
NEWFUN.

SYSIBM.PACKAGE_NAME
Contains a string that corresponds to the name of the package that is
currently being executed. If a package is not currently being executed, the
null value is returned. (This situation can occur when the plan that is being
executed bound one or more DBRMs directly).

SYSIBM.PACKAGE_SCHEMA
Contains a string that corresponds to the collection id of the package that
is currently being executed. If a package is not currently being executed,
the null value is returned.

SYSIBM.PACKAGE_VERSION
Contains a string that corresponds to the version of the package that is
currently being executed. If a package is not currently being executed, the
null value is returned.

SYSIBM.PAD_NUL_TERMINATED
Contains a string that corresponds to the value that is specified for the

226 SQL Reference

PAD NUL-TERMINATED field on the DSNTIP4 installation panel. The
value will be YES or NO, and this session variable can never be null.

SYSIBM.PLAN_NAME
Contains a string that corresponds to the name to the plan that is currently
being executed. This session variable can never be null.

SYSIBM.SECLABEL
Contains a string that corresponds to the RACF SECLABEL value, if any,
that has been defined for the current userid. If a value has not been
defined, the null value is returned.

SYSIBM.SQL_STRING_DELIMITER
Contains a string that corresponds to the value that is specified for the SQL
STRING DELIMITER field on the DSNTIPF installation panel. The value
will be DEFAULT, ", or ', and this session variable can never be null.

SYSIBM.SSID
Contains a string that corresponds to the actual DB2 subsystem identifier
for this DB2 subsystem. This session variable can never be null.

SYSIBM.STANDARD_SQL
Contains a string that corresponds to the value that is specified for the STD
SQL LANGUAGE field on the DSNTIP4 installation panel. The value will
be YES or NO, and this session variable can never be null.

SYSIBM.SYSTEM_NAME
Contains a string that corresponds to the name of the DB2 for z/OS
subsystem, as defined in field SUBSYSTEM NAME on installation panel
DSNTIPM. This session variable can never be null.

SYSIBM.SYSTEM_ASCII_CCSID
Contains a value that represents the ASCII CCSIDs that are in use on this
system. The information is returned as a comma-delimited string that
corresponds to the ASCII CCSID that was specified on installation panel
DSNTIPF. The three values that are returned correspond to the SBCS,
MIXED, and graphic CCSID that are in use for ASCII data on this system.
A value of 65534 for the MIXED or graphic CCSID indicates that this
system does not support storing data in that CCSID. This session variable
can never be null.

SYSIBM.SYSTEM_EBCDIC_CCSID
Contains a value that represents the EBCDIC CCSIDs that are in use on
this system. The information is returned as a comma-delimited string that
corresponds to the EBCDIC CCSID that was specified on installation panel
DSNTIPF. The three values that are returned correspond to the SBCS,
MIXED, and graphic CCSID that are in use for EBCDIC data on this
system. A value of 65534 for the MIXED or graphic CCSID indicates that
this system does not support storing data in that CCSID. This session
variable can never be null.

SYSIBM.SYSTEM_UNICODE_CCSID
Contains a value that represents the Unicode CCSIDs that are in use on
this system. The information is returned as a comma-delimited string that
corresponds to the UNICODE CCSID that was specified on installation
panel DSNTIPF. The three values that are returned correspond to the SBCS,
MIXED, and graphic CCSID that are in use for Unicode data on this
system. This session variable can never be null.

SYSIBM.TIME_FORMAT
Contains a string that corresponds to the value that is specified for the

Chapter 2. Language elements 227

TIME FORMAT field on the DSNTIP4 installation panel. The value will be
ISO, JIS, USA, EUR, or LOCAL, and this session variable can never be null.

SYSIBM.TIME_LENGTH
Contains a string that corresponds to the value that is specified for the
LOCAL TIME LENGTH field on the DSNTIP4 installation panel. The value
will be 8-254 or 0 for no exit, and this session variable can never be null.

SYSIBM.VERSION
Contains a string that represents the version of DB2. This string has the
form pppvvrrm where:
v ppp is a product string that is set to the value 'DSN'
v vv is a two-digit version identifier such as '11'
v rr is a two-digit release identifier such as '01'
v m is a one-digit modification level.

– Values 0, 1, 2, 3, and 4 are reserved for modification levels in
conversion and enabling-new-function mode from Version 10 (CM10,
CM10*, ENFM10, and ENFM10*)

– Values 5, 6, 7, 8, and 9 are for modification levels in new-function
mode.

This session variable can never be null.

For example, the following statement sets the value of host variable hv1 to the
name of the plan that is currently being executed:

SET :hv1 = GETVARIABLE(’SYSIBM.PLAN_NAME’);

For more information about the GETVARIABLE function, see “GETVARIABLE” on
page 477.

References to array variables
An array variable is a variable that is defined as a user-defined array type.

An array variable can be defined in one of the following ways:
v An SQL parameter that is defined using the CREATE FUNCTION (SQL scalar)

or CREATE PROCEDURE (SQL native) statement.
v An SQL variable that is defined using the DECLARE clause of a compound

statement.

An array variable can be referenced in the following contexts:
v An input argument to the NULL predicate.
v An input argument to the ARRAY_EXISTS predicate.
v An input argument to a built-in array scalar function (ARRAY_DELETE,

ARRAY_FIRST, ARRAY_LAST, ARRAY_NEXT, ARRAY_PRIOR, or
TRIM_ARRAY).

v An argument to UNNEST specification.
v The outer SELECT list of a fullselect that does not include a set operator, in the

definition of a cursor that is not scrollable. In this case a FETCH statement for
the cursor must specify an array variable as the target for the corresponding
result column of the fullselect for the array variable.

v The outer select list of a SELECT INTO statement, when the target for the
corresponding column of the result table of the fullselect is an array variable.

v The outer select list of a scalar fullselect, on the right side of a SET
assignment-statement statement or an SQL PL assignment-statement statement,
when the corresponding target of the assignment is an array variable.

228 SQL Reference

|

|

|

|
|

|
|

|

|

|

|
|
|

|

|
|
|
|

|
|

|
|
|

v The source value for a VALUES INTO statement, when the target for value is an
array variable.

v The target of an assignment from a FETCH statement, when the corresponding
source data is an array value.

v The target of a SELECT INTO statement, when source data for the
corresponding column of the result table is an array value.

v The target of an assignment for a SET assignment-statement statement or an SQL
PL assignment-statement statement, when the corresponding source value is an
array value.

v The target of a VALUES INTO statement, when the source data value is an array
value.

v An argument to or from a routine (CALL statement or function invocation).
v The value that is returned in a RETURN statement of an SQL scalar function.
v An ORDER BY or GROUP BY clause of an outer fullselect.

An array variable can also be referenced in an array element specification. An
element of a user-defined array type can be referenced anywhere that an
expression that returns the same data type as an element of that array can be used.

Restriction: An array variable or an array element must not be referenced in an
SQL statement, other than a CALL statement, after a connection at a remote server
has been established. This restriction includes the case of an SQL statement that is
executing at a remote server as a result of a three-part name or an alias that
resolves to an object at a remote server.
Related reference:
“Array element specification” on page 278

Host structures in PL/I, C, and COBOL
A host structure is a PL/I structure, C structure, or COBOL group that is referred to
in an SQL statement.

In Java and REXX, there is no equivalent to a host structure. Host structures are
defined by statements of the host language, as explained in DB2 Application
Programming and SQL Guide. As used here, the term host structure does not include
an SQLCA or SQLDA.

The form of a host structure reference is identical to the form of a host variable
reference. The reference :S1:S2 is a host structure reference if S1 names a host
structure. If S1 designates a host structure, S2 must be a small integer variable or
an array of small integer variables. S1 is the host structure and S2 is its indicator
array.

A host structure can be referred to in any context where a list of host variables can
be referenced. A host structure reference is equivalent to a reference to each of the
host variables contained within the structure in the order which they are defined in
the host language structure declaration. The nth variable of the indicator array is
the indicator variable for the nth variable of the host structure.

In PL/I, for example, if V1, V2, and V3 are declared as the variables within the
structure S1, the following two statements are equivalent:

EXEC SQL FETCH CURSOR1 INTO :S1;
EXEC SQL FETCH CURSOR1 INTO :V1, :V2, :V3;

Chapter 2. Language elements 229

|
|

|
|

|
|

|
|
|

|
|

|

|

|

|
|
|

|
|
|
|
|

|

|

If the host structure has m more variables than the indicator array, the last m
variables of the host structure do not have indicator variables. If the host structure
has m fewer variables than the indicator array, the last m variables of the indicator
array are ignored. These rules also apply if a reference to a host structure includes
an indicator variable or a reference to a host variable includes an indicator array. If
an indicator array or variable is not specified, no variable of the host structure has
an indicator variable.

In addition to structure references, individual host variables or indicator variables
in PL/I, C, and COBOL can be referred to by qualified names. The qualified form
is a host identifier followed by a period and another host identifier. The first host
identifier must name a structure, and the second host identifier must name a host
variable at the next level within that structure.

In PL/I, C, and COBOL, the syntax of host-variable is:

�� : host-identifier
host-identifier.

�

�
INDICATOR

: host-identifier
host-identifier.

��

In general, a host-variable in an expression must identify a host variable (not a
structure) described in the program according to the rules for declaring host
variables. However, there are a few SQL statements that allow a host variable in an
expression to identify a structure, as specifically noted in the descriptions of the
statements.

The following examples show references to host variables and host structures:
:V1 :S1.V1 :S1.V1:V2 :S1.V2:S2.V4

Host-variable-arrays in PL/I, C, C++, and COBOL
A host-variable-array is an array in which each element of the array contains a value
for the same column. The first element in the array corresponds to the first value,
the second element in the array corresponds to the second value, and so on. A
host-variable-array can only be referenced in a FETCH statement for a multiple
row fetch, in an INSERT statement with a multiple row insert, or in a multiple row
MERGE statement.

Host-variable-arrays are defined by statements of the host language as explained in
DB2 Application Programming and SQL Guide.

The form of a host structure reference is similar to the form of a host variable
reference. The reference :COL1:COL1IND is a host-variable-array reference if COL1
designates an array. If COL1 designates an array, COL1IND must be a one
dimensional array of small integer host variables. The dimension of the
host-variable-array must be less than or equal to the dimension of the indicator
array. If an indicator array is not specified, no variable of the main
host-variable-array has an indicator variable.

230 SQL Reference

In PL/I, C, C++, and COBOL, the syntax of host-variable-array is:

�� :host-identifier
INDICATOR

:host-identifier

��

In the following example, COL1 is the main host-variable-array and COL1IND is its
indicator array, If COL1 has 10 elements for fetching a single column of data for
multiple rows of data, COL1IND must also have 10 entries.

EXEC SQL FETCH CURSOR FOR 5 ROWS INTO :COL1 :COL1IND;

Functions
A function is an operation denoted by a function name followed by zero or more
operands that are enclosed in parentheses.

It represents a relationship between a set of input values and a set of result values.
The input values to a function are called arguments. For example, a function can be
passed with two input arguments that have date and time data types and return a
value with a timestamp data type as the result.

Types of functions
There are several ways to classify functions. One way to classify functions is as
built-in functions, user-defined functions, or cast functions that are generated for
distinct types.

Built-in functions
Built-in functions are functions that come with DB2 for z/OS. These functions
provide a single-value result.

Built-in functions include operator functions such as "+", aggregate functions such
as AVG, and scalar functions such as SUBSTR. For a list of the built-in aggregate
and scalar functions and information on these functions, see Chapter 3,
“Functions,” on page 337.

The built-in functions are in schema SYSIBM.

The RANK, DENSE_RANK, and ROW_NUMBER specifications are sometimes
referred to as built-in functions. Refer to “OLAP specification” on page 282 for
more information on these specifications.

User-defined functions
User-defined functions are functions that are created using the CREATE FUNCTION
statement and registered to the DB2 in the catalog. These functions allow users to
extend the function of DB2 by adding their own or third party vendor function
definitions.

A user-defined function is an SQL, external, or sourced function. An SQL function
is defined to the database using only SQL statements. An external function is
defined to the database with a reference to an external program that is executed
when the function is invoked. A sourced function is defined to the database with a

Chapter 2. Language elements 231

reference to a built-in function or another user-defined function. Sourced functions
can be used to extend built-in aggregate and scalar functions for use on distinct
types.

A user-defined function resides in the schema in which it was registered. The
schema cannot be SYSIBM.

To help you define and implement user-defined functions, sample user-defined
functions are supplied with DB2. You can also use these sample user-defined
functions in your application program just as you would any other user-defined
function if the appropriate installation job has been run. For a list of the sample
user-defined functions, see “Sample user-defined functions” on page 2607. For
more information on creating and using user-defined functions, see DB2 Application
Programming and SQL Guide.

Generated user-defined functions for distinct types
Generated user-defined functions for distinct types (also called cast functions) are
functions that DB2 automatically generates when a distinct type is created using
the CREATE TYPE statement.

Cast functions support casting from the distinct type to the source type and from
the source type to the distinct type. The ability to cast between the data types is
important because a distinct type is compatible only with itself.

The generated cast functions reside in the same schema as the distinct type for
which they were created. The schema cannot be SYSIBM.
Related reference:
“CREATE TYPE” on page 1510

Additional way to classify functions
Another way to classify functions is as aggregate, scalar, or table functions,
depending on the input data values and result values.
v An aggregate function receives a set of values for each argument (such as the

values of a column) and returns a single-value result for the set of input values.
Aggregate functions are sometimes called column functions. Built-in functions and
user-defined sourced functions can be aggregate functions. Aggregate functions
cannot be external user-defined function or SQL functions.

v A scalar function receives a single value for each argument and returns a
single-value result. Built-in functions and user-defined functions, external,
sourced, and SQL, can be scalar functions. The functions that are created for
distinct types are also scalar functions.

v A table function returns a table for the set of arguments it receives. Each
argument is a single value. A table function can only be referenced in the FROM
clause of a subselect. A table function can be defined as an external or SQL
function, but a table function cannot be a sourced function.
Table functions can be used to apply SQL language processing power to data
that is not stored in the database or to allow access to such data as if it were
stored in a table. For example, a table function can read a file or get data from
the web and return a result table.

For a list of the aggregate, scalar, and table functions and information on these
functions, see Chapter 3, “Functions,” on page 337.

232 SQL Reference

Function invocation
Each reference to a scalar or aggregate function (either built-in or user-defined)
conforms to the following syntax:

�� function-name

�

()
ALL ,
DISTINCT

expression
TABLE transition-table-name

��

In the above syntax, expression cannot include an aggregate function. See
“Expressions” on page 240 for other rules for expression.

The ALL or DISTINCT keyword can only be specified for an aggregate function
or a user-defined function that is sourced on an aggregate function.

When a function is invoked within a trigger body, the TABLE keyword can be
specified to indicate that an argument is a trigger transition table. In this case, the
corresponding parameter of the function must have been defined with the TABLE
LIKE clause.

Table functions can be referenced only in the FROM clause of a subselect. For more
information on referencing a table function, see the description of the
“from-clause” on page 773.

An array can only be specified as an argument to a function for a parameter that is
defined with an array type. An array element specifies a scalar value, and can
therefore be specified as an argument to a function when the data type of the array
element is promotable to the data type of the corresponding parameter of the
function definition. An argument that is an array can be specified only if the
function is invoked from an SQL PL context. A function that returns an array can
be invoked only from an SQL PL context.

When the function is invoked, the value of each of its parameters is assigned using
storage assignment, to the corresponding parameter of the function. Control is
passed to external functions according to the calling conventions of the host
language. When execution of a user-defined aggregate or scalar function is
complete, the result of the function is assigned, using storage assignment, to the
result data type. For information about assignment rules, see “Assignment and
comparison” on page 121.

Additionally, a character FOR BIT DATA argument cannot be passed as input for a
parameter that is not defined as character FOR BIT DATA. Likewise, a character
argument that is not FOR BIT DATA cannot be passed as input for a parameter
defined as character FOR BIT DATA.

For compatibility with other SQL implementations, UNIQUE can be specified as a
synonym for DISTINCT in aggregate functions.

Chapter 2. Language elements 233

|
|
|
|
|
|
|

Function resolution
After a function is invoked, DB2 must determine which function to execute. This
process is called function resolution and it applies to both built-in and user-defined
function.

A function is invoked by its function name, which is implicitly or explicitly
qualified with a schema name, followed by parentheses that enclose the arguments
to the function. Within the database, each function is uniquely identified by its
function signature, which is its schema name, function name, the number of
parameters, and the data types of the parameters. Thus, a schema can contain
several functions that have the same name but each of which have a different
number of parameters or parameters with different data types. Also, a function
with the same name, number of parameters, and types of parameters can exist in
multiple schemas.

Function resolution has two steps:
1. DB2 determines the set of candidate functions based on the qualification of the

name of the invoked function, the unqualified name of the invoked function,
and the number of arguments that are specified.

2. DB2 determines the best fit from the set of candidate functions based on the
data types of the arguments of the invoked function as compared with the data
types of the parameters of the functions in the set of candidate functions.

Function resolution is similar for functions that are invoked with a qualified or
unqualified function name with the exception that for an unqualified name, DB2
needs to search more than one schema.

To improve performance of function resolution and to prevent potential issues as
new functions are added, consider invoking user-defined functions by using a fully
qualified name, including the schema name.

For a function invocation that passes a transition table, the data type, length,
precision, and scale of each column in the transition table must exactly match the
data type, length, precision, and scale of each column of the table that is named in
the function definition.

The timestamp for the creation of a user-defined function must be older than the
timestamp that results from an explicit bind for the plan or package that contains
the function invocation. During autobind, built-in functions that are introduced in
a DB2 release that is later than the DB2 release that is used to explicitly bind the
package or plan are not considered for function resolution.

In a CREATE VIEW statement, function resolution occurs at the time the view is
created. If another function with the same name is subsequently created, the view
is not affected, even if the new function is a better fit than the one that was chosen
at the time the view was created.

Qualified function resolution: When a function is invoked with a schema name
and a function name, DB2 only searches the specified schema to resolve which
function to execute.

DB2 selects candidate functions based on the following criteria:
v The name of the function instance must match the name in the function

invocation.

234 SQL Reference

v The number of input parameters in the function instance must match the
number of arguments in the function invocation.

v The authorization ID of the statement must have the EXECUTE privilege to the
function instance.

If no function meets these criteria, an error is returned. If one or more candidate
functions are found in the schema, this set of candidate functions is processed for
best fit.

For a function invocation that contains untyped parameter markers, the data types
of those parameter markers are considered to match or be promotable to the data
types of the parameters in the function instance.

Unqualified function resolution: When a function is invoked without a qualifier,
DB2 searches the list of schemas in the SQL path to resolve which function
instance to execute. For each schema in the SQL path, DB2 searches the schema for
candidate functions based on the following criteria:
v The name of the function instance must match the name in the function

invocation.
v The number of input parameters in the function instance must match the

number of function arguments in the function invocation.
v The authorization ID of the statement must have the EXECUTE privilege on the

function instance.

If DB2 does not find any candidate functions, an error is returned.

If no function meets these criteria, an error is returned. If one or more candidate
functions are found in the schema, this set of candidate functions is processed for
best fit.

For a function invocation that contains untyped parameter markers, the data types
of those parameter markers are considered to match or be promotable to the data
types of the parameters in the function instance.

Determining the best fit
More than one function with the same name might exist that is a candidate for
execution. In that case, DB2 determines which function is the best fit for the
invocation by comparing the data types of the parameters of each function in the
set of candidate functions to determine which function satisfies the best fit
requirements.

DB2 determines the function, or set of functions, that meet the best fit
requirements for the invocation by comparing the argument and parameter data
types. The data type of the result of the function or the type of function (aggregate,
scalar, or table) under consideration does not enter into the determination of best
fit.

When determining whether the data types of the parameters are the same as the
arguments:
v Synonyms of data types match. For example, DOUBLE and FLOAT are

considered to be the same.
v Attributes of a data type (such as length, precision, scale, CCSID) are ignored.

Therefore, CHAR(8) and CHAR(35) are considered to be the same, as are
DECIMAL(11,2) and DECIMAL(4,3).

Chapter 2. Language elements 235

v The character and graphic types are considered to be the same. For example, the
following data types are considered to be the same type: CHAR and GRAPHIC,
VARCHAR and VARGRAPHIC, and CLOB and DBCLOB. CHAR(13) and
GRAPHIC(8) are considered to be the same type.

v For this argument, if one function has a data type that fits the function
invocation better than the data types in the other functions, that function is the
best fit. The precedence list for the promotion of data types in shows the data
types that fit each data type, in best-to-worst order.

v If the data types of the first parameter for all the candidate functions fit the
function invocation equally well, DB2 repeats this process for the next argument
of the function invocation. DB2 continues this process for each argument until a
best fit is found.

A subset of the candidate functions is obtained by considering only those functions
for which the data type of each input argument of the function invocation matches
or is promotable to the data type of the corresponding parameter of the function
instance. The precedence list for the promotion of data types in Table 14 on page
110 shows the data types that fit (considering promotion) for each data type in
best-to-worst order. If this subset is not empty, the best fit is determined using the
promotable process on this subset of candidate functions. If this subset is empty,
and the original set of candidate functions consisted of a single function, the best
fit is determined using the castable process on the original candidate function.
Otherwise, an error is returned.

Promotable process:

The promotable process determines the best fit for function resolution by considering
only whether input arguments in the function invocation match or can be
promoted to the data type of the corresponding parameter of the function
definition.

For the subset of candidate functions, DB2 compares the parameter lists from left
to right, using the following process:
v The data type of the argument in the function invocation is compared to the

data type of the corresponding parameter in the definition of each candidate
function. (synonyms of data types match and attributes of data type are
ignored).
– Attributes of a data type (such as length, precision, scale, CCSID) are ignored.

Therefore, CHAR(8) and CHAR(35) are considered to be the same, as are
DECIMAL(11,2) and DECIMAL(4,3).

– The character and graphic types are considered to be the same. For example,
the following data types are considered to be the same type: CHAR and
GRAPHIC, VARCHAR and VARGRAPHIC, and CLOB and DBCLOB.
CHAR(13) and GRAPHIC(8) are considered to be the same type.

v For this argument, if one candidate function has a data type that fits the
function invocation better than the data types in the other candidate functions,
that function is the best fit. The precedence list for the promotion of data types
in Table 14 on page 110 shows the data types that fit each data type, in
best-to-worst order.

v If the data types of the first parameter for more than one candidate functions fits
the function invocation equally well, DB2 repeats this process for the next
argument of the function invocation. DB2 continues this process for each
argument until a best fit is found.

236 SQL Reference

If only one candidate function remains after comparing all the arguments, that
function is the best fit. If more than one candidate function remains, all the
remaining candidate functions are considered to be equally the best fit. In this case,
DB2 selects the function whose schema is first in the SQL path.

If a function is selected, its successful use depends on it being invoked in a context
in which the returned result is allowed. For example, if the function returns a table
where a table is not allowed, an error is returned.

Function resolution and input argument casting:

In considering the best fit of a candidate function, DB2 determines if the input
arguments can be implicitly cast to the data type of the corresponding parameter
for function resolution.

The castable process determines the best fit of a function, first considering if the
input arguments in the function invocation match or can be promoted to the data
type of the corresponding parameter of the function definition, and then if the
input arguments can be implicitly cast to the data type of the corresponding
parameter for function resolution. For the set of candidate functions, DB2 compares
the parameter lists from left to right, using the following process:
v The data type of the argument in the function invocation is compared to the

data type of the corresponding parameter in the definition of the candidate
function to ensure that each argument can be promoted or cast to the
corresponding parameter. If not, an error is returned.

If a function is selected, its successful use depends on it being invoked in a context
in which the returned result is allowed. For example, if the function returns a table
where a table is not allowed, an error is returned.

Implicit casting for function resolution: Implicit casting for function resolution is
not supported for arguments with a user-defined type, binary, ROWID, or XML
data type. It is also not supported for built-in or user-defined cast functions.
Implicit casting is supported for the following cases:
v A numeric data type can be cast to a value of another numeric data type that is

not in the data type promotion list for the source data type. This includes
casting a numeric value to a numeric data type that is lower in the promotion
list.

v A numeric data type can be cast to a character or graphic string data type,
except for a LOB.

v A character or graphic string data type, except for a LOB, can be cast to a
numeric data type.

v A character or graphic string data type, except for a LOB, can be cast to a date,
time, or timestamp data type.

v A varying length character string data type, except for a LOB, can be cast to a
fixed length character data type.

Best-fit consideration:

After determining the function that is the best fit, use of the function still might
not be permitted. Each function is defined to return a result with a specific data
type. If this result data type is not compatible with the context in which the
function is invoked, an error occurs.

For example, assume functions named STEP are defined with different data types:

Chapter 2. Language elements 237

STEP(SMALLINT)returns CHAR(5)
STEP(DOUBLE)returns INTEGER

Assume also that the function is invoked with the following function reference
(where S is a SMALLINT column):

SELECT ... 3+STEP(S) ...

Because there is an exact match on argument type, the first STEP is chosen. An
error occurs on the statement because the result type is CHAR(5) instead of a
numeric type as required for an argument of the addition operator.

In cases where the arguments of the function invocation are not an exact match to
the data types of the parameters of the selected function, the arguments are
converted to the data type of the parameter at execution using the same rules as
assignment to columns. See “Assignment and comparison” on page 121. Problems
with conversions can also occur when precision, scale, length, or the encoding
scheme differs between the argument and the parameter. Conversion might occur
for a character string argument when the corresponding parameter of the function
has a different encoding scheme or CCSID. For example, an error occurs on
function invocation when mixed data that actually contains DBCS characters is
specified as an argument and the corresponding parameter of the function is
declared with an SBCS subtype.

Additionally, a character FOR BIT DATA argument cannot be passed as input for a
parameter that is not defined as character FOR BIT DATA. Likewise, a character
argument that is not FOR BIT DATA cannot be passed as input for a parameter
that is defined as character FOR BIT DATA.

An error also occurs in the following examples:
v The function is referenced in a FROM clause, but the function selected by the

function resolution step is a scalar or aggregate function.
v The function calls for a scalar or aggregate function, but the function selected by

the resolution step is a table function.

SQL path considerations for built-in functions
Function resolution applies to all functions, including built-in functions and other
functions provided by DB2. If a function is invoked without its schema name, the
SQL path is searched.

With the exception of the DB2 MQSeries® functions, the built-in functions are in
schema SYSIBM.

Additional functions are available in other schemas, but are not considered as
built-in functions because they are developed as user-defined functions that have
no special processing considerations. User-defined functions cannot be defined in
the SYSIBM schema (or any schema where the name begins with “SYS”).

If SYSIBM is not first in the path, it is possible that DB2 will select another
function instead of the intended built-in function. If schema "SYSIBM", "SYSFUN",
"SYSPROC", "SYSIBMADM" is not explicitly specified in the SQL path, the schema
is implicitly assumed at the front of the path. DB2 adds implicitly assumed
schemas in the order of "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM".

238 SQL Reference

Related concepts:
“SQL path” on page 64

Version resolution
Normally, the currently active version of an SQL function is used for invocation of
the function.

However, if the invocation is a recursive invocation that occurs inside the body of
the same function, and the currently active version has changed since the original
invocation, the active version is not used. The version that is used in the original
invocation is used for any recursive invocation until the entire function completes.
This preserves the semantics of the version that is used by the original invocation.

The version used in the original invocation is also used when the recursive
invocation is indirect. For example, assume that function FN1 invokes function
FN2, which in turn invokes FN1 (indirect, recursive invocation). The invocation of
function FN1 in function FN2 uses the version of FN1 that is active at the time of
the original invocation of function FN1.

Since the currently active version is used at the next invocation (except in recursive
invocations), it is possible that two or more versions of the same function can be
run by a given thread. For example, an invocation of function FN1 in an
application causes the currently active version of FN1 to load and execute. During
or after execution of the original invocation of FN1, an ALTER FUNCTION
statement that specifics ACTIVE VERSION FN1_V2 is run and changes the active
version of the function FN1 to version FN1_V2. Subsequent invocations of function
FN1 from the same thread will load and execute the currently active version of the
function, FN1_V2.

Examples of function resolution
The following examples illustrate function resolution.

Example 1: Assume that MYSCHEMA contains two functions, both named FUNA,
that were registered with these partial CREATE FUNCTION statements.
1. CREATE FUNCTION MYSCHEMA.FUNA (VARCHAR(10), INT, DOUBLE) ...
2. CREATE FUNCTION MYSCHEMA.FUNA (VARCHAR(10), REAL, DOUBLE) ...

Also assume that a function with three arguments of data types VARCHAR(10),
SMALLINT, and DECIMAL is invoked with a qualified name:

MYSCHEMA.FUNA(VARCHARCOL, SMALLINTCOL, DECIMALCOL)

Both MYSCHEMA.FUNA functions are candidates for this function invocation
because they meet the criteria specified in “Function resolution” on page 234. The
data types of the first parameter for the two function instances in the schema,
which are both VARCHAR, fit the data type of the first argument of the function
invocation, which is VARCHAR, equally well. However, for the second parameter,
the data type of the first function (INT) fits the data type of the second argument
(SMALLINT) better than the data type of second function (REAL). Therefore, DB2
selects the first MYSCHEMA.FUNA function as the function instance to execute.

Example 2: Assume that these functions were registered with these partial CREATE
FUNCTION statements:
1. CREATE FUNCTION SMITH.ADDIT (CHAR(5), INT, DOUBLE) ...
2. CREATE FUNCTION SMITH.ADDIT (INT, INT, DOUBLE) ...
3. CREATE FUNCTION SMITH.ADDIT (INT, INT, DOUBLE, INT) ...
4. CREATE FUNCTION JOHNSON.ADDIT (INT, DOUBLE, DOUBLE) ...

Chapter 2. Language elements 239

5. CREATE FUNCTION JOHNSON.ADDIT (INT, INT, DOUBLE) ...
6. CREATE FUNCTION TODD.ADDIT (REAL) ...
7. CREATE FUNCTION TAYLOR.SUBIT (INT, INT, DECIMAL) ...

Also assume that the SQL path at the time an application invokes a function is
"TAYLOR" "JOHNSON", "SMITH". The function is invoked with three data types
(INT, INT, DECIMAL) as follows:

SELECT ... ADDIT(INTCOL1, INTCOL2, DECIMALCOL) ...

Function 5 is chosen as the function instance to execute based on the following
evaluation:
v Function 6 is eliminated as a candidate because schema TODD is not in the SQL

path.
v Function 7 in schema TAYLOR is eliminated as a candidate because it does not

have the correct function name.
v Function 1 in schema SMITH is eliminated as a candidate because the INT data

type is not promotable to the CHAR data type of the first parameter of Function
1.

v Function 3 in schema SMITH is eliminated as a candidate because it has the
wrong number of parameters.

v Function 2 is a candidate because the data types of its parameters match or are
promotable to the data types of the arguments.

v Both Function 4 and 5 in schema JOHNSON are candidates because the data
types of their parameters match or are promotable to the data types of the
arguments. However, Function 5 is chosen as the better candidate because
although the data types of the first parameter of both functions (INT) match the
first argument (INT), the data type of the second parameter of Function 5 (INT)
is a better match of the second argument (INT) than Function 4 (DOUBLE).

v Of the remaining candidates, Function 2 and 5, DB2 selects Function 5 because
schema JOHNSON comes before schema SMITH in the SQL path.

Expressions
An expression specifies a value and can take a number of different forms.

Authorization: The use of some of the expressions, such as a scalar-fullselect,
sequence-reference, global-variable, or function-invocation, requires having the
appropriate authorization. For these objects, the privilege set that is defined below
must include the following authorization:
v cast-specification. The authorization to reference a user-defined type in a cast

specification. For information about authorization considerations, see “CAST
specification” on page 267.

v function-invocation. Authorization to execute the function. For information about
how the particular function is chosen and authorization considerations, see
“Function resolution” on page 234.

v scalar-fullselect. For information about authorization considerations, see
“Authorization” on page 762.

v sequence-reference. The USAGE privilege on the specified sequence, ownership of
the sequence, DATAACCESS authority, or SYSADM authority. For example, with
a sequence reference, USAGE authorization on the sequence is required.

v global-variable. The READ privilege on the specified global variable, ownership of
the global variable, DATAACCESS authority, or SYSADM authority.

240 SQL Reference

|

|
|

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the owner of the plan or package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets that are held by each authorization ID of the process.

The form of an expression is as follows:

Chapter 2. Language elements 241

�� �

operator
(1)

function-invocation
+ (expression)
- constant

column-name
variable
special-register

(2)
scalar-fullselect
time-zone-specific-expression

(3)
labeled-duration

(4)
case-expression

(5)
cast-specification

(6)
XMLCAST-specification

(7)
array-element-specification

(8)
array-constructor

(9)
OLAP specification

(10)
row-change-expression

(11)
sequence-reference

��

Notes:

1 Must be a scalar function. See “Functions” on page 231 for more information.

2 See “Scalar-fullselect” on page 253 for more information.

3 See Labeled durations for more information.

4 See “CASE expressions” on page 263 for more information.

5 See “CAST specification” on page 267 for more information.

6 See “XMLCAST specification” on page 276 for more information.

7 See “Array element specification” on page 278 for more information.

8 See “Array constructor” on page 280 for more information.

9 See “OLAP specification” on page 282

10 See “ROW CHANGE expression” on page 289

11 See “Sequence reference” on page 291

operator:

242 SQL Reference

||

|

|

�� CONCAT
||
/
*
+
-

��

Expressions without operators
If no operators are used, the result of the expression is the specified value.

Examples:
SALARY :SALARY ’SALARY’ MAX(SALARY)

Expressions with arithmetic operators
If arithmetic operators are used, the result of the expression is a number derived
from the application of the operators to the values of the operands.

The result of the expression can be null. If any operand has the null value, the
result of the expression is the null value. Arithmetic operators (except unary plus,
which is meaningless) must not be applied to strings. For example, USER+2 is
invalid. Multiplication and division operators must not be applied to datetime
values, which can only be added and subtracted.

The prefix operator + (unary plus) does not change its operand. The prefix operator
- (unary minus) reverses the sign of a nonzero operand. If the data type of A is
small integer, the data type of -A is large integer. The first character of the token
following a prefix operator must not be a plus or minus sign.

labeled-duration:

��
(1)

function-invocation
(expression)
constant
column-name
variable

YEAR
YEARS
MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

��

Notes:

1 Must be a scalar function.

Chapter 2. Language elements 243

The infix operators +, -, *, and / specify addition, subtraction, multiplication, and
division, respectively. The value of the second operand of division must not be
zero.

Arithmetic with two integer operands
If both operands of an arithmetic operator are integers, the operation is performed
in binary. The result is a large integer unless either (or both) operand is a big
integer, in which case the result is a big integer.

The result of an integer arithmetic operation (including unary minus) must be
within the range of the result type.

Arithmetic with an integer and a decimal operand
If one operand is an integer and the other operand is decimal, the operation is
performed in decimal. The arithmetic operation uses a temporary copy of the
integer that has been converted to a decimal number.

The temporary copy of the integer that has been converted to a decimal number
has a precision p and scale 0. p is 19 for a big integer, 11 for a large integer, and 5
for a small integer. In the case of an integer constant, p depends on the number of
digits in the integer constant. p is 5 for an integer constant consisting of 5 digits or
fewer. Otherwise, p is the same as the number of digits in the integer constant.

Arithmetic with an integer and a decimal floating-point operand
If one operand is a small integer, large integer, or big integer and the other is a
decimal floating-point number, the operation is performed in decimal floating
point. The arithmetic operation uses a temporary copy of the integer that has been
converted to a decimal floating-point number.

For small integer or large integer, the temporary copy of the integer is converted to
DECFLOAT(16). For big integer, the temporary copy of the big integer is converted
to DECFLOAT(34). The rules for two decimal floating point operands are then
applied.

Arithmetic with two decimal operands
If both operands are decimal, the operation is performed in decimal.

The result of any decimal arithmetic operation is a decimal number with a
precision and scale that depend on two factors:
The precision and scale of the operands

In the discussion of operations with two decimal operands, the precision
and scale of the first operand are denoted by p and s, that of the second
operand by p' and s'. Thus, for a division, the dividend has precision p
and scale s, and the divisor has precision p' and scale s'.

Whether DEC31 or DEC15 is in effect for the operation
DEC31 and DEC15 specify the rules to be used when both operands in a
decimal operation have precisions of 15 or less. DEC15 specifies the rules
which do not allow a precision greater than 15 digits, and DEC31 specifies
the rules which allow a precision of up to 31 digits. The rules for DEC31
are always used if either operand has a precision greater than 15.

For static SQL statements, the value of the field DECIMAL ARITHMETIC on
installation panel DSNTIP4 or the SQL processing option DEC determines whether
DEC15 or DEC31 is used.

244 SQL Reference

For dynamic SQL statements, the value of the field DECIMAL ARITHMETIC on
installation panel DSNTIP4, the SQL processing option DEC, or the special register
CURRENT PRECISION determines whether DEC15 or DEC31 is used according to
these rules:
v Field DECIMAL ARITHMETIC applies if either of these conditions is true:

– DYNAMICRULES run behavior applies and the application has not set
CURRENT PRECISION.
For a list of the DYNAMICRULES option values that specify run, bind,
define, or invoke behavior, see Table 6 on page 75.

– DYNAMICRULES bind, define, or invoke behavior applies; the value of
installation panel field USE FOR DYNAMICRULES is YES; and the
application has not set CURRENT PRECISION.

v SQL processing option DEC applies if DYNAMICRULES bind, define, or invoke
behavior is in effect, the value of installation panel field USE FOR
DYNAMICRULES is NO, and the application has not set CURRENT
PRECISION.

v Special register CURRENT PRECISION applies if the application sets the
register.

The value of DECIMAL ARITHMETIC is the default value for the SQL processing
option and the special register. SQL statements executed using SPUFI use the value
in DECIMAL ARITHMETIC.

Decimal addition and subtraction:

For decimal operations, the precision and scale of the result depends on the
precision and scale of the operands.

If the operation is addition or subtraction and the operands do not have the same
scale, the operation is performed with a temporary copy of one of the operands
that has been extended with trailing zeros so that its fractional part has the same
number of digits as the other operand.

The precision of the result is the minimum of n and the quantity
MAX(p-s,p’-s’)+MAX(s,s’)+1. The scale is MAX(s,s’). n is 31 if DEC31 is in effect or
if the precision of at least one operand is greater than 15. Otherwise, n is 15.

In COBOL, blanks must precede and follow a minus sign to avoid any ambiguity
with COBOL host variable names (which allow the use of a dash).

Decimal multiplication:

For decimal multiplication, the precision and scale of the result depends on the
precision and scale of the operands.

For multiplication, the precision of the result is MIN(n,p+p’), and the scale is
MIN(n,s+s’). n is 31 if DEC31 is in effect or if the precision of at least one operand
is greater than 15. Otherwise, n is 15.

If both operands have a precision greater than 15, the operation is performed using
a temporary copy of the operand with the smaller precision. If the operands have
the same precision, the second operand is selected. If more than 15 significant
digits are needed for the integral part of the copy, the statement's execution is
ended and an error occurs. Otherwise, the copy is converted to a number with
precision 15, by truncating the copy on the right. The truncated copy has a scale of

Chapter 2. Language elements 245

MAX(0,S-(P-15)), where P and S are the original precision and scale. If, in the
process of truncation, one or more nonzero digits are removed, SQLWARN7 in
SQLCA is set to W, indicating loss of precision.

When both operands have a precision greater than 15, the foregoing formulas for
the precision and scale of the result still apply, with one change: for the operand
selected as the copy, use the precision and scale of the truncated copy; that is, use
15 as the precision and MAX(0,S-(P-15)) for the scale.

Let n denote the value of the operand with the greater precision or the first
operand in the case of operands with the same precision. The number of leading
zeros in a 31-digit representation of n must be greater than the precision of the
other operand. This is always the case if the precision of the operand is 15 or less.
With greater precisions, overflow can occur even if the precision of the result is
less than 31. For example, the expression:

10000000000000000000000000. * 1

will cause overflow because the number of leading zeros in the 31-digit
representation of the large number and the precision of the small number are both
5 (see “Arithmetic with an integer and a decimal operand” on page 244).

Decimal division:

The rules for a specific decimal division depend on whether the DEC31 option is
in effect for the operation, whether p is greater than 15, and whether p' is greater
than 15

The following table shows how the precision and scale of the result depend on
these factors. In that table, the occurrence of “N/A” in a row implies that the
indicated factor is not relevant to the case represented by the row.

Table 42. Precision (p) and scale (s) of the result of a decimal division

DEC31 p p' P S

Not in effect ≤15 ≤15 15 15-(p-s+s’)

In effect ≤15 ≤15 31 N-(p-s+s’), where
N is 30-p' if p' is odd.
N is 29-p' if p' is even.

N/A >15 ≤15 31 N-(p-s+s’), where
N is 30-p' if p' is odd.
N is 29-p' if p' is even.

N/A N/A >15 31
15-(p-s+x), where
x is MAX(0,s’-(p’-15))
(See the following note)

Notes on decimal division: If p' is greater than 15, the division is performed using
a temporary copy of the divisor. If more than 15 significant digits are needed for
the integral part of the divisor, the statement's execution is ended, and an error
occurs. Otherwise, the copy is converted to a number with precision 15, by
truncating the copy on the right. The truncated copy has a scale of
MAX(0,s’-(p’-15)), which is the formula for x. If, in the process of truncation, one
or more nonzero digits are removed, SQLWARN7 in SQLCA is set to W, indicating
loss of precision.

246 SQL Reference

Minimum divide result scale
If the calculated value of 's' is negative, an error occurs. If a minimum
divide result scale is specified, this error does not occur.

The minimum scale is determined according to the following precedence:

Static SQL

1. The precompiler DEC option, if it is set with a non-zero scale.
2. The DECIMAL ARITHMETIC field (DECARTH) on installation

panel DSNTIP4, if it is set with a non-zero scale.
3. The MINIMUM DIVIDE SCALE opaque subsystem parameter

(MINDVSCL), if it is set to a value other than NONE.
4. The MINIMUM DIVIDE SCALE field (DECDIV3) on

installation panel DSNTIP4, if it is set to YES.

Dynamic SQL

1. The CURRENT PRECISION special register, if it is set with a
non-zero scale.

2. Either of the following cases:
v For a package that was bound with DYNAMICRULES RUN

or if the USE FOR DYNAMICRULES field (DYNRULS) on
installation panel DSNTIP4 is set to YES: The DECIMAL
ARITHMETIC field (DECARTH) on installation panel
DSNTIP4, if it is set with a non-zero scale.

v For all other cases: The precompiler DEC option, if it is set
with a non-zero scale.

3. The MINIMUM DIVIDE SCALE opaque subsystem parameter
(MINDVSCL), if it is set to value other than NONE.

4. The MINIMUM DIVIDE SCALE field (DECDIV3) on
installation panel DSNTIP4, if it is set to YES

SQL statements that are executed using SPUFI
The value in DECIMAL ARITHMETIC (DECARTH).

The default value for both the precompiler DEC option and the CURRENT
PRECISION special register is DECIMAL ARITHMETIC.

A minimum divide result scale of 3 can be specified using the MINIMUM
DIVIDE SCALE field on the installation panel DSNTIP4. A minimum
divide scale result between 1 and 9 can be specified using the DECIMAL
ARITHMETIC OPTION of the form 'Dpp.s' where 'pp' is 15 or 31 and
represents the precision and 's' represents the minimum divide scale, as a
number between 1 and 9. Such a specification overrides the MINIMUM
DIVIDE SCALE. When a minimum divide result scale is specified, the
formula MAX(s,s’), where s represents the scale derived from the above
table and s' represents the value specified by the minimum divide result
scale, is applied and a new scale is derived. The newly derived scale is the
scale of the result and overrides any scale derived using the table above.

Arithmetic with a decimal and a decimal floating-point operand
If one operand is a decimal and the other is a decimal floating point, the operation
is performed in decimal floating point. The arithmetic operation uses a temporary
copy of the decimal that has been converted to a decimal floating point based on
the precision of the decimal number.

Chapter 2. Language elements 247

If the decimal number has a precision of less than 17, the decimal number is
converted to DECFLOAT(16). Otherwise, the decimal number is converted to
DECFLOAT(34). The rules for two decimal floating-point operands are then
applied.

Arithmetic with floating-point operands
If either operand of an arithmetic operator is floating-point, the operation is
performed in floating-point. If necessary, the operands are first converted to
double-precision floating-point numbers. Thus, if any element of an expression is a
floating-point number, the result of the expression is a double-precision
floating-point number.

An operation involving a floating-point number and an integer is performed with
a temporary copy of the integer that has been converted to double-precision
floating-point. An operation involving a floating-point number and a decimal
number is performed with a temporary copy of the decimal number that has been
converted to double-precision floating-point. The result of a floating-point
operation must be within the range of floating-point numbers.

The order in which floating-point operands (or arguments to functions) are
processed can affect the results slightly because floating-point operands are
approximate representations of real numbers. Because the order in which operands
are processed might be implicitly modified by DB2 (for example, DB2 might decide
what degree of parallelism to use and what access plan to use), an application that
uses floating-point operands should not depend on the results being precisely the
same each time an SQL statement is executed.

Arithmetic with a floating-point and a decimal floating-point
operand
If one operand is a floating-point number (real or double) and the other is a
decimal floating-point number, the operation is performed in decimal
floating-point. The arithmetic operation uses a temporary copy of the floating-point
number that has been converted to a decimal floating-point number.

Arithmetic with two decimal floating-point operands
If both operands are decimal floating point, the operation is performed in decimal
floating point. If one operand is DECFLOAT(n) and the other is DECFLOAT(m),
the operation is performed in DECFLOAT(max(n,m)).

General Arithmetic Operation Rules for DECFLOAT:

Certain general rules apply to all arithmetic operations on the DECFLOAT data
type.

The following general rules apply to all arithmetic operations on the DECFLOAT
data type:
v Every operation on finite numbers is carried out as though an exact

mathematical result is computed, using integer arithmetic on the coefficient
where possible.
If the coefficient of the theoretical exact result has no more than the number of
digits that reflect its precision (16 or 34), it is used for the result without change
(unless there is an underflow or overflow condition). If the coefficient has more
than the number of digits that reflect its precision, it is rounded to exactly the
number of digits that reflect its precision (16 or 34), and the exponent is
increased by the number of digits that are removed.

248 SQL Reference

For static SQL statements other than CREATE VIEW, the ROUNDING bind
option or the native SQL procedure option determines the rounding mode.
For dynamic SQL statements (and static CREATE VIEW statements), the special
register CURRENT DECFLOAT ROUNDING MODE determines the rounding
mode.
If the value of the adjusted exponent of the result is less than Emin, an exception
condition is returned. In this case, the calculated coefficient and exponent form
the result, unless the value of the exponent is less than Etiny, in which case the
exponent is set to Etiny, the coefficient is rounded (possibly to zero) to match the
adjustment of the exponent, and the sign is unchanged. If this rounding gives an
inexact result, an underflow exception condition is returned.
If the value of the adjusted exponent of the result is larger than Emax, an
overflow exception condition is returned. In this case, the result is as defined as
an overflow exception condition and might be infinite. It will have the same sign
as the theoretical result.

v Arithmetic that uses the special value infinity follows the usual rules, where
negative infinity is less than every finite number and positive infinity is greater
than every finite number.
Under these rules, an infinite result is always exact. Certain uses of infinity
return an invalid operation condition. The following list is a list of operations
that can cause an invalid operation condition and the result of the operation is
NaN when one of the operands is infinity but the other operand is not NaN nor
sNaN.
– Add +infinity to -infinity during an addition or subtraction operation
– Multiply 0 by +infinity or -infinity
– Divide either +infinity or -infinity by either +infinity or -infinity
– The dividend for a MOD function is either +infinity or -infinity
– Either argument of the QUANTIZE function is +infinity or -infinity
– The second argument of the POWER® function is +infinity or -infinity
– Signaling NaNs when used as an operand to an arithmetic operation
The following arithmetic rules apply to arithmetic operations and the NaN
value:
– The result of any arithmetic operation which has an operand which is a NaN

(a quiet NaN or signaling NaNs) is NaN. The sign of the result is copied from
the first operand which is a signaling NaN, or if neither operand is signaling
then the sign is copied from the first operand which is a NaN. Whenever a
result is a NaN, the sign of the result depends only on the copied operand.

– The sign of the result of a multiplication or division will be negative only if
the operands have different signs and neither is a NaN.

– The sign of the result of an addition or subtraction will be negative only if the
result is less than zero and neither operand is a NaN, except for the following
cases where the result is a negative 0:
- A result is rounded to zero, and the value, before rounding, had a negative

sign
- Subtract 0 from -0
- Addition of operands with opposite signs (or subtraction of operands with

the same sign), the result has a coefficient of 0, and the rounding mode is
ROUND_FLOOR

- Multiplication or division and the result has a coefficient of 0 and the signs
of the operands are different

Chapter 2. Language elements 249

- The first argument of the POWER function is -0, and the second argument
is a positive odd number

- The argument of the CEIL, FLOOR, or SQRT function is -0
- The first argument of the ROUND or TRUNCATE function is -0

Examples involving special DECFLOAT values:
INFINITY + 1 = INFINITY
INFINITY + INFINITY = INFINITY
INFINITY + -INFINITY = NAN -- exception
NAN + 1 = NaN
NAN + INFINITY = NaN
1 - INFINITY = -INFINITY
INFINITY - INFINITY = NAN -- exception
-INFINITY - -INFINITY = NAN -- exception
-0.0 - 0.0E1 = -0
-1.0 * 0.0E1 = -0
1.0E1 / 0 = INFINITY
-1.0E5 / 0.0 = -INFINITY
1.0E5 / -0 = -INFINITY
INFINITY / -INFINITY = NAN -- exception
INFINITY / 0 = INFINITY
-INFINITY / 0 = -INFINITY
-INFINITY / -0 = INFINITY

Arithmetic with distinct type operands
A distinct type cannot be used with arithmetic operators even if its source data
type is numeric.

To perform an arithmetic operation, create a function with the arithmetic operator
as its source. For example, if there were distinct types INCOME and EXPENSES,
both of which had DECIMAL(8,2) data types, the following user-defined function,
REVENUE, could be used to subtract one from the other.

CREATE FUNCTION REVENUE (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternately, the - (minus) operator could be overloaded using a function to subtract
the new data types.

CREATE FUNCTION "-" (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternatively, the distinct type can be cast to a built-in data type and the result
used as an operand of an arithmetic operator.

Expressions with the concatenation operator
When two strings operands are concatenated, the result of the expression is a
string.

The operands of concatenation must be compatible strings. A binary string cannot
be concatenated with a character string, including character strings that are defined
as FOR BIT DATA (for more information on the compatibility of data types, see the
compatibility matrix in Table 23 on page 121). A distinct type that is based on a
string type can be concatenated only if an appropriate user-defined function is
created.

13. In various EBCDIC code pages, DB2 supports code point combinations X'4F4F', X'BBBB', and X'5A5A' to mean concatenation.
X'BBBB' and X'5A5A' are interpreted to mean concatenation only on single byte character set DB2 subsystems.

250 SQL Reference

Both CONCAT and the vertical bars (||) represent the concatenation operator.
Vertical bars (or the characters that must be used in place of vertical bars in some
countries13) can cause parsing errors in statements passed from one DBMS to
another. The problem occurs if the statement undergoes character conversion with
certain combinations of source and target CCSIDs13. Thus, CONCAT is the
preferable concatenation operator.

If either operand can be null, the result can be null, and if either is null, the result
is the null value. Otherwise, the result consists of the first operand string followed
by the second.

The following table shows how the string operands determine the data type and
the length attribute of the result (the order in which the operands are concatenated
has no effect on the result).

Table 43. Data type and length of concatenated operands

If one
operand column is

And the other
operand is The data type of the result column is1

CHAR(x) CHAR(y) with a combined
length attribute that is less
than 256

CHAR(x+y)2

CHAR(y) with a combined
length attribute that is greater
than 255

VARCHAR(MIN(x'+y',32764))3

VARCHAR(y)

VARCHAR(x) VARCHAR(y) VARCHAR(MIN(x'+y',32764))3

CLOB(x) CHAR(y) CLOB(MIN(x'+y',2G))

VARCHAR(y)

CLOB(y)

GRAPHIC(y) DBCLOB(MIN(x+y,1G))

VARGRAPHIC(y)

DBCLOB(y)

GRAPHIC(x) CHAR(y) VARGRAPHIC(MIN(x+y,16382)) 4

VARCHAR(y)

VARGRAPHIC(y)

VARGRAPHIC(x) CHAR(y) VARGRAPHIC(MIN(x+y,16382)) 4

VARCHAR(y)

GRAPHIC(y)

GRAPHIC(y)

DBCLOB(x) CHAR(y) DBCLOB(MIN(x+y,1G))

VARCHAR(y)

CLOB(y)

GRAPHIC(y)

VARGRAPHIC(y)

DBCLOB(y)

Chapter 2. Language elements 251

|

|

|

|

Table 43. Data type and length of concatenated operands (continued)

If one
operand column is

And the other
operand is The data type of the result column is1

BINARY(x) BINARY(y) with a combined
length attribute that is less
than 256

BINARY(x+y)

BINARY(y) with a combined
length attribute that is greater
than 255

VARBINARY(MIN(x+y,32764))

VARBINARY(x) VARBINARY(y) VARBINARY(MIN(x+y,32764))

BINARY(y)

BLOB(x) BLOB(y) BLOB(MIN(x+y, 2G))

Notes:

1.
v 2G represents 2,147,483,647 bytes
v 1G represents 1,073,741,823 double-byte characters

2. Neither CHAR(x) nor CHAR(y) can contain mixed data. If either operand contains mixed data, the result is
VARCHAR(MIN(x'+y',32764)).

3. If conversion of the first operand is required, x' = 3x; otherwise, it remains x. If conversion of the second operand
is required, y'= 3y; otherwise, it remains y.

4. Both operands are converted to UTF-16, if necessary (that is, the operand is not already UTF-16), and the results
are concatenated.

As the previous table shows, the length of the result is the sum of the lengths of
the operands. However, the length of the result is two bytes less if redundant shift
code characters are eliminated from the result. Redundant shift code characters
exist when both character strings are EBCDIC mixed data, and the first string ends
with a “shift-in” character (X'0F') and the second operand begins with a “shift-out”
character (X'0E'). These two shift code characters are removed from the result.

The CCSID of the result is determined by the rules set forth in “Character
conversion in set operations and concatenations” on page 816. Some consequences
of those rules are the following:
v If either operand is BIT data, the result is BIT data.
v The conversion that occurs when SBCS data is compared with mixed data

depends on the encoding scheme. If the encoding scheme is Unicode, the SBCS
operand is converted to MIXED. Otherwise, the conversion depends on the field
MIXED DATA on installation panel DSNTIPF for the DB2 that does the
comparison:
– Mixed data if the MIXED DATA option at the server is YES. The result is not

necessarily well-formed mixed data.
– SBCS data if the MIXED DATA option at the server is NO. If the mixed data

cannot be converted to pure SBCS data, an error occurs.

If an operand is a string from a column with a field procedure, the operation
applies to the decoded form of the value. The result does not inherit the field
procedure.

One operand of concatenation can be a parameter marker. When one operand is a
parameter marker, its data type and length attributes are considered to be the same
as those for the operand that is not a parameter marker except for a string data

252 SQL Reference

|

|

|

type. Refer to Table 43 on page 251 for the formula used to calculate data type
length for untyped parameter markers in the CONCAT operator when another
operand is a string data type. The order of concatenation operations must be
considered to determine these attributes in the case of nested concatenation.

No operand of concatenation can be a distinct type even if the distinct type is
based on a character data type. To concatenate a distinct type, create a user-defined
function that is sourced on the CONCAT operator. For example, if distinct types
TITLE and TITLE_DESCRIPTION were both sourced on data type VARCHAR(25),
the following user-defined function, named ATTACH, could be used to concatenate
the two distinct types:

CREATE FUNCTION ATTACH (TITLE, TITLE_DESCRIPTION)
RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Alternatively, the concatenation operator could be overloaded by using a
user-defined function to add the distinct types:

CREATE FUNCTION "||" (TITLE, TITLE_DESCRIPTION)
RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Related concepts:

Concatenation of strings (Introduction to DB2 for z/OS)
Related reference:
“CONCAT” on page 419

Scalar-fullselect
A scalar-fullselect as supported in an expression is a fullselect, enclosed in
parentheses, that returns a single row consisting of a single column value. If the
fullselect does not return a row, the result of the expression is the null value. If
more than one row is to be returned for a scalar fullselect, an error occurs.

�� (fullselect) ��

If a set operator is not specified in the outermost fullselect and the select list
element is an expression that is simply a column name, the result column name is
based on the name of the column. Otherwise, the result column is unnamed.

If a column mask is defined to mask the column values in the final result, and if a
column mask is applied to the column in the select list of a scalar-fullselect, the
result of the scalar-fullselect must not be derived using set operator EXCEPT or
INTERSECT. See Chapter 4, “Queries,” on page 761 for more information about
how column access controls affect a fullselect.

A scalar fullselect cannot be used in the following instances:
v A CHECK constraint in CREATE TABLE and ALTER TABLE statements
v A CREATE VIEW statement where the view definition includes the WITH

CHECK option
v A CREATE FUNCTION (SQL) statement (subselect already restricted from the

expression in the RETURN clause)
v An argument in a CALL statement for an input parameter

Chapter 2. Language elements 253

|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_concatenationofstrings.htm#db2z_concatenationofstrings

v An argument to an aggregate function, other than the XML-expression argument
of the XMLAGG function

v An ORDER BY clause
v A GROUP BY clause
v A join-condition of the ON clause for INNER and OUTER JOINs

If the scalar fullselect is a subselect, it is also referred to as a scalar subselect. See
“subselect” on page 764 for more information.

The following examples illustrate the use of scalar-fullselect. Assume that four tables
(PARTS, PRODUCTS, PARTPRICE, and PARTINVENTORY) contain product data.

Example 1 - scalar-fullselect in a WHERE clause:
Find which products have the prices in the range of at least twice the
lowest price of all the products and at most half the price of all the
products.

SELECT PRODUCT, PRICE FROM PRODUCTS A
WHERE
PRICE BETWEEN 2 * (SELECT MIN(PRICE) FROM PRODUCTS)

AND .5 * (SELECT MAX(PRICE) FROM PRODUCTS);

Example 2 - scalar-fullselect in a SELECT list:
For each part, find its price and its inventory.

SELECT PART,
(SELECT PRICE FROM PARTPRICE WHERE PART=A.PART),
(SELECT ONHAND# FROM INVENTORY WHERE PART=A.PART)

FROM PARTS A;

Datetime operands and durations
Datetime values can be incremented, decremented, and subtracted. These
operations can involve decimal numbers called durations. A duration is a positive
or negative number representing an interval of time.

Labeled durations
The form a labeled duration is as follows:

��
(1)

function-invocation
(expression)
constant
column-name
variable

YEAR
YEARS
MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

��

Notes:

1 Must be a scalar function.

254 SQL Reference

A labeled duration represents a specific unit of time as expressed by a
number (which can be the result of an expression) followed by one of the
seven duration keywords.14 The number specified is converted as if it were
assigned to a DECIMAL(15,0) number, except for SECONDS, which uses
DECIMAL(27,12) to allow 0 to 12 fractional second digits to be included.

A labeled duration can only be used as an operand of an arithmetic
operator in which the other operand is a value of the data type of date,
time, or timestamp. Thus, the expression HIREDATE + 2 MONTHS + 14
DAYS is valid, whereas the expression HIREDATE + (2 MONTHS + 14
DAYS) is not. In both of these expressions, the labeled durations are 2
MONTHS and 14 DAYS.

Date duration
A date duration represents a number of years, months, and days expressed
as a DECIMAL(8,0) number. To be properly interpreted, the number must
have the format yyyymmdd, where yyyy represents the number of years, mm
the number of months, and dd the number of days. The result of
subtracting one DATE value from another, as in the expression HIREDATE
- BIRTHDATE, is a date duration.

Time duration
A time duration represents a number of hours, minutes, and seconds
expressed as a DECIMAL(6,0) number. To be properly interpreted, the
number must have the format hhmmss, where hh represents the number of
hours, mm the number of minutes, and ss the number of seconds. The
result of subtracting one TIME value from another is a time duration.

Timestamp duration
A timestamp duration represents a number of years, months, days, hours,
minutes, seconds, and fractional seconds expressed as a DECIMAL(14+s,s)
number, where s is the number of fractional seconds in the range from 0 to
12. To be interpreted properly, the number must have the format
yyyyxxddhhmmss.zzzzzzzzzzzz, where yyyy, xx, dd, hh, mm, ss, and
zzzzzzzzzzzz represent, respectively, the number of years, months, days,
hours, minutes, seconds, and fractional seconds. The result of subtracting
one timestamp value from another is a timestamp duration with a scale
that matches the maximum timestamp precision of the timestamp
operands.

Time zone specific expressions
Time zone specific expressions can be used to adjust timestamp values and
character-string or graphic-string representations of timestamp values to specific
time zones.

14. The singular form of these keywords is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and
MICROSECOND.

Chapter 2. Language elements 255

time-zone-specific-expressions

��
(1)

function-invocation
(expression)
constant
column-name
variable
special-register
scalar-fullselect
case-expression
cast-specification

AT LOCAL
(1)

AT TIME ZONE function-invocation
(expression)
constant
column-name
variable
special-register
scalar-fullselect
case-expression
cast-specification

��

Notes:

1 Must be a scalar function.

The first operand for time-zone-specific-expression must be an expression that returns
the value of either a built-in timestamp or a built-in character or graphic string
data type. If the first operand is a character string or graphic string, it must not be
a CLOB or DBCLOB value and its value must be a valid character-string or
graphic-string representation of a timestamp. For the valid formats of string
representations of datetime values, see “String representations of datetime values”
on page 101.

If the first operand of time-zone-specific-expression returns a TIMESTAMP WITHOUT
TIME ZONE value, the expression is implicitly cast to TIMESTAMP WITH TIME
ZONE before being adjusted to the indicated time zone.

AT LOCAL
Specifies that the timestamp value is to be adjusted for the local time zone
using the SESSION TIME ZONE special register.

AT TIME ZONE
Specifies that the timestamp is to be adjusted for the time zone that is
represented by the expression.

expression is a character or graphic string. It must not be a CLOB or DBCLOB
value, and its value must be left justified and be of the form '±th:tm', where th
represents the time zone hour between -12 and +14, and tm represents the time
zone minutes between 0 and 59, with values ranging from -12:59 to +14:00. The
value must not be the null value.

The expression returns a TIMESTAMP WITH TIME ZONE value in the indicated
time zone.

Syntax alternatives: TIMEZONE can be specified as an alternative to TIME ZONE.

Cast a timestamp for April 12, 2010 to the local time zone. Assume that the
IMPLICIT TIME ZONE system parameter is set to '-8:00'.
CAST(’2010-04-12-10:30:00.0 -5:00’ AT LOCAL AS TIMESTAMP)

Returns: 2010-04-12-07:30:00.000000.

256 SQL Reference

Insert a timestamp value with a time zone into a table, tz, and retrieve it as a
timestamp with the local time zone, with +08:00, and adjusted for UTC. Assume
that table tz exists as follows:
CREATE TABLE tz(tstz TIMESTAMP WITH TIME ZONE);

INSERT INTO tz(tstz) VALUES(TIMESTAMP ’2010-01-01-10.23.51-08:00’);

1. Retrieve the value of the tstz column adjusted for the local time:
SELECT tstz AT LOCAL
FROM SYSIBM.SYSDUMMY1;

2. Retrieve the value of the tstz column adjusted for the time zone +08:00:
SELECT tstz AT TIME ZONE ’+08:00’
FROM SYSIBM.SYSDUMMY1;

3. Retrieve the value of the tstz column adjusted for UTC:
SELECT tstz AT TIME ZONE ’00:00’
FROM SYSIBM.SYSDUMMY1;

Datetime arithmetic in SQL
The only arithmetic operations that can be performed on datetime values are
addition and subtraction.

If a datetime value is the operand of addition, the other operand must be a
duration. The specific rules governing the use of the addition operator with
datetime values follow.
v If one operand is a date, the other operand must be a date duration or labeled

duration of years, months, or days.
v If one operand is a time, the other operand must be a time duration or a labeled

duration of hours, minutes, or seconds.
v If one operand is a timestamp, the other operand must be a duration. Any type

of duration is valid.
v Neither operand of the addition operator can be a parameter marker. For a

discussion of parameter markers, see Parameter markers in “PREPARE” on page
1781.

The rules for the use of the subtraction operator on datetime values are not the
same as those for addition because a datetime value cannot be subtracted from a
duration, and because the operation of subtracting two datetime values is not the
same as the operation of subtracting a duration from a datetime value. The specific
rules governing the use of the subtraction operator with datetime values follow.
v If the first operand is a date, the second operand must be a date, a date

duration, a string representation of a date, or a labeled duration of years,
months, or days.

v If the second operand is a date, the first operand must be a date, or a string
representation of a date.

v If the first operand is a time, the second operand must be a time, a time
duration, a string representation of a time, or a labeled duration of hours,
minutes, or seconds.

v If the second operand is a time, the first operand must be a time, or string
representation of a time.

v If the first operand is a timestamp, the second operand must be a timestamp, a
string representation of a timestamp, or a duration.

v If the second operand is a timestamp, the first operand must be a timestamp or
a string representation of a timestamp.

Chapter 2. Language elements 257

v Neither operand of the subtraction operator can be a parameter marker.

When an operand in a datetime expression is a string, it might undergo character
conversion before it is interpreted and converted to a datetime value. When its
CCSID is not that of the default for mixed strings, a mixed string is converted to
the default mixed data representation. When its CCSID is not that of the default
for SBCS strings, an SBCS string is converted to the default SBCS representation.

Date arithmetic
Date values can be subtracted, incremented, or decremented.

Subtracting dates: The result of subtracting one date (DATE2) from another
(DATE1) is a date duration that specifies the number of years, months, and days
between the two dates. The data type of the result is DECIMAL(8,0). If DATE1 is
greater than or equal to DATE2, DATE2 is subtracted from DATE1. If DATE1 is
less than DATE2, however, DATE1 is subtracted from DATE2, and the sign of the
result is made negative. The following procedural description clarifies the steps
involved in the operation RESULT = DATE1 - DATE2.

Date subtraction: result = date1 - date2

v If DAY(DATE2) <= DAY(DATE1) then DAY(RESULT) = DAY(DATE1) - DAY(DATE2)

v If DAY(DATE2) > DAY(DATE1) then DAY(RESULT) = N + DAY(DATE1) - DAY(DATE2) where N
= the last day of MONTH(DATE2). MONTH(DATE2) is then incremented by 1.

v If MONTH(DATE2) <= MONTH(DATE1) then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2)

v If MONTH(DATE2) > MONTH(DATE1) then MONTH(RESULT) = 12 + MONTH(DATE1) -
MONTH(DATE2) and YEAR(DATE2) is incremented by 1.

v YEAR(RESULT) = YEAR(DATE1) - YEAR(DATE2)

For example, the result of DATE('3/15/2005') - '12/31/2004' is 215 (or, a duration
of 0 years, 2 months, and 15 days). In this example, notice that the second operand
did not need to be converted to a date. According to one of the rules for
subtraction, described under “Datetime arithmetic in SQL” on page 257, the second
operand can be a string representation of a date if the first operand is a date.

Incrementing and decrementing dates: The result of adding a duration to a date, or
of subtracting a duration from a date, is itself a date. (For the purposes of this
operation, a month denotes the equivalent of a calendar page. Adding months to a
date, then, is like turning the pages of a calendar, starting with the page on which
the date appears.) The result must fall between the dates January 1, 0001 and
December 31, 9999 inclusive. If a duration of years is added or subtracted, only the
year portion of the date is affected. The month is unchanged, as is the day unless
the result would be February 29 of a non-leap-year. Here the day portion of the
result is set to 28, and the SQLWARN6 field of the SQLCA is set to W, indicating
that an end-of-month adjustment was made to correct an invalid date. DB2
Application Programming and SQL Guide also describes how SQLWARN6 is set.

Similarly, if a duration of months is added or subtracted, only months and, if
necessary, years are affected. The day portion of the date is unchanged unless the
result would be invalid (September 31, for example). In this case the day is set to
the last day of the month, and the SQLWARN6 field of the SQLCA is set to W to
indicate the adjustment.

258 SQL Reference

Adding or subtracting a duration of days will, of course, affect the day portion of
the date, and potentially the month and year. Adding or subtracting a duration of
days will not cause an end-of-the-month adjustment.

Date durations, whether positive or negative, can also be added to and subtracted
from dates. As with labeled durations, the result is a valid date, and SQLWARN6 is
set to W to indicate any necessary end-of-month adjustment.

When a positive date duration is added to a date, or a negative date duration is
subtracted from a date, the date is incremented by the specified number of years,
months, and days, in that order. Thus, DATE1+X, where X is a positive
DECIMAL(8,0) number, is equivalent to the expression:

DATE1 + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS

When a positive date duration is subtracted from a date, or a negative date
duration is added to a date, the date is decremented by the specified number of
days, months, and years, in that order. Thus, DATE1-X, where X is a positive
DECIMAL(8,0) number, is equivalent to the expression:

DATE1 - DAY(X) DAYS - MONTH(X) MONTHS - YEAR(X) YEARS

Adding a month to a date gives the same day one month later unless that day
does not exist in the later month. In that case, the day in the result is set to the last
day of the later month. For example, January 28 plus one month gives February 28;
one month added to January 29, 30, or 31 results in either February 28 or, for a
leap year, February 29. If one or more months is added to a given date and then
the same number of months is subtracted from the result, the final date is not
necessarily the same as the original date.

If one or more months are added to a given date and then the same number of
months is subtracted from the result, the final date is not necessarily the same as
the original date. In addition, logically equivalent expressions might not produce
the same result. For example, the following two expressions do not produce the
same result:

(DATE(’2005 01 31’) + 1 MONTH) + 1 MONTH -- results in 2005-03-28
DATE(’2005 01 31’) + 2 MONTHS -- results in 2005-03-31

The order in which labeled date durations are added to and subtracted from dates
can affect the results. When you add labeled date durations to a date, specify them
in the order of YEARS + MONTHS + DAYS. When you subtract labeled date
durations from a date, specify them in the order of DAYS - MONTHS - YEARS.
For example, to add one year and one day to a date, specify:

DATE1 + 1 YEAR + 1 DAY

To subtract one year, one month, and one day from a date, specify:
DATE1 - 1 DAY - 1 MONTH - 1 YEAR

Time arithmetic
Times can be subtracted, incremented, or decremented.

Subtracting times: The result of subtracting one time (TIME2) from another
(TIME1) is a time duration that specifies the number of hours, minutes, and
seconds between the two times. The data type of the result is DECIMAL(6,0). If
TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1. If
TIME1 is less than TIME2, however, TIME1 is subtracted from TIME2, and the sign

Chapter 2. Language elements 259

of the result is made negative. The following procedural description clarifies the
steps involved in the operation RESULT = TIME1 - TIME2.

Time subtraction: result = time1 - time2

v If SECOND(TIME2) <= SECOND(TIME1) then SECOND(RESULT) = SECOND(TIME1) -
SECOND(TIME2).

v If SECOND(TIME2) > SECOND(TIME1) then SECOND(RESULT) = 60 + SECOND(TIME1) -
SECOND(TIME2) and MINUTE(TIME2) is incremented by 1.

v If MINUTE(TIME2) <= MINUTE(TIME1) then MINUTE(RESULT) = MINUTE(TIME1) -
MINUTE(TIME2).

v If MINUTE(TIME2) > MINUTE(TIME1) then MINUTE(RESULT) = 60 + MINUTE(TIME1) -
MINUTE(TIME2) and HOUR(TIME2) is incremented by 1.

v HOUR(RESULT) = HOUR(TIME1) - HOUR(TIME2).

For example, the result of TIME(’11:02:26’) - ’00:32:56’ is '102930' (a duration of
10 hours, 29 minutes, and 30 seconds). In this example, notice that the second
operand did not need to be converted to a time. According to one of the rules for
subtraction, described under “Datetime arithmetic in SQL” on page 257, the second
operand can be a string representation of a time if the first operand is a time.

Incrementing and decrementing times: The result of adding a duration to a time, or
of subtracting a duration from a time, is itself a time. Any overflow or underflow
of hours is discarded, thereby ensuring that the result is always a time. If a
duration of hours is added or subtracted, only the hours portion of the time is
affected. Adding 24 hours to the time '00:00:00' results in the time '24:00:00'.
However, adding 24 hours to any other time results in the same time; for example,
adding 24 hours to the time '00:00:59' results in the time '00:00:59'. The minutes and
seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if
necessary, hours are affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds affects the seconds portion of the time
and might affect the minutes and hours.

Time durations, whether positive or negative, can also be added to and subtracted
from times. The result is a time that has been incremented or decremented by the
specified number of hours, minutes, and seconds, in that order. Thus, TIME1 + X,
where X is a positive DECIMAL(6,0) number, is equivalent to the expression

TIME1 + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

Timestamp arithmetic
Timestamps can be subtracted, incremented, or decremented.

If any of the operands are TIMESTAMP WITH TIME ZONE, any TIMESTAMP
WITHOUT TIME ZONE values are implicitly cast to TIMESTAMP WITH TIME
ZONE, and the datetime arithmetic operation is performed in UTC time (ignoring
the time zone).

Subtracting timestamps: The result of subtracting one timestamp (TS2) from
another (TS1) is a timestamp duration that specifies the number of years, months,
days, hours, minutes, seconds, and fractional seconds between the two timestamps.

The data type of the result is DECIMAL(14+s,s), where s is the maximum
timestamp precision of TS1 and TS2. If TS1 is greater than or equal to TS2, TS2 is

260 SQL Reference

subtracted from TS1. If TS1 is less than TS2. However, TS1 is subtracted from TS2
and the sign of the result is made negative. A subtraction that involves a
timestamp with a time zone operand is based on the UTC value of the timestamp
with the time zone. The time zone is ignored.

The following procedural description clarifies the steps involved in the operation
RESULT = TS1 - TS2.

Timestamp subtraction: result = ts1 - ts2

v If MICROSECOND(TS2) <= MICROSECOND(TS1) then MICROSECOND(RESULT) =
MICROSECOND(TS1) - MICROSECOND(TS2).

v If MICROSECOND(TS2) > MICROSECOND(TS1) then MICROSECOND(RESULT) = 1000000 +
MICROSECOND(TS1)- MICROSECOND(TS2) and SECOND(TS2) is incremented by 1.

v If SECOND(TS2,s) <= SECOND(TS1,s) then SECOND(RESULT,s) = SECOND(TS1,s) -
SECOND(TS2,s).

v If SECOND(TS2,s) > SECOND(TS1,s) then SECOND(RESULT,s) = 60 + SECOND(TS1,s) –
SECOND(TS2,s).

MINUTE(TS2) is incremented by 1.

v If HOUR(TS2) <= HOUR(TS1) then HOUR(RESULT) = HOUR(TS1) - HOUR(TS2).

v If HOUR(TS2) > HOUR(TS1) then HOUR(RESULT) = 24 + HOUR(TS1) - HOUR(TS2) and
DAY(TS2) is incremented by 1.

The minutes part of the timestamps are subtracted as specified in the rules for subtracting
times.

The date part of the timestamps is subtracted as specified in the rules for subtracting dates.

Incrementing and decrementing timestamps: The result of adding a duration to a
timestamp, or of subtracting a duration from a timestamp, is itself a timestamp.
The precision of the result timestamp matches the precision of the timestamp
operand. The date and time arithmetic is performed as previously defined, except
that an overflow or underflow of hours is carried into the date part of the result,
which must be within the range of valid dates. The time arithmetic portion is
similar to time arithmetic, except that it also considers the fractional seconds
included in the duration. For example, subtracting a duration, X, from a
timestamp, TIMESTAMP1, where X is a DECIMAL(14+s,s) number, is equivalent to
the expression:
TIMESTAMP1 - YEAR(X) YEARS - MONTH(X) MONTHS - DAY(X) DAYS

- HOUR(X) HOURS - MINUTE(X) MINUTES - SECOND(X, s) SECONDS

When subtracting a duration with a non-zero scale or a labeled duration of
SECOND or SECONDS with a value that includes fractions of a second, the
subtraction is performed as if the timestamp value has up to 12 fractional second
digits. The resulting value is assigned to a timestamp value with the timestamp
precision of the timestamp operand, which could result in truncation of fractional
second digits.

When the result of an operation is midnight, the time portion of the result can be
'24.00.00' or '00.00.00'. A comparison of those two values does not result in 'equal'.
Microseconds overflow into seconds.

Precedence of operations
Expressions within parentheses are evaluated first. When the order of evaluation is
not specified by parentheses, prefix operators are applied before multiplication and

Chapter 2. Language elements 261

division, and multiplication, division, and concatenation are applied before
addition and subtraction. Operators at the same precedence level are applied from
left to right.

Example 1: In this example, the first operation is the addition in (SALARY + BONUS)
because it is within parenthesis. The second operation is multiplication because it
is a higher precedence level than the second addition operator and it is to the left
of the division operator. The third operation is division because it is at a higher
precedence level than the second addition operator. Finally, the remaining addition
is performed.

1.10 * (SALARY + BONUS) + SALARY / :VAR3
(2) (1) (4) (3)

Example 2: In this example, the first operation (CONCAT) combines the character
strings in the variables YYYYMM and DD into a string representing a date. The
second operation (-) then subtracts that date from the date being processed in
DATECOL. The result is a date duration that indicates the time elapsed between
the two dates.

DATECOL - :YYYYMM CONCAT :DD
(2) (1)

262 SQL Reference

CASE expressions
A CASE expression allows an expression to be selected based on the evaluation of
one or more conditions.

�� CASE searched-when-clause
simple-when-clause

ELSE NULL

ELSE result-expression
END ��

searched-when-clause:

�� � WHEN search-condition THEN result-expression
NULL

��

simple-when-clause:

�� expression � WHEN expression THEN result-expression
NULL

��

In general, the value of the case-expression is the value of the result-expression
following the first (leftmost) when-clause that evaluates to true. If no case evaluates
to true and the ELSE keyword is present, the result is the value of the
result-expression or NULL. If no case evaluates to true and the ELSE keyword is not
present, the result is NULL. When a case evaluates to unknown (because of NULL
values), the case is NOT true and hence is treated the same way as a case that
evaluates to false.

searched-when-clause
Specifies a search-condition that is applied to each row or group of table data
presented for evaluation, and the result when that condition is true.

Pair-wise comparison is performed. Implicit cast of each pair follows the same
rule as for a basic predicate. The searched-when-clause performs implicit cast on
string and numeric search conditions.

simple-when-clause
Specifies that the value of the expression prior to the first WHEN keyword is
tested for equality with the value of each expression that follows the WHEN
keyword. It also specifies the result for when that condition is true.

The data type of the expression prior to the first WHEN keyword must be
compatible with the data types of the expression that follows each WHEN

Chapter 2. Language elements 263

keyword. The data type of any of the expressions cannot be a CLOB, DBCLOB
or BLOB. In addition, the expression prior to the first WHEN keyword cannot
include a function that is not deterministic or has an external action.

result-expression or NULL
Specifies the value that follows the THEN and ELSE keywords. It specifies the
result of a searched-when-clause or a simple-when-clause that is true, or the result
if no case is true. There must be at least one result-expression in the CASE
expression with a defined data type. NULL cannot be specified for every case.

All result-expressions must have compatible data types. The attributes of the
result are determined according to the rules that are described in “Rules for
result data types” on page 144. When the result is a string, its attributes
include a CCSID. For the rules on how the CCSID is determined, see
“Determining the encoding scheme and CCSID of a string” on page 47.

search-condition
Specifies a condition that is true, false, or unknown about a row or group of
table data. The search-condition can be a predicate, including predicates that
contain fullselects (scalar or non-scalar) or row-value expressions.

If search-condition in a searched-when-clause specifies a quantified predicate or an
IN predicate that includes a fullselect, the CASE expression cannot be used in
the following contexts:
v select lists
v a VALUES clause of an INSERT or MERGE statement
v a SET or assignment clause of an UPDATE, MERGE, or DELETE statement
v the right side of a SET or assignment statement
v the definition of a column mask or a row permission

If search-condition in a searched-when-clause specifies an EXISTS predicate, the
CASE expression cannot be used in the following contexts:
v a VALUES clause of an INSERT or MERGE statement
v the right side of a SET or assignment statement

END
Ends a case-expression.

If a CASE expression is in a select list that derives the final result table, and if the
simple-when-clause or the searched-when-clause references a basic predicate with a
fullselect, column masks cannot be applied to the columns in the THEN clauses
which derive the result of the CASE expression.

If a CASE expression is in a select list that derives the final result table, and if the
simple-when-clause or searched-when-clause references a column for which column
access control is activated, the column mask cannot be applied to the column and
an error is returned.

If a CASE expression is in a SET clause of an UPDATE, MERGE, or DELETE
statement, a VALUES clause of an INSERT or MERGE statement, or the fullselect
of an INSERT from a fullselect, and if the simple-when-clause or the
searched-when-clause references a column for which column access control is
activated, the column access control is ignored for the column.

Two scalar functions, NULLIF and COALESCE, are specialized to handle a subset
of the functionality provided by CASE. The following table shows the equivalent
expressions using CASE or these functions.

264 SQL Reference

Table 44. Equivalent case expressions

CASE expression Equivalent expression

CASE WHEN e1=e2
THEN NULL ELSE e1 END

NULLIF(e1,e2)

CASE WHEN e1 IS NOT NULL
THEN e1 ELSE e2 END

COALESCE(e1,e2)

CASE WHEN e1 IS NOT NULL
THEN e1 ELSE COALESCE(e2,...,eN) END

COALESCE(e1,e2,...,eN)

Example 1 (simple-when-clause): Assume that in the EMPLOYEE table the first
character of a department number represents the division in the organization. Use
a CASE expression to list the full name of the division to which each employee
belongs.

SELECT EMPNO, LASTNAME,
CASE SUBSTR(WORKDEPT,1,1)
WHEN ’A’ THEN ’Administration’
WHEN ’B’ THEN ’Human Resources’
WHEN ’C’ THEN ’Design’
WHEN ’D’ THEN ’Operations’
END

FROM EMPLOYEE;

Example 2 (searched-when-clause): You can also use a CASE expression to avoid
“division by zero” errors. From the EMPLOYEE table, find all employees who earn
more than 25 percent of their income from commission, but who are not fully paid
on commission:

SELECT EMPNO, WORKDEPT, SALARY+COMM FROM EMPLOYEE
WHERE (CASE WHEN SALARY=0 THEN 0

ELSE COMM/(SALARY+COMM)
END) > 0.25;

Example 3 (searched-when-clause): You can use a CASE expression to avoid “division
by zero” errors in another way. The following queries show an accumulation or
summing operation. In the first query, DB2 performs the division before
performing the CASE statement and an error occurs along with the results.

SELECT REF_ID,PAYMT_PAST_DUE_CT,
CASE
WHEN PAYMT_PAST_DUE_CT=0 THEN 0
WHEN PAYMT_PAST_DUE_CT>0 THEN

SUM(BAL_AMT/PAYMT_PAST_DUE_CT)
END

FROM PAY_TABLE
GROUP BY REF_ID,PAYMT_PAST_DUE_CT;

However, if the CASE expression is included in the SUM aggregate function, the
CASE expression would prevent the errors. In the following query, the CASE
expression screens out the unwanted division because the CASE operation is
performed before the division.

SELECT REF_ID,PAYMT_PAST_DUE_CT,
SUM(CASE
WHEN PAYMT_PAST_DUE_CT=0 THEN 0
WHEN PAYMT_PAST_DUE_CT>0 THEN

Chapter 2. Language elements 265

BAL_AMT/PAYMT_PAST_DUE_CT
END)

FROM PAY_TABLE
GROUP BY REF_ID,PAYMT_PAST_DUE_CT;

Example 4: This example shows how to group the results of a query by a CASE
expression without having to re-type the expression. Using the sample employee
table, find the maximum, minimum, and average salary. Instead of finding these
values for each department, assume that you want to combine some departments
into the same group.

SELECT CASE_DEPT,MAX(SALARY),MIN(SALARY),AVG(SALARY)
FROM (SELECT SALARY,CASE WHEN WORKDEPT = ’A00’ OR WORKDEPT = ’E21’

THEN ’A00_E21’
WHEN WORKDEPT = ’D11’ OR WORKDEPT = ’E11’

THEN ’D11_E11’
ELSE WORKDEPT

END AS CASE_DEPT
FROM DSN8B10.EMP) X
GROUP BY CASE_DEPT;

266 SQL Reference

CAST specification
The CAST specification returns the first operand (the cast operand) converted to
the data type that is specified by data-type.

�� CAST (expression AS data-type)
NULL
parameter-marker

��

data-type:

�� built-in-type
distinct-type-name
array-type

��

Chapter 2. Language elements 267

|

built-in-type:

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(34)
DECFLOAT

(16)
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1 OCTETS)

CHARACTER
CHAR (length) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (length) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR CCSID integer
(1M OCTETS)

CHARACTER LARGE OBJECT
CHAR (lob-length) CCSID ASCII FOR SBCS DATA

CLOB EBCDIC MIXED
UNICODE

CCSID integer
(1 CODEUNITS16)

GRAPHIC
(length) CCSID ASCII

VARGRAPHIC (length) EBCDIC
(1M CODEUNITS16) UNICODE

DBCLOB integer
(lob-length)
(1)

BINARY
(integer)

BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID
XML

��

length:

�� integer
CODEUNITS16
CODEUNITS32
OCTETS

��

268 SQL Reference

lob-length:

�� integer
K CODEUNITS16
M CODEUNITS32
G OCTETS

��

If the data type of either operand is a distinct type, the privilege set must
implicitly include EXECUTE authority on the generated cast functions for the
distinct type. The CAST specification allows the second operand to be cast to a
particular encoding scheme or CCSID if the second operand represents character
data. The CCSID clause can be specified following CHAR, VARCHAR, CLOB,
GRAPHIC, VARGRAPHIC, and DBCLOB data types.

expression
Specifies that the cast operand is an expression other than NULL or a
parameter marker. The result is the value of the operand value converted to
the specified target data type.

The supported casts are shown in “Casting between data types” on page 111. If
the cast is not supported, an error is returned.

When a character string is cast to a character string with a different length or a
graphic string is cast to a graphic string with a different length, a warning
occurs if any characters except trailing blanks are truncated. The warning also
occurs if any characters are truncated when a BLOB operand is cast, or if the
time zone characters are truncated when a TIMESTAMP WITH TIME ZONE
operand is cast to a string

NULL
Specifies that the cast operand is null. The result is a null value with the
specified target data type.

parameter-marker
A parameter marker, which is normally considered an expression, has a special
meaning as a cast operand. When the cast operand is a parameter-marker, the
data type that is specified represents the “promise” that the replacement value
for the parameter marker will be assignable to the specified data type (using
“store assignment” rules). Such a parameter marker is considered a typed
parameter marker. Typed parameter markers are treated like any other typed
value for the purpose of function resolution, a DESCRIBE of a select list, or
column assignment.

data-type
Specifies the data type of the result. If the data type is not qualified, the SQL
path is used to find the appropriate data type. For more information, see “SQL
path” on page 64. For a description of data-type, see “CREATE TABLE” on page
1388. (For portability across operating systems, when specifying a
floating-point data type, use REAL or DOUBLE instead of FLOAT.)
v If the cast operand is expression, see “Casting between data types” on page

111 and use any of the target data types that are supported for the data type
of the cast operand.

v If the cast operand is NULL, you can use any data type.
v If the cast operand is a parameter-marker:

Chapter 2. Language elements 269

– If the target data type is a distinct type, the application that uses the
parameter marker uses the source data type of the distinct type.

– If the target data type is an array type:
- The elements in the source array value must be castable to the data

type of the elements of the target array type. The index values for the
source array value must be castable to the data type of the index of the
target array type.

- If the target array type is an ordinary array, the cardinality of the
source array value must be less than or equal to the maximum
cardinality of the target array type.

– Otherwise, any data type if valid.

array-type can only be specified as a target data type for a CAST specification
that is within SQL PL.

length
Specifies the length of the result.

You can specify that the length of the result be evaluated in a specific number
of string units: CODEUNITS16, CODEUNITS32, or OCTETS. If expression is a
character string that is defined as bit data, CODEUNITS16, or CODEUNITS32
cannot be specified. If expression is a graphic string, OCTETS cannot be
specified.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see
“String unit specifications” on page 87.

lob-length
Specifies the length of the result.

You can specify that the length of the result be evaluated in a specific number
of string units: CODEUNITS16, CODEUNITS32, or OCTETS. If expression is a
graphic string, OCTETS cannot be specified.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see
“String unit specifications” on page 87.

CCSID encoding-scheme
Specifies the encoding scheme for the target data type. The specific CCSIDs for
SBCS, BIT, and MIXED data are determined by the default CCSIDs for the
server for the specified encoding scheme. The valid values are ASCII, EBCDIC,
and UNICODE.

CCSID integer
Specifies that the target data type be encoded using the CCSID integer. The
value must be one of the CCSID values in DECP. If the second operand is
CHAR, VARCHAR, or CLOB, the CCSID specified must be either a SBCS, or
MIXED CCSID, or 65535 for bit data. If the second operand is GRAPHIC,
VARGRAPHIC, or DBCLOB, the CCSID specified must be a DBCS CCSID. See
Determining the CCSID of the result if neither CCSID integer nor CCSID
encoding-scheme is specified. See Determining the CCSID of the result for
special considerations regarding CCSID 367.

Interaction between length and CCSID clauses: If both the length and CCSID
clauses are specified, the data is first cast to the specified CCSID, and then the
length is applied. If either CODEUNITS16 or CODEUNITS32 is specified, the
specification of length applies to the units specified. That is, the data is converted
to an intermediate form (in Unicode), the length is applied, and the data is
converted to the specified CCSID.

270 SQL Reference

|

|
|
|
|

|
|
|

|
|

Resolution of cast functions: DB2 uses the implicit or explicit schema name and
the data type name of data-type, and function resolution to determine the specific
function to use to convert expression to data-type. See Qualified function resolution
for more information.

Result of the CAST: When numeric data is cast to character data, the data type of
the result is a fixed-length character string, which is similar to the result that the
CHAR function would give. (For more information, see “CHAR” on page 398.)
When character data is cast to numeric data, the data type of the result depends on
the data type of the specified number. For example, character data that is cast to an
integer becomes a large integer, which is similar to the result that the INTEGER
function would give. (For more information see “INTEGER or INT” on page 496.)

If the data type of the result is character, the subtype of the result is determined as
follows:
v If expression is graphic, the subtype of the result is mixed.
v If expression is a datetime data type, the subtype of the result is mixed. The

exception is when the default encoding scheme is EBCDIC and there is no mixed
or graphic data on the system for EBCDIC.

v If expression is a row ID and data-type is not CLOB, the result is bit data.
v If expression is character, the subtype of the result is the same as expression.
v Otherwise, the subtype depends on the encoding scheme of the result. If the

encoding scheme of the result is not Unicode and the field MIXED DATA on
installation panel DSNTIPF is NO, the subtype of the result is SBCS. Otherwise,
the subtype of the result is mixed.

Casting constant values to DECFLOAT: To cast a constant value, where the value
is negative zero, or a floating point constant to DECFLOAT, specify the value as a
character string constant rather than a numeric constant. For example:
DECFLOAT(’-0’) -- causes DB2 to retain the negative sign for a

-- value of negative zero
DECFLOAT(’1.00E20’) -- causes DB2 to preserve the precision of the

-- floating point constant

Determining the CCSID and encoding scheme of the result: The CCSID of the result
depends on whether the CCSID clause was specified and the context in which the
CAST specification was specified.

If the CCSID clause was specified, the CCSID clause is used to determine the
CCSID of the result as follows:
v If the CCSID clause was specified with EBCDIC, ASCII, or UNICODE, the clause

determines the encoding scheme of the result. The CCSID of the result is the
appropriate CCSID (from DECP) for that encoding scheme for the data type of
the result.

v If the CCSID clause was specified with a numeric value representing bit data
(65535), the CCSID of the result depends on the data type of the source. If the
source data is not string data, the CCSID of the result is the appropriate CCSID
for the application encoding scheme. See Note 1 in Table 4 on page 48. If the
source is string data, the encoding scheme of the result is the same as the
encoding scheme of expression, but the result is considered bit data.

v If the CCSID clause was specified with a numeric value, that number is the
CCSID of the result. The encoding scheme of the result is determined from the
numeric CCSID. In a CAST specification, CCSID 367 refers to ASCII data. For

Chapter 2. Language elements 271

example, assume that MYDATA is string data to be cast to CHAR(10). The
following CAST specification returns ASCII SBCS data:
CAST(MYDATA AS CHAR(10) CCSID 367)

To explicitly cast the data to Unicode SBCS, use the following syntax:
CAST(MYDATA AS CHAR(10) CCSID UNICODE

FOR SBCS DATA)

If the CCSID clause was not specified, the CCSID of the result is 65535 if the result
is bit data. Otherwise, if the data type of the result is a character or graphic string
data type, the encoding scheme and CCSID of the result are is determined as
follows:
v If the expression and data-type are both character, the encoding scheme of the

result is the same as expression. For example, assume CHAR_COL is a character
column in the following sample:
CAST(CHAR_COL AS VARCHAR(25))

The result of the CAST is a varying length string with the same encoding
scheme as the input. The CCSID of the result is the appropriate CCSID for the
encoding scheme and subtype of the result.

v If the expression and data-type are both graphic, the encoding scheme and CCSID
of the result is the same as expression.

v If the result is string and the expression is datetime, the result CCSID is the
appropriate CCSID of the expression encoding scheme and the result subtype is
the appropriate subtype of the CCSID.

v If the result is character, the encoding scheme and CCSID of the result depends
on the context in which the CAST specification is specified:
– If the statement follows the rules that are described for type 1 statements in

“Determining the encoding scheme and CCSID of a string” on page 47, the
CCSID is determined as follows:
- If the statement references a table or view, the encoding scheme of that

table or view determines the encoding scheme for the result.
- Otherwise, the default EBCDIC encoding scheme is used for the result.

The CCSID of the result is the appropriate CCSID for the encoding scheme
and subtype of the result.

– Otherwise, the CCSID of the result is the appropriate CCSID for the
application encoding scheme and subtype of the result.

v If the result is graphic, the encoding scheme and the CCSID of the result
depends on the context in which the CAST specification is specified:
– If the statement follows the rules that are described for type 1 statements in

“Determining the encoding scheme and CCSID of a string” on page 47, the
CCSID is determined as follows:
- If the statement references a table or view, the encoding scheme of that

table or view determines the encoding scheme for the result.
- Otherwise, the default EBCDIC encoding scheme is used for the result.

The CCSID of the result is the appropriate CCSID for the encoding scheme
and data type of the result.

– Otherwise, the CCSID of the result is the appropriate CCSID for the
application encoding scheme of the result.

v Otherwise, the CCSID of the result depends on the context in which the CAST
specification was specified.

272 SQL Reference

– If the statement follows the rules that are described for type 1 in statements
in “Determining the encoding scheme and CCSID of a string” on page 47, the
CCSID is determined as follows:
- If the statement references a table or view, the encoding scheme of that

table or view determines the encoding scheme for the result.
- Otherwise, the default EBCDIC encoding scheme is used for the result.

The CCSID of the result is the appropriate CCSID for the encoding scheme
and data type of the result.

Alternative syntax for casting distinct types: There is alternative syntax for casting
a distinct type to its source data type and vice versa. Assume that a distinct type
D_MONEY was defined with the following statement and column MONEY was
defined with that data type.
CREATE TYPE D_MONEY AS DECIMAL(9,2);

DECIMAL(MONEY) is equivalent syntax to CAST(MONEY AS DECIMAL(9,2)).
Both forms of the syntax use the cast function that DB2 generated when the
distinct type D_MONEY was created to convert the distinct type to its source type
of DECIMAL(9,2).

However, it is possible that different cast functions might be chosen for the
equivalent syntax forms because of the difference in function resolution,
particularly the treatment on unqualified names. Although the process of function
resolution is similar for both, in the CAST specification as described above, DB2
uses the schema name of the target data type to locate the function. Therefore, if
an unqualified data type name is specified as the target data type, DB2 uses the
SQL path to resolve the schema name of the distinct type and then searches for the
function in that schema. In function notation, when an unqualified function name
is specified, DB2 searches the schemas in the SQL path to find an appropriate
function match, as described under “Function resolution” on page 234. For
example, assume that you defined the following distinct types, which implicitly
gives you both USAGE authority on the distinct types and EXECUTE authority on
the cast functions that are generated for them:
CREATE TYPE SCHEMA1.AGE AS DECIMAL(2,0);

one of the generated cast functions is:
FUNCTION SCHEMA1.AGE(SYSIBM.DECIMAL(2,0)) RETURNS SCHEMA1.AGE

CREATE TYPE SCHEMA2.AGE AS INTEGER;
one of the generated cast functions is:
FUNCTION SCHEMA2.AGE(SYSIBM.INTEGER) RETURNS SCHEMA2.AGE

If STU_AGE, an INTEGER host variable, is cast to the distinct type with either of
the following statements and the SQL path is SYSIBM, SCHEMA1, SCHEMA2:
Syntax 1: CAST(:STU_AGE AS AGE);
Syntax 2: AGE(:STU_AGE);

different cast functions are chosen. For syntax 1, DB2 first resolves the schema
name of distinct type AGE as SCHEMA1 (the first schema in the path that contains
a distinct type named AGE for which you have EXECUTE authority for the
appropriate generated cast function). Then it looks for a suitable function in that
schema and chooses SCHEMA1.AGE because the data type of STU_AGE, which is
INTEGER, is promotable to the data type of the function argument, which is
DECIMAL(2,0). For syntax 2, DB2 searches all the schemas in the path for an
appropriate function and chooses SCHEMA2.AGE. DB2 selects SCHEMA2.AGE
over SCHEMA1.AGE because the data type of its argument (INTEGER) is an exact

Chapter 2. Language elements 273

match for STU_AGE (INTEGER) and, therefore, a better match than the argument
for SCHEMA1.AGE, which is DECIMAL(2,0).

Syntax alternatives: TIMEZONE can be specified as an alternative to TIME ZONE.

Example 1: Assume that an application needs only the integer portion of the
SALARY column, which is defined as DECIMAL(9,2) from the EMPLOYEE table.
The following query for the employee number and the integer value of SALARY
could be prepared.

SELECT EMPNO, CAST(SALARY AS INTEGER) FROM EMPLOYEE;

Example 2: Assume that two distinct types exist in schema SCHEMAX. Distinct
type D_AGE was based on SMALLINT and is the data type for the AGE column in
the PERSONNEL table. Distinct type D_YEAR was based on INTEGER and is the
data type for the RETIRE_YEAR column in the same table. The following UPDATE
statement could be prepared.

UPDATE PERSONNEL SET RETIRE_YEAR =?
WHERE AGE = CAST(? AS SCHEMAX.D_AGE);

The first parameter is an untyped parameter marker that has a data type of
RETIRE_YEAR. However, the application will use an integer for the parameter
marker. The parameter marker does not need to be cast because the SET is an
assignment.

The second parameter marker is a typed parameter marker that is cast to the
distinct type D_AGE. Casting the parameter marker satisfies the requirement that
comparisons must be performed with compatible data types. The application will
use the source data type, SMALLINT, to process the parameter marker.

Example 3: A CAST specification can be used to explicitly specify the data type of a
parameter in a context where a parameter marker must be typed. In the following
example, the CAST specification is used to tell DB2 to assume that the value that
will be provided as input to the TIME function will be CHAR(20). See “PREPARE”
on page 1781 for a list of contexts when invoking functions where parameter
markers can be untyped. For all other contexts when invoking a function, the
CAST specification can be used to explicitly specify the type of a parameter
marker.

INSERT INTO ADMF001.CASTSQLJ VALUES(TIME(CAST(? AS CHAR(20))))

Example 4: Assume that an application wants to cast an EBCDIC string to Unicode
UTF-8. The string contains the value 'Jürgen', which is 6 bytes in ASCII or EBCDIC
and is 7 bytes in Unicode UTF-8. In the following query, the CAST specification is
invoked with the length clause with CODEUNITS32 specified to ensure that the
data is not truncated. (In this case, CODEUNITS16 could also be specified as the
string unit.)

SELECT CAST(’Jürgen’ AS VARCHAR(6 CODEUNITS32) CCSID UNICODE)
FROM SYSIBM.SYSDUMMY1;

For this query, the data is converted from EBCDIC to Unicode UTF-16, the length
clause is applied, and then the UTF-16 result is converted to UTF-8.

Example 5: When a keyword is used for a special value that is expressed as a
constant in a context where the keyword could be interpreted as a name, the CAST
specification can be used to explicitly cast the special value to decimal-floating
point. Assume that MYTAB contains columns named C1 and INFINITY, and that
you want to reference the decimal float-point value for infinity in the same SQL

274 SQL Reference

statement. Use the CAST specification to explicitly cast INFINITY as a decimal
floating-point value to ensure that it is not interpreted as the name of a column,
parameter or variable:

SELECT INFINITY -- column named INFINITY
FROM MYTAB

WHERE C1 = CAST (’INFINITY’ AS DECFLOAT) -- comparison is made with the
-- decimal floating-point
-- infinity value

Chapter 2. Language elements 275

XMLCAST specification
The XMLCAST specification returns the first operand (the cast operand) converted
to the type specified by data-type.

�� XMLCAST (expression AS data-type)
NULL
parameter-marker

��

XMLCAST supports casts involving XML values, including conversions between
non-XML data types and the XML data type. Either the type of the cast operand or
the specified data type must be XML. If both the type of the cast operand and the
target data type are XML, XMLCAST acts as a no-op.

expression
If the cast operand is an expression, the result is the argument value converted
to the specified target data type. The expression or the target data type must
be the XML data type. expression cannot be a host variable or parameter
marker.

NULL
If the cast operand is the NULL keyword, the target data type must be the
XML data type. The result is a null XML value.

parameter-marker
If the cast operand is a parameter marker, the target data type must be the
XML data type. A parameter marker (specified as a question mark character) is
normally considered to be an expression, but in this case because it has special
meaning. When the cast operand is a parameter-marker, the data type that is
specified represents the "promise" that the replacement value for the parameter
marker will be assignable to the specified data type (using assignment rules).
Such a parameter marker is considered to be a typed parameter marker, which
is treated like any other typed value for the purpose of function resolution, a
describe operation on a select list, or column assignment.

data-type
The name of an SQL data type. If the name is not qualified, the SQL path is
used to perform data type resolution. data-type must not specify a distinct type.
If a data type has associated attributes, such as length or precision and scale,
these attributes should be included when specifying a value for data-type.
CHAR defaults to a length of 1, and DECIMAL defaults to a precision of 5 and
a scale of 0 if not specified. CLOB and DBCLOB default to a length of 1M.
When the target data type is XML and the source data type is TIMESTAMP,
trailing zeroes in the fractional seconds part of the value are not included in
the result. Restrictions on the supported data types are based on the specified
cast operand. The default encoding scheme for string data types is Unicode.
The encoding scheme can be changed by specifying the CCSID clause.

Table 45. Supported conversions from Non-XML values to XML values

Source data type Target data type: XML Resulting XML schema type

DATE Y xs:date

TIME Y xs:time

276 SQL Reference

Table 45. Supported conversions from Non-XML values to XML values (continued)

Source data type Target data type: XML Resulting XML schema type

TIMESTAMP(p) WITH TIME
ZONE

Y xs:dateTime

Examples

Example 1: Create a null XML value.
XMLCAST(NULL AS XML)

Example 2: Convert a value extracted from an XMLQUERY expression into an
INTEGER:

XMLCAST(XMLQUERY(’/PRODUCT/QUANTITY’
PASSING xmlcol) AS INTEGER)

Example 3: Convert a value extracted from an XMLQUERY expression into a
varying-length character string:

XMLCAST(XMLQUERY(’/PRODUCT/NAME’
PASSING xmlcol) AS VARCHAR(20))

Note that in the above two examples, if the XMLQUERY returns a sequence of
more than one node, the XMLCAST specification will return an error.

Example 4: Convert a value extracted from an SQL scalar subquery into an XML
value:

XMLCAST((SELECT quantity FROM product AS p
WHERE p.id = 1077) AS XML)

Chapter 2. Language elements 277

Array element specification
The array element specification returns the element from an array specified by
array-index.

�� array-expression [array-index] ��

array-expression
Specifies an SQL variable or SQL parameter of an array type, or a CAST
specification of a parameter marker to an array type.

[array-index]
An expression that specifies the array index of the element that is to be
extracted from the array. An array index value for an ordinary array must be
castable to INTEGER. The array index value must be between 1 and the
cardinality of the array. An array index value for an associative array must be
castable to the data type of the index for the array type. The array index value
must represent an element that exists in the array. If the index value is a string
that is longer than the index data type, the value is truncated, a warning is
issued, and processing continues with the truncated value.

array-index must not be:
v An expression that references the CURRENT DATE, CURRENT TIME, or

CURRENT TIMESTAMP special register
v A nondeterministic function
v A function that is defined with EXTERNAL ACTION
v A function that is defined with MODIFIES SQL DATA
v A sequence expression

The data type of the result is the data type that is specified for the array on the
CREATE TYPE (array) statement. If array-index is null, or the array is null, the null
value is returned.

If the array element is character or graphic data, the CCSID of the result is the
CCSID of the array elements of the array type. If the array element is datetime
data, the CCSID of the result is 1208.

Examples

Example 1: Suppose that PHONE_NUMBERS is an array variable that is defined as
an array type. The array type is defined as an ordinary array of CHAR(10)
elements. Also suppose that INT_VAR is an integer variable. The following
assignment statements demonstrate how an index for an array element can be
specified.

Set the first element of an array to NULL:
SET PHONE_NUMBERS[1] = NULL;

Set the third element to the value ‘4164789683’:
SET PHONE_NUMBERS[3] = ’4164789683’;

278 SQL Reference

|

|
|

|

|||||||||
|
||

|
|
|

|
|
|
|
|
|
|
|
|

|

|
|

|

|

|

|

|
|
|

|
|
|

|

|
|
|
|
|

|

|

|

|

Set an array element to '4164788888’, and specify the array index with the variable
INT_VAR:
SET PHONE_NUMBERS[INT_VAR] = ’4164788888’;

Set an array element to ‘4164783322’, and specify the array index with the
expression INT_VAR+5:
SET PHONE_NUMBERS[INT_VAR + 5] = '4164783322';

Chapter 2. Language elements 279

|
|

|

|
|

|

Array constructor
An array constructor returns an ordinary array. An array constructor is specified by
a list of expressions or a fullselect.

��

�

ARRAY []
fullselect

,

element-expression
NULL

��

Authorization

No specific authorizations are required to reference an array constructor within an
SQL statement. However, for the statement execution to be successful, all other
authorization requirements for the statement must be satisfied.

fullselect
A fullselect that returns a single column. The data type of the column must be
a data type that can be specified in a CREATE TYPE (array) statement as the
data type of an array element. The values that are returned by the fullselect are
the elements of the array. The cardinality of the array is equal to the number of
rows that are returned by the fullselect. An ORDER BY clause in the fullselect
can be used to specify the order among the elements of the array. Otherwise,
the order is undefined. The data type of the elements of the resulting array is
the same as the data type of the result column of the fullselect.

element-expression
An expression that defines the value of an element in the array. The expression
must return a value with a data type that can be specified in a CREATE TYPE
(array) statement as the data type of an array element. The cardinality of the
array is equal to the number of element expressions. The first element
expression is assigned to the array element with array index 1. The second
element expression is assigned to the array element with array index 2, and so
on. All element expressions must have compatible data types. The data type of
the elements of the resulting array are determined based on the rules that are
described in “Rules for result data types” on page 144.

NULL
Specifies the null value.

If no value is specified within the brackets, the result is an empty array.

An array constructor cannot be specified in a SELECT list, or in an inline SQL
function. An array constructor can only be specified in SQL PL, in an expression as
a source value for an assignment.

An array constructor cannot be used to construct an associative array. An
associative array can be constructed only by assigning values to individual array
elements.

280 SQL Reference

|

|
|

|

||||||||||||||||||||||||||||||

|
||

|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|

|
|
|

Examples

Example 1: Suppose that the array variable RECENT_CALLS has the array type
PHONENUMBERS. Assign an array of fixed numbers to RECENT_CALLS.
SET RECENT_CALLS = ARRAY[9055553907, 4165554213, 4085553678];

Example 2: Suppose that the array variable DEPT_PHONES has the array type
PHONENUMBERS. Assign array phone numbers that are retrieved from the
DEPARTMENT_INFO table to DEPT_PHONES.
SET DEPT_PHONES =
ARRAY[SELECT DECIMAL(AREA_CODE CONCAT ’555’ CONCAT EXTENSION,16)
FROM DEPARTMENT_INFO
WHERE DEPTID = 624];

Chapter 2. Language elements 281

|

|
|

|

|
|
|

|
|
|
|

OLAP specification
Online analytical processing (OLAP) specifications provide the ability to return
ranking, row numbering, and aggregation information as a scalar value in the
result of a query. An OLAP specification can be included in an expression, in a
select-list, or in the ORDER BY clause of a select-statement. The query result to
which the OLAP specifications is applied is the result table of the innermost
subselect that includes the OLAP specification.

OLAP-specification

�� ordered-OLAP-specification
numbering-specification
aggregation-specification

��

�� RANK () OVER (window-order-clause)
DENSE_RANK () window-partition-clause

��

�� ROW_NUMBER () OVER ()
window-partition-clause window-order-clause

��

�� aggregate-function OVER (
window-partition-clause

�

�
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
window-order-clause)

window-aggregation-group-clause

��

�� �

,

PARTITION BY partitioning-expression ��

ordered-OLAP-specification

numbering-specification

aggregation-specification

window-partition-clause

282 SQL Reference

�� �

,
NULLS LAST

ASC
ORDER BY sort-key-expression

ASC NULLS FIRST
NULLS FIRST

DESC
DESC NULLS LAST

��

��
(1)

AVG function
CORRELATION function
COUNT function
COUNT_BIG function
COVARIANCE function
MAX function
MIN function
STDDEV function
SUM function
VARIANCE function

��

Notes:

1 You cannot specify DISTINCT or ALL for an aggregate function that is included in an
aggregation-specification.

�� ROWS
RANGE

group-start
group-between
group-end

��

�� UNBOUNDED PRECEDING
unsigned-constant PRECEDING
CURRENT ROW

��

window-order-clause

aggregate-function

window-aggregation-group-clause

group-start

group-between

Chapter 2. Language elements 283

�� BETWEEN group-bound-1 AND group-bound-2 ��

�� UNBOUNDED PRECEDING
unsigned-constant PRECEDING
unsigned-constant FOLLOWING
CURRENT ROW

��

�� UNBOUNDED FOLLOWING
unsigned-constant PRECEDING
unsigned-constant FOLLOWING
CURRENT ROW

��

�� UNBOUNDED FOLLOWING
unsigned-constant FOLLOWING

��

RANK, DENSE_RANK, and ROW_NUMBER are sometimes called window
functions.

An OLAP specification is not valid in a WHERE, VALUES, GROUP BY, HAVING,
or SET clause. An OLAP specification cannot be used as an argument of an
aggregate function.

When invoking an OLAP specification, a window is specified that defines the rows
over which the function is applied and in which order.

The result of a RANK, DENSE_RANK, or ROW_NUMBER specification is BIGINT.
The result cannot be null.

RANK or DENSE_RANK
Specifies that the ordinal rank of a row within the specified window is
computed. Rows that are not distinct with respect to the ordering within the
specified window are assigned the same rank. The results of the ranking can
be defined with or without gaps in the numbers that result from duplicate
values.

RANK
Specifies that the rank of a row is defined as 1 plus the number of rows
that strictly precede the row. Thus, if two or more rows are not distinct
with respect to the ordering, there will be one or more gaps in the
sequential rank numbering.

group-bound-1

group-bound-2

group-end

284 SQL Reference

DENSE_RANK
Specifies that the rank of a row is defined as 1 plus the number of
preceding rows that are distinct with respect to the ordering. Therefore,
there will be no gaps in the sequential rank numbering.

ROW_NUMBER
Specifies that a sequential row number is computed for the row that is defined
by the ordering, starting with 1 for the first row. If the ORDER BY clause is
not specified in the window, the row numbers are assigned to the rows in an
arbitrary order, as the rows are returned (not according to any ORDER BY
clause in the select-statement).

PARTITION BY (partitioning-expression,...)
Defines the partition within which the OLAP operation is applied. A
partitioning-expression is an expression that is used in defining the partitioning
of the result table. Each column name that is referenced in a
partitioning-expression must unambiguously reference a column of the result
table of the subselect that contains the OLAP specification. A
partitioning-expression cannot include a scalar-fullselect an XMLQUERY or
XMLEXISTS expression or any function that is not deterministic or has an
external action.

ORDER BY (sort-key-expression,...)
Defines the ordering of rows within a partition that is used to determine the
value of the OLAP specification. It does not define the ordering of the result
table.

sort-key-expression
Specifies an expression to use in defining the ordering of the rows within a
window partition. Each column name that is referenced in a
sort-key-expression must unambiguously reference a column of the result
table of the subselect, including the OLAP specification. A
sort-key-expression cannot include a scalar fullselect, an XMLQUERY or
XMLEXISTS expression, or any function that is not deterministic or that
has an external action.

ASC
Specifies that the values of sort-key-expression are used in ascending order.

DESC
Specifies that the values of sort-key-expression are used in descending order.

NULLS FIRST
Specifies that the window ordering considers null values before all
non-null values in the sort order.

NULLS LAST
Specifies that the window ordering considers null values after all non-null
values in the sort order.

window-aggregation-group-clause
The aggregation group of a given row is a set of rows that is defined in
relation to the given row (in the ordering of the rows in the partition of the
given row). window-aggregation-group-clause specifies the aggregation group. If
this clause is not specified and a window-order-clause is also not specified, the
aggregation group consists of all rows of the window partition. The
aggregation group of all rows of the window partition can be explicitly
specified using the RANGE or ROWS clauses.

If window-order-clause is specified, but window-aggregation-group-clause is not
specified, the window aggregation group consists of all rows that precede a

Chapter 2. Language elements 285

given row of the partition of the given row or all rows that are peers of the
given row in the window ordering of the window partition that is defined by
the window-order-clause

ROW
Specifies that the aggregation group is defined by counting rows.

RANGE
Specifies that the aggregation group is defined by an offset from a sort key.

group-start
Specifies the starting point for the aggregation group. The aggregation
group end is the CURRENT ROW. Specifying group-start is equivalent to
specifying group-between as BETWEEN group-start AND CURRENT ROW.

group-between
Specifies that the aggregation group start and end based on either ROWS
or RANGE.

group-end
Specifies the ending point for the aggregation group. The aggregation
group start is the CURRENT ROW. Specifying group-end is equivalent to
specifying group-between as BETWEEN CURRENT ROW AND group-end.

UNBOUNDED PRECEDING
Specifies that the entire partition that precedes the current row is included
in the aggregation group. This can be specified with either the ROWS or
RANGE clauses. Including the entire partition that precedes the current
row can also be specified with multiple sort-key-expressions in the
window-order-clause.

UNBOUNDED FOLLOWING
Specifies that the entire partition that follows the current row is included
in the aggregation group. This can be specified with either the ROWS or
RANGE clauses. Including the entire partition that follows the current row
can also be specified with multiple sort-key-expressions in the
window-order-clause.

CURRENT ROW
Specifies that the aggregation group starts or ends based on the current
row. IF ROWS is specified, the current row is the aggregation group
boundary. If RANGE is specified, the aggregation group boundary includes
the set of rows with the values specified for the sort-key-expression as the
current row. This clause cannot be specified in group-bound-2 if
group-bound-1 specifies unsigned-constant FOLLOWING.

unsigned-constant PRECEDING
Specifies either the range or the number of rows that precede the current
row. If ROWS is specified, unsigned-constant must be zero or a positive
integer that indicates a number of rows. If RANGE is specified, the data
type of unsigned-constant must be comparable to the data type of the
sort-key-expression of the window-order-clause. Only one sort-key-expression is
allowed, and the data type of sort-key-expression must allow subtraction.
This clause cannot be specified in group-bound-2 if group-bound-1 is
CURRENT ROW or unsigned-constant FOLLOWING.

unsigned-constant FOLLOWING
Specifies either the range or the number of rows that follow the current
row. If ROWS is specified, unsigned-constant must be zero or a positive
integer that indicates a number of rows. If RANGE is specified, the data
type of unsigned-constant must be comparable to the data type of the

286 SQL Reference

sort-key-expression of the window-order-clause. Only one sort-key-expression is
allowed, and the data type of sort-key-expression must allow addition.

Notes

Using a column mask with an OLAP specification: If a column mask is used to
mask the column values in the final result table and an OLAP specification is
referenced in the select list that is used to derive the final result table, the column
mask cannot be applied to the column that is specified in the partitioning-expression
or the sort-key-expression in the OLAP specification

Syntax alternatives and synonyms: For compatibility, the keywords DENSERANK
and ROWNUMBER can be used as synonyms for DENSE_RANK and
ROW_NUMBER respectively.

Example 1: Display the ranking of employees that have a total salary of more than
$30,000, in order by last name:
SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,

RANK() OVER(ORDER BY SALARY+BONUS DESC) AS RANK_SALARY
FROM EMP WHERE SALARY+BONUS > 30000
ORDER BY LASTNAME;

If the result is to be ordered by rank, ORDER BY LASTNAME would be replaced with
ORDER BY RANK_SALARY.

Example 2: Rank the departments according to their average total salary:
SELECT WORKDEPT, AVG(SALARY+BONUS) AS AVG_TOTAL_SALARY,

RANK() OVER(ORDER BY AVG(SALARY+BONUS) DESC) AS RANK_AVG_SAL
FROM EMP
GROUP BY WORKDEPT
ORDER BY RANK_AVG_SAL;

Example 3: Rank the departments according to their education level. Having
multiple employees with the same rank in the department should not increase the
next ranking value:
SELECT WORKDEPT, EMPNO, LASTNAME, FIRSTNME, EDLEVEL,

DENSE_RANK() OVER
(PARTITION BY WORKDEPT ORDER BY EDLEVEL DESC) AS RANK_EDLEVEL
FROM EMP
ORDER BY WORKDEPT, LASTNAME;

Example 4: Provide row numbers in the results of a query:
SELECT ROW_NUMBER() OVER(ORDER BY WORKDEPT, LASTNAME) AS NUMBER,

LASTNAME, SALARY
FROM EMP
ORDER BY WORKDEPT, LASTNAME;

Example 5: List the top five wage earners:
SELECT EMPNO, LASTNAME, FIRSTNME, TOTAL_SALARY, RANK_SALARY

FROM (SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY
FROM EMP) AS RANKED_EMPLOYEE

WHERE RANK_SALARY < 6
ORDER BY RANK_SALARY;

A nested table expression is used to first compute the result, including the ranking,
before the rank can be used in the WHERE clause. A common table expression
could also have been used.

Chapter 2. Language elements 287

Example 6: The following example is used to calculate the 30 day moving average
for the stocks 'ABC' and 'XYX' during 2005:
CREATE VIEW V1 AS
SELECT SYMBOL, TRADINGDATE,

AVG(CLOSINGPRICE) OVER (PARTITION BY SYMBOL
ORDER BY TRADINGDATE
ROWS BETWEEN 29 PRECEDING AND CURRENT ROW)

FROM DAILYSTOCKDATA
WHERE SYMBOL IN (’ABC’, ’XYZ’)

AND TRADINGDATE BETWEEN DATE(’2005-01-01’) - 2 MONTHS AND ’2005-12-31’;

SELECT SYMBOL, TRADINGDATE, MOVINGAVG30DAY
FROM V1
WHERE TRADINGDATE BETWEEN ’2005-01-01’ AND ’2005-12-31’
ORDER BY SYMBOL, TRADINGDATE;

288 SQL Reference

ROW CHANGE expression
A ROW CHANGE expression returns a token or a timestamp that represents the
last change to a row.

ROW CHANGE expression

�� ROW CHANGE TIMESTAMP FOR table-designator
TOKEN

��

TIMESTAMP
Specifies that a timestamp is returned that represents the last time when a row
was changed. If the row has not been changed, the result is the time that the
initial value was inserted.

TOKEN
Specifies that a token that is a BIGINT value is returned that represents a
relative point in the modification sequence of a row. If the row has not been
changed, the result is a token that represents when the initial value was
inserted.

FOR table-designator
Identifies the table in which the expression is referenced. table-designator must
uniquely identify a base table, a view, or a nested table expression of a
subselect. If table-designator identifies a view or a nested table expression, the
ROW CHANGE expression returns the TIMESTAMP or TOKEN of the base
table of the view or the nested table expression. The view or nested table
expression must contain only one base table in its outer subselect.
table-designator must not identify a materialized view, a nested table expression
that is materialized, an alias, or a synonym.

The result can be null. The ROW CHANGE TIMESTAMP and ROW CHANGE
TOKEN expressions are not deterministic.

Notes

Tables without a row change timestamp column:
For tables without a row change timestamp column, the ROW CHANGE
TIMESTAMP expression returns a timestamp value that reflects changes
made to the page instead of to the row. This timestamp value indicates that
at least one row in the page has changed, but does not indicate which row,
or even how many rows, have changed. The ROW CHANGE TIMESTAMP
expression might indicate that a row has changed, however, the change
might be for other rows in the same page.

In a data sharing environment, the returned timestamp value is based on
the LRSN value of the page and reflects the most recent time the page was
modified.

In a non-data sharing environment, the returned timestamp value is based
on the RBA value of the page. In a non-data sharing environment, changes
made to the same page within a half hour of each other might be
indistinguishable. For example, issuing the following SELECT statements
in a non-data sharing environment will possibly return the same value,
even though the row was changed between the two SELECT statements:

Chapter 2. Language elements 289

CREATE TABLE T1 (C1 INTEGER NOT NULL);
INSERT INTO T1 VALUES (1);
SELECT ROW CHANGE TIMESTAMP FOR T1 FROM T1;
UPDATE T1 SET C1 = 2 WHERE C1 = 1;
SELECT ROW CHANGE TIMESTAMP FOR T1 FROM T1;

Example 1:
The following example returns all the rows that have been changed in the
last day:
SELECT * FROM ORDERS

WHERE ROW CHANGE TIMESTAMP FOR ORDERS >
CURRENT TIMESTAMP - 24 HOURS;

Example 2:
The following example returns a timestamp value that corresponds to the
most recent change to each row from the EMP table for those employees in
department 20:

SELECT ROW CHANGE TIMESTAMP FOR EMP
FROM EMP WHERE DEPTNO = 20;

Example 3:
The following example returns a BIGINT value that corresponds to a
relative point in the modification sequence of EMP with employee number
'3500':

SELECT ROW CHANGE TOKEN FOR EMP
FROM EMP WHERE EMPNO = ’3500’;

290 SQL Reference

Sequence reference
A sequence is referenced by using the NEXT VALUE and PREVIOUS VALUE
expressions specifying the name of the sequence.

sequence-reference

�� nextval-expression
prevval-expression

��

nextval-expression

�� NEXT VALUE FOR sequence-name ��

prevval-expression

�� PREVIOUS VALUE FOR sequence-name ��

nextval-expression
A NEXT VALUE expression generates and returns the next value for a
specified sequence. A new value is generated for a sequence when a NEXT
VALUE expression specifies the name of the sequence. However, if there are
multiple instances of a NEXT VALUE expression specifying the same sequence
name within a query, the sequence value is incremented only once for each
row of the result, and all instances of NEXT VALUE return the same value for
a row of the result. The NEXT VALUE expression is a not deterministic with
external actions since it causes the sequence value to be incremented.

When the next value for the sequence is generated, if the maximum value for
an ascending sequence or the minimum value for a descending sequence of the
logical range of the sequence is exceeded and the NO CYCLE option is in
effect, then an error occurs. To avoid this error, either alter the sequence
attributes to extend the range of value or to enable cycles for the sequence or
drop and re-create the sequence with a different data type that allows a larger
range of values.

The data type and length attributes of the result of a NEXT VALUE expression
are the same as for the specified sequence. The result cannot be null.

prevval-expression
A PREVIOUS VALUE expression returns the most recently generated value for
the specified sequence for a previous statement within the current application
process. This value can be repeatedly referenced by using PREVIOUS VALUE
expressions to specify the name of the sequence. There can be multiple
instances of PREVIOUS VALUE expressions specifying the same sequence
name within a single statement and they all return the same value.

Chapter 2. Language elements 291

A PREVIOUS VALUE expression can be used only if a NEXT VALUE
expression specifying the same sequence name has already been referenced in
the current application process.

The data type and length attributes of the result of a PREVIOUS VALUE
expression are the same as for the specified sequence. The result cannot be
null.

sequence-name
Identifies the sequence that is to be referenced. The combination of name and
the implicit or explicit schema name must identify an existing sequence at the
current server. sequence-name must not be the name of an internal sequence
object that is generated by DB2 for an identity column. The contents of the
SQL PATH are not used to determine the implicit qualifier of a sequence name.

Authorization:
If a sequence is referenced in a statement, the privileges that are held by
the authorization ID of the statement must include at least one of the
following:
v For the sequence identified in the statement:

– The USAGE privilege on the sequence
– Ownership of the sequence

v SYSADM or SYSCTRL authority

Generating values with NEXT VALUE:
When a value is generated for a sequence, that value is consumed, and the
next time that a value is requested, a new value will be generated. This is
true even when the statement containing the NEXT VALUE expression fails
or is rolled back.

Scope of NEXT VALUE and PREVIOUS VALUE:
The value of PREVIOUS VALUE cannot be directly set and is a result of
executing the NEXT VALUE expression for the sequence. The value of
PREVIOUS VALUE persists until the next value is generated for the
sequence in the current session, the sequence is dropped or altered, or the
application session ends.

The value for the sequence cannot persist across a COMMIT or
ROLLBACK for a local or remote application if, after the COMMIT or
ROLLBACK, the DB2 application thread or server thread is assigned to
another user or DB2 connection because of some form of thread reuse,
re-signon, or connection pooling is in effect. For example, this can occur for
CICS-DB2 applications and for client applications or middleware products
that save the state of a session and then restore the state of a session for
subsequent processing because they are not able to restore the NEXT or
PREVIOUS VALUES for a sequence. In these situations, the availability of
the value for a sequence should only be relied on until the end of the
transaction. Examples of where this type of situation can occur include
applications that do the following:
v issue an EXEC CICS SYNCPOINT command
v use XA protocols
v use connection pooling
v use the connection concentrator
v use Sysplex workload balancing
v connect to a z/OS server that uses DDF inactive threads

292 SQL Reference

When there is a need to preserve the value that is associated with NEXT
VALUE or PREVIOUS VALUE expressions across transaction boundaries
for local or distributed applications that are subject to thread reuse,
re-signon, or connection pooling, take one of the following actions to
prevent the local or server thread from re-signon, being reused by a
different user, or from being pooled:
v Define at least one cursor as WITH HOLD and leave it as OPEN.
v Specify the bind option KEEPDYNAMIC(YES).

Use as a unique key value:
The same sequence number can be used as a unique key value in two
separate tables by referencing the sequence number with a NEXT VALUE
expression for the first row (this generates the sequence value), and a
PREVIOUS VALUE expression for the other rows (the instance of
PREVIOUS VALUE refers to the sequence value most recently generated in
the current session), as shown in the following example:

INSERT INTO ORDER (ORDERNO, CUSTNO)
VALUES (NEXT VALUE FOR ORDER_SEQ, 123456);

INSERT INTO LINE_ITEM (ORDERNO, PARTNO, QUANTITY)
VALUES (PREVIOUS VALUE FOR ORDER_SEQ, 987654, 1);

Allowed use of NEXT VALUE and PREVIOUS VALUE:
The NEXT VALUE and PREVIOUS VALUE expressions can be specified in
the following places:
v Within the select-clause of a SELECT statement or SELECT statement that

does not contain a DISTINCT keyword, a GROUP BY clause, an
ORDER BY clause, or a set operator.

v Within a VALUES clause of an INSERT statement, including a multiple
row INSERT statement with multiple VALUES clauses and the insert
operation of a MERGE statement, which can include a NEXT VALUE
expression for a particular sequence name for each VALUES clause.

v Within the select-clause of the fullselect of an INSERT statement.
v Within the SET clause of a searched or positioned UPDATE statement,

including the update operation of the MERGE statement, though NEXT
VALUE cannot be specified in the select-clause of the fullselect of an
expression in the SET clause.
A PREVIOUS VALUE expression can be specified anywhere with a SET
clause of an update operation (the UPDATE or MERGE statement), but a
NEXT VALUE expression can be specified only in a SET clause if it is
not within the select-clause of the fullselect of an expression. For instance,
the following uses of sequence references are supported:
UPDATE T SET C1 = (SELECT PREVIOUS VALUE FOR S1 FROM T);
UPDATE T SET C1 = PREVIOUS VALUE FOR S1;
UPDATE T SET C1 = NEXT VALUE FOR S1;

The following uses of sequence references are not supported:
UPDATE T SET C1 = (SELECT NEXT VALUE FOR S1 FROM T);
SET :C2 = (SELECT NEXT VALUE FOR S1 FROM T);

v In a SET host-variable or assignment-statement, except within the
select-clause of the fullselect of an expression.
The following uses of sequence references are supported:
SET ORDERNUM = NEXT VALUE FOR INVOICE;
SET ORDERNUM = PREVIOUS VALUE FOR INVOICE;

The following uses of sequence references are not supported:

Chapter 2. Language elements 293

SET X = (SELECT NEXT VALUE FOR S1 FROM T);
SET X = (SELECT PREVIOUS VALUE FOR S1 FROM T);

v In a VALUES or VALUES INTO statement though not within the
select-clause of the fullselect of an expression.

v Within the SQL-routine-body of a CREATE or ALTER PROCEDURE
statement for a SQL procedure.

v Within the RETURN-statement of a CREATE FUNCTION statement for
an SQL function.

v Within the SQL-trigger-body of a CREATE TRIGGER statement
(PREVIOUS VALUE is not allowed).

Use of PREVIOUS VALUE in a nested application:
PREVIOUS VALUE is defined to have a linear scope within an application
session. Therefore, in a nested application on entry to a nested function,
procedure, or trigger, the nested application inherits the most recently
generated value for a sequence. That is, an invocation of PREVIOUS
VALUE in a nested application reflects sequence activity done in the
invoking environment prior to entering the nested application. In addition,
on return from a function, procedure, or trigger, the invoking application is
affected by any sequence activity in the lower level applications. That is, an
invocation of PREVIOUS VALUE in the invoking application after
returning from the nested application reflects any sequence activity that
occurred in the lower level applications.

Restrictions on the use of NEXT VALUE and PREVIOUS VALUE:
Some of the places where the NEXT VALUE and PREVIOUS VALUE
expressions cannot be specified include the following:
v Join condition of a full outer join
v DEFAULT value for a column in a CREATE TABLE or ALTER TABLE

statement
v Materialized query table definition in a CREATE TABLE or ALTER

TABLE statement
v Condition of a CHECK constraint
v Input value specification for LOAD
v CREATE VIEW statement
v The SELECT list of a subselect that contains a NOT ATOMIC data

change statement
v ORDER BY clause when used in an OLAP specification

In addition, the NEXT VALUE expression cannot be specified in the
following places:
v CASE expression
v Parameter list of an aggregate function
v Subquery in a context other than those explicitly allowed
v SELECT statement for which the outer SELECT contains a DISTINCT

operator or a GROUP BY clause
v SELECT statement for which the outer SELECT is combined with

another SELECT statement using a set operator
v Join condition of a join
v Nested table expression
v Parameter list of a table function

294 SQL Reference

v select-clause of the fullselect of an expression in the SET clause of an
UPDATE, a DELETE, or a MERGE statement.

v WHERE clause of the outer-most SELECT statement or a DELETE, , an
UPDATE, or a MERGE statement

v ORDER BY clause of the outer-most SELECT statement
v IF, WHILE, DO UNTIL, or CASE statements in an SQL routine

Using sequence expressions with a cursor:
Normally, a SELECT NEXT VALUE FOR ORDER_SEQ FROM T1 would produce a
result table containing as many generated values from the sequence
ORDER_SEQ as the number of rows retrieved from T1. A reference to a
NEXT VALUE expression in the SELECT statement of a cursor refers to a
value that is generated for a row of the result table. A sequence value is
generated for a NEXT VALUE expression each time a row is retrieved.

If blocking is done at a client in a DRDA environment, sequence values
might get generated at the DB2 server before the processing of an
application's FETCH statement. If the client application does not explicitly
fetch all the rows that have been retrieved from the database, the
application will never see all those values of the sequence that are
generated but not fetched (as many values as the rows that are not
fetched). These generated but not fetched values might constitute a gap in
the sequence. If it is important to prevent such a gap in the sequence, do
the following:
v Use NEXT VALUE only where it would function without being

controlled by a cursor and where block-fetching by the client will have
no effect on it.

v If you must use NEXT VALUE in the SELECT statement of a
cursor-definition, weigh the importance of preventing the gap against
performance and other implications of taking the following actions:
– Use FETCH FOR 1 ROW ONLY clause with the SELECT statement.
– Try preventing block-fetch by other means documented in DB2

Application Programming and SQL Guide,

Using the PREVIOUS VALUE expression with a cursor:
A reference to the PREVIOUS VALUE expression in a SELECT statement of
a cursor is evaluated at OPEN time. In other words, a reference to the
PREVIOUS VALUE expression in the SELECT statement of a cursor refers
to the last value generated by this application process for the specified
sequence prior to the opening of the cursor and, once evaluated at OPEN
time, the value returned by PREVIOUS VALUE within the select statement
of the cursor will not change from FETCH to FETCH, even if NEXT
VALUE is invoked with the select statement of the cursor. After the cursor
is closed, the value of PREVIOUS VALUE will be the last NEXT VALUE
that is generated by the application process.

IF PREVIOUS VALUE is used in the SELECT statement of a cursor while
the cursor is open, the value of PREVIOUS VALUE would be the last
NEXT VALUE for the generated sequence before the cursor was opened.
After the cursor is closed, the value of PREVIOUS VALUE would be the
last NEXT VALUE generated by the application process.

Syntax alternatives and synonyms:
For compatibility, the keywords NEXTVAL and PREVVAL can be used as
synonyms for NEXT VALUE and PREVIOUS VALUE respectively.

Chapter 2. Language elements 295

sequence-name.NEXTVAL can be specified in place of NEXT VALUE FOR
sequence-name, and sequence-name.CURRVAL can be specified in place of
PREVIOUS VALUE FOR sequence-name.

Example

Assume that there is a table called ORDER, and that a sequence called
ORDER_SEQ is created as follows:

CREATE SEQUENCE ORDER_SEQ START WITH 1
INCREMENT BY 1
NO MAXVALUE
NO CYCLE
CACHE 24

The following examples illustrate how to generate an ORDER_SEQ sequence
number with a NEXT VALUE expression:

INSERT INTO ORDER (ORDERNO, CUSTNO)
VALUES (NEXT VALUE FOR ORDER_SEQ, 123456);

UPDATE ORDER SET ORDERNO = NEXT VALUE FOR ORDER_SEQ
WHERE CUSTNO = 123456;

VALUES NEXT VALUE FOR ORDER_SEQ INTO :HV_SEQ;

Predicates
A predicate specifies a condition that is true, false, or unknown about a given row
or group.

The types of predicates are:

�� basic predicate
quantified predicate
ARRAY_EXISTS predicate
BETWEEN predicate
DISTINCT predicate
EXISTS predicate
IN predicate
LIKE predicate
NULL predicate
XMLEXISTS predicate

��

The following rules apply to predicates of any type:
v Predicates are evaluated after the expressions that are operands of the predicate.
v All values that are specified in the same predicate must be compatible.
v Except for the EXISTS predicate, a subquery in a predicate must specify a single

column unless the operand on the other side of the comparison operator is a
fullselect.

v The value of a host variable can be null (that is, the variable can have a negative
indicator variable).

v The CCSID conversion of operands of predicates that involve two or more
operands is done according to“Conversion rules for comparisons” on page 138.

v Use of an XML value is limited to the NULL or XMLEXISTS predicates.

296 SQL Reference

|

�� �

,

(expression) ��

A row-value-expression returns a single row that consists of one or more column
values. The values can be specified as a list of expressions. The number of columns
that are returned by the row-value-expression is equal to the number of expressions
that are specified in the list.

Other predicate examples: In addition to the examples of predicates in the
following topics, see information on distinct type comparisons in “Assignment and
comparison” on page 121, which contains several examples of predicates that use
distinct types.“Distinct type comparisons” on page 142, which contains several
examples of predicates that use distinct types.
Related concepts:

Predicates and access path selection (DB2 Performance)
Related tasks:

Using predicates efficiently (DB2 Performance)

Writing efficient SQL queries (DB2 Performance)
Related reference:
“where-clause” on page 795
“having-clause” on page 799

Row-value-expression: The operand of several predicates (basic, quantified, DISTINCT, and IN) can be a
row-value-expression:

Chapter 2. Language elements 297

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_predicateproperties.htm#db2z_predicateproperties
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_predicaterules.htm#db2z_predicaterules
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programsqlperf.htm#db2z_programsqlperf

Basic predicate
A basic predicate compares two values or compares a set of values with another set
of values.

�� expression = expression
(1)

<>
<
>
<=
>=

(1)
row-value-expression = row-value-expression

<>

��

Notes:

1 Other comparison operators are also supported.15

When expression is a fullselect, the fullselect must return a single result column
with a single value, whether null or not null. If the value of either operand is null
or the result of the fullselect is empty, the result of the predicate is unknown.
Otherwise, the result is either true or false.

When a row-value-expression is specified on the left side of the operator (= or <>),
another row-value-expression, with an identical number of value expressions, must
be specified on the right side. The data types of the corresponding expressions or
columns of the row-value-expressions must be compatible. The value of each
expression on the left side is compared with the value of its corresponding
expression on the right side. The result of the predicate depends on the operator,
as in the following two cases:
v If the operator is =, the result of the predicate is:

– True if all pairs of corresponding value expressions evaluate to true.
– False if any one pair of corresponding value expressions evaluates to false.
– Otherwise, unknown (that is, if at least one comparison of corresponding

value expressions is unknown because of a null value and no pair of
corresponding value expressions evaluates to false).

v If the operator is <>, the result of the predicate (x1,x2,...,xn) <> (y1,y2,...,yn) is:
– True, if and only if xi=yi evaluates to false for some value of i. (that is, there

is at least one pair of non-null values, xi and yi, that are not equal to each
other)

15. The following forms of the comparison operators are also supported in basic and quantified predicates in code pages where the
exclamation point is X'5A': !=, !<, and !> . In addition, the forms ¬=, ¬<, and ¬> are supported as long as the codepoint used for
the logical not symbol is the correct one for the specified code page. These forms of the operators are intended only to support
existing SQL statements that use them and are not recommended for use when writing new SQL statements.

A logical not sign (¬) can cause parsing errors in statements passed from one DBMS to another. The problem occurs if the
statement undergoes character conversion with certain combinations of source and target CCSIDs. To avoid this problem,
substitute an equivalent operator for any operator that includes a not sign. For example, substitute '<>' for '¬=', '<=' for '¬>', and
'>=' for '¬<'.

298 SQL Reference

– False, if and only if xi=yi evaluates to true for every value of i. (that is,
(x1,x2,...,xn)=(y1,y2,...,yn) is true)

– Otherwise, unknown (that is, xi or yi is a null value for some value of i, and
there is no value of j such that xj=yj evaluates to false).

Table 46. For values x and y

Predicate Is true if and only if ...

x = y x is equal to y

x <> y x is not equal to y

x < y x is less than y

x > y x is greater than y

x <= y x is less than or equal to y

x >= y x is greater than or equal to y

Examples for values x and y:
EMPNO = ’528671’
SALARY < 20000
PRSTAFF <> :VAR1
SALARY >= (SELECT AVG(SALARY) FROM DSN8B10.EMP)

Example: List the name, first name, and salary of the employee who is responsible
for the 'SECRET' project. This employee might appear in either the PROJA1 or
PROJA2 tables. A UNION is used in case the employee appears in both tables to
eliminate duplicate RESPEMP values.

SELECT LASTNAME, FIRSTNAME, SALARY
FROM DSN8B10.EMP X
WHERE EMPNO = (

SELECT RESPEMP
FROM PROJA1 Y
WHERE MAJPROJ = ’SECRET’

UNION
SELECT RESPEMP

FROM PROJA2 Z
WHERE MAJPROJ = ’SECRET’);

Chapter 2. Language elements 299

Quantified predicate
A quantified predicate compares a value or values with a collection of values.

�� expression = SOME (fullselect1)
(1) ANY

<> ALL
<
>
<=
>=

row-value-expression = SOME (fullselect2)
ANY
(1)

row-value-expression <> ALL (fullselect2)

��

Notes:

1 Other comparison operators are also supported.15

When expression is specified, fullselect1 must return a single result column, and can
return any number of values, whether null or not null. The result depends on the
operator that is specified:
v When the operator is ALL, the result of the predicate is:

– True – if the result of the fullselect is empty or if the specified relationship is
true for every value returned by the fullselect.

– False – if the specified relationship is false for at least one value returned by
the fullselect.

– Unknown – if the specified relationship is not false for any values returned by
the fullselect and at least one comparison is unknown because of a null value.

v When the operator is SOME or ANY, the result of the predicate is:
– True – if the specified relationship is true for at least one value returned by

the fullselect.
– False – if the result of the fullselect is empty or if the specified relationship is

false for every value returned by the fullselect.
– Unknown – if the specified relationship is not true for any of the values

returned by the fullselect and at least one comparison is unknown because of
a null value.

When row-value-expression is specified, the number of result columns returned by
fullselect2 must be the same as the number of value expressions specified by
row-value-expression, and fullselect2 can return any number of rows of values. The
data types of the corresponding expressions of the row value expressions must be
compatible. The value of each expression from row-value-expression is compared
with the value of the corresponding result column from fullselect2. The value of the
predicate depends on the operator that is specified:
v When the operator is ALL, the result of the predicate is:

– True – if the result of fullselect2 is empty or if the specified relationship is true
for every row returned by fullselect2.

– False – if the specified relationship is false for at least one row returned by
fullselect2.

300 SQL Reference

– Unknown – if the specified relationship is not false for any row returned by
fullselect2 and at least one comparison is unknown because of a null value.

v When the operator is SOME or ANY, the result of the predicate is:
– True – if the specified relationship is true for at least one row returned by

fullselect2

– False – if the result of the fullselect is empty or if the specified relationship is
false for every row returned by fullselect2.

– Unknown – if the specified relationship is not true for any of the rows
returned by fullselect2 and at least one comparison is unknown because of a
null value.

Quantified predicates are equivalent to IN predicates. See Table 52 on page 310 for
some examples of equivalent quantified and IN predicates.

Examples: Use the following tables when referring to the following examples. In all
examples, “row n of TBLA” refers to the row in TBLA for which COLA has the
value n.

Table 47. TBLA

COLA

1

2

3

4

Table 48. TBLB

COLB COLC

2 2

3 – –

Table 49. TBLC

COLB COLC

2 2

Example 1: In the following predicate, the fullselect returns the values 2 and 3. The
predicate is false for rows 1, 2, and 3 of TBLA, and is true for row 4.

COLA > ALL(SELECT COLB FROM TBLB
UNION
SELECT COLB FROM TBLC)

Example 2: In the following predicate, the fullselect returns the values 2 and 3. The
predicate is false for rows 1 and 2 of TBLA, and is true for rows 3 and 4.

COLA > ANY(SELECT COLB FROM TBLB
UNION
SELECT COLB FROM TBLC)

Example 3: In the following predicate, the fullselect returns the values 2 and null.
The predicate is false for rows 1 and 2 of TBLA, and is unknown for rows 3 and 4.
The result is an empty table.

Chapter 2. Language elements 301

COLA > ALL(SELECT COLC FROM TBLB
UNION
SELECT COLC FROM TBLC)

Example 4: In the following predicate, the fullselect returns the values 2 and null.
The predicate is unknown for rows 1 and 2 of TBLA, and is true for rows 3 and 4.

COLA > SOME(SELECT COLC FROM TBLB
UNION
SELECT COLC FROM TBLC)

Example 5: In the following predicate, the fullselect returns an empty result column.
Hence, the predicate is true for all rows of TBLA.

COLA < ALL(SELECT COLB FROM TBLB WHERE COLB>3
UNION
SELECT COLB FROM TBLC WHERE COLB>3)

Example 6: In the following predicate, the fullselect returns an empty result column.
Hence, the predicate is false for all rows of TBLA.

COLA < ANY(SELECT COLB FROM TBLB WHERE COLB>3
UNION
SELECT COLB FROM TBLC WHERE COLB>3)

If COLA were null in one or more rows of TBLA, the predicate would still be false
for all rows of TBLA.

302 SQL Reference

ARRAY_EXISTS predicate
The ARRAY_EXISTS predicate tests for the existence of an array element with the
specified index in an array.

�� ARRAY_EXISTS (array-expression,array-index) ��

array-expression
Specifies one of the following items:
v An SQL variable or SQL parameter of an array type
v A CAST specification of an array or parameter marker to an array type.

array-index
Specifies the index for the array element that is to be tested. An array
index value for an ordinary array must be castable to INTEGER. An array
index value for an associative array must be castable to the data type of
the array index.

array-index must not be an expression that references any of the following
items:
v The CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP

special register
v A nondeterministic function
v A function that is defined with EXTERNAL ACTION
v A function that is defined with MODIFIES SQL DATA
v A sequence expression

The result of the ARRAY_EXISTS predicate is:
v True if array-variable includes an array index that is equal to the result of casting

array-index to the data type of the array index of array-variable.
v False under either of the following conditions:

– array-variable does not include an array index that is equal to the result of
casting array-index to the data type of the array index of array-variable.

– Either argument is null.
v Cannot be unknown.

Example: Suppose that array variable RECENT_CALLS is defined as an ordinary
array of array type PHONENUMBERS. The following IF statement tests whether
the recent calls list has reached the 40th saved call. If it has, the local Boolean
variable EIGHTY_PERCENT is set to true:
IF (ARRAY_EXISTS(RECENT_CALLS, 40))
THEN SET EIGHTY_PERCENT = TRUE;
END IF

Related concepts:
“Array types” on page 108

Chapter 2. Language elements 303

|

|
|

|

|||||||||
|
||

|
|

|

|

|
|
|
|
|

|
|

|
|

|

|

|

|

|

|
|

|

|
|

|

|

|
|
|
|

|
|
|

|

|

BETWEEN predicate
The BETWEEN predicate determines whether a given value lies between two other
given values that are specified in ascending order.

�� expression BETWEEN expression AND expression
NOT

��

Each of the predicate's two forms has an equivalent search condition, as shown in
the following table:

Table 50. BETWEEN predicate and equivalent search conditions

BETWEEN predicate Equivalent search condition

value1 BETWEEN value2 AND value3 value1 >= value2 AND value1 <= value31

value1 NOT BETWEEN value2 AND value3

or, equivalently:
NOT(value1 BETWEEN value2 AND value3)

value1 < value2 OR value1 > value31

Note: 1. Might not be equivalent if value1, value2, or value3 are columns or derived values
based on columns that are not the same CCSID set because the clause is evaluated in
Unicode.

Search conditions are discussed in “Search conditions” on page 324.

If the operands include a mixture of datetime values and valid string
representations of datetime values, all values are converted to the data type of the
datetime operand.

Example: Consider the following predicate:
A BETWEEN B AND C

The following table shows the value of the predicate for various values of A, B,
and C.

Value of A Value of B Value of C Value of predicate

1,2, or 3 1 3 true

0 or 4 1 3 false

0 1 null false

4 null 3 false

null any value any value unknown

2 1 null unknown

3 null 4 unknown

304 SQL Reference

DISTINCT predicate
A distinct predicate compares a value with another value or a set of values with
another set of values.

�� expression IS DISTINCT FROM expression
NOT

row-value-expression IS DISTINCT FROM row-value-expression
NOT

��

expression and row-value-expression cannot be array expressions.

The number of elements that are returned by the row-value-expression that specified
after the distinct operator must match the number of elements that are returned by
the row-value-expression that is specified prior to the distinct operator. The data
types of the corresponding columns or expressions of the row-value-expressions must
be compatible. When the predicate is evaluated, the value of each expression on
the left side is compared with the value of its corresponding expression on the
right side. The result of the predicate depends on the form of the predicate.

When the predicate is IS DISTINCT, the result of the predicate is true if at least
one comparison of a pair of corresponding value expressions evaluates to false.
Otherwise, the result of the predicate is false. The result cannot be unknown.

When the predicate IS NOT DISTINCT FROM, the result of the predicate is true
if all pairs of corresponding value expressions evaluate to true (null values are
considered equal to null values). Otherwise, the predicate is false. The result
cannot be unknown.

The DISTINCT predicate cannot be used in the following contexts:
v The ON join-condition of a full outer join
v A check constraint
v A quantified predicate

The following DISTINCT predicates are logically equivalent to the corresponding
search conditions:

Table 51. DISTINCT predicates and logically equivalent search conditions

DISTINCT predicate Search condition

value 1 IS NOT DISTINCT FROM value2 (value1 IS NOT NULL
AND value2 IS NOT NULL
AND value1 = value 2)

OR
(value1 IS NULL
AND value2 IS NULL)

value 1 IS DISTINCT FROM value2 NOT (value1 IS NOT DISTINCT FROM value2)

Example 1: Assume that T1 is a single-column table with three rows. Column C1
has the following values: 1, 2, and null. Consider the following query:

SELECT * FROM T1
WHERE C1 IS DISTINCT FROM :HV;

Chapter 2. Language elements 305

|

The following table shows the value of the predicate for various values of C1 and
the host variable.

Value of C1 Value of HV Result of predicate

1 2 True

2 2 False

null 2 True

1 null True

2 null True

null null False

Example 2: Assume the same table as in the first example, but now consider the
negative form of the predicate in the query:

SELECT * FROM T1
WHERE C1 IS NOT DISTINCT FROM :HV;

The following table shows the value of the predicate for various values of C1 and
the host variable.

Value of C1 Value of HV Result of predicate

1 2 False

2 2 True

null 2 False

1 null False

2 null False

null null True

306 SQL Reference

EXISTS predicate
The EXISTS predicate tests for the existence of certain rows. The fullselect can
specify any number of columns, and can result in true or false.

��
(1)

EXISTS (fullselect) ��

Notes:

1 The outer SELECT list of fullselect must not contain an array value.

The result of the EXISTS predicate:
v Is true only if the number of rows that is specified by the fullselect is not zero.
v Is false only if the number of rows specified by the fullselect is zero.
v Cannot be unknown.

The SELECT clause in the fullselect can specify any number of columns because
the values returned by the fullselect are ignored. For convenience, use:

SELECT *

Unlike the NULL, LIKE, and IN predicates, the EXISTS predicate has no form that
contains the word NOT. To negate an EXISTS predicate, precede it with the logical
operator NOT, as follows:

NOT EXISTS (fullselect)

The result is then false if the EXISTS predicate is true, and true if the predicate is
false. Here, NOT is a logical operator and not a part of the predicate. Logical
operators are discussed in “Search conditions” on page 324.

Example 1: The following query lists the employee number of everyone represented
in DSN8B10.EMP who works in a department where at least one employee has a
salary less than 20000. Like many EXISTS predicates, the one in this query involves
a correlated variable.

SELECT EMPNO
FROM DSN8B10.EMP X
WHERE EXISTS (SELECT * FROM DSN8B10.EMP

WHERE X.WORKDEPT=WORKDEPT AND SALARY<20000);

Example 2: List the subscribers (SNO) in the state of California who made at least
one call during the first quarter of 2009. Order the results according to SNO. Each
MONTHnn table has columns for SNO, CHARGES, and DATE. The CUST table
has columns for SNO and STATE.
SELECT C.SNO

FROM CUST C
WHERE C.STATE = ’CA’
AND EXISTS (
SELECT *

FROM MONTH1
WHERE DATE BETWEEN ’01/01/2009 AND ’01/31/2009’
AND C.SNO = SNO

UNION ALL
SELECT *

Chapter 2. Language elements 307

|

FROM MONTH2
WHERE DATE BETWEEN ’02/01/2009 AND ’02/28/2009’
AND C.SNO = SNO

UNION ALL
SELECT *
FROM MONTH3
WHERE DATE BETWEEN ’03/01/2009 AND ’03/31/2009’
AND C.SNO = SNO
)
ORDER BY C.SNO;

308 SQL Reference

IN predicate
The IN predicate compares a value or values with a set of values.

��

�

expression1 IN (fullselect1)
NOT ,

(expression2)
row-value-expression IN (fullselect2)

NOT

��

When expression1 is specified, the IN predicate compares a value with a set of
values. When fullselect1 is specified, the fullselect must return a single result
column, and can return any number of values, whether null or not null. The data
type of expression1 and the data type of the result column of fullselect1 or
expression2 must be compatible. If expression is a single host variable, the host
variable can identify a structure. Any host variable or structure that is specified
must be described in the application program according to the rules for declaring
host structures and variables.

When a row-value-expression is specified, the IN predicate compares values with a
collection of values. The result table of the fullselect2 must have the same number
of columns as the row-value-expression. The data type of each expression in
row-value-expression and the data type of its the corresponding result column of
fullselect2 must be compatible. The value of each expression in row-value-expression
is compared with the value of its corresponding result column of fullselect2. The
value of the predicate depends on the operator that is specified:
v When the operator is IN, the result of the predicate is:

– True if at least one row returned from fullselect2 is equal to the
row-value-expression.

– False if the result of fullselect2 is empty or if no row returned from fullselect2
is equal to the row-value-expression.

– Otherwise, unknown (that is, if the comparison of row-value-expression to the
row returned from fullselect2 evaluates to unknown because of a null value
for at least one row returned from fullselect2 and no row returned from
fullselect2 is equal to the row-value-expression).

v When the operator is NOT IN, the result of the predicate is:
True if the result of fullselect2 is empty or if the row-value-expression is not equal
to any of the rows returned by fullselect2.
False if the row-value-expression is equal to at least one row returned byfullselect2.
Otherwise, unknown (that is, if the comparison of row-value-expression to the row
returned from fullselect2 evaluates to unknown because of a null value for at
least one row returned from fullselect2 and the comparison of row-value-expression
to the row returned from fullselect2 is not true for any row returned by the
fullselect2).

The IN predicate is equivalent to the quantified predicate as follows:

Chapter 2. Language elements 309

Table 52. IN predicate and equivalent quantified predicates

IN predicate Equivalent quantified predicate

expression1 IN (expression2) expression1 = expression2

expression IN (fullselect1) expression = ANY (fullselect1)

expression NOT IN (fullselect1) expression <> ALL (fullselect1)

expression1 IN (expressiona,
expressionb, ...)

expression1 IN (SELECT * FROM R)

When T is a table with a single row and R is
a result table formed by the following
fullselect:

SELECT value1 FROM T
UNION

SELECT value2 FROM T
UNION

.

.

.
UNION

SELECT valuen FROM T

row-value-expression IN (fullselect2) row-value-expression = SOME (fullselect2)

row-value-expression IN (fullselect2) row-value-expression = ANY (fullselect2)

row-value-expression NOT IN (fullselect2) row-value-expression <> ALL (fullselect2)

If the operands of the IN predicate have different data types or attributes, the rules
that are used to determine the data type for evaluation of the IN predicate are
those for UNION, EXCEPT, and INTERSECT. For a description, see “Rules for
result data types” on page 144.

If the operands of the IN predicate are strings with different CCSIDs, the rules
used to determine which operands are converted are those for operations that
combine strings. See “Character and graphic string comparisons” on page 135.

Example 1: The following predicate is true for any row whose employee is in
department D11, B01, or C01.

WORKDEPT IN (’D11’, ’B01’, ’C01’)

Example 2: The following predicate is true for any row whose employee works in
department E11.

EMPNO IN (SELECT EMPNO FROM DSN8B10.EMP
WHERE WORKDEPT = ’E11’)

Example 3: The following predicate is true if the date that a project is estimated to
start (PRENDATE) is within the next two years.

YEAR(PRENDATE) IN (YEAR(CURRENT DATE),
YEAR(CURRENT DATE + 1 YEAR),
YEAR(CURRENT DATE + 2 YEARS))

Example 4: The following example obtains the phone number of an employee in
DSN8B10.EMP where the employee number (EMPNO) is a value specified within
the COBOL structure defined below.

77 PHNUM PIC X(6).
01 EMPNO-STRUCTURE.

05 CHAR-ELEMENT-1 PIC X(6) VALUE ’000140’.
05 CHAR-ELEMENT-2 PIC X(6) VALUE ’000340’.

310 SQL Reference

05 CHAR-ELEMENT-3 PIC X(6) VALUE ’000220’.
.
.
.

EXEC SQL DECLARE PHCURS CURSOR FOR
SELECT PHONENO FROM DSN8B10.EMP

WHERE EMPNO IN
(:EMPNO-STRUCTURE.CHAR-ELEMENT-1,
:EMPNO-STRUCTURE.CHAR-ELEMENT-2,
:EMPNO-STRUCTURE.CHAR-ELEMENT-3)

END-EXEC.
EXEC SQL OPEN PHCURS
END-EXEC.
EXEC SQL FETCH PHCURS INTO :PHNUM
END-EXEC.

Chapter 2. Language elements 311

LIKE predicate
The LIKE predicate searches for strings that have a certain pattern.

�� match-expression LIKE pattern-expression
NOT ESCAPE escape-expression

��

The match-expression is the string to be tested for conformity to the pattern
specified in pattern-expression. Underscore and percent sign characters in the pattern
have a special meaning instead of their literal meanings unless escape-expression is
specified. For more information, see the description of pattern-expression.

The following rules summarize how a predicate in the form of m LIKE p is
evaluated:
v If m or p is null, the result of the predicate is unknown.
v If m and p are both empty, the result of the predicate is true.
v If m is empty and p is not, the result of the predicate is unknown unless p

consists of one or more percent signs.
v If m is not empty and p is empty, the result of the predicate is false.
v Otherwise, if m matches the pattern in p, the result of the predicate is true. The

description of pattern-expression provides a detailed explanation on how the
pattern is matched to evaluate the predicate to true or false.
The way the pattern is matched to evaluate the predicate changes when LIKE
blank insignificant behavior is enabled. For more information, see LIKE blank
insignificant behavior.

The values for match-expression, pattern-expression, and escape-expression must all be
character or graphic strings or a mixture of both or they must all be binary strings
(BLOBs). None of the expressions can yield a distinct type; however, an expression
can be a function that casts a distinct type to its source type.

There are slight differences in what expressions are supported for each argument.
The description of each argument lists the supported expressions.

match-expression
An expression that specifies the string to be tested for conformity to a certain
pattern of characters.

LIKE pattern-expression
An expression that specifies the pattern of characters to be matched.

The expression can be specified by any one of the following:
v A constant
v A special register
v A variable
v A scalar function whose arguments are any of the above (though nested

function invocations cannot be used)
v An array element specification
v A CAST specification whose arguments are any of the above
v An expression that concatenates (using CONCAT or ||) any of the above

The expression must also meet these restrictions:

312 SQL Reference

|
|
|

|

|

v The maximum length of pattern-expression must not be larger than 4000
bytes.

v If a host variable is used in pattern-expression, the host variable must be
defined in accordance with the rules for declaring string host variables and
must not be a structure.

v If escape-expression is specified, pattern-expression must not contain the escape
character that is identified by escape-expression, except when immediately
followed by the escape character, '%', or '_'. For example, if '+' is the escape
character, any occurrences of '+' other than '++', '+_', or '+ in the pattern is
an error.

When the pattern specified in a LIKE predicate is a parameter marker and a
fixed-length character host variable is used to replace the parameter marker,
specify a value for the host variable that is the correct length. If you do not
specify the correct length, the select does not return the intended results. For
example, if the host variable is defined as CHAR(10) and the value WYSE% is
assigned to that host variable, the host variable is padded with blanks on
assignment. The pattern used is 'WYSE ', which requests DB2 to search for
all values that start with WYSE and end with five blank spaces. If you
intended to search for only the values that start with 'WYSE ', you should
assign the value 'WYSE%%%%%%' to the host variable.

If the pattern is specified in a fixed-length string variable, any trailing blanks
are interpreted as part of the pattern. Therefore, it is better to use a
varying-length string variable with an actual length that is the same as the
length of the pattern. If the host language does not allow varying-length string
variables, place the pattern in a fixed-length string variable whose length is the
length of the pattern.

For more information about the use of host variables with specific
programming languages, see Host variables (DB2 Application programming
and SQL).

The pattern is used to specify the conformance criteria for values in the
match-expression where:
v The underscore character (_) represents any single character.
v The percent sign (%) represents a string of zero or more characters.
v Any other character represents a single occurrence of itself.

If the pattern-expression must include either the underscore or the percent
character, the escape-expression is used to specify a character to precede either
the underscore or percent character in the pattern. For character strings, the
terms character, percent sign, and underscore refer to SBCS characters. For
graphic strings, the terms refer to double-byte or UTF-16 characters.

Chapter 2. Language elements 313

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_hostvariablearraystructure.htm#db2z_hostvariablearraystructure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_hostvariablearraystructure.htm#db2z_hostvariablearraystructure

A rigorous description of the pattern: This more rigorous description of the pattern
ignores the use of the escape-expression.

Let m denote the value of match-expression and let p denote the value of pattern-expression.
The string p is interpreted as a sequence of the minimum number of substring specifiers so
each character of p is part of exactly one substring specifier. A substring specifier is an
underscore, a percent sign, or any non-empty sequence of characters other than an
underscore or a percent sign.

The result of the predicate is unknown if m or p is the null value. Otherwise, the result is
either true or false. The result is true if m and p are both empty strings or there exists a
partitioning of m into substrings such that:

v A substring of m is a sequence of zero or more contiguous characters and each character
of m is part of exactly one substring.

v If the nth substring specifier is an underscore, the nth substring of m is any single
character.

v If the nth substring specifier is a percent sign, the nth substring of m is any sequence of
zero or more characters.

v If the nth substring specifier is neither an underscore nor a percent sign, the nth
substring of m is equal to that substring specifier and has the same length as that
substring specifier.

v The number of substrings of m is the same as the number of substring specifiers.

It follows that if p is an empty string and m is not an empty string, the result is false.
Similarly, if m is an empty string and p is not an empty string consisting of a value other
than percentage signs, the result is false.

The predicate m NOT LIKE p is equivalent to the search condition NOT (m LIKE p).

Mixed data patterns: If match-expression represents mixed data, the pattern is
assumed to be mixed data. For ASCII and EBCDIC, the special characters in
the pattern are interpreted as follows:
v An SBCS underscore refers to one SBCS character.
v A DBCS underscore refers to one MBCS character.
v A percent sign (either SBCS or DBCS) refers to a string of zero or more SBCS

or MBCS characters.

For EBCDIC, redundant shift bytes in match-expression or pattern-expression are
ignored.

For Unicode, the special characters in the pattern are interpreted as follows:
v An SBCS or DBCS underscore refers to one character (either SBCS or MBCS).
v A percent sign (either SBCS or DBCS) refers to a string of zero or more SBCS

or MBCS characters.

When the LIKE predicate is used with Unicode data, the Unicode percent sign
and underscore use the code points indicated in the following table:

Character UTF-8 UTF-16

Half-width % X'25' X'0025'

Full-width % X'EFBC85' X'FF05'

Half-width_ X'5F' X'005F'

Full-width_ X'EFBCBF' X'FF3F'

The full-width or half-width % matches zero or more characters. The full-width
or half-width_ character matches exactly one character. (For ASCII or EBCDIC

314 SQL Reference

data, a full-width _ character matches one DBCS character.)

ESCAPE escape-expression
An expression that specifies the escape character to be used to modify the
special meaning of the underscore (_) and percent (%) characters in
pattern-expression. Specifying an expression, which is optional, allows the LIKE
predicate to explicitly test that the value contains a '%' or '_' in the character
positions that you want. The escape character consists of a single SBCS (1 byte)
or DBCS (2 bytes) character. An escape clause is allowed for Unicode mixed
(UTF-8) data, but is restricted for ASCII and EBCDIC mixed data.

The expression can be specified by:
v A constant
v A variable
v A scalar function whose arguments are any of the above (though nested

function invocations cannot be used)
v A CAST specification whose arguments are any of the above

The following rules also apply to the use of the ESCAPE clause and
escape-expression:
v The result of escape-expression must be one SBCS or DBCS character or a

binary string that contains exactly 1 byte.
v The ESCAPE clause cannot be used if match-expression is mixed data.
v If escape-expression is specified by a host variable, the host variable must be

defined in accordance with the rules for declaring fixed-length string host
variables.16 If the host variable has a negative indicator variable, the result of
the predicate is unknown.

v The pattern must not contain the escape character except when followed by
the escape character, '%' or '_'. For example, if '+' is the escape character, any
occurrences of '+' other than '++', '+_', or '+%' in the pattern is an error.

The following table shows the effect of successive occurrences of the escape
character, which in this case is the plus sign (+).

Table 53. Effect of successive occurrences of the escape character

When the pattern string is... The actual pattern is...

+% A percent sign

++% A plus sign followed by zero or more
arbitrary characters

+++% A plus sign followed by a percent sign

Examples

Example 1: The following predicate is true when the string to be tested in NAME
has the value SMITH, NESMITH, SMITHSON, or NESMITHY. It is not true when
the string has the value SMYTHE:

NAME LIKE ’%SMITH%’

Example 2: In the predicate below, a host variable named PATTERN holds the
string for the pattern:

NAME LIKE :PATTERN ESCAPE ’+’

16. If it is NUL-terminated, a C character string variable of length 2 can be specified.

Chapter 2. Language elements 315

|

Assume that the string in PATTERN has the following value:
AB+_C_%

Observe that in this string, the plus sign preceding the first underscore is an escape
character. The predicate is true when the string being tested in NAME has the
value AB_CD or AB_CDE. It is false when this string has the value AB, AB_, or
AB_C.

Example 3: The following two predicates are equivalent; three of the four percent
signs in the first predicate are redundant.

NAME LIKE ’AB%%%%CD’
NAME LIKE ’AB%CD’

Example 4: Assume that a distinct type named ZIP_TYPE with a source data type
of CHAR(5) exists and an ADDRZIP column with data type ZIP_TYPE exists in
some table TABLEY. The following statement selects the row if the zip code
(ADDRZIP) begins with '9555'.

SELECT * FROM TABLEY
WHERE CHAR(ADDRZIP) LIKE ’9555%’

Example 5: The RESUME column in sample table DSN8B10.EMP_PHOTO_RESUME
is defined as a CLOB. The following statement selects the RESUME column when
the string JONES appears anywhere in the column.

SELECT RESUME FROM DSN8B10.EMP_PHOTO_RESUME
WHERE RESUME LIKE ’%JONES%’

Example 6: In the following table, assume COL1 is a column that contains mixed
EBCDIC data. The table shows the results when the predicate in the first column is
evaluated using the COL1 value in the second column:

316 SQL Reference

Example 7: In the following table, assume COL1 is a column that contains mixed
ASCII data. The table shows the results when the predicate in the first column is
evaluated using the COL1 value in the second column:

Example 8: In the following table, assume COL1 is a column that contains Unicode
data. The table shows the results when the predicate in the first column is
evaluated using the COL1 value in the second column:

Table 54. COL1 contain Unicode data

Predicates COL1 values Result

WHERE COL1 LIKE
'aaaAB%C

'aaaABDZC' True

'aaaABdzxC' True

empty string False

WHERE COL1 LIKE 'aaaAB
%C'

'aaaABDZC' True

'aaaABdzxC' True

empty string False

WHERE COL1 LIKE '' 'aaaABDZC' False

'aaaABdzxC' False

empty string True

WHERE COL1 LIKE '%' 'aaaABDZC' True

'aaaABdzxC' True

empty string True

WHERE COL1 LIKE
' %'

'aaaABDZC' True

'aaaABdzxC' True

empty string False

WHERE COL1 LIKE
' '

'aaaABDZC' False

'aaaABdzxC' False

empty string False

LIKE blank insignificant behavior

When the LIKE_BLANK_INSIGNIFICANT subsystem parameter is enabled, all of
the blanks at the end of a fixed-length string are ignored. This behavior is called
LIKE blank insignificant behavior. LIKE blank significant behavior, in which the
blanks at the end of fixed-length strings are significant (not ignored), is the default
behavior during installation or migration. For variable length strings, blanks are
significant.

When you set the LIKE_BLANK_INSIGNIFICANT subsystem parameter, LIKE
blank insignificant behavior takes effect the next time an SQL query statement with
the LIKE predicate is executed after the statement is bound or prepared. If the
statement is not prepared or bound, the LIKE behavior exhibits LIKE blank
significant behavior regardless of the subsystem parameter setting.

Chapter 2. Language elements 317

|

|
|
|
|
|
|

|
|
|
|
|

For the following functions, enabling or disabling LIKE blank insignificant
behavior takes effect immediately. This applies to both an explicit LIKE predicate
(for example, UNLOAD) and an implicit LIKE predicate (for example, table check
constraint).
v INSERT
v UPDATE
v UNLOAD
v REORG
v LOAD
v CHECK DATA

Before the LIKE predicate is applied, any trailing blanks in a CHARACTER or
GRAPHIC column are stripped to the last non-blank character. If the column
contains all blanks, the blank in character position 1 is not stripped. After stripping
occurs, the LIKE predicate is applied against the stripped column data.

Tip: After you enable the LIKE_BLANK_INSIGNIFICANT subsystem parameter,
existing rows might not conform to table check constraints that contain a LIKE
predicate. Consider running the CHECK DATA utility on all affected tables to find
the records that do not conform to the table check constraint.

The following examples, in which b represents a blank character, demonstrate how
the LIKE predicate is evaluated when LIKE blank insignificant behavior is enabled.
SELECT C1
FROM T1
WHERE C1 LIKE ’%xyz’;

This LIKE predicate will match the following fixed-length strings:
v abcxyz
v abcxyzb

v abcxyzbb

v abcxyzbb..b'

While trailing blanks in the column data are insignificant, trailing blanks in the
LIKE predicate are significant. The following example, in whichb represents a
blank character, applies to when the LIKE predicate contains one or more trailing
blanks.
SELECT C1
FROM T1
WHERE C1 LIKE ’%xyzbb’;

This LIKE predicate will not match the following fixed-length strings:
v abcxyz
v abcxyzb

v abcxyzbb

v abcxyzbbb

The following example applies to when the LIKE predicate contains one or more
single characters (_) in the last position.
SELECT C1
FROM T1
WHERE C1 LIKE ’%xyz_’;

318 SQL Reference

|
|
|
|

|

|

|

|

|

|

|
|
|
|

|
|
|
|

|
|

|
|
|

|

|

|

|

|

|
|
|
|

|
|
|

|

|

|

|

|

|
|

|
|
|

This LIKE predicate will not match the following fixed-length strings, because they
are all stripped to the 'abcxyz' string:
v abcxyz
v abcxyzb

v abcxyzbb

v abcxyzbb..b

The following example applies to when the LIKE predicate contains more than one
single character (_) in the last position.
SELECT C1
FROM T1
WHERE C1 LIKE ’%xyz__’;

This LIKE predicate will not match the following fixed-length strings:
v abcxyz
v abcxyzb

v abcxyzbb

v abcxyzbb..b

The following example applies to when the LIKE predicate contains more than one
single character (_) and a string of zero or more characters (%) are in the last
positions.
SELECT C1
FROM T1
WHERE C1 LIKE ’%xyz_%_’;
This

This LIKE predicate will not match the following fixed-length strings:
v abcxyz
v abcxyzb

v abcxyzbb

v abcxyzbb..b

If the column data contains all blanks, every blank, except the blank in character
position one, is stripped before the LIKE predicate is applied. For example, a
CHAR(6) column contains the following values:

bbbbbb

The following LIKE predicates will match:
v LIKE 'b'
v LIKE '_'
v LIKE '%'

The following LIKE predicates will not match:
v LIKE 'bbbbbbb'
v LIKE 'bbbb___'
v LIKE '_______'

Chapter 2. Language elements 319

|
|

|

|

|

|

|
|

|
|
|

|

|

|

|

|

|
|
|

|
|
|
|

|

|

|

|

|

|
|
|

|

|

|

|

|

|

|

|

|

NULL predicate
The NULL predicate tests for null values.

�� expression IS NULL
NOT

��

The result of a NULL predicate cannot be unknown. If the value of the expression
is null, the result is true. If the value is not null, the result is false. If NOT is
specified, the result is reversed.

A parameter marker must not be specified for or within the expression.

Example 1: The following predicate is true whenever PHONENO has the null
value, and is false otherwise.

PHONENO IS NULL

Example 2: The following predicate is true whenever the array MYARRAY has the
null value, and is false otherwise.

MYARRAY IS NULL

320 SQL Reference

|
|

|

|

XMLEXISTS predicate
The XMLEXISTS predicate tests whether an XQuery expression returns a sequence
of one or more items.

�� XMLEXISTS (xquery-expression-constant �

�

�

,
BY REF (1)

PASSING xquery-argument

) ��

Notes:

1 xquery-context-item-expression must not be specified more than one time.

xquery-argument

�� xquery-context-item-expression
xquery-context-item-expression AS identifier

��

xquery-expression-constant
Specifies a character string constant that is interpreted as an XQuery expression
using supported XQuery language syntax. See DB2 XML Guide for information
about the XQuery language syntax. xquery-expression-constant cannot be an
XQuery updating expression. The XQuery expression is evaluated with the
arguments specified in xquery-argument. xquery-expression-constant must not be
an empty string or a string of all blanks.

PASSING
Specifies input values and the manner in which these values are passed to the
XQuery expression specified by xquery-expression-constant.

BY REF
Specifies that the XML input value arguments are to be passed by reference.
When XML values are passed by reference, the XQuery evaluation uses the
input node trees, preserving all properties including the original node
identities and document order. If two arguments pass the same XML value,
node identity comparisons and document ordering comparisons that involve
some nodes that are contained between the two input arguments might refer to
nodes within the same XML node tree.

This clause has no impact on how non-XML values are passed. The non-XML
values create a new copy of the value during the cast to XML.

xquery-argument
Specifies an argument to use in the evaluation of the XQuery expression
specified by xquery-expression-constant. A query argument is an expression that
returns a value that is XML, integer, decimal, or a character or graphic string
that is not a LOB. xquery-argument must not return ROWID, TIMESTAMP,

Chapter 2. Language elements 321

binary string, REAL, DECFLOAT data types, or a character string data type
that is bit data, and must not reference a sequence expression or a
OLAP-specification.

An argument specifies a value and the manner in which that value is to be
passed. How an argument in the PASSING clause is used in the XQuery
expression depends on whether the argument is specified as the
xquery-context-item-expression or an xquery-variable-expression. The argument
includes an SQL expression that is evaluated before passing the result to the
XQuery expression.
v If the resulting value is an XML value, it becomes an input-xml-value. It is

passed by reference which means that the original values, not copies, are
used in the evaluation of the XQuery expression.

v If the resulting value is not an XML value, the result of the expression must
be able to be cast to an XML value. The cast value becomes an
input-xml-value. An empty string is converted to an XML empty string.

v If the resulting value is a null value, it is converted to an XML empty
sequence if the argument is xquery-variable-expression. If the argument is
xquery-context-expression, the XMLEXISTS predicates returns unknown.

xquery-context-item-expression
xquery-context-item-expression specifies the initial context item in the XQuery
expression specified by xquery-expression-constant. The value of the initial
context item is the result of xquery-context-item-expression cast to XML.
xquery-context-item-expression must not be specified more than one time.

xquery-context-item-expression must not be a sequence of more than one
item. If the result of xquery-context-item-expression is an empty string, the
XQuery expression is evaluated with the initial context item set to an XML
empty string.

If the xquery-context-item-expression is not specified or is an empty string,
the initial context item in the XQuery expression is undefined, and the
XQuery expression must not reference the initial context item. An XQuery
variable is not created for the context item expression.

If the xquery-context-expression is not specified or the input-xml-value that
results from the xquery-context-expression is an XML empty sequence, the
initial context item is undefined. If the XQuery expression refers to the
initial context item, it must be specified with a value that is not an XML
empty sequence.

xquery-variable-expression
xquery-variable-expression specifies an argument to the XQuery expression.
An XQuery variable is created for each xquery-variable-expression, and the
XQuery variable is set to the result of xquery-argument-expression cast to
XML. If the result of xquery-variable-expression is an empty string, the
XQuery variable is set to an XML empty string. If xquery-variable-expression
is null, the XQuery variable is set to an XML empty sequence. For
example, PASSING T.A + T.B as "sum" creates an XQuery variable named
sum. The scope of the XQuery variables created from the PASSING clause
is the XQuery expression that is specified by xquery-expression-constant.

AS identifier
Specifies that the value that is generated by xquery-variable-expression will be
passed to xquery-expression-constant as an XQuery variable named identifier. The
length of the name must not be longer than 128 bytes. The leading dollar sign
($) that precedes variable names in the XQuery language is not included in

322 SQL Reference

identifier. The name must be an XML NCName that is not the same as identifier
for another xquery-variable-expression in the same PASSING clause.

The result of the predicate is determined as follows:
v The result is unknown if xquery-context-item-expression specified in the PASSING

clause is a NULL value
v the result is false if the result of the XQuery expression is an empty sequence
v the result is true in all other cases

If the evaluation of the XQuery expression results in an error, XMLEXISTS returns
an error. The XMLEXISTS predicate is not supported in ON clause of outer joins.

Example: Find all the purchase orders that buy a baby monitor. This example finds
the product number for baby monitors from the product table and joins the result
to the PurchaseOrders table. It then evaluates the XQuery expression
//item[@partnum = $n] for each row and returns those rows that contain an item
element node with a partNum attribute that is equal to the product number of
‘Baby Monitor'. The context item for the XQuery expression is PO.POrder. An
XQuery variable, $n, is created and initialized to the value of S.prodno:

SELECT S.prodno, count(*) as result
FROM PurchaseOrders PO, Products S
WHERE XMLEXISTS (’//item[@partNum = $n]’

PASSING PO.POrder,
S.prodno AS "n")

AND S.prod_name = ’Baby Monitor’;

The results might be similar to the following:
Prodno result

926-AA 1

Chapter 2. Language elements 323

Search conditions
A search condition specifies a condition that is true, false, or unknown about a given
row or group. When the condition is true, the row or group qualifies for the
results. When the condition is false or unknown, the row or group does not
qualify.

�� predicate
NOT SELECTIVITY numeric-constant

(search-condition)

�

� �

AND predicate
OR NOT (search-condition)

��

Description

SELECTIVITY numeric-constant
Specifies the expected selectivity percentage for the predicate. You can
specify the SELECTIVITY clause only when the predicate contains one of
the indexable spatial predicate functions and the predicate is in the form of
spatial-predicate-function operator expression, where operator is either
= or <. The selectivity value must be an integer or decimal constant value
in the range from 0 to 1 (inclusive). For example, if you specify 0.01, the
spatial predicate function is expected to filter out all but one percent of all
the rows in the table. An error is returned if the SELECTIVITY clause is
specified for a non-spatial predicate function.

The result of a search condition is derived by application of the specified logical
operators (AND, OR, NOT) to the result of each specified predicate. If logical
operators are not specified, the result of the search condition is the result of the
specified predicate.

AND and OR are defined in the following table, in which P and Q are any
predicates:

Table 55. Truth table for AND and OR

P Q P and Q P or Q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

324 SQL Reference

Table 55. Truth table for AND and OR (continued)

P Q P and Q P or Q

Unknown False False Unknown

Unknown Unknown Unknown Unknown

NOT(true) is false and NOT(false) is true, but NOT(unknown) is still unknown.
The NOT logical operator has no affect on an unknown condition. The result of
NOT(unknown) is still unknown.

Search conditions within parentheses are evaluated first. If the order of evaluation
is not specified by parentheses, NOT is applied before AND, and AND is applied
before OR. The order in which operators at the same precedence level are
evaluated is undefined to allow for optimization of search conditions.

Example 1: In the first of the search conditions below, AND is applied before OR. In
the second, OR is applied before AND.

SALARY>:SS AND COMM>:CC OR BONUS>:BB
SALARY>:SS AND (COMM>:CC OR BONUS>:BB)

Example 2: In the first of the search conditions below, NOT is applied before AND.
In the second, AND is applied before NOT.

NOT SALARY>:SS AND COMM>:CC
NOT (SALARY>:SS AND COMM>:CC)

Example 3: For the following search condition, AND is applied first. After the
application of AND, the OR operators could be applied in either order without
changing the result. DB2 can therefore select the order of applying the OR
operators.

SALARY>:SS AND COMM>:CC OR BONUS>:BB OR SEX=:GG

Options affecting SQL
Certain DB2 precompiler or coprocessor options (referred to as SQL processing
options), DB2 subsystem parameters (set through the installation panels), bind
options, options for CREATE PROCEDURE and ALTER PROCEDURE statements
for native SQL procedures, and special registers affect how SQL statements can be
composed or determine how SQL statements are processed.

The following table summarizes the effect of these options and shows where to
find more information. (Some of the items are described in detail following the
table, while other items are described elsewhere.)

Chapter 2. Language elements 325

Table 56. Summary of items affecting composition and processing of SQL statements

SQL processing option Other1 Affects

DYNAMICRULES bind option or
the native SQL procedures option

The rules that DB2 applies to dynamic SQL statements.
For details about authorization, see “Authorization IDs
and dynamic SQL” on page 75. The option can also
affect decimal point representation, string delimiters,
and decimal arithmetic.

For details about how DB2 applies the options to
dynamic SQL statements when DYNAMICRULES bind,
define, or invoke behavior is in effect, see “SQL
processing options for dynamic statements” on page
327.

USE FOR DYNAMICRULES Use of options for dynamic statements when
DYNAMICRULES bind, define, or, invoke behavior is
in effect. For details, see “SQL processing options for
dynamic statements” on page 327.

COMMA
PERIOD

DECIMAL POINT IS Representation of decimal points in SQL statements.

For details, see “Decimal point representation” on page
328.

APOSTSQL
QUOTESQL

SQL STRING DELIMITER Representation of string delimiters in SQL statements.

For details, see “Apostrophes and quotation marks as
string delimiters” on page 330.

ASCII CCSID A numeric value that determines the CCSID of ASCII
string data.

For details, see “Mixed data in character strings” on
page 331.

EBCDIC CCSID A numeric value that determines the CCSID of
EBCDIC string data and whether Katakana characters
can be used in ordinary identifiers.

For details, see “Katakana characters for EBCDIC” on
page 331.

UNICODE CCSID A numeric value that determines the CCSID of
Unicode string data.

For details, see “Mixed data in character strings” on
page 331.

CCSID
MIXED DATA Use of ASCII or EBCDIC character strings with a

mixture of SBCS and DBCS characters.

For details, see “Mixed data in character strings” on
page 331.

DATE
TIME

DATE FORMAT
TIME FORMAT
LOCAL DATE LENGTH
LOCAL TIME LENGTH

Formatting of datetime strings.

For details, see “Formatting of datetime strings” on
page 332.

STDSQL Conformance with the SQL standard.

For details, see “SQL standard language” on page 332.

326 SQL Reference

Table 56. Summary of items affecting composition and processing of SQL statements (continued)

SQL processing option Other1 Affects

NOFOR or STDSQL Whether the FOR UPDATE clause must be specified (in
the SELECT statement of the DECLARE CURSOR
statement).

For details, see “Positioned updates of columns” on
page 333.

CONNECT Whether the rules for the CONNECT(1) or
CONNECT(2) SQL processing option apply.

For details about the SQL processing option, see DB2
Application Programming and SQL Guide.

SQLRULES bind option Whether a CONNECT statement is processed with DB2
rules or SQL standard rules.

CURRENT RULES special register Whether the statements ALTER TABLE, CREATE
TABLE, GRANT, and REVOKE are processed with DB2
rules or SQL standard rules. For details, see
“CURRENT RULES” on page 189.

Whether DB2 automatically creates the LOB table
space, auxiliary table, and index on the auxiliary table
for a LOB column in a base table. For details, see
Creating a table with LOB columns.

Whether DB2 automatically creates an index on a
ROWID column that is defined with GENERATED BY
DEFAULT. For details, see the description of the clause
for “CREATE TABLE” on page 1388.

Whether an external stored procedure runs as a main
or subprogram. For details, see “CREATE
PROCEDURE (external)” on page 1319.

SQLRULES bind option or
CURRENT RULES special
register

Whether SQLCODE +236 is issued when the SQLDA
provided on DESCRIBE or PREPARE INTO is too small
and the result columns do not involve LOBs or distinct
types. For details, see “DESCRIBE” on page 1590 and
“SQL descriptor area (SQLDA)” on page 2079.

DEC
DECIMAL ARITHMETIC or
CURRENT PRECISION special
register

Whether DEC15 or DEC31 rules are used when both
operands in a decimal operation have 15 digits or less.

For details, see “Arithmetic with two decimal
operands” on page 244.

Note: 1 The entries in this column are fields on installation panels unless otherwise noted.

For further details on SQL processing options, see DB2 Application Programming and
SQL Guide. For more details on bind options, see DB2 Command Reference.

SQL processing options for dynamic statements
Generally, dynamic statements use the application programming defaults specified
on installation panel DSNTIPF. However, if the value of installation panel field
USE FOR DYNAMICRULES is NO and DYNAMICRULES bind, define, or invoke
behavior is in effect, certain SQL processing options are used instead of the
application programming defaults.

Chapter 2. Language elements 327

The following SQL processing options are used instead of the application
programming defaults:
v COMMA or PERIOD
v APOST or QUOTE
v APOSTSQL or QUOTESQL
v DEC(15) or DEC(31)

For some languages, the SQL processing option defaults to a value and no
alternative is allowed. If the value of installation panel field USE FOR
DYNAMICRULES is YES, dynamic statements use the application programming
defaults regardless of the value of DYNAMICRULES option.

For additional information on the effect of SQL processing options and application
programming defaults on:
v Decimal point representation, see “Decimal point representation.”
v String delimiters, see “Apostrophes and quotation marks as string delimiters” on

page 330.
v Decimal arithmetic, see “Arithmetic with two decimal operands” on page 244.

For a list of the DYNAMICRULES option values that specify run, bind, define, or
invoke behavior, see Table 6 on page 75.

DECFLOAT rounding mode
All views and SQL functions referenced in an SQL statement must either not have
rounding mode information stored in the SYSENVIRONMENT catalog, or they
must all have the same rounding mode information in the SYSENVIRONMENT
catalog.

Decimal point representation
Decimal points in SQL statements are represented with either periods or commas.

Two values control the representation:
v The value of field DECIMAL POINT IS on installation panel DSNTIPF, which

can be a comma (,) or period (.)
v COMMA or PERIOD, which are mutually exclusive SQL processing options for

COBOL

These values apply to SQL statements as follows:
v For a distributed operation, the decimal point is the first of the following values

that applies:
– The decimal point value specified by the requester
– The value of field DECIMAL POINT IS on panel DSNTIPF at the DB2 where

the package is bound
v Otherwise:

– For static SQL statements:
- In a COBOL program, the SQL processing option COMMA or PERIOD

determines the decimal point representation for every static SQL statement.
If neither SQL processing option is specified, the value of DECIMAL
POINT IS at precompilation time determines the representation.

- In non-COBOL programs, the decimal representation for static SQL
statements is always the period.

– For dynamic SQL statements:

328 SQL Reference

- If DYNAMICRULES run behavior applies, the decimal point is the value of
field DECIMAL POINT IS on installation panel DSNTIPF at the local DB2
when the statement is prepared.
For a list of the DYNAMICRULES option values that specify run, bind,
define, or invoke behavior, see Table 6 on page 75.

- If DYNAMICRULES bind, define, or invoke behavior applies, and the value
of installation panel field USE FOR DYNAMICRULES is YES, the decimal
point is the value of field DECIMAL POINT IS.
If bind, define, or invoke behavior applies, and field USE FOR DYNAMIC
RULES is NO, the SQL processing option determines the decimal point
representation. For COBOL programs, which supports SQL processing
option COMMA or PERIOD, the decimal point representation is
determined as described above for static SQL statements in COBOL
programs. For programs written in other host languages, the default SQL
processing option, which can only be PERIOD, is used.

If the comma is the decimal point, these rules apply:
v In any context, a comma intended as a separator must be followed by a space.

Such commas could appear, for example, in a VALUES clause, an IN predicate,
or an ORDER BY clause in which numbers are used to identify columns.

v In any context, a comma intended as a decimal point must not be followed by a
space.

v If the DECIMAL POINT IS field (and not the SQL processing option) determines
the comma as the decimal point, DB2 will recognize either a comma or a period
as the decimal point in numbers in dynamic SQL.

Chapter 2. Language elements 329

Apostrophes and quotation marks as string delimiters
SQL processing options and DB2 installation panel fields control the representation
of string delimiters in COBOL and SQL statements.

The following SQL processing options control the representation of string
delimiters:
v APOST and QUOTE are mutually exclusive SQL processing options for COBOL.

Their meanings are exactly what they are for the COBOL compilers:
– APOST names the apostrophe (') as the string delimiter in COBOL statements.
– QUOTE names the quotation mark (") as the string delimiter.
Neither option applies to SQL syntax. Do not confuse them with the APOSTSQL
and QUOTESQL options.

v APOSTSQL and QUOTESQL are mutually exclusive SQL processing options for
COBOL. Their meanings are:
– APOSTSQL names the apostrophe (') as the string delimiter and the quotation

mark (") as the escape character in SQL statements.
– QUOTESQL names the quotation mark (") as the string delimiter and the

apostrophe (') as the escape character in SQL statements.

These values apply to SQL statements as follows:
v For a distributed operation, the string delimiter is the first of the following

values that applies:
– The SQL string delimiter value specified by the requester
– The value of the field SQL STRING DELIMITER on installation panel

DSNTIPF at the DB2 where the package is bound
v Otherwise:

– For static SQL statements:
In a COBOL program, the SQL processing option APOSTSQL or QUOTESQL
determines the string delimiter and escape character. If neither SQL
processing option is specified, the value of field SQL STRING DELIMITER on
installation panel DSNTIPF determines the string delimiter and escape
character.
In a non-COBOL program, the string delimiter is the apostrophe, and the
escape character is the quotation mark.

– For dynamic SQL statements:
- If DYNAMICRULES run behavior applies, the string delimiter and escape

character is the value of field SQL STRING DELIMITER on installation
panel DSNTIPF at the local DB2 when the statement is prepared.
For a list of the DYNAMICRULES option values that specify run, bind,
define, or invoke behavior, see Table 6 on page 75.

- If DYNAMICRULES bind, define, or invoke behavior applies and the value
of installation panel field USE FOR DYNAMICRULES is YES, the string
delimiter and escape character is the value of field SQL STRING
DELIMITER.
If bind, define, or invoke behavior applies and USE FOR DYNAMICRULES
is NO, the SQL processing option determines the string delimiter and
escape character. For COBOL programs, SQL processing option APOSTSQL
or QUOTESQL determines the string delimiter and escape character. If
neither SQL processing option is specified, the value of field SQL STRING
DELIMITER determines them. For programs written in other host

330 SQL Reference

languages, the default SQL processing option, which can only be
APOSTSQL, determines the string delimiter and escape character.

Katakana characters for EBCDIC
Ordinary identifiers with an EBCDIC encoding scheme can contain Katakana
characters if the DB2 installation is set to allow it.

The field EBCDIC CCSID on installation panel DSNTIPF determines the system
CCSIDs for EBCDIC-encoded data. Ordinary identifiers with an EBCDIC encoding
scheme can contain Katakana characters if the field contains the value 5026 or 930.
There are no corresponding SQL processing options. EBCDIC CCSID applies
equally to static and dynamic statements. For dynamically prepared statements, the
applicable value is always the one at the local DB2.

Mixed data in character strings
Mixed character data and graphic data are always allowed for Unicode, but for
EBCDIC and ASCII, the specific installation of DB2 determines whether mixed data
can be used.

The field MIXED DATA on installation panel DSNTIPF can have the value YES or
NO for ASCII or EBCDIC character strings. The value YES indicates that character
strings can contain a mixture of SBCS and DBCS characters. The value NO
indicates that they cannot. Mixed character data and graphic data are always
allowed for Unicode; that is the MIXED DATA field does not have an effect on
Unicode data.

For static SQL statements, the value of the CCSID SQL processing option or the
derived CCSID for the DB2 coprocessor determines whether ASCII or EBCDIC
character strings can contain mixed data. If a mixed CCSID is used, mixed strings
are allowed. If a single-byte CCSID is used, mixed strings are not allowed.

For dynamic SQL statements, the CCSID that is selected to convert the dynamic
statement text to UTF-8 determines whether ASCII or EBCDIC character strings
can contain mixed data. The CCSID for a dynamic statement is determined from
the SQLDA override (if any) for the host variable on the PREPARE statement, the
value of the CURRENT ENCODING SCHEME special register, and the
ENCODING bind option.

The value of MIXED DATA affects the parsing of SQL character string constants,
the execution of the LIKE predicate, and the assignment of character strings to host
variables when truncation is needed. It can also affect concatenation, as explained
in “Expressions with the concatenation operator” on page 250. A value that applies
to a statement executed at the local DB2 also applies to any statement executed at
another server. An exception is the LIKE predicate, for which the applicable value
of MIXED DATA is always the one at the statement's server.

The value of MIXED DATA also affects the choice of system CCSIDs for the local
DB2 and the choice of data subtypes for character columns. When this value is
YES, multiple CCSIDs are available for ASCII and EBCDIC data (SBCS, DBCS, and
MIXED). The CCSID specified in the ASCII CCSID or EBCDIC CCSID field is the
MIXED CCSID. In this case, DB2 derives the SBCS and MIXED CCSIDs from the
DBCS CCSID specified installation panel DSNTIPF. Moreover, a character column
can have any one of the allowable data subtypes—BIT, SBCS, or MIXED.

Chapter 2. Language elements 331

On the other hand, when MIXED DATA is NO, the only ASCII or EBCDIC system
CCSIDs are those for SBCS data. Therefore, only BIT and SBCS can be data
subtypes for character columns.

Formatting of datetime strings
The format for a datetime string that is in effect for a statement that is executed at
the local DB2 is not necessarily in effect for a statement that is executed at a
different server.

Fields on installation panel DSNTIP4 (DATE FORMAT, TIME FORMAT, LOCAL
DATE LENGTH, and LOCAL TIME LENGTH) and SQL processing options affect
the formatting of datetime strings.

The formatting of datetime strings is described in “String representations of
datetime values” on page 101. Unlike the subsystem parameters and options
previously described, a value in effect for a statement executed at the local DB2 is
not necessarily in effect for a statement executed at a different server. See
“Restrictions on the use of local datetime formats” on page 105 for more
information.

SQL standard language
DB2 SQL and the SQL standard are not identical. The STDSQL SQL processing
option addresses some of the differences.
v STDSQL(NO) indicates that conformance with the SQL standard is not intended.

The default is the value of field STD SQL LANGUAGE on installation panel
DSNTIP4 (which has a default of NO).

v STDSQL(YES)17 indicates that conformance with the SQL standard is intended.

When a program is precompiled with the STDSQL(YES) option, the following rules
apply:

Declaring host variables: All host variable declarations except in Java and REXX
must lie between pairs of BEGIN DECLARE SECTION and END DECLARE
SECTION statements:

BEGIN DECLARE SECTION
-- one or more host variable declarations
END DECLARE SECTION

Separate pairs of these statements can bracket separate sets of host variable
declarations.

Declarations for SQLCODE and SQLSTATE: The programmer must declare host
variables for either SQLCODE or SQLSTATE, or both. SQLCODE should be
defined as a fullword integer and SQLSTATE should be defined as a 5-byte
character string. SQLCODE and SQLSTATE cannot be part of any structure. The
variables must be declared in the DECLARE SECTION of a program; however,
SQLCODE can be declared outside of the DECLARE SECTION when no host
variable is defined for SQLSTATE. For PL/I, an acceptable declaration can look like
this:

DECLARE SQLCODE BIN FIXED(31);
DECLARE SQLSTATE CHAR(5);

17. STDSQL(86) is a synonym, but STDSQL(YES) should be used.

332 SQL Reference

In Fortran programs, the variable SQLCOD should be used for SQLCODE, and
either SQLSTATE or SQLSTA can be used for SQLSTATE.

Definitions for the SQLCA: An SQLCA must not be defined in your program,
either by coding its definition manually or by using the INCLUDE SQLCA
statement. When STDSQL(YES) is specified, the DB2 precompiler or coprocessor
automatically generates an SQLCA that includes the variable name SQLCADE
instead of SQLCODE and SQLSTAT instead of SQLSTATE. After each SQL
statement executes, DB2 assigns status information to SQLCODE and SQLSTATE,
whose declarations are described above, as follows:
v SQLCODE: DB2 assigns the value in SQLCADE to SQLCODE. In Fortran,

SQLCAD and SQLCOD are used for SQLCADE and SQLCODE, respectively.
v SQLSTATE: DB2 assigns the value in SQLSTAT to SQLSTATE. (In Fortran,

SQLSTT and SQLSTA are used for SQLSTAT and SQLSTATE, respectively.)
v No declaration for either SQLSTATE or SQLCODE: DB2 assigns the value in

SQLCADE to SQLCODE.

If the precompiler or coprocessor encounters an INCLUDE SQLCA statement, it
ignores the statement and issues a warning message. The precompiler or
coprocessor also does not recognize hand-coded definitions, and a hand-coded
definition creates a compile-time conflict with the generated definition. A similar
conflict arises if definitions of SQLCADE or SQLSTAT, other than the ones
generated by the DB2 precompiler or coprocessor, appear in the program.

Positioned updates of columns
Certain SQL processing options affect the use of the FOR UPDATE clause to
achieve positioned column updates.

The NOFOR SQL processing option affects the use of the FOR UPDATE clause.
The NOFOR option is in effect when either of the following are true:
v The NOFOR option is specified.
v The STDSQL(YES) option is in effect.

Otherwise, the NOFOR option is not in effect. The following table summarizes the
differences when the option is in effect and when the option is not in effect:

Table 57. The NOFOR SQL processing option

When NOFOR is in effect When NOFOR is not in effect

The use of the FOR UPDATE clause in the
SELECT statement of the DECLARE
CURSOR statement is optional. This clause
restricts updates to the specified columns
and causes the acquisition of update locks
when the cursor is used to fetch a row. If no
columns are specified, positioned updates
can be made to any updatable columns in
the table or view that is identified in the first
FROM clause in the SELECT statement. If the
FOR UPDATE clause is not specified,
positioned updates can be made to any
columns that the program has DB2 authority
to update.

The FOR UPDATE clause must be specified.

Chapter 2. Language elements 333

Table 57. The NOFOR SQL processing option (continued)

When NOFOR is in effect When NOFOR is not in effect

DBRMs must be built entirely in virtual
storage, which might possibly increase the
virtual storage requirements of the DB2
precompiler or coprocessor. However,
creating DBRMs entirely in virtual storage
might cause concurrency problems with
DBRM libraries.

DBRMs can be built incrementally using the
DB2 precompiler or coprocessor.

SQL processing options do not affect ODBC behavior.

Mappings from SQL to XML
DB2 maps SQL to XML data according to industry standards and performs several
different mappings.

To construct XML data from SQL data, the following mappings are performed:
v SQL character sets to XML character sets
v SQL identifiers to XML names
v SQL data values to XML data values

DB2 maps SQL to XML data according to industry standards. For complete
information, see Information technology - Database languages - SQL- Part 14:
XML-Related Specifications (SQL/XML) ISO/IEC 9075-14:2003.

Mapping SQL character sets to XML character sets
The character set used for XML data is Unicode UTF-8. SQL character data is
converted into Unicode when it is used in XML built-in functions.

Mapping SQL identifiers to XML names
Many SQL identifiers that contain certain characters must be escaped when the
SQL identifier is converted into an XML name.

Strings that start with 'XML', in any case combination, are reserved for
standardization, and characters such as '#', '{', and '}' are not allowed in XML
names. Many SQL identifiers containing these characters have to be escaped when
converting into XML names.

Full escaping is applied to SQL identifiers that are column names to derive an
XML name. The mapping converts a colon (:) to _x003A_, _x to _X005F_x, and
other restricted characters to a string of the form _xUUUU_ where xUUUU_ is the
Unicode value for the character. An identifier with an initial 'xml' (in any case
combination) is escaped by mapping the initial 'x' or 'X' to _x0058_ or _0078_,
respectively, while the partially escaped variant does not.

Mapping SQL data values to XML data values
SQL data values are mapped to XML values based on SQL data types.

The following data types are not supported and cannot be used as arguments to
XML value constructors:
v ROWID
v Character strings that are defined with the FOR BIT DATA attribute

334 SQL Reference

v Binary strings
v A string or a binary string distinct type that is based on a ROWID, FOR BIT

DATA character string, or BLOB

For supported data types, the encoding scheme for XML values is Unicode.

Chapter 2. Language elements 335

336 SQL Reference

Chapter 3. Functions

A function is an operation denoted by a function name followed by zero or more
input values that are enclosed in parentheses. It represents a relationship between
a set of input values and a set of result values. The input values to a function are
called arguments.

The types of functions are aggregate, scalar, and table. A built-in function is
classified as a aggregate function or a scalar function. A user-defined function can
be a column, scalar, or table function.

If a column mask is used to mask the column values in the final result table and a
column mask is applied to a column that is an argument for a function, the result
of the function might be different because the column mask is applied to the
column before the function operation can take place. For example, applying a
column mask to column SSN can change the result of the aggregate function,
COUNT(DISTINCT SSN). The DISTINCT operation is performed on the masked
column values.

OLAP specification and functions
The RANK, DENSE_RANK, and ROW_NUMBER specifications are
sometimes referred to as built-in 'functions'. Refer to “OLAP specification”
on page 282 for more information on these specifications.

DB2 MQSeries functions
DB2 MQSeries functions integrate MQSeries messaging operations within
SQL statements. The functions help you integrate MQSeries messaging
with database applications. You can use the functions to access MQSeries
messaging from within SQL statements and to combine MQSeries
messaging with DB2 database access.

The functions can be scalar or table functions. For more information on
using MQSeries functions, see the information on enabling MQSeries
functions in DB2 Installation Guide and on programming techniques in DB2
Application Programming and SQL Guide.

Administrative task scheduler functions
The administrative task scheduler table functions provide information and
status about the tasks that are scheduled to run using the administrative
task scheduler. The administrative task scheduler provides the ability to
run stored procedures, JCL jobs, and other administrative tasks according
to a time or an event-based schedule. Refer to DB2 Administration Guide for
additional information about the administrative task scheduler.

The following table lists the functions that DB2 supports.

Table 58. Supported functions

Function name Description

ABS Returns the absolute value of its argument

ACOS Returns the arc cosine of an argument as an angle, expressed in
radians

ADD_MONTHS Returns a date that represents the date argument plus the number of
months argument

© Copyright IBM Corp. 1982, 2013 337

Table 58. Supported functions (continued)

Function name Description

ADMIN_TASK_LIST Returns a table with one row for each of the tasks that are defined in
the administrative task scheduler task list

ADMIN_TASK_STATUS Returns a table with one row for each task in the administrative task
scheduler task list that contains the status for the last time the task
was run

ASCII Returns the ASCII code value of the leftmost character of the
argument as an integer

ASCII_CHR Returns the character that corresponds to the ASCII code value that
is specified by the argument

ASCII_STR Returns an ASCII version of the character or graphic string argument.

ASIN Returns the arc sine of an argument as an angle, expressed in radians

ATAN Returns the arc tangent of an argument as an angle, expressed in
radians

ATANH Returns the hyperbolic arc tangent of an argument as an angle,
expressed in radians

ATAN2 Returns the arc tangent of x and y coordinates as an angle, expressed
in radians

AVG Returns the average of a set of numbers

BLOB Returns a BLOB representation of its argument

BIGINT Returns a big integer representation of its argument

BITAND, BITANDNOT, BITOR, BITXOR, and
BITNOT

Return a corresponding base 10 integer value in a data type that is
based on the data type of the input arguments.

BINARY Returns a fixed-length binary string representation of its argument

CCSID_ENCODING Returns the encoding scheme of a CCSID with a value of ASCII,
EBCDIC, UNICODE, or UNKNOWN

CEILING Returns the smallest integer greater than or equal to the argument

CHAR Returns a fixed-length character string representation of its argument

CHARACTER_LENGTH Returns the length of its argument in the number of string units that
are specified

CLOB Returns a CLOB representation of its argument

COALESCE Returns the first argument in a set of arguments that is not null

COLLATION_KEY Returns a string that represents the collation key of the argument in
the specified collation

COMPARE_DECFLOAT Returns a SMALLINT value that indicates whether two arguments
are equal, or unordered, or whether one argument is greater than the
other.

CONCAT Returns the concatenation of two strings

CONTAINS Returns a result about whether or not a match was found during a
search of a text search index

CORRELATION Returns the coefficient of the correlation of a set of number pairs

COS Returns the cosine of an argument that is expressed as an angle in
radians

COSH Returns the hyperbolic cosine of an argument that is expressed as an
angle in radians

COUNT Returns the number of rows or values in a set of rows or values

338 SQL Reference

Table 58. Supported functions (continued)

Function name Description

COUNT_BIG Same as COUNT, except the result can be greater than the maximum
value of an integer

COVARIANCE or COVARIANCE_SAMP Returns the (population) covariance of a set of number pairs

DATE Returns a date derived from its argument

DAY Returns the day part of its argument

DAYOFMONTH Similar to DAY

DAYOFWEEK Returns an integer in the range of 1 to 7, where 1 represents Sunday

DAYOFWEEK_ISO Returns an integer in the range of 1 to 7, where 1 represents Monday

DAYOFYEAR Returns an integer in the range of 1 to 366, where 1 represents
January 1

DAYS Returns an integer representation of a date

DBCLOB Returns a DBCLOB representation of its argument

DECIMAL or DEC Returns a decimal representation of its argument

DECFLOAT Returns a DECFLOAT representation of its argument

DECFLOAT_FORMAT Returns a DECFLOAT(34) value that is based on the interpretation of
the input string using the specified format.

DECFLOAT_SORTKEY Returns a binary value that can be used when sorting DECFLOAT
values

DECODE Returns a specified result-expression based on a comparison of input
expressions (similar to the CASE expression).

DECRYPT_BINARY, DECRYPT_BIT,
DECRYPT_CHAR, or DECRYPT_DB

Returns the decrypted value of an encrypted argument

DEGREES Returns the number of degrees for an argument that is expressed in
radians

DIFFERENCE Returns a value that represents the difference between the sounds of
two strings based on applying the SOUNDEX function to the strings.

DIGITS Returns a character string representation of a number

DOUBLE or
DOUBLE_PRECISION

Returns a double precision floating-point representation of its
argument

DSN_XMLVALIDATE Returns an XML value that is the result of applying XML schema
validation to the first argument.

EBCDIC_CHR Returns the character that corresponds to the EBCDIC code value
that is specified by the argument

EBCDIC_STR Returns an EBCDIC version of the string argument

ENCRYPT_TDES Returns the argument as an encrypted value

EXP Returns the exponential function of an argument

EXTRACT Returns a portion of a date or timestamp based on its arguments

FLOAT Same as DOUBLE

FLOOR Returns the largest integer that is less than or equal to the argument

GENERATE_UNIQUE Returns a character string of bit data that is unique compared to any
other execution of the function

GETHINT Returns the embedded password hint from encrypted data, if one
exists

Chapter 3. Functions 339

Table 58. Supported functions (continued)

Function name Description

GETVARIABLE Returns a varying-length character string representation of the value
of a session variable

GRAPHIC Returns a fixed-length graphic string representation of its argument

HEX Returns a hexadecimal representation of its argument

HOUR Returns the hour part of its argument

IDENTITY_VAL_LOCAL Returns the most recently assigned value for an identity column

IFNULL Returns the first argument in a set of two arguments that is not null

INSERT Returns a string that is composed of an argument inserted into
another argument at the same position where some number of bytes
have been deleted

INTEGER or INT Returns an integer representation of its argument

JULIAN_DAY Returns an integer that represents the number of days from January
1, 4712 B.C.

LAST_DAY Returns a date that represents the last day of the month of the date
argument

LCASE Returns a string with the characters converted to lowercase

LEFT Returns a string that consists of the specified number of leftmost
bytes or the specified string units

LENGTH Returns the length of its argument

LN Returns the natural logarithm of an argument

LOCATE Returns the starting position of one string within another string

LOCATE_IN_STRING Returns the starting position of the first occurrence of one string
within another string

LOG10 Returns the base 10 logarithm of an argument

LOWER Returns a string with the characters converted to lowercase

LPAD Returns a string that is padded on the left with blanks or a specified
string

LTRIM Returns the characters of a string with the leading blanks or
hexadecimal zeros removed

MAX (aggregate) Returns the maximum value in a set of column values

MAX (scalar) Returns the maximum value in a set of values

MICROSECOND Returns the microsecond part of its argument

MIDNIGHT_SECONDS Returns an integer in the range of 0 to 86400 that represents the
number of seconds between midnight and the argument

MIN (aggregate) Returns the minimum value in a set of column values

MIN (scalar) Returns the minimum value in a set of values

MINUTE Returns the minute part of its argument

MOD Returns the remainder of one argument divided by a second
argument

MONTH Returns the month part of its argument

MONTHS_BETWEEN Returns an estimate of the number of months between two
arguments

MQREAD Returns a message from a specified MQSeries location (return value
of VARCHAR) without removing the message from the queue

340 SQL Reference

Table 58. Supported functions (continued)

Function name Description

MQREADALL Returns a table containing the messages and message metadata from
a specified MQSeries location with a VARCHAR column and without
removing the messages from the queue

MQREADALLCLOB Returns a table containing the messages and message metadata from
a specified MQSeries location with a CLOB column and without
removing the messages from the queue

MQREADCLOB Returns a message from a specified MQSeries location (return value
of CLOB) without removing the message from the queue

MQRECEIVE Returns a message from a specified MQSeries location (return value
of VARCHAR) with removal of message from the queue

MQRECEIVEALL Returns a table containing the messages and message metadata from
a specified MQSeries location with a VARCHAR column and with
removal of messages from the queue

MQRECEIVEALLCLOB Returns a table containing the messages and message metadata from
a specified MQSeries location with a CLOB column and with removal
of messages from the queue

MQRECEIVECLOB Returns a message from a specified MQSeries location (return value
of CLOB) with removal of message from the queue

MQSEND Sends data to a specified MQSeries location, and returns a
varying-length character string that indicates whether the function
was successful or unsuccessful

MULTIPLY_ALT Returns the product of the two arguments as a decimal value, used
when the sum of the argument precisions exceeds 31

NEXT_DAY Returns a timestamp that represents the first weekday, specified by
the second argument, after the date argument

NORMALIZE_DECFLOAT Returns a DECFLOAT value that is the result of normalizing the
input argument

NORMALIZE_STRING Returns a string value that is the result of normalizing the input
Unicode value

NULLIF Returns NULL if the arguments are equal; else the first argument

NVL Returns the first argument that is not null.

OVERLAY Returns a string that is composed of an argument inserted into
another argument at the same position where some number of bytes
have been deleted

POSITION Returns the position of the first occurrence of an argument within
another argument where the position is expressed in terms of the
string units that are specified

POSSTR Returns the position of the first occurrence of an argument within
another argument

POWER Returns the value of one argument raised to the power of a second
argument

QUANTIZE Returns a DECFLOAT value that is equal in value (except for any
rounding) and sign to the first argument and which has an exponent
set to be equal to the exponent of the second argument

QUARTER Returns an integer in the range of 1 to 4 that represents the quarter
of the year for the date specified in the argument

RADIANS Returns the number of radians for an argument that is expressed in
degrees

Chapter 3. Functions 341

Table 58. Supported functions (continued)

Function name Description

RAISE_ERROR Raises an error in the SQLCA with the specified SQLSTATE and error
description

RAND Returns a double precision floating-point random number

REAL Returns a single precision floating-point representation of its
argument

REPEAT Returns a character string composed of an argument repeated a
specified number of times

REPLACE Returns a string in which all occurrences of an argument within a
second argument are replaced with a third argument

RID Returns the RID of a row

RIGHT Returns a string that consists of the specified number of rightmost
bytes or specified string unit

ROUND Returns a number rounded to the specified number of places to the
right or left of the decimal place

ROUND_TIMESTAMP Returns a timestamp rounded to the unit specified by the timestamp
format string

ROWID Returns a row ID representation of its argument

RPAD Returns a string that is padded on the right with blanks or a
specified string

RTRIM Returns the characters of an argument with the trailing blanks or
hexadecimal zeros removed

SCORE Returns a relevance score that measures how well a document
matches the query used to search a text search index

SECOND Returns the second part of its argument

SIGN Returns the sign of an argument

SIN Returns the sine of an argument that is expressed as an angle in
radians

SINH Returns the hyperbolic sine of an argument that is expressed as an
angle in radians

SMALLINT Returns a small integer representation of its argument

SOAPHTTPC or SOAPHTTPV Returns a CLOB or VARCHAR representation of XML data from a
request to a web service

SOAPHTTPNC or SOAPHTTPNV Returns a complete CLOB or VARCHAR representation of XML data
from a complete request to a web service

SOUNDEX Returns a value that represents the sound of the words in the
argument.

SPACE Returns a string that consists of the number of blanks the argument
specifies

SQRT Returns the square root of its argument

STDDEV or STDDEV_SAMP Returns the standard deviation (/n), or the sample standard
deviation (/n-1), of a set of numbers

STRIP Returns the characters of a string with the blanks (or specified
character) at the beginning, end, or both beginning and end of the
string removed

SUBSTR Returns a substring of a string

SUBSTRING Returns a substring of a string using the specified string units

342 SQL Reference

Table 58. Supported functions (continued)

Function name Description

SUM Returns the sum of a set of numbers

TAN Returns the tangent of an argument that is expressed as an angle in
radians

TANH Returns the hyperbolic tangent of an argument that is expressed as
an angle in radians

TIME Returns a time derived from its argument

TIMESTAMP Returns a timestamp derived from its arguments

TIMESTAMPADD Returns a timestamp derived from adding the specified interval to a
timestamp

TIMESTAMP_FORMAT Returns a timestamp for a character string expression, using a
specified format to interpret the string

TIMESTAMP_ISO Returns a timestamp derived from its arguments

TIMESTAMPDIFF Returns an estimated number of the specified intervals based on the
difference between two timestamps

TIMESTAMP_TZ Returns a timestamp with a time zone derived from its arguments

TO_CHAR Returns a character string representation of a timestamp value that
has been formatted using a specified character template.

TO_DATE Returns a timestamp value that is based on the interpretation of the
input string using the specified format.

TO_NUMBER Returns a DECFLOAT(34) value that is based on the interpretation of
the input string using the specified format.

TOTALORDER Returns a SMALLINT value that indicates the comparison order of
two arguments

TRANSLATE Returns a string with one or more characters translated

TRUNCATE Returns a number truncated to the specified number of places to the
right or left of the decimal point

TRUNC_TIMESTAMP Returns a timestamp truncated to the unit specified by the timestamp
format string

UCASE Returns a string with the characters converted to uppercase

UNICODE Returns the Unicode (UTF-16) code value of the leftmost character of
the argument as an integer

UNICODE_STR Returns a string in Unicode (UTF-8 or UTF-16) that represents a
Unicode encoding of the argument

UPPER Returns a string with the characters converted to uppercase

VALUE Same as COALESCE

VARBINARY Returns a varying-length binary string representation of its argument

VARCHAR Returns the varying-length character string representation of its
argument

VARCHAR_FORMAT Returns a varying-length character string representation of a
timestamp, with the string in a specified format

VARGRAPHIC Returns a varying-length graphic string representation of its
argument

VARIANCE or VARIANCE_SAMP Returns the variance, or sample variance, of a set of numbers

Chapter 3. Functions 343

Table 58. Supported functions (continued)

Function name Description

VERIFY_GROUP_FOR_USER Returns a value that indicates whether the primary authorization ID
and the group authorization IDs that are associated with the first
argument are included in the authorization names that are specified
in the list of the second argument.

VERIFY_ROLE_FOR_USER Returns a value that indicates whether the roles that are associated
with the first argument are included in the role names that are
specified in the list of the second argument.

VERIFY_TRUSTED_CONTEXT_FOR_USER Returns a value that indicates whether the authorization ID that is
associated with first argument has acquired a role in a trusted
connection and whether that acquired role is included in the role
names that are specified in the list of the second argument.

WEEK Returns an integer that represents the week of the year with Sunday
as the first day of the week

WEEK_ISO Returns an integer that represents the week of the year with Monday
as first day of a week

XMLAGG Returns an XML type that represents a concatenation of XML
elements from a collection of XML elements

XMLATTRIBUTES Returns an XML sequence that contains an XQuery attribute node for
each non-null argument

XMLCOMMENT Returns an XML value with a single comment node from a string
expression

XMLCONCAT Returns an XML value that represents a forest of XML elements
generated by concatenating a variable number of arguments

XMLDOCUMENT Returns an XML value with a single document node and zero or
more nodes as its children

XMLELEMENT Returns an XML value that represents an XML element

XMLFOREST Returns an XML value that represents a forest of XML elements that
all share a specific pattern

XMLMODIFY Returns an XML value that might have been modified by the
evaluation of an XQuery updating expression and XQuery variables
that are specified as input arguments.

XMLNAMESPACES Returns the declaration of one or more XML namespaces

XMLPARSE Returns an XML value from parsing the argument as an XML
document

XMLPI Returns an XML value with a single processing instruction node

XMLQUERY Returns an XML value from the evaluation of an XPath expression
against a set of arguments

XMLSERIALIZE Returns an SQL character string or a BLOB value from an XML value

XMLTABLE Returns a result table from the evaluation of XQuery expressions,
possibly using specified input arguments as XQuery variables

XMLTEXT Returns an XML value with a single text node that contains the value
of the argument

YEAR Returns the year part of its argument

344 SQL Reference

Aggregate functions
An aggregate function receives a set of values for each argument (such as the
values of a column) and returns a single-value result for the set of input values.
Certain rules apply to all aggregate functions.

The following information applies to all aggregate functions, except for the
COUNT(*) and COUNT_BIG(*), variations of the COUNT and COUNT_BIG
functions, and the XMLAGG function.

The argument of an aggregate function is a set of values derived from an
expression. The expression must not include another aggregate function or a scalar
fullselect. The scope of the set is a group or an intermediate result table, as
explained in the information on the GROUP BY clause.

If a GROUP BY clause is specified in a query and the intermediate result from the
FROM, WHERE, GROUP BY, and HAVING clauses is the empty set, then the
aggregate functions are not applied and the result of the query is the empty set.

If the GROUP BY clause is not specified in a query and the intermediate result
table of the FROM, WHERE, and HAVING clauses is the empty set, then the
aggregate functions are applied to the empty set.

For example, the result of the following SELECT statement is the number of
distinct values of JOB for employees in department D11:

SELECT COUNT(DISTINCT JOB)
FROM DSN8B10.EMP
WHERE WORKDEPT = ’D11’;

The keyword DISTINCT is not an argument of the function but rather a
specification of an operation that is performed before the function is applied. If
DISTINCT is specified, redundant duplicate values are eliminated. If ALL is
implicitly or explicitly specified, redundant duplicate values are not eliminated.
DISTINCT must not be specified preceding an XML value.

For compatibility with other SQL implementations, UNIQUE can be specified as a
synonym for DISTINCT in aggregate functions.

When interpreting the DISTINCT clause for decimal floating-point values that are
numerically equal, the number of significant digits in the value is not considered.
For example, the decimal floating-point number 123.00 is not distinct from the
decimal floating-point number 123. The representation of the number returned
from the query will be any one of the representations encountered (for example,
either 123.00 or 123).

An aggregate function can be used in a WHERE clause only if that clause is part of
a subquery of a HAVING clause and the column name specified in the expression
is a correlated reference to a group. If the expression includes more than one
column name, each column name must be a correlated reference to the same
group.

The result of the COUNT and COUNT_BIG functions cannot be the null value. As
specified in the description of AVG, MAX, MIN, STDDEV, SUM, and VARIANCE,
the result is the null value when the function is applied to an empty set. However,
the result is also the null value when the function is specified in an outer select

Chapter 3. Functions 345

list, the argument is given by an arithmetic expression, and any evaluation of the
expression causes an arithmetic exception (such as division by zero).

If the argument values of an aggregate function are strings from a column with a
field procedure, the function is applied to the encoded form of the values and the
result of the function inherits the field procedure.
Related reference:
“group-by-clause” on page 797

346 SQL Reference

ARRAY_AGG
The ARRAY_AGG function returns an array in which each value of the input set is
assigned to an element of the array.

��

�

ARRAY_AGG(expression)
,

ASC
ORDER BY sort-key-expression

DESC

��

sort-key-expression

�� column-name
expression

��

The schema is SYSIBM.

expression
Specifies an expression that returns a value with a data type that is valid for
an array element. The data type of the expression must be a data type that can
be specified in a CREATE TYPE (array) statement.

ORDER BY
Specifies the order of the rows from the same grouping set that are processed
in the aggregation. If the ORDER BY clause is not specified, or if the ORDER
BY clause cannot differentiate the order of the sort key value, the rows in the
same grouping set are arbitrarily ordered.

sort-key-expression
Specifies a sort key value that is either a column name or an expression.

If the sort key value is a constant, the constant does not refer to the
position of the output column, but is simply a constant, which implies that
there is no sort key.

ASC Processes the sort key in ascending order. This is the default
option.

DESC Processes the sort key in descending order.

The result data type of ARRAY_AGG is an array. The result is an ordinary array.
The data type of an array element of the result array is the same as the type of
expression.

If the result of an ARRAY_AGG function is assigned to a target variable through a
SELECT INTO statement, the result of the ARRAY_AGG function is converted to
the data type of the target variable.

Chapter 3. Functions 347

|

|
|

|

||||||||||||||||||||||||||||||

|
||

|
|

||||||||||||||

|
||

|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

||
|

||

|
|
|

|
|
|

If a SELECT clause includes multiple invocations of the ARRAY_AGG function, all
invocations of ARRAY_AGG in the SELECT clause that explicitly specify an
ORDER BY clause must specify the same order.

The ARRAY_AGG function can be invoked only in SQL PL, in the following
contexts:
v The SELECT list of a SELECT INTO statement
v The SELECT list of the outermost fullselect in the definition of a cursor that is

not scrollable
v The SELECT list of a scalar subquery that provides a source value for a SET

assignment-statement or SQL PL assignment-statement

v A RETURN statement in an SQL scalar function

The following restrictions apply to ARRAY_AGG:
v ARRAY_AGG cannot be used as part of an OLAP specification.
v A fullselect that contains an invocation of ARRAY_AGG cannot contain an

ORDER BY clause.
v A fullselect that contains an invocation of ARRAY_AGG cannot contain a

DISTINCT keyword in its SELECT list.
v The SELECT clause or HAVING clause of the fullselect that contains an

invocation of ARRAY_AGG cannot contain a subquery.
v A SELECT clause that includes an invocation of the ARRAY_AGG function that

returns an array of LOBs must not also include a GROUP BY clause.
v A SELECT clause that includes an invocation of the ARRAY_AGG function must

not also include an invocation of the XMLAGG function.

Example 1: Use ARRAY_AGG in an assignment statement to assign the values of
the DECIMALARRAY array to the array INTARRAY.
SET INTARRAY = (SELECT ARRAY_AGG(VAL) FROM UNNEST(DECIMALARRAY) AS T(VAL));

Example 2: Use ARRAY_AGG in a SELECT INTO statement to assign the values of
the ESALARIES array to the array ARRAY2.
SELECT ARRAY_AGG(T.VAL) INTO ARRAY2 FROM UNNEST(ESALARIES) AS T(VAL);

Example 3: Suppose that user-defined type PHONELIST and table EMPLOYEE
have the following definitions:
CREATE TYPE PHONELIST AS DECIMAL(10,0) ARRAY[10];

CREATE TABLE EMPLOYEE (ID INTEGER NOT NULL,
PRIORITY INTEGER NOT NULL,
PHONENUMBER DECIMAL(10,0),
PRIMARY KEY(ID, PRIORITY)) ;

The following SQL PL procedure uses a SELECT INTO statement that returns a list
of contact numbers under which an employee can be reached, ordered by priority.
CREATE PROCEDURE GETPHONENUMBERS
(IN EMPID INTEGER,
OUT NUMBERS PHONELIST)
BEGIN
SELECT ARRAY_AGG(PHONENUMBER ORDER BY PRIORITY)
INTO NUMBERS
FROM EMPLOYEE
WHERE ID = EMPID;
END

348 SQL Reference

|
|
|

|
|

|

|
|

|
|

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

The following SQL PL procedure uses SET assignment-statement to return the list of
contact numbers in an arbitrary order.
CREATE PROCEDURE GETPHONENUMBERS
(IN EMPID INTEGER,
OUT NUMBERS PHONELIST)
BEGIN
SET NUMBERS =
(SELECT ARRAY_AGG(PHONENUMBER)

FROM EMPLOYEE
WHERE ID = EMPID);

END

Chapter 3. Functions 349

|
|

|
|
|
|
|
|
|
|
|

AVG
The AVG function returns the average of a set of numbers.

��
ALL

AVG(numeric-expression)
DISTINCT

��

The schema is SYSIBM.

The argument values can be of any built-in numeric data type, and their sum must
be within the range of the data type of the result.

The arguments can also be a character string or graphic string data type. The string
input is implicitly cast to a numeric value of DECFLOAT(34).

The data type of the result is determined as follows:
v DECFLOAT(34) if the argument is DECFLOAT(n).
v Large integer is the argument is small integer.
v Double precision floating-point is the argument is single precision floating-point.
v Otherwise, the result is the same as the data type of the argument.

The result can be null.

If the data type of the argument values is decimal with precision p and scale s, the
precision (P) and scale (S) of the result depend on p and the decimal precision
option:
v If p is greater than 15 or the DEC31 option is in effect, P is 31 and S is

max(0,28-p+s).
v Otherwise, P is 15 and S is 15-p+s.

The function is applied to the set of values derived from the argument values by
the elimination of null values. If DISTINCT is specified, redundant duplicate
values are also eliminated.

If the function is applied to an empty set, the result is the null value. Otherwise,
the result is the average value of the set. The order in which the summation part of
the operation is performed is undefined but every intermediate result must be
within the range of the result data type.

If the type of the result is integer, the fractional part of the average is lost.

Example: Assuming DEC15, set the DECIMAL(15,2) variable AVERAGE to the
average salary in department D11 of the employees in the sample table
DSN8B10.EMP.

EXEC SQL SELECT AVG(SALARY)
INTO :AVERAGE
FROM DSN8B10.EMP
WHERE WORKDEPT = ’D11’;

350 SQL Reference

CORRELATION
The CORRELATION function returns the coefficient of the correlation of a set of
number pairs.

�� CORRELATION(expression-1,expression-2) ��

The schema is SYSIBM.

The argument values must each be the value of any built-in numeric data type.

If an argument is DECFLOAT(n), the result of the function is DECFLOAT(34).
Otherwise, the result of the function is double precision floating-point. The result is
between -1 and 1. The result can be null.

The function is applied to the set of (expression-1, expression-2) pairs derived from
the argument values by the elimination of all pairs for which either expression-1 or
expression-2 is null.

If the function is applied to an empty set, or if either STDDEV(expression-1) or
STDDEV(expression-2) is equal to zero, the result is a null value. Otherwise, the
result is the correlation coefficient for the value pairs in the set. The result is
equivalent to the following expression:
COVARIANCE(expression-1,expression-2)/

(STDDEV(expression-1)* STDDEV(expression-2))

The order in which the values are aggregated is undefined, but every intermediate
result must be within the range of the result data type.

CORR can be specified as a synonym for CORRELATION.

Example: Using sample table DSN8B10.EMP, set the host variable :corrln
(double-precision floating point) to the correlation between the salary and the
bonus for those employees in department (WORKDEPT) 'A00'.

SELECT CORRELATION(SALARY, BONUS) INTO :corrln
FROM DSN8B10.EMP WHERE WORKDEPT = ’A00’;

:corrln is set to approximately 9.99853953399538E-001.

Chapter 3. Functions 351

COUNT
The COUNT function returns the number of rows or values in a set of rows or
values.

��
ALL

COUNT(expression)
DISTINCT

*

��

The schema is SYSIBM.

The argument values can be of any built-in data type other than a BLOB, CLOB,
DBCLOB, or XML.

The result is a large integer. The result cannot be null.

The argument of COUNT(*) is a set of rows. The result is the number of rows in the
set. Any row that includes only null values is included in the count.

The argument of COUNT(expression) or COUNT(ALL expression) is a set of values.
The function is applied to the set of values derived from the argument values by
the elimination of null values. The result is the number of nonnull values in the
set, including duplicates.

The argument of COUNT(DISTINCT expression) is a set of values. The function is
applied to the set of values derived from the argument values by the elimination
of null values and redundant duplicate values. The result is the number of
different nonnull values in the set.

Example 1: Set the integer host variable FEMALE to the number of females
represented in the sample table DSN8B10.EMP.

EXEC SQL SELECT COUNT(*)
INTO :FEMALE
FROM DSN8B10.EMP
WHERE SEX = ’F’;

Example 2: Set the integer host variable FEMALE_IN_DEPT to the number of
departments that have at least one female as a member.

EXEC SQL SELECT COUNT(DISTINCT WORKDEPT)
INTO :FEMALE_IN_DEPT
FROM DSN8B10.EMP
WHERE SEX = ’F’;

352 SQL Reference

COUNT_BIG
The COUNT_BIG function returns the number of rows or values in a set of rows
or values. It is similar to COUNT except that the result can be greater than the
maximum value of an integer.

��
ALL

COUNT_BIG(expression)
DISTINCT

*

��

The schema is SYSIBM.

The argument values can be of any built-in data type other than a BLOB, CLOB,
DBCLOB, or XML.

The result of the function is a decimal number with precision 31 and scale 0. The
result cannot be null.

The argument of COUNT_BIG(*) is a set of rows. The result is the number of rows in
the set. A row that includes only null values is included in the count.

The argument of COUNT_BIG(expression) or COUNT_BIG(ALL expression is a set of
values. The function is applied to the set of values derived from the argument
values by the elimination of null values. The result is the number of nonnull
values in the set, including duplicates.

The argument of COUNT_BIG(DISTINCT expression) is a set of values. The function
is applied to the set of values derived from the argument values by the elimination
of null and redundant duplicate values. The result is the number of different
nonnull values in the set.

Example 1: Set the integer host variable FEMALE to the number of females
represented in the sample table DSN8B10.EMP.

EXEC SQL SELECT COUNT_BIG(*)
INTO :FEMALE
FROM DSN8B10.EMP
WHERE SEX = ’F’;

Example 2: Set the integer host variable FEMALE_IN_DEPT to the number of
departments that have at least one female as a member.

EXEC SQL SELECT COUNT_BIG(DISTINCT WORKDEPT)
INTO :FEMALE_IN_DEPT
FROM DSN8B10.EMP
WHERE SEX = ’F’;

Example 3: To create a sourced function that is similar to the built-in COUNT_BIG
function, the definition of the sourced function must include the type of the
column that can be specified when the new function is invoked. In this example,
the CREATE FUNCTION statement creates a sourced function that takes a CHAR
column as input and uses COUNT_BIG to perform the counting. The result is

Chapter 3. Functions 353

returned as a double precision floating-point number. The query shown counts the
number of unique departments in the sample employee table.

CREATE FUNCTION RICK.COUNT(CHAR()) RETURNS DOUBLE
SOURCE SYSIBM.COUNT_BIG(CHAR());

SET CURRENT PATH RICK, SYSTEM PATH;
SELECT COUNT(DISTINCT WORKDEPT) FROM DSN8B10.EMP;

The empty parenthesis in the parameter list for the new function (RICK.COUNT)
means that the input parameter for the new function is the same type as the input
parameter for the function named in the SOURCE clause. The empty parenthesis in
the parameter list in the SOURCE clause (SYSIBM.COUNT_BIG) means that the
length attribute of the CHAR parameter of the COUNT_BIG function is ignored
when DB2 locates the COUNT_BIG function.

354 SQL Reference

COVARIANCE or COVARIANCE_SAMP
The COVARIANCE and COVARIANCE_SAMP functions return the covariance
(population) of a set of number pairs.

�� COVARIANCE (expression-1,expression-2)
COVARIANCE_SAMP

��

The schema is SYSIBM.

The argument values must each be the value of any built-in numeric data type.

If an argument is DECFLOAT(n), the result of the function is DECFLOAT(34).
Otherwise, the result of the function is double precision floating-point. The result
can be null.

The function is applied to the set of (expression-1, expression-2) pairs that are
derived from the argument values by the elimination of all pairs for which either
expression-1 or expression-2 is null.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the covariance of the value pairs in the set. The result is equivalent to the
following outputs:

For COVARIANCE:
1. Let avgexp1 be the result of AVG(expression-1) and let avgexp2 be the result of

AVG(expression-2).
2. The result of COVARIANCE(expression-1,expression-2) is AVG((expression-1 -

avgexp1) * (expression-2 - avgexp2))

For COVARIANCE_SAMP:
1. Let samp_avgexp1 be the result of SUM(expression-1)/n-1 and let samp_avgexp2

be the result of SUM(expression-2)/n-1.
2. The result of COVARIANCE_SAMP(expression-1, expression-2) is

AVG((expression-1 - samp_avgexp1) * (expression-2 - samp_avgexp2))

The order in which the values are aggregated is undefined, but every intermediate
result must be within the range of the result data type.

COVAR can be specified as a synonym for COVARIANCE.

COVAR_SAMP can be specified as a synonym for COVARIANCE_SAMP.

Example: Using sample table DSN8B10.EMP, set the host variable covarnce
(double-precision floating point) to the covariance between the salary and the
bonus for those employees in department (WORKDEPT) 'A00'.

SELECT COVARIANCE(SALARY, BONUS) INTO :covarnce
FROM EMPLOYEE WHERE WORKDEPT = ’A00’;

covarnce is set to approximately 1.68888888888889E+006.

Chapter 3. Functions 355

MAX
The MAX function returns the maximum value in a set of values.

��
ALL

MAX(expression)
DISTINCT

��

The schema is SYSIBM.

The arguments must be compatible. For more information on compatibility, refer to
the compatibility matrix in Table 23 on page 121. All arguments except the first
argument can be parameter markers.

This function cannot be used as a source function when creating a user-defined
function.

expression
An expression that returns the value of a built-in data type. Each expression
must return a value that is not a CLOB, DBCLOB, BLOB, ROWID, or XML.
Character string arguments and binary string arguments cannot have a length
attribute greater than 32704, and graphic string arguments cannot have a
length attribute greater than 16352.

If there are any mixed character string or graphic string and numeric
arguments, the string value is implicitly cast to a DECFLOAT(34) value.

The result of the function is the largest argument value. The data type of the result
and its other attributes (for example, the length and CCSID of a string or a
datetime value) are the same as the data type and attributes of the argument
values. The result can be null.

The function is applied to the set of values derived from the argument values by
the elimination of null values.

If the function is applied to an empty set, the result is the null value. Otherwise,
the result is the maximum value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Example 1: Set the DECIMAL(8,2) variable MAX_SALARY to the maximum
monthly salary of the employees represented in the sample table DSN8B10.EMP.

EXEC SQL SELECT MAX(SALARY) / 12
INTO :MAX_SALARY
FROM DSN8B10.EMP;

Example 2: Find the surname that comes last in the collating sequence for the
employees represented in the sample table DSN8B10.EMP. Set the VARCHAR(15)
variable LAST_NAME to that surname.

EXEC SQL SELECT MAX(LASTNAME)
INTO :LAST_NAME
FROM DSN8B10.EMP;

356 SQL Reference

|
|
|

|
|
|
|

MIN
The MIN function returns the minimum value in a set of values.

��
ALL

MIN(expression)
DISTINCT

��

The schema is SYSIBM.

The arguments must be compatible. For more information on compatibility, refer to
the compatibility matrix in Table 23 on page 121. All arguments except the first
argument can be parameter markers.

This function cannot be used as a source function when creating a user-defined
function.

expression
An expression that returns the value of a built-in data type. Each expression
must return a value that is not a CLOB, DBCLOB, BLOB, ROWID, or XML.
Character string arguments and binary string arguments cannot have a length
attribute greater than 32704, and graphic string arguments cannot have a
length attribute greater than 16352.

If there are any mixed character string or graphic string and numeric
arguments, the string value is implicitly cast to a DECFLOAT(34) value.

The result of the function is the smallest argument value. The data type of the
result and its other attributes (for example, the length and CCSID of a string or a
datetime value) are the same as the data type and attributes of the argument
values. The result can be null.

The function is applied to the set of values derived from the argument values by
the elimination of null values.

If the function is applied to an empty set, the result is the null value. Otherwise,
the result is the minimum value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Example 1: Set the DECIMAL(15,2) variable MIN_SALARY to the minimum
monthly salary of the employees represented in the sample table DSN8B10.EMP.

EXEC SQL SELECT MIN(SALARY) / 12
INTO :MIN_SALARY
FROM DSN8B10.EMP;

Example 2: Find the surname that comes first in the collating sequence for the
employees represented in the sample table DSN8B10.EMP. Set the VARCHAR(15)
variable FIRST_NAME to that surname.

EXEC SQL SELECT MIN(LASTNAME)
INTO :FIRST_NAME
FROM DSN8B10.EMP;

Chapter 3. Functions 357

|
|
|

|
|
|
|

STDDEV or STDDEV_SAMP
The STDDEV or STDDEV_SAMP function returns the standard deviation (/n), or
the sample standard deviation (/n-1), of a set of numbers.

��
ALL

STDDEV (numeric-expression)
STDDEV_SAMP DISTINCT

��

The schema is SYSIBM.

The function returns the biased standard deviation (/n) or the sample standard
deviation (/n-1) of a set of numbers, depending on which keyword is specified:

STDDEV
The formula that is used to calculate the biased standard deviation is logically
equivalent to:
STDDEV = SQRT(VAR)

STDDEV_SAMP
The formula that is used to calculate the sample standard deviation is logically
equivalent to:
STDDEV = SQRT(VARIANCE_SAMP)

The argument values must each be the value of any built-in numeric data type,
and their sum must be within the range of the data type of the result.

The arguments can also be a character string or graphic string data type. The string
input is implicitly cast to a numeric value of DECFLOAT(34).

If the argument is DECFLOAT(n), the result of the function is DECFLOAT(34).
Otherwise, the result of the function is double precision floating-point. The result
can be null.

Before the function is applied to the set of values derived from the argument
values, null values are eliminated. If DISTINCT is specified, redundant duplicate
values are also eliminated.

If the function is applied to an empty set, the result is the null value. Otherwise,
the result is the standard deviation of the values in the set.

The order in which the values are aggregated is undefined, but every intermediate
result must be within the range of the result data type.

STDDEV_POP can be specified as a synonym for STDDEV.

Example: Using sample table DSN8B10.EMP, set the host variable DEV, which is
defined as double precision floating-point, to the standard deviation of the salaries
for the employees in department 'A00' (WORKDEPT='A00').

SELECT STDDEV(SALARY)
INTO :DEV
FROM DSN8B10.EMP
WHERE WORKDEPT = ’A00’;

358 SQL Reference

For this example, host variable DEV is set to a double precision float-pointing
number with an approximate value of '9742.43'.

Chapter 3. Functions 359

SUM
The SUM function returns the sum of a set of numbers.

��
ALL

SUM(numeric-expression)
DISTINCT

��

The schema is SYSIBM.

The argument values can be of any built-in numeric data type, and their sum must
be within the range of the data type of the result.

The arguments can also be a character string or graphic string data type. The string
input is implicitly cast to a numeric value of DECFLOAT(34).

The data type of the result is determined as follows:
v DECFLOAT(34) if the argument is DECFLOAT(n).
v Large integer if the argument is small integer.
v Double precision floating-point if the argument is single precision floating-point.
v Otherwise, the result is the same as the data type of the argument.

The result can be null.

If the data type of the argument values is decimal, the scale of the result is the
same as the scale of the argument values, and the precision of the result depends
on the precision of the argument values and the decimal precision option:
v If the precision of the argument values is greater than 15 or the DEC31 option is

in effect, the precision of the result is min(31,P+10), where P is the precision of
the argument values.

v Otherwise, the precision of the result is 15.

The function is applied to the set of values derived from the argument values by
the elimination of null values. If DISTINCT is specified, redundant duplicate
values are also eliminated.

If the function is applied to an empty set, the result is the null value. Otherwise,
the result is the sum of the values in the set. The order in which the summation is
performed is undefined but every intermediate result must be within the range of
the result data type.

Example: Set the large integer host variable INCOME to the total income from all
sources (salaries, commissions, and bonuses) of the employees represented in the
sample table DSN8B10.EMP. If DEC31 is not in effect, the resultant sum is
DECIMAL(15,2) because all three columns are DECIMAL(9,2).

EXEC SQL SELECT SUM(SALARY+COMM+BONUS)
INTO :INCOME
FROM DSN8B10.EMP;

360 SQL Reference

VARIANCE or VARIANCE_SAMP
The VARIANCE function returns the biased variance (/n) of a set of numbers. The
VARIANCE_SAMP function returns the sample variance (/n-1) of a set of
numbers.

��
ALL

VARIANCE (numeric-expression)
VARIANCE_SAMP DISTINCT

��

The schema is SYSIBM.

The function returns the biased variance (/n) or the sample variance (/n-1) of a set
of numbers, depending on which keyword is specified.

VARIANCE
The formula that is used to calculate the biased variance is logically equivalent
to:
VARIANCE = SUM(X**2)/COUNT(X) - (SUM(X)/COUNT(X))**2

VARIANCE_SAMP
The formula that is used to calculate the sample variance is logically
equivalent to:
VARIANCE_SAMP = (SUM(X**2) - ((SUM(X)**2) / (COUNT(*)))) / (COUNT(*) - 1)

The argument values can be of any built-in numeric type, and their sum must be
within the range of the data type of the result. Before the function is applied to the
set of values derived from the argument values, null values are eliminated. If
DISTINCT is specified, redundant duplicate values are also eliminated.

The arguments can also be a character string or graphic string data type. The string
input is implicitly cast to a numeric value of DECFLOAT(34).

If the argument is DECFLOAT(n), the result of the function is DECFLOAT(34).
Otherwise, the result of the function is double precision floating-point.

The result can be null; if any argument is null, the result is the null value.

Otherwise, the result is the variance of the values in the set.

The order in which the values are added is undefined, but every intermediate
result must be within the range of the result data type.

Alternative syntax and synonyms:

v VAR or VAR_POP can be specified as synonym for VARIANCE
v VAR_SAMP can be specified as a synonym for VARIANCE_SAMP

Example 1: Using sample table DSN8B10.EMP, set host variable VARNCE, which is
defined as double precision floating-point, to the variance of the salaries (SALARY)
for those employees in department (WORKDEPT) 'A00'.

Chapter 3. Functions 361

SELECT VARIANCE(SALARY)
INTO :VARNCE
FROM DSN8B10.EMP
WHERE WORKDEPT = ’A00’;

The result in VARNCE is set to a double precision-floating point number with an
approximate value of '94915000.00'.

If VARIANCE_SAMP had been specified to find the sample variance of the
salaries, the result in VARNCE would be set to a double precision-floating point
number with an approximate value of '94915000.00'.

362 SQL Reference

XMLAGG
The XMLAGG function returns an XML sequence that contains an item for each
non-null value in a set of XML values.

��

�

XMLAGG(XML-expression)
,

ASC
ORDER BY sort-key

DESC

��

sort-key

�� column-name
expression

��

The schema is SYSIBM.

XML-expression
An expression that returns an XML value.

Unlike the arguments for other aggregate functions, a scalar fullselect is
allowed in XML-expression.

ORDER BY
Specifies the order of the rows from the same grouping set that are processed
in the aggregation. If the ORDER BY clause is not specified, or if the ORDER
BY clause cannot differentiate the order of the sort key value, the rows in the
same grouping set are arbitrarily ordered.

sort-key
Specifies a sort key value that is either a column name or an expression.
The data type of the column or expression must not be a LOB or an XML
value. A character string expression cannot have a length greater than 4000
bytes. If the sort key value is a constant, it does not refer to the position of
the output column (as in the ordinary ORDER BY clause), but is simply a
constant, which implies no sort key.

The ordering is based on the values of the sort keys, which might or might
not be used in XML-expression.

If the sort key value is a character string that uses an encoding scheme
other than Unicode, the ordering might be different. For example, a
column PRODCODE uses EBCDIC. For two values, ('P001' and 'PA01'),
relationship 'P001' > 'PA01' is true in EBCDIC, whereas 'P001' < 'PA01' is
true in UTF-8. If the same sort key values are used in XML-expression, use
the CAST specification to convert the sort key to Unicode to keep the
ordering of XML values consistent with that of the sort key.

The function is applied to the set of values derived from the argument values by
the elimination of null values.

Chapter 3. Functions 363

The result can be null; if all XML-expression arguments are null. If the function is
applied to an empty set, the result is the null value. Otherwise, the result is an
XML sequence that contains an item for each value in the set.

Example: Group employees by their department, generate a 'Department' element
for each department with its name as the attribute, nest all the 'emp' elements for
employees in each department, and order the 'emp' elements by 'lname.'

SELECT XMLSERIALIZE(XMLDOCUMENT
(XMLELEMENT
(NAME "Department",

XMLATTRIBUTES (e.dept AS "name"),
XMLAGG (XMLELEMENT (NAME "emp", e.lname)

ORDER BY e.lname)
)) AS "dept_list"

AS CLOB(1M))
FROM employees e
GROUP BY dept;

The result of the query would look similar to the following result:
dept_list

<Department name="Accounting">

<emp>SMITH</emp>
<emp>Yates</emp>
</Department>
<Department name="Shipping">
<emp>Martin</emp>
<emp>Oppenheimer</emp>
</Department>
--

364 SQL Reference

Scalar functions
A scalar function can be used wherever an expression can be used. The restrictions
on the use of aggregate functions do not apply to scalar functions, because a scalar
function is applied to single set of parameter values rather than to sets of values.
The argument of a scalar function can be a function. However, the restrictions that
apply to the use of expressions and aggregate functions also apply when an
expression or aggregate function is used within a scalar function. For example, the
argument of a scalar function can be a aggregate function only if a aggregate
function is allowed in the context in which the scalar function is used.

If the argument of a scalar function is a string from a column with a field
procedure, the function applies to the decoded form of the value and the result of
the function does not inherit the field procedure.

Example: The following SELECT statement calls for the employee number, last
name, and age of each employee in department D11 in the sample table
DSN8B10.EMP. To obtain the ages, the scalar function YEAR is applied to the
expression:

CURRENT DATE - BIRTHDATE

in each row of DSN8B10.EMP for which the employee represented is in
department D11:

SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BIRTHDATE)
FROM DSN8B10.EMP
WHERE WORKDEPT = ’D11’;

Chapter 3. Functions 365

ABS
The ABS function returns the absolute value of a number.

�� ABS(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of any built-in numeric
data type.

The arguments can also be a character string or graphic string data type. The string
input is implicitly cast to a numeric value of DECFLOAT(34).

The result of the function has the same data type and length attribute as the
argument.

The result can be null; if the argument is null, the result is the null value.

ABSVAL can be specified as a synonym for ABS. DB2 supports this keyword to
provide compatibility with previous releases.

Example: Assume that host variable PROFIT is a large integer with a value of
-50000. The following statement returns a large integer with a value of 50000.

SELECT ABS(:PROFIT)
FROM SYSIBM.SYSDUMMY1;

366 SQL Reference

ACOS
The ACOS function returns the arc cosine of the argument as an angle, expressed
in radians. The ACOS and COS functions are inverse operations.

�� ACOS(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric
data type except for DECFLOAT. The value must be greater than or equal to -1 and
less than or equal to 1. If the argument is not a double precision floating-point
number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable ACOSINE is DECIMAL(10,9) with a value of
0.070737202. The following statement:

SELECT ACOS(:ACOSINE)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of
1.49.

Chapter 3. Functions 367

ADD_MONTHS
The ADD_MONTHS function returns a date that represents expression plus a
specified number of months.

�� ADD_MONTHS(expression,numeric-expression) ��

The schema is SYSIBM.

expression
An expression that specifies the starting date. expression must return a value
that is a date, timestamp, or a valid string representation of a date or
timestamp. A string representation is a value that is a built-in character string
data type or graphic string data type, that is not a LOB, and that has an actual
length that is not greater than 255 bytes. A time zone in a string representation
of a timestamp is ignored. For the valid formats of string representations of
dates and timestamps, see “String representations of datetime values” on page
101.

If expression is a TIMESTAMP WITH TIME ZONE value, expression is first cast
to a TIMESTAMP WITHOUT TIME ZONE value with the same precision as
expression. If expression is a string, expression is first cast to DATE.

numeric-expression
An expression that returns a value of any built-in numeric data type. The
integer portion of numeric-expression specifies the number of months to add to
the starting date specified by expression.A negative numeric value is allowed.

numeric-expression can also be a character string or graphic string data type.
The string input is implicitly cast to a numeric value of DECFLOAT(34).

If expression is a timestamp with a time zone value, or a valid string representation
of a timestamp with a time zone value, the result is determined from the UTC
representation of the datetime value.

If expression is a timestamp value the result is a TIMESTAMP WITHOUT TIME
ZONE with the same precision as expression. Otherwise, the result is a DATE value.

The result can be null; if any argument is null, the result is the null value.

If expression is the last day of the month or if the resulting month has fewer days
than the day component of expression, the result is the last day of the resulting
month. Otherwise, the result has the same day component as expression. Any hours,
minutes, seconds, or fractional seconds information included in expression is not
changed by the function.

The result CCSID is the appropriate CCSID of the argument encoding scheme and
the result subtype is the appropriate subtype of the CCSID.

Example 1: Assume today is January 31, 2007. Set the host variable ADD_MONTH
with the last day of January plus 1 month.

SET :ADD_MONTH = ADD_MONTHS(LAST_DAY(CURRENT_DATE), 1);

368 SQL Reference

The host variable ADD_MONTH is set with the value representing the end of
February, 2007-02-28.

Example 2: Assume DATE is a host variable with the value July 27, 1965. Set the
host variable ADD_MONTH with the value of that day plus 3 months.

SET :ADD_MONTH = ADD_MONTHS(:DATE,3);

The host variable ADD_MONTH is set with the value representing the day plus 3
months, 1965-10-27.

Example 3: It is possible to achieve similar results with the ADD_MONTHS
function and date arithmetic. The following examples demonstrate the similarities
and contrasts.

SET :DATEHV = DATE(’2008-2-28’) + 4 MONTHS;

SET :DATEHV = ADD_MONTHS(’2008-2-28’, 4);

In both cases, the host variable DATEHV is set with the value '2008–06–29'.

Now consider the same examples but with the date '2008–2–29' as the argument.
SET :DATEHV = DATE(’2008-2-29’) + 4 MONTHS;

The host variable DATEHV is set with the value '2008–06–29'.
SET :DATEHV = ADD_MONTHS(’2008-2-29’, 4);

The host variable DATEHV is set with the value '2008–06–30'.

In this case, the ADD_MONTHS function returns the last day of the month, which
is June 30, 2008, instead of June 29, 2008. The reason is that February 29 is the last
day of the month. So, the ADD_MONTHS function returns the last day of June.

Example 4: Assume TSZ is an SQL variable with the TIMESTAMP WITH TIME
ZONE value 2008-02-29.20.00.00.000000-08.00. Set TIMESZ to the value of that
TIMESTAMP WITH TIME ZONE plus 4 months. The string representation of the
timestamp is first implicitly cast to TIMESTAMP WITHOUT TIME ZONE for the
ADD_MONTHS function. The result of the ADD_MONTHS function does not
contain a time zone.
SET TIMESZ: = ADD_MONTHS(TIMESTAMP_TZ(TSZ), 4);

With the string representation of a timestamp as input, the function returns a
DATE value that represents the timestamp plus 4 months: 2008-06-30.

Example 5: Assume TSZ is a host variable with the value 2008-02-29.20.00.000000
-08.00 which is a string representation of a timestamp with a time zone. Set
TIMESZ to the value of that timestamp with a time zone plus 4 months.

SET TIMESZ: = ADD_MONTHS(:TSZ, 4);

The host variable TIMESZ is set with the value that represents the timestamp with
time zone plus 4 months, 2008-06-30-20.00.00.000000 -8.00.

Chapter 3. Functions 369

ARRAY_DELETE
The ARRAY_DELETE function deletes elements from an array.

�� ARRAY_DELETE(array-expression)
,array-index1

,array-index2

��

The schema is SYSIBM.

array-expression
An SQL variable or SQL parameter of an array type, or a CAST specification of
a parameter marker to an array type.

array-index1
An expression that results in a value that is castable to the data type of the
array index. If array-expression is an ordinary array, array-index1 must be the
null value.

array-index2
An expression that results in a value that is castable to the data type of the
array index. If array-expression is an ordinary array, array-index2 must be the
null value. If array-index2 is specified and is a non-null value, array-index1 must
be a non-null value that is less than the value of array-index2. If array-index2 is
the null value, ARRAY_DELETE is evaluated as if array-index2 was not
specified.

The result of ARRAY_DELETE has the same data type as array-expression.

If array-index1 and array-index2 are not specified, or they are the null value, all of
the elements of array-expression are deleted, and the cardinality of the result array
value is 0. If only array-index1 is specified with a non-null value, the array element
at index value array-index1 is deleted. If array-index2 is specified with a non-null
value, the elements ranging from index value array-index1 to array-index2, inclusive,
are deleted.

The result can be null; if the first argument is null, the result is the null value.

The ARRAY_DELETE function can be invoked only in the following contexts:
v A source value for SET assignment-statement, an SQL PL assignment-statement, or a

VALUES INTO statement
v The value that is returned in a RETURN statement in an SQL scalar function

Notes

Syntax alternatives: CAST (SQL-variable AS array-type) can be specified as an
alternative to SQL-variable. CAST (SQL-parameter AS array-type) can be specified as
an alternative to SQL-parameter.

Example 1: Suppose that ordinary array variable RECENT_CALLS has the array
type PHONENUMBERS. Use ARRAY_DELETE to delete all the elements from
RECENT_CALLS. Assign the result to the RECENT_CALLS array.
SET RECENT_CALLS = ARRAY_DELETE(RECENT_CALLS);

370 SQL Reference

|

|

|

|||||||||||||||||||

|
||

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

|

|
|

|

|

|
|
|

|
|
|

|

After the SET statement is executed, RECENT_CALLS is an empty array, which
has a cardinality of zero.

An equivalent way of setting RECENT_CALLS to an empty array is to use an
array constructor:
SET RECENT_CALLS = ARRAY[];

Example 2: Suppose that PRODUCTS is defined as an associative array type with
VARCHAR values for the array index, and that variables FLOOR_TILES and
REMAINIING_TILES are defined as arrays of the PRODUCTS array type. Use
ARRAY_DELETE to assign the elements from the FLOOR_TILES array variable
that do not have an index value between 'PK5100' and 'PS2500', inclusive, to the
REMAINING_TILES array variable.
SET REMAINING_TILES = ARRAY_DELETE(FLOOR_TILES,’PK5100’,’PS2500’);

Chapter 3. Functions 371

|
|

|
|

|

|
|
|
|
|
|

|

ARRAY_FIRST
The ARRAY_FIRST function returns the minimum array index value of an array.

�� ARRAY_FIRST(array-expression) ��

The schema is SYSIBM.

array-expression
An SQL variable or SQL parameter of an array type, or a CAST specification of
a parameter marker to an array type.

The result of ARRAY_FIRST has the same data type as the array index. If
array-expression is not null, and the array is not empty (the cardinality of the array
is greater than 0), the value of the result is the minimum array index value, which
is 1 for an ordinary array.

The result can be null; if the argument is null, the result is the null value.

If the array is empty (the cardinality of the array is 0), the result is the null value.

Notes

Syntax alternatives: CAST (SQL-variable AS array-type) can be specified as an
alternative to SQL-variable. CAST (SQL-parameter AS array-type) can be specified as
an alternative to SQL-parameter.

Example 1: Suppose that SPECIALNUMBERS is an ordinary array variable, and the
elements of the array are integers. Return the first index value in the array variable
SPECIALNUMBERS to the SQL variable E_CONSTIDX.
SET E_CONSTIDX = ARRAY_FIRST(SPECIALNUMBERS);

The result is 1.

Example 2: Suppose that PHONELIST is an associative array variable with
VARCHAR index values. Values have been assigned to the elements in the array
with the following statements:
SET PHONELIST[’Home’] = ’4443051234’;
SET PHONELIST[’Work’] = ’4443052345’;
SET PHONELIST[’Cell’] = ’4447893456’;

The order in which values are assigned to array elements in an associative array
does not matter. The elements of an associative array are stored in the array
variable in ascending order of the associated array index values. After the values
have been assigned to the PHONELIST array variable using the SET
assignment-statement statements, the elements in the array variable are ordered as
follows:

Index
value Element value
Cell 4447893456
Home 4443051234

372 SQL Reference

|

|

|

|||||||
|
||

|

|
|
|

|
|
|
|

|

|

|

|
|
|

|
|
|

|

|

|
|
|

|
|
|

|
|
|
|
|
|

||
||
||
||

Index
value Element value
Work 4443052345

Assign the value of the first index in the array variable to the character string
variable named X.
SET X = ARRAY_FIRST(PHONELIST);

The value of 'Cell' is assigned to X because 'Cell' is the index value of the first
element in the array variable.

Assign the value of the array element with index X to the SQL variable
NUMBER_TO_CALL.
SET NUMBER_TO_CALL = PHONELIST[X];

The assignment statement assigns the phone number '4447893456' to
NUMBER_TO_CALL.

Chapter 3. Functions 373

|
||
||
|

|
|

|

|
|

|
|

|

|
|

ARRAY_LAST
The ARRAY_LAST function returns the maximum array index value of an array.

�� ARRAY_LAST(array-expression) ��

The schema is SYSIBM.

array-expression
An SQL variable or SQL parameter of an array type, or a CAST specification of
a parameter marker to an array type.

The result of ARRAY_LAST has the same data type as the array index, which is
INTEGER for an ordinary array. If array-expression is not null, and the array is not
empty (the cardinality of the array is greater than 0), the value of the result is the
maximum array index value, which is the current cardinality of the array for an
ordinary array.

The result can be null; if the argument is null, the result is the null value.

If the array is empty (the cardinality of the array is 0), the result is the null value.

Notes

Syntax alternatives: CAST (SQL-variable AS array-type) can be specified as an
alternative to SQL-variable. CAST (SQL-parameter AS array-type) can be specified as
an alternative to SQL-parameter.

Example 1: Suppose that SPECIALNUMBERS is an ordinary array variable, and the
elements of the array are integers. The cardinality of the array is 10. Return the last
index value in the array variable SPECIALNUMBERS to the SQL variable
PI_CONSTIDX.
SET PI_CONSTIDX = ARRAY_LAST(SPECIALNUMBERS);

The result is 10.

Example 2: Suppose that PHONELIST is an associative array variable with
VARCHAR index values. Values have been assigned to the elements in the array
with the following statements:
SET PHONELIST[’Home’] = ’4443051234’;
SET PHONELIST[’Work’] = ’4443052345’;
SET PHONELIST[’Cell’] = ’4447893456’;

The order in which values are assigned to array elements in an associative array
does not matter. The elements of an associative array are stored in the array
variable in ascending order of the associated array index values. After the values
have been assigned to the PHONELIST array variable using the SET
assignment-statement statements, the elements in the array variable are ordered as
follows:

374 SQL Reference

|

|

|

|||||||
|
||

|

|
|
|

|
|
|
|
|

|

|

|

|
|
|

|
|
|
|

|

|

|
|
|

|
|
|

|
|
|
|
|
|

Index
value Element value
Cell 4447893456
Home 4443051234
Work 4443052345

Assign the value of the maximum index in the array variable to the character
string variable named X.
SET X = ARRAY_LAST(PHONELIST);

The value of 'Work' is assigned to X because 'Work' is the index value of the last
element in the array variable.

Assign the value of the array element with index X to the SQL variable
NUMBER_TO_CALL.
SET NUMBER_TO_CALL = PHONELIST[X];

The assignment statement assigns the phone number '4443052345' to
NUMBER_TO_CALL.

Chapter 3. Functions 375

||
||
||
||
||
|

|
|

|

|
|

|
|

|

|
|

ARRAY_NEXT
The ARRAY_NEXT function returns the next larger array index value for an array,
relative to a specified array index argument.

�� ARRAY_NEXT(array-expression,array-index) ��

The schema is SYSIBM.

array-expression
An SQL variable or SQL parameter of an array type, or a CAST specification of
a parameter marker to an array type.

array-index
An expression that results in a value that is castable to the data type of the
array index. Valid values include any valid value for the data type.

array-index must not be an expression that references any of the following
items:
v The CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP special

register
v A nondeterministic function
v A function that is defined with EXTERNAL ACTION
v A function that is defined with MODIFIES SQL DATA
v A sequence expression

The result of ARRAY_NEXT is the next larger array index value defined in the
array, relative to the specified array-index value. If array-index is less than the
minimum index array value in the array, the result is the first array index value
that is defined in the array.

The data type of the result has the same data type as the array index.

The result is null under the following conditions:
v array-expression or array-index is null
v The array that is represented by array-expression is empty (the cardinality of the

array is 0)
v The value of array-index is greater than or equal to the value of the last index in

the array

Notes

Syntax alternatives: CAST (SQL-variable AS array-type) can be specified as an
alternative to SQL-variable. CAST (SQL-parameter AS array-type) can be specified as
an alternative to SQL-parameter.

Example 1: Suppose that SPECIALNUMBERS is an ordinary array variable, and the
elements of the array are integers. The cardinality of SPECIALNUMBERS is 10. Set
the NEXT_CONSTIDX variable to the value of the array index for the
SPECIALNUMBERS array element that follows the array element that is associated
with an array index value of 9.

376 SQL Reference

|

|
|

|

|||||||
|
||

|

|
|
|

|
|
|

|
|

|
|

|

|

|

|

|
|
|
|

|

|

|

|
|

|
|

|

|
|
|

|
|
|
|
|

SET NEXT_CONSTIDX = ARRAY_NEXT(SPECIALNUMBERS,9);

The result is 10.

Example 2: Suppose that PHONELIST is an associative array variable with
VARCHAR index values. Values have been assigned to the elements in the array
with the following statements:
SET PHONELIST[’Home’] = ’4443051234’;
SET PHONELIST[’Work’] = ’4443052345’;
SET PHONELIST[’Cell’] = ’4447893456’;

The order in which values are assigned to array elements in an associative array
does not matter. The elements of an associative array are stored in the array
variable in ascending order of the associated array index values. After the values
have been assigned to the PHONELIST array variable using the SET
assignment-statement statements, the elements in the array variable are ordered as
follows:

Index
value Element value
Cell 4447893456
Home 4443051234
Work 4443052345

Assign the array index value that follows an array index value named 'Fax' to the
character string variable named X.
SET X = ARRAY_NEXT(PHONELIST,’Fax’);

Array index value 'Fax' does not exist, but the string 'Home' follows the string 'Fax'
in sorting order. Therefore, 'Home' is assigned to X.

Assign the value of the array element with index X to the SQL variable
NUMBER_TO_CALL.
SET NUMBER_TO_CALL = PHONELIST[X];

Because the value of X is 'Home', the assignment statement assigns the phone
number '4443052345' to NUMBER_TO_CALL.

Chapter 3. Functions 377

|

|

|
|
|

|
|
|

|
|
|
|
|
|

||
||
||
||
||
|

|
|

|

|
|

|
|

|

|
|

ARRAY_PRIOR
The ARRAY_PRIOR function returns the next smaller array index value for an
array, relative to a specified array index argument.

�� ARRAY_PRIOR(array-expression,array-index) ��

The schema is SYSIBM.

array-expression
An SQL variable or SQL parameter of an array type, or a CAST specification of
a parameter marker to an array type.

array-index
An expression that results in a value that is castable to the data type of the
array index. Valid values include any valid value for the data type.

array-index must not be an expression that references any of the following
items:
v The CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP special

register
v A nondeterministic function
v A function that is defined with EXTERNAL ACTION
v A function that is defined with MODIFIES SQL DATA
v A sequence expression

The result of ARRAY_PRIOR is the next smaller array index value that is defined
in the array, relative to the specified array-index value. If array-index is greater than
the maximum index array value in the array, the result is the last array index value
that is defined in the array.

The data type of the result has the same data type as the array index.

The result is null under the following conditions:
v array-expression or array-index is null.
v The array that is represented by array-expression is empty (the cardinality of the

array is 0).
v The value of array-index is less than or equal to the value of the first index in the

array.

Notes

Syntax alternatives: CAST (SQL-variable AS array-type) can be specified as an
alternative to SQL-variable. CAST (SQL-parameter AS array-type) can be specified as
an alternative to SQL-parameter.

Example 1: Suppose that SPECIALNUMBERS is an ordinary array variable, and the
elements of the array are integers. The cardinality of SPECIALNUMBERS is 10. Set
the PREV_CONSTIDX variable to the value of the array index for the
SPECIALNUMBERS array element that precedes the array element that is
associated with an array index value of 2.

378 SQL Reference

|

|
|

|

|||||||
|
||

|

|
|
|

|
|
|

|
|

|
|

|

|

|

|

|
|
|
|

|

|

|

|
|

|
|

|

|
|
|

|
|
|
|
|

SET PREV_CONSTIDX = ARRAY_PRIOR(SPECIALNUMBERS,2);

The result is 1.

Example 2: Suppose that PHONELIST is an associative array variable with
VARCHAR index values. Values have been assigned to the elements in the array
with the following statements:
SET PHONELIST[’Home’] = ’4443051234’;
SET PHONELIST[’Work’] = ’4443052345’;
SET PHONELIST[’Cell’] = ’4447893456’;

The order in which values are assigned to array elements in an associative array
does not matter. The elements of an associative array are stored in the array
variable in ascending order of the associated array index values. After the values
have been assigned to the PHONELIST array variable using the SET
assignment-statement statements, the elements in the array variable are ordered as
follows:

Index
value Element value
Cell 4447893456
Home 4443051234
Work 4443052345

Assign the array index value that precedes an array index value named 'Fax' to the
character string variable named X.
SET X = ARRAY_PRIOR(PHONELIST,’Fax’);

Array index value 'Fax' does not exist, but the string 'Cell' precedes the string 'Fax'
in sorting order. Therefore, 'Cell' is assigned to X.

Assign the array index value that precedes array index value 'Cell' to the character
string variable named X.
SET X = ARRAY_PRIOR(PHONELIST,’Cell’);

The null value is assigned to X, because there is no array element before the array
element with the index value 'Cell'.

Chapter 3. Functions 379

|

|

|
|
|

|
|
|

|
|
|
|
|
|

||
||
||
||
||
|

|
|

|

|
|

|
|

|

|
|

ASCII
The ASCII function returns the leftmost character of the argument as an integer.

�� ASCII(string-expression) ��

The schema is SYSIBM.

The argument can be any built-in character or graphic string data type, except for
CLOB or DBCLOB. If the argument is an EBCDIC, Unicode, or graphic string, it is
first converted to an SBCS ASCII character string (CCSID 367)18 before the function
is executed.

The argument can also be a numeric data type. The numeric argument is implicitly
cast to a VARCHAR data type.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Example: The following statement returns the ASCII value for the character 'A':
SET :hv = ASCII(’A’);

The host variable, :hv, is set to an integer with the value 65.

18. If the conversion does not exist, the ASCII function will return an error, or a substitution character might be returned.

380 SQL Reference

ASCII_CHR
The ASCII_CHR function returns the character that has the ASCII code value that
is specified by the argument.

�� ASCII_CHR(expression) ��

The schema is SYSIBM.

expression
An expression that returns a built-in data type of BIGINT, INTEGER, or
SMALLINT.

expression can also be a character string or graphic string data type. The string
input is implicitly cast to a numeric value of DECFLOAT(34) which is then
assigned to a BIGINT value.

The result of the function is a fixed length character string encoded in the SBCS
ASCII CCSID (regardless of the setting of the MIXED option in DSNHDECP). The
length of the result is 1. If the value of expression is not in the range of 0 to 255, (0
to 127 if the SBCS ASCII CCSID for this system is CCSID 367) the null value is
returned.

The result can be null; if the argument is null, the result is the null value.

CHR can be specified as a synonym for ASCII_CHR.

Example: Set :hv with the Euro symbol "€" in CCSID 923:
SET :hv = ASCII_CHR(164); -- x’A4’

Set :hv with the Euro symbol "€" in CCSID 1252:
SET :hv = ASCII_CHR(128); -- x’80’

In both cases, the "€" is assigned to :hv, but because the Euro symbol is located at
different code points for the two CCSIDs, the input value is different.

Chapter 3. Functions 381

ASCII_STR
The ASCII_STR function returns an ASCII version of the string in the system ASCII
CCSID. The system ASCII CCSID is the SBCS ASCII CCSID on a MIXED=NO
system or the MIXED ASCII CCSID on a MIXED=YES system.

�� ASCII_STR(string-expression) ��

The schema is SYSIBM.

string-expression
An expression that returns a value of a built-in character or graphic string. A
character string must not be bit data. string-expression must be an ASCII,
EBCDIC, or Unicode string.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

ASCII_STR returns an ASCII version of the string. Non-ASCII characters are
converted to UTF-16 characters and appear in the result in the form \xxxx (or
\xxxx\yyyy for surrogate characters), where xxxx and yyyy represent a UTF-16
code unit.

The length attribute of the result will be MIN((5*n),32704). Where n is the result
of applying the formulas in Table 30 on page 142 based on input and output data
types.

The result of the function is a varying-length character string in the system ASCII
CCSID. If the actual length of the result string exceeds the maximum for the return
type, an error occurs.

The result can be null; if the argument is null, the result is the null value.

ASCIISTR can be specified as a synonym for ASCII_STR.

Example: The following example returns the ACSII string equivalent of the Unicode
(UTF-8) string,
'4869206D616D6520697320D090D0BDD0B4D180D0B5D0B9202020F0908080':
SET :HV1 =
ASCII_STR(X’4869206D616D6520697320D090D0BDD0B4D180D0B5D0B9202020F0908080’);

:HV1 is assigned the value 'Hi, my name is \0410\043D\0434\0440\0435\0439
\D800\DC00'. In this example, the UTF-8 characters D090, D0BD, D0B4, D180,
D0B5, and D0B9 are converted to \0410\043D\0434\0440\0435\0439 and the
non-ASCII character F0908080 is converted to \D800\DC00.

SET :HV1 = ASCII_STR(’Hi, my name is А р е (Andrei)’);

:HV1 is assigned the value "Hi, my name is \0410\043D\0434\0440\0435\0439
(Andrei)"

382 SQL Reference

ASIN
The ASIN function returns the arc sine of the argument as an angle, expressed in
radians. The ASIN and SIN functions are inverse operations.

�� ASIN(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric
data type except for DECFLOAT. The value must be greater than or equal to -1 and
less than or equal to 1. If the argument is not a double precision floating-point
number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

The result is greater than or equal to -π/2 and less than or equal to π/2.

Example: Assume that host variable ASINE is DECIMAL(10,9) with a value of
0.997494987. The following statement:

SELECT ASIN(:ASINE)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of
1.50.

Chapter 3. Functions 383

ATAN
The ATAN function returns the arc tangent of the argument as an angle, expressed
in radians. The ATAN and TAN functions are inverse operations.

�� ATAN(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric
data type that is not DECFLOAT. The value must be greater than or equal to -1
and less than or equal to 1. If the argument is not a double precision floating-point
number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

The result is greater than or equal to -π/2 and less than or equal to π/2.

Example: Assume that host variable ATANGENT is DECIMAL(10,9) with a value of
14.10141995. The following statement returns a double precision floating-point
number with an approximate value of 1.50:

SELECT ATAN(:ATANGENT)
FROM SYSIBM.SYSDUMMY1;

384 SQL Reference

ATANH
The ATANH function returns the hyperbolic arc tangent of a number, expressed in
radians. The ATANH and TANH functions are inverse operations.

�� ATANH(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric
data type that is not DECFLOAT. The value must be greater than -1 and less than
1. If the argument is not a double precision floating-point number, it is converted
to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable HATAN is DECIMAL(10,9) with a value of
0.905148254. The following statement returns a double precision floating-point
number with an approximate value of 1.50:

SELECT ATANH(:HATAN)
FROM SYSIBM.SYSDUMMY1;

Chapter 3. Functions 385

ATAN2
The ATAN2 function returns the arc tangent of x and y coordinates as an angle,
expressed in radians.

�� ATAN2(numeric-expression-1,numeric-expression-2) ��

The schema is SYSIBM.

The first and second arguments specify the x and y coordinates, respectively.

Each argument must be an expression that returns the value of any built-in
numeric data type that is not DECFLOAT. Both arguments must not be 0. Any
argument that is not a double precision floating-point number is converted to one
for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if any argument is null, the result is the null value.

Example: Assume that host variables HATAN2A and HATAN2B are DOUBLE host
variables with values of 1 and 2, respectively. The following statement returns a
double precision floating-point number with an approximate value of 1.1071487:

SELECT ATAN2(:HATAN2A,:HATAN2B)
FROM SYSIBM.SYSDUMMY1;

386 SQL Reference

BIGINT
The BIGINT function returns a big integer representation of either a number or a
character or graphic string representation of a number.

Numeric to Big Integer:

�� BIGINT(numeric-expression) ��

String to Big Integer:

�� BIGINT(string-expression) ��

The schema is SYSIBM.

Numeric to Big Integer

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned
to a big integer column or variable. If the whole part of the argument is not
within the range of big integers, an error is returned. The fractional part of the
argument is truncated.

String to Big Integer

string-expression
An expression that returns a value of a character or graphic string (except a
CLOB and DBCLOB) with a length attribute that is not greater than 255 bytes.
The string must contain a valid string representation of a number.

The result is the same number that would result from CAST(string-expression
AS BIGINT). Leading and trailing blanks are eliminated and the resulting string
must conform to the rules for forming an integer constant. If the whole part of
the argument is not within the range of big integers, an error is returned. Any
fractional part of the argument is truncated.

The result of the function is a big integer.

The result can be null; if the argument is null, the result is the null value.

To increase the portability of applications, use the CAST specification.

Example 1: The following function returns the number 12345 (a BIGINT) for the
number 12345.6:

SELECT BIGINT(12345.6)
FROM SYSIBM.SYSDUMMY1;

Example 2: The following function returns a BIGINT value of 123456789012 for the
number 00123456789012.

Chapter 3. Functions 387

SELECT BIGINT(’00123456789012’)
FROM SYSIBM.SYSDUMMY1;

Related reference:
“CAST specification” on page 267

388 SQL Reference

BINARY
The BINARY function returns a BINARY (fixed-length binary string) representation
of a string of any type or of a row ID type.

�� BINARY(string-expression)
, integer

��

The schema is SYSIBM.

string-expression
An expression that returns a value that is a built-in character string, graphic
string, binary string, or a row ID type.

integer
An integer value that specifies the length attribute of the resulting binary
string. The value must be an integer between 1 and 255 inclusive.

If integer is not specified:
v If the string-expression is the empty string constant, an error occurs
v Otherwise, the length attribute of the result is the same as the length

attribute of string-expression, except when the input is graphic data. In this
case, the length attribute of the result is twice the length of string-expression.

The result of the function is a fixed-length binary string.

The result can be null; if the first argument is null, the result is the null value.

The actual length is the same as the length attribute of the result. If the length of
the string-expression is less than the length of the result, the result is padded with
hexadecimal zeroes up to the length of the result. If the length of the
string-expression is greater than the length attribute of the result, truncation is
performed. A warning is returned unless the first input argument is a character
string and all the truncated characters are blanks, or the first input argument is a
graphic string and all the truncated characters are double-byte blanks, or the first
input argument is a binary string and all the truncated bytes are hexadecimal
zeroes.

Following examples assume EBCDIC encoding of the input string constants.

Example 1: The following function returns a fixed-length binary string with a length
attribute 1 and a value BX'00'.

SELECT BINARY(’’,1)
FROM SYSIBM.SYSDUMMY1;

Example 2: The following function returns a fixed-length binary string with a length
attribute 5 and a value BX'D2C2C80000'

SELECT BINARY(’KBH’,5)
FROM SYSIBM.SYSDUMMY1;

Example 3: The following function returns a fixed-length binary string with a length
attribute 3 and a value BX'D2C2C8'

Chapter 3. Functions 389

SELECT BINARY(’KBH’)
FROM SYSIBM.SYSDUMMY1;

Example 4: The following function returns a fixed-length binary string with a length
attribute 3 and a value BX'D2C2C8'

SELECT BINARY(’KBH ’,3)
FROM SYSIBM.SYSDUMMY1;

Example 5: The following function returns a fixed-length binary string with a length
attribute 3 and a value BX'D2C2C8', a warning is also returned.

SELECT BINARY(’KBH 93’,3)
FROM SYSIBM.SYSDUMMY1;

Example 6: The following function returns a fixed-length binary string with a length
attribute 3 and a value BX'C1C2C3', a warning is also returned.

SELECT BINARY(BINARY(’ABC’,5),3)
FROM SYSIBM.SYSDUMMY1;

390 SQL Reference

BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT
The bit manipulation functions operate on the twos complement representation of
the integer value of the input arguments. The functions return the result as a
corresponding base 10 integer value in a data type that is based on the data type
of the input arguments.

�� BITAND (expression1 , expression2)
BITANDNOT
BITOR
BITXOR

��

�� BITNOT (expression) ��

The schema is SYSIBM.

Table 59. The bit manipulation funcitons

Function Description
The bit in the twos complement
representation of the result

BITAND Performs a bitwise AND operation. 1 - only if the corresponding bits in
both arguments are 1.

BITANDNOT Clears any bit in the first argument
that is in the second argument.

0 - if the corresponding bit in the
second argument is 1.

copied from the corresponding bit
in the first argument - if the
corresponding bit in the first
argument is not 1.

BITOR Performs a bitwise OR operation. 1 - unless the corresponding bits in
both arguments are 0.

BITXOR Performs a bitwise exclusive OR
operation.

1 - unless the corresponding bits in
both arguments are the same.

BITNOT Performs a bitwise NOT operation. Opposite of the corresponding bit in
the argument.

expression, expression1, or expression2
expression, expression1, or expression2 must be integer values represented by the
data types SMALLINT, INTEGER, BIGINT, or DECFLOAT. Arguments that are
of type DECIMAL, REAL, or DOUBLE are cast to DECFLOAT. The value is
truncated to a whole number.

The bit manipulation functions can operate on up to 16 bits for SMALLINT, 32 bits
for INTEGER, 64 bits for BIGINT, and 113 bits for DECFLOAT. The range of
supported DECFLOAT values includes integers from -2122 to 2122 - 1. Special values
such as NaN or INFINITY are not supported.

Chapter 3. Functions 391

If the two arguments have different data types, the argument that supports fewer
bits is cast to a value with the data type of the argument that supports more bits.
This cast impacts the bits that are set for negative values. For example, -1 as a
SMALLINT value has 16 bits set to 1. When -1 is cast to an INTEGER value, it has
32 bits set to 1.

The result of the functions with two arguments has the data type of the argument
that is highest in the data type precedence list for promotion. If either argument is
DECFLOAT, the data type of the result is DECFLOAT(34).

The result of the BITNOT function has the same data type as the input argument,
except that DECIMAL, REAL, DOUBLE, or DECFLOAT(16) returns
DECFLOAT(34).

The result can be null; if any argument is null, the result is the null value.

Due to differences in internal representation between data types and on different
hardware platforms, using functions (such as HEX) or host language constructs to
view or compare internal representations of BIT function results and arguments is
data type-dependent and not portable. The data type- and platform-independent
way to view or compare BIT function results and arguments is to use the actual
integer values.

The BITXOR function is can be used to toggle bits in a value.

The BITANDNOT function can be used to clear bits.

BITANDNOT(val, pattern) operates more efficiently than BITAND(val,
BITNOT(pattern)).

The following examples are based on an ITEM table with a PROPERTIES column
of type INTEGER.

Return all items for which the third property bit is set.
SELECT ITEMID FROM ITEM

WHERE BITAND(PROPERTIES, 4) = 4;

Return all items for which the fourth or the sixth property bit is set.
SELECT ITEMID FROM ITEM

WHERE BITAND(PROPERTIES, 40) <> 0;

Clear the twelfth property of the item whose ID is 3412.
UPDATE ITEM

SET PROPERTIES = BITANDNOT(PROPERTIES, 2048)
WHERE ITEMID = 3412;

Set the fifth property of the item whose ID is 3412.
UPDATE ITEM

SET PROPERTIES = BITOR(PROPERTIES, 16)
WHERE ITEMID = 3412;

Toggle the eleventh property of the item whose ID is 3412.
UPDATE ITEM

SET PROPERTIES = BITXOR(PROPERTIES, 1024)
WHERE ITEMID = 3412;

Switch all the bits in a 16-bit value that has only the second bit on.
SELECT BITNOT(CAST(2 AS SMALLINT))

FROM SYSIBM.SYSDUMMY1;

This example returns -3 (with a data type of SMALLINT).

392 SQL Reference

BLOB
The BLOB function returns a BLOB representation of a string of any type or of a
row ID type.

�� BLOB(string-expression)
, integer

��

The schema is SYSIBM.

string-expression
An expression that returns a value that is a built-in character string, graphic
string, binary string, or a row ID type.

integer
An integer value that specifies the length attribute of the resulting binary
string. The value must be an integer between 1 and the maximum length of a
BLOB.

Do not specify integer if string-expression is a row ID type.

If you do not specify integer and string-expression is an empty string constant,
the length attribute of the result is 1, and the result is an empty string.
Otherwise, the length attribute of the result is the same as the length attribute
of string-expression, except when the input is graphic data. In this case, the
length attribute of the result is twice the length of expression.

The result of the function is a BLOB.

The result can be null; if the first argument is null, the result is the null value.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of string-expression (or twice the length of string-expression
when the input is graphic data). If the length of string-expression is greater than the
length attribute of the result, truncation is performed. A warning is returned unless
the first input argument is a character string and all the truncated characters are
blanks, or the first input argument is a graphic string and all the truncated
characters are double-byte blanks.

Example 1: The following function returns a BLOB for the string 'This is a BLOB'.
SELECT BLOB(’This is a BLOB’)

FROM SYSIBM.SYSDUMMY1;

Example 2: The following function returns a BLOB for the large object that is
identified by locator myclob_locator.

SELECT BLOB(:myclob_locator)
FROM SYSIBM.SYSDUMMY1;

Example 3: Assume that a table has a BLOB column named TOPOGRAPHIC_MAP
and a VARCHAR column named MAP_NAME. Locate any maps that contain the
string 'Engles Island' and return a single binary string with the map name
concatenated in front of the actual map.

Chapter 3. Functions 393

SELECT BLOB(MAP_NAME || ’: ’) || TOPOGRAPHIC_MAP
FROM ONTARIO_SERIES_4
WHERE TOPOGRAPHIC_MAP LIKE BLOB(’%Engles Island%’)

394 SQL Reference

CARDINALITY
The CARDINALITY function returns a value of type BIGINT that represents the
number of elements of an array.

�� CARDINALITY(array-expression) ��

The schema is SYSIBM.

array-expression
An SQL variable or SQL parameter of an array type, or a CAST specification of
a parameter marker to an array type.

The result of the CARDINALITY function is as follows:
v For an ordinary array, the result is the highest array index for which the array

has an assigned element. Elements that have been assigned the null value are
considered to be assigned elements.

v For an associative array, the result is the actual number of unique array index
values that are defined in array-expression.

v For an empty array, the result is 0.

The data type of the result is BIGINT.

The result is null if array-expression is null.

Notes

Syntax alternatives: CAST (SQL-variable AS array-type) can be specified as an
alternative to SQL-variable. CAST (SQL-parameter AS array-type) can be specified as
an alternative to SQL-parameter.

Example 1: Suppose that the array RECENT_CALLS is defined and contains a
record of recent calls. RECENT_CALLS contains three elements. The following SET
statement assigns the number of calls that have been stored in the array so far to
SQL variable HOWMANYCALLS:
SET HOWMANYCALLS = CARDINALITY(RECENT_CALLS);

After the statement executes, HOWMANYCALLS contains 3.

Example 2: Suppose that the associative array variable CANADACAPITALS of
array type CAPITALSARRAY contains all of the capitals for the 10 provinces and
three territories in Canada, as well as the capital of the country, Ottawa. The
following SET statement assigns the cardinality of CANADACAPTITALS to SQL
variable NUMCAPITALS.
SET NUMCAPITALS = CARDINALITY(CANADACAPITALS) ;

After the statement executes, CANADACAPITALS contains 14.

Chapter 3. Functions 395

|

|
|

|

|||||||
|
||

|

|
|
|

|

|
|
|

|
|

|

|

|

|

|
|
|

|
|
|
|

|

|

|
|
|
|
|

|

|

CCSID_ENCODING
The CCSID_ENCODING function returns a string value that indicates the encoding
scheme of a CCSID that is specified by the argument.

�� CCSID_ENCODING(expression) ��

The schema is SYSIBM.

expression
expression must be an expression that returns a value of a built-in numeric,
character, or graphic string data type that is not a LOB. A character string must
not have a length attribute greater than 255, and a graphic string must not
have a length attribute greater than 127. If expression is a character or graphic
string, the string must contain a valid string representation of a number.
Leading and trailing blanks are eliminated and the resulting string must
conform to the rules for forming a numeric constant.

The function returns a value of ASCII, EBCDIC, UNICODE, or UNKNOWN
depending on the CCSID specified by expression.

The result of the function is a fixed-length character string of length 8, which is
padded on the right if necessary.

The result can be null; if the argument is null, the result is the null value.

The CCSID of the result is determined from the context in which the function was
invoked. For more information, refer to “Determining the encoding scheme and
CCSID of a string” on page 47.

Example 1: The following function returns a CCSID with a value for EBCDIC data.
SELECT CCSID_ENCODING(37) AS CCSID

FROM SYSIBM.SYSDUMMY1;

Example 2: The following function returns a CCSID with a value for ASCII data.
SELECT CCSID_ENCODING(850) AS CCSID

FROM SYSIBM.SYSDUMMY1;

Example 3: The following function returns a CCSID with a value for Unicode data.
SELECT CCSID_ENCODING(1208) AS CCSID

FROM SYSIBM.SYSDUMMY1;

Example 4: The following function returns a CCSID with a value of UNKNOWN.
SELECT CCSID_ENCODING(1) AS CCSID

FROM SYSIBM.SYSDUMMY1;

Example 5: The following function returns a CCSID with a value for EBCDIC data.
The input data is a character string.

SELECT CCSID_ENCODING(’37’) AS CCSID
FROM SYSIBM.SYSDUMMY1;

396 SQL Reference

CEILING
The CEILING function returns the smallest integer value that is greater than or
equal to the argument.

�� CEILING (numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of any built-in numeric
data type.

The argument can also be a character string or graphic string data type. The string
input is implicitly cast to a numeric value of DECFLOAT(34).

The result of the function has the same data type and length attribute as the
argument except that the scale is 0 if the argument is DECIMAL. For example, an
argument with a data type of DECIMAL(5,5) results in DECIMAL(5,0).

The result can be null; if the argument is null, the result is the null value.

CEIL can be specified as a synonym for CEILING.

Example 1: The following statement shows the use of CEILING on positive and
negative values:

SELECT CEILING(3.5), CEILING(3.1), CEILING(-3.1), CEILING(-3.5)
FROM FROM SYSIBM.SYSDUMMY1;

This example returns: 04., 04., -03., -03.

Example 2: Using sample table DSN8B10.EMP, find the highest monthly salary for
all the employees. Round the result up to the next integer. The SALARY column
has a decimal data type.

SELECT CEILING(MAX(SALARY)/12)
FROM DSN8B10.EMP;

This example returns 04396. because the highest paid employee is Christine Haas
who earns $52750.00 per year. Her average monthly salary before applying the
CEILING function is 4395.83.

Chapter 3. Functions 397

CHAR
The CHAR function returns a fixed-length character string representation of the
argument.

Integer to Character:

�� CHAR(integer-expression) ��

Decimal to Character:

�� CHAR(decimal-expression)
, decimal-character

��

Floating-Point to Character:

�� CHAR(floating-point-expression) ��

Decimal floating-point to Character:

�� CHAR(decimal-floating-point-expression) ��

Character to Character:

�� CHAR(character-expression)
, integer

, CODEUNITS16
CODEUNITS32
OCTETS

��

398 SQL Reference

Graphic to Character:

�� CHAR(graphic-expression)
, integer

, CODEUNITS16
CODEUNITS32

��

Datetime to Character:

�� CHAR(datetime-expression)
, ISO

USA
EUR
JIS
LOCAL

��

Row ID to Character:

�� CHAR(row-ID-expression) ��

The schema is SYSIBM.

The CHAR function returns a fixed-length character string representation of one of
the following values:
v An integer number if the first argument is a small, large, or big integer
v A decimal number if the first argument is a decimal number
v A floating-point number if the first argument is a single or double precision

floating-point number
v A decimal floating-point number if the first argument is a decimal floating-point

number
v A character string value if the first argument is any type of string
v A datetime value if the first argument is a date, time, or timestamp
v A row ID value if the first argument is a row ID

The result of the function is a fixed-length character string (CHAR).

The result can be null; if the first argument is null, the result is the null value.

Integer to Character

integer-expression
An expression that returns a value that is a built-in integer data type
(SMALLINT, INTEGER, or BIGINT).

Chapter 3. Functions 399

The result is the fixed-length character string representation of the
argument in the form of an SQL integer constant. The result consists of n
characters that are the significant digits that represent the value of the
argument. If the argument is negative, the result has a preceding minus
sign. The result is left justified, and its length depends on whether the
argument is a small or large integer:
v For a small integer, the length of the result is 6. If the number of

characters in the result is less than 6, the result is padded on the right
with blanks to a length of 6.

v For a large integer, the length of the result is 11; if the number of
characters in the result is less than 11, the result is padded on the right
with blanks to a length of 11.

A positive value always includes one trailing blank.

The CCSID of the result is determined from the context in which the
function is invoked. For more information, see “Determining the encoding
scheme and CCSID of a string” on page 47.

Decimal to Character

decimal-expression
An expression that returns a value that is a built-in decimal data type.
To specify a different precision and scale for the value of the
expression, apply the DECIMAL function before applying the CHAR
function.

decimal-character
Specifies the single-byte character constant (CHAR or VARCHAR) that
is used to delimit the decimal digits in the result character string. The
character must not be a digit, a plus sign (+), a minus sign (-), or a
blank. The default is the period (.) or comma (,). For information on
what factors govern the choice, see “Decimal point representation” on
page 328.

The result is the fixed-length character string representation of the
argument. The result includes a decimal character and up to p digits,
where p is the precision of the decimal-expression with the preceding minus
sign if the argument is negative. Leading zeros are not returned. Trailing
zeros are returned. If the scale of decimal-expression is zero, the decimal
character is not returned. If the number of bytes in the result is less than
the defined length of the result, the result is padded on the right with
blanks.19

If the function is invoked as CHAR9, the result is formatted as described in
the previous paragraph with the following exceptions:
v The result includes leading zeros from the decimal value.
v A decimal character even if the scale of the decimal value is zero.
v A leading blank for a positive decimal value.

The leading blank is not returned for CAST(decimal-expression AS
CHAR(n)).

The length of the result is2 +p, where p is the precision of the
decimal-expression.

19. If the function is invoked as CHAR and the BIF_COMPATIBILITY subsystem parameter is set to V9, or if the function is invoked
as V9_CURRENT.CHAR, the result is formatted the same as if the function was invoked as CHAR9.

400 SQL Reference

|
|

|

|

|

The CCSID of the result is determined from the context in which the
function was invoked. For more information, see “Determining the
encoding scheme and CCSID of a string” on page 47.

Floating-Point to Character

floating-point-expression
An expression that returns a value that is a built-in floating-point data
type (DOUBLE or REAL).

The result is the fixed-length character string representation of the
argument in the form of an SQL floating-point constant. The length of the
result is 24 bytes.

If the argument is negative, the first character of the result is a minus sign.
Otherwise, the first character is a digit. If the value of the argument is zero,
the result is 0E0. Otherwise, the result includes the smallest number of
characters that can represent the value of the argument such that the
mantissa consists of a single digit, other than zero, followed by a period
and a sequence of digits.

If the number of characters in the result is less than 24, the result is
padded on the right with blanks to length of 24.

The CCSID of the result is determined from the context in which the
function is invoked. For more information, see “Determining the encoding
scheme and CCSID of a string” on page 47.

Decimal floating-point to Character

decimal-floating-point-expression
An expression that returns a value that is a built-in decimal
floating-point data type (DECFLOAT).

The result is the fixed-length character string representation of the
argument in the form of an SQL decimal floating-point constant. The
length of the result is 42 bytes. If the number of characters in the result is
less than 42, the result is padded on the right with blanks to length of 42.

If the DECFLOAT value is one of the special values Infinity, sNaN, or
NaN, the strings ’INFINITY’, ’SNAN’, or ’NAN’, respectively, are returned.
If the special value is negative, a minus sign is the first character in the
returned string. The DECFLOAT special value sNaN does not result in an
exception when it is converted to a string.

The CCSID of the result is determined from the context in which the
function is invoked. For more information, see “Determining the encoding
scheme and CCSID of a string” on page 47.

Character to Character

character-expression
An expression that returns a value of a built-in character string.

integer
The length attribute for the resulting fixed-length character string. The
value must be an integer constant between 1 and 255.

If the length is not specified, the length attribute of the result is the
minimum of 255 and the length attribute of character-expression. If
character-expression is an empty string constant, an error occurs.

Chapter 3. Functions 401

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining
the length attribute of the final result” on page 90 for information
about how to calculate the length attribute of the result string.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the unit that is used to express integer. If character-expression is
a character string that is defined as bit data, CODEUNITS16 and
CODEUNITS32 cannot be specified.

CODEUNITS16
Specifies that integer is expressed in terms of 16-bit UTF-16 code
units.

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code
units.

OCTETS
Specifies that integer is expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and
OCTETS, see “String unit specifications” on page 87.

The actual length is the same as the length attribute of the result. If the
length of character-expression is less than the length attribute of the result,
the result is padded with blanks to the length of the result. If the length of
character-expression is greater than the length attribute of the result, the
result is truncated. Unless all of the truncated characters are blanks, a
warning is returned.

If character-expression is bit data, the result is bit data. Otherwise, the
CCSID of the result is the same as the CCSID of character-expression.

Graphic to Character

graphic-expression
An expression that returns a value of a built-in graphic string.

integer
The length attribute for the resulting fixed-length character string. The
value must be an integer constant between 1 and 255.

If the length is not specified, the length attribute of the result is the
minimum of 255 and the length attribute of graphic-expression. The
length attribute of graphic-expression is (3 * length(graphic-expression)). If
graphic-expression is an empty string constant, an error occurs.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining
the length attribute of the final result” on page 90 for information
about how to calculate the length attribute of the result string.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer.

CODEUNITS16
Specifies that integer is expressed in terms of 16-bit UTF-16 code
units.

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code
units.

402 SQL Reference

For more information about CODEUNITS16 and CODEUNITS32, see
“String unit specifications” on page 87.

The actual length is the same as the length attribute of the result. If the
length of graphic-expression is less than the length attribute of the result, the
result is padded with blanks to the length of the result. If the length of
graphic-expression is greater than the length attribute of the result, the result
is truncated. Unless all of the truncated characters are blanks, a warning is
returned.

The CCSID of the result is the character mixed CCSID that corresponds to
the graphic CCSID of graphic-expression.

Datetime to Character

datetime-expression
An expression that is one of the following built-in data types:

date The result is the character string representation of the date in
the format that is specified by the second argument. If the
second argument is omitted, the DATE precompiler option, if
one is provided, otherwise field DATE FORMAT on installation
panel DSNTIP4 specifies the format. If the format is LOCAL,
field LOCAL DATE LENGTH on installation panel DSNTIP4
specifies the length of the result. Otherwise, the length of the
result is 10.

LOCAL denotes the local format at the DB2 subsystem that
executes the SQL statement. If LOCAL is used for the format, a
date exit routine must be installed at that DB2 subsystem.

An error occurs if the second argument is specified and is not
a valid value.

time The result is the character string representation of the time in
the format that is specified by the second argument. If the
second argument is omitted, the TIME precompiler option, if
one is provided, otherwise field TIME FORMAT on installation
panel DSNTIP4 specifies the format. If the format is LOCAL,
the field LOCAL TIME LENGTH on installation panel
DSNTIP4 specifies the length of the result. Otherwise, the
length of the result is 8.

LOCAL denotes the local format at the DB2 subsystem that
executes the SQL statement. If LOCAL is used for the format, a
time exit routine must be installed at that DB2 subsystem.

An error occurs if the second argument is specified and is not
a valid value.

timestamp without time zone
The result is the character string representation of the
timestamp. If datetime-expression is a TIMESTAMP(0) value, the
length of the result is 19. If datetime-expression is a
TIMESTAMP(integer) value, the length of the result is
20+integer. Otherwise, the length of the result is 26. The second
argument must not be specified.

timestamp with time zone
The result is the character string representation of the
timestamp with time zone, formatted as yyyy-mm-dd-

Chapter 3. Functions 403

hh.mm.ss.nnnnnn±th:tm with the appropriate number of 'n'
characters for the precision of the timestamp. If
datetime-expression is a TIMESTAMP(0) WITH TIME ZONE, the
length of the result is 147. If datetime-expression is a
TIMESTAMP(integer) WITH TIME ZONE, the length of the
result is 148+integer. The second argument must not be
specified.

The CCSID of the result is determined from the context in which the
function is invoked. For more information, see “Determining the
encoding scheme and CCSID of a string” on page 47.

ISO, EUR, USA, JIS, or LOCAL
Specifies the date or time format of the resulting character string. For
more information, see “String representations of datetime values” on
page 101.

Row ID to Character

row-ID-expression
An expression that returns a value that is a built-in row ID data type.

The result is the fixed-length character string representation of the
argument. The result is bit data.

The length of the result is 40. If the length of row-ID-expression is less than
40, the result is padded on the right with hexadecimal zeros to a length of
40.

Recommendation: To increase the portability of applications, use the CAST
specification when the first argument is numeric, or the first argument is a string
and the length argument is specified. For more information, see “CAST
specification” on page 267.

Notes

Syntax alternatives: CHAR9 can be specified as an alternative to CHAR. The result
of the the function is the same, except when the first argument is decimal data. See
'Decimal to Character' for a description of the result.

Example 1: HIREDATE is a DATE column in sample table DSN8B10.EMP. When it
represents the date 15 December 1976 (as it does for employee 140), the following
example returns the string value '12/15/1976' in character string variable
DATESTRING:

EXEC SQL SELECT CHAR(HIREDATE, USA)
INTO :DATESTRING
FROM DSN8B10.EMP
WHERE EMPNO = ’000140’;

Example 2: Host variable HOUR has a data type of DECIMAL(6,0) and contains a
value of 50000. Interpreted as a time duration, this value is 5 hours. Assume that
STARTING is a TIME column in some table. Then, when STARTING represents 17
hours, 30 minutes, and 12 seconds after midnight, the following example returns
the value '10:30 PM':

CHAR(STARTING+:HOURS, USA)

Example 3: Assume that RECEIVED is defined as a TIMESTAMP column in table
TABLEY. When the value of the date portion of RECEIVED represents the date 10

404 SQL Reference

|

|
|
|

March 1997 and the time portion represents 6 hours and 15 seconds after midnight,
the following example returns the string value '1997-03-10-06.00.15.000000':

SELECT CHAR(RECEIVED)
FROM TABLEY
WHERE INTCOL = 1234;

Example 4: For sample table DSN8B10.EMP, the following SQL statement sets the
host variable AVERAGE, which is defined as CHAR(33), to the character string
representation of the average employee salary.

EXEC SQL SELECT CHAR(AVG(SALARY))
INTO :AVERAGE
FROM DSN8B10.EMP;

With DEC31, the result of AVG applied to a decimal number is a decimal number
with a precision of 31 digits. The only host languages in which such a large
decimal variable can be defined are Assembler and C. For host languages that do
not support such large decimal numbers, use the method shown in this example.

Example 5: For the rows in sample table DSN8B10.EMP, return the values in
column LASTNAME, which is defined as VARCHAR(15), as a fixed-length
character string and limit the length of the results to 10 characters.

SELECT CHAR(LASTNAME,10)
FROM DSN8B10.EMP;

For rows that have a LASTNAME with a length greater than 10 characters
(excluding trailing blanks), a warning that the value is truncated is returned.

Example 6: FIRSTNAME is a VARCHAR(12) column in a Unicode table T1. One of
its values is the 6-character string 'Jürgen'. When FIRSTNAME has the values
shown under 'Function', the results are shown under 'Returns':
Function ... Returns ...

CHAR(FIRSTNAME,3,CODEUNITS32) ’Jür ’ -- x’4AC3BC722020202020202020’
CHAR(FIRSTNAME,3,CODEUNITS16) ’Jür ’ -- x’4AC3BC722020202020’
CHAR(FIRSTNAME,3,OCTETS) ’Jü’ -- x’4AC3BC’

Example 7: For the rows in sample table DSN8B10.EMP, return the values in
column EDLEVEL, which is defined as SMALLINT, as a fixed-length character
string.

SELECT CHAR(EDLEVEL)
FROM DSN8B10.EMP;

An EDLEVEL of 18 is returned as CHAR(6) value '18 ' (18 followed by four
blanks).

Example 8: In sample table DSN8B10.EMP, the SALARY column is defined as
DECIMAL(9,2). For those employees who have a salary of 52750.00, return the hire
date and the salary, using a comma as the decimal character in the salary
(52750,00).

SELECT HIREDATE, CHAR(SALARY, ’,’)
FROM DSN8B10.EMP
WHERE SALARY = 52750.00;

The salary is returned as the string value '52750,00'.

Example 9: Repeat the scenario in Example 8 except subtract the SALARY column
from 60000.00 and return the salary with the default decimal character.

Chapter 3. Functions 405

SELECT HIREDATE, CHAR (60000.00 - SALARY)
FROM DSN8B10.EMP
WHERE SALARY = 52750.00;

The salary is returned as the string value '7250.00'.

Example 10: Assume that host variable SEASONS_TICKETS is defined as INTEGER
and has a value of 10000. Use the DECIMAL and CHAR functions to change the
value into the character string ' 10000.00'.

SELECT CHAR(DECIMAL(:SEASONS_TICKETS,7,2))
FROM SYSIBM.SYSDUMMY1;

Example 11: Assume that columns COL1 and COL2 in table T1 are both defined as
REAL and that T1 contains a single row with the values 7.1E+1 and 7.2E+2 for the
two columns. Add the two columns and represent the result as a character string.

SELECT CHAR(COL1 + COL2)
FROM T1;

The result is the character value '1.43E2 '.

406 SQL Reference

CHARACTER_LENGTH
The CHARACTER_LENGTH function returns the length of the first argument in
the specified string unit.

Character string:

�� CHARACTER_LENGTH (character-expression , CODEUNITS16)
CODEUNITS32
OCTETS

��

Graphic string:

�� CHARACTER_LENGTH (graphic-expression , CODEUNITS16)
CODEUNITS32

��

The schema is SYSIBM.

Character string:

character-expression
An expression that returns a value of a built-in character string.
character-expression cannot be bit data.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the unit that is used to express the length of the result.

CODEUNITS16
Specifies that the result is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that the result is expressed in terms of 32-bit UTF-32 code units.

OCTETS
Specifies the result is expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see
“String unit specifications” on page 87.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The result is the length of character-expression expressed in the number of string
units that were specified. The length of fixed-length strings includes trailing
blanks. The length of varying-length strings is the actual length and not the
maximum length.

Graphic string:

Chapter 3. Functions 407

graphic-expression
An expression that returns a value of a built-in graphic string.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express the length of the result.

CODEUNITS16
Specifies that the result is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that the result is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32 see “String
unit specifications” on page 87.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The result is the length of graphic-expression expressed in the number of string units
that were specified. The length of fixed-length strings includes trailing blanks. The
length of varying-length strings is the actual length and not the maximum length.

Example: Assume that NAME is a VARCHAR(128) column, encoded in Unicode
UTF-8, that contains the value 'Jürgen'. The following two queries return the value
6:

SELECT CHARACTER_LENGTH(NAME,CODEUNITS32)
FROM T1 WHERE NAME = ’Jürgen’;

SELECT CHARACTER_LENGTH(NAME,CODEUNITS16)
FROM T1 WHERE NAME = ’Jürgen’;

The following two queries return the value 7:
SELECT CHARACTER_LENGTH(NAME,OCTETS)

FROM T1 WHERE NAME = ’Jürgen’;
SELECT LENGTH(NAME)

FROM T1 WHERE NAME = ’Jürgen’;

408 SQL Reference

CLOB
The CLOB function returns a CLOB representation of a string.

Character to CLOB:

�� CLOB(character-expression)
, integer

, CODEUNITS16
CODEUNITS32
OCTETS

��

Graphic to CLOB:

�� CLOB(graphic-expression)
, integer

, CODEUNITS16
CODEUNITS32

��

The schema is SYSIBM.

Character to CLOB

character-expression
An expression that returns a value of a character string. If character-expression is
bit data, an error occurs.

integer
An integer constant that specifies the length attribute of the resulting CLOB
data type. The value must be between 1 and the maximum length of a CLOB,
expressed in the units that are either implicitly or explicitly specified.

If you do not specify integer and character-expression is an empty string
constant, the length attribute of the result is 1, and the result is an empty
string. Otherwise, the length attribute of the result is the same as the length
attribute of character-expression.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length
attribute of the final result” on page 90 for information on how to calculate the
length attribute of the result string.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the unit that is used to express integer.

CODEUNITS16
Specifies that integer is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

OCTETS
Specifies that integer is expressed in terms of bytes.

Chapter 3. Functions 409

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see
“String unit specifications” on page 87.

The result of the function is a CLOB.

The result can be null; if the first argument is null, the result is the null value.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of character-expression. If the length of character-expression is
greater than the length specified, the result is truncated. Unless all of the truncated
characters are blanks, a warning is returned.

The CCSID of the result is the same as the CCSID of character-expression.

Graphic to CLOB

graphic-expression
An expression that returns a value of a graphic string.

integer
An integer constant that specifies the length attribute of the resulting CLOB
data type. The value must be between 1 and the maximum length of a CLOB,
expressed in the units that are either implicitly or explicitly specified.

If you do not specify integer and graphic-expression is an empty string constant,
the length attribute of the result is 1, and the result is an empty string.
Otherwise, the length attribute of the result is (3 * length(graphic-expression)).

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length
attribute of the final result” on page 90 for information on how to calculate the
length attribute of the result string.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer.

CODEUNITS16
Specifies that integer is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String
unit specifications” on page 87.

The result of the function is a CLOB.

The result can be null; if the first argument is null, the result is the null value.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of graphic-expression. If the length of graphic-expression is
greater than the length specified, the result is truncated. Unless all of the truncated
characters are blanks, a warning is returned.

The CCSID of the result is the character mixed CCSID that corresponds to the
graphic CCSID of graphic-expression.

Example 1: The following function returns a CLOB for the string 'This is a CLOB'.
SELECT CLOB(’This is a CLOB’)

FROM SYSIBM.SYSDUMMY1;

410 SQL Reference

Example 2: FIRSTNME is a VARCHAR(12) column in table T1. One of its values is
the 6-character string 'Jürgen'. When FIRSTNME has this value:

Function ... Returns ...
CLOB(FIRSTNME,3,CODEUNITS32) ’Jür’ -- x’4AC3BC72’
CLOB(FIRSTNME,3,CODEUNITS16) ’Jür’ -- x’4AC3BC72’
CLOB(FIRSTNME,3,OCTETS) ’Jü’ -- x’4AC3BC’

Chapter 3. Functions 411

COALESCE
The COALESCE function returns the value of the first nonnull expression.

�� �COALESCE (expression ,expression) ��

The schema is SYSIBM.

The arguments must be compatible. For more information on compatibility, refer to
the compatibility matrix in Table 23 on page 121. The arguments can be of either a
built-in or user-defined data type. The COALESCE function allows multiple arrays
with the same user-defined array type, but does not allow a mixture of array
variables that have a user-defined array type and array values that do not have a
user-defined array type.

The COALESCE function cannot be used as a source function when creating a
user-defined function.

The arguments are evaluated in the order in which they are specified, and the
result of the function is the first argument that is not null. The result can be null
only if all arguments can be null. The result is null only if all arguments are null.

The selected argument is converted, if necessary, to the attributes of the result. The
attributes of the result are determined using the “Rules for result data types” on
page 144. If the COALESCE function has more than two arguments, the rules are
applied to the first two arguments to determine a candidate result type. The rules
are then applied to that candidate result type and the third argument to determine
another candidate result type. This process continues until all arguments are
analyzed and the final result type is determined.

If there are any mixed character string or graphic string and numeric arguments,
the string value is implicitly cast to a DECFLOAT(34) value.

The COALESCE function can also handle a subset of the functions provided by
CASE expressions. The result of using COALESCE(e1,e2) is the same as using the
expression:

CASE WHEN e1 IS NOT NULL THEN e1 ELSE e2 END

VALUE can be specified as a synonym for COALESCE.

Example 1: Assume that SCORE1 and SCORE2 are SMALLINT columns in table
GRADES, and that nulls are allowed in SCORE1 but not in SCORE2. Select all the
rows in GRADES for which SCORE1 + SCORE2 > 100, assuming a value of 0 for
SCORE1 when SCORE1 is null.

SELECT * FROM GRADES
WHERE COALESCE(SCORE1,0) + SCORE2 > 100;

Example 2: Assume that a table named DSN8B10.EMP contains a DATE column
named HIREDATE, and that nulls are allowed for this column. The following

412 SQL Reference

|
|
|
|
|
|

query selects all rows in DSN8B10.EMP for which the date in HIREDATE is either
unknown (null) or earlier than 1 January 1960.

SELECT * FROM DSN8B10.EMP
WHERE COALESCE(HIREDATE,DATE(’1959-12-31’)) < ’1960-01-01’;

The predicate could also be coded as COALESCE(HIREDATE,’1959-12-31’) because,
for comparison purposes, a string representation of a date can be compared to a
date.

Example 3: Assume that for the years 1993 and 1994 there is a table that records the
sales results of each department. Each table, S1993 and S1994, consists of a
DEPTNO column and a SALES column, neither of which can be null. The
following query provides the sales information for both years.

SELECT COALESCE(S1993.DEPTNO,S1994.DEPTNO) AS DEPT, S1993.SALES, S1994.SALES
FROM S1993 FULL JOIN S1994 ON S1993.DEPTNO = S1994.DEPTNO
ORDER BY DEPT;

The full outer join ensures that the results include all departments, regardless of
whether they had sales or existed in both years. The COALESCE function allows
the two join columns to be combined into a single column, which enables the
results to be ordered.

Chapter 3. Functions 413

COLLATION_KEY
The COLLATION_KEY function returns a varying-length binary string that
represents the collation key of the argument in the specified collation.

�� COLLATION_KEY(string-expression,collation-name)
, integer

��

The schema is SYSIBM.

The result of COLLATION_KEY on one string can be compared in binary form
with the result of COLLATION_KEY on another string to determine their order
within the specified collation-name. For the comparison to be meaningful, the results
of the COLLATION_KEY must be from the same collation-name.

string-expression
An expression that returns a character or graphic string that is not a LOB for
which the collation key is to be determined. If string-expression is a character
string, it must not be FOR BIT DATA. If string-expression is not in Unicode
UTF-16 (CCSID 1200), it is converted to Unicode UTF-16 before the
corresponding collation key is obtained. The length of string-expression must
not exceed 32704 bytes of the UTF-16 representation.

collation-name
A string constant or a string host variable that is not a binary string, CLOB, or
DBCLOB. collation-name specifies the collation to use when determining the
collation key. If collation-name is not an EBCDIC value, it is converted to
EBCDIC. The length of collation-name must be between 1 and 255 bytes of the
EBCDIC representation. The value of collation-name is not case sensitive and
must be a left justified, valid "short path" collation setting for the parameter
CUNBOPRM_Collation_Keyword in area CUN4BOPR. For detailed information
about the "short path" setting in the parameter
CUNBOPRM_Collation_Keyword, see z/OS Support for Unicode: Using
Conversion Services.

The value of the host variable must not be null. If the host variable has an
associated indicator variable, the value of the indicator variable must not
indicate a null value. collation-name must be left justified within the host
variable. It must also be padded on the right with blanks if the length is less
than that of the host variable and the host variable is a fixed length CHAR or
GRAPHIC data type.

collation-name is in the form of CUN4BOPR_Collation_Keyword specification.
You must specify a value that is acceptable for the z/OS
CUNBOPR_Collation_Keyword parameter.

The following table lists some supported values:

Table 60. Collation Keywords Reference

Attribute name Key Possible values

Locale L.R.V <locale>

Strength S 1, 2, 3, 4, I, D

Case_Level K X, O, D

414 SQL Reference

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/2.5.11
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/2.5.11

Table 60. Collation Keywords Reference (continued)

Attribute name Key Possible values

Case_First C X, L, U, D

Alternate A N, S, D

Variable_Top T <hex digits>

Normalization N X, O, D

French F X, O, D

Hinayana H X, O, D

The following table describes the abbreviations for the collation keywords:

Abbreviation
Definition

D default
O on
X off
1 primary
2 secondary
3 tertiary
4 quaternary
I identical
S shifted
N non-ignorable
L lower-first
U upper-first

The following examples show keywords using the above specifications:
’UCA400R1_AS_LSV_S3_CU’

UCA version 4.0.1; ignore spaces, punctuation and symbols; use Swedish
linguistic conventions; use case-first upper; compare case-sensitive.
’UCA400R1_AN_LSV_S3_CL_NO’

UCA version 4.0.1; do not ignore spaces, punctuation and symbols; use
Swedish linguistic conventions; use case-first lower (or does not set it to mean
the same, since lower is used in most locales as the default); normalization
ON; compare case-sensitive.

integer
An integer value that specifies the length attribute of the result. If specified,
the value must be an integer constant between 1 and 32704.

If the length is not specified, the length attribute of the result is determined as
follows:

string-expression Result length attribute

CHAR(n) or VARCHAR(n) MIN (VARBINARY(12n), 32704)

GRAPHIC(n) or VARGRAPHIC(n) MIN (VARBINARY(12n), 32704)

Regardless of whether the length is specified, the length of the collation key
must be less than or equal to the length attribute of the result. The actual result
length of the collation key is approximately six times of the length of
string-expression where the length of string-expression is in Unicode byte

Chapter 3. Functions 415

representation. For certain collation-name such as UCA410_LKO_RKR (for
Korean collation) the default length attribute of the result, 12n, might not be
large enough and an error will be returned. To avoid such an error, the length
attribute of the result must be explicitly specified to a larger constant. For the
proper length attribute of the result, see z/OS Support for Unicode: Using
Conversion Services for information about target buffer length considerations for
Collation Services.

The result can be null; if the first argument is null, the result is the null value.

The COLLATION_KEY function uses Unicode Collation Services in z/OS to return
the collation key. Unicode Collation Services support two collation versions:
v UCA400R1. This Collation version support Unicode standard character suite

4.0.0 and use Normalization Service under 4.0.1 Unicode character suite.
v UCA410. This Collation version support Unicode standard character suite 4.1.0

and use Normalization Service under 4.1.0 Unicode character suite.

If Unicode Collation Services are not available when the COLLATION_KEY
function is run, an error is returned.

Example 1: The following query orders the employees by their surnames using the
default Unicode Collation Algorithm V4.0.1(UCA), ignoring spaces, punctuation,
and symbols, using Swedish linguistic conventions, and not comparing case:

SELECT FIRSTNAME, LASTNAME
FROM DSN8B10.EMP
ORDER BY COLLATION_KEY(LASTNAME, ’UCA400R1_AS_LSV_S2’);

Example 2: The following query uses the COLLATION_KEY function on the
LASTNAME column and the SALES_PERSON column to obtain the sort keys from
the same collation name in order to do a culturally correct comparison. It finds the
departments of employees in Quebec:

SELECT E.WORKDEPT
FROM EMPLOYEE AS E INNER JOIN SALES AS S
ON COLLATION_KEY(E.LASTNAME, ’UCA400R1_LFR’) =

COLLATION_KEY(S.SALES_PERSON, ’UCA400R1_LFR’)
WHERE S.REGION = ’Quebec’;

Example 3: Create an index EMPLOYEE_NAME_SORT_KEY for table EMPLOYEE
based on built-in function COLLATION_KEY with collation name 'UCA410_LDE'
tailored for German.

CREATE INDEX EMPLOYEE_NAME_SORT_KEY
ON EMPLOYEE (COLLATION_KEY(LASTNAME, ’UCA410_LDE’, 600),

COLLATION_KEY(FIRSTNAME, ’UCA410_LDE’, 600),
ID);

Related reference:

Description of parameters in area CUNBOPR (z/OS: Unicode Services User’s
Guide and Reference)

416 SQL Reference

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/2.5.11
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/2.5.11

COMPARE_DECFLOAT
The COMPARE_DECFLOAT function returns a SMALLINT value that indicates
whether the two arguments are equal or unordered, or whether one argument is
greater than the other.

�� COMPARE_DECFLOAT(decfloat-expression1,decfloat-expression2) ��

The schema is SYSIBM.

decfloat-expression1
An expression that returns a DECFLOAT value.

decfloat-expression2
An expression that returns a DECFLOAT value.

decfloat-expression1 is compared with decfloat-expression2 and the result is returned
according to the following rules:
v If both arguments are finite, the comparison is algebraic and follows the

procedure for DECFLOAT subtraction. If the different is exactly zero with either
sign, the arguments are equal. If a nonzero difference is positive, the first
argument is greater than the second argument. If a nonzero difference is
negative, the first argument is less than the second.

v Positive zero and negative zero compare as equal.
v Positive infinity compares equal to positive infinity.
v Positive infinity compares greater than any finite number.
v Negative infinity compares equal to negative infinity.
v Negative infinity compares less than any finite number.
v Numeric comparison is exact and the result is determined for finite operands as

if range and precision were unlimited. Overflow or underflow cannot occur.
v If either argument is NaN or sNaN (positive or negative), the result is

unordered.

Numeric comparison is exact, and the result is determined for finite operands as if
the range and precision were unlimited. An overflow or underflow condition
cannot occur.

If one argument is DECFLOAT(16) and the other is DECFLOAT(34), the
DECFLOAT(16) value is converted to DECFLOAT(34) before the comparison is
made.

The arguments can also be a character string or graphic string data type. The string
input is implicitly cast to a numeric value of DECFLOAT(34).

One of the following values will be the result:
0 The arguments are exactly equal
1 decfloat-expression1 is less than decfloat-expression2
2 decfloat-expression1 is greater than decfloat-expression2
3 The arguments are unordered

The result of the function is a SMALLINT value.

Chapter 3. Functions 417

The result can be null; if any argument is null, the result is the null value.

Examples: The following examples demonstrate the values that will be returned
when the function is used:

COMPARE_DECFLOAT(DECFLOAT(2.17), DECFLOAT(2.17)) = 0
COMPARE_DECFLOAT(DECFLOAT(2.17), DECFLOAT(2.170)) = 2
COMPARE_DECFLOAT(DECFLOAT(2.170), DECFLOAT(2.17)) = 1
COMPARE_DECFLOAT(DECFLOAT(2.17), DECFLOAT(0.0)) = 2
COMPARE_DECFLOAT(INFINITY,INFINITY) = 0
COMPARE_DECFLOAT(INFINITY,-INFINITY) = 2
COMPARE_DECFLOAT(DECFLOAT(-2),INFINITY) = 1
COMPARE_DECFLOAT(NAN,NAN) = 3
COMPARE_DECFLOAT(DECFLOAT(-0.1),SNAN) = 3

418 SQL Reference

CONCAT
The CONCAT function combines two compatible string arguments.

�� CONCAT(string-expression-1,string-expression-2) ��

The schema is SYSIBM.

The arguments must be compatible strings. For more information on compatibility,
refer to the compatibility matrix in Table 23 on page 121.

Either argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

The result of the function is a string that consists of the first string followed by the
second string.

The result can be null; if any argument is null, the result is the null value.

The CONCAT function is identical to the CONCAT operator. For more information,
see “Expressions with the concatenation operator” on page 250.

Example: Using sample table DSN8B10.EMP, concatenate column FIRSTNME with
column LASTNAME. Both columns are defined as varying-length character strings.

SELECT CONCAT(FIRSTNME, LASTNAME)
FROM DSN8B10.EMP;

Chapter 3. Functions 419

CONTAINS
The CONTAINS function searches a text search index using criteria that are
specified in a search argument and returns a result about whether or not a match
was found.

�� CONTAINS (column-name ,
(1)

search-argument
(2)

, string-constant

) ��

Notes:

1 The SQL statement that invokes the CONTAINS function can be dynamically prepared by using a
typed parameter marker for the search-argument, as in the following example: CONTAINS(C1,CAST(?
AS CHAR(10))).

2 string-constant must conform to the rules for the search-argument-options.

search-argument-options:

�
(1)

QUERYLANGUAGE = value
RESULTLIMIT = value

OFF
SYNONYM = ON

Notes:

1 The same clause must not be specified more than once.

The schema is SYSIBM.

column-name
Specifies a qualified or unqualified name of a column that has a text search
index that is to be searched. The column must exist in the table or view that is
identified in the FROM clause in the statement and the column of the table, or
the column of the underlying base table of the view must have an associated
text search index. The underlying expression of the column of a view must be
a simple column reference to the column of an underlying table, directly or
through another nested view.

search-argument
Specifies an expression that returns a value that is a string value (except a
LOB) that contains the terms to be searched for and must not be all blanks or
the empty string. The actual length of the string must not exceed 4096 Unicode
characters. The value is converted to Unicode before it is used to search the
text search index. The maximum number of terms per query must not exceed
1024.

420 SQL Reference

string-constant
Identifies a string constant that specifies the search argument options that are
in effect for the function.

The options that can be specified as part of the search-argument-options are as
follows:

QUERYLANGUAGE = value
Specifies the query language. The value can be any of the supported
language codes. If the QUERYLANGUAGE option is not specified, the
default is the language value of the text search index that is used when
this function is invoked. If the language value of the text search index
is AUTO, the default value for QUERYLANGUAGE is en_US.

RESULTLIMIT = value
Specifies the maximum number of results to be returned from the
underlying search engine. The value can be an integer value between 1
and 2 147 483 647. If the RESULTLIMIT option is not specified, no
result limit is in effect for the query.

This scalar function cannot be called for each row of the result table,
depending on the plan that the optimizer chooses. This function can be
called once for the query to the underlying search engine, and a result
set of all of the primary keys that match are returned from the search
engine. This result set is then joined to the table containing the column
to identify the result rows. In this case, the RESULTLIMIT value acts
like a FETCH FIRST ?? ROWS from the underlying text search engine
and can be used as an optimization. If the search engine is called for
each row of the result because the optimizer determines that is the best
plan, then the RESULTLIMIT option has no effect. Also, the
RESULTLIMIT option has no effect when the CONTAINS function is
used along with the comparison operators (<, >, <=, and >=) or the
equality operator (=) and a value of 0 (zero).

SYNONYM = OFF or SYNONYM = ON
Specifies whether to use a synonym dictionary that is associated with
the text search index. Use the Synonym Tool to add a synonym
dictionary to the collection. The default is OFF.

OFF Do not use a synonym dictionary.

ON Use the synonym dictionary that is associated with the text
search index.

The result of the function is a large integer. If the second argument can be null, the
result can be null. If the second argument is null, the result is the null value. If the
third argument is null, the result is as if the third argument was not specified.

The result is 1 if the document contains a match for the search criteria that are
specified in the search argument. Otherwise, the result is 0.

CONTAINS is a non-deterministic function.

Examples

Example 1: The following statement finds all of the employees who have "COBOL"
in their resume. The text search argument is not case-sensitive.

Chapter 3. Functions 421

SELECT EMPNO
FROM EMP_RESUME
WHERE RESUME_FORMAT = ’ascii’
AND CONTAINS(RESUME, ’cobol’) = 1

Example 2: The search argument does not need to be a string constant. The search
argument can be any SQL string expression, including a string contained in a host
variable.

The following statement searches for the exact term "ate" in the COMMENT
column:
char search_arg[100]; /* input host variable */
...
EXEC SQL DECLARE C3 CURSOR FOR

SELECT CUSTKEY
FROM K55ADMIN.CUSTOMERS
WHERE CONTAINS(COMMENT, :search_arg)= 1
ORDER BY CUSTKEY;

strcpy(search_arg, "ate");
EXEC SQL OPEN C3;
...

Example 3: The following statement finds 10 students at random who wrote online
essays that contain the phrase "fossil fuel" in Spanish, which is "combustible fósil."
These students will be invited for a radio interview.

Use the synonym dictionary that was created for the associated text search index.
Because only 10 students are needed, you can optimize the query by using the
RESULTLIMIT option to limit the number of results from the underlying text
search server.
SELECT FIRSTNME, LASTNAME

FROM STUDENT_ESSAYS
WHERE CONTAINS(TERM_PAPER, ’combustible fósil’,

’QUERYLANGUAGE= es_ES RESULTLIMIT = 10 SYNONYM=ON’) = 1

422 SQL Reference

COS
The COS function returns the cosine of the argument, where the argument is an
angle, expressed in radians. The COS and ACOS functions are inverse operations.

�� COS(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric
data type that is not DECFLOAT. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable COSINE is DECIMAL(2,1) with a value of 1.5.
The following statement returns a double precision floating-point number with an
approximate value of 0.07:

SELECT COS(:COSINE)
FROM SYSIBM.SYSDUMMY1;

Chapter 3. Functions 423

COSH
The COSH function returns the hyperbolic cosine of the argument, where the
argument is an angle, expressed in radians.

�� COSH(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric
data type that is not DECFLOAT. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable HCOS is DECIMAL(2,1) with a value of 1.5.
The following statement returns a double precision floating-point number with an
approximate value of 2.35:

SELECT COSH(:HCOS)
FROM SYSIBM.SYSDUMMY1;

424 SQL Reference

DATE
The DATE function returns a date that is derived from a value.

�� DATE(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns one of the following built-in data
types: a date, a timestamp, a character string, a graphic string, or any numeric data
type.
v If expression is a character or graphic string, it must not be a CLOB or DBCLOB,

and it must have one of the following values:
– A valid string representation of a date or timestamp with an actual length

that is not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of
datetime values” on page 101.

– A character or graphic string with an actual length of 7 that represents a valid
date in the form yyyynnn, where yyyy are digits denoting a year and nnn are
digits between 001 and 366 denoting a day of that year.

v If expression is a number, it must be greater than or equal to one and less than or
equal to 3652059.

If expression is not a DATE value, expression is cast as follows:
v If expression is a TIMESTAMP WITH TIME ZONE value, expression is cast to

TIMESTAMP WITHOUT TIME ZONE, with the same precision as expression.
v If expression is a string, expression is cast to DATE.

The result of the function is a date.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
If the argument is a timestamp, the result is the date part of the timestamp.
If the argument is a date, the result is that date.
If the argument is a number, the result is the date that is n-1 days after
January 1, 0001, where n is the integral part of the number.
If the argument is a string, the result is the date that is represented by the
string. If the string contains a time zone, the time zone is ignored. If the CCSID
of the string is not the same as the corresponding default CCSID at the server,
the string is first converted to that CCSID.

The result CCSID is the appropriate CCSID of the argument encoding scheme and
the result subtype is the appropriate subtype of the CCSID.

Example 1: Assume that RECEIVED is a TIMESTAMP column in some table, and
that one of its values is equivalent to the timestamp '1988-12-25-17.12.30.000000'.
For this value, the following statement returns the internal representation of 25
December 1988.

Chapter 3. Functions 425

DATE(RECEIVED)

Example 2: Assume that DATCOL is a CHAR(7) column in some table, and that one
of its values is the character string '1989061'. For this value, the following statement
returns the internal representation of 2 March 1989.

DATE(DATCOL)

Example 3: DB2 recognizes '1989-03-02' as the ISO representation of 2 March 1989.
So, the following statement returns the internal representation of 2 March 1989.

DATE(’1989-03-02’)

426 SQL Reference

DAY
The DAY function returns the day part of a value.

�� DAY(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns one of the following built-in data
types: a date, a timestamp, a character string, a graphic string, or any numeric data
type.
v If expression is a character or graphic string, it must not be a CLOB or DBCLOB,

and its value must be a valid string representation of a date or timestamp with
an actual length that is not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime
values” on page 101.

v If expression is a number, it must be a date duration or a timestamp duration. For
the valid formats of datetime durations, see “Datetime operands” on page 147.

If expression is a timestamp with a time zone value, or a valid string representation
of a timestamp with a time zone, the result is determined from the UTC
representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The other rules for the function depend on the data type of the argument:
If the argument is a date, timestamp, or string representation of either, the
result is the day part of the value, which is an integer between 1 and 31.
If the argument is a date duration or timestamp duration, the result is the day
part of the value, which is an integer between -99 and 99. A nonzero result has
the same sign as the argument.
If the argument contains a time zone, the result is the year part of the value
expressed in UTC.

Example 1: Set the INTEGER host variable DAYVAR to the day of the month on
which employee 140 in the sample table DSN8B10.EMP was hired.

EXEC SQL SELECT DAY(HIREDATE)
INTO :DAYVAR
FROM DSN8B10.EMP
WHERE EMPNO = ’000140’;

Example 2: Assume that DATE1 and DATE2 are DATE columns in the same table.
Assume also that for a given row in this table, DATE1 and DATE2 represent the
dates 15 January 2000 and 31 December 1999, respectively. Then, for the given row:

DAY(DATE1 - DATE2)

returns the value 15.

Chapter 3. Functions 427

Example 3: The following invocations of the DAY function all return the same
result:
SELECT DAY(’2003-01-02-20.00.00’),

DAY(’2003-01-02-12.00.00-08:00’),
DAY(’2003-01-03-05.00.00+09:00’)

FROM SYSIBM.SYSDUMMY1;

For each invocation of the DAY function in this SELECT statement, the result is 2.

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
2003-01-02-20.00.00. The day portion of the UTC representation is 2.

428 SQL Reference

DAYOFMONTH
The DAYOFMONTH function returns the day part of a value. The function is
similar to the DAY function, except DAYOFMONTH does not support a date or
timestamp duration as an argument.

�� DAYOFMONTH(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of a date, a timestamp, a
character string, or a graphic string built-in data type.

If expression is a character or graphic string, it must not be a CLOB or DBCLOB,
and its value must be a valid string representation of a date or timestamp with an
actual length that is not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime
values” on page 101.

If expression is a timestamp with a time zone value, or a valid string representation
of a timestamp with a time zone, the result is determined from the UTC
representation of the datetime value.

The result of the function is a large integer between 1 and 31, which represents the
day part of the value.

The result can be null; if the argument is null, the result is the null value.

Example 1: Set the INTEGER variable DAYVAR to the day of the month on which
employee 140 in sample table DSN8B10.EMP was hired.

SELECT DAYOFMONTH(HIREDATE)
INTO :DAYVAR
FROM DSN8B10.EMP
WHERE EMPNO = ’000140’;

Example 2: The following invocations of the DAYOFMONTH function returns the
same result:
SELECT DAYOFMONTH(’2003-01-02-20.00.00’),

DAYOFMONTH(’2003-01-02-12.00.00-08:00’),
DAYOFMONTH(’2003-01-03-05.00.00+09:00’)
FROM SYSIBM.SYSDUMMY1;

For each invocation of the DAYOFMONTH function in this SELECT statement, the
result is 2.

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
2003-01-02-20.00.00. The day portion of the UTC representation is 2.

Chapter 3. Functions 429

DAYOFWEEK
The DAYOFWEEK function returns an integer, in the range of 1 to 7, that
represents the day of the week, where 1 is Sunday and 7 is Saturday. The
DAYOFWEEK function is similar to the DAYOFWEEK_ISO function.

�� DAYOFWEEK(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, or a graphic string.

If expression is a character or graphic string, it must not be a CLOB or DBCLOB,
and its value must be a valid string representation of a date or timestamp with an
actual length that is not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime
values” on page 101.

If expression is a timestamp with a time zone, or a valid string representation of a
timestamp with a time zone, the result is determined from the UTC representation
of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Example 1: Using sample table DSN8B10.EMP, set the integer host variable
DAY_OF_WEEK to the day of the week that Christine Haas (EMPNO = '000010')
was hired (HIREDATE).

SELECT DAYOFWEEK(HIREDATE)
INTO :DAY_OF_WEEK
FROM DSN8B10.EMP
WHERE EMPNO = ’000010’;

The result is that DAY_OF_WEEK is set to 6, which represents Friday.

Example 2: The following query returns four values: 1, 2, 1, and 2.
SELECT DAYOFWEEK(CAST(’10/11/1998’ AS DATE)),

DAYOFWEEK(TIMESTAMP(’10/12/1998’, ’01.02’)),
DAYOFWEEK(CAST(CAST(’10/11/1998’ AS DATE) AS CHAR(20))),
DAYOFWEEK(CAST(TIMESTAMP(’10/12/1998’, ’01.02’) AS CHAR(26)))

FROM SYSIBM.SYSDUMMY1;

Example 3: The following invocations of the DAYOFWEEK function returns the
same result:
SELECT DAYOFWEEK(’2003-01-02-20.00.00’),

DAYOFWEEK(’2003-01-02-12.00.00-08:00’),
DAYOFWEEK(’2003-01-03-05.00.00+09:00’)
FROM SYSIBM.SYSDUMMY1;

For each invocation of the DAYOFWEEK function in this SELECT statement, the
result is 5 (Sunday is considered the first day of the week).

430 SQL Reference

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
2003-01-02-20.00.00.

Chapter 3. Functions 431

DAYOFWEEK_ISO
The DAYOFWEEK_ISO function returns an integer, in the range of 1 to 7, that
represents the day of the week, where 1 is Monday and 7 is Sunday. The
DAYOFWEEK_ISO function is similar to the DAYOFWEEK function.

�� DAYOFWEEK_ISO(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, or graphic string.

If expression is a character or graphic string, it must not be a CLOB or DBCLOB,
and its value must be a valid string representation of a date or timestamp with an
actual length that is not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime
values” on page 101.

If expression is a timestamp with a time zone, or a valid string representation of a
timestamp with a time zone, the result is determined from the UTC representation
of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Example 1: Using sample table DSN8B10.EMP, set the integer host variable
DAY_OF_WEEK to the day of the week that Christine Haas (EMPNO = '000010')
was hired (HIREDATE).

SELECT DAYOFWEEK_ISO(HIREDATE)
INTO :DAY_OF_WEEK
FROM DSN8B10.EMP
WHERE EMPNO = ’000010’;

The result is that DAY_OF_WEEK is set to 5, which represents Friday.

Example 2: The following query returns four values: 7, 1, 7, and 1.
SELECT DAYOFWEEK_ISO(CAST(’10/11/1998’ AS DATE)),

DAYOFWEEK_ISO(TIMESTAMP(’10/12/1998’, ’01.02’)),
DAYOFWEEK_ISO(CAST(CAST(’10/11/1998’ AS DATE) AS CHAR(20))),
DAYOFWEEK_ISO(CAST(TIMESTAMP(’10/12/1998’, ’01.02’) AS CHAR(26)))

FROM SYSIBM.SYSDUMMY1;

Example 3: The following list shows what is returned by the DAYOFWEEK_ISO
function for various dates.

DATE: DAYOFWEEK_ISO returns:
2003-12-28 ’7’
2003-12-31 ’3’
2004-01-01 ’4’
2004-01-10 ’6’

432 SQL Reference

2005-01-04 ’2’
2005-12-31 ’7’
2006-01-01 ’7’
2006-01-03 ’2’

Example 4: The following invocations of the DAYOFWEEK_ISO function returns the
same result:
SELECT DAYOFWEEK_ISO(’2003-01-02-20.00.00’),

DAYOFWEEK_ISO(’2003-01-02-12.00.00-08:00’),
DAYOFWEEK_ISO(’2003-01-03-05.00.00+09:00’)
FROM SYSIBM.SYSDUMMY1;

For each invocation of the DAYOFWEEK_ISO function in this SELECT statement,
the result is 4 (Monday is considered the first day of the week).

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
2003-01-02-20.00.00.

Chapter 3. Functions 433

DAYOFYEAR
The DAYOFYEAR function returns an integer, in the range of 1 to 366, that
represents the day of the year, where 1 is January 1.

�� DAYOFYEAR(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, or a graphic string.

If expression is a character or graphic string, it must not be a CLOB or DBCLOB,
and its value must be a valid string representation of a date or timestamp with an
actual length that is not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime
values” on page 101.

If expression is a timestamp with a time zone value, or a valid string representation
of a timestamp with a time zone, the result is determined from the UTC
representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Example 1: Using sample table DSN8B10.EMP, set the integer host variable
AVG_DAY_OF_YEAR to the average of the day of the year on which employees
were hired (HIREDATE):

SELECT AVG(DAYOFYEAR(HIREDATE))
INTO :AVG_DAY_OF_YEAR
FROM DSN8B10.EMP;

The result is that AVG_DAY_OF_YEAR is set to 202.

Example 2: The following invocations of the DAYOFYEAR function returns the
same result:
SELECT DAYOFYEAR(’2003-01-02-20.00.00’),

DAYOFYEAR(’2003-01-02-12.00.00-08:00’),
DAYOFYEAR(’2003-01-03-05.00.00+09:00’)
FROM SYSIBM.SYSDUMMY1;

The results for this SELECT statement are 2 ,2 ,3.

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
2003-01-02-20.00.00.

434 SQL Reference

DAYS
The DAYS function returns an integer representation of a date.

�� DAYS(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, or a graphic string.

If expression is a character or graphic string, it must not be a CLOB or DBCLOB,
and its value must be a valid string representation of a date or timestamp with an
actual length that is not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime
values” on page 101.

If expression is a timestamp with a time zone value, or a valid string representation
of a timestamp with a time zone, the result is determined from the UTC
representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D, where D
is the date that would occur if the DATE function were applied to the argument.

Example1: Set the INTEGER host variable DAYSVAR to the number of days that
employee 140 had been with the company on the last day of 1997.

EXEC SQL SELECT DAYS(’1997-12-31’) - DAYS(HIREDATE) + 1
INTO :DAYSVAR
FROM DSN8B10.EMP
WHERE EMPNO = ’000140’;

Example 2: The following invocations of the DAYS function returns the same result:
SELECT DAYS(’2003-01-02-20.00.00’),

DAYS(’2003-01-02-12.00.00-08:00’),
DAYS(’2003-01-03-05.00.00+09:00’)
FROM SYSIBM.SYSDUMMY1;

For each invocation of the DAYS function in this SELECT statement, the result is
731217.

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
2003-01-02-20.00.00.

Chapter 3. Functions 435

DBCLOB
The DBCLOB function returns a DBCLOB representation of a character string value
(with the single-byte characters converted to double-byte characters) or a graphic
string value.

Character to DBCLOB:

�� DBCLOB(character-expression)
, integer

, CODEUNITS16
CODEUNITS32

��

Graphic to DBCLOB:

�� DBCLOB(graphic-expression)
, integer

, CODEUNITS16
CODEUNITS32

��

The schema is SYSIBM.

Character to DBCLOB

character-expression
An expression that returns a value that is an EBCDIC-encoded or
Unicode-encoded character string. It cannot be BIT data. The argument does
not need to be mixed data, but any occurrences of X'0E' and X'0F' in the string
must conform to the rules for EBCDIC mixed data. (See “Character strings” on
page 84 for these rules.)

integer
The length attribute of the resulting DBCLOB. The value of integer must be
between 1 and the maximum length of a DBCLOB, expressed in the units that
are either implicitly or explicitly specified.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length
attribute of the final result” on page 90 for information about how to calculate
the length attribute of the result string. If CODEUNITS32 is specified, the value
of integer must be between 1 and the maximum length of a DBCLOB divided
by two (to allow for an intermediate result string that is long enough to
evaluate the function).

If integer is not specified and character-expression is an empty string constant,
the length attribute of the result is 1, and the result is an empty string.
Otherwise, the length attribute of the result is the same as the length attribute
of character-expression.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer. If CODEUNITS16 or
CODEUNITS32 is specified, the input is EBCDIC, and there is no system
CCSID for EBCDIC GRAPHIC data, an error occurs.

436 SQL Reference

CODEUNITS16
Specifies that integer is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String
unit specifications” on page 87.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of character-expression. If the length of character-expression, as
measured in single-byte characters, is greater than the specified length of the
result, as measured in double-byte characters, the result is truncated. Unless all the
truncated characters are blanks appropriate for character-expression, a warning is
returned.

The CCSID of the result is the graphic CCSID that corresponds to the character
CCSID of character-expression.

For EBCDIC input data, each character of character-expression determines a
character of the result. The argument might need to be converted to the native
form of mixed data before the result is derived. Let M denote the system CCSID
for mixed data. The argument is not converted if any of the following conditions is
true:
v The argument is mixed data and its CCSID is M.
v The argument is SBCS data and its CCSID is the same as the system CCSID for

SBCS data. In this case, the operation proceeds as if the CCSID of the argument
is M.

Otherwise, the argument is a new string S derived by converting the characters to
the coded character set identified by M. If there is no system CCSID for mixed
data, conversion is to the coded character set that the system CCSID for SBCS data
identifies.

The result is derived from S using the following steps:
v Each shift character (X'0E' or X'0F') is removed.
v Each double-byte character remains as is.
v Each single-byte character is replaced by a double-byte character.

The replacement for a single-byte character is the equivalent DBCS character if an
equivalent exists. Otherwise, the replacement is X'FEFE'. The existence of an
equivalent character depends on M. If there is no system CCSID for mixed data,
the DBCS equivalent of X'xx' for EBCDIC is X'42xx', except for X'40', whose DBCS
equivalent is X'4040'.

For Unicode input data, each character of character-expression determines a
character of the result. The argument might need to be converted to the native
form of mixed data before the result is derived. Let M denote the system CCSID
for mixed data. The argument is not converted if any of the following conditions is
true:
v The argument is mixed data, and its CCSID is M.
v The argument is SBCS data, and its CCSID is the same as the system CCSID for

SBCS data. In this case, the operation proceeds as if the CCSID of the argument
is M.

Chapter 3. Functions 437

Otherwise, the argument is a new string S derived by converting the characters to
the coded character set identified by M.

The result is derived from S using the following steps:
v Each non-supplementary character is replaced by a Unicode double-byte

character (a UTF-16 code point). A non-supplementary character in UTF-8 is
between 1 and 3 bytes.

v Each supplementary character is replaced by a pair of Unicode double-byte
characters (a pair of UTF-16 code points).

The replacement for a single-byte character is the Unicode equivalent character if
an equivalent exists. Otherwise, the replacement is X'FFFD'.

Graphic to DBCLOB

graphic-expression
An expression that returns a value that is an EBCDIC-encoded or
Unicode-encoded graphic string.

integer
The length attribute for the resulting varying-length graphic string. The value
must be an integer between 1 and the maximum length of a DBCLOB,
expressed in the units that are either implicitly or explicitly specified.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length
attribute of the final result” on page 90 for information about how to calculate
the length attribute of the result string.

If integer is not specified and graphic-expression is an empty string constant, the
length attribute of the result is 1, and the result is an empty string. Otherwise,
the length attribute of the result is the same as the length attribute of
graphic-expression.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer. If CODEUNITS16 or
CODEUNITS32 is specified, the input is EBCDIC, and there is no system
CCSID for EBCDIC GRAPHIC data, an error occurs.

CODEUNITS16
Specifies that integer is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String
unit specifications” on page 87.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of graphic-expression. If the length of graphic-expression is
greater than the length attribute of the result, truncation is performed. Unless all of
the truncated characters are double-byte blanks, a warning is returned.

The CCSID of the result is the same as the CCSID of graphic-expression.

The result of the function is a DBCLOB.

The result can be null; if the first argument is null, the result is the null value.

438 SQL Reference

The length attribute and actual length of the result are measured in double-byte
characters because the result is a graphic string.

Example 1: Assume that the application encoding scheme is Unicode. The following
statement returns a graphic (UTF-16) host variable.

VALUES DBCLOB(’123’)
INTO :GHV1;

Example 2: FIRSTNAME is a VARCHAR(12) column (Unicode UTF-8 data) in table
T1. One of its values is the 6-character string 'Jürgen'. When FIRSTNAME has this
value:

Function ... Returns ...
DBCLOB(FIRSTNAME,3,CODEUNITS32) ’Jür’ -- x’004A00FC0072’
DBCLOB(FIRSTNAME,3,CODEUNITS16) ’Jür’ -- x’004A00FC0072’

Chapter 3. Functions 439

DECFLOAT
The DECFLOAT function returns a decimal floating-point representation of either a
number or a character string representation of a number, a decimal number, an
integer, a floating-point number, or a decimal floating-point number.

Numeric to DECFLOAT:

��
,34

DECFLOAT(numeric-expression)
,16

��

String to DECFLOAT:

��
,34

DECFLOAT(string-expression)
,16

��

The schema is SYSIBM.

Numeric to DECFLOAT

numeric-expression
An expression that returns a value of any built-in numeric data type.

34 or 16
Specifies the number of digits of precision for the result. The default is 34.

String to DECFLOAT

string-expression
An expression that returns a value of a character or graphic string (except a
CLOB or DBCLOB) with a length attribute that is not greater than 255 bytes.
Leading and trailing blanks are eliminated, and the resulting string is folded to
uppercase. The expression must conform to the rules for forming a
floating-point, decimal floating-point, integer, or decimal constant.

Use the string-expression syntax variation to specify a negative zero as a
constant, or to preserve the precision of a floating point constant.

34 or 16
Specifies the number of digits of precision for the result. The default is 34.

The result is the same number that would result from CAST(string-expression AS
DECFLOAT(n)) or CAST(numeric-expression AS DECFLOAT(n)). Leading and trailing
blanks are removed from the string, and the resulting substring must conform to
the rules for forming a string representation of an SQL decimal-floating point
constant.

If necessary, the source is rounded to the precision of the target.

440 SQL Reference

For static SQL statements other than CREATE VIEW, the ROUNDING bind option
or the native SQL procedure option determines the rounding mode.

For dynamic SQL statements (and static CREATE VIEW statements), the special
register CURRENT DECFLOAT ROUNDING MODE determines the rounding
mode.

The result of the function is a DECFLOAT with the implicitly or explicitly specified
number of digits of precision.

The result can be null; if the first argument is null, the result is the null value.

Note: To increase the portability of applications, use the CAST specification. For
more information, see “CAST specification” on page 267.

Example: When a keyword is used for a special value that is expressed as a
constant in a context where the keyword could be interpreted as a name, the
DECFLOAT function can be used to explicitly cast the value to decimal-floating
point. Assume that MYTAB contains columns C1 and SNAN, and that you want to
reference the decimal floating-point value for infinity in the same SQL statement.
Use the DECFLOAT function to explicitly cast SNAN as a decimal floating-point
value to ensure that it is not interpreted as the name of a column, parameter or
variable:

SELECT INFINITY -- column named SNAN
FROM MYTAB

WHERE C1 = DECFLOAT (’sNaN’) -- comparison is made with the
-- decimal floating-point sNaN value

Chapter 3. Functions 441

DECFLOAT_FORMAT
The DECFLOAT_FORMAT function returns a DECFLOAT(34) value that is based
on the interpretation of the input string using the specified format.

�� DECFLOAT_FORMAT (string-expression)
, format-string

��

The schema is SYSIBM.

string-expression
An expression that returns a value that is a CHAR and VARCHAR data type.
If a supplied argument is a GRAPHIC or VARGRAPHIC data type, it is first
converted to VARCHAR before evaluating the function. Leading and trailing
blanks are removed from the string. If format-string is not specified, the
resulting substring must conform to the rules for forming an SQL integer,
decimal, floating-point, or decimal floating-point constant and not be greater
than 42 bytes. Otherwise, the resulting substring must contain the components
of a number that corresponds to the format specified by format-string.

format-string
An expression that returns a value that is a built-in character string data type.
If a supplied argument is a graphic string (except DBCLOB), it is first
converted to a character string before the function is evaluated. The actual
length must not be greater than 254 bytes.

The value is a template for how string-expression is to be interpreted for
conversion to a DECFLOAT value. format-string must contain a valid
combination of the listed format elements according to the following rules:
v At least one '0' or '9' format element must be specified.
v A sign format element ('S', 'MI', 'PR') can be specified only one time.
v A decimal point format element can be specified only one time.
v Alphabetic format elements must be specified in upper case.
v A prefix format element can only be specified at the beginning of the format

string, before any format elements that are not prefix format elements. When
multiple prefix format elements are specified they can be specified in any
order.

v A suffix format element can only be specified at the end of the format string,
after any format elements that are not suffix format elements.

v A comma format element can be the first format element that is not a prefix
format element. There can be any number of comma format elements.

v Blanks must not be specified between format elements. Leading and trailing
blanks can be specified but are ignored.

442 SQL Reference

Table 61. Format elements for the DECFLOAT_FORMAT function

Format element Description

0 Represents a digit.

A digit is expected if the '0' format element is
to the left of the decimal point. Leading zeros
must be specified if there are fewer digits to
the left of the decimal point in the
string-expression than in the format-string. A
digit can be included if the '0' format element
is to the right of the decimal point.

9 Represents a digit that can be included at the
specified location.

S
Prefix If string-expression represents a

negative number, a leading minus
sign (−) is expected at the specified
location. If string-expression
represents a positive number, a
leading plus sign (+) or leading
blank can be included at the
specified location.

$
Prefix A leading dollar sign ('$') is

expected at the specified location.

MI
Suffix If string-expression represents a

negative number, a trailing minus
sign (−) is expected at the specified
location. If string-expression
represents a positive number, a
trailing blank can be included at the
specified location.

PR
Suffix If string-expression represents a

negative number, a leading less than
character (<) and a trailing greater
than character (>) are expected. If
string-expression represents a positive
number, a leading blank and a
trailing blank can be included.

’ Represents a group separator. A group
separator is expected at the specified location
if there is a character to the left of it that is
not a prefix character.

. A period represents a decimal point that is
expected at the specified location.

If format-string is not specified, string-expression must conform to the rules for
forming an SQL integer, decimal, floating-point, or decimal floating-point constant
and have a length not greater than 42 bytes.

The result is a DECFLOAT(34).

The result can be null; if any argument is null, the result is the null value.

Syntax alternatives: TO_NUMBER is a synonym for DECFLOAT_FORMAT.

Chapter 3. Functions 443

Table 62. Examples of DECFLOAT_FORMAT

Example Result

DECFLOAT_FORMAT(’123.45’) 123.45

DECFLOAT_FORMAT(’−123456.78’) -123456.78

DECFLOAT_FORMAT(’+123456.78’) 123456.78

DECFLOAT_FORMAT(’1.23E4’) 12300

DECFLOAT_FORMAT(’123.4’, ’9999.99’) 123.40

DECFLOAT_FORMAT(’001,234’, ’000,000’) 1234

DECFLOAT_FORMAT(’1234 ’, ’9999MI’) 1234

DECFLOAT_FORMAT(’1234−’, ’9999MI’) -1234

DECFLOAT_FORMAT(’+1234’, ’S9999’) 1234

DECFLOAT_FORMAT(’−1234’, ’S9999’) -1234

DECFLOAT_FORMAT(’ 1234 ’, ’9999PR’) 1234

DECFLOAT_FORMAT(’<1234>’, ’9999PR’) -1234

DECFLOAT_FORMAT(’$123,456.78’,
’$999,999.99’)

123456.78

444 SQL Reference

DECFLOAT_SORTKEY
The DECFLOAT_SORTKEY function returns a binary value that can be used when
sorting DECFLOAT values. The sorting occurs in a manner that is consistent with
the IEEE 754R specification on total ordering.

�� DECFLOAT_SORTKEY(decfloat-expression) ��

The schema is SYSIBM.

decfloat-expression
An expression that returns a DECFLOAT value.

decfloat-expression can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34).

The result is a fixed length binary string with a length attribute of 9 if
decfloat-expression is a DECFLOAT(16) value or 17 if decfloat-expression is a
DECFLOAT(34) value.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that the following CREATE TABLE statement is used to create a
table with a column that contains DECFLOAT values and the INSERT statements
are used to populate the table:

CREATE TABLE T1(D1 DECFLOAT(16));
INSERT INTO T1 VALUES (2.100);
INSERT INTO T1 VALUES (2.10);
INSERT INTO T1 VALUES (2.1000);
INSERT INTO T1 VALUES (2.1);

Then the following SELECT statement is used to return the values from D1:
SELECT D1 FROM T1 ORDER BY D1;

The SELECT statement returns the following values, but because all numbers in
the column have the same value, the ORDER BY clause has no effect and the
values are returned in an arbitrary order:

D1

2.1
2.1000
2.10
2.100

The following SELECT statement, which includes the DECFLOAT_SORTKEY
function in the ORDER BY clause, returns the properly ordered values:

SELECT D1
FROM T1
ORDER BY (DECFLOAT_SORTKEY(D1));

D1

Chapter 3. Functions 445

2.1000
2.100
2.10
2.1

446 SQL Reference

DECIMAL or DEC
The DECIMAL function returns a decimal representation of either a number or a
character-string or graphic-string representation of a number, an integer, or a
decimal number.

Numeric to Decimal:

�� DECIMAL (numeric-expression)
DEC ,precision

,scale

��

String to Decimal:

�� DECIMAL (string-expression)
DEC ,precision

,scale
,decimal-character

��

The schema is SYSIBM.

Numeric to decimal

numeric-expression
An expression that returns a value of any built-in numeric data type.

precision
An integer constant with a value in the range of 1 to 31. The value of this
second argument specifies the precision of the result.

The default value depends on the data type of the first argument as follows:
v 5 if the first argument is a small integer
v 11 if the first argument is a large integer
v 19 if the first argument is a big integer
v 31 if the first argument is a DECFLOAT value
v 15 in all other cases

scale
An integer constant that is greater than or equal to zero and less than or equal
to precision. The value specifies the scale of the result. The default value is 0.

The result of the function is the same number that would occur if the argument
were assigned to a decimal column or variable with precision p and scale s, where
p and s are specified by the second and third arguments. An error occurs if the
number of significant digits required to represent the whole part of the number is
greater than p-s.

String to decimal

string-expression
An expression that returns a value of a character or graphic string (except a
CLOB or DBCLOB) with a length attribute that is not greater than 255 bytes.

Chapter 3. Functions 447

The string must contain a valid string representation of a number. Leading and
trailing blanks are removed from the string, and the resulting substring must
conform to the rules for forming a valid string representation of an SQL
integer or decimal constant.

precision
An integer constant with a value in the range of 1 to 31. The value of this
second argument specifies the precision of the result.

The default value depends on the data type of the first argument as follows:
v 5 if the first argument is a small integer
v 11 if the first argument is a large integer
v 15 in all other cases

scale
An integer constant that is greater than or equal to zero and less than or equal
to precision. The value specifies the scale of the result. The default value is 0.

decimal-character
A single-byte character constant used to delimit the decimal digits in
string-expression from the whole part of the number. The character cannot be a
digit, plus (+), minus (-), or blank. The default value is period (.) or comma (,);
the default value cannot be used in string-expression if a different value for
decimal-character is specified.

The result is the same number that would result from CAST(string-expression AS
DECIMAL(p,s)). Digits are truncated from the end of the decimal number if the
number of digits to the right of the decimal separator character is greater than the
scale s. An error is returned if the number of significant digits to the left of the
decimal character (the whole part of the number) in string-expression is greater than
p-s.

The result of the function is a decimal number with precision of p and scale of s,
where p and s are the second and third arguments. If the first argument can be
null, the result can be null; if the first argument is null, the result is null.

Note: To increase the portability of applications when the precision is specified,
use the CAST specification. For more information, see “CAST specification” on
page 267.

Example 1: Represent the average salary of the employees in DSN8B10.EMP as an
8-digit decimal number with two of these digits to the right of the decimal point.

SELECT DECIMAL(AVG(SALARY),8,2)
FROM DSN8B10.EMP;

Example 2: Assume that updates to the SALARY column are input as a character
string that uses comma as the decimal character. For example, the user inputs
21400,50. The input value is assigned to the host variable NEWSALARY that is
defined as CHAR(10), and the host variable is used in the following UPDATE
statement:

UPDATE DSN8B10.EMP
SET SALARY = DECIMAL (:NEWSALARY,9,2,’,’)
WHERE EMPNO = :EMPID;

448 SQL Reference

DECODE
The DECODE function compares each expression2 to expression1. If expression1 is
equal to expression2, or both expression1 and expression2 are null, the value of the
result-expression is returned. If no expression2 matches expression1, the value of
else-expression is returned. Otherwise a null value is returned.

�� �DECODE (expression1 , expression2 , result-expression)
, else-expression

��

The schema is SYSIBM.

The DECODE function is similar to the CASE expression, with the exception of
how DECODE handles null values:
v A null value in expression1 will match a corresponding null value in expression2.
v If the NULL keyword is used as an argument in the DECODE function, it must

be case to a data type that is appropriate for comparison.

An argument of DECODE must not represent an array value.

The rules for determining the result type of the result of the DECODE function are
based on the corresponding CASE expression.

The following table shows equivalent DECODE functions and CASE expressions.
Both the DECODE function and the corresponding CASE expression achieve the
same result.

Table 63. Equivalent DECODE functions and CASE expressions (each returns the same
results)

DECODE function CASE expression Notes

DECODE(c1, 7, ’a’,
6, ’b’, ’c’)

CASE c1
WHEN 7 THEN ’a’
WHEN 6 THEN ’b’
ELSE ’c’

END

DECODE(c1, var1, ’a’,
var2, ’b’)

CASE
WHEN c1 = var1 OR
(c1 IS NULL AND

var1 ISNULL) THEN ’a’
WHEN c1 = var2 OR
(c1 IS NULL AND

var2 ISNULL) THEN ’b’
ELSE NULL
END

The values of c1, var1, and
var2 can be null values.

Chapter 3. Functions 449

|

Table 63. Equivalent DECODE functions and CASE expressions (each returns the same
results) (continued)

DECODE function CASE expression Notes

SELECT ID, DECODE(STATUS,
’A’, ’Accepted’,
D’, ’Denied’,

CAST(NULL AS VARCHAR(1)),
’Unknown’, ’Other’)

FROM CONTRACTS

SELECT ID,
CASE
WHEN STATUS = ’A’

THEN ’Accepted’
WHEN STATUS = ’D’

THEN ’Denied’
WHEN STATUS IS NULL

THEN ’Unknown’
ELSE ’Other’
END
FROM CONTRACTS

450 SQL Reference

DECRYPT_BINARY, DECRYPT_BIT, DECRYPT_CHAR, and
DECRYPT_DB

The decryption functions return a value that is the result of decrypting encrypted
data. The decryption functions can decrypt only values that are encrypted by using
the ENCRYPT_TDES function.

�� DECRYPT_BINARY (encrypted-data)
DECRYPT_BIT , password-string
DECRYPT_CHAR DEFAULT , ccsid-constant
DECRYPT_DB

��

The schema is SYSIBM.

The password used for decryption is either the password-string value or the
ENCRYPTION PASSWORD value, which is assigned by the SET ENCRYPTION
PASSWORD statement.

encrypted-data
An expression that returns a complete, encrypted data value of a CHAR FOR
BIT DATA, VARCHAR FOR BIT DATA, BINARY, or VARBINARY data type.
The data string must have been encrypted using the ENCRYPT_TDES function.
The length attribute must be greater than or equal to 0 (zero) and less than or
equal to 32672.

password-string
An expression that returns a CHAR or VARCHAR value with at least 6 bytes
and no more than 127 bytes. This expression must be the same password that
was used to encrypt the data or decryption will result in a different value than
was originally encrypted. For enhanced security, password-string should be
specified using a host variable rather than a string constant. If the value of the
password argument is null or not provided, the data will be decrypted using
the ENCRYPTION PASSWORD value, which must have been assigned by the
SET ENCRYPTION PASSWORD statement.

For a static SQL statement, it is recommended that the password be specified
with a host variable rather than with a string constant.

DEFAULT
The data is decrypted using the ENCRYPTION PASSWORD value, which must
have been assigned by the SET ENCRYPTION PASSWORD statement.

ccsid-constant
A integer constant that specifies the CCSID in which the data should be
returned by the decryption function. If DECRYPT_BIT or DECRYPT_BINARY
is specified, ccsid-constant must not be specified. The default is
v The ENCODING bind option of the plan or package or the APPLICATION

ENCODING SCHEMA option of the CREATE PROCEDURE or ALTER
PROCEDURE statement for native SQL procedures that contain the static
SQL statements

v The value of the APPLICATION ENCODING special register for dynamic
SQL statements

Chapter 3. Functions 451

The data type of the result of the function is determined by the function that is
specified and the data type of the first argument, as shown in the following table.
If the cast from the actual type of the encrypted data to the result of the function is
not supported, a warning or error is returned.

Table 64. Result of the decryption function

Function Type of first
argument

Actual type of
encrypted data

Result

DECRYPT_BINARY FOR BIT DATA1,
BINARY,
VARBINARY

Any string (except for
LOBs)

VARBINARY

DECRYPT_BIT FOR BIT DATA,
BINARY,
VARBINARY

CHAR, VARCHAR VARCHAR FOR BIT
DATA

DECRYPT_BIT FOR BIT DATA,
BINARY,
VARBINARY

GRAPHIC,
VARGRAPHIC
(UTF16)

Warning or error

If a warning is
returned, the result is
VARCHAR FOR BIT
DATA

DECRYPT_BIT FOR BIT DATA,
BINARY,
VARBINARY

GRAPHIC,
VARGRAPHIC (not
UTF16)

Warning or error

If a warning is
returned, the result is
VARCHAR FOR BIT
DATA

DECRYPT_BIT FOR BIT DATA,
BINARY,
VARBINARY

BINARY,
VARBINARY

Warning or error

If a warning is
returned, the result is
VARCHAR FOR BIT
DATA

DECRYPT_CHAR FOR BIT DATA,
BINARY,
VARBINARY

CHAR, VARCHAR VARCHAR(3)

DECRYPT_CHAR FOR BIT DATA,
BINARY,
VARBINARY

GRAPHIC,
VARGRAPHIC
(UTF16)

VARCHAR(3)

DECRYPT_CHAR FOR BIT DATA,
BINARY,
VARBINARY

GRAPHIC,
VARGRAPHIC (not
UTF16)

Warning or error

If a warning is
returned, the result is
VARCHAR(3)

DECRYPT_CHAR FOR BIT DATA,
BINARY,
VARBINARY

BINARY,
VARBINARY

Warning or error

If a warning is
returned, the result is
VARCHAR(3)

DECRYPT_DB FOR BIT DATA,
BINARY,
VARBINARY

CHAR, VARCHAR,
GRAPHIC,
VARGRAPHIC

VARGRAPHIC

DECRYPT_DB FOR BIT DATA,
BINARY,
VARBINARY

BINARY,
VARBINARY

Warning or error

If a warning is
returned, the result is
VARGRAPHIC

452 SQL Reference

Table 64. Result of the decryption function (continued)

Function Type of first
argument

Actual type of
encrypted data

Result

Note: 1 FOR BIT DATA means CHAR or VARCHAR FOR BIT DATA

If encrypted-data included a hint, the hint is not returned by the function. The
length attribute of the result is the length attribute of encrypted-data minus 8 bytes.
The actual length of the value that is returned by the function will match the
length of the original string that was encrypted. If encrypted-data includes bytes
beyond the encrypted string, these bytes are not returned by the function.

Administration of encrypted data: The decryption functions can only decrypt data
that was encrypted using the Triple DES encryption algorithm. Therefore, columns
with encrypted data can only be used after replication if they were encrypted
using the Triple DES encryption algorithm.

If the data is decrypted using a different CCSID than the originally encrypted
value, it is possible that expansion might occur when converting the decrypted
value to this CCSID. In such situations, the encrypted-data value must first be cast
to a VARCHAR string with a larger number of bytes before performing the
decryption functions.

The result can be null; if the first argument is null, the result is the null value.

For additional information about using the decryption functions, see
“ENCRYPT_TDES” on page 464 and “GETHINT” on page 476.

Password protection: To prevent inadvertent access to the encryption password, do
not specify password-string as a string constant in the source statement. Instead, use
the ENCRYPTION PASSWORD special register or specify the password using a
host variable.

Example 1: Set the ENCRYPTION PASSWORD value to 'Ben123' and use it as the
password to insert a decrypted social security number into the table. Decrypt the
value of the added social security number, using the ENCRYPTION PASSWORD
value.

SET ENCRYPTION PASSWORD =’Ben123’;
INSERT INTO EMP(SSN) VALUES ENCRYPT_TDES(’289-46-8832’);
SELECT DECRYPT_CHAR(SSN) FROM EMP;

This example returns the value '289-46-8832'.

Example 2: Decrypt the social security number that is inserted into the table.
Instead of using the ENCRYPTION PASSWORD value, explicitly specify 'Ben123'
as the encryption password.

SELECT DECRYPT_CHAR(SSN,’Ben123’) FROM EMP;

This example returns the value '289-46-8832'.

Example 3: Insert a decrypted social security number into the table, explicitly
specifying 'Ben123' as the password. Decrypt the data and have it converted to
CCSID 1208.

SET ENCRYPTION PASSWORD =’Ben123’;
INSERT INTO EMP(SSN) VALUES ENCRYPT_TDES(’289-46-8832’);
SELECT DECRYPT_CHAR(SSN) FROM EMP;

Chapter 3. Functions 453

When a CCSID is specified, it might be necessary to explicitly cast the data to a
longer value to ensure that there is room for expansion when the data is
decrypted. The following example illustrates the technique:

SELECT DECRYPT_CHAR(CAST(SSN AS VARCHAR(57)),
’Ben123’,1208)

FROM EMP;

In the first case, where the data is not cast to a longer value, the result is a
VARCHAR(11) value. In the second case, to allow for expansion, SSN is cast as
VARCHAR(57) (11 * 3 + 24). Casting the data to a longer value allows for three
times expansion in the normal VARCHAR(11) result. Three times expansion is
often associated with a worst case of ASCII or EBCDIC to Unicode UTF-8
conversion. In both cases in this example, the result is the VARCHAR(11) value
'289-46-8832'.

454 SQL Reference

DEGREES
The DEGREES function returns the number of degrees of the argument, which is
an angle, expressed in radians.

�� DEGREES(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric
data type that is not DECFLOAT. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable HRAD is a DOUBLE with a value of
3.1415926536. The following statement returns a double precision floating-point
number with an approximate value of 180.0.

SELECT DEGREES(:HRAD)
FROM SYSIBM.SYSDUMMY1;

Chapter 3. Functions 455

DIFFERENCE
The DIFFERENCE function returns a value, from 0 to 4, that represents the
difference between the sounds of two strings, based on applying the SOUNDEX
function to the strings. A value of 4 is the best possible sound match.

�� DIFFERENCE(expression-1,expression-2) ��

The schema is SYSIBM.

expression-1 or expression-2
Each expression must return a value that is a built-in numeric, character string,
or graphic string data type that is not a LOB. A numeric argument is cast to a
character string before the function is evaluated. For more information on
converting a numeric string to a character string, see “VARCHAR” on page
673.

The data type of the result is INTEGER.

The result can be null; if any argument is null, the result is the null value.

Example 1: Find the DIFFERENCE and SOUNDEX values for 'CONSTRAINT' and
'CONSTANT':

SELECT DIFFERENCE(’CONSTRAINT’,’CONSTANT’),
SOUNDEX(’CONSTRAINT’),
SOUNDEX(’CONSTANT’)

FROM SYSIBM.SYSDUMMY1;

This example returns the values 4, C523, and C523. Since the two strings return the
same SOUNDEX value, the difference is 4 (the highest value possible).

Example 2: Find the DIFFERENCE and SOUNDEX values for 'CONSTRAINT' and
'CONTRITE':

SELECT DIFFERENCE(’CONSTRAINT’,’CONTRITE’),
SOUNDEX(’CONSTRAINT’),
SOUNDEX(’CONTRITE’)

FROM SYSIBM.SYSDUMMY1;

This example returns the values 2, C523, and C536. In this case, the two strings
return different SOUNDEX values, and hence, a lower difference value.

456 SQL Reference

DIGITS
The DIGITS function returns a character string representation of the absolute value
of a number.

�� DIGITS(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value that is a SMALLINT,
INTEGER, BIGINT, or DECIMAL built-in numeric data type.

The result of the function is a fixed-length character string representing the
absolute value of the argument without regard to its scale. The result does not
include a sign or a decimal point. Instead, it consists exclusively of digits,
including, if necessary, leading zeros to fill out the string. The length of the string
is:
v 5 if the argument is a small integer
v 10 if the argument is a large integer
v 19 if the argument is a big integer
v p if the argument is a decimal number with a precision of p

The result can be null; if the argument is null, the result is the null value.

The CCSID of the result is determined from the context in which the function was
invoked. For more information, see “Determining the encoding scheme and CCSID
of a string” on page 47.

Example 1: Assume that an INTEGER column called INTCOL containing a 10-digit
number is in a table called TABLEX. INTCOL has the data type INTEGER instead
of CHAR(10) to save space. the following query lists all combinations of the first
four digits in column INTCOL.

SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)
FROM TABLEX;

Example 2: Assume that COLUMNX has the data type DECIMAL(6,2), and that one
of its values is -6.28. For this value, the following statement returns the value
'000628'.

DIGITS(COLUMNX)

The result is a string of length six (the precision of the column) with leading zeros
padding the string out to this length. Neither sign nor decimal point appear in the
result.

Chapter 3. Functions 457

DOUBLE_PRECISION or DOUBLE
The DOUBLE_PRECISION and DOUBLE functions returns a floating-point
representation of either a number or a character-string or graphic-string
representation of a number, an integer, a decimal number, or a floating-point
number.

Numeric to Double:

�� DOUBLE_PRECISION (numeric-expression)
DOUBLE

��

String to Double:

�� DOUBLE_PRECISION (string-expression)
DOUBLE

��

The schema is SYSIBM.

Numeric to Double

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the expression were
assigned to a double precision floating-point column or variable.

String to Double

string-expression
An expression that returns a value of a character or graphic string (except a
CLOB or DBCLOB) with a length attribute that is not greater than 255 bytes.
The string must contain a valid string representation of a number.

The result is the same number that would result from CAST(string-expression
AS DOUBLE PRECISION). Leading and trailing blanks are removed from the
string, and the resulting substring must conform to the rules for forming a
valid string representation of an SQL floating-point, integer, or decimal
constant.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Note: To increase the portability of applications, use the CAST specification. For
more information, see “CAST specification” on page 267.

FLOAT can be specified as a synonym for DOUBLE or DOUBLE_PRECISION.

Example: Using sample table DSN8B10.EMP, find the ratio of salary to commission
for employees whose commission is not zero. The columns involved in the

458 SQL Reference

calculation, SALARY and COMM, have decimal data types. To eliminate the
possibility of out-of-range results, apply the DOUBLE function to SALARY so that
the division is carried out in floating-point.

SELECT EMPNO, DOUBLE(SALARY)/COMM
FROM DSN8B10.EMP
WHERE COMM > 0;

Chapter 3. Functions 459

DSN_XMLVALIDATE
The DSN_XMLVALIDATE function returns an XML value that is the result of
applying XML schema validation to the first argument of the function.
DSN_XMLVALIDATE can validate XML data that has a maximum length of 2 GB -
1 byte.

�� DSN_XMLVALIDATE(string-expression , schema-name-string)
xml-expression target-namespace-uri-string,schema-location-string

��

The schema is SYSIBM.

string-expression
An expression that returns a built-in character, graphic, or binary string. The
value must be a well-formed XML document that conforms to the XML Version
1.0 standard.

xml-expression
An expression that returns an XML value in the XML data type. The value
must be a well-formed XML document that conforms to XML Version 1.0
standard.

schema-name-string
An expression that returns a built-in varying length character string that is not
a CLOB. The value specifies the name of the XML schema object that is used
for validation. The value must not be an empty string or the null value, and
the actual length must be less than or equal to 257. If the XML schema name is
qualified, the qualifier must be SYSXSR (SYSXSR is the default qualifier). The
value must identify a registered XML schema in the DB2 XML schema
repository.

target-namespace-uri-string
An expression that returns a built-in varying length character string that is not
a CLOB, with a length attribute that is not greater than 1000. The value
specifies the target namespace name or universal resource identifier (URI) of
the XML schema that is to be used for validation. If the value is an empty
string of the null value, no namespace is used to locate the XML schema.

schema-location-string
An expression that returns a built-in varying length character string that is not
a CLOB, with a length attribute that is not greater than 1000. The value
specifies the XML schema location hint URI of the XML schema that is to be
used for validation. If the value is an empty string of the null value, no
schema location is used to locate the XML schema.

If target-namespace-uri-string and schema-location-string are specified, the combination
must identify a registered XML schema in the DB2 XML schema repository, and
there must be only one such registered XML schema.

A schema must be registered successfully in the DB2 XML schema repository
before it can be used for DSN_XMLVALIDATE. If the validation fails, DB2 returns
an error.

The result of the function is an XML value.

460 SQL Reference

The result can be null; if the first argument is null, the result is the null value.

Example 1: The following example shows how the DSN_XMLVALIDATE function
validates the XML data that is contained in the value_host_var host variable. The
XML schema, SYSXSR.ORDERSCHEMA, was registered prior to this statement:

INSERT INTO T1(C1) VALUES(
DSN_XMLVALIDATE(:value_host_var, ’SYSXSR.MYXMLSCHEMA’));

Example 2: The following example is similar to the previous example but references
the namespace and schema location:

INSERT INTO T1(C1) VALUES(
DSN_XMLVALIDATE(:value_host_var,

’http://www.n1.com’,
’http://www.n1.com/report.xsd’));

Chapter 3. Functions 461

EBCDIC_CHR
The EBCDIC_CHR function returns the character that has the EBCDIC code value
that is specified by the argument.

�� EBCDIC_CHR(expression) ��

The schema is SYSIBM.

expression
An expression that returns a BIGINT, INTEGER, or SMALLINT built-in data
type value.

expression can also be a character string or graphic string data type. The string
input is implicitly cast to a numeric value of DECFLOAT(34) which is then
assigned to a BIGINT value.

The result of the function is a CHAR(1) string encoded in the SBCS EBCDIC
CCSID (regardless of the setting of the MIXED option in DSNHDECP). If the value
of expression is not in the range of 0 to 255, the null value is returned.

The result can be null; if the argument is null, the result is the null value.

Example: Set hv with the Euro symbol "€" in CCSID 1140:
SET :hv = EBCDIC_CHR(159); -- x’9F’

Set hv with the Euro symbol "€" in CCSID 1142:
SET :hv = EBCDIC_CHR(90); -- x’5A’

In both cases, the "€" is assigned to hv, but because the Euro symbol is located at
different code points for the two CCSIDs, the input value is different.

462 SQL Reference

EBCDIC_STR
The EBCDIC_STR function returns a string, in the system EBCDIC CCSID, that is
an EBCDIC version of the string.

�� EBCDIC_STR(string-expression) ��

The schema is SYSIBM.

The system EBCDIC CCSID is defined as the SBCS EBCDIC CCSID on a
MIXED=NO system or the MIXED EBCDIC CCSID on a MIXED=YES system.

string-expression
An expression that returns a value of a built-in character or graphic string. If
the string is a character string, in cannot be bit data. string-expression must be
an ASCII, EBCDIC, or Unicode string. EBCDIC_STR returns an EBCDIC
version of the string. Non-EBCDIC characters are converted to the form \xxxx,
where xxxx represents a UTF-16 code unit.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

The length attribute of the result is calculated using the formulas in Table 30 on
page 142. The length attribute of the result will be MAX((5*n),32704). Where n is
the result of applying the formulas in Table 30 on page 142 based on input and
output data types.

The result of the function is an EBCDIC character string (in the system EBCDIC
CCSID). If the actual length of the result string exceeds the maximum for the
return type, an error occurs.

The result can be null; if the argument is null, the result is the null value.

Example: The following example returns the EBCDIC string equivalent of the text
string "Hi my name is А р е (Andrei)"

SET :HV1 = EBCDIC_STR(’Hi, my name is А р е (Andrei)’);

HV1 is assigned the value "Hi, my name is \0410\043D\0434\0440\0435\0439
(Andrei)"

Chapter 3. Functions 463

ENCRYPT_TDES
The ENCRYPT_TDES function returns a value that is the result of encrypting the
first argument by using the Triple DES encryption algorithm. The function can also
set the password that is used for encryption.

The encryption password can also be set by using the ENCRYPTION PASSWORD
value, which is assigned by using the SET ENCRYPTION PASSWORD statement.

�� ENCRYPT_TDES(data-string)
, password-string

, hint-string

��

The schema is SYSIBM.

data-string
An expression that returns the string value to be encrypted. The string
expression must return a built-in string data type that is not a LOB. The length
attribute must be greater than or equal to 0 (zero). The length attribute is
limited to 32640 if hint-string is specified and 32672 if hint-string is not
specified.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

password-string
An expression that returns a CHAR or VARCHAR value with at least 6 bytes
and no more than 127 bytes.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

The value represents the password that is used to encrypt data-string. If the
value of the password argument is null or not specified, the data is encrypted
using the ENCRYPTION PASSWORD value, which must have been assigned
by the SET ENCRYPTION PASSWORD statement.

hint-string
An expression that returns a CHAR or VARCHAR value up to 32 bytes that is
to help data owners remember passwords (for example, 'Ocean' as a hint to
remember 'Pacific').

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

If a hint value is specified, the hint is embedded into the result and can be
retrieved using the GETHINT function. If this argument is null or not specified
and no hint was specified when the ENCRYPTION PASSWORD was set, no
hint is embedded in the result. If password-string is not specified, the hint can
be specified using the SET ENCRYPTION PASSWORD statement.

The data type of the result is determined by the first argument as shown in the
following table:

464 SQL Reference

Table 65. Data type of the results of the ENCRYPT_TDES function

Data type of the first argument Data type of the result

BINARY, VARBINARY VARBINARY

CHAR, VARCHAR, GRAPHIC,
VARGRAPHIC

VARCHAR FOR BIT DATA

The encoding scheme of the result is the same as the encoding scheme of
data-string. If the result is character data, the result is bit data.

The length attribute of the result is different depending of whether hint-string is
specified:
v If hint-string is specified, the length attribute of the result is the length attribute

of the non-encrypted data + 24 bytes + number of bytes to the next 8 byte
boundary + 32 bytes for the hint.

v If hint-string is not specified, the length attribute of the result is the length
attribute of the non-encrypted data + 24 bytes + the number of bytes to the next
8 byte boundary.

The result can be null; if the first argument is null, the result is the null value.

The encrypted result is longer than the data-string value. Therefore, when assigning
encrypted values, ensure that the target is declared with a length that can contain
the entire encrypted value.

When encrypting data, be aware of the following points:
v Password protection: To prevent inadvertent access to the encryption password,

do not specify password-string as a string constant in the source for a program,
procedure, or function. Instead, use the SET ENCRYPTION PASSWORD
statement or a variable.

v Encryption algorithm: The internal encryption algorithm used is Triple DES
cipher block chaining (CBC) with padding. The 128-bit secret key is derived
from the password using an MD5 hash.

v Encryption passwords and data: It is your responsibility to perform password
management. After data is encrypted, only the password that is used to encrypt
it can be used to decrypt it. If a different password is used to decrypt the data
than was used to encrypt the data, the results of decryption will not match the
original string. No error or warning is returned. CHAR variables might be
padded with blanks if they are used to set password values. The encrypted
result might contain null terminator and other non-printable characters.

v Table column definitions: When defining columns and types to contain
encrypted data, always calculate the length attribute as follows:
– For encrypted data with an embedded hint, the column length should be the

length attribute of the non-encrypted data + 24 bytes + number of bytes to
the next 8 byte boundary + 32 bytes for the hint.

– For encrypted data without an embedded hint, the column length should be
the length attribute of the non-encrypted data + 24 bytes + number of bytes
to the next 8 byte boundary.

Here are some sample column length calculations, which assume that a hint is
not embedded:
Maximum length of non-encrypted data 6 bytes
24 bytes for encryption key 24 bytes
Number of bytes to the next 8 byte boundary 2 bytes

Chapter 3. Functions 465

Encrypted data column length 32 bytes
Maximum length of non-encrypted data 32 bytes
24 bytes for encryption key 24 bytes
Number of bytes to the next 8 byte boundary 0 bytes

Encrypted data column length 56 bytes

v Administration of encrypted data: Encrypted data can be decrypted only on
servers that support the decryption of data that was encrypted using the Triple
DES encryption algorithm. Hence, replication of columns with encrypted data
should only be done to servers that support the decryption functions and the
same encryption algorithms.

ENCRYPT can be specified as a synonym for ENCRYPT_TDES. DB2 supports this
keyword to provide compatibility with other products in the DB2 family.

Example 1: Encrypt the social security number that is inserted into the table. Set the
ENCRYPTION PASSWORD value to 'Ben123' and use it as the password.

SET ENCRYPTION PASSWORD =’Ben123’;
INSERT INTO EMP(SSN) VALUES ENCRYPT_TDES (’289-46-8832’);

Example 2: Encrypt the social security number that is inserted into the table.
Explicitly specify 'Ben123' as the encryption password.
INSERT INTO EMP(SSN) VALUES ENCRYPT_TDES (’289-46-8832’,’Ben123’);

Example 3: Encrypt the social security number that is inserted into the table. Specify
'Pacific' as the encryption password, and provide 'Ocean' as a hint to help the user
remember the password of 'Pacific'.
INSERT INTO EMP(SSN) VALUES ENCRYPT_TDES (’289-46-8832’,’Pacific’,’Ocean’);

The preceding statement returns a double precision floating-point number with an
approximate value of 31.62.

466 SQL Reference

EXP
The EXP function returns a value that is the base of the natural logarithm (e),
raised to a power that is specified by the argument. The EXP and LN functions are
inverse operations.

�� EXP(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric
data type that is not DECFLOAT. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable E is DECIMAL(10,9) with a value of
3.453789832. The following statement returns a double precision floating-point
number with an approximate value of 31.62.

SELECT EXP(:E)
FROM SYSIBM.SYSDUMMY1;

Chapter 3. Functions 467

EXTRACT
The EXTRACT function returns a portion of a date or timestamp, based on its
arguments.

Extract date values:

�� EXTRACT(YEAR FROM date-expression)
MONTH timestamp-expression
DAY

��

Extract time values:

�� EXTRACT(HOUR FROM time-expression)
MINUTE timestamp-expression
SECOND

��

Extract time zone values:

�� EXTRACT(HOUR FROM date-expression)
MINUTE time-expression
SECOND timestamp-expression
TIMEZONE_HOUR
TIMEZONE_MINUTE

��

The schema is SYSIBM.

The result can be null; if the argument is null, the result is the null value.

Extract date values

YEAR
Specifies that the year portion of date-expression or timestamp-expression
is returned. The result is identical to the YEAR scalar function. For
more information, see “YEAR” on page 732.

MONTH
Specifies that the month portion of date-expression or
timestamp-expression is returned. The result is identical to the MONTH
scalar function. For more information, see “MONTH” on page 535.

DAY
Specifies that the day portion of date-expression or timestamp-expression
is returned. The result is identical to the DAY scalar function. For more
information, see “DAY” on page 427.

468 SQL Reference

date-expression
An expression that returns the value of either a built-in date or built-in
character string data type.

If date-expression is a character or graphic string, it must not be a CLOB
or DBCLOB and its value must be a valid character-string or
graphic-string representation of a date. For the valid formats of string
representations of dates, see “String representations of datetime
values” on page 101.

timestamp-expression
An expression that returns the value of either a built-in timestamp or
built-in character string data type.

If timestamp-expression is a character or graphic string, it must not be a
CLOB or DBCLOB and its value must be a valid character-string or
graphic-string representation of a timestamp. For the valid formats of
string representations of timestamps, see “String representations of
datetime values” on page 101.

Extract time values

HOUR
Specifies that the hour portion of time-expression or timestamp-expression
is returned. The result is identical to the HOUR scalar function. For
more information, see “HOUR” on page 484.

MINUTE
Specifies that the minute portion of time-expression or
timestamp-expression is returned. The result is identical to the MINUTE
scalar function. For more information, see “MINUTE” on page 531.

SECOND
Specifies that the second portion of time-expression or
timestamp-expression is returned. The result is identical to the SECOND
scalar function where the precision and scale of the result depend on
the type of time-expression or timestamp-expression. For more
information, see “SECOND” on page 603.

time-expression
An expression that returns the value of either a built-in time or built-in
character string data type.

If time-expression is a character or graphic string, it must not be a CLOB
or DBCLOB and its value must be a valid string representation of a
time. For the valid formats of string representations of times, see
“String representations of datetime values” on page 101.

timestamp-expression
An expression that returns the value of either a built-in timestamp or
built-in character string data type.

If timestamp-expression is a character or graphic string, it must not be a
CLOB or DBCLOB and its value must be a valid string representation
of a timestamp. For the valid formats of string representations of
timestamps, see “String representations of datetime values” on page
101.

Extract time zone values

TIMEZONE_HOUR
Specifies that the hour component of the time zone of the timestamp

Chapter 3. Functions 469

value is returned. TIMEZONE_HOUR can only be specified if the
second argument is a timestamp-expression and the timestamp-expression
contains a time zone.

TIMEZONE_MINUTE
Specifies that the minute component of the time zone of the timestamp
value is returned. TIMEZONE_MINUTE can only be specified if the
second argument is a timestamp-expression and the timestamp-expression
contains a time zone.

The values of TIMEZONE_HOUR and TIMEZONE_MINUTE shall either
both be non-negative or both be non-positive.

If the timestamp-expression argument includes a time zone, the result is determined
from the UTC representation of the datetime value.

The data type of the result of the function depends on the part of the datetime
value that is specified:
v The result is INTEGER, if one of the following is specified:

– YEAR
– MONTH
– DAY
– HOUR
– MINUTE
– TIMEZONE_HOUR
– TIMEZONE_MINUTE

v The result is DECIMAL(2+p, p) where p is the fractional second precision, if
SECOND is specified with a TIMESTAMP(p) value.

v The result is DECIMAL(8,6), if SECOND is specified with a TIME value or a
string representation of a TIME or timestamp. The fractional digits contains
fractional seconds.

Example 1:
Assume that the column PRSTDATE has an internal value that is
equivalent to 2010-12-25. The following statement returns the value 12:

SELECT EXTRACT(MONTH FROM PRSTDATE)
FROM PROJECT;

Example 2:
Assume that host variable PRSTSZ contains the value
2008-02-29.20.00.000000 -08.30:
SELECT EXTRACT(HOUR FROM :PRSTSZ) FROM PROJECT;

The SELECT statement returns the value 4, which is the hour of the input
datetime value expressed in UTC.

To return the same hour value as expressed in the input, cast the value to
TIMESTAMP WITHOUT TIME ZONE before using the EXTRACT function:
SELECT EXTRACT(HOUR FROM CAST (:PRSTSZ AS TIMESTAMP)) FROM PROJECT;

The SELECT statement returns the value 20, which is the hour as it was
originally expressed as a string in the host variable.
SELECT EXTRACT(TIMEZONE_HOUR FROM :PRSTSZ) FROM PROJECT;

470 SQL Reference

This SELECT statement returns the value -8.
SELECT EXTRACT(TIMEZONE_MINUTE FROM :PRSTSZ) FROM PROJECT;

This SELECT statement returns the value -30.

Chapter 3. Functions 471

FLOAT
The FLOAT function returns a floating-point representation of either a number or a
string representation of a number. FLOAT is a synonym for the DOUBLE function.

�� FLOAT(numeric-expression) ��

The schema is SYSIBM.

FLOAT is a synonym for the DOUBLE function. See “DOUBLE_PRECISION or
DOUBLE” on page 458 for details.

472 SQL Reference

FLOOR
The FLOOR function returns the largest integer value that is less than or equal to
the argument.

�� FLOOR(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of any built-in numeric
data type.

The argument can also be a character string or graphic string data type. The string
input is implicitly cast to a numeric value of DECFLOAT(34).

The result of the function has the same data type and length attribute as the
argument. When the argument is DECIMAL, the scale of the result is 0 and not the
scale of the input argument. For example, an argument with a date type of
DECIMAL(5,5) results in DECIMAL(5,0).

The result can be null; if the argument is null, the result is the null value.

Example 1: Using sample table DSN8B10.EMP, find the highest monthly salary,
rounding the result down to the next integer. The SALARY column has a decimal
data type.

SELECT FLOOR(MAX(SALARY)/12)
FROM DSN8B10.EMP;

This example returns 04395 because the highest paid employee is Christine Haas
who earns $52750.00 per year. Her average monthly salary before applying the
FLOOR function is 4395.83.

Example 2: This example demonstrates using FLOOR with both positive and
negative numbers.

SELECT FLOOR(3.5),
FLOOR(3.1),
FLOOR(-3.1),
FLOOR(-3.5)

FROM SYSIBM.SYSDUMMY1;

This example returns (leading zeros are shown to demonstrate the precision and
scale of the result):
03. 03. -04. -04.

Chapter 3. Functions 473

GENERATE_UNIQUE
The GENERATE_UNIQUE function returns a bit data character string that is
unique, compared to any other execution of the same function.

�� GENERATE_UNIQUE() ��

The schema is SYSIBM.

The GENERATE_UNIQUE function returns a bit data character string 13 bytes
long (CHAR(13) FOR BIT DATA) that is unique compared to any other execution
of the same function. The function is defined as not deterministic. Although the
function has no arguments, the empty parentheses must be specified when the
function is invoked.

The result of the function is a unique value that includes the internal form of the
Universal Time, Coordinated (UTC) and, if in a sysplex environment, the sysplex
member where the function was processed. The result cannot be null.

The result of this function can be used to provide unique values in a table. Each
successive value will be greater than the previous value, providing a sequence that
can be used within a table. The sequence is based on the time when the function
was executed.

This function differs from using the special register CURRENT TIMESTAMP in
that a unique value is generated for each row of a multiple row insert statement,
an insert statement with a fullselect, or an insert operation in a MERGE statement.

The timestamp value that is part of the result of this function can be determined
using the TIMESTAMP function with the result of GENERATE_UNIQUE as an
argument.

Example: Create a table that includes a column that is unique for each row.
Populate this column using the GENERATE_UNIQUE function. Notice that the
UNIQUE_ID column is defined as FOR BIT DATA to identify the column as a bit
data character string.

CREATE TABLE EMP_UPDATE
(UNIQUE_ID VARCHAR(13)FOR BIT DATA,
EMPNO CHAR(6),
TEXT VARCHAR(1000));

INSERT INTO EMP_UPDATE VALUES (GENERATE_UNIQUE(),’000020’,’Update entry 1...’);
INSERT INTO EMP_UPDATE VALUES (GENERATE_UNIQUE(),’000050’,’Update entry 2...’);

This table will have a unique identifier for each row if GENERATE_UNIQUE is
always used to set the value the UNIQUE_ID column. You can create an insert
trigger on the table to ensure that GENERATE_UNIQUE is used to set the value:

CREATE TRIGGER EMP_UPDATE_UNIQUE
NO CASCADE BEFORE INSERT ON EMP_UPDATE
REFERENCING NEW AS NEW_UPD
FOR EACH ROW MODE DB2SQL
SET NEW_UPD.UNIQUE_ID = GENERATE_UNIQUE();

474 SQL Reference

With this trigger, the previous INSERT statements that were used to populate the
table could be issued without specifying a value for the UNIQUE_ID column:

INSERT INTO EMP_UPDATE (EMPNO,TEXT) VALUES (’000020’,’Update entry 1...’);
INSERT INTO EMP_UPDATE (EMPNO,TEXT) VALUES (’000050’,’Update entry 2...’);

The timestamp (in UTC) for when a row was added to EMP_UPDATE can be
returned using:

SELECT TIMESTAMP(UNIQUE_ID), EMPNO, TEXT FROM EMP_UPDATE;

Therefore, the table does not need a timestamp column to record when a row is
inserted.

Chapter 3. Functions 475

GETHINT
The GETHINT function returns a hint for the password if a hint was embedded in
the encrypted data. A password hint is a phrase that helps you remember the
password with which the data was encrypted. For example, 'Ocean' might be used
as a hint to help remember the password 'Pacific'.

�� GETHINT(encrypted-data) ��

The schema is SYSIBM.

encrypted-data
An expression that returns a string that contains a complete, encrypted data
string. encrypted-data must return a value that is a CHAR FOR BIT DATA,
VARCHAR FOR BIT DATA, BINARY, or VARBINARY built-in data type. The
string must have been encrypted using ENCRYPT_TDES function.

The result of the function is VARCHAR(32). The actual length of the result is the
actual length of the hint that was provided when the data was encrypted.

The result can be null; if the argument is null, the result is the null value.

If no hint was specified when the ENCRYPT_TDES function was used to encrypt
the data, the result is the null value.

The encoding scheme of the result is the same as the encoding scheme of
encrypted-data. If encrypted-data is bit data, the CCSID of the result is the default
character CCSID for that encoding scheme. Otherwise, the CCSID of the result is
the same as the CCSID of encrypted-data.

For additional information about this function, see “DECRYPT_BINARY,
DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB” on page 451 and
“ENCRYPT_TDES” on page 464.

Example: This example shows how to embed a hint for the password when
encrypting data and how to later use the GETHINT function to retrieve the
embedded hint. In this example, the hint 'Ocean' is used to help remember the
encryption password 'Pacific'.

INSERT INTO EMP (SSN) VALUES ENCRYPT_TDES (’289-46-8832’,’Pacific’,’Ocean’);
SELECT GETHINT (SSN) FROM EMP;

The value that is returned is 'Ocean'.

476 SQL Reference

GETVARIABLE
The GETVARIABLE function returns a varying-length character-string
representation of the current value of the session variable that is identified by the
argument.

�� GETVARIABLE(string-constant)
, default-value
, CAST (NULL AS VARCHAR(1))

��

The schema is SYSIBM.

string-constant
Specifies a string constant that contains the name of the session variable whose
value is to be returned. The string constant:
v Must have a length that does not exceed 142 bytes.
v Must contain the fully qualified name of the variable, with no embedded

blanks. Delimited identifiers must not be specified.
v Must not contain lowercase letters or characters that cannot be specified in

an ordinary identifier.

The schema qualifier for the variable must be:
v SYSIBM for global variables. For a list of the built-in session variables, see

“References to built-in session variables” on page 225.
v SESSION for user-defined session variables. User-defined session variables

are established via the connection or signon exit routines.

Note: The GETVARIABLE function can obtain the values of only these session
variables. This function cannot obtain the values of built-in global variables or
user-defined global variables.

default-value
Specifies a string constant that contains the value to be returned if the specified
variable does not exist or is not supported by DB2. default-value must be a
string constant that does not exceed 255 bytes.

If default-value is not specified and the specified user-defined session variable
does not exist or the built-in session variable is not supported by DB2, an error
is returned.

CAST(NULL AS VARCHAR(1))
Specifies that a null value is to be returned if the specified variable does not
exist or is not supported by DB2.

The data type of the result is VARCHAR(255). The result can be null.

The CCSID of the result is the CCSID for Unicode mixed data.

Example 1: Use the GETVARIABLE function to set the value of host variable :hv1 to
the name of the plan that is currently being executed. The name of the built-in
session variable that contains the name of the plan is SYSIBM.PLAN_NAME.

SET :hv1 = GETVARIABLE(’SYSIBM.PLAN_NAME’);

Chapter 3. Functions 477

|
|

|
|
|

If DB2 does not support the name of the session variable, an error is returned. For
example, the following statement returns an error because DB2 does not support a
built-in session variable that is named SYSIBM.XYZ.

SET :hv1 = GETVARIABLE(’SYSIBM.XYZ’);

Example 2: Use the GETVARIABLE function to set the value of host variable :hv2 to
the value for the user that is defined in user-defined session variable TEST. If the
session variable has not been set or cannot be found, have the function return the
value 'TEST FAILED'.

SET :hv2 = GETVARIABLE(’SESSION.TEST’,’TEST FAILED’);

Example 3: Use the GETVARIABLE function to set the value of host variable :hv3 to
a string representation of the SYSTEM EBCDIC CCSIDs. The name of the built-in
session variable that contains the system EBCDIC CCSIDs is
SYSIBM.SYSTEM_EBCDIC_CCSID.

SET :hv3 = GETVARIABLE(’SYSIBM.SYSTEM_EBCDIC_CCSID’);

Regardless of the setting of the field MIXED DATA on the installation panel (YES
or NO), the function returns three comma-delimited values that correspond to the
SBCS, MIXED, and GRAPHIC CCSIDs for the encoding scheme.

For example, if the statement were issued on a system with the field MIXED DATA
on the installation panel equal to NO and the default system CCSID of 37, this
string would be returned:

'37,65534,65534'

If the statement were issued on a system with the field MIXED DATA on the
installation panel equal to YES and a default system CCSID of 930 (the mixed
CCSID for the system), this string would be returned:

'290,930,300'

478 SQL Reference

GRAPHIC
The GRAPHIC function returns a fixed-length graphic-string representation of a
character string or a graphic string value, depending on the type of the first
argument.

Character to Graphic:

�� GRAPHIC(character-expression)
, integer

, CODEUNITS16
CODEUNITS32

��

Graphic to Graphic:

�� GRAPHIC(graphic-expression)
, integer

, CODEUNITS16
CODEUNITS32

��

The schema is SYSIBM.

The result of the function is a fixed-length graphic string (GRAPHIC).

The result can be null; if the argument is null, the result is the null value.

The length attribute of the result is measured in double-byte characters because it
is a graphic string.

Character to Graphic

character-expression
An expression that returns a value that is an EBCDIC-encoded or
Unicode-encoded character string. It cannot be BIT data. The argument does
not need to be mixed data, but any occurrences of X'0E' and X'0F' in the string
must conform to the rules for EBCDIC mixed data. (See “Character strings” on
page 84 for these rules.)

The value of the expression must not be an empty string if integer is not
specified or have the value X'0E0F' if the string is an EBCDIC string.

integer
The length of the resulting fixed-length graphic string in the units that are
either implicitly or explicitly specified. The value must be an integer constant
between 1 and 127. If the length of character-expression is less than the length
specified, the result is padded with double-byte blanks to the length of the
result.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length
attribute of the final result” on page 90 for information about how to calculate
the length attribute of the result string.

Chapter 3. Functions 479

If integer is not specified, the length of the result for an EBCDIC string is the
minimum of 127 and the length attribute of character-expression, excluding shift
characters. For a Unicode (UTF-8) string, the length is data dependent, but
does not exceed 127.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer. If CODEUNITS16 or
CODEUNITS32 is specified, the input is EBCDIC, and there is no system
CCSID for EBCDIC GRAPHIC data, an error occurs.

CODEUNITS16
Specifies that integer is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String
unit specifications” on page 87.

The CCSID of the result is the graphic CCSID that corresponds to the character
CCSID of character-expression. If the input is EBCDIC and there is no system CCSID
for EBCDIC GRAPHIC data, the CCSID of the result is X'FFFE'.

For EBCDIC data, each character of character-expression determines a character of
the result. The argument might need to be converted to the native form of mixed
data before the result is derived. Let M be the system CCSID for mixed data. The
argument is not converted if any of the following conditions is true:
v The argument is mixed data and its CCSID is M.
v The argument is SBCS data and its CCSID is the same as the system CCSID for

SBCS data. In this case, the operation proceeds as if the CCSID of the argument
is M.

Otherwise, the argument is a new string S derived by converting the characters to
the coded character set identified by M. If there is no system CCSID for EBCDIC
mixed data, conversion is to the coded character set that the system CCSID for
SBCS data identifies.

The result is derived from S using the following steps:
v Each shift character (X'0E' or X'0F') is removed.
v Each double-byte character remains as is.
v Each single-byte character is replaced by a double-byte character.

The replacement for an SBCS character is the equivalent DBCS character if an
equivalent exists. Otherwise, the replacement is X'FEFE'. The existence of an
equivalent character depends on M. If there is no system CCSID for mixed data,
the DBCS equivalent of X'xxxx' for EBCDIC is X'42xx', except for X'40', whose
DBCS equivalent is X'4040'.

For Unicode data:

Each character of character-expression determines a character of the result. The
argument might need to be converted to the native form of mixed data before the
result is derived. Let M be the system CCSID for mixed data. The argument is not
converted if any of the following conditions is true:
v The argument is mixed data, and its CCSID is M.

480 SQL Reference

v The argument is SBCS data, and its CCSID is the same as the system CCSID for
SBCS data. In this case, the operation proceeds as if the CCSID of the argument
is M.

Otherwise, the argument is a new string S derived by converting the characters to
the coded character set identified by M.

The result is derived from S by using the following steps:
v Each non-supplementary character is replaced by a Unicode double-byte

character (a UTF-16 code point). A non-supplementary character in UTF-8 is
between 1 and 3 bytes.

v Each supplementary character is replaced by a pair of Unicode double-byte
characters (a pair of UTF-16 code points).

The replacement for a single-byte character is the Unicode equivalent character if
an equivalent exists. Otherwise, the replacement is X'FEFE'.

Graphic to Graphic

graphic-expression
An expression that returns a value that is a graphic string. The graphic string
must not be an empty string if integer is not specified.

integer
The length of the resulting fixed-length graphic string in the units that are
either implicitly or explicitly specified. The value must be an integer constant
between 1 and 127. If the length of graphic-expression is less than the length
specified, the result is padded with double-byte blanks to the length of the
result.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length
attribute of the final result” on page 90 for information about how to calculate
the length attribute of the result string.

If integer is not specified, the length of the result is the minimum of 127 and
the length attribute of graphic-expression.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer. If CODEUNITS16 or
CODEUNITS32 is specified, the input is EBCDIC, and there is no system
CCSID for EBCDIC GRAPHIC data, an error occurs.

CODEUNITS16
Specifies that integer is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String
unit specifications” on page 87.

If the length of the graphic-expression is greater than the specified length of the
result, the result is truncated. Unless all the truncated characters are blanks, a
warning is returned.

The CCSID of the result is the same as the CCSID of graphic-expression.

Example: Assume that MYCOL is a VARCHAR column in TABLEY. The following
function returns the string in MYCOL as a fixed-length graphic string.

Chapter 3. Functions 481

SELECT GRAPHIC(MYCOL)
FROM TABLEY;

482 SQL Reference

HEX
The HEX function returns a hexadecimal representation of a value.

�� HEX(expression) ��

The schema is SYSIBM.

The argument must an expression that returns a value of any built-in data type
that is not XML. A character or binary string must not have a maximum length
greater than 16352. A graphic string must not have a maximum length greater than
8176.

The result of the function is a character string.

The result can be null; if the argument is null, the result is the null value.

The result is a string of hexadecimal digits. The first two represent the first byte of
the argument, the next two represent the second byte of the argument, and so
forth. If the argument is a datetime value, the result is the hexadecimal
representation of the internal form of the argument.

If the argument is a fixed-length string and the length of the result is less than 255,
the result is a fixed-length string. Otherwise, the result is a varying-length string
with a length attribute that depends on the following considerations:

If the argument is not a varying-length string, the length attribute of the result
string is the same as the length of the result.
If the argument is a varying-length character or binary string, the length
attribute of the result string is twice the length attribute of the argument.
If the argument is a varying-length graphic string, the length attribute of the
result string is four times the length attribute of the argument.

If expression returns string data, the CCSID of the result is the SBCS CCSID that
corresponds to the CCSID of expression. Otherwise, the CCSID of the result is
determined from the context in which the function was invoked. For more
information, see “Determining the encoding scheme and CCSID of a string” on
page 47.

If the argument is a graphic string, the length of the result is four times the
maximum length of the argument. Otherwise, the length of the result is twice the
(maximum) length of the argument.

Example: Return the hexadecimal representation of START_RBA in the
SYSIBM.SYSCOPY catalog table.

SELECT HEX(START_RBA) FROM SYSIBM.SYSCOPY;

Chapter 3. Functions 483

HOUR
The HOUR function returns the hour part of a value.

�� HOUR(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following
built-in data types: a time, a timestamp, a character string, a graphic string, or a
numeric data type.
v If expression is a character or graphic string, it must not be a CLOB or DBCLOB,

and its value must be a valid string representation of a time or timestamp with
an actual length of not greater than 255 bytes. For the valid formats of string
representations of times and timestamps, see “String representations of datetime
values” on page 101.

v If expression is a number, it must be a time or timestamp duration. For the valid
formats of time and timestamp durations, see “Datetime operands” on page 147.

If expression is a timestamp with a time zone, or a valid string representation of a
timestamp with a time zone, the result is determined from the UTC representation
of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
If the argument is a time, timestamp, or string representation of either, the
result is the hour part of the value, which is an integer between 1 and 24.
If the argument is a time duration or timestamp duration, the result is the
hour part of the value, which is an integer between -99 and +99. A nonzero
result has the same sign as the argument.
If the argument contains a time zone, the result is the year part of the value
expressed in UTC.

Example 1: Assume that a table named CLASSES contains a row for each scheduled
class. Also assume that the class starting times are in a TIME column named
STARTTM. Select those rows in CLASSES that represent classes that start after the
noon hour.

SELECT *
FROM CLASSES
WHERE HOUR(STARTTM) > 12;

Example 2: The following invocations of the HOUR function returns the same
result:
SELECT HOUR(’2003-01-02-20.00.00’),

HOUR(’2003-01-02-12.00.00-08:00’),
HOUR(’2003-01-03-05.00.00+09:00’)
FROM SYSIBM.SYSDUMMY1;

484 SQL Reference

For each invocation of the HOUR function in this SELECT statement, the result is
20.

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
2003-01-02-20.00.00.

Chapter 3. Functions 485

IDENTITY_VAL_LOCAL
The IDENTITY_VAL_LOCAL function returns the most recently assigned value for
an identity column.

�� IDENTITY_VAL_LOCAL() ��

The schema is SYSIBM.

The IDENTITY_VAL_LOCAL function is not deterministic.20 Although the function
has no input parameters, the empty parentheses must be specified when the
function is invoked.

The result is DECIMAL(31,0), regardless of the actual data type of the identity
column to which the result value corresponds.

A qualifying data change statement refers to an insert operation (specified in either an
INSERT statement or a MERGE statement).

The value that is returned is the value that was assigned to the identity column of
the table identified in the most recent qualifying data change statement or LOAD
utility operation for a table with an identity column. The insert operation has to be
issued at the same level; that is, the value has to be available locally within the
level at which it was assigned until replaced by the next assigned value. A new
level is initiated when a trigger, function, or stored procedure is invoked. A trigger
condition is at the same level as the associated triggered action.

The assigned value can be a value supplied by the user (if the identity column is
defined as GENERATED BY DEFAULT) or an identity value that was generated by
DB2.

Note: Use a SELECT FROM data change statement to obtain the assigned value
for an identity column. See data-change-table-reference for more information.

The result can be null. The result is null in the following situations:
v When a qualifying data change statement has not been issued for a table

containing an identity column at the current processing level
v When a COMMIT or ROLLBACK of a unit of work occurred since the most

recent qualifying data change statement that assigned a value

The result of the function is not affected by a ROLLBACK TO SAVEPOINT
statement.

Invoking the function within a qualifying data change statement: Expressions in a
qualifying data change statement are evaluated before values are assigned to the
target columns of the qualifying data change statement. Thus, when you invoke
IDENTITY_VAL_LOCAL in a qualifying data change statement, the value that is

20. Being not deterministic affects what optimization (such as view processing and parallel processing) can be done when this
function is used and in what contexts the function can be invoked. For example, the RAND function is another built-in scalar
function that is not deterministic. Using functions that are not deterministic within a predicate can cause unpredictable results.

486 SQL Reference

used is the most recently assigned value for an identity column from a previous
qualifying data change statement. The function returns the null value if no such
qualifying data change statement had been executed within the same level as the
invocation of the IDENTITY_VAL_LOCAL function. Each qualifying data change
statement that involves an IDENTITY column causes the identity value to be
copied into connection-specific storage in DB2. Thus, the most recent identity value
is used for a connection, regardless of what is happening with other concurrent
user connections.

Invoking the function following a failed insert operation: The function returns an
unpredictable result when it is invoked after the unsuccessful execution of a
qualifying data change statement for a table with an identity column. The value
might be the value that would have been returned from the function had it been
invoked before the failed qualifying data change statement or the value that would
have been assigned had the qualifying data change statement succeeded. The
actual value returned depends on the point of failure and is therefore
unpredictable.

Invoking the function within the SELECT statement of a cursor: Because the
results of the IDENTITY_VAL_LOCAL function are not deterministic, the result of
an invocation of the IDENTITY_VAL_LOCAL function from within the SELECT
statement of a cursor can vary for each FETCH statement.

Invoking the function within the trigger condition of an insert trigger: The result
of invoking the IDENTITY_VAL_LOCAL function from within the condition of an
insert trigger is the null value.

Invoking the function within a triggered action of an insert trigger: Multiple before
or after insert triggers can exist for a table. In such cases, each trigger is processed
separately, and identity values generated by SQL statements issued within a
triggered action are not available to other triggered actions using the
IDENTITY_VAL_LOCAL function. This is the case even though the multiple
triggered actions are conceptually defined at the same level.

Do not use the IDENTITY_VAL_LOCAL function in the triggered action of a before
insert trigger. The result of invoking the IDENTITY_VAL_LOCAL function from
within the triggered action of a before insert trigger is the null value.

The value for the identity column of the table for which the trigger is defined
cannot be obtained by invoking the IDENTITY_VAL_LOCAL function within the
triggered action of a before insert trigger. However, the value for the identity
column can be obtained in the triggered action by referencing the trigger transition
variable for the identity column.

The result of invoking the IDENTITY_VAL_LOCAL function in the triggered action
of an after insert trigger is the value assigned to an identity column of the table
identified in the most recent qualifying data change statement. That statement is
the one invoked in the same triggered action that had a qualifying data change
statement for a table containing an identity column. If a qualifying data change
statement for a table containing an identity column was not executed within the
same triggered action before invoking the IDENTITY_VAL_LOCAL function, then
the function returns a null value.

Invoking the function following an insert operation with triggered actions: The
result of invoking the function after an insert that activates triggers is the value
actually assigned to the identity column (that is, the value that would be returned

Chapter 3. Functions 487

on a subsequent SELECT statement). This value is not necessarily the value
provided in the qualifying data change statement or a value generated by DB2.
The assigned value could be a value that was specified in a SET transition variable
statement within the triggered action of a before insert trigger for a trigger
transition variable associated with the identity column.

Scope of IDENTITY_VAL_LOCAL: The IDENTITY_VAL_LOCAL value persists
until the next insert in the current session into a table that has an identity column
defined on it, or the application session ends. The value is unaffected by COMMIT
or ROLLBACK statements for local applications. The IDENTITY_VAL_LOCAL
value cannot be directly set and is a result of inserting a row into a table. Client
applications or middleware products that save the state of a session and then
restore the state of a session for subsequent processing are not able to restore the
IDENTITY_VAL_LOCAL value. In these situations, the availability of the
IDENTITY_VAL_LOCAL value should only be relied on until the end of the
transaction. Examples of where this type of situation can occur include applications
that do the following actions:
v use XA protocols
v use connection pooling
v use the connection concentrator
v use Sysplex workload balancing
v connect to a z/OS server that uses DDF inactive threads

When there is a need to preserve the value associated with
IDENTITY_VAL_LOCAL across transaction boundaries for distributed applications,
define the cursors as WITH HOLD, or specify the bind option
KEEPDYNAMIC(YES) to prevent the server thread from being pooled.

Example 1: Set the variable IVAR to the value assigned to the identity column in the
EMPLOYEE table. The value returned from the function in the VALUES statement
should be 1.

CREATE TABLE EMPLOYEE
(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
NAME CHAR(30),
SALARY DECIMAL(5,2),
DEPTNO SMALLINT);
INSERT INTO EMPLOYEE
(NAME, SALARY, DEPTNO)
VALUES (’Rupert’, 989.99, 50);
VALUES IDENTITY_VAL_LOCAL() INTO :IVAR;

Example 2: Assume two tables, T1 and T2, have an identity column named C1. DB2
generates values 1, 2, 3, . . . for the C1 column in table T1, and values 10, 11, 12, . .
. for the C1 column in table T2.
CREATE TABLE T1 (C1 SMALLINT GENERATED ALWAYS AS IDENTITY,

C2 SMALLINT);
CREATE TABLE T2 (C1 DECIMAL(15,0) GENERATED BY DEFAULT AS IDENTITY

(START WITH 10),
C2 SMALLINT);

INSERT INTO T1 (C2) VALUES (5);
INSERT INTO T1 (C2) VALUES (5);
SELECT * FROM T1;

C1 C2
----------- ----------

1 5
2 5

VALUES IDENTITY_VAL_LOCAL() INTO :IVAR;

488 SQL Reference

At this point, the IDENTITY_VAL_LOCAL function would return a value of 2 in
IVAR. The following INSERT statement inserts a single row into T2 where column
C2 gets a value of 2 from the IDENTITY_VAL_LOCAL function

INSERT INTO T2 (C2) VALUES (IDENTITY_VAL_LOCAL());
SELECT * FROM T2
WHERE C1 = DECIMAL(IDENTITY_VAL_LOCAL(),15,0);

C1 C2
---------------------------------- ----------

10 2

Invoking the IDENTITY_VAL_LOCAL function after this insert would result in a
value of 10, which is the value generated by DB2 for column C1 of T2. Assume
another single row is inserted into T2. For the following INSERT statement, DB2
assigns a value of 13 to identity column C1 and gives C2 a value of 10 from
IDENTITY_VAL_LOCAL. Thus, C2 is given the last identity value that was
inserted into T2.

INSERT INTO T2 (C2, C1) VALUES (IDENTITY_VAL_LOCAL(), 13);

Example 3: The IDENTITY_VAL_LOCAL function can also be invoked in an
INSERT statement that both invokes the IDENTITY_VAL_LOCAL function and
causes a new value for an identity column to be assigned. The next value to be
returned is thus established when the IDENTITY_VAL_LOCAL function is invoked
after the INSERT statement completes. For example, consider the following table
definition:

CREATE TABLE T1 (C1 SMALLINT GENERATED BY DEFAULT AS IDENTITY,
C2 SMALLINT);

For the following INSERT statement, specify a value of 25 for the C2 column, and
DB2 generates a value of 1 for C1, the identity column. This establishes 1 as the
value that will be returned on the next invocation of the IDENTITY_VAL_LOCAL
function.

INSERT INTO T1 (C2) VALUES (25);

In the following INSERT statement, the IDENTITY_VAL_LOCAL function is
invoked to provide a value for the C2 column. A value of 1 (the identity value
assigned to the C1 column of the first row) is assigned to the C2 column, and DB2
generates a value of 2 for C1, the identity column. This establishes 2 as the value
that will be returned on the next invocation of the IDENTITY_VAL_LOCAL
function.

INSERT INTO T1 (C2) VALUES (IDENTITY_VAL_LOCAL());

In the following INSERT statement, the IDENTITY_VAL_LOCAL function is again
invoked to provide a value for the C2 column, and the user provides a value of 11
for C1, the identity column. A value of 2 (the identity value assigned to the C1
column of the second row) is assigned to the C2 column. The assignment of 11 to
C1 establishes 11 as the value that will be returned on the next invocation of the
IDENTITY_VAL_LOCAL function.

INSERT INTO T1 (C2, C1) VALUES (IDENTITY_VAL_LOCAL(), 11);

After the 3 INSERT statements have been processed, table T1 contains the
following actions:

SELECT * FROM T1;
C1 C2
----------- -----------

Chapter 3. Functions 489

1 25
2 1
11 2

The contents of T1 illustrate that the expressions in the VALUES clause are
evaluated before the assignments for the columns of the INSERT statement. Thus,
an invocation of an IDENTITY_VAL_LOCAL function invoked from a VALUES
clause of an INSERT statement uses the most recently assigned value for an
identity column in a previous INSERT statement.

490 SQL Reference

IFNULL
The IFNULL function returns the first nonnull expression.

�� IFNULL(expression,expression) ��

The schema is SYSIBM.

IFNULL is identical to the COALESCE scalar function except that IFNULL is
limited to two arguments instead of multiple arguments. For a description, see
“COALESCE” on page 412.

Example: For all the rows in sample table DSN8B10.EMP, select the employee
number and salary. If the salary is missing (is null), have the value 0 returned.

SELECT EMPNO, IFNULL(SALARY,0)
FROM DSN8B10.EMP;

Chapter 3. Functions 491

INSERT
The INSERT function returns a string where, beginning at start in source-string,
length characters have been deleted and insert-string has been inserted.

�� INSERT (source-string , start , length , insert-string)
, CODEUNITS16

CODEUNITS32
OCTETS

��

The schema is SYSIBM.

The INSERT function returns a string where length characters have been deleted
from source-string, beginning at start, and where insert-string has been inserted into
source-string, beginning at start.

source-string
An expression that specifies the source string. The expression must return a
value that is a built-in character string, graphic string, or binary string data
type that is not a LOB. The actual length of the string must be greater than or
equal to 1 and less than or equal to 32704 bytes.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

start
An expression that returns an integer. The integer specifies the starting point
within the source string where the deletion of bytes and the insertion of
another string is to begin. The value of the integer must be in the range of 1 to
the length of source-string plus one. If OCTETS is specified and the result is
graphic data, the value must be an odd value between 1 and twice the length
of source-string plus one.

The argument can also be a character string or graphic string data type. The
string argument is implicitly cast to a DECFLOAT(34) data type which is then
assigned to an INTEGER.

length
An expression that specifies the length of the string to replace in source-string
starting at start. length must be an expression that returns a value of the
built-in INTEGER data type. length is expressed in the string unit specified,
and the value must be in the range of 0 to the length of source-string. If
OCTETS is specified and the result is graphic data, length must be even and be
between 0 and twice the length of source-string. Not specifying length is
equivalent to specifying a value of 1, except when OCTETS is specified and the
result is graphic data, in which case, not specifying length is equivalent to
specifying a value of 2.

The argument can also be a character string or graphic string data type. The
string argument is implicitly cast to a DECFLOAT(34) data type which is then
assigned to an INTEGER.

insert-string
An expression that specifies the string to be inserted into the source string,

492 SQL Reference

starting at the position identified by start. The expression must return a value
that is a built-in character string, graphic string, or binary string data type that
is not a LOB.

source-string and insert-string must have compatible data types.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the units that are used to express start and length. If source-string is a
character string that is defined as bit data, CODEUNITS16 and CODEUNITS32
cannot be specified. If source-string is a graphic string, OCTETS cannot be
specified. If source-string is a binary string, CODEUNITS16, CODEUNITS32,
and OCTETS cannot be specified.

If a string unit is not explicitly specified, the data type of the result determines
the unit that is used:
v If the result is a graphic string, a string unit is two bytes. For ASCII and

EBCDIC data, this corresponds to a double byte character. For Unicode, this
corresponds to a UTF-16 code point.

v Otherwise, a string unit is a byte.

CODEUNITS16
Specifies that start and length are expressed in terms of 16-bit UTF-16 code
units.

CODEUNITS32
Specifies that start and length are expressed in terms of 32-bit UTF-32 code
units.

OCTETS
Specifies that start and length are expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see
“String unit specifications” on page 87.

If source-string and insert-string have different CCSID sets, insert-string (the string to
be inserted) is converted to the CCSID of source-string (the source string).

The encoding scheme of the result is the same as source-string. The data type of the
result of the function depends on the data type of source-string and insert-string:
v VARCHAR if source-string is a character string. The CCSID of the result depends

on the arguments:
– If either source-string or insert-string is character bit data, the result is bit data.
– If source-string is SBCS Unicode data and insert-string is not SBCS Unicode

data, the CCSID of the result is the mixed CCSID for Unicode data.
– If both source-string and insert-string are SBCS Unicode data, the CCSID of the

result is the CCSID for SBCS Unicode data.
– Otherwise, the CCSID of the result is the mixed CCSID that corresponds to

the CCSID of source-string. However, if the input is EBCDIC or ASCII and
there is no corresponding system CCSID for mixed, the CCSID of the result is
the CCSID of source-string.

v VARGRAPHIC if source-string is a graphic. The CCSID of the result is the same
as the CCSID of source-string.

v VARBINARY if source-string and insert-string are both binary strings.

Chapter 3. Functions 493

The length attribute of the result depends on the arguments:
v If start and length are constants, the length attribute of the result is:

L1 - MIN((L1 - V2 + 1), V3) + L4

where:
L1 is the length attribute of source-string
V2 is the value of start
V3 is the value of length
L4 is the length attribute of insert-string

v Otherwise, the length attribute of the result is the length attribute of source-string
plus the length attribute of insert-string. In this case, the length attribute of
source-string plus the length attribute of insert-string must not exceed 32704 for a
VARCHAR result or 16352 for a VARGRAPHIC result.

If CODEUNITS16 or CODEUNITS32 is specified, the insert operation is performed
on a Unicode version of the data. If needed, the data is converted to an
intermediate form in order to evaluate the function. If an intermediate form is
used, the actual length of the result depends on the original data (source-string and
insert-string), and the representation of that data in Unicode. See “Determining the
length attribute of the final result” on page 90 for more information on how to
calculate the length attribute of the result string.

If CODEUNITS16 or CODEUNITS32 are not specified, the actual length of the
result is:
A1 - MIN((A1 - V2 + 1), V3) + A4

where:
A1 is the actual length of source-string
V2 is the value of start
V3 is the value of length
A4 is the actual length of insert-string

If the actual length of the result string exceeds the maximum for the return data
type, an error occurs.

The result can be null; if any argument is null, the result is the null value.

Example 1: The following example shows how the string 'INSERTING' can be
changed into other strings. The use of the CHAR function limits the length of the
resulting string to 10 bytes.

SELECT CHAR(INSERT(’INSERTING’,4,2,’IS’),10),
CHAR(INSERT(’INSERTING’,4,0,’IS’),10),
CHAR(INSERT(’INSERTING’,4,2,’’),10)

FROM SYSIBM.SYSDUMMY1;

This example returns 'INSISTING ', 'INSISERTIN', and 'INSTING '

Example 2: The previous example demonstrated how to insert text into the middle
of some text. This example shows how to insert text before some text by using 1 as
the starting point (start).

SELECT CHAR(INSERT(’INSERTING’,1,0,’XX’),10),
CHAR(INSERT(’INSERTING’,1,1,’XX’),10),
CHAR(INSERT(’INSERTING’,1,2,’XX’),10),
CHAR(INSERT(’INSERTING’,1,3,’XX’),10)

FROM SYSIBM.SYSDUMMY1;

494 SQL Reference

This example returns 'XXINSERTIN', 'XXNSERTING', 'XXSERTING ', and
'XXERTING '

Example 3: The following example shows how to insert text after some text. Add
'XX' at the end of string 'ABCABC'. Because the source string is 6 characters long,
set the starting position to 7 (one plus the length of the source string).

SELECT CHAR(INSERT(’ABCABC’,7,0,’XX’),10)
FROM SYSIBM.SYSDUMMY1;

This example returns 'ABCABCXX '.

Example 4: The following example shows how the string 'Hegelstraße' can be
changed to 'Hegelstrasse'.

SELECT VARCHAR(INSERT(’Hegelstraße’,10,1,’ss’),15)
FROM SYSIBM.SYSDUMMY1;

This example returns 'Hegelstrasse'.

Chapter 3. Functions 495

INTEGER or INT
The INTEGER function returns an integer representation of either a number or a
character string or graphic string representation of an integer.

Numeric to Integer:

�� INTEGER (numeric-expression)
INT

��

String to Integer:

�� INTEGER (string-expression)
INT

��

The schema is SYSIBM.

Numeric to Integer

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were
assigned to a large integer column or variable. If the whole part of the
argument is not within the range of large integers, an error occurs. The
fractional part of the argument is truncated.

String to Integer

string-expression
An expression that returns a value of a character or graphic string
(except a CLOB or DBCLOB) with a length attribute that is not greater
than 255 bytes. The string must contain a valid string representation of
a number.

The result is the same number that would result from
CAST(string-expression AS INTEGER). Leading and trailing blanks are
eliminated and the resulting string must conform to the rules for
forming an integer constant. If the whole part of the argument is not
within the range of large integers, an error is returned.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Recommendation: To increase the portability of applications, use the CAST
specification. For more information, see “CAST specification” on page 267.

Example 1: Using sample table DSN8B10.EMP, find the average salary of the
employees in department A00, rounding the result to the nearest dollar.

496 SQL Reference

SELECT INTEGER(AVG(SALARY)+.5)
FROM DSN8B10.EMP
WHERE WORKDEPT = ’A00’;

Example 2: Using sample table DSN8B10.EMP, select the EMPNO column, which is
defined as CHAR(6), in integer form.

SELECT INTEGER(EMPNO)
FROM DSN8B10.EMP;

Chapter 3. Functions 497

JULIAN_DAY
The JULIAN_DAY function returns an integer value that represents a number of
days from January 1, 4713 B.C. (the start of the Julian date calendar) to the date
that is specified in the argument.

�� JULIAN_DAY(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns one of the following data types:
a date, a timestamp, or a valid string representation of a date or timestamp. An
argument with a character string data type must not be a CLOB. An argument
with a graphic string data type must not be a DBCLOB. A string argument must
have an actual length that is not greater than 255 bytes. For the valid formats of
string representations of dates and timestamps, see “String representations of
datetime values” on page 101.

If expression is a timestamp with a time zone, or a valid string representation of a
timestamp with a time zone, the result is determined from the UTC representation
of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Example 1: Using sample table DSN8B10.EMP, set the integer host variable JDAY to
the Julian day of the day that Christine Haas (EMPNO = '000010') was employed
(HIREDATE = '1965-01-01').

SELECT JULIAN_DAY(HIREDATE)
INTO :JDAY
FROM DSN8B10.EMP
WHERE EMPNO = ’000010’;

The result is that JDAY is set to 2438762.

Example 2: Set integer host variable JDAY to the Julian day for January 1, 1998.
SELECT JULIAN_DAY(’1998-01-01’)

INTO :JDAY
FROM SYSIBM.SYSDUMMY1;

The result is that JDAY is set to 2450815.

Example 3: The following invocations of the JULIAN_DAY function returns the
same result:
SELECT JULIAN_DAY(’2003-01-02-20.00.00’),

JULIAN_DAY(’2003-01-02-12.00.00-08:00’),
JULIAN_DAY(’2003-01-03-05.00.00+09:00’)
FROM SYSIBM.SYSDUMMY1;

For each invocation of the JULIAN_DAY function in this SELECT statement, the
result is 2452642.

498 SQL Reference

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
2003-01-02-20.00.00.

Chapter 3. Functions 499

LAST_DAY
The LAST_DAY scalar function returns a date that represents the last day of the
month of the date argument.

�� LAST_DAY(expression) ��

The schema is SYSIBM.

expression
An expression that specifies the starting date. The expression must returns a
value of one of the following data types:
v a date
v a timestamp
v a valid string representation of a date or timestamp

An argument with a character string data type must not be a CLOB. An
argument with a graphic string data type must not be a DBCLOB. A string
argument must have an actual length that is not greater than 255 bytes. A time
zone in a string representation of a timestamp is ignored. For the valid formats
of string representations of dates and timestamps, see “String representations
of datetime values” on page 101.

If expression is a TIMESTAMP WITH TIME ZONE value, expression is first cast
to a TIMESTAMP WITHOUT TIME ZONE value with the same precision as
expression.

The result of the function is a DATE.

The result CCSID is the appropriate CCSID of the argument encoding scheme and
the result subtype is the appropriate subtype of the CCSID.

The result can be null; if the argument is null, the result is the null value.

Any hours, minutes, seconds, or fractional seconds information that is included in
expression is not changed by the function.

Example 1: Set the host variable END_OF_MONTH with the last day of the current
month.

SET :END_OF_MONTH = LAST_DAY(CURRENT_DATE);

The host variable END_OF_MONTH is set with the value representing the end of
the current month. If the current day is 2000-02-10, END_OF_MONTH is set to
2000-02-29.

Example 2: Set the host variable END_OF_MONTH with the last day of the month
in EUR format for the given date.

SET :END_OF_MONTH = CHAR(LAST_DAY(’1965-07-07’), EUR);

The host variable END_OF_MONTH is set with the value '31.07.1965'.

500 SQL Reference

Example 3: Assume that host variable PRSTSZ contains '2008-02-29.20.00.000000
-08.30'. The TIMESTAMP WITH TIME ZONE value is implicitly cast to
TIMESTAMP WITHOUT TIME ZONE before the LAST_DAY function is evaluated.
SELECT LAST_DAY(:PRSTSZ)

FROM PROJECT;

The LAST_DAY function returns the value '31' (month in UTC is March).

Example 4: Assume PRSTSZ is a host variable with the string value
'2008-04-15.20.00.000000-08.30'. The string value, which is a string representation of
a timestamp with a time zone, is implicitly cast to a DATE before the LAST_DAY
function is evaluated. The LAST_DAY function returns the last day of the month as
a DATE value.
SELECT LAST_DAY(:PRSTSZ)
FROM PROJECT;

The LAST_DAY function returns the value ‘2008-04-30', the last day of the month
of April, as a DATE value.

Example 5: Assuming that the default date format is ISO, the following select
statement returns '2000–04–30', which is the last day of April in 2000:
SELECT LAST_DAY(’2000-04-24’)
FROM SYSIBM.SYSDUMMY1;

Chapter 3. Functions 501

LCASE
The LCASE function returns a string in which all the characters are converted to
lowercase characters.

�� LCASE(string-expression)
, locale-name-string , integer

��

The schema is SYSIBM.

The LCASE function is identical to the LOWER function. For more information, see
“LOWER” on page 517.

502 SQL Reference

LEFT
The LEFT function returns a string that consists of the specified number of leftmost
bytes of the specified string units.

Character string:

�� LEFT(character-expression,length)
, CODEUNITS16

CODEUNITS32
OCTETS

��

Graphic string:

�� LEFT(graphic-expression,length)
, CODEUNITS16

CODEUNITS32

��

Binary string:

�� LEFT(binary-expression,length) ��

The schema is SYSIBM.

The LEFT function returns the leftmost string of character-expression,
graphic-expression, or binary-expression consisting of length of the string units that
are specified implicitly or explicitly.

Character string:

character-expression
An expression that specifies the string from which the result is derived. The
string must be a character string. A substring of character-expression is zero or
more contiguous code points of character-expression.

The string can contain mixed data. Depending on the units that are specified to
evaluate the function, the result is not necessarily a properly formed mixed
data character string.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

length
An expression that specifies the length of the result. The value must be an
integer between 0 and n, where n is the length attribute of character-expression,
expressed in the units that are either implicitly or explicitly specified.

Chapter 3. Functions 503

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to an INTEGER value.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length
attribute of the final result” on page 90 for information about how to calculate
the length attribute of the result string.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the unit that is used to express length. If character-expression is defined
as bit data, CODEUNITS16 and CODEUNITS32 cannot be specified.

CODEUNITS16
Specifies that length is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that length is expressed in terms of 32-bit UTF-32 code units.

OCTETS
Specifies that length is expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see
“String unit specifications” on page 87.

Graphic string:

graphic-expression
An expression that specifies the string from which the result is derived. The
string must be a graphic string. A substring of graphic-expression is zero or more
contiguous code points of graphic-expression. A partial surrogate character in the
expression is replaced with a blank.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

length
An expression that specifies the length of the result. The value must be an
integer between 0 and n, where n is the length attribute of graphic-expression,
expressed in the units that are either implicitly or explicitly specified.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to an INTEGER value.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length
attribute of the final result” on page 90 for information about how to calculate
the length attribute of the result string.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express length.

CODEUNITS16
Specifies that length is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that length is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String
unit specifications” on page 87.

Binary string:

504 SQL Reference

binary-expression
An expression that specifies the string from which the result is derived. The
string must be a binary string. A substring of binary-expression is zero or more
contiguous code points of binary-expression.

length
An expression that specifies the length of the result. The value must be an
integer between 0 and n, where n is the length attribute of binary-expression,
expressed in the units that are either implicitly or explicitly specified.

The character-expression, graphic-expression, or binary-expression is effectively padded
on the right with the necessary number of padding characters so that the specified
substring of the expression always exists. The encoding scheme of the data
determines the padding character:
v For ASCII SBCS data or ASCII mixed data, the padding character is X'20'.
v For ASCII DBCS data, the padding character depends on the CCSID; for

example, for Japanese (CCSID 301) the padding character is X'8140', while for
simplified Chinese it is X'A1A1'.

v For EBCDIC SBCS data or EBCDIC mixed data, the padding character is X'40'.
v For EBCDIC DBCS data, the padding character is X'4040'.
v For Unicode SBCS data or UTF-8 (Unicode mixed data), the padding character is

X'20'.
v For UTF-16 (Unicode DBCS) data, the padding character is X'0020'.
v For binary data, the padding character is X'00'.

The result of the function is a varying-length string with a length attribute that is
the same as the length attribute of the first expression and a data type that
depends on the data type of the expression:
v VARCHAR if character-expression is CHAR or VARCHAR
v CLOB if character-expression is CLOB
v VARGRAPHIC if graphic-expression is GRAPHIC or VARGRAPHIC
v DBCLOB if graphic-expression is DBCLOB
v VARBINARY if binary-expression is BINARY or VARBINARY
v BLOB if binary-expression is BLOB

The actual length of the result is determined from length.

The result can be null; if any argument is null, the result is the null value.

The CCSID of the result is the same as that of the first expression.

Example 1: Assume that host variable ALPHA has a value of 'ABCDEF'. The
following statement returns 'ABC', which are the three leftmost characters in
ALPHA:

SELECT LEFT(:ALPHA,3)
FROM SYSIBM.SYSDUMMY1;

Example 2: Assume that host variable NAME, which is defined as VARCHAR(50),
has a value of 'KATIE AUSTIN' and the integer host variable FIRSTNAME_LEN
has a value of 5. The following statement returns the value 'KATIE':

SELECT LEFT(:NAME, :FIRSTNAME_LEN)
FROM SYSIBM.SYSDUMMY1;

Example 3: The following statement returns a zero length string.

Chapter 3. Functions 505

SELECT LEFT(’ABCABC’,0)
FROM SYSIBM.SYSDUMMY1;

Example 4: The FIRSTNME column in sample EMP table is defined as
VARCHAR(12). Find the first name for an employee whose last name is 'BROWN'
and return the first name in a 10-byte string.

SELECT LEFT(FIRSTNME,10)
FROM DSN8B10.EMP
WHERE LASTNAME=’BROWN’;

This function returns a VARCHAR(10) string that has the value of 'DAVID'
followed by 5 blank characters.

Example 5: FIRSTNAME is a VARCHAR(12) column in table T1. One of its values is
the 6-character string 'Jürgen'. When FIRSTNAME has this value:

Function ... Returns ...
LEFT(FIRSTNAME,2,CODEUNITS32) ’Jü’ -- x’4AC3BC’
LEFT(FIRSTNAME,2,CODEUNITS16) ’Jü’ -- x’4AC3BC’
LEFT(FIRSTNAME,2,OCTETS) ’J ’ -- x’4A20’ a truncated string

506 SQL Reference

LENGTH
The LENGTH function returns the length of a value.

�� LENGTH(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of any built-in data type
that is not XML.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The result is the length of the argument. The length does not include the null
indicator byte of column arguments that allow null values. The length of strings
includes blanks. The length of a varying-length string is the actual length, not the
maximum length.

The length of a graphic string is the number of double-byte characters. Unicode
UTF-16 data is treated as graphic data; a UTF-16 supplementary character takes
two DBCS characters to represent and as such is counted as two DBCS characters.

The length of all other values is the number of bytes used to represent the value:
v 2 for small integer
v 4 for large integer
v 8 for big integer
v The integer part of (p/2)+1 for decimal numbers with precision p
v 16 for DECFLOAT(34)
v 8 for DECFLOAT(16)
v 4 for single precision floating-point
v 8 for double precision floating-point
v The length of the string for strings
v 4 for DATE
v 3 for TIME
v 10 for TIMESTAMP
v 12 for TIMESTAMP WITH TIME ZONE
v 7+((p+1)/2) for TIMESTAMP(p)
v 9+((p+1)/2) for TIMESTAMP(p) WITH TIME ZONE
v The length of the row ID

Example 1: Assume that FIRSTNME is a VARCHAR(12) column that contains
'ETHEL' for employee 280. The following query returns the value 5:

SELECT LENGTH(FIRSTNME)
FROM DSN8B10.EMP
WHERE EMPNO = ’000280’;

Example 2: Assume that HIREDATE is a column of data type DATE. Then,
regardless of value the following statement returns the value 4:

LENGTH(HIREDATE)

Chapter 3. Functions 507

And the following function returns the value 10:
LENGTH(CHAR(HIREDATE, EUR))

508 SQL Reference

LN
The LN function returns the natural logarithm of the argument. The LN and EXP
functions are inverse operations.

�� LN(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric
data type that is not DECFLOAT. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

LOG is a synonym for LN.

Example: Assume that host variable NATLOG is DECIMAL(4,2) with a value of
31.62. The following statement returns a double precision floating-point number
with an approximate value of 3.45:

SELECT LN(:NATLOG)
FROM SYSIBM.SYSDUMMY1;

Chapter 3. Functions 509

LOCATE
The LOCATE function returns the position at which the first occurrence of an
argument starts within another argument.

�� LOCATE(search-string,source-string)
,start , CODEUNITS16

CODEUNITS32
OCTETS

��

The schema is SYSIBM.

The LOCATE function returns the starting position of search-string within
source-string. If search-string is not found and neither argument is null, the result is
zero. If search-string is found, the result is a number from 1 to the actual length of
source-string. If search-string has a length of zero, the result returned by the function
is 1. If the optional start is specified, it indicates the character position in
source-string at which the search is to begin. An optional string unit can be
specified to indicate in what units the start and result of the function are
expressed.

search-string
An expression that specifies the string that is to be searched for. search-string
must return a value that is a built-in character string data type, graphic string
data type, or binary string data type with an actual length that is no greater
than 4000 bytes.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.The expression can be specified by
any of the following items:
v A constant
v A special register
v A variable
v A scalar function whose arguments are any of the above (though nested

function invocations cannot be used)
v A CAST specification whose arguments are any of the above
v A column name
v An array element specification
v An expression that concatenates (using CONCAT or ||) any of the above

These rules are similar to those that are described for pattern-expression for the
LIKE predicate.

source-string
An expression that specifies the source string in which the search is to take
place. source-string must return a value that is a built-in character string data
type, graphic string data type, or binary string data type.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.The expression can be specified by
any of the following items:
v A constant
v A special register
v A variable

510 SQL Reference

|

|

|

v A scalar function whose arguments are any of the above (though nested
function invocations cannot be used)

v A CAST specification whose arguments are any of the above
v A column name
v An array element specification
v An expression that concatenates (using CONCAT or ||) any of the above

start
An expression that specifies the position within search-string where the search
is to start.

start is expressed in the specified string unit and must return an integer value
that is greater than or equal to zero.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to an INTEGER value.

If start is specified, the LOCATE function is similar to the following POSITION
function, where string-units is CODEUNITS16, CODEUNITS32, or OCTETS:

POSITION(search-string,
SUBSTRING(source-string, start, string-units)) + start - 1

If start is not specified, the search begins at the first position of source-string
and the LOCATE function is similar to the following POSITION function,
where string-units is CODEUNITS16, CODEUNITS32, or OCTETS:

POSITION(search-string, source-string, string-units)

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit that is used to express start and the result. If
source-string is a character string that is defined as bit data, CODEUNITS16 and
CODEUNITS32 cannot be specified. If source-string is a graphic string, OCTETS
cannot be specified. If source-string is a binary string, CODEUNITS16,
CODEUNITS32, and OCTETS cannot be specified.

CODEUNITS16
Specifies that start and the result are expressed in terms of 16-bit UTF-16
code units.

CODEUNITS32
Specifies that start and the result are expressed in terms of 32-bit UTF-32
code units.

OCTETS
Specifies that start and the result are expressed in terms of bytes.

If a string unit is not explicitly specified, the data type of the result determines
the string unit that is used. If the result is graphic data, start and the returned
position are expressed in two-byte units; otherwise, they are expressed in
bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see
“String unit specifications” on page 87.

The first and second arguments must have compatible string types. For more
information on compatibility, see “Conversion rules for comparisons” on page 138.

The result of the function is a large integer.

The result can be null; if any argument is null, the result is the null value.

Chapter 3. Functions 511

|

For more information about LOCATE, see the description of “POSITION” on page
566.

Example 1: Find the location of the first occurrence of the character 'N' in the string
'DINING'.

SELECT LOCATE(’N’, ’DINING’)
FROM SYSIBM.SYSDUMMY1;

The result is the value 3.

Example 2: For all the rows in the table named IN_TRAY, select the RECEIVED
column, the SUBJECT column, and the starting position of the string 'GOOD'
within the NOTE_TEXT column.

SELECT RECEIVED, SUBJECT, LOCATE(’GOOD’, NOTE_TEXT)
FROM IN_TRAY
WHERE LOCATE(’GOOD’, NOTE_TEXT) <> 0;

Example 3: Locate the character 'ß' in the string 'Jürgen lives on Hegelstraße', and
set the host variable LOCATION with the position, as measured in CODEUNITS32
units, within the string.

SET :LOCATION = LOCATE(’ß’,’Jürgen lives on Hegelstraße’,1,CODEUNITS32);

The value of host variable LOCATION is set to 26.

Example 4: Locate the character 'ß' in the string 'Jürgen lives on Hegelstraße', and
set the host variable LOCATION with the position, as measured in CODEUNITS16
units, within the string.

SET :LOCATION = LOCATE(’ß’,’Jürgen lives on Hegelstraße’,1,CODEUNITS16);

The value of host variable LOCATION is set to 26.

Example 5: Locate the character 'ß' in the string 'Jürgen lives on Hegelstraße', and
set the host variable LOCATION with the position, as measured in OCTETS,
within the string.

SET :LOCATION = LOCATE(’ß’,’Jürgen lives on Hegelstraße’,1,OCTETS);

The value of host variable LOCATION is set to 27.
Related reference:
“LOCATE_IN_STRING” on page 513
“POSITION” on page 566
“POSSTR” on page 569

512 SQL Reference

LOCATE_IN_STRING
The LOCATE_IN_STRING function returns the position at which an argument
starts within a specified string.

�� LOCATE_IN_STRING(source-string,search-string)
,start , CODEUNITS16

,instance CODEUNITS32
OCTETS

��

The schema is SYSIBM.

The LOCATE_IN_STRING function returns the starting position of a string (called
the search-string) within another string (called the source-string). If the search-string
is not found and neither argument is null, the result is zero. If the search-string is
found, the result is a number from 1 to the actual length of the source-string.

If the optional start is specified, an optional instance number can also be specified.
The instance argument is used to determine the specific occurrence of search-string
within source-string. Each unique instance can include any of the characters in a
previous instance, but not all characters in a previous instance. An optional string
unit can be specified to indicate in what units the start and result of the function
are expressed.

If the search-string has a length of zero, the result returned by the function is 1. If
the source-string has a length of zero, the result returned by the function is 0. If
neither condition exists, and if the value of search-string is equal to an identical
length of a substring of contiguous positions within the value of source-string, the
result returned by the function is the starting position of that substring within the
source-string value; otherwise, the result returned by the function is 0.

source-string
An expression that specifies the source string in which the search is to take
place. source-string must return a value that is a built-in character string data
type, graphic string data type, or binary string data type.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.The expression can be specified by
any of the following items:
v A constant
v A special register
v A variable
v A scalar function whose arguments are any of the above (though nested

function invocations cannot be used)
v A CAST specification whose arguments are any of the above
v A column name
v An array element specification
v An expression that concatenates (using CONCAT or ||) any of the above

search-string
An expression that specifies the string that is the object of the search.
search-string must return a value that is a built-in character string data type,
graphic string data type, or binary string data type with an actual length that
is no greater than 4000 bytes.

Chapter 3. Functions 513

|

|

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.The expression can be specified by
any of the following items:
v A constant
v A special register
v A variable
v A scalar function whose arguments are any of the above (though nested

function invocations cannot be used)
v A CAST specification whose arguments are any of the above
v A column name
v An array element specification
v An expression that concatenates (using CONCAT or ||) any of the above

These rules are similar to those that are described for pattern-expression for the
LIKE predicate.

start
An expression that specifies the position within source-string at which the
search is to start. The expression must return a value that is a built-in
INTEGER or SMALLINT data type.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to an INTEGER value.

If the value of the integer is greater than zero, the search begins at start and
continues for each position to the end of the string. If the value of the integer
is less than zero, the search begins at the LENGTH(source-string) + start + 1 and
continues for each position to the beginning of the string.

If start is not specified, the default is 1. If the value of the integer is zero, an
error is returned.

instance
An expression that specifies which instance of search-string to search for within
source-string. The expression must return a value that is a built-in INTEGER or
SMALLINT data type. If instance is not specified, the default is 1. The value of
the integer must be greater than or equal to one.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit that is used to express start and the result. If
source-string is a character string that is defined as bit data, CODEUNITS16 and
CODEUNITS32 cannot be specified. If source-string is a graphic string, OCTETS
cannot be specified. If source-string is a binary string, CODEUNITS16,
CODEUNITS32, and OCTETS cannot be specified.

CODEUNITS16
Specifies that start and the result are expressed in terms of 16-bit UTF-16
code units.

CODEUNITS32
Specifies that start and the result are expressed in terms of 32-bit UTF-32
code units.

OCTETS
Specifies that start and the result are expressed in terms of bytes.

If a string unit is not explicitly specified, the data type of the result determines
the string unit that is used. If the result is graphic data, start and the returned
position are expressed in two-byte units; otherwise, they are expressed in
bytes.

514 SQL Reference

|

|

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see
“String unit specifications” on page 87.

The first and second arguments must have compatible string types. For more
information on compatibility, see “Conversion rules for comparisons” on page 138.

At each search position, a match is found when the substring at that position and
LENGTH(search-string) - 1 values to the right of the search position in source-string,
is equal to search-string.

The result of the function is a large integer. The result is the starting position of the
instance of search-string within source-string. The value is relative to the beginning
of the string (regardless of the specification of start).

The result can be null; if any argument is null, the result is the null value.

INSTR can be used as a synonym for LOCATE_IN_STRING.

Example 1: Find the position of an occurrence of the character 'N' in the string
'WINNING' by searching from the start of the string as measured in bytes, within
the string.
SELECT LOCATE_IN_STRING(’WINNING’,’N’,1,3,OCTETS),

LOCATE_IN_STRING(’WINNING’,’N’,3,2,OCTETS),
LOCATE_IN_STRING(’WINNING’,’N’,3,3,OCTETS),
LOCATE_IN_STRING(’WINNING’,’N’,-1,3,OCTETS),
LOCATE_IN_STRING(’WINNING’,’N’,-3,2,OCTETS),
LOCATE_IN_STRING(’WINNING’,’N’,-3,3,OCTETS)

FROM SYSIBM.SYSDUMMY1;

Returns the values:
6 4 6 3 3 0

Related reference:
“LOCATE” on page 510
“POSITION” on page 566
“POSSTR” on page 569

Chapter 3. Functions 515

LOG10
The LOG10 function returns the common logarithm (base 10) of a number.

�� LOG10(numeric-expression) ��

The schema is SYSIBM.

The argument is an expression that returns the value of any built-in numeric data
type that is not DECFLOAT. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable HLOG is an INTEGER with a value of 100. The
following statement returns a double precision floating-point number with an
approximate value of 2:

SELECT LOG10(:HLOG)
FROM SYSIBM.SYSDUMMY1;

516 SQL Reference

LOWER
The LOWER function returns a string in which all the characters are converted to
lowercase characters.

�� LOWER(string-expression)
, locale-name-string , integer

��

The schema is SYSIBM.

string-expression
An expression that specifies the string to be converted. string-expression must
return a value that is a built-in character or graphic string. A character string
argument must not be a CLOB, and a graphic string argument must not be a
DBCLOB. If string-expression is an EBCDIC graphic string, a blank string must
not be specified for locale-name-string.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

locale-name-string
A string constant or a string host variable other than a CLOB or DBCLOB that
specifies a valid locale name. If locale-name-string is not in EBCDIC, it is
converted to EBCDIC. The length of locale-name-string must be between 1 and
255 bytes of the EBCDIC representation. The value of locale-name-string is not
case sensitive and must be a valid locale. For information on locales and their
naming conventions, see z/OS C/C++ Programming Guide. Some examples of
locales include:

Fr_BE
Fr_FR@EURO
En_US
Ja_JP

The conversion process is determined by the value that is specified for the
locale name, as follows:
v blank — SBCS uppercase characters A-Z are converted to SBCS lowercase

characters a-z, and characters with diacritical marks are not converted. If the
string contains MIXED or DBCS characters, full-width Latin uppercase
characters A-Z are converted to full-width lowercase characters a-z. For
optimal performance, specify a blank string unless your data must be
processed by using the rules that are defined by a specific locale.

v UNI — The conversion uses both the NORMAL and SPECIAL casing
capabilities as described in z/OS Support for Unicode: Using Conversion
Services. You must not specify UNI when string-expression is EBCDIC data.

v locale name — The locale defines the rules for conversion to lowercase
characters.

The value of the host variable must not be null. If the host variable has an
associated indicator variable, the value of the indicator variable must not
indicate a null value. The locale name must be:
v left justified within the host variable

Chapter 3. Functions 517

v padded on the right with blanks if its length is less than that of the host
variable and the host variable is in fixed length character or graphic data
type

If locale-name-string is not specified, the locale is determined by special register
CURRENT LOCALE LC_CTYPE. For information about the special register, see
“CURRENT LOCALE LC_CTYPE” on page 177. However, if an index
references the LOWER function, the local is determined as follows (in order) to
determine if the index can be used:
v At prepare time — using the value in the CURRENT LOCALE LC_CTYPE

special register
v At bind time — using the value in the LOCALE LC_CTYPE field on

installation panel DSNTIPF

If the index is chosen in the access path, the locale in the CURRENT LOCALE
LC_CTYPE special register must remain the same at run time, and prepare or
bind time. To avoid this dependency, do not omit locale-name-string.

If the LOWER function is referenced in an expression-based index,
locale-name-string must be specified. See the examples section for an example of
how the index can be used in a query.

integer
An integer value that specifies the length attribute of the result. If specified,
integer must be an integer constant between 1 and 32704 bytes in the
representation of the encoding scheme of string-expression.

If integer is not specified, the length attribute of the result is the same as the
length of string-expression.

For Unicode data, usage of the LOWER function can result in expansion if
certain characters are processed. For example, LOWER ('Ì') —UX'00CC'— will
result in UX'006903070300' (if the LT_LT locale is in effect at the time). You
should ensure that the result length is large enough to contain the result of the
expression.

The result can be null; if the argument is null, the result is the null value.

LCASE is a synonym for LOWER.

Example 1: Return the characters in the value of host variable NAME in lowercase.
NAME has a data type of VARCHAR(30) and a value of 'Christine Smith'. Assume
that the locale in effect is blank.
SELECT LCASE(:NAME)

FROM SYSIBM.SYSDUMMY1;

The result is the value 'christine smith'.

Example 2: Return the lowercase of 'Ì'. Assume that the locale in effect is LT_LT.
SELECT LOWER(’Ì’)

FROM SYSIBM.SYSDUMMYU;

This would result in an error because of the expansion that occurs when certain
Unicode characters are processed. To avoid the error, you would need to use the
following statement instead:
SELECT LOWER(VARCHAR(’Ì’, 3))

FROM SYSIBM.SYSDUMMYU;

518 SQL Reference

The result of the preceding statement is the value UX'006903070300'.

Example 3: Create an index EMPLOYEE_NAME_LOWER for table EMPLOYEE
based on built-in function LOWER with locale name 'LT_LT'.

CREATE INDEX EMPLOYEE_NAME_LOWER
ON EMPLOYEE (LOWER(LASTNAME, ’LT_LT’, 60),

LOWER(FIRSTNAME, ’LT_LT’, 60),
ID);

Example 4: Create an index LNAME for table T1 based on the LOWER function
with the default local value, ' '. Then specify the same expression in a query.

CREATE INDEX LNAME
ON TI (LOWER(LASTNAME, ’ ’));

SELECT LOWER(LASTNAME, ’ ’)
FROM TI
WHERE LOWER(LASTNAME, ’ ’) = ’smith’;

Example 5: Create an index LNAME that is based on the LOWER function with a
locale name 'FR_CA' for the table T1. Then specify the same expression in a query
except locale-name-string is omitted.

CREATE INDEX LNAME
ON TI (LOWER(LASTNAME, ’FR_CA’));

If the query is a dynamic statement and the CURRENT LOCALE LC_CTYPE
special register contains 'FR_CA':

SELECT LASTNAME
FROM TI
WHERE LOWER(LASTNAME)=’smith’;

At prepare time, locale 'FR_CA' in CURRENT LOCALE LC_CTYPE is used for
LOWER(LASTNAME) in the predicate to determine whether index LNAME can be
used for index access. If index LNAME is used in access path selection, at run
time, the locale in CURRENT LOCALE LC_CTYPE must remain the same.

If the query is a static statement and locale 'FR_CA' has been set on the LOCALE
LC_CTYPE field of installation panel DSNTIPF:

SELECT LASTNAME
FROM TI
WHERE LOWER(LASTNAME)=’smith’;

At bind time, local 'FR_CA' in the LOCALE LC_CTYPE file of installation panel
DSNTIPF is used for LOWER(LASTNAME) in the predicate to determine whether
index LNAME is used for index access. If index LNAME is chosen in access path
selection, the locale in the CURRENT LOCALE LC_CTYPE special register must
contain 'FR_CA'.
Related concepts:

z/OS: Unicode Services User’s Guide and Reference
Related reference:

z/OS XL C/C++ Programming Guide

Chapter 3. Functions 519

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/CONTENTS?DN=SA22-7649-14&DT=20110614141050&SHELF=&CASE=&FS=TRUE&PATH=/bookmgr/
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/CONTENTS?DN=SC09-4765-13&DT=20120802234732&SHELF=&CASE=&PATH=/bookmgr/

LPAD
The LPAD function returns a string that is composed of string-expression that is
padded on the left, with pad or blanks. The LPAD function treats leading or
trailing blanks in string-expression as significant.

�� LPAD(string-expression,integer)
, pad

��

Padding occurs only if the actual length of string-expression is less than integer, and
if pad is not an empty string.

The schema is SYSIBM.

string-expression
An expression that specifies the source string. The expression must return a
value that is a built-in string data type that is not a LOB.

integer
An integer constant that specifies the length of the result. The value must be
zero or a positive integer that is less than or equal to n, where n is 32704 if
string-expression is a character or binary string, or where n is 16352 if
string-expression is a graphic string.

pad
An expression that specifies the string with which to pad. The expression must
return a value that is a built-in string data type that is not a LOB. If pad is not
specified, the pad character is determined as follows:
v SBCS blank character if string-expression is a character string.
v DBCS blank character if string-expression is a graphic string.
v Hexadecimal zero (X'00'), if string-expression is a binary string.

The result of the function is a varying length string that has the same CCSID of
string-expression. string-expression and pad must have compatible data types. If the
string expressions have different CCSID sets, then pad is converted to the CCSID
set of string-expression. If either string-expression or pad is FOR BIT DATA, no
character conversion occurs.

The length attribute of the result depends on integer. If integer is greater than 0, the
length attribute of the result is integer. If integer is 0, the length attribute of the
result is 1.

The actual length of the result is determined from integer. If integer is 0, the actual
length is 0, and the result is the empty result string. If integer is less than the actual
length of string-expression, the actual length is integer and the result is truncated.

The result can be null; if any argument is null, the result is the null value.

Example 1: Assume that NAME is a VARCHAR(15) column that contains the values
'Chris', 'Meg', and 'Jeff'. The following query will pad a value on the left with
periods.

520 SQL Reference

SELECT LPAD(NAME,15,’.’) AS NAME
FROM T1;

The results are similar to the following output:
NAME

..........Chris

............Meg

...........Jeff

Example 2: Similar to Example 1, the following query will only pad each value to a
length of 5:

SELECT LPAD(NAME,5,’.’) AS NAME
FROM T1;

The results are similar to the following output:
NAME

Chris
..Meg
.Jeff

Example 3: Assume that NAME is a CHAR(15) column containing the values
'Chris', 'Meg', and 'Jeff. 'Note that the LPAD function does not pad because NAME
is a fixed length character field and is blank padded already. However, since the
length of the result is 5, the columns are truncated:

SELECT LPAD(NAME,5,’.’) AS NAME
FROM T1;

The results are similar to the following output:
NAME

Chris
Meg
Jeff

Example 4: Assume that NAME is a VARCHAR(15) column containing the values
'Chris', 'Meg', and 'Jeff'. Note that in some cases, a partial instance of the pad
specification is returned.

SELECT LPAD(NAME,15,’123’) AS NAME
FROM T1

The results are similar to the following output:
NAME

1231231231Chris
123123123123Meg
12312312312Jeff

Chapter 3. Functions 521

LTRIM
The LTRIM function removes bytes from the beginning of a string expression based
on the content of a trim expression.

�� LTRIM (string-expression)
, trim-expression

��

The schema is SYSIBM.

The LTRIM function removes all of the characters that are contained in
trim-expression from the beginning of string-expression. The search is done by
comparing the binary representation of each character (which consists of one or
more bytes) in trim-expression to the bytes at the beginning of string-expression. If
the string-expression is defined as FOR BIT DATA, the search is done by comparing
each byte in trim-expression to the byte at the beginning of string-expression.

string-expression
An expression that specifies the source string. The argument must be an
expression that returns a value that is a built-in string data type that is not a
LOB, or a numeric data type. If the value is not a string data type, it is
implicitly cast to VARCHAR before the function is evaluated. If
string-expression is not FOR BIT DATA, trim-expression must not be FOR BIT
DATA.

trim-expression
An expression that specifies the characters to remove from the beginning of
string-expression. The expression must return a value that is a built-in string
data type that is not a LOB, or a numeric data type. If the value is not a string
data type, it is implicitly cast to VARCHAR before the function is evaluated.

The default for trim-expression depends on the data type of string-expression:
v A DBCS blank if string-expression is a DBCS graphic string. For ASCII, the

CCSID determines the hex value that represents a DBCS blank. For example,
for Japanese (CCSID 301), X'8140' represents a DBCS blank, while for
Simplified Chinese, X'A1A1' represents a DBCS blank. For EBCDIC, X'4040'
represents a DBCS blank.

v A UTF-16 or UCS-2 blank (X'0020') if string-expression is a Unicode graphic
string.

v A value of X'00' if string-expression is a binary string.
v Otherwise, a single byte blank. For EBCDIC, X'40' represents a blank. If not

EBCDIC, X'20' represents a blank.

string-expression and trim-expression must have compatible data types. If
string-expression and trim-expression have different CCSID sets, trim-expression is
converted to the CCSID of string-expression.

The result of the function depends on the data type of string-expression:
v VARCHAR if string-expression is a character string. If string-expression is defined

as FOR BIT DATA the result is FOR BIT DATA.
v VARGRAPHIC if string-expression is a graphic string.

522 SQL Reference

v VARBINARY if string-expression is a binary string.

The length attribute of the result is the same as the length attribute of
string-expression.

The actual length of the result for a character or binary string is the length of
string-expression minus the number of bytes that are removed. The actual length of
the result for a graphic string is the length (in the number of double byte
characters) of string-expression minus the number of double byte characters
removed. If all of the characters bytes are removed, the result is an empty string
(the length is zero).

The result can be null; if the argument is null, the result is the null value.

The CCSID of the result is the same as that of string-expression.

Example: Use the LTRIM function to remove individual numbers in the second
argument from the beginning (left side) of the first argument:

SELECT LTRIM (’123DEFG123’, ’321’),
LTRIM (’12DEFG123’, ’321’),
LTRIM (’123123222XYZ22’, ’123’),
LTRIM (’12321’, ’213’),
LTRIM (’XYX123 ’, ’321’)
FROM SYSIBM.SYSDUMMY1

The result is 'DEFG123', 'DEFG123', 'XYZ22', '' (an empty string - all characters
removed), and 'XYX123' (no characters removed).

The LTRIM function does not remove instances of '1', '2', and '3' on the
right side of the string, following characters that are not '1', '2', or '3'.

Example: Use the LTRIM function to remove individual special characters in the
second argument from the beginning (left side) of the first argument:

SELECT LTRIM (’[[-78]]’, ’- []’)
FROM SYSIBM.SYSDUMMY1

The result is '78]]'.

Example: Use the LTRIM function to remove dollar signs and periods in the
second argument from the beginning (left side) of the first argument:

SELECT LTRIM (’...$V..$AR’, ’$.’)
FROM SYSIBM.SYSDUMMY1

The result is 'V..$AR'.

Example: Use the LTRIM function to trim full multi-byte X'D090' characters:
Assume that these strings are encoded in UTF-8.
SELECT LTRIM (X’D090D091D092’, X’D090’)

FROM SYSIBM.SYSDUMMY1

The result is X’D091D092’.

Note that the function does not remove individual bytes x'D0' and x'90'.

Chapter 3. Functions 523

MAX
The MAX scalar function returns the maximum value in a set of values.

�� �MAX(expression ,expression) ��

The schema is SYSIBM.

The arguments must be compatible. For more information on compatibility, refer to
the compatibility matrix in Table 23 on page 121. All but the first argument can be
parameter markers. There must be two or more arguments.

Each argument must be an expression that returns a value of any built-in data type
other than a CLOB, DBCLOB, BLOB, ROWID, or XML.

Character string arguments and binary string arguments cannot have a length
attribute greater than 32704, and graphic string arguments cannot have a length
attribute greater than 16352.

The arguments are evaluated in the order in which they are specified. The result of
the function is the maximum argument value.

The result can be null; if any argument is null, the result is the null value.

The selected argument is converted, if necessary, to the attributes of the result. The
attributes of the result are determined using the “Rules for result data types” on
page 144. If the MAX function has more than two arguments, the rules are applied
to the first two arguments to determine a candidate result type. The rules are then
applied to that candidate result type and the third argument to determine another
candidate result type. This process continues until all arguments are analyzed and
the final result type and CCSID is determined.

GREATEST can be specified as a synonym for MAX.

Example 1: Assume the host variable M1 is a DECIMAL(2,1) host variable with a
value of 5.5, host variable M2 is a DECIMAL(3,1) host variable with a value of 4.5,
and host variable M3 is a DECIMAL(3,2) host variable with a value of 6.25. The
following function returns the value 6.25.

MAX(:M1,:M2,:M3)

Example 2: Assume the host variable M1 is a CHAR(2) host variable with a value of
'AA', host variable M2 is a CHAR(3) host variable with a value of 'AA ', and host
variable M3 is a CHAR(4) host variable with a value of 'AA A'. The following
function returns the value 'AA A'.

MAX(:M1,:M2,:M3)

524 SQL Reference

MAX_CARDINALITY
The MAX_CARDINALITY function returns a value of type BIGINT that represents
the maximum number of elements that an array can contain. This value is the
cardinality that was specified in the CREATE TYPE statement for an ordinary array
type.

�� MAX_CARDINALITY(array-expression) ��

The schema is SYSIBM.

array-expression
An SQL variable or SQL parameter of an array type, or a CAST specification of
a parameter marker to an array type.

The result of the MAX_CARDINALITY function is as follows:
v For an ordinary array, the result is the maximum number of elements that an

array can contain.
v For an associative array, the result is the null value.

The data type of the result is BIGINT.

The result can be null; if the argument is null, the result is the null value.

Notes

Syntax alternatives: CAST (SQL-variable AS array-type) can be specified as an
alternative to SQL-variable. CAST (SQL-parameter AS array-type) can be specified as
an alternative to SQL-parameter.

Example 1: Suppose that array type PHONENUMBERS and array variable
RECENT_CALLS are defined as follows:
CREATE TYPE PHONENUMBERS AS DECIMAL(10,0) ARRAY[50];
DECLARE RECENT_CALLS PHONENUMBERS;

The following statement sets LIST_SIZE to the maximum cardinality with which
RECENT_CALLS was defined.
SET LIST_SIZE = MAX_CARDINALITY(RECENT_CALLS);

After the statement executes, LIST_SIZE contains 50.

Chapter 3. Functions 525

|

|
|
|
|

|

|||||||
|
||

|

|
|
|

|

|
|

|

|

|

|

|
|
|

|
|

|
|

|
|

|

|

MICROSECOND
The MICROSECOND function returns the microsecond part of a value.

�� MICROSECOND(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following
built-in data types: a timestamp, a character string, a graphic string, or a numeric
data type.
v If expression is a character or graphic string, it must not be a CLOB or DBCLOB,

and its value must be a valid string representation of a timestamp with an actual
length of not greater than 255 bytes. For the valid formats of string
representations of times and timestamps, see “String representations of datetime
values” on page 101.

v If expression is a number, it must be a timestamp duration. For the valid formats
of timestamp durations, see “Datetime operands” on page 147.

If expression is a timestamp with a time zone, or a valid string representation of a
timestamp with a time zone, the result is determined from the UTC representation
of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
If the argument is a timestamp or string representation of a timestamp, the
result is the microsecond part of the value, which is an integer between 0 and
999999. If the precision of the timestamp exceeds 6, the value is truncated.
If the argument is a duration, the result is the microsecond part of the value,
which is an integer between -999999 and 999999. A nonzero result has the same
sign as the argument.

Example 1: Assume that table TABLEX contains a TIMESTAMP column named
TSTMPCOL and a SMALLINT column named INTCOL. Select the microseconds
part of the TSTMPCOL column of the rows where the INTCOL value is 1234:

SELECT MICROSECOND(TSTMPCOL) FROM TABLEX
WHERE INTCOL = 1234;

Example 2: The following invocations of the MICROSECOND function returns the
same result:
SELECT MICROSECOND(’2003-01-02-20.00.00.123456’),

MICROSECOND(’2003-01-02-12.00.00.123456-08:00’),
MICROSECOND(’2003-01-03-05.00.00.123456+09:00’)
FROM SYSIBM.SYSDUMMY1;

For each invocation of the MICROSECOND function in this SELECT statement, the
result is 123456.

526 SQL Reference

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
2003-01-02-20.00.00.123456.

Chapter 3. Functions 527

MIDNIGHT_SECONDS
The MIDNIGHT_SECONDS function returns an integer, in the range of 0 to 86400,
that represents the number of seconds between midnight and the time that is
specified in the argument.

�� MIDNIGHT_SECONDS(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following
built-in data types: a time, a timestamp, a character string, or a graphic string. If
expression is a character or graphic string, it must not be a CLOB or DBCLOB, and
its value must be a valid string representation of a time or timestamp with an
actual length of not greater than 255 bytes. For the valid formats of string
representations of times and timestamps, see “String representations of datetime
values” on page 101.

If expression is a timestamp with a time zone, or a valid string representation of a
timestamp with a time zone, the result is determined from the UTC representation
of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Example 1: Find the number of seconds between midnight and 00:01:00, and
midnight and 13:10:10. Assume that host variable XTIME1 has a value of '00:01:00',
and that XTIME2 has a value of '13:10:10'.

SELECT MIDNIGHT_SECONDS(:XTIME1), MIDNIGHT_SECONDS(:XTIME2)
FROM SYSIBM.SYSDUMMY1;

This example returns 60 and 47410. Because there are 60 seconds in a minute and
3600 seconds in an hour, 00:01:00 is 60 seconds after midnight ((60 * 1) + 0), and
13:10:10 is 47410 seconds ((3600 * 13) + (60 * 10) + 10).

Example 2: Find the number of seconds between midnight and 24:00:00, and
midnight and 00:00:00.

SELECT MIDNIGHT_SECONDS(’24:00:00’), MIDNIGHT_SECONDS(’00:00:00’)
FROM SYSIBM.SYSDUMMY1;

This example returns 86400 and 0. Although these two values represent the same
point in time, different values are returned.

Example 3: The following invocations of the MIDNIGHT_SECONDS function
returns the same result:
SELECT MIDNIGHT_SECONDS(’2003-01-02-20.10.05.123456’),

MIDNIGHT_SECONDS(’2003-01-02-12.10.05.123456-08:00’),
MIDNIGHT_SECONDS(’2003-01-03-05.10.05.123456+09:00’)
FROM SYSIBM.SYSDUMMY1;

528 SQL Reference

For each invocation of the MIDNIGHT_SECONDS function in this SELECT
statement, the result is 72605.

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
2003-01-02-20.10.05.123456.

Chapter 3. Functions 529

MIN
The MIN scalar function returns the minimum value in a set of values.

�� �MIN(expression ,expression) ��

The schema is SYSIBM.

The arguments must be compatible. For more information on compatibility, refer to
the compatibility matrix in Table 23 on page 121. All but the first argument can be
parameter markers. There must be two or more arguments.

Each argument must be an expression that returns a value of any built-in data type
other than a CLOB, DBCLOB, BLOB, ROWID, or XML.

Character string arguments and binary string arguments cannot have a length
attribute greater than 32704, and graphic string arguments cannot have a length
attribute greater than 16352.

The arguments are evaluated in the order in which they are specified. The result of
the function is the minimum argument value.

The result can be null; if any argument is null, the result is the null value.

The selected argument is converted, if necessary, to the attributes of the result. The
attributes of the result are determined using the “Rules for result data types” on
page 144. If the MIN function has more than two arguments, the rules are applied
to the first two arguments to determine a candidate result type. The rules are then
applied to that candidate result type and the third argument to determine another
candidate result type. This process continues until all arguments are analyzed and
the final result type and CCSID is determined.

LEAST can be specified as a synonym for MIN.

Example 1: Assume the host variable M1 is a DECIMAL(2,1) host variable with a
value of 5.5, host variable M2 is a DECIMAL(3,1) host variable with a value of 4.5,
and host variable M3 is a DECIMAL(3,2) host variable with a value of 6.25. The
following function returns the value 4.5.

MIN(:M1,:M2,:M3)

Example 2: Assume the host variable M1 is a CHAR(2) host variable with a value of
'AA', host variable M2 is a CHAR(3) host variable with a value of 'AAA', and host
variable M3 is a CHAR(4) host variable with a value of 'AAAA'. The following
function returns the value 'AA'.

MIN(:M1,:M2,:M3)

530 SQL Reference

MINUTE
The MINUTE function returns the minute part of a value.

�� MINUTE(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following
built-in data types: a time, a timestamp, a character string, a graphic string, or a
numeric data type.
v If expression is a character or graphic string, it must not be a CLOB or DBCLOB,

and its value must be a valid string representation of a time or timestamp with
an actual length of not greater than 255 bytes. For the valid formats of string
representations of times and timestamps, see “String representations of datetime
values” on page 101.

v If expression is a number, it must be a time or timestamp duration. For the valid
formats of time and timestamp durations, see “Datetime operands” on page 147.

If expression is a timestamp with a time zone, or a valid string representation of a
timestamp with a time zone, the result is determined from the UTC representation
of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
If the argument is a time, timestamp, or string representation of either, the
result is the minute part of the value, which is an integer between 0 and 59.
If the argument is a time duration or timestamp duration, the result is the
minute part of the value, which is an integer between -99 and 99. A nonzero
result has the same sign as the argument.
If the argument contains a time zone, the result is the year part of the value
expressed in UTC.

Example 1: Assume that a table named CLASSES contains one row for each
scheduled class. Assume also that the class starting times are in the TIME column
named STARTTM. Using these assumptions, select those rows in CLASSES that
represent classes that start on the hour.

SELECT * FROM CLASSES
WHERE MINUTE(STARTTM) = 0;

Example 2: The following invocations of the MINUTE function returns the same
result:
SELECT MINUTE(’2003-01-02-20.10.05.123456’),

MINUTE(’2003-01-02-12.10.05.123456-08:00’),
MINUTE(’2003-01-03-05.10.05.123456+09:00’)
FROM SYSIBM.SYSDUMMY1;

Chapter 3. Functions 531

For each invocation of the MINUTE function in this SELECT statement, the result
is 2.

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
2003-01-02-20.10.05.123456. The minute portion of the UTC representation is 10.

532 SQL Reference

MOD
The MOD function divides the first argument by the second argument and returns
the remainder.

�� MOD(numeric-expression-1,numeric-expression-2) ��

The schema is SYSIBM.

The formula used to calculate the remainder is:
MOD(x,y) = x - FLOOR(x/y) * y

Where x/y is the truncated integer result of the division. The result is negative only
if the first argument is negative.

Each argument must be an expression that returns a value of any built-in numeric
data type.

The arguments can also be a character string or graphic string data type. The string
input is implicitly cast to a numeric value of DECFLOAT(34).

The result can be null; if any argument is null, the result is the null value.

The attributes of the result are based on the arguments as follows:
v If both arguments are large or small integers, the data type of the result is large

integer.
v If both arguments are integers and at least one argument is a big integer, the

data type of the result is big integer.
v If one argument is an integer and the other is a decimal, the data type of the

result is decimal with the same precision and scale as the decimal argument.
v If both arguments are decimal, the data type of the result is decimal. The

precision of the result is min(p-s,p’-s’) + max(s,s’), and the scale of the result
is max(s,s’), where the symbols p and s denote the precision and scale of the
first argument, and the symbols p' and s' denote the precision and scale of the
second argument.

v If one argument is a floating-point number, and the other is not a DECFLOAT,
or both argument is a floating-point number, the data type of the result is
double precision floating-point.
The operation is performed in floating-point. If necessary, the operands are first
converted to double precision floating-point numbers. For example, an operation
that involves a floating-point number and either an integer or a decimal number
is performed with a temporary copy of the integer or decimal number that has
been converted to double precision floating-point. The result of a floating-point
operation must be within the range of floating-point numbers.

v If either argument is a DECFLOAT, the data type of the result is DECFLOAT(34).
If either argument is a special decimal floating point value, the general rules for
arithmetic operations apply. See “General Arithmetic Operation Rules for
DECFLOAT” on page 248 for more information.

Chapter 3. Functions 533

If one argument is a DECFLOAT and the second argument is zero, the result is
NaN and an invalid operation condition is returned.

Example: Assume that M1 and M2 are two host variables. Find the remainder of
dividing M1 by M2.

SELECT MOD(:M1,:M2)
FROM SYSIBM.SYSDUMMY1;

The following table shows the result for this function for various values of M1 and
M2.

M1 data type M1 value M2 data type M2 value
Result of
MOD(:M1,:M2)

INTEGER 5 INTEGER 2 1

INTEGER 5 DECIMAL(3,1) 2.2 0.6

INTEGER 5 DECIMAL(3,2) 2.20 0.60

DECIMAL(4,2) 5.50 DECIMAL(4,1) 2.0 1.50

DECFLOAT 1 DECFLOAT -INFINITY 1

DECFLOAT -0 DECFLOAT INFINITY -0

DECFLOAT -0 DECFLOAT -INFINITY -0

534 SQL Reference

MONTH
The MONTH function returns the month part of a value.

�� MONTH(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns one of the following built-in data
types: a date, a timestamp, a character string, a graphic string, or a numeric data
type.
v If expression is a character or graphic string, it must not be a CLOB or DBCLOB,

and its value must be a valid string representation of a date or timestamp with
an actual length of not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime
values” on page 101.

v If expression is a number, it must be a date or timestamp duration. For the valid
formats of date and timestamp durations, see “Datetime operands” on page 147.

If expression is a timestamp with a time zone, or a valid string representation of a
timestamp with a time zone, the result is determined from the UTC representation
of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
If the argument is a date, timestamp, or string representation of either, the
result is the month part of the value, which is an integer between 1 and 12.
If the argument is a date duration or timestamp duration, the result is the
month part of the value, which is an integer between -99 and 99. A nonzero
result has the same sign as the argument.
If the argument contains a time zone, the result is the year part of the value
expressed in UTC.

Example 1: Select all rows in the sample table DSN8B10.EMP for employees who
were born in May:

SELECT * FROM DSN8B10.EMP
WHERE MONTH(BIRTHDATE) = 5;

Example 2: The following invocations of the MONTH function returns the same
result:
SELECT MONTH(’2003-01-02-20.10.05.123456’),

MONTH(’2003-01-02-12.10.05.123456-08:00’),
MONTH(’2003-01-03-05.10.05.123456+09:00’)
FROM SYSIBM.SYSDUMMY1;

For each invocation of the MONTH function in this SELECT statement, the result
is 1.

Chapter 3. Functions 535

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
2003-01-02-20.10.05.123456. The month portion of the UTC representation is 1.

536 SQL Reference

MONTHS_BETWEEN
The MONTHS_BETWEEN function returns an estimate of the number of months
between two arguments.

�� MONTHS_BETWEEN(expression1,expression2) ��

The schema is SYSIBM.

expression1 or expression2
Expressions that return a value of any of the following built-in data types: a
date, a timestamp, a character string, or a graphic string. If either expression is
a character or graphic string, it must not be a CLOB or DBCLOB, and its value
must be a valid string representation of a date or timestamp with an actual
length that is not greater than 255 bytes. A time zone in a string representation
of a timestamp is ignored. For the valid formats of string representations of
dates and timestamps, see “String representations of datetime values” on page
101.

If expression1 is a TIMESTAMP WITH TIME ZONE value, expression1 is first cast to
TIMESTAMP WITHOUT TIME ZONE with the same precision as expression1. If
expression2 is a TIMESTAMP WITH TIME ZONE value, expression2 is first cast to
TIMESTAMP WITHOUT TIME ZONE with the same precision as expression2.

If expression1 represents a date that is later than expression2, the result is positive. If
expression1 represents a date that is earlier than expression2, the result is negative.
v If expression1 and expression2 represent dates or timestamps with the same day of

the month, or both arguments represent the last day of their respective months,
the result is a the whole number difference based on the year and month values,
ignoring any time portions of timestamp arguments.

v Otherwise, the whole number part of the result is the difference based on the
year and month values. The fractional part of the result is calculated from the
remainder based on an assumption that every month has 31 days. If either
argument represents a timestamp, the arguments are effectively processed as
timestamps with maximum precision, and the time portions of these values are
also considered when determining the result.

The result of the function is a DECIMAL(31,15).

The result can be null; if any argument is null, the result is the null value.

Examples 1: The following example calculates the months between two dates:
SELECT MONTHS_BETWEEN (’2008-01-17’,’2008-02-17’)

AS MONTHS_BETWEEN
FROM SYSIBM.SYSDUMMY1;

The results of this statement are similar to the following results:
MONTHS_BETWEEN

-1.00000000000000

Chapter 3. Functions 537

Examples 2: The following example calculates the months between two dates:
SELECT MONTHS_BETWEEN (’2008-02-20’,’2008-01-17’)

AS MONTHS_BETWEEN
FROM SYSIBM.SYSDUMMY1;

The results of this statement are similar to the following results:
MONTHS_BETWEEN

1.096774193548387

Example 3: Calculate the number of months that project AD3100 will take. Assume
that the start date is 1982-01-01 and the end date is 1983-02-01:
SELECT MONTHS_BETWEEN (PRENDATE, PRSDATE)

FROM PROJECT
WHERE PROJNO=’AD3100’;

The result is 13.000000000000000.

Example 4: The following table illustrates the use of the MONTHS_BETWEEN
function in certain situations:

Table 66. Additional examples using MONTHS_BETWEEN

Value for expression1 Value for expression2

Value returned by
MONTHS_BETWEEN
(expression1,expression2)

Value returned by ROUND (
MONTHS_BETWEEN
(expression1,expression2)*31,2)

2005-02-02 2005-01-01 1.032258064516129 32.00

2007-11-01-09.00.00.00000 2007-12-07-14.30.12.12345 -1.200945386592741 -37.23

2007-12-13-09.40.30.00000 2007-11-13-08.40.30.00000 1.0000000000000001 31.001

2007–03–15 2007–02–20 0.8387096774193542 26.002

2008-02-29 2008-02-28-12.00.00 0.016129032258064 0.50

2008-03-29 2008-02-29 1.000000000000000 31.00

2008-03-30 2008-02-29 1.032258064516129 32.00

2008-03-31 2008-02-29 1.0000000000000003 31.003

Notes:

1. The time difference is ignored because the day of the month is the same for both values.

2. The result is not 23 because, even though February has 28 days, the assumption is that all months have 31 days.

3. The result is not 33 because both dates are the last day of their respective month, and so the result is only based on the year and
month portions.

538 SQL Reference

MQREAD
The MQREAD function returns a message from a specified MQSeries location
without removing the message from the queue.

�� MQREAD()
receive-service

, service-policy

��

The schema is DB2MQ.

The MQREAD function returns a message from the MQSeries location that is
specified by receive-service, using the quality-of-service policy that is defined in
service-policy. Performing this operation does not remove the message from the
queue that is associated with receive-service, but instead returns the message at the
beginning of the queue.

receive-service
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service point that is defined in the DB2MQ.MQSERVICE table. A
service point is a logical end-point from which a message is sent or received. A
service point definition includes the name of the MQSeries queue manager and
the name of the queue. See MQSeries Application Messaging Interface for more
details.

If receive-service is not specified or is the null value, DB2.DEFAULT.SERVICE is
used.

service-policy
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A
service policy specifies a set of quality-of-service options that are to be applied
to this messaging operation. These options include message priority and
message persistence. See MQSeries Application Messaging Interface for more
details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is
used.

The result of the function is a varying-length string with a length attribute of 4000.
The result can be null. If no messages are available to be returned, the result is the
null value.

The CCSID of the result is the system CCSID that was in effect at the time that the
MQSeries function was installed into DB2.

Chapter 3. Functions 539

Example 1: Retrieve the message at the beginning of the queue that is specified by
the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

SELECT MQREAD()
FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue specified by the default server and
using the default policy is returned as VARCHAR(4000).

Example 2: Read the message from the beginning of the queue specified by the
service MYSERVICE, using the default policy (DB2.DEFAULT.POLICY).

SELECT MQREAD(’MYSERVICE’)
FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue specified by MYSERVICE and using
DB2.DEFAULT.POLICY is returned as VARCHAR(4000).

540 SQL Reference

MQREADCLOB
The MQREADCLOB function returns a message from a specified MQSeries
location without removing the message from the queue.

�� MQREADCLOB()
receive-service

, service-policy

��

The schema is DB2MQ.

The MQREADCLOB function returns a message from the MQSeries location that is
specified by receive-service, using the quality-of-service policy that is defined in
service-policy. Performing this operation does not remove the message from the
queue that is associated with receive-service, but instead returns the message at the
beginning of the queue.

receive-service
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service point that is defined in the DB2MQ.MQSERVICE table. A
service point is a logical end-point from which a message is sent or received. A
service point definition includes the name of the MQSeries queue manager and
the name of the queue. See MQSeries Application Messaging Interface for more
details.

If receive-service is not specified or is the null value, DB2.DEFAULT.SERVICE is
used.

service-policy
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A
service policy specifies a set of quality-of-service options that are to be applied
to this messaging operation. These options include message priority and
message persistence. See MQSeries Application Messaging Interface for more
details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is
used.

The result of the function is a CLOB with a length attribute of 1 MB. The result can
be null. If no messages are available to be returned, the result is the null value.

The CCSID of the result is the system CCSID that was in effect at the time that the
MQSeries function was installed into DB2.

Example 1: Read the message from the beginning of the queue specified by the
default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

Chapter 3. Functions 541

SELECT MQREADCLOB()
FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue specified by the default service and
using the default policy is returned as a CLOB.

Example 2: Read the message from the beginning of the queue specified by the
service MYSERVICE, using the default policy (DB2.DEFAULT.POLICY).

SELECT MQREADCLOB(’MYSERVICE’)
FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue specified by MYSERVICE and using the
default policy is returned as a CLOB.

Example 3: Read the message from the beginning of the queue specified by the
service MYSERVICE, using the policy MYPOLICY:

SELECT MQREADCLOB(’MYSERVICE’,’MYPOLICY’)
FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue specified by MYSERVICE and using the
policy MYPOLICY is returned as a CLOB.

542 SQL Reference

MQRECEIVE
The MQRECEIVE function returns a message from a specified MQSeries location
and removes the message from the queue.

�� MQRECEIVE()
receive-service

, service-policy
, correl-id

��

The schema is DB2MQ.

The MQRECEIVE function returns a message from the MQSeries location specified
by receive-service, using the quality-of-service policy defined in service-policy.
Performing this operation removes the message from the queue that is associated
with receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service point that is defined in the DB2MQ.MQSERVICE table. A
service point is a logical end-point from which a message is sent or received. A
service point definition includes the name of the MQSeries queue manager and
the name of the queue. See MQSeries Application Messaging Interface for more
details.

If receive-service is not specified or is the null value, DB2.DEFAULT.SERVICE is
used.

service-policy
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A
service policy specifies a set of quality-of-service options that are to be applied
to this messaging operation. These options include message priority and
message persistence. See MQSeries Application Messaging Interface for more
details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is
used.

correl-id
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The expression must have an actual length
that is no greater than 24 bytes. The value of the expression specifies the
correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests
with replies. Only those messages with a matching correlation identifier are
returned.

Chapter 3. Functions 543

A fixed length string with trailing blanks is considered a valid value. However,
when the correl-id is specified on another request such as MQSEND, the
correl-id must be specified the same to be recognized as a match. For example,
specifying a value of 'test' for correl-id for this function does not match a
correl-id value of 'test ' (with trailing blanks) specified earlier on an
MQSEND request.

If correl-id is not specified, is an empty string, or is the null value, a correlation
identifier is not used, and the message at the beginning of the queue is
returned.

The result of the function is a varying-length string of length attribute of 4000. The
result can be null. The result is null if no messages are available to return.

The CCSID of the result is the system CCSID that was in effect at the time that the
MQSeries function was installed into DB2.

Example 1: Retrieve the message from beginning of the queue specified by the
default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

SELECT MQRECEIVE()
FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue is returned as VARCHAR(4000) and is
deleted from the queue. The queue is specified by the default service and using the
default policy.

Example 2: Retrieve the first message from the beginning of the queue specified by
the service MYSERVICE, using the default policy, DB2.DEFAULT.POLICY.

SELECT MQRECEIVE(’MYSERVICE’)
FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue is returned as VARCHAR(4000) and is
deleted from the queue. The queue is specified by the service MYSERVICE using
the default policy, DB2.DEFAULT.POLICY.

Example 3: Retrieve the message from the beginning of the queue specified by the
service MYSERVICE, using the policy MYPOLICY.

SELECT MQRECEIVE(’MYSERVICE’,’MYPOLICY’)
FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue is returned as VARCHAR(4000) and the
message is deleted from the queue. The queue is specified by the service
MYSERVICE using the policy MYPOLICY.

Example 4: Retrieve the first message with a correlation identifier that matches
'1234' from the beginning of the queue specified by the service MYSERVICE, using
the policy MYPOLICY.

SELECT MQRECEIVE(’MYSERVICE’,’MYPOLICY’,’1234’)
FROM SYSIBM.SYSDUMMY1;

The first message with CORRELID of '1234' from the beginning of the queue is
returned as VARCHAR(4000) and is deleted from the queue. The queue is specified
by MYSERVICE and using MYPOLICY.

544 SQL Reference

MQRECEIVECLOB
The MQRECEIVECLOB function returns a message from a specified MQSeries
location and removes the message from the queue.

�� MQRECEIVECLOB()
receive-service

, service-policy
, correl-id

��

The schema is DB2MQ.

The MQRECEIVECLOB function returns a message from the MQSeries location
that is specified by receive-service, using the quality-of-service policy that is defined
in service-policy. Performing this operation removes the message from the queue
that is associated with receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service point that is defined in the DB2MQ.MQSERVICE table. A
service point is a logical end-point from which a message is sent or received. A
service point definition includes the name of the MQSeries queue manager and
the name of the queue. See MQSeries Application Messaging Interface for more
details.

If receive-service is not specified or is the null value, DB2.DEFAULT.SERVICE is
used.

service-policy
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A
service policy specifies a set of quality-of-service options that are to be applied
to this messaging operation. These options include message priority and
message persistence. See MQSeries Application Messaging Interface for more
details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is
used.

correl-id
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The expression must have an actual length
that is no greater than 24 bytes. The value of the expression specifies the
correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests
with replies. Only those messages with a matching correlation identifier are
returned.

Chapter 3. Functions 545

A fixed length string with trailing blanks is considered a valid value. However,
when the correl-id is specified on another request such as MQSEND, the
correl-id must be specified the same to be recognized as a match. For example,
specifying a value of 'test' for correl-id for this function does not match a
correl-id value of 'test ' (with trailing blanks) specified earlier on an
MQSEND request.

If correl-id is not specified, is an empty string, or is the null value, a correlation
identifier is not used, and the message at the beginning of the queue is
returned.

The result of the function is a CLOB with a length attribute of 1 MB. The result can
be null. If no messages are available to be returned, the result is the null value.

The CCSID of the result is the system CCSID that was in effect at the time that the
MQSeries function was installed into DB2.

Example 1: Retrieve the message from the beginning of the queue specified by the
default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

SELECT MQRERECEIVECLOB()
FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue is returned as a CLOB and is deleted
from the queue. The queue is specified by the default service and using the default
policy.

Example 2: Retrieve the message from the beginning of the queue specified by the
service MYSERVICE, using the policy (DB2.DEFAULT.POLICY).

SELECT MQRECEIVECLOB(’MYSERVICE’)
FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue is returned as a CLOB and is deleted
from the queue. The queue is specified by MYSERVICE and using the default
policy.

Example 3: Retrieve the message from the beginning of the queue specified by the
service MYSERVICE, using the policy MYPOLICY.

SELECT MQRECEIVECLOB(’MYSERVICE’,’MYPOLICY’)
FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue is returned as a CLOB and is deleted
from the queue. The queue is specified by MYSERVICE and using the policy
MYPOLICY.

Example 4: Retrieve the first message from the beginning of the queue with a
correlation identifier that matches '1234' from the queue specified by the service
MYSERVICE, using the policy MYPOLICY.

SELECT MQRECEIVECLOB(’MYSERVICE’,’MYPOLICY’,’1234’)
FROM SYSIBM.SYSDUMMY1;

The first message at the beginning of the queue with a correlation identifier with
'1234' is returned as a CLOB and is deleted from the queue. The queue is specified
by MYSERVICE and using the policy MYPOLICY.

546 SQL Reference

MQSEND
The MQSEND function sends data to a specified MQSeries location, and returns a
varying-length character string that indicates whether the function was successful
or unsuccessful.

�� MQSEND(msg-data)
send-service , (1)

service-policy , , correl-id

��

Notes:

1 correl-id cannot be specified unless a send service and a service policy are also specified.

The schema is DB2MQ.

The MQSEND function sends the data that is contained in msg-data to the
MQSeries location that is specified by send-service, using the quality-of-service
policy that is defined in service-policy. The returned value is '1' if the function was
successful or '0' if unsuccessful.

send-service
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service point that is defined in the DB2MQ.MQSERVICE table. A
service point is a logical end-point from which a message is sent or received. A
service point definition includes the name of the MQSeries queue manager and
the name of the queue. See MQSeries Application Messaging Interface for more
details.

If send-service is not specified or is the null value, DB2.DEFAULT.SERVICE is
used.

service-policy
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A
service policy specifies a set of quality-of-service options that are to be applied
to this messaging operation. These options include message priority and
message persistence. See MQSeries Application Messaging Interface for more
details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is
used.

msg-data
An expression that returns a value that is a built-in character string data type.
If the expression is a CLOB, the value must not be longer than 1 MB.
Otherwise, the value must not be longer than 4000 bytes. The value of the

Chapter 3. Functions 547

expression is the message data that is to be sent via MQSeries. A null value, an
empty string, and a fixed length string with trailing blanks are all considered
valid values.

correl-id
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The expression must have an actual length
that is no greater than 24 bytes. The value of the expression specifies the
correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests
with replies. correl-id must not be specified unless send-service and service-policy
are also specified.

A fixed length string with trailing blanks is considered a valid value. However,
when the correl-id is specified on another request such as MQRECEIVE, the
correl-id must be specified the same to be recognized as a match. For example,
specifying a value of 'test' for correl-id on MQSEND does not match a correl-id
value of 'test ' (with trailing blanks) specified subsequently on an
MQRECEIVE request.

If correl-id is not specified, is an empty string, or is the null value, a correlation
identifier is not sent.

The result of the function is a varying-length string with a length attribute of 1.
The result is nullable, even though a null value is never returned. The result is '1' if
the function is successful or '0' if unsuccessful.

The CCSID of the result is the system CCSID that was in effect at the time that the
MQSeries function was installed into DB2.

Example 1: Send the string "Testing msg" to the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY) and
no correlation identifier.

SELECT MQSEND(’Testing msg’)
FROM SYSIBM.SYSDUMMY1;

The message is sent to the default service, using the default policy.

Example 2: Send the message 'Testing 345' to the service MYSERVICE, using the
policy MYPOLICY, with no correlation identifier.

SELECT MQSEND(’MYSERVICE’,’MYPOLICY’,’Testing 345’)
FROM SYSIBM.SYSDUMMY1;

The message 'Testing 345' is sent to the MYSERVICE service, using the policy
MYPOLICY.

Example 3: Send the message 'Testing 123' to the service MYSERVICE, using the
policy MYPOLICY and the correlation identifier 'TEST3'.

SELECT MQSEND(’MYSERVICE’,’MYPOLICY’,’Testing 123’,’TEST3’)
FROM SYSIBM.SYSDUMMY1;

The message 'Testing 123' is sent to the service MYSERVICE, using the policy
MYPOLICY and the correlation identifier "TEST3".

Example 4: Send the message 'Testing 901' to the service "MYSERVICE", using the
default policy (DB2.DEFAULT.POLICY), and no correlation identifier.

548 SQL Reference

SELECT MQSEND(’MYSERVICE’,’Testing 901’)
FROM SYSIBM.SYSDUMMY1;

The message 'Testing 901' is sent to the service MYSERVICE, using the default
policy (DB2.DEFAULT.POLICY).

Chapter 3. Functions 549

MULTIPLY_ALT
The MULTIPLY_ALT scalar function returns the product of the two arguments.
This function is an alternative to the multiplication operator and is especially
useful when the sum of the precisions of the arguments exceeds 31.

�� MULTIPLY_ALT(exact-numeric-expression-1,exact-numeric-expression-2) ��

The schema is SYSIBM.

Each argument must be an expression that returns the value of one of the
following built-in numeric data types: DECIMAL, BIGINT, INTEGER, or
SMALLINT.

The result of the function is a DECIMAL. The precision and scale of the result are
determined as follows, using the symbols p and s to denote the precision and scale
of the first argument, and the symbols p' and s' to denote the precision and scale
of the second argument.
v The precision is MIN(31, p+p’)

v The scale is:
– 0 if the scale of both arguments is 0
– MIN(31, s+s’) if p+p’ is less than or equal to 31
– MAX(MIN(3, s+s’), 31-(p-s+p’-s’)) if p+p’ is greater than 31.

The result can be null; if any argument is null, the result is the null value.

The MULTIPLY_ALT function is a better choice than the multiplication operator
when performing decimal arithmetic where you want a scale of at least 3 and the
sum of the precisions exceeds 31. In these cases, the internal computation is
performed so that overflows are avoided and then assigned to the result type
value using truncation for any loss of scale in the final result. Note that the
possibility of overflow of the final result is still possible when the scale is 3.

The following table compares the result data types from the MULTIPLY_ALT
function with the result data type of the multiplication operator when decimal data
is used:

Type of Argument1 Type of Argument2 Result using
MULTIPLY_ALT

Result using
multiplication
operator

DECIMAL(31,3) DECIMAL(15,8) DECIMAL(31,3) DECIMAL(31,11)

DECIMAL(26,23) DECIMAL(10,1) DECIMAL(31,19) DECIMAL(31,24)

DECIMAL(18,17) DECIMAL(20,19) DECIMAL(31,29) DECIMAL(31,31)

DECIMAL(16,3) DECIMAL(17,8) DECIMAL(31,9) DECIMAL(31,11)

DECIMAL(26,5) DECIMAL(11,0) DECIMAL(31,3) DECIMAL(31,5)

DECIMAL(21,1) DECIMAL(15,1) DECIMAL(31,2) DECIMAL(31,2)

550 SQL Reference

NEXT_DAY
The NEXT_DAY function returns a datetime value that represents the first
weekday, named by string-expression, that is later than the date in expression.

�� NEXT_DAY(expression,string-expression) ��

The schema is SYSIBM.

If expression is a timestamp or valid string representation of a timestamp, the
timestamp value has the same hours, minutes, seconds, and partial seconds as
expression. If expression is a date, or a valid string representation of a date, then the
hours, minutes, seconds, and partial seconds value of the result is 0.

expression
An expression that returns one of the following built-in data types: a date, a
timestamp, a character string, or a graphic string. If expression is a character or
graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a date or timestamp with an actual length of not
greater than 255 bytes. A time zone in a string representation of a timestamp is
ignored. For the valid formats of string representations of dates and
timestamps, see “String representations of datetime values” on page 101.

If expression does not have data type TIMESTAMP WITHOUT TIME ZONE,
expression is cast as follows:
v If expression is a TIMESTAMP WITH TIME ZONE value, expression is cast to

TIMESTAMP WITHOUT TIME ZONE, with the same precision as expression.
v Otherwise, expression is cast to TIMESTAMP(6) WITHOUT TIME ZONE.

string-expression
An expression that returns a built-in character or graphic string data type that
is not a LOB. For portability across the platforms, the value should compare
equal to the full name of a day of the week or should compare equal to the
abbreviation of a day of the week. For example:

Day of week Abbreviation

MONDAY MON

TUESDAY TUE

WEDNESDAY WED

THURSDAY THU

FRIDAY FRI

SATURDAY SAT

SUNDAY SUN

The minimum length of the input value is the length of the abbreviation.
Leading blanks must not be specified in string-expression. Trailing blanks are
trimmed from string-expression. The resulting value is folded to uppercase. Any
characters other than blank that immediately follow a valid abbreviation are
ignored.

Chapter 3. Functions 551

If expression is a timestamp, the result is a TIMESTAMP WITHOUT TIME ZONE
value with the same precision as expression. If expression is DATE, the result is a
DATE value. Otherwise, the result is a TIMESTAMP(6) WITHOUT TIME ZONE
value.

Any hours, minutes, seconds, or fractional seconds information that is included in
expression is not changed by the function. If expression is a string that represents a
date, the time information in the resulting timestamp value is all set to zero.

The result can be null; if any argument is null, the result is the null value.

The result CCSID is the appropriate CCSID of the argument encoding scheme and
the result subtype is the appropriate subtype of the CCSID.

Example 1: Set the host variable NEXTDAY with a timestamp for the date of the
Tuesday that follows April 24, 2007.

SET :NEXTDAY = NEXT_DAY(TIMESTAMP ’2007-04-24-00.00.00.000000’, ’TUESDAY’);

The host variable NEXTDAY is set with the value of '2007-05-01-00.00.00.000000',
since April, 24, 200 is itself a Tuesday'.

Example 2: Set the host variable vNEXTDAY with the date of the first Monday in
May, 2007. Assume the host variable vDAYOFWEEK = 'MON':

SET :vNEXTDAY = NEXT_DAY(LAST_DAY(CURRENT_DATE),:vDAYOFWEEK);

The host variable vNEXTDAY is set with the value of '2007-05-07', assuming that
the value of the CURRENT_DATE special register is '2007-04-24'.

552 SQL Reference

NORMALIZE_DECFLOAT
The NORMALIZE_DECFLOAT function returns a DECFLOAT value that is the
result of the argument, set to its simplest form. That is, a non-zero number that has
any trailing zeros in the coefficient has those zeros removed by dividing the
coefficient by the appropriate power of ten and adjusting the exponent accordingly.
A zero has its exponent set to 0.

�� NORMALIZE_DECFLOAT(decfloat-expression) ��

The schema is SYSIBM.

decfloat-expression
The argument must be an expression that returns a DECFLOAT value.

decfloat-expression can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34).

If the argument is a special decimal floating point value then the general rules for
arithmetic operations apply. See “General Arithmetic Operation Rules for
DECFLOAT” on page 248 for more information.

The result of the function is a DECFLOAT(16) value if the data type of
decfloat-expression is DECFLOAT(16). Otherwise, the result of the function is a
DECFLOAT(34) value.

The result can be null; if the argument is null, the result is the null value.

Examples: The following examples show the result of using the
NORMALIZE_DECFLOAT function on various DECFLOAT values:

NORMALIZE_DECFLOAT(DECFLOAT(2.1)) = 2.1
NORMALIZE_DECFLOAT(DECFLOAT(-2.0)) = -2
NORMALIZE_DECFLOAT(DECFLOAT(1.200)) = 1.2
NORMALIZE_DECFLOAT(DECFLOAT(-120)) = -1.2E+2
NORMALIZE_DECFLOAT(DECFLOAT(120.00)) = 1.2E+2
NORMALIZE_DECFLOAT(DECFLOAT(0.00)) = 0
NORMALIZE_DECFLOAT(-NAN) = -NAN
NORMALIZE_DECFLOAT(-INFINITY) = -INFINITY

Chapter 3. Functions 553

NORMALIZE_STRING
The NORMALIZE_STRING function takes a Unicode string argument and returns
a normalized string that can be used for comparison.

The NORMALIZE_STRING function can convert two strings that look the same
(such as Å, which can be encoded in UTF-16 as X'00C5' and as X'0041030a') but
might not be encoded using the same Unicode code point, to a normalized form
that can be compared.

��
NFC

NORMALIZE_STRING(unicode-string, NFD)
NFKC , integer
NFKD

��

The schema is SYSIBM.

unicode_string
An expression that returns a value of a built-in character string or graphic
string data type that is either Unicode UTF-8 or Unicode UTF-16, and is not a
LOB. The CAST specification can be used to convert ASCII or EBCDIC data to
Unicode for use with this function.

NFC, NFD, NFKC, or NFKD
Specifies the normalized form:
NFC Canonical Decomposition followed by Canonical Composition
NFD Canonical Decomposition
NFKC Compatibility Decomposition followed by Canonical Composition
NFKD Compatibility Decomposition

integer
The length attribute, in bytes if the string is a character string, or in double
byte code points if the string is a graphic string, for the resulting variable
length string. The value must be an integer between 1 and 32704 if the source
string is character, or 16352 if the source string is graphic.

The result of the function is a varying length string with a data type that depends
on the data type of unicode-string:
v VARCHAR if unicode-string is CHAR or VARCHAR
v VARGRAPHIC if unicode-string is GRAPHIC or VARGRAPHIC

The CCSID of the result is the same as the CCSID of unicode-string.

The length attribute of the result depends on whether integer is specified. If integer
is specified, the length attribute of the result is integer bytes or double byte code
points. If integer is not specified, the length attribute of the result is MIN(3*n,32704)
for character strings, or MIN(3*n,16352) for graphic strings, where n is the length
attribute of the source.

The result can be null; if the first argument is null, the result is the null value.

Example 1: In the following example, "ábc" is normalized to normalization form
NFC:

554 SQL Reference

SET :hv1 = NORMALIZE_STRING(’ábc’,NFC) -- x’0061030100620063’

hv1 is set to 'ábc' -- X'00E100620063'. Using normalization form NFC, the two
code-point sequence X'00610301', which represents the character 'á', is normalized
to X'00E1' which is also the pre-composed equivalent of X'00610301'.

Example 2: In the following example, "ábc" is normalized to normalization form
NFD.

SET :hv1 = NORMALIZE_STRING(’ábc’,NFD) -- x’00E100620063’

hv1 is set to 'ábc' -- X'0061030100620063'. Using normalization form NFD, the code
point X'00E1' is decomposed into the two code-point sequence X'00610301', which
consists of the Latin lower case letter A and the combining acute accent character.

Chapter 3. Functions 555

NULLIF
The NULLIF function returns the null value if the two arguments are equal;
otherwise, it returns the value of the first argument.

�� NULLIF(expression,expression) ��

The schema is SYSIBM.

The two arguments must be compatible. The arguments can be of either a built-in
or user-defined distinct type. Neither argument can be a BLOB, CLOB, DBCLOB,
or XML. Character-string and graphic-string arguments are compatible with
datetime values. For more information on compatibility, refer to the compatibility
matrix in Table 23 on page 121.

If there are any mixed character string or graphic string and numeric arguments,
the string value is implicitly cast to a DECFLOAT(34) value.

The attributes of the result are the attributes of the first argument.

The result of using NULLIF(e1,e2) is the same as using the CASE expression:
CASE WHEN e1=e2 THEN NULL ELSE e1 END

When e1=e2 evaluates to unknown because one or both arguments is null, CASE
expressions consider the evaluation not true. In this case, NULLIF returns the
value of the first argument.

Example: Assume that host variables PROFIT, CASH, and LOSSES have decimal
data types with the values of 4500.00, 500.00, and 5000.00 respectively. The
following function returns a null value:

NULLIF (:PROFIT + :CASH , :LOSSES)

556 SQL Reference

|
|
|
|
|

NVL
The NVL function returns the first argument that is not null.

�� �NVL (expression , expression) ��

The schema is SYSIBM.

The NVL function is a synonym for the COALESCE function.

Chapter 3. Functions 557

OVERLAY
The OVERLAY function returns a string that is composed of one argument that is
inserted into another argument at the same position where some number of bytes
have been deleted.

�� OVERLAY (source-string , insert-string , start , CODEUNITS16)
, length CODEUNITS32

OCTETS

��

The schema is SYSIBM.

The OVERLAY function returns a string where a substring of length, beginning at
start has been deleted from source-string, and where insert-string has been inserted
into source-string beginning at start. If the value of start plus length is greater than
the length of source-string, the substring that is deleted is from start to the end of
source-string.

If the length of the result string exceeds the maximum for the return type, an error
is returned.

The OVERLAY function is identical to the INSERT function, except that the length
argument is optional.

source-string
An expression that specifies the source string. The expression must return a
value that is a built-in character string, graphic string, or binary string data
type that is not a LOB.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.The actual length of the string must
be greater than or equal to 1 byte and less than or equal to 32704 bytes.

insert-string
An expression that specifies the string that is inserted into source-string, starting
at the position that is identified by start. insert-string must return a value that is
a built-in character string, graphic string, or binary string data type that is not
a LOB. source-string and insert-string must have compatible data types.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

start
An expression that returns an integer. The integer specifies the starting point
within the source string where the deletion of bytes and the insertion of
another string is to begin. The value of the integer must be in the range of 1 to
the length of source-string plus one. If OCTETS is specified and the result is
graphic data, the value must be an odd value between 1 and twice the length
of source-string plus one.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to an INTEGER value.

length
An expression that specifies the length of the string to replace in source-string

558 SQL Reference

starting at start. length must be an expression that returns a value of the
built-in INTEGER data type. length is expressed in the string unit specified,
and the value must be in the range of 0 to the length of source-string. If
OCTETS is specified and the result is graphic data, length must be even and be
between 0 and twice the length of source-string. Not specifying length is
equivalent to specifying a value of 1, except when OCTETS is specified and the
result is graphic data, in which case, not specifying length is equivalent to
specifying a value of 2.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to an INTEGER value.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the units that are used to express start and length in the result. If
source-string is a character string that is defined as bit data, CODEUNITS16 and
CODEUNITS32 cannot be specified. If source-string is a graphic string, OCTETS
cannot be specified. If source-string is a binary string, CODEUNITS16,
CODEUNITS32, and OCTETS cannot be specified.

If a string unit is not explicitly specified, the data type of the result determines
the unit that is used. If the result is a graphic string, a string unit is two bytes.
For ASCII and EBCDIC data, this corresponds to a double byte character. For
Unicode, this corresponds to a UTF-16 code point. Otherwise, a string unit is a
byte.

CODEUNITS16
Specifies that start and length are expressed in terms of 16-bit UTF-16 code
units.

CODEUNITS32
Specifies that start and length are expressed in terms of 32-bit UTF-32 code
units.

OCTETS
Specifies that start and length are expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see
“String unit specifications” on page 87. length must be an even number if
source-string is graphic data and OCTETS is specified

If source-string and insert-string have different CCSID sets, insert-string (the string to
be inserted) is converted to the CCSID of source-string (the source string).

The encoding scheme of the result is the same as source-string. The data type of the
result of the function depends on the data type of source-string and insert-string:
v VARCHAR if source-string is a character string. The CCSID of the result depends

on the arguments:
– If either source-string or insert-string is character bit data, the result is bit data.
– If both source-string and insert-string are SBCS:

- If both source-string and insert-string are SBCS Unicode data, the CCSID of
the result is the CCSID for SBCS Unicode data.

- If source-string is SBCS Unicode data and insert-string is not SBCS Unicode
data, the CCSID of the result is the mixed CCSID for Unicode data.

- Otherwise, the CCSID of the result is the same as the CCSID of
source-string.

Chapter 3. Functions 559

– Otherwise, the CCSID of the result is the mixed CCSID that corresponds to
the CCSID of source-string. However, if the input is EBCDIC or ASCII and
there is no corresponding system CCSID for mixed, the CCSID of the result is
the CCSID of source-string.

v VARGRAPHIC if source-string is a graphic. The CCSID of the result is the same
as the CCSID of source-string.

v VARBINARY if source-string and insert-string are both binary strings.

The length attribute of the result depends on the arguments:
v If start and length are constants, the length attribute of the result is:

L1 - MIN((L1 - V2 + 1), V3) + L4

where:
L1 is the length attribute of source-string
V2 is the value of start
V3 is the value of length
L4 is the length attribute of insert-string

v Otherwise, the length attribute of the result is the length attribute of source-string
plus the length attribute of insert-string. In this case, the length attribute of
source-string plus the length attribute of insert-string must not exceed 32704 for a
VARCHAR result or 16352 for a VARGRAPHIC result.

If CODEUNITS16 or CODEUNITS32 is specified, the insert operation is performed
on a Unicode version of the data. If needed, the data is converted to an
intermediate form in order to evaluate the function. If an intermediate form is
used, the actual length of the result depends on the original data (source-string and
insert-string), and the representation of that data in Unicode. See “Determining the
length attribute of the final result” on page 90 for more information on how to
calculate the length attribute of the result string.

If CODEUNITS16 or CODEUNITS32 are not specified, the actual length of the
result is:
A1 - MIN((A1 - V2 + 1), V3) + A4

where:
A1 is the actual length of source-string
V2 is the value of start
V3 is the value of length
A4 is the actual length of insert-string

If the actual length of the result string exceeds the maximum for the return data
type, an error occurs.

The result can be null; if any argument is null, the result is the null value.

Example 1: The following example shows how the string 'INSERTING' can be
changed into other strings. The use of the CHAR function limits the length of the
resulting string to 10 bytes.

SELECT CHAR(OVERLAY(’INSERTING’,’IS’,4,2,OCTETS),10),
CHAR(OVERLAY(’INSERTING’,’IS’,4,0,OCTETS),10),
CHAR(OVERLAY(’INSERTING’,’’,4,2,OCTETS),10)

FROM SYSIBM.SYSDUMMY1;

This example returns 'INSISTING ', 'INSISERTIN', and 'INSTING '

560 SQL Reference

Example 2: Use the OVERLAY function to insert the character 'C' into the Unicode
string '&N~AB', where '&' is the character for the musical symbol, G CLEF, and '~'
is the character for combining tilde. The following table shows the Unicode string
in different Unicode encoding forms:

Unicode
format & N ~ A B

UTF-8 X'F09D849E' X'4E' X'CC83' X'41' X'42'

UTF-16 X'D834DD1E' X'004E' X'0303' X'0041' X'0042'

Assume the host variable UTF8_VAR contains the UTF-8 representation of
'&N~AB', and UTF16_VAR contains the UTF-16 representation of '&N~AB'. Then
the following SELECT statement is run:

SELECT OVERLAY (:UTF8_VAR, ’C’, 1, CODEUNITS16),
OVERLAY (:UTF8_VAR, ’C’, 1, CODEUNITS32),
OVERLAY (:UTF8_VAR, ’C’, 1, OCTETS)

FROM SYSIBM.SYSDUMMY1

This statement returns the following values:
C N~AB
CN~AB
C?N~AB -- ? is the invalid UTF-8 sequence X’9D849E’

Assume that the previous SELECT statement was not run, but the following
SELECT statement is run:

SELECT OVERLAY (:UTF8_VAR, ’C’, 5, CODEUNITS16),
OVERLAY (:UTF8_VAR, ’C’, 5, CODEUNITS32),
OVERLAY (:UTF8_VAR, ’C’, 5, OCTETS)

FROM SYSIBM.SYSDUMMY1;

This statement returns the values:
&N~CB
&N~AC
&C~AB

Assume that the previous SELECT statement was not run, but the following
SELECT statement is run:

SELECT OVERLAY (:UTF16_VAR, ’C’, 1, CODEUNITS16),
OVERLAY (:UTF16_VAR, ’C’, 1, CODEUNITS32)

FROM SYSIBM.SYSDUMMY1;

This statement returns the values:
C?N~AB
CN~AB

Assume that the previous SELECT statement was not run, but the following
SELECT statement is run:

SELECT OVERLAY (:UTF16_VAR, ’C’, 5, CODEUNITS16),
OVERLAY (:UTF16_VAR, ’C’, 5, CODEUNITS32),

FROM SYSIBM.SYSDUMMY1;

This statement returns the values:
&N~CB
&N~AC

Chapter 3. Functions 561

PACK
The PACK function returns a binary string value that contains a data type array
and a packed representation of each non-null expression argument.

�� �

,

PACK (CCSID 1208 , expression)
CCSID DEFAULT

��

The schema is SYSIBM.

CCSID 1208
Specifies that CCSID 1208 is used to encode character string values.

CCSID DEFAULT
Specifies that character strings are to be packed in their original encoding,
as-is, without CCSID conversion.

expression
An expression that returns a value to be encoded in the result string. The
expression must be a built-in data type that is not DECFLOAT, GRAPHIC,
VARGRAPHIC, ROWID, a LOB, XML, or a character string defined as FOR BIT
DATA.

The result of the PACK function is a binary string that is constructed from the
following items:
v A flag byte that is reserved for future use
v A 2-byte integer value that indicates the number of arguments encoded in the

resulting string
v The data type array that contains an element with data type information for

each of the encoded arguments
v The encoded values for the expression arguments in the order as specified in the

function invocation.

The resulting binary string is formatted as follows:

2-byte length Flag byte
Number of

items Data type array
Encoded data

values

VARBINARY
length

VARBINARY data

The data type array includes an element for each expression argument in the same
order as specified in the function invocation. Each array element contains a 2-byte
SQLTYPE value that indicates the data type of the corresponding expression. When
the SQLTYPE value is an odd number, the corresponding expression represents a
null value and the value is not encoded in the resulting string. When the SQLTYPE
value is an even number, the resulting string contains an encoded representation of
the value depending on the data type. The following table describes the data types:

562 SQL Reference

|

|
|
|

Table 67. Data types for the expression of the PACK function

Data type of
expression

Description of the encoded representation of the value in the
resulting string

SMALLINT,
INTEGER, or
BIGINT

The value of expression as a 16-bit signed binary integer, 32-bit signed
binary integer, or 64-bit signed binary integer depending on the data
type

decimal(p,s)1 A sequence of 1-byte precision p, 1-byte scale s, and (p+2)/2 bytes of
the signed packed-decimal number

real2 or double3 The value of expression as a 64-bit IEEE floating-point format

CHAR or
VARCHAR

A sequence of the 2-byte CCSID of the string encoding, followed by the
2-byte length of the string and then the argument data in the specified
CCSID encoding

BINARY or
VARBINARY

A sequence of: 2-byte length of the string, followed by the argument
data

DATE A 4-byte unsigned packed-decimal number representation of the date in
the form of YYYYMMDD

TIME A 3-byte unsigned packed-decimal number representation of the time
in the form of HHMMSS

TIMESTAMP(p)
WITHOUT TIME
ZONE

A sequence of a 2-byte unsigned binary integer value of the precision p,
followed by 7+ (p+1)/2 bytes of an unsigned packed-decimal number
representation of the timestamp in the form of
YYYYMMDDHHMMSSNN, where NN is zero to six bytes of the
fractional seconds, depending on the precision p

TIMESTAMP(p)
WITH TIME
ZONE

A sequence of a 2-byte unsigned binary integer value of the precision p,
followed by 7+ (p+1)/2 bytes of an unsigned packed-decimal number
representation of the timestamp in the form of
YYYYMMDDHHMMSSNN, where NN is zero to six bytes of the
fractional seconds, depending on the precision p, and then followed by
2 bytes of an unsigned packed-decimal number representation of the
time zone (with high order bit set for negative time zone value)

Note: The data types in lower case are defined as follows:

1. decimal = DECIMAL(p,s) or NUMERIC(p,s)

2. real = REAL or FLOAT(n) where n is the specification for a single precision floating
point

3. double = DOUBLE, DOUBLE PRECISION, FLOAT or FLOAT(n) where n is the
specification for a double precision floating point

The synonyms for the data types, in either long or short form, are considered the same as
those that are listed.

All numeric data is represented in big endian format.

The result of the function is VARBINARY. The length attribute of the result is MIN
(32704, the length of the header + length of data type array + SUM(maximum
lengths of encoded expression values)). The result cannot be null.

Example 1: The following statement shows that the VARCHAR, DATE, and
DOUBLE values are packed into a binary string, and the string is then returned to
the application:

SELECT PACK(CCSID 1208, ’Alina’, DATE’1977-08-01’, DOUBLE(0.5))
FROM SYSIBM.SYSDUMMYU;

Chapter 3. Functions 563

The statement returns a VARBINARY string with the following content (The result
is displayed in hexadecimal format and includes space separators for readability.
The actual result is not in hexadecimal format and does not include any space
separators):

00 0003 01C4 0180 01E0 04B80005416C696E61 19770801 3FE0000000000000

Note that the character string 'Alina' is in UTF-8 (CCSID 1208) format regardless of
the string's original encoding because of the CCSID 1208 specification in the PACK
invocation.

The resulting string is VARBINARY(30). The length attribute of 30 is determined
by the following elements:

1 (flag byte)
+2 (size of number of items)
+2*3 (2-byte data type times number of items)
+2 (CCSID) + 2 (length) + 5 (VARCHAR(5) data length)
+4 (DATE data length)
+8 (DOUBLE length)

The actual length of the result is also 30.

Example 2: The following statement shows that when NULL values are packed into
a binary string, they do not occupy any space in the encoded values portion of the
result:

SELECT PACK(CCSID 1208, ’’, CAST(NULL AS TIME),
CAST(’Bridget’ AS VARCHAR(20) CCSID EBCDIC))

FROM SYSIBM.SYSDUMMYU;

The statement returns a VARBINARY string with the following content (The result
is displayed in hexadecimal format and includes space separators for readability.
The actual result is not in hexadecimal format and does not include any space
separators):

00 0003 01C4 0185 01C4 04B80000 00250007C2D9C9C4C7C5E3

Note that the character strings '' (empty string) and 'BRIDGET' are packed in their
original CCSID 1208 and CCSID 37 format accordingly because of the CCSID
DEFAULT specification in the PACK invocation.

The resulting string is VARBINARY(40). The length attribute of 40 is determined
by the following elements:

1 (flag byte)
+2 (size of number of items)
+2*3 (2-byte data type times number of items)
+2 (CCSID) + 2 (length) + 0 (empty string data length)
+3 (TIME data length)
+2 (CCSID) + 2 (length) + 20 (VARCHAR(20) max length)

The actual length of the resulting string is 24, which is determined by the
following elements

1 (flag byte)
+2 (size of number of items)
+2*3 (2-byte data type times number of items)

564 SQL Reference

|
|
|

|
|
|

|

|
|
|

+2 (CCSID) + 2 (length) + 0 (empty string data length)
+0 (NULL)
+2 (CCSID) + 2 (length) + 7 (VARCHAR(20) actual length)

Related reference:
“SQLTYPE and SQLLEN” on page 2090
“PACK” on page 562

Chapter 3. Functions 565

POSITION
The POSITION function returns the position of the first occurrence of an argument
within another argument, where the position is expressed in terms of the string
units that are specified.

�� POSITION (search-string , source-string , CODEUNITS16)
CODEUNITS32
OCTETS

��

The schema is SYSIBM.

If search-string is not found and neither argument is null, the result is 0. If
search-string is found, the result is a number from 1 to the actual length of
source-string, expressed in the units that are explicitly specified.

search-string
An expression that specifies the string for which to search. search-string must
return a value that is any built-in string data type with an actual length that is
no greater than 4000 bytes.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.The expression can be specified by
any of the following items:
v A constant
v A special register
v A variable
v A scalar function whose arguments are any of the above (although nested

function invocations cannot be used)
v An array element specification
v An expression that concatenates (using CONCAT or ||) any of the above
v A CAST specification whose arguments are any of the above
v A column name

These rules are similar to those that are described for pattern-expression for the
LIKE predicate.

source-string
An expression that specifies the source string in which the search is to take
place. source-string must return a value that is any built-in string data type.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.The expression can be specified by
any of the following items:
v A constant
v A special register
v A variable
v A scalar function whose arguments are any of the above (though nested

function invocations cannot be used)
v A column name
v An array element specification
v A CAST specification whose arguments are any of the above
v An expression that concatenates (using CONCAT or ||) any of the above

566 SQL Reference

|

|

|

|

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit that is used to express the result. If source-string is a
character string that is defined as bit data, CODEUNITS16, or CODEUNITS32
cannot be specified. If source-string is a graphic string, OCTETS cannot be
specified.

CODEUNITS16
Specifies that the result is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that the result is expressed in terms of 32-bit UTF-32 code units.

OCTETS
Specifies that the result is expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see
“String unit specifications” on page 87.

The first and second arguments must have compatible string types. For more
information on compatibility, see “Conversion rules for operations that combine
strings”.

If the search string and source string have different CCSID sets, then the
search-string is converted to the CCSID set of the source string. If either
CODEUNITS16 or CODEUNITS32 is specified, the function might be evaluated on
a temporary copy of the data in Unicode.

The strings can contain mixed data. If OCTETS is specified:
v For ASCII data, if the search string or source string contains mixed data, the

search string is found only if the same combination of single-byte and
double-byte characters are found in the source string in exactly the same
positions.

v For EBCDIC data, if the search string or source string contains mixed data, the
search string is found only if any shift-in or shift-out characters are found in the
source string in exactly the same positions, ignoring any redundant shift
characters.

v For UTF-8 data, if the search string or source string contains mixed data, the
search string is found only if the same combination of single-byte and multi-byte
characters are found in the source string in exactly the same position.

The result of the function is a large integer. The POSITION function accepts mixed
data strings.

The result can be null; if any argument is null, the result is the null value.

When the POSITION function is invoked with OCTETS, the function operates on a
strict byte-count basis without regard to single-byte or double-byte characters.

If the CCSID of the search string is different than the CCSID of the source string, it
is converted to the CCSID of the source string.

The value of the result is determined by applying these rules in the order in which
they appear:
v If search-string has a length of zero, the result is 1.
v If source-string has a length of zero, the result is 0.

Chapter 3. Functions 567

v If the value of search-string is equal to an identical length of substring of
contiguous positions within the value of source-string, the result is the starting
position of the first such substring within the source string value.

v Otherwise, the result is 0. This includes the case where search-string is longer
than source-string.

Example1: Select the RECEIVED column, the SUBJECT column, and the starting
position of the string 'GOOD BEER' within the NOTE_TEXT column for all rows in
the IN_TRAY table that contain that string.

SELECT RECEIVED, SUBJECT, POSITION(’GOOD BEER’, NOTE_TEXT, OCTETS)
FROM IN_TRAY
WHERE POSITION(’GOOD BEER’, NOTE_TEXT, OCTETS) <> 0;

Example 2: Find the position of the character 'ß' in the string 'Jürgen lives on
Hegelstraße', and set the host variable LOCATION with the position, as measured
in CODEUNITS32 units, within the string.
SET :LOCATION = POSITION(’ß’,’Jürgen lives on Hegelstraße’,CODEUNITS32);

The value of host variable LOCATION is set to 27.

Example 3: Find the position of the character 'ß' in the string 'Jürgen lives on
Hegelstraße', and set the host variable LOCATION with the position, as measured
in OCTETS, within the string.
SET :LOCATION = POSITION(’ß’,’Jürgen lives on Hegelstraße’,OCTETS);

The value of host variable LOCATION is set to 28.
Related reference:
“LOCATE” on page 510
“LOCATE_IN_STRING” on page 513
“POSSTR” on page 569

568 SQL Reference

POSSTR
The POSSTR function returns the position of the first occurrence of an argument
within another argument.

�� POSSTR(source-string,search-string) ��

The schema is SYSIBM.

If search-string is not found and neither argument is null, the result is 0. If
search-string is found, the result is a number from 1 to the actual length of
source-string.

source-string
An expression that specifies the source string in which the search is to take
place. source-string must return a value that is a built-in character string data
type, graphic string data type, or binary string data type.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.The expression can be specified by
any of the following items:
v A constant
v A special register
v A variable
v A scalar function whose arguments are any of the above (though nested

function invocations cannot be used)
v A column name
v An array element specification
v A CAST specification whose arguments are any of the above
v An expression that concatenates (using CONCAT or ||) any of the above

search-string
An expression that specifies the string for which to search. search-string must
return a value that is a built-in character string data type, graphic string data
type, or binary string data type with an actual length that is no greater than
4000 bytes.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.The expression can be specified by
any of the following items:
v A constant
v A special register
v A variable
v A scalar function whose arguments are any of the above (though nested

function invocations cannot be used)
v An array element specification
v A CAST specification whose arguments are any of the above
v An expression that concatenates (using CONCAT or ||) any of the above

These rules are similar to those that are described for pattern-expression for the
LIKE predicate.

Chapter 3. Functions 569

|

|

|

|

A column name cannot be specified for search-string, except in some cases
where the database manager rewrites the SQL and replaces the column name
with a literal value or a variable.

The first and second arguments must have compatible string types. For more
information on compatibility, see “Conversion rules for comparisons” on page 138.

If the search-string and source-string have different CCSID sets, then the search-string
is converted to the CCSID set of the source-string.

Both search-string and source-string have zero or more contiguous positions. For
character strings and binary strings, a position is a byte. For graphic strings, a
position is a DBCS character. Graphic Unicode data is treated as UTF-16 data; a
UTF-16 supplementary character takes two DBCS characters to represent and as
such is counted as two DBCS characters.

The strings can contain mixed data.
v For ASCII data, if search-string or source-string contains mixed data, search-string

is found only if the same combination of single-byte and double-byte characters
are found in source-string in exactly the same positions.

v For EBCDIC data, if search-string or source-string contains mixed data,
search-string is found only if any shift-in or shift-out characters are found in
source-string in exactly the same positions, ignoring any redundant shift
characters.

v For UTF-8 data, if search-string or source-string contains mixed data, search-string
is found only if the same combination of single-byte and multi-byte characters
are found in source-string in exactly the same position.

POSSTR operates on a strict byte-count basis without regard to single-byte or
double-byte characters. It is recommended that if either the search-string or
source-string contains mixed data, POSITION should be used instead of POSSTR.
The POSITION function operates on a character basis. In an EBCDIC encoding
scheme, any shift-in and shift-out characters are not required to be in exactly the
same position and their only significance is to indicate which characters are SBCS
and which characters are DBCS.

The result of the function is a large integer. The value of the result is determined
by applying these rules in the order in which they appear:
v If the length of search-stringis zero, the result is 1.
v If the length of source-string is zero, the result is 0.
v If the value of search-string is equal to an identical length substring of contiguous

positions from the value of source-string, the result is the starting position of the
first such substring within the value of source-string.

v If none of the above conditions are met, the result is 0.

The result can be null; if any argument is null, the result is the null value.

Example: Select the RECEIVED column, the SUBJECT column, and the starting
position of the string 'GOOD BEER' within the NOTE_TEXT column for all rows in
the IN_TRAY table that contain that string.

SELECT RECEIVED, SUBJECT, POSSTR(NOTE_TEXT, ’GOOD BEER’)
FROM IN_TRAY
WHERE POSSTR(NOTE_TEXT, ’GOOD BEER’) <> 0;

570 SQL Reference

Related reference:
“LOCATE” on page 510
“LOCATE_IN_STRING” on page 513
“POSITION” on page 566

Chapter 3. Functions 571

POWER
The POWER function returns the value of the first argument to the power of the
second argument.

�� POWER(numeric-expression-1,numeric-expression-2) ��

The schema is SYSIBM.

Each argument must be an expression that returns the value of any built-in
numeric data type. If either argument includes a DECIMAL or REAL data type,
but not a DECFLOAT data type, the arguments are converted to a double precision
floating-point number for processing by the function. If either argument includes a
DECFLOAT data type, the arguments are converted to DECFLOAT for processing
by the function.

The result of the function depends on the data type of the arguments:
v If both arguments are SMALLINT or INTEGER, the result is INTEGER.
v If either argument is a DECFLOAT, the data type of the result is DECFLOAT(34).

If either argument is a DECFLOAT and one of the following statements is true,
the result is NaN and an invalid operation condition:
– both arguments are zero
– the second argument has a non-zero fractional part
– the second argument has more than 9 digits
– the second argument is Infinite

v Otherwise, the result is DOUBLE.

The result can be null; if any argument is null, the result is the null value.

Example 1: Assume that host variable HPOWER is INTEGER with a value of 3. The
following statement returns the value 8.

SELECT POWER(2,:HPOWER)
FROM SYSIBM.SYSDUMMY1;

Example 2: The following statement returns the value 1.
SELECT POWER(0,0)

FROM SYSIBM.SYSDUMMY1;

572 SQL Reference

QUANTIZE
The QUANTIZE function returns a DECFLOAT value that is equal in value (except
for any rounding) and sign to the first argument and that has an exponent that is
set to equal the exponent of the second argument.

�� QUANTIZE(expression-1,expression-2) ��

The schema is SYSIBM.

The number of digits that is returned (16 or 34) is the same as the number of digits
in expression-1.

expression-1
The argument must be an expression that returns a value of any built-in
numeric data type. If the argument is not a DECFLOAT value, it is converted
to DECFLOAT(34) for processing.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34).

expression-2
The argument must be an expression that returns a value of any built-in
numeric data type. If the argument is not a DECFLOAT value, it is converted
to DECFLOAT(34) for processing. expression-2 is an expression that is used as
an example pattern that will be used to rescale expression-1. The sign and
coefficient of the second argument are ignored.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34).

If one argument (after conversion) is DECFLOAT(16) and the other is
DECFLOAT(34), the DECFLOAT(16) argument is converted to DECFLOAT(34)
before the function is processed.

The coefficient of the result is derived from that of expression-1. It is rounded, if
necessary (if the exponent is being increased), multiplied by a power of ten (if the
exponent is being decreased), or remains unchanged (if the exponent is already
equal to that of expression-2).

For static SQL statements other than CREATE VIEW, the ROUNDING bind option
or the native SQL procedure option determines the rounding mode.

For dynamic SQL statements (and static CREATE VIEW statements), the special
register CURRENT DECFLOAT ROUNDING MODE determines the rounding
mode.

Unlike other arithmetic operations on the DECFLOAT data type, if the length of
the coefficient after the quantize operation is greater than the precision specified by
expression-2, a warning occurs. This ensures that, unless there is an error condition,
the exponent of the result of QUANTIZE is always equal to that of expression-2.
Furthermore:
v If either argument is NaN, NaN is returned

Chapter 3. Functions 573

v If either argument is sNaN, NaN is returned and an exception occurs
v If both arguments are infinity (positive or negative), infinity (positive or

negative) is returned.
v If one argument is infinity (positive or negative) and the other argument is not

infinity (positive or negative), NaN is returned and an exception occurs

The result of the function is a DECFLOAT(16) value if both arguments are
DECFLOAT(16). Otherwise, the result of the function is a DECFLOAT(34) value.

The result can be null; if any argument is null, the result is the null value.

Examples: The following examples illustrate the value that is returned for the
QUANTIZE function given the input DECFLOAT values:

QUANTIZE(2.17, DECFLOAT(0.001)) = 2.170
QUANTIZE(2.17, DECFLOAT(0.01)) = 2.17
QUANTIZE(2.17, DECFLOAT(0.1)) = 2.2
QUANTIZE(2.17, DECFLOAT(’1E+0’)) = 2
QUANTIZE(2.17, DECFLOAT(’1E+1’)) = 0E+1
QUANTIZE(2, DECFLOAT(INFINITY)) = NAN –- exception
QUANTIZE(-0.1, DECFLOAT(1)) = 0
QUANTIZE(0, DECFLOAT(’1E+5’)) = 0E+5
QUANTIZE(217, DECFLOAT(’1E-1’)) = 217.0
QUANTIZE(217, DECFLOAT(’1E+0’)) = 217
QUANTIZE(217, DECFLOAT(’1E+1’)) = 2.2E+2
QUANTIZE(217, DECFLOAT(’1E+2’)) = 2E+2

574 SQL Reference

QUARTER
The QUARTER function returns an integer between 1 and 4 that represents the
quarter of the year in which the date resides. For example, any dates in January,
February, or March return the integer 1.

�� QUARTER(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns one of the following built-in data
types: a date, a timestamp, a character string, or a graphic string. If expression is a
character or graphic string data type, it must not be a CLOB or DBCLOB, and its
value must be a valid string representation of a date or timestamp with an actual
length of not greater than 255 bytes. For the valid formats of string representations
of dates and timestamps, see “String representations of datetime values” on page
101.

If expression is a timestamp with a time zone, or a valid string representation of a
timestamp with a time zone, the result is determined from the UTC representation
of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Example 1: The following function returns 3 because August is in the third quarter
of the year.

SELECT QUARTER(’2008-08-25’)
FROM SYSIBM.SYSDUMMY1

Example 2: Using sample table DSN8B10.PROJ, set the integer host variable QUART
to the quarter of the year in which activity number 70 for project 'AD3111'
occurred. Activity completion dates are recorded in column ACENDATE.

SELECT QUARTER(ACENDATE)
INTO :QUART
FROM DSN8B10.PROJ
WHERE PROJNO = ’AD3111’ AND ACTNO = 70;

QUART is set to 4.

Example 3: The following invocations of the QUARTER function returns the same
result:
SELECT QUARTER(’2003-01-02-20.10.05.123456’),

QUARTER(’2003-01-02-12.10.05.123456-08:00’),
QUARTER(’2003-01-03-05.10.05.123456+09:00’)
FROM SYSIBM.SYSDUMMY1;

For each invocation of the QUARTER function in this SELECT statement, the result
is 1.

Chapter 3. Functions 575

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
2003-01-02-20.10.05.123456. The month portion of the UTC representation is 1 for
January, which is in the first quarter.

576 SQL Reference

RADIANS
The RADIANS function returns the number of radians for an argument that is
expressed in degrees.

�� RADIANS(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric
data type that is not DECFLOAT. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable HDEG is an INTEGER with a value of 180. The
following statement returns a double precision floating-point number with an
approximate value of 3.1415926536.

SELECT RADIANS(:HDEG)
FROM SYSIBM.SYSDUMMY1;

Chapter 3. Functions 577

RAISE_ERROR
The RAISE_ERROR function causes the statement that invokes the function to
return an error with the specified SQLSTATE (along with SQLCODE -438) and
error condition. The RAISE_ERROR function always returns the null value with an
undefined data type.

�� RAISE_ERROR(sqlstate,diagnostic-string) ��

The schema is SYSIBM.

sqlstate
An expression that returns a character string (CHAR or VARCHAR) of exactly
5 characters.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR(5) data type.The sqlstate value must follow these
rules for application-defined SQLSTATEs:
v Each character must be from the set of digits ('0' through '9') or non-accented

upper case letters ('A' through 'Z').
v The SQLSTATE class (first two characters) cannot be '00', '01', or '02' because

these are not error classes.
v If the SQLSTATE class (first two characters) starts with the character '0'

through '6' or 'A' through 'H', the subclass (last three characters) must start
with a letter in the range 'I' through 'Z'.

v If the SQLSTATE class (first two characters) starts with the character '7', '8',
'9', or 'I' though 'Z', the subclass (last three characters) can be any of '0'
through '9' or 'A through 'Z'.

diagnostic-string
An expression that returns a character string with a data type of CHAR or
VARCHAR and a length of up to 70 bytes. The string contains EBCDIC data
that describes the error condition. If the string is longer than 70 bytes, it is
truncated.

Since the data type of the result of RAISE_ERROR is undefined, it can only be
used in a SET host-variable or SQL procedure languageassignment-statement. To use
this function in another context, such as alone in a select list, you must use a cast
specification to give a data type to the null value that is returned. The
RAISE_ERROR function is most useful with CASE expressions.

Example: For each employee in sample table DSN8B10.EMP, list the employee
number and education level. List the education level as 'Post Graduate', 'Graduate'
and 'Diploma' instead of the integer that it is stored as in the table. If an education
level is greater than '20', raise an error ('70001') with a description.

SELECT EMPNO,
CASE WHEN EDLEVEL < 16 THEN ’Diploma’

WHEN EDLEVEL < 18 THEN ’Graduate’
WHEN EDLEVEL < 21 THEN ’Post Graduate’
ELSE RAISE_ERROR(’70001’,

’EDUCLVL has a value greater than 20’)
END
FROM DSN8B10.EMP;

578 SQL Reference

RAND
The RAND function returns a random floating-point value between 0 and 1. An
argument can be specified as an optional seed value.

�� RAND()
numeric-expression

��

The schema is SYSIBM.

numeric-expression
If numeric-expression is specified, it is used as the seed value. The argument
must be an expression that returns a value of a built-in integer data type
(SMALLINT or INTEGER). The value must be between 0 and 2,147,483,646.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) and then
assigned to an INTEGER value.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

A specific seed value, other than zero, will produce the same sequence of random
numbers for a specific instance of a RAND function in a query each time the query
is executed. The seed value is used only for the first invocation of an instance of
the RAND function within a statement. RAND(0) is processed the same as RAND().

The RAND function is a not deterministic.

Example: Assume that host variable HRAND is an INTEGER with a value of 100.
The following statement returns a random floating-point number between 0 and 1,
such as the approximate value .0121398:

SELECT RAND(:HRAND)
FROM SYSIBM.SYSDUMMY1;

To generate values in a numeric interval other than 0 to 1, multiply the RAND
function by the size of the interval that you want. For example, to get a random
number between 0 and 10, such as the approximate value 5.8731398, multiply the
function by 10:

SELECT (RAND(:HRAND) * 10)
FROM SYSIBM.SYSDUMMY1;

Chapter 3. Functions 579

REAL
The REAL function returns a single-precision floating-point representation of either
a number or a string representation of a number.

Numeric to Real:

�� REAL(numeric-expression) ��

String to Real:

�� REAL(string-expression) ��

The schema is SYSIBM.

Numeric to Real

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned
to a single precision floating-point column or variable. If the numeric value of
the argument is not within the range of single precision floating-point, an error
occurs.

String to Real

string-expression
An expression that returns a value of a character or graphic string (except a
CLOB or DBCLOB) with a length attribute that is not greater than 255 bytes.
The string must contain a valid string representation of a number.

The result is the same number that would result from CAST(string-expression
AS REAL). Leading and trailing blanks are eliminated and the resulting string
must conform to the rules for forming an SQL floating-point, integer, or
decimal constant.

The result of the function is a single precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Recommendation: To increase the portability of applications, use the CAST
specification. For more information, see “CAST specification” on page 267.

Example: Using sample table DSN8B10.EMP, find the ratio of salary to commission
for employees whose commission is not zero. The columns involved, SALARY and
COMM, have decimal data types. To express the result in single precision
floating-point, apply REAL to SALARY so that the division is carried out in
floating-point (actually double precision) and then apply REAL to the complete
expression so that the results are returned in single precision floating-point.

580 SQL Reference

SELECT EMPNO, REAL(REAL(SALARY)/COMM)
FROM DSN8B10.EMP
WHERE COMM > 0;

Chapter 3. Functions 581

REPEAT
The REPEAT function returns a character string that is composed of an argument
that is repeated a specified number of times.

�� REPEAT(expression,integer) ��

The schema is SYSIBM.

expression
An expression that specifies the string to be repeated. The expression must
return a value that is a built-in character string, graphic string, or binary string
data type that is not a LOB.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.The actual length of the string must
be greater or equal to 1 and less than or equal to 32704 bytes.

integer
integer must be a positive large integer value that specifies the number of times
to repeat the string.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to an INTEGER value.

The result can be null; if any argument is null, the result is the null value.

The encoding scheme of the result is the same as expression. The data type of the
result of the function depends on the data type of expression:
v VARBINARY if expression is a binary string
v VARCHAR if expression is a character string
v VARGRAPHIC if expression is graphic string

The CCSID of the result is the same as the CCSID of expression.

If integer is a constant, the length attribute of the result is the length attribute of
expression times integer. Otherwise, the length attribute depends on the data type of
the result:
v 4000 for VARBINARY and VARCHAR
v 2000 for VARGRAPHIC

The actual length of the result is the actual length of expression times integer. If the
actual length of the result string exceeds the maximum for the return type, an error
occurs.

Example 1: Repeat 'abc' two times to create 'abcabc'.
SELECT REPEAT(’abc’,2)

FROM SYSIBM.SYSDUMMY1;

Example 2: List the phrase 'REPEAT THIS' five times. Use the CHAR function to
limit the output to 60 bytes.

SELECT CHAR(REPEAT(’REPEAT THIS’,5), 60)
FROM SYSIBM.SYSDUMMY1;

582 SQL Reference

This example results in 'REPEAT THISREPEAT THISREPEAT THISREPEAT
THISREPEAT THIS '.

Example 3: For the following query, the LENGTH function returns a value of 0
because the result of repeating a string zero times is an empty string, which is a
zero-length string.

SELECT LENGTH(REPEAT(’REPEAT THIS’,0))
FROM SYSIBM.SYSDUMMY1;

Example 4: For the following query, the LENGTH function returns a value of 0
because the result of repeating an empty string any number of times is an empty
string, which is a zero-length string.

SELECT LENGTH(REPEAT(’’, 5))
FROM SYSIBM.SYSDUMMY1;

Chapter 3. Functions 583

REPLACE
The REPLACE function replaces all occurrences of search-string in source-string with
replace-string. If search-string is not found in source-string, source-string is returned
unchanged.

�� REPLACE (source-string , search-string)
, replace-string

��

The schema is SYSIBM.

source-string
An expression that specifies the source string. The expression must return a
value that is a built-in character string, graphic string, or binary string data
type that is not a LOB and it cannot be an empty string.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.The length of source-string must be
greater than or equal to the length of search-string.

search-string
An expression that specifies the string to be removed from the source string.
The expression must return a value that is a built-in character string, graphic
string, or binary string data type that is not a LOB; the value cannot be an
empty string.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

replace-string
An expression that specifies the replacement string. The expression must return
a value that is a built-in character string, graphic string, or binary string data
type that is not a LOB.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.If replace-string is not specified or is an
empty string, nothing replaces the string that is removed from the source
string.

The actual length of each string must be32764 bytes or less for character and
binary strings or 16382 or less for graphic strings.

All three arguments must have compatible data types. If the expressions have
different CCSID sets, then the expressions are converted to the CCSID set of
source-string.

The data type of the result of the function depends on the data type of
source-string, search-string, and replace-string:
v VARCHAR if source-string is a character string. The encoding scheme of the

result is the same as source-string. The CCSID of the result depends on the
arguments:
– If source-string, search-string, or replace-string is bit data, the result is bit data.
– If source-string, search-string, and replace-string are all SBCS Unicode data, the

CCSID of the result is the CCSID for SBCS Unicode data.

584 SQL Reference

|
|

– If source-string is SBCS Unicode data, and search-string or replace-string is not
SBCS Unicode data, the CCSID of the result is the mixed CCSID for Unicode
data.

– Otherwise, the CCSID of the result is the mixed CCSID that corresponds to
the CCSID of source-string. However, if the input is EBCDIC or ASCII and
there is no corresponding system CCSID for mixed, the CCSID of the result is
the CCSID of source-string.

v VARGRAPHIC if source-string is a graphic. The encoding scheme of the result is
the same as source-string. The CCSID of the result is the same as the CCSID of
source-string.

v VARBINARY if source-string, search-string, and replace-string are binary strings.

The length attribute of the result depends on the arguments:
v If the length attribute of replace-string is less than or equal to the length attribute

of search-string, the length attribute of the result is the length attribute of
source-string.

v If the length attribute of replace-string is greater than the length attribute of
search-string, the length attribute of the result is determined as follows
depending on the data type of the result:
– For VARCHAR or VARBINARY:

- If L1 < = 4000, the length attribute of the result is MIN(4000, (L3*(L1/L2))
+ MOD(L1,L2))

- Otherwise, the length attribute of the result is MIN(32764, (L3*(L1/L2)) +
MOD(L1,L2))

– For VARGRAPHIC:
- If L1 < = 2000, the length attribute of the result is MIN(2000, (L3*(L1/L2))

+ MOD(L1,L2))
- Otherwise, the length attribute of the result is MIN(16382, (L3*(L1/L2)) +

MOD(L1,L2))

where:
L1 is the length attribute of source-string
L2 is the length attribute of search-string if the search string is a string
constant. Otherwise, L2 is 1.
L3 is the length attribute of replace-string

If the result is a character string or binary string, the length attribute of the result
must not exceed 32764. If the result is a graphic string, the length attribute of the
result must not exceed 16382.

The actual length of the result is the actual length of source-string plus the number
of occurrences of search-string that exist in source-string multiplied by the actual
length of replace-string minus the actual length of search-string. If the actual length
of the result string exceeds the maximum for the return data type, an error occurs.

The result can be null; if any argument is null, the result is the null value.

Example 1: Replace all occurrences of the character 'N' in the string 'DINING' with
'VID'. Use the CHAR function to limit the output to 10 bytes.

SELECT CHAR(REPLACE(’DINING’,’N’,’VID’),10)
FROM SYSIBM.SYSDUMMY1;

The result is the string 'DIVIDIVIDG'.

Chapter 3. Functions 585

|

|

|
|

Example 2: Replace string 'ABC' in the string 'ABCXYZ' with nothing, which is the
same as removing 'ABC' from the string.

SELECT REPLACE(’ABCXYZ’,’ABC’,’’)
FROM SYSIBM.SYSDUMMY1;

The result is the string 'XYZ'.

Example 3: Replace string 'ABC' in the string 'ABCCABCC' with 'AB'. This example
illustrates that the result can still contain the string that is to be replaced (in this
case, 'ABC') because all occurrences of the string to be replaced are identified prior
to any replacement.

SELECT REPLACE(’ABCCABCC’,’ABC’,’AB’)
FROM SYSIBM.SYSDUMMY1;

The result is the string 'ABCABC'.
Related concepts:
“Character strings” on page 84
“Binary strings” on page 95
“Graphic strings” on page 94

586 SQL Reference

RID
The RID function returns the record ID (RID) of a row. The RID is used to
uniquely identify a row.

�� RID(table-designator) ��

The schema is SYSIBM.

The function might return a different value when it is invoked multiple times for a
row. For example, after the REORG utility is run, the RID function might return a
different value for a row than would have been returned prior to the REORG
utility being run. The RID function is not deterministic.

table-designator
table-designator must uniquely identify a base table, a view, or a nested table
expression of a subselect in which the function is referenced.

If table-designator specifies a view or a nested table expression, the RID function
returns the RID of the base table of the view or nested table expression. The
specified view or nested table expression must contain only one base table in
its outer subselect. table-designator must not specify a view or a nested table
expression that is materialized.

table-designator must not specify a table function or a collection-derived table.

The result of the function is BIGINT. The result can be null.

Considerations for RID values: DB2 might reuse RID numbers when a REORG
operation is performed. If the RID function is used to obtain a value for a row and
an application depends on that value remaining the same as long as the row exists,
consider the following alternatives:
v Add a ROWID column to the table to provide a value that can be associated

with each row, rather than invoking the RID function to generate a value for a
row.

v Define a primary key for the table, using the columns of the primary key to
ensure uniqueness, rather than invoking the RID function to generate a value for
a row.

Example 1: Return the RID and last name of employees who are in department '20':
SELECT RID(EMP), LASTNAME

FROM EMP
WHERE DEPTNO = ’20’;

Example 2: Set the host variable HV_EMP_RID as the value of the RID for the
employee with the employee number of '3500':

SELECT RID(EMP) INTO :HV_EMP_RID
FROM EMP
WHERE EMPNO = ’3500’;

Chapter 3. Functions 587

|

RIGHT
The RIGHT function returns a string that consists of the specified number of
rightmost bytes or specified string unit from a string.

�� RIGHT(string-expression,integer)
, CODEUNITS16

CODEUNITS32
OCTETS

��

The schema is SYSIBM.

string-expression
An expression that specifies the string from which the result is derived. The
string must be any built-in string data type. A substring of string-expression is
zero or more contiguous code points of string-expression. A partial surrogate
character in the expression is replaced with a blank.

The string can contain mixed data. Depending on the units that are specified to
evaluate the function, the result is not necessarily a properly formed mixed
data character string.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

integer
An expression that specifies the length of the result. The value must be an
integer between 0 and n, where n is the length attribute of string-expression,
expressed in the units that are either implicitly or explicitly specified.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to an INTEGER value.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length
attribute of the final result” on page 90 for information about how to calculate
the length attribute of the result string.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the unit that is used to express integer. If string-expression is a
character string that is defined as bit data, CODEUNITS16 and CODEUNITS32
cannot be specified. If string-expression is a graphic string, OCTETS cannot be
specified. If string-expression is a binary string, CODEUNITS16, CODEUNITS32,
and OCTETS cannot be specified.

CODEUNITS16
Specifies that integer is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

OCTETS
Specifies that integer is expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see
“String unit specifications” on page 87.

588 SQL Reference

The string-expression is effectively padded on the right with the necessary number
of padding characters so that the specified substring of string-expression always
exists. The encoding scheme of the data determines the padding character:
v For ASCII SBCS data or ASCII mixed data, the padding character is X'20'.
v For ASCII DBCS data, the padding character depends on the CCSID; for

example, for Japanese (CCSID 301) the padding character is X'8140', while for
simplified Chinese it is X'A1A1'.

v For EBCDIC SBCS data or EBCDIC mixed data, the padding character is X'40'.
v For EBCDIC DBCS data, the padding character is X'4040'.
v For Unicode SBCS data or UTF-8 data (Unicode mixed data), the padding

character is X'20'.
v For UTF-16 data (Unicode DBCS data), the padding character is X'0020'.
v For binary data, the padding character is X'00'.

The result of the function is a varying-length string with a length attribute that is
the same as the length attribute of string-expression and a data type that depends
on the data type of string-expression:
v VARBINARY if string-expression is BINARY or VARBINARY
v VARCHAR if string-expression is CHAR or VARCHAR
v CLOB if string-expression is CLOB
v VARGRAPHIC if string-expression is GRAPHIC or VARGRAPHIC
v DBCLOB if string-expression is DBCLOB
v BLOB if string-expression is BLOB

The actual length of the result is determined from integer.

The result can be null; if any argument is null, the result is the null value.

The CCSID of the result is the same as that of string-expression.

Example 1: Assume that host variable ALPHA has a value of 'ABCDEF'. The
following statement returns the value 'DEF', which are the three rightmost
characters in ALPHA.

SELECT RIGHT(ALPHA,3)
FROM SYSIBM.SYSDUMMY1;

Example 2: The following statement returns a zero length string.
SELECT RIGHT(’ABCABC’,0)

FROM SYSIBM.SYSDUMMY1;

Example 3: FIRSTNME is a VARCHAR(12) column in table T1. When FIRSTNME
has the 6-character string 'Jürgen' as a value:

Function ... Returns ...
RIGHT(FIRSTNME,5,CODEUNITS32) ’ürgen’ -- x’C3BC7267656E’
RIGHT(FIRSTNME,5,CODEUNITS16) ’ürgen’ -- x’C3BC7267656E’
RIGHT(FIRSTNME,5,OCTETS) ’ rgen’ -- x’207267656E’ a truncated string

Chapter 3. Functions 589

ROUND
The ROUND function returns a number that is rounded to the specified number of
places to the right or left of the decimal place.

��
, 0

ROUND (numeric-expression-1)
, numeric-expression-2

��

The schema is SYSIBM.

numeric-expression-1
An expression that returns a value of any built-in numeric data type.

If expression-1 is a decimal floating-point data type, the DECFLOAT
ROUNDING MODE will not be used. The rounding behavior of ROUND
corresponds to a value of ROUND_HALF_UP. If you want a different rounding
behavior, use the QUANTIZE function.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34).

numeric-expression-2
An expression that returns a value of a built-in small integer data type or large
integer data type.

The absolute value of integer specifies the number of places to the right of the
decimal point for the result if numeric-expression-2 is not negative. If
numeric-expression-2 is negative, numeric-expression-1 is rounded to the sum of
the absolute value of numeric-expression-2+1 number of places to the left of the
decimal point.

If the absolute value of numeric-expression-2 is larger than the number of digits
to the left of the decimal point, the result is 0. (For example, ROUND(748.58,-4)
returns 0.)

If numeric-expression-1 is positive, a digit value of 5 is rounded to the next
higher positive number. If numeric-expression-1 is negative, a digit value of 5 is
rounded to the next lower negative number.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34).

The result of the function has the same data type and length attribute as the first
argument except that the precision is increased by one if the argument is
DECIMAL and the precision is less than 31. For example, an argument with a data
type of DECIMAL(5,2) results in DECIMAL(6,2). An argument with a data type of
DECIMAL(31,2) results in DECIMAL(31,2).

The result can be null; if any argument is null, the result is the null value.

Example 1: Calculate the number '873.726' rounded to '2', '1', '0', '-1', and '-2' decimal
places respectively.

SELECT ROUND(873.726,2),
ROUND(873.726,1),
ROUND(873.726,0),

590 SQL Reference

ROUND(873.726,-1),
ROUND(873.726,-2),
ROUND(873.726,-3),
ROUND(873.726,-4)

FROM SYSIBM.SYSDUMMY1;

This example returns the values '0873.730', '0873.700', '0874.000', '0870.000',
'0900.000', '1000.000', and '0000.000'.

Example 2: To demonstrate how numbers are rounded in positive and negative
values, calculate the numbers '3.5', '3.1', '-3.1', '-3.5' rounded to '0' decimal places.

SELECT ROUND(3.5,0),
ROUND(3.1,0),
ROUND(-3.1,0),
ROUND(-3.5,0)

FROM SYSIBM.SYSDUMMY1;

This example returns the values '04.0', '03.0', '-03.0', and '-04.0'. (Notice that in the
positive value '3.5' is rounded up to the next higher number while in the negative
value '-3.5' is rounded down to the next lower negative number.)

Chapter 3. Functions 591

ROUND_TIMESTAMP
The ROUND_TIMESTAMP scalar function returns a timestamp that is rounded to
the unit that is specified by the timestamp format string.

��
, 'DD'

ROUND_TIMESTAMP (expression)
, format-string

��

The schema is SYSIBM.

expression
An expression that returns a value of any of the following built-in data types: a
timestamp, a character string, or a graphic string. If expression is a character or
graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a timestamp with an actual length that is not
greater than 255 bytes. A time zone in a string representation of a timestamp is
ignored. For the valid formats of string representations of dates and
timestamps, see “String representations of datetime values” on page 101.

format-string
An expression that returns a built-in character string or graphic string data
type, with a length that is not greater than 255 bytes. format-string contains a
template of how the timestamp represented by expression should be rounded.
For example, if format-string is 'DD', the timestamp that is represented by
expression is rounded to the nearest day. format-string must be a valid template
for a timestamp, and not include leading or trailing blanks.

Allowable values for format-string are listed in the following table.

Table 68. ROUND_TIMESTAMP and TRUNC_TIMESTAMP format models

Format model Rounding or truncating
unit

ROUND_TIMESTAMP
example

TRUNC_TIMESTAMP
example

CC
SCC

Century

Rounds up to the start of
the next century after the
50th year of the century (for
example on
1951–01–01–00.00.00).

Not valid for a TIME
argument.

Input Value:
1897-12-04-12.22.22.000000
Result:
1901-01-01-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1801-01-01-00.00.00.000000

SYYYY
YYYY
YEAR
SYEAR
YYY
YY
Y

Year (Rounds up on July
1st)

Input Value:
1897-12-04-12.22.22.000000
Result:
1898-01-01-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1897-01-01-00.00.00.000000

IYYY
IYY
IY
I

ISO Year (Rounds up on
July 1st)

Input Value:
1897-12-04-12.22.22.000000
Result:
1898-01-03-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1897-01-04-00.00.00.000000

592 SQL Reference

Table 68. ROUND_TIMESTAMP and TRUNC_TIMESTAMP format models (continued)

Format model Rounding or truncating
unit

ROUND_TIMESTAMP
example

TRUNC_TIMESTAMP
example

Q Quarter (Rounds up on the
sixteenth day of the second
month of the quarter)

Input Value:
1999-06-04-12.12.30.000000
Result:
1999-07-01-00.00.00.000000

Input Value:
1999-06-04-12.12.30.000000
Result:
1999-04-01-00.00.00.000000

MONTH
MON
MM
RM

Month (Rounds up on the
sixteenth day of the month)

Input Value:
1999-06-18-12.12.30.000000
Result:
1999-07-01-00.00.00.000000

Input Value:
1999-06-18-12.15.00.000000
Result:
1999-06-01-00.00.00.000000

WW Same day of the week as
the first day of the year
(Rounds up on the 12th
hour of the 3rd day of the
week, with respect to the
first day of the year)

Input Value:
2000-05-05-12.12.30.000000
Result:
2000-05-06-00.00.00.000000

Input Value:
2000-05-05-12.15.00.000000
Result:
2000-04-29-00.00.00.000000

IW Same day of the week as
the first day of the ISO year
(Rounds up on the 12th
hour of the 3rd day of the
week, with respect to the
first day of the ISO year)

Input Value:
2000-05-05-12.12.30.000000
Result:
2000-05-08-00.00.00.000000

Input Value:
2000-05-05-12.15.00.000000
Result:
2000-05-01-00.00.00.000000

W Same day of the week as
the first day of the month
(Rounds up on the 12th
hour of the 3rd day of the
week, with respect to the
first day of the month)

Input Value:
2000-05-17-12.12.30.000000
Result:
2000-05-15-00.00.00.000000

Input Value:
2000-05-17-12.15.00.000000
Result:
2000-05-15-00.00.00.000000

DDD
DD
J

Day (Rounds up on the
12th hour of the day)

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-18-00.00.00.000000

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-17-00.00.00.000000

DAY
DY
D

Starting day of the week
(Rounds up with respect to
the 12th hour of the third
day of the week. The first
day of the week is always
Sunday).

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-21-00.00.00.000000

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-14-00.00.00.000000

HH
HH12
HH24

Hour (Rounds up at 30
minutes)

Input Value:
2000-05-17-23.59.59.000000
Result:
2000-05-18-00.00.00.000000

Input Value:
2000-05-17-23.59.59.000000
Result:
2000-05-17-23.00.00.000000

MI Minute (Rounds up at 30
seconds)

Input Value:
2000-05-17-23.58.45.000000
Result:
2000-05-17-23.59.00.000000

Input Value:
2000-05-17-23.58.45.000000
Result:
2000-05-17-23.58.00.000000

SS Second (Rounds up at
500000 microseconds)

Input Value:
2000-05-17-23.58.45.500000
Result:
2000-05-17-23.58.46.000000

Input Value:
2000-05-17-23.58.45.500000
Result:
2000-05-17-23.58.45.000000

If expression does not have data type TIMESTAMP WITHOUT TIME ZONE,
expression is cast as follows:

Chapter 3. Functions 593

v If expression is a TIMESTAMP WITH TIME ZONE value, expression is cast to
TIMESTAMP WITHOUT TIME ZONE, with the same precision as expression.

v Otherwise, expression is cast to TIMESTAMP(6) WITHOUT TIME ZONE.

The result of the function has the same data type as the data type to which
expression is cast.

The result can be null; if any argument is null, the result is the null value.

The result CCSID is the appropriate CCSID of the argument encoding scheme and
the result subtype is the appropriate subtype of the CCSID.

Example 1: Set the host variable RND_TMSTMP with the input timestamp rounded
to the nearest year value.

SET :RND_TMSTMP = ROUND_TIMESTAMP(TIMESTAMP_FORMAT(’2000-08-14 17:30:00’,
’YYYY-MM-DD HH24:MI:SS’), ’YEAR’);

The value set is '2001-01-01-00.00.00.000000'.

Example 2: Assume PRSTSZ is an SQL variable with the TIMESTAMP WITH TIME
ZONE value '2008-04-15.20.00.000000-08:30'. The input value is first cast to
TIMESTAMP WITHOUT TIME ZONE (as '2008-04-15.20.00.000000') for the
ROUND_TIMESTAMP function.
SELECT ROUND_TIMESTAMP(PRSTSZ)
FROM PROJECT;

The ROUND_TIMESTAMP function returns a TIMESTAMP WITHOUT TIME
ZONE value of '2008-04-16.00.00.000000'.

594 SQL Reference

ROWID
The ROWID function returns a row ID representation of its argument.

�� ROWID(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of a built-in character
string data type, other than a CLOB, with a maximum length that is no greater
than 255 bytes. Although the character string can contain any value, it is
recommended that the character string contain a ROWID value that was previously
generated by DB2 to ensure a valid ROWID value is returned. For example, the
function can be used to convert a ROWID value that was cast to a CHAR value
back to a ROWID value.

If the actual length of expression is less than 40, the result is not padded. If the
actual length of expression is greater than 40, the result is truncated. If non-blank
characters are truncated, a warning is returned.

The result of the function is a ROWID value.

The length attribute of the result is 40. The actual length of the result is the length
of expression.

The result can be null; if the argument is null, the result is the null value.

A null ROWID value cannot be used as the value for a row ID column in the
database.

Example: Assume that table EMPLOYEE contains a row ID column, 'EMP_ROWID'.
Also assume that the table contains a row that is identified by a ROWID value that
is equivalent to X'F0DFD230E3C0D80D81C201AA0A280100000000000203'. Using
direct row access, select the employee number for that row.

SELECT EMPNO
FROM EMPLOYEE
WHERE EMP_ROWID=ROWID(X’F0DFD230E3C0D80D81C201AA0A280100000000000203’);

Chapter 3. Functions 595

RPAD
The RPAD function returns a string that is padded on the right with blanks or a
specified string.

�� RPAD(string-expression,integer)
, pad

��

The schema is SYSIBM.

The RPAD function returns a string composed of string-expression padded on the
right, with pad or blanks. The RPAD function treats leading or trailing blanks in
string-expression as significant. Padding will only occur if the actual length of
string-expression is less than integer, and pad is not an empty string.

string-expression
An expression that specifies the source string. The expression must return a
value that is a built-in string data type that is not a LOB.

integer
An integer constant that specifies the length of the result. The value must be
zero or a positive integer that is less than or equal to n, where n is 32704 if
string-expression is a character or binary string, or where n is 16352 if
string-expression is a graphic string.

pad
An expression that specifies the string with which to pad. The expression must
return a value that is a built-in string data type that is not a LOB. If pad is not
specified, the pad character is determined as follows:
v SBCS blank character if string-expression is a character string.
v DBCS blank character if string-expression is a graphic string.
v Hexadecimal zero (X'00'), if string-expression is a binary string.

The result of the function is a varying length string that has the same CCSID of
string-expression. string-expression and pad must have compatible data types. If the
string expressions have different CCSID sets, then pad is converted to the CCSID
set of string-expression. If either string-expression or pad is FOR BIT DATA, no
character conversion occurs. The actual length of the result is determined from
integer.

The length attribute of the result depends on integer. If integer is greater than 0, the
length attribute of the result is integer. If integer is 0, the length attribute of the
result is 1.

The actual length of the result is determined from integer. If integer is 0, the actual
length is 0, and the result is the empty string. If integer is less than the actual
length of string-expression, the actual length is integer and the result is truncated.

The result can be null; if any argument is null, the result is the null value.

596 SQL Reference

Example 1: Assume that NAME is a VARCHAR(15) column that contains the values
'Chris', 'Meg', and 'Jeff'. The following query will completely pad out a value on
the right with periods.

SELECT RPAD(NAME,15,’.’) AS NAME
FROM T1;

The results are similar to the following output:
NAME

Chris..........
Meg............
Jeff...........

Example 2: Similar to Example 1, the following query will completely pad out a
value on the right with pad (note that in some cases there is a partial instance of
the padding specification):

SELECT RPAD(NAME,15,’123’) AS NAME
FROM T1;

The results are similar to the following output:
NAME

Chris1231231231
Meg123123123123
Jeff12312312312

Example 3: Similarly, the following query will only pad each value to a length of 5:
SELECT RPAD(NAME,5,’.’) AS NAME

FROM T1;

The results are similar to the following output:
NAME

Chris
Meg..
Jeff.

Example 4: Assume that NAME is a CHAR(15) column that contains the values
'Chris', 'Meg', and 'Jeff'. Note that the result of RTRIM in the following example is
a varying length string with the blanks removed:

SELECT RPAD(RTRIM(NAME),15,’.’) AS NAME
FROM T1;

The results are similar to the following output:
NAME

Chris..........
Meg............
Jeff...........

Chapter 3. Functions 597

RTRIM
The RTRIM function removes bytes from the end of a string expression based on
the content of a trim expression.

�� RTRIM (string-expression)
, trim-expression

��

The schema is SYSIBM.

The RTRIM function removes all of the characters contained in trim-expression from
the end of string-expression. The search is done by comparing the binary
representation of each character (which consists of one or more bytes) in
trim-expression to the bytes at the end of string-expression. If string-expression is
defined as FOR BIT DATA, the search is done by comparing each byte in
trim-expression to the byte at the end of string-expression.

string-expression
An expression that specifies the source string. The argument must be an
expression that returns a value that is a built-in string data type that is not a
LOB, or a numeric data type. If the value is not a string data type, it is
implicitly cast to VARCHAR before the function is evaluated. If
string-expression is not FOR BIT DATA, trim-expression must not be FOR BIT
DATA.

trim-expression
An expression that specifies the characters to remove from the end of
string-expression. The expression must return a value that is a built-in string
data type that is not a LOB, or a numeric data type. If the value is not a string
data type, it is implicitly cast to VARCHAR before the function is evaluated.

The default for trim-expression depends on the data type of string-expression:
v A DBCS blank if string-expression is a DBCS graphic string. For ASCII, the

CCSID determines the hex value that represents a DBCS blank. For example,
for Japanese (CCSID 301), X'8140' represents a DBCS blank, while for
Simplified Chinese, X'A1A1' represents a DBCS blank. For EBCDIC, X'4040'
represents a DBCS blank.

v A UTF-16 or UCS-2 blank (X'0020') if string-expression is a Unicode graphic
string.

v A value of X'00' if string-expression is a binary string.
v Otherwise, a single byte blank. For EBCDIC, X'40' represents a blank. When

not EBCDIC, X'20' represents a blank.

string-expression and trim-expression must have compatible data types. If
string-expression and trim-expression have different CCSID sets, trim-expression is
converted to the CCSID of string-expression.

The result of the function depends on the data type of string-expression.
v VARCHAR if string-expression is a character string. If string-expression is defined

as FOR BIT DATA, the result is FOR BIT DATA.
v VARGRAPHIC if string-expression is a graphic string.

598 SQL Reference

v VARBINARY if string-expression is a binary string.

The length attribute of the result is the same as the length attribute of
string-expression.

The actual length of the result for a character or binary string is the length of
string-expression minus the number of bytes removed. The actual length of the
result for a graphic string is the length (in number of double byte characters) of
string-expression minus the number of double byte characters removed. If all of the
characters are removed, the result is an empty string (the length is zero).

The result can be null; if the argument is null, the result is the null value.

The CCSID of the result is the same as that of string-expression.

Example: Use the RTRIM function to remove individual numbers in the second
argument from the end (right side) of the first argument:

SELECT RTRIM (’123DEFG123’, ’321’),
RTRIM (’12322XYZ12322222’, ’123’),
RTRIM (’12321’, ’213’),
RTRIM (’123XYX’, ’321’)

FROM SYSIBM.SYSDUMMY1

The result is '123DEFG', '12322XYZ', '' (empty string - all characters removed),
and 'XYX123' (no characters removed).

The RTRIM function does not remove instances of '1', '2', and '3' on the left
side of the string, before characters that are not '1', '2', or '3'.

Example: Use the RTRIM function to remove individual characters in the second
argument from the end (right side) of the first argument:

SELECT RTRIM (’((-78.0))’ , ’-0.()’)
FROM SYSIBM.SYSDUMMY1

The result is '((-78'.

Example: Use the RTRIM function to remove dollar signs and periods in the
second argument from the end (right side) of the first argument:

SELECT RTRIM (’...VAR...’, ’$.’)
FROM SYSIBM.SYSDUMMY1

The result is '...$VAR'.

Chapter 3. Functions 599

SCORE
The SCORE function searches a text search index using criteria that are specified in
a search argument and returns a relevance score that measures how well a
document matches the query.

�� SCORE (column-name , search-argument
(1)

, string-constant

) ��

Notes:

1 string-constant must conform to the rules for the search-argument-options.

search-argument-options:

�
(1)

QUERYLANGUAGE = value
RESULTLIMIT = value

OFF
SYNONYM = ON

Notes:

1 The same clause must not be specified more than once.

The schema is SYSIBM.

column-name
Specifies a qualified or unqualified name of a column that has a text search
index that is to be searched. The column must exist in the table or view that is
identified in the FROM clause in the statement and the column of the table, or
the column of the underlying base table of the view must have an associated
text search index. The underlying expression of the column of a view must be
a simple column reference to the column of an underlying table, either directly
or through another nested view.

search-argument
Specifies an expression that returns a value that is a string value (except a
LOB) that contains the terms to be searched for and must not be all blanks or
the empty string. The actual length of the string must not exceed 4096 Unicode
characters. The value is converted to Unicode before it is used to search the
text search index. The maximum number of terms per query must not exceed
1024.

string-constant
Identifies a string constant that specifies the search argument options that are
in effect for the function.

600 SQL Reference

The options that can be specified as part of the search-argument-options are as
follows:

QUERYLANGUAGE = value
Specifies the query language. The value can be any of the supported
language codes. If the QUERYLANGUAGE option is not specified, the
default is the language value of the text search index that is used when
this function is invoked. If the language value of the text search index
is AUTO, the default value for QUERYLANGUAGE is en_US.

RESULTLIMIT = value
Specifies the maximum number of results that are to be returned from
the underlying search engine. The value can be an integer value
between 1 and 2 147 483 647. If the RESULTLIMIT option is not
specified, no result limit is in effect for the query.

This scalar function cannot be called for each row of the result table,
depending on the plan that the optimizer chooses. This function can be
called once for the query to the underlying search engine, and a result
set of all of the primary keys that match are returned from the search
engine. This result set is then joined to the table containing the column
to identify the result rows. In this case, the RESULTLIMIT value acts
like a FETCH FIRST ?? ROWS from the underlying text search engine
and can be used as an optimization. If the search engine is called for
each row of the result because the optimizer determines that is the best
plan, then the RESULTLIMIT option has no effect.

SYNONYM = OFF or SYNONYM = ON
Specifies whether to use a synonym dictionary that is associated with
the text search index. Use the Synonym Tool to add a synonym
dictionary to the collection. The default is OFF.

OFF Do not use a synonym dictionary.

ON Use the synonym dictionary that is associated with the text
search index.

The result of the function is a double-precision floating-point number. If the second
argument can be null, the result can be null. If the second argument is null, the
result is the null value. If the third argument is null, the result is as if the third
argument was not specified.

The result is greater than 0 but less than 1 if the column contains a match for the
search criteria that the search argument specifies. The better a document matches
the query, the more relevant the score and the larger the result value. If the column
does not contain a match, the result is 0.

SCORE is a non-deterministic function.

Example

The following statement generates a list of employees in the order of how well
their resumes matches the query "programmer AND (java OR cobol)", along with a
relevance value that is normalized between 0 (zero) and 100.
SELECT EMPNO, INTEGER(SCORE(RESUME, ’programmer AND
(java OR cobol)’) * 100) AS RELEVANCE
FROM EMP_RESUME
WHERE RESUME_FORMAT = ’ascii’
AND CONTAINS(RESUME, ’programmer AND (java OR cobol)’) = 1
ORDER BY RELEVANCE DESC

Chapter 3. Functions 601

DB2 first evaluates the CONTAINS predicate in the WHERE clause, and therefore,
does not evaluate the SCORE function in the SELECT list for every row of the
table. In this case, the arguments for SCORE and CONTAINS must be identical.

602 SQL Reference

SECOND
The SECOND function returns the seconds part of a value with optional fractional
seconds.

�� SECOND(expression)
, integer-constant

��

The schema is SYSIBM.

expression
expression must be an expression that returns a value of one of the following
built-in data types: a time, a timestamp, a character string, a graphic string, or
a numeric data type.
v If expression is a character or graphic string, it must not be a CLOB or

DBCLOB, and its value must be a valid string representation of a time or
timestamp with an actual length that is not greater than 255 bytes. For the
valid formats of string representations of times and timestamps, see “String
representations of datetime values” on page 101.

v If expression is a number, it must be a time or timestamp duration. For the
valid formats of time and timestamp durations, see “Datetime operands” on
page 147.

integer-constant
integer-constant must be an integer constant that represents the scale for the
fractional seconds portion of expression. The value must be in the range 0
through 12. If integer-constant is not specified, the result does not include
fractional seconds.

If expression is a timestamp with a time zone, or a valid string representation of a
timestamp with a time zone, the result is determined from the UTC representation
of the datetime value.

The result of the function with a single argument is a large integer. The result of
the function with two arguments is DECIMAL(2+s,s) where s is the value of
integer-constant.

The result can be null; if the first argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a time, timestamp, or string representation of a time or a
timestamp:

The result is the seconds part of the value (0 to 59) and any fractional
seconds that are included in the value. If the second argument is specified,
the result includes integer-constant digits of the fractional seconds part of
the value where applicable. If there are no fractional seconds in the value,
zeros are returned.

If the argument is a time duration or timestamp duration:
The result is the seconds part of the value (-99 to 99) and any fractional
seconds that are included in the value. If the second argument is specified,
the result includes integer-constant digits of the fractional seconds part of

Chapter 3. Functions 603

the value where applicable. If there are no fractional seconds in the value,
zeros are returned. A nonzero result has the same sign as the expression.

Example 1: Assume that the variable TIME_DUR is declared in a PL/I program as
DECIMAL(6,0) and can therefore be interpreted as a time duration. When
TIME_DUR has the value 153045, the following function returns the value 45.

SECOND(:TIME_DUR)

Example 2: Assume that RECEIVED is a TIMESTAMP column and that one of its
values is the internal equivalent of '1988-12-25-17.12.30.000000'. The following
function returns the value 30.

SECOND(RECEIVED)

Example 3: The following invocations of the SECOND function returns the same
result:
SELECT SECOND(’2003-01-02-20.10.05.123456’),

SECOND(’2003-01-02-12.10.05.123456-08:00’),
SECOND(’2003-01-03-05.10.05.123456+09:00’)
FROM SYSIBM.SYSDUMMY1;

For each invocation of the SECOND function in this SELECT statement, the result
is 5.

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
2003-01-02-20.10.05.123456. The second portion of the UTC representation is 5.

Example 4: Return the seconds with fractional seconds from a current timestamp
with milliseconds.
SELECT SECOND(CURRENT_TIMESTAMP(3),3)

FROM SYSIBM.SYSDUMMY1;

The SELECT statement returns a DECIMAL(5,3) value that is based on the current
timestamp and could be something like 54.321.

604 SQL Reference

SIGN
The SIGN function returns an indicator of the sign of the argument.

�� SIGN(numeric-expression) ��

The schema is SYSIBM.

The returned value is one of the following values:
-1 if the argument is less than zero
- 0 if the argument is DECFLOAT negative zero
0 if the argument is zero
1 if the argument is greater than zero

The argument must be an expression that returns a value of any built-in numeric
data type, except DECIMAL(31,31).

The argument can also be a character string or graphic string data type. The string
input is implicitly cast to a numeric value of DECFLOAT(34).

The result has the same data type and length attribute as the argument, except that
precision is increased by one if the argument is DECIMAL and the scale of the
argument is equal to its precision. For example, an argument with a data type of
DECIMAL(5,5) will result in DECIMAL(6,5).

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable PROFIT is a large integer with a value of
50000.

SELECT SIGN(:PROFIT)
FROM SYSIBM.SYSDUMMY1;

This example returns the value 1.

Chapter 3. Functions 605

SIN
The SIN function returns the sine of the argument, where the argument is an angle,
expressed in radians.

�� SIN(numeric-expression) ��

The schema is SYSIBM.

The SIN and ASIN functions are inverse operations.

The argument must be an expression that returns the value of any built-in numeric
data type that is not DECFLOAT. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable SINE is DECIMAL(2,1) with a value of 1.5. The
following statement returns a double precision floating-point number with an
approximate value of 0.99.

SELECT SIN(:SINE)
FROM SYSIBM.SYSDUMMY1;

606 SQL Reference

SINH
The SINH function returns the hyperbolic sine of the argument, where the
argument is an angle, expressed in radians.

�� SINH(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric
data type that is not DECFLOAT. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable HSINE is DECIMAL(2,1) with a value of 1.5.
The following statement returns a double precision floating-point number with an
approximate value of 2.12.

SELECT SINH(:HSINE)
FROM SYSIBM.SYSDUMMY1;

Chapter 3. Functions 607

SMALLINT
The SMALLINT function returns a small integer representation either of a number
or of a string representation of a number.

Numeric to Smallint:

�� SMALLINT(numeric-expression) ��

String to Smallint:

�� SMALLINT(string-expression) ��

The schema is SYSIBM.

Numeric to Smallint

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned
to a small integer column or variable. If the whole part of the argument is not
within the range of small integers, an error occurs. If present, the decimal part
of the argument is truncated.

String to Smallint

string-expression
An expression that returns a value of character or graphic string (except a
CLOB or DBCLOB) with a length attribute that is not greater than 255 bytes
for a character string or 127 for a graphic string. The string must contain a
valid string representation of a number.

The result is the same number that would result from CAST(string-expression
AS SMALLINT). Leading and trailing blanks are eliminated and the resulting
string must conform to the rules for forming an SQL integer constant. The
fractional part of the argument is truncated.

The result of the function is a small integer.

The result can be null; if the argument is null, the result is the null value.

Recommendation: To increase the portability of applications, use the CAST
specification. For more information, see “CAST specification” on page 267.

Example: Using sample table DSN8B10.EMP, find the average education level
(EDLEVEL) of the employees in department 'A00'. Round the result to the nearest
full education level.

SELECT SMALLINT(AVG(EDLEVEL)+.5)
FROM DSN8B10.EMP
WHERE DEPT = ’A00’;

608 SQL Reference

Assuming that the five employees in the department have education levels of '19',
'18', '14', '18', and '14', the result is '17'.

Chapter 3. Functions 609

SOUNDEX
The SOUNDEX function returns a 4-character code that represents the sound of the
words in the argument. The result can be compared to the results of the
SOUNDEX function of other strings.

�� SOUNDEX(expression) ��

The schema is SYSIBM.

expression
An expression that must return a value of any built-in numeric, character, or
graphic string data type that is not a LOB. A numeric, mixed character, or
graphic string value is cast to a Unicode SBCS character string before the
function is evaluated. For more information about converting numeric data to
a character string, see “VARCHAR” on page 673. For more information about
converting mixed or graphic strings to Unicode SBCS, see “CAST specification”
on page 267.

The data type of the result is CHAR(4).

The result can be null; if the argument is null, the result is the null value.

The CCSID of the result is the Unicode SBCS CCSID.

The SOUNDEX function is useful for finding strings for which the sound is known
but the precise spelling is not. It makes assumptions about the way that letters and
combinations of letters sound that can help to search for words with similar
sounds. The comparison of words can be done directly or by passing the strings as
arguments to the DIFFERENCE function. For more information, see
“DIFFERENCE” on page 456.

Example 1: Use the SOUNDEX function to find a row where the sound of the
LASTNAME value closely matches the phonetic spelling of 'Loucesy':

SELECT EMPNO, LASTNAME
FROM DSN910.EMPLOYEE
WHERE SOUNDEX(LASTNAME) = SOUNDEX(’Loucesy’);

This example returns the following row:
000110 LUCCHESSI;

610 SQL Reference

SOAPHTTPC and SOAPHTTPV
The SOAPHTTPC function returns a CLOB representation of XML data that results
from a SOAP request to the web service that is specified by the first argument. The
SOAPHTTPV function returns a VARCHAR representation of XML data that
results from a SOAP request to the web service that is specified by the first
argument.

�� SOAPHTTPC (endpoint_url,soap_action,soap_body)
SOAPHTTPV

��

The schema is DB2XML.

These functions are deprecated and might not be available in future releases of
DB2.

endpoint_url
An expression that returns a value of a built-in character string or graphic
string data type that is not a LOB. The value specifies the URL of the web
service endpoint for which DB2 is acting as a client.

soap_action
An expression that returns a value of a built-in character string or graphic
string data type that is not a LOB. The value specifies a SOAP action URI
reference. If it is required for the web service that is specified in endpoint_url,
the required value is defined in the WSDL of that web service.

soap_body
An expression that returns a value of a built-in character string data type that
is defined as VARCHAR(3072) or CLOB(1M). The value specifies the name of
an operation with the requested namespace URI, an encoding style, and input
arguments. soap_body can include well-formed XML content for the SOAP
body. The specific operations and arguments for a web service are defined in
the WSDL of the specified web service.

If the arguments can be null, the result can be null; if all of the arguments are null,
the result is the null value.

The result can be null; if all of the arguments are null, the result is the null value.

Example 1: The following SQL statement retrieves information (as VARCHAR data)
about a web service:

SELECT DB2XML.SOAPHTTPV(
’http://www.myserver.com/services/db2sample/ivt.dadx/SOAP’,
’http://tempuri.org/db2sample/ivt.dadx’,
’<testInstallation xmlns="http://tempuri.org/db2sample/ivt.dadx" />’)

FROM SYSIBM.SYSDUMMY1

Example 2: The following SQL statement inserts the results (as CLOB data) from a
request to a web service into a table:

INSERT INTO EMPLOYEE(XMLCOL)
VALUES (DB2XML.SOAPHTTPC(

’http://www.myserver.com/services/db2sample/list.dadx/SOAP’,

Chapter 3. Functions 611

’http://tempuri.org/db2sample/list.dadx’,
’<listDepartments xmlns="http://tempuri.org/db2sample/list.dadx">

<deptNo>A00</deptNo>
</listDepartments>’))

612 SQL Reference

SOAPHTTPNC and SOAPHTTPNV
The SOAPHTTPNC and SOAPHTTPNV functions allow you to specify a complete
SOAP message as input and to return complete SOAP messages from the specified
web service. The returned SOAP messages are CLOB or VARCHAR representations
of the returned XML data.

�� SOAPHTTPNC (endpoint_url,soap_action,soap_input)
SOAPHTTPNV

��

The schema is DB2XML.

endpoint_url
Specifies the URL of the web service for which DB2 is acting as a client.
endpoint_url is defined as a VARCHAR(4096) value. The URL is in the
following format:
proto://[user[:password]@]hostname[:port]/[path]

Where proto can be http or https.

soap_action
Specifies a SOAP action URI reference. soap_action is defined as a
VARCHAR(4096) value. Depending on the web server, soap_action might be
required. If it is required for the web service that is specified in endpoint_url,
the required value is defined in the WSDL of that web service.

soap_input
Specifies an XML document that contains the complete SOAP message.
soap_input can contain optional SOAP headers and must contain a SOAP body
that specifies the operation name and parameters to the web service. soap_input
should be well-formed XML that is defined as VARCHAR(32672) or
CLOB(1M).

Example 1: The following SQL statement retrieves information (as VARCHAR data)
about a web service:

SELECT DB2XML.SOAPHTTPNV(
’http://rpc.geocoder.us/service/soap/’,
’"http://rpc.geocoder.us/Geo/Coder/US#geocode_address"’,
’<?xml version="1.0" encoding="UTF-8" ?>’ ||
’<SOAP-ENV:Envelope ’ ||
’xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" ’ ||
’xmlns:xsd="http://www.w3.org/2001/XMLSchema" ’ ||
’xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">’ ||
’<SOAP-ENV:Body>’ ||
’<ns0:geocode_address ’ ||
’xmlns:ns0="http://rpc.geocoder.us/Geo/Coder/US/" ’ ||
’SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">’ ||
’<address xsi:type="xsd:string">555 Bailey Avenue, San Jose,’ ||
’CA,95141</address>’ ||
’</ns0:geocode_address>’ ||
’</SOAP-ENV:Body>’ ||
’</SOAP-ENV:Envelope>’)

FROM SYSIBM.SYSDUMMY1;

Example 2: The following SQL statement inserts the results (as CLOB data) from a
request to a web service into a table:

Chapter 3. Functions 613

INSERT INTO EMPLOYEE(XMLCOL)
VALUES (DB2XML.SOAPHTTPNC(

’http://www.myserver.com/services/db2sample/list.dadx/SOAP’,
’http://tempuri.org/db2sample/list.dadx’,
’<?xml version="1.0" encoding="UTF-8" ?>’ ||
’<SOAP-ENV:Envelope ’ ||
’xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" ’ ||
’xmlns:xsd="http://www.w3.org/2001/XMLSchema" ’ ||
’xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">’ ||
’<SOAP-ENV:Body>’ ||
’<listDepartments xmlns="http://tempuri.org/db2sample/list.dadx">

<deptNo>A00</deptNo>
</listDepartments>’ ||
’</SOAP-ENV:Body>’ ||
’</SOAP-ENV:Envelope>’))

614 SQL Reference

SPACE
The SPACE function returns a character string that consists of the number of SBCS
blanks that the argument specifies.

�� SPACE(numeric-expression) ��

The schema is SYSIBM.

numeric-expression
An expression that returns the value of any built-in integer data type. The
expression specifies the number of SBCS blanks for the result, and it must be
between 0 and 32764.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to a BIGINT value.

The result of the function is a varying-length character string (VARCHAR) that
contains SBCS data.

If numeric-expression is a constant, the length attribute of the result is the constant.
Otherwise, the length attribute of the result is 4000. The actual length of the result
is the value of numeric-expression. The actual length of the result must not be
greater than the length attribute of the result.

The result can be null; if the argument is null, the result is the null value.

Example: The following statement returns a character string that consists of 5
blanks followed by a zero-length string.

SELECT SPACE(5), SPACE(0)
FROM SYSIBM.SYSDUMMY1;

Related concepts:
“Character string encoding schemes” on page 85
“Varying-length character strings” on page 85

Chapter 3. Functions 615

|

SQRT
The SQRT function returns the square root of the argument.

�� SQRT(numeric-expression) ��

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric
data type. If the argument is DECFLOAT, the operation is performed in
DECFLOAT. Otherwise, the argument is converted to a double precision
floating-point number for processing by the functions.

The argument can also be a character string or graphic string data type. The string
input is implicitly cast to a numeric value of DECFLOAT(34).

If the argument is DECFLOAT(n), the result is DECFLOAT(n). Otherwise, the result
of the function is a double precision floating-point number. If the argument is a
special decimal floating point value, the general rules for arithmetic operations
apply. See “General Arithmetic Operation Rules for DECFLOAT” on page 248 for
more information.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable SQUARE is defined as DECIMAL(2,1) and has
a value of 9.0. Find the square root of SQUARE.

SELECT SQRT(:SQUARE)
FROM SYSIBM.SYSDUMMY1;

This example returns a double precision floating-point number with an
approximate value of 3.

616 SQL Reference

STRIP
The STRIP function removes blanks or another specified character from the end,
the beginning, or both ends of a string expression.

�� STRIP(string-expression)
BOTH

,
B , trim-constant
LEADING
L
TRAILING
T

��

The schema is SYSIBM.

The STRIP function is similar to the TRIM scalar function.
Related reference:
“TRIM” on page 656

Chapter 3. Functions 617

SUBSTR
The SUBSTR function returns a substring of a string.

�� SUBSTR(string-expression,start)
,length

��

The schema is SYSIBM.

string-expression
An expression that specifies the string from which the result is derived. The
string must be a character, graphic, or binary string. If string-expression is a
character string, the result of the function is a character string. If it is a graphic
string, the result of the function is a graphic string. If it is a binary string, the
result of the function is a binary string.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

A substring of string-expression is zero or more contiguous characters of
string-expression. If string-expression is a graphic string, a character is a DBCS
character. If string-expression is a character string or a binary string, a character
is a byte. The SUBSTR function accepts mixed data strings. However, because
SUBSTR operates on a strict byte-count basis, the result will not necessarily be
a properly formed mixed data string.

start
An expression that specifies the position within string-expression to be the first
character of the result. The value of the large integer must be between 1 and
the length attribute of string-expression. (The length attribute of a
varying-length string is its maximum length.) A value of 1 indicates that the
first character of the substring is the first character of string-expression.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to an INTEGER value.

length
An expression that specifies the length of the resulting substring. If specified,
length must be an expression that returns a value that is a built-in large integer
data type.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to an INTEGER value.The value must be greater than or equal to
0 and less than or equal to n, where n is the length attribute of
string-expression - start + 1. The specified length must not, however, be
the large integer constant 0.

If length is explicitly specified, string-expression is effectively padded on the
right with the necessary number of characters so that the specified substring of
string-expression always exists. Hexadecimal zeros are used as the padding
character when string-expression is binary data. Otherwise, a blank is used as
the padding character.

618 SQL Reference

If string-expression is a fixed-length string, omission of length is an implicit
specification of LENGTH(string-expression) - start + 1, which is the number
of characters (or bytes) from the character (or byte) specified by start to the last
character (or byte) of string-expression. If string-expression is a varying-length
string, omission of length is an implicit specification of the greater of zero or
LENGTH(string-expression) - start + 1. If the resulting length is zero, the
result is an empty string.

If length is explicitly specified by a large integer constant that is 255 or less,
and string-expression is not a LOB, the result is a fixed-length string with a
length attribute of length. If length is not explicitly specified, but
string-expression is a fixed-length string and start is an integer constant, the
result is a fixed-length string with a length attribute equal to
LENGTH(string-expression) - start + 1. In all other cases, the result is a
varying-length string. If length is explicitly specified by a large integer constant,
the length attribute of the result is length; otherwise, the length attribute of the
result is the same as the length attribute of string-expression.

The result can be null; if any argument is null, the result is the null value.

The CCSID of the result is the CCSID of string-expression.

Example 1: FIRSTNME is a VARCHAR(12) column in sample table DSN8B10.EMP.
When FIRSTNME has the value 'MAUDE':

Function: Returns:

SUBSTR(FIRSTNME,2,3) -- ’AUD’
SUBSTR(FIRSTNME,2) -- ’AUDE’
SUBSTR(FIRSTNME,2,6) -- ’AUDE’ followed by two blanks
SUBSTR(FIRSTNME,6) -- a zero-length string
SUBSTR(FIRSTNME,6,4) -- four blanks

Example 2: Sample table DSN8B10.PROJ contains column PROJNAME, which is
defined as VARCHAR(24). Select all rows from that table for which the string in
PROJNAME begins with 'W L PROGRAM'.

SELECT * FROM DSN8B10.PROJ
WHERE SUBSTR(PROJNAME,1,12) = ’W L PROGRAM ’;

Assume that the table has only the rows that were supplied by DB2. Then the
predicate is true for just one row, for which PROJNAME has the value 'W L
PROGRAM DESIGN'. The predicate is not true for the row in which PROJNAME
has the value 'W L PROGRAMMING' because, in the predicate's string constant,
'PROGRAM' is followed by a blank.

Example 3: Assume that a LOB locator named my_loc represents a LOB value that
has a length of 1 gigabyte. Assign the first 50 bytes of the LOB value to host
variable PORTION.

SET :PORTION = SUBSTR(:my_loc,1,50);

Example 4: Assume that host variable RESUME has a CLOB data type and holds an
employee's resume. This example shows some of the statements that find the
section of department information in the resume and assign it to host variable
DeptBuf. First, the POSSTR function is used to find the beginning and ending
location of the department information. Within the resume, the department
information starts with the string 'Department Information Section' and ends
immediately before the string 'Education Section'. Then, using these beginning and
ending positions, the SUBSTR function assigns the information to the host variable.

Chapter 3. Functions 619

SET :DInfoBegPos = POSSTR(:RESUME, ’Department Information Section’);
SET :DInfoEnPos = POSSTR(:RESUME, ’Education Section’);
SET :DeptBuf = SUBSTR(:RESUME, :DInfoBegPos, :DInfoEnPos - :DInfoBegPos);

620 SQL Reference

SUBSTRING
The SUBSTRING function returns a substring of a string.

Character:

�� SUBSTRING (character-expression , start , CODEUNITS16)
, length CODEUNITS32

OCTETS

��

Graphic:

�� SUBSTRING (graphic-expression , start , CODEUNITS16)
, length CODEUNITS32

��

Binary:

�� SUBSTRING (binary-expression , start)
, length

��

The schema is SYSIBM.

Character

character-expression
An expression that specifies the string from which the result is derived. The
string must be a built-in character string.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.The result of the function is a
character string.

A substring of character-expression is zero or more contiguous units of
character-expression. If CODEUNITS32 is specified, a unit is a Unicode UTF-32
character. If CODEUNITS16 is specified, a unit is a Unicode UTF-16 character.
If OCTETS is specified, a unit is a byte.

start
An expression that specifies the position within the character-expression that is
to be the first string unit of the result. start is expressed in the specified string
unit, and must return a large integer value.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to an INTEGER value.The value of start can be positive,
negative, or zero. A value of 1 indicates that the first string unit of the result is
the first string unit of character-expression.

Chapter 3. Functions 621

length
An expression that specifies the maximum length of the resulting substring.

If character-expression is a fixed-length string, omission of length is an implicit
specification of CHARACTER_LENGTH(character-expression) - start + 1, which
is the number of string units (CODEUNITS16, CODEUNITS32, or OCTETS)
from start to the last position of character-expression.

If character-expression is a varying length string, omission of length is an implicit
specification of zero or CHARACTER_LENGTH(character-expression) - start + 1,
whichever is greater. If the resulting length is zero, the result is an empty
string.

If specified, length must be an expression that returns a value that is a built-in
large integer data type.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to an INTEGER value.

The value must be greater than or equal to 0. If a value greater than n is
specified, where n is the length attribute of character-expression - start+ 1,
then n is used as the length of the resulting substring. The value is expressed
in the units that are explicitly specified.

A rigorous description of the actual length and result: In this description, the term
“character” means the “unit specified by string units”.

Let C be the value of the first argument, let LC be the length in characters of C, and let S
be the value of the start.

v If length is specified, let L be the value of length and let E be S+L. Otherwise, let E be the
larger of LC + 1 and S.

v If either C, S, or L is the null value, the result of the function is the null value.

v If E is less than S, an exception condition is raised: data exception — substring error.

v Otherwise:

– If S is greater than LC or if E is less than 1 (one), the result of the function is a
zero-length string.

– Otherwise:

- Let S1 be the larger of S and 1 (one). Let E1 be the smaller of E and LC+1. Let L1
be E1–S1.

- The result of the function is a character string that contains the L1 characters of C
starting at character number S1 in the same order that the characters appear in C.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit that is used to express start and length. If
character-expression is a character string that is defined as bit data,
CODEUNITS16 and CODEUNITS32 cannot be specified.

CODEUNITS16
Specifies that start and length are expressed in terms of 16-bit UTF-16 code
units.

CODEUNITS32
Specifies that start and length are expressed in terms of 32-bit UTF-32 code
units.

OCTETS
Specifies that start and length are expressed in terms of bytes.

622 SQL Reference

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see
“String unit specifications” on page 87.

Graphic

graphic-expression
An expression that specifies the string from which the result is derived. The
string must be a built-in graphic string. The result of the function is a graphic
string. A partial surrogate character in the expression is replaced with a blank.

A substring of graphic-expression is zero or more contiguous units of
graphic-expression. If CODEUNITS32 is specified, a unit is a Unicode UTF-32
character. If CODEUNITS16 is specified, a unit is a Unicode UTF-16 character.

start
An expression that specifies the position within the graphic-expression that is to
be the first string unit of the result. start is expressed in the specified string
unit, and must return a large integer value. The value of start can be positive,
negative, or zero. A value of 1 indicates that the first string unit of the result is
the first string unit of graphic-expression.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to an INTEGER value.

length
An expression that specifies the maximum length of the resulting substring.

If graphic-expression is a fixed-length string, omission of length is an implicit
specification of CHARACTER_LENGTH(graphic-expression) - start +1, which is
the number of units (CODEUNITS16, CODEUNITS32) either explicitly or
implicitly specified, from the start position to the last position of
graphic-expression. If graphic-expression is a varying length string, omission of
length is an implicit specification of zero or CHARACTER_LENGTH(graphic-
expression) -start +1, which is the number of units (CODEUNITS16,
CODEUNITS32) either explicitly or implicitly specified, whichever is greater. If
the resulting length is zero, the result is an empty string.

If specified, length must be an expression that returns a value that is a built-in
large integer data type.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34) which is
then assigned to an INTEGER value.

The value must be greater than or equal to 0. If a value greater than n is
specified, where n is the length attribute of graphic-expression - start+ 1,
then n is used as the length of the resulting substring. The value is expressed
in the units that are explicitly specified.

Chapter 3. Functions 623

A rigorous description of the actual length and result: In this description, the term
“character” means the “unit specified by string units”.

Let C be the value of the first argument, let LC be the length in characters of C, and let S
be the value of the start.

v If length is specified, let L be the value of length and let E be S+L. Otherwise, let E be the
larger of LC + 1 and S.

v If either C, S, or L is the null value, the result of the function is the null value.

v If E is less than S, an exception condition is raised: data exception — substring error.

v Otherwise:

– If S is greater than LC or if E is less than 1 (one), the result of the function is a
zero-length string.

– Otherwise:

- Let S1 be the larger of S and 1 (one). Let E1 be the smaller of E and LC+1. Let L1
be E1–S1.

- The result of the function is a character string that contains the L1 characters of C
starting at character number S1 in the same order that the characters appear in C.

CODEUNITS16 or CODEUNITS32
Specifies the string unit that is used to express start and length.

CODEUNITS16
Specifies that start and length are expressed in terms of 16-bit UTF-16 code
units.

CODEUNITS32
Specifies that start and length are expressed in terms of 32-bit UTF-32 code
units.

For more information about CODEUNITS16 and CODEUNITS32, see “String
unit specifications” on page 87.

Binary

binary-expression
An expression that specifies the string from which the result is derived. The
string must be a built-in binary string. The result of the function is a binary
string.

A substring of binary-expression is zero or more contiguous units of
binary-expression.

start
An expression that specifies the position within binary-expression to be the first
character of the result. It must be a binary large integer. start can be negative
or zero. (The length attribute of a varying-length string is its maximum length.)
A value of 1 indicates that the first string unit of the substring is the first string
unit of binary-expression.

length
An expression that specifies the length of the resulting substring.

If binary-expression is a fixed-length string, omission of length is an implicit
specification of CHARACTER_LENGTH(binary-expression) - start +1, which is
the number of units either explicitly or implicitly specified, from the start
position to the last position of binary-expression. If binary-expression is a varying
length string, omission of length is an implicit specification of zero or
CHARACTER_LENGTH(binary-expression) -start +1, which is the number of

624 SQL Reference

units either explicitly or implicitly specified, whichever is greater. If the
resulting length is zero, the result is an empty string.

If specified, length must be a value that is a built-in large integer data type. The
value must be greater than or equal to 0 and less than or equal to n, where n is
the length attribute of binary-expression - start + 1. The specified length
must not, however, be the large integer constant 0.

A rigorous description of the actual length and result: In this description, the term
“character” means the “unit specified by string units”.

Let C be the value of the first argument, let LC be the length in characters of C, and let S
be the value of the start.

v If length is specified, let L be the value of length and let E be S+L. Otherwise, let E be the
larger of LC + 1 and S.

v If either C, S, or L is the null value, the result of the function is the null value.

v If E is less than S, an exception condition is raised: data exception — substring error.

v Otherwise:

– If S is greater than LC or if E is less than 1 (one), the result of the function is a
zero-length string.

– Otherwise:

- Let S1 be the larger of S and 1 (one). Let E1 be the smaller of E and LC+1. Let L1
be E1–S1.

- The result of the function is a character string that contains the L1 characters of C
starting at character number S1 in the same order that the characters appear in C.

The data type of the result depends on the data type of the first argument, as
shown in the following table.

Table 69. Data type of the result of SUBSTRING

Data type of the first argument Data type of the result

CHAR or VARCHAR VARCHAR

CLOB CLOB

If character-expression is mixed data, the result
is mixed data. Otherwise, the result is SBCS
data.

GRAPHIC or VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BINARY or VARBINARY VARBINARY

BLOB BLOB

The length attribute of the result is equal to the length attribute of the first
argument. If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the
length attribute of the final result” on page 90 for information about how to
calculate the length attribute of the result string.

The result can be null; if any argument is null, the result is the null value.

If the first argument is character or graphic data, the CCSID of the result is the
same as that of the first argument.

Chapter 3. Functions 625

Example 1: FIRSTNAME is a VARCHAR(12) column in table T1. One of its values is
the 6-character string 'Jürgen'. When FIRSTNAME has the value 'Jürgen':

Function: Returns:
--
SUBSTRING(FIRSTNAME,1,2,CODEUNITS32) ’Jü’ -- x’4AC3BC’
SUBSTRING(FIRSTNAME,1,2,CODEUNITS16) ’Jü’ -- x’4AC3BC’
SUBSTRING(FIRSTNAME,1,2,OCTETS) ’J ’ -- x’4A20’ (a truncated string)
SUBSTRING(FIRSTNAME,8,CODEUNITS16) -- a zero-length string
SUBSTRING(FIRSTNAME,8,4,OCTETS) -- a zero-length string

Example 2: C1 is a VARCHAR(12) column in table T1. One of its values is the string
'ABCDEFG'. When C1 has the value 'ABCDEFG':

Function: Returns:

SUBSTRING(C1,-2,2,OCTETS) -- a zero-length string
SUBSTRING(C1,-2,4,OCTETS) ’A’
SUBSTRING(C1,-2,OCTETS) ’ABCDEFG’
SUBSTRING(C1,0,1,OCTETS) -- a zero-length string

626 SQL Reference

TAN
The TAN function returns the tangent of the argument, where the argument is an
angle, expressed in radians.

�� TAN(numeric-expression) ��

The schema is SYSIBM.

The TAN and ATAN functions are inverse operations.

The argument must be an expression that returns the value of any built-in numeric
data type that is not DECFLOAT. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable TANGENT is DECIMAL(2,1) with a value of
1.5. The following statement returns a double precision floating-point number with
an approximate value of 14.10 .

SELECT TAN(:TANGENT)
FROM SYSIBM.SYSDUMMY1;

Chapter 3. Functions 627

TANH
The TANH function returns the hyperbolic tangent of the argument, where the
argument is an angle, expressed in radians.

�� TANH(numeric-expression) ��

The schema is SYSIBM.

The TANH and ATANH functions are inverse operations.

The argument must be an expression that returns the value of any built-in numeric
data type that is not DECFLOAT. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable HTANGENT is DECIMAL(2,1) with a value of
1.5. The following statement returns a double precision floating-point number with
an approximate value of 0.90.

SELECT TANH(:HTANGENT)
FROM SYSIBM.SYSDUMMY1;

628 SQL Reference

TIME
The TIME function returns a time that is derived from a value.

�� TIME(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following
built-in data types: a time, a timestamp, a character string, or a graphic string. If
expression is a character or graphic string, it must not be a CLOB or DBCLOB, and
its value must be a valid string representation of a time or timestamp with an
actual length of not greater than 255 bytes. A time zone in a string representation
of a timestamp is ignored. For the valid formats of string representations of times
and timestamps, see “String representations of datetime values” on page 101.

If expression is a TIMESTAMP WITH TIME ZONE value, expression is first cast to
TIMESTAMP WITHOUT TIME ZONE, with the same precision as expression.

If expression is not a TIME value, expression is cast as follows:
v If expression is a TIMESTAMP WITH TIME ZONE value, expression is cast to

TIMESTAMP WITHOUT TIME ZONE, with the same precision as expression.
v If expression is a string, expression is cast to TIME.

The result of the function is a time.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
If the argument is a time

the result is that time.
If the argument is a timestamp

the result is the time part of the timestamp.
If the argument is a string

the result is the time or time part of the timestamp represented by the
string. If the CCSID of the string is not the same as the corresponding
default CCSID at the server, the string is first converted to that CCSID.

The result CCSID is the appropriate CCSID of the argument encoding scheme and
the result subtype is the appropriate subtype of the CCSID.

Example: Assume that a table named CLASSES contains one row for each
scheduled class. Assume also that the class starting times are in the TIME column
named STARTTM. Using these assumptions, select those rows in CLASSES that
represent classes that start at 1:30 P.M.

SELECT *
FROM CLASSES
WHERE TIME(STARTTM) = ’13:30:00’;

Chapter 3. Functions 629

TIMESTAMP
The TIMESTAMP function returns a TIMESTAMP WITHOUT TIME ZONE value
from its argument or arguments.

See “TIMESTAMP_TZ” on page 645 for a similar function.

�� TIMESTAMP(expression-1)
,expression-2

��

The schema is SYSIBM.

The rules for the arguments depend on whether the second argument is specified.
v If only one argument is specified:

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, a graphic string, or a
binary string. If expression-1 is a character or graphic string, it must not be a
CLOB or DBCLOB and it must have one of the following values:
– A valid string representation of a date or timestamp with an actual length

that is not greater than 255 bytes. A time zone in a string representation of a
timestamp is ignored. For the valid formats of string representations of
timestamps, see “String representations of datetime values” on page 101.

– A character string or graphic string with an actual length of 8 that is assumed
to be a System z® Store Clock value.

– A character string with an actual length of 13 that is assumed to be a result
from the GENERATE_UNIQUE function.

– A character string or graphic string with an actual length of 14 that represents
a valid date and time in the form yyyyxxddhhmmss, where yyyy is the year, xx
is the month, dd is the day, hh is the hour, mm is the minute, and ss is the
seconds.

If expression-1 is a binary string, it must not be a BLOB and its value must be
one of the following:
– A binary string with an actual length of 8 bytes that is assumed to be a

System z Store Clock value.
– A binary string with an actual length of 16 bytes that is assumed to be a

System z Store Clock extended value.
v If both arguments are specified:,

– If the data type of the second argument is not an integer:
The first argument must be an expression that returns a value of one of the
following built-in data types: a date, a character string, or a graphic string.
The second argument must be an expression that returns a value of one of the
following built-in data types: a time, a character string, or a graphic string. A
character string or graphic string must be a valid string representation of a
time.
If expression-1 is a character string or graphic string, it must not be a CLOB or
DBCLOB, and its value must be a valid string representation of a date with
an actual length that is not greater than 255 bytes. If expression-2 is a character
string or graphic string, it must not be a CLOB or DBCLOB, and its value

630 SQL Reference

|
|
|

|
|

|
|

|
|

must be a valid string representation of a time with an actual length that is
not greater than 255 bytes. For the valid formats of string representations of
dates and times, see “String representations of datetime values” on page 101.

– If the data type of the second argument is integer:
The first argument must be an expression that returns a value of one of the
following built-in data types: a timestamp, a date, a character string, or a
graphic string. The second argument must be an integer constant in the range
0 to 12 that represents the timestamp precision.
If expression-1 is a character string or graphic string, it must not be a CLOB or
DBCLOB, and its value must be a valid string representation of a timestamp
or a date with an actual length that is not greater than 255 bytes.
If expression-1 is a binary string, it must not be a BLOB, and its value must
conform to the rules for when only one argument is specified. The second
argument must be an integer constant in the range 0 to 12 that represents the
timestamp precision.

The result of the function is a TIMESTAMP WITHOUT TIME ZONE value.

The timestamp precision and other rules depend on whether the second argument
is specified:

If both arguments are specified and the second argument is not an integer:
The result is a TIMESTAMP(6) WITHOUT TIME ZONE value with the
date that is specified by the first argument and the time that is specified by
the second argument. The fractional seconds part of the timestamp is zero.

If both arguments are specified and the second argument is an integer:
The result is a TIMESTAMP WITHOUT TIME ZONE value with the
precision that is specified in the second argument.

If only one argument is specified and it is a TIMESTAMP (p) WITHOUT TIME
ZONE:

The result is that TIMESTAMP (p) WITHOUT TIME ZONE value.

If only one argument is specified and it is a TIMESTAMP(p) WITH TIME
ZONE:

The result is the argument value, cast to TIMESTAMP(p) WITHOUT TIME
ZONE. The value is the local timestamp, not UTC.

If only one argument is specified and it is a date:
The result is that date with an assumed time of midnight that is cast to
TIMESTAMP(0) WITHOUT TIME ZONE.

If only one argument is specified and it is a character or graphic string:
The result is the TIMESTAMP(6) WITHOUT TIME ZONE value that is
represented by that string extended with any missing time information. If
the argument is a string of length 14, the TIMESTAMP has a fractional
seconds part of zero. The string value must not contain a specification of
time zone.

If only one argument is specified and it is a binary string:
The result is the TIMESTAMP(6) WITHOUT TIME ZONE value that is
represented by that string. If the year value in the resulting timestamp is
greater than 9999 an error is returned (SQLSTATE 22007, SQLCODE -180).

If the arguments include only date information, the time information in the result
value is all zeros.

Chapter 3. Functions 631

|
|
|
|

|
|
|
|

The result can be null; if any argument is null, the result is the null value.

If an argument is a string with a CCSID that is not the same as the corresponding
default CCSID at the server, the string is first converted to that CCSID.

The result CCSID is the appropriate CCSID of the argument encoding scheme and
the result subtype is the appropriate subtype of the CCSID. If both arguments are
specified and their encoding schemes are different, the result CCSID is the
appropriate CCSID of the application encoding scheme.

Syntax alternatives: If only one argument is specified, the CAST specification
should be used for maximal portability. For more information, see “CAST
specification” on page 267.

Example 1: Assume that table TABLEX contains a DATE column named DATECOL
and a TIME column named TIMECOL. For some row in the table, assume that
DATECOL represents 25 December 2008 and TIMECOL represents 17 hours, 12
minutes, and 30 seconds after midnight. The following function returns the value
'2008-12-25-17.12.30.000000'.

TIMESTAMP(DATECOL, TIMECOL)

Example 2: Assume that host variable PRSTSZ contains '2008-02-29.20.00.000000
-08.30. The following statement returns the value '2008-02-29.20.00.000000':
SELECT TIMESTAMP(:PRSTSZ)
FROM PROJECT;

Example 3: The following invocation of the TIMESTAMP function converts a
timestamp string with 7 digits of fractional seconds to a TIMESTAMP(9)
WITHOUT TIME ZONE value and returns a value of '2007-09-24-
15.53.37.216247400':
TIMESTAMP(’2007-09-24-15.53.37.2162474’,9);

Specifying an LRSN as an argument

When a 6-byte LRSN is used as the argument to the TIMESTAMP function, it must
be left justified and padded on the right to a total length of 8 bytes. When a
10-byte LRSN is used, it must be left justified and padded on the right to a total
length of 16 bytes.

632 SQL Reference

|

|
|
|
|

TIMESTAMPADD
The TIMESTAMPADD function returns the result of adding the specified number
of the designated interval to the timestamp value.

�� TIMESTAMPADD(interval,number,expression) ��

The schema is SYSIBM.

interval
An expression that returns a value of a built-in SMALLINT or INTEGER data
type. The following values are valid values for interval:

Table 70. Valid values for intervals

Valid values for interval equivalent intervals

1 Microseconds

2 Seconds

4 Minutes

8 Hours

16 Days

32 Weeks

64 Months

128 Quarters

256 Years

number
An expression that returns a value of a built-in SMALLINT or INTEGER data
type.

expression
An expression that returns a value of a built-in TIMESTAMP WITHOUT TIME
ZONE data type.

The result of the function is the same timestamp data type with the same
timestamp precision as expression.

The result can be null; if any argument is null, the result is the null value.

The result is determined using the normal rules for datetime arithmetic. See
“Datetime arithmetic in SQL” on page 257. When the interval to add is expressed
as weeks, the result is calculated as if number x 7 days had been specified. When
the interval to add is expressed as quarters, the result is calculated as if number x 3
months had been specified.

Example 1: The following example will add 40 years to the specified timestamp. An
interval of 256 designates years, while 40 specifies the number of intervals to add.
The following statement returns the value '2005-07-27-15.30.00.000000'.

SELECT TIMESTAMPADD(256,40,TIMESTAMP(’1965-07-27-15.30.00’))
FROM SYSIBM.SYSDUMMY1;

Chapter 3. Functions 633

Example 2: The following example will add 18 months to the specified timestamp.
An interval of 64 designates months, while 18 specifies the number of intervals to
add. The following statement returns the value '2008-07-20-08.08.00.000000'.

SELECT TIMESTAMPADD(64,18,TIMESTAMP(’2007-01-20-08.08.00’))
FROM SYSIBM.SYSDUMMY1;

Example 3: The following example will subtract 16 quarters (4 years) from the
specified timestamp. An interval of 128 designates quarters, while -16 specifies the
number of intervals to add (the '-' adds a negative amount). The following
statement returns the value '2003-09-28-05.30.00.000000'.

SELECT TIMESTAMPADD(128,-16,TIMESTAMP(’2007-09-28-05.30.00’))
FROM SYSIBM.SYSDUMMY1;

Example 4: The following example will add 18 weeks to the specified timestamp.
An interval of 32 designates weeks, while 18 specifies the number of intervals to
add. The following statement returns the value '2007-05-27-08.08.00.000000'.
SELECT TIMESTAMPADD(32,18,TIMESTAMP(’2007-01-20-08.08.00’))
FROM SYSIBM.SYSDUMMY1;

634 SQL Reference

TIMESTAMP_FORMAT
The TIMESTAMP_FORMAT function returns a TIMESTAMP WITHOUT TIME
ZONE value that is based on the interpretation of the input string using the
specified format.

��
, 6

TIMESTAMP_FORMAT (string-expression , format-string)
, precision-constant

��

The schema is SYSIBM.

string-expression
An expression that returns a value of any built-in character or graphic string
data type, other than a CLOB or DBCLOB, with a length attribute that is not
greater than 255 bytes. The string-expression must contain the components of a
timestamp that correspond to the format that is specified in format-string,
except for hour, minute, second, or fractional seconds.

format-string
The expression must return a value that is a built-in character or graphic string
data type, other than a CLOB or DBCLOB, with a length attribute that is not
greater than 255 bytes. The actual length must not be greater than 255 bytes.
The value is a template for how string-expression is interpreted and then
converted to a timestamp value.

A valid format-string must contain at least one format element, must not
contain multiple specifications for any component of a timestamp, and can
contain any combination of the format elements, unless otherwise noted in the
following table. For example, format-string cannot contain both YY and YYYY,
because both are used to interpret the year component of a string-expression.
Two format elements can be separated by one or more of the following
separator characters:
v minus sign (-)
v period (.)
v forward slash (/)
v comma (,)
v apostrophe (')
v semicolon (;)
v colon (:)
v blank ()

Separator characters can also be specified at the start or end of format-sting.
These separator characters can be used in any combination in the format
string, for example 'YYYY/MM-DD HH:MM.SS'. Separator character that is
specified in a string-expression are used to separate components and are not
required to match the separator character that is specified in the format-string.

Chapter 3. Functions 635

Table 71. Format elements for the TIMESTAMP_FORMAT function

Format element
Related component of a
timestamp Description

AM or PM 1 hour Meridian indicator (morning
or evening) without periods.
This format element uses the
exact strings "AM" or "PM".

A.M. or P.M. 1 hour Meridian indicator (morning
or evening) with periods.
This format element uses the
exact strings "A.M." or "P.M."

D 1 none Day of the week (1-7).

DD day Day of the month (0-31).

DDD month, day Day of the year (001-366).

FF or FFn fractional seconds Fractional seconds
(0-999999999999). The
number n is used to specify
the number of digits that is
expected in the
string-expression. Valid values
for n are 1-12 with no leading
zeros.

Specifying FF is equivalent to
specifying FF6. When the
component in string-expression
that corresponds to the FF
format element is followed
by a separator character or is
the last component, the
number of digits for the
fractional seconds can be less
than what is specified by the
format element. In this case,
zero digits are padded onto
the right of the number of
specified digits.

HH hour HH behaves the same as
HH12.

HH12 hour Hour of the day (01-12) in
12-hour format. AM is the
default meridian indicator.

HH24 hour Hour of the day (00-24) in
24-hour format.

J year, month, and day Julian day (number of days
since January 1, 4713 BC).

MI minute Minute (00-59).

MM month Month (01-12).

MONTH, Month, or month 1,

2

month Name of the month in
English.

MON, Mon, or mon 1, 2 month Abbreviated name of the
month in English.

636 SQL Reference

Table 71. Format elements for the TIMESTAMP_FORMAT function (continued)

Format element
Related component of a
timestamp Description

NNNNNN microseconds Microseconds
(000000-999999).

RR year Last two digits of the
adjusted year (00-99).

RRRR year Four digit adjusted year
(0000-9999).

SS seconds Seconds (00-59).

SSSSS hours, minutes, and seconds Seconds since the previous
midnight (00000 - 86400).

Y year Last digit of the year (0-9).
First three digits of the
current year are used to
determine the full 4-digit
year.

YY year Last two digits of the year
(00-99). First two digits of the
current year are used to
determine the full 4-digit
year.

YYY year Last three digits of the year
(000-999). First digit of the
current year is used to
determine the full 4-digit
year.

YYYY year 4-digit year (0000-9999).

Notes:

1. This format element is case sensitive.

2. Only these exact spellings and case combinations can be used. If this format element is
specified in an invalid case combination an error is returned.

3. The D format element does not contribute to any components of the resulting timestamp.
However, a specified value for this format element must be correct for the combination
of the day component of the resulting timestamp. For example, a value of '5' for
string-expression is valid for a format string value of 'D'. However, value of '9' for
string-expression would result in an error for the same format-string.

The RR and RRRR format elements can be used to change how a specification
for a year is to be interpreted by adjusting the value to produce a 2-digit or a
4-digit value depending on the leftmost two digits of the current year
according to the following table:

Table 72. Correspondence of adjusted year value and timestamp component

Digits of the current year
Two-digit year in
string-expression

First two digits of the year
component of timestamp

00-50 00-49 First two digits of the current
year

51-99 00-49 First two digits of the current
year + 1

00-50 50-99 First two digits of the current
year -1

Chapter 3. Functions 637

Table 72. Correspondence of adjusted year value and timestamp component (continued)

Digits of the current year
Two-digit year in
string-expression

First two digits of the year
component of timestamp

51-99 50-99 First two digits of the current
year

For example, if the current year is 2007, '86' with format 'RR' means 1986, but
if the current year is 2052, it means 2086.

The following defaults are used when a format-string does not include a
format element for one of the following components of a timestamp:

Timestamp component Default

year current year, as 4 digits

month current month. as 2 digits

day 01 (first day of the month)

hour 00

minute 00

second 00

fractional seconds a number of zeros to match the timestamp
precision of the result

If string-expression does not include a value that corresponds to an hour,
minute, second, or fractional seconds format element that is specified in the
format-string, the same defaults are used.

Leading zeros can be specified for any component of the timestamp value (that
is, month, day, hour, minutes, seconds) that does not have the maximum
number of significant digits for the corresponding format element in the
format-string.

A substring of the string-expression that represents a component of a timestamp
(such as year, month, day, hour, minutes, seconds) can include fewer than the
maximum number of digits for that component of the timestamp that is
indicated by the corresponding format element. Any missing digits default to
zero. For example, with a format-string of 'YYYY-MM-DD HH24:MI:SS', an
input value of '999-3-9 5:7:2' produces the same result as '0999-03-09 05:07:02'.

precision-constant
An integer constant that specifies the timestamp precision of the result. The
value must be in the range 0 to 12. If precision-constant is not specified, the
timestamp precision defaults to 6.

The result of the function is a TIMESTAMP with a precision that is based on
precision-constant.

If either of the first two arguments can be null, the result can be null; if either of
the first two arguments is null, the result is the null value.

The result CCSID is the appropriate CCSID of the encoding scheme of the first
argument and the result subtype is the appropriate subtype of the CCSID.

638 SQL Reference

Notes

Julian and Gregorian calendar:
The transition from the Julian calendar to the Gregorian calendar on 15
October 1582 is taken into account by this function.

Determinism:
TIMESTAMP_FORMAT is a deterministic function. However, the following
invocations of the function depend on the value of the special register
CURRENT TIMESTAMP.
v format-string is not a constant
v format-string is a constant and includes format elements that are locale

sensitive
v format-string is a constant and does not include a format element that

fully defines the year (that is, J or YYYY). In this case the current year is
used.

v format-string is a constant and does not include a format element that
fully defines the month (for example, J, MM, MONTH, or MON). In this
case the current month is used.

These invocations, which depend on the value of a special register, cannot
be used wherever special registers cannot be used.

Using the 'D', 'Y', and 'y' format elements:
DB2 for z/OS does not support the 'DY', 'dy', and 'Dy' format elements
that are supported by other platforms. If 'DY' or 'Dy' is specified in the
format string, it is interpreted as the 'D' format element followed by the 'Y'
or 'y' format element. This behavior might change in a future release. To
ensure that a 'D' followed by 'Y' or 'y' is interpreted as two separate format
elements, include a separator character after the 'D' format element.

Syntax alternatives:
TO_DATE can be specified as a synonym for TIMESTAMP_FORMAT.

Example 1:
Insert a row into the IN_TRAY table with a receiving timestamp that is
equal to one second before the beginning of the year 2000 (December 31,
1999 at 23:59:59).
INSERT INTO IN_TRAY (RECEIVED)
VALUES (TIMESTAMP_FORMAT(’1999-12-31 23:59:59’, ’YYYY-MM-DD HH24:MI:SS’))

Example 2:
An application receives strings of date information into a variable called
INDATEVAR. This value is not strictly formatted and might include two or
four digits for years, and one or two digits for months and days. Date
components might be separated with minus sign (-) or forward-slash (/)
characters and are expected to be in day, month, and year order. Time
information consists of hours (in 24-hour format) and minutes, and is
usually separated by a colon. Sample values include '15/12/98 13:48' and
'9-3-2004 8:02'. Insert such values into the IN_TRAY table.
INSERT INTO IN_TRAY (RECEIVED)
VALUES (TIMESTAMP_FORMAT(:INDATEVAR, ’DD/MM/RRRR HH24:MI’))

The use of 'RRRR' in the format allows for 2-digit and 4-digit year values
and assigns the missing first two digits based on the current year. If 'YYYY'
is used, input values with a 2-digit year will have leading zeros. The

Chapter 3. Functions 639

forward-slash separator also allows the minus sign character. Assuming a
current year of 2007, resulting timestamp values from the sample values
are as follows:
’15/12/98 13:48’ --> 1998-12-15-13.48.00.000000
’9-3-2004 8:02’ --> 2004-03-09-08.02.00.000000

640 SQL Reference

TIMESTAMP_ISO
The TIMESTAMP_ISO function returns a timestamp value that is based on a date,
a time, or a timestamp argument.

�� TIMESTAMP_ISO(expression) ��

The schema is SYSIBM.

If the argument is a date, TIMESTAMP_ISO inserts a value of zero for the time and
the partial seconds parts of the timestamp. If the argument is a time,
TIMESTAMP_ISO inserts the value of CURRENT DATE for the date part of the
timestamp and a value of zero for the partial seconds part of the timestamp.

expression
An expression that returns a value of one of the following built-in data types:
v a TIMESTAMP WITHOUT TIME ZONE
v a date
v a time
v a character string
v or a graphic string

If expression is a character or graphic string, it must not be a CLOB or DBCLOB
and its value must be a valid string representation of a date, a time, or a
timestamp. For the valid formats of string representations of dates, times, and
timestamps, see “String representations of datetime values” on page 101.

If expression is a timestamp, the result of the function is the same timestamp data
type with the same precision as expression. Otherwise, the result of the function is a
TIMESTAMP (6) WITHOUT TIME ZONE.

The result can be null; if the argument is null, the result is the null value.

Recommendation: Use the CAST specification for maximum portability. For more
information, see “CAST specification” on page 267.

Example: Assume the following date value '1965-07-27'. The following statement
returns the value '1965-07-27-00.00.00.000000'.

SELECT TIMESTAMP_ISO(DATE(’1965-07-27’))
FROM SYSIBM.SYSDUMMY1

Chapter 3. Functions 641

TIMESTAMPDIFF
The TIMESTAMPDIFF function returns an estimated number of intervals of the
type that is defined by the first argument, based on the difference between two
timestamps.

�� TIMESTAMPDIFF(numeric-expression,string-expression) ��

The schema is SYSIBM.

numeric-expression
An expression that returns a value that is a built-in SMALLINT or INTEGER
data type. The value specifies the interval that is used to determine the
difference between two timestamps. The following table lists the valid values
for numeric-expression:

Table 73. Valid values for numeric-expression and equivalent intervals that are used to
determine the difference between two timestamps

Valid values for numeric-expression equivalent intervals

1 Microseconds

2 Seconds

4 Minutes

8 Hours

16 Days

32 Weeks

64 Months

128 Quarters

256 Years

string-expression

An expression that returns a value of a built-in character string or a graphic
string data type that is not a LOB. The value is expected to be the result of
subtracting two timestamps and converting the result to a character string of
length 22. The string value must not have more than 6 digits to the right of a
decimal point. If the supplied argument is a graphic string, it is first converted
to a character string before the function is executed.

The following table describes the elements of string-expression:

Table 74. TIMESTAMPDIFF String Elements

String elements Valid values

Character position from the
decimal point (negative is
left)

Years 1-9998 or blank -14 to -11

Months 0-11 or blank -10 to -9

Days 0-30 or blank -8 to -7

Hours 0-24 or blank -6 to -5

642 SQL Reference

Table 74. TIMESTAMPDIFF String Elements (continued)

String elements Valid values

Character position from the
decimal point (negative is
left)

Minutes 0-59 or blank -4 to -3

Seconds 0-59 -2 to -1

Decimal separator period 0

Microsecond 000000-999999 1 to 6

The result of the function is an integer with the same sign as the second argument.

The result can be null; if any argument is null, the result is the null value.

The returned value is determined for each interval as indicated by the following
table:

Table 75. TIMESTAMPDIFF Computations

Result interval Computation using duration elements

Years years

Quarters integer value of (months+(years*12))/3

Months months + (years*12)

Weeks integer value of ((days+(months*30))/7)+(years*52)

Days days + (months*30)+(years*365)

Hours hours+ ((days + (months*30)+(years*365))*24)

Minutes (the absolute value of the duration must
not exceed 40850913020759.999999)

minutes +
(hours+((days+(months*30)+(years*365))*24))*60

Seconds (the absolute value of the duration must
be less than 680105031408.000000)

seconds + (minutes+(hours+((days+(months*30)
+(years*365))*24))*60)*60

Microseconds (the absolute value of the duration
must be less than 3547.483648)

microseconds + (seconds+(minutes*60))*1000000

The following assumptions are used in estimating a difference:
v One year has 365 days
v One year has 52 weeks
v One year has 12 months
v One month has 30 days
v One day has 24 hours
v One hour has 60 minutes
v One minute has 60 seconds

The use of these assumptions imply that some result values are an estimate of the
interval. Consider the following examples:
v Difference of 1 month where the month has less than 30 days.

TIMESTAMPDIFF(16, CHAR(TIMESTAMP(’1997-03-01-00.00.00’)
- TIMESTAMP(’1997-02-01-00.00.00’)))

The result of the timestamp arithmetic is a duration of 00000100000000.000000, or
1 month. When the TIMESTAMPDIFF function is invoked with 16 for the
interval argument (days), the assumption of 30 days in a month is applied and
the result is 30.

Chapter 3. Functions 643

v Difference of 1 day less than 1 month where the month has less than 30 days.
TIMESTAMPDIFF(16, CHAR(TIMESTAMP(’1997-03-01-00.00.00’)

- TIMESTAMP(’1997-02-02-00.00.00’)))

The result of the timestamp arithmetic is a duration of 00000027000000.000000, or
27 days. When the TIMESTAMPDIFF function is invoked with 16 for the interval
argument (days), the result is 27.

v Difference of 1 day less than 1 month where the month has 31 days.
TIMESTAMPDIFF(64, CHAR(TIMESTAMP(’1997-09-01-00.00.00’)

- TIMESTAMP(’1997-08-02-00.00.00’)))

The result of the timestamp arithmetic is a duration of 00000030000000.000000, or
30 days. When the TIMESTAMPDIFF function is invoked with 64 for the interval
argument (months), the result is 0. The days portion of the duration is 30, but it
is ignored because the interval specified months.

Example: The following statement estimates the age of employees in months and
returns that value as AGE_IN_MONTHS:
SELECT

TIMESTAMPDIFF(64, CAST(CURRENT_TIMESTAMP-CAST(BIRTHDATE AS TIMESTAMP)
AS CHAR(22)))

AS AGE_IN_MONTHS
FROM EMPLOYEE;

644 SQL Reference

TIMESTAMP_TZ
The TIMESTAMP_TZ function returns a TIMESTAMP WITH TIME ZONE value
from the input arguments.

�� TIMESTAMP_TZ(expression-1)
,expression-2

��

The schema is SYSIBM.

expression-1
An expression that returns a value of one of the following built-in data types:
v a timestamp without time zone
v a timestamp with time zone
v a character string
v a graphic string

If expression-1 is a character string or a graphic string, it must conform to the
following rules:
v It must not be a CLOB or DBCLOB
v Its value must be a valid string representation of a timestamp without a time

zone or a timestamp with a time zone value
v It must have an actual length that is not greater than 255 bytes

For the valid formats of string representations of datetime values, see “String
representations of datetime values” on page 101.

If expression-2 is specified, expression-1 must be a timestamp without a time
zone, or a string representation of a timestamp without a time zone.

expression-2
An expression that returns a character string or a graphic string.

If expression-2 is a character string or graphic string, it must not be a CLOB or
DBCLOB, and its value must be a valid string representation of a time zone in
the format of '±th:tm' with values ranging from -12:59 to +14:00, where th
represents time zone hour and tm represents time zone minute.

The result of the function is equivalent to invoking the CAST specification, as
indicated in the following table:

Table 76. TIMESTAMP_TZ function and equivalent CAST specification

TIMESTAMP_TZ function syntax Equivalent CAST specification syntax

TIMESTAMP_TZ(timestamp_wo_tz) CAST(timestamp_wo_tz AS TIMESTAMP WITH
TIME ZONE)

TIMESTAMP_TZ(timestamp_wo_tz, n) CAST(timestamp_wo_tz AS TIMESTAMP(n) WITH
TIME ZONE)

TIMESTAMP_TZ(timestamp_wo_tz, timezone) CAST(CONCAT(VARCHAR(timestamp_wo_tz,
timezone) AS TIMESTAMP WITH TIME ZONE)

TIMESTAMP_TZ(timestamp_wo_tz, timezone,
n)

CAST(CONCAT(VARCHAR(timestamp_wo_tz,
timezone) AS TIMESTAMP(n) WITH TIME ZONE)

Chapter 3. Functions 645

Table 76. TIMESTAMP_TZ function and equivalent CAST specification (continued)

TIMESTAMP_TZ function syntax Equivalent CAST specification syntax

TIMESTAMP_TZ(timestamp_w_tz) CAST(timestamp_w_tz AS TIMESTAMP WITH
TIME ZONE)

TIMESTAMP_TZ(timestamp_w_tz, n) CAST(timestamp_w_tz AS TIMESTAMP(n) WITH
TIME ZONE)

TIMESTAMP_TZ(timestamp_w_tz, timezone) N/A

TIMESTAMP_TZ(timestamp_w_tz, timezone, n) N/A

timestamp_wo_tz
A timestamp without time zone value.

timestamp_w_tz
A timestamp with time zone value.

timezone
A time zone value.

n The precision value.

When a string representation of a timestamp is a single-byte character set (SBCS)
with a CCSID that is not the same as the default CCSID for SBCS data, that value
is converted to the default CCSID for SBCS data before it is interpreted and
converted to a timestamp value.

Syntax alternatives:

v If only one argument is specified, the CAST specification should be used to
ensure maximal portability. For more information, see “CAST specification” on
page 267

v FROM_TZ can be specified as a synonym for TIMESTAMP_TZ when
TIMESTAMP_TZ specifies both expression-1 and expression-2.

Example 1: Assume that TIMES is a host variable with the value
2008-02-29-20.00.00.000000 and that TZ is a host variable with the value -3.00.
Convert the value of TIMES and TZ to a timestamp with time zone.
SET :TIMESZ = TIMESTAMP_TZ(:TIMES, :TZ);

The host variable TIMESZ is set with the value that represents the timestamp with
time zone as 2008-02-29-20.00.00.000000 -03.00.

646 SQL Reference

TO_CHAR
The TO_CHAR function returns a character string representation of a timestamp
value that has been formatted using a specified character template.

Character to VARCHAR

�� TO_CHAR (character-expression) ��

Timestamp to VARCHAR

�� TO_CHAR (timestamp-expression , format-string) ��

Decimal floating-point to VARCHAR

�� TO_CHAR (decimal-floating-point-expression)
, format-string

��

The schema is SYSIBM.

The TO_CHAR scalar function is a synonym for the VARCHAR_FORMAT scalar
function.

Chapter 3. Functions 647

TO_DATE
The TO_DATE function returns a timestamp value that is based on the
interpretation of the input string using the specified format.

��
, 6

TO_DATE (string-expression , format-string)
, precision-constant

��

The schema is SYSIBM.

The TO_DATE scalar function is a synonym for the TIMESTAMP_FORMAT scalar
function.

648 SQL Reference

TO_NUMBER
The TO_NUMBER function returns a DECFLOAT(34) value that is based on the
interpretation of the input string using the specified format.

�� TO_NUMBER (string-expression)
, format-string

��

The schema is SYSIBM.

The TO_NUMBER scalar function is a synonym for the DECFLOAT_FORMAT
scalar function.

Chapter 3. Functions 649

TOTALORDER
The TOTALORDER function returns an ordering for DECFLOAT values. The
TOTALORDER function returns a small integer value that indicates how
expression1 compares with expression2.

�� TOTALORDER(expression1,expression2) ��

The schema is SYSIBM.

expression1
An expression that returns a built-in DECFLOAT value.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34).

expression2
An expression that returns a built-in DECFLOAT value.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34).

Numeric comparison is exact, and the result is determined for finite operands as if
range and precision are unlimited. An overflow or underflow conditions cannot
occur.

If one value is DECFLOAT(16) and the other is DECFLOAT(34), the
DECFLOAT(16) value is converted to DECFLOAT(34) before the comparison is
made.

TOTALORDER determines ordering based on the total order predicate rules of
IEEE 754R, with the following result:
v -1 if the first argument is lower in order compared to the second.
v 0 if both arguments have the same order.
v 1 if the first argument is higher in order compared to the second.

The ordering of the special values and finite numbers is as follows:
-NAN<-SNAN<-INFINITY<-0.10<-0.100<-0<0<0.100<0.10<INFINITY<SNAN<NAN

The result of the function is a SMALLINT value.

The result can be null; if any argument is null, the result is the null value.

Examples: The following examples show the use of the TOTALORDER function to
compare decimal floating point values:

TOTALORDER(-INFINITY, -INFINITY) = 0
TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-1.0)) = 0
TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-1.00)) = -1
TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-0.5)) = -1
TOTALORDER(DECFLOAT(-1.0), DECFLOAT(0.5)) = -1
TOTALORDER(DECFLOAT(-1.0), INFINITY) = -1
TOTALORDER(DECFLOAT(-1.0), SNAN) = -1
TOTALORDER(DECFLOAT(-1.0), NAN) = -1
TOTALORDER(NAN, DECFLOAT(-1.0)) = 1

650 SQL Reference

TOTALORDER(-NAN, -NAN) = 0
TOTALORDER(-SNAN, -SNAN) = 0
TOTALORDER(NAN, NAN) = 0
TOTALORDER(SNAN, SNAN) = 0

Chapter 3. Functions 651

TRANSLATE
The TRANSLATE function returns a value in which one or more characters of the
first argument might have been converted to other characters.

�� TRANSLATE(string-expression)
, to-string

, ' '
, from-string

, pad

��

The schema is SYSIBM.

string-expression
An expression that specifies the string to be converted. string-expression must
return a value that is a built-in character or graphic string data type that is not
a LOB. If string-expression is an EBCDIC or ASCII graphic string and
string-expression is the only argument that is specified, the locale name that is
specified by the CURRENT LOCALE LC_CTYPE special register must be a
non-blank string.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

to-string
An expression that specifies the characters to which certain characters in
string-expression are to be converted. This string is sometimes called the output
translation table. to-string must return a value that is a built-in character or
graphic string data type that is not a LOB.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

If the length of to-string is less than the length of from-string, to-string is padded
to the length of from-string with the pad or a blank. If the length of to-string is
greater than from-string, the extra characters in to-string are ignored without
warning.

from-string
An expression that specifies the characters that if found in string-expression are
to be converted. This string is sometimes called the input translation table. When
a character in from-string is found, the character in string-expression is converted
to the character in to-string that is in the corresponding position of the
character in from-string.

from-string must return a value that is a built-in character or graphic string
data type that is not a LOB.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

If from-string contains duplicate characters, the first occurrence of the character
is used, and no warning is issued. The default value for from-string is a string
that starts with the character X'00' and ends with the character X'FF' (decimal
255).

652 SQL Reference

pad
An expression that specifies the character with which to pad to-string if its
length is less than from-string. pad is an expression that must return a value
that is a built-in character or graphic string data type that is not a LOB and has
a length of 1. A length of 1 is one single byte for character strings and one
double byte string for graphic strings. The default is a blank that is appropriate
for string-expression.

If string-expression is the only argument that is specified, the string is converted to
uppercase based on the locale name that is specified by the CURRENT LOCALE
LC_CTYPE special register, as follows:
v blank — SBCS uppercase characters A-Z are converted to SBCS lowercase

characters a-z and characters with diacritical marks are not converted. If the
string contains MIXED or DBCS characters, full-width Latin uppercase characters
A-Z are converted to full-width lowercase characters a-z. For optimal
performance, specify a blank string unless your data must be processed by using
rules that are defined by a specific locale.

v UNI — The conversion uses both the NORMAL and SPECIAL casing capabilities
as described in z/OS Support for Unicode: Using Unicode Services. UNI must not be
in effect when string-expression is EBCDIC data.

v locale name — The locale defines the rules for conversion to lowercase
characters.

For Unicode data, usage of the TRANSLATE function (the TRANSLATE function
with one argument is equivalent to the UPPER function) can result in expansion if
certain characters are processed. You should ensure that the result string is large
enough to contain the result of the expression.

If more than one argument is specified, the result string is built
character-by-character from string-expression with each character in from-string being
converted to the corresponding character in to-string. For each character in
string-expression, the from-string is searched for the same character. If the character
is found to be the nth character in from-string, the resulting string will contain the
nth character from to-string. If to-string is less than n characters long, the resulting
string will contain the pad. If the character is not found in from-string, it is moved
to the result string without being converted.

The string can contain mixed data. If only one argument is specified, the UPPER
function is performed on the argument, and the rules for operating on mixed data
in the UPPER function are observed. Full-width Latin lowercase a-z are converted
to full-width Latin uppercase letters A-Z. Otherwise, the function operates on a
strict byte-count basis, and the result is not necessarily a properly formed mixed
data character string.

The encoding scheme of the result is the same as string-expression. The data type of
the result of the function depends on the data type of string-expression, to-string,
from-string, and pad:
v VARCHAR if string-expression is a character string. The CCSID of the result

depends on the arguments:
– If string-expression, to-string, from-string, or pad is bit data, the result is bit data.
– If string-expression, to-string, from-string, and pad are all SBCS:

- If string-expression, to-string, from-string, and pad are all SBCS Unicode data,
the CCSID of the result is the CCSID for SBCS Unicode data.

Chapter 3. Functions 653

- If string-expression is SBCS Unicode data, and to-string, from-string, or pad
are not SBCS Unicode data, the CCSID of the result is the mixed CCSID for
Unicode data.

- Otherwise, the CCSID of the result is the same as the CCSID of
string-expression.

– Otherwise, the CCSID of the result is the mixed CCSID that corresponds to
the CCSID of string-expression. However, if the input is EBCDIC or ASCII and
there is no corresponding system CCSID for mixed, the CCSID of the result is
the CCSID of string-expression.

v VARGRAPHIC if string-expression is a graphic. The CCSID of the result is the
same as the CCSID of source-string.

The result can be null; if the first argument is null, the result is the null value.

Example 1: Return the string 'abcdef' in uppercase characters. Assume that the
locale in effect is blank.

SELECT TRANSLATE (’abcdef’)
FROM SYSIBM.SYSDUMMY1

The result is the value 'ABCDEF'.

Example 2: Assume that host variable SITE has a data type of VARCHAR(30) and
contains 'Hanauma Bay'.

SELECT TRANSLATE (:SITE)
FROM SYSIBM.SYSDUMMY1

Returns the value 'HANAUMA BAY'. The result is all uppercase characters because
only one argument is specified.

SELECT TRANSLATE (:SITE, ’j’, ’B’)
FROM SYSIBM.SYSDUMMY1

Returns the value 'Hanauma jay'.
SELECT TRANSLATE (:SITE, ’ei’, ’aa’)

FROM SYSIBM.SYSDUMMY1

Returns the value 'Heneume Bey'.
SELECT TRANSLATE (:SITE, ’bA’, ’Bay’, ’%’)

FROM SYSIBM.SYSDUMMY1

Returns the value 'HAnAumA bA%'.
SELECT TRANSLATE (:SITE, ’r’, ’Bu’)

FROM SYSIBM.SYSDUMMY1

Returns the value 'Hana ma ray'.

Example 3: Assume that host variable SITE has a data type of VARCHAR(30) and
contains 'Pivabiska Lake Place'.

SELECT TRANSLATE (:SITE, ’$$’, ’Ll’)
FROM SYSIBM.SYSDUMMY1

Returns the value 'Pivabiska $ake P$ace'.
SELECT TRANSLATE (:SITE, ’pLA’, ’Place’, ’.’)

FROM SYSIBM.SYSDUMMY1

Returns the value 'pivAbiskA LAk. pLA..'.

654 SQL Reference

Related concepts:

z/OS: Unicode Services User’s Guide and Reference

Chapter 3. Functions 655

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/CONTENTS?DN=SA22-7649-14&DT=20110614141050&SHELF=&CASE=&FS=TRUE&PATH=/bookmgr/

TRIM
The TRIM function removes bytes from the beginning, from the end, or from both
the beginning and end of a string expression.

�� TRIM (string-expression)
BOTH

FROM
B trim-constant
LEADING
L
TRAILING
T

��

The schema is SYSIBM.

The first argument, if specified, indicates whether characters are removed from the
end or the beginning of the string. If the first argument is not specified, the
characters are removed from both the end and the beginning of the string.

trim-constant
Specifies a constant that indicates the binary, SBCS, or DBCS character that is
to be removed. If string-expression is a character string, trim-constant must be an
SBCS or DBCS single-character (2 bytes) constant. If string-expression is a binary
string, trim-constant must be a single-byte binary string constant. If
string-expression is a DBCS graphic or DBCS-only string, trim-constant must be a
graphic constant that consists of a single DBCS character.

The default for trim-constant depends on the data type of string-expression:
v A DBCS blank if string-expression is a DBCS graphic string. For ASCII, the

CCSID determines the hex value that represents a DBCS blank. For example,
for Japanese (CCSID 301), X'8140' represents a DBCS blank, while for
Simplified Chinese, X'A1A1' represents a DBCS blank. For EBCDIC, X'4040'
represents a DBCS blank.

v A UTF-16 or UCS-2 blank (X'0020') if string-expression is a Unicode graphic
string.

v A value of X'00' if string-expression is a binary string.
v Otherwise, a single byte blank. For EBCDIC, X'40' represents a blank. When

not EBCDIC, X'20' represents a blank.

string-expression
An expression that returns a value that is a built-in character string data type,
graphic data type, binary string data type, or numeric data type.
string-expression must not be a LOB. If string-expression is numeric, it is cast to a
character string before the function is evaluated. For more information about
converting numeric to a character string, see “VARCHAR” on page 673.

string-expression and trim-expression must have compatible data types.

The data type of the result depends on the data type of string-expression:
v If string-expression is a character string data type, the result is VARCHAR. If

string-expression is defined as FOR BIT DATA the result is FOR BIT DATA.

656 SQL Reference

v If string-expression is a graphic string data type, the result is VARGRAPHIC.
v If string-expression is a binary string data type, the result is VARBINARY.

The length attribute of the result is the same as the length attribute of
string-expression. The actual length of the result is the length of string-expression
minus the number of characters removed. If all of the characters are removed, the
result is an empty string.

If string-expression can be null, the result can be null; if string-expression is null, the
result is the null value.

The CCSID of the result is the same as that of string-expression.

Example: Assume the host variable HELLO of type CHAR(9) has a value of '
Hello '.

SELECT TRIM(:HELLO), TRIM(TRAILING FROM :HELLO)
FROM SYSIBM.SYSDUMMY1

Results in 'Hello' and ' Hello' respectively.

Example: Assume the host variable BALANCE of type CHAR(9) has a value of
'000345.50'.

SELECT TRIM(L ’0’ FROM :BALANCE)
FROM SYSIBM.SYSDUMMY1

Results in '345.50'
Related reference:
“STRIP” on page 617

Chapter 3. Functions 657

TRIM_ARRAY
The TRIM_ARRAY function deletes elements from the end of an ordinary array.

�� TRIM_ARRAY (array-expression,numeric-expression)
ARRAY_TRIM

��

The schema is SYSIBM.

array-expression
An SQL variable or SQL parameter of an array type, or a CAST specification of
a parameter marker to an array type. An associative array type cannot be
specified.

numeric-expression
Specifies the number of elements that are trimmed from the end of the array.
numeric-expression can be any numeric data type with a value that can be cast
to INTEGER. The value of numeric-expression must be greater than or equal to 0
and less than or equal to the cardinality of array-expression.

TRIM_ARRAY returns a value with the same array type as array-expression, with
the cardinality reduced by the value of INTEGER(numeric-expression).

The result can be null; if any argument is null, the result is the null value.

The TRIM_ARRAY function can be invoked only in the following contexts:
v A source value for SET assignment-statement or SQL PL assignment-statement, or a

VALUES INTO statement
v The value that is returned in a RETURN statement in an SQL scalar function

Notes

Syntax alternatives: CAST (SQL-variable AS array-type) can be specified as an
alternative to SQL-variable. CAST (SQL-parameter AS array-type) can be specified as
an alternative to SQL-parameter.

Example 1: Suppose that PHONENUMBERS is a user-defined array type that is
defined as an ordinary array. RECENT_CALLS is an array variable of the
PHONENUMBERS type. The following statement removes the last element from
the array variable RECENT_CALLS.
SET RECENT_CALLS = TRIM_ARRAY(RECENT_CALLS,1);

Example 2: Suppose that INTARRAY is a user-defined array type that is defined as
an ordinary array with integer elements. SPECIALNUMBERS and LOWPRIMES
are array variables of the INTARRAY type. The SPECIALNUMBERS array contains
the values of all the prime numbers less than 1000, which is 168 values. The
following statement assigns the 10 smallest prime numbers in the
SPECIALNUMBERS array to the first 10 elements of the LOWPRIMES array.
SET LOWPRIMES = TRIM_ARRAY(SPECIALNUMBERS,CARDINALITY(SPECIALNUMBERS-10));

658 SQL Reference

|

|

|

|||||||||||||||

|
||

|

|
|
|
|

|
|
|
|
|

|
|

|

|

|
|

|

|

|
|
|

|
|
|
|

|

|
|
|
|
|
|

|

TRUNCATE or TRUNC
The TRUNCATE function returns the first argument, truncated as specified.
Truncation is to the number of places to the right or left of the decimal point this is
specified by the second argument.

��
, 0

TRUNCATE (numeric-expression-1)
TRUNC , numeric-expression-2

��

The schema is SYSIBM.

numeric-expression-1
An expression that returns a value of any built-in numeric data type.

If expression-1 is a decimal floating-point data type, the DECFLOAT
ROUNDING MODE will not be used. The rounding behavior of TRUNCATE
corresponds to a value of ROUND_DOWN. If you want a different rounding
behavior, use the QUANTIZE function.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34).

numeric-expression-2
An expression that returns a value that is a built-in SMALLINT or INTEGER
data type. The absolute value of the integer specifies the number of places to
truncate. The value of numeric-expression-2 determines whether truncation is to
the right or left of the decimal point.

If numeric-expression-2 is not negative, numeric-expression-1 is truncated to the
absolute value of numeric-expression-2 places to the right of the decimal point.

If numeric-expression-2 is negative, numeric-expression-1 is truncated to 1 + (the
absolute value of numeric-expression-2) places to the left of the decimal point. If
1 + (the absolute value of numeric-expression-2) is greater than or equal to the
number of digits to the left of the decimal point, the result is 0. For example,
TRUNCATE(748.58,-4) returns 0.

The argument can also be a character string or graphic string data type. The
string input is implicitly cast to a numeric value of DECFLOAT(34), which is
then assigned to an INTEGER value.

The result of the function has the same data type and length attribute as the first
argument.

The result can be null; if any argument is null, the result is the null value.

Example 1: Using sample employee table DSN8B10.EMP, calculate the average
monthly salary for the highest paid employee. Truncate the result to two places to
the right of the decimal point.

SELECT TRUNCATE(MAX(SALARY/12),2)
FROM DSN8B10.EMP;

Because the highest paid employee in the sample employee table earns $52750.00
per year, the example returns the value 4395.83.

Chapter 3. Functions 659

Example 2: Return the number 873.726 truncated to 2, 1, 0, -1, -2, -3, and -4 decimal
places respectively.

SELECT TRUNC(873.726,2),
TRUNC(873.726,1),
TRUNC(873.726,0),
TRUNC(873.726,-1),
TRUNC(873.726,-2),
TRUNC(873.726,-3),
TRUNC(873.726,-4)

FROM TABLEX
WHERE INTCOL = 1234;

This example returns the values 873.720, 873.700, 873.000, 870.000, 800.000,
0000.000, and 0000.000.

Example 3: Calculate both positive and negative numbers.
SELECT TRUNCATE(3.5, 0),
TRUNCATE(3.1, 0),
TRUNCATE(-3.1, 0),
TRUNCATE(-3.5, 0)
FROM TABLEX;

This example returns: the values 3.0, 3.0, -3.0, -3.0.

660 SQL Reference

TRUNC_TIMESTAMP
The TRUNC_TIMESTAMP function returns a TIMESTAMP WITHOUT TIME
ZONE value that is the expression, truncated to the unit that is specified by the
format-string.

��
'DD'

TRUNC_TIMESTAMP (expression)
, format-string

��

The schema is SYSIBM.

expression
An expression that returns a value of any of the following built-in data types: a
timestamp, a character string, or a graphic string. If expression is a character or
graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a timestamp with an actual length that is not
greater than 255 bytes. A time zone in a string representation of a timestamp is
ignored. For the valid formats of string representations of dates and
timestamps, see “String representations of datetime values” on page 101.

format-string
An expression that returns a built-in character string or graphic string data
type, with a length that is not greater than 255 bytes. format-string contains a
template of how the timestamp represented by expression should be truncated.
For example, if format-string is 'DD', the timestamp that is represented by
expression is truncated to the nearest day. format-string must be a valid template
for a timestamp, and not include leading or trailing blanks. Allowable values
for format-string are listed in the following table.

Table 77. ROUND_TIMESTAMP and TRUNC_TIMESTAMP format models

Format model Rounding or truncating
unit

ROUND_TIMESTAMP
example

TRUNC_TIMESTAMP
example

CC
SCC

Century

Rounds up to the start of
the next century after the
50th year of the century (for
example on
1951–01–01–00.00.00).

Not valid for a TIME
argument.

Input Value:
1897-12-04-12.22.22.000000
Result:
1901-01-01-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1801-01-01-00.00.00.000000

SYYYY
YYYY
YEAR
SYEAR
YYY
YY
Y

Year (Rounds up on July
1st)

Input Value:
1897-12-04-12.22.22.000000
Result:
1898-01-01-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1897-01-01-00.00.00.000000

Chapter 3. Functions 661

Table 77. ROUND_TIMESTAMP and TRUNC_TIMESTAMP format models (continued)

Format model Rounding or truncating
unit

ROUND_TIMESTAMP
example

TRUNC_TIMESTAMP
example

IYYY
IYY
IY
I

ISO Year (Rounds up on
July 1st)

Input Value:
1897-12-04-12.22.22.000000
Result:
1898-01-03-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1897-01-04-00.00.00.000000

Q Quarter (Rounds up on the
sixteenth day of the second
month of the quarter)

Input Value:
1999-06-04-12.12.30.000000
Result:
1999-07-01-00.00.00.000000

Input Value:
1999-06-04-12.12.30.000000
Result:
1999-04-01-00.00.00.000000

MONTH
MON
MM
RM

Month (Rounds up on the
sixteenth day of the month)

Input Value:
1999-06-18-12.12.30.000000
Result:
1999-07-01-00.00.00.000000

Input Value:
1999-06-18-12.15.00.000000
Result:
1999-06-01-00.00.00.000000

WW Same day of the week as
the first day of the year
(Rounds up on the 12th
hour of the 3rd day of the
week, with respect to the
first day of the year)

Input Value:
2000-05-05-12.12.30.000000
Result:
2000-05-06-00.00.00.000000

Input Value:
2000-05-05-12.15.00.000000
Result:
2000-04-29-00.00.00.000000

IW Same day of the week as
the first day of the ISO year
(Rounds up on the 12th
hour of the 3rd day of the
week, with respect to the
first day of the ISO year)

Input Value:
2000-05-05-12.12.30.000000
Result:
2000-05-08-00.00.00.000000

Input Value:
2000-05-05-12.15.00.000000
Result:
2000-05-01-00.00.00.000000

W Same day of the week as
the first day of the month
(Rounds up on the 12th
hour of the 3rd day of the
week, with respect to the
first day of the month)

Input Value:
2000-05-17-12.12.30.000000
Result:
2000-05-15-00.00.00.000000

Input Value:
2000-05-17-12.15.00.000000
Result:
2000-05-15-00.00.00.000000

DDD
DD
J

Day (Rounds up on the
12th hour of the day)

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-18-00.00.00.000000

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-17-00.00.00.000000

DAY
DY
D

Starting day of the week
(Rounds up with respect to
the 12th hour of the third
day of the week. The first
day of the week is always
Sunday).

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-21-00.00.00.000000

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-14-00.00.00.000000

HH
HH12
HH24

Hour (Rounds up at 30
minutes)

Input Value:
2000-05-17-23.59.59.000000
Result:
2000-05-18-00.00.00.000000

Input Value:
2000-05-17-23.59.59.000000
Result:
2000-05-17-23.00.00.000000

MI Minute (Rounds up at 30
seconds)

Input Value:
2000-05-17-23.58.45.000000
Result:
2000-05-17-23.59.00.000000

Input Value:
2000-05-17-23.58.45.000000
Result:
2000-05-17-23.58.00.000000

SS Second (Rounds up at
500000 microseconds)

Input Value:
2000-05-17-23.58.45.500000
Result:
2000-05-17-23.58.46.000000

Input Value:
2000-05-17-23.58.45.500000
Result:
2000-05-17-23.58.45.000000

662 SQL Reference

If expression is not a TIMESTAMP WITH TIME ZONE value, expression is cast as
follows:
v If expression is a TIMESTAMP WITH TIME ZONE value, expression is cast to

TIMESTAMP WITHOUT TIME ZONE, with the same precision as expression.
v Otherwise, expression is cast to TIMESTAMP(6) WITHOUT TIME ZONE.

The result of the function is a timestamp.

The result can be null; if any argument is null, the result is the null value.

The result CCSID is the appropriate CCSID of the argument encoding scheme and
the result subtype is the appropriate subtype of the CCSID.

Example: Set the host variable TRNK_TMSTMP with the specified date rounded to
the nearest year value.

SET :TRNK_TMSTMP = TRUNC_TIMESTAMP(’2008-03-14-17.30.00’, ’YEAR’);

The host variable TRNK_TMSTMP is set with the value '2008-01-01-
00.00.00.000000'.

Chapter 3. Functions 663

UCASE
The UCASE function returns a string in which all the characters have been
converted to uppercase characters, based on the CCSID of the argument. The
UCASE function is identical to the UPPER function.

�� UCASE(string-expression)
, locale-name-string , integer

��

The schema is SYSIBM.

For more information, see “UPPER” on page 668.

664 SQL Reference

UNICODE
The UNICODE function returns the Unicode UTF-16 code value of the leftmost
character of the argument as an integer.

�� UNICODE(string-expression) ��

The schema is SYSIBM.

string-expression can be of any built-in string data type that is not a LOB.

The argument can also be a numeric data type. The numeric argument is implicitly
cast to a VARCHAR data type.

If the argument is ASCII, EBCDIC, or Unicode UTF-8, it is first converted to a
Unicode UTF-16 string (CCSID 1200) before the function is executed.

The result of the function is an INTEGER.

The result can be null; if the argument is null, the result is the null value.

Example: The following example returns the Unicode value of as an integer
and assigns the value to the host variable hv:

Set :hv = UNICODE(’ ’);hv is set to an integer with a value '23792'.

Chapter 3. Functions 665

UNICODE_STR
The UNICODE_STR function returns a string in Unicode UTF-8 or UTF-16,
depending on the specified option. The string represents a Unicode encoding of the
input string.

��
, UTF8

UNICODE_STR(string-expression)
, UTF16

��

The schema is SYSIBM.

string-expression
An expression that returns a value of a built-in character or graphic string. A
character string must not be bit data. Values that are preceded by a backslash
('\') are treated as Unicode UTF-16 characters (for example '\0041' is the
Unicode UTF-16 representation for 'A'). A double backslash '\\' indicates a
backslash in the string. A partial surrogate character in the expression is
replaced with a blank.

The argument can also be a numeric data type. The numeric argument is
implicitly cast to a VARCHAR data type.

UTF8 or UTF16
Specifies the Unicode encoding of the result. If UTF8 is specified, the result is
returned as a Unicode UTF-8 character string. If UTF16 is specified, the result
is returned as a Unicode UTF-16 graphic string. UTF8 is the default.

The result of the function depends on the second argument:
v VARCHAR if UTF8 is specified
v VARGRAPHIC if UTF16 is specified

The length attribute of the result is depends on the second argument (UTF8 or
UTF16). The length attribute of the result is calculated using the formulas in
Table 30 on page 142. If the result is a character string, the length attribute of the
result is MAX(n,32704). If the result is a graphic string, the length attribute of the
result is MAX(n,16352). Where n is the result of applying the formulas in Table 30
on page 142 based on input and output data types.

If the actual length of the result string exceeds the maximum for the return type,
an error occurs.

The result can be null; if the argument is null, the result is the null value.

UNISTR can be specified as a synonym for UNICODE_STR.

Example: The following example sets the host variable HV1 to a VARCHAR value
that represents the Unicode UTF-8 string that corresponds to the argument:

SET :HV1 = UNICODE_STR(’Hi, my name is \5CF0’);

666 SQL Reference

HV1 is assigned a Unicode UTF-8 string with the following value 'Hi, my name is

'

Chapter 3. Functions 667

UPPER
The UPPER function returns a string in which all the characters have been
converted to uppercase characters.

�� UPPER(string-expression)
, locale-name-string , integer

��

The schema is SYSIBM.

string-expression
An expression that specifies the string to be converted. string-expression must
return a value that is a built-in character or graphic string. A character string
argument must not be a CLOB, and a graphic string argument must not be a
DBCLOB. If string-expression is an EBCDIC graphic string, a blank string must
not be specified for locale-name-string.

locale-name-string
A string constant or a string host variable other than a CLOB or DBCLOB that
specifies a valid locale name. If locale-name-string is not in EBCDIC, it is
converted to EBCDIC. The length of locale-name-string must be between 1 and
255 bytes of the EBCDIC representation. The value of locale-name-string is not
case sensitive and must be a valid locale. For information on locales and their
naming conventions, see z/OS C/C++ Programming Guide. Some examples of
locales include:

Fr_BE
Fr_FR@EURO
En_US
Ja_JP

The conversion process is determined by the value that is specified for the
locale name, as follows:
v blank — SBCS uppercase characters A-Z are converted to SBCS lowercase

characters a-z, and characters with diacritical marks are not converted. If the
string contains MIXED or DBCS characters, full-width Latin uppercase
characters A-Z are converted to full-width lowercase characters a-z. For
optimal performance, specify a blank string unless your data must be
processed by using the rules that are defined by a specific locale.

v UNI — The conversion uses both the NORMAL and SPECIAL casing
capabilities as described in z/OS Support for Unicode: Using Conversion
Services. You must not specify UNI when string-expression is EBCDIC data.

v locale name — The locale defines the rules for conversion to lowercase
characters.

The value of the host variable must not be null. If the host variable has an
associated indicator variable, the value of the indicator variable must not
indicate a null value. The locale name must be:
v left justified within the host variable
v padded on the right with blanks if its length is less than that of the host

variable and the host variable is in fixed length CHAR or GRAPHIC data
type

668 SQL Reference

If locale-name-string is not specified, the locale is determined by special register
CURRENT LOCALE LC_CTYPE. For information about the special register, see
“CURRENT LOCALE LC_CTYPE” on page 177.

If the UPPER function is referenced in an expression-based index,
locale-name-string must be specified

integer
An integer value that specifies the length attribute of the result. If specified,
integer must be an integer constant between 1 and 32704 bytes in the
representation of the encoding scheme of string-expression.

If integer is not specified, the length attribute of the result is the same as the
length of string-expression.

For Unicode data, usage of the UPPER function can result in expansion if
certain characters are processed. For example, UPPER(UX’FB03’) will result in
UX'004600460049'. You should ensure that the result string is large enough to
contain the result of the expression.

The result can be null; if the argument is null, the result is the null value.

Example 1: Return the string 'abcdef' in uppercase characters. Assume that the
locale in effect is blank.

SELECT UPPER(’abcdef’)
FROM SYSIBM.SYSDUMMY1

The result is the value 'ABCDEF'.

Example 2: Return the string 'ffi' in the uppercase characters ('FFI'). Assume that the
locale in effect is "UNI".
SELECT UPPER(UX’FB03’)

FROM SYSIBM.SYSDUMMYU;

This would result in an error because of the expansion that occurs when certain
Unicode characters are processed. To avoid the error, you would need to use the
following statement instead:
SELECT UPPER(CAST(UX’FB03’ AS VARCHAR(3))

FROM SYSIBM.SYSDUMMYU;

The result of the preceding statement is the value 'FFI'.

Example 3: Create an index EMPLOYEE_NAME_UPPER for table EMPLOYEE
based on built-in function UPPER with locale name 'Fr_FR@EURO'.

CREATE INDEX EMPLOYEE_NAME_UPPER
ON EMPLOYEE (UPPER(LASTNAME, ’Fr_FR@EURO’, 60),

UPPER(FIRSTNAME, ’Fr_FR@EURO’, 60),
ID);

The result is the value 'ABCDEF'.
Related concepts:

z/OS: Unicode Services User’s Guide and Reference
Related reference:

z/OS XL C/C++ Programming Guide

Chapter 3. Functions 669

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/CONTENTS?DN=SA22-7649-14&DT=20110614141050&SHELF=&CASE=&FS=TRUE&PATH=/bookmgr/
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/CONTENTS?DN=SC09-4765-13&DT=20120802234732&SHELF=&CASE=&PATH=/bookmgr/

VALUE
The VALUE function returns the value of the first non-null expression.

�� �VALUE (expression ,expression) ��

The schema is SYSIBM.

Syntax alternatives: The VALUE function can be specified in place of the
COALESCE function. COALESCE should be used for conformance to SQL 2003
Core. For more information, see “COALESCE” on page 412.

670 SQL Reference

VARBINARY
The VARBINARY function returns a VARBINARY (varying-length binary string)
representation of a string of any type.

�� VARBINARY(string-expression)
, integer

��

The schema is SYSIBM.

string-expression
An expression that returns a value that is a built-in character string, graphic
string, binary string, or a row ID type.

integer
An integer value that specifies the length attribute of the resulting binary
string. The value must be an integer between 1 and 32704 inclusive. If integer
is not specified:
v If the string-expression is the empty string constant, the length attribute of the

result is 1.
v Otherwise, the length attribute of the result is the same as the length

attribute of the string-expression, unless the string-expression is a graphic
string. In this case, the length attribute of the result is twice the length
attribute of the string-expression.

The result of the function is a varying-length binary string.

The result can be null; if the first argument is null, the result is the null value.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of the string-expression (or twice the length of the
string-expression if string-expression returns a graphic string). If the length of the
string-expression is greater than the length attribute of the result, truncation is
performed, and a warning is returned unless the string-expression is a character
string and all the truncated characters are blanks, or the string-expression is a
graphic string and all the truncated characters are double-byte blanks.

Example 1: The following function returns a varying-length binary string with a
length attribute 1, actual length 0, and a value of empty string:

SELECT VARBINARY(’’)
FROM SYSIBM.SYSDUMMY1;

Example 2: The following function returns a varying-length binary string with a
length attribute 5, actual length 3, and a value BX'D2C2C8':

SELECT VARBINARY(’KBH’,5)
FROM SYSIBM.SYSDUMMY1;

Example 3: The following function returns a varying-length binary string with a
length attribute 3, actual length 3, and a value BX'D2C2C8'

SELECT VARBINARY(’KBH ’,3)
FROM SYSIBM.SYSDUMMY1;

Chapter 3. Functions 671

Example 4: The following function returns a varying-length binary string with a
length attribute 3, actual length 3, and a value BX'D2C2C8', a warning is also
returned.

SELECT VARBINARY(’KBH-93’,3)
FROM SYSIBM.SYSDUMMY1;

Example 5: The following function returns a varying-length binary string with a
length attribute 3, actual length 3, and a value BX'C1C2C3', a warning is also
returned.

SELECT VARBINARY(BINARY(’ABC’,5),3)
FROM SYSIBM.SYSDUMMY1;

672 SQL Reference

VARCHAR
The VARCHAR function returns a varying-length character string representation of
the value specified by the first argument. The first argument can be a character
string, a graphic string, a datetime value, an integer number, a decimal number, a
floating-point number, or a row ID value.

Character to Varchar:

�� VARCHAR(character-expression)
, integer

, CODEUNITS16
CODEUNITS32
OCTETS

��

Graphic to Varchar:

�� VARCHAR(graphic-expression)
, integer

, CODEUNITS16
CODEUNITS32

��

Datetime to Varchar:

�� VARCHAR(datetime-expression) ��

Integer to Varchar:

�� VARCHAR(integer-expression) ��

Decimal to Varchar:

�� VARCHAR(decimal-expression)
, decimal-character

��

Chapter 3. Functions 673

Decimal floating point to Varchar:

�� VARCHAR(decimal-floating-point-expression) ��

Floating-point to Varchar:

�� VARCHAR(floating-point-expression) ��

Row ID to Varchar:

�� VARCHAR(row-ID-expression) ��

The schema is SYSIBM.

The result of the function is a varying-length character string (VARCHAR).

The result can be null; if the first argument is null, the result is the null value.

Character to Varchar

character-expression
An expression that returns a value that is a built-in character data type.

integer
Specifies the length attribute for the resulting varying-length character string.
The value must be between 1 and 32764, expressed in the units that are either
implicitly or explicitly specified. If the length is not specified, the length of the
result is the same as the length of character-expression.

If CODEUNITS16, CODEUNITS32, or OCTETS is specified, see “Determining
the length attribute of the final result” on page 90 for information about how
to calculate the length attribute of the result string.

If a length attribute is not specified and if the character-expression is an empty
string constant, the length attribute of the result is 1 and the result is an empty
string. Otherwise, the length attribute of the result is the same as the length
attribute of the first argument.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the unit that is used to express integer. If character-expression is a
character string that is defined as bit data, CODEUNITS16 and CODEUNITS32
cannot be specified.

CODEUNITS16
Specifies that integer is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

674 SQL Reference

|

OCTETS
Specifies that integer is expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see
“String unit specifications” on page 87.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of character-expression. If the length of character-expression is
greater than the length attribute of the result, the result is truncated. Unless all the
truncated characters are blanks appropriate for character-expression, a warning is
returned.

If character-expression is bit data, the result is bit data. Otherwise, the CCSID of the
result is the same as the CCSID of character-expression.

Graphic to Varchar

graphic-expression
An expression that returns a value that is a built-in graphic data type.

integer
The length attribute for the resulting varying-length graphic string. The value
must be between 1 and 32704, expressed in the units that are either implicitly
or explicitly specified.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length
attribute of the final result” on page 90 for information about how to calculate
the length attribute of the result string.

If a length attribute is not specified, the length attribute of the result is
determined as follows (where n is the length attribute of the first argument):
v If the graphic-expression is the empty graphic string constant, the length

attribute of the result is 1.
v If the result is SBCS data, the result length is n.
v If the result is mixed data, the result length is 3*(length(graphic-

expression).

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer.

CODEUNITS16
Specifies that integer is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 or CODEUNITS32, see “String
unit specifications” on page 87.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of graphic-expression. If the length of the graphic expression is
greater than the length attribute of the result, the result is truncated. Unless all the
truncated characters were blanks appropriate for graphic-expression, a warning is
returned.

The CCSID of the result is the character mixed CCSID that corresponds to the
graphic CCSID of graphic-expression.

Datetime to Varchar

Chapter 3. Functions 675

datetime-expression
An expression whose value has one of the following three built-in data types:

date The result is a varying-length character string representation of the
date in the format that is specified by the DATE precompiler option, if
one is provided, or else field DATE FORMAT on installation panel
DSNTIP4 specifies the format. If the format is to be LOCAL, field
LOCAL DATE LENGTH on installation panel DSNTIP4 specifies the
length of the result. Otherwise, the length attribute and actual length of
the result is 10.

LOCAL denotes the local format at the DB2 that executes the SQL
statement. If LOCAL is used for the format, a time exit routine must be
installed at that DB2.

An error occurs if the second argument is specified and is not a valid
value.

time The result is a varying-length character string representation of the
time in the format specified by the TIME precompiler option, if one is
provided, or else field TIME FORMAT on installation panel DSNTIP4
specifies the format. If the format is to be LOCAL, the field LOCAL
TIME LENGTH on installation panel DSNTIP4 specifies the length of
the result. Otherwise, the length attribute and actual length of the
result is 8.

LOCAL denotes the local format at the DB2 that executes the SQL
statement. If LOCAL is used for the format, a time exit routine must be
installed at that DB2.

An error occurs if the second argument is specified and is not a valid
value.

timestamp
The result is the character string representation of the timestamp with
time zone. The second argument must not be specified.
v If datetime-expression is a TIMESTAMP (0) WITHOUT TIME ZONE,

the length of the result is 19.
v If datetime-expression is a TIMESTAMP (p) WITHOUT TIME ZONE,

the length of the result is 20+p where p is the timestamp precision.
The second argument must not be specified.

v If datetime-expression is a TIMESTAMP (0) WITH TIME ZONE, the
length of the result is 25.

v If datetime-expression is a TIMESTAMP (p) WITH TIME ZONE, the
length of the result is 26 +p where p is the timestamp precision. The
second argument must not be specified

The CCSID of the result is determined from the context in which the function
was invoked. For more information, see “Determining the encoding scheme
and CCSID of a string” on page 47.

Integer to Varchar

integer-expression
An expression that returns a value that is a built-in integer data type
(SMALLINT, INTEGER, BIGINT).

The result is a varying-length character string representation (VARCHAR) of the
argument in the form of an SQL integer constant.

676 SQL Reference

The length attribute of the result depends on whether the argument is a small or
large integer as follows:
v If the argument is a small integer, the length attribute of the result is 6 bytes.
v If the argument is a large integer, the length attribute of the result is 11 bytes.
v If the argument is a big integer, the length attribute of the result is 20 bytes.

The actual length of the result is the smallest number of characters that can be
used to represent the value of the argument. If the argument is negative, the first
character of the result is a minus sign. Otherwise, the first character is a digit.

The CCSID of the result is the SBCS CCSID of the appropriate encoding scheme.

Decimal to Varchar

decimal-expression
An expression that returns a value that is a built-in decimal data type. To
specify a different precision and scale for the expression's value, apply the
DECIMAL function to the expression before applying the VARCHAR function.

decimal-character
Specifies the single-byte character constant (CHAR or VARCHAR) that is used
to delimit the decimal digits in the result character string. The character must
not be a digit, a plus sign (+), a minus sign (-), or a blank. The default is the
period (.) or comma (,). For information on what factors govern the choice, see
“Decimal point representation” on page 328.

The result is a varying-length character string representation of the argument. The
result includes a decimal character and up to p digits where p is the precision of
decimal-expression with a preceding minus sign if the argument is negative. Leading
zeros are not returned. Trailing zeros are returned.

If the function is invoked as VARCHAR9, the result is formatted as described in
the preceding paragraph, with the following exceptions:
v The result includes leading zeros from the decimal value.
v A decimal character even if the scale of the decimal value is zero.

The length attribute of the result is 2+p where p is the precision of
decimal-expression.

The actual length of the result is the smallest number of characters that can be
used to represent the result, except that trailing zeros are included. If the argument
is negative, the result begins with a minus sign. Otherwise, the result begins with a
digit. If the scale of decimal-expression is zero, the decimal character is not
returned.21

The CCSID of the result is determined from the context in which the function was
invoked. For more information, see “Determining the encoding scheme and CCSID
of a string” on page 47.

Decimal floating-point to Varchar

decimal-floating-point-expression
An expression that returns a value that is the built-in DECFLOAT data type.

21. If the BIF_COMPATIBILITY system parameter is set to V9_DECIMAL_VARCHAR, or if the SYSCOMPAT_V9.VARCHAR
function is used, refer to the DB2 for z/OS Version 9 SQL Reference for the result of the VARCHAR function with decimal input.

Chapter 3. Functions 677

|
|

|

|

The result is the varying-length character string representation of the argument in
the form of an SQL decimal floating-point constant.

If the DECFLOAT value is one of the special values Infinity, sNaN, or NaN, the
strings ’INFINITY’, ’SNAN’, or ’NAN’, respectively, are returned. If the special
value is negative, a minus sign is the first character in the returned string. The
DECFLOAT special value sNaN does not result in an exception when it is
converted to a string.

The length attribute of the result is 42 bytes.

The CCSID of the result is determined from the context in which the function was
invoked. For more information, see “Determining the encoding scheme and CCSID
of a string” on page 47.

Floating-Point to Varchar

floating-point-expression
An expression that returns a value that is a built-in floating-point data type.

The result is a varying-length character string representation (VARCHAR) of the
argument in the form of an SQL floating-point constant.

The length attribute of the result is 24. The actual length of the result is the
smallest number of characters that can represent the value of the argument such
that the mantissa consists of a single digit other than zero followed by a period
and a sequence of digits. If the argument is negative, the first character of the
result is a minus sign; otherwise, the first character is a digit. If the argument is
zero, the result is '0E0'.

The CCSID of the result is determined from the context in which the function was
invoked. For more information, see “Determining the encoding scheme and CCSID
of a string” on page 47.

Row ID to Varchar

row-ID-expression
An expression that returns a value that is a built-in row ID data type.

The result is a varying-length character string representation (VARCHAR) of the
argument. It is bit data.

The length attribute of the result is 40. The actual length of the result is the length
of row-ID-expression.

Notes

Syntax alternatives: VARCHAR9 can be specified as an alternative to VARCHAR.
The result of the the function is the same, except when the first argument is
decimal data. See 'Decimal to Character' for a description of the result.

Examples

Example 1: Assume that host variable JOB_DESC is defined as VARCHAR(8). Using
sample table DSN8B10.EMP, set JOB_DESC to the varying-length string equivalent
of the job description (column JOB defined as CHAR(8)) for the employee with the
last name of 'QUINTANA'.

678 SQL Reference

|

|
|
|

SELECT VARCHAR(JOB)
INTO :JOB_DESC
FROM DSN8B10.EMP
WHERE LASTNAME = ’QUINTANA’;

Example 2: FIRSTNME is a VARGRAPHIC(6) column in a Unicode table T1. One of
its values is the string 'Jürgen' (X'004A00FC007200670055006E'). When FIRSTNME
has this value:

Function ... Returns ...
--
VARCHAR(FIRSTNME,3,CODEUNITS32) ’Jür’ -- x’4AC3BC72’
VARCHAR(FIRSTNME,3,CODEUNITS16) ’Jür’ -- x’4AC3BC72’
VARCHAR(FIRSTNME,3,OCTETS) ’Jü’ -- x’4AC3BC’

Chapter 3. Functions 679

VARCHAR_FORMAT
The VARCHAR_FORMAT function returns a character string representation of the
first argument in the format indicated by format-string.

Character to VARCHAR

�� VARCHAR_FORMAT(character-expression) ��

Timestamp to VARCHAR

�� VARCHAR_FORMAT(timestamp-expression,format-string) ��

Decimal floating-point to VARCHAR

�� VARCHAR_FORMAT(decimal-floating-point-expression)
, format-string

��

The schema is SYSIBM.

Character to VARCHAR

character-expression
An expression that returns a value that must be a built-in CHAR or
VARCHAR data type. If a supplied argument is a GRAPHIC or VARGRAPHIC
data type, it is first converted to VARCHAR before evaluating the function.

The result is a VARCHAR value with a length attribute that matches the length
attribute of the argument. The value of the result is the same as the value of
character-expression.

If character-expression returns graphic data, the CCSID of the result is the character
mixed CCSID that corresponds to the graphic argument. If character-expression
returns bit data, the result is bit data. Otherwise, the CCSID of the result is the
same as the CCSID of character-expression.

Timestamp to VARCHAR

timestamp-expression
An expression that returns a value that must be a DATE or TIMESTAMP, or a
valid character string or graphic string representation of a date or timestamp
that is not a CLOB or DBCLOB. If the argument is a graphic string
representation of a data or timestamp, it is first converted to a character string
before evaluating the function.

680 SQL Reference

If timestamp-expression is a DATE or a valid string representation of a date, it is
first converted to a TIMESTAMP(0) value, assuming a time of exactly midnight
(00.00.00). If the HH12 format element is specified and the time component of
the first argument is 24:00:00, the input timestamp value is adjusted to 00:00:00
and the date is incremented by one day.

For the valid formats of string representations of datetime values, see “String
representations of datetime values” on page 101.

format-string
An expression that returns a built-in character string or graphic string data
type that is not a LOB and has a length attribute that is not greater than 255
bytes. If the value is not a CHAR or VARCHAR data type, it is implicitly cast
to VARCHAR before the function is evaluated. Leading and trailing blanks are
removed from the string. If the argument returns timestamp data type, the
resulting substring must conform to the rules for formatting a timestamp. If
expression returns timestamp with a time zone, the resulting substring must
conform to the rules for formatting a timestamp with time zone.

The value is a template for how timestamp-expression is to be formatted.

A valid format-string can contain a combination of the format elements listed
below. Two format elements can be separated by one or more of the following
separator characters.
v minus sign (-)
v period (.)
v forward slash (/)
v comma (,)
v apostrophe (')
v semicolon (;)
v colon (:)
v blank ()

Separator characters can also be specified at the start or end of format-string.
format-string can also be an empty string, a string of blanks, or a string of
separator characters.

The following table lists the valid format elements that format-string can
contain.

Table 78. Valid format elements of format-string

Format element
Description (assuming the default is to return leading
zeros)

AM or PM 1 Meridian indicator (morning or evening) without periods.

This format element uses the exact strings “AM” or
“PM”.

A.M. or P.M. 1 Meridian indicator (morning or evening) with periods.

This format element uses the exact strings “A.M.” or
“P.M.”.

CC Century (00-99).

If the last two digits of the four digit year are zero, the
result is the first two digits of the year. Otherwise, the
result is the first two digits of the year plus one.

Chapter 3. Functions 681

Table 78. Valid format elements of format-string (continued)

Format element
Description (assuming the default is to return leading
zeros)

D 1 Day of the week (1-7).

1 is Sunday and 7 is Saturday.

DD Day of the month (01-31).

DDD Day of the year (001-366).

FF or FFn Fractional seconds (0-999999).

The number n is used to specify the number of digits to
include in the returned value. Valid values for n are 1-6
with no leading zeros. Specifying FF is equivalent to
specifying FF6. If the timestamp precision of
timestamp-expression is less than what is specified by the
format, zero digits are padded onto the right of the
specified digits.

HH Hour of the day (01-12).

HH12 Hour of the day (01-12).

HH24 Hour of the day (00-24).

I ISO year (0-9). The last digit of the year based on the ISO
week that is returned.

ID ISO day of the week (1-7).

1 is Monday and 7 is Sunday.

IW ISO week of the year (01-53).

The week starts on Monday and includes 7 days. Week 1
is the first week of the year to contain a Thursday, which
is equivalent to the first week of the year to contain
January 4.

IY ISO year (00-99).

The last two digits of the year based on the ISO week
that is returned.

IYY ISO year (000-999).

The last three digits of the year based on the ISO week
that is returned.

IYYY ISO year (0000-9999).

The last four digits of the year based on the ISO week
that is returned.

J Julian date (0000000-9999999).

MI Minute (00-59).

MM Month (01-12).

January is 01.

MONTH, Month, or month 1, 2 Name of the month in uppercase, sentence case, or
lowercase format in English.

MON, Mon, or mon 1, 2 Three-character abbreviated name of the month in
uppercase, sentence case, or lowercase format in English.

682 SQL Reference

Table 78. Valid format elements of format-string (continued)

Format element
Description (assuming the default is to return leading
zeros)

NNNNNN Microseconds (000000-999999).

This format is equivalent to specifying FF6.

Q Quarter (1-4).

January through March is 1.

RRRR Year (0000-9999).

RRRR behaves the same as YYYY.

RR Last two digits of the year (00-99). RR behaves the same
as YY.

SS Seconds (00-59).

SSSSS Seconds since the previous midnight (00000-86400).

TZH Time zone hour. (-24 to +24, This range accommodates
daylight saving time changes.)

TZM Time zone minute (00–59).

W Week of the month (1-5).

Week 1 starts on the first day of the month and ends on
the seventh day.

WW Week of the year (01-53).

Week 1 begins on January 1 and ends on January 7.

Y Last digit of the year (0-9).

YY Last two digits of the year (00-99).

YYY Last three digits of the year (000-999).

YYYY Year (0000-9999).

Notes:

1. This format element is case sensitive. In cases where the format elements are ambiguous, the case insensitive
format elements will be considered first.

2. Only these exact spellings and case combinations can be used. If this format element is specified in an invalid
case combination an error is returned.

If expression is a TIMESTAMP WITHOUT TIME ZONE value, format-string
must not contain TZH or TZM

The result is a representation of timestamp-expression in the format specified by
format-string. format-string is interpreted as a series of format elements that can be
separated by one or more separator characters. A string of characters in
format-string is interpreted as the longest matching format element in the previous
table. If two format elements that contain the same characters are not delimited by
a separator character, the specification is interpreted, starting from the left, as the
longest matching element in the table, and continues until matches are found for
the remainder of the format string. For example, 'YYYYYYDD' is interpreted as the
format elements, 'YYYY', 'YY', and 'DD'.

Chapter 3. Functions 683

If the first argument is timestamp with time zone, or the second argument is a
constant that contains a format element for a time zone, the resulting string
contains a timestamp with time zone. Otherwise, the resulting string does not
contain a time zone.

The result is the varying-length character string that contains expression in the
format that is specified by format-string. The length attribute of the result is the
maximum of 255 and the length attribute of format-string. The format-string
determines the actual length of the result. The actual length must not be greater
than the length attribute of the result.

The result can be null; if the argument is null, the result is the null value.

The CCSID of the result is determined from the context in which the function is
invoked. For more information, see “Determining the encoding scheme and CCSID
of a string” on page 47.

Decimal floating-point to VARCHAR

decimal-floating-point-expression
An expression that returns a value of any built-in numeric data type. If the
argument is not a decimal floating-point value, it is converted to
DECFLOAT(34) for processing.

format-string
An expression that must return a value that is a built-in CHAR, VARCHAR, or
numeric data type. If the value is not a CHAR or VARCHAR data type, it is
implicitly cast to VARCHAR before evaluating the function. If the supplied
argument is a GRAPHIC or VARGRAPHIC data type, it is first converted to
VARCHAR before evaluating the function. The actual length must not be
greater than 254 bytes.

The value is a template for how decimal-floating-point-expression is to be
formatted. A format-string must contain a valid combination of the listed format
elements according to the following rules:
v A sign format element ('S', 'MI', 'PR') can be specified only one time.
v A decimal point format element can be specified only one time.
v Alphabetic format elements must be specified in upper case
v A prefix format element can only be specified at the beginning of the format

string, before any format elements that are not prefix format elements. When
multiple prefix format elements are specified they can be specified in any
order.

v A suffix format element can only be specified at the end of the format string,
after any format elements that are not suffix format elements.

v A comma format element must not be the first format element that is not a
prefix format element. There can be any number of comma format elements.

v Blanks must not be specified between format elements. Leading and trailing
blanks can be specified but are ignored when formatting the result.

684 SQL Reference

Table 79. Format elements for the VARCHAR_FORMAT (decimal floating-point to VARCHAR)
function

Format element Description

0 Represents a digit.

Leading zeros in a number are formatted as
zeros.

9 Represents a digit that can be included at the
specified location.

Leading zeros in a number are formatted as
blanks.

S
Prefix If decimal-floating-point-expression is a

negative number, a leading minus
sign (−) is included at the specified
location in the result. If
decimal-floating-point-expression is a
positive number, a leading plus sign
(+) is included in the result.

$
Prefix A dollar sign ($) is included at the

specified location in the result.

MI
Suffix If decimal-floating-point-expression is a

negative number, a trailing minus
sign (−) is included in the result. If
decimal-floating-point-expression is a
positive number, a trailing blank is
included in the result.

PR
Suffix If decimal-floating-point-expression is a

negative number, a leading less than
character (<) and a trailing greater
than character (>) are included in
the result. If decimal-floating-point-
expression is a positive number, a
leading blank and a trailing blank
are included in the result.

, (comma) Each comma represents a group separator
that is included at the specified location in
the result provided there would be a
character to the left of it that is not a prefix
character.

. (period/decimal point) A period represents the decimal point that is
included at the specified location in the
result.

If format-string is not specified, the function is equivalent to
VARCHAR(decimal-floating-point-expression).

The result is a representation of the decimal-floating-point-expression value (which
might be rounded) in the format that is specified by format-string. Prior to being
formatted, the value of decimal-floating-point-expression is rounded by using the
ROUND function, if the number of digits to the right of the decimal point is less
than the number of digit format elements ('0' or '9') to the right of the decimal
point in format-string. format-string is applied according to the following rules:

Chapter 3. Functions 685

v The result does not include any digit characters to the left of the decimal point if
all of the following conditions are true:
– -1 < rounded-input-value < 1
– format-string does not include a '0' format element to the left of the decimal

point
– format-string includes at least one digit format element ('0' or '9') to the right

of the decimal point
v The result includes a single 0 character immediately before the implicit or

explicit decimal point if all of the following conditions are true:
– The value of rounded-input-value is 0 or -0
– format-string includes only the '9' digit format elements to the left of the

implicit or explicit decimal point
– format-string does not include any digit format elements to the right of the

decimal point
v If format-string includes both '0' and '9' format elements to the left of the decimal

point, the position of the first digit format element from the left side of the
format string determines the presence of leading blanks or zeroes. All '9' format
elements specified after the leftmost '0' format element to the left of the implicit
or explicit decimal point are treated the same as if a '0' format element had been
specified. For example, the format-string value '99099' is the same as the value
'99000'.

v If the number of digits to the right of the decimal point in rounded-input-value is
less than the number of digit format elements to the right of the decimal point
in format-string, the result includes the number of digit characters to the right of
the decimal point that corresponds to the number of digit format elements to the
right of the decimal point in format-string, padded to the right with zeros.

v If the number of digits to the left of the decimal point in rounded-input-value is
greater than the number of digit format elements to the left of the decimal point
in format-string, the result is a string of number sign (#) characters that matches
the length that format-string produces in the result for valid values.

v If the value of rounded-input-value represents any of the positive or negative
special values, Infinity, sNaN, or NaN, the string 'INFINITY', 'SNAN', 'NAN',
'-INFINITY', '-SNAN', or '-NAN' is returned without using the format that is
specified by format-string. The decimal floating-point special value sNaN does
not result in an exception when converted to a string.

v If format-string does not include any of the sign format elements 'S', ''MI', or
'PR', and the value of rounded-input-value is negative, a minus sign (−) is
included in the result. Otherwise, a blank is included in the resulting string. The
minus sign or blank immediately precedes the first digit of the result to the left
of the decimal point, or the decimal point if there are no digits to the left of the
decimal point.

The result is a varying-length character string representation of rounded-input-value.
If a single argument is specified the length attribute is 42. Otherwise the length
attribute is 254. The actual length of the result is determined by format-string, if
specified. Otherwise, the actual length of the result is the smallest number of
characters that can represent the value of rounded-input-value. If the resulting string
exceeds the length attribute of the result, the result will be truncated.

The CCSID of the result is determined from the context in which the function is
invoked. For more information, see “Determining the encoding scheme and CCSID
of a string” on page 47

686 SQL Reference

Notes

Julian and Gregorian calendar:
For timestamp to a varying length character string, the transition from the
Julian calendar to the Gregorian calendar on 15 October 1582 is taken into
account by this function.

Determinism:
VARCHAR_FORMAT is a deterministic function.

Using the 'D', 'Y', and 'y' format elements:
DB2 for z/OS does not support the 'DY', 'dy', and 'Dy' format elements
that are supported by other platforms. If 'DY' or 'Dy' is specified in the
format string, it is interpreted as the 'D' format element followed by the 'Y'
or 'y' format element. This behavior might change in a future release. To
ensure that a 'D' followed by 'Y' or 'y' is interpreted as two separate format
elements, include a separator character after the 'D' format element.

Syntax alternatives:
TO_CHAR can be specified as a synonym for VARCHAR_FORMAT.

Example: Timestamp to VARCHAR
Set the character variable TVAR to a string representation of the timestamp
value of RECEIVED from CORPDATA.IN_TRAY, formatted as
'YYYY-MM-DD HH24:MI:SS.

SELECT VARCHAR_FORMAT(RECEIVED,’YYYY-MM-DD HH24:MI:SS’)
INTO :TVAR
FROM CORPDATA.IN_TRAY;

Assuming that the value in the RECEIVED column is 'January 1, 2000 at
10am', the following string is returned:
’2000-01-01 10:00:00’

Assuming that the value in the RECEIVED column is now one second
before the beginning of the year 2000 ('December 31, 1999 at 23:59:59pm',
the following string is returned:
’1999-12-31 23:59:59’

The result would be different if HH12 had been specified instead of HH24
in the format string:
’1999-12-31 11:59:59’

Example: Timestamp to VARCHAR
Assume that the variable TMSTAMP is defined as a TIMESTAMP and has
the following value: 2007-03-09-14.07.38.123456. The following examples
show several invocations of the function and the resulting string values.
The result data type in each case is VARCHAR(255).
Function invocation Result
------------------- ------
VARCHAR_FORMAT(TMSTAMP,’YYYYMMDDHHMISSFF3’) 20070309020738123
VARCHAR_FORMAT(TMSTAMP,’YYYYMMDDHH24MISS’) 20070309140738
VARCHAR_FORMAT(TMSTAMP,’YYYYMMDDHHMI’) 200703090207
VARCHAR_FORMAT(TMSTAMP,’DD/MM/YY’) 09/03/07
VARCHAR_FORMAT(TMSTAMP,’MM-DD-YYYY’) 03-09-2007
VARCHAR_FORMAT(TMSTAMP,’J’) 2454169
VARCHAR_FORMAT(TMSTAMP,’Q’) 1
VARCHAR_FORMAT(TMSTAMP,’W’) 2
VARCHAR_FORMAT(TMSTAMP,’IW’) 10
VARCHAR_FORMAT(TMSTAMP,’WW’) 10

Chapter 3. Functions 687

VARCHAR_FORMAT(TMSTAMP,’Month’) March
VARCHAR_FORMAT(TMSTAMP,’MONTH’) MARCH
VARCHAR_FORMAT(TMSTAMP,’MON’) MAR

Example: Timestamp to VARCHAR
Assume that the variable DTE is defined as a DATE and has the value of
'2007-03-09'. The following examples show several invocations of the
function and the resulting string values. The result data type in each case
is VARCHAR(255):
Function invocation Result
------------------- ------
VARCHAR_FORMAT(DTE,’YYYYMMDD’) 20070309
VARCHAR_FORMAT(DTE,’YYYYMMDDHH24MISS’) 20070309000000

Assuming that today is May 26, 2008, the function returns:
26-MAY-2007

If the format string is 'YYYY-MON-YYYY', the result would be:
2007-MAY-2007

Example: Timestamp to VARCHAR
Format the hour of the specified string representation of a timestamp using
a 12 hour clock and a 24 hour clock:

SELECT
VARCHAR_FORMAT(TIMESTAMP(’1979-04-07-14.00.00.000000’), ’HH’),
VARCHAR_FORMAT(TIMESTAMP(’1979-04-07-14.00.00.000000’), ’HH12’),
VARCHAR_FORMAT(TIMESTAMP(’1979-04-07-14.00.00.000000’), ’HH24’),
VARCHAR_FORMAT(TIMESTAMP(’2000-01-01-00.00.00.000000’), ’HH’),
VARCHAR_FORMAT(TIMESTAMP(’2000-01-01-12.00.00.000000’), ’HH’),
VARCHAR_FORMAT(TIMESTAMP(’2000-01-01-24.00.00.000000’), ’HH’),
VARCHAR_FORMAT(TIMESTAMP(’2000-01-01-00.00.00.000000’), ’HH12’),
VARCHAR_FORMAT(TIMESTAMP(’2000-01-01-12.00.00.000000’), ’HH12’),
VARCHAR_FORMAT(TIMESTAMP(’2000-01-01-24.00.00.000000’), ’HH12’),
VARCHAR_FORMAT(TIMESTAMP(’2000-01-01-00.00.00.000000’), ’HH24’),
VARCHAR_FORMAT(TIMESTAMP(’2000-01-01-12.00.00.000000’), ’HH24’),
VARCHAR_FORMAT(TIMESTAMP(’2000-01-01-24.00.00.000000’), ’HH24’)

FROM SYSIBM.SYSDUMMY1;

The previous SELECT statement returns the following values:
’02’ ’02’ ’14’ ’12’ ’12’ ’12’ ’12’ ’12’ ’12’ ’00’ ’12’ ’24’

Note that the values '00' and '24' on a 24 hour scale both map to a value of
'12' on a 12 hour scale.

Example: Timestamp to VARCHAR
Format the month, day, and hour of the specified string representation of a
timestamp using a 24 hour clock, and indicate that the result should not
contain leading zeros for the components:

SELECT
VARCHAR_FORMAT(TIMESTAMP(’1979-04-07-09.14.00.000000’),

’FM MM DD HH24’),
FROM SYSIBM.SYSDUMMY1;

The previous SELECT statement returns the following values:
4 7 9

Example: Timestamp with time zone to VARCHAR
Assume that column PRSTSZ contains a timestamp with time zone value
of '2008-02-29.20.00.000000 -08:00'. The following statement returns the
value '2008-02-29 20:00:00.000000 -08:00'.

688 SQL Reference

SELECT VARCHAR_FORMAT(PRSTSZ, ’YYYY-MM-DD HH24:MI:SS.NNNNNN TZH:TZM’))
FROM PROJECT;

Example: decimal floating-point to VARCHAR
Assume that the variables POSNUM and NEGNUM are defined as
DECFLOAT(34) and have the following values: '1234.56' and '-1234.56',
respectively. The following examples show several invocations of the
function and the resulting string values. The result data type in each case
is VARCHAR(254).

Function invocation Result

VARCHAR_FORMAT(POSNUM) '1234.56'

VARCHAR_FORMAT(NEGNUM) '-1234.56'

VARCHAR_FORMAT(POSNUM,’9999.99’) '1234.56'

VARCHAR_FORMAT(NEGNUM,’9999.99’) '1234.56'

VARCHAR_FORMAT(POSNUM,’99999.99’) ' 1234.56'

VARCHAR_FORMAT(NEGNUM,’99999.99’) ' 1234.56'

VARCHAR_FORMAT(POSNUM,’00000.00’) '01234.56'

VARCHAR_FORMAT(NEGNUM,’00000.00’) '01234.56'

VARCHAR_FORMAT(POSNUM,’9999.99MI’) '1234.56 '

VARCHAR_FORMAT(NEGNUM,’9999.99MI’) '1234.56-'

VARCHAR_FORMAT(POSNUM,’S9999.99’) '+1234.56'

VARCHAR_FORMAT(NEGNUM,’S9999.99’) '-1234.56'

VARCHAR_FORMAT(POSNUM,’9999.99PR’) ' 1234.56 '

VARCHAR_FORMAT(NEGNUM,’9999.99PR’) '<1234.56>'

VARCHAR_FORMAT(POSNUM,’S$9,999.99’) '+$1,234.56'

VARCHAR_FORMAT(NEGNUM,’S$9,999.99’) '-$1,234.56'

Chapter 3. Functions 689

VARGRAPHIC
The VARGRAPHIC function returns a varying-length graphic string representation
of a the first argument. The first argument can be a character string value or a
graphic string value.

Character to Vargraphic:

�� VARGRAPHIC(character-expression)
, integer

, CODEUNITS16
CODEUNITS32

��

Graphic to Vargraphic:

�� VARGRAPHIC(graphic-expression)
, integer

, CODEUNITS16
CODEUNITS32

��

The schema is SYSIBM.

The result of the function is a varying-length graphic string (VARGRAPHIC).

The result can be null; if the first argument is null, the result is the null value.

The length attribute and actual length of the result are measured in double-byte
characters because the result is a graphic string.

Character to Vargraphic

character-expression
An expression that returns a value of a built-in character string data type that
contains an EBCDIC-encoded or Unicode-encoded character string value. It
cannot be BIT data. The argument does not need to be mixed data, but any
occurrences of X'0E' and X'0F' in the string must conform to the rules for
EBCDIC mixed data. (See “Character strings” on page 84 for these rules.)

integer
The length attribute of the resulting varying-length graphic string. The value
must be an integer constant between 1 and 16352.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length
attribute of the final result” on page 90 for information about how to calculate
the length attribute of the result string.

If integer is not specified and if the character-expression is an empty string
constant or has a value X'0E0F', the length attribute of the result is 1 and the
result is an empty string. Otherwise, the length attribute of the result is the
same as the length attribute of the first argument.

690 SQL Reference

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer. If CODEUNITS16 or
CODEUNITS32 is specified, the input is EBCDIC, and there is no
corresponding CCSID for EBCDIC GRAPHIC data, an error occurs.

CODEUNITS16
Specifies that integer is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String
unit specifications” on page 87.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of character-expression. If the length of character-expression, as
measured in single-byte characters, is greater than the specified length of the
result, as measured in double-byte characters, the result is truncated. Unless all the
truncated characters are blanks appropriate for character-expression, a warning is
returned.

The CCSID of the result is the graphic CCSID that corresponds to the character
CCSID of character-expression. If the input is EBCDIC and there is no system CCSID
for EBCDIC GRAPHIC data, the CCSID of the result is X'FFFE'.

For EBCDIC input data:

Each character of character-expression determines a character of the result. The
argument might need to be converted to the native form of mixed data before the
result is derived. Let M denote the system CCSID for mixed data. The argument is
not converted if any of the following conditions is true:
v The argument is mixed data and its CCSID is M.
v The argument is SBCS data and its CCSID is the same as the system CCSID for

SBCS data. In this case, the operation proceeds as if the CCSID of the argument
is M.

Otherwise, the argument is a new string S derived by converting the characters to
the coded character set identified by M. If there is no system CCSID for mixed
data, conversion is to the coded character set that the system CCSID for SBCS data
identifies.

The result is derived from S using the following steps:
v Each shift character (X'0E' or X'0F') is removed.
v Each double-byte character remains as is.
v Each single-byte character is replaced by a double-byte character.

The replacement for a single-byte character is the equivalent DBCS character if an
equivalent exists. Otherwise, the replacement is X'FEFE'. The existence of an
equivalent character depends on M. If there is no system CCSID for mixed data,
the DBCS equivalent of X'xx' for EBCDIC is X'42xx', except for X'40', whose DBCS
equivalent is X'4040'.

For Unicode input data:

Each character of character-expression determines a character of the result. The
argument might need to be converted to the native form of mixed data before the

Chapter 3. Functions 691

result is derived. Let M denote the system CCSID for mixed data. The argument is
not converted if any of the following conditions is true:
v The argument is mixed data, and its CCSID is M.
v The argument is SBCS data, and its CCSID is the same as the system CCSID for

SBCS data. In this case, the operation proceeds as if the CCSID of the argument
is M.

Otherwise, the argument is a new string S derived by converting the characters to
the coded character set identified by M.

The result is derived from S using the following steps:
v Each non-supplementary character is replaced by a Unicode double-byte

character (a UTF-16 code point). A non-supplementary character in UTF-8 is
between 1 and 3 bytes.

v Each supplementary character is replaced by a pair of Unicode double-byte
characters (a pair of UTF-16 code points).

The replacement for a single-byte character is the Unicode equivalent character if
an equivalent exists. Otherwise, the replacement is X'FFFD'.

Graphic to Vargraphic

graphic-expression
An expression that returns a value of a built-in graphic string data type that
contains an EBCDIC-encoded or Unicode-encoded graphic string value.

integer
The length attribute for the resulting varying-length graphic string. The value
must be an integer constant between 1 and 16352.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length
attribute of the final result” on page 90 for information about how to calculate
the length attribute of the result string.

If integer is not specified and if the graphic-expression is an empty string
constant, the length attribute of the result is 1 and the result is an empty string.
Otherwise, the length attribute of the result is the same as the length attribute
of the first argument.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer. If CODEUNITS16 or
CODEUNITS32 is specified, the input is EBCDIC, and there is no
corresponding CCSID for EBCDIC GRAPHIC data, an error occurs.

CODEUNITS16
Specifies that integer is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String
unit specifications” on page 87.

The actual length of the result depends on the number of characters in
graphic-expression. If the length of graphic-expression is greater than the length
specified, the result is truncated. Unless all of the truncated characters are
double-byte blanks, a warning is returned.

The CCSID of the result is the same as the CCSID of graphic-expression.

692 SQL Reference

Example 1: Assume that GRPHCOL is a VARGRAPHIC column in table TABLEX
and MIXEDSTRING is a character string host variable that contains mixed data.
For various rows in TABLEX, an application uses a positioned UPDATE statement
to replace the value of GRPHCOL with the value of MIXEDSTRING. Before
GRPHCOL can be updated, the current value of MIXEDSTRING must be converted
to a varying-length graphic string. The following statement shows how to code the
VARGRAPHIC function within the UPDATE statement to ensure this conversion.

EXEC SQL UPDATE TABLEX
SET GRPHCOL = VARGRAPHIC(:MIXEDSTRING)
WHERE CURRENT OF CRSNAME;

Example 2: FIRSTNAME is a VARCHAR(12) column in table T1. One of its values is
the string 'Jürgen'. When FIRSTNAME has this value:

Function ... Returns ...
--
VARGRAPHIC(FIRSTNAME,3,CODEUNITS32) ’Jür’ -- x’004A00FC0072’
VARGRAPHIC(FIRSTNAME,3,CODEUNITS16) ’Jür’ -- x’004A00FC0072’
VARGRAPHIC(FIRSTNAME,3,OCTETS) An error because OCTETS not allowed

Chapter 3. Functions 693

VERIFY_GROUP_FOR_USER
The VERIFY_GROUP_FOR_USER function returns a value that indicates whether
the primary authorization ID and the secondary authorization IDs that are
associated with the first argument are in the authorization names that are specified
in the list of the second argument.

�� �VERIFY_GROUP_FOR_USER (SESSION_USER , group-name-expression)
USER

��

The schema is SYSIBM.

SESSION_USER or USER
Specifies the value of the SESSION_USER (or USER) special register.

group-name-expression
An expression that specifies an authorization name. The existence of the
authorization name at the current server is not verified. group-name-expression
must return a built-in character string data type or graphic string data type
that is not a LOB. The string must have a length that does not exceed the
maximum length of an SQL identifier. The content of the string is not folded to
uppercase and is not left justified.

The result of the function is a large integer. The result cannot be null.

The result is 1 if the primary or secondary authorization IDs that are associated
with the user that is identified by the SESSION_USER (or USER) special register is
in the list that is specified by group-name-expression. Otherwise, the result is 0.

The VERIFY_GROUP_FOR_USER function is deterministic within a connection. It
is not deterministic across connections. The function can be referenced in a
CREATE MASK or a CREATE PERMISSION statement and is considered for table
expressions or the merging of views.

Example: In the following example, the EMPLOYEE table has column access control
enabled. If the connection is established outside a trusted context and Mary, who
has a secondary authorization ID of “MGR”, queries the social security number of
Tom from the EMPLOYEE table, the social security number is returned. When
Mary is no longer a manager, the same query displays the last four digits of Tom's
social security number.

Assume that a user who has SECADM authority has created the following column
mask:
CREATE MASK SSN_MASK ON EMPLOYEE
FOR COLUMN SSN
RETURN
CASE WHEN VERIFY_GROUP_FOR_USER(SESSION_USER, ’MGR’) = 1
THEN SSN
ELSE ’XXX-XX-’ || SUBSTR(SSN, 8, 4)

694 SQL Reference

END
ENABLE;

COMMIT;

An ALTER TABLE statement is then issued to activate the column mask on the
EMPLOYEE table:
ALTER TABLE EMPLOYEE
ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

Mary connects to DB2, issues the following query, then disconnects from DB2:
SELECT SSN
FROM EMPLOYEE
WHERE NAME = ’Tom’;

Mary receives Tom's social security number.

When Mary is no longer a manager, the secondary authorization ID, MGR is
removed for her authorization ID. The next time Mary connects to DB2 and issues
the following command, only the last four digits of Tom's social security number
are displayed because of the column mask SSN_MASK:
SELECT SSN
FROM EMPLOYEE
WHERE NAME = ’Tom’;

Chapter 3. Functions 695

VERIFY_ROLE_FOR_USER
The VERIFY_ROLE_FOR_USER function returns a value that indicates whether the
roles that are associated with the authorization ID that is specified in the first
argument are included in the role names that are specified in the list of the second
argument.

If the only way to acquire a role is under a trusted connection that is associated
with a trusted context, the VERIFY_ROLE_FOR_USER function is equivalent to the
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER function.

�� �VERIFY_ROLE_FOR_USER (SESSION_USER , role-name-expression)
USER

��

The schema is SYSIBM.

SESSION_USER or USER
Specifies the value of the SESSION_USER (or USER) special register.

role-name-expression
An expression that specifies a role name. The existence of the role name at the
current server is not verified. role-name-expression must return a built-in
character string data type or graphic string data type that is not a LOB. The
string must have a length that does not exceed the maximum length of an SQL
identifier. The content of the string is not folded to uppercase and is not left
justified.

The result of the function is a large integer. The result cannot be null.

The result is 1 if any of the roles that are associated with the user that is identified
by the SESSION_USER (or USER) special register is in the list of roles specified by
role-name-expression. Otherwise, the result is 0.

The VERIFY_ROLE_FOR_USER function is deterministic within a trusted
connection. It is not deterministic across trusted connections. The function can be
referenced in a CREATE MASK or a CREATE PERMISSION statement and is
considered for table expressions or the merging of views.

Example 1: Assume that the following statements have been issued to create
specific roles and the trusted context CTX1:
CREATE ROLE EMPLOYEE;
COMMIT;

CREATE ROLE MGR;
COMMIT;

CREATE ROLE PAYROLL;
COMMIT;

CREATE TRUSTED CONTEXT CTX1
BASED UPON CONNECTION USING SYSTEM AUTHID ADMF001
ATTRIBUTES (ADDRESS ’9.30.131.203’, ENCRYPTION ’LOW’)
DEFAULT ROLE EMPLOYEE

696 SQL Reference

ENABLE
WITH USE FOR SAM, JOE ROLE MGR WITH AUTHENTICATION;

COMMIT;

Joe, who is a manager, issues the following dynamic query through the trusted
connection CTX1 to view the salaries of the employees in the DSN8910.EMP table
that are in his department:
SELECT SALARY FROM DSN8910.EMP
WHERE VERIFY_ROLE_FOR_USER(SESSION_USER,’MGR’,’PAYROLL’)= 1
AND WORKDEPT = ?;

Example 2: For the following example, suppose that a user with SECADM authority
needs to control access for specific users who execute a statement that is accessing
a table:

Is the current user, B, using role X to run a statement owned by user C
SESSION_USER = B AND
VERIFY_ROLE_FOR_USER(SESSION_USER, ’X’)

Is the current user, B, using role X to run a statement owned by role D
SESSION_USER = B AND
VERIFY_ROLE_FOR_USER(SESSION_USER, ’X’)

Is the current user, B, using role B to execute a dynamic statement
SESSION_USER = B AND
VERIFY_ROLE_FOR_USER(SESSION_USER, ’B’)

Chapter 3. Functions 697

VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER
The VERIFY_TRUSTED_CONTEXT_FOR_USER function returns a value that
indicates whether the authorization ID that is associated with first argument has
acquired a role in a trusted connection and whether that acquired role is included
in the role names that are specified in the list of the second argument.

�� �VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER (SESSION_USER , role-name-expression)
USER

��

The schema is SYSIBM.

SESSION_USER or USER
Specifies the value of the SESSION_USER (or USER) special register.

role-name-expression
An expression that specifies a role name. The existence of the role name at the
current server is not verified. role-name-expression must return a built-in
character string data type or graphic string data type that is not a LOB. The
string must have a length that does not exceed the maximum length of an SQL
identifier. The content of the string is not folded to uppercase and is not left
justified.

The result of the function is a large integer. The result cannot be null.

The result is 1 if the user that is identified by the SESSION_USER (or USER)
special register has acquired a role under a trusted connection that is associated
with a trusted context and that role is in the list of role-name-expression. Otherwise,
the result is 0.

The VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER function is deterministic
within a trusted connection. It is not deterministic across trusted connections. The
function can be referenced in a CREATE MASK or a CREATE PERMISSION
statement and is considered for table expressions or the merging of views.

Example 1: Assume that the following statements have been issued to create
specific roles and the trusted context CTX1:
CREATE ROLE EMPLOYEE;
COMMIT;

CREATE ROLE MGR;
COMMIT;

CREATE ROLE PAYROLL;
COMMIT;

CREATE TRUSTED CONTEXT CTX1
BASED UPON CONNECTION USING SYSTEM AUTHID ADMF001
ATTRIBUTES (ADDRESS ’9.30.131.203’, ENCRYPTION ’LOW’)
DEFAULT ROLE EMPLOYEE
ENABLE
WITH USE FOR SAM, JOE ROLE MGR WITH AUTHENTICATION;

COMMIT;

698 SQL Reference

Joe, who is a manager, issues the following dynamic query through the trusted
connection CTX1 to view the salaries of the employees in the DSN8910.EMP table
that are in his department:
SELECT SALARY FROM DSN8910.EMP
WHERE VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,’MGR’,’PAYROLL’)= 1
AND WORKDEPT = ?;

Example 2: For the following example, suppose that a user with SECADM authority
needs to control access for specific users who execute a statement that is accessing
a table:

Is the current user, B, using role X to run a statement owned by user C
SESSION_USER = B AND
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER, ’X’)

Is the current user, B, using role X to run a statement owned by role D
SESSION_USER = B AND
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER, ’X’)

Is the current user, B, using role B to execute a dynamic statement
SESSION_USER = B AND
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER, ’B’)

Chapter 3. Functions 699

WEEK
The WEEK function returns an integer in the range of 1 to 54 that represents the
week of the year. The week starts with Sunday, and January 1 is always in the first
week.

�� WEEK(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, or a graphic string. If
expression is a character or graphic string, it must not be a CLOB or DBCLOB, and
its value must be a valid string representation of a date or timestamp with an
actual length that is not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime
values” on page 101.

If expression is a timestamp with a time zone, or a valid string representation of a
timestamp with a time zone, the result is determined from the UTC representation
of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Example 1: Using sample table DSN8B10.PROJ, set the integer host variable WEEK
to the week of the year that project 'AD2100' ended.

SELECT WEEK(PRENDATE)
INTO :WEEK
FROM DSN8B10.PROJ
WHERE PROJNO = ’AD2100’;

The result is that WEEK is set 6.

Example 2: The following invocations of the WEEK function returns the same
result:
SELECT WEEK(’1993-08-10-20.00.00’),

WEEK(’1993-08-10-20.00.00-08:00’),
WEEK(’1993-08-10-20.00.00+09:00’)
FROM SYSIBM.SYSDUMMY1;

For each invocation of the WEEK function in this SELECT statement, the result is
33.

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
'1993-08-10-20.00.00'.

700 SQL Reference

WEEK_ISO
The WEEK_ISO function returns an integer in the range of 1 to 53 that represents
the week of the year. The week starts with Monday and includes seven days. Week
1 is the first week of the year that contains a Thursday, which is equivalent to the
first week that contains January 4.

�� WEEK_ISO(expression) ��

With the WEEK_ISO function, the first one, two, or three days in January might be
included in the last week of the previous year. Likewise, the last one, two, or three
days in December might be included in the first week of the next year.

The schema is SYSIBM.

The argument must be a date, a timestamp, or a valid string representation of a
date or timestamp. A string representation must not be a CLOB or DBCLOB value
and must have an actual length that is not greater than 255 bytes. For the valid
formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 101.

If expression is a timestamp with a time zone, or a valid string representation of a
timestamp with a time zone, the result is determined from the UTC representation
of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Example 1: Using sample table DSN8B10.PROJ, set the integer host variable
WEEKISO to the week of the year that project 'AD2100' ended.

SELECT WEEK_ISO(PRENDATE)
INTO :WEEKISO
FROM DSN8B10.PROJ
WHERE PROJNO = ’AD2100’;

Example 2: The following list shows what is returned by the WEEK_ISO function
for various dates.

DATE: WEEK_ISO returns:

2003-12-28 52
2003-12-31 1
2004-01-01 1
2005-01-01 53
2005-01-04 1
2005-12-31 52
2006-01-01 52
2006-01-03 1

Example 3: The following invocations of the WEEK_ISO function returns the same
result:

Chapter 3. Functions 701

SELECT WEEK_ISO(’1993-08-10-20.00.00’),
WEEK_ISO(’1993-08-10-20.00.00-08:00’),
WEEK_ISO(’1993-08-10-20.00.00+09:00’)
FROM SYSIBM.SYSDUMMY1;

For each invocation of the WEEK_ISO function in this SELECT statement, the
result is 32.

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
'1993-08-10-20.00.00' .

702 SQL Reference

XMLATTRIBUTES
The XMLATTRIBUTES function constructs XML attributes from the arguments.
This function can be used as an argument only for the XMLELEMENT function.

�� �

,

XMLATTRIBUTES(attribute-value-expression)
AS attribute-name

��

The schema is SYSIBM.

The result is an XML sequence that contains an XQuery attribute node for each
non-null attribute-value-expression argument.

attribute-value-expression
An expression that returns a value for the attribute. The data type of
attribute-value-expression must not be ROWID, a LOB, a distinct type that is
based on a ROWID or a LOB, or XML.

The result of attribute-value-expression is mapped to an XML value according to
the rules for mapping an SQL value to an XML value. If the expression is not a
simple column reference, an attribute name must be specified.

AS attribute-name
Specifies an attribute name. The name is an SQL identifier that must be in the
form of an XML qualified name, or QName. If attribute-name is a qualified
name, the namespace prefix must be declared within the scope of the qualified
name.

attribute-name cannot be 'xmlns' or prefixed with 'xmlns:'. A namespace is
declared using the function XMLNAMESPACES. The attribute names for an
element must be unique for the XML element to be well-formed.

If attribute-name is not specified, the expression for attribute-value must be a
column name. The attribute name will be created from the column name using
the fully escaped mapping from a column name to an XML attribute name.

The result of the function is an XML value. The result can be null; if all
attribute-value-expression arguments are null, the result is the null value.

Chapter 3. Functions 703

XMLCOMMENT
The XMLCOMMENT function returns an XML value with a single comment node
from a string expression. The content of the comment node is the value of the
input string expression, mapped to Unicode (UTF-8).

�� XMLCOMMENT(string-expression) ��

The schema is SYSIBM.

string-expression
An expression that returns a value of a built-in character or graphic string that
is not a LOB and is not bit data. The result of string-expression is converted to
UTF-8 and then parsed to check for conformance to the content of XML
comment as specified by the following rules:
v '--' (double-hyphen) must not occur in the string expression
v The string expression must not end with a hyphen ('-')
v Each character of the string can be any Unicode character, excluding the

surrogate blocks, X'FFFE', and X'FFFF'

If string-expression does not conform to the previous rules, an error is returned.

The result of the function is an XML value that is an XML sequence that contains
one XML comment node.

The result can be null; if the argument is null, the result is the null value.

Example: Generate an XML comment:
SELECT XMLCOMMENT(’This is an XML comment’)

FROM SYSIBM.SYSDUMMY1;

The result of the query would look similar to the following result:
<!--This is an XML comment-->

704 SQL Reference

XMLCONCAT
The XMLCONCAT function returns an XML sequence that contains the
concatenation of a variable number of XML input arguments.

�� �

,

XMLCONCAT(XML-expression)
XML-expression

��

The schema is SYSIBM.

XML-expression
An expression that returns an XML value.

The data type of the result is XML. The result of the function is an XML sequence
that contains the concatenation of the non-null input XML values. Null values in
the input are ignored. The result can be null; if the result of every input value is
null, the result is the null value.

Example: Concatenate first name and last name elements by using 'first' and 'last'
element names for each employee.

SELECT XMLSERIALIZE(XMLCONCAT
(XMLELEMENT (NAME "first", e.fname),

XMLELEMENT (NAME "last", e.lname)
)) AS "result"

FROM employees e;

The result of the query would look similar to the following result:
result

<first>John</first><last>Smith</last>
<first>Mary</first><last>Smith</last>

Chapter 3. Functions 705

XMLDOCUMENT
The XMLDOCUMENT function returns an XML value with a single document
node and zero or more nodes as its children. The content of the generated XML
document node is specified by a list of expressions.

�� �

,

XMLDOCUMENT(XML-expression) ��

The schema is SYSIBM.

XML-expression
An expression that returns an XML value. A sequence item in the XML value
must not be an attribute node. If XML-expression returns a null value, it is
ignored for further processing. However, if all XML-expression values are null,
the result of the function is the null value.

The result of the function is an XML value.

The result can be null; if all of the arguments are null, the result is the null value.

The resulting XML value is built from the list of XML-expression arguments. The
children of the resulting document node are constructed as follows:
1. All of the non-null XML values that are returned by XML-expression are

concatenated together. The result is a sequence of nodes or atomic values,
which is referred to in the following steps as the input sequence. Any document
node in the input sequence is replaced by copies of its children.

2. For each node in the input sequence, a new deep copy of the node is
constructed. A deep copy of a node is a copy of the whole subtree that is rooted
at that node, including the node itself and its descendants and attributes. Each
copied node has a new node identity. Copied element nodes are given the type
annotation 'xdt:untyped', and copied attribute nodes are given the type
annotation 'xdt:untypedAtomic'. For each adjacent sequence of one or more
atomic values that is returned in the input sequence, a new text node is
constructed that contains the result of casting each atomic value to a string,
with a single blank character inserted between adjacent values. The resulting
sequence of nodes is called the content sequence. Adjacent text nodes in the
content sequence are merged into a single text node by concatenating the
contents of the text nodes with no intervening blanks. After concatenation, any
text node that contains a zero-length string is deleted from the content
sequence.

3. The nodes in the content sequence become the children of the new document
node.

Example 1: Insert a constructed document into an XML column:
INSERT INTO T1 VALUES(123,

(SELECT XMLDOCUMENT(XMLELEMENT(NAME "Emp",
e.fname || ’ ’ || e.lname),
XMLCOMMENT(’This is just a simple example’))

FROM EMPLOYEE e
WHERE e.empid = 123));

706 SQL Reference

XMLELEMENT
The XMLELEMENT function returns an XML value that is an XML element node.

�� XMLELEMENT (NAME element-name
, xmlnamespace-declaration

�

�
, xmlattributes-function

�

, element-content-expression
�

�

�
(1) EMPTY ON NULL (2) (3)

OPTION NULL ON NULL
USING

XMLBINARY BASE64
USING

XMLBINARY HEX

) ��

Notes:

1 The OPTION clause can only be specified if at least one xmlattributes-function or
element-content-expression is specified

2 If element-content-expression is not specified, EMPTY ON NULL and NULL ON NULL must not be
specified.

3 The same clause must not be specified more than one time.

The schema is SYSIBM.

NAME element-name
Specifies the name of an XML element. element-name is an SQL identifier that
must be in the form of an XML qualified name, or QName. If the name is
qualified, the namespace prefix must be declared within the scope.

xmlnamespaces-declaration
Specifies the XML namespace declarations that are the result of the
XMLNAMESPACES function. The namespaces that are declared are in the
scope of the XMLELEMENT function. The namespaces apply to any nested
XML functions within the XMLELEMENT function, regardless of whether or
not they appear inside another subselect. See “XMLNAMESPACES” on page
718 for more information on declaring XML namespaces.

If xmlnamespaces-declaration is not specified, namespace declarations are not
associated with the constructed XML element node.

xmlattributes-function
Specifies the attributes for the XML element. The attributes are the result of the
XMLATTRIBUTES function. See “XMLATTRIBUTES” on page 703 for more
information on constructing attributes.

Chapter 3. Functions 707

If xmlattributes-function is not specified, attributes are not explicitly part of the
constructed XML element node.

element-content-expression
The content of the generated XML element node is specified by an expression
or a list of expressions. Each element-content-expression must return a value of
any built-in data type or distinct type. The expression is used to construct the
namespace declarations, attributes, and content of the constructed element
node.

If element-content-expression is not specified, an empty string is used as the
content for the element and NULL ON NULL or EMPTY ON NULL must not
be specified.

OPTION
Specifies additional options for constructing the XML element. This clause has
no impact on nested invocations of the XMLELEMENT function invocations
that are specified in element-content-expression.

EMPTY ON NULL or NULL ON NULL
Specifies if a null value or an empty element is returned when the values
of each element-content-expression is a null value. This option only affects
null handling of element contents, not attribute values. The option is not
inherited by a nested invocation of XMLELEMENT function within an
element-content-expression.

EMPTY ON NULL
If the value of each element-content-expression is null, an empty element
is returned.

EMPTY ON NULL is the default.

NULL ON NULL
If the value of each element-content-expression is null, a null value is
returned.

XMLBINARY USING BASE64 or XMLBINARY USING HEX
Specifies the assumed encoding of binary input data, character string data
with the FOR BIT DATA attribute, ROWID, or a distinct type that is based
on one of these types. The encoding applies to element content or attribute
values.

XMLBINARY USING BASE64
Specifies that the assumed encoding is base64 characters, as defined for
XML schema type xs:base64Binary. The base64 encoding uses a
65-character subset of US-ASCII (10 digits, 26 lowercase characters, 26
uppercase characters, '+' and '/') to represent every 6 bits of the binary
or bit data by one printable character in the subset. These characters
are selected so that they are universally representable. Using this
method, the size of the encoded data is 33 percent larger than the
original binary or bit data.

XMLBINARY USING BASE64 is the default.

XMLBINARY USING HEX
Specifies that the assumed encoding is hexadecimal characters as
defined for XML schema type xs:hexBinary encoding. The hex
encoding represents each byte (8 bits) with two hexadecimal characters.
Using this method, the encoded data is twice the size of the original
binary or bit data.

708 SQL Reference

This function takes an element name, an optional collection of namespace
declarations, an optional collection of attributes, and zero or more optional
arguments that make up the content of the XML element. The result is an XML
sequence that contains an XML element node or the null value. If the results of all
element-content-expression arguments are empty strings, the result is an XML
sequence that contains an empty element.

The result of the function is an XML value. The result can be null; if all
element-content-expression arguments are null and the NULL ON NULL option is in
effect, the result is the null value.

Constructing an element node: The resulting element node is constructed as
follows:
1. xmlnamespace-declaration adds a set of in-scope namespaces for the constructed

element. Each in-scope namespace associates a namespace prefix (or the default
namespace) with a namespace URI. The in-scope namespaces define the set of
namespace prefixes that are available for interpreting QNames within the scope
of the element.

2. If the xmlattributes-function is specified, it is evaluated and the result is a
sequence of attribute nodes.

3. Each element-content-expression is evaluated and the result is converted into a
sequence of nodes as follows:
v If the result type is not XML, it is converted to an XML text node that

contains the result of the element-content-expression this is mapped to XML.
v If the result type is XML, the result is a sequence of items. Some of the items

in that sequence might be document nodes. Each document node in the
sequence is replaced by the sequence of its top-level children. Then for each
node in the resulting sequence, a new deep copy of the node is constructed,
including its children and attributes. Each copied node has a new node
identity. Copied element nodes are given the type annotation xdt:untyped,
and copied attribute nodes are given the type annotation xdt:untypedAtomic.
For each adjacent sequence of one or more atomic values that are returned in
the sequence, a new text node is constructed that contains the result of
casting each atomic value to a string, with a single blank character inserted
between adjacent values. If any of these atomic values cannot be cast into a
string, an error is returned.

4. The result sequence of xmlattributes-function and the resulting sequences of all
element-content-expression clauses are concatenated into one sequence which is
called the content sequence. Any sequence of adjacent text nodes in the content
sequence is merged into a single text node by concatenating their contents, with
no intervening blanks. After concatenation, any text node that is a zero-length
string is deleted from the content sequence.

5. If the content sequence contains an attribute node that follows a node that is
not an attribute node, an error is returned. Attribute nodes that occur in the
content sequence become attributes of the new element node. If two or more of
these attribute nodes have the same name, an error is returned. A namespace
declaration is created that corresponds to any namespace that is used in the
names of the attribute nodes if the namespace URI is not in the in-scope
namespaces of the constructed element.

6. Element, text, comment, and processing instruction nodes in the content
sequence become the children of the constructed element node.

Chapter 3. Functions 709

7. The constructed element node is given a type annotation of xdt:untyped, and
each of its attributes is given a type annotation of xdt:untypedAtomic. The
node name of the constructed element node is the XML element name that is
specified after the NAME keyword.

Rules for using namespaces within XMLELEMENT: The following rules describe
scoping of namespaces:
v The namespaces that are declared in the XMLNAMESPACES function are the

in-scope namespaces of the element node that are constructed by the
XMLELEMENT function. If the element node is serialized, each of its in-scope
namespaces will be serialized as a namespace attribute unless it is an in-scope
namespace of the parent of the element node and the parent element is also
serialized.

v The scope of these namespaces is the lexical scope of the XMLELEMENT
function, including the element name, the attribute names that are specified in
the XMLATTRIBUTES function, and all element-content-expressions. These are
used to resolve the QNames in the scope.

v If an XMLQUERY or XMLEXISTS function is in an element-content-expression, the
namespaces become the statically known namespaces of the XQuery expression of
the XMLQUERY or XMLEXISTS function. Statically known namespaces are used
to resolve the QNames that are in the XQuery expression. If the XQuery prolog
declares a namespace that has the same prefix within the scope of the XQuery
expression, the namespace that is declared in the prolog will override the
namespaces that are declared in the XMLNAMESPACES function.

v If an attribute of the constructed element comes from element-content-expression,
its namespace might not already be declared as an in-scope namespace of the
constructed element. In this case, a new namespace is created for it. If the prefix
of the attribute name is already bound to a different URI by a in-scope
namespace, DB2 generates a different prefix to be used in the attribute name. A
namespace is created for this generated prefix. The name of the generated prefix
follows the following pattern: db2ns-xx, where xx is a pair of characters chosen
from the set [A-Z,a-z,0-9].

Example 1: The following statement uses the XMLELEMENT function to create an
XML element that contains an employees name. The statement also stores the
employee number as an attribute named serial. If there is a null value in the
referenced column, the function returns the null value:

SELECT e.empno, e.firstnme, e.lastname,
XMLELEMENT (NAME "foo:Emp",

XMLNAMESPACES(’http://www.foo.com’ AS "foo"),
XMLATTRIBUTES(e.empno as "serial"),

e.firstnme,
e.lastname
OPTION NULL ON NULL) AS "Result"

FROM EMP e
WHERE e.edlevel = 12;

The result of the query would look similar to the following result:
EMPNO FIRSTNME LASTNAME Result
----- -------- -------- ------------------------------------

A0001 John Parker <foo:Emp xmlns:foo="http://www.foo.com"
serial="A0001">JohnParker</foo:Emp>

B0001 (null) Smith <foo:Emp xmlns:foo="http://www.foo.com"
serial="B0001">Smith</foo:Emp>

B0002 (null) (null) (null)
(null) (null) (null) (null)

710 SQL Reference

Example 2: The following example is similar to Example 1, however, when a null
value is in one of the referenced columns, an empty element is returned:

SELECT e.empno, e.firstnme, e.lastname,
XMLELEMENT (NAME "foo:Emp",

XMLNAMESPACES(’http://www.foo.com’ AS "foo"),
XMLATTRIBUTES(e.empno as "serial"),

e.firstnme,
e.lastname

OPTION EMPTY ON NULL) AS "Result"
FROM EMP e
WHERE e.edlevel = 12;

The result of the query would look similar to the following result:
EMPNO FIRSTNME LASTNAME Result
----- -------- -------- -------------------------------------

A0001 John Parker <foo:Emp xmlns:foo="http://www.foo.com"
serial="A0001">JohnParker</foo:Emp>

B0001 (null) Smith <foo:Emp xmlns:foo="http://www.foo.com"
serial="B0001">Smith</foo:Emp>

B0002 (null) (null) <foo:Emp xmlns:foo="http://www.foo.com"
serial="B0002"/>

(null) (null) (null) <foo:Emp xmlns:foo="http://www.foo.com"/>

Chapter 3. Functions 711

XMLFOREST
The XMLFOREST function returns an XML value that is a sequence of XML
element nodes.

�� XMLFOREST (
xmlnamespace-function ,

�

� �

,

element-content-expression
AS element-name

�

�

�
(1) EMPTY ON NULL (2)

OPTION NULL ON NULL
USING

XMLBINARY BASE64
USING

XMLBINARY HEX

) ��

Notes:

1 The OPTION clause can only be specified if at least one xmlattributes-function or
element-content-expression is specified.

2 The same clause must not be specified more than one time.

The schema is SYSIBM.

xmlnamespace-function
Specifies the XML namespace declarations that are the result of the
XMLNAMESPACES function. The namespaces that are declared are in the
scope of the XMLFOREST function. The namespaces apply to any nested XML
functions within the XMLFOREST function, regardless of whether or not those
functions appear inside another subselect. See “XMLNAMESPACES” on page
718 for more information on declaring XML namespaces.

If xmlnamespace-function is not specified, namespace declarations are not
associated with the constructed sequence of XML element nodes.

element-content-expression
Specifies an expression that returns a value that is used for the content of a
generated XML element. The result of the expression is mapped to an XML
value according to the mapping rules from an SQL value to an XML value. If
the expression is not a simple column reference, element-name must be
specified.

AS element-name
Specifies an identifier that is used for the XML element name.

712 SQL Reference

An XML element name must be an XML QName. If the name is qualified, the
namespace prefix must be declared within the scope.

If element-name is not specified, element-content-expression must be a column
name. The element name is created from the column name using the fully
escaped mapping from a column name to a QName.

OPTION
Specifies options for the result for NULL values, binary data, and bit data. The
options will not be inherited by the XMLELEMENT or XMLFOREST functions
that appear in element-content-expression.

EMPTY ON NULL or NULL ON NULL
Specifies if a null value or an empty element is returned when the values
of each element-content-expression is a null value. EMPTY ON NULL and
NULL on NULL only affect null handling of the element-content-expression
arguments, not the handling of values from an xmlattributes-function
argument.

EMPTY ON NULL
If the value of each element-content-expression is null, an empty element
is returned.

EMPTY ON NULL is the default.

NULL ON NULL
If the value of each element-content-expression is null, a null value is
returned.

XMLBINARY USING BASE64 or XMLBINARY USING HEX
Specifies the assumed encoding of binary input data, character string data
with the FOR BIT DATA attribute, ROWID, or a distinct type that is based
on one of these types. The encoding applies to element content or attribute
values.

XMLBINARY USING BASE64
Specifies that the assumed encoding is base64 characters, as defined for
XML schema type xs:base64Binary encoding. The base64 encoding uses
a 65-character subset of US-ASCII (10 digits, 26 lowercase characters,
26 uppercase characters, '+' and '/') to represent every 6 bits of the
binary or bit data by one printable character in the subset. These
characters are selected so that they are universally representable. Using
this method, the size of the encoded data is 33 percent larger than the
original binary or bit data.

XMLBINARY USING BASE64 is the default.

XMLBINARY USING HEX
Specifies that the assumed encoding is hexadecimal characters, as
defined for XML schema type xs:hexBinary encoding. The hex
encoding represents each byte (8 bits) with two hexadecimal characters.
Using this method, the encoded data is twice the size of the original
binary or bit data.

The XMLFOREST function can be expressed using the XMLCONCAT and
XMLELEMENT functions.

This function takes an optional set of namespace declarations and one or more
arguments that make up the name and element content for one or more element
nodes. The result is an XML sequence containing a sequence of element nodes or
the null value.

Chapter 3. Functions 713

The result of the function is an XML value. The result can be null; if all the
element-content-expression arguments are null and the NULL ON NULL option is in
effect, the result is the null value.

Example: Generate an "Emp" element for each employee. Use employee name as its
attribute and two subelements generated from columns HIRE and DEPT by using
XMLFOREST as its content. The element names for the two subelements are
"HIRE" and "department".

SELECT e.id, XMLSERIALIZE (XMLELEMENT
(NAME "Emp",

XMLATTRIBUTES (e.fname || ’ ’ || e.lname
AS "name"),

XMLFOREST (e.hire,
e.dept AS "department")

)) AS "result"
FROM employees e;

The result of the query would be similar to the following result:
ID result

1001 <Emp name="John Smith">
<HIRE>2000-05-24</HIRE>
<department>Accounting</department>

</Emp>
1001 <Emp name="Mary Martin">

<HIRE>1996-02-01</HIRE>
<department>Shipping</department>

</Emp>

714 SQL Reference

XMLMODIFY
The XMLMODIFY function returns an XML value that might have been modified
by the evaluation of an XQuery updating expression and XQuery variables that are
specified as input arguments.

��

�

XMLMODIFY (xquery-update-constant)
,

, xquery-variable-expression AS identifier

��

The schema is SYSIBM.

xquery-update-constant
Specifies an SQL character string constant that is interpreted as an XQuery
updating expression that uses supported XQuery language syntax.
xquery-update-constant must be an insert expression, a delete expression, or a
replace expression. xquery-update-constant must not be an empty string or a
string of all blanks.

xquery-variable expression
xquery-variable-expression specifies an SQL expression whose value is available
to the XQuery expression that is specified by xquery-update-constant during
execution.

The data type of xquery-variable-expression can be XML, integer, decimal, or a
character or graphic string that is not a LOB. xquery-variable-expression must not
return a ROWID, TIMESTAMP, binary string, REAL, DECFLOAT data types, or
a character string that is bit data, and xquery-variable-expression must not
reference a sequence expression. If the result value is of type XML, it is passed
by reference, which means that the original values, not copies, are used in the
evaluation of the XQuery expression. A null XML value is converted to an
XML empty sequence. If the resulting value is not of type XML, the result of
the expression must be castable to an XML value. A null value is converted to
an XML empty sequence. The non-XML values creates a new copy of the value
during the cast to XML.

An XQuery variable is created for each xquery-variable-expression this is
specified, and the XQuery variable is set to a value that is equal to the
input-xml-value.

AS identifier
Specifies that the value that is generated by xquery-variable-expression is passed
to xquery-update-constant as an XQuery variable named identifier. The length of
the name must not be longer than 128 bytes. If the length of the name is longer
than 128 bytes, an error is returned. The leading dollar sign ($) that precedes
variable names in the XQuery language is not included in identifier. The name
must be an XML 1.0 NCName that is not the same as the identifier for another
xquery-variable-expression in the same PASSING clause. If the identifier is not an
XML 1.0 NCName an error is returned. If more than one xquery-variable
expression have the same name, an error is returned. If the result of an
xquery-variable expression is null, an empty sequence is assigned to the
corresponding XQuery variable.

Chapter 3. Functions 715

The XMLMODIFY function can only be used in an SQL UPDATE statement or
within the update clause of an SQL MERGE statement. The XMLMODIFY function
must be the topmost expression on the right hand side of the SET assignment
clause of the update.

The target-xml-column is the XML column in the SET assignment clause that is to be
updated by the value that is returned by the XMLMODIFY function. The initial
context item in the XQuery updating expression is the value of the
target-xml-column that is passed by reference. Only the value of the
target-xml-column can be modified by the XQuery updating expression. In other
words, the target expression nodes in the XQuery updating expression must be a
node in the value of target-xml-column. The target-xml-column must be an XML
column that is defined in the XML versioning format.

The value of target-xml-column that is modified by the XQuery updating expression
is returned by the function. If the value of target-xml-column is null, the function
returns null. Otherwise, the result of the XMLMODIFY function must be a
well-formed XML document. If the XQuery updating expressions makes no
modifications to the value of target-xml-column, the unmodified XML value is
returned by the function. The XMLMODIFY function preserves the original node
identities and the document order of target-xml-column. Although XMLMODIFY
modifies target-xml-column by reference, for each row that is updated by the SQL
UPDATE statement, any reference to target-xml-column in the SQL UPDATE
statement is the value of the target-xml-column before the row is updated.

Example 1: The following is an example of an XMLMODIFY function with an
XQuery insert expression. Assume that a table contains a column named PO that
contains an XML document, 'purchaseOrders':
UPDATE purchaseOrders

SET PO = XMLMODIFY(’declare namespace ipo="http://www.example.com/IPO";
declare namespace pyd="http://www.examplepayment.com";
insert node $payment/@pyd:paidDate

as first into /ipo:purchaseOrder/billTo’,
XMLPARSE(DOCUMENT

’<payment xmlns:pyd="http://www.examplepayment.com"
pyd:paidDate="2000-01-07">278.94

</payment>’) AS "payment")

The result of the purchaseOrders XML document in the PO column will be as
follows:
<ipo:purchaseOrder

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ipo="http://www.example.com/IPO"
xmlns:pyd="http://www.examplepayment.com"
orderDate="1999-12-01" pyd:paidDate="2000-01-07">

<shipTo exportCode="1" xsi:type="ipo:UKAddress">
<name>Helen Zoe</name>

<street>47 Eden Street</street>
<city>Cambridge</city>
<postcode>CB1 1JR</postcode>

</shipTo>
.
.
.
</ipo:purchaseOrder>

716 SQL Reference

Related concepts:

Basic updating expressions (DB2 Programming for XML)

Chapter 3. Functions 717

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_basicupdatingexpression.htm#db2z_basicupdatingexpression

XMLNAMESPACES
The XMLNAMESPACES function constructs namespace declarations from the
arguments. This function can be used as an argument only for specific functions,
such as the XMLELEMENT function and the XMLFOREST function.

�� �

,

XMLNAMESPACES(namespace-uri AS namespace-prefix)
(1)

DEFAULT namespace-uri
NO DEFAULT

��

Notes:

1 The DEFAULT or NO DEFAULT clause can only be specified one time.

The schema is SYSIBM.

The result is one or more XML namespace declarations containing in-scope
namespaces for each non-null input value.

namespace-uri
Specifies an SQL character string constant that contains the namespace name or
a universal resource identifier (URI). The character string constant must not be
an empty string if it is used with namespace-prefix. namespace-uri cannot be
http://www.w3.org/XML/1998/namespace or http://www.w3.org/2000/xmlns/.

AS namespace-prefix
Specifies a namespace prefix. The prefix is an SQL identifier that must be in
the form of an XML NCName. The prefix must not be "xml" or "xmlns". The
prefix must be unique within the list of namespace declarations.

The following namespace prefixes are pre-defined in SQL/XML: "xml", "xs",
"xsd", "xsi", and "sqlxml". Their bindings are:
v xmlns:xml = "http://www.w3.org/XML/1998/namespace"
v xmlns:xs = "http://www.w3.org/2001/XMLSchema"
v xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
v xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
v xmlns:sqlxml= "http://standards.iso.org/iso/9075/2003/sqlxml"

DEFAULT namespace-uri or NO DEFAULT
Specifies whether a default namespace is to be used within the scope of this
namespace declaration.

The scope of this namespace declaration is the specified XML element and all
XML expressions that are contained in the specified XML element.

DEFAULT namespace-uri
Specifies the default namespace to use within the scope of this namespace
declaration. The namespace-uri applies for unqualified names in the scope
unless it is overridden in a nested scope by another DEFAULT declaration
or by a NO DEFAULT declaration.

718 SQL Reference

namespace-uri specifies an SQL character string constant that contains a
namespace name or universal resource identifier (URI). The character
string constant can be an empty string in the context of the DEFAULT
clause.

NO DEFAULT
Specifies that no default namespace is to be used within the scope of this
namespace declaration. There is no default namespace in the scope unless
the NO DEFAULT clause is overridden in a nested scope by a DEFAULT
declaration.

The result of the function is an XML value that is an XML sequence that contains
an XML namespace declaration for each specified namespace. The result cannot be
null.

Example 1: Generate an "employee" element for each employee. The employee
element is associated with XML namespace "urn:bo', which is bound to prefix "bo".
The element contains attributes for names and a hiredate subelement.
SELECT e.empno, XMLSERIALIZE(XMLELEMENT(NAME "bo:employee",

XMLNAMESPACES(’urn:bo’ as "bo"),
XMLATTRIBUTES(e.lastname, e.firstnme),
XMLELEMENT(NAME "bo:hiredate", e.hiredate)) AS CLOB(50))

FROM employee e where e.edlevel = 12;

The result of the query would be similar to the following result:
00029 <bo:employee xmlns:bo="urn:bo" LASTNAME="PARKER" FIRSTNME="JOHN">

<bo:hiredate>198-5-3</bo:hiredate>
</bo:employee>

00031 <bo:employee xmlns:bo="urn:bo" LASTNAME="SETRIGHT"
FIRSTNME="MAUDE">
<bo:hiredate>1964-9-12</bo:hiredate>
</bo:employee>

Example 2: Generate two elements for each employee using XMLFOREST. The first
"lastname" element is associated with the default namespace "http://hr.org", and
the second "job" element is associated with XML namespace "http://fed.gov",
which is bound to prefix "d".
SELECT empno, XMLSERIALIZE(XMLFOREST(

XMLNAMESPACES(DEFAULT ’http://hr.org’, ’http://fed.gov’ AS "d"),
lastname, job AS "d:job") AS CLOB(50))

FROM employee where edlevel = 12;

The result of the query would be similar to the following result:
00029 <LASTNAME xmlns="http://hr.org" xmlns:d="http://fed.gov">PARKER

</LASTNAME>
<d:job xmlns="http://hr.org" xmlns:d="http://fed.gov">
OPERATOR</d:job>

00031 <LASTNAME xmlns="http://hr.org" xmlns:d="http://fed.gov">
SETRIGHT</LASTNAME>
<d:job xmlns="http://hr.org" xmlns:d="http://fed.gov">
OPERATOR</d:job>

Chapter 3. Functions 719

XMLPARSE
The XMLPARSE function parses the argument as an XML document and returns
an XML value.

��
STRIP WHITESPACE

XMLPARSE (DOCUMENT string-expression)
XML-host-variable PRESERVE WHITESPACE

��

The schema is SYSIBM.

DOCUMENT
Specifies that the character string expression to be parsed must evaluate to a
well-formed XML document that conforms to XML 1.0.

string-expression
An expression that returns a character, graphic, or binary string.

string-expression must evaluate to a character string that conforms to the
definition of a well-formed XML document as defined in XML 1.0.

XML-host-variable
An XML host variable that contains a well-formed XML document as defined
in XML 1.0. XML-host-variable must not be binary XML data.

STRIP WHITESPACE or PRESERVE WHITESPACE
Specifies whether whitespace is to be removed or preserved. Any DTD
attributes for xml:space have no impact on whitespace handling.

STRIP WHITESPACE
Specifies that whitespace (space that is between element nodes without any
non-whitespace text nodes) will be stripped unless the nearest containing
element has a value of 'preserve' for the xml:space attribute.

STRIP WHITESPACE is the default.

PRESERVE WHITESPACE
Specifies that all whitespace is preserved, even when the nearest containing
element has a value of 'default' for the xml:space attribute.

The result of the function is XML. If string-expression can be null, the result can be
null; if string-expression is null, the result is the null value.

Direct use of XMLPARSE with character string input: Applications should avoid
direct use of the XMLPARSE function with character string input and should send
strings that contain XML documents directly by using host variables to maintain
the match between the external encoding and the encoding in the XML declaration.
If XMLPARSE must be used in this situation, a BLOB type should be specified as
the argument to avoid code page conversion.

Example 1: The following example inserts an XML document into the EMP table
and preserves the whitespace in the original XML document. Assume that hv
contains the value, '<a xml:space=’preserve’> <c>c</c>b ':

INSERT INTO EMP (id, xvalue) VALUES(1001,
XMLPARSE(DOCUMENT :hv

PRESERVE WHITESPACE));

720 SQL Reference

XMLPARSE will treat the value in hv for the insert statement as equivalent to the
following value:
<a xml:space=’preserve’> <c>c</c>b

Example 2: The following example inserts an XML document into the EMP table
and strips the whitespace in the original XML document. Assume that hv contains
the value, '<a xml:space=’preserve’> <b xml:space=’default’> <c>c</c>b
':

INSERT INTO EMP (id, xvalue) VALUES(1001,
XMLPARSE(DOCUMENT :hv

STRIP WHITESPACE));

XMLPARSE will treat the value in hv for the insert statement as equivalent to the
following value:

<a xml:space=’preserve’>
<b xml:space=’default’><c>c</c>b

Chapter 3. Functions 721

XMLPI
The XMLPI function returns an XML value with a single processing instruction
node.

�� XMLPI (NAME pi-name)
, string-expression

��

The schema is SYSIBM.

NAME pi-name
Specifies the name of a processing instruction. The name is an SQL identifier
that must be in the form of an XML NCName. The name must not contain
"xml" in any case combination.

string-expression
An expression that returns a value of a built-in character or graphic string that
is not a LOB and is not bit data The resulting string will be converted to UTF-8
and parsed to check for conformance to the content of XML processing
instruction as specified by the following rules:
v The string must not contain the substring '?>' as this terminates a processing

instruction.
v Each character can be any Unicode character, excluding the surrogate blocks,

X'FFFE', and X'FFFF'.

If the resulting string does not conform to the preceding rules, an error is
returned. The resulting string becomes the contents of the constructed
processing instruction node. If string-expression is not specified or is an empty
string, the contents of the procession instruction node are empty.

The result of the function is an XML value. The result can be null; if the
string-expression argument is null, the result is the null value.

Example: Generate an XML processing instruction node:
SELECT XMLPI(NAME "Instruction", ’Push the red button’)

FROM SYSIBM.SYSDUMMY1;

The result looks similar to the following results:
<?Instruction Push the red button?>

722 SQL Reference

XMLQUERY
The XMLQUERY function returns an XML value from the evaluation of an XQuery
expression, by using specified input arguments, a context item, and XQuery
variables.

�� XMLQUERY (xquery-expression-constant �

�

�

,
BY REF (1)

PASSING xquery-argument

BY REF
RETURNING SEQUENCE

�

�
EMPTY ON EMPTY

) ��

Notes:

1 xquery-context-item-expression must not be specified more than one time.

xquery-argument:

�� xquery-context-item-expression
xquery-variable-expression AS identifier

��

The schema is SYSIBM.

xquery-expression-constant
Specifies an SQL character string constant that is interpreted as an XQuery
expression using supported XQuery language syntax. See DB2 XML Guide for
information about the supported XQuery expressions. xquery-expression-constant
cannot be an XQuery updating expression. The XQuery expression is evaluated
with the arguments specified in xquery-argument, and returns an output
sequence that is also returned as the result of the XMLQUERY function.
xquery-expression-constant must not be an empty string or a string of all blanks.

PASSING
Specifies input values and the manner in which these values are passed to the
XQuery expression that is specified by xquery-expression-constant.

BY REF
Specifies that the XML input value arguments are to be passed by reference.
When XML values are passed by reference, the XQuery evaluation uses the
input node trees which preserves all properties, including the original node
identities and document order. If two arguments pass the same XML value,
node identity comparisons and document ordering comparisons involving

Chapter 3. Functions 723

some nodes that are contained between the two input arguments might refer to
nodes that are within the same XML node tree.

BY REF has no impact on how non-XML values are passed. The non-XML
values create a new copy of the value during the cast to XML.

xquery-argument
Specifies an argument that is passed to the XQuery expression that is specified
by xquery-expression-constant. A query argument is an expression that returns a
value that is XML, integer, decimal, or a character or graphic string that is not
a LOB. xquery-argument must not return ROWID, TIMESTAMP, binary string,
REAL, DECFLOAT data types, or a character string data type that is bit data,
and must not reference a sequence expression.

xquery-argument specifies both a value and the manner in which that value is to
be passed. How an argument in the PASSING clause is used in the XQuery
expression depends on whether the argument is specified as
xquery-context-item-expression or xquery-variable-expression. xquery-argument
includes an SQL expression that is evaluated before passing the result to the
XQuery expression.
v If the resulting value is of type XML, it becomes an input-xml-value. It is

passed by reference, which means that the original values, not copies, are
used in the evaluation of the XQuery expression. A null XML value is
converted to an XML empty sequence.

v If the resulting value is not of type XML, the result of the expression must
be able to be cast to an XML value. A null value is converted to an XML
empty sequence. The converted value becomes an input-xml-value.

When xquery-expression-constant is evaluated, an XQuery variable receives a
value that is equal to input-xml-value and a name as specified by the AS clause.

xquery-context-item-expression
xquery-context-item-expression specifies the initial context item in the XQuery
expression specified by xquery-expression-constant. The value of the initial
context item is the result of xquery-context-item-expression cast to XML.
xquery-context-item-expression must not be specified more than one time.

xquery-context-item-expression must not be a sequence of more than one
item. If input-xml-value is an empty XML string, the XQuery expression is
evaluated with the initial context item set to an empty XML string. If the
value of input-xml-value is null, the function returns a null value.

If the xquery-context-item-expression is not specified or is an empty sequence,
the initial context item in the XQuery expression is undefined and the
XQuery expression must not reference the initial context item.

An XQuery variable is not created for the context item expression.

xquery-variable-expression
xquery-variable-expression specifies an SQL expression whose value is
available to the XQuery expression that is specified by
xquery-expression-constant during execution. The sequence cannot contain a
sequence reference.

An XQuery variable is created for each xquery-variable-expression, and the
XQuery variable is set to a value equal to input-xml-value. For example,
PASSING T.A + T.B AS "sum" creates an XQuery variable named sum. The
scope of the XQuery variables that are created from the PASSING clause is
the XQuery expression that is specified by xquery-expression-constant.

724 SQL Reference

AS identifier
Specifies that the value that is generated by xquery-variable-expression is passed
to xquery-expression-constant as an XQuery variable named identifier. The length
of the name must not be longer than 128 bytes. The leading dollar sign ($) that
precedes variable names in the XQuery language is not included in identifier.
The name must be an XML 1.0 NCName that is not the same as the identifier
for another xquery-variable-expression in the same PASSING clause.

RETURNING SEQUENCE
Specifies that the XQuery expression returns a sequence.

BY REF
Specifies that the result of the XQuery expression is returned by reference. If
this value contains nodes, any expression that is using the return value of the
XQuery expression will receive node references directly, preserving all node
properties including the original node identities and document order.

EMPTY ON EMPTY
Specifies that an empty sequence that results from processing the XQuery
expression is returned as an empty sequence.

The result of the function is an XML value. The result cannot be null.

If the evaluation of the XQuery expression results in an error, the XMLQUERY
function returns the XQuery error.

Implicit casting of a non XML value to an XML value: If the result of
xquery-argument is not an XML type, the value is cast to XML as follows. The SQL
data type of the expression is mapped to a corresponding XML Schema data type
according to the following table:

Table 80. SQL data types and corresponding XML schema data types

SQL data type XML schema data type

CHAR, VARCHAR xs:string

GRAPHIC, VARGRAPHIC xs:string

SMALLINT xs:integer

INTEGER xs:integer

BIGINT xs:integer

DECIMAL xs:decimal

DOUBLE xs:double

FLOAT xs:double

Let V be the value of the expression. An atomic value of the corresponding XML
schema data type is constructed such that the result of cast (V as varchar) is a
lexical representation of the constructed atomic value. For example, an SQL
VARCHAR value '123' is converted to an atomic value '123' of xs:string type. An
SQL integer '12' is converted to an atomic value '12' of xs:integer. An SQL decimal
value '1.20' is converted to an atomic value '1.2' of xs:decimal.

Example 1: The following example returns an XML value from evaluation of the
specified XQuery expression:

Chapter 3. Functions 725

SELECT XMLQUERY(’//item[productName=$n]’
PASSING PO.POrder,
:hv AS "n") AS "Result"

FROM PurchaseOrders PO;

Assume that the value of the host variable hv is 'Baby Monitor', the result is similar
to the following results:
Result

<item partNum="926-AA"><productName>Baby Monitor</productName><quantity>1
</quantity><USPrice>39.98</USPrice><shipDate>1999-05-21</shipDate></item>

726 SQL Reference

XMLSERIALIZE
The XMLSERIALIZE function returns a serialized XML value of the specified data
type that is generated from the first argument.

��
CONTENT

XMLSERIALIZE (XML-expression AS data-type �

� �
(1) VERSION '1.0'

EXCLUDING XMLDECLARATION
INCLUDING XMLDECLARATION

) ��

Notes:

1 The same clause must not be specified more than one time.

data-type

�� CHARACTER LARGE OBJECT
CHAR

CLOB
DBCLOB

BINARY LARGE OBJECT
BLOB

(1M)

(integer)
K
M
G

��

The schema is SYSIBM.

CONTENT
Specifies that any XML value can be specified and the result of the serialization
is based on this input value.

XML-expression
An expression that returns an XML value that is not an attribute node. The
atomic values in the input sequence must be able to be cast to xs:string.
XML-expression is the input to the serialization process.

AS data type
Specifies the data type of the result. The implicit or explicit length attribute for
the specified result data type must be sufficient to contain the serialized
output.

The CCSID of a resulting character or graphic string is determined by the data
type of the result:
v If the result is a CLOB, the CCSID for mixed Unicode data (1208).
v If the result is a DBCLOB, the CCSID for graphic Unicode data (1200).

Chapter 3. Functions 727

VERSION '1.0'
Specifies the XML version of the serialized value. The only version that is
supported is '1.0', which must be specified as a string constant.

EXCLUDING XMLDECLARATION or INCLUDING XMLDECLARATION
Specifies whether an XML declaration is included in the result.

EXCLUDING XMLDECLARATION
Specifies that an XML declaration is not included in the result.

EXCLUDING XMLDECLARATION is the default.

INCLUDING XMLDECLARATION
Specifies that an XML declaration is included in the result. The XML
declaration contains values for XML serialization version 1.0 and an
encoding specification of UTF-8. An XML sequence is effectively converted
to have a single document node by applying the XMLDOCUMENT
function to XML-expression prior to serializing the resulting XML nodes.

The data type and length attribute of the result are determined from the specified
data-type. The result can be null; if the XML-expression argument is null, the result
is the null value.

Serializing a sequence: The value of the input argument to XMLSERIALIZE is a
sequence. Before a sequence is serialized, it is normalized. The purpose of
sequence normalization is to create a sequence that can be serialized as a
well-formed XML document or external general parsed entity, that also reflects the
content of the input sequence to the extent possible. If the input sequence is an
XML empty string, the result of serialization is an empty string. Otherwise, the
result is constructed as follows:
v For each item in the sequence, if the item is atomic, the lexical representation of

the item is obtained by casting it to an xs:string
v Each subsequence of adjacent strings in the sequence is merged into a single

string with the values of the adjacent strings separated by a single space.
v For each item in the sequence, if the item is a string, a text node is created with

a value that is equal to the string.
v For each node in the sequence, if the node is a document node, it is replaced it

by its children.
v Each node must not be an attribute node.
v Each subsequence of adjacent text nodes in the sequence are merged into a

single text node that with the values of the adjacent text nodes concatenated in
order without a space between each node. Any text nodes of zero length are
dropped.

v A document node is created and the sequence of nodes that was generated is
copied as the children of the new document node.

Let S be any sequence, the normalization described in the preceding list is
equivalent to XMLDOCUMENT(S). Therefore, the following two expressions produce
the same result:
v XMLSERIALIZE(S AS CLOB)

v XMLSERIALIZE(XMLDOCUMENT(S) AS CLOB)

Each instance of the following characters that appear in the content of a text node
or in the value of an attribute node is mapped as following during serialization:

728 SQL Reference

Character in content of text node
during serialization, the character is
mapped to

'&' (X'26') '&'

'<'(X'3C') '<'

'>'(X'3E') '>'

carriage return (X'0D') ''

quote (X'22')1 '"'

Note: The quote character is only mapped if it is inside of an attribute value.

Syntax alternatives: XML2CLOB(XML-expression) can be specified as an alternative
to XMLSERIALIZE(XML-expression AS CLOB(2G)). XML2CLOB is supported only for
compatibility with previous releases of DB2.

Example 1: Serialize into CLOB of UTF-8, the XML value that is returned by the
XMLELEMENT function, which is a simple XML element with "Emp" as the
element name, and an employee name as the element content:

SELECT e.id, XMLSERIALIZE(XMLELEMENT (NAME "Emp",
e.fname || ’ ’ || e.lname)

AS CLOB(100)) AS "result"
FROM employees e;

The result looks similar to the following results:
ID result
--- ----------------------------

1001 <Emp>John Smith</Emp>
1206 <Emp>Mary Martin</Emp>

Example 2: Serialize into a string of BLOB type, the XML value that is returned by
the XMLELEMENT function:

SELECT XMLSERIALIZE(XMLELEMENT(NAME "emp",
e.fname || ’ ’ || e.lname))

AS BLOB(1K)
VERSION ’1.0’) AS result

FROM employee e WHERE e.id = ’1001’;

The result looks similar to the following results:
result

<emp>John Smith</emp>

Chapter 3. Functions 729

XMLTEXT
The XMLTEXT function returns an XML value with a single text node that contains
the value of the argument.

�� XMLTEXT (string-expression) ��

The schema is SYSIBM.

string-expression
An expression that returns a value of a built-in character or graphic string that
is not bit data. Any character in the resulting string must be a valid XML 1.0
character when it is converted to UTF-8.

If string-expression is an empty string, an empty text node is returned.

The result of the function is an XML value.

The result can be null; if the argument is null, the result is the null value.

Example 1: The following example returns an XML value with a single text node
that contains the specified value:

SELECT XMLTEXT(’The stock symbol for Johnson&Johnson is JNJ.’) AS "Result"
FROM SYSIBM.SYSDUMMY1;

The result looks similar to the following results:
Result

The stock symbol for Johnson&Johnson is JNJ.

Example 2: The XMLTEXT function enables the XMLAGG function to construct
mixed content, as in the following example:
SELECT XMLELEMENT(NAME "para",

XMLAGG(XMLCONCAT(XMLTEXT(plaintext),
XMLELEMENT(NAME "emphasis",
emphtext))

ORDER BY seqno), ’.’) as "result"
FROM T;

Suppose that the content of the table T is as the following example:
seqno plaintext emphtext
----- --- ----------------
1 This query shows how to construct mixed content
2 using XMLAGG and XMLTEXT. Without XMLTEXT
3 XMLAGG cannot group text nodes with other nodes, mixed content

therefore, cannot generate

The result looks like the following result:
result
--
<para>This query shows how to construct <emphasis>mixed content</emphasis>
using XMLAGG and XMLTEXT. Without <emphasis>XMLTEXT</emphasis>, XMLAGG
cannot group text nodes with other nodes, therefore, cannot generate
<emphasis>mixed content</emphasis>.</para>

730 SQL Reference

XMLXSROBJECTID
The XMLXSROBJECTID function returns the XSR object identifier of the XML
schema that is used to validate the XML document specified in the argument.

�� XMLXSROBJECTID(xml-value-expression) ��

The schema is SYSIBM.

xml-value-expression
An expression that results in a value with a data type of XML. The resulting
XML value must be an XML sequence with a single item that is an XML
document or the null value.

The XSR object identifier is returned as a BIGINT value and provides the key to a
single row in the SYSIBM.XSROBJECTS table.

The result can be null; if the argument is null, the result is the null value.

If xml-value-expression does not specify a validated XML document, the function
returns 0.

Note: The XML schema that corresponds to an XSR object ID returned by the
function might no longer exist, because an XML schema can be dropped without
affecting XML values that were validated using that XML schema. Therefore,
queries that use the XSR object ID to fetch further XML schema information from
the SYSIBM.XSROBJECTS table might return an empty result set.

Example 1: Use the XMLXSROBJECTID function in conjunction with the
DSN_XMLVALIDATE function to find all XML documents that are not validated
in a table and validate them:

UPDATE orders
SET content = dsn_xmlvalidate(content, ’SYSXSR.PO1’)
WHERE XMLXSROBJECTID(content) = 0;

Example 2: Use the XMLXSROBJECTID function to find the names and target
namespaces of the XML schemas that are used to validate the XML documents in
a table:

SELECT DISTINCT s.XSROBJECTNAME, s.targetNamespace
FROM orders o, XSROBJECTS s
WHERE XMLXSROBJECTID(content) = s.XSROBJECTID;

Chapter 3. Functions 731

YEAR
The YEAR function returns the year part of a value that is a character or graphic
string. The value must be a valid string representation of a date or timestamp.

�� YEAR(expression) ��

The schema is SYSIBM.

The argument must be an expression that returns one of the following built-in data
types: a date, a timestamp, a character string, a graphic string, or a numeric data
type.
v If expression is a character or graphic string, it must not be a CLOB or DBCLOB,

and its value must be a valid string representation of a date or timestamp with
an actual length of not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime
values” on page 101.

v If expression is a number, it must be a date or timestamp duration. For the valid
formats of date and timestamp durations, see “Datetime operands” on page 147.

If expression is a timestamp with a time zone, or a valid string representation of a
timestamp with a time zone, the result is determined from the UTC representation
of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:
If the argument is a date, a timestamp, or a string representation of either, the
result is the year part of the value, which is an integer between 1 and 9999.
If the argument is a date duration or a timestamp duration, the result is the
year part of the value, which is an integer between -9999 and 9999. A nonzero
result has the same sign as the argument.
If the argument contains a time zone, the result is the year part of the value
expressed in UTC.

Example 1: From the table DSN8B10.EMP, select all rows for employees who were
born in 1941.

SELECT *
FROM DSN8B10.EMP
WHERE YEAR(BIRTHDATE) = 1941;

Example 2: The following invocations of the YEAR function returns the same result:
SELECT YEAR(’1993-08-10-20.00.00’),

YEAR(’1993-08-10-20.00.00-08:00’),
YEAR(’1993-08-10-20.00.00+09:00’)
FROM SYSIBM.SYSDUMMY1;

For each invocation of the YEAR function in this SELECT statement, the result is
1993.

732 SQL Reference

When the input argument contains a time zone, the result is determined from the
UTC representation of the input value. The string representations of a timestamp
with a time zone in the SELECT statement all have the same UTC representation:
'1993-08-10-20.00.00'.

Table functions
A table function can be used only in the FROM clause of a statement. Table
functions return columns of a table and resemble a table created through a
CREATE TABLE statement. Table functions can be qualified with a schema name.

Chapter 3. Functions 733

ADMIN_TASK_LIST
The ADMIN_TASK_LIST function returns a table with one row for each of the
tasks that are defined in the administrative task scheduler task list.

Authorization

The user who calls this function must have MONITOR1 privilege.

�� ADMIN_TASK_LIST() ��

The schema is DSNADM.

The result of the function is a table with the format shown in the following table.
All the columns are nullable except TASK_NAME.

Table 81. Format of the resulting table for ADMIN_TASK_LIST

Column name Data type Contains

BEGIN_
TIMESTAMP

TIMESTAMP Contains the timestamp of when the task can first
run. When the task begins to run depends on what
values this and other columns contain:

v If BEGIN_TIMESTAMP contains a non-null value:
– If POINT_IN_TIME and

TRIGGER_TASK_NAME contain null values,
the task begins to run at the timestamp in
BEGIN_TIMESTAMP

– If POINT_IN_TIME contains a non-null value,
the task begins to run at the next point in time
that is defined at or after the timestamp in
BEGIN_TIMESTAMP

– If TRIGGER_TASK_NAME is a non-null value,
the task begins to run at the next time that the
task identified in TRIGGER_TASK_NAME
completes or after the timestamp in BEGIN_
TIMESTAMP

v If BEGIN_TIMESTAMP contains a null value:
– If POINT_IN_TIME and

TRIGGER_TASK_NAME contain null values,
the task begins to run immediately

– If POINT_IN_TIME contains a non-null value,
the task begins to run at the next point in time
that is defined

– If TRIGGER_TASK_NAME is a non-null value,
the task begins to run at the next time that the
task identified in TRIGGER_TASK_NAME
completes

END_
TIMESTAMP

TIMESTAMP Contains the timestamp of when the task is last able
to run. If this column is NULL, there are no
restrictions as to when the task must not run.

734 SQL Reference

Table 81. Format of the resulting table for ADMIN_TASK_LIST (continued)

Column name Data type Contains

MAX_
INVOCATIONS

INTEGER Contains the maximum number of times the task
can run. The maximum number applies to all types
of schedules: triggered by events, scheduled by time
interval, or by point in time. If this column is null,
the task has no limit on the number of times it can
be run.

If both END_TIMESTAMP and
MAX_INVOCATIONS contain values, the value in
END_TIMESTAMP takes precedence over the value
for MAX_INVOCATIONS. That is, if the value in
END_TIMESTAMP is reached, even though the
number of times the task has run has not reached
the value for MAX_INVOCATIONS, the task will
not run again

INTERVAL INTEGER Contains an integer that indicates the duration
between the start of one instance of a task and the
start of the next instance of the same task. If the
value of this column is NULL, the task is not
scheduled to run at a regular interval.

POINT_IN_
TIME

VARCHAR(400) Contains one or more points in time (in UNIX cron
format) for which the task is scheduled to run. If
the value of this column is NULL, the task is not
scheduled to run at a specific point in time.

The format contains the following pieces of
information separated by blanks: given hour, given
minute, given day of the week, given day of the
month, given month of the year.

TRIGGER_
TASK_NAME

VARCHAR(128) Contains the task name of the task that, when its
execution is complete, will trigger the running of
the task that is described in the row.

Task name DB2STOP is reserved for DB2 stop
events and task name DB2START is reserved for
DB2 start events. Those events are handled by the
administrative task scheduler that is associated with
the DB2 subsystem that is starting or stopping.

If the value of this column is NULL, the task that is
described in this row will not be triggered to run by
another task.

Chapter 3. Functions 735

Table 81. Format of the resulting table for ADMIN_TASK_LIST (continued)

Column name Data type Contains

TRIGGER_
TASK_COND

CHAR(2) Contains the type of comparison that is to be made
to the return code after the running of task that is
indicated in TRIGGER_TASK_NAME. The following
values are possible:

GT Greater than

GE Greater than or equal to

EQ Equal to

LT Less than

LE Less tan or equal to

NE Not equal to

If this column contains NULL, the task is triggered
to run without consideration of the return code of
the task that is indicated in
TRIGGER_TASK_NAME.

TRIGGER_
TASK_CODE

INTEGER Contains the return code from running the task
indicated in TRIGGER_TASK_NAME.

If the running of this task is triggered by a stored
procedure, TRIGGER_TASK_CODE contains the
SQLCODE that must be returned by the stored
procedure in order for this task to run.

If the running of this task is triggered by a JCL job,
TRIGGER_TASK_CODE contains the MAXRC that
must be returned by the job in order for this task to
run.

“ADMIN_TASK_STATUS” on page 741 returns the
SQLCODE or MAXRC value in the SQLCODE or
MAXRC column.

If TRIGGER_TASK_COND is NULL, this column
will also be NULL.

736 SQL Reference

Table 81. Format of the resulting table for ADMIN_TASK_LIST (continued)

Column name Data type Contains

DB2_SSID VARCHAR(4) Contains the DB2 subsystem ID of the DB2
subsystem that is associated with the administrative
task scheduler that should run this task.

The value in this column is used in a data sharing
environment where, for example different DB2
members have different configurations and running
the task relies on a certain environment. A value in
DB2_SSID will prevent an administrative scheduler
of other members to run this task, so that the task
can only be run as long as the administrative task
scheduler of the subsystem indicated in DB2_SSID
is running.

For a task that is being triggered by a DB2 start or
DB2 stop event as indicated in the
TRIGGER_TASK_NAME column, a value in
DB2_SSID will allow the task to be run only when
the indicated subsystem is starting or stopping. If
no value is indicated in DB2_SSID, each subsystem
that starts or stops will trigger a the task to be run
locally, provided that the triggered task is run
serially.

If this column is NULL, any administrative
scheduler can run this task.

PROCEDURE_
SCHEMA

VARCHAR(128) Contains the schema of the DB2 stored procedure
that this task will run. If the value of this column is
null, DB2 uses a default schema.

PROCEDURE_
NAME

VARCHAR(128) Contains the name of the DB2 stored procedure that
this task will run. If the value of this column is
NULL, no stored procedure will be called when this
task is run.

PROCEDURE_
INPUT

VARCHAR(4096) Contains a statement that returns one row of data.
The returned value will be used as the input
parameter of the stored procedure that this task will
run. If this column contains the null value, no
parameters are passed to the stored procedure when
this task is run.

JCL_LIBRARY VARCHAR(44) Contains the name of the data set that contains the
JCL job that is run when this task is run. If the
value of this column is the null value, no JCL job
will be run when this task is run.

JCL_MEMBER VARCHAR(8) Contains the name of the library member that
contains the JCL job that is run when this task is
run. If the value of this column is the null value, the
data set that is specified in JCL_LIBRARY is
sequential and contains the JCL job that is run when
this task is run.

Chapter 3. Functions 737

Table 81. Format of the resulting table for ADMIN_TASK_LIST (continued)

Column name Data type Contains

JOB_WAIT VARCHAR(8) Contains one of the following values, which
indicates whether the JCL job can be run
synchronously. If the value in the column is not
null, this column contains one of the following
values:

NO Runs asynchronously

YES Runs synchronously

PURGE
Runs synchronously and then the job status
in z/OS is purged

TASK_NAME VARCHAR(128) Contains the unique name that is assigned to this
task.

DESCRIPTION VARCHAR(128) Contains a description of the task if one exists.

USERID VARCHAR(128) Contains the authorization ID of the user under
which the task will be invoked. If this column is
NULL, the task is invoked by the default
authorization ID that is associated with the
administrative task scheduler.

CREATOR VARCHAR(128) Contains the authorization ID that added the task to
the administrative task scheduler task list.

LAST_MODIFIED TIMESTAMP Timestamp of when the task was added or last
modified.

Example 1: Retrieve information about all of the tasks that are defined in the
administrative task scheduler task list:

SELECT *
FROM TABLE (DSNADM.ADMIN_TASK_LIST()) AS T;

738 SQL Reference

ADMIN_TASK_OUTPUT
For an execution of a stored procedure, the ADMIN_TASK_OUTPUT function
returns the output parameter values and result sets, if available. If the task that
was executed is not a stored procedure or the requested execution status is not
available, the function returns an empty table.

Authorization

The user who calls this function must have MONITOR1 privilege.

�� ADMIN_TASK_OUTPUT(task-name , num-invocations) ��

The schema is DSNADM.

Important: The ADMIN_TASK_OUTPUT function returns as many output
parameter values and result sets as possible. However, this information is not
always available. The administrative task scheduler cannot store output that
exceeds 32,180 bytes in length. Therefore, some output parameters and result set
values might be null if the values are too long to be stored by the administrative
task scheduler. Also, if the result sets are too large to be stored, only some of the
most recent rows of each result set might be available (for example, the first rows
missing).

task-name
Specifies the unique name of the task whose execution output you want
returned. This is an input parameter of type VARCHAR(128).

num-invocations
Specifies the execution number of the task whose output you want returned.
This value must be a valid value in the NUM_INVOCATIONS column of the
returned table of DSNADM.ADMIN_TASK_STATUS(NULL) for the specified
task. This is an input parameter of type INTEGER.

The result of the function is a table with the format shown in the following table.
This function might return an empty table for the output of a stored procedure for
the following reasons:
v The stored procedure does not have output parameters or result sets.
v The output of the stored procedure was not stored at execution time, because the

SYSIBM.ADMIN_TASKS_HIST table was not available.
v The num-invocations parameter is not valid.
v The output for the task that is specified by the num-invocations parameter is no

longer stored, because the task is older than the value that is specified for the
MAXHIST parameter of the administrative task scheduler. (The MAXHIST
parameter specifies the maximum number of execution statuses to keep for each
task.)

Chapter 3. Functions 739

Table 82. Format of the resulting table for ADMIN_TASK_OUTPUT

Column name Data type Contains

RESULT_SET SMALLINT Contains the stored procedure result set number
with a value beginning at 1, or NULL if this value
is for an output parameter of the stored procedure.

ROW SMALLINT Contains the result set row number with a value
beginning at 1, or NULL if this value is for an
output parameter of the stored procedure.

COLUMN SMALLINT Contains the result set column number, or the index
of an output parameter of the stored procedure
parameters, with a value beginning at 1. Only the
values of output parameters are returned, and the
results include the index in all parameters of the
stored procedure.

TYPE CHAR(8) Contains the type of the returned string. Possible
types are:
v DATE
v TIME
v TIMESTMP
v CHAR
v VARCHAR
v FLOAT
v BIGINT
v INTEGER
v SMALLINT
v OTHER

The value OTHER includes all of the other DB2
data types that are not supported in this stored
procedure.

VALUE VARCHAR(32180) Contains the string representation of the output
parameter value or the result set column value. This
column is null if the TYPE column contains
OTHER.

Related tasks:

Displaying the results of a stored procedure task (DB2 Administration Guide)

740 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_displayingresultsofsp.htm#db2z_displayingresultsofsp

ADMIN_TASK_STATUS
The ADMIN_TASK_STATUS function returns a table with one row for each task
that is defined in the administrative task scheduler task list. Each row indicates the
status of the task for the last time it was run.

Optionally, if you specify the max-history parameter, the function returns a row of
data for each execution of a task (up to the max-history value). For tasks that have
not been executed, this function returns a row of data with a NULL status.

Authorization

The user who calls this function must have MONITOR1 privilege.

�� ADMIN_TASK_STATUS()
max-history

��

The schema is DSNADM.

max-history
Specifies the maximum number of execution statuses per task to be returned.
The most recent execution statuses are returned.

If the parameter is set to NULL, all available task execution statuses are
returned. If the parameter is set to 1, only the status for the last time the task
was run is returned, which is the same result as not specifying this option.
This is an input parameter of type INTEGER.

The result of the function is a table with the format shown in the following table.

Table 83. Format of the resulting table for ADMIN_TASK_STATUS

Column name Data type Contains

TASK_NAME VARCHAR(128) Contains the name of the task that has run, is
running, or has been bypassed.

Chapter 3. Functions 741

Table 83. Format of the resulting table for ADMIN_TASK_STATUS (continued)

Column name Data type Contains

STATUS VARCHAR(10) Contains one of the following values that indicates
task status:

RUNNING
The task is currently running

COMPLETED
The task has finished running.

For asynchronous tasks (JCL jobs), this
column contains COMPLETED whenever
the job is submitted to be run. Otherwise,
this column contains COMPLETED only
after the task has finished running.

NOTRUN
The task was not run at the scheduled
invocation time. The MSG column contains
the error or warning message that indicates
why the task was not run.

UNKNOWN
The scheduler shut down while the task
was running. The scheduler is started again
but cannot know the execution status of
this interrupted task.

NUM_
INVOCATIONS

INTEGER Contains the number of times the administrative
task scheduler attempted to run the task, including
the current time if the task is currently running. The
values in this column does not indicate if the task
was successfully run.

START_
TIMESTAMP

TIMESTAMP Contains the time when the task started running if
the STATUS column contains COMPLETED,
RUNNING, or UNKNOWN. Otherwise, this column
contains the time that the task should have started
to run but could not.

END_
TIMESTAMP

TIMESTAMP Contains the time when the task finished running.

JOB_ID CHAR(8) Contains the job ID that is assigned to the JCL job
submitted by the administrative task scheduler. This
column contains NULL if the task is a stored
procedure or if the STATUS column does not
contain COMPLETED.

MAXRC INTEGER Contains the highest return code from submitting a
JCL job. If the task is synchronous, the value in this
column is changed to the return code that is
returned when the job finishes running.

This column is set to NULL if the task is a stored
procedure, if the STATUS column does not contain
COMPLETED, or if a synchronous task is finished
and has run with JES3 in a z/OS 1.7 or earlier
system.

742 SQL Reference

Table 83. Format of the resulting table for ADMIN_TASK_STATUS (continued)

Column name Data type Contains

COMPLETION_
TYPE

INTEGER Contains one of the following values that indicates
the completion type of the JCL job submitted by the
administrative task scheduler:

0 No completion information

1 Job ended normally

2 Job ended by completion code

3 Job had a JCL error

4 Job was canceled

5 Job abended

6 Converter abended while processing the
job

7 Job failed security checks

8 Job failed in end-of-memory

This column contains NULL if the task is a stored
procedure, if the STATUS column does not contain
COMPLETED, or if the JCL job is run with JES3 in a
z/OS 1.7 or earlier system.

SYSTEM_
ABENDCD

INTEGER Contains the system abend code returned by a
failed JCL job that was submitted by the
administrative task scheduler.

This column contains NULL if the task is a stored
procedure, if the STATUS column does not contain
COMPLETED, or if the JCL job is run with JES3 in a
z/OS 1.7 or earlier system.

USER_ABENDCD INTEGER Contains the user abend code returned by a failed
JCL job that was submitted by the administrative
task scheduler.

This column contains NULL if the task is a stored
procedure, if the STATUS column does not contain
COMPLETED, or if the JCL job is run with JES3 in a
z/OS 1.7 or earlier system.

MSG VARCHAR(128) Contains the error or warning message from the last
time the task was run.

SQLCODE INTEGER Contains the SQLCODE set by DB2 when a stored
procedure was called by the administrative task
scheduler. This column contains NULL if the task is
a JCL job or if the STATUS column does not contain
COMPLETED.

SQLSTATE CHAR(5) Contains the SQLSTATE set by DB2 when a stored
procedure was called by the administrative task
scheduler. This column contains NULL if the task is
a JCL job or if the STATUS column does not contain
COMPLETED.

Chapter 3. Functions 743

Table 83. Format of the resulting table for ADMIN_TASK_STATUS (continued)

Column name Data type Contains

SQLERRP VARCHAR(8) Contains the SQLERRP set by DB2 when a stored
procedure was called by the administrative task
scheduler. This column contains NULL if the task is
a JCL job or if the STATUS column does not contain
COMPLETED.

SQLERRMC VARCHAR(70) Contains the SQLERRMC set by DB2 when a stored
procedure was called by the administrative task
scheduler. This column contains NULL if the task is
a JCL job or if the STATUS column does not contain
COMPLETED.

DB2_SSID VARCHAR(4) Contains the DB2 subsystem ID that is associated
with the administrative task scheduler that ran the
task or should have run the task.

USERID VARCHAR(128) Contain the user ID that the task ran under.

Example 1: Retrieve status information about all of the tasks that have run in the
administrative task scheduler task list:

SELECT *
FROM TABLE (DSNADM.ADMIN_TASK_STATUS()) AS T;

Related tasks:

Listing the last execution status of scheduled tasks (DB2 Administration Guide)

Listing multiple execution statuses of scheduled tasks (DB2 Administration
Guide)

744 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_listingtaskexecutionstatus.htm#db2z_listingtaskexecutionstatus
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_listingmultipletaskstatuses.htm#db2z_listingmultipletaskstatuses
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_listingmultipletaskstatuses.htm#db2z_listingmultipletaskstatuses

MQREADALL
The MQREADALL function returns a table that contains the messages and
message metadata from a specified MQSeries location without removing the
messages from the queue.

��
(1)

MQREADALL()
receive-service num-rows

, service-policy ,

��

Notes:

1 The comma is required before num-rows when any of the preceding arguments to the function are
specified.

The schema is DB2MQ.

The MQREADALL function returns a table containing the messages and message
meta-data from the MQSeries location that is specified by receive-service, using the
quality-of-service policy that is defined in service-policy. Performing this operation
does not remove the messages from the queue that is associated with receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service point that is defined in the DB2MQ.MQSERVICE table. A
service point is a logical end-point from which a message is sent or received. A
service point definition includes the name of the MQSeries queue manager and
the name of the queue. See MQSeries Application Messaging Interface for more
details.

If receive-service is not specified or is the null value, DB2.DEFAULT.SERVICE is
used.

service-policy
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A
service policy specifies a set of quality-of-service options that are to be applied
to this messaging operation. These options include message priority and
message persistence. See MQSeries Application Messaging Interface for more
details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is
used.

num-rows
An expression that returns a value that is a SMALLINT or INTEGER data type
whose value is a positive integer or zero. The value of the expression specifies
the maximum number of messages to return.

Chapter 3. Functions 745

If num-rows is not specified or if the value of the expression is zero, all
available messages are returned.

The result of the function is a table with the format shown in the following table.
All the columns are nullable.

Table 84. Format of the resulting table for MQREADALL

Column name Data type Contains

MSG VARCHAR(4000) The contents of the MQSeries message

CORRELID VARCHAR(24) The correlation ID that is used to relate messages

TOPIC VARCHAR(40) The topic that the message was published with, if
available

QNAME VARCHAR(48) The name of the queue from which the message
was received

MSGID CHAR(24) The unique, MQSeries-assigned identifier for the
message

MSGFORMAT VARCHAR(8) The format of the message, as defined by MQSeries

Example 1: Read all the messages from the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY).

SELECT *
FROM SYSIBM.SYSDUMMY1 (MQREADALL()) AS T;

The messages and all the metadata are returned as a table.

Example 2: Read all the messages from the beginning of the queue specified by the
service MYSERVICE, using the default policy (DB2.DEFAULT.POLICY).

SELECT T.MSG, T.CORRELID
FROM SYSIBM.SYSDUMMY1 (MQREADALL ('MYSERVICE')) AS T;

Only the MSG and CORRELID columns are returned.

Example 3: Read all the messages from the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY). Only
messages with a CORRELID of '1234' are returned.

SELECT *
FROM SYSIBM.SYSDUMMY1 (MQREADALL(10)) AS T

WHERE T.CORRELID = '1234';

All columns are returned.

Example 4: Retrieve the first 10 messages from the beginning of the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

SELECT *
FROM SYSIBM.SYSDUMMY1 (MQREADALL(10)) AS T;

The first 10 messages and all the columns are returned as a table.

746 SQL Reference

MQREADALLCLOB
The MQREADALLCLOB function returns a table that contains the messages and
message metadata from a specified MQSeries location without removing the
messages from the queue.

��
(1)

MQREADALLCLOB()
receive-service num-rows

, service-policy ,

��

Notes:

1 The comma is required before num-rows when any of the preceding arguments to the function are
specified.

The schema is DB2MQ.

The MQREADALLCLOB function returns a table containing the messages and
message meta-data from the MQSeries location that is specified by receive-service,
using the quality-of-service policy that is defined in service-policy. Performing this
operation does not remove the messages from the queue that is associated with
receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service point that is defined in the DB2MQ.MQSERVICE table. A
service point is a logical end-point from which a message is sent or received. A
service point definition includes the name of the MQSeries queue manager and
the name of the queue. See MQSeries Application Messaging Interface for more
details.

If receive-service is not specified or is the null value, DB2.DEFAULT.SERVICE is
used.

service-policy
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A
service policy specifies a set of quality-of-service options that are to be applied
to this messaging operation. These options include message priority and
message persistence. See MQSeries Application Messaging Interface for more
details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is
used.

num-rows
An expression that returns a value that is a SMALLINT or INTEGER data type

Chapter 3. Functions 747

whose value is a positive integer or zero. The value of the expression specifies
the maximum number of messages to return.

If num-rows is not specified or if the value of the expression is zero, all
available messages are returned.

The result of the function is a table with the format shown in the following table.
All the columns in the table are nullable.

Table 85. Format of the resulting table for MQREADALLCLOB

Column name Data type Contains

MSG CLOB(1M) The contents of the MQSeries message

CORRELID VARCHAR(24) The correlation ID that is used to relate messages

TOPIC VARCHAR(40) The topic that the message was published with, if
available

QNAME VARCHAR(48) The name of the queue from which the message was
received

MSGID CHAR(24) The unique, MQSeries-assigned identifier for the
message

MSGFORMAT VARCHAR(8) The format of the message, as defined by MQSeries

The CCSID of the result is the system CCSID that was in effect at the time that the
MQSeries function was installed into DB2.

Example 1: Read all the messages from the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY).

SELECT *
FROM SYSIBM.SYSDUMMY1 (MQREADALLCLOB()) AS T;

The messages and all the metadata are returned as a table.

Example 2: Read all the messages from the queue specified by the service
MYSERVICE, using the default policy (DB2.DEFAULT.POLICY).

SELECT T.MSG, T.CORRELID
FROM SYSIBM.SYSDUMMY1 (MQREADALLCLOB(’MYSERVICE’)) AS T;

Only the MSG and CORRELID columns are returned as a table.

Example 3: Read all the messages from the queue specified by the service
MYSERVICE, using the default policy (DB2.DEFAULT.POLICY), with a correlation
identifier of '1234'.

SELECT *
FROM SYSIBM.SYSDUMMY1 (MQREADALLCLOB(’MYSERVICE’)) AS T

WHERE T.CORRELID = ’1234’;

All columns are returned.

Example 4: Read the first 10 messages from the queue specified by the default
service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

SELECT *
FROM SYSIBM.SYSDUMMY1 (MQREADALLCLOB(’10’)) AS T;

All columns are returned.

748 SQL Reference

MQRECEIVEALL
The MQRECEIVEALL function returns a table that contains the messages and
message metadata from a specified MQSeries location and removes the messages
from the queue.

�� MQRECEIVEALL(
receive-service

, service-policy
, correl-id

�

�
(1)

num-rows
,

) ��

Notes:

1 The comma is required before num-rows when any of the preceding arguments to the function are
specified.

The schema is DB2MQ.

The MQRECEIVEALL function returns a table containing the messages and
message meta-data from the MQSeries location that is specified by receive-service,
using the quality-of-service policy that is defined in service-policy. Performing this
operation removes the messages from the queue that is associated with
receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service point that is defined in the DB2MQ.MQSERVICE table. A
service point is a logical end-point from which a message is sent or received. A
service point definition includes the name of the MQSeries queue manager and
the name of the queue. See MQSeries Application Messaging Interface for more
details.

If receive-service is not specified or is the null value, DB2.DEFAULT.SERVICE is
used.

service-policy
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A
service policy specifies a set of quality-of-service options that are to be applied
to this messaging operation. These options include message priority and
message persistence. See MQSeries Application Messaging Interface for more
details.

Chapter 3. Functions 749

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is
used.

correl-id
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The expression must have an actual length
that is no greater than 24 bytes. The value of the expression specifies the
correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests
with replies. Only those messages with a matching correlation identifier are
returned.

A fixed length string with trailing blanks is considered a valid value. However,
when the correl-id is specified on another request such as MQSEND, the
correl-id must be specified the same to be recognized as a match. For example,
specifying a value of 'test' for correl-id for this function does not match a
correl-id value of 'test ' (with trailing blanks) specified earlier on an
MQSEND request.

If correl-id is not specified, is an empty string, or is the null value, a correlation
identifier is not used, and the message at the beginning of the queue is
returned.

num-rows
An expression that returns a value that is a SMALLINT or INTEGER data type
whose value is a positive integer or zero. The value of the expression specifies
the maximum number of messages to return.

If num-rows is not specified or if the value of the expression is zero, all
available messages are returned.

The result of the function is a table with the format shown in the following table.
All of the columns are nullable.

Table 86. Format of resulting table for MQRECEIVEALL

Column name Data type Contains

MSG VARCHAR(4000) The contents of the MQSeries message

CORRELID VARCHAR(24) The correlation ID that is used to relate messages

TOPIC VARCHAR(40) The topic that the message was published with, if
available

QNAME VARCHAR(48) The name of the queue from which the message
was received

MSGID CHAR(24) The unique, MQSeries-assigned identifier for the
message

MSGFORMAT VARCHAR(8) The format of the message, as defined by MQSeries

The CCSID of the result is the system CCSID that was in effect at the time that the
MQSeries function was installed into DB2.

Example 1: Retrieve all the messages from the queue specified by the default
service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

SELECT *
FROM SYSIBM.SYSDUMMY1 (MQRECEIVEALL()) AS T;

750 SQL Reference

The messages and all the metadata are returned as a table and the messages are
removed from the queue.

Example 2: Retrieve all the messages from the the queue specified by the service
MYSERVICE, using the default policy (DB2.DEFAULT.POLICY).

SELECT T.MSG, T.CORRELID
FROM SYSIBM.SYSDUMMY1 (MQRECEIVEALL(’MYSERVICE’)) AS T;

Only the MSG and CORRELID columns are returned. The messages are removed
from the queue.

Example 3: Retrieve all the messages from the beginning of the queue specified by
the service MYSERVICE, using the policy MYPOLICY, with a correlation identifier
of '1234'.

SELECT T.MSG, T.CORRELID
FROM SYSIBM.SYSDUMMY1 (MQRECEIVEALL(’MYSERVICE’,’MYPOLICY’,’1234’)) AS T;

Only the MSG and CORRELID columns are returned. The messages are removed
from the queue.

Example 4: Retrieve the first 10 messages from the beginning of the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

SELECT *
FROM SYSIBM.SYSDUMMY1 (MQRECEIVEALL(10)) AS T;

All columns are returned. The messages are removed from the queue.

Chapter 3. Functions 751

MQRECEIVEALLCLOB
The MQRECEIVEALLCLOB function returns a table that contains the messages
and message metadata from a specified MQSeries location and removes the
messages from the queue.

�� MQRECEIVEALLCLOB(
receive-service

, service-policy
, correl-id

�

�
(1)

num-rows
,

) ��

Notes:

1 The comma is required before num-rows when any of the preceding arguments to the function are
specified.

The schema is DB2MQ.

The MQRECEIVEALLCLOB function returns a table containing the messages and
message metadata from the MQSeries location that is specified by receive-service,
using the quality-of-service policy that is defined in service-policy. Performing this
operation removes the messages from the queue that is associated with
receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service point that is defined in the DB2MQ.MQSERVICE table. A
service point is a logical end-point from which a message is sent or received. A
service point definition includes the name of the MQSeries queue manager and
the name of the queue. See MQSeries Application Messaging Interface for more
details.

If receive-service is not specified or is the null value, DB2.DEFAULT.SERVICE is
used.

service-policy
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The value of the expression must not be an
empty string or a string with trailing blanks. The expression must have an
actual length that is no greater than 48 bytes. The value of the expression must
refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A
service policy specifies a set of quality-of-service options that are to be applied
to this messaging operation. These options include message priority and
message persistence. See MQSeries Application Messaging Interface for more
details.

752 SQL Reference

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is
used.

correl-id
An expression that returns a value that is a built-in character string or graphic
string data type that is not a LOB. The expression must have an actual length
that is no greater than 24 bytes. The value of the expression specifies the
correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests
with replies. Only those messages with a matching correlation identifier are
returned.

A fixed length string with trailing blanks is considered a valid value. However,
when the correl-id is specified on another request such as MQSEND, the
correl-id must be specified the same to be recognized as a match. For example,
specifying a value of 'test' for correl-id for this function does not match a
correl-id value of 'test ' (with trailing blanks) specified earlier on an
MQSEND request.

If correl-id is not specified, is an empty string, or is the null value, a correlation
identifier is not used, and the message at the beginning of the queue is
returned.

num-rows
An expression that returns a value that is a SMALLINT or INTEGER data type
whose value is a positive integer or zero. The value of the expression specifies
the maximum number of messages to return.

If num-rows is not specified or if the value of the expression is zero, all
available messages are returned.

The result of the function is a table with the format shown in the following table.
All of the columns are nullable.

Table 87. Format of resulting table for MQRECEIVEALLCLOB

Column name Data type Contains

MSG CLOB(1M) The contents of the MQSeries message

CORRELID VARCHAR(24) The correlation ID that is used to relate messages

TOPIC VARCHAR(40) The topic that the message was published with, if
available

QNAME VARCHAR(48) The name of the queue from which the message was
received

MSGID CHAR(24) The unique, MQSeries-assigned identifier for the
message

MSGFORMAT VARCHAR(8) The format of the message, as defined by MQSeries

The CCSID of the result is the system CCSID that was in effect at the time that the
MQSeries function was installed into DB2.

Example 1: Retrieve all the messages from the queue specified by the default
service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

SELECT *
FROM SYSIBM.SYSDUMMY1 (MQRECEIVEALLCLOB()) AS T;

Chapter 3. Functions 753

The messages and all the metadata are returned as a table, and the messages are
removed.

Example 2: Retrieve all the messages from the beginning of the queue specified by
the service MYSERVICE, using the policy (DB2.DEFAULT.POLICY).

SELECT T.MSG, T.CORRELID
FROM SYSIBM.SYSDUMMY1 (MQRECEIVEALLCLOB(’MYSERVICE’)) AS T;

Only the MSG and CORRELID columns are returned as a table, and the messages
removed from the queue.

Example 3: Retrieve all the messages from the queue specified by the service
MYSERVICE, using the policy "MYPOLICY", with a correlation identifier of '1234'.

SELECT *
FROM SYSIBM.SYSDUMMY1 (MQRECEIVEALLCLOB(’MYSERVICE’,’MYPOLICY’,’1234’)) AS T;

All columns are returned, and the messages removed from the queue.

Example 4: Retrieve the first 10 messages from the beginning of the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

SELECT *
FROM SYSIBM.SYSDUMMY1 (MQRECEIVEALLCLOB(10)) AS T;

All columns are returned, and the messages removed from the queue.

754 SQL Reference

XMLTABLE
The XMLTABLE function returns a result table from the evaluation of XQuery
expressions, possibly by using specified input arguments as XQuery variables.
Each item in the result sequence of the row XQuery expression represents one row
of the result table.

�� XMLTABLE (
xmlnamespaces-declaration ,

row-xquery-expression-constant �

�

�

,
BY REF (1)

PASSING row-xquery-argument

�

�

�

,
(2)

COLUMNS xml-table-regular-column-definition)
xml-table-ordinality-column-definition

��

Notes:

1 xquery-context-item-expression must not be specified more than one time.

2 The xml-table-ordinality-column-definition clause must not be specified more than one time.

row-xquery-argument

�� xquery-context-item-expression
xquery-variable-expression AS identifier

��

xml-table-regular-column-definition

�� column-name data-type
default-clause

(1)
PATH column-xquery-expression-constant

��

Notes:

1 Neither the default-clause or the PATH clause can be specified more than one time.

Chapter 3. Functions 755

xml-table-ordinality-column-definition

�� column-name FOR ORDINALITY ��

The schema is SYSIBM.

The function name cannot be specified as a qualified name.

xmlnamespaces-declaration
Specifies one or more XML namespace declarations, using the
XMLNAMESPACES function, that become part of the static context of the
row-xquery-expression-constant and the column-xquery-expression-constant. The set
of statically known namespaces for XQuery expressions which are arguments
of XMLTABLE is the combination of the pre-established set of statically known
namespaces and the namespace declarations specified in this clause. The
XQuery prolog within an XQuery expression can override these namespaces.

If xmlnamespaces-declaration is not specified, only the pre-established set of
statically known namespaces apply to the XQuery expressions.

row-xquery-expression-constant
Specifies an SQL character string constant that is interpreted as an XQuery
expression using supported XQuery language syntax. row-xquery-expression-
constant cannot be an XQuery updating expression. This expression determines
the number of rows in the result table. The expression is evaluated using the
optional set of input XML values that is specified in row-xquery-argument, and
returns an output XQuery sequence where one row is generated for each item
in the sequence. If the sequence is empty, the result of XMLTABLE is an empty
table. row-xquery-expression-constant must not contain an empty string or a
string of all blanks.

PASSING
Specifies input values and the manner in which these values are passed to
row-xquery-expression-constant.

BY REF
Specifies that any XML input arguments are, by default, passed by
reference. When XML values are passed by reference, the XQuery
evaluation uses the input node trees, if any exist, directly from the
specified input expressions and preserves all properties, including the
original node identities and document order.

This clause has no impact on how non-XML values are passed. The
non-XML values create a new copy of the value during the cast to XML.

row-xquery-argument
Specifies an argument that is to be passed to the XQuery expression
specified by row-xquery-expression-constant. row-xquery-argument is an SQL
expression that returns a value that is not a ROWID, LOB, DATE, TIME,
TIMESTAMP, BINARY, VARBINARY, REAL, DECFLOAT, or character
string with FOR BIT DATA attribute.

How row-xquery-argument is used in the XQuery expression depends on
whether the argument is specified as an xquery-context-item-expression or an
xquery-variable-expression.

756 SQL Reference

If the data type of row-xquery-argument is not XML, the result of the
expression for the argument is implicitly cast to XML. A null value is
converted to an XML empty sequence if the argument is
xquery-variable-expression.

row-xquery-argument must not contain NEXT VALUE or PREVIOUS VALUE
expressions or OLAP specifications.

xquery-context-item-expression
An expression that returns a value that is XML, integer, decimal, or a
character or graphic string that is not a LOB. xquery-context-item-
expression must not be a character string that is bit data.

xquery-context-item-expression specifies the initial context item for the
row-xquery-expression. The value of the initial context item is the result
of xquery-context-item-expression cast to XML. xquery-context-item-
expression must not be specified more than one time.

xquery-variable-expression
Specifies an SQL expression whose value is available to the XQuery
expression specified by row-xquery-expression-constant during execution.
The expression must returns a value that is XML, integer, decimal, or a
character or graphic string that is not a LOB.

xquery-variable-expression specifies an argument that will be passed to
row-xquery-expression-constant as an XQuery variable. If
xquery-variable-expression is a null value, the XQuery variable is set to
an XML empty sequence. The scope of the XQuery variables that are
created from the PASSING clause is the XQuery expression specified
by row-xquery-expression-constant.

AS identifier
Specifies that the value generated by xquery-variable-expression will be
passed to row-xquery-expression-constant as an XQuery variable. The
variable name will be identifier. The leading dollar sign ($) that
precedes variable names in the XQuery language is not included in
identifier. The identifier must not be greater than 128 bytes in length.
Two arguments within the same PASSING clause cannot use the same
identifier.

COLUMNS
Specifies the output columns of the result table including the column name,
data type, and how the column value is computed for each row. If this clause
is not specified, a single unnamed column of data type XML is returned, with
the value based on the sequence item from evaluating the XQuery expression
in the row-xquery-expression-constant (equivalent to specifying PATH '.'). To
reference the result column, a column-name must be specified in the
correlation-clause following the function.

xml-table-regular-column-definition
Specifies one output column of the result table including the column name,
data type, and an XQuery expression to extract the value from the
sequence item for the row.

column-name
Specifies the name of the column in the result table. The name cannot
be qualified and the same name cannot be used for more than one
column of the table.

data-type
Specifies the data type of the column. See CREATE TABLE for the

Chapter 3. Functions 757

syntax and a description of types available. A data-type can be used in
XMLTABLE if there is a supported XMLCAST from the XML data type
to the specified data-type.

default-clause
Specifies a default value for the column. See CREATE TABLE for the
syntax and a description of the default-clause. For XMLTABLE result
columns, the default is applied when the processing of the XQuery
expression contained in column-xquery-expression-constant returns an
empty sequence. This default value will not be inherited by declared
global temporary tables even when the INCLUDING COLUMN
DEFAULTS clause is specified in the definition of the declared global
temporary table.

PATH column-xquery-expression-constant
Specifies an SQL character string constant that is interpreted as an
XQuery expression using supported XQuery language syntax. The
column-xquery-expression-constant specifies an XQuery expression that
determines the column value with respect to an item that is the result
of evaluating the XQuery expression in row-xquery-expression-constant.
Given an item from the result of processing the row-xquery-expression-
constant as the externally provided context item, the
column-xquery-expression-constant is evaluated and returns an output
sequence. The column value is determined based on this output
sequence as follows.
v If the output sequence contains zero items, the default-clause provides

the value of the column.
v If an empty sequence is returned and no default-clause was specified,

a null value is assigned to the column.
v If a non-empty sequence is returned, the value is cast to the data-type

specified for the column using the XMLCAST expression. An error
could be returned from processing this XMLCAST.

The value for column-xquery-expression-constant must not be an empty
string or a string of all blanks. If this clause is not specified, the default
XQuery expression is simply the column-name.

xml-table-ordinality-column-definition
Specifies the ordinality column of the result table.

column-name
Specifies the name of the column in the result table. The name cannot
be qualified and the same name cannot be used for more than one
column of the table.

FOR ORDINALITY
Specifies that column-name is the ordinality column of the result table.
The data type of this column is BIGINT. The value of this column in
the result table is the sequential number of the item for the row in the
resulting sequence from evaluating the XQuery expression in
row-xquery-expression-constant.

The result of the function is a table. The encoding scheme of the table is Unicode.
If the evaluation of any of the XQuery expressions results in an error, the
XMLTABLE function returns the XQuery error.

Example: List as a table result the purchase order items for orders with a status of
'NEW':

758 SQL Reference

SELECT U."PO ID", U."Part #", U."Product Name",
U."Quantity", U."Price", U."Order Date"

FROM PURCHASEORDER P,
XMLTABLE(XMLNAMESPACES(’http://podemo.org’ AS "pod"),

’$po/PurchaseOrder/itemlist/item’ PASSING P.PORDER as "po"
COLUMNS "PO ID" INTEGER PATH ’../../@POid’,

"Part #" CHAR(6) PATH ’product/@pid’,
"Product Name" CHAR(50) PATH ’product/pod:name’,
"Quantity" INTEGER PATH ’quantity’,
"Price" DECIMAL(9,2) PATH ’product/pod:price’,
"Order Date" TIMESTAMP PATH ’../../dateTime’

) AS U
WHERE P.STATUS = ’NEW’

Row functions
A row function can be used only in contexts that are specifically described for the
function.

Chapter 3. Functions 759

UNPACK
The UNPACK function returns a row of values that are derived from unpacking
the input binary string. It is used to unpack a string that was encoded according to
the PACK function.

�� UNPACK (expression) ��

The schema is SYSIBM.

expression
An expression that returns the string value to be unpacked. The expression
must be a binary string that is not a BLOB and that is not null. The format of
the binary string must match the one that is produced by the PACK function.

The UNPACK function can only be specified in the SELECT list and the SET clause
of the UPDATE statement.

The result of the function is a row of fields corresponding to the data elements that
were encoded in the input packed string. The result is not null.

Example 1: Assume that a user-defined function named myUDF returns a
VARBINARY result. The body of the function includes the following invocation of
the PACK function to pack some data into a binary string:

SET :udf_result = PACK(CCSID 1208, ’Alina’, DATE’1977-08-01’,
DOUBLE(0.5));

The following SELECT statement unpacks the result of the myUDF function and
returns a row of individual column values:

SELECT UNPACK(myUDF(C1)).* AS(Name VARCHAR(40) CCSID UNICODE,
DOB DATE,
Score DOUBLE)

FROM T1;

The use of ".*" indicates that the result of the UNPACK function should be
flattened into a list of result column values. When the UNPACK function is used in
a select clause, an AS clause is specified to provide the names and data types for
the resulting values.

Example 2: Assume that a user-defined function UDF_SCORE returns a
VARBINARY result. The PACK function is invoked to return a binary string in
which the column values of table T1 are encoded and packed. The UNPACK
function returns the individual data values for a row with column names ID,
SCORE, and CONF:

SELECT T1.C1, T1.C2, T1.C3, T1.C4,
UNPACK(UDF_SCORE(PACK(CCSID 1208, T1.C1, T1.C2, T1.C3))).*

AS (ID INT, SCORE DOUBLE, CONF DOUBLE)
FROM T1;

Related reference:
“PACK” on page 562
“select-clause” on page 765
“unpacked-row” on page 771

760 SQL Reference

|
|

Chapter 4. Queries

Aquery specifies a result table or an intermediate table. A query is a component of
certain SQL statements. A query can have one of three forms.

A “subselect” on page 764
A “fullselect” on page 811
A “select-statement” on page 819

A subselect is a subset of a fullselect, and a fullselect is a subset of a
select-statement.

Restriction: For all three forms of a query, you cannot reference both a
system-period temporal table and an archive-enabled table in the same query.

“Authorization” on page 762 describes the privilege set that is required to use any
form of a query.

Another SQL statement that can be used to retrieve at most a single row is
described in “SELECT INTO” on page 1866. SELECT INTO is not a subselect,
fullselect, or a select-statement.
Related concepts:

Types of tables (Introduction to DB2 for z/OS)

Temporal tables (DB2 Administration Guide)

Archive-enabled tables and archive tables (Introduction to DB2 for z/OS)

© Copyright IBM Corp. 1982, 2013 761

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_typesoftables.htm#db2z_typesoftables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_temporaltables.htm#db2z_temporaltables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_archivetables.htm#db2z_archivetables

Authorization
For any form of a query, the privilege set that is defined below must include one
of the following:
v For each table or view identified in the statement, the privilege set must include

one of the following:
– Ownership of the table or view
– The SELECT privilege on the table or view
– DBADM authority for the database (tables only)

If the database is implicitly created, the database privileges must be on the
implicit database or on DSNDB04.

v SYSADM authority
v SYSCTRL authority (catalog tables only)
v DATAACCESS authority

If a query includes a user-defined function, the privileges that are held by the
authorization ID of the statement must include at least one of the following:
v For each user-defined function that is identified in the statement, one of the

following:
– The EXECUTE privilege on the function
– Ownership of the function

v SYSADM authority
v DATAACCESS authority

If the select-statement is part of a DECLARE CURSOR statement, the privilege set is
the privileges that are held by the authorization ID of the owner of the plan or
package.

If the select-statement contains an SQL data change statement, the privilege set must
include the SELECT privilege and the appropriate privileges for the SQL data
change statement (insert, update, or delete privileges) on the target table or view.

If the select-statement references a table that contain an active row or column access
control, and row permissions or column masks are defined for the table, the
authorization ID or role of the statement does not need authority to reference
objects that are specified in the definitions of those row permissions or column
masks.

For dynamically prepared statements, the privilege set depends on the dynamic
SQL statement behavior, which is specified by option DYNAMICRULES:

Run behavior
The privilege set is the union of the privilege sets that are held by each
authorization ID of the process.

Bind behavior
The privilege set is the privileges that are held by the authorization ID of
the owner of the plan or package.

Define behavior
The privilege set is the privileges that are held by the authorization ID of
the owner of the stored procedure or user-defined function.

762 SQL Reference

Invoke behavior
The privilege set is the privileges that are held by the authorization ID of
the invoker of the stored procedure or user-defined function.

For a list of the DYNAMICRULES values that specify run, bind, define, or invoke
behavior, see Table 6 on page 75.

When any form of a query is used as a component of another statement, the
authorization rules that apply to the query are specified in the description of that
statement. For example, see “CREATE VIEW” on page 1527 for the authorization
rules that apply to the subselect component of CREATE VIEW.

If your installation uses the access control authorization exit (DSNX@XAC), that
exit might be controlling the authorization rules instead of the rules that are listed
here.

Chapter 4. Queries 763

subselect
The subselect is a component of the fullselect. A subselect specifies a result table
that is derived from the tables or views that are identified in the FROM clause.

�� select-clause from-clause
where-clause group-by-clause having-clause

�

�
order-by-clause fetch-first-clause

��

The derivation of the result table can be described as a sequence of operations in
which the result of each operation is input for the next. (This is only a way of
describing the subselect. The method that is used to perform the derivation might
be quite different from this description. If portions of the subselect do not actually
need to be executed for the correct result to be obtained, they might not be
executed.)

When a subselect directly or indirectly references a table for which row or column
access control is enforced, the rules that are defined in the row permissions or
column masks affect how the rows in the result table are derived. Typically those
rules are based on the authorization ID or role of the process.

A scalar-subselect is a subselect, enclosed in parentheses, that returns a single result
row and a single result column. If the result of the subselect is no rows, the null
value is returned. An error is returned if the result contains more than one row.

The clauses of the subselect are processed in the following sequence:
1. FROM clause
2. WHERE clause
3. GROUP BY clause
4. HAVING clause
5. SELECT clause
6. ORDER BY clause
7. FETCH FIRST clause

764 SQL Reference

select-clause
The SELECT clause specifies the columns of the final result table. The column
values are produced by the application of the select list to R. The select list is a list
of names and expressions specified in the SELECT clause, and R is the result of the
previous operation of the subselect. For example, if SELECT, FROM, and WHERE
are the only clauses specified, then R is the result of that WHERE clause.

��
ALL

SELECT
DISTINCT

�

*
,

expression
AS

new-column-name
unpacked-row

table-name .*
view-name
correlation-name

��

ALL
Retains all rows of the final result table and does not eliminate redundant
duplicates. This is the default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table.

Two rows are duplicates of one another only if each value in the first row is
equal to the corresponding value in the second row. For determining duplicate
rows, two null values are considered equal.

When SELECT DISTINCT is specified, no column or expression in the implicit
or explicit list can return a value that is a LOB or XML data type. When a
column or expression in the list returns a value that is a DECFLOAT data type
and multiple bit representations of the same number exists in the intermediate
result, the value that is returned is unpredictable. See “Numeric comparisons”
on page 134 for additional information.

Column access controls do not affect the operation of SELECT DISTINCT. The
elimination of duplicated rows is based on the original column values, not the
masked values. However, after the application of column masks, the masked
values in the final result table might not reflect the uniqueness that is enforced
by SELECT DISTINCT.

If a column mask is applied to a column that directly or indirectly derives the
result of SELECT DISTINCT, SELECT DISTINCT can return a result that is not
deterministic. The following conditions are a few examples of when a result
that is not deterministic might be returned:
v The definition of the column mask references other columns of the table to

which the column mask is applied.
v The column is referenced in the argument of a built-in scalar function, such

as COALESCE, IFNULL, NULLIF, MAX, MIN, LOCATE, TOTALORDER, etc.
v The column is referenced in the argument of an aggregation function.

select-clause

Chapter 4. Queries 765

v The column is embedded in an expression and the expression contains a
function that is not deterministic or has an external action.

For compatibility with other SQL implementations, UNIQUE can be specified
as a synonym for DISTINCT.

Select list notation:

* Represents a list of columns of table R, excluding any columns that are defined
as implicitly hidden. The list of names is established when the statement
containing the SELECT clause is prepared. Therefore, * does not identify any
columns that have been added to a table after the statement has been
prepared.

A column that is defined as implicitly hidden can be explicitly referenced in
the select list.

* cannot be used in the definition of a row permission or a column mask.

expression
Specifies the values of a result column. Each column-name in the expression
must unambiguously identify a column of the intermediate result table.

AS new-column-name
Names or renames the result column. The name must not be qualified and
does not have to be unique. new-column-name is an SQL identifier of 128
UTF-8 bytes or less.

name.*
Represents a list of columns of name, excluding any columns that are defined
as implicitly hidden, in the order the columns are produced by the FROM
clause. name can be a table name, view name, or correlation name, and must
designate an exposed table, view, or correlation name in the FROM clause that
immediately follows the SELECT clause. The first name in the list identifies the
first column of the table or view, the second name in the list identifies the
second column of the table or view, and so on.

The list of names is established when the statement that contains the SELECT
clause is prepared. Therefore, * does not identify any columns that have been
added to a table after the statement has been prepared.

name.* cannot be used in the definition of a row permission or a column mask.

SQL statements can be implicitly or explicitly prepared again. The effect of another
prepare on statements that include * or name.* is that the list of names is
re-established. Therefore, the number of columns returned by the statement might
change.

The number of columns in the result of SELECT is the same as the number of
expressions in the operational form of the select list (that is, the list established at
the time the statement is prepared), and cannot exceed 750. The result of a
subquery must be a single column unless the subquery is used in an EXISTS
predicate.

Notes:

If the FROM clause contains a MERGE statement:
The SELECT list must not implicitly or explicitly refer to a column that has
a LOB data type, a ROWID data type (or a distinct type that is based on a
LOB, or ROWID), or an XML data type.

766 SQL Reference

Implicitly hidden ROWID columns in the select list:
The result for SELECT * does not include any implicitly hidden ROWID
columns. To be included in the result, implicitly hidden ROWID columns
must be explicitly specified in the select list.

VARBINARY data:
If the identified table has an index on a VARBINARY column or a column
that is a distinct type that is based on VARBINARY data type, that index
column cannot specify the DESC attribute. To query the identified table,
either drop the index or alter the data type of the column to BINARY and
then rebuild the index.

Applying the select list:
Some of the results of applying the select list to R depend on whether
GROUP BY or HAVING is used. The following three lists describe the
results.

IF neither GROUP BY nor HAVING is used:

v The select list can include aggregate functions only if it includes
other aggregate functions, constants, or expressions that only
involve constants.

v If the select list does not include aggregate functions, it is
applied to each row of R and the result contains as many rows
as there are rows in R.

v If the select list includes aggregate functions, R is the source of
the arguments of the functions and the result of applying the
select list is one row, even when R has no rows.

v If a column mask is used to mask the values in the final result
table, and the select list includes aggregate functions, the
definition of the column mask must not reference the following:
– A scalar fullselect
– An aggregate function

If HAVING is used and GROUP BY is not used:
Each expression or column-name in an expression in the select list
must be specified within an aggregate function. Constants or
expressions that involve only constants can also be in the select list.

If a column mask is used to mask the values in the final result
table, the definition of the column mask must not reference the
following:
v A scalar fullselect
v An aggregate function

If GROUP BY is used:

v Each expression in the select list must use one or more grouping
expressions. Or, each expression or column-name in an expression
must:
– Unambiguously identify a grouping column of R.
– Be specified within an aggregate function.
– Be a correlated reference. (A column-name is a correlated

reference if it identifies a column of a table or view identified
in an outer subselect.)

v If an expression in the select list is a scalar fullselect, a correlated
reference from the scalar fullselect to a group R must either
identify a grouping column or be contained within an aggregate

Chapter 4. Queries 767

function. For example, the following query fails because the
correlated reference T1.C1 || T1.C2 in the select list of the scalar
fullselect does not match a grouping column from the outer
subselect. (Matching the grouping expression T1.C1 || T1.C2 is
not supported.)
SELECT MAX(T1.C2) AS X1,

(SELECT T1.C1 || T1.C2 FROM T2 GROUP BY T2.C1) AS Y1
FROM T1
GROUP BY T1.C1, T1.C1 || T1.C2;

v You cannot use GROUP BY with a name defined using the AS
clause unless the name is defined in a nested table expression.
Example 6 demonstrates the valid use of AS and GROUP BY in
a SELECT statement.

In either case, the nth column of the result contains the values
specified by applying the nth expression in the operational form of
the select list.

If a column mask is used to mask the column values in the final
result table, a column for which the column mask is applied must
satisfy one of the following conditions:
v The column must be specified in an aggregate function and the

definition of the column mask must not reference the following:
– A scalar fullselect
– An aggregate function

v The column must identify a column-name in the GROUP BY
clause and the column must not be referenced in an expression in
the GROUP BY clause. In addition, any columns of the same
table as the column for which the column mask is applied and
are referenced in the definition of the column mask must be
identified with a column-name in the GROUP BY clause. These
columns must not be referenced in an expression in the GROUP
BY clause.

v A column of a non-base tables in the select list must be specified
in an aggregate function if a column mask is used to mask the
column values in the final result table, and the column of a
non-base table maps directly or indirectly to a column name or
to an expression in a materialized table expression or view to the
table where the column mask is applied.

Effect of column masks on result columns:
When column masks are enabled, they determine the values in the final
result table of an outermost select list. When a column mask is enabled for
a column, if the column appears in the outermost select list (either
implicitly or explicitly), the column mask is applied to the column to
produce the values for the final result table. If the column itself does not
appear in the outermost select list, but is included in the output (for
example, it appears in a materialized table expression or a view), the
masked value is included in the result table of the table expression or view
so that it can be used in the final result table.

The enabled column masks do not interfere with the operations of other
clauses within the statement, such as the WHERE, GROUP BY, HAVING,
SELECT DISTINCT, and ORDER BY clauses.

The rows that are returned in the final result table remain the same, except
that the values in the result rows might be masked. As such, if a column

768 SQL Reference

with masked values also appears in an ORDER BY clause with a sort-key
expression, the order is based on the original column values (the masked
values in the final result table might not reflect that order). Similarly, the
masked values might not reflect the uniqueness enforced by a SELECT
DISTINCT. If the masked column is embedded in an expression, the result
of the expression might be different because the column mask is applied to
the column before the expression is evaluated. For example, a column
mask on column SSN can change the result of the function
COUNT(DISTINCT SSN) because the DISTINCT operation is performed on
the masked values. However, if the expression in the query is the same as
the expression that is used to mask the column value in the definition of
the column mask, the result of the expression might remain unchanged.
For example, the expression in the query is ’XXX-XX-’ || SUBSTR(SSN, 8,
4) and the same expression is used in the column mask definition. In this
particular example, the expression in the query can be replaced with
column SSN to avoid the same expression being evaluated twice.

If a CASE expression appears in the outermost select list, column masks
are not applied to the search-condition of the WHEN clause.

When the definition of a column mask is applied to an SQL statement to
mask column values in the final result table, the semantics of the column
mask might conflict with certain SQL semantics in the statement. In these
situations, the combination of the statement and the column mask might
return an error.

See “ALTER TABLE” on page 984 for more information about the
application of enabled column masks.

Null attributes of result columns:
Result columns allow null values if they are derived from one of the
following:
v Any aggregate function except COUNT or COUNT_BIG
v A column that allows null values
v A view column in an outer select list that is derived from an arithmetic

expression
v An arithmetic expression in an outer select list
v An arithmetic expression that allows nulls
v A scalar function or string expression that allows null values
v A host variable that has an indicator variable, an SQL parameter or

variable, a global variable, or in the case of Java, a host variable or
expression whose type is able to represent a Java null value

v A result of a set operator if at least one of the corresponding items in the
select list is nullable

Names of result columns:
In the following cases a result column is considered a named column:
v If the AS clause is specified, the name of the result column is the name

specified on the AS clause.
v If the AS clause is not specified and a column list is specified in the

correlation clause, the name of the result column is the corresponding
name in the correlation column list.

v If neither an AS clause nor a column list in the correlation clause is
specified and the result column is derived only from a single column
(without any functions or operators), the result column name is the
unqualified name of that column.

Chapter 4. Queries 769

|
|
|

v If neither an AS clause nor a column list in the correlation clause is
specified and the result column is derived only from a single SQL
variable, global variable, or SQL parameter (without any functions or
operators), the result column name is the unqualified name of that SQL
variable, global variable, or SQL parameter.

In all other cases, a result column is an unnamed column.

Names of result columns, SQL variables, and global variables are placed
into the SQL descriptor area (SQLDA) when the DESCRIBE statement is
executed. This allows an interactive SQL processor such as SPUFI, the
command line processor, or DB2 QMF to use the column names when
displaying the results. The names in the SQLDA include those specified by
the AS clause.

Data types of result columns:
Each column of the result of SELECT acquires a data type from the
expression from which it is derived. The following table shows the data
types of result columns.

Table 88. Data types of result columns

When the expression is... The data type of the result column is...

The name of any numeric
column

The same as the data type of the column, with the same precision and scale for
decimal columns.

An integer constant INTEGER.

A decimal or floating-point
constant

The same as the data type of the constant, with the same precision and scale for
decimal constants. For floating-point constants, the data type is DOUBLE
PRECISION.

A decimal floating point
constant

DECFLOAT(34)

The name of any numeric host
variable

The same as the data type of the variable, with the same precision and scale for
decimal variables. The result is decimal if the data type of the host variable is not an
SQL data type; for example, DISPLAY SIGN LEADING SEPARATE in COBOL.

An arithmetic or string
expression

The same as the data type of the result, with the same precision and scale for
decimal results as described in “Expressions” on page 240.

Any function The data type of the result of the function. For a built-in function, see Chapter 3,
“Functions,” on page 337 to determine the data type of the result. For a user-defined
function, the data type of the result is what was defined in the CREATE FUNCTION
statement for the function.

The name of any string column The same as the data type of the column, with the same length attribute.

The name of any string host
variable

The same as the data type of the variable, with a length attribute equal to the length
of the variable. The result is a varying-length character string if the data type of the
host variable is not an SQL data type; for example, a NUL-terminated string in C.

A character string constant of
length n

VARCHAR(n).

A binary string constant of
length n

VARBINARY(n)

A graphic string constant of
length n

VARGRAPHIC(n).

The name of a datetime
column

The same as the data type of the column.

The name of a ROWID column Row ID.

The name of a distinct type
column

The same as the distinct type of the column, with the same length, precision, and
scale attributes, if any.

770 SQL Reference

|
|
|
|
|

|
|
|
|
|
|

For information about the CCSID of the result column, see “Rules for
result data types” on page 144.

Related reference:
“Examples of subselects” on page 805

unpacked-row
An unpacked-row specifies a row that is the result of an invocation of the UNPACK
built-in function.

unpacked-row:

�

,

UNPACK-function-invocation .* AS (field-name data-type)

UNPACK-function-invocation
Specifies an invocation of the UNPACK built-in function. The number of
specified field-names and field-types must be the same as the number of
fields that are returned by the UNPACK function invocation.

field-name
Names the field that is returned from the UNPACK function. A name must
not be qualified, and it does not have to be unique.

data-type
Specifies the built-in data type of the field. The specified data type, length,
and CCSID must correspond to the data type, length, and CCSID of the
data when the argument was initially encoded with the PACK function.
The following table provides the supported data type mappings from the
packed string data:

Table 89. Data type mappings from packed string data

Data type of an
encoded value in the
packed string for
UNPACK Data type specified for UNPACK

SMALLINT SMALLINT, INTEGER, BIGINT

INTEGER INTEGER, BIGINT

BIGINT BIGINT

decimal (p,s)1 decimal(p', s') if s'< s, s-s' digits are truncated. An error occurs if
there are more than p'-s' significant digits.

real2 or double3 double

CHAR(n) or
VARCHAR(n)

CHAR(m), VARCHAR(m)

If m < n and any of the n-m characters is not a blank, an error
occurs. Otherwise, the n-m blanks are truncated. If m > n and the
specified data type is CHAR, m-n blanks are appended.

Chapter 4. Queries 771

Table 89. Data type mappings from packed string data (continued)

Data type of an
encoded value in the
packed string for
UNPACK Data type specified for UNPACK

BINARY(n) or
VARBINARY(n)

BINARY(m), VARBINARY(m)

If m < n, an error occurs. If m > n and the UNPACK target is
BINARY, m-n X'00' bytes are appended.

DATE DATE

TIME TIME

TIMESTAMP(p)
WITHOUT TIME ZONE

TIMESTAMP(p') WITHOUT TIME ZONE. If p' > p, p'-p zeros are
appended. If p' < p, p-p' digits are truncated.

TIMESTAMP(p) WITH
TIME ZONE

TIMESTAMP(p') WITH TIME ZONE. If p' > p, p'-p zeros are
appended. If p' < p, p-p' digits are truncated.

Note: The data types in lower case are defined as follows:

1. decimal = DECIMAL(p,s) or NUMERIC(p,s)

2. real = REAL or FLOAT(n) where n is the specification for a single precision floating
point

3. double = DOUBLE, DOUBLE PRECISION, FLOAT or FLOAT(n) where n is the
specification for a double precision floating point

The synonyms for the data types, in either long or short form, are considered the same as
those that are listed.

Related reference:
“select-clause” on page 765

772 SQL Reference

from-clause
The FROM clause specifies an intermediate result table.

�� FROM �

,

table-reference ��

If only one table-reference is specified, the intermediate result table is simply the
result of that table-reference. If more than one table-reference is specified, the
intermediate result table consists of all possible combinations of the rows of the
result of each specified table-reference.

Each row of the result is a row from the result of the first table-reference
concatenated with a row from the result of the second table-reference, concatenated
with a row from the result of the third table-reference, and so on. The number of
rows in the result is the product of the number of rows in the result of each
table-reference. Thus, if the result of any table-reference is empty, the result is empty.

If table-reference has row access controls enforced, table-reference has at least one row
permission: the default row permission. When there are multiple row permissions
defined for a table-reference, a row access control search condition is derived by
applying the logical OR operator to the search condition in each enabled
permission. This derived search condition acts as a filter to the table-reference to
determine the result table of the table-reference that is accessible to the authorization
ID or role of the subselect.

If a table-reference contains a security label column, DB2 compares the security label
of the user to the security label of each row. Results are returned according to the
following rules:
v If the security label of the user dominates the security label of the row, DB2

returns the row.
v If the security label of the user does not dominate the security label of the row,

DB2 does not return the data from that row, and DB2 does not generate an error
report.

Related reference:
“Examples of subselects” on page 805

table-reference
A table-reference specifies a result table as either a table or view, or an intermediate
table.

from-clause

Chapter 4. Queries 773

table-reference:

�� single-table-reference
single-view-reference
nested-table-expression
data-change-table-reference
table-function-reference
table-locator-reference
xmltable-expression
collection-derived-table
joined-table

��

�� table-name �

period-specification correlation-clause
��

�� view-name �

period-specification correlation-clause
��

��
(1)

FOR SYSTEM_TIME
(2)

BUSINESS_TIME

AS OF value
FROM value1 TO value2
BETWEEN value1 AND value2

��

Notes:

1 AS OF TIMESTAMP can be specified in place of FOR SYSTEM_TIME AS OF.

2 SYSTEM_TIME and BUSINESS_TIME cannot be specified more than one time per table.

single-table-reference:

single-view-reference:

period-specification:

nested-table-expression:

774 SQL Reference

|

|||

|

��
TABLE

(fullselect) correlation-clause ��

�� FINAL TABLE (INSERT statement)
FINAL TABLE (searched UPDATE statement)
OLD

OLD TABLE (searched DELETE statement)
FINAL TABLE (MERGE statement)

correlation-clause
��

��

�

TABLE (function-name())
, table-UDF-cardinality-clause

expression
TABLE transition-table-name

�

� correlation-clause
(1)

typed-correlation-clause

��

Notes:

1 The typed-correlation-clause is required for generic table functions. This clause cannot be specified
for any other table functions.

�� CARDINALITY integer-constant
CARDINALITY MULTIPLIER numeric-constant

��

�� TABLE (table-locator-variable LIKE table-name)
correlation-name

��

�� xmltable-function correlation clause ��

data-change-table-reference:

table-function-reference:

table-UDF-cardinality-clause:

table-locator-reference:

xmltable-expression:

Chapter 4. Queries 775

||

A table-reference specifies an intermediate result table.
v If a single-table-reference is specified and it is not an archive-enabled table or a

temporal table, the intermediate result table is the specified table. If a
period-specification is also specified, the intermediate result table consists of the
rows of the temporal table where the period matches the specification.

v If a single-table-reference is specified and it is an archive-enabled table, the setting
of the SYSIBMADM.GET_ARCHIVE global variable and the
ARCHIVESENSITIVE bind option determine the contents of the intermediate
result table. If the global variable is set to Y and the bind option is set to YES,
the intermediate result table includes the rows in the associated archive table.
Otherwise, the intermediate result table does not include rows in the associated
archive table.

v If a single-view-reference is specified without a period-specification, the intermediate
result table is that view. If a period-specification is specified, temporal table
references in the view consider only the rows where the period matches the
specification.

v If a nested-table-expression is specified, the result table is the result of the specified
fullselect. The columns of the result do not need unique names, but a column
with a non-unique name cannot be explicitly referenced.

v If a data-change-table-reference is specified, the intermediate result table is the set
of rows that are directly affected by the data change statement.

v If a table-function-reference is specified, the intermediate result table is the set of
rows that are returned by the table function.

v If a table-locator-reference is specified, the host variable represents the intermediate
result table. The intermediate result table has the same structure as the table
identified in table-name.

v If a collection-derived-table is specified, the intermediate result table is a set of
rows from one or more array values. For more information, see
“collection-derived-table” on page 787.

v If an xmltable-expression is specified, the intermediate result table is the set of
rows that are returned by the “XMLTABLE” on page 755 function.

v If a joined-table is specified, the intermediate result table is the result of one or
more join operations. For more information, see “joined-table” on page 791.

Each table-name or view-name specified in every FROM clause of the same SQL
statement must identify a table or view that exists at the same DB2 subsystem. If a
FROM clause is specified in a subquery of a basic predicate, a view that includes
GROUP BY or HAVING must not be identified.

A table-reference must not identify a table that was implicitly created for an XML
column.

table-locator-reference
Each table-locator-variable must specify a host variable with a table locator type.
The only way to assign a value to a table locator is to pass the old or new
transition table of a trigger to a user-defined function or stored procedure. A
table locator host variable must not have a null indicator and must not be a
parameter marker. In addition, a table locator can be used only in a
manipulative SQL statement.

nested-table-expression
A fullselect in parentheses is called a nested table expression. If a nested table
expression is specified, the result table is the result of that
nested-table-expression. The columns of the result do not need unique names, but

776 SQL Reference

|
|
|
|

|
|
|
|
|
|
|

|
|
|

a column with a non-unique name cannot be referenced. At any time, the table
consists of the rows that would result if the fullselect were executed.

table-function-reference
If a function-name is specified, the result table is the set of rows returned by the
table function.

expression must not contain a scalar fullselect, a function, or a reference to a
column.

Each function-name, together with the types of its arguments, must resolve to a
table function that exists at the same DB2 subsystem. An algorithm called
function resolution, which is described in “Function resolution” on page 234,
uses the function name and the arguments to determine the exact function to
use. Unless given column names in the correlation-clause, the column names for
a table function are those specified on the RETURNS clause of the CREATE
FUNCTION statement. This is analogous to the column names of a table,
which are defined in the CREATE TABLE statement.

If a column mask is used to mask the column values in the final result table,
and if the result of the table function is used to derive the final result table, the
column mask cannot be applied to a column that is specified in the argument
of the table function.

table-UDF-cardinality-clause
The table-UDF-cardinality clause can be specified to each user-defined table
function reference within the table spec of the FROM clause in a subselect.
This option indicates the expected number of rows to be returned only for
the SELECT statement that contains it.

CARDINALITY integer-constant specifies an estimate of the expected
number of rows returned by the reference to the user-defined function. The
value of integer-constant must range from 0 to 2147483647.

The value set in the CARDINALITY field of SYSIBM.SYSROUTINES for
the table function name is used as the reference cardinality value. The
product of the specified CARDINALITY MULTIPLIER numeric-constant
and the reference cardinality value are used by DB2 as the expected
number of rows returned by the table function reference.

In this case, the numeric-constant can be in the integer, decimal, or
floating-point format. The value must be greater than or equal to zero. If
the decimal number notation is used, the number of digits can be up to 31.
An integer value is treated as a decimal number with no fraction. The
maximum value allowed for a floating-point number is about 7.237E + 75.
If no value has been set in the CARDINALITY field of
SYSIBM.SYSROUTINES, its default value is used as the reference
cardinality value. If zero is specified or the computed cardinality is less
than 1, DB2 assumes that the cardinality of the reference to the
user-defined table function is 1.

Only a numeric constant can follow the keyword CARDINALITY or
CARDINALITY MULTIPLIER. No host variable or parameter marker is
allowed in a cardinality option. Specifying a cardinality option in a table
function reference does not change the corresponding CARDINALITY field
in SYSIBM.SYSROUTINES. The CARDINALITY field value in
SYSIBM.SYSROUTINES can be initialized by the CARDINALITY option in
the CREATE FUNCTION (external table) statement when a user-defined

Chapter 4. Queries 777

table function is created. It can be changed by the CARDINALITY option
in the ALTER FUNCTION statement or by a direct update operation to
SYSIBM.SYSROUTINES.

data-change-table-reference
A data-change-table-reference clause specifies an intermediate result table. This
table is based on the rows that are directly changed by the SQL data change
statement that is included in the clause. A data-change-table-reference can only be
specified as the only table-reference in the FROM clause of the outer fullselect
that is used in a select-statement and that fullselect must be in a subselect, or a
SELECT INTO statement. A data-change-table-reference in a SELECT statement of
a cursor makes the cursor read only. The target table or view of the SQL data
change statement is a table or view that is reference in the query. The
privileges that are held by the authorization ID of the statement must include
the SELECT privilege on that target table or view.

If row access control is enforced for the target of the data change statement,
the rows in the intermediate result table already satisfy the rules that are
specified in the enabled row permissions. If column access control is enforced
for the target of the data change statement, the enabled column masks are
applied to the outermost select list. See “select-clause” on page 765 for more
information. If an INCLUDE clause is specified as part of the SQL data change
statement, and these additional columns appear in the outermost select list, the
column values must not be derived from columns for which column masks are
defined.

Expressions in the select list of a view in a table reference can only be selected
if OLD TABLE is specified or if the expression does not include any of the
following objects:
v a function that is defined to read or modify SQL data
v a function that is defined as not deterministic or has an external action
v a NEXT VALUE expression for a sequence

FINAL TABLE
Specifies that the rows of the intermediate result table represent the set of
rows that are changed by the SQL data change statement as they appear at
the completion of the SQL data change statement. If there are AFTER
triggers that result in further operations on the table that is the target of
the SQL data change statement, an error is returned. If the target of the
SQL data change statement is a view that is defined with an INSTEAD OF
trigger for the type of data change, an error is returned.

OLD TABLE
The rows of the intermediate result table represent the set of affected rows
as they exist prior to the application of the SQL data change statement.

INSERT statement
Specifies an INSERT statement as described in “INSERT” on page 1734. A
fullselect in the INSERT statement cannot contain correlated references to
columns that are outside of the fullselect of the INSERT statement. The
target of the INSERT statement must be a base table, a view that is defined
with the WITH CASCADED CHECK clause, or a view where the view
definition has no WHERE clause. If there are input variables elsewhere in
the fullselect, the INSERT statement cannot be a multiple row not atomic
insert, or a multiple row atomic insert that specifies the USING
DESCRIPTOR clause.

MERGE statement
Specifies a MERGE statement as described in “MERGE” on page 1760. A

778 SQL Reference

table reference in the MERGE statement must not contain correlated
references to columns that are outside of the table reference in the MERGE
statement.

If the MERGE statement is used in the SELECT statement and the MERGE
statement references a view, the view must be defined using the WITH
CASCADED CHECK OPTION clause.

The target table or view of the MERGE statement must not have a column
with a ROWID, LOB, or XML data type.

AFTER triggers that result in further operations on the target table cannot
exist on the target table.

searched UPDATE statement
Specifies a searched UPDATE statement as described in “UPDATE” on
page 1933. A WHERE clause or a SET clause in the UPDATE statement
cannot contain correlated referenced to columns that are outside of the
UPDATE statement. The target of the UPDATE statement must be a base
table, a symmetric view, or a view where the view definition has no
WHERE clause.

If the searched UPDATE statement is used in the SELECT statement and
the UPDATE statement references a view, the view must be defined using
the WITH CASCADED CHECK OPTION clause.

A searched UPDATE statement in a SELECT statement will not clear the
AREO* status of a table.

AFTER triggers that result in further operations on the target table cannot
exist on the target table.

searched DELETE statement
Specifies a searched DELETE statement as described in “DELETE” on page
1573. A WHERE clause in the DELETE statement cannot contain correlated
references to columns that are outside of the DELETE statement. The target
of the DELETE statement must be a base table, a symmetric view, or a
view where the view definition has no WHERE clause.

If the searched DELETE statement is used in the SELECT statement and
the DELETE statement references a view, the view must be defined using
the WITH CASCADED CHECK OPTION clause.

AFTER triggers that result in further operations on the target table cannot
exist on the target table.

The content of the intermediate result table for a table reference that contains
an SQL data change statement is determined when the cursor is opened. The
intermediate result table includes a column for each of the columns of the
target table (including implicitly hidden columns) or view. All of the columns
of the target table or view of an SQL data change statement are accessible by
using the names of the columns from the target table or view unless the
columns are renamed by using the correlation clause. If a correlation-name is not
specified, the column names can by qualified by the target table or view name
of the SQL data change statement, without the schema qualifier. If an
INCLUDE clause is specified as part of the SQL data change statement, the
intermediate result table will contain these additional columns.

correlation-clause
Each correlation-name in a correlation-clause defines a designator for the

Chapter 4. Queries 779

immediately preceding result table, which can be used to qualify references to
the columns of the table. See “correlation-clause” on page 784 for more
information.

typed-correlation-clause
A typed-correlation-clause defines the appearance and contents of the table
generated by a generic table function. This clause must be specified when the
table-function-reference is a generic table function and cannot be specified for
any other table reference. See “typed-correlation-clause” on page 786 for more
information.

xmltable-expression
Specifies an invocation of the built-in XMLTABLE function. See “XMLTABLE”
on page 755 for more information.

If a column mask is used to mask the column values in the final result table,
and if the result of the XMLTABLE function is used to derive the final result
table, the column mask cannot be applied to a column that is specified in the
PASSING clause of the XMLTABLE function.

collection-derived-table
A collection-derived-table is used to convert the elements of one or more arrays
into column values in separate rows of an intermediate result table, as
explained in “collection-derived-table” on page 787.

joined-table
If a joined-table is specified, the result table is the result of one or more join
operations as explained in “joined-table” on page 791.

period-specification
Specifies that a period specification applies to the table-reference. The same
period name (SYSTEM_TIME or BUSINESS_TIME) must not be specified more
than one time for the same table. If the table reference specifies a view, the
definition of that view must not reference a user-defined function.

The rows of the table reference are derived by application of the specified
period specification.

The rows of a view reference are derived by application of the specified period
specifications to all of the temporal tables that are accessed when computing
the result table of the view. If the view does not access any temporal tables, the
period specification has no effect on the result table of the view.

If the table is a bitemporal table and a period-specification is not specified for
both SYSTEM_TIME or BUSINESS_TIME, the table reference includes all
current rows of the table and does not include any historical rows of the table.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a value
other than the null value, a period-specification for a table or view cannot
reference SYSTEM_TIME. This restriction applies even if the view body does
not reference a system-period temporal table. The exception is if the value in
effect for the SYSTIMSENSITIVE bind option is NO. In this case, the
period-specification can reference SYSTEM_TIME.

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a
value other than the null value, a period-specification for a table or view cannot
reference BUSINESS_TIME. This restriction applies even if the view body does
not reference an application-period temporal table. The exception is if the value
in effect for the BUSTIMESENSITIVE bind option is NO. In this case, the
period-specification can reference BUSINESS_TIME.

780 SQL Reference

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

Related information:

“CURRENT TEMPORAL BUSINESS_TIME” on page 194
“CURRENT TEMPORAL SYSTEM_TIME” on page 196

FOR SYSTEM_TIME
Specifies that the SYSTEM_TIME period is used for the period-specification.
The table reference must be a system-period temporal table or a view.

Do not specify FOR SYSTEM_TIME if the value of the CURRENT
TEMPORAL SYSTEM_TIME special register is not NULL.

FOR BUSINESS_TIME
Specifies that the BUSINESS_TIME period is used for the
period-specification. The table reference must be an application-period
temporal table or a view.

Do not specify FOR BUSINESS_TIME if the value of the CURRENT
TEMPORAL BUSINESS_TIME special register is not NULL.

AS OF value
Specifies that the table-reference includes each row for which the begin
value for the specified period is less than or equal to value and the end
value for the period is greater than value.

value
Specifies an expression that returns a value of a built-in data type. The
result of the expression must be comparable to the data type of the
columns of the specified period according to the comparison rules
specified in “Assignment and comparison” on page 121.

The expression must not have a timestamp precision that is greater
than the precision of the columns for the period.

If the begin and end columns of the period are defined as
TIMESTAMP WITHOUT TIME ZONE, the expression must not return
a value of a timestamp with a time zone.The expression can contain
any of the following supported operands:
v A constant
v A special register
v A variable (host variable, SQL variable, SQL parameter, or transition

variable)
v An array element specification
v A built-in scalar function whose arguments are supported operands
v A CAST specification where the cast operand is a supported operand
v An expression that uses arithmetic operators and operands

A period specification for a view must not contain a global variable or
an untyped parameter marker.

FROM value1 TO value2
Specifies that the table-reference includes rows that exist for the period that
is specified from value1 up to value2. A row is included in the table-reference
if the start value for the period in the row is less than value2 and the end
value for the period in the row is greater than value1.

value1 or value2
Specifies an expression that returns a value of a built-in data type. The
result of the expression must be comparable to the data type of the

Chapter 4. Queries 781

|

|
|

|
|

|
|

|

|
|

columns of the specified period according to the comparison rules
specified in “Assignment and comparison” on page 121.

The expression must not have a timestamp precision that is greater
than the precision of the columns for the period.

If the begin and end columns of the period are defined as
TIMESTAMP WITHOUT TIME ZONE, the expression must not return
a value of a timestamp with a time zone.The expression can contain
any of the following supported operands:
v A constant
v A special register
v A variable (host variable, SQL variable, SQL parameter, or transition

variable)
v An array element specification
v A built-in scalar function whose arguments are supported operands
v A CAST specification where the cast operand is a supported operand
v An expression that uses arithmetic operators and operands

A period specification for a view must not contain a global variable or
an untyped parameter marker.

BETWEEN value1 AND value2
Specifies that the table-reference includes rows in which the specified period
overlaps at any point in time between value1 and value2. A row is included
in the table-reference if the start value for the period in the row is less than
or equal to value2 and the end value for the period in the row is greater
than value1. The table reference contains zero rows if value1 is greater than
value2. If value1 = value2, the expression is equivalent to AS OF value1. If
value1 or value2 is the null value, the table reference is an empty table.

value1 or value2
Specifies an expression that returns a value of a built-in data type. The
result of the expression must be comparable to the data type of the
columns of the specified period according to the comparison rules
specified in “Assignment and comparison” on page 121.

The expression must not have a timestamp precision that is greater
than the precision of the columns for the period.

If the begin and end columns of the period are defined as
TIMESTAMP WITHOUT TIME ZONE, the expression must not return
a value of a timestamp with a time zone.The expression can contain
any of the following supported operands:
v A constant
v A special register
v A variable (host variable, SQL variable, SQL parameter, or transition

variable)
v An array element specification
v A built-in scalar function whose arguments are supported operands
v A CAST specification where the cast operand is a supported operand
v An expression that uses arithmetic operators and operands

A period specification for a view must not contain a global variable or
an untyped parameter marker.

782 SQL Reference

|

|
|

|

|
|

Notes

Correlated references in table-references:
In general, nested table expressions and table functions can be specified in
any FROM clause. Columns from the nested table expressions and table
functions can be referenced in the select list and in the rest of the fullselect
using the correlation name. The scope of this correlation name is the same
as correlation names for other table or view names in the FROM clause.
The basic rule that applies for both these cases is that the correlated
reference must be from a table-reference at a higher level in the hierarchy of
subqueries.

Nested table expressions can be used in place of a view to avoid creating a
view when general use of the view is not required. They can also be used
when the result table is based on host variables.

For table functions, an additional capability exists. A table function can
contain one or more correlated references to other tables in the same
FROM clause if the referenced tables precede the reference in the
left-to-right order of the tables in the FROM clause. The same capability
exists for nested table expressions if the optional keyword TABLE is
specified; otherwise, only references to higher levels in the hierarchy of
subqueries is allowed.

A nested table expression or table function that contains correlated
references to other tables in the same FROM clause:
v Cannot participate in a FULL OUTER JOIN or a RIGHT OUTER JOIN
v Can participate in LEFT OUTER JOIN or an INNER JOIN if the

referenced tables precede the reference in the left-to-right order of the
tables in the FROM clause

The following table shows some examples of valid and invalid correlated
references. TABF1 and TABF2 represent table functions.

Table 90. Examples of correlated references

Subselect Valid Reason

SELECT T.C1, Z.C5
FROM TABLE(TABF1(T.C2)) AS Z, T
WHERE T.C3 = Z.C4;

No T.C2 cannot be resolved because
T does not precede TABF1 in
FROM

SELECT T.C1, Z.C5
FROM T, TABLE(TABF1(T.C2)) AS Z
WHERE T.C3 = Z.C4;

Yes T precedes TABF1 in FROM,
making T.C2 known

SELECT A.C1, B.C5
FROM TABLE(TABF2(B.C2)) AS A,

TABLE(TABF1(A.C6)) AS B
WHERE A.C3 = B.C4;

No B in B.C2 cannot be resolved
because the table function that
would resolve it, TABF1, follows
its reference in TABF2 in FROM

SELECT D.DEPTNO, D.DEPTNAME,
EMPINFO.AVGSAL, EMPINFO.EMPCOUNT

FROM DEPT D,
(SELECT AVG(E.SALARY) AS AVGSAL,

COUNT(*) AS EMPCOUNT
FROM EMP E
WHERE E.WORKDEPT = D.DEPTNO)
AS EMPINFO;

No DEPT precedes nested table
expression, but keyword TABLE
is not specified, making
D.DEPTNO unknown

Chapter 4. Queries 783

Table 90. Examples of correlated references (continued)

Subselect Valid Reason

SELECT D.DEPTNO, D.DEPTNAME,
EMPINFO.AVGSAL, EMPINFO.EMPCOUNT

FROM DEPT D,
TABLE (SELECT AVG(E.SALARY) AS AVGSAL,

COUNT(*) AS EMPCOUNT
FROM EMP E
WHERE E.WORKDEPT = D.DEPTNO)

AS EMPINFO;

Yes DEPT precedes nested table
expression and keyword TABLE
is specified, making D.DEPTNO
known

Affects of special registers:
The setting of the CURRENT TEMPORAL BUSINESS_TIME and
CURRENT TEMPORAL SYSTEM_TIME special registers might affect the
result of a query, as described in the following situations:
v Assume the following conditions:

– A table reference is an application-period temporal table.
– The columns of the BUSINESS_TIME period are defined as

TIMESTAMP(6).
– The CURRENT TEMPORAL BUSINESS_TIME special register is set to

a non-null value.

In this case, a query is executed as if it contained the following
specification:
FOR BUSINESS_TIME AS OF CURRENT TEMPORAL BUSINESS_TIME

v Assume the following conditions:
– A table reference is an application-period temporal table.
– The columns of the BUSINESS_TIME period are defined as DATE.
– The CURRENT TEMPORAL BUSINESS_TIME special register is set to

a non-null value.

In this case, a query is executed as if it contained the following
specification:
FOR BUSINESS_TIME AS OF CAST(CURRENT TEMPORAL BUSINESS_TIME AS DATE)

v If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a
non-null value, a query is executed as if it contained the following
specification:
FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME

Related reference:
“Examples of subselects” on page 805

correlation-clause:

Each correlation-name in a correlation-clause defines a designator for the immediately
preceding result table, which can be used to qualify references to the columns of
the table.

correlation-clause:

784 SQL Reference

|
|
|
|

|

|

|
|

|
|

|
|

|

|

|

|

|
|

|
|

|

|
|
|

|

��
AS

correlation-name

�

,

(new-column-name)

��

The preceding result table is one of the following objects:
v A table
v A view
v A nested table expression
v A table function
v A data-change table reference
v A collection-derived table

new-column-name is an SQL identifier of 128 UTF-8 bytes or less. Using
new-column-name to list and rename the columns is optional. A correlation name
must be specified for nested table expressions and references to table functions.

If correlation-name is not specified for a data-change table reference, the correlation
name is the name of the target table or view of the SQL data change statement.
Otherwise, the correlation name is correlation-name.

If a new-column-name list is specified in correlation-clause, the number of names must
be the same as the number of columns in the corresponding object. Each name
must be unique and unqualified. If columns are added to an underlying table of a
table-reference, the number of columns in the result of the table-reference no longer
matches the number of names in its correlation-clause. Therefore, when a rebind of a
package containing the query in question is attempted, DB2 returns an error and
the rebind fails. At that point, change the correlation-clause of the embedded SQL
statement in the application program so that the number of names matches the
number of columns. Then prepare the modified program again.

An exposed name is a correlation-name or a table-name or view name that is not
followed by a correlation-name. The exposed names in a FROM clause must be
unique. Any qualified reference to a column for a table, view, nested table
expression, table function, data-change table reference, or collection-derived table
must use the exposed name.

If the same table name or view name is specified twice, at least one specification
must be followed by a correlation-name. The correlation-name is used to qualify
references to the columns of the table or view.

When a correlation-name is specified, column names can also be specified to give
names to the columns of the table-name, view-name, nested-table-expression,
table-function, data-change-table-reference, or collection-derived-table. If a column list is
specified, there must be a name in the column list for each column in the table or
view and for each result column in the table-function, data-change-table-reference, or
collection-derived-table.

For more information, see “Correlation names” on page 209.

Chapter 4. Queries 785

|

|
|
|

|
|
|
|
|
|

In general, nested-table-expression, table-function, data-change-table-reference, or
collection-derived-table can be specified in any FROM clause. Columns from the
nested-table-expression, table-function, data-change-table-reference, or
collection-derived-table can be referenced in the SELECT list and in the rest of the
subselect using a correlation name. The scope of this correlation name is the same
as correlation names for other table or view names in the FROM clause.
Related reference:
“SET assignment-statement” on page 1875
“table-reference” on page 773

typed-correlation-clause:

A typed-correlation-clause defines the appearance and contents of the table generated
by a generic table function.

��
AS

correlation-name �

,

(column-name data-type) ��

typed-correlation-clause:

data-type:

786 SQL Reference

|

|

|
|
|
|
|
|

|

|
|

||

|||||||||||||||||||||||||||

|
||
|

|
|

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer)

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1)

GRAPHIC
(integer)

VARGRAPHIC (integer)
(1)

BINARY
(integer)

BINARY VARYING (integer)
VARBINARY

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE

��

typed-correlation-clause
The typed-correlation-clause defines the appearance and contents of the table
that is generated by a generic table function. typed-correlation-clause must be
specified when the table-function-reference is a generic table function and
cannot be specified for any other table reference.

The maximum number of columns specified in the typed-correlation-clause is
750, an error is returned if the number of specified columns exceeds the
limit.

An error is returned if duplicate column names are specified in a
typed-correlation-clause.

An error is returned if the data type that is specified for a column name is
not one of the supported data types for a generic table function.

Related reference:
“CREATE FUNCTION (external table)” on page 1191

collection-derived-table
A collection-derived table is used to convert the elements of one or more arrays into
column values in separate rows of an intermediate result table.

Chapter 4. Queries 787

|||

|

|
|
|
|
|

|
|
|

|
|

|
|

|

|

|
|
|

�� �

,

UNNEST (ordinary-array-expression)
associative-array-expression (1)

WITH ORDINALITY

�

� correlation-clause ��

correlation-clause:

�

,
AS

correlation-name (column-name)

Notes:

1 WITH ORDINALITY can be specified only if the argument to UNNEST is ordinary-array-
expression. associative-array-expression must not be specified when WITH ORDINALITY is also
specified.

WITH ORDINALITY
Specifies that an extra column of data type INTEGER is returned as the last
column in the result table. This column contains the position of the element in
the array.

correlation-clause
Specifies the correlation name that is to be used as a table designator for the
result table of the collection derived table, and a list of column names for the
result table. The correlation name can be used to qualify references to the
columns of the result table.

The result columns can be referenced in the SELECT list, and in the rest of the
subselect by using the names that are specified for the columns in the
correlation clause.

A collection-derived table can be specified as a table reference in a FROM clause,
in a context where arrays are supported.

The intermediate result table is derived as follows:
v If a single expression that returns an ordinary array is specified, the intermediate

result table is a single-column table with a column data type that matches the
array element data type.

v If multiple expressions that return an ordinary array are specified:
– The first array provides the first column in the result table, the second array

provides the second column, and so on.
– The data type of each column matches the data type of the array elements of

the corresponding array argument.
– If the cardinalities of the arrays are not identical, the cardinality of the

resulting table is the same as the array with the largest cardinality.

collection-derived-table:

788 SQL Reference

|
||

||||||||||||||||||||||||||||||
|

|
|||||||||||

|

|

|||||||||||||||||||||||||||

|

|

||
|
|
||

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|

|
|
|

|

|
|

|
|

|
|

– The column values in the table are set to the null value for all rows whose
array index value is greater than the cardinality of the corresponding array. In
other words, if each array is viewed as a table with two columns, one for the
array indexes and one for the data, UNNEST performs an outer join among
the arrays, using equality on the array indexes as a join predicate.

v If a single associative-array-expression or an array-function-invocation that returns an
associative array is specified:
– The intermediate result table is a table with two columns, where the first

column data type matches the array index data type, and the second column
data type matches the array element data type.

– The first column contains the indexes of the elements in the array.
– The second column contains the elements in the array.
– The columns can be referenced in the SELECT list and the in rest of the

subselect by using the names that are specified for the columns in the
correlation-clause.

v If all arguments are null arrays, the result is an empty table.

The intermediate result table that is produced by an invocation of UNNEST must
not result in more than 750 columns.

An array-function-invocation is a function invocation that resolves to a function that
returns an ordinary or an associative array type. An array-function-invocation must
not include a reference to a column of a common table expression.

ordinary-array-expression
Specifies one of the following items:
v An SQL variable
v An SQL parameter
v An array-function-invocation

v A CAST specification of a parameter marker to an ordinary array type

associative-array-expression
Specifies one of the following items:
v An SQL variable
v An SQL parameter
v An array-function-invocation

v A CAST specification of a parameter marker to an associative array type

Names for the result columns that are produced by an UNNEST specification can
be provided as part of the correlation-clause of the collection-derived-table clause.

Example 1: Suppose that PHONENUMBERS is a user-defined array type that is
defined as an ordinary array. RECENT_CALLS is an array variable of the
PHONENUMBERS type. RECENT_CALLS contains the following phone numbers:
v 9055553907
v 4165554213
v 4085553678

The following SELECT statement uses UNNEST to retrieve the list of phone
numbers from the array:
SELECT T.ID, T.NUM
FROM UNNEST(RECENT_CALLS) WITH ORDINALITY AS T(NUM, ID);

Chapter 4. Queries 789

|
|
|
|
|

|
|

|
|
|

|

|

|
|
|

|

|
|

|
|
|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|
|
|
|
|
|

|
|

|
|

The WITH ORDINALITY clause indicates that the result table is to include an
additional column that reflects the ordinal position of each array element in the
array. The additional column is the last column of the result table from the
UNNEST operation. The correlation clause that follows the WITH ORDINALITY
clause specifies that the additional column is named ID, and the array element
column is named NUM. These column names can be explicitly referenced in the
SELECT list of the query. The SELECT list in this example reorders the columns
from the result of UNNEST. The result table looks like this:

ID NUM
1 9055553907
2 4165554213
3 4085553678

In the SELECT statement, the columns that result from the UNNEST operation
have been reordered in the SELECT list, so that the column that reflects the
position of each array element is the first column of the final result table.

Example 2: Suppose that PERSONAL_PHONENUMBERS is a user-defined array
type that is defined as an associative array. PHONELIST is an array variable of the
PERSONAL_PHONENUMBERS type. Values have been assigned to the elements
of PHONELIST with the following statements:
SET PHONELIST[’Home’] = ’4443051234’;
SET PHONELIST[’Work’] = ’4443052345’;
SET PHONELIST[’Cell’] = ’4447893456’;

The following SELECT statement is executed:
SELECT T.ID, T.PHONE
FROM UNNEST(PHONELIST) AS T(ID, PHONE);

The result table looks like this, although the order of rows might differ:

ID PHONE
Cell 4447893456
Home 4443051234
Work 4443052345

Example 3: Suppose that PHONES and IDS are two SQL variables with array values
of the same cardinality. The following SQL statement converts the array contents
into a table with three columns (one for each array and one for the position), and
one row for each array element.

The following SELECT statement is executed:
SELECT T.PHONE, T.ID, T.INDEX FROM UNNEST(PHONES, IDS)
WITH ORDINALITY AS T(PHONE, ID, INDEX)
ORDER BY T.INDEX;

790 SQL Reference

|
|
|
|
|
|
|
|

|||
||
||
||
|

|
|
|

|
|
|
|

|
|
|

|

|
|

|

|||
||
||
||
|

|
|
|
|

|

|
|
|

Related reference:
“SET assignment-statement” on page 1875
“table-reference” on page 773

joined-table
A joined-table specifies an intermediate result table that is the result of either an
inner join, an outer join, or a cross join. The table is derived by applying one of the
join operators: INNER, LEFT OUTER, RIGHT OUTER, FULL OUTER, or CROSS to
its operands.

��
INNER

table-reference JOIN table-reference ON join-condition
OUTER

LEFT
RIGHT
FULL

table-reference CROSS JOIN table-reference
(joined-table)

��

Cross joins represent the cross product of the tables, where each row of the left
table is combined with every row of the right table. Inner joins can be thought of
as the cross product of the tables, keeping only the rows where the join condition
is true. The result table might be missing rows from either or both of the joined
tables. Outer joins include the rows produced by the inner join as well as the
missing rows, depending on the type of outer join as follows:

Left outer join
Includes rows from the left table that were missing from the inner join.

Right outer join
Includes rows from the right table that were missing from the inner join.

Full outer join
Includes rows from both the left and right tables that were missing from
the inner join.

If a join operator is not specified, INNER is the default. The order in which a LEFT
OUTER JOIN or RIGHT OUTER JOIN is performed can affect the result.

If FULL OUTER JOIN is specified, a Unicode column in an EBCDIC table must not
be referenced in join-condition.

A joined-table can be used in any context in which any form of the SELECT
statement is used. Both a view and a cursor is read-only if its SELECT statement
includes a joined-table.

If LEFT OUTER JOIN, RIGHT OUTER JOIN, or FULL OUTER JOIN is specified:
v A ROW CHANGE TIMESTAMP expression can only be referenced in a subselect

of the outer join if the table designator identifies a base table that includes a row
change timestamp column.

joined-table

Chapter 4. Queries 791

|

|

|

|
|

v The RID built-in function and the ROW CHANGE TOKEN expression must not
be specified in the subselect that contains the FROM clause.

Related reference:
“Examples of subselects” on page 805

join-condition:

join-condition specifies the conditions of a join that is used in a query.

�� search-condition ��

�� �

AND

full-join-expression = full-join-expression ��

��

�

column-name
(1)

cast-function

COALESCE (column-name , column-name)
(1) (1)

cast-function , cast-function

��

Notes:

1 cast-function must only contain a column and the casting data type must be a distinct type or the
data type upon which the distinct type was based.

For INNER, LEFT OUTER, and RIGHT OUTER joins, the join-condition is a
search-condition that must conform to these rules:

join-condition

For INNER, LEFT OUTER, and RIGHT OUTER joins:

For FULL OUTER joins:

full-join-expression:

792 SQL Reference

v With one exception, It cannot contain any subqueries. If the join-table that
contains the join-condition in the associated FROM clause is composed of only
INNER joins, the join-condition can contain subqueries.

v Any column that is referenced in an expression of the join-condition must be a
column of one of the operand tables of the associated join operator (in the scope
of the same joined-table clause).

For a FULL OUTER (or FULL) join, the join-condition is a search condition in which
the predicates can only be combined with AND. In addition, each predicate must
have the form 'expression = expression', where one expression references only
columns of one of the operand tables of the associated join operator, and the other
expression references only columns of the other operand table. The values of the
expressions must be comparable.

Each full-join-expression in a FULL OUTER join must include a column name or a
cast function that references a column. The COALESCE function is allowed.

For any type of join, column references in an expression of the join-condition are
resolved using the rules for resolution of column name qualifiers specified in
“Resolution of column name qualifiers and column names” on page 212 before any
rules about which tables the columns must belong to are applied.
Related reference:
“Examples of subselects” on page 805

Join operations:

A join-condition specifies pairings of T1 and T2, where T1 and T2 are the left and
right operand tables of its associated JOIN operator. For all possible combinations
of rows T1 and T2, a row of T1 is paired with a row of T2 if the join-condition is
true.

When a row of T1 is joined with a row of T2, a row in the result consists of the
values of that row of T1 concatenated with the values of that row of T2. The
execution might involve the generation of a null row. The null row of a table
consists of a null value for each column of the table, regardless of whether the
columns allow null values.

The following summarizes the results of the join operations:
v The result of T1 INNER JOIN T2 consists of their paired rows.
v The result of T1 LEFT OUTER JOIN T2 consists of their paired rows and, for

each unpaired row of T1, the concatenation of that row with the null row of T2.
All columns derived from T2 allow null values.

v The result of T1 RIGHT OUTER JOIN T2 consists of their paired rows and, for
each unpaired row of T2, the concatenation of that row with the null row of T1.
All columns derived from T1 allow null values.

v The result of T1 FULL OUTER JOIN T2 consists of their paired rows and, for
each unpaired row of T1, the concatenation of that row with the null row of T2,
and for each unpaired row of T2, the concatenation of that row with the null
row in T1. All columns of the result table allow null values.

v The result of T1 CROSS JOIN T2 consists of each row of T1 paired with each
row of T2. CROSS JOIN is also known as Cartesian product.

Chapter 4. Queries 793

A join operation is part of a FROM clause. For the purpose of predicting which
rows will be returned from a SELECT statement containing a join operation,
assume that the join operation is performed before the other clauses in the
statement.

A cross join can also be specified without the CROSS JOIN syntax, by listing the
two tables in the FROM clause separated by commas without using a WHERE
clause to supply join criteria.
Related reference:
“Examples of subselects” on page 805

794 SQL Reference

where-clause
The WHERE clause specifies a result table that consists of those rows of R for
which the search condition is true. R is the result of the FROM clause of the
subselect.

where-clause

�� WHERE search-condition ��

The search condition must conform to the following rules:
v Each column name must unambiguously identify a column of R or be a

correlated reference. A column name is a correlated reference if it identifies a
column of a table, view, common-table-expression, or nested-table-expression that is
identified in an outer subselect.

v An aggregate function must not be specified unless the WHERE clause is
specified in a subquery of a HAVING clause and the argument of the function is
a correlated reference to a group.

Any subquery in the search-condition is effectively executed for each row of R and
the results are used in the application of the search-condition to the given row of R.
A subquery is actually executed for each row of R only if it includes a correlated
reference. In fact, a subquery with no correlated references is executed just one
time, whereas a subquery with a correlated reference might have to be executed
one time for each row.

If row access controls are enabled for a table and no other row permission is
defined, the row access control search condition is the default row permission, 1 =
0. If only one row permission is defined, the row access control search condition is
the search conditions that are specified by that permission. Otherwise, if multiple
row permissions are defined for a table, the row access control search condition is
derived by application of the logical OR operator to the search conditions that are
specified by each row permission. This row access control search condition, as a
whole, is connected by application of the logical AND operator to the search
conditions specified by the WHERE clause and has the same precedence level as
other search conditions in the WHERE clause. This process is repeated for each
table-reference in the FROM clause of the subselect for which row access controls are
enabled.

The row access control search condition acts as a filter to the table-reference to
determine the results of the table-reference that are accessible to the authorization ID
or role of the subselect. Because the order in which operators are evaluated is
undefined for operators at the same precedence level, other search conditions in
the WHERE clause might be evaluated before the row access control search
condition. So, the other search conditions have access to the rows that are restricted
by the row permission rules. To ensure that sensitive data is protected, the
predicates that reference user-defined functions that are defined with the NOT
SECURED option are always evaluated after the row access control search
condition.

The column access control does not affect the operation of the WHERE clause.

Chapter 4. Queries 795

Related reference:
“Examples of subselects” on page 805

796 SQL Reference

group-by-clause
The GROUP BY clause specifies a result table that consists of a grouping of the
rows of intermediate result table that is the result of the previous clause.

�� �

,

GROUP BY grouping-expression
grouping-sets
super-groups

��

In its simplest form, a GROUP BY clause contains a grouping-expression.

A grouping-expression is an expression that defines the grouping of R. The following
restrictions apply to grouping-expression:
v If grouping-expression is a single column, the column name must unambiguously

identify a column of R.
v The result of grouping-expression cannot be a LOB data type (or a distinct type

that is based on a LOB) or an XML data type.
v grouping-expression cannot include any of the following items:

– A correlated column
– A host variable
– An aggregate function
– Any function or expression that is not deterministic or that is defined to have

an external action
– A scalar fullselect
– A CASE expression whose searched-when-clause contains a quantified predicate,

an IN predicate using a fullselect, or an EXISTS predicate

The result of GROUP BY is a set of groups of rows. In each group of more than
one row, all values of each grouping-expression are equal, and all rows with the
same set of values of the grouping-expression are in the same group. For grouping,
all null values for a grouping-expression are considered equal.

If a grouping-expression contains DECFLOAT values, the DECFLOAT values with
the same value will be in the same group. But the number of digits returned for
each group is unpredictable.

Because every row of a group contains the same value of any grouping-expression, a
grouping-expression can be used in a search condition in a HAVING clause or an
expression in a SELECT clause, or in a sort-key-expression of an ORDER BY clause.
In each case, the reference specifies only one value for each group. For example, if
grouping-expression is col1+col2, col1+col2+3 would be an allowed expression in the
select list. Associative rules for expressions do not allow the similar expression of
3+col1+col2, unless parentheses are used to ensure that the corresponding
expression is evaluated in the same order. Thus, 3+(col1+col2) would also be
allowed in the select list. If the concatenation operator is used, grouping-expression
must be used exactly as the expression was specified in the select list.

group-by-clause

Chapter 4. Queries 797

|||

|

If a grouping-expression contains varying-length strings with trailing blanks, the
values in the group can differ in the number of trailing blanks and might not all
have the same length. In that case, a reference to grouping-expression still specifies
only one value for each group, but the value for a group is chosen arbitrarily from
the available set of values. Thus, the actual length of the result value is
unpredictable.

Row access controls do not affect the operation of the GROUP BY clause.

In certain contexts, the semantics of the column mask can conflict with those in the
GROUP BY clause. When this occurs, the column mask cannot be applied for the
statement and an error will be returned at bind time. See the select-clause for more
information about how column access controls affect the GROUP BY clause.
Related reference:
“Examples of subselects” on page 805

798 SQL Reference

having-clause
The HAVING clause specifies a result table that consists of those groups of the
intermediate result table for which the search-condition is true. The intermediate
result table is the result of the previous clause. If this clause is not GROUP BY, the
intermediate result table is considered a single group with no grouping columns of
the previous clause of the subselect.

�� HAVING search-condition ��

Each column-name in search-condition must be one of the following:
v Unambiguously identify a grouping column of the intermediate result table
v Be specified within an aggregate function22

v Be a correlated reference. A column-name is a correlated reference if it identifies a
column of a table, view, common-table-expression, or nested-table-expression that is
identified in an outer subselect

A group of the intermediate result table to which the search condition is applied
supplies the argument for each function in the search condition, except for any
function whose argument is a correlated reference.

If the search condition contains a subquery, the subquery can be thought of as
being executed each time the search condition is applied to a group of the
intermediate result table, and the results used in applying the search condition. In
actuality, the subquery is executed for each group only if it contains a correlated
reference. For an illustration of the difference, see Example 4 and Example 5.

A correlated reference to a group of the intermediate result table must either
identify a grouping column or be contained within an aggregate function.

When HAVING is used without GROUP BY, any expression or column name in
the select list must appear within an aggregate function.

The RID built-in function and the ROW CHANGE expression cannot be specified
in a HAVING clause unless they are within an aggregate function.

Row access controls do not affect the operation of the HAVING clause.

In certain contexts, the semantics of the column mask can conflict with those in the
HAVING clause. When this occurs, the column mask cannot be applied for the
statement and an error will be returned at bind time. See the select-clause for more
information about how column access controls affect the HAVING clause.
Related reference:
“Examples of subselects” on page 805

22. See Chapter 3, “Functions,” on page 337 for restrictions that apply to the use of aggregate functions.

having-clause

Chapter 4. Queries 799

order-by-clause
The ORDER BY clause specifies an ordering of the rows of the result table.

�� �

,
ASC

ORDER BY sort-key
DESC

INPUT SEQUENCE
ORDER OF table-designator

��

�� column-name
integer
sort-key-expression

��

A subselect that contains an ORDER BY clause cannot be specified in the
outermost fullselect of a view

If the subselect is not enclosed within parentheses and is not the outermost
fullselect, the ORDER BY clause cannot be specified. The ORDER BY clause
cannot be used in an outermost fullselect that contains a FOR UPDATE clause.

An ORDER BY clause that is specified in a subselect only effects the order of the
rows that returned by the query if the subselect is the outermost fullselect, except
when a nested subselect includes an ORDER BY clause and the outermost
fullselect specifies that the ordering of the rows should be retained (by using the
ORDER OF table-designator clause).

Multiple ORDER BY clauses can be specified in the same subselect if each clause
is separated with parentheses.

INPUT SEQUENCE
Indicates that the result table reflects the input order of the rows specified in
the VALUES clause of an INSERT statement. INPUT SEQUENCE ordering can
be specified only when an INSERT statement is specified in a from-clause.

ORDER OF table-designator
Specifies that the same ordering of the rows for the result table that is
designated by table-designator should be applied to the result table of the
subselect (or fullselect) that contains the ORDER OF specification. There must
be a table reference in the FROM clause of the subselect (or fullselect) that
specifies this clause and matches table-designator.

order-by-clause

sort-key:

800 SQL Reference

sort-key
A column-name, integer, or sort-key-expression that specifies the value that is to be
used to order the rows of the result of the subselect.

If a single sort-key is identified, the rows are ordered by the values of that
sort-key. If more than one sort-key is identified, the rows are ordered by the
values of the first sort-key, then by the values of the second sort-key, and so on.
A sort-key cannot be a LOB or XML expression.

The result table can be ordered by a named column in the select list by
specifying a sort-key that is an integer or the column name. The result table can
be ordered by an unnamed column in the select list by specifying a sort-key
that is an integer or, in some cases, by a sort-key-expression that matches the
expression in the select list.

column-name
An identifier that usually identifies a column of the result table. In this
case, column-name must be the name of a named column in the select list. If
the fullselect includes a set operator, the column name cannot be qualified.

If the query is a subselect, the column-name can also identify a column name
of a table, view, or nested table expression identified in the FROM clause,
including a column that is defined as implicitly hidden. The subselect must
not include any of the following:
v DISTINCT in the select list
v Aggregate functions in the select list
v GROUP BY clause

integer
An unsigned integer that must be greater than 0 and not greater than the
number of columns in the result table. The integer n identifies the nth
column of the result table.

sort-key-expression
An expression that is not simply a column-name or unsigned integer
constant. The query to which ordering is applied must be a subselect to use
this form of the sort-key.

The sort-key-expression cannot include an expression that is not
deterministic or a function that is defined to have an external action except
for the RID built-in function and the ROW CHANGE expression. Any
column name in the expression must conform to the rules described
Column names in sort keys. If sort-key-expression includes an aggregate
function, the input arguments to that function must not reference a named
column in the select list that is derived from an aggregate function. An
expression cannot be specified if DISTINCT is used in the select list of the
subselect.

If the subselect is grouped, the sort-key-expression might or might not be in
the select list of the subselect. When sort-key-expression is not in the select list
the following rules apply:
v Each expression in the ORDER BY clause must either:

– Use one or more grouping expressions
– Use a column name that either unambiguously identifies a grouping

column of R or is specified within a aggregate function.
v Each expression in the ORDER BY clause must not contain a scalar

fullselect.

Chapter 4. Queries 801

ASC
Uses the values of the sort-key in ascending order.

ASC is the default.

DESC
Uses the values of the sort-key in descending order.

Ordering is performed in accordance with the comparison rules described in
Chapter 2, “Language elements,” on page 53, beginning on page “Numeric
comparisons” on page 134. The null value is higher than all other values. If your
ordering specification does not determine a complete ordering, rows with duplicate
values of the last identified sort-key have an arbitrary order. If you do not specify
ORDER BY, the rows of the result table have an arbitrary order.

Column access controls do not effect the operation of the ORDER BY clause. The
order is based on the original column values. However, after column masks are
applied, the masked values in the final result table might not reflect the order of
the original column values.

Column names in sort keys: A column name in a sort-key must conform to the
following rules:
v If the column name is qualified, the query must be a subselect. The column name

must unambiguously identify a column of a table, view, or nested table
expression in the FROM clause of the subselect; its value is used to compute the
value of the sort specification.

v If the column name is unqualified and the query is a subselect:
– If the column name is identical to the name of more than one column of the

result table, the column name must unambiguously identify a column of
some table, view, or nested table expression in the FROM clause of the
ordering subselect.

– If the column name is identical is one column of the result table, its value is
used to compute the value of the sort specification.

– If the column name is not identical to a column in the result table, it must
unambiguously identify a column of a table, view, or nested table expression
in the FROM clause of the subselect. If the column name is identical to one
column of a table, view, or nested table expression in the FROM clause of the
subselect, its value is used to compute the value of the sort specification.

Related reference:
“Examples of subselects” on page 805

802 SQL Reference

fetch-first-clause
The FETCH FIRST clause limits the number of rows that can be fetched. It
improves the performance of queries with potentially large result tables when only
a limited number of rows are needed.

�� FETCH FIRST
1

integer
ROW
ROWS

ONLY ��

The FETCH FIRST clause sets a maximum number of rows that can be retrieved.
FETCH FIRST specifies that only integer rows should be made available to be
retrieved, regardless of how many rows there might be in the result table when
this clause is not specified. An attempt to fetch beyond integer rows is handled the
same way as normal end of data. The value of integer must be a positive integer
(not zero). The default is 1.

The FETCH FIRST clause specifies an ordering of the rows of the result table. A
subselect that contains a FETCH FIRST clause cannot be specified in the following
objects:
v The outermost fullselect of a view
v The definition of a materialized query table

Limiting the result table to the first n rows can improve performance. The DB2
system will cease processing the query when it has determined the first n rows. If
both the FETCH FIRST clause and the OPTIMIZE FOR clause are specified, the
lower of the integer values from these clause will be used to influence the buffer
size. The values are considered independently for optimization purposes. If the
OPTIMIZE FOR clause is not specified, a default of OPTIMIZE FOR integer ROWS,
where integer is the value that is specified in the FETCH FIRST clause, is assumed.
The DB2 system uses this value for access path optimization.

Specification of the FETCH FIRST clause in an outermost fullselect makes the
result table read-only. A read-only result table must not be referenced in an
UPDATE, MERGE, or DELETE statement. The FETCH FIRST clause cannot be
used in an outermost fullselect that contains a FOR UPDATE clause.

If the FETCH FIRST clause is specified in a subselect, and the subselect is not the
outermost fullselect, the subselect must be enclosed in parentheses.

If both the FETCH FIRST clause and the ORDER BY clause are specified, the
ordering is performed on the entire result table prior to returning the first n rows.

Multiple FETCH FIRST clauses can be specified in the same subselect if each
clause is separated with parentheses.

If the FETCH FIRST clause is specified in the outermost fullselect of a SELECT
statement that contains a data change statement (an INSERT, DELETE, UPDATE,

fetch-first-clause

Chapter 4. Queries 803

or MERGE statement), all rows are processed by the specified data change
statement, but only the number of rows that is specified in the FETCH FIRST
clause are returned in the final result table.

Row access controls can indirectly effect the FETCH FIRST clause because row
access controls effect the rows that are accessible to the authorization ID or role of
the subselect. Column access controls do no effect the FETCH FIRST clause.
Related concepts:

Fast implicit close (DB2 Performance)
Related tasks:

Optimizing retrieval for a small set of rows (DB2 Application programming
and SQL)

Fetching a limited number of rows (DB2 Performance)
Related reference:
“Examples of subselects” on page 805

804 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_fastimplicitclose.htm#db2z_fastimplicitclose
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_optimizeretrievalsmallset.htm#db2z_optimizeretrievalsmallset
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_optimizeretrievalsmallset.htm#db2z_optimizeretrievalsmallset
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_fetchfirstnrows.htm#db2z_fetchfirstnrows

Examples of subselects
Examples of subselects can illustrate how to use the various clauses of the
subselect to construct queries.

Example 1: Show all rows of the table DSN8B10.EMP.
SELECT * FROM DSN8B10.EMP;

Example 2: Show the job code, maximum salary, and minimum salary for each
group of rows of DSN8B10.EMP with the same job code, but only for groups with
more than one row and with a maximum salary greater than 50000.

SELECT JOB, MAX(SALARY), MIN(SALARY)
FROM DSN8B10.EMP
GROUP BY JOB
HAVING COUNT(*) > 1 AND MAX(SALARY) > 50000;

Example 3: For each employee in department E11, get the following information
from the table DSN8B10.EMPPROJACT: employee number, activity number,
activity start date, and activity end date. Using the CHAR function, convert the
start and end dates to their USA formats. Get the needed department information
from the table DSN8B10.EMP.

SELECT EMPNO, ACTNO, CHAR(EMSTDATE,USA), CHAR(EMENDATE,USA)
FROM DSN8B10.EMPPROJACT
WHERE EMPNO IN (SELECT EMPNO FROM DSN8B10.EMP

WHERE WORKDEPT = ’E11’);

Example 4: Show the department number and maximum departmental salary for all
departments whose maximum salary is less than the average salary for all
employees. (In this example, the subquery would be executed only one time.)

SELECT WORKDEPT, MAX(SALARY)
FROM DSN8B10.EMP
GROUP BY WORKDEPT
HAVING MAX(SALARY) < (SELECT AVG(SALARY)

FROM DSN8B10.EMP);

Example 5: Show the department number and maximum departmental salary for all
departments whose maximum salary is less than the average salary for employees
in all other departments. (In contrast to Example 4, the subquery in this statement,
containing a correlated reference, would need to be executed for each group.)

SELECT WORKDEPT, MAX(SALARY)
FROM DSN8B10.EMP Q
GROUP BY WORKDEPT
HAVING MAX(SALARY) < (SELECT AVG(SALARY)

FROM DSN8B10.EMP
WHERE NOT WORKDEPT = Q.WORKDEPT);

Example 6: For each group of employees hired during the same year, show the
year-of-hire and current average salary. (This example demonstrates how to use the
AS clause in a FROM clause to name a derived column that you want to refer to in
a GROUP BY clause.)

SELECT HIREYEAR, AVG(SALARY)
FROM (SELECT YEAR(HIREDATE) AS HIREYEAR, SALARY

FROM DSN8B10.EMP) AS NEWEMP
GROUP BY HIREYEAR;

Example 7: For an example of how to group the results of a query by an expression
in the SELECT clause without having to retype the expression, see Example 4 for
CASE expressions.

Chapter 4. Queries 805

Example 8: Get the employee number and employee name for all the employees in
DSN8B10.EMP. Order the results by the date of hire.

SELECT EMPNO, FIRSTNME, LASTNAME
FROM DSN8B10.EMP
ORDER BY HIREDATE;

Example 9: Select all the rows from tables T1 and T2 and order the rows such that
the rows from table T1 are first and are ordered by column C1, followed by the
rows from T2, which are ordered by column C2. The rows of T1 are retrieved by
one subselect which is connected to the results of another subselect that retrieves
the rows from T2. Each subselect specifies the ordering for the rows from the
referenced table. Note that both subselects need to be enclosed in parenthesis
because each subselect is not the outermost fullselect.
(SELECT * FROM T1 ORDER BY C1)
UNION
(SELECT * FROM T2 ORDER BY C2);

Example 10: Specify the ORDER BY clause to order the results of a union using the
second column of the result table if the union. In this example, the second ORDER
BY clause applies to the results of the outermost fullselect (the result of the union)
rather than to the second subselect. If the intent is to apply the second ORDER BY
clause to the second subselect, the second subselect should be enclosed within
parentheses as shown in Example 9.
(SELECT * FROM T1 ORDER BY C1)
UNION
SELECT * FROM T2 ORDER BY C2

Example 11: Retrieve all rows of table T1 with no specific ordering) and connect the
result table to the rows of table T2, which have been ordered by the first column of
table T2. The ORDER BY ORDER OF clause in the fullselect specifies that the order
of the rows in the result table of the union is to be inherited by the final result.
SELECT *

FROM (SELECT * FROM T1
UNION ALL
(SELECT * FROM T2 ORDER BY 1)
) AS UTABLE

ORDER BY ORDER OF UTABLE;

Example 12: The following example uses a query to join data from a table to the
result table of a nested table expression. The query uses the ORDER BY ORDER
OF clause to order the rows of the result table using the order of the rows of the
nested table expression.
SELECT T1.C1, T1.C2, TEMP.Cy, TEMP.Cx

FROM T1,
(SELECT T2.C1, T2.C2 FROM T2 ORDER BY 2) AS TEMP(Cx, Cy)

WHERE Cy = T1.C1
ORDER BY ORDER OF TEMP;

Example 13: Using the EMP_ACT table, find the project numbers that have an
employee whose salary is in the top three salaries for all employees.
SELECT EMP_ACT.EMPNO, PROJNO

FROM EMP_ACT
WHERE EMP_ACT.EMPNO IN

(SELECT EMPLOYEE.EMPNO
FROM EMPLOYEE
ORDER BY SALARY DESC
FETCH FIRST 3 ROWS ONLY);

806 SQL Reference

Example 14: Assume that an external function named ADDYEARS exists. For a
given date, the function adds a given number of years and returns a new date.
(The data types of the two input parameters to the function are DATE and
INTEGER.) Get the employee number and employee name for all employees who
have been hired within the last 5 years.

SELECT EMPNO, FIRSTNME, LASTNAME
FROM DSN8B10.EMP
WHERE ADDYEARS(HIREDATE, 5) > CURRENT DATE;

To distinguish the different types of joins, to show nested table expressions, and to
demonstrate how to combine join columns, the remaining examples use these two
tables:
The PARTS table The PRODUCTS table
PART PROD# SUPPLIER PROD# PRODUCT PRICE
======= ===== ============ ===== =========== =====
WIRE 10 ACWF 505 SCREWDRIVER 3.70
OIL 160 WESTERN_CHEM 30 RELAY 7.55
MAGNETS 10 BATEMAN 205 SAW 18.90
PLASTIC 30 PLASTIK_CORP 10 GENERATOR 45.75
BLADES 205 ACE_STEEL

Example 15: Join the tables on the PROD# column to get a table of parts with their
suppliers and the products that use the parts:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS, PRODUCTS
WHERE PARTS.PROD# = PRODUCTS.PROD#;

or
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS INNER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

Either one of these two statements give this result:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW

Notice two things about the example:
v There is a part in the parts table (OIL) whose product (#160) is not listed in the

products table. There is a product (SCREWDRIVER, #505) that has no parts
listed in the parts table. Neither OIL nor SCREWDRIVER appears in the result of
the join.
An outer join, however, includes rows where the values in the joined columns do
not match.

v There is explicit syntax to express that this familiar join is not an outer join but
an inner join. You can use INNER JOIN in the FROM clause instead of the
comma. Use ON when you explicitly join tables in the FROM clause.

You can specify more complicated join conditions to obtain different sets of results.
For example, eliminate the suppliers that begin with the letter A from the table of
parts, suppliers, product numbers and products:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS INNER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#
AND SUPPLIER NOT LIKE ’A%’;

Chapter 4. Queries 807

The result of the query is all rows that do not have a supplier that begins with A:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY

Example 16: Join the tables on the PROD# column to get a table of all parts and
products, showing the supplier information, if any.
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result is:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
OIL WESTERN_CHEM 160 (null)
(null) (null) (null) SCREWDRIVER

The clause FULL OUTER JOIN includes unmatched rows from both tables. Missing
values in a row of the result table are filled with nulls.

Example 17: Join the tables on the PROD# column to get a table of all parts,
showing what products, if any, the parts are used in:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS LEFT OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result is:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
OIL WESTERN_CHEM 160 (null)

The clause LEFT OUTER JOIN includes rows from the table identified before it
where the values in the joined columns are not matched by values in the joined
columns of the table identified after it.

Example 18: Join the tables on the PROD# column to get a table of all products,
showing the parts used in that product, if any, and the supplier.
SELECT PART, SUPPLIER, PRODUCTS.PROD#, PRODUCT

FROM PARTS RIGHT OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result is:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== ===========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
(null) (null) 505 SCREWDRIVER

808 SQL Reference

The clause RIGHT OUTER JOIN includes rows from the table identified after it
where the values in the joined columns are not matched by values in the joined
columns of the table identified before it.

Example 19: The result of Example 16 (a full outer join) shows the product number
for SCREWDRIVER as null, even though the PRODUCTS table contains a product
number for it. This is because PRODUCTS.PROD# was not listed in the SELECT
list of the query. Revise the query using COALESCE so that all part numbers from
both tables are shown.
SELECT PART, SUPPLIER,

COALESCE(PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM, PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#;

In the result, notice that the AS clause (AS PRODNUM), provides a name for the
result of the COALESCE function:
PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ===========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
OIL WESTERN_CHEM 160 (null)
(null) (null) 505 SCREWDRIVER

Example 20: For all parts that are used in product numbers less than 200, show the
part, the part supplier, the product number, and the product name. Use a nested
table expression.
SELECT PART, SUPPLIER, PRODNUM, PRODUCT

FROM (SELECT PART, PROD# AS PRODNUM, SUPPLIER
FROM PARTS

WHERE PROD# < 200) AS PARTX
LEFT OUTER JOIN PRODUCTS

ON PRODNUM = PROD#;

The result is:
PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
OIL WESTERN_CHEM 160 (null)

Example 21: Examples of statements with DISTINCT specified more than once in a
subselect:

SELECT DISTINCT COUNT(DISTINCT A1), COUNT(A2)
FROM T1;

SELECT COUNT(DISTINCT A))
FROM T1
WHERE A3 > 0
HAVING AVG(DISTINCT A4) >1;

Example 22: Examples of cross join to combine information for all customers with
all states.

Use a cross join to combine information for all customers with all of the
states. The cross join combines all rows in both tables and creates a
Cartesian product. Assume that the following tables exist:
Customer:

ACOL1 | ACOL2

Chapter 4. Queries 809

A1 | AA1
A2 | AA2
A3 | AA3

States:

BCOL1 | BCOL2

B1 | BB1
B2 | BB2

The following two select statements produce identical results:
SELECT * FROM customer CROSS JOIN states

SELECT * FROM A, B

The result table for either of these select statements looks like the
following:
--
ACOL1 | ACOL2 | BCOL1 | BCOL2
--
A1 | AA1 | B1 | BB1
A1 | AA1 | B2 | BB2
A2 | AA2 | B1 | BB1
A2 | AA2 | B2 | BB2
A3 | AA3 | B1 | BB1
A3 | AA3 | B2 | BB2
--

Example 22: Example of using a typed-correlation-clause when referencing a generic
table function.

In the following select statement, 'tf6' is a generic table function defined
using the CREATE FUNCTION (external table) statement. The
typed-correlation-clause is used to define the column names and data types
of the result table.
SELECT c1, c2
FROM T1(tf6(’abcd’))
AS z (c1 int, c2 varchar(100));

810 SQL Reference

|
|
|
|
|
|

|
|
|

fullselect
The fullselect is a component of the select-statement, ALTER TABLE statement for
the definition of a materialized query table, CREATE TABLE statement, CREATE
VIEW statement, DECLARE GLOBAL TEMPORARY TABLE statement, and
INSERT statement.

�� subselect
(fullselect)

�

DISTINCT
UNION subselect
EXCEPT ALL (fullselect)
INTERSECT

order-by-clause
�

�
fetch-first-clause

��

A fullselect that is enclosed in parentheses is called a subquery. For example, a
subquery can be used in a search condition.

A scalar-fullselect is a fullselect, enclosed in parentheses, that returns a single result
row and a single result column. If the result of the fullselect is no rows, then the
null value is returned. An error is returned if there is more than one row in the
result. For example, a scalar-fullselect can be used in the assignment clause of the
DELETE, UPDATE and MERGE statements.

A row-fullselect is a fullselect that returns a single row. An error is returned if there
is more than one row in the result. For example, a row-fullselect can be used in the
assignment clause of the DELETE and UPDATE statements.

UNION, EXCEPT, or INTERSECT
The set operators, UNION, EXCEPT, and INTERSECT, correspond to the
relational operators union, difference, and intersection. A fullselect specifies a
result table. If a set operator is not used, the result of the fullselect is the result
of the specified subselect. Otherwise, the result table is derived by combining
the two other result tables (R1 and R2) subject to the specified set operator.

UNION DISTINCT or UNION ALL
If UNION ALL is specified, the result consists of all rows in R1 and R2.
With UNION DISTINCT, the result is the set of all rows in either R1 or R2
with the redundant duplicate rows eliminated. In either case, each row of
the result table of the union is either a row from R1 or a row from R2.

The expression that corresponds to the nth column in R1 and R2 can
reference columns with column masks. The nth column of the result of the
union can be derived from the masked values in R1 or R2.

With UNION DISTINCT, the elimination of the duplicate rows is based on
the unmasked values in R1 and R2. Because all rows are from R1 or R2,
the output values in the result table of the union may vary when one or
more of the following conditions occur:

Chapter 4. Queries 811

|
|
|

|
|
|
|

v The expression corresponding to the nth column in R1 references
columns with column masks, but the expression corresponding to the
nth column in R2 does not, or vise versa.

v The expressions corresponding to the nth column in R1 and R2 reference
columns with different column masks.

v The column mask definition references columns that are not the same
target column for which the column mask is defined, and those columns
are not part of the UNION DISTINCT operation. It is recommended that
the column mask definition does not reference other columns from the
target table.

For example, a row in R1 is derived from the masked value, and a row in
R2 is derived from the unmasked value. If the row in the result table is
from R1, the masked value is returned. If the row in the result table is
from R2, the unmasked value is returned.

EXCEPT and INTERSECT can be intermixed with UNION if the rows in
R1 and R2 for EXCEPT and INTERSECT do not reference columns with
column masks

For compatibility with other SQL implementations, UNIQUE can be
specified as a synonym for DISTINCT.

EXCEPT DISTINCT or EXCEPT ALL
If EXCEPT ALL is specified, the result consists of all rows from only R1,
including significant redundant duplicate rows. With EXCEPT DISTINCT,
the result consists of all rows that are only in R1, with redundant duplicate
rows eliminated. In either case, each row in the result table of the
difference is a row from R1 that does not have a matching row in R2.

Column masks cannot be applied to the select lists that derive the final
result table of set operations if any of the set operators that are used to
derive the final result table is EXCEPT ALL or EXCEPT DISTINCT.

For compatibility with other SQL implementations, MINUS can be
specified as a synonym for EXCEPT, and UNIQUE can be specified as a
synonym for DISTINCT.

INTERSECT DISTINCT or INTERSECT ALL
If INTERSECT ALL is specified, the result consists of all rows that are both
in R1 and R2, including significant redundant duplicate rows. With
INTERSECT DISTINCT, the result consists of all rows that are in both R1
and R2, with redundant duplicate rows eliminated. In either case each row
of the result table of the intersection is a row that exists in both R1 and R2.

Column masks cannot be applied to the select lists that derive the final
result table of set operations if any of the set operators that are used to
derive the final result table is INTERSECT ALL or INTERSECT DISTINCT.

For compatibility with other SQL implementations, UNIQUE can be
specified as a synonym for DISTINCT.

Rules for columns:
v R1 and R2 must have the same number of columns, and the data type of the nth

column of R1 must be compatible with the data type of the nth column of R2.
v The nth column of the result of a set operator is derived from the nth columns

of R1 and R2. The attributes of the result columns are determined using the
rules for result columns.

812 SQL Reference

|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

v R1 and R2 must not include columns having a data type of CLOB, BLOB,
DBCLOB, XML, or a distinct type that is based on any of these types. However,
this rule is not applicable when UNION ALL is used with the set operator.

v If the nth column of R1 and the nth column of R2 have the same result column
name, the nth column of the result table of the set operation has the same result
column name. Otherwise, the nth column of the result table of the set operation
is unnamed.

v Qualified column names cannot be used in the ORDER BY clause when the set
operators are specified.

For information on the valid combinations of operand columns and the data type
of the result column, see “Rules for result data types” on page 144.

Duplicate rows: Two rows are duplicates if the value in each column in the first
row is equal to the corresponding value of the second row. For determining
duplicates, two null values are considered equal.

The DECFLOAT data type allows for multiple bit representations of the same
number. For example 2.00 and 2.0 are two numbers with the same coefficient, but
different exponent values. See “Numeric comparisons” on page 134 section for
more information. So if the result table of UNION contains a DECFLOAT column
and multiple bit representations of the same number exist, the one returned is
unpredictable.

Operator precedence: When multiple set operations are combined in an expression,
set operations within parentheses are performed first. If the order is not specified
by parentheses, set operations are performed from left to right with the exception
that all INTERSECT operations are performed before any UNION or any EXCEPT
operations.

Results of set operators: The following table illustrates the results of all set
operations, with rows from result table R1 and R2 as the first two columns and the
result of each operation on R1 and R2 under the corresponding column heading.

Table 91. Example of UNION, EXCEPT, and INTERSECT set operations on result tables R1 and R2.

Rows in R1 Rows in R2
Result of
UNION ALL

Result of
UNION
DISTINCT

Result of
EXCEPT
ALL

Result of
EXCEPT
DISTINCT

Result of
INTERSECT
ALL

Result of
INTERSECT
DISTINCT

1 1 1 1 1 2 1 1

1 1 1 2 2 5 1 3

1 3 1 3 2 3 4

2 3 1 4 2 4

2 3 1 5 4

2 3 2 5

3 4 2

4 2

4 3

5 3

3

3

3

Chapter 4. Queries 813

Table 91. Example of UNION, EXCEPT, and INTERSECT set operations on result tables R1 and R2. (continued)

Rows in R1 Rows in R2
Result of
UNION ALL

Result of
UNION
DISTINCT

Result of
EXCEPT
ALL

Result of
EXCEPT
DISTINCT

Result of
INTERSECT
ALL

Result of
INTERSECT
DISTINCT

4

4

4

5

Examples of fullselects

Example 1: A query specifies the union of result tables R1 and R2. A column in R1
has the data type CHAR(10) and the subtype BIT. The corresponding column in R2
has the data type CHAR(15) and the subtype SBCS. Hence, the column in the
union has the data type CHAR(15) and the subtype BIT. Values from the first
column are converted to CHAR(15) by adding five trailing blanks.

Example 2: Show all the rows from DSN8B10.EMP.
SELECT * FROM DSN8B10.EMP;

Example 3: Using sample tables DSN8B10.EMP and DSN8B10.EMPPROJACT, list
the employee numbers of all employees for which either of the following
statements are true:
v Their department numbers begin with 'D'.
v They are assigned to projects whose project numbers begin with 'AD'.

SELECT EMPNO FROM DSN8B10.EMP
WHERE WORKDEPT LIKE ’D%’
UNION

SELECT EMPNO FROM DSN8B10.EMPPROJACT
WHERE PROJNO LIKE ’AD

The result is the union of two result tables, one formed from the sample table
DSN8B10.EMP, the other formed from the sample table DSN8B10.EMPPROJACT.
The result—a one-column table—is a list of employee numbers. Because UNION,
rather than UNION ALL, was used, the entries in the list are distinct. If instead
UNION ALL were used, certain employee numbers would appear in the list more
than once. These would be the numbers for employees in departments that begin
with 'D' while their projects begin with 'AD'.

Example 4: Specify a series of unions and order the results by the first column of
the final result table.
SELECT * FROM T1
UNION
SELECT * FROM T2
UNION
SELECT * FROM T3
ORDER BY 1;

Example 5: Specify a series of unions and order the results by the first column of
the final result table. The first ORDER BY clause order the rows of the result of the
first union by the first column of that result table. The second ORDER BY clause is
applied as part of the outer fullselect and it causes the rows of the final result table
to be ordered by the first column of the final result table.

814 SQL Reference

(SELECT * FROM T1
UNION
SELECT * FROM T2
ORDER BY 1)
UNION
SELECT * FROM T3
ORDER BY 1;

Example 6: Assume that tables T1 and T2 exist and each contain the same number
of columns named C1, C2, and so on. This example of the EXCEPT operator
produces all rows that are in T1 but not in T2, with duplicate rows removed:
(SELECT * FROM T1)

EXCEPT DISTINCT
(SELECT * FROM T2)

Example 7: Assume that tables T1 and T2 exist and each contain the same number
of columns named C1, C2, and so on. This example of the INTERSECT operator
produces all rows that are in both table T1 and table T2, with duplicate rows
removed:
(SELECT * FROM T1)

INTERSECT DISTINCT
(SELECT * FROM T2)

Chapter 4. Queries 815

Character conversion in set operations and concatenations
The SQL operations that combine strings include concatenation, set operators, and
the IN list of an IN predicate. Within an SQL statement, concatenation combines
two or more strings into a new string. Within a fullselect, set operation, or the IN
list of an IN predicate combine two or more string columns resulting from the
subselects into results column.

All such operations have the following in common:
v The choice of a result CCSID for the string or column
v The possible conversion of one or more of the component strings or columns to

the result CCSID

For all such operations, the rules for those two actions are the same, as described
in “Selecting the result CCSID” on page 817. These rules also apply to the
COALESCE scalar function.

816 SQL Reference

Selecting the result CCSID
The result CCSID is selected at package prepare time. The result CCSID is the
CCSID of one of the operands.

Two operands: When two operands are used, the result CCSID is determined by
the operand types, their CCSIDs, and their relative positions in the operation.
When a CCSID is X'FFFF', the result CCSID is always X'FFFF', and no character
conversions take place. When neither CCSID is X'FFFF', the rules for selecting the
result CCSID are identical to the ones for string comparison. See "String
comparisons" in Chapter 3, “Functions,” on page 337.

Three or more operands:

If all the operands have the same CCSID, the result CCSID is the common
CCSID.

If at least one of the CCSIDs has the value X'FFFF', the result CCSID also has the
value X'FFFF'.

Otherwise, selection proceeds as follows:
1. The rules for a pair of operands are applied to the first two operands. This

picks a “candidate” for the second step. The candidate is the operand that
would furnish the result CCSID if just the first two operands were involved in
the operation.

2. The rules are applied to the Step 1 candidate and the third operand, thereby
selecting a second candidate.

3. If a fourth operand is involved, the rules are applied to the second candidate
and fourth operand, to select a third candidate, and so on.

The process continues until all operands have been used. The remaining candidate
is the one that furnishes the result CCSID. Whenever the rules for a pair are
applied to a candidate and an operand, the candidate is considered to be the first
operand.

Consider, for example, the following concatenation:
A CONCAT B CONCAT C

Here, the rules are first applied to the strings A and B. Suppose that the string
selected as candidate is A. Then the rules are applied to A and C. If the string
selected is again A, then A furnishes the result CCSID. Otherwise, C furnishes the
result CCSID.

Character conversion of components: An operand of concatenation or the selected
argument of the COALESCE scalar function is converted, if necessary, to the coded
character set of the result string. Each string of an operand of a set operation is
converted, if necessary, to the coded character set of the result column. In either
case, the coded character set is the one identified by the result CCSID. Character
conversion is necessary only if all of the following are true:
v The result and operand CCSIDs are different.
v Neither CCSID is X'FFFF' (neither string is defined as BIT data).
v The string is neither null nor empty.
v The SYSSTRINGS catalog table indicates that conversion is necessary.

An error occurs if a character of a string cannot be converted, SYSSTRINGS is used
but contains no information about the CCSID pair, or DB2 cannot do the

Chapter 4. Queries 817

conversion through z/OS support for Unicode. A warning occurs if a character of a
string is converted to the substitution character.

818 SQL Reference

select-statement
The select-statement is the form of a query that can be directly specified in a
DECLARE CURSOR statement or FOR statement, prepared and then referenced in
a DECLARE CURSOR statement, or directly specified in an SQLJ assignment
clause. It can also be issued using SPUFI or the command line processor which
causes a result table to be displayed at your terminal. In any case, the result table
specified by a select-statement is the result of the fullselect.

��

�

,

WITH common-table-expression

fullselect �
(2)

update-clause
(1)

read-only-clause
optimize-clause
isolation-clause
queryno-clause
SKIP LOCKED DATA

��

Notes:

1 The read-only-clause must not be specified if update-clause is specified.

2 The same clause must not be specified more than one time.

The tables and view identified in a select statement can be at the current server or
any DB2 subsystem with which the current server can establish a connection.

For local queries on DB2 for z/OS or remote queries in which the server and
requester are DB2 for z/OS, if a table is encoded as ASCII or Unicode, the
retrieved data is encoded in EBCDIC. For information on retrieving data encoded
in ASCII or Unicode, see DB2 Application Programming and SQL Guide.

A select statement can implicitly or explicitly invoke user-defined functions or
implicitly invoke stored procedures. This technique is known as nesting of SQL
statements. A function or procedure is implicitly invoked in a select statement
when it is invoked at a lower level. For instance, if you invoke a user-defined
function from a select statement and the user-defined function invokes a stored
procedure, you are implicitly invoking the stored procedure. When a SELECT
statement refers to a table, any SQL statements that are implicitly invoked (as a
result of nested functions or procedures) must not result in an SQL data change
statement that modifies the same table.

For example, suppose that you execute this SQL statement at level 1 of nesting:
SELECT UDF1(C1) FROM T1;

You cannot execute this SQL statement at a lower level of nesting:
INSERT INTO T1 VALUES(...);

Chapter 4. Queries 819

common-table-expression
A common table expression defines a result table with table-identifier that can be
referenced in any FROM clause of the fullselect that follows.

Multiple common table expressions can be specified following the single WITH
keyword. Each specified common table expression can also be referenced by name
in the FROM clause of subsequent common table expressions.

�� table-identifier

�

,

()
column-name

AS (fullselect) ��

If a list of columns is specified, it must consist of as many names as there are
columns in the result table of the fullselect. Each column-name must be unique and
unqualified. If these column names are not specified, the names are derived from
the select list of the fullselect used to define the common table expression.

table-identifier must be an unqualified SQL identifier, and it must be different from
any other table-identifier in the same statement. If the common table expression is
specified in an INSERT statement, the table-identifier must not be the same as the
table or view name that is the object of the insert. If the common table expression
is specified in a CREATE VIEW statement, the table-identifier must not be the same
as the view name that is created. A common table expression table-identifier can be
specified as a table name in any FROM clause throughout the fullselect.

If more than one common table expression is defined in the same statement, cyclic
references between the common table expressions are not permitted. A cyclic
reference occurs when two common table expressions dt1 and dt2 are created such
that dt1 refers to dt2 and dt2 refers to dt1. Furthermore, a common table expression
defined before cannot refer to subsequent common table expressions.

A common table expression name can only be referenced in the select-statement,
SELECT INTO statement, INSERT statement, CREATE VIEW statement, or
RETURN statement that defines it.

If a select-statement, SELECT INTO statement, INSERT statement, or CREATE VIEW
statement that is not contained in a trigger definition refers to a unqualified table
name, the following rules are applied to determine which table is actually being
referenced:
v If the unqualified name corresponds to one or more common table expression

names that are specified in the select-statement, the name identifies the common
table expression that is in the innermost scope.

v Otherwise, the name identifies a persistent table, a temporary table, or a view
that is present in the default schema.

common-table-expression

820 SQL Reference

If a select-statement, SELECT INTO statement, INSERT statement, or CREATE VIEW
statement that is contained in a trigger definition refers to a unqualified table
name, the following rules are applied to determine which table is actually being
referenced:
v If the unqualified name corresponds to one or more common table expression

names that are specified in the select-statement, the name identifies the common
table expression that is in the innermost scope.

v If the unqualified name corresponds to a transition table name, the name
identifies that transition table.

v Otherwise, the name identifies a persistent table, a temporary table, or a view
that is present in the default schema.

The common table expression is also optional prior to the fullselect in the CREATE
VIEW and INSERT statements. However, the use of common table expressions is
not allowed in a INSERT within SELECT statement.

A common table expression can be used:
v In place of a view to avoid creating the view (when general use of the view is

not required and positioned updates or deletes are not used)
v When the result table that you want is based on host variables
v When the same result table needs to be shared in a fullselect

v When the result needs to be derived using recursion

If a fullselect of a common table expression contains a reference to itself in a FROM
clause, the common table expression is a recursive common table expression. Queries
using recursion are useful in supporting applications such as bill of materials
(BOM), reservation systems, and network planning.

The following must be true of a recursive common table expression:
v Each fullselect that is part of the recursion cycle must start with SELECT or

SELECT ALL. Use of SELECT DISTINCT is not allowed. Furthermore, the set
operators must use the ALL keyword.

v The column names must be specified following the table-name of the common
table expression.

v The first fullselect of the first set operator (the initialization fullselect) must not
include a reference to the common table expression itself in any FROM clause).

v If a column name of the common table expression is referred to in the iterative
fullselect, the data type, length, and CCSID for the column are determined based
on the initialization fullselect. The corresponding column in the iterative fullselect
must have the same data type and length as the data type and length
determined based on the initialization fullselect and the CCSID must match.
However, for character string types, the length of the two data types can differ.
In this case, the column in the iterative fullselect must have a length that would
always be assignable to the length determined from the initialization fullselect. If
a column of a recursive common table expression is not used recursively in its
definition, the data type, length, and CCSID for the column are determined by
applying rules associated with non-recursive queries.

v Each fullselect that is part of the recursion cycle must not include any aggregate
functions, GROUP BY clauses, or HAVING clauses. The FROM clauses of these
fullselects can include at most one reference to a common table expression that is
part of a recursion cycle.

v Subqueries (scalar or quantified) must not be part of any recursion cycles.

Chapter 4. Queries 821

v Outer join must not be part of any recursion cycles.

When developing recursive common table expressions, remember that an infinite
recursion cycle (loop) can be created. Check that recursion cycles will terminate.
This is especially important if the data involved is cyclic. A recursive common
table expression is expected to include a predicate that will prevent an infinite
loop. The recursive common table expression is expected to include:
v In the iterative fullselect, an integer column incremented by a constant.
v A predicate in the WHERE clause of the iterative fullselect in the form of

"counter_col < constant" or "counter_col < :hostvar". A warning is issued if this
syntax is not found.

If the result of a recursive common table expression is used to derive the final
result table, and if a column mask is used to mask the column values in the final
result table, the column mask cannot be applied to a column that is specified in the
fullselect of the recursive common table expression.

822 SQL Reference

update-clause
The optional FOR UPDATE clause identifies the columns that can appear as targets
in an assignment clause in a later positioned UPDATE statement.

update-clause

��

�

FOR UPDATE
,

OF column-name

��

Each column name must be unqualified and must identify a column of the table or
view identified in the first FROM clause of the fullselect. The clause must not be
specified if the result table of the fullselect is read-only.

If FOR UPDATE clause is specified with a column-name list, and extended indicator
variables are not enabled, column-name must be an updatable column.

If the FOR UPDATE clause is specified without a column-name list, the implicit list
of column names is determined as follows:
v If extended indicator variables are enabled, all columns of the table or view that

is identified in the first FROM clause of the fullselect
v If extended indicator variables are not enabled, all updatable columns of the

table or view that is identified in the first FROM clause of the fullselect

If a dynamically prepared select-statement does not contain a positioned UPDATE
clause, the cursor that is associated with the select statement cannot be referenced
in a positioned UPDATE statement.

If a statically prepared select-statement does not contain an UPDATE clause and its
result table is not read-only, an implicit UPDATE clause will result. The implicit list
of column names is determined as follows:
v If extended indicator variables are enabled, all columns of the table or view that

is identified in the first FROM clause of the fullselect
v If extended indicator variables are not enabled, all updatable columns of the

table or view that is identified in the first FROM clause of the fullselect

The declaration of a cursor referred to in a positioned UPDATE statement need not
include an UPDATE clause if the STDSQL(YES) or NOFOR SQL processing option
is specified when the program is prepared. For more on the subject, see
“Positioned updates of columns” on page 333.

When FOR UPDATE is used, FETCH operations referencing the cursor acquire U
or X locks rather than S locks when:
v The isolation level of the statement is cursor stability.
v The isolation level of the statement is repeatable read or read stability and field

U LOCK FOR RR/RS on installation panel DSNTIPI is set to get U locks.

Chapter 4. Queries 823

v The isolation level of the statement is repeatable read or read stability and USE
AND KEEP EXCLUSIVE LOCKS or USE AND KEEP UPDATE LOCKS is
specified in the SQL statement, an X lock or a U lock, respectively, is acquired at
fetch time.

No locks are acquired on declared temporary tables. For a discussion of U locks
and S locks, see DB2 Performance Monitoring and Tuning Guide.

824 SQL Reference

read-only-clause
The read-only clause specifies that the result table is read-only. Therefore, the
cursor cannot be referred to in positioned UPDATE or DELETE statements.

�� FOR READ ONLY ��

Some result tables are read-only by nature (for example, a table based on a
read-only view.) FOR READ ONLY can still be specified for such tables, but the
specification has no effect.

For tables in which updates and deletes are allowed, specifying FOR READ ONLY
can possibly improve the performance of FETCH operations as DB2 can do
blocking and avoid exclusive locks. For example, in programs that contain
dynamic SQL statements without the FOR READ ONLY or ORDER BY clause, DB2
might open cursors as if the UPDATE clause was specified.

A read-only result table must not be referred to in an UPDATE or DELETE
statement, whether it is read-only by nature or specified as FOR READ ONLY.

To take advantage of the possibly improved performance of FETCH operations
while guaranteeing that selected data is not modified and preventing some types
of deadlocks, you can specify FOR READ ONLY in combination with the optional
syntax of USE AND KEEP ... LOCKS on the isolation-clause.

Alternative syntax and synonyms: FOR FETCH ONLY can be specified as a
synonym for FOR READ ONLY.
Related concepts:

Block fetch (Introduction to DB2 for z/OS)

Problems with ambiguous cursors (DB2 Performance)
Related tasks:

Ensuring block fetch (DB2 Performance)
Related reference:
“FETCH” on page 1650
“UPDATE” on page 1933
“DELETE” on page 1573
“isolation-clause” on page 827

read-only-clause

Chapter 4. Queries 825

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_blockfetch.htm#db2z_blockfetch
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_ambiguouscursorproblem.htm#db2z_ambiguouscursorproblem
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_ensureblockfetch.htm#db2z_ensureblockfetch

optimize-clause
The OPTIMIZE clause requests special optimization of the select-statement.

�� OPTIMIZE FOR integer ROWS
ROW

��

The optimize-clause tells DB2 to assume that the program does not intend to retrieve
more than integer rows from the result table. Without this clause, DB2 assumes that
all rows of the result table will be retrieved, unless the FETCH FIRST clause is
specified. Optimizing for integer rows can improve performance. If this clause is
omitted and the FETCH FIRST is specified, OPTIMIZE FOR integer ROWS is
assumed, where integer is the value that is specified in the FETCH FIRST clause.
DB2 will optimize the query based on the specified number of rows.

The clause does not limit the number of rows that can be fetched, change the result
table, or change the order in which the rows are fetched. Any number of rows can
be fetched, but performance can possibly degrade after integer fetches. In general, if
you are retrieving only a few rows, specify OPTIMIZE FOR 1 ROW to influence
the access path that DB2 selects. For more information about using this clause, see
DB2 Application Programming and SQL Guide.

The value of integer must be a positive integer (not zero).

Row access controls indirectly affects the OPTIMIZE FOR clause because row
access controls affect the rows that are accessible to the authorization ID or role of
the subselect.

Column access controls do not affect the OPTIMIZE FOR clause.
Related tasks:

Minimizing the cost of retrieving few rows (DB2 Performance)

Optimizing retrieval for a small set of rows (DB2 Application programming
and SQL)

optimize-clause

826 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_optimizefornrows.htm#db2z_optimizefornrows
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_optimizeretrievalsmallset.htm#db2z_optimizeretrievalsmallset
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_optimizeretrievalsmallset.htm#db2z_optimizeretrievalsmallset

isolation-clause
The isolation-clause specifies the isolation level at which the statement is executed.
(Isolation level does not apply to declared temporary tables because no locks are
acquired.)

�� WITH RR
lock-clause

RS
lock-clause

CS
UR

��

lock-clause:

USE AND KEEP EXCLUSIVE LOCKS
UPDATE
SHARE

RR Repeatable read

RR lock-clause
Repeatable read, using and keeping the type of lock that is specified in
lock-clause on all accessed pages and rows

RS Read stability

RS lock-clause
Read stability, using and keeping the type of lock that is specified in
lock-clause on all accessed pages and rows

CS Cursor stability

UR Uncommitted read

lock-clause
Specifies the type of lock.

USE AND KEEP EXCLUSIVE LOCKS
USE AND KEEP UPDATE LOCKS
USE AND KEEP SHARE LOCKS

Specifies that DB2 is to acquire and hold X, U, or S locks, respectively.

WITH UR can be specified only if the result table of the fullselect or the SELECT
INTO statement is read-only.

In an ODBC application, the SQLSetStmtAttr function can be used to set statement
attributes that interact with the lock-clause. If SQLSetStmtAttr is invoked with a
cursor's statement handle and specifying that its SQL_ATTR_CLOSE_BEHAVIOR is
SQL_CC_RELEASE (locks are to be released when the cursor is closed), then
irrespective of any lock-clause, lock used by the cursor that are not needed to
protect the integrity of changed data are released..

isolation-clause

Chapter 4. Queries 827

Although requesting an UPDATE or EXCLUSIVE LOCK can reduce concurrency, it
can prevent some types of deadlocks.

The default isolation level of the statement depends on:
v The isolation of the package or plan that the statement is bound in
v Whether the result table is read-only

Table 92 shows the default isolation level of the statement.

Table 92. Default isolation level based on the isolation level of the package or plan and
whether the result table is read-only

If package isolation
is:

And plan isolation
is:

And the result table
is:

Then the default
isolation is:

RR Any Any RR

RS Any Any RS

CS Any Any CS

UR Any Read-only UR

Not read-only CS

Not specified Not specified Any RR

RR Any RR

RS Any RS

CS Any CS

UR Read-only UR

Not read-only CS

A simple way to ensure that a result table is read-only is to specify FOR READ
ONLY in the SQL statement.

Alternative syntax and synonyms: KEEP UPDATE LOCKS can be specified as a
synonym for USE AND KEEP EXCLUSIVE LOCKS. However, KEEP UPDATE
LOCKS can be specified only if FOR UPDATE OF is specified, and it is not
supported in the SELECT INTO statement.
Related concepts:

Lock modes (DB2 Performance)
Related tasks:

Choosing an ISOLATION option (DB2 Performance)

Programming for concurrency (DB2 Performance)
Related reference:

SQLSetStmtAttr() - Set statement attributes (DB2 Programming for ODBC)

828 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_lockmode.htm#db2z_lockmode
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_chooseisolationoption.htm#db2z_chooseisolationoption
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapps4concurrency.htm#db2z_programapps4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.odbc/src/tpc/db2z_fnsetstmtattr.htm#db2z_fnsetstmtattr

queryno-clause
The QUERYNO clause specifies the number to be used for this SQL statement in
EXPLAIN output and trace records. The number is used for the QUERYNO
columns of the plan tables for the rows that contain information about this SQL
statement. This number is also used in the QUERYNO column of the
SYSIBM.SYSSTMT and SYSIBM.SYSPACKSTMT catalog tables.

�� QUERYNO integer ��

integer is the value to be used to identify this SQL statement in EXPLAIN output
and trace records.

If the clause is omitted, the number associated with the SQL statement is the
statement number assigned during precompilation. Thus, if the application
program is changed and then precompiled, that statement number might change.

Using the QUERYNO clause to assign unique numbers to the SQL statements in a
program is helpful:
v For simplifying the use of optimization hints for access path selection
v For correlating SQL statement text with EXPLAIN output in the plan table

For information on using optimization hints, such as enabling the system for
optimization hints and setting valid hint values, and for information on accessing
the plan table, see DB2 Performance Monitoring and Tuning Guide.

queryno-clause

Chapter 4. Queries 829

SKIP LOCKED DATA
The SKIP LOCKED DATA clause specifies that rows are skipped when
incompatible locks that would block the progress of the statement are held on the
rows by other transactions. These rows can belong to any accessed table that is
specified in the statement. SKIP LOCKED DATA can be used only with isolation
CS or RS and applies only to row level or page level locks.

�� SKIP LOCKED DATA ��

Important: The recommendation is to not rely on the SKIP LOCKED DATA option
to remove rows from results returned by a query. The SKIP LOCKED DATA option
is meant only to prevent possibly incompatible locks from impeding the progress
of queries that can tolerate possibly incomplete results. However, DB2 might use
lock avoidance techniques to avoid taking certain locks.

SKIP LOCKED DATA is ignored if it is specified when the isolation level that is in
effect is repeatable read (WITH RR) or uncommitted read (WITH UR). The default
isolation level of the statement depends on the isolation level of the package or
plan with which the statement is bound, and whether the result table is read-only.
Related concepts:

Lock avoidance (DB2 Performance)
Related tasks:

Improving concurrency for applications that tolerate incomplete results (DB2
Performance)
Related reference:
“select-statement” on page 819
“SELECT INTO” on page 1866
“UPDATE” on page 1933
“DELETE” on page 1573
“PREPARE” on page 1781

830 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_lockavoidance.htm#db2z_lockavoidance
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useskiplockeddata.htm#db2z_useskiplockeddata
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useskiplockeddata.htm#db2z_useskiplockeddata

Examples of select statements
Examples of SELECT statements.

Example 1: Select all the rows from DSN8B10.EMP.
SELECT * FROM DSN8B10.EMP;

Example 2: Select all the rows from DSN8B10.EMP, arranging the result table in
chronological order by date of hiring.

SELECT * FROM DSN8B10.EMP
ORDER BY HIREDATE;

Example 3: Select the department number (WORKDEPT) and average departmental
salary (SALARY) for all departments in the table DSN8B10.EMP. Arrange the result
table in ascending order by average departmental salary.

SELECT WORKDEPT, AVG(SALARY)
FROM DSN8B10.EMP
GROUP BY WORKDEPT
ORDER BY 2;

Example 4: Change various salaries, bonuses, and commissions in the table
DSN8B10.EMP. Confine the changes to employees in departments D11 and D21.
Use positioned updates to do this with a cursor named UP_CUR. Use a FOR
UPDATE clause in the cursor declaration to indicate that all updatable columns are
updated. Below is the declaration for a PL/I program.

EXEC SQL DECLARE UP_CUR CURSOR FOR
SELECT WORKDEPT, EMPNO, SALARY, BONUS, COMM

FROM DSN8B10.EMP
WHERE WORKDEPT IN (’D11’,’D21’)
FOR UPDATE;

Beginning where the cursor is declared, all updatable columns would be updated.
If only specific columns needed to be updated, such as only the salary column, the
FOR UPDATE clause could be used to specify the salary column (FOR UPDATE
OF SALARY).

Example 5: Find the maximum, minimum, and average bonus in the table
DSN8B10.EMP. Execute the statement with uncommitted read isolation, regardless
of the value of ISOLATION with which the plan or package containing the
statement is bound. Assign 13 as the query number for the SELECT statement.

EXEC SQL
SELECT MAX(BONUS), MIN(BONUS), AVG(BONUS)

INTO :MAX, :MIN, :AVG
FROM DSN8B10.EMP
WITH UR
QUERYNO 13;

If bind option EXPLAIN(YES) is specified, rows are inserted into the plan table.
The value used for the QUERYNO column for these rows is 13.

Example 6: The cursor declaration shown below is in a PL/I program. In the query
within the declaration, X.RMT_TAB is an alias for a table at some other DB2.
Hence, when the query is used, it is processed using DRDA access. See
“Distributed data” on page 35.

The declaration indicates that no positioned updates or deletes will be done with
the query's cursor. It also specifies that the access path for the query be optimized
for the retrieval of at most 50 rows. Even so, the program can retrieve more than

Chapter 4. Queries 831

50 rows from the result table, which consists of the entire table identified by the
alias. However, when more than 50 rows are retrieved, performance could possibly
degrade.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT * FROM X.RMT_TAB
OPTIMIZE FOR 50 ROWS
FOR READ ONLY;

The FETCH FIRST clause could be used instead of the OPTIMIZE FOR clause to
ensure that only 50 rows are retrieved as in the following example:

EXEC SQL DECLARE C1 CURSOR FOR
SELECT * FROM X.RMT_TAB
FETCH FIRST 50 ROWS ONLY;

Example 7: Assume that table DSN8B10.EMP has 1000 rows and you want to see
the first five EMP_ROWID values that were inserted into
DSN8B10.EMP_PHOTO_RESUME.

EXEC SQL DECLARE CS1 CURSOR FOR
SELECT EMP_ROWID

FROM FINAL TABLE (INSERT INTO DSN8B10.EMP_PHOTO_RESUME (EMPNO)
SELECT EMPNO FROM DSN8B10.EMP)

FETCH FIRST 5 ROWS ONLY;

All 1000 rows are inserted into DSN8B10.EMP_PHOTO_RESUME, but only the
first five are returned.
Related concepts:

How a SELECT statement works (Introduction to DB2 for z/OS)
Related tasks:

Coding SQL statements to avoid unnecessary processing (DB2 Performance)

Retrieving data by using the SELECT statement (DB2 Application
programming and SQL)

832 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_howselectstatementworks.htm#db2z_howselectstatementworks
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_codequerysimply.htm#db2z_codequerysimply
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_retrievedataselect.htm#db2z_retrievedataselect
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_retrievedataselect.htm#db2z_retrievedataselect

Chapter 5. Statements

This section contains syntax diagrams, semantic descriptions, rules, and examples
of the use of the SQL statements.

Table 93. SQL statements

SQL statement Function Topic

ALLOCATE CURSOR Defines and associates a cursor with a result set locator
variable

“ALLOCATE CURSOR” on
page 847

ALTER DATABASE Changes the description of a database “ALTER DATABASE” on page
849

ALTER FUNCTION
(external)

Changes the description of a user-defined external
scalar or table function

“ALTER FUNCTION
(external)” on page 852

ALTER FUNCTION (SQL
scalar)

Changes the description of an SQL scalar function “ALTER FUNCTION (SQL
scalar)” on page 871

ALTER FUNCTION (SQL
table)

Changes the description of an SQL table function “ALTER FUNCTION (SQL
table)” on page 899

ALTER INDEX Changes the description of an index “ALTER INDEX” on page 907

ALTER MASK Changes the description of a column mask “ALTER MASK” on page 926

ALTER PERMISSION Changes the description of a row permission. “ALTER PERMISSION” on
page 928

ALTER PROCEDURE
(external)

Changes the description of an external procedure “ALTER PROCEDURE
(external)” on page 930

ALTER PROCEDURE (SQL
- external)

Changes the description of an external SQL procedure “ALTER PROCEDURE (SQL -
external)” on page 941

ALTER PROCEDURE (SQL
- native)

Changes the description of or defines additional
versions for a native SQL procedure

“ALTER PROCEDURE (SQL -
native)” on page 947

ALTER SEQUENCE Changes the description of a sequence “ALTER SEQUENCE” on page
975

ALTER STOGROUP Changes the description of a storage group “ALTER STOGROUP” on
page 981

ALTER TABLE Changes the description of a table “ALTER TABLE” on page 984

ALTER TABLESPACE Changes the description of a table space “ALTER TABLESPACE” on
page 1074

ALTER TRUSTED
CONTEXT

Changes the description of a trusted context “ALTER TRUSTED
CONTEXT” on page 1097

ALTER TRIGGER Changes the description of a trigger. “ALTER TRIGGER” on page
1094

ALTER VIEW Regenerates a view “ALTER VIEW” on page 1109

ASSOCIATE LOCATORS Gets the result set locator value for each result set
returned by a stored procedure

“ASSOCIATE LOCATORS” on
page 1111

BEGIN DECLARE
SECTION

Marks the beginning of a host variable declaration
section

“BEGIN DECLARE
SECTION” on page 1115

CALL Calls a stored procedure “CALL” on page 1117

CLOSE Closes a cursor “CLOSE” on page 1131

© Copyright IBM Corp. 1982, 2013 833

Table 93. SQL statements (continued)

SQL statement Function Topic

COMMENT Replaces or adds a comment to the description of an
object

“COMMENT” on page 1133

COMMIT Ends a unit of recovery and commits the database
changes made by that unit of recovery

“COMMIT” on page 1143

CONNECT Connects the process to a server “CONNECT” on page 1147

CREATE ALIAS Defines an alias “CREATE ALIAS” on page
1154

CREATE AUXILIARY
TABLE

Defines an auxiliary table for storing LOB data “CREATE AUXILIARY
TABLE” on page 1158

CREATE DATABASE Defines a database “CREATE DATABASE” on
page 1162

CREATE FUNCTION
(external scalar)

Defines a user-defined external scalar function “CREATE FUNCTION
(external scalar)” on page 1166

CREATE FUNCTION
(external table)

Defines a user-defined external table function “CREATE FUNCTION
(external table)” on page 1191

CREATE FUNCTION
(sourced)

Defines a user-defined function that is based on an
existing scalar or aggregate function

“CREATE FUNCTION
(sourced)” on page 1210

CREATE FUNCTION (SQL
scalar)

Defines a user-defined SQL scalar function “CREATE FUNCTION (SQL
scalar)” on page 1224

CREATE FUNCTION (SQL
table)

Defines a user-defined SQL table function “CREATE FUNCTION (SQL
table)” on page 1251

CREATE GLOBAL
TEMPORARY TABLE

Defines a created temporary table “CREATE GLOBAL
TEMPORARY TABLE” on
page 1261

CREATE INDEX Defines an index on a table “CREATE INDEX” on page
1267

CREATE MASK Defines a column mask “CREATE MASK” on page
1299

CREATE PERMISSION Defines a row permission. “CREATE PERMISSION” on
page 1310

CREATE PROCEDURE
(external)

Defines an external stored procedure “CREATE PROCEDURE
(external)” on page 1319

CREATE PROCEDURE
(SQL - external)

Defines an external SQL procedure “CREATE PROCEDURE (SQL
- external)” on page 1338

CREATE PROCEDURE
(SQL - native)

Defines a native SQL procedure “CREATE PROCEDURE (SQL
- native)” on page 1350

CREATE ROLE Defines a role “CREATE ROLE” on page
1374

CREATE SEQUENCE Defines a sequence “CREATE SEQUENCE” on
page 1375

CREATE STOGROUP Defines a storage group “CREATE STOGROUP” on
page 1383

CREATE SYNONYM Defines an alternate name for a table or view “CREATE SYNONYM” on
page 1386

CREATE TABLE Defines a table “CREATE TABLE” on page
1388

834 SQL Reference

Table 93. SQL statements (continued)

SQL statement Function Topic

CREATE TABLESPACE Defines a table space, which includes allocating and
formatting the table space

“CREATE TABLESPACE” on
page 1455

CREATE TRIGGER Defines a trigger “CREATE TRIGGER” on page
1482

CREATE TRUSTED
CONTEXT

Defines a trusted context “CREATE TRUSTED
CONTEXT” on page 1500

CREATE TYPE Defines a type (user-defined data type) “CREATE TYPE (distinct)” on
page 1516

CREATE VIEW Defines a view of one or more tables or views “CREATE VIEW” on page
1527

DECLARE CURSOR Defines an SQL cursor “DECLARE CURSOR” on
page 1535

DECLARE GLOBAL
TEMPORARY TABLE

Defines a declared temporary table “DECLARE GLOBAL
TEMPORARY TABLE” on
page 1547

DECLARE STATEMENT Declares names used to identify prepared SQL
statements

“DECLARE STATEMENT” on
page 1562

DECLARE TABLE Provides the programmer and the precompiler with a
description of a table or view

“DECLARE TABLE” on page
1563

DECLARE VARIABLE Defines a CCSID for a host variable “DECLARE VARIABLE” on
page 1570

DELETE Deletes one or more rows from a table “DELETE” on page 1573

DESCRIBE CURSOR Puts information about the result set associated with a
cursor into a descriptor

“DESCRIBE CURSOR” on
page 1591

DESCRIBE INPUT Puts information about the input parameter markers of
a prepared statement into a descriptor

“DESCRIBE INPUT” on page
1593

DESCRIBE OUTPUT Describes the result columns of a prepared statement “DESCRIBE OUTPUT” on
page 1596

DESCRIBE PROCEDURE Puts information about the result sets returned by a
stored procedure into a descriptor

“DESCRIBE PROCEDURE” on
page 1603

DESCRIBE TABLE Describes the columns of a table or view “DESCRIBE TABLE” on page
1606

DROP Deletes objects “DROP” on page 1609

END DECLARE SECTION Marks the end of a host variable declaration section “END DECLARE SECTION”
on page 1631

EXCHANGE Exchanges data between the specified base table and
an associated clone table

“EXCHANGE” on page 1632

EXECUTE Executes a prepared SQL statement the EXECUTE statement

EXECUTE IMMEDIATE Prepares and executes an SQL statement “EXECUTE IMMEDIATE” on
page 1639

EXPLAIN Obtains information about how an SQL statement
would be executed

“EXPLAIN” on page 1642

FETCH Positions the cursor, returns data, or both positions the
cursor and returns data

“FETCH” on page 1650

FREE LOCATOR Removes the association between a LOB locator
variable and its value

“FREE LOCATOR” on page
1678

Chapter 5. Statements 835

Table 93. SQL statements (continued)

SQL statement Function Topic

GET DIAGNOSTICS Provides diagnostic information about the last SQL
statement that was executed

“GET DIAGNOSTICS” on
page 1679

GRANT The GRANT statement grants privileges to
authorization IDs. There is a separate form of the
statement for each of the classes of privilege.

“GRANT” on page 1695

GRANT (collection
privileges)

Grants authority to create a package in a collection “GRANT (collection
privileges)” on page 1699

GRANT (database
privileges)

Grants privileges on a database “GRANT (database
privileges)” on page 1700

GRANT (type or JAR file
privileges)

Grants the usage privilege on a type (user-defined data
type) or a JAR file

“GRANT (type or JAR file
privileges)” on page 1725

GRANT (function or
procedure privileges)

Grants privileges on a user-defined function or a stored
procedure

“GRANT (function or
procedure privileges)” on
page 1703

GRANT (package
privileges)

Grants authority to bind, execute, or copy a package “GRANT (package
privileges)” on page 1708

GRANT (plan privileges) Grants authority to bind or execute an application plan “GRANT (plan privileges)” on
page 1711

GRANT (schema privileges) Grants privileges on a schema “GRANT (schema privileges)”
on page 1712

GRANT (sequence
privileges)

Grants privileges on a user-defined sequence “GRANT (sequence
privileges)” on page 1714

GRANT (system privileges) Grants system privileges “GRANT (system privileges)”
on page 1715

GRANT (table or view
privileges)

Grants privileges on a table or view “GRANT (table or view
privileges)” on page 1721

GRANT (use privileges) Grants authority to use specified buffer pools, storage
groups, or table spaces

“GRANT (use privileges)” on
page 1728

HOLD LOCATOR Allows a LOB locator variable to retain its association
with its value beyond a unit of work

“HOLD LOCATOR” on page
1730

INCLUDE Inserts declarations into a source program “INCLUDE” on page 1732

INSERT Inserts one or more rows into a table “INSERT” on page 1734

LABEL Replaces or adds a label on the description of a table,
view, alias, or column

“LABEL” on page 1755

LOCK TABLE Locks a table or table space partition in shared or
exclusive mode

“LOCK TABLE” on page 1757

MERGE Updates and/or inserts one or more rows of a table “MERGE” on page 1760

OPEN Opens a cursor “OPEN” on page 1775

PREPARE Prepares an SQL statement (with optional parameters)
for execution

“PREPARE” on page 1781

REFRESH TABLE Refreshes the data in a materialized query table “REFRESH TABLE” on page
1803

RELEASE (connection) Places one or more connections in the release pending
status

“RELEASE (connection)” on
page 1805

RELEASE SAVEPOINT Releases a savepoint and any subsequently set
savepoints within a unit of recovery

“RELEASE SAVEPOINT” on
page 1807

RENAME Renames an existing table or index “RENAME” on page 1808

836 SQL Reference

Table 93. SQL statements (continued)

SQL statement Function Topic

REVOKE Revokes privileges from authorization IDs. There is a
separate form of the statement for each of the classes of
privilege

“REVOKE” on page 1812

REVOKE (collection
privileges)

Revokes authority to create a package in a collection “REVOKE (collection
privileges)” on page 1819

REVOKE (database
privileges)

Revokes privileges on a database “REVOKE (database
privileges)” on page 1821

REVOKE (type or JAR file
privileges)

Revokes the usage privilege on a type (user-defined
data type) or a JAR file

“REVOKE (type or JAR file
privileges)” on page 1851

REVOKE (function or
procedure privileges)

Revokes privileges on a user-defined function or a
stored procedure

“REVOKE (function or
procedure privileges)” on
page 1824

REVOKE (package
privileges)

Revokes authority to bind, execute, or copy a package “REVOKE (package
privileges)” on page 1831

REVOKE (plan privileges) Revokes authority to bind or execute an application
plan

“REVOKE (plan privileges)”
on page 1834

REVOKE (schema
privileges)

Revokes privileges on a schema “REVOKE (schema
privileges)” on page 1836

REVOKE (sequence
privileges)

Revokes privileges on a user-defined sequence “REVOKE (sequence
privileges)” on page 1839

REVOKE (system
privileges)

Revokes system privileges “REVOKE (system privileges)”
on page 1841

REVOKE (table or view
privileges)

Revokes privileges on a table or view “REVOKE (table or view
privileges)” on page 1847

REVOKE (use privileges) Revokes authority to use specified buffer pools, storage
groups, or table spaces

“REVOKE (use privileges)” on
page 1856

ROLLBACK Ends a unit of recovery and backs out the changes to
the database made by that unit of recovery, or partially
rolls back the changes to a savepoint within the unit of
recovery

“ROLLBACK” on page 1859

SAVEPOINT Sets a savepoint within a unit of recovery “SAVEPOINT” on page 1863

SELECT Specifies the SELECT statement of the cursor “SELECT” on page 1865

SELECT INTO Specifies a result table of no more than one row and
assigns the values to host variables

“SELECT INTO” on page 1866

SET CONNECTION Establishes the database server of the process by
identifying one of its existing connections

“SET CONNECTION” on
page 1872

SET CURRENT
APPLICATION
ENCODING SCHEME

Assigns a value to the CURRENT APPLICATION
ENCODING SCHEME special register

“SET CURRENT
APPLICATION ENCODING
SCHEME” on page 1883

SET CURRENT DEBUG
MODE

Assigns a value to the CURRENT DEBUG MODE
special register

“SET CURRENT DEBUG
MODE” on page 1884

SET CURRENT DECFLOAT
ROUNDING MODE

Assigns a value to the CURRENT DECFLOAT
ROUNDING MODE special register

“SET CURRENT DECFLOAT
ROUNDING MODE” on page
1886

SET CURRENT DEGREE Assigns a value to the CURRENT DEGREE special
register

“SET CURRENT DEGREE” on
page 1889

SET CURRENT EXPLAIN
MODE

Assigns a value to the CURRENT EXPLAIN MODE
special register

“SET CURRENT EXPLAIN
MODE” on page 1891

Chapter 5. Statements 837

Table 93. SQL statements (continued)

SQL statement Function Topic

SET CURRENT LOCALE
LC_CTYPE

Assigns a value to the CURRENT LOCALE LC_CTYPE
special register

“SET CURRENT LOCALE
LC_CTYPE” on page 1894

SET CURRENT
MAINTAINED TABLE
TYPES FOR
OPTIMIZATION

Assigns a value to the CURRENT MAINTAINED
TABLE TYPES FOR MAINTAINED TABLE TYPES
special register

“SET CURRENT
MAINTAINED TABLE TYPES
FOR OPTIMIZATION” on
page 1896

SET CURRENT
OPTIMIZATION HINT

Assigns a value to the CURRENT OPTIMIZATION
HINT special register

“SET CURRENT
OPTIMIZATION HINT” on
page 1898

SET CURRENT PACKAGE
PATH

Assigns a value to the CURRENT PACKAGE PATH
special register

“SET CURRENT PACKAGE
PATH” on page 1899

SET CURRENT
PACKAGESET

Assigns a value to the CURRENT PACKAGESET
special register

“SET CURRENT
PACKAGESET” on page 1903

SET CURRENT PRECISION Assigns a value to the CURRENT PRECISION special
register

“SET CURRENT PRECISION”
on page 1905

SET CURRENT REFRESH
AGE

Assigns a value to the CURRENT REFRESH AGE
special register

“SET CURRENT REFRESH
AGE” on page 1908

SET CURRENT ROUTINE
VERSION

Assigns a value to the CURRENT ROUTINE VERSION
special register

“SET CURRENT ROUTINE
VERSION” on page 1910

SET CURRENT RULES Assigns a value to the CURRENT RULES special
register

“SET CURRENT RULES” on
page 1912

SET CURRENT SQLID Assigns a value to the CURRENT SQLID special
register

“SET CURRENT SQLID” on
page 1913

SET ENCRYPTION
PASSWORD

Assign a value for the ENCRYPTION PASSWORD and
an optional hint for the password

“SET ENCRYPTION
PASSWORD” on page 1919

SET assignment-statement Assigns values to variables and array elements “SET assignment-statement”
on page 1875

SET PATH Assigns a value to the CURRENT PATH special
register

“SET PATH” on page 1921

SET SCHEMA Assigns a value to the CURRENT SCHEMA special
register

“SET SCHEMA” on page 1924

SIGNAL Signals an error or warning condition and optionally
returns the specified message text

“SIGNAL statement” on page
2006

TRUNCATE Deletes all rows from a table “TRUNCATE” on page 1929

UPDATE Updates the values of one or more columns in one or
more rows of a table

“UPDATE” on page 1933

VALUES Provides a way to invoke a user-defined function from
a trigger

“VALUES” on page 1955

VALUES INTO Assigns values to host variables “VALUES INTO” on page
1956

WHENEVER Defines actions to be taken on the basis of SQL return
codes

“WHENEVER” on page 1961

How SQL statements are invoked
SQL statements are invoked in different ways depending on whether the statement
is an executable or nonexecutable statement or the select-statement.

838 SQL Reference

The SQL statements are classified as executable or nonexecutable. The description of
each statement includes a heading on invocation that indicates whether or not the
statement is executable.

Executable statements can be invoked in the following ways:
v Embedded in an application program
v Dynamically prepared and executed
v Dynamically prepared and executed using DB2 ODBC function calls
v Issued interactively

Depending on the statement, you can use some or all of these methods. The
section on invocation in the description of each statement tells you which methods
can be used.

A nonexecutable statement can only be embedded in an application program.

The select-statement is an additional SQL statement construct. (See
“select-statement” on page 819.) It is used in a different way from other statements.

A select-statement can be invoked in the following ways:
v Included in DECLARE CURSOR and implicitly executed by OPEN
v Dynamically prepared, referred to in DECLARE CURSOR, and implicitly

executed by OPEN
v Dynamically executed (no PREPARE required) using a DB2 ODBC function call
v Issued interactively

The first two methods are called, respectively, the static and the dynamic invocation
of select-statement.

Embedding a statement in an application program
You can include SQL statements in a source program that will be submitted to the
DB2 precompiler or coprocessor. Such statements are said to be embedded in the
application program. An embedded statement can be placed anywhere in the
application program where a host language statement is allowed. Each embedded
statement must be preceded by a keyword (or keywords) to indicate that the
statement is an SQL statement.
v In C and COBOL, each embedded statement must be preceded by the keywords

EXEC SQL.
v In Java, each embedded statement must be preceded by the keywords #sql.
v In REXX, each embedded statement must be preceded by the keyword

EXECSQL.

Executable statements: An executable statement embedded in an application
program is executed every time a statement of the host language would be
executed if specified in the same place. (Thus, for example, a statement within a
loop is executed every time the loop is executed, and a statement within a
conditional construct is executed only when the condition is satisfied.)

An embedded statement can contain references to host variables. A host variable
referred to in this way can be used in one of two ways:

Chapter 5. Statements 839

As input
The current value of the host variable is used in the execution of the
statement.

As output
The variable is assigned a new value as a result of executing the statement.

In particular, all references to host variables in expressions and predicates are
effectively replaced by current values of the variables; that is, the variables are
used as input. The treatment of other references is described individually for each
statement.

The successful or unsuccessful execution of the statement is indicated by setting
the SQLCODE and SQLSTATE fields in the SQLCA.23 You must therefore follow all
executable statements by a test of SQLCODE or SQLSTATE. Alternatively, you can
use the WHENEVER statement (which is itself nonexecutable) to change the flow
of control immediately after the execution of an embedded statement.

Nonexecutable statements: An embedded nonexecutable statement is processed
only by the precompiler or coprocessor. The precompiler or coprocessor reports
any errors encountered in the statement. The statement is never executed, and acts
as a no-operation if placed among executable statements of the application
program. Therefore, do not follow such statements with a test of an SQL return
code.

Dynamic preparation and execution
Your application program can dynamically build an SQL statement in the form of a
character string placed in a host variable. In general, the statement is built from
some data available to the application program (for example, input from a
workstation).

In non-Java languages, the statement so constructed can be prepared for execution
by means of the (embedded) statement PREPARE and executed by means of the
(embedded) statement EXECUTE, as described in DB2 Application Programming and
SQL Guide. Alternatively, you can use the (embedded) statement EXECUTE
IMMEDIATE to prepare and execute a statement in one step. In Java, the statement
can be prepared for execution by means of the Statement, PreparedStatement, and
CallableStatement classes, and executed by means of their respective execute()
methods.

The statement can also be prepared by calling the DB2 ODBC SQLPrepare function
and then executed by calling the DB2 ODBC SQLExecute function. In both cases,
the application does not contain an embedded PREPARE or EXECUTE statement.
You can execute the statement, without preparation, by passing the statement to
the DB2 ODBC SQLExecDirect function. DB2 ODBC Guide and Reference describes
the APIs supported with this interface.

A statement that is going to be prepared must not contain references to host
variables. It can instead contain parameter markers. (See Parameter markers in the
description of the PREPARE statement for rules concerning parameter markers.)
When the prepared statement is executed, the parameter markers are effectively
replaced by current values of the host variables specified in the EXECUTE
statement. (See the EXECUTE statement for rules concerning this replacement.)

23. SQLCODE and SQLSTATE cannot be in the SQLCA when the SQL processing option STDSQL(YES) is in effect. See “SQL
standard language” on page 332.

840 SQL Reference

After it is prepared, a statement can be executed several times with different values
of host variables. Parameter markers are not allowed in the SQL statement
prepared and executed using EXECUTE IMMEDIATE.

In non-Java languages, the successful or unsuccessful execution of the statement is
indicated by the values returned in the SQLCODE and SQLSTATE fields in the
SQLCA after the EXECUTE (or EXECUTE IMMEDIATE) statement. You should
check the fields as described above for embedded statements. In Java, the
successful or unsuccessful execution of the statement is handled by Java
Exceptions.

As explained in “Authorization IDs and dynamic SQL” on page 75, the
DYNAMICRULES behavior in effect determines the privilege set that is used for
authorization checking when dynamic SQL statements are processed. The
following table summarizes those privilege sets. (See Table 6 on page 75 for a list
of the DYNAMICRULES bind option values that determine which behavior is in
effect).

Table 94. DYNAMICRULES behaviors and authorization checking

DYNAMICRULES
behavior

Privilege set

Run behavior The union of the set of privileges held by each authorization ID of
the process if the dynamically prepared statement is other than an
ALTER, CREATE, DROP, GRANT, RENAME, or REVOKE
statement.

The privileges that are held by the SQL authorization ID of the
process or the role of the primary authorization ID (if the process is
running in a trusted context that is defined with the ROLE AS
OBJECT OWNER clause), if the dynamic SQL statement is a
CREATE, GRANT, or REVOKE statement.

Bind behavior The privileges that are held by the primary authorization ID of the
owner of the package or plan.

Define behavior The privileges that are held by the authorization ID of the stored
procedure or user-defined function owner (definer).

Invoke behavior The privileges that are held by the authorization ID of the stored
procedure or user-defined function invoker. However, if the invoker
is the primary authorization ID of the process or the CURRENT
SQLID value, secondary authorization IDs are also checked if they
are needed for the required authorization. Therefore, in that case,
the privilege set is the union of the set of privileges that are held by
each authorization ID or role (if running in a trusted context).

Static invocation of a SELECT statement
A SELECT statement can be invoked statically in different ways.

You can include a SELECT statement as a part of the (nonexecutable) statement
DECLARE CURSOR. Such a statement is executed every time you open the cursor
by means of the (embedded) statement OPEN. After the cursor is open, you can
retrieve the result table a row at a time by successive executions of the (embedded)
SQL FETCH statement.

Chapter 5. Statements 841

If the application is using DB2 ODBC, the SELECT statement is first prepared with
the SQLPrepare function call. It is then executed with the SQLExecute function call.
Data is then fetched with the SQLFetch function call. The application does not
explicitly open the cursor.

The SELECT statement used in this way can contain references to host variables.
These references are effectively replaced by the values that the variables have at
the moment of executing OPEN.

The successful or unsuccessful execution of the SELECT statement is indicated by
the values returned in the SQLCODE and SQLSTATE fields in the SQLCA after the
OPEN. You should check the fields as described above for embedded statements.

If the application is using DB2 ODBC, the successful execution of the SELECT
statement is indicated by the return code from the SQLExecute function call. If
necessary, the application can retrieve the SQLCA by calling the SQLGetSQLCA
function.

Dynamic invocation of a SELECT statement
Your application program can dynamically build a SELECT statement in the form
of a character string placed in a host variable. In general, the statement is built
from some data available to the application program (for example, a query
obtained from a terminal).

The statement so constructed can be prepared for execution by means of the
(embedded) statement PREPARE, and referred to by a (nonexecutable) statement
DECLARE CURSOR. The statement is then executed every time you open the
cursor by means of the (embedded) statement OPEN. After the cursor is open, you
can retrieve the result table a row at a time by successive executions of the
(embedded) SQL FETCH statement.

The SELECT statement used in that way must not contain references to host
variables. It can instead contain parameter markers. (See “Notes” in “PREPARE”
on page 1781 for rules concerning parameter markers.) The parameter markers are
effectively replaced by the values of the host variables specified in the OPEN
statement. (See “OPEN” on page 1775 for rules concerning this replacement.)

The successful or unsuccessful execution of the SELECT statement is indicated by
the values returned in the SQLCODE and SQLSTATE fields in the SQLCA after the
OPEN. You should check the fields as described above for embedded statements.

Interactive invocation
An SQL statement submitted to DB2 from a terminal is said to be issued
interactively.

IBM relational database management systems allow you to enter SQL statements
from a terminal. DB2 for z/OS provides SPUFI to prepare and execute SQL
statements. Other products are also available. A statement entered in this way is
said to be issued interactively.

A statement issued interactively must not contain parameter markers or references
to host variables, because these make sense only in the context of an application
program. For the same reason, there is no SQLCA involved.

842 SQL Reference

SQL diagnostics information
DB2 uses a diagnostics area to store status information and diagnostics information
about the execution of an executable SQL statement.

When an SQL statement other than GET DIAGNOSTICS or compound-statement is
processed, the current diagnostics area is cleared before processing the SQL
statement. As each SQL statement is processed, information about the execution of
that SQL statement is recorded in the current diagnostics area as one or more
completion conditions or exception conditions.

A completion condition indicates that the SQL statement completed successfully,
completed with a warning condition, or completed with a not found condition. An
exception condition indicates that the statement was not successful. The GET
DIAGNOSTICS statement can be executed in most languages to return conditions
and other information about the previously executed SQL statement from the
diagnostics area. Additionally, the condition information is provided through
language specific mechanisms for SQL procedures, and host language applications.
Related concepts:
“Detecting and processing error and warning conditions in host language
applications”
Related reference:
“GET DIAGNOSTICS” on page 1679
“SQL-procedure-statement” on page 1968

Detecting and processing error and warning conditions in
host language applications

Errors and warnings conditions in host language applications can be checked by
using the SQLCODE or SQLSTATE host variables or by using the SQLCA.

Each host language provides a mechanism for handling diagnostic information.
v In Assembler, C, COBOL, Fortran, and PL/I, an application program that

contains executable SQL statements must provide at least one of the following:
– A structure named SQLCA, which can be provided by using the INCLUDE

SQLCA statement
– A stand-alone CHAR(5) (CHAR(6) in C) variable named SQLSTATE (SQLSTT

in Fortran)
– A stand-alone integer variable named SQLCODE (SQLCOD in Fortran)

v In Java, for error conditions, the getSQLState method of the JDBC SQLException
class can be used to get the SQLSTATE and the getErrorCode method can be
used to get the SQLCODE.

v In REXX, an SQLCA is provided automatically.

Whether you define stand-alone SQLCODE and SQLSTATE host variables or an
SQLCA in your program depends on the DB2 precompiler option you choose.

If the application is using DB2 ODBC and it calls the SQLGetSQLCA function, it
need only include an SQLCA. Otherwise, all notification of success or errors is
specified with return codes for the various function calls.

When you specify STDSQL(YES), which indicates conformance to the SQL
standard, you should not define an SQLCA. The stand-alone variable for
SQLCODE must be a valid host variable in the DECLARE SECTION of a program.

Chapter 5. Statements 843

It can also be declared outside of the DECLARE SECTION when no variable is
defined for SQLSTATE. The stand-alone variable for SQLSTATE must be declared
in the DECLARE SECTION. It must not be declared as an element of a structure.

Use a stand-alone SQLSTATE to conform with the SQL 2003 Core standard. When
you specify STDSQL(NO), which indicates conformance to DB2 rules, you must
include an SQLCA explicitly to have access to the SQLSTATE and SQLCODE
information.

SQLSTATE
DB2 sets SQLSTATE after each SQL statement (other than GET DIAGNOSTICS or a
compound statement) is executed. DB2 returns values that conform to the error
specification in the SQL standard. Thus, application programs can check the
execution of SQL statements by testing SQLSTATE instead of SQLCODE.

SQLSTATE provides application programs with common codes for common error
conditions (the values of SQLSTATE are product-specific if the error or warning is
product-specific). Furthermore, SQLSTATE is designed so that application
programs can test for specific errors or classes of errors. The coding scheme is the
same for all IBM implementations of SQL. The SQLSTATE values are based on the
SQLSTATE specifications contained in the SQL standard. Error messages and the
tokens that are substituted for variables in error messages are associated with
SQLCODE values, not SQLSTATE values.

In the case of a LOOP statement, the SQLSTATE is set after the END LOOP
portion of the LOOP statement completes. With the REPEAT statement, the
SQLSTATE is set after the UNTIL and END REPEAT portions of the REPEAT
statement completes.

If the application is using DB2 ODBC, the SQLSTATE returned conforms to the
ODBC Version 2.0 specification.

SQLCODE
The SQLCODE is also set by DB2 after each SQL statement is executed as follows:

DB2 conforms to the SQL standard as follows:
v If SQLCODE = 0 and SQLWARN0 is blank, execution was successful.
v If SQLCODE = 100, "no data" was found. For example, a FETCH statement

returned no data because the cursor was positioned after the last row of the
result table.

v If SQLCODE > 0 and not = 100, execution was successful with a warning.
v If SQLCODE = 0 and SQLWARN0 = 'W', execution was successful with a

warning.
v If SQLCODE < 0, execution was not successful.

In the case of a LOOP statement, the SQLSTATE is set after the END LOOP
portion of the LOOP statement completes. With the REPEAT statement, the
SQLSTATE is set after the UNTIL and END REPEAT portions of the REPEAT
statement completes.

The SQL standard does not define the meaning of any other specific positive or
negative values of SQLCODE, and the meaning of these values is not the same in
all implementations of SQL.

844 SQL Reference

If the application is using DB2 ODBC, an SQLCODE is only returned if the
application issues the SQLGetSQLCA function.

Chapter 5. Statements 845

SQL comments
Static SQL statements can include host language or SQL comments. Dynamic SQL
statements can include SQL comments. There are two types of SQL comments,
simple comments and bracketed comments.

simple comments
Simple comments are introduced with two consecutive hyphens (--) and
end with the end of a line. The following rules apply to the use of simple
comments:
v The two hyphens must be on the same line and must not be separated

by a space.
v Simple comments can be started whenever a space is valid (except

within a delimiter token or between 'EXEC' and 'SQL').
v Simple comments cannot be continued to the next line.
v In COBOL, the hyphen must be preceded by a space.

bracketed comments
Bracketed comments are introduced with /* and end with */. The
following rules apply to the use of bracketed comments:
v The /* must be on the same line and not separated by a space.
v The */ must be one the same line and not separated by a space.
v Bracketed comments can be started wherever a space is valid (except

within a delimiter token or between 'EXEC' and 'SQL').
v Bracketed comments can be continued to the next line.
v Bracketed comments can be nested within other bracketed comments.

However, nested bracketed comments are not supported by DSNTEP2,
DSNTEP4, SPUFI, or the command line processor.

v Bracketed comments are not allowed in static SQL statements in a
COBOL, Fortran, or Assembler program.

Example: This example shows how to include comments in an SQL statement
within a C program. The example uses both simple and bracketed comments:

EXEC SQL
CREATE VIEW PRJ_MAXPER --projects with most support personnel

/*
* Returns number and name of the project
*/

AS SELECT PROJNO, PROJNAME -- number and name of project
FROM DSN8910.PROJ

/*
* E21 is the systems support dept code
*/

WHERE DEPTNO = ’E21’ -- systems support dept code
AND PRSTAFF > 1;

For information about host language comments, refer to DB2 Application
Programming and SQL Guide.

846 SQL Reference

ALLOCATE CURSOR
The ALLOCATE CURSOR statement defines a cursor and associates it with a result
set locator variable.

Invocation

This statement can be embedded in an application program. It is an executable
statement that can be dynamically prepared. It cannot be issued interactively.

Authorization

None required.

Syntax

�� ALLOCATE cursor-name CURSOR FOR RESULT SET rs-locator-variable ��

Description

cursor-name
Names the cursor. The name must not identify a cursor that has already been
declared in the source program.

CURSOR FOR RESULT SET rs-locator-variable
Specifies a result set locator variable that has been declared in the application
program according to the rules for declaring result set locator variables.

The result set locator variable must contain a valid result set locator value, as
returned by the ASSOCIATE LOCATORS or DESCRIBE PROCEDURE SQL
statement. The value of the result set locator variable is used at the time the
cursor is allocated. Subsequent changes to the value of the result set locator
have no affect on the allocated cursor. The result set locator value must not be
the same as a value used for another cursor allocated in the source program.

Notes

Dynamically prepared ALLOCATE CURSOR statements: The EXECUTE statement
with the USING clause must be used to execute a dynamically prepared
ALLOCATE CURSOR statement. In a dynamically prepared statement, references
to host variables are represented by parameter markers (question marks). In the
ALLOCATE CURSOR statement, rs-locator-variable is always a host variable. Thus,
for a dynamically prepared ALLOCATE CURSOR statement, the USING clause of
the EXECUTE statement must identify the host variable whose value is to be
substituted for the parameter marker that represents rs-locator-variable.

You cannot prepare an ALLOCATE CURSOR statement with a statement identifier
that has already been used in a DECLARE CURSOR statement. For example, the
following SQL statements are invalid because the PREPARE statement uses STMT1
as an identifier for the ALLOCATE CURSOR statement and STMT1 has already
been used for a DECLARE CURSOR statement.

DECLARE CURSOR C1 FOR STMT1;
PREPARE STMT1 FROM INVALID

’ALLOCATE C2 CURSOR FOR RESULT SET ?’;

Chapter 5. Statements 847

Rules for using an allocated cursor: The following rules apply when you use an
allocated cursor:
v You cannot open an allocated cursor with the OPEN statement.
v You can close an allocated cursor with the CLOSE statement. Closing an

allocated cursor closes the associated cursor defined in the stored procedure.
v You can allocate only one cursor to each result set.

The life of an allocated cursor: A rollback operation, an implicit close, or an
explicit close destroy allocated cursors. A commit operation destroys allocated
cursors that are not defined WITH HOLD by the stored procedure. Destroying an
allocated cursor closes the associated cursor defined in the stored procedure.

Considerations for scrollable cursors: Following an ALLOCATE CURSOR
statement, a GET DIAGNOSTICS statement can be used to get the attributes of the
cursor such as the following information (for more information, see “GET
DIAGNOSTICS” on page 1679):
v DB2_SQL_ATTR_CURSOR_HOLD. Whether the cursor was defined with the

WITH HOLD attribute.
v DB2_SQL_ATTR_CURSOR_SCROLLABLE. Scrollability of the cursor.
v DB2_SQL_ATTR_CURSOR_SENSITIVITY. Effective sensitivity of the cursor.

The sensitivity information can be used by applications (such as an ODBC
driver) to determine what type of FETCH (INSENSITIVE or SENSITIVE) to issue
for a cursor defined as ASENSITIVE.

v DB2_SQL_ATTR_CURSOR_ROWSET. Whether the cursor can be used to access
rowsets.

v DB2_SQL_ATTR_CURSOR_TYPE. Whether a cursor type is forward-only, static,
or dynamic.

v The scrollability of the cursor is in SQLWARN1.
v The sensitivity of the cursor is in SQLWARN4.
v The effective capability of the cursor is in SQLWARN5.

Example

The statement in the following example is assumed to be in a PL/I program.

Define and associate cursor C1 with the result set locator variable LOC1 and the
related result set returned by the stored procedure:

EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :LOC1;

848 SQL Reference

ALTER DATABASE
The ALTER DATABASE statement changes the description of a database at the
current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v The DROP privilege on the database
v Ownership of the database
v DBADM or DBCTRL authority for the database
v SYSADM or SYSCTRL authority
v System DBADM

If the database is implicitly created, the privileges must be on the implicit database
or on DSNDB04.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets that are held by each authorization ID and role of the process.

Syntax

�� ALTER DATABASE database-name �
(1)

BUFFERPOOL bpname
INDEXBP bpname
STOGROUP stogroup-name
CCSID ccsid-value

��

Notes:

1 The same clause must not be specified more than one time.

Description

DATABASE database-name
Identifies the database that is to be altered. The name must identify a database
that exists at the current server and must not identify an implicitly created
system database.

BUFFERPOOL bpname
Identifies the default buffer pool for the table spaces within the database. It
does not apply to table spaces that already exist within the database.

If the database is a work file database, 8 KB and 16 KB buffer pools cannot be
specified.

Chapter 5. Statements 849

See “Naming conventions” on page 57 for more details about bpname.

INDEXBP bpname
Identifies the default buffer pool for the indexes within the database. It does
not apply to indexes that already exist within the database. The name can
identify a 4 KB, 8 KB, 16 KB, or 32 KB buffer pool. See “Naming conventions”
on page 57 for more details about bpname.

STOGROUP stogroup-name
Identifies the storage group to be used, as required, as a default storage group
to support DASD space requirements for table spaces and indexes within the
database. It does not apply to table spaces and indexes that already exist
within the database.

CCSID ccsid-value
Identifies the default CCSID for table spaces within the database. It does not
apply to existing table spaces in the database. ccsid-value must identify a
CCSID value that is compatible with the current value of the CCSID for the
database. “Notes” contains a list that shows the CCSID to which a given
CCSID can be altered.

CCSID cannot be specified for a work file database.

Notes

Altering the CCSID: The ability to alter the default CCSID enables you to change
to a CCSID that supports the Euro symbol. You can only convert between specific
CCSIDs that do and do not define the Euro symbol. In most cases, the code point
that supports the Euro symbol replaces an existing code point, such as the
International Currency Symbol (ICS).

Changing a CCSID can be disruptive to the system and requires several steps. For
each encoding scheme of a system (ASCII, EBCDIC, and Unicode), DB2 supports
SBCS, DBCS, and mixed CCSIDs. Therefore, the CCSIDs for all databases and all
table spaces within an encoding scheme should be altered at the same time.
Otherwise, unpredictable results might occur.

The recommended method for changing the CCSID requires that the data be
unloaded and reloaded. See DB2 Installation Guide for the steps needed to change
the CCSID, such as running an installation CLIST to modify the CCSID data in
DSNHDECP, when to drop and re-create views, and when to rebind invalidated
packages.

The following lists show the CCSIDs that can be converted. The second CCSID in
each pair is the CCSID with the Euro symbol. The CCSID can be changed from the
CCSID that does not support the Euro symbol to the CCSID that does, and vice
versa. For example, if the current CCSID is 500, it can be changed to 1148.
EBCDIC CCSIDs

37 1140
273 1141
277 1142
278 1143
280 1144
284 1145
285 1146
297 1147
500 1148
871 1149

850 SQL Reference

ASCII CCSIDs

850 858
874 4970
1250 5346
1251 5347
1252 5348
1253 5349
1254 5350
1255 5351
1256 5352
1257 5353

Example

Change the default buffer pool for both table spaces and indexes within database
ABCDE to BP2.

ALTER DATABASE ABCDE
BUFFERPOOL BP2
INDEXBP BP2;

Chapter 5. Statements 851

ALTER FUNCTION (external)
The ALTER FUNCTION statement changes the description of a user-defined
external scalar function or external table function at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set defined below must include at least one of the following:
v Ownership of the function
v The ALTERIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

If the authorization ID that is used to alter the function has installation SYSADM
authority, the function is identified as system-defined function when the function
definition is reevaluated.

At least one of the following privileges is required if the SECURED option is
specified or if the function is currently secured and the NOT SECURED option is
specified:
v SECADM authority
v CREATE_SECURE_OBJECT privilege

For external scalar functions, when LANGUAGE is JAVA and a jar-name is specified
in the EXTERNAL NAME clause, the privilege set must include USAGE on the
JAR file.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package.

If the statement is dynamically prepared, the privilege set is the set of privileges
that are held by the SQL authorization IDs of the process. The specified routine
name can include a schema name (a qualifier). However, if the schema name is not
the same as one of these SQL authorization IDs, one of the following conditions
must be met:
v The privilege set includes SYSADM authority
v The privilege set includes SYSCTRL authority
v The SQL authorization ID of the process has the ALTERIN privilege on the

schema

If the environment in which the function is to be run is being changed, the
authorization ID must have authority to use the WLM environment specified. The
required authorization is obtained from an external security product, such as
RACF.

852 SQL Reference

Syntax

�� ALTER

�

FUNCTION function-name
,

()
parameter-type

SPECIFIC FUNCTION specific-name

option-list ��

�� data-type
(1)

AS LOCATOR

��

Notes:

1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

�� built-in-type
distinct-type-name

��

parameter-type:

data-type:

built-in-type:

Chapter 5. Statements 853

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID

��

option-list: (Specify options in any order. Specify at least one option. Do not specify the same option more than
once.)

854 SQL Reference

��
(1)

EXTERNAL NAME external-program-name
identifier

LANGUAGE ASSEMBLE
C
COBOL

(2) (3)
JAVA
PLI

�

� PARAMETER STYLE SQL
(2) (3)

JAVA

NOT DETERMINISTIC
DETERMINISTIC

RETURNS NULL ON NULL INPUT
CALLED ON NULL INPUT

�

�
(3)

MODIFIES SQL DATA
READS SQL DATA
CONTAINS SQL
NO SQL

NO EXTERNAL ACTION
EXTERNAL ACTION

PACKAGE PATH package-path
NO PACKAGE PATH

�

� NO SCRATCHPAD
SCRATCHPAD length

NO FINAL CALL
FINAL CALL

(3)
ALLOW PARALLEL
DISALLOW PARALLEL

NO DBINFO
DBINFO

�

�
(4)

CARDINALITY integer NO COLLID
COLLID collection-id

WLM ENVIRONMENT name
(name , *)

�

� ASUTIME NO LIMIT
LIMIT integer

STAY RESIDENT NO
YES

PROGRAM TYPE SUB
MAIN

�

� SECURITY DB2
USER
DEFINER

STOP AFTER SYSTEM DEFAULT FAILURES
STOP AFTER integer FAILURES
CONTINUE AFTER FAILURE

RUN OPTIONS run-time-options �

� INHERIT SPECIAL REGISTERS
DEFAULT SPECIAL REGISTERS

STATIC DISPATCH SECURED
NOT SECURED

��

Notes:

1 If LANGUAGE is JAVA, EXTERNAL NAME must be specified with a valid
external-java-routine-name.

2 When LANGUAGE JAVA is specified, PARAMETER STYLE JAVA must also be specified. When
PARAMETER STYLE JAVA is specified, LANGUAGE JAVA must also be specified.

3 LANGUAGE JAVA, PARAMETER STYLE JAVA, MODIFIES SQL DATA, and ALLOW
PARALLEL are not supported for external table functions.

4 CARDINALITY is not supported for external scalar functions.

Chapter 5. Statements 855

external-java-routine-name:

jar-name:
method-name

method-signature

jar-name:

schema-name.
jar-id

method-name:

�

package-id .
(1)

/

.
(2)

!

method-id

method-signature:

�

()
,

java-datatype

Notes:

1 The slash (/) is supported for compatibility with previous releases of DB2 for z/OS.

2 The exclamation point (!) is supported for compatibility with other products in the DB2 family.

Description

One of the following three clauses identifies the function to be changed.

FUNCTION function-name
Identifies the external function by its function name. function-name must
identify a function that exists at the current server. The function must be a
user-defined external function, and there must be exactly one function with
function-name in the schema.

The function can have any number of input parameters. If the schema does not
contain a function with function-name or contains more than one function with
this name, an error occurs.

FUNCTION function-name (parameter-type,...)
Identifies the external function by its function signature, which uniquely
identifies the function.

function-name
Identifies the function by its name.

856 SQL Reference

If function-name() is specified, the function that is identified must have zero
parameters.

(parameter-type,...)
Identifies the number of input parameters of the function and their data
types.

The data type of each parameter must match the data type that was
specified in the CREATE FUNCTION statement for the parameter in the
corresponding position. The number of data types and the logical
concatenation of the data types are used to uniquely identify the function.
Therefore, you cannot change the number of parameters or the data types
of the parameters.

For data types that have a length, precision, or scale attribute, you can use
a set of empty parentheses, specify a value, or accept the default values:

If the function was defined with a table parameter (the LIKE TABLE name
AS LOCATOR clause was specified in the CREATE FUNCTION statement
to indicate that one of the input parameters is a transition table), the
function signature cannot be used to uniquely identify the function.
Instead, use one of the other syntax variations to identify the function with
its function name, if unique, or its specific name.
v Empty parentheses indicate that DB2 is to ignore the attribute when

determining whether the data types match.
For example, DEC() will be considered a match for a parameter of a
function defined with a data type of DEC(7,2). Similarly DECFLOAT()
will be considered a match for DECFLOAT(16) or DECFLOAT(34).
FLOAT cannot be specified with empty parentheses because its
parameter value indicates different data types (REAL or DOUBLE).

v If you use a specific value for a length, precision, or scale attribute, the
value must exactly match the value that was specified (implicitly or
explicitly) in the CREATE FUNCTION statement.
The specific value for FLOAT(n) does not have to exactly match the
defined value of the source function because 1<=n<=21 indicates REAL
and 22<=n<=53 indicates DOUBLE. Matching is based on whether the
data type is REAL or DOUBLE.

v If length, precision, or scale is not explicitly specified and empty
parentheses are not specified, the default length of the data type is
implied. The implicit length must exactly match the value that was
specified (implicitly or explicitly) in the CREATE FUNCTION statement.

For data types with a subtype or encoding scheme attribute, specifying the
FOR subtype DATA clause or the CCSID clause is optional. Omission of
either clause indicates that DB2 is to ignore the attribute when determining
whether the data types match. If you specify either clause, it must match
the value that was implicitly or explicitly specified in the CREATE
FUNCTION statement.

See “CREATE FUNCTION” on page 1165 for more information on the
specification of the parameter list.

A function with the function signature must exist in the explicitly or implicitly
specified schema.

SPECIFIC FUNCTION specific-name
Identifies the external function by its specific name. A function with the
specific name must exist in the schema.

Chapter 5. Statements 857

The following clauses change the description of the function that has been
identified to be changed.

EXTERNAL NAME external-program-name or identifier
Identifies the user-written code (program) that runs when the function is
invoked.

If LANGUAGE is JAVA, external-program-name must be specified and enclosed
in single quotation marks, with no extraneous blanks within the single
quotation marks. It must specify a valid external-java-routine-name. If multiple
external-program-name values are specified, the total length of all of them must
not be greater than 1305 bytes and they must be separated by a space or a line
break. Do not specify a JAR file for a Java function for which NO SQL is in
effect.

An external-java-routine-name contains the following parts:

jar-name
Identifies the name given to the JAR file when it was installed in the
database. The name contains jar-id, which can optionally be qualified with
a schema. Examples are "myJar" and "mySchema.myJar." The unqualified
jar-id is implicitly qualified with a schema name according to the following
rules:
v If the statement is embedded in a program, the schema name is the

authorization ID in the QUALIFIER option of the BIND subcommand for
a package or plan when the package or plan was created or last
changed. The schema name can also be the authorization ID in the
QUALIFIER option of the CREATE PROCEDURE or ALTER
PROCEDURE statement for a native SQL procedure when the procedure
was created or last changed. If the QUALIFIER is not specified, the
schema name is the owner of the package, plan, or native SQL
procedure.

v If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SCHEMA special register.

If jar-name is specified, it must exist when the ALTER FUNCTION
statement is processed.

If jar-name is not specified, the function is loaded from the class file
directly. DB2 searches the directories in the CLASSPATH associated with
the WLM Environment. Environmental variables for Java routines are
specified in a data set identified in a JAVAENV DD card on the JCL used
to start the address space for a WLM-managed function.

method-name
Identifies the name of the method and must not be longer than 254 bytes.
Its package, class, and method IDs are specific to Java and as such are not
limited to 18 bytes. In addition, the rules for what method IDs can contain
are not necessarily the same as the rules for an SQL ordinary identifier.

package-id
Identifies a package. The concatenated list of package-ids identifies the
package that the class identifier is part of. If the class is part of a
package, the method name must include the complete package prefix,
such as "myPacks.UserFuncs." The Java virtual machine looks in the
directory "/myPacks/UserFuncs/" for the classes.

class-id
Identifies the class identifier of the Java object.

858 SQL Reference

method-id
Identifies the method identifier with the Java class to be invoked.

method-signature
Identifies a list of zero or more Java data types for the parameter list and
must not be longer than 1024 bytes. Specify the method-signature if the
user-defined function involves any input or output parameters that can be
NULL. When the function that is being created is called, DB2 searches for
a Java method with the exact method-signature. The number of java-datatype
elements that are specified indicates how many parameters that the Java
method must have.

A Java procedure can have no parameters. In this case, you code an empty
set of parentheses for method-signature. If a Java method-signature is not
specified, DB2 searches for a Java method with a signature derived from
the default JDBC types associated with the SQL types specified in the
parameter list of the ALTER FUNCTION statement.

For other values of LANGUAGE, the value must conform to the naming
conventions for load modules: the value must be less than or equal to 8 bytes,
and it must conform to the rules for an ordinary identifier with the exception
that it must not contain an underscore.

LANGUAGE
Specifies the application programming language in which the function is
written. All programs must be designed to run in IBM's Language
Environment environment.

ASSEMBLE
The function is written in Assembler.

C The function is written in C or C++.

COBOL
The function is written in COBOL, including the object-oriented language
extensions.

JAVA
The user-defined function is written in Java and is executed in the Java
virtual machine. If the ALTER FUNCTION statement results in changing
LANGUAGE to JAVA, PARAMETER STYLE JAVA and an EXTERNAL
NAME clause must be specified to provide the appropriate values. When
LANGUAGE JAVA is specified, the EXTERNAL NAME clause must also
be specified with a valid external-java-routine-name and PARAMETER
STYLE must be specified with JAVA.

Do not specify LANGUAGE JAVA when SCRATCHPAD, FINAL CALL,
DBINFO, PROGRAM TYPE MAIN, or RUN OPTIONS is specified. Do
not specify LANGUAGE JAVA for a table function.

PLI
The function is written in PL/I.

PARAMETER STYLE
Specifies the linkage convention that the function program uses to receive
input parameters from and pass return values to the invoking SQL statement.

SQL
Specifies the parameter passing convention that supports passing null
values both as input and for output. The parameters that are passed
between the invoking SQL statement and the function include:

Chapter 5. Statements 859

v Input parameters. The first n parameters are the input parameters that
are specified for the function.

v Result parameters. For an external scalar function, a parameter for the
result of the function. For an external table function, the next m
parameters that are specified on the RETURNS TABLE clause of the
CREATE statement that defined the function.

v Input parameter indicator variables. n parameters for the indicator
variables for the input parameters.

v Result parameter indicator variables. For an external scalar function, a
parameter for the indicator variable for the result of the function that is
specified on the RETURNS clause of the CREATE statement that defined
the function. For an external table function, m parameters for the
indicator variables of the result columns of the function that are
specified on the RETURNS TABLE clause of the CREATE statement that
defined the function.

v The SQLSTATE to be returned to DB2.
v The qualified name of the function.
v The specific name of the function.
v The SQL diagnostic string to be returned to DB2.
v The scratchpad, if SCRATCHPAD is specified.
v The call type. For an external scalar function, the call type is passed only

if FINAL CALL is specified. The call type is always passed for an
external table function.

v The DBINFO structure, if DBINFO is specified.

JAVA
Indicates that the user-defined function uses a convention for passing
parameters that conforms to the Java and SQLJ specifications. If the ALTER
FUNCTION statement results in changing LANGUAGE to JAVA,
PARAMETER STYLE JAVA and an EXTERNAL NAME clause must be
specified to provide the appropriate values. PARAMETER STYLE JAVA
can be specified only if LANGUAGE is JAVA. JAVA must be specified for
PARAMETER STYLE when LANGUAGE is JAVA.

Do not specify PARAMETER STYLE JAVA for a table function.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the
function is invoked with the same input arguments.

NOT DETERMINISTIC
The function might not return the same result each time that the function
is invoked with the same input arguments. The function depends on some
state values that affect the results. DB2 uses this information to disable the
merging of views and table expressions when processing SELECT or SQL
data change statements that refer to this function. An example of a
function that is not deterministic is one that generates random numbers, or
any function that contains SQL statements.

Some SQL functions that invoke functions that are not deterministic can
receive incorrect results if the function is executed by parallel tasks. Specify
the DISALLOW PARALLEL clause for these functions.

860 SQL Reference

If a view or a materialized query table definition refers to the function, the
function cannot be changed to NOT DETERMINISTIC. To change the
function, drop any views or materialized query tables that refer to the
function first.

DETERMINISTIC
The function always returns the same result each time that the function is
invoked with the same input arguments. An example of a deterministic
function is a function that calculates the square root of the input. DB2 uses
this information to enable the merging of views and table expressions for
SELECT or SQL data change statements that refer to this function. If
applicable, specify DETERMINISTIC to prevent non-optimal access paths
from being chosen for SQL statements that refer to this function.

DB2 does not verify that the function program is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null at
execution time.

RETURNS NULL ON NULL INPUT
The function is not called if any of the input arguments is null. For an
external scalar function, the result is the null value. For an external table
function, the result is an empty table, which is a table with no rows.

CALLED ON NULL INPUT
The function is called regardless of whether any of the input arguments are
null, making the function responsible for testing for null argument values.
For an external scalar function, the function can return a null or nonnull
value. For an external table function, the function can return an empty
table, depending on its logic.

MODIFIES SQL DATA, READS SQL DATA, CONTAINS SQL, or NO SQL
Specifies which SQL statements, if any, can be executed in the function or any
routine that is called from this function.

MODIFIES SQL DATA
Specifies that the function can execute any SQL statement except the
statements that are not supported in functions. Do not specify MODIFIES
SQL DATA when ALLOW PARALLEL is in effect.

READS SQL DATA
Specifies that the function can execute statements with a data access
indication of READS SQL DATA, CONTAINS SQL, or NO SQL. The
function cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data
classification of CONTAINS SQL or NO SQL. SQL statements that neither
read nor modify SQL data can be executed by the function. Statements that
are not supported in any function return a different error.

NO SQL
Specifies that the function can execute only SQL statements with a data
access classification of NO SQL. Do not specify NO SQL for a Java
function that uses a JAR file.

Chapter 5. Statements 861

NO EXTERNAL ACTION or EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that DB2 does not manage. An example of an external action is sending
a message or writing a record to a file.

Because DB2 uses the RRS attachment for external functions, DB2 can
participate in two-phase commit with any other resource manager that uses
RRS. For resource managers that do not use RRS, there is no coordination of
commit or rollback operations on non-DB2 resources.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object
that DB2 does not manage. DB2 uses this information to enable the
merging of views and table expressions for SELECT or SQL data change
statements that refer to this function. If applicable, specify NO EXTERNAL
ACTION to prevent non-optimal access paths from being chosen for SQL
statements that refer to this function.

EXTERNAL ACTION
The function can take an action that changes the state of an object that DB2
does not manage.

Some SQL statements that invoke functions with external actions can result
in incorrect results if parallel tasks execute the function. For example, if the
function sends a note for each initial call to it, one note is sent for each
parallel task instead of once for the function. Specify the DISALLOW
PARALLEL clause for functions that do not work correctly with
parallelism.

If you specify EXTERNAL ACTION, DB2:
v Materializes the views and table expressions in SELECT or SQL data

change statements that refer to the function. This materialization can
adversely affect the access paths that are chosen for the SQL statements
that refer to this function. Do not specify EXTERNAL ACTION if the
function does not have an external action.

v Does not move the function from one task control block (TCB) to
another between FETCH operations.

v Does not allow another function or stored procedure to use the TCB
until the cursor is closed. This is also applicable for cursors declared
WITH HOLD.

The only changes to resources made outside of DB2 that are under the
control of commit and rollback operations are those changes made under
RRS control.

If a view or a materialized query table definition refers to the function, the
function cannot be changed to EXTERNAL ACTION. To change the
function, drop any views or materialized query tables that refer to the
function first.

DB2 does not verify that the function program is consistent with the
specification of EXTERNAL ACTION or NO EXTERNAL ACTION.

NO PACKAGE PATH or PACKAGE PATH package-path
Identifies the package path to use when the function is run. This is the list of
the possible package collections into which the DBRM that is associated with
the function is bound.

NO PACKAGE PATH
Specifies that the list of package collections for the function is the same as

862 SQL Reference

the list of package collections for the program that invokes the function. If
the program that invokes the function does not use a package, DB2
resolves the package by using the CURRENT PACKAGE PATH special
register, the CURRENT PACKAGESET special register, or the PKLIST bind
option (in this order). For information about how DB2 uses these three
items, see DB2 Application Programming and SQL Guide.

PACKAGE PATH package-path
Specifies a list of package collections, in the same format as used in the
SET CURRENT PACKAGE PATH statement.

If the COLLID clause is specified with PACKAGE PATH, the COLLID
clause is ignored when the function is invoked.

The package-path value that is associated with the function definition is
checked when the function is invoked. If package-path contains
SESSION_USER (or USER), PATH, or PACKAGE PATH, an error is
returned when the package-path value is checked.

NO SCRATCHPAD or SCRATCHPAD
Specifies whether DB2 is to provide a scratchpad for the function. Using
reentrant external functions and a scratchpad (which provides an area for the
function to save information from one invocation to the next) is strongly
recommended.

NO SCRATCHPAD
A scratchpad is not allocated and passed to the function.

SCRATCHPAD length
When the function is invoked for the first time, DB2 allocates memory for
a scratchpad. A scratchpad has the following characteristics:
v length must be between 1 and 32767. The default value is 100 bytes.
v DB2 initializes the scratchpad to all binary zeros (X'00').
v The scope of a scratchpad is the SQL statement. For each reference to the

function in an SQL statement, there is one scratchpad.
For example, assuming that user-defined function UDFX is a scalar
function that is defined with the SCRATCHPAD option, three
scratchpads are allocated for the three references to UDFX in the
following SQL statement:

SELECT A, UDFX(A) FROM TABLEB
WHERE UDFX(A) > 103 OR UDFX(A) < 19;

For another example, assume that UDFX is a user-defined table function
that is defined with the SCRATCHPAD option. Two scratchpads are
allocated for the two references to function UDFX in the following SQL
statement:

SELECT *
FROM TABLE (UDFX(A)), TABLE (UDFX(B));

If the function is run under parallel tasks, one scratchpad is allocated for
each parallel task of each reference to the function in the SQL statement.
This can lead to unpredictable results. For example, if a function uses
the scratchpad to count the number of times that it is invoked, the count
reflects the number of invocations done by the parallel task and not the
SQL statement. Specify the DISALLOW PARALLEL clause for functions
that do not work correctly with parallelism.

v The scratchpad is persistent. DB2 preserves its content from one
invocation of the function to the next. Any changes that the function
makes to the scratchpad on one call are still there on the next call. DB2

Chapter 5. Statements 863

initializes the scratchpads when it begins to execute an SQL statement.
DB2 does not reset scratchpads when a correlated subquery begins to
execute.

v The scratchpad can be a central point for the system resources that the
function acquires. If the function acquires system resources, specify
FINAL CALL to ensure that DB2 calls the function one more time so
that the function can free those system resources.

Each time that the function is invoked, DB2 passes an additional argument
to the function that contains the address of the scratchpad.

If you specify SCRATCHPAD, DB2:
v Does not move the function from one TCB or address space to another

between FETCH operations.
v Does not allow another function or stored procedure to use the TCB until

the cursor is closed. This is also applicable for cursors declared WITH
HOLD.

Do not specify SCRATCHPAD when LANGUAGE JAVA is specified.

NO FINAL CALL or FINAL CALL
Specifies whether a final call is made to the function. A final call enables the
function to free any system resources that it has acquired. A final call is useful
when the function has been defined with the SCRATCHPAD keyword and the
function acquires system resource and anchors them in the scratchpad.

The effect of NO FINAL CALL or FINAL CALL depends on whether the
external function is a scalar function or a table function.

For an external scalar function:

NO FINAL CALL
A final call is not made to the external scalar function. The function does
not receive an additional argument that specifies the type of call.

FINAL CALL
A final call is made to the external scalar function. See the following
description of call types for the characteristics of a final call. When FINAL
CALL is specified, the function receives an additional argument that
specifies the type of call to enable the function to differentiate between a
final call and another type of call. Do not specify FINAL CALL when
LANGUAGE JAVA is specified.

For more information on NO FINAL CALL and FINAL CALL for external
scalar functions, including the types of calls, see the description of the option
for “CREATE FUNCTION (external scalar)” on page 1166.

For an external table function:

NO FINAL CALL
A first and final call are not made to the external table function.

FINAL CALL
A first call and final call are made to the external table function in addition
to one or more other types of calls.

For both NO FINAL CALL and FINAL CALL, the function receives an
additional argument that specifies the type of call. For more information on

864 SQL Reference

NO FINAL CALL and FINAL CALL for external table functions, including the
types of calls, see the description of the option for “CREATE FUNCTION
(external table)” on page 1191.

ALLOW or DISALLOW PARALLEL
Specifies whether, for a single reference to the function, the function can be
executed in parallel. If the function is defined with MODIFIES SQL DATA,
specify DISALLOW PARALLEL, not ALLOW PARALLEL.

ALLOW PARALLEL
Specifies that DB2 can consider parallelism for the function. Parallelism is
not forced on the SQL statement that invokes the function or on any SQL
statement in the function. Existing restrictions on parallelism apply.

See SCRATCHPAD, EXTERNAL ACTION, and FINAL CALL for
considerations when specifying ALLOW PARALLEL.

DISALLOW PARALLEL
Specifies that DB2 does not consider parallelism for the function.

NO DBINFO or DBINFO
Specifies whether additional status information is passed to the function when
it is invoked.

NO DBINFO
Additional information is not passed.

DBINFO
An additional argument is passed when the function is invoked. The
argument is a structure that contains information such as the application
run time authorization ID, the schema name, the name of a table or
column that the function might be inserting into or updating, and
identification of the database server that invoked the function. For details
about the argument and its structure, see DB2 Application Programming and
SQL Guide.

Do not specify DBINFO when LANGUAGE JAVA is specified.

CARDINALITY integer
Specifies an estimate of the expected number of rows that the function returns.
The number is used for optimization purposes. The value of integer must range
from 0 to 2147483647.

If a function has an infinite cardinality (which means that the function never
returns the “end-of-table” condition and always returns a row), a query that
requires the end-of-table condition to work correctly needs to be interrupted.
Thus, avoid using such functions in queries that involve GROUP BY and
ORDER BY.

Do not specify CARDINALITY for external scalar functions.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the function is
executed. This is the package collection into which the DBRM that is associated
with the function is bound.

NO COLLID
Specifies the package collection for the function is the same as the package
collection of the program that invokes the function. If a trigger invokes the
function, the collection of the trigger package is used. If the invoking
program does not use a package, DB2 resolves the package by using the
CURRENT PACKAGE PATH special register, the CURRENT PACKAGESET

Chapter 5. Statements 865

special register, or the PKLIST bind option (in this order). For details about
how DB2 uses these three items, see the information on package resolution
in DB2 Application Programming and SQL Guide.

COLLID collection-id
Specifies the name of the package collection that is to be used when the
function is executed.

WLM ENVIRONMENT
An SQL identifier that identifies the name of the WLM (workload manager)
application environment in which the function is to run.

name
The WLM environment in which the function must run. If the user-defined
function is nested and if the calling stored procedure or invoking
user-defined function is not running in an address space associated with
the specified WLM environment, DB2 routes the function request to a
different address space.

(name,*)
When an SQL application program calls the function, name specifies the
WLM environment in which the function runs.

If another user-defined function or a stored procedure calls the function,
the function runs in the same environment that the calling routine uses. In
this case, authorization to run the function in the WLM environment is not
checked because the authorization of the calling routine suffices.

The name of the WLM environment is an SQL identifier.

To change the environment in which the function is to run, you must have
appropriate authority for the WLM environment. For an example of a RACF
command that provides this authorization, see Running stored procedures.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of the function can run. The value is unrelated to the ASUTIME
column of the resource limit specification table.

When you are debugging a function, setting a limit can be helpful if the
function gets caught in a loop. For information on service units, see z/OS MVS
Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the
range of 1 to 2 147 483 647. If the procedure uses more service units than
the specified value, DB2 cancels the procedure. The CPU cycles that are
consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

STAY RESIDENT
Specifies whether the load module for the function is to remain resident in
memory when the function ends.

NO The load module is deleted from memory after the function ends. Use NO
for non-reentrant functions.

866 SQL Reference

YES
The load module remains resident in memory after the function ends. Use
YES for reentrant functions.

PROGRAM TYPE
Specifies whether the function program runs as a main routine or a subroutine.

SUB
The function runs as a subroutine.

MAIN
The function runs as a main routine.

Do not specify PROGRAM TYPE MAIN when LANGUAGE JAVA is in
effect.

SECURITY
Specifies how the function interacts with an external security product, such as
RACF, to control access to non-SQL resources.

DB2
The function does not require an external security environment. If the
function accesses resources that an external security product protects, the
access is performed using the authorization ID associated with the
WLM-established stored procedure address space.

USER
An external security environment should be used with the function. If the
function accesses resources that the external security product protects, the
access is performed using the primary authorization ID of the process that
invoked the function.

DEFINER
An external security environment should be used with the function. If the
function accesses resources that the external security product protects, the
access is performed using the authorization ID of the owner of the
function.

STOP AFTER SYSTEM DEFAULT FAILURES, STOP AFTER nn FAILURES, or CONTINUE
AFTER FAILURE

Specifies whether the routine is to be put in a stopped state after some number
of failures. The following options must not be specified for SQL functions or
sourced functions.

STOP AFTER SYSTEM DEFAULT FAILURES
Specifies that this routine should be placed in a stopped state after the
number of failures indicated by the value of field MAX ABEND COUNT
on installation panel DSNTIPX.

STOP AFTER nn FAILURES
Specifies that this routine should be placed in a stopped state after nn
failures. The value nn can be an integer from 1 to 32767.

CONTINUE AFTER FAILURE
Specifies that this routine should not be placed in a stopped state after any
failure.

RUN OPTIONS run-time-options
Specifies the Language Environment run time options to be used for the
function. You must specify run-time-options as a character string that is no
longer than 254 bytes. To replace any existing run time options with no
options, specify an empty string with RUN OPTIONS. When you specify an

Chapter 5. Statements 867

empty string, DB2 does not pass any run time options to Language
Environment, and Language Environment uses its installation defaults.

For a description of the Language Environment run time options, see z/OS
Language Environment Programming Reference.

Do not specify RUN OPTIONS when LANGUAGE JAVA is specified.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.

INHERIT SPECIAL REGISTERS
Specifies that special registers should be inherited according to the rules
listed in the table for characteristics of special registers in a user-defined
function in “Special registers in a user-defined function or a stored
procedure” on page 205.

DEFAULT SPECIAL REGISTERS
Specifies that special registers should be initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
user-defined function in “Special registers in a user-defined function or a
stored procedure” on page 205.

STATIC DISPATCH
At function resolution time, DB2 chooses a function based on the static (or
declared) types of the function parameters.

SECURED or NOT SECURED
Specifies whether the function is considered secure.

SECURED
Specifies that the function is considered secure.

NOT SECURED
Specifies that the function is considered not secure. NOT SECURED must
not be specified when a row permission or a column mask depends on the
function.

When the function is invoked, the arguments of the function must not
reference a column for which a column mask is enabled when the table is
using active column access control.

Notes

Invalidation of packages:
When an external function is altered, all the packages that refer to that
function are marked invalid.

LANGUAGE C and the PARAMETER VARCHAR clause:
The ALTER statement does not allow you to alter the value of the
PARAMETER VARCHAR or PARAMETER CCSID clauses that are
associated with the function definition. However, you can alter the
LANGUAGE clause for the function. If the PARAMETER VARCHAR
clause is specified for the creation of a LANGUAGE C function, the catalog
information for that option is not affected by a subsequent ALTER function
statement. The function might be changed to a language other than C, in
which case the PARAMETER VARCHAR setting is ignored. If the function
is later changed back to LANGUAGE C, the setting of the PARAMETER
VARCHAR option that was specified during the CREATE FUNCTION
statement will be used.

868 SQL Reference

Altering a function from NOT SECURED to SECURED:
Typically, the security administrator will examine the data that is accessed
by a function, ensure that it is secure, and grant the
CREATE_SECURE_OBJECT privilege to the user that requires privileges to
change the user-defined function to be secured. After the function is
changed to SECURED, the security administrator will revoke the
CREATE_SECURE_OBJECT privilege from the owner of the function.

The function is considered secure after the ALTER FUNCTION statement is
executed. DB2 treats the SECURED attribute as an assertion that declares
that the security administrator has established an audit procedure for all
changes to the user-defined function. DB2 assumes that such a control
audit procedure is in place for all subsequent ALTER FUNCTION
statements or changes to external packages.

Packages and statements in the dynamic statement cache that reference the
function are invalidated.

Altering a function from SECURED to NOT SECURED:
Packages and statements in the dynamic statement cache that reference the
function are invalidated when the function is changed from SECURED to
NOT SECURED. An function that is not secured might negatively impact
performance if that function accesses data in a table that is using row
access control or column access control. To minimize the performance
impact, either change the function to use the SECURED option or
deactivate row access control or column access control for the table that the
function is accessing.

Invoking other user-defined functions in a secure function:
When a secure user-defined function is referenced in an SQL data change
statement that references a table that is using row access control or column
access control, and if the secure user-defined function invokes other
user-defined functions, the nested user-defined functions are not validated
as secure. If those nested functions can access sensitive data, the security
administrator needs to ensure that those functions are allowed to access
sensitive data and should ensure that a change control audit procedure has
been established for all changes to those functions.

The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table:
The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table
indicates if a user-defined function is considered secure.

Alternative syntax and synonyms:
To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following keywords:
v VARIANT as a synonym for NOT DETERMINISTIC
v NOT VARIANT as a synonym for DETERMINISTIC
v NOT NULL CALL as a synonym for RETURNS NULL ON NULL

INPUT
v NULL CALL as a synonym for CALLED ON NULL INPUT
v PARAMETER STYLE DB2SQL as a synonym for PARAMETER STYLE

SQL
v TIMEZONE can be specified as an alternative to TIME ZONE.

Examples

Example 1: Assume that two functions CENTER are in the PELLOW schema. The
first function has two input parameters with INTEGER and FLOAT data types,

Chapter 5. Statements 869

respectively. The specific name for the first function is FOCUS1. The second
function has three parameters with CHAR(25), DEC(5,2), and INTEGER data types.

Using the specific name to identify the function, change the WLM environment in
which the first function runs from WLMENVNAME1 to WLMENVNAME2:

ALTER SPECIFIC FUNCTION ENGLES.FOCUS1 WLM ENVIRONMENT WLMENVNAME2;

Example 2: Change the second function that is described in Example 1 so that it is
not invoked when any of the arguments are null. Use the function signature to
identify the function:

ALTER FUNCTION ENGLES.CENTER (CHAR(25), DEC(5,2), INTEGER)
RETURNS NULL ON NULL INPUT;

You can also code the ALTER FUNCTION statement without the exact values for
the CHAR and DEC data types:

ALTER FUNCTION ENGLES.CENTER (CHAR(), DEC(), INTEGER)
RETURNS NULL ON NULL INPUT;

If you use empty parentheses, DB2 is to ignore the length, precision, and scale
attributes when looking for matching data types to find the function.

870 SQL Reference

ALTER FUNCTION (SQL scalar)
The ALTER FUNCTION (SQL scalar) statement changes the description of a
user-defined SQL scalar function at the current server.

Invocation

For an inline SQL function, this statement can be embedded in an application
program or issued interactively. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is implicitly or
explicitly specified.

For a non-inline SQL function, this statement can only be dynamically prepared
and the DYNAMICRULES run behavior must be specified implicitly or explicitly.

Authorization

The privilege set defined below must include at least one of the following:
v Ownership of the function
v The ALTERIN privilege on the schema
v SYSADM authority
v SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

If the authorization ID that is used to alter the function has installation SYSADM
authority, the function is identified as system-defined function when the function
definition is reevaluated.

Additional privileges might be required in the following situations:
v If SQL-routine-body is specified, the privilege set must include the privileges that

are required to execute the statements in SQL-routine-body.
v If a distinct type is referenced (i.e. as the data type of an SQL variable in the

body of the function), the privilege set must include at least one of the
following:
– Ownership of the distinct type
– The USAGE privilege on the distinct type
– SYSADM authority

v If the function uses a table as a parameter, the privilege set must also include at
least one of the following:
– Ownership of the table
– The SELECT privilege on the table
– SYSADM authority

v If the WLM ENVIRONMENT FOR DEBUG MODE clause is specified, the
privilege set must include the authority to define programs that run in the
specified WLM environment. This authorization is obtained from an external
security product, such as RACF.

v When replacing an SQL scalar function, the privilege set must include the
required authorization to add a new package or a new version of an existing

Chapter 5. Statements 871

package depending on the value of the BIND NEW PACKAGE field on
installation panel DSNTIPP, or the privilege set must include SYSADM or
SYSCTRL authority.

At least one of the following privileges is required if the SECURED option is
specified or if the function is currently secured and the NOT SECURED option is
specified:
v SECADM authority
v CREATE_SECURE_OBJECT privilege

At least one of those privileges is also required if the function is currently secure
and the ALTER ACTIVE VERSION, ALTER VERSION routine-version-id, ADD
VERSION, or REPLACE clause is specified.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package.

If the statement is dynamically prepared, the privilege set is the set of privileges
that are held by the SQL authorization IDs of the process. The specified routine
name can include a schema name (a qualifier). However, if the schema name is not
the same as one of these SQL authorization IDs, one of the following conditions
must be met:
v The privilege set includes SYSADM authority
v The privilege set includes SYSCTRL authority
v The SQL authorization ID of the process has the ALTERIN privilege on the

schema

Syntax

�� ALTER function-designator �

� �
ALTER ACTIVE VERSION

option-list
ALL VERSIONS
VERSION routine-version-id

ACTIVE VERSION
REPLACE routine-specification

VERSION routine-version-id
ADD VERSION routine-version-id routine-specification
ACTIVATE VERSION routine-version-id

ACTIVE VERSION
REGENERATE

VERSION routine-version-id
DROP VERSION routine-version-id

��

function-designator:

872 SQL Reference

|

|
|

||||||||||
|

|
||

|
||
||

��

�

FUNCTION function-name
,

()
data-type

SPECIFIC FUNCTION specific-name

��

��

�

()
,

parameter-name data-type

RETURNS data-type2 �

option-list
�

� SQL-routine-body ��

�� built-in-type
distinct-type-name
array-type-name

��

routine-specification:

data-type, data-type2:

built-in-type:

Chapter 5. Statements 873

|

|

|

||||||||||||||||||||||||||||||||||||

|
||
||

||
|

|
|||||||||||

|
||
||

|||||||||||||||||||

|
||
|

|
|

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID
XML

��

�� SQL-control-statement ��

��
(1) NOT DETERMINISTIC EXTERNAL ACTION READS SQL DATA

DETERMINISTIC NO EXTERNAL ACTION CONTAINS SQL
MODIFIES SQL DATA

�

SQL-routine-body:

option-list: (Specify options in any order. Specify at least one option. Do not specify the same option more than one
time.)

874 SQL Reference

|

|
|

|||

|
||

|||||||
|
||
|

|||||||||||||||||||||||||||||||||
|

||
|

�
CALLED ON NULL INPUT STATIC DISPATCH

RETURNS NULL ON NULL INPUT ALLOW PARALLEL
DISALLOW PARALLEL

�

�
DISALLOW DEBUG MODE QUALIFIER schema-name PACKAGE OWNER authorization-name
ALLOW DEBUG MODE
DISABLE DEBUG MODE

�

�
ASUTIME NO LIMIT INHERIT SPECIAL REGISTERS

ASUTIME LIMIT integer DEFAULT SPECIAL REGISTERS
�

�
CURRENT DATA NO DEGREE 1

WLM ENVIRONMENT FOR DEBUG MODE name CURRENT DATA YES DEGREE ANY
�

�
CONCURRENT ACCESS RESOLUTION USE CURRENTLY COMMITTED
CONCURRENT ACCESS RESOLUTION WAIT FOR OUTCOME

DYNAMICRULES RUN

DYNAMICRULES BIND
DYNAMICRULES DEFINEBIND
DYNAMICRULES DEFINERUN
DYNAMICRULES INVOKEBIND
DYNAMICRULES INVOKERUN

�

�
WITHOUT EXPLAIN WITHOUT IMMEDIATE WRITE

APPLICATION ENCODING SCHEME ASCII WITH EXPLAIN WITH IMMEDIATE WRITE
APPLICATION ENCODING SCHEME EBCDIC
APPLICATION ENCODING SCHEME UNICODE

�

�

�

ISOLATION LEVEL CS OPTHINT ''

ISOLATION LEVEL RS OPTHINT string-constant ,
ISOLATION LEVEL RR
ISOLATION LEVEL UR SQL PATH schema-name

SYSTEM PATH
SESSION USER
USER

�

�
REOPT NONE VALIDATE RUN

REOPT ALWAYS VALIDATE BIND ROUNDING DEC_ROUND_CEILING DATE FORMAT ISO
REOPT ONCE ROUNDING DEC_ROUND_DOWN DATE FORMAT EUR

ROUNDING DEC_ROUND_FLOOR DATE FORMAT USA
ROUNDING DEC_ROUND_HALF_DOWN DATE FORMAT JIS
ROUNDING DEC_ROUND_HALF_EVEN DATE FORMAT LOCAL
ROUNDING DEC_ROUND_HALF_UP
ROUNDING DEC_ROUND_UP

�

�
FOR UPDATE CLAUSE REQUIRED

SECURED
DECIMAL(15) FOR UPDATE CLAUSE OPTIONAL TIME FORMAT ISO NOT SECURED
DECIMAL(31) TIME FORMAT EUR
DECIMAL(15,s) TIME FORMAT USA
DECIMAL(31,s) TIME FORMAT JIS

TIME FORMAT LOCAL

�

�
BUSINESS_TIME SENSITIVE YES

BUSINESS_TIME SENSITIVE NO

SYSTEM_TIME SENSITIVE YES

SYSTEM_TIME SENSITIVE NO

ARCHIVE SENSITIVE YES

ARCHIVE SENSITIVE NO
�

Chapter 5. Statements 875

||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||
|

|
|||
|

|
||
|

|
|||
|

|
|||
|

||
|

�
APPLCOMPAT compatibility-level

��

Notes:

1 Only LANGUAGE SQL, NOT DETERMINISTIC, DETERMINISTIC, EXTERNAL ACTION, NO
EXTERNAL ACTION, CONTAINS SQL, READS SQL DATA, STATIC DISPATCH, and CALLED ON
NULL INPUT can be specified for an inline SQL scalar function.

Description

One of the following three clauses identifies the function to be changed.

FUNCTION function-name
Identifies the SQL function by its function name.

The identified function must be an SQL scalar function. There must be exactly
one function with function-name in the schema. The function can have any
number of input parameters.24 If the schema does not contain a function with
function-name or contains more than one function with this name, an error
occurs.

FUNCTION function-name (parameter-type,...)
Identifies the SQL function by its function signature, which uniquely identifies
the function.

function-name
Gives the function name of the SQL function.

If the function is an inline function, the only options that can be specified
are: LANGUAGE SQL, NOT DETERMINISTIC, DETERMINISTIC,
EXTERNAL ACTION, NO EXTERNAL ACTION, CONTAINS SQL, READS
SQL DATA, STATIC DISPATCH, and CALLED ON NULL INPUT.

If function-name() is specified, the function that is identified must have zero
parameters.

(parameter-type,...)
Specifies the number of input parameters of the function and the name and
data type of each parameter.

If the function was defined with a table parameter (the LIKE TABLE name
AS LOCATOR clause was specified in the CREATE FUNCTION statement
to indicate that one of the input parameters is a transition table), the
function signature cannot be used to uniquely identify the function.
Instead, use one of the other syntax variations to identify the function with
its function name, if unique, or its specific name.

(data-type,...)
Identifies the number of input parameters of the function and the data
type of each parameter. The data type of each parameter must match the
data type that was specified in the CREATE FUNCTION statement for the
parameter in the corresponding position. The number of data types and
the logical concatenation of the data types are used to uniquely identify the
function. Therefore, you cannot change the number of parameters or the
data types of the parameters.

24. If the function has more than 30 parameters, only the first 30 parameters are used to determine whether the function is unique.

876 SQL Reference

||||||||||||||

|

|

||
|
|

|

For data types that have a length, precision, or scale attribute, you can use
a set of empty parentheses, specify a value, or accept the default values:
v Empty parentheses indicate that DB2 is to ignore the attribute when

determining whether the data types match.
For example, DEC() will be considered a match for a parameter of a
function defined with a data type of DEC(7,2). Similarly DECFLOAT()
will be considered a match for DECFLOAT(16) or DECFLOAT(34).
FLOAT cannot be specified with empty parentheses because its
parameter value indicates different data types (REAL or DOUBLE).

v If you use a specific value for a length, precision, or scale attribute, the
value must exactly match the value that was specified (implicitly or
explicitly) in the CREATE FUNCTION statement.
The specific value for FLOAT(n) does not have to exactly match the
defined value of the source function because 1<=n<= 21 indicates REAL
and 22<=n<=53 indicates DOUBLE. Matching is based on whether the
data type is REAL or DOUBLE.

v If length, precision, or scale is not explicitly specified and empty
parentheses are not specified, the default length of the data type is
implied. The implicit length must exactly match the value that was
specified (implicitly or explicitly) in the CREATE FUNCTION statement.

For data types with a subtype or encoding scheme attribute, specifying the
FOR subtype DATA clause or the CCSID clause is optional. Omission of
either clause indicates that DB2 is to ignore the attribute when determining
whether the data types match. If you specify either clause, it must match
the value that was implicitly or explicitly specified in the CREATE
FUNCTION statement.

See “CREATE FUNCTION” on page 1165 for more information on the
specification of the parameter list.

A function with the function signature must exist in the explicitly or implicitly
specified schema.

SPECIFIC FUNCTION specific-name
Identifies a particular user-defined function by its specific name. The name is
implicitly or explicitly qualified with a schema name. A function with the
specific name must exist in the schema. If the specific name is not qualified, it
is implicitly qualified with a schema name as described in the description for
FUNCTION function-name

ALTER ACTIVE VERSION, ALL VERSIONS, or VERSION routine-version-id
Specifies that a version of the function is to be changed. When you change a
function using ALTER option-list, any option that is not explicitly specified
will use the existing value from the version of the function that is being
changed.

ACTIVE VERSION, ALL VERSION or, VERSION routine-version-id
Identifies the version of the function that is to be changed.

ACTIVE VERSION
Specifies that the currently active version of the function is to be
changed, replaced, or regenerated. If the function is secure, the
changed, replaced, or regenerated version remains secure.

ACTIVE VERSION is the default.

Chapter 5. Statements 877

ALL VERSIONS
Specifies that all of the versions of the function are to be changed.
SECURED and NOT SECURED are the only options that can be
changed when ALL VERSIONS is specified.

VERSION routine-version-id
Identifies the version of the function that is to be changed, replaced, or
regenerated. routine-version-id is the version identifier that is assigned
when the version of the function is defined. routine-version-id must
identify a version of the specified function that exists at the current
server. If the function is secure, the changed, replaced, or regenerated
version remains secure.

REPLACE ACTIVE VERSION or VERSION routine-version-id
Specifies that a version of the function is to be replaced.

Binding the replaced version of the function might result in a new access path
even if the routine body is not being changed.

When you replace a function, the data types, CCSID specifications, and
character data attributes (FOR BIT/SBCS/MIXED DATA) of the parameters
must be the same as the attributes of the corresponding parameters for the
currently active version of the function. For options that are not explicitly
specified, the system default values for those options are used, even if those
options were explicitly specified for the version of the function that is being
replaced. This is not the case for versions of the function that specified
DISABLE DEBUG MODE. If DISABLE DEBUG MODE is specified for a
version of a function, it cannot be changed by using the REPLACE clause.
When a function definition is replaced, any existing comments in the catalog
for that definition of the function are removed.

ACTIVE VERSION or VERSION routine-version-id
Identifies the version of the function that is to be replaced.

ACTIVE VERSION
Specifies that the currently active version of the function is to be
changed, replaced, or regenerated. If the function is secure, the
changed, replaced, or regenerated version remains secure.

ACTIVE VERSION is the default.

VERSION routine-version-id
Identifies the version of the function that is to be changed, replaced, or
regenerated. routine-version-id is the version identifier that is assigned
when the version of the function is defined. routine-version-id must
identify a version of the specified function that exists at the current
server. If the function is secure, the changed, replaced, or regenerated
version remains secure.

ADD VERSION routine-version-id
Specifies that a new version of the function is to be created. routine-version-id is
the version identifier for the new version of the function. routine-version-id
must not identify a version of the specified function that already exists at the
current server.

When a new version of a function is created, the comment that is recorded in
the catalog for the new version will be the same as the comment that is in the
catalog for the currently active version.

When you add a new version of a function, the data types, CCSID
specifications, and character data attributes (FOR BIT/SBCS/MIXED DATA) of

878 SQL Reference

the parameters must be the same as the attributes of the corresponding
parameters for the currently active version of the function. The parameter
names can differ from the other versions of the function. For options that are
not explicitly specified, the system default values will be used.

If the function is secure, the new version is considered secure.

ACTIVATE VERSION routine-version-id
Specifies the version of the function that is to be the currently active version.
routine-version-id is the version identifier that is assigned when the version of
the function is defined. The version that is specified with routine-version-id is
the version that will be invoked by a function invocation. routine-version-id
must identify a version of the function that exists at the current server.

REGENERATE ACTIVE VERSION or VERSION routine-version-id
Specifies that a version of the function is to be regenerated. When DB2
maintenance is applied that changes how an SQL function is generated, the
function might need to be regenerated to process the changes from applying
the maintenance.

REGENERATE automatically rebinds, at the current server, the package for the
SQL control statements for the function and rebinds the package for the SQL
statements that are included in the body of the function.

REGENERATE is different than the REBIND PACKAGE command. REBIND
PACKAGE rebinds the SQL statements (usually to generate better access paths
for those statement) but the SQL control statements in the function definition
are not rebound.

When a function definition is regenerated, any existing comments in the
catalog for that definition of the function are not removed.

ACTIVE VERSION or VERSION routine-version-id
Identifies the version of the function that is to be regenerated.

ACTIVE VERSION
Specifies that the currently active version of the function is to be
changed, replaced, or regenerated. If the function is secure, the
changed, replaced, or regenerated version remains secure.

ACTIVE VERSION is the default.

VERSION routine-version-id
Identifies the version of the function that is to be changed, replaced, or
regenerated. routine-version-id is the version identifier that is assigned
when the version of the function is defined. routine-version-id must
identify a version of the specified function that exists at the current
server. If the function is secure, the changed, replaced, or regenerated
version remains secure.

DROP VERSION routine-version-id
Drops the version of the function that is identified with routine-version-id.
routine-version-id is the version identifier that is assigned when the version is
defined. routine-version-id must identify a version of the function that exists at
the current server and must not identify the currently active version of the
function. Only the identified version of the function is dropped.

When only a single version of the function exists at the current server, use the
DROP FUNCTION statement to drop the function.

RETURNS
Identifies the output of the function.

Chapter 5. Statements 879

data-type2
Specifies the data type of the output. The data type must match the data type
that was specified in the RETURNS clause of the CREATE FUNCTION
statement.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the
function is invoked with the same input arguments.

NOT DETERMINISTIC
The function might not return the same result each time that the function
is invoked with the same input arguments. The function depends on some
state values that affect the results. DB2 uses this information to disable the
merging of views and table expressions when processing SELECT or SQL
data change statements that refer to this function. An example of a
function that is not deterministic is one that generates random numbers.

NOT DETERMINISTIC must be specified explicitly or implicitly if the
function program accesses a special register or invokes another function
that is not deterministic.

DETERMINISTIC
The function always returns the same result each time that the function is
invoked with the same input arguments. An example of a deterministic
function is a function that calculates the square root of the input. DB2 uses
this information to enable the merging of views and table expressions for
SELECT or SQL data change statements that refer to this function. If
applicable, specify DETERMINISTIC to prevent non-optimal access paths
from being chosen for SQL statements that refer to this function.

DB2 does not verify that the function program is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that DB2 does not manage. An example of an external action is sending
a message or writing a record to a file.

EXTERNAL ACTION
The function can take an action that changes the state of an object that DB2
does not manage.

Some SQL statements that invoke functions with external actions can result
in incorrect results if parallel tasks execute the function. For example, if the
function sends a note for each initial call to it, one note is sent for each
parallel task instead of once for the function.

If you specify EXTERNAL ACTION, DB2:
v Materializes the views and table expressions in SELECT or SQL data

change statements that refer to the function. This materialization can
adversely affect the access paths that are chosen for the SQL statements
that refer to this function. Do not specify EXTERNAL ACTION if the
function does not have an external action.

v Does not move the function from one task control block (TCB) to
another between FETCH operations.

v Does not allow another function or stored procedure to use the TCB
until the cursor is closed. This is also applicable for cursors declared
WITH HOLD.

880 SQL Reference

The only changes to resources made outside of DB2 that are under the
control of commit and rollback operations are those changes made under
RRS control.

EXTERNAL ACTION must be specified implicitly or explicitly specified if
the SQL routine body invokes a function that is defined with EXTERNAL
ACTION.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object
that DB2 does not manage. DB2 uses this information to enable the
merging of views and table expressions for SELECT or SQL data change
statements that refer to this function. If applicable, specify NO EXTERNAL
ACTION to prevent non-optimal access paths from being chosen for SQL
statements that refer to this function.

DB2 does not verify that the function program is consistent with the
specification of EXTERNAL ACTION or NO EXTERNAL ACTION.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Specifies which SQL statements, if any, can be executed in the function or any
routine that is called from this function.

MODIFIES SQL DATA
Specifies that the function can execute any SQL statement except the
statements that are not supported in functions. Do not specify MODIFIES
SQL DATA when ALLOW PARALLEL is in effect.

READS SQL DATA
Specifies that the function can execute statements with a data access
classification of READS SQL DATA, CONTAINS SQL, or NO SQL. The
function cannot execute SQL statements that modify data.

READS SQL DATA is the default.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data
access classification of CONTAINS SQL or NO SQL. The function cannot
execute SQL statements the read or modify data.

CALLED ON NULL INPUT or RETURNS NULL ON NULL INPUT
Specifies whether the function is invoked if any of the input arguments is null
at execution time.

CALLED ON NULL INPUT
Specifies that the function is to be invoked, if any, or all, argument values
are null. This specification means that the body of the function must be
coded to test for null argument values.

CALLED ON NULL INPUT is the default.

RETURNS NULL ON NULL INPUT
Specifies that the function is not invoked and returns the null value if any
of the input arguments is null.

STATIC DISPATCH
At function resolution time, DB2 chooses a function based on the static (or
declared) types of the function parameters.

STATIC DISPATCH is the default.

Chapter 5. Statements 881

ALLOW PARALLEL or DISALLOW PARALLEL
Specifies if the function can be run in parallel. The default is DISALLOW
PARALLEL, if you specify one or more of the following clauses:
v NOT DETERMINISTIC
v EXTERNAL ACTION
v MODIFIES SQL DATA

Otherwise, ALLOW PARALLEL is the default.

ALLOW PARALLEL
Specifies that the function can be run in parallel.

DISALLOW PARALLEL
Specifies that the function cannot be run in parallel.

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether this version of the routine can be run in debugging mode.
The default is determined using the value of the CURRENT DEBUG MODE
special register.

ALLOW DEBUG MODE
Specifies that this version of the routine can be run in debugging mode.
When this version of the routine is invoked and debugging is attempted, a
WLM environment must be available.

DISALLOW DEBUG MODE
Specifies that this version of the routine cannot be run in debugging mode.

You can use an ALTER statement to change this option to ALLOW DEBUG
MODE for this initial version of the routine.

DISABLE DEBUG MODE
Specifies that this version of the routine can never be run in debugging
mode.

This version of the routine cannot be changed to specify ALLOW DEBUG
MODE or DISALLOW DEBUG MODE after this version of the routine has
been created or altered to use DISABLE DEBUG MODE. To change this
option, drop the routine and create it again using the option that you want.
An alternative to dropping and recreating the routine is to create a version
of the routine that uses the option that you want and making that version
the active version.

When DISABLE DEBUG MODE is in effect, the WLM ENVIRONMENT
FOR DEBUG MODE is ignored.

QUALIFIER schema-name
Specifies the implicit qualifier that is used for unqualified names of tables,
views, indexes, and aliases that are referenced in the routine body. The default
value is the same as the default schema.

PACKAGE OWNER authorization-name
Specifies the owner of the package that is associated with the first version of
the routine. The SQL authorization ID of the process is the default value.

The authorization ID must have the privileges that are required to execute the
SQL statements that are contained in the routine body and must contain the
necessary bind privileges. The value of PACKAGE OWNER is subject to
translation when it is sent to a remote system.

If the privilege set lacks SYSADM or SYSCTRL authority, authorization-name
must be the same as one of the authorization IDs of the process or the

882 SQL Reference

authorization ID of the process. If the privilege set includes SYSADM or
SYSCTRL authority, authorization-name can be any authorization ID that
contains the necessary bind privileges.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of a routine can run. The value is unrelated to the ASUTIME
column of the resource limit specification table.

When you are debugging a routine, setting a limit can be helpful in case the
routine gets caught in a loop. For information on service units, see z/OS MVS
Initialization and Tuning Guide.

NO LIMIT
Specifies that there is no limit on the service units.

NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the
range of 1 to 2 147 483 647. If the procedure uses more service units than
the specified value, DB2 cancels the procedure. The CPU cycles that are
consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.

INHERIT SPECIAL REGISTERS
Specifies that the values of special registers are inherited, according to the
rules that are listed in the table for characteristics of special registers in a
routine in Table 40 on page 205.

INHERIT SPECIAL REGISTERS is the default.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
routine in Table 40 on page 205.

WLM ENVIRONMENT FOR DEBUG MODE name
Specifies the WLM (workload manager) application environment that is used
by DB2 when debugging the routine. The name of the WLM environment is an
SQL identifier.

If you do not specify WLM ENVIRONMENT FOR DEBUG MODE, DB2 uses
the default WLM-established stored procedure address space specified at
installation time.

To define a routine that is to run in a specified WLM application environment,
you must have the appropriate authority for the WLM application
environment. For an example of a RACF command that provides this
authorization, see Running stored procedures.

The WLM ENVIRONMENT FOR DEBUG MODE value is ignored when
DISABLE DEBUG MODE is in effect.

CURRENT DATA(YES) or CURRENT DATA(NO)
Specifies whether to require data currency for read-only and ambiguous
cursors when the isolation level of cursor stability is in effect. CURRENT
DATA also determines whether block fetch can be used for distributed,
ambiguous cursors.

Chapter 5. Statements 883

YES
Specifies that data currency is required for read-only and ambiguous
cursors. DB2 acquired page or row locks to ensure data currency. Block
fetch is ignored for distributed, ambiguous cursors.

NO Specifies that data currency is not required for read-only and ambiguous
cursors. Block fetch is allowed for distributed, ambiguous cursors. Use of
CURRENT DATA(NO) is not recommended if the routine attempts to
dynamically prepare and execute a DELETE WHERE CURRENT OF
statement against an ambiguous cursor after that cursor is opened. You
receive a negative SQLCODE if your routine attempts to use a DELETE
WHERE CURRENT OF statement for any of the following cursors:
v A cursor that is using block fetch
v A cursor that is using query parallelism
v A cursor that is positioned on a row that is modified by this or another

application process

NO is the default.

DEGREE
Specifies whether to attempt to run a query using parallel processing to
maximize performance.

1 Specifies that parallel processing should not be used.

1 is the default.

ANY
Specifies that parallel processing can be used.

CONCURRENT ACCESS RESOLUTION
Specifies the whether processing uses only committed data or whether it will
wait for commit or rollback of data that is in the process of being updated.

WAIT FOR OUTCOME
Specifies that processing will wait for the commit or rollback of data that is
in the process of being updated.

USE CURRENTLY COMMITTED
Specifies that processing use the currently committed version of the data
when data that is in the process of being updated is encountered. USE
CURRENTLY COMMITTED is applicable on scans that access tables that
are defined in universal table spaces with row or page level lock size.

When there is lock contention between a read transaction and an insert
transaction, USE CURRENTLY COMMITTED is applicable to scans with
isolation level CS or RS. Applicable scans include intent read scans for
read-only and ambiguous queries and for updatable cursors. USE
CURRENTLY COMMITTED is also applicable to scans initiated from
WHERE predicates of UPDATE or DELETE statements and the subselect of
INSERT statements.

When there is lock contention is between a read transaction and a delete
transaction, USE CURRENTLY COMMITTED is applicable to scans with
isolation level CS and when CURRENTDATA(NO) is specified.

DYNAMICRULES
Specifies the values that apply, at run time, for the following dynamic SQL
attributes:
v The authorization ID that is used to check authorization
v The qualifier that is used for unqualified objects

884 SQL Reference

v The source for application programming options that DB2 uses to parse and
semantically verify dynamic SQL statements

DYNAMICRULES also specifies whether dynamic SQL statements can include
GRANT, REVOKE, ALTER, CREATE, DROP, and RENAME statements.

In addition to the value of the DYNAMICRULES clause, the run time
environment of a routine controls how dynamic SQL statements behave at run
time. The combination of the DYNAMICRULES value and the run time
environment determines the value for the dynamic SQL attributes. That set of
attribute values is called the dynamic SQL statement behavior. The following
values can be specified:

RUN
Specifies that dynamic SQL statements are to be processed using run
behavior.

RUN is the default.

BIND
Specifies that dynamic SQL statements are to be processed using bind
behavior.

DEFINEBIND
Specifies that dynamic SQL statements are to be processed using either
define behavior or bind behavior.

DEFINERUN
Specifies that dynamic SQL statements are to be processed using either
define behavior or run behavior.

INVOKEBIND
Specifies that dynamic SQL statements are to be processed using either
invoke behavior or bind behavior.

INVOKERUN
Specifies that dynamic SQL statements are to be processed using either
invoke behavior or run behavior.

See “Authorization IDs and dynamic SQL” on page 75 for information on the
effects of these options.

APPLICATION ENCODING SCHEME
Specifies the default encoding scheme for SQL variables in static SQL
statements in the routine body. The value is used for defining an SQL variable
in a compound statement if the CCSID clause is not specified as part of the
data type, and the PARAMETER CCSID routine option is not specified.

ASCII
Specifies that the data is encoded using the ASCII CCSIDs of the server.

EBCDIC
Specifies that the data is encoded using the EBCDIC CCSIDs of the server.

UNICODE
Specifies that the data is encoded using the Unicode CCSIDs of the server.

See the ENCODING bind option in DB2 Command Reference for information
about how the default for this option is determined.

WITH EXPLAIN or WITHOUT EXPLAIN
Specifies whether information will be provided about how SQL statements in
the routine will execute.

Chapter 5. Statements 885

WITHOUT EXPLAIN
Specifies that information will not be provided about how SQL statements
in the routine will execute.

You can get EXPLAIN output for a statement that is embedded in a
routine that is specified using WITHOUT EXPLAIN by embedding the
SQL statement EXPLAIN in the routine body. Otherwise, the value of the
EXPLAIN option applies to all explainable SQL statements in the routine
body, and to the fullselect portion of any DECLARE CURSOR statements.

WITHOUT EXPLAIN is the default.

WITH EXPLAIN
Specifies that information will be provided about how SQL statements in
the routine will execute. Information is inserted into the table
owner.PLAN_TABLE. owner is the authorization ID of the owner of the
routine. Alternatively, the authorization ID of the owner of the routine can
have an alias as owner.PLAN_TABLE that points to the base table,
PLAN_TABLE. owner must also have the appropriate SELECT and INSERT
privileges on that table. WITH EXPLAIN does not obtain information for
statements that access remote objects. PLAN_TABLE must have a base
table and can have multiple aliases with the same table name,
PLAN_TABLE, but have different schema qualifiers. It cannot be a view or
a synonym and should exist before the version is added or replaced. In all
inserts to owner.PLAN_TABLE, the value of QUERYNO is the statement
number that is assigned by DB2.

The WITH EXPLAIN option also populates two optional tables if they
exist: DSN_STATEMNT_TABLE and DSN_FUNCTION_TABLE.
DSN_STATEMNT_TABLE contains an estimate of the processing cost for
an SQL statement. See DB2 Application Programming and SQL Guide for
more information. DSN_FUNCTION_TABLE contains information about
function resolution. See DB2 Application Programming and SQL Guide for
more information.

For a description of the tables that are populated by the WITH EXPLAIN
option, see “EXPLAIN” on page 1642.

WITH IMMEDIATE WRITE or WITHOUT IMMEDIATE WRITE
Specifies whether immediate writes are to be done for updates that are made
to group buffer pool dependent page sets or partitions. This option is only
applicable for data sharing environments. The IMMEDWRITE subsystem
parameter has no affect of this option. DB2 Command Reference shows the
implied hierarchy of the IMMEDWRITE bind option (which is similar to this
routine option) as it affects run time.

WITHOUT IMMEDIATE WRITE
Specifies that normal write activity is performed. Updated pages that are
group buffer pool dependent are written at or before phase one of commit
or at the end of abort for transactions that have been rolled back.

WITHOUT IMMEDIATE WRITE is the default.

WITH IMMEDIATE WRITE
Specifies that updated pages that are group buffer pool dependent are
immediately written as soon as the buffer update completes. Updated
pages are written immediately even if the buffer is updated during
forward progress or during the rollback of a transaction. WITH
IMMEDIATE WRITE might impact performance.

886 SQL Reference

ISOLATION LEVEL RR, RS, CS, or UR
Specifies how far to isolate the routine from the effects of other running
applications. For information about isolation levels, see DB2 Performance
Monitoring and Tuning Guide.

RR Specifies repeatable read.

RS Specifies read stability.

CS Specifies cursor stability. CS is the default.

UR Specifies uncommitted read.

OPTHINT string-constant
Specifies whether query optimization hints are used for static SQL statements
that are contained within the body of the routine.

string-constant is a character string of up to 128 bytes in length, which is used
by the DB2 subsystem when searching the PLAN_TABLE for rows to use as
input. The default value is an empty string, which indicates that the DB2
subsystem does not use optimization hints for static SQL statements.

Optimization hints are only used if optimization hints are enabled for your
system. See DB2 Installation Guide for information about enabling optimization
hints.

SQL PATH
Specifies the SQL path that the DB2 subsystem uses to resolve unqualified
user-defined types, functions, and procedure names (in CALL statements) in
the body of the routine. The maximum length of the SQL path is 2048 bytes.
DB2 calculates the length by taking each schema-name that is specified and
removing any trailing blanks from it, adding two delimiters around it, and
adding one comma after each schema name except for the last name. The
length of the resulting string cannot exceed 2048 bytes.

schema-name
Identifies a schema. DB2 does not verify that the schema exists when the
ALTER statement is processed. The same schema name should not appear
more than one time in the list of schema names.

SYSPUBLIC must not be specified for the SQL path.

SYSTEM PATH
Specifies the schema names "SYSIBM", "SYSFUN", "SYSPROC",
"SYSIBMADM".

SESSION_USER or USER
Specifies the value of the SESSION_USER (or USER) special register. At the
time the ALTER statement is processed, the actual length is included in the
total length of the list of schema names that is specified for the SQL PATH
option.

REOPT
Specifies if DB2 will determine the access path at run time by using the values
of SQL variables or SQL parameters, parameter markers, and special registers.

NONE
Specifies that DB2 does not determine the access path at run time by using
the values of SQL variables or SQL parameters, parameter markers, and
special registers.

NONE is the default.

Chapter 5. Statements 887

|

ALWAYS
Specifies that DB2 always determines the access path at run time each time
an SQL statement is run. Do not specify REOPT ALWAYS with the WITH
KEEP DYNAMIC or NODEFER PREPARE clauses.

ONCE
Specifies that DB2 determine the access path for any dynamic SQL
statements only once, at the first time the statement is opened. This access
path is used until the prepared statement is invalidated or removed from
the dynamic statement cache and need to be prepared again.

VALIDATE RUN or VALIDATE BIND
Specifies whether to recheck, at run time, errors of the type "OBJECT NOT
FOUND" and "NOT AUTHORIZED" that are found during bind or rebind. The
option has no effect if all objects and needed privileges exist.

VALIDATE RUN
Specifies that if needed objects or privileges do not exist when the
CREATE statement is processed, warning messages are returned, but the
CREATE statement succeeds. The DB2 subsystem rechecks for the objects
and privileges at run time for those SQL statements that failed the checks
during processing of the CREATE statement. The authorization checks the
use of the authorization ID of the owner of the routine.

VALIDATE RUN is the default.

VALIDATE BIND
Specifies that if needed objects or privileges do not exist at the time the
CREATE statement is processed, an error is issued and the CREATE
statement fails.

ROUNDING
Specifies the rounding mode for manipulation of DECFLOAT data. The default
value is taken from the DEFAULT DECIMAL FLOATING POINT ROUNDING
MODE in DECP.

DEC_ROUND_CEILING
Specifies numbers are rounded towards positive infinity.

DEC_ROUND_DOWN
Specifies numbers are rounded towards 0 (truncation).

DEC_ROUND_FLOOR
Specifies numbers are rounded towards negative infinity.

DEC_ROUND_HALF_DOWN
Specifies numbers are rounded to nearest; if equidistant, round down.

DEC_ROUND_HALF_EVEN
Specifies numbers are rounded to nearest; if equidistant, round so that the
final digit is even.

DEC_ROUND_HALF_UP
Specifies numbers are rounded to nearest; if equidistant, round up.

DEC_ROUND_UP
Specifies numbers are rounded away from 0.

DATE FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the date format for result values that are string representations of
date or time values. See “String representations of datetime values” on page
101 for more information.

888 SQL Reference

The default format is specified in the DATE FORMAT field of installation panel
DSNTIP4 of the system where the routine is defined. You cannot use the
LOCAL option unless you have a date exit routine.

DECIMAL(15), DECIMAL(31), DECIMAL(15,s), or DECIMAL(31,s)
Specifies the maximum precision that is to be used for decimal arithmetic
operations. See “Arithmetic with two decimal operands” on page 244 for more
information. The default format is specified in the DECIMAL ARITHMETIC
field of installation panel DSNTIPF of the system where the routine is defined.
If the form pp.s is specified, s must be a number between 1 and 9. s represents
the minimum scale that is to be used for division.

FOR UPDATE CLAUSE OPTIONAL or FOR UPDATE CLAUSE REQUIRED
Specifies whether the FOR UPDATE clause is required for a DECLARE
CURSOR statement if the cursor is to be used to perform positioned updates.

FOR UPDATE CLAUSE REQUIRED
Specifies that a FOR UPDATE clause must be specified as part of the
cursor definition if the cursor will be used to make positioned updates.

FOR UPDATE CLAUSE REQUIRED is the default.

FOR UPDATE CLAUSE OPTIONAL
Specifies that the FOR UPDATE clause does not need to be specified in
order for a cursor to be used for positioned updates. The routine body can
include positioned UPDATE statements that update columns that the user
is authorized to update.

The FOR UPDATE clause with no column list applies to static or dynamic SQL
statements. Even if you do not use this clause, you can specify FOR UPDATE
OF with a column list to restrict updates to only the columns that are named
in the FOR UPDATE clause and to specify the acquisition of update locks.

TIME FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the time format for result values that are string representations of
date or time values. See “String representations of datetime values” on page
101 for more information.

The default format is specified in the TIME FORMAT field of installation panel
DSNTIP4 of the system where the routine is defined. You cannot use the
LOCAL option unless you have a date exit routine.

SECURED or NOT SECURED
Specifies if the function is considered secure. When the option is specified with
the ALL VERSIONS clause, it applies to all existing versions and to any future
versions of the function. When it is specified with other clauses such as ADD
VERSION, or REPLACE, the value must be the same as the value that is in
effect for the function that is being changed.

SECURED
Specifies that the function is considered secure.

NOT SECURED
Specifies that the function is considered not secure. NOT SECURED must
not be specified when a row permission or a column mask depends on the
function.

When the function is invoked, the arguments of the function must not
reference a column for which a column mask is enabled when the table is
using active column access control.

Chapter 5. Statements 889

BUSINESS_TIME SENSITIVE
Determines whether references to application-period temporal tables in both
static and dynamic SQL statements are affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

YES
References to application-period temporal tables are affected by the value
of the CURRENT TEMPORAL BUSINESS_TIME special register. YES is the
default value.

NO References to application-period temporal tables are not affected by the
value of the CURRENT TEMPORAL BUSINESS_TIME special register.

Related information:

“CURRENT TEMPORAL BUSINESS_TIME” on page 194

SYSTEM_TIME SENSITIVE
Determines whether references to system-period temporal tables in both static
and dynamic SQL statements are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

YES
References to system-period temporal tables are affected by the value of
the CURRENT TEMPORAL SYSTEM_TIME special register. YES is the
default value.

NO References to system-period temporal tables are not affected by the value
of the CURRENT TEMPORAL SYSTEM_TIME special register.

Related information:

“CURRENT TEMPORAL SYSTEM_TIME” on page 196

ARCHIVE SENSITIVE
Determines whether references to archive-enabled tables in SQL statements are
affected by the value of the SYSIBMADM.GET_ARCHIVE global variable.

YES
References to archive-enabled tables are affected by the value of the
SYSIBMADM.GET_ARCHIVE global variable. YES is the default value.

NO References to archive-enabled tables are not affected by the value of the
SYSIBMADM.GET_ARCHIVE global variable.

Related information:

“References to built-in global variables” on page 223

APPLCOMPAT compatibility-level
Specifies the package compatibility level behavior for static SQL, If this option
is not specified then the behavior is determined, in priority order, by the
compatibility-level of the last BIND or REBIND of the package or the
APPLCOMPAT system parameter. The following values of compatibility-level
can be specified:

V10R1
The static SQL statements in the package have V10R1 compatibility
behavior.

V11R1
The static SQL statements in the package have V11R1 compatibility
behavior.

890 SQL Reference

|
|
|
|

|
|
|
|

||
|

|

|

|
|
|
|

|
|
|
|

||
|

|

|

|
|
|

|
|
|

||
|

|

|

|
|
|
|
|
|

|
|
|

|
|
|

Related information:

APPL COMPAT LEVEL field (APPLCOMPAT subsystem parameter) (DB2
Installation and Migration)

SQL-routine-body
Specifies a single SQL statement, including a compound statement. See
Chapter 6, “SQL control statements for SQL routines,” on page 1963 for more
information about defining SQL functions.

A call to a procedure that issues a COMMIT, ROLLBACK, CONNECT,
RELEASE, or SET CONNECTION statement is not allowed in a function.

If the SQL-routine-body is a compound statement, it must contain at least one
RETURN statement and a RETURN statement must be executed when the
function is invoked.

An ALTER FUNCTION (SQL scalar) statement or an ALTER PROCEDURE
(SQL native) statement with an ADD VERSION or REPLACE clause is not
allowed in an SQL-routine-body.

Notes

ALTER FUNCTION for in use functions:
ALTER FUNCTION will be locked out from making changes if the
function is in use. For example, if a query that is currently running is
referencing an SQL scalar function named 'fn1' (routine-version-id is 'v1'), an
ALTER FUNCTION fn1 ACTIVATE VERSION v2 statement will wait for
the query that is currently running to complete before making 'v2' the
active version for function 'fn1'. This wait for completion behavior happens
even if the query invokes the function multiple times for processing
multiple rows or if the query contains multiple references to the function
that is being changed.

Considerations for changing a version of a function:
To change a version of a function, the environment settings that are in
effect when the ALTER FUNCTION statement is issued must be the same
as the environment settings that are in effect when the version of the
function is first created using the CREATE FUNCTION or ALTER
FUNCTION statement if one of the following options is specified:
v QUALIFIER
v PACKAGE OWNER
v WLM ENVIRONMENT FOR DEBUG MODE
v OPTHINT
v SQL PATH
v DECIMAL (if the value includes a comma)

Considerations for catalog comments for a routine definition:
When a function definition is replaced, any existing comment in the
catalog for the definition is removed. However, when a function definition
is regenerated, any existing comment in the catalog for the definition is
retained.

Identifier resolution:
See Chapter 6, “SQL control statements for SQL routines,” on page 1963 for
information on how names are resolved to columns, SQL variables, or SQL
parameters within an SQL routine.

Chapter 5. Statements 891

|

|
|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_applcompat.htm#db2z_ipf_applcompat
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_applcompat.htm#db2z_ipf_applcompat

If duplicate names are used for columns and SQL variables and
parameters, qualify the duplicate names by using the table designator for
columns, the routine name for parameters, and the label name for SQL
variables.

Characteristics of the package that is generated for a function:
The package that is associated with a version of a function is named as
follows:
v location is set to the value of the CURRENT SERVER special register
v collection-id (schema) for the package is the same as the schema qualifier

of the function
v package-id is the same as the specific name of the function
v version-id is the same as the version identifier for the version of the

function

The package is generated using the bind options that correspond to the
implicitly or explicitly specified function options. In addition to the
corresponding bind options, the package is generated using the following
bind options:
v FLAG(I)
v SQLERROR(NOPACKAGE)
v ENABLE(*)

Considerations for SQL processor programs:
SQL processor programs (such as SPUFI, the command line processor, and
DSNTEP2) might not correctly parse SQL statements in the routine body
that are ended with semicolons. These processor programs accept multiple
SQL statements as input when each statement is separated with a
terminator character. Processor programs that use a semicolon as the SQL
statement terminator might truncate an ALTER FUNCTION statement with
embedded semicolons and pass only a portion of the statement to DB2.
Therefore, you might need to change to SQL terminator character for these
processor programs.

Correspondence of function options to bind command options:
The following table lists options for CREATE FUNCTION and ALTER
FUNCTION and the corresponding bind command option. See BIND and
REBIND options (DB2 Commands) for information about the BIND
command options.

Table 95. Correspondence of function options to bind options

CREATE FUNCTION or ALTER
FUNCTION option bind command option

APPLICATION ENCODING SCHEME ENCODING(ASCII), ENCODING(EBCDIC),
ENCODING(UNICODE)

ARCHIVE SENSITIVE NO ARCHIVESENSITIVE(NO)

ARCHIVE SENSITIVE YES ARCHIVESENSITIVE(YES)

BUSINESS_TIME SENSITIVE NO BUSTIMESENSITIVE(NO)

BUSINESS_TIME SENSITIVE YES BUSTIMESENSITIVE(YES)

CURRENTDATA NO CURRENTDATA(NO)

CURRENTDATA YES CURRENTDATA(YES)

892 SQL Reference

||

||

||

||

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

Table 95. Correspondence of function options to bind options (continued)

CREATE FUNCTION or ALTER
FUNCTION option bind command option

DYNAMICRULES DYNAMICRULES(RUN),
DYNAMICRULES(BIND),
DYNAMICRULES(DEFINEBIND),
DYNAMICRULES(DEFINERUN),
DYNAMICRULES(INVOKEBIND),
DYNAMICRULES(INVOKERUN)

ISOLATION LEVEL ISOLATION(RR), ISOLATION(RS),
ISOLATION(CS), ISOLATION(UR)

OPTHINT OPTHINT

PACKAGE OWNER OWNER

QUALIFIER QUALIFIER

REOPT ALWAYS REOPT(ALWAYS)

REOPT NONE REOPT(NONE)

REOPT ONCE REOPT(ONCE)

ROUNDING DEC_ROUND_CEILING ROUNDING(CEILING)

ROUNDING DEC_ROUND_DOWN ROUNDING(DOWN)

ROUNDING DEC_ROUND_FLOOR ROUNDING(FLOOR)

ROUNDING DEC_ROUND_HALF_DOWN ROUNDING(HALFDOWN)

ROUNDING DEC_ROUND_HALF_EVEN ROUNDING(HALFEVEN)

ROUNDING DEC_ROUND_HALF_UP ROUNDING(HALFUP)

ROUNDING DEC_ROUND_UP ROUNDING(UP)

SQL PATH PATH

SYSTEM_TIME SENSITIVE NO SYSTIMESENSITIVE(NO)

SYSTEM_TIME SENSITIVE YES SYSTIMESENSITIVE(YES)

VALIDATE BIND VALIDATE(BIND)

VALIDATE RUN VALIDATE(RUN)

WITH EXPLAIN EXPLAIN(YES)

WITHOUT EXPLAIN EXPLAIN(NO)

WITH IMMEDIATE WRITE IMMEDWRITE(YES)

WITHOUT IMMEDIATE WRITE IMMEDWRITE(NO)

Invalidation of packages:
When a version of an SQL function is altered to change any option that is
specified for the active version, all packages that refer to that function are
marked invalid. In addition, when certain attributes of an SQL function are
changed, the body of the function might be rebound or regenerated. The
following table summarizes when implicit rebind and regeneration occurs
when specific options are changed. A value of 'Y' in a row indicates that a
rebind or regeneration occurs if the option is changed for a version of the
function. A value of 'N' in a row indicates that a rebind or regeneration
does not occur.

Chapter 5. Statements 893

||

||

Table 96. CREATE FUNCTION and ALTER FUNCTION options that result in rebind or
regeneration of the function when changed

CREATE
FUNCTION or
ALTER FUNCTION
option

Change requires
rebind of invoking
application

Change results in
implicit rebind of
non-control
statements in the
body of the function

Change results in
implicit regeneration
of the entire body of
the function

ALLOW DEBUG
MODE, DISALLOW
DEBUG MODE, or
DISABLE DEBUG
MODE

Y �1� �2� Y �1� Y

APPLICATION
ENCODING
SCHEME

Y Y Y

ARCHIVE
SENSITIVE

Y Y Y

ASUTIME Y N N

BUSINESS_TIME
SENSITIVE

Y Y Y

CURRENTDATA N Y N

DATE FORMAT Y Y Y

DECIMAL Y Y Y

DYNAMICRULES N Y N

FOR UPDATE
CLAUSE OPTIONAL
or FOR UPDATE
CLAUSE REQUIRED

Y Y Y

INHERIT SPECIAL
REGISTERS or
DEFAULT SPECIAL
REGISTERS

Y N N

ISOLATION LEVEL N Y N

MODIFIES SQL
DATA, READS SQL
DATA, or
CONTAINS SQL

Y Y Y

NOT
DETERMINISTIC or
DETERMINISTIC

N N N

OPTHINT N Y N

PACKAGE OWNER N Y N

QUALIFIER N Y N

REOPT N Y N

ROUNDING Y Y Y

SQL PATH N Y N

SYSTEM_TIME
SENSITIVE

Y Y Y

TIME FORMAT Y Y Y

894 SQL Reference

|
|
|||

|
|
|||

|
|
|||

Table 96. CREATE FUNCTION and ALTER FUNCTION options that result in rebind or
regeneration of the function when changed (continued)

CREATE
FUNCTION or
ALTER FUNCTION
option

Change requires
rebind of invoking
application

Change results in
implicit rebind of
non-control
statements in the
body of the function

Change results in
implicit regeneration
of the entire body of
the function

VALIDATE RUN or
VALIDATE BIND

N Y N

WITH EXPLAIN or
WITHOUT EXPLAIN

N Y N

WITH IMMEDIATE
WRITE or WITHOUT
IMMEDIATE WRITE

N Y N

WLM
ENVIRONMENT
FOR DEBUG MODE

Y N N

Note:

�1� The function package is rebound or regenerated if a value of ALLOW DEBUG
MODE is changed to DISALLOW DEBUG MODE

�2� Invoking applications are invalidated if a value of DISALLOW DEBUG MODE is
changed to DISABLE DEBUG MODE

Considerations for the SYSENVIRONMENTS catalog table:
An ALTER statement that specifies new environment settings will result in
a new row being added to the SYSENVIRONMENTS catalog table. The
new row will be added even if an error is subsequently encountered
during processing of the statement. Thus, a new SYSENVIRONMENT row
might be added to the table even for an ALTER statement that fails.

Dependent objects:
An SQL routine is dependent on objects that are referenced in the routine
body.

Altering a function from NOT SECURED to SECURED:
Typically, the security administrator will examine the data that is accessed
by a function, ensure that it is secure, and grant the
CREATE_SECURE_OBJECT privilege to the user that requires privileges to
change the user-defined function to be secured. After the function is
changed to SECURED, the security administrator will revoke the
CREATE_SECURE_OBJECT privilege from the owner of the function.

The function is considered secure after the ALTER FUNCTION statement is
executed. DB2 treats the SECURED attribute as an assertion that declares
that the security administrator has established an audit procedure for all
changes to the user-defined function. DB2 assumes that such a control
audit procedure is in place for all subsequent ALTER FUNCTION
statements or changes to external packages.

Packages and statements in the dynamic statement cache that reference the
function are invalidated.

Altering a function from SECURED to NOT SECURED:
Packages and statements in the dynamic statement cache that reference the
function are invalidated when the function is changed from SECURED to
NOT SECURED. An function that is not secured might negatively impact
performance if that function accesses data in a table that is using row

Chapter 5. Statements 895

access control or column access control. To minimize the performance
impact, either change the function to use the SECURED option or
deactivate row access control or column access control for the table that the
function is accessing.

Invoking other user-defined functions in a secure function:
When a secure user-defined function is referenced in an SQL data change
statement that references a table that is using row access control or column
access control, and if the secure user-defined function invokes other
user-defined functions, the nested user-defined functions are not validated
as secure. If those nested functions can access sensitive data, the security
administrator needs to ensure that those functions are allowed to access
sensitive data and should ensure that a change control audit procedure has
been established for all changes to those functions.

The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table:
The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table
indicates if a user-defined function is considered secure.

Deploying a non-inline SQL function:
When a BIND DEPLOY command is issued to deploy a non-inline SQL
function to a target location, the SECURED and NOT SECURED options
are included in the deployment process.

When deploying a non-inline SQL function, if a function with the same
target name does not exist at the target location, the deployed function is
created as a new function at the target location with the same SECURED or
NOT SECURED option that is specified (or the default of NOT SECURED
is used) in the source function of the deployment.

When deploying a non-inline SQL function, if a function with the same
target name already exists at the target location, the deployed function is
either added as a new version of the function or is used to replace an
existing version of the function. The SECURED or NOT SECURED option
of the deployed function must be the same as that of the existing function
at the target location

Compatibilities:
For compatibility with the CREATE FUNCTION (SQL scalar) statement,
the following clause can be specified, but will be ignored:
v LANGUAGE SQL

Optional syntax:
To provide compatibility with the syntax of the CREATE FUNCTION
statement, the following options can also be specified:
v SPECIFIC
v PARAMETER CCSID

However, if these options are specified, the value for the option must be
the same as the value that is already in effect for the function.

Alternative syntax and synonyms:
To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following keywords:
v VARIANT as a synonym for NOT DETERMINISTIC
v NOT VARIANT as a synonym for DETERMINISTIC
v NULL CALL as a synonym for CALLED ON NULL INPUT
v NOT NULL CALL as a synonym for RETURNS NULL ON NULL

INPUT
v TIMEZONE can be specified as an alternative to TIME ZONE

896 SQL Reference

For an inline SQL scalar function, the RETURNS clause and the clauses in
the option-list can be specified in any order. For a non-inline SQL scalar
function, the RETURNS clause must precede the options-list. For both inline
and non-inline SQL scalar functions, the RETURN-statement must be
specified after the RETURNS clause and the options-list in the routine body.

Examples

Example 1: Modify the definition for an SQL function to indicate that the function is
deterministic.

ALTER FUNCTION MY_UDF1
DETERMINISTIC;

Example 2: The following statement changes the existing function options for the
active version of the REVERSE SQL function. If you need to change a different
version of the function, you would specify VERSION routine-version-id in place of
ACTIVE VERSION. Note, the ALTER clause that precedes the version
specification can be omitted:

ALTER FUNCTION REVERSE
ALTER ACTIVE VERSION
NOT DETERMINISTIC
ALLOW DEBUG MODE;

Example 3: To change the function body of any existing version of a function, you
need to use the REPLACE clause. The following statement changes both the
function body and the existing SQL data access option for the version V2 of the
REVERSE function. The list of parameters is specified even though no changes are
made to the list. To replace an existing version of the function, you must specify
the list of parameters, RETURNS clause, any options that are to have non-default
values (even if those options are already specified in the version of the function
that you are replacing), and the body of the function, as in the following statement:

ALTER FUNCTION REVERSE(INSTR VARCHAR(4000))
REPLACE VERSION V2 (INSTR VARCHAR(4000))
RETURNS VARCHAR(4000)
DETERMINISTIC
NO EXTERNAL ACTION
CONTAINS SQL
BEGIN
DECLARE REVSTR, RESTSTR VARCHAR(4000) DEFAULT ’’;
DECLARE LEN INT;
IF INSTR IS NULL THEN
RETURN NULL;
END IF;
SET RESTSTR = INSTR;
SET LEN = LENGTH(INSTR);
WHILE LEN > 0 DO
SET (REVSTR, RESTSTR, LEN) = (SUBSTR(RESTSTR, 1, 1) CONCAT

REVSTR, SUBSTR(RESTSTR, 2, LEN - 1), LEN - 1);
END WHILE;
RETURN REVSTR;
END

Example 4: To add a new version of an existing function, use the ADD VERSION
clause. The following statement adds a new version of the REVERSE function to
combine two SET statements into one SET statement. The list of parameters is
specified even though the new version of the function uses the same parameters as
the existing version of the function. To add a new version of the function, you
must specify the list of parameters, RETURNS clause, any options that will have

Chapter 5. Statements 897

non-default values, and the body of the function, as in the following statement,
which creates version V3 of the REVERSE function:

ALTER FUNCTION REVERSE(INSTR VARCHAR(4000))
ADD VERSION V3 (INSTR VARCHAR(4000))
RETURNS VARCHAR(4000)
DETERMINISTIC
NO EXTERNAL ACTION
CONTAINS SQL
BEGIN
DECLARE REVSTR, RESTSTR VARCHAR(4000) DEFAULT ’’;
DECLARE LEN INT;
IF INSTR IS NULL THEN
RETURN NULL;
END IF;
SET (RESRSTR, LEN) = (INSTR, LENGTH(INSTR));
WHILE LEN > 0 DO
SET (REVSTR, RESTSTR, LEN) = (SUBSTR(RESTSTR, 1, 1) CONCAT

REVSTR, SUBSTR(RESTSTR, 2, LEN - 1), LEN - 1);
END WHILE;
RETURN REVSTR;
END

Example 5: To change the currently active version of the function, you must specify
the ACTIVATE VERSION clause on the ALTER FUNCTION statement, even if the
version you want to be the active version has just been defined. The following
statement causes version V3 of the REVERSE SQL function to be the currently
active version:

ALTER FUNCTION REVERSE(INSTR VARCHAR(4000))
ACTIVATE VERSION V3;

Example 6: To regenerate the currently active version of the function, you must
specify the REGENERATE clause, as in the following statement:

ALTER FUNCTION REVERSE(INSTR VARCHAR(4000))
REGENERATE ACTIVE VERSION;

898 SQL Reference

ALTER FUNCTION (SQL table)
The ALTER FUNCTION (SQL table) statement changes the description of a
user-defined SQL table function at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following
privileges or authorities:
v Ownership of the function
v The ALTERIN privilege on the schema
v SYSADM authority
v SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

If the authorization ID that is used to alter the function has installation SYSADM
authority, the function is identified as system-defined function when the function
definition is reevaluated.

If a distinct type is referenced (i.e. as the data type of an SQL variable in the body
of the function), the privilege set must also include at least one of the following:
v Ownership of the distinct type
v The USAGE privilege on the distinct type
v SYSADM authority

At least one of the following privileges is required if the SECURED option is
specified or if the function is currently secured and the NOT SECURED option is
specified:
v SECADM authority
v CREATE_SECURE_OBJECT privilege

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package.

If the statement is dynamically prepared, the privilege set is the set of privileges
that are held by the SQL authorization IDs of the process. The specified routine
name can include a schema name (a qualifier). However, if the schema name is not
the same as one of these SQL authorization IDs, one of the following conditions
must be met:
v The privilege set includes SYSADM authority
v The privilege set includes SYSCTRL authority
v The SQL authorization ID of the process has the ALTERIN privilege on the

schema

Chapter 5. Statements 899

Syntax

�� ALTER function-designator RESTRICT option-list ��

function-designator:

��

�

FUNCTION function-name
,

()
parameter-type

SPECIFIC FUNCTION specific-name

��

parameter-type:

�� data-type ��

data-type:

�� built-in-type
distinct-type-name

��

900 SQL Reference

built-in-type:

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID
XML

��

Chapter 5. Statements 901

option-list:

��
(1)

NOT DETERMINISTIC
DETERMINISTIC

EXTERNAL ACTION
NO EXTERNAL ACTION

READS SQL DATA
CONTAINS SQL

�

�
CALLED ON NULL INPUT INHERIT SPECIAL REGISTERS

�

�
STATIC DISPATCH CARDINALITY integer SECURED

NOT SECURED

��

Notes:

1 The options in the option-list can be specified in any order. However, the
same clause cannot be specified more than one time.

Description

FUNCTION function-name
Identifies the SQL table function by its function name. The identified function
must be an SQL table function.

There must be exactly one function with function-name in the schema. The
function can have any number of input parameters. If the schema does not
contain a function with function-name, or contains more than one function with
this name, an error is returned.

FUNCTION function-name (parameter-type, ...)
Identifies the SQL function by its function signature, which uniquely identifies
the function.

A function with the function signature must exist in the explicitly or implicitly
specified schema.

function-name
Identifies the function name of the SQL function. If the function was
defined with a table parameter (the LIKE TABLE name AS LOCATOR
clause was specified in the CREATE FUNCTION statement to indicate that
one of the input parameters is a transition table), the function signature
cannot be used to uniquely identify the function. Instead, use one of the
other syntax variations to identify the function with its function name, if
unique, or its specified parameters.

If function-name() is specified, the function that is identified must have zero
parameters.

parameter-type
Identifies the number of parameters of the function.

data-type
Identifies the data type of each input parameter of the function. The data
type of each parameter must match the data type that was specified in the
CREATE FUNCTION statement for the parameter in the corresponding
position. The number of data types and the logical concatenation of the

902 SQL Reference

data types are used to uniquely identify the function. Therefore, you
cannot change the number of parameters or the data types of the
parameters.

For data types that have a length, precision, or scale attribute, you can use
a set of empty parentheses, specify a value, or accept the default values:
v Empty parentheses indicate that DB2 is to ignore the attribute when

determining whether the data types match.
For example, DEC() will be considered a match for a parameter of a
function defined with a data type of DEC(7,2). Similarly DECFLOAT()
will be considered a match for DECFLOAT(16) or DECFLOAT(34).
FLOAT cannot be specified with empty parentheses because its
parameter value indicates different data types (REAL or DOUBLE).

v If you use a specific value for a length, precision, or scale attribute, the
value must exactly match the value that was specified (implicitly or
explicitly) in the CREATE FUNCTION statement.
The specific value for FLOAT(n) does not have to exactly match the
defined value of the source function because 1<=n<= 21 indicates REAL
and 22<=n<=53 indicates DOUBLE. Matching is based on whether the
data type is REAL or DOUBLE.

v If length, precision, or scale is not explicitly specified and empty
parentheses are not specified, the default length of the data type is
implied. The implicit length must exactly match the value that was
specified (implicitly or explicitly) in the CREATE FUNCTION statement.

For data types with a subtype or encoding scheme attribute, specifying the
FOR subtype DATA clause or the CCSID clause is optional. Omission of
either clause indicates that DB2 is to ignore the attribute when determining
whether the data types match. If you specify either clause, it must match
the value that was implicitly or explicitly specified in the CREATE
FUNCTION statement.

See “CREATE FUNCTION” on page 1165 for more information on the
specification of the parameter list.

RESTRICT
Indicates that the function will not be altered or replaced it if is referenced by
any function, materialized query table, procedure, trigger, or view.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the
function is invoked with the same input arguments. DB2 does not verify that
the function program is consistent with the specification of NOT
DETERMINISTIC or DETERMINISTIC.

NOT DETERMINISTIC
Specifies that the function might not return the same result table each time
that the function is invoked with the same input arguments, even when
the referenced data in the database has not changed. The function depends
on some state values that might affect the results. DB2 uses this
information to disable the merging of views and table expressions when
processing SELECT and SQL data change statements that refer to this
function. An example of a table function that is not deterministic is one
which references special registers, other functions that are not
deterministic, or a sequence in a way that affects the table function's result
table.

Chapter 5. Statements 903

DETERMINISTIC
Specifies that the function always returns the same result table each time
that the function is invoked with the same input arguments (provided that
the referenced data in the database has not changed). DB2 uses this
information to enable the merging of views and table expressions for
SELECT and SQL data change statements that refer to this function.

If applicable, specify DETERMINISTIC to prevent non-optimal access paths
from being chosen for SQL statements that refer to this function.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function contains an external action. DB2 does not verify
that the function program is consistent with the specification of EXTERNAL
ACTION or NO EXTERNAL ACTION.

EXTERNAL ACTION
The function performs some external action (outside the scope of the
function program). Thus, the function must be invoked with each
successive function invocation. EXTERNAL ACTION must be specified if
the function invokes another function that has external actions.

NO EXTERNAL ACTION
The function does not perform any external action. It need not be called
with each successive function invocation. Functions that are defined with
NO EXTERNAL ACTION might perform better than functions that are
defined with EXTERNAL ACTION because the function might not be
invoked for each successive function invocation.

READS SQL DATA or CONTAINS SQL
Specifies the classification of SQL statements that the function (any routine that
is invoked from this function) can execute. DB2 verifies that the SQL
statements that the function issues are consistent with this specification.

READS SQL DATA
Specifies that the function can execute statements with a data access
indication of READS SQL DATA or CONTAINS SQL. The function cannot
execute SQL statements that modify data.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data
access indication of CONTAINS SQL. The function cannot execute
statements that read or modify data.

CALLED ON NULL INPUT
Specifies that the function is called regardless of whether any of the input
argument values are null, making the function responsible for testing for null
argument values. The function might return an empty table, depending on the
logic in the body of the function.

INHERIT SPECIAL REGISTERS
Specifies that existing values of special registers are inherited upon entry to the
function.

STATIC DISPATCH
Specifies that at function resolution time, DB2 chooses a function based on the
static (or declared) types of the function parameters.

CARDINALITY integer
Specifies an estimate of the expected number of rows that the function returns.
The number is used for optimization purposes. The value of integer must be
between 0 and 2147483647.

904 SQL Reference

If a function has an infinite cardinality (the function never returns the
end-of-table condition and always returns a row), a query that requires the
end-of-table condition to work correctly will need to be interrupted.

SECURED or NOT SECURED
Specifies whether the function is considered secure.

SECURED
Specifies that the function is considered secure.

NOT SECURED
Specifies that the function is considered not secure. NOT SECURED must
not be specified when a row permission or a column mask depends on the
function.

When the function is invoked, the arguments of the function must not
reference a column for which a column mask is enabled when the table is
using active column access control.

Notes

Invalidation of packages:
When an SQL function is changed, all the packages that refer to that
function are marked invalid.

Dependent objects:
An SQL routine is dependent on objects that are referenced in the routine
body.

Altering a function from NOT SECURED to SECURED:
Typically, the security administrator will examine the data that is accessed
by a function, ensure that it is secure, and grant the
CREATE_SECURE_OBJECT privilege to the user that requires privileges to
change the user-defined function to be secured. After the function is
changed to SECURED, the security administrator will revoke the
CREATE_SECURE_OBJECT privilege from the owner of the function.

The function is considered secure after the ALTER FUNCTION statement is
executed. DB2 treats the SECURED attribute as an assertion that declares
that the security administrator has established an audit procedure for all
changes to the user-defined function. DB2 assumes that such a control
audit procedure is in place for all subsequent ALTER FUNCTION
statements or changes to external packages.

Packages and statements in the dynamic statement cache that reference the
function are invalidated.

Altering a function from SECURED to NOT SECURED:
Packages and statements in the dynamic statement cache that reference the
function are invalidated when the function is changed from SECURED to
NOT SECURED. An function that is not secured might negatively impact
performance if that function accesses data in a table that is using row
access control or column access control. To minimize the performance
impact, either change the function to use the SECURED option or
deactivate row access control or column access control for the table that the
function is accessing.

Invoking other user-defined functions in a secure function:
When a secure user-defined function is referenced in an SQL data change
statement that references a table that is using row access control or column
access control, and if the secure user-defined function invokes other

Chapter 5. Statements 905

user-defined functions, the nested user-defined functions are not validated
as secure. If those nested functions can access sensitive data, the security
administrator needs to ensure that those functions are allowed to access
sensitive data and should ensure that a change control audit procedure has
been established for all changes to those functions.

The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table:
The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table
indicates if a user-defined function is considered secure.

Compatibilities:
For compatibility with the CREATE FUNCTION (SQL table) statement, the
following clause can be specified, but will be ignored:
v LANGUAGE SQL

Alternative syntax and synonyms:
To provide compatibility with previously releases of DB2 or other products
in the DB2 family, DB2 supports the following keywords:
v VARIANT as a synonym for NOT DETERMINISTIC
v NOT VARIANT as a synonym for DETERMINISTIC
v NULL CALL as a synonym for CALLED ON NULL INPUT

Examples

Example 1: The following statement modifies the definition of an SQL table function
to set the estimated cardinality to 10,000.
ALTER FUNCTION GET_TABLE
RESTRICT CARDINALITY 10000;

906 SQL Reference

ALTER INDEX
The ALTER INDEX statement changes the description of an index at the current
server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include one of the following:
v Ownership of the index
v Ownership of the table on which the index is defined
v DBADM authority for the database that contains the table
v SYSADM or SYSCTRL authority
v System DBADM

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

If BUFFERPOOL or USING STOGROUP is specified, additional privileges could
be needed, as explained in the description of those clauses.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets that are held by each authorization ID and role of the process.

Syntax

��
(1)

ALTER INDEX index-name
(2)

REGENERATE

�

Chapter 5. Statements 907

� �
(4)

BUFFERPOOL bpname
CLOSE YES

NO
COPY NO

YES
PIECESIZE integer K

M
G

using-specification
free-specification
gbpcache-specification
CLUSTER
NOT CLUSTER
NOT PADDED
PADDED
COMPRESS NO
COMPRESS YES

ASC (3)
ADD COLUMN (column-name)

DESC
RANDOM

INCLUDE COLUMN (column-name)

�

�

� �

,

(5) (4)
ALTER partition-element

using-specification
free-specification
gbpcache-specification

��

Notes:

1 At least one clause must be specified after index-name. It can be from the optional list or it can be
ALTER PARTITION.

2 If REGENERATE is specified, it must be the only clause specified on the ALTER INDEX statement.

3 If ADD COLUMN and PADDED or NOT PADDED are specified, ADD COLUMN must be
specified before PADDED or NOT PADDED.

4 The same clause must not be specified more than one time.

5 The ALTER clause can only be specified for partitioned indexes. The ALTER clause must be
specified last.

using-specification:

908 SQL Reference

�� �
(1)

USING VCAT catalog-name
STOGROUP stogroup-name

PRIQTY integer
SECQTY integer
ERASE YES

NO

��

Notes:

1 The same clause must not be specified more than one time.

�� �
(1)

FREEPAGE integer
PCTFREE integer

��

Notes:

1 The same clause must not be specified more than one time.

�� GBPCACHE CHANGED
GBPCACHE ALL
GBPCACHE NONE

��

��
(1)

PARTITION integer

�

,
AT INCLUSIVE

ENDING (constant)
MAXVALUE
MINVALUE

��

Notes:

1 If PARTITION is specified, either the ENDING clause, using-specification, free-specification, or
gbpcache-specification should also be specified.

Description

index-name
Identifies the index to be changed or regenerated. The name must identify a

free-specification:

gbpcache-specification:

partition-element:

Chapter 5. Statements 909

user-created index that exists at the current server. The name must not identify
an index that is defined on a declared temporary table.

REGENERATE
Specifies that the index will be regenerated. The structure that represents the
index definition is regenerated. The index definition will be composed from the
catalog. Existing authorities and dependencies, if any, are retained. The catalog
is updated with the regenerated index definition. The index is put into
rebuild-pending state, all packages that depend on the index are invalidated,
and catalog entries for the index statistics are deleted.

If the index cannot be successfully regenerated, an error is returned. In this
case, the index must be dropped and recreated.

BUFFERPOOL bpname
Identifies the buffer pool that is to be used for the index. bpname must identify
an activated 4K, 8 KB, 16 KB, or 32 KB buffer pool, and the privilege set must
include SYSADM authority, SYSCTRL authority, or the USE privilege for the
buffer pool.

A buffer pool with a smaller size should be chosen for indexes with random
insert patterns. A buffer pool with a larger size should be chosen for indexes
with sequential insert patterns.

If the index is changed to use index compression (the COMPRESS YES
clause), the buffer pool must be 8 KB, 16 KB, or 32 KB in size.

The change is a pending definition change if all of the following conditions are
true:
v The data sets of the index are created
v The index is defined on one of the following:

– A table that is in a universal table space
– An XML table that is associated with a base table that is in a universal

table space
– An auxiliary table that is associated with a base table that is in a

universal table space
v There are pending definition changes for the index, table, or table space
v The buffer pool is changed to a buffer pool with a different size

If any of the previous conditions are not true, the change is an immediate
change.

If the change is an immediate change, the change to the description of the
index takes effect the next time the data sets of the index space are opened.
The data sets can be closed and reopened by a STOP DATABASE command to
stop the index followed by a START DATABASE command to start the index.

If the buffer pool is changed to a buffer pool with a different page size, and
the change is an immediate change, the index is placed into REBUILD-pending
status.

If the change is a pending definition change, the change is not reflected in the
current definition or data at the time of the alter. Instead, the index is placed in
an advisory REORG-pending (AREOR) state. A subsequent reorganization of
the entire index with an appropriate utility will materialize the changes and
apply the pending definition changes to the catalog and data.

CLOSE
Specifies whether the data set is eligible to be closed when the index is not

910 SQL Reference

|

being used and the limit on the number of open data sets is reached. The
change to the close rule takes effect the next time the data sets of the index
space are opened.

YES
Eligible for closing.

NO Not eligible for closing.

If DSMAX is reached and there are no CLOSE YES page sets to close,
CLOSE NO page sets will be closed.

COPY
Indicates whether the COPY utility is allowed for the index.

NO Does not allow full image or concurrent copies or the use of the RECOVER
utility on the index.

YES
Allows full image or concurrent copies and the use the RECOVER utility
on the index. For data sharing, changing COPY to YES causes additional
SCA (Shared Communications Area) storage to be used until the next full
or incremental image copy is taken or until COPY is set back to NO.

PIECESIZE integer
Specifies the maximum addressability of each data set for a secondary index.
The PIECESIZE clause can only be specified for secondary indexes.

Be aware that when you alter the PIECESIZE value, the index is placed into
page set REBUILD-pending (PSRBD) status. The entire index space becomes
inaccessible. You must run the REBUILD INDEX or the REORG TABLESPACE
utility to remove that status.

The subsequent keyword K, M, or G, indicates the units of the value that is
specified in integer.

K Indicates that the integer value is to be multiplied by 1024 to specify
the maximum data set size in bytes. integer must be a power of two
between 1 and 268435456.

M Indicates that the integer value is to be multiplied by 1048576 to specify
the maximum data set size in bytes. integer must be a power of two
between 1 and 262144.

G Indicates that the integer value is to be multiplied by 1073741824 to
specify the maximum data set size in bytes. integer must be a power of
two between 1 and 256.

Table 97 shows the valid values for data set size, which depend on the size of
the table space.

Table 97. Valid values of PIECESIZE clause

K units M units G units Size attribute of table space

256K

512K

1024K 1M

2048K 2M

4096K 4M

8192K 8M

16384K 16M

Chapter 5. Statements 911

Table 97. Valid values of PIECESIZE clause (continued)

K units M units G units Size attribute of table space

32768K 32M

65536K 64M

131072K 128M

262144K 256M

524288K 512M

1048576K 1024M 1G

2097152K 2048M 2G

4194304K 4096M 4G LARGE, DSSIZE 4G (or greater)

8388608K 8192M 8G DSSIZE 8G (or greater)

16777216K 16384M 16G DSSIZE 16G (or greater)

33554432K 32768M 32G DSSIZE 32G (or greater)

67108864K 65536M 64G DSSIZE 64G (or greater)

134217728K 131072M 128G DSSIZE 128G (or greater)

268435456K 262144M 256G DSSIZE 256G

The data set size limit for partitioned table spaces with more than 256
partitions is 4096.

begin using-specification block

The components of the using-specification are discussed below, first for
non-partitioned indexes and then for partitioned indexes.

USING (specification for nonpartitioned indexes)
For nonpartitioned indexes, the USING clause specifies whether the data sets
for the index are to be managed by the user or managed by DB2. The USING
clause applies to every data set that can be used for the index.

If you specify USING, the index must be in the stopped state when the ALTER
INDEX statement is executed. See Altering storage attributes to determine how
and when changes take effect.

VCAT catalog-name
Specifies a user-managed data set with a name that starts with the
specified catalog name. You must specify the catalog name in the form of
an SQL identifier. Thus, you must specify an alias if the name of the
integrated catalog facility catalog is longer than eight characters. When the
new description of the index is applied, the integrated catalog facility
catalog must contain an entry for the data set the conforms to the DB2
naming conventions described in DB2 Administration Guide.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of
those subsystems attempt to assign the same name to different data sets,
select a value for catalog-name that is not used by the other DB2
subsystems.

STOGROUP stogroup-name
Specifies using a DB2-managed data set that resides on a volume of the
specified storage group. stogroup-name must identify a storage group that
exists at the current server and the privilege set must include SYSADM
authority, SYSCTRL authority, or the USE privilege for the storage group.

912 SQL Reference

When the new description of the index is applied, the description of the
storage group must include at least one volume serial number. Each
volume serial number must identify a volume that is accessible to z/OS for
dynamic allocation of the data set, and all identified volumes must be of
the same device type. Furthermore, the integrated catalog facility catalog
used for the storage group must not contain an entry for the data set.

If you specify USING STOGROUP and the current data set is
DB2-managed, omission of the PRIQTY, SECQTY, or ERASE clause is an
implicit specification of the current value of the omitted clause.

If you specify USING STOGROUP to convert from user-managed data
sets to DB2-managed data sets:
v Omission of the PRIQTY clause is an implicit specification of the default

value. For information on how DB2 determines the default value, see
Rules for primary and secondary space allocation.

v Omission of the SECQTY clause is an implicit specification of the
default value. For information on how DB2 determines the default value,
see Rules for primary and secondary space allocation.

v Omission of the ERASE clause is an implicit specification of ERASE
NO.

PRIQTY integer
Specifies the minimum primary space allocation for a DB2-managed data set.
This clause can be specified only if the data set is currently managed by DB2
and USING VCAT is not specified.

If PRIQTY is specified (with a value other than -1), the primary space
allocation is at least n kilobytes, where n is:

12 If integer is less than 12
integer

If integer is between 12 and 4194304
2097152

If both of the following conditions are true:
v integer is greater than 2097152.
v The index is a non-partitioned index on a table space that is not

defined with the LARGE or DSSIZE attribute.
4194304

If integer is greater than 4194304

If PRIQTY -1 is specified, DB2 uses a default value for the primary space
allocation. For information on how DB2 determines the default value for
primary space allocation, see Rules for primary and secondary space allocation.

If USING STOGROUP is specified and PRIQTY is omitted, the value of
PRIQTY is its current value. (However, if the current data set is being changed
from being user-managed to DB2-managed, the value is its default value. See
the description of USING STOGROUP.)

If you specify PRIQTY and do not specify a value of -1, DB2 specifies the
primary space allocation to access method services using the smallest multiple
of 4 KB not less than n. The allocated space can be greater than the amount of
space requested by DB2. For example, it could be the smallest number of
tracks that will accommodate the space requested. To more closely estimate the
actual amount of storage, see DEFINE CLUSTER command (DFSMS Access
Method Services for Catalogs).

Chapter 5. Statements 913

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

When determining a suitable value for PRIQTY, be aware that two of the
pages of the primary space could be used by DB2 for purposes other than
storing index entries.

SECQTY integer
Specifies the minimum secondary space allocation for a DB2-managed data set.
This clause can be specified only if the data set is currently managed by DB2
and USING VCAT is not specified.

If SECQTY -1 is specified, DB2 uses a default value for the secondary space
allocation.

If USING STOGROUP is specified and SECQTY is omitted, the value of
SECQTY is its current value. (However, if the current data set is being
changed from being user-managed to DB2-managed, the value is its default
value. See the description of USING STOGROUP.)

For information on the actual value that is used for secondary space allocation,
whether you specify a value or DB2 uses a default value, see Rules for primary
and secondary space allocation.

If you specify SECQTY and do not specify a value of -1, DB2 specifies the
secondary space allocation to access method services using the smallest
multiple of 4 KB not less than n. The allocated space can be greater than the
amount of space requested by DB2. For example, it could be the smallest
number of tracks that will accommodate the space requested. To more closely
estimate the actual amount of storage, see DEFINE CLUSTER command
(DFSMS Access Method Services for Catalogs).

ERASE
Indicates whether the DB2-managed data sets are to be erased when they are
deleted during the execution of a utility or an SQL statement that drops the
index.

NO Does not erase the data sets. Operations involving data set deletion will
perform better than ERASE YES. However, the data is still accessible,
though not through DB2.

YES
Erases the data sets. As a security measure, DB2 overwrites all data in the
data sets with zeros before they are deleted.

This clause can be specified only if the data set is currently managed by DB2
and USING VCAT is not specified. If you specify ERASE, the index must be
in the stopped state when the ALTER INDEX statement is executed. See
Altering storage attributes to determine how and when changes take effect.

USING (specification for partitioned indexes:)
For a partitioned index, there is an optional PARTITION clause for each
partition. A using-specification can be specified at the global level or at the
partition level. A using-specification within a PARTITION clause applies only to
that partition. A using-specification specified before any PARTITION clauses
applies to every partition except those with a PARTITION clause with a
using-specification.

For DB2-managed data sets, the values of PRIQTY, SECQTY, and ERASE for
each partition are given by the first of these choices that applies:
v The values of PRIQTY, SECQTY, and ERASE given in the using-specification

within the PARTITION clause for the partition. Do not use more than one
using-specification in any PARTITION clause.

914 SQL Reference

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

v The values of PRIQTY, SECQTY, and ERASE given in the using-specification
before any PARTITION clause

v The current values of PRIQTY, SECQTY, and ERASE

For data sets that are being changed from user-managed to DB2-managed, the
values of PRIQTY, SECQTY, and ERASE for each partition are given by the
first of these choices that applies:
v The values of PRIQTY, SECQTY, and ERASE given in the using-specification

within the PARTITION clause for the partition. Do not use more than one
using-specification in any PARTITION clause.

v The values of PRIQTY, SECQTY, and ERASE given in a using-specification
before any PARTITION clauses

v The default values of PRIQTY, SECQTY, and ERASE, which are:
– PRIQTY 12
– SECQTY 12, if PRIQTY is not specified in either using-specification, or

10% of PRIQTY or 3 times the index page size (whichever is larger) when
PRIQTY is specified

– ERASE NO

Any partition for which USING or ERASE is specified (either explicitly at the
partition level or implicitly at the global level) must be in the stopped state
when the ALTER INDEX statement is executed. See Altering storage attributes
to determine how and when changes take effect.

VCAT catalog-name
Specifies a user-managed data set with a name that starts with the
specified catalog name. You must specify the catalog name in the form of
an SQL identifier. Thus, you must specify an alias if the name of the
integrated catalog facility catalog is longer than eight characters.

If n is the number of the partition, the identified integrated catalog facility
catalog must already contain an entry for the vth data set of the index,
conforming to the DB2 naming convention for data sets described in DB2
Administration Guide.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of
those subsystems attempt to assign the same name to different data sets,
select a value for catalog-name that is not used by the other DB2
subsystems.

DB2 assumes one and only one data set for each partition.

STOGROUP stogroup-name
If USING STOGROUP is used, stogroup-name must identify a storage
group that exists at the current server and the privilege set must include
SYSADM authority, SYSCTRL authority, or the USE privilege for the
storage group.

DB2 assumes one and only one data set for each partition.

For information on the PRIQTY, SECQTY, and ERASE clauses, see the
description of those clauses in the using-specification for secondary indexes.

end using-specification block

begin free-specification block

Chapter 5. Statements 915

FREEPAGE integer
Specifies how often to leave a page of free space when index entries are
created as the result of executing a DB2 utility. One free page is left for every
integer pages. The value of integer can range from 0 to 255. The change to the
description of the index or partition has no effect until it is loaded or
reorganized using a DB2 utility. Do not specify FREEPAGE for an implicitly
created XML index.

PCTFREE integer
Determines the percentage of free space to leave in each nonleaf page and leaf
page when entries are added to the index or partition as the result of executing
a DB2 utility. The first entry in a page is loaded without restriction. When
additional entries are placed in a nonleaf or leaf page, the percentage of free
space is at least as great as integer.

The value of integer can range from 0 to 99, however, if a value greater than 10
is specified, only 10 percent of free space will be left in nonleaf pages. The
change to the description of the index or partition has no effect until it is
loaded or reorganized using a DB2 utility. Do not specify PCTFREE for an
implicitly created XML index.

If the index is partitioned, the values of FREEPAGE and PCTFREE for a
particular partition are given by the first of these choices that applies:

v The values of FREEPAGE and PCTFREE given in the PARTITION clause
for that partition. Do not use more than one free-specification in any
PARTITION clause.

v The values given in a free-specification before any PARTITION clauses.
v The current values of FREEPAGE and PCTFREE for that partition.

end free-specification block

begin gbpcache-specification block

GBPCACHE
Specifies what index pages are written to the group buffer pool in a data
sharing environment. In a non-data-sharing environment, you can specify this
option, but it is ignored.

CHANGED
When there is inter-DB2 read-write interest on the index or partition,
updated pages are written to the group buffer pool. When there is no
inter-DB2 read-write interest, the group buffer pool is not used. Inter-DB2
read-write interest exists when more than one member in the data sharing
group has the index or partition open, and at least one member has it open
for update.

If the index is in a group buffer pool that is defined as GBPCACHE(NO),
CHANGED is ignored and no pages are cached to the group buffer pool.

ALL
Indicates that pages are to be cached to the group buffer pool as they are
read in from DASD, with one exception. When the page set is not
GBP-dependent and one DB2 data sharing member has exclusive
read-write interest in that page set (no other group members have any
interest in the page set), no pages are cached in the group buffer pool.

If the index is in a group buffer pool that is defined as GBPCACHE(NO),
ALL is ignored and no pages are cached to the group buffer pool.

916 SQL Reference

NONE
Indicates that no pages are to be cached to the group buffer pool. DB2 uses
the group buffer pool only for cross-invalidation.

If you specify NONE, the index or partition must not be in group buffer
pool recover-pending (GRECP) status.

If the index is partitioned, the value of GBPCACHE for a particular partition is
given by the first of these choices that applies:
1. The value of GBPCACHE given in the PARTITION clause for that

partition. Do not use more than one gbpcache-specification in any
PARTITION clause.

2. The value given in a gbpcache-specification before any PARTITION clauses.
3. The current value of GBPCACHE for that partition.

If you specify GBPCACHE in a data sharing environment, the index or
partition must be in the stopped state when the ALTER INDEX statement is
executed. You cannot alter the GBPCACHE value for certain indexes on DB2
catalog tables; for more information, see “SQL statements allowed on the
catalog” on page 2113.

end gbpcache-specification block

CLUSTER or NOT CLUSTER
Specifies whether the index is the clustering index for the table.

CLUSTER
The index is used as the clustering index for the table. This change takes
effect immediately. Any subsequent insert operations will use the new
clustering index. Existing data remains clustered by the previous clustering
index until the table space is reorganized.

The implicit or explicit clustering index is ignored when data is inserted
into a table space that is defined with MEMBER CLUSTER. Instead of
using cluster order, DB2 chooses where to locate the data based on
available space. The MEMBER CLUSTER attribute affects only data that is
inserted with an insert operation; data is always loaded and reorganized in
cluster order.

Do not specify CLUSTER in the following cases:
v The index is for an auxiliary table.
v CLUSTER was used already for a different index on the table.
v The index is an XML index.
v The index includes expressions.
v The index is for a table that uses hash organization.
v The index is the hash overflow index for a table.

NOT CLUSTER
The index is not used as the clustering index of the table. If the index is
already defined as the clustering index, it continues to be used as the
clustering index by DB2 and the REORG utility until clustering is explicitly
changed by specifying CLUSTER for a different index.

Specifying NOT CLUSTER for an index that is not a clustering index is
ignored.

If the index is the partitioning index for a table that uses index-controlled
partitioning, the table is converted to use table-controlled partitioning. The

Chapter 5. Statements 917

high limit key for the last partition is set to the highest possible value for
ascending key columns or the lowest possible value for descending key
columns.

COMPRESS NO or COMPRESS YES
Specifies whether the index data will be compressed. If the index is
partitioned, this option will apply to all partitions.

When an index is changed from one compression option to another (either
from COMPRESS YES to COMPRESS NO or COMPRESS NO to COMPRESS
YES), the index marked as rebuild pending. For a non-partitioned index, the
index will be placed in a page set rebuilding state. For a partitioned index, the
index will be placed in rebuilding state.

COMPRESS NO
Specifies that index compression will be turned off.

COMPRESS YES
Specifies that the index will use index compression. COMPRESS YES can
be specified for user-managed data sets only if the control interval size is
4K.

NOT PADDED or PADDED
Specifies how varying-length string columns are to be stored in the index. If
the index contains no varying-length columns, this option is ignored, and a
warning message is returned.

NOT PADDED
Specifies that varying-length string columns are not to be padded to their
maximum length in the index. The length information for a varying-length
column is stored with the key.

NOT PADDED is ignored and has no effect if the index is on an auxiliary
table. Indexes on auxiliary tables are always padded.

When PADDED is changed to NOT PADDED, the maximum key length is
recalculated with the varying-length formula (2000 - n - 2m, where n is
the number of columns that can contain null values and m is the number
of varying-length columns in the key). If it is possible that the index key
length might exceed the maximum length (because when it was padded,
the formula 2000 - n was used), an error occurs.

PADDED
Specifies that varying-length string columns within the index are always
padded with the default pad character to their maximum length.

When an index with at least one varying-length column is changed from
PADDED to NOT PADDED, or vice versa, the index is placed in restricted
rebuild-pending status (RBDP). The index cannot be accessed until it is rebuilt
from the table (using the REBUILD INDEX, REORG TABLESPACE, or LOAD
REPLACE utility). For nonpartitioned secondary indexes (NPSIs), the index is
placed in page set rebuild-pending status (PSRBD), and the entire index must
be rebuilt. In addition, packages that are dependent on the table are quiesced,
and dynamically cached statements that are dependent on the index are
invalidated.

Do not specify PADDED if the index is an XML index.

ADD COLUMN column-name
Adds column-name to the index. column-name must be unqualified, must
identify a column of the table, must not be one of the existing columns of the

918 SQL Reference

index, and must not be a LOB column, a DECFLOAT column, or a
distinct-type column that is based on a LOB or DECFLOAT data type. The
column cannot be a VARBINARY column or a distinct-type column that is
based on a VARBINARY data type if the column is defined with the DESC
attribute or if the index is defined with the PADDED attribute.

The column cannot be a timestamp with time zone column (or a column with
a distinct type that is based on the timestamp with time zone data type) when
the PARTITION or PARTITION BY RANGE clause is also specified.

The index must not already be defined with the BUSINESS_TIME WITHOUT
OVERLAPS specification.

The total number of columns for the index cannot exceed 64.

If a column is added to an index that is defined with the EXCLUDE NULL
KEYS clause, the index is placed in REBUILD-pending status.

If the index is defined with the EXCLUDE NULL KEYS clause, the specified
column must allow null values.

For PADDED indexes, the sum of the length attributes of the columns must
not be greater than 2000 - n, where n is the number of columns that can
contain null values. For NOT PADDED indexes, the sum of the length
attributes of the columns must not be greater than 2000 - n -2m, where n is
the number of nullable columns and m is the number of varying-length
columns.

The index cannot be any of the following types of indexes:
v A system-defined catalog index
v An index that enforces a primary key, unique key, or referential constraint,

or matches a foreign key
v A partitioning index when index-controlled partitioning is being used
v A unique index required for a ROWID column defined as GENERATED BY

DEFAULT
v An auxiliary index
v An XML index
v An index that includes expressions
v The hash overflow index for a table.

The index is put into rebuild-pending (RBDP) status in the following cases:
v column-name specifies is a ROWID column
v a column is added to a table, rows are inserted into the table, and the same

column is added to an associated index all within the same commit scope
v a column is added to a table and then is added to an associated index in a

separate commit scope

Otherwise, the index is put into an advisory reorg-pending (AREO*) state.

ASC
Index entries are put in ascending order by the column.

DESC
Index entries are put in descending order by the column.

RANDOM
Index entries are put in a random order by the column. RANDOM cannot
be specified in the following cases:

Chapter 5. Statements 919

|
|

|
|

v A varying length column is part of the index key and the index is
defined with the NOT PADDED option.

v A column of the index key is defined as TIMESTAMP WITH TIME
ZONE.

v The index is part of a partitioning key.

ADD INCLUDE (column-name)
Specifies an additional column to append to the set of index key columns of a
unique index. Any column that is specified using INCLUDE column-name, is
not used to enforce uniqueness. The included column might improve
performance for some queries using index only access.

Columns that are specified in the ADD INCLUDE clause count towards the
limits for the number of columns and the limits on the sum of the length
attributes of the columns that are specified in the index. The total number of
columns for the index cannot exceed 64.

column-name must be unqualified, must identify a column of the specified
table, and must not be one of the existing columns of the index. column-name
must not identify a LOB or DECFLOAT column (or a distinct type that is
based on one of those types).

The INCLUDE clause cannot be specified for the following types of indexes:
v A system defined catalog index
v A non-unique index
v A partitioning index when index-controlled partitioning is used
v An auxiliary index
v An index on a foreign key
v An XML index
v An extended index
v An index that includes expressions
v An index that is created with the EXCLUDE NULL KEYS clause

If a column is added to both a table and an associated index within the same
commit scope and the column is not a ROWID column, the index is placed in
an advisory reorg-pending state (AREO*). Otherwise, the index is placed in a
rebuild-pending state (RBDP).

ALTER PARTITION integer
Identifies the partition of the index to be altered. For an index that has n
partitions, you must specify an integer in the range 1 to n. You must not use
this clause under the following conditions:
v If the index is nonpartitioned
v If the index is defined on a table that contains an XML column and uses

index-controlled partitioning

You must use this clause if the index is partitioned and you specify the
ENDING AT clause.

ENDING AT(constant), MAXVALUE, or MINVALUE
Specifies the highest value of the index key for the identified partition of
the partitioning index. In this context, highest means highest in the sorting
sequence of the index columns. In a column defined as ascending (ASC),
highest and lowest have the usual meanings. In a column defined as
descending (DESC), the lowest actual value is highest in the sorting
sequence.

920 SQL Reference

|

You must use at least one value (constant, MAXVALUE, or MINVALUE)
after ENDING AT in each PARTITION clause. You can use as many
values as there are columns in the key. The concatenation of all the values
is the highest value of the key in the corresponding partition of the index.
The length of each highest key value (also called the limit key) is the same
as the length of the partitioning index

constant
Specifies a constant value with a data type that must conform to the
rules for assigning that value to the column. If a string constant is
longer or shorter than required by the length attribute of its column,
the constant is either truncated or padded on the right to the required
length. If the column is ascending, the padding character is X'FF'. If the
column is descending, the padding character is X'00'. The precision and
scale of a decimal constant must not be greater than the precision and
scale of its corresponding column. A hexadecimal string constant (GX)
cannot be specified.

MAXVALUE
Specifies a value greater than the maximum value for the limit key of a
partition boundary (that is, all X'FF' regardless of whether the column
is ascending or descending). If all of the columns in the partitioning
key are ascending, a constant or the MINVALUE clause cannot be
specified following MAXVALUE. After MAXVALUE is specified, all
subsequent columns must be MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the limit
key of a partition boundary (that is, all X'00' regardless of whether the
column is ascending or descending). If all of the columns in the
partitioning key are descending, a constant or the MAXVALUE clause
cannot be specified following MAXVALUE. After MINVALUE is
specified, all subsequent columns must be MINVALUE.

The key values are subject to the following rules:
v The first value corresponds to the first column of the key, the second

value to the second column, and so on.
v If a key includes a ROWID column (or a column with a distinct type

that is based on a ROWID data type), the values of the ROWID column
are assumed to be in the range of X'000...00' to X'FFF...FF'. Only the first
17 bytes of the value that is specified for the corresponding ROWID
column are considered.

v Using fewer values than there are columns in the key has the same effect
as using the highest possible values for all omitted columns for an
ascending index.

v If the key exceeds 255 bytes, only the first 255 bytes are considered.
v The highest value of the key in any partition must be lower than the

highest value of the key in the next partition.
v The highest value of the key in the last partition depends on how the

table space was defined. For table spaces created without the LARGE or
DSSIZE option, the constants you specify after ENDING AT are not
enforced. The highest value of the key that can be placed in the table is
the highest possible value of the key.
For table spaces created with the LARGE or DSSIZE options, the
constants you specify after ENDING AT are enforced. The value
specified for the last partition is the highest value of the key that can be

Chapter 5. Statements 921

placed in the table. Any keys that are made invalid after the ALTER
TABLE statement is executed are placed in a discard data set when you
run the REORG utility. If the last partition is in reorg-pending status,
regardless of whether you changed its limiting key values, you must
specify a discard data set when you run the REORG utility.

ENDING AT must not be specified for any indexes defined on a table that
uses table-controlled partitioning. Use ALTER TABLE ALTER PARTITION
to modify the partitioning boundaries for a table that uses table-controlled
partitioning.

INCLUSIVE
Specifies that the specified range values are included in the data partition.

Notes

Pending definition changes:
ALTER INDEX causes an immediate definition change to the specified
index with the exception of ALTER INDEX BUFFERPOOL. ALTER INDEX
BUFFERPOOL results in an immediate definition change except when all
of the following conditions are true:
v The data sets of the index are created
v The index is defined on one of the following:

– A table that is in a universal table space
– An XML table that is associated with a base table this is in a universal

table space
– An auxiliary table that is associated with a base table that is in a

universal table space
v There are pending definition changes for the index or the table space, or

the buffer pool is changed to a buffer pool with a different size.

When ALTER INDEX causes a pending definition change, semantic
validation and authorization checking are performed for the statement.
However, the current definition of the index is not changed, and the index
is placed in advisory REORG-pending (AREOR) state. If there are no
pending definition changes for the table space, you can run the REORG
INDEX utility with SHRLEVEL CHANGE or the REORG TABLESPACE
utility with SHRLEVEL CHANGE or REFERENCE to enable the changes to
the definition of the index. If pending definition changes also exist for the
table space, you must run the REORG TABLESPACE utility with
SHRLEVEL CHANGE or REFERENCE to enable the changes to the
definition of the index (and the pending table space definition). When the
pending definition changes are applied to the index, dependent packages
might be invalidated.

Restrictions involving pending definition changes:
ALTER INDEX statements that result in a pending definition change are
not allowed in the following cases:
v On the catalog, system objects, or objects in a workfile database
v If the definition of the table space is incomplete
v If the definition of the table on which the index is defined is incomplete
v If the ALTER INDEX statement also specifies options that will cause an

immediate definition change

922 SQL Reference

v If there are already pending definition changes to the index, ALTER
INDEX to change from COMPRESS NO to COMPRESS YES is not
allowed

v If there are already pending definition changes to the index or the table
space that contains the index, the following are not allowed:
– ALTER INDEX (with or without ALTER PARTITION) to change from

a DB2-managed data set to a user-managed data set
– ALTER INDEX to change the value of PIECESIZE

v If there are already pending definition changes to the containing table
space or any objects within the table space, the following are not
allowed:
– ALTER INDEX REGENERATE to regenerate the index
– ALTER INDEX ADD COLUMN to add a column to the index

Altering storage attributes:
The USING, PRIQTY, SECQTY, and ERASE clauses define the storage
attributes of the index or partition. If you specify the USING or ERASE
clause when altering storage attributes, the index or partition must be in
the stopped state when the ALTER INDEX statement is executed. A STOP
DATABASE...SPACENAM... command can be used to stop the index or
partition.

If the catalog name changes, the changes take effect after you move the
data and start the index or partition using the START
DATABASE...SPACENAM... command. The catalog name can be implicitly or
explicitly changed by the ALTER INDEX statement. The catalog name also
changes when you move the data to a different device. See the procedures
for moving data in DB2 Administration Guide.

Changes to the secondary space allocation (SECQTY) take effect the next
time DB2 extends the data set; however, the new value is not reflected in
the integrated catalog until you use the REORG, RECOVER, or LOAD
REPLACE utility on the index or partition. Changes to the other storage
attributes take effect the next time you use the REORG, RECOVER, or
LOAD REPLACE utility on the index or partition. If you change the
primary space allocation parameters or erase rule, you can have the
changes take effect earlier if you move the data before you start the index
or partition.

Altering indexes on DB2 catalog tables:
For details on altering options on catalog tables, see “SQL statements
allowed on the catalog” on page 2113.

Size restriction for the object descriptor of an index in the SYSIBM.SYSOBDS
catalog table:

The following case might result in an error being returned if the ALTER
INDEX statement results in a versioned object descriptor that is larger than
30,000 bytes being added (or updated) in the SYSIBM.SYSOBDS catalog
table:
v An ALTER INDEX statement that results in the first version of the object

descriptor being generated for the index

You might need to drop and recreate the index if the object descriptor for
the index exceeds 30,000 bytes.

Altering limit keys:
If you specify ALTER PARTITION integer ENDING AT to change the

Chapter 5. Statements 923

|
|
|

|

|

limit key values of a partitioning index, the packages that are dependent
on that index are marked invalid and go through automatic rebind the
next time they are run.

Invalidation of packages:

When an index is altered, all the packages that refer to that index are
marked invalid if one of the following conditions is true:
v A column is added to the index.
v The index is altered to be PADDED or NOT PADDED.
v The index is a partitioning index on a table that uses index-controlled

partitioning, and one or more limit key values is altered.
v The index is altered to REGENERATE.

Restrictions on SQL data change statements in the same commit scope as ALTER
INDEX:

SQL data change statements that affect an index cannot be performed in
the same commit scope as ALTER INDEX statements that affect that index.

Altering indexes for tables that are involved in a clone relationship:
You cannot change any index for a table that is involved in a clone
relationship (base table or clone table). If a change to an index is required,
the clone table must be dropped, than the index can be changed. After the
index is changed, the clone table can be created again.

Adding a varying length column to a key for a system with NOT PADDED as
the default:

If the system default is NOT PADDED (the value of field PAD INDEXES
BY DEFAULT on installation panel DSNTIPE is NO), no varying length
columns are in the key, and the PADDED or NOT PADDED option is not
explicitly specified when the index is created, the PADDED column of the
SYSIBM.SYSINDEXES catalog table is populated with a blank value. If a
varying length column is later added to the key, the value of the PADDED
column in SYSIBM.SYSINDEXES is changed to 'Y' to indicate that the
index is now a PADDED index.

Running utilities:
You cannot execute the ALTER INDEX statement while a DB2 utility has
control of the index or its associated table space.

Alternative syntax and synonyms:
To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following keywords when altering the
partitions of a partitioned index:
v PART can be specified as a synonym for PARTITION. In addition, the

ALTER keyword that precedes PARTITION is optional. In addition, if
you alter more than one partition, specifying a comma between each
ALTER PARTITION integer clause is optional.

v VALUES can be specified as a synonym for ENDING AT.

Although these keywords are supported as alternatives, they are not the
preferred syntax.

Examples

Example 1: Alter the index DSN8B10.XEMP1. Indicate that DB2 is not to close the
data sets that support the index when there are no current users of the index.

924 SQL Reference

ALTER INDEX DSN8B10.XEMP1
CLOSE NO;

Example 2: Alter the index DSN8B10.XPROJ1. Use BP1 as the buffer pool that is to
be associated with the index, indicate that full image or concurrent copies on the
index are allowed, and change the maximum size of each data set to 8 megabytes.

ALTER INDEX DSN8B10.XPROJ1
BUFFERPOOL BP1
COPY YES
PIECESIZE 8M;

Example 3: Assume that index X1 contains a least one varying-length column and is
a padded index. Alter the index to an index that is not padded.

ALTER INDEX X1
NOT PADDED;

The index is placed in restricted rebuild-pending status (RBDP) and cannot be
accessed until it is rebuilt from the table

Example 4: Alter partitioned index DSN8B10.DEPT1. For partition 3, leave one page
of free space for every 13 pages and 13 percent of free space per page. For
partition 5, leave one page for every 25 pages and 25 percent of free space. For all
the other partitions, leave one page of free space for every 6 pages and 11 percent
of free space. Ensure that index pages are cached to the group buffer pool for all
partitions except partition 4. For partition 4, write pages only when there is
inter-DB2 read-write interest on the partition.

ALTER INDEX DSN8B10.XDEPT1
BUFFERPOOL BP1
CLOSE YES
COPY YES
USING VCAT CATLGG
FREEPAGE 6
PCTFREE 11
GBPCACHE ALL
ALTER PARTITION 3

USING VCAT CATLGG
FREEPAGE 13
PCTFREE 13,

ALTER PARTITION 4
USING VCAT CATLGG
GBPCACHE CHANGED,

ALTER PARTITION 5
USING VCAT CATLGG
FREEPAGE 25
PCTFREE 25;

Chapter 5. Statements 925

ALTER MASK
The ALTER MASK statement changes a column mask that exists at the current
server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include the following authority:
v SECADM authority

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets that are held by each authorization ID and role of the process.

Syntax

�� ALTER MASK mask-name ENABLE
DISABLE
REGENERATE

��

Description

mask-name
Identifies the column mask to be altered. The name must identify a mask that
exists at the current server.

ENABLE
Specifies that the column mask is to be enabled for column access control. If
column access control is not currently activated for the table, the column mask
will become effective when column access control is activated for the table. If
column access control is currently activated for the table, the column mask
becomes effective immediately and all packages and dynamic cached
statements that reference the table are invalidated.

A column mask with a regeneration error cannot be enabled. To clear the status
of the column mask, the column mask must be dropped and re-created with a
modified definition.

ENABLE is ignored if the column mask is already defined as enabled for
column access control.

DISABLE
Specifies that the column mask is to be disabled for column access control. If
column access control is not currently activated for the table, the column mask
will remain ineffective when column access control is activated for the table. If
column access control is currently activated for the table, the column mask

926 SQL Reference

becomes ineffective immediately and all packages and dynamic cached
statements that reference the table are invalidated.

DISABLE is ignored if the column mask is already defined as disabled for
column access control.

REGENERATE
Specifies that the column mask is to be regenerated. The column mask
definition in the catalog is used, and existing dependencies and authorization,
if any, are retained. The column mask definition is reevaluated as if the column
mask was being created. The user-defined functions that are referenced in the
column mask definition must be resolved to the same secure UDFs as that
were resolved during the column mask creation.

Notes

Applying DB2 maintenance:
When DB2 maintenance is applied that affects how a column mask is
generated, the column mask might need to be regenerated to ensure the
column mask is still valid.

If the column mask is regenerated successfully, the status of the column
mask is set to a blank in the catalog table. If the column mask is enabled
and column access control is currently activated for the table, all packages
and dynamic cached statements that reference the table are invalidated.

If the column mask cannot be regenerated successfully, an error is
returned. The regeneration status of the column mask is an error. If the
column mask is enabled and column access control is currently activated
for the table, all packages and dynamic cached statements that reference
the table are marked invalidated. To clear the status of the column mask,
the column mask must be dropped and re-created with a modified
definition. Or the column mask can be disabled if not disabled yet. A
disabled column mask becomes ineffective to a column access control
enforced table.

When the table is referenced in a data manipulation statement, the
statement returns an error if any enabled column mask has an regeneration
error.

Examples

Example 1:
Enable column mask M1.
ALTER MASK M1 ENABLE;

Example 2:
Regenerate column mask M1.
ALTER MASK M1 REGENERATE;

COMMIT;

Chapter 5. Statements 927

ALTER PERMISSION
The ALTER PERMISSION statement alters a row permission that exists at the
current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include the following authority:
SECADM authority

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets that are held by each authorization ID and role of the process.

Syntax

�� ALTER PERMISSION permission-name ENABLE
DISABLE
REGENERATE

��

Description

permission-name
Identifies the permission to be altered. The name must identify a row
permission that exists at the current server. The name must not identify a
default row permission that is created implicitly by DB2.

ENABLE
Specifies that the row permission is to be enabled for row access control. If row
access control is not currently activated for the table, the row permission will
become effective when row access control is activated for the table. If row
access control is currently activated for the table, the row permission becomes
effective immediately and all packages and dynamic cached statements that
reference the table are invalidated.

A row permission with a regeneration error cannot be enabled. To clear the
status of the row permission, the row permission must be dropped and
re-created with a modified definition.

ENABLE is ignored if the row permission is already defined as enabled for
row access control.

DISABLE
Specifies that the row permission is to be disabled for row access control. If
row access control is not currently activated for the table, the row permission
will remain ineffective when row access control is activated for the table. If
row access control is currently activated for the table, the row permission

928 SQL Reference

becomes ineffective immediately and all packages and dynamic cached
statements that reference the table are invalidated.

DISABLE is ignored if the row permission is already defined as disabled for
row access control.

REGENERATE
Specifies that the row permission is to be regenerated. The row permission
definition in the catalog is used, and existing authorizations and dependencies,
if any, are retained. The user-defined functions that are referenced in the row
permission definition must be resolved to the same secure UDFs as that were
resolved during the row permission creation.

Notes

Applying DB2 maintenance:
When DB2 maintenance is applied that affects how a row permission is
generated, the row permission might need to be regenerated to ensure the
row permission is still valid.

If the row permission is regenerated successfully, the status of the row
permission is set to a blank in the catalog table. If the row permission is
enabled and row access control is currently activated for the table, all
packages and dynamic cached statements that reference the table are
invalidated.

If the row permission cannot be regenerated successfully, an error is
returned. The regeneration status of the row permission is set to an error. If
the row permission is enabled and row access control is currently activated
for the table, all packages and dynamic cached statements that reference
the table are marked invalidated. To clear the status of the row permission,
the row permission must be dropped and re-created with a modified
definition. Or the row permission can be disabled if not disabled yet. A
disabled row permission becomes ineffective to a row access control
enforced table.

When the table is referenced in a data manipulation statement, the
statement returns an error if any enabled row permission has an
regeneration error.

Examples

Example 1:
Enable permission P1.
ALTER PERMISSION P1 ENABLE;

Example 2:
Regenerate permission P1.
ALTER PERMISSION P1 REGENERATE;

Chapter 5. Statements 929

ALTER PROCEDURE (external)
The ALTER PROCEDURE statement changes the description of an external stored
procedure at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v Ownership of the stored procedure
v The ALTERIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

If the authorization ID that is used to alter the procedure has installation SYSADM
authority, the procedure is identified as system-defined procedure when the
procedure definition is reevaluated.

When LANGUAGE is JAVA and a jar-name is specified in the EXTERNAL NAME
clause, the privilege set must include USAGE on the JAR file, the Java archive file.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package.

If the statement is dynamically prepared, the privilege set is the set of privileges
that are held by the SQL authorization IDs of the process. The specified routine
name can include a schema name (a qualifier). However, if the schema name is not
the same as one of these SQL authorization IDs, one of the following conditions
must be met:
v The privilege set includes SYSADM authority
v The privilege set includes SYSCTRL authority
v The SQL authorization ID of the process has the ALTERIN privilege on the

schema

If the environment in which the stored procedure is to run is being changed, the
authorization ID must have authority to use the WLM environment. This
authorization is obtained from an external security product, such as RACF.

Syntax

�� ALTER PROCEDURE procedure-name option-list ��

930 SQL Reference

�� DYNAMIC RESULT SETS integer
(1)

EXTERNAL NAME external-program-name
identifier

�

� LANGUAGE ASSEMBLE
C
COBOL
JAVA
PLI
REXX

PARAMETER STYLE SQL
GENERAL
GENERAL WITH NULLS
JAVA

NOT DETERMINISTIC
DETERMINISTIC

�

� PACKAGE PATH package-path
NO PACKAGE PATH

MODIFIES SQL DATA
READS SQL DATA
CONTAINS SQL
NO SQL

NO DBINFO
DBINFO

NO COLLID
COLLID collection-id

�

� WLM ENVIRONMENT name
(name , *)

ASUTIME NO LIMIT
LIMIT integer

STAY RESIDENT NO
YES

�

� PROGRAM TYPE SUB
MAIN

SECURITY DB2
USER
DEFINER

RUN OPTIONS run-time-options �

� COMMIT ON RETURN NO
YES

INHERIT SPECIAL REGISTERS
DEFAULT SPECIAL REGISTERS

CALLED ON NULL INPUT �

� STOP AFTER SYSTEM DEFAULT FAILURES
STOP AFTER integer FAILURES
CONTINUE AFTER FAILURE

DISALLOW DEBUG MODE
ALLOW DEBUG MODE
DISABLE DEBUG MODE

��

Notes:

1 If LANGUAGE is JAVA, EXTERNAL NAME must be specified with a valid
external-java-routine-name.

option-list: (Specify options in any order. Specify at least one option. Do not specify the same option more than
once.)

Chapter 5. Statements 931

external-java-routine-name:

jar-name :
method-name

method-signature

jar-name:

schema-name,
jar-id

method-name:

�

package-id .
(1)

/

class-id .
(2)

!

method-id

method-signature:

�

()
,

java-datatype

Notes:

1 The slash (/) is supported for compatibility with previous releases of DB2 for z/OS.

2 The exclamation point (!) is supported for compatibility with other products in the DB2 family.

Description

procedure-name
Identifies the stored procedure to be altered.

DYNAMIC RESULT SETS integer
Specifies the maximum number of query result sets that the stored procedure
can return. The value must be between 0 and 32767.

EXTERNAL NAME external-program-name or identifier
Specifies the name of the MVS load module for the program that runs when
the procedure name is specified in an SQL CALL statement.

If LANGUAGE is JAVA, external-program-name must be specified and enclosed
in single quotation marks, with no extraneous blanks within the single
quotation marks. It must specify a valid external-java-routine-name. If multiple
external-program-name values are specified, the total length of all of the values
must not be greater than 1305 bytes and each value must be separated by a
space or a line break. Do not specify a JAR file for a Java procedure for which
NO SQL is in effect.

An external-java-routine-name contains the following parts:

932 SQL Reference

jar-name
Identifies the name given to the JAR file when it was installed in the
database. The name contains jar-id, which can optionally be qualified with
a schema. Examples are "myJar" and "mySchema.myJar." The unqualified
jar-id is implicitly qualified with a schema name according to the following
rules:
v If the statement is embedded in a program, the schema name is the

authorization ID in the QUALIFIER bind option when the package or plan
was created or last rebound. If the QUALIFIER was not specified, the
schema name is the owner of the package or plan.

v If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SCHEMA special register.

If jar-name is specified, it must exist when the ALTER PROCEDURE
statement is processed.

If jar-name is not specified, the procedure is loaded from the class file
directly instead of being loaded from a JAR file. DB2 searches the
directories in the CLASSPATH associated with the WLM Environment.
Environmental variables for Java routines are specified in a data set
identified in a JAVAENV DD card on the JCL used to start the address
space for a WLM-managed stored procedure.

method-name
Identifies the name of the method and must not be longer than 254 bytes.
Its package, class, and method ID's are specific to Java and as such are not
limited to 18 bytes. In addition, the rules for what these can contain are not
necessarily the same as the rules for an SQL ordinary identifier.

package-id
Identifies a package. The concatenated list of package-ids identifies the
package that the class identifier is part of. If the class is part of a
package, the method name must include the complete package prefix,
such as "myPacks.StoredProcs." The Java virtual machine looks in the
directory "/myPacks/StoredProcs/" for the classes.

class-id
Identifies the class identifier of the Java object.

method-id
Identifies the method identifier with the Java class to be invoked.

method-signature
Identifies a list of zero or more Java data types for the parameter list and
must not be longer than 1024 bytes. Specify the method-signature if the
procedure involves any input or output parameters that can be NULL.
When the stored procedure being created is called, DB2 searches for a Java
method with the exact method-signature. The number of java-datatype
elements specified indicates how many parameters that the Java method
must have.

A Java procedure can have no parameters. In this case, you code an empty
set of parentheses for method-signature. If a Java method-signature is not
specified, DB2 searches for a Java method with a signature derived from
the default JDBC types associated with the SQL types specified in the
parameter list of the ALTER PROCEDURE statement.

For other values of LANGUAGE, the value must conform to the naming
conventions for MVS load modules: the value must be less than or equal to 8

Chapter 5. Statements 933

bytes, and it must conform to the rules for an ordinary identifier with the
exception that it must not contain an underscore.

LANGUAGE
Specifies the application programming language in which the stored procedure
is written. Assembler, C, COBOL, and PL/I programs must be designed to run
in IBM's Language Environment.

ASSEMBLE
The stored procedure is written in Assembler.

C The stored procedure is written in C or C++.

COBOL
The stored procedure is written in COBOL, including the OO-COBOL
language extensions.

JAVA
The stored procedure is written in Java and is executed in the Java Virtual
Machine. When LANGUAGE JAVA is specified, the EXTERNAL NAME
clause must also be specified with a valid external-java-routine-name and
PARAMETER STYLE must be specified with JAVA. The procedure must
be a public static method of the specified Java class.

Do not specify LANGUAGE JAVA when DBINFO, PROGRAM TYPE
MAIN, or RUN OPTIONS is in effect.

PLI
The stored procedure is written in PL/I.

REXX
The stored procedure is written in REXX. Do not specify LANGUAGE
REXX when PARAMETER STYLE SQL is specified.

PARAMETER STYLE
Identifies the linkage convention used to pass parameters to and return values
from the stored procedure. All of the linkage conventions provide arguments to
the stored procedure that contain the parameters specified on the CALL
statement. Some of the linkage conventions pass additional arguments to the
stored procedure that provide more information to the stored procedure. For
more information on linkage conventions, see DB2 Application Programming and
SQL Guide.

SQL
Specifies that, in addition to the parameters on the CALL statement,
several additional parameters are passed to the stored procedure. The
following parameters are passed:
v The first n parameters that are specified on the CREATE PROCEDURE

statement.
v n parameters for indicator variables for the parameters.
v The SQLSTATE to be returned.
v The qualified name of the stored procedure.
v The specific name of the stored procedure.
v The SQL diagnostic string to be returned to DB2.
v If DBINFO is specified, the DBINFO structure.

Do not specify PARAMETER STYLE SQL when LANGUAGE REXX is
specified.

934 SQL Reference

GENERAL
Specifies that the stored procedure uses a parameter passing mechanism
where the stored procedure receives only the parameters specified on the
CALL statement. Arguments to procedures defined with this parameter
style cannot be null.

GENERAL WITH NULLS
Specifies that, in addition to the parameters on the CALL statement as
specified in GENERAL, another argument is also passed to the stored
procedure. The additional argument contains an indicator array with an
element for each of the parameters on the CALL statement. In C, this is an
array of short integers. The indicator array enables the stored procedure to
accept or return null parameter values.

JAVA
Specifies that the stored procedure uses a parameter passing convention
that conforms to the Java and SQLJ Routines specifications. PARAMETER
STYLE JAVA can be specified only if LANGUAGE is JAVA. If the ALTER
PROCEDURE statement results in changing LANGUAGE to JAVA,
PARAMETER STYLE JAVA, and an EXTERNAL NAME clause might
need to be specified to provide appropriate values. JAVA must be specified
for PARAMETER STYLE when LANGUAGE is JAVA.

INOUT and OUT parameters are passed as single-entry arrays. The
INOUT and OUT parameters are declared in the Java method as
single-element arrays of the Java type.

PARAMETER STYLE SQL cannot be used with LANGUAGE REXX.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the stored procedure returns the same results each time the
stored procedure is called with the same IN and INOUT arguments.

DETERMINISTIC
The stored procedure always returns the same results each time the stored
procedure is called with the same IN and INOUT arguments, if the
referenced data in the database has not changed.

NOT DETERMINISTIC
The stored procedure might not return the same result each time the
procedure is called with the same IN and INOUT arguments, even when
the referenced data in the database has not changed.

DB2 does not verify that the stored procedure code is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

NO PACKAGE PATH or PACKAGE PATH package-path
Identifies the package path to use when the procedure is run. This is the list of
the possible package collections into which the DBRM this is associated with
the procedure is bound.

NO PACKAGE PATH
Specifies that the list of package collections for the procedure is the same
as the list of package collections for the calling program. If the calling
program does not use a package, DB2 resolves the package by using the
CURRENT PACKAGE PATH special register, the CURRENT PACKAGESET
special register, or the PKLIST bind option (in this order). For information
about how DB2 uses these three items, see DB2 Application Programming
and SQL Guide.

Chapter 5. Statements 935

PACKAGE PATH package-path
Specifies a list of package collections, in the same format as used in the
CURRENT PACKAGE PATH special register.

If the COLLID clause is specified with PACKAGE PATH, the COLLID
clause is ignored when the routine is invoked.

The package-path value that is associated with the procedure definition is
checked when the procedure is invoked. If package-path contains
SESSION_USER, USER, PATH, or PACKAGE PATH, an error is returned
when the package-path value is checked.

MODIFIES SQL DATA, READS SQL DATA, CONTAINS SQL, or NO SQL
Specifies which SQL statements, if any, can be executed in the procedure or
any routine that is called from this procedure. For the data access classification
of each statement, see Table 162 on page 2030.

MODIFIES SQL DATA
Specifies that the procedure can execute any SQL statement except
statements that are not supported in procedures.

READS SQL DATA
Specifies that procedure can execute statements with a data access
indication of READS SQL DATA, CONTAINS SQL, or NO SQL. The
procedure cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the procedure can execute only SQL statements with an
access indication of CONTAINS SQL. The procedure cannot execute
statements that read or modify data.

NO SQL
Specifies that the procedure can execute only SQL statements with a data
access classification of NO SQL. Do not specify NO SQL for a Java
procedure that uses a JAR file.

NO DBINFO or DBINFO
Specifies whether additional status information is passed to the stored
procedure when it is invoked.

NO DBINFO
Additional information is not passed.

DBINFO
An additional argument is passed when the stored procedure is invoked.
The argument is a structure that contains information such as the
application run time authorization ID, the schema name, the name of a
table or column that the procedure might be inserting into or updating,
and identification of the database server that invoked the procedure. For
details about the argument and its structure, see DB2 Application
Programming and SQL Guide.

DBINFO can be specified only if PARAMETER STYLE SQL is specified.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the stored procedure
is executed. This is the package collection into which the DBRM that is
associated with the stored procedure is bound.

NO COLLID
Specifies that the package collection for the stored procedure is the same as
the package collection of the calling program. If the invoking program does

936 SQL Reference

not use a package, DB2 resolves the package by using the CURRENT
PACKAGE PATH special register, the CURRENT PACKAGESET special
register, or the PKLIST bind option (in this order). For details about how
DB2 uses these three items, see the information on package resolution in
DB2 Application Programming and SQL Guide.

COLLID collection-id
Identifies the package collection that is to be used when the stored
procedure is executed. It is the name of the package collection into which
the DBRM associated with the stored procedure is bound.

For REXX stored procedures, collection-id can be DSNREXRR, DSNREXRS,
DSNREXCR, or DSNREXCS.

WLM ENVIRONMENT
Identifies the WLM (workload manager) environment in which the stored
procedure is to run when the DB2 stored procedure address space is
WLM-established. The name of the WLM environment is an SQL identifier.

name
The WLM environment in which the stored procedure must run. If another
stored procedure or a user-defined function calls the stored procedure and
that calling routine is running in an address space that is not associated
with the specified WLM environment, DB2 routes the stored procedure
request to a different address space.

(name,*)
When the stored procedure is called directly by an SQL application
program, the WLM environment in which the stored procedure runs.

If another stored procedure or a user-defined function calls the stored
procedure, the stored procedure runs in the same WLM environment that
the calling routine uses.

To change the environment in which the procedure is to run, you must have
appropriate authority for the WLM environment. For an example of a RACF
command that provides this authorization, see Running stored procedures.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of a stored procedure can run. The value is unrelated to the
ASUTIME column in the resource limit specification table.

When you are debugging a stored procedure, setting a limit can be helpful in
case the stored procedure gets caught in a loop. For information on CPU
service units, see z/OS MVS Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units.

LIMIT integer
The limit on the service units is a positive integer in the range of 1 to 2 147
483 647. If the stored procedure uses more service units than the specified
value, DB2 cancels the stored procedure.

STAY RESIDENT
Specifies whether the stored procedure load module is to remain resident in
memory when the stored procedure ends.

NO The load module is deleted from memory after the stored procedure ends.
Use NO for non-reentrant stored procedures.

Chapter 5. Statements 937

YES
The load module remains resident in memory after the stored procedure
ends.

PROGRAM TYPE
Specifies whether the stored procedure runs as a main routine or a subroutine.
If PROGRAM TYPE is altered, the stored procedure needs to be re-compiled
for the change to take effect.

SUB
The stored procedure runs as a subroutine.

Do not specify PROGRAM TYPE SUB for stored procedures with a
LANGUAGE value of REXX.

MAIN
The stored procedure runs as a main routine.

Do not specify PROGRAM TYPE MAIN when LANGUAGE JAVA is
specified.

SECURITY
Specifies how the stored procedure interacts with an external security product,
such as RACF, to control access to non-SQL resources.

DB2
The stored procedure does not require a special external security
environment. If the stored procedure accesses resources that an external
security product protects, the access is performed using the authorization
ID associated with the stored procedure address space.

USER
An external security environment should be established for the stored
procedure. If the stored procedure accesses resources that the external
security product protects, the access is performed using the authorization
ID of the user who invoked the stored procedure.

DEFINER
An external security environment should be established for the stored
procedure. If the stored procedure accesses resources that the external
security product protects, the access is performed using the authorization
ID of the owner of the stored procedure.

RUN OPTIONS run-time-options
Specifies the Language Environment run time options to be used for the stored
procedure. For a REXX stored procedure, specifies the Language Environment
run time options to be passed to the REXX language interface to DB2. You
must specify run-time-options as a character string that is no longer than 254
bytes. To replace any existing run time options with no options, specify an
empty string with RUN OPTIONS. When you specify an empty string, DB2
does not pass any run time options to Language Environment, and Language
Environment uses its installation defaults. For a description of the Language
Environment run time options, see z/OS Language Environment Programming
Reference.

Do not specify RUN OPTIONS when LANGUAGE JAVA is specified.

COMMIT ON RETURN
Indicates whether DB2 is to commit the transaction immediately on return
from the stored procedure.

NO DB2 does not issue a commit when the stored procedure returns.

938 SQL Reference

YES
DB2 issues a commit when the stored procedure returns if the following
statements are true:
v The SQLCODE that is returned by the CALL statement is not negative.
v The stored procedure is not in a must abort state.

The commit operation includes the work that is performed by the calling
application process and the stored procedure.

If the stored procedure returns result sets, the cursors that are associated
with the result sets must have been defined WITH HOLD to be usable
after the commit.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.

INHERIT SPECIAL REGISTERS
Indicates that values of special registers are inherited according to the rules
listed in the table for characteristics of special registers in a stored
procedure in Table 40 on page 205.

DEFAULT SPECIAL REGISTERS
Indicates that special registers are initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
stored procedure in Table 40 on page 205.

CALLED ON NULL INPUT
Specifies that the procedure is to be called even if any or all of the argument
values are null, which means that the procedure must be coded to test for null
argument values. The procedure can return null or nonnull values.

STOP AFTER SYSTEM DEFAULT FAILURES, STOP AFTER nn FAILURES, or CONTINUE
AFTER FAILURE

Specifies whether the routine is to be put in a stopped state after some number
of failures.

STOP AFTER SYSTEM DEFAULT FAILURES
Specifies that this routine should be placed in a stopped state after the
number of failures indicated by the value of field MAX ABEND COUNT
on installation field DSNTIPX.

STOP AFTER nn FAILURES
Specifies that this routine should be placed in a stopped state after nn
failures. The value nn can be an integer from 1 to 32767.

CONTINUE AFTER FAILURE
Specifies that this routine should not be placed in a stopped state after any
failure.

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether the procedure can be run in debugging mode.

Do not specify this option unless the procedure is defined with LANGUAGE
JAVA.

ALLOW DEBUG MODE
Specifies that the procedure can be run in debugging mode.

DISALLOW DEBUG MODE
Specifies that the procedure cannot be run in debugging mode.

You can use a subsequent ALTER PROCEDURE statement to change this
option to ALLOW DEBUG MODE.

Chapter 5. Statements 939

DISABLE DEBUG MODE
Specifies that the procedure can never be run in debugging mode.

The procedure cannot be changed to specify ALLOW DEBUG MODE or
DISALLOW DEBUG MODE when the procedure has been created or
altered to use DISABLE DEBUG MODE. To change this option, you must
drop and re-create the procedure using the option that you want.

Notes

Invalidation of packages: When an external procedure is altered, all the packages
that refer to that procedure are marked invalid.

LANGUAGE C and the PARAMETER VARCHAR clause: The ALTER
PROCEDURE statement does not allow you to alter the value of the PARAMETER
VARCHAR or PARAMETER CCSID clauses that are associated with the
procedure definition. However, you can alter the LANGUAGE clause for the
procedure. If the PARAMETER VARCHAR clause is specified for the creation of a
LANGUAGE C procedure, the catalog information for that option is not affected
by subsequent ALTER PROCEDURE statements. The procedure might be changed
to a language other than C, in which case the PARAMETER VARCHAR setting is
ignored. If the procedure is later changed back to LANGUAGE C, the setting of
the PARAMETER VARCHAR option that was specified for the CREATE
PROCEDURE statement (which is still in the catalog) will be used.

Alternative syntax and synonyms: To provide compatibility with previous releases
of DB2 or other products in the DB2 family, DB2 supports the following keywords:
v DYNAMIC RESULT SET, RESULT SET, and RESULT SETS as synonyms for

DYNAMIC RESULT SETS

v STANDARD CALL as a synonym for DB2SQL

v SIMPLE CALL as a synonym for GENERAL

v SIMPLE CALL WITH NULLS as a synonym for GENERAL WITH NULLS

v VARIANT as a synonym for NOT DETERMINISTIC

v NOT VARIANT as a synonym for DETERMINISTIC

v NULL CALL as a synonym for CALLED ON NULL INPUT

v PARAMETER STYLE DB2SQL as a synonym for PARAMETER STYLE SQL

Example

Assume that stored procedure SYSPROC.MYPROC is currently defined to run in
WLM environment PARTSA and that you have appropriate authority on that WLM
environment and WLM environment PARTSEC. Change the definition of the stored
procedure so that it runs in PARTSEC.

ALTER PROCEDURE SYSPROC.MYPROC WLM ENVIRONMENT PARTSEC;

940 SQL Reference

ALTER PROCEDURE (SQL - external)
The ALTER PROCEDURE statement changes the description, at the current server,
of an external SQL procedure.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v Ownership of the stored procedure
v The ALTERIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

If the authorization ID that is used to alter the procedure has installation SYSADM
authority, the procedure is identified as system-defined procedure when the
procedure definition is reevaluated.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package.

If the statement is dynamically prepared, the privilege set is the set of privileges
that are held by the SQL authorization IDs of the process. The specified routine
name can include a schema name (a qualifier). However, if the schema name is not
the same as one of these SQL authorization IDs, one of the following conditions
must be met:
v The privilege set includes SYSADM authority
v The privilege set includes SYSCTRL authority
v The SQL authorization ID of the process has the ALTERIN privilege on the

schema

The SQL authorization ID that is used to alter the procedure definition must have
appropriate authority for the WLM environment in which the procedure is
currently defined to run. This authorization is obtained from an external security
product, such as RACF.

Syntax

�� ALTER PROCEDURE procedure-name option-list ��

option-list: (Specify options in any order. Specify at least one option. Do not specify the same option more than
once.)

Chapter 5. Statements 941

�� DYNAMIC RESULT SETS integer EXTERNAL NAME external-program-name
identifier

NOT DETERMINISTIC
DETERMINISTIC

�

� MODIFIES SQL DATA
READS SQL DATA
CONTAINS SQL

NO COLLID
COLLID collection-id

WLM ENVIRONMENT name
(name , *)

�

� ASUTIME NO LIMIT
LIMIT integer

STAY RESIDENT NO
YES

PROGRAM TYPE SUB
MAIN

�

� SECURITY DB2
USER
DEFINER

COMMIT ON RETURN NO
YES

RUN OPTIONS run-time-options �

� INHERIT SPECIAL REGISTERS
DEFAULT SPECIAL REGISTERS

STOP AFTER SYSTEM DEFAULT FAILURES
STOP AFTER integer FAILURES
CONTINUE AFTER FAILURES

��

Description

procedure-name
Identifies the stored procedure to be altered.

DYNAMIC RESULT SETS integer
Specifies the maximum number of query result sets that the procedure can
return. The value must be between 0 and 32767.

EXTERNAL NAME external-program-name or identifier
Specifies the name of the MVS load module for the program that runs when
the procedure name is specified in an SQL CALL statement. The value must
conform to the naming conventions for MVS load modules: the value must be
less than or equal to 8 bytes, and it must conform to the rules for an ordinary
identifier with the exception that it must not contain an underscore.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the procedure returns the same results each time the
procedure is called with the same IN and INOUT arguments.

NOT DETERMINISTIC
The procedure might not return the same result each time the procedure is
called with the same IN and INOUT arguments, even when the referenced
data in the database has not changed.

DETERMINISTIC
The procedure always returns the same results each time the procedure is
called with the same IN and INOUT arguments, if the referenced data in
the database has not changed.

DB2 does not verify that the procedure code is consistent with the specification
of DETERMINISTIC or NOT DETERMINISTIC.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Specifies the classification of SQL statements that the procedure can execute.
For the data access classification of each statement, see Table 162 on page 2030.
Statements that are not supported in any procedure will return an error.

942 SQL Reference

MODIFIES SQL DATA
Specifies that the procedure can execute any SQL statement except
statements that are not supported in procedures.

READS SQL DATA
Specifies that procedure can execute statements with a data access
indication of READS SQL DATA or CONTAINS SQL. The procedure
cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the procedure can execute only SQL statements with an
access indication of CONTAINS SQL. The procedure cannot execute
statements that read or modify data.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the procedure is
executed. This is the package collection into which the DBRM that is associated
with the procedure is bound.

NO COLLID
Indicates that the package collection for the procedure is the same as the
package collection of the calling program. If the invoking program does
not use a package, DB2 resolves the package by using the CURRENT
PACKAGE PATH special register, the CURRENT PACKAGESET special
register, or the PKLIST bind option (in this order). For details about how
DB2 uses these three items, see the information on package resolution in
DB2 Application Programming and SQL Guide.

COLLID collection-id
Specifies the package collection for the procedure.

WLM ENVIRONMENT name or (name,*)
Identifies the WLM (workload manager) environment in which the procedure
is to run when the DB2 stored procedure address space is WLM-established.
The name of the WLM environment is an SQL identifier.

name
Specifies the WLM environment in which the procedure must run. If
another routine calls the procedure and that calling routine is running in
an address space that is not associated with the specified WLM
environment, DB2 routes the procedure request to a different address
space.

(name,*)
When an SQL application program directly calls a procedure, name
specifies the WLM environment in which the stored procedure runs.

If another routine calls the procedure, the procedure runs in the same
WLM environment that the calling routine uses.

To change the environment in which the procedure is to run, you must have
appropriate authority for the WLM environment. For an example of a RACF
command that provides this authorization, see Running stored procedures.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of a procedure can run. The value is unrelated to the ASUTIME
column of the resource limit specification table.

Chapter 5. Statements 943

When you are debugging a procedure, setting a limit can be helpful in case the
procedure gets caught in a loop. For information on service units, see z/OS
MVS Initialization and Tuning Guide.

NO LIMIT
There is no limit on the number of CPU service units that the procedure
can run.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the
range of 1 to 2 147 483 647. If the procedure uses more service units than
the specified value, DB2 cancels the procedure. The CPU cycles that are
consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

STAY RESIDENT
Specifies whether the load module for the procedure is to remain resident in
memory when the procedure ends.

NO The load module is deleted from memory after the procedure ends.

YES
The load module remains resident in memory after the procedure ends.

PROGRAM TYPE
Specifies whether the procedure runs as a main routine or a subroutine. If
PROGRAM TYPE is altered, the stored procedure needs to be re-compiled for
the change to take effect.

SUB
The procedure runs as a subroutine.

MAIN
The procedure runs as a main routine.

SECURITY
Specifies how the procedure interacts with an external security product, such
as RACF, to control access to non-SQL resources.

DB2
The procedure does not require a special external security environment. If
the procedure accesses resources that an external security product protects,
the access is performed using the authorization ID that is associated with
the address space in which the procedure runs.

USER
An external security environment should be established for the procedure.
If the procedure accesses resources that the external security product
protects, the access is performed using the authorization ID of the user
who invoked the procedure.

DEFINER
An external security environment should be established for the procedure.
If the procedure accesses resources that the external security product
protects, the access is performed using the authorization ID of the owner
of the procedure.

RUN OPTIONS run-time-options
Specifies the Language Environment run time options that are to be used for
the procedure. You must specify run-time-options as a character string that is no
longer than 254 bytes. If you do not specify RUN OPTIONS or pass an empty

944 SQL Reference

string, DB2 does not pass any run time options to Language Environment, and
Language Environment uses its installation defaults.

For a description of the Language Environment run time options, see z/OS
Language Environment Programming Reference.

COMMIT ON RETURN
Indicates whether DB2 commits the transaction immediately on return from the
procedure.

NO DB2 does not issue a commit when the procedure returns.

YES
DB2 issues a commit when the procedure returns if the following
statements are true:
v A positive SQLCODE is returned by the CALL statement.
v The procedure is not in a must abort state.

The commit operation includes the work that is performed by the calling
application process and the procedure.

If the procedure returns result sets, the cursors that are associated with the
result sets must have been defined as WITH HOLD to be usable after the
commit.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.

INHERIT SPECIAL REGISTERS
Specifies that special registers should be inherited according to the rules
listed in the table for characteristics of special registers in a procedure in
Table 40 on page 205.

DEFAULT SPECIAL REGISTERS
Specifies that special registers should be initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
procedure in Table 40 on page 205.

STOP AFTER SYSTEM DEFAULT FAILURES, STOP AFTER nn FAILURES, or CONTINUE
AFTER FAILURE

Specifies if the routine is stopped after failures.

STOP AFTER SYSTEM DEFAULT FAILURES
Specifies that this routine should be placed in a stopped state after the
number of failures indicated by the value of field MAX ABEND COUNT
on installation panel DSNTIPX.

STOP AFTER nn FAILURES
Specifies that this routine should be placed in a stopped state after nn
failures. The value nn can be an integer from 1 to 32767.

CONTINUE AFTER FAILURES
Specifies that this routine should not be placed in a stopped state after any
failure.

Notes

Changing to a native SQL procedure: You cannot change an external SQL
procedure to a native SQL procedure. You can drop the procedure that you want to
change using the DROP statement and create a native SQL procedure with a
similar definition using the CREATE PROCEDURE statement. Alternatively, you
can create a native SQL procedure using a different schema.

Chapter 5. Statements 945

Invalidation of packages: When an SQL procedure is altered, all packages that
refer to that procedure are marked invalid.

Alternative syntax and synonyms: To provide compatibility with previous releases
of DB2 or other products in the DB2 UDB family, DB2 supports the following
keywords:
v RESULT SET, RESULT SETS, and DYNAMIC RESULT SET as synonyms for

DYNAMIC RESULT SETS.
v VARIANT as a synonym for NOT DETERMINISTIC
v NOT VARIANT as a synonym for DETERMINISTIC

Example

Modify the definition for an SQL procedure so that SQL changes are committed on
return from the SQL procedure and the SQL procedure runs in the WLM
environment named WLMSQLP.
ALTER PROCEDURE UPDATE_SALARY_1
COMMIT ON RETURN YES
WLM ENVIRONMENT WLMSQLP;

946 SQL Reference

ALTER PROCEDURE (SQL - native)
The ALTER PROCEDURE statement changes the definition of an SQL procedure at
the current server. The procedure options, parameter names, and routine body can
be changed and additional versions of the procedure can be defined and
maintained using the ALTER PROCEDURE statement.

For information about the SQL control statements that are supported in native SQL
procedures, refer to Chapter 6, “SQL control statements for SQL routines,” on page
1963.

Invocation

This statement can only be dynamically prepared only if DYNAMICRULES run
behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v Ownership of the procedure
v The ALTERIN privilege on the schema
v SYSADM authority
v SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

If the authorization ID that is used to alter the procedure has installation SYSADM
authority, the procedure is identified as system-defined procedure when the
procedure definition is reevaluated.

Additional privileges might be required in the following situations:
v If SQL-routine-body is specified, the privilege set must include the privileges that

are required to execute the statements in SQL-routine-body.
v If a user-defined type is referenced (as the data type of a parameter or SQL

variable), the privilege set must also include at least one of the following
privileges or authorities:
– Ownership of the user-defined type
– The USAGE privilege on the user-defined type
– SYSADM authority

v If the procedure uses a table as a parameter, the privilege set must also include
at least one of the following privileges or authorities:
– Ownership of the table
– The SELECT privilege on the table
– SYSADM authority

v If the WLM ENVIRONMENT FOR DEBUG MODE clause is specified, the
privilege set must include the authority to define programs that run in the
specified WLM environment. This authorization is obtained from an external
security product, such as RACF.

v When defining a new version of a procedure (using the ADD VERSION clause)
or when replacing an existing version (using the REPLACE VERSION clause),
the privilege set must include the required authorization to add a new package

Chapter 5. Statements 947

|

|

|

or a new version of an existing package depending on the value of the BIND
NEW PACKAGE field on installation panel DSNTIPP, or the privilege set must
include SYSADM or SYSCTRL authority.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package.

If the statement is dynamically prepared, the privilege set is the set of privileges
that are held by the SQL authorization IDs of the process. The specified routine
name can include a schema name (a qualifier). However, if the schema name is not
the same as one of these SQL authorization IDs, one of the following conditions
must be met:
v The privilege set includes SYSADM authority
v The privilege set includes SYSCTRL authority
v The SQL authorization ID of the process has the ALTERIN privilege on the

schema

Syntax

�� ALTER PROCEDURE procedure-name �

�
ALTER ACTIVE VERSION

option-list
ALL VERSIONS
VERSION routine-version-id

ACTIVE VERSION
REPLACE routine-specification

VERSION routine-version-id
ADD VERSION routine-version-id routine-specification
ACTIVATE VERSION routine-version-id

ACTIVE VERSION
REGENERATE

VERSION routine-version-id
DROP VERSION routine-version-id

��

��

�

SQL-routine-body
(1) option-list

()
,

parameter-declaration

��

Notes:

1 All versions of the procedure must have the same number of parameters.

routine-specification:

parameter-declaration:

948 SQL Reference

��
IN

parameter-name data-type
OUT
INOUT

��

�� built-in-type
distinct-type-name
array-type-name

��

data-type:

built-in-type:

Chapter 5. Statements 949

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) FOR SBCS DATA CCSID ASCII
CHARACTER VARYING (integer) MIXED EBCDIC
CHAR BIT UNICODE

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) FOR SBCS DATA CCSID ASCII

CLOB K MIXED EBCDIC
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
XML

��

option-list: (The options can be specified in any order, but each option can be specified only one time.)

950 SQL Reference

��
NOT DETERMINISTIC MODIFIES SQL DATA

DETERMINISTIC READS SQL DATA CALLED ON NULL INPUT DYNAMIC RESULT SETS integer
CONTAINS SQL

�

�
DISALLOW DEBUG MODE PARAMETER CCSID ASCII QUALIFIER schema-name PACKAGE OWNER authorization-name
ALLOW DEBUG MODE PARAMETER CCSID EBCDIC
DISABLE DEBUG MODE PARAMETER CCSID UNICODE

�

�
ASUTIME NO LIMIT COMMIT ON RETURN NO INHERIT SPECIAL REGISTERS

ASUTIME LIMIT integer COMMIT ON RETURN YES DEFAULT SPECIAL REGISTERS WLM ENVIRONMENT FOR DEBUG MODE name
AUTONOMOUS

�

�
CURRENT DATA NO DEGREE 1

DEFER PREPARE CURRENT DATA YES DEGREE ANY
NODEFER PREPARE

CONCURRENT ACCESS RESOLUTION USE CURRENTLY COMMITTED
CONCURRENT ACCESS RESOLUTION WAIT FOR OUTCOME

�

�
DYNAMICRULES RUN

DYNAMICRULES BIND
DYNAMICRULES DEFINEBIND
DYNAMICRULES DEFINERUN
DYNAMICRULES INVOKEBIND
DYNAMICRULES INVOKERUN

�

�
WITHOUT EXPLAIN WITHOUT IMMEDIATE WRITE ISOLATION LEVEL CS

APPLICATION ENCODING SCHEME ASCII WITH EXPLAIN WITH IMMEDIATE WRITE ISOLATION LEVEL RS
APPLICATION ENCODING SCHEME EBCDIC ISOLATION LEVEL RR
APPLICATION ENCODING SCHEME UNICODE ISOLATION LEVEL UR

�

�

�

WITHOUT KEEP DYNAMIC OPTHINT '' RELEASE AT COMMIT

WITH KEEP DYNAMIC OPTHINT string-constant , RELEASE AT DEALLOCATE

SQL PATH schema-name
SYSTEM PATH

SESSION USER
USER

�

�
REOPT NONE VALIDATE RUN

REOPT ALWAYS VALIDATE BIND ROUNDING DEC_ROUND_CEILING DATE FORMAT ISO
REOPT ONCE ROUNDING DEC_ROUND_DOWN DATE FORMAT EUR

ROUNDING DEC_ROUND_FLOOR DATE FORMAT USA
ROUNDING DEC_ROUND_HALF_DOWN DATE FORMAT JIS
ROUNDING DEC_ROUND_HALF_EVEN DATE FORMAT LOCAL
ROUNDING DEC_ROUND_HALF_UP
ROUNDING DEC_ROUND_UP

�

�
FOR UPDATE CLAUSE REQUIRED

DECIMAL(15) FOR UPDATE CLAUSE OPTIONAL TIME FORMAT ISO
DECIMAL(31) TIME FORMAT EUR
DECIMAL(15,s) TIME FORMAT USA
DECIMAL(31,s) TIME FORMAT JIS

TIME FORMAT LOCAL

BUSINESS_TIME SENSITIVE YES

BUSINESS_TIME SENSITIVE NO
�

�
SYSTEM_TIME SENSITIVE YES

SYSTEM_TIME SENSITIVE NO

ARCHIVE SENSITIVE YES

ARCHIVE SENSITIVE NO APPLCOMPAT compatibility-level
��

SQL-routine-body:

Chapter 5. Statements 951

|

��
(1) (2)

SQL-control-statement
ALTER DATABASE statement
ALTER FUNCTION statement (external scalar, external table, sourced, SQL scalar, or SQL table)
ALTER INDEX statement
ALTER PROCEDURE statement (external, SQL - external, or SQL - native)
ALTER SEQUENCE statement
ALTER STOGROUP statement
ALTER TABLE statement
ALTER TABLESPACE statement
ALTER TRUSTED CONTEXT statement
ALTER VIEW statement
COMMENT statement
COMMIT statement
CONNECT statement
CREATE ALIAS statement
CREATE DATABASE statement
CREATE FUNCTION statement (external scalar, external table, or sourced)
CREATE GLOBAL TEMPORARY TABLE statement
CREATE INDEX statement
CREATE PROCEDURE (external) statement
CREATE ROLE statement
CREATE SEQUENCE statement
CREATE STOGROUP statement
CREATE SYNONYM statement
CREATE TABLE statement
CREATE TABLESPACE statement
CREATE TRUSTED CONTEXT statement
CREATE TYPE statement
CREATE VIEW statement
DECLARE GLOBAL TEMPORARY TABLE statement
DELETE statement
DROP statement
EXCHANGE statement
EXECUTE IMMEDIATE statement
GRANT statement
INSERT statement
LABEL statement
LOCK TABLE statement
MERGE statement
REFRESH TABLE statement
RELEASE statement
RELEASE SAVEPOINT statement
RENAME statement
REVOKE statement
ROLLBACK statement
SAVEPOINT statement
SELECT INTO statement
SET CONNECTION statement
SET special-register statement
TRUNCATE statement
UPDATE statement
VALUES INTO statement

��

Notes:

1 An ALTER FUNCTION (SQL scalar) statement or an ALTER PROCEDURE (SQL native)
statement with an ADD VERSION or REPLACE clause is not allowed in an SQL-routine-body.

2 The COMMIT statement and the ROLLBACK statement (without the TO SAVEPOINT clause)
must not be issued in a routine body if the routine is in the calling chain of an SQL routine, an
external routine, or a trigger.

Description

procedure-name
Identifies the procedure to alter. The procedure that is identified in
procedure-name must exist at the current server.

952 SQL Reference

ACTIVE VERSION or ALL VERSIONS or VERSION routine-version-id
Identifies the version of the procedure that is to be changed, replaced, or
regenerated depending on whether the ALTER, REPLACE, or REGENERATE
keyword is specified.

ACTIVE VERSION
Specifies that the currently active version of the procedure is to be
changed, replaced, or regenerated.

ALL VERSIONS
Specifies that all of the versions of the procedure are to be changed. Only
the following options can be changed when this option is specified:
v AUTONOMOUS or COMMIT ON RETURN

VERSION routine-version-id
Identifies the version of the procedure that is to be changed, replaced, or
regenerated. routine-version-id is the version identifier that is assigned when
the version is defined. routine-version-id must identify a version of the
specified procedure that exists at the current server.

ALTER
Specifies that a version of the procedure is to be changed.

When you change a procedure to add or replace a version of the procedure,
any option that is not explicitly specified will use the existing value from the
version of the procedure that is being changed.

REPLACE
Specifies that a version of the procedure is to be replaced.

Binding the replaced version of the procedure might result in a new access
path even if the routine body is not changed.

When you replace a procedure, the data types, CCSID specifications, and
character data attributes (FOR BIT/SBCS/MIXED DATA) of the parameters
must be the same as the attributes of the corresponding parameters for the
currently active version of the procedure. For options that are not explicitly
specified, the system default values for those options are used, even if those
options were explicitly specified for the version of the procedure that is being
replaced. This is not the case for versions of the procedure that specified
DISABLE DEBUG MODE. If DISABLE DEBUG MODE is specified for a
version of a procedure, it cannot be changed by the REPLACE clause.

ADD VERSION routine-version-id
Specifies that a new version of the procedure is to be created. routine-version-id
is the version identifier for the new version of the procedure. routine-version-id
must not identify a version of the specified procedure that already exists at the
current server.

When a new version of a procedure is created, the comment that is recorded in
the catalog for the new version will be the same as the comment that is in the
catalog for the currently active version.

When you add a new version of a procedure the data types, CCSID
specifications, and character data attributes (FOR BIT/SBCS/MIXED DATA) of
the parameters must be the same as the attributes of the corresponding
parameters for the currently active version of the procedure. The parameter
names can differ from the other versions of the procedure. For options that are
not explicitly specified, the system default values will be used.

ACTIVATE VERSION routine-version-id
Specifies the version of the procedure that is to be the currently active version

Chapter 5. Statements 953

|
|
|

|

of the procedure. routine-version-id is the version identifier that is assigned
when the version of the procedure is defined. The version that is specified with
routine-version-id is the version that will be invoked by the CALL statement,
unless the value of the CURRENT ROUTINE VERSION special register
overrides the currently active version of the procedure when the procedure is
invoked. routine-version-id must identify a version of the procedure that already
exists at the current server.

REGENERATE
Regenerates a version of the procedure. When DB2 maintenance is applied that
changes how an SQL procedure is generated, the procedure might need to be
regenerated to process the maintenance changes.

REGENERATE automatically rebinds, at the local server, the package for the
SQL control statements for the procedure and rebinds the package for the SQL
statements that are included in the procedure body. If a remote bind is also
needed, the BIND PACKAGE COPY command must be explicitly done for all
of the remote servers.

REGENERATE is different from a REBIND PACKAGE command where the
SQL statements are rebound (i.e. to generate better access paths for those
statements), but the SQL control statements in the procedure definition remain
the same.

DROP VERSION routine-version-id
Drops the version of the procedure that is identified with routine-version-id.
routine-version-id is the version identifier that is assigned when the version is
defined. routine-version-id must identify a version of the procedure that already
exists at the current server and must not identify the currently active version of
the procedure. Only the identified version of the procedure is dropped.

When only a single version of the procedure exists at the current server, use
the DROP PROCEDURE statement to drop the procedure. A version of the
procedure for which the version identifier is the same as the contents of the
CURRENT ROUTINE VERSION special register can be dropped if that version
is not the currently active version of the procedure.

(parameter-declaration,...)
Specifies the number of parameters of the procedure, the data type and usage
of each parameter, and the name of each parameter for the version of the
procedure that is being defined or changed. The number of parameters and the
specified data type and usage of each parameter must match the data types in
the corresponding position of the parameter for all other versions of this
procedure. Synonyms for data types are considered to be a match.

IN, OUT, and INOUT specify the usage of the parameter. The usage of the
parameters must match the implicit or explicit usage of the parameters of other
versions of the same procedure.

IN Identifies the parameter as an input parameter to the procedure. The value
of the parameter on entry to the procedure is the value that is returned to
the calling SQL application, even if changes are made to the parameter
within the procedure.

IN is the default.

OUT
Identifies the parameter as an output parameter that is returned by the
procedure. If the parameter is not set within the procedure, the null value
is returned.

954 SQL Reference

INOUT
Identifies the parameter as both an input and output parameter for the
procedure. If the parameter is not set within the procedure, its input value
is returned.

parameter-name
Names the parameter for use as an SQL variable. The name cannot be the
same as the name of any other parameter-name for this version of the
procedure. The name of the parameter in this version of the procedure can
be different than the name of the corresponding parameter for other
versions of this procedure.

built-in-type
Specifies the data type of the parameter. See “CREATE PROCEDURE (SQL
- native)” on page 1350 for more information on data type specifications.

distinct-type-name
The data type of the input parameter is a distinct type. Any length,
precision, scale, subtype, or encoding scheme attributes for the parameter
are those of the source type of the distinct type. The distinct type must not
be based on a LOB data type.

array-type-name
The data type of the input parameter is a user-defined array type.

If you specify array-type-name without a schema name, DB2 resolves the
array type by searching the schemas in the SQL path.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the procedure returns the same results each time it is called
with the same IN and INOUT arguments.

NOT DETERMINISTIC
The procedure might not return the same result each time it is called with
the same IN and INOUT arguments, even when the data that is referenced
in the database has not changed.

NOT DETERMINISTIC is the default.

DETERMINISTIC
The procedure always returns the same results each time it is called with
the same IN and INOUT arguments if the data that is referenced in the
database has not changed.

DB2 does not verify that the procedure code is consistent with the specification
of DETERMINISTIC or NOT DETERMINISTIC.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Specifies the classification of SQL statements that the procedure can execute.

MODIFIES SQL DATA
Specifies that the procedure can execute any SQL statement except
statements that are not supported in procedures.

MODIFIES SQL DATA is the default.

READS SQL DATA
Specifies that procedure can execute statements with a data access
indication of READS SQL DATA or CONTAINS SQL. The procedure
cannot execute SQL statements that modify data.

Chapter 5. Statements 955

|
|

|
|

CONTAINS SQL
Specifies that the procedure can execute only SQL statements with an
access indication of CONTAINS SQL. The procedure cannot execute
statements that read or modify data.

CALLED ON NULL INPUT
Specifies that the procedure will be called if any, or even if all parameter
values are null.

DYNAMIC RESULT SETS integer
Specifies the maximum number of query result sets that the procedure can
return. The default is DYNAMIC RESULT SETS 0, which indicates that there
are no result sets. The value must be between 0 and 32767.

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether the version of the procedure can be run in debugging mode.
The default for a new version of a procedure is determined using the value of
the CURRENT DEBUG MODE special register.

ALLOW DEBUG MODE
Specifies that this version of the procedure can be run in debugging mode.
When this version of the procedure is invoked and debugging is
attempted, a WLM environment must be available.

DISALLOW DEBUG MODE
Specifies that the version of the procedure cannot be run in debugging
mode.

You can use a subsequent ALTER PROCEDURE statement to change this
option to ALLOW DEBUG MODE.

DISABLE DEBUG MODE
Specifies that the version of the procedure can never be run in debugging
mode.

The version of the procedure cannot be changed to specify ALLOW
DEBUG MODE or DISALLOW DEBUG MODE after the version of the
procedure has been created, replaced, or altered to use DISABLE DEBUG
MODE. To change DEBUG MODE for a version of a procedure that
specifies DISABLE DEBUG MODE, you must drop and re-create the
version of the procedure using the option that you want.

When DISABLE DEBUG MODE is in effect, the WLM ENVIRONMENT
FOR DEBUG MODE option is ignored.

PARAMETER CCSID
Indicates whether the encoding scheme for character or graphic string
parameters is ASCII, EBCDIC, or UNICODE. The default encoding scheme is
the value that is specified in the CCSID clauses of the parameter list or in the
field DEF ENCODING SCHEME on installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for
character or graphic string parameters. If individual CCSID clauses are
specified for individual parameters in addition to this PARAMETER CCSID
clause, the value that is specified in all of the CCSID clauses must be the same
value that is specified in this clause.

If the data type for a parameter is a user-defined distinct type that is defined
as a character or graphic type string, the CCSID of the distinct type must be
the same as the value that is specified in this clause.

956 SQL Reference

If the data type for a parameter is a user-defined array type that is defined
with character or graphic string array elements, or a character string array
index, the CCSID of these array attributes must be the same as the value that
is specified in this clause.

This clause also specifies the encoding scheme that will be used for
system-generated parameters of the routine.

QUALIFIER schema-name
Specifies the implicit qualifier that is used for unqualified names of tables,
views, indexes, and aliases that are referenced in the procedure body. The
default value is determined from the CURRENT SCHEMA special register.

PACKAGE OWNER authorization-name
Specifies the owner of the package that is associated with the version of the
procedure. The SQL authorization ID of the process is the default value.

This authorization ID must have the privileges required to execute the SQL
statements that are contained in the body of the routine and must contain the
necessary bind privileges. The value of the PACKAGE OWNER option is
subject to translation when sent to a remote system.

If the privilege set lacks SYSADM or SYSCTRL authority, authorization-name
must be the same as one of the authorization IDs of the process. If the
privilege set includes SYSADM or SYSCTRL authority, authorization-name can
be any authorization ID that contains the necessary bind privileges.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of a procedure can run. The value is unrelated to the ASUTIME
column of the resource limit specification table.

When you are debugging a procedure, setting a limit can be helpful in case the
procedure gets caught in a loop. For information on service units, see z/OS
MVS Initialization and Tuning Guide.

NO LIMIT
Specifies that there is no limit on the number of CPU service units that the
procedure can run.

NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the
range of 1 to 2 147 483 647. If the procedure uses more service units than
the specified value, DB2 cancels the procedure. The CPU cycles that are
consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

COMMIT ON RETURN NO, COMMIT ON RETURN YES, or AUTONOMOUS
Indicates whether DB2 commits the transaction immediately on return from the
procedure.

COMMIT ON RETURN NO
DB2 does not issue a commit when the procedure returns. NO is the
default.

COMMIT ON RETURN YES,
DB2 issues a commit when the procedure returns if the following
statements are true:
v The SQLCODE that is returned by the CALL statement is not negative.
v The procedure is not in a must-abort state.

Chapter 5. Statements 957

|

The commit operation includes the work that is performed by the calling
application process and by the procedure.

If the procedure returns result sets, the cursors that are associated with the
result sets must have been defined as WITH HOLD to be usable after the
commit.

AUTONOMOUS
DB2 executes the SQL procedure in a unit of work that is independent
from the calling application. When this option is specified the procedure
follows the rules of the COMMIT ON RETURN YES option before
returning to the calling application. However, it does not commit changes
in the calling application. When autonomous is specified:
v DYNAMIC RESULT SETS 0 must be in effect.
v Stored procedure parameters must not be defined as:

– A LOB type
– The XML data type
– A distinct data type that is based on a LOB or XML value
– An array type that is defined with array elements that are a LOB type

A value must not be assigned to a global variable when an autonomous
procedure is executing.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.

INHERIT SPECIAL REGISTERS
Specifies that the values of special registers are inherited, according to the
rules that are listed in the table for characteristics of special registers in a
procedure in Table 40 on page 205.

INHERIT SPECIAL REGISTERS is the default.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
procedure in Table 40 on page 205.

WLM ENVIRONMENT FOR DEBUG MODE name
Specifies the WLM (workload manager) application environment used by DB2
when debugging the procedure. The name of the WLM environment is an SQL
identifier.

If you do not specify WLM ENVIRONMENT FOR DEBUG MODE, DB2 uses
the default WLM-established stored procedure address space that is specified
at installation time.

The WLM ENVIRONMENT FOR DEBUG MODE value is ignored when
DISABLE DEBUG MODE is in effect.

To change the environment that DB2 uses for debugging this procedure, you
must have the appropriate authority for the WLM application environment.
For an example of a RACF command that provides this authorization, see
Running stored procedures.

DEFER PREPARE or NODEFER PREPARE
Specifies whether to defer preparation of dynamic SQL statements that refer to
remote objects, or to prepare them immediately.

958 SQL Reference

|
|
|
|
|
|

|

|

|

|

|

|

|
|

The default depends on the value that is specified for the REOPT option. If
REOPT NONE is specified, the default is NODEFER PREPARE. Otherwise, the
default is DEFER PREPARE.

DEFER PREPARE
Specifies that the preparation of dynamic SQL statements that refer to
remote objects will be deferred.

Refer to the DEFER(PREPARE) option in DB2 Command Reference for
considerations with distributed processing.

NODEFER PREPARE
Specifies that the preparation of dynamic SQL statements that refer to
remote objects will not be deferred.

CURRENT DATA
Specifies whether to require data currency for read-only and ambiguous
cursors when the isolation level of cursor stability is in effect. CURRENT
DATA also determines whether block fetch can be used for distributed,
ambiguous cursors. For more information about updating the current row of a
cursor, block fetch, and data currency, see DB2 Application Programming and
SQL Guide.

YES
Specifies that data currency is required for read-only and ambiguous
cursors. DB2 acquired page or row locks to ensure data currency. Block
fetch is not allowed for distributed, ambiguous cursors.

NO Specifies that data currency is not required for read-only and ambiguous
cursors. Block fetch is allowed for distributed, ambiguous cursors. Use of
CURRENT DATA(NO) is not recommended if the procedure attempts to
dynamically prepare and execute a DELETE WHERE CURRENT OF
statement against an ambiguous cursor after that cursor is opened. You
receive a negative SQLCODE if your procedure attempts to use a DELETE
WHERE CURRENT OF statement for any of the following cursors:
v A cursor that is using block fetch
v A cursor that is using query parallelism
v A cursor that is positioned on a row that is modified by this or another

application process

No is the default.

DEGREE
Specifies whether to attempt to run a query using parallel processing to
maximize performance.

1 Specifies that parallel processing should not be used.

1 is the default.

ANY
Specifies that parallel processing can be used.

CONCURRENT ACCESS RESOLUTION
Specifies the whether processing uses only committed data or whether it will
wait for commit or rollback of data that is in the process of being updated.

WAIT FOR OUTCOME
Specifies that processing will wait for the commit or rollback of data that is
in the process of being updated.

Chapter 5. Statements 959

USE CURRENTLY COMMITTED
Specifies that processing use the currently committed version of the data
when data that is in the process of being updated is encountered. USE
CURRENTLY COMMITTED is applicable on scans that access tables that
are defined in universal table spaces with row or page level lock size.

When there is lock contention between a read transaction and an insert
transaction, USE CURRENTLY COMMITTED is applicable to scans with
isolation level CS or RS. Applicable scans include intent read scans for
read-only and ambiguous queries and for updatable cursors. USE
CURRENTLY COMMITTED is also applicable to scans initiated from
WHERE predicates of UPDATE or DELETE statements and the subselect of
INSERT statements.

When there is lock contention is between a read transaction and a delete
transaction, USE CURRENTLY COMMITTED is applicable to scans with
isolation level CS and when CURRENTDATA(NO) is specified.

DYNAMICRULES
Specifies the values that apply, at run time, for the following dynamic SQL
attributes:
v The authorization ID that is used to check authorization
v The qualifier that is used for unqualified objects
v The source for application programming options that DB2 uses to parse and

semantically verify dynamic SQL statements

DYNAMICRULES also specifies whether dynamic SQL statements can include
GRANT, REVOKE, ALTER, CREATE, DROP, and RENAME statements.

In addition to the value of the DYNAMICRULES clause, the run time
environment of a native SQL procedure controls how dynamic SQL statements
behave at run time. The combination of the DYNAMICRULES value and the
run time environment determines the value for the dynamic SQL attributes.
That set of attribute values is called the dynamic SQL statement behavior. The
following values can be specified:

RUN
Specifies that dynamic SQL statements are to be processed using run
behavior.

RUN is the default.

BIND
Specifies that dynamic SQL statements are to be processed using bind
behavior.

DEFINEBIND
Specifies that dynamic SQL statements are to be processed using either
define behavior or bind behavior.

DEFINERUN
Specifies that dynamic SQL statements are to be processed using either
define behavior or run behavior.

INVOKEBIND
Specifies that dynamic SQL statements are to be processed using either
invoke behavior or bind behavior.

INVOKERUN
Specifies that dynamic SQL statements are to be processed using either
invoke behavior or run behavior.

960 SQL Reference

See “Authorization IDs and dynamic SQL” on page 75 for information on the
effects of these options.

APPLICATION ENCODING SCHEME
Specifies the default encoding scheme for SQL variables in static SQL
statements in the procedure body. The value is used for defining an SQL
variable in a compound statement if the CCSID clause is not specified as part
of the data type, and the PARAMETER CCSID routine option is not specified.

ASCII
Specifies that the data is encoded using the ASCII CCSIDs of the server.

EBCDIC
Specifies that the data is encoded using the EBCDIC CCSIDs of the server.

UNICODE
Specifies that the data is encoded using the Unicode CCSIDs of the server.

See the ENCODING bind option in DB2 Command Reference for information
about how the default for this option is determined.

WITH EXPLAIN or WITHOUT EXPLAIN
Specifies whether information will be provided about how SQL statements in
the procedure will execute.

WITHOUT EXPLAIN
Specifies that information will not be provided about how SQL statements
in the procedure will execute.

You can get EXPLAIN output for a statement that is embedded in a native
SQL procedure that is specified using WITHOUT EXPLAIN by embedding
the SQL statement EXPLAIN in the procedure body. Otherwise, the value
of the EXPLAIN option applies to all explainable SQL statements in the
procedure body, and to the fullselect portion of any DECLARE CURSOR
statements.

WITHOUT EXPLAIN is the default.

WITH EXPLAIN
Specifies that information will be provided about how SQL statements in
the procedure will execute. Information is inserted into the table
owner.PLAN_TABLE. owner is the authorization ID of the owner of the
procedure package. Alternatively, the authorization ID of the owner of the
procedure can have an alias as owner.PLAN_TABLE that points to the base
table, PLAN_TABLE. owner must also have the appropriate SELECT and
INSERT privileges on that table. WITH EXPLAIN does not obtain
information for statements that access remote objects. PLAN_TABLE must
have a base table and can have multiple aliases with the same table name,
PLAN_TABLE, but have different schema qualifiers; it cannot be a view or
a synonym. It should exist before the version is added or replaced. In all
inserts to owner.PLAN_TABLE, the value of QUERYNO is the statement
number that is assigned by DB2.

The WITH EXPLAIN option also populates two optional tables, if they
exist: DSN_STATEMNT_TABLE and DSN_FUNCTION_TABLE.
DSN_STATEMNT_TABLE contains an estimate of the processing cost for
an SQL statement. See DB2 Application Programming and SQL Guide for
more information. DSN_FUNCTION_TABLE contains information about
function resolution. See DB2 Application Programming and SQL Guide for
more information.

Chapter 5. Statements 961

For a description of the tables that are populated by the WITH EXPLAIN
option, see “EXPLAIN” on page 1642.

WITH IMMEDIATE WRITE or WITHOUT IMMEDIATE WRITE
Specifies whether immediate writes are to be done for updates that are made
to group buffer pool dependent page sets or partitions. This option is only
applicable for data sharing environments. The IMMEDWRITE subsystem
parameter has no affect of this option. DB2 Command Reference shows the
implied hierarchy of the IMMEDWRITE bind option (which is similar to this
procedure option) as it affects run time.

WITHOUT IMMEDIATE WRITE
Specifies that normal write activity is performed. Updated pages that are
group buffer pool dependent are written at or before phase one of commit
or at the end of abort for transactions that have been rolled back.

WITHOUT IMMEDIATE WRITE is the default.

WITH IMMEDIATE WRITE
Specifies that updated pages that are group buffer pool dependent are
immediately written as soon as the buffer update completes. Updated
pages are written immediately even if the buffer is updated during
forward progress or during the rollback of a transaction. WITH
IMMEDIATE WRITE might impact performance.

ISOLATION LEVEL RR, RS, CS, or UR
Specifies how far to isolate the procedure from the effects of other running
applications. For information about isolation levels, see DB2 Performance
Monitoring and Tuning Guide.

RR Specifies repeatable read.

RS Specifies read stability.

CS Specifies cursor stability. CS is the default.

UR Specifies uncommitted read.

WITH KEEP DYNAMIC or WITHOUT KEEP DYNAMIC
Specifies whether DB2 keeps dynamic SQL statements after commit points.

WITHOUT KEEP DYNAMIC
Specifies that DB2 does not keep dynamic SQL statements after commit
points.

WITHOUT KEEP DYNAMIC is the default.

WITH KEEP DYNAMIC
Specifies that DB2 keeps dynamic SQL statements after commit points. If
you specify WITH KEEP DYNAMIC, the application does not need to
prepare an SQL statement after every commit point. DB2 keeps the
dynamic SQL statement until one of the following occurs:
v The application process ends
v A rollback operations occurs
v The application executes an explicit PREPARE statement with the same

statement identifier as the dynamic SQL statement

If you specify WITH KEEP DYNAMIC, and the prepared statement cache
is active, the DB2 subsystem keeps a copy of the prepared statement in the
cache. If the prepared statement cache is not active, the subsystem keeps

962 SQL Reference

only the SQL statement string past a commit point. If the application
executes an OPEN, EXECUTE, or DESCRIBE operation for that statement,
the statement is implicitly prepared.

If you specify WITH KEEP DYNAMIC, DDF server threads that are used
to execute procedures or packages that have this option in effect will
remain active. Active DDF server threads are subject to idle thread time
outs, as described in DB2 Installation Guide for installation panel DSNTIPR.

If you specify WITH KEEP DYNAMIC, you must not specify REOPT
ALWAYS. WITH KEEP DYNAMIC and REOPT ALWAYS are mutually
exclusive. However, you can specify WITH KEEP DYNAMIC and REOPT
ONCE.

Use WITH KEEP DYNAMIC to improve performance if your DRDA client
application uses a cursor that is defined as WITH HOLD. The DB2
subsystem automatically closes a held cursor when there are no more rows
to retrieve, which eliminates an extra network message.

OPTHINT string-constant
Specifies whether query optimization hints are used for static SQL statements
that are contained within the body of the procedure.

string-constantis a character string of up to 128 bytes in length, which is used
by the DB2 subsystem when searching the PLAN_TABLE for rows to use as
input. The default value is an empty string, which indicates that the DB2
subsystem does not use optimization hints for static SQL statements.

Optimization hints are only used if optimization hints are enabled for you
system. See DB2 Installation Guide for information about enabling optimization
hints.

SQL PATH
Specifies the SQL path that the DB2 subsystem uses to resolve unqualified
user-defined types, functions, and procedure names (in CALL statements) in
the body of the procedure.

The maximum length of the SQL path is 2048 bytes. DB2 calculates the length
by taking each schema-name specified and removing any trailing blanks from it,
adding two delimiters around it, and adding one comma after each schema
name except for the last one. The length of the resulting string cannot exceed
2048 bytes.

schema-name
Specifies a schema. DB2 does not validate that the specified schema
actually exists when the ALTER statement is processed.

SYSPUBLIC must not be specified for the SQL path.

schema-name-list
Specifies a comma separated list of schema names. The same schema name
should not appear more than one time in the list of schema names. The
number of schema names that you can specify is limited by the maximum
length of the resulting SQL path.

SYSPUBLIC must not be specified for the SQL path.

SYSTEM PATH
Specifies the schema names "SYSIBM", "SYSFUN", "SYSPROC",
"SYSIBMADM".

SESSION_USER or USER
Specifies the value of the SESSION_USER (or USER) special register. At the

Chapter 5. Statements 963

|

|

time the ALTER statement is processed, the actual length is included in the
total length of the list of schema names that is specified for the PATH
option. If you specify SESSION_USER (or USER) in a list of schema names,
do not use delimiters around the SESSION_USER (or USER) keyword.

RELEASE AT
Specifies when to release resources that the procedure uses: either at each
commit point or when the procedure terminates.

COMMIT
Specifies that resources will be released at each commit point.

COMMIT is the default.

DEALLOCATE
Specifies that resources will be released only when the procedure
terminates. DEALLOCATE has no effect on packages that run on a DB2
server through a DRDA connection with a client system. DEALLOCATE
also has no effect on dynamic SQL statements, which always use RELEASE
AT COMMIT, with this exception: When you use the RELEASE AT
DEALLOCATE clause and the WITH KEEP DYNAMIC clause, and the
subsystem is installed with a value of YES for the field CACHE DYNAMIC
SQL on installation panel DSNTIP8, the RELEASE AT DEALLOCATE
option is honored for dynamic SELECT and SQL data change statements.

Locks that are acquired for dynamic statements are held unit one of the
following events occurs:
v The application process ends.
v The application process issues a PREPARE statement with the same

statement identifier. (Locks are released at the next commit point).
v The statement is removed from the prepared statement cache because

the statement has not been used. (Locks are released at the next commit
point).

v An object that the statement is dependent on is dropped or altered, or a
privilege that the statement needs is revoked. (Locks are released at the
next commit point).

RELEASE AT DEALLOCATE can increase the package size because
additional items become resident in the package. For more information
about how the RELEASE clause affects locking and concurrency, see DB2
Performance Monitoring and Tuning Guide.

REOPT
Specifies if DB2 will determine the access path at run time by using the values
of SQL variables or SQL parameters, parameter markers, and special registers.

NONE
Specifies that DB2 does not determine the access path at run time by using
the values of SQL variables or SQL parameters, parameter markers, and
special registers.

NONE is the default.

ALWAYS
Specifies that DB2 always determine the access path at run time each time
an SQL statement is run.

ONCE
Specifies that DB2 determine the access path for any dynamic SQL
statements only one time, at the first time the statement is opened. This

964 SQL Reference

access path is used until the prepared statement is invalidated or removed
from the dynamic statement cache and needs to be prepared again.

VALIDATE RUN or VALIDATE BIND
Specifies whether to recheck, at run time, errors of the type "OBJECT not
FOUND" and NOT AUTHORIZED" that are found during bind or rebind. The
option has no effect if all objects and needed privileges exist.

VALIDATE RUN
Specifies that if needed objects or privileges do not exist when the ALTER
PROCEDURE statement is processed, warning messages are returned, but
the ALTER PROCEDURE statement succeeds. The DB2 subsystem rechecks
for the objects and privileges at run time for those SQL statements that
failed the checks during processing of the ALTER PROCEDURE statement.
The authorization checks the use of the authorization ID of the owner of
the procedure package.

VALIDATE RUN is the default.

VALIDATE BIND
Specifies that if needed objects or privileges do not exist at the time the
ALTER PROCEDURE statement is processed, an error is issued and the
ALTER PROCEDURE statement fails.

ROUNDING
Specifies the rounding mode for manipulation of DECFLOAT data.

DEC_ROUND_CEILING
Specifies numbers are rounded towards positive infinity.

DEC_ROUND_DOWN
Specifies numbers are rounded towards 0 (truncation).

DEC_ROUND_FLOOR
Specifies numbers are rounded towards negative infinity.

DEC_ROUND_HALF_DOWN
Specifies numbers are rounded to nearest; if equidistant, round down.

DEC_ROUND_HALF_EVEN
Specifies numbers are rounded to nearest; if equidistant, round so that the
final digit is even.

DEC_ROUND_HALF_UP
Specifies numbers are rounded to nearest; if equidistant, round up.

DEC_ROUND_UP
Specifies numbers are rounded away from 0.

DATE FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the date format for result values that are string representations of
date or time values. See “String representations of datetime values” on page
101 for more information.

The default format is specified in the DATE FORMAT field of installation panel
DSNTIP4 of the system where the procedure is defined. You cannot use the
LOCAL option unless you have a date exit routine.

DECIMAL(15), DECIMAL(31), DECIMAL(15,s), or DECIMAL(31,s)
Specifies the maximum precision that is to be used for decimal arithmetic
operations. See “Arithmetic with two decimal operands” on page 244 for more
information. The default format is specified in the DECIMAL ARITHMETIC
field of installation panel DSNTIPF of the system where the procedure is

Chapter 5. Statements 965

defined. If the form pp.s is specified, s must be a number between 1 and 9. s
represents the minimum scale that is to be used for division.

FOR UPDATE CLAUSE OPTIONAL or FOR UPDATE CLAUSE REQUIRED
Specifies whether the FOR UPDATE clause is required for a DECLARE
CURSOR statement if the cursor is to be used to perform positioned updates.

FOR UPDATE CLAUSE REQUIRED
Specifies that a FOR UPDATE clause must be specified as part of the
cursor definition if the cursor will be used to make positioned updates.

FOR UPDATE CLAUSE REQUIRED is the default.

FOR UPDATE CLAUSE OPTIONAL
Specifies that the FOR UPDATE clause does not need to be specified in
order for a cursor to be used for positioned updates. The procedure body
can include positioned UPDATE statements that update columns that the
user is authorized to update.

If the resulting DBRM for the procedure is very large, you might need
extra storage when you specify FOR UPDATE CLAUSE OPTIONAL.

The FOR UPDATE clause of the select-statement with no column list applies to
static or dynamic SQL statements. You can specify the FOR UPDATE OF clause
of the select-statement with a column list to restrict updates to only the
columns that are named in the column list and to specify the acquisition of
update locks.

TIME FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the time format for result values that are string representations of
date or time values. See “String representations of datetime values” on page
101 for more information.

The default format is specified in the TIME FORMAT field of installation panel
DSNTIP4 of the system where the procedure is defined. You cannot use the
LOCAL option unless you have a date exit routine.

BUSINESS_TIME SENSITIVE
Determines whether references to application-period temporal tables in both
static and dynamic SQL statements are affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

YES
References to application-period temporal tables are affected by the value
of the CURRENT TEMPORAL BUSINESS_TIME special register. YES is the
default value.

NO References to application-period temporal tables are not affected by the
value of the CURRENT TEMPORAL BUSINESS_TIME special register.

Related information:

“CURRENT TEMPORAL BUSINESS_TIME” on page 194

SYSTEM_TIME SENSITIVE
Determines whether references to system-period temporal tables in both static
and dynamic SQL statements are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

YES
References to system-period temporal tables are affected by the value of
the CURRENT TEMPORAL SYSTEM_TIME special register. YES is the
default value.

966 SQL Reference

|
|
|
|

|
|
|
|

||
|

|

|

|
|
|
|

|
|
|
|

NO References to system-period temporal tables are not affected by the value
of the CURRENT TEMPORAL SYSTEM_TIME special register.

Related information:

“CURRENT TEMPORAL SYSTEM_TIME” on page 196

ARCHIVE SENSITIVE
Determines whether references to archive-enabled tables in SQL statements are
affected by the value of the SYSIBMADM.GET_ARCHIVE global variable.

YES
References to archive-enabled tables are affected by the value of the
SYSIBMADM.GET_ARCHIVE global variable. YES is the default value.

NO References to archive-enabled tables are not affected by the value of the
SYSIBMADM.GET_ARCHIVE global variable.

Related information:

“References to built-in global variables” on page 223

APPLCOMPAT compatibility-level
Specifies the package compatibility level behavior for static SQL, If this option
is not specified then the behavior is determined, in priority order, by the
compatibility-level of the last BIND or REBIND of the package or the
APPLCOMPAT system parameter. The following values of compatibility-level
can be specified:

V10R1
The static SQL statements in the package have V10R1 compatibility
behavior.

V11R1
The static SQL statements in the package have V11R1 compatibility
behavior.

Related information:

APPL COMPAT LEVEL field (APPLCOMPAT subsystem parameter) (DB2
Installation and Migration)

SQL-routine-body
Specifies the statements that define the body of the SQL procedure. For
information on the SQL control statements that are supported in native SQL
procedures, see Chapter 6, “SQL control statements for SQL routines,” on page
1963. If an SQL-procedure-statement is the only statement in the procedure body,
the statement must not end with a semicolon.

Notes

Considerations for altering a version of a procedure: To alter a version of a
procedure, the environment settings that are in effect when the ALTER
PROCEDURE statement is issued must be the same as the environment settings
that are in effect when the version of the procedure is first created using the
CREATE PROCEDURE or ALTER PROCEDURE statements if one of the following
options is specified:
v QUALIFIER

v PACKAGE OWNER

v WLM ENVIRONMENT FOR DEBUG MODE

v OPTHINT

Chapter 5. Statements 967

||
|

|

|

|
|
|

|
|
|

||
|

|

|

|
|
|
|
|
|

|
|
|

|
|
|

|

|
|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_applcompat.htm#db2z_ipf_applcompat
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_applcompat.htm#db2z_ipf_applcompat

v SQL PATH

v DECIMAL (if the value includes a comma

Changing to a native SQL procedure: You cannot change an external SQL
procedure to a native SQL procedure. You can drop the external SQL procedure
that you want to change by using the DROP statement and create a native SQL
procedure with a similar definition using the CREATE PROCEDURE statement.
Alternatively, you can create a native SQL procedure using a different schema.

Identifier resolution: See Chapter 6, “SQL control statements for SQL routines,” on
page 1963 for information on how names are resolved to columns, SQL variables,
or SQL routines for native SQL procedures. Name resolution is unchanged for
external SQL procedures.

If duplicate names are used for columns and SQL variables and parameters,
qualify the duplicate names by using the table designator for columns, the
procedure name for parameters, and the label name for SQL variables.

Characteristics of the package that is generated for a version of a procedure: The
package that is associated with a version of a procedure is named as follows:
v location is set to the value of the CURRENT SERVER special register
v collection-id (schema) for the package is the same as the schema qualifier of the

procedure
v package-id is the same as the specific name of the procedure
v version-id is the same as the version identifier for the initial version of the

procedure

The package is generated using the bind options that correspond to the implicitly
or explicitly specified procedure options. See Table 98 on page 969 for more
information. In addition to the corresponding bind options, the package is
generated using the following bind options:
v DBPROTOCAL(DRDA)
v FLAG(1)
v SQLERROR(NOPACKAGE)
v ENABLE(*)

Considerations for a procedure that is defined using a TABLE LIKE name AS
LOCATOR clause: If a procedure is defined with a table parameter (the TABLE
LIKE name AS LOCATOR clause was specified in the CREATE PROCEDURE
statement to indicate that one of the input parameters is a transition table), the
procedure cannot be changed with an ALTER PROCERDURE statement if the
change requires that the parameter list be specified. For example, to add or replace
a version of a native SQL procedure, the procedure must be dropped and
re-created.

Considerations for SQL processor programs: SQL processor programs, such as
SPUFI, the command line processor, and DSNTEP2, might not correctly parse SQL
statements in the routine body that end with semicolons. These processor
programs accept multiple SQL statements as input, with each statement separated
with a terminator character. Processor programs that use a semicolon as the SQL
statement terminator can truncate a CREATE FUNCTION statement with
embedded semicolons and pass only a portion of it to DB2. Therefore, you might
need to change the SQL terminator character for these processor programs. For

968 SQL Reference

information on changing the terminator character for SPUFI and DSNTEP2, see
DB2 Application Programming and SQL Guide.

Correspondence of procedure options to BIND options: The following table lists
options for CREATE PROCEDURE and ALTER PROCEDURE and the
corresponding options for the bind commands. See DB2 Command Reference for
more information about the effects of the options of the bind commands.

Table 98. Correspondence of procedure options to bind options

CREATE PROCEDURE or ALTER
PROCEDURE option bind commands option

APPLICATION ENCODING
SCHEME ENCODING(ASCII)

ENCODING(EBCDIC)
ENCODING(UNICODE)

ARCHIVE SENSITIVE NO ARCHIVESENSITIVE(NO)

ARCHIVE SENSITIVE YES ARCHIVESENSITIVE(YES)

BUSINESS_TIME SENSITIVE NO BUSTIMESENSITIVE(NO)

BUSINESS_TIME SENSITIVE YES BUSTIMESENSITIVE(YES)

CURRENT DATA NO CURRENTDATA(NO)

CURRENT DATA YES CURRENTDATA(YES)

DEFER PREPARE DEFER(PREPARE)

NODEFER PREPARE NODEFER(PREPARE)

DEGREE
DEGREE(ANY)
DEGREE(1)

DYNAMICRULES
DYNAMICRULES(RUN)
DYNAMICRULES(BIND)
DYNAMICRULES(DEFINEBIND)
DYNAMICRULES(DEFINERUN)
DYNAMICRULES(INVOKEBIND)
DYNAMICRULES(INVOKERUN)

ISOLATION LEVEL
ISOLATION(RR)
ISOLATION(RS)
ISOLATION(CS)
ISOLATION(UR)

OPTHINT OPTHINT

PACKAGE OWNER OWNER

QUALIFIER QUALIFIER

RELEASE AT COMMIT RELEASE(COMMIT)

RELEASE AT DEALLOCATE RELEASE(DEALLOCATE)

REOPT ALWAYS REOPT(ALWAYS)

REOPT NONE REOPT(NONE)

REOPT ONCE REOPT(ONCE)

ROUNDING DEC_ROUND_CEILING ROUNDING(CEILING)

ROUNDING DEC_ROUND_DOWN ROUNDING(DOWN)

Chapter 5. Statements 969

||

||

||

||

Table 98. Correspondence of procedure options to bind options (continued)

CREATE PROCEDURE or ALTER
PROCEDURE option bind commands option

ROUNDING
DEC_ROUNDING_FLOOR

ROUNDING(FLOOR)

ROUNDING
DEC_ROUNDING_HALF_DOWN

ROUNDING(HALFDOWN)

ROUNDING
DEC_ROUNDING_HALF_EVEN

ROUNDING(HALFEVEN)

ROUNDING
DEC_ROUNDING_HALF_UP

ROUNDING(HALFUP)

ROUNDING DEC_ROUNDING_UP ROUNDING(UP)

SQL PATH PATH

SYSTEM_TIME SENSITIVE NO SYSTIMESENSITIVE(NO)

SYSTEM_TIME SENSITIVE YES SYSTIMESENSITIVE(YES)

VALIDATE BIND VALIDATE(BIND)

VALIDATE RUN VALIDATE(RUN)

WITH EXPLAIN EXPLAIN(YES)

WITHOUT EXPLAIN EXPLAIN(NO)

WITH IMMEDIATE WRITE IMMEDWRITE(YES)

WITHOUT IMMEDIATE WRITE IMMEDWRITE(NO)

WITH KEEPDYNAMIC KEEPDYNAMIC(YES)

WITHOUT KEEPDYNAMIC KEEPDYNAMIC(NO)

Invalidation of packages: When a version of an SQL procedure is altered to change
any option that is specified for the active version, all the packages that refer to that
procedure are marked invalid. Additionally, when certain attributes of a native
SQL procedure are changed, the body of the procedure might be rebound or
regenerated. The following table summarizes when implicit rebind and
regeneration occurs when specific options are changed. A value of Y in a row
indicates that a rebind or regeneration occurs if the option is changed for a version
of the procedure. A value of N in a row indicates that a rebind or regeneration
does not occur.

Table 99. CREATE PROCEDURE and ALTER PROCEDURE options that result in rebind or regeneration when
changed.

CREATE PROCEDURE or
ALTER PROCEDURE
option

Change requires rebind of
invoking applications?

Change results in implicit
rebind of the non-control
statements of the body of
the procedure?

Change results in implicit
regeneration of the entire
body of the procedure?

ALLOW DEBUG MODE,
DISALLOW DEBUG
MODE, or DISABLE
DEBUG MODE

Y1, 2 Y1 Y

APPLICATION
ENCODING SCHEME

Y Y Y

ARCHIVE SENSITIVE Y Y Y

ASUTIME Y N N

970 SQL Reference

||

||

||||

Table 99. CREATE PROCEDURE and ALTER PROCEDURE options that result in rebind or regeneration when
changed. (continued)

CREATE PROCEDURE or
ALTER PROCEDURE
option

Change requires rebind of
invoking applications?

Change results in implicit
rebind of the non-control
statements of the body of
the procedure?

Change results in implicit
regeneration of the entire
body of the procedure?

BUSINESS_TIME
SENSITIVE

Y Y Y

COMMIT ON RETURN Y N N

CURRENT DATA N Y N

DATE FORMAT Y Y Y

DECIMAL Y Y Y

DEFER PREPARE or
NODEFER PREPARE

N Y N

DEGREE N Y N

DYNAMIC RESULT SETS Y N N

DYNAMICRULES N Y N

FOR UPDATE CLAUSE
OPTIONAL or FOR
UPDATE CLAUSE
REQUIRED

Y Y Y

INHERIT SPECIAL
REGISTERS or DEFAULT
SPECIAL REGISTERS

Y N N

ISOLATION LEVEL N Y N

MODIFIES SQL DATA,
READS SQL DATA, or
CONTAINS SQL

Y Y Y

NOT DETERMINISTIC or
DETERMINISTIC

N N N

OPTHINT N Y N

PACKAGE OWNER N Y N

QUALIFIER N Y N

RELEASE AT COMMIT or
RELEASE AT
DEALLOCATE

N Y N

REOPT N Y N

SQL PATH N Y N

STOP AFTER SYSTEM
DEFAULT FAILURES, STOP
AFTER nn FAILURES, or
CONTINUE AFTER
FAILURES

Y N N

SYSTEM_TIME SENSITIVE Y Y Y

TIME FORMAT Y Y Y

VALIDATE RUN or
VALIDATE BIND

N Y N

WITH EXPLAIN or
WITHOUT EXPLAIN

N Y N

Chapter 5. Statements 971

|
|
|||

||||

Table 99. CREATE PROCEDURE and ALTER PROCEDURE options that result in rebind or regeneration when
changed. (continued)

CREATE PROCEDURE or
ALTER PROCEDURE
option

Change requires rebind of
invoking applications?

Change results in implicit
rebind of the non-control
statements of the body of
the procedure?

Change results in implicit
regeneration of the entire
body of the procedure?

WITH IMMEDIATE WRITE
or WITHOUT IMMEDIATE
WRITE

N Y N

WITH KEEP DYNAMIC or
WITHOUT KEEP
DYNAMIC

N Y N

WLM ENVIRONMENT
FOR DEBUG MODE

Y N N

Note:

1. The procedure package is rebound or regenerated if a value of ALLOW DEBUG MODE is changed to DISALLOW
DEBUG MODE.

2. Invoking applications are invalidated if a value of DISALLOW DEBUG MODE is changed to DISABLE DEBUG
MODE.

Considerations for SYSENVIRONMENTS catalog table: An ALTER statement that
specifies a new environment settings will result in a new row being added to the
SYSENVIRONMENTS catalog table. The new row will be added even if an error is
subsequently encountered during processing of the ALTER statement. Thus, a new
SYSENVIRONMENTS row might be added even for an ALTER statement that fails.

Stored procedures with a parameter that is defined as an array type: A procedure
that is defined with a parameter that is an array type can be invoked only from
within an SQL PL context.

Compatibilities: For compatibility with previous versions of DB2, the following
clauses can be specified, but they will be ignored and an error or a warning will be
issued. If ALTER is implicitly or explicitly specified with one of these options
specified as part of option-list, a warning is issued and the option is ignored. If
REPLACE or ADD VERSION is specified with one of these options specified as
part of option-list, and error is issued. For example, ADD VERSION is specified and
STAY RESIDENT is specified as part of option-list and error is issued.
v STAY RESIDENT
v PROGRAM TYPE
v RUN OPTIONS
v NO DBINFO
v COLLID or NOCOLLID
v SECURITY
v PARAMETER STYLE GENERAL WITH NULLS
v STOP AFTER SYSTEM DEFAULT FAILURES
v STOP AFTER nn FAILURES
v CONTINUE AFTER FAILURES

If WLM ENVIRONMENT is specified for a native SQL procedure, WLM
ENVIRONMENT FOR DEBUG MODE must be specified.

972 SQL Reference

|
|
|

For compatibility with the CREATE PROCEDURE statement, the following clause
can be specified, but will be ignored:
v LANGUAGE SQL

Alternative syntax and synonyms: To provide compatibility with previous releases
of DB2 or other products in the DB2 family, DB2 supports the following keywords:
v RESULT SET, RESULT SETS, and DYNAMIC RESULT SET as synonyms for

DYNAMIC RESULT SETS.
v VARIANT as a synonym for NOT DETERMINISTIC
v NOT VARIANT as a synonym for DETERMINISTIC

Considerations for catalog comments for a routine definition: When a function
definition is replaced any existing comment in the catalog for the definition is
removed, and when a function definition is regenerated any existing comment in
the catalog for the definition is retained.

Example

Example 1: The following statement changes the existing procedure options for the
active version of the UPDATE_SALARY_1 native SQL procedure. If you need to
change a different version of the procedure, you would specify VERSION
routine-version-id in place of ACTIVE VERSION. Note that the ALTER clause
that precedes the version specification can be omitted.
ALTER PROCEDURE UPDATE_SALARY_1

ALTER ACTIVE VERSION
NOT DETERMINISTIC
CALLED ON NULL INPUT
ALLOW DEBUG MODE
ASUTIME LIMIT 10

Example 2: To change the procedure body of any existing version of a procedure,
you need to use the REPLACE clause. The following statement changes both the
procedure body and the existing SQL data access option for version V2 of the
UPDATE_SALARY_1 SQL procedure. Note that the list of parameters is specified
even though no changes are made to the list. To replace an existing version of a
procedure, you must specify the list of parameters, any options that are to have
non-default values (even if those options are specified in the version of the
procedure that you are replacing), and the body of the procedure.
ALTER PROCEDURE UPDATE_SALARY_1

REPLACE VERSION V2 (P1 INTEGER, P2 CHAR(5))
MODIFIES SQL DATA
UPDATE EMP SET SALARY = SALARY * RATE

WHERE EMPNO = EMPLOYEE_NUMBER;

Example 3: To add a new version of an existing procedure, use the ADD VERSION
clause. The following statement adds a new version of the UPDATE_SALARY_1
procedure to apply a larger salary increase. Note that the list of parameters is
specified even though the new version of the procedure uses the same parameters
as the existing version of the procedure. To add a new version of a procedure, you
must specify the list of parameters, any options that will have non-default values,
and the body of the procedure.
ALTER PROCEDURE UPDATE_SALARY_1

ADD VERSION V3 (P1 INTEGER, P2 CHAR(5))
UPDATE EMP SET SALARY = SALARY * (RATE*10)

WHERE EMPNO = EMPLOYEE_NUMBER;

Chapter 5. Statements 973

Example 4: When the new version of the procedure has been defined, as in
Example 3, you must use the ALTER PROCEDURE statement with the ACTIVATE
VERSION clause if the new version of the procedure is to be the currently active
version, as in the following example.
ALTER PROCEDURE UPDATE_SALARY_1

ACTIVATE VERSION V3;

Example 5: To regenerate the currently active version of a procedure, use the
following statement.
ALTER PROCEDURE UPDATE_SALARY_1

REGENERATE ACTIVE VERSION;

974 SQL Reference

ALTER SEQUENCE
The ALTER SEQUENCE statement changes the attributes of a sequence at the
current server. Only future values of the sequence are affected by the ALTER
SEQUENCE statement.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v Ownership of the sequence
v The ALTER privilege for the sequence
v The ALTERIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

Installation SYSADM privilege is required to alter the
SYSIBM.DSNSEQ_IMPLICITDB sequence (which specifies the maximum number
of implicitly created databases).

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets that are held by each authorization ID and role of the process.

Chapter 5. Statements 975

Syntax

�� ALTER SEQUENCE sequence-name �
(1)

RESTART
WITH numeric-constant

INCREMENT BY numeric-constant
NO MINVALUE
MINVALUE numeric-constant
NO MAXVALUE
MAXVALUE numeric-constant
NO CYCLE
CYCLE
NO CACHE
CACHE integer-constant
NO ORDER
ORDER

��

Notes:

1 At least one option must be specified and the same clause must not be specified more than once.
Separator commas can be specified between sequence attributes when a sequence is defined.

Description

sequence-name
Identifies the sequence. The combination of sequence name and the implicit or
explicit qualifier must identify an existing sequence at the current server.
sequence-name must not identify a sequence that is generated by DB2 for an
identity column or a DB2_GENERATED_DOCID_FOR_XML column.

RESTART
Restarts the sequence. If numeric-constant is not specified, the sequence is
restarted at the value specified implicitly or explicitly as the starting value on
the CREATE SEQUENCE statement that originally created the sequence.

WITH numeric-constant
Specifies the value at which to restart the sequence. The value can be any
positive or negative value that could be assigned to the a column of the
data type that is associated with the sequence without non-zero digits
existing to the right of the decimal point.

If RESTART is not specified, the sequence is not restarted. Instead, it resumes
with the current values in effect for all the options after the ALTER statement
is issued.

After a sequence is restarted or changed to allow cycling, sequence numbers
might be duplicates of values generated by the sequence previously.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the sequence. The value
can be any positive or negative value (including 0) that could be assigned to a
column of the data type that is associated with the sequence without any
non-zero digits existing to the right of the decimal point.

976 SQL Reference

If INCREMENT BY numeric-constant is positive, the sequence ascends. If
INCREMENT BY numeric-constant is negative, the sequence descends. If
INCREMENT BY numeric-constant is 0, the sequence is treated as an ascending
sequence.

The absolute value of INCREMENT BY can be greater than the difference
between MAXVALUE and MINVALUE.

NO MINVALUE or MINVALUE
Specifies whether or not there is a minimum end point of the range of values
for the sequence.

NO MINVALUE
Specifies that the minimum end point of the range of values for the
sequence has not been specified explicitly. In such a case, the value for
MINVALUE becomes one of the following:
v For an ascending sequence, the value is the original starting value.
v For a descending sequence, the value is the minimum of the data type

that is associated with the sequence.

MINVALUE numeric-constant
Specifies the minimum value at which a descending sequence either cycles
or stops generating values, or an ascending sequence cycles to after
reaching the maximum value. The last value that is generated for a cycle of
a descending sequence will be equal to or greater than this value.
MINVALUE is the value to which an ascending sequence cycles to after
reaching the maximum value.

The value can be any positive or negative value that could be assigned to
the a column of the data type that is associated with the sequence without
non-zero digits existing to the right of the decimal point. The value must
be less than or equal to the maximum value.

NO MAXVALUE or MAXVALUE
Specifies whether or not there is a maximum end point of the range of values
for the sequence.

NO MAXVALUE
Specifies either explicitly or implicitly that the minimum end point of the
range of values for the sequence has not be set. In such a case, the default
value for MAXVALUE becomes one of the following:
v For an ascending sequence, the value is the maximum value of the data

type that is associated with the sequence
v For a descending sequence, the value is the original starting value.

If NO MAXVALUE is explicitly specified in the ALTER SEQUENCE
statement, the value of the MAXVALUE column in the catalog table is reset
to the maximum value of the data type associated with the sequence if the
sequence is ascending or the value stored in the START column of the
catalog table if the sequence is descending. Whether the sequence is
ascending or descending depends on whether or not the INCREMENT BY
option is reset. If it is, the new INCREMENT BY VALUE determines if the
sequence is ascending or descending. If it is not explicitly reset, the value
stored in the INCREMENT column of the catalog table determines if the
sequence is ascending or descending.

MAXVALUE numeric-constant
Specifies the maximum value at which an ascending sequence either cycles
or stops generating values or a descending sequence cycles to after

Chapter 5. Statements 977

reaching the minimum value. The last value that is generated for a cycle of
an ascending sequence will be less than or equal to this value.
MAXVALUE is the value to which a descending sequence cycles to after
reaching the minimum value.

The value can be any positive or negative value that could be assigned to
the a column of the data type that is associated with the sequence without
non-zero digits existing to the right of the decimal point. The value must
be greater than or equal to the minimum value.

NO CYCLE or CYCLE
Specifies whether or not the sequence should continue to generate values after
reaching either its maximum or minimum value. The boundary of the sequence
can be reached either with the next value landing exactly on the boundary
condition or by overshooting it.

NO CYCLE
Specifies that the sequence cannot generate more values once the
maximum or minimum value for the sequence has been reached.

CYCLE
Specifies that the sequence continue to generate values after either the
maximum or minimum value has been reached. If this option is used, after
an ascending sequence reaches its maximum value, it generates its
minimum value. After a descending sequence reaches its minimum value,
it generates its maximum value. The maximum and minimum values for
the sequence defined by the MINVALUE and MAXVALUE options
determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated by the
sequence. When a sequence is defined with CYCLE, any application
conversion tools for converting applications from other vendor platforms
to DB2 should also explicitly specify MINVALUE, MAXVALUE, and
START WITH values.

NO CACHE or CACHE
Specifies whether or not to keep some preallocated values in memory for faster
access. This is a performance and tuning option.

NO CACHE
Specifies that values of the sequence are not to be preallocated. This option
ensures that there is not a loss of values in the case of a system failure.
When NO CACHE is specified, the values of the sequence are not stored in
the cache. In this case, every request for a new value for the sequence
results in synchronous I/O.

CACHE integer-constant
Specifies the maximum number of sequence values that DB2 can
preallocate and keep in memory. Preallocating values in the cache reduces
synchronous I/O when values are generated for the sequence. The actual
number of values that DB2 caches is always the lesser of the number in
effect for the CACHE option and the number of remaining values within
the logical range. Thus, the CACHE value is essentially an upper limit for
the size of the cache.

In the event the system is shut down (either normally or through a system
failure), all cached sequence values that have not been used in committed
statements are lost (that is, they will never be used). The value specified
for the CACHE option is the maximum number of sequence values that
could be lost when the system is shut down.

978 SQL Reference

The minimum value is 2.

In a data sharing environment, you can use the CACHE and NO ORDER
options to allow multiple DB2 members to cache sequence values
simultaneously.

NO ORDER or ORDER
Specifies whether the sequence numbers must be generated in order of
request.

NO ORDER
Specifies that the sequence numbers do not need to be generated in
order of request.

ORDER
Specifies that the sequence numbers are generated in order of request.
Specifying ORDER might disable the caching of values. There is no
guarantee that values are assigned in order across the entire server
unless NO CACHE is also specified. ORDER applies only to a
single-application process.

In a data sharing environment, if the CACHE and NO ORDER options are
in effect, multiple caches can be active simultaneously, and the requests for
next value assignments from different DB2 members might not result in
the assignment of values in strict numeric order. For example, if members
DB2A and DB2B are using the same sequence, and DB2A gets the cache
values 1 to 20 and DB2B gets the cache values 21 to 40, the actual order of
values assigned would be 1,21,2 if DB2A requested for next value first,
then DB2B requested, and then DB2A again requested. Therefore, to
guarantee that sequence numbers are generated in strict numeric order
among multiple DB2 members using the same sequence concurrently,
specify the ORDER option.

Notes

Altering a sequence: The changes to the attributes of a sequence take effect after
the ALTER SEQUENCE statement is committed. Only future sequence numbers are
affected by the ALTER SEQUENCE statement. If the ALTER SEQUENCE request
results in an error or is rolled back, nothing is changed; however, unused cache
values might be lost.
v The data type of a sequence cannot be changed. Instead, drop and re-create the

sequence specifying the desired data type for the new sequence.
v All cached values are lost when a sequence is altered.
v After restarting a sequence or changing it to cycle, it is possible that a generated

value will duplicate a value previously generated for that sequence.

Alternative syntax and synonyms: To provide compatibility with previous releases
of DB2 or other products in the DB2 family, DB2 supports the following keywords:
v NOCACHE (single key word) as a synonym for NO CACHE
v NOCYCLE (single key word) as a synonym for NO CYCLE
v NOMINVALUE (single key word) as a synonym for NO MINVALUE
v NOMAXVALUE (single key word) as a synonym for NO MAXVALUE
v NOORDER (single key word) as a synonym for NO ORDER

Chapter 5. Statements 979

Examples

Example 1: Reset a sequence to the START WITH value to generate the numbers
from 1 up to the number of rows in the table:

ALTER SEQUENCE org_seq
RESTART;

980 SQL Reference

ALTER STOGROUP
The ALTER STOGROUP statement changes the description of a storage group at
the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include one of the following:
v Ownership of the storage group
v SYSADM or SYSCTRL authority

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets that are held by each authorization ID and role of the process.

Syntax

�� ALTER STOGROUP stogroup-name � �

�

�

�

,
(1) (2)

ADD VOLUMES (volume-id)
,

'*'
,
(2)

REMOVE VOLUMES (volume-id)
,

'*'

�

�
DATACLAS dc-name MGMTCLAS mc-name STORCLAS sc-name

��

Notes:

1 The same clause must not be specified more than once.

2 The same volume-id must not be specified more than once in the same clause.

Description

stogroup-name
Identifies the storage group to be altered. The name must identify a storage
group that exists at the current server.

Chapter 5. Statements 981

ADD VOLUMES(volume-id,...) or ADD VOLUMES('*',...)
Adds volumes to the storage group. Each volume-id is the volume serial
number of a storage volume to be added. It can have a maximum of six
characters and is specified as an identifier or a string constant.

A volume-id must not be specified if any volume of the storage group is
designated by an asterisk (*). An asterisk must not be specified if any volume
of the storage group is designated by a volume-id.

You cannot add a volume that is already in the storage group unless you first
remove it with REMOVE VOLUMES.

Asterisks are recognized only by Storage Management Subsystem (SMS). If the
data set that is associated with the storage group is non SMS managed, either
ADD VOLUMES or REMOVE VOLUMES must be specified. Neither ADD
VOLUMES or REMOVE VOLUMES is required if DATACLAS, MGMTCLAS,
or STORCLAS is specified. SMS usage is recommended, rather than using DB2
to allocate data to specific volumes. Having DB2 select the volume requires
non-SMS usage or assigning an SMS Storage Class with guaranteed space.
However, because guaranteed space reduces the benefits of SMS allocation, it is
not recommended.

If you do choose to use specific volume assignments, additional manual space
management must be performed. Free space must be managed for each
individual volume to prevent failures during the initial allocation and
extension. This process generally requires more time for space management
and results in more space shortages. Guaranteed space should be used only
where the space needs are relatively small and do not change.

REMOVE VOLUMES(volume-id,...) or REMOVE VOLUMES('*',...)
Removes volumes from the storage group. Each volume-id is the volume serial
number of a storage volume to be removed. Each volume-id must identify a
volume that is in the storage group.

The REMOVE VOLUMES clause is applied to the current list of volumes
before the ADD VOLUMES clause is applied. Removing a volume from a
storage group does not affect existing data, but a volume that has been
removed is not used again when the storage group is used to allocate storage
for table spaces or index spaces.

Asterisks are recognized only by Storage Management Subsystem (SMS). If the
data set that is associated with the storage group is non SMS managed, either
ADD VOLUMES or REMOVE VOLUMES must be specified. Neither ADD
VOLUMES or REMOVE VOLUMES is required if DATACLAS, MGMTCLAS,
or STORCLAS is specified.

DATACLAS dc-name
Identifies the name of the SMS data class to associate with the DB2 storage
group. The SMS data class name must be from 1-8 characters in length. The
SMS storage administrator defines the data class that can be used. DATACLAS
must not be specified more than one time.

MGMTCLAS mc-name
Identifies the name of the SMS management class to associate with the DB2
storage group. The SMS management class name must be from 1-8 characters
in length. The SMS storage administrator defines the management class that
can be used. MGMTCLAS must not be specified more than one time.

STORCLAS sc-name
Identifies the name of the SMS storage class to associate with the DB2 storage
group. The SMS storage class name must be from 1-8 characters in length. The

982 SQL Reference

SMS storage administrator defines the storage class that can be used.
STORCLAS must not be specified more than one time.

Notes

Work file databases: If the storage group altered contains data sets in a work file
database, the database must be stopped and restarted for the effects of the ALTER
to be recognized. To stop and restart a database, issue the following commands:

-STOP DATABASE(database-name)
-START DATABASE(database-name)

Device types: When the storage group is used at run time, an error can occur if the
volumes in the storage group are of different device types, or if a volume is not
available to z/OS for dynamic allocation of data sets.

When a storage group is used to extend a data set, all volumes in the storage
group must be of the same device type as the volumes used when the data set was
defined. Otherwise, an extend failure occurs if an attempt is made to extend the
data set.

Number of volumes: There is no specific limit on the number of volumes that can
be defined for a storage group. However, the maximum number of volumes that
can be managed for a storage group is 133.

If the VOLUMES clause is specified, the maximum number of volumes is 59.

Verifying the existence of volumes and classes: When processing the VOLUMES,
DATACLAS, MGMTCLAS, or STORCLAS clauses, DB2 does not check the
existence of the volumes or classes or determine the types of devices that are
identified or if SMS is active. Later, when the storage group allocates data sets, the
list of volumes is passed in the specified order to Data Facilities (DFSMSdfp). See
DB2 Administration Guide for more information about creating DB2 storage groups.

SMS data set management: You can have Storage Management Subsystem (SMS)
manage the storage needed for the objects that the storage group supports. To do
so, specify ADD VOLUMES('*') and REMOVE VOLUMES(current-vols) in the
ALTER statement, where current-vols is the list of the volumes currently assigned to
the storage group. SMS manages every data set created later for the storage group.
SMS does not manage data sets created before the execution of the statement.

You can also specify ADD VOLUMES(volume-id) and REMOVE VOLUMES('*') to
make the opposite change.

See DB2 Administration Guide for considerations for using SMS to manage data sets.

Examples

Example 1: Alter storage group DSN8G110. Add volumes DSNV04 and DSNV05.
ALTER STOGROUP DSN8G110

ADD VOLUMES (DSNV04,DSNV05);

Example 2: Alter storage group DSN8G110. Remove volumes DSNV04 and
DSNV05.

ALTER STOGROUP DSN8G110
REMOVE VOLUMES (DSNV04,DSNV05);

Chapter 5. Statements 983

ALTER TABLE
The ALTER TABLE statement changes the description of a table at the current
server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v The ALTER privilege on the table
v Ownership of the table
v DBADM authority for the database
v SYSADM or SYSCTRL authority
v System DBADM

To alter a system-period temporal table when one or more of the changes also
result in changes to the associated history table, the privileges that are held by the
authorization ID of the statement must also include at least one of the following:
v The ALTER privilege on the history table
v Ownership of the history table
v DBADM authority for the database
v SYSADM or SYSCTRL authority
v System DBADM

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

The privilege set must include SECADM authority if one of the following clauses
is specified:
v ACTIVATE
v DEACTIVATE

Additional privileges might be required in the following situations:
v FOREIGN KEY, ADD PRIMARY KEY, ADD UNIQUE, DROP PRIMARY KEY,

DROP FOREIGN KEY, or DROP CONSTRAINT is specified.
v The data type of a column that is added to the table is a distinct type.
v A fullselect is specified.
v A column is defined as a security label column.
v A column is defined as ROWID GENERATED BY DEFAULT.

See the description of the appropriate clauses for the details about these privileges.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets that are held by each authorization ID and role of the process.

984 SQL Reference

Syntax

�� ALTER TABLE table-name �
(1) (2) (3) COLUMN

ADD column-definition
COLUMN

ALTER column-alteration
RENAME COLUMN source-column-name TO target-column-name

COLUMN
DROP column-name RESTRICT
ADD PERIOD period-definition

(4)
ADD unique-constraint

referential-constraint
check-constraint

DROP PRIMARY KEY
UNIQUE constraint-name
FOREIGN KEY
CHECK
CONSTRAINT

ADD PARTITION BY partitioning-clause
ADD PARTITION

partition-clause
ALTER PARTITION integer partition-clause
ROTATE PARTITION FIRST TO LAST rotate-partition-clause

integer
ADD VERSIONING USE HISTORY TABLE history-table-name
DROP VERSIONING

MATERIALIZED
QUERY

ADD materialized-query-definition
MATERIALIZED

ALTER QUERY materialized-query-alteration
MATERIALIZED

DROP QUERY
DATA CAPTURE NONE

CHANGES
CARDINALITY

VOLATILE
NOT VOLATILE

ADD CLONE clone-table-name
DROP CLONE
ADD RESTRICT ON DROP
DROP RESTRICT ON DROP
ADD ORGANIZE BY HASH organization-clause
ALTER ORGANIZATION SET HASH SPACE integer K

M
G

DROP ORGANIZATION
ACTIVATE ROW ACCESS CONTROL
DEACTIVATE
ACTIVATE COLUMN ACCESS CONTROL
DEACTIVATE

APPEND NO
YES

AUDIT NONE
CHANGES
ALL

VALIDPROC program-name
NULL

ENABLE ARCHIVE USE archive-table-name
DISABLE ARCHIVE

��

Notes:

1 The same clause must not be specified more than one time, except for the ADD COLUMN or
ALTER COLUMN clauses. If multiple ADD COLUMN clauses are specified in the same statement,
at most one ADD COLUMN clause can contain a references-clause. If ALTER COLUMN SET DATA
TYPE is specified, it must be specified first.

Chapter 5. Statements 985

||||||||

2 The ALTER COLUMN, ADD PARTITION, ALTER PARTITION, and ROTATE PARTITION clauses
are mutually exclusive with each other.

3 If ADD CLONE, DROP CLONE, RENAME COLUMN, ADD ORGANIZE BY HASH, ALTER
ORGANIZATION, DROP ORGANIZATION, ADD VERSIONING, DROP VERSIONING, DROP
COLUMN, ACTIVATE, DEACTIVATE, ENABLE ARCHIVE, or DISABLE ARCHIVE is specified, no
other clause is allowed on the ALTER TABLE statement.

4 The ADD keyword is optional for referential-constraint or unique-constraint if it is the first clause
specified in the statement. Otherwise, ADD is required.

column-definition:

��
(1) (2)

column-name data-type �

� �

�

default-clause
NOT NULL

column-constraint
ALWAYS (3)

GENERATED
BY DEFAULT as-identity-clause

as-row-change-timestamp-clause
as-row-transaction-timestamp-clause
as-row-transaction-id-clause

(4)
IMPLICITLY HIDDEN

(5)
AS SECURITY LABEL
FIELDPROC program-name

,

(constant)
(6)

INLINE LENGTH integer

��

Notes:

1 data-type is optional if as-row-change-timestamp-clause is specified

2 The same clause must not be specified more than one time.

3 GENERATED must be specified if the column is to be an identity column.

4 IMPLICITLY HIDDEN must not be specified for a column defined as a ROWID, or a distinct type
that is based on a ROWID.

5 AS SECURITY LABEL can be specified only for a CHAR(8) data type and requires that the NOT
NULL and WITH DEFAULT clauses be specified.

6 INLINE LENGTH only applies to a column with a LOB data type or a distinct type that is based
on a LOB data type.

986 SQL Reference

|
|
|
|

data-type:

�� built-in-type
distinct-type-name

��

built-in-type:

Chapter 5. Statements 987

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) FOR SBCS DATA

CHARACTER VARYING (integer) MIXED
CHAR BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) FOR SBCS DATA

CLOB K MIXED
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID
XML

(XML-type-modifer)

��

988 SQL Reference

�� �

,

XMLSCHEMA XML-schema-specification
ELEMENT element-name

��

�� ID registered-XML-schema-name
URL target-namespace
NO NAMESPACE LOCATION schema-location

��

default-clause:

��
WITH

DEFAULT
constant

SESSION_USER
USER

CURRENT SQLID
NULL
(1)

cast-function-name (constant)
SESSION_USER
USER

CURRENT SQLID
NULL

��

Notes:

1 The cast-function-name form of the DEFAULT value can only be used with a column that is
defined as a distinct type.

XML-type-modifer:

XML-schema-specification:

Chapter 5. Statements 989

as-identity-clause:

��

�

AS IDENTITY

(1)
(START WITH numeric-constant)

INCREMENT BY 1
INCREMENT BY numeric-constant
NO MINVALUE
MINVALUE numeric-constant
NO MAXVALUE
MAXVALUE numeric-constant
NO CYCLE
CYCLE
CACHE 20
NO CACHE
CACHE integer-constant
NO ORDER
ORDER

��

Notes:

1 Separator commas can be specified between attributes when an identity column is defined.

as-row-change-timestamp-clause:

�� FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP ��

as-row-transaction-timestamp-clause:

�� AS ROW BEGIN
END

��

as-row-transaction-id-clause:

�� AS TRANSACTION START ID ��

990 SQL Reference

column-constraint

�� references-clause
check-constraint

��

column-alteration:

�� column-name SET DATA TYPE altered-data-type
(1)

INLINE LENGTH integer
default-clause

INLINE LENGTH integer
ALWAYS

GENERATED
BY DEFAULT identity-alteration

as-transaction-timestamp-clause
as-transaction-id-clause

DROP DEFAULT

��

Notes:

1 INLINE LENGTH can only be specified for LOB columns in tables that are in universal table
spaces. INLINE LENGTH cannot be specified if FOR SBCS DATA or FOR MIXED DATA is also
specified.

altered-data-type:

Chapter 5. Statements 991

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) FOR SBCS DATA

CHARACTER VARYING (integer) MIXED
CHAR BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) FOR SBCS DATA

CLOB K MIXED
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
XML

(XML-type-modifer)

��

XML-type-modifer:

992 SQL Reference

�� �

,

XMLSCHEMA XML-schema-specification
ELEMENT element-name

��

�� ID registered-XML-schema-name
URL target-namespace
NO NAMESPACE LOCATION schema-location

��

identity-alteration:

�� �
(1)

RESTART
WITH numeric-constant

SET INCREMENT BY numeric-constant
SET NO MINVALUE

MINVALUE numeric-constant
SET NO MAXVALUE

MAXVALUE numeric-constant
SET NO CYCLE

CYCLE
SET NO CACHE

CACHE integer-constant
SET NO ORDER

ORDER

��

Notes:

1 At least one option must be specified and the same clause must not be specified more than one
time.

unique-constraint:

��
CONSTRAINT constraint-name

PRIMARY KEY
UNIQUE

�

� �

,

(column-name)
, BUSINESS_TIME WITHOUT OVERLAPS

��

XML-schema-specification:

Chapter 5. Statements 993

referential-constraint:

��
CONSTRAINT constraint-name

(1)
FOREIGN KEY �

,

(column-name) references-clause ��

Notes:

1 For compatibility with prior releases, when the CONSTRAINT clause (shown above) is not
specified, a constraint-name can be specified following FOREIGN KEY.

references-clause:

�� REFERENCES table-name

�

,

(column-name)

ON DELETE RESTRICT
NO ACTION
CASCADE
SET NULL

�

�
ENFORCED

NOT ENFORCED

ENABLE QUERY OPTIMIZATION
��

check-constraint:

��
CONSTRAINT constraint-name

CHECK (check-condition) ��

partitioning-clause:

��
RANGE

�

,

(partition-expression) �

,

(partition-element) ��

994 SQL Reference

partition-expression:

��
NULLS LAST

column-name
ASC

DESC
��

partition-element:

��
AT

ENDING �

,

(constant)
MAXVALUE
MINVALUE

INCLUSIVE

HASH SPACE integer K
M
G

��

partition-clause:

�� �

, (1)
AT INCLUSIVE

ENDING (constant)
MAXVALUE
MINVALUE

(2)
HASH SPACE integer K

M
G

��

Notes:

1 The ENDING clause must not be specified for a partition-by-growth table space, but must be
specified for a range partitioned table space.

2 The HASH SPACE clause can only be specified for the ALTER PARTITION clause.

partition-rotation:

��
AT

ENDING �

,

(constant)
MAXVALUE
MINVALUE

INCLUSIVE
RESET ��

Chapter 5. Statements 995

materialized-query-definition:

�� (fullselect) refreshable-table-options ��

refreshable-table-options:

�� DATA INITIALLY DEFERRED REFRESH DEFERRED �
(1)

MAINTAINED BY SYSTEM

MAINTAINED BY USER
ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

��

Notes:

1 The same clause must not be specified more than one time.

materialized-query-table-alteration:

�� �
(1)

SET MAINTAINED BY SYSTEM
MAINTAINED BY USER
ENABLE QUERY OPTIMIZATION
DISABLE QUERY OPTIMIZATION

��

Notes:

1 The same clause must not be specified more than one time.

period-definition:

�� SYSTEM_TIME
BUSINESS_TIME

(start-column-name , end-column-name) ��

996 SQL Reference

organization-clause:

�� UNIQUE �

,

(column-name)
HASH SPACE 64 M

HASH SPACE integer K
M
G

��

Description

table-name
Identifies the table to be altered. The name must identify a table that exists at
the current server. The name must not identify a declared temporary table,
view, or a table that was implicitly created for an XML column. If the name
identifies a catalog table, DATA CAPTURE CHANGES is the only clause that
can be specified.

If table-name identifies an auxiliary table, alterations are limited to the following
clauses:
v APPEND

If table-name identifies a materialized query table, alterations are limited to the
following clauses:
v AUDIT
v DATA CAPTURE
v ALTER MATERIALIZED QUERY
v DROP MATERIALIZED QUERY
v ADD RESTRICT ON DROP
v DROP RESTRICT ON DROP

ADD COLUMN:

ADD column-definition
Adds a column to the table. Except for a ROWID column and an identity
column, all values of the column in existing rows are set to its default value. If
the table has n columns, the ordinality of the new column is n+1. The value of
n cannot be greater than 749. For a dependent table, n cannot be greater than
748.

The column cannot be added if the increase in the total byte count of the
columns exceeds the maximum row size. The maximum row size for the table
is eight less than the maximum record size as described in Maximum record
size.

If you add a LOB column and the table does not already have a ROWID
column, DB2 creates an implicitly hidden ROWID column. For details about
adding a LOB column, such as the other objects that might be implicitly
created or need to be explicitly created, see Creating a table with LOB
columns. For more information about adding a ROWID column, see Adding a
ROWID column.

For implicitly created LOB objects, the privilege set requires CREATETAB and
CREATETS privileges on the database that contains the table (DSNDB04 if the
database is implicitly created) and the USE privilege on the buffer pool and the

Chapter 5. Statements 997

storage group that is used by the auxiliary table and the LOB table space. The
implicitly created objects are owned by the owner of the base table.

If you add an XML column, the privilege set requires the CREATETAB and
CREATETS privileges on the database that contains the table (DSNDB04 if the
database is implicitly created), INDEX on the base table for the first DOCID
column that is added, and USE privilege on the buffer pool and the storage
group that is used by the XML objects. These privileges are required for
implicitly created XML objects. The implicitly created objects are owned by the
owner of the base table.

When you add a column to a table, the table space is placed into advisory
REORG-pending status.

The table must not be a history table or archive table.

If the table is a system-period temporal table, the column is also added to the
associated history table. If the table is an archive-enabled table, the column is
also added to the associated archive table. The following attributes of the
column in the associated table are the same as the attributes of the
corresponding column of the table that is being altered:
v Name
v Data type
v Length (including inline LOB lengths), precision, scale
v FOR BIT, SBCS, or MIXED DATA attribute for a character string column
v Null attribute
v Hidden attribute
v Field procedure

You cannot add the following columns:
v A column to a table that has an edit procedure that is defined as WITH

ROW ATTRIBUTES.
v A ROWID column to a table that already has an explicitly defined ROWID

column
v An identity column to a table that has an identity column
v A security label column to a table that already has a security label column
v A security label column to a system-period temporal table or

archive-enabled table
v A row change timestamp column to a table that already has a row change

timestamp column
v A LOB, ROWID, identity column, or row change timestamp column to a

created temporary table
v A GRAPHIC, VARGRAPHIC, DBCLOB, or CHAR FOR MIXED DATA

column, when the setting for installation option MIXED DATA is NO
v A Unicode column to an EBCDIC table (specifying CCSID 1208 or CCSID

1200) if the table is already defined with an EDITPROC or VALIDPROC.

If the column that is being added is a security label column, row permissions,
including the default row permission, cannot exist for the table

column-name
Names of the column you want to add to the table. The name must not be
the same as the name of an existing column of the table or the name of a
period in the table. A column named SYSTEM_TIME or BUSINESS_TIME
cannot be added to a table that is defined as a system-period temporal
table or a history table. Do not qualify column-name.

998 SQL Reference

|

|
|
|
|
|

|
|

|
|

built-in-type
Specifies the data type of the column is one of the built-in data types. See
built-in-type for information about the built-in data types that can be used
when adding a column to a table.

distinct-type-name
Specifies the distinct type (user-defined data type) of the column. The
length and scale of the column are respectively the length and scale of the
source type of the distinct type. The privilege set must implicitly or
explicitly include the USAGE privilege on the distinct type.

The encoding scheme of the distinct type must be the same as the
encoding scheme of the table.

If the column is to be used in the definition of the foreign key of a
referential constraint, the data type of the corresponding column of the
parent key must have the same distinct type.

DEFAULT
Specifies the default value that is assigned to the column in the absence of
a value specified in a data change statement, or LOAD. Do not specify
DEFAULT for the following types of columns:
v A ROWID column (DB2 generates default values)
v An identity column (DB2 generates default values)
v An XML column
v A row change timestamp column

Do not specify a value after the DEFAULT keyword for a security label
column. DB2 provides the default for a security label column.

If a CCSID clause is specified for the column, do not specify a value after
the DEFAULT keyword. Alternatively, DEFAULT NULL can be specified.

If a value is not specified after the DEFAULT keyword, the default value
depends on the data type of the column as indicated in the following table:

Data Type
Default Value

Numeric
0

Fixed-length character or graphic string
Blanks

Fixed-length binary string
Hexadecimal zeros

Varying-length string
A string of length 0

Inline BLOB
Hexadecimal zeros

Inline CLOB
Blanks

Inline DBCLOB
Blanks

Date For existing rows, a date corresponding to 1 January 0001. For
added rows, CURRENT DATE.

Chapter 5. Statements 999

|
|

Time For existing rows, a time corresponding to 0 hours, 0 minutes, and
0 seconds. For added rows, CURRENT TIME.

Timestamp without time zone
For existing rows, a date corresponding to 1 January 0001, and a
time corresponding to 0 hours, 0 minutes, 0 seconds, and zeros for
fractional seconds up to the timestamp precision. For added rows,
CURRENT_TIMESTAMP(p) WITHOUT TIME ZONE where p is the
corresponding timestamp precision.

Timestamp with time zone
For existing rows, a date corresponding to 1 January 0001, and a
time corresponding to 0 hours, 0 minutes, 0 seconds, and zeros for
fractional seconds up to the timestamp precision, 0 time zone
hours, 0 time zone minutes. For added rows,
CURRENT_TIMESTAMP(p) WITH TIME ZONE where p is the
corresponding timestamp precision.

If the column is defined as timestamp with time zone, the default
value must include a time zone.

In a given column definition:
v DEFAULT and FIELDPROC cannot both be specified.
v NOT NULL and DEFAULT NULL cannot both be specified.
v Omission of NOT NULL and DEFAULT for a column other than an

identity column is an implicit specification of DEFAULT NULL. For an
identity column, it is an implicit specification of NOT NULL, and DB2
generates default values.

A default value other than the one that is listed above can be specified in
one of the following forms:
v WITH DEFAULT for a default value of an empty string
v DEFAULT NULL for a default value of null

constant
Specifies a constant as the default value for the column. The value of
the constant must conform to the rules for assigning that value to the
column.

A character or string constant must be short enough so that its UTF-8
representation requires no more than 1536 bytes. A hexadecimal
graphic string (GX) constant cannot be specified.

In addition, the length of the constant value cannot be greater than the
INLINE LENGTH attribute for LOB columns.

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register at the
time of an SQL data change statement or LOAD, as the default for the
column. If SESSION_USER is specified, the data type of the column
must be a character string with a length attribute greater than or equal
to 8 characters when the value is expressed in CCSID 37. If the data
type of the column is an inline CLOB, the INLINE LENGTH attribute
must be greater than or equal to 8 characters when the value is
expressed as CCSID 37. For existing rows, the value is that of the
SESSION_USER special register at the time the ALTER TABLE
statement is processed.

CURRENT SQLID
Specifies the value of the SQL authorization ID of the process at the

1000 SQL Reference

time of an SQL data change statement or LOAD, as the default for the
column. If CURRENT SQLID is specified, the data type of the column
must be a character string with a length attribute greater than or equal
to the length attribute of the CURRENT SQLID special register. If the
data type of the column is an inline CLOB, the INLINE LENGTH
attribute must be greater than or equal to the length attribute of the
CURRENT SQLID special register. For existing rows, the value is the
SQL authorization ID of the process at the time the ALTER TABLE
statement is processed.

NULL
Specifies null as the default value for the column.

cast-function-name
The name of the cast function that matches the name of the distinct
type for the column. A cast function can be specified only if the data
type of the column is a distinct type.

The schema name of the cast function, whether it is explicitly specified
or implicitly resolved through function resolution, must be the same as
the explicitly or implicitly specified schema name of the distinct type.

constant
Specifies a constant as the argument. The constant must conform to
the rules of a constant for the source type of the distinct type. The
length of the constant cannot be greater than the INLINE LENGTH
attribute for LOB columns.

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register
at the time a row is inserted as the default for the column. The
source type of the distinct type of the column must be a CHAR,
VARCHAR, or inline CLOB with a length attribute (inline length
attribute for CLOB) that is greater than or equal to the length
attribute of the SESSION_USER special register.

CURRENT SQLID
Specifies the value of the CURRENT SQLID special register at the
time a row is inserted as the default for the column. The source
type of the distinct type of the column must be a CHAR,
VARCHAR, or inline CLOB with a length attribute (or inline length
attribute for CLOB) that is greater than or equal to the length
attribute of the CURRENT SQLID special register.

NULL
Specifies the NULL value as the argument.

GENERATED
Specifies that DB2 generates values for the column. GENERATED is
applicable only to ROWID columns, identity columns, row change
timestamp columns, row-begin columns, row-end columns, and
transaction-start-ID columns. If the table is a system-period temporal table,
GENERATED must not be specified for the column that is to be added,
unless the column is a ROWID column. The default is GENERATED
ALWAYS.

ALWAYS
Specifies that DB2 will generate a value for the column when a row is
inserted into the table. ALWAYS is the recommended value unless you
are using data propagation.

Chapter 5. Statements 1001

BY DEFAULT
Specifies that DB2 will generate a value for the column when a row is
inserted unless a value was specified for the column on the data
change statement.

If a user-supplied value is specified for a ROWID column, DB2 uses
the value only if it is a valid row ID value that was previously
generated by DB2 and the column has a unique, single-column index.
Until this index is created on the ROWID column, the insert, and
update operations and the LOAD utility cannot be used to add rows to
the table. If the table space name is not specified on the CREATE
TABLE statement, DB2 implicitly creates the necessary object to make
the table complete, including the index. The name of this index is 'I'
followed by the first ten characters of the column name followed by
seven randomly generated characters. If the column name is less than
ten characters, DB2 adds underscore characters to the end of the name
until it has ten characters. The implicitly created index has the COPY
NO attribute.

For an identity column, DB2 inserts a specified value but does not
verify that it is a unique value for the column unless the identity
column has a unique, single-column index.

If a user-supplied value is specified for an identity column, DB2 inserts
the specified value but does not perform any special validation on that
value beyond the normal validation that is performed for any column.
DB2 does not check how the specified value affects the sequential
properties that are defined for the identity column. To ensure the
uniqueness of an identity column that is defined as GENERATED BY
DEFAULT, define a unique index on the identity column.

BY DEFAULT is the recommended value only when you are using data
propagation.

AS IDENTITY
Specifies that the column is an identity column for the table. A table
can have only one identity column. AS IDENTITY can be specified
only if the data type for the column is an exact numeric type with a
scale of zero (SMALLINT, INTEGER, BIGINT, DECIMAL with a scale
of zero, or a distinct type based on one of these types). Separator
commas between identity column attribute specifications are optional
when the identity column is defined.

An identity column is implicitly NOT NULL. When adding an identity
column to a table, you must also specify GENERATED ALWAYS or
GENERATED BY DEFAULT.

Defining a column AS IDENTITY does not necessarily guarantee
uniqueness of the values. To ensure uniqueness of the values, define a
unique, single-column index on the identity column.

START WITH numeric-constant
Specifies the first value that is generated for the identity column.
The value can be any positive or negative value that could be
assigned to the column without non-zero digits existing to the
right of the decimal point.

If a value is not explicitly specified when the identity column is
defined, the default is the MINVALUE for an ascending identity
column and the MAXVALUE for a descending identity column.

1002 SQL Reference

This value is not necessarily the value that would be cycled to after
reaching the maximum or minimum value for the identity column.
The START WITH clause can be used to start the generation of
values outside the range that is used for cycles. The range used for
cycles is defined by MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity
column. The value can be any positive or negative value (including
0) that does not exceed the value of a large integer constant and
could be assigned to the column without any non-zero digits
existing to the right of the decimal point. The default is 1.

If the value is positive or zero, the sequence of values for the
identity column ascends. If the value is negative, the sequence of
values descends.

MINVALUE or NO MINVALUE
Specifies the minimum value at which a descending identity
column either cycles or stops generating values or an ascending
identity column cycles to after reaching the maximum value.

NO MINVALUE
Specifies that the minimum end point of the range of values
for the identity column has not be set. In such a case, the
default value for MINVALUE becomes one of the following:
v For an ascending identity column, the value is the START

WITH value or 1 if START WITH was not specified.
v For a descending identity column, the value is the minimum

value of the data type of the column.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value that
is generated for this identity column. This value can be any
positive or negative value that could be assigned to this
column without non-zero digits existing to the right of the
decimal point. The value must be less than or equal to the
maximum value.

MAXVALUE or NO MAXVALUE
Specifies the maximum value at which a ascending identity column
either cycles or stops generating values or a descending identity
column cycles to after reaching the minimum value.

NO MAXVALUE
Specifies that the minimum end point of the range of values
for the identity column has not be set. In such a case, the
default value for MAXVALUE becomes one of the following:
v For an ascending identity column, the value is the maximum

value of the data type of the column.
v For a descending identity column, the value is the START

WITH value or -1 if START WITH is not specified.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value that
is generated for this identity column. This value can be any
positive or negative value that could be assigned to this

Chapter 5. Statements 1003

column without non-zero digits existing to the right of the
decimal point. The value must be greater than or equal to the
minimum value.

CYCLE or NO CYCLE
Specifies whether this identity column should continue to generate
values after reaching either its maximum or minimum value.

NO CYCLE
Specifies that values will not be generated for the identity
column after the maximum or minimum value has been
reached. This is the default.

CYCLE
Specifies that values continue to be generated for this column
after the maximum or minimum value has been reached. If this
option is used, after an ascending identity column reaches the
maximum value, it generates its minimum value. After a
descending identity column reaches its minimum value, it
generates its maximum value. The maximum and minimum
values for the identity column determine the range that is used
for cycling.

When CYCLE is in effect, duplicate values can be generated by
DB2 for an identity column. However, if a unique index exists
on the identity column and a non-unique value is generated
for it, an error occurs.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory.
Preallocating and storing values in the cache improves the
performance of inserting rows into a table. The default is CACHE
20.

NO CACHE
Specifies that values for the identity column are not
preallocated and stored in the cache, ensuring that values will
not be lost in the case of a system failure. In this case, every
request for a new value for the identity column results in
synchronous I/O.

CACHE integer-constant
Specifies the maximum number of values of the identity
column sequence that DB2 can preallocate and keep in
memory.

During a system failure, all cached identity column values that
are yet to be assigned might be lost and will not be used.
Therefore, the value that is specified for CACHE also
represents the maximum number of values for the identity
column that could be lost during a system failure.

The minimum value is 2.

In a data sharing environment, you can use the CACHE and
NO ORDER options to allow multiple DB2 members to cache
sequence values simultaneously.

ORDER or NO ORDER
Specifies whether the identity column values must be generated in
order of request. The default is NO ORDER.

1004 SQL Reference

NO ORDER
Specifies that the values do not need to be generated in order
of request.

ORDER
Specifies that the values are generated in order of request.
Specifying ORDER might disable the caching of values.
ORDER applies only to a single-application process.

In a data sharing environment, if the CACHE and NO ORDER options
are in effect, multiple caches can be active simultaneously, and the
requests for identity values from different DB2 members might not
result in the assignment of values in strict numeric order. For example,
if members DB2A and DB2B are using the identity column, and DB2A
gets the cache values 1 to 20 and DB2B gets the cache values 21 to 40,
the actual order of values assigned would be 1,21,2 if DB2A requested
a value first, then DB2B requested, and then DB2A again requested.
Therefore, to guarantee that identity values are generated in strict
numeric order among multiple DB2 members using the same identity
column, specify the ORDER option.

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
Specifies that the column is a timestamp and the values will be
generated by DB2. DB2 generates a value for the column for each row
as a row is inserted, and for any row for which any column is
updated. The value that is generated for a row change timestamp
column is a timestamp that corresponds to the time of the insert or
update of the row. If multiple rows are inserted or updated with a
single statement, the value of the row change timestamp column might
be different for each row.

If data-type is specified, it must be TIMESTAMP WITHOUT TIME
ZONE with a precision of 6. You must specify NOT NULL with a row
change timestamp column.

AS ROW BEGIN
Specifies that a value for the data type of the column is assigned when
a row is inserted or any column in the row is updated. The value that
is assigned for a TIMESTAMP WITHOUT TIME ZONE column is
TIMESTAMP value '9999-12-30-00.00.00.000000000000'. The value that is
assigned for a TIMESTAMP WITH TIME ZONE COLUMN is
TIMESTAMP value '9999-12-30.00.00.00.000000000000 +00:00'.

A row-begin column is intended to be used for a system-period
temporal table.

A table can have only one row-begin column. If data-type is not
specified, the column is defined as TIMESTAMP(12) WITHOUT TIME
ZONE. If data-type is specified, it must be TIMESTAMP(12) WITHOUT
TIME ZONE or TIMESTAMP(12) WITH TIME ZONE. If the column is
defined as TIMESTAMP WITH TIME ZONE, the values are stored in
UTC, with a time zone of +00:00. The column cannot have a DEFAULT
clause.

A row-begin column is not updatable.

AS ROW END
Specifies that a value for the data type of the column is assigned when
a row is inserted or any column in the row is updated. The value that
is assigned for a timestamp without time zone column is TIMESTAMP

Chapter 5. Statements 1005

'9999-12-30-00.00.00.000000000000'. The value that is assigned for a
timestamp with time zone column is TIMESTAMP
'9999-12-30.00.00.00.000000000000 +00:00'.

A row-end column is intended to be used for a system-period temporal
table.

For a table with system-period data versioning, when a row is deleted
as the result of an update or delete operation, the value of the row-end
column in the historical row reflects when the row was deleted. The
value that is generated for the column in the historical row is a
timestamp that corresponds to the most recent transaction start time
that is associated with the transaction. If a row that is to be updated
would result in a value for the row-end column that is less than or
equal to the value for the corresponding row-begin column, the
timestamp value for the row-end column is adjusted. If multiple rows
are deleted with a single SQL statement, the values for the column in
the historical rows are the same.

A table can have only one row-end column. If data-type is not specified,
the column is defined as TIMESTAMP(12) WITHOUT TIME ZONE. If
data-type is specified, it must be TIMESTAMP(12) WITHOUT TIME
ZONE or TIMESTAMP(12) WITH TIME ZONE. If the column is
defined as TIMESTAMP WITH TIME ZONE, the values are stored in
UTC, with a time zone of +00:00. The column cannot have a DEFAULT
clause.

A row-end column is not updatable.

AS TRANSACTION START ID
Specifies that a timestamp value is assigned when the row is inserted
or any column in the row is updated. If the value of the row-begin
column is unique from row-begin column values that are generated for
other transactions, the row-begin column value is assigned to the
transaction-start-ID column. Otherwise, the value of the
transaction-start-ID column is derived from the row-begin column value
and adjusted to make it unique from transaction-start-ID column values
that are generated for other transactions.

A transaction-start-ID column is intended to be used for a
system-period temporal table.

A table can have only one transaction-start-id column. If data-type is not
specified, the column is defined as TIMESTAMP(12) WITHOUT TIME
ZONE. If data-type is specified, it must be TIMESTAMP(12) WITHOUT
TIME ZONE or TIMESTAMP(12) WITH TIME ZONE. If the column is
defined as TIMESTAMP WITH TIME ZONE, the values are stored in
UTC, with a time zone of +00:00. The column cannot have a DEFAULT
clause.

A transaction-start-id column is not updatable.

NOT NULL
Prevents the column from containing null values. If NOT NULL is
specified, the DEFAULT clause must be used to specify a nonnull default
value for the column unless the column has a row ID data type or is an
identity column. For a ROWID column, NOT NULL must be specified, and
DEFAULT must not be specified. For an identity column, although NOT
NULL can be specified, DEFAULT must not be specified.

1006 SQL Reference

IMPLICITLY HIDDEN
Specifies that the column is not visible in the results of SQL statements
unless you refer explicitly to the column by name. For example, assume
that table T1 includes a column that is defined with the IMPLICITLY
HIDDEN clause. The result of SELECT * FROM T1 would not include the
implicitly hidden column. However, the result of a SELECT statement that
explicitly refers to the name of the implicitly hidden column would include
that column in the result table.

IMPLICITLY HIDDEN must not be specified for a column that is defined
as a ROWID, or a distinct type that is based on a ROWID.

references-clause
The references-clause of a column-definition provides a shorthand method of
defining a foreign key composed of a single column. Thus, if
references-clause is specified in the definition of column C, the effect is the
same as if that references-clause were specified as part of a FOREIGN KEY
clause in which C is the only identified column.

Do not specify references-clause in the definition of the following types of
columns because these types of columns cannot be a foreign key:
v LOB columns
v ROWID columns
v XML columns
v DECFLOAT columns
v Row change timestamp columns
v Security label columns
v Columns defined with a CCSID clause

check-constraint
The check-constraint of a column-definition has the same effect as specifying a
check constraint in a separate ADD check-constraint clause. For conformance
with the SQL standard, a check constraint specified in the definition of
column C should not reference any columns other than C.

Do not specify a check constraint in the definition of the following types of
columns:
v LOB columns
v ROWID columns
v XML columns
v DECFLOAT columns
v Security label columns
v Columns defined with a CCSID clause

FIELDPROC program-name
Designates program-name as the field procedure exit routine for the column.
A field procedure can be specified only for a column with a length
attribute that is not greater than 255 bytes. FIELDPROC can only be
specified for columns that are a built-in character string or graphic string
data types. The column must not be one of the following:
v a LOB column
v a security label column
v a row change timestamp column
v a column with the TIMESTAMP WITH TIME ZONE data type

Chapter 5. Statements 1007

|

|

v a Unicode column in an EBCDIC table

The field procedure encodes and decodes column values. Before a value is
inserted in the column, it is passed to the field procedure for encoding.
Before a value from the column is used by a program, it is passed to the
field procedure for decoding. A field procedure could be used, for example,
to alter the sorting sequence of values entered in the column.

The field procedure is also invoked during the processing of the ALTER
TABLE statement. When so invoked, the procedure provides DB2 with the
column's field description. The field description defines the data
characteristics of the encoded values. By contrast, the information you
supply for the column in the ALTER TABLE statement defines the data
characteristics of the decoded values.

If you omit FIELDPROC, the column has no field procedure.

Related information:

Field procedures (DB2 Administration Guide)

constant
Is a parameter that is passed to the field procedure when it is invoked.
A parameter list is optional. The nth parameter specified in the
FIELDPROC clause on ALTER TABLE corresponds to the nth
parameter of the specified field procedure. The maximum length of the
parameter list is 255 bytes, including commas but excluding
insignificant blanks and the delimiting parentheses.

AS SECURITY LABEL
Specifies that the table is defined with multilevel security with row level
granularity and specifies that the column will contain the security label
values. A table can have only one security label column. To define a table
with a security label column, the primary authorization ID of the statement
must have a valid security label, and the RACF SECLABEL class must be
active. In addition, the following conditions are also required:
v The data type of the column must be CHAR(8).
v The subtype of the column must be SBCS.
v The column does not have any field procedures, check constraints, or

referential constraints.
v The column must be defined as NOT NULL and WITH DEFAULT

clauses.
v The WITH DEFAULT clause must not be specified with a default value

(DB2 provides the default value).
v The table does not have an edit procedure that is defined as WITH ROW

ATTRIBUTES.
v The table is not the source table for a materialized query table.

For existing rows in the table, the value of the security label column
defaults to the security label of the user at the time the ALTER statement is
executed.

INLINE LENGTH integer
Specifies the maximum length for the column, if the column is a LOB
column and the table is in a universal table space. INLINE LENGTH
cannot be specified if the column is not a LOB column (or a distinct type
that is based on a LOB) or if the table is not in a universal table space.

For BLOB and CLOB columns, integer specifies the maximum number of
bytes that are stored in the base table space for the column. integer must be
between 0 and 32680 (inclusive) for a BLOB or CLOB column.

1008 SQL Reference

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_fieldprocedure.htm#db2z_fieldprocedure

For a DBCLOB column, integer specifies the maximum number of
double-byte characters that are stored in the table space for the column.
integer must be between 0 and 16340 (inclusive) for a DBCLOB column.

If INLINE LENGTH is specified, the value of integer cannot be greater than
the maximum length of the LOB column.

If the INLINE LENGTH clause is not specified, the maximum length of the
LOB column depends on the following conditions:
v If a distinct type is not used or the distinct type that is used has been

created without the INLINE LENGTH attribute, the LOB column will
use the value of the LOB INLINE LENGTH parameter on installation
panel DSNTIPD as the default inline length when the value of LOB
INLINE LENGTH does not exceed the maximum length of the LOB
column. If the value of LOB INLINE LENGTH exceeds the maximum
length of the LOB column, the maximum length is the inline length of
this LOB column.

v If a distinct type that has been created with the INLINE LENGTH
attribute is used, the LOB column inherits the inline length from the
distinct type.

Regardless of how the length is determined, the inline length of the LOB
cannot be greater than its maximum length.

ALTER COLUMN:

ALTER COLUMN column-alteration
Alters the definition of an existing column, including the attributes of an
existing identity column. Only the attributes specified are altered. Other
attributes remain unchanged. Only future values of the column are affected by
the changes made with an ALTER TABLE ALTER COLUMN statement.

The table being altered must not be in an incomplete state because of a missing
unique index on a unique constraint (primary or unique key). An ALTER
TABLE ALTER COLUMN statement might not be processed in the same unit
of work as a data change statement. A column cannot be altered if any of the
following conditions are true:
v The table has an edit procedure that is defined as WITH ROW ATTRIBUTES

or a validation exit procedure
v The table is used in a materialized query table definition
v The table is a materialized query table
v The table is a system-period temporal table that is enabled for system-period

data versioning
v The table is a history table
v The table is an archive-enabled table or an archive table
v There is an extended index that depends on that column
v The column is referenced in a field procedure
v The column is referenced in a referential constraint
v The column is referenced in the definition of a SYSTEM_TIME or

BUSINESS_TIME period
v The column is defined as a transaction-start-ID column
v The column is defined as a security label column
v The column is defined as a row change timestamp column
v The column is a Unicode column in an EBCDIC table

Chapter 5. Statements 1009

|

|

You can modify all the attributes of an existing identity column, except for the
data type of the column. To change the data type of an identity column, drop
the table containing the column and recreate it. When the attributes of an
identity column are altered, the column of the specified column-name must exist
in the specified table and must have been defined with the IDENTITY
attribute.

column-name
Identifies the column to be altered. The name must not be qualified and
must identify an existing column in the table being altered when the
ALTER statement is processed. The name must not identify a column that
is being added in the same ALTER TABLE statement.

A column can only be referenced in one ALTER COLUMN clause in a
single ALTER TABLE statement. However, that same column can be
referenced multiple times for adding or dropping constraints in the same
ALTER TABLE statement.

SET DATA TYPE (altered-data-type)
Specifies the new data type of the column to be altered. For a character
column, you can also use the clause to change the definition of the subtype
that is stored in the DB2 catalog and OBD.

The column cannot be an identity column. The new data type must be
compatible with the existing data type of the column. The existing data
type of the column cannot be a ROWID, date, time, or distinct type. When
the source data type is a LOB, the target data type must be the same LOB
data type. If the source data type is a LOB and the maximum length is
altered, the new maximum length must be at least as large as the existing
length attribute. If the column is a partitioning column, and the existing
data type is CHAR or VARCHAR FOR BIT DATA, the new data type
cannot be VARBINARY or BINARY. If the column is CHAR FOR BIT
DATA, VARCHAR FOR BIT DATA, or BINARY, the new data type cannot
be VARBINARY if the column is part of an index and is defined with the
DESC attribute. For more information on the compatibility of data types,
see “Assignment and comparison” on page 121.

A TIMESTAMP column can only be altered to TIMESTAMP with a larger
precision. A TIMESTAMP WITH TIME ZONE column can only be altered
to TIMESTAMP WITH TIME ZONE with a larger precision. If the precision
of a timestamp column is increased, the fractional seconds of existing data
values are extended with zeros so that the number of fractional second
digits matches the specified timestamp precision.

If the data type is a LOB and the maximum length is being changed, any
packages or statements in the dynamic statement cache that reference the
table are invalidated. Any views that reference the LOB column are
regenerated.

If any numeric data type is being converted to DECFLOAT, the ALTER
statement will fail if there is a partitioning key, check constraints, index, or
a unique constraint on the column.

If altered-data-type is XML, the old data type of the altered column must
also be XML:
v If the old data type has no XML type modifier and the new data type

does, you should ensure that all values in the XML column are valid
according to the XML schema that is specified in the type modifier. The
XML table space for the column that is being changed is left in
CHECK-pending status.

1010 SQL Reference

v If the old data type has the XML type modifier but the new data type
has no type modifier, the existing values do not need to be re-validated.
The state of the table space is not changed.
If the XML schemas that are specified in the old XML type modifier are
a subset of the XML schemas that are specified in the new XML type
modifier, the existing values do not need to be re-validated. The state of
the XML table space is not changed.

v If the XML schemas that are specified in the old XML type modifier are
NOT a subset of the XML schemas that are specified in the new XML
type modifier, the XML table space for the column that is being changed
is left in the CHECK-pending status.

Changing an XML column to use a different type modifier does not result
in the invalidation of dependent packages or statements in the dynamic
statement cache. Also, changing an XML column to use a different type
modifier will not generate a new version of the table.

If the data type is a character or graphic string, the new length attribute
must be at least as large as the existing length attribute of the column. If
the data type is a numeric data type, the specified precision and scale must
be at least as large as the existing precision and scale. If a decimal fraction
is being converted to floating point, the ALTER statement will fail if there
is a unique index or a unique constraint on the column.

If the specified column has a default value, the existing default value must
represent a value that could be assigned to a column with the new data
type in accordance with the rules for assignment. The default value is
updated to reflect the new data type.

If the column is specified in a unique constraint (unique key or primary
key) or unique index, the new column length must not exceed the limit on
an index size. For PADDED indexes, the sum of the length attributes of the
columns must not be greater than 2000-n, where n is the number of
columns that can contain null values. For NOT PADDED indexes, the sum
of the length attributes of the columns must not be greater than 2000-n-2m,
where n is the number of nullable columns and m is the number of varying
length columns.

The total byte count of columns after the alteration must not exceed the
maximum row size. If the column is in the partitioning key, the new
partitioning key cannot exceed 255-n.

Table 100 shows the numeric data type alterations that are supported for
SET DATA TYPE:

Table 100. Supported numeric data type alterations for SET DATA TYPE

From/To SMALLINT INTEGER BIGINT
DECIMAL
(q,t) REAL DOUBLE

DECFLOAT
(16)

DECFLOAT
(34)

SMALLINT Y Y Y (q-t)>4 Y Y Y Y

INTEGER N Y Y (q-t)>9 N Y Y Y

BIGINT N N Y (q-t)>18 N N N Y

DECIMAL
(p,s)

s=0
p<5

s=0
p<10

s=0
p<=19

q>=p
(q-t)>=(p-s)

p<7 p<16 p<17 Y

DECFLOAT
(16)

N N N N N N Y Y

Chapter 5. Statements 1011

Table 100. Supported numeric data type alterations for SET DATA TYPE (continued)

From/To SMALLINT INTEGER BIGINT
DECIMAL
(q,t) REAL DOUBLE

DECFLOAT
(16)

DECFLOAT
(34)

DECFLOAT
(34)

N N N N N N N Y

FLOAT
(1-21)

N N N N Y Y Y Y

FLOAT
(22-53)

N N N N N Y Y Y

When a SMALLINT, INTEGER, or DECIMAL column is altered to a
BIGINT data type, and there is an index defined on that column, the index
will be put in RBDP status.

In releases of DB2 prior to Version 9.1, use of the DECIMAL(19,0) data
type for applications that work with BIGINT data was encouraged. For
performance reasons, the DECIMAL(19,0) columns should be altered to
BIGINT. Note that altering from DECIMAL(19,0) to BIGINT is provided
only for DECIMAL(19,0) columns that are used for applications that work
with BIGINT (thus, the data in those columns is within the range of the
BIGINT).

When altering from DECIMAL(19,0) to BIGINT you should ensure that all
values in the DECIMAL(19,0) column are within the range of BIGINT
before the alter. The following query or a similar query can be run to
determine which rows (if any) contain values that are outside of the range
of BIGINT:
SELECT * FROM table_name

WHERE dec19_0_column > 9223372036854775807
OR dec19_0_column < -9223372036854775808;

When a partitioning key column with a numeric data type is altered to a
larger numeric data type, and the limit key value for the original numeric
data type of the column is X'FF', the limit key value for the new numeric
data type of the column is left-padded with X'FF'. For example, if a column
is converted from SMALLINT to INTEGER, and a limit key value for the
SMALLINT column is 32767 (which is 2 bytes of X'FF'), the limit key for
the INTEGER column is 2147483647 (which is 4 bytes of X'FF').

When a partitioning key column with a character data type is altered to a
longer character data type, and the limit key value for the original
character data type of the column (excluding the first NULL byte if the
column is nullable) is neither all X'FF' nor all X'00', the limit key value for
the new character data type of the column is right-padded with blank(s) of
the encoding scheme of the table. For example, if a column is converted
from CHAR(1) to VARCHAR(2), and a limit key value for the CHAR(1)
column is 'A' (which is X'C1'), the limit key for the VARCHAR(2) column
is 'A ' (which is X'C140' when the encoding scheme of the table is EBCDIC,
or is X'C120' when the encoding scheme of the table is UNICODE or
ASCII).

When a partitioning key column with a character data type is altered to a
longer character data type, and the limit key value for the original
character data type of the column (excluding the first NULL byte if the
column is nullable) is all X'FF', the limit key value for the new character
data type of the column is right-padded with X'FF' and the table space that
contains the table being altered is left in REORG-pending (REORP) status.

1012 SQL Reference

When a partitioning key column with a character data type is altered to a
longer character data type, and the limit key value for the original
character data type of the column (excluding the first NULL byte if the
column is nullable) is all X'00', the limit key value for the new character
data type of the column is right-padded with X'00' and the table space that
contains the table being altered is left in REORG-pending (REORP) status.

Table 101 shows the character data type alterations that are supported for
SET DATA TYPE:

Table 101. Supported character data type alterations for SET DATA TYPE (x > =0).

From/To
CHARACTER
(n+x)

VARCHAR
(n+x)

LONG
VARCHAR

GRAPHIC
(n+x)

VARGRAPHIC
(n+x)

LONG
VARGRAPHIC

CHARACTER(n) Y Y N N N N

VARCHAR(n) Y Y N N N N

LONG VARCHAR N Y N N N N

GRAPHIC(n) N N N Y Y N

VARGRAPHIC(n) N N N Y Y N

LONG
VARGRAPHIC

N N N N Y N

When columns are converted from CHAR to VARCHAR, normal
assignment rules apply, which means that trailing blanks are kept instead
of being stripped out. If you want varying length character strings without
trailing blanks, use the STRIP function for data in the column after
changing the data type to VARCHAR.

When a CHAR FOR BIT DATA column is converted to a BINARY data
type, the following applies:
v The existing space characters in the table will not be changed to

hexadecimal zeros (X'00')
v If the new length attribute is greater than current length attribute of the

column, the values in the table are padded with hexadecimal zeros
(X'00')

When a CHAR FOR BIT DATA or VARCHAR FOR BIT DATA column is
converted to a BINARY or VARBINARY data type, the existing default
value will be cast as a binary string. The resulting binary string will be at
least twice the original size. The alter will fail if the resulting binary string
length exceeds 1536 UTF-8 bytes.

When a CHAR FOR BIT DATA or VARCHAR FOR BIT DATA column is
converted to a BINARY or VARBINARY data type, and there is an index
defined on that column, the index will be put in RBDP.

Table 102. Supported binary data type alterations for SET DATA TYPE (x >= 0)

From/To BINARY(n+x) VARBINARY(n+x)

CHAR(n) FOR BIT DATA Y Y

VARCHAR(n) FOR BIT DATA Y Y

BINARY(n) Y Y

VARBINARY(n) Y1 Y

Note: ALTER from VARBINARY to BINARY is not allowed when the column is part of a unique index.

Chapter 5. Statements 1013

The table being altered must not be defined with an edit procedure that is
defined as WITH ROW ATTRIBUTES or a valid procedure. There must not
be a materialized query table defined on this table, and this table must not
be defined as a materialized query table.

Changing the data type, precision, scale, or length of a column can affect a
row permission or a column mask that is defined on the table. If the data
type, length, precision, or scale for the column is changed and a column
mask is defined for this column, or a row permission or a column mask
references this column, these row permissions and column masks are
reevaluated using the new column attributes of the column. If an error is
encountered during the reevaluation process, the ALTER statement returns
the error.

During the reevaluation of the column mask or row permission,
user-defined functions that are referenced in the definition of the column
mask or the row permission must be resolved to the same functions that
were resolved during the creation of the column mask or the row
permission.

If the alteration results in the generation of a new table version, the table
space that contains the table that is being changed is left in an advisory
REORG-pending (AREO) status. If the column that is being changed is part
of an index, an exception state might be set for the index as shown in
Table 103:

Table 103. Informational settings for ALTER COLUMN when the column is in an index

Alteration type Exception state for index Package invalidation

VARCHAR to CHAR PSRBD Yes

VARGRAPHIC to GRAPHIC PSRBD Yes

CHAR to VARCHAR AREO* Yes

GRAPHIC to VARGRAPHIC AREO* Yes

VARCHAR to VARCHAR AREO* (for padded only) No

VARGRAPHIC to
VARGRAPHIC

AREO* (for padded only) No

CHAR to CHAR AREO* Yes

GRAPHIC to GRAPHIC AREO* Yes

DECIMAL to DECIMAL RBDP Yes

TIMESTAMP WITHOUT
TIME ZONE to TIMESTAMP
WITHOUT TIME ZONE

AREO* Yes

TIMESTAMP WITH TIME
ZONE to TIMESTAMP WITH
TIME ZONE

AREO* Yes

For information on resetting informational or restrictive exception states,
see DB2 Utility Guide and Reference.

FOR subtype DATA
Alters the subtype of a character column. This clause does not change
the data. The clause only updates the definition of the subtype as it is
stored in the DB2 catalog and the OBD. The length and data type that
are specified must match the existing length and data type of the
column.

Only character strings are valid when subtype is BIT.

1014 SQL Reference

For more information on the subtype values (SBCS, MIXED, and BIT),
see the subtype information under built-in-type.

SET INLINE LENGTH integer
Specifies the new inline length for the column. SET INLINE LENGTH can
only be specified for an inline LOB column in a table that is in a universal
table space. INLINE LENGTH cannot be specified if FOR SBCS DATA or
FOR MIXED DATA is also specified in the same ALTER TABLE statement.
Inline LOB columns cannot be added to a table that is in a table space that
has basic row format. The new length can be smaller or larger than the
original length. integer is a value between 0 and 32680 bytes (inclusive) for
a BLOB or CLOB column or between 0 and 16340 characters (inclusive) for
a DBCLOB column. The inline length cannot be changed in the following
cases:
v The LOB column is referenced in an expression-based index or a spatial

index.
v The new inline length is less than the default length for the column.
v The new inline length is greater than the maximum length of the LOB

column.

If there are views that inherit the inline length from a LOB column and the
inline length of that LOB column has been changed, the views (and any
views that are dependent on those views) are recalculated to use the
updated inline length.

If the inline length is changed, any packages or statements in the dynamic
statement cache that reference the table are invalidated.

When the base table space is not empty, increasing the length puts the
table space in an advisory REORG-pending state, and decreasing the
length puts the table space in a REORG-pending state.

No expression-based indexes can be created after the inline length is
changed until the REORG utility is run on the base table space.

SET default-clause
Specifies the new default value of the column to be altered. The new
default value must conform to the current rules for assigning that value to
the column. Existing rows will retain their current value. The new default
value will only be reflected in the rows that are inserted after the alter.
Sections that are dependent on the table that is being altered will be
invalidated.

The table must not be referenced by an view. The table must not be
defined with the DATA CAPTURE CHANGES attribute when the
subsystem parameter RESTRICT_ALT_COL_FOR_DCC is set to YES.

If the column is specified in a unique constraint (unique key or primary
key) or unique index, the default value might be altered to the same value
as an existing row of that column. However, subsequent data change
operations will fail in the absence of a value specified for that column on
the insert operation.

For LOB columns, only the default for inline LOB columns can be changed.
The new default length cannot be greater than the inline length.

DROP DEFAULT
Drops the current default value of the column. For columns that are not
nullable, the specified column must be defined with a default value. For

Chapter 5. Statements 1015

columns that are nullable, the specified column cannot have a null default
value. For columns that are nullable, the new default value is the null
value.

The table that contains the specified column must not be referenced in a
view. The table must not be defined with the DATA CAPTURE CHANGES
attribute when the subsystem parameter RESTRICT_ALT_COL_FOR_DCC
is set to YES.

Follow these steps to remove the default value for a column that was
defined using ALTER TABLE with the ADD COLUMN clause:
1. Run the REORG utility or the UPDATE statement to reset the AREO*

state:
v Run the REORG utility on the table space that contains the table
v If the table is in a universal table space and the table does not have

row access control activated, run an UPDATE statement without the
SKIP LOCKED DATA or WHERE clauses specified. The update
operation must be done with a searched UPDATE statement and the
expression in the SET clause cannot be a scalar-fullselect or a
row-fullselect. An update operation within a SELECT statement will
not reset the AREO* status.

2. Issue the ALTER TABLE statement that specifies the DROP DEFAULT
clause

If the REORG is not done before the ALTER TABLE, or the UPDATE
statement does not reset the AREO* statue, an error is returned for the
ALTER TABLE statement.

SET GENERATED
Specifies that DB2 generates values for the column. SET GENERATED
must not be specified for a column of a history table or for a column that
already has the GENERATED attribute.

ALWAYS
Specifies that DB2 always generates a value for the column when a
row is inserted or updated and a default value must be generated.

BY DEFAULT
Specifies that DB2 generates a value for the column when a row is
inserted or updated and a default value must be generated, unless an
explicit value is specified. For a row change timestamp column, DB2
inserts or updates a specified value but does not verify that it is a
unique value for the column unless the row change timestamp column
has a unique constraint or a unique index that solely specifies the row
change timestamp column.

RESTART
Specifies the next value for the identity column, If numeric-constant is not
specified, the sequence is restarted at the value that is specified implicitly
or explicitly as the starting value when the identity column was originally
created.

WITH numeric-constant
Specifies that, when it is time to generate the next value for this
identity column, numeric-constant will be used as the next value for the
column. This value can be any positive or negative value (including 0)
that could be assigned to this column without nonzero digits existing
to the right of the decimal point.

1016 SQL Reference

If RESTART is not specified, the sequence is not restarted. Instead, it
resumes with the current values that are in effect for all the options
after the ALTER statement is issued.

After an identity column is restarted or changed to allow cycling,
sequence numbers might be duplicates of values generated previously.

SET INCREMENT BY numeric-constant
For a definition, see the description of INCREMENT BY numeric-constant
for defining an identity column.

SET MINVALUE or NO MINVALUE
For a definition, see the description of MINVALUE or NO MINVALUE for
defining an identity column.

SET MAXVALUE or NO MAXVALUE
For a definition, see the description of MAXVALUE or NO MAXVALUE
for defining an identity column.

SET CYCLE or NO CYCLE
For a definition, see the description of CYCLE or NO CYCLE for defining
an identity column.

SET CACHE or NO CACHE
For a definition, see the description of CACHE or NO CACHE for defining
an identity column.

SET ORDER or NO ORDER
For a definition, see the description of ORDER or NO ORDER for defining
an identity column.

RENAME COLUMN:

RENAME COLUMN source-column-name TO target-column-name
Renames the specified column. The names must not be qualified.

source-column-name
Identifies the column that is to be renamed. The name must identify an
existing column of the table.

target-column-name
Specifies the new name for the column. The name must not identify a
column that already exists in the table, or the name of a period that exists
in the table.

You cannot rename a column if any of the following conditions apply:
v The column is referenced in a view
v The column is referenced in the expression of an index definition
v The column is referenced in the definition of a row permission or a column

mask
v The column is referenced in an SQL table user-defined function
v The column has a check constraint defined
v The column has a field procedure defined
v The table has a trigger
v The table is a materialized query table or is referenced by a materialized

query table
v The table has a valid procedure, or an edit procedure that is defined as

WITH ROW ATTRIBUTES

Chapter 5. Statements 1017

v The table is a DB2 catalog table
v The table is a system-period temporal table or a history table
v The table is an archive-enabled table or an archive table

DROP COLUMN

DROP COLUMN column-name
Drops the identified column from the table. Any privileges that are associated
with the column are revoked.

A column cannot be dropped if any of the following conditions are true:
v The containing table space is not a universal table space
v The table is a created global temporary table
v The table is a system-period temporal table
v The table is a history table
v The table is an archive-enabled table
v The table is an archive table
v The table has an edit procedure or a validation exit procedure
v The table contains check constraints
v The table is a materialized query table
v The table is referenced in a materialized query table definition
v The column is defined as a security label column
v The column is an XML column
v The column is a DOCID column
v The column is a hidden ROWID column
v The column is defined as ROWID GENERATED BY DEFAULT, and the table

contains a hidden ROWID column
v The column is a ROWID column on which there is a dependent LOB column
v The column is part of the table partitioning key
v The column is part of the hash key
v All of the remaining columns in the table are hidden
v A view that is dependent on the table has INSTEAD OF triggers
v A trigger is defined on the table
v Any of the following objects are dependent on the table:

– Extended indexes
– Row permissions
– Column masks
– Inline SQL table functions

column-name
Identifies the column that is to be dropped. The column name must not be
qualified. The name must identify a column of the specified table. The
name must not identify the only column of the table or a column that is
referenced in the definition of a period. The table definition must not be in
an incomplete state.

If the column is a LOB column, any auxiliary tables that are associated
with the column and the indexes on the auxiliary tables are also dropped.
Any LOB table spaces that were implicitly created for the auxiliary tables
are also dropped. If the column is the last LOB column in the table, any
implicitly created ROWID column in the table is also dropped.

1018 SQL Reference

|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|

Dropping a column is a pending change to the definition of the table if the
data sets of the table space are already created, otherwise, the change takes
effect immediately.

If the change is a pending change to the definition of the table, the
definition of the containing table space must not be in an incomplete state.
Pending changes are not reflected in the definition or data at the time the
ALTER TABLE statement is issued. Instead, the entire table space is placed
in an advisory REORG-pending state (AREOR). A subsequent
reorganization of the entire table space will apply the pending definition
changes to the definition and data of the table. If the change is a pending
change, a new table version is generated.

RESTRICT
Specifies that the column cannot be dropped if any views, indexes, unique
constraints, or referential constraints are dependent on the column.

ADD PERIOD:

ADD PERIOD SYSTEM_TIME or BUSINESS_TIME (start-column-name,
end-column-name)

Adds a period to the table.

The table must not be an archive-enabled table or an archive table.

start-column-name must not be the same as end-column-name. The data type,
precision, and scale for start-column-name must be the same as for
end-column-name.

SYSTEM_TIME
Names the period SYSTEM_TIME. The name must not identify an existing
column in the table. A table can have only one SYSTEM_TIME period.

A system generated check constraint named
DB2_GENERATED_CHECK_CONSTRAINT_FOR_SYSTEM_TIME is
generated to ensure that the value for end-column-name is greater than the
value for start-column-name. start-column-name and end-column-name must be
defined as TIMESTAMP(12) WITHOUT TIME ZONE.
DB2_GENERATED_CHECK_CONSTRAINT_FOR_SYSTEM_TIME cannot
be an existing check constraint.

The start-column-name must specify a row-begin column and the
end-column-name must specify a row-end column. Both columns must be
defined as GENERATED ALWAYS. A column mask or row permission
must not be defined for the table.

BUSINESS_TIME
Names the period BUSINESS_TIME. The name must not identify an
existing column in the table. A table can have only one BUSINESS_TIME
period.

A system generated check constraint named
DB2_GENERATED_CHECK_CONSTRAINT_FOR_BUSINESS_TIME is
generated to ensure that the value for end-column-name is greater than the
value for start-column-name.
DB2_GENERATED_CHECK_CONSTRAINT_FOR_BUSINESS_TIME cannot
be an existing check constraint.

The columns that are specified for start-column-name and end-column-name
must be defined as DATE or TIMESTAMP(6) WITHOUT TIME ZONE, and

Chapter 5. Statements 1019

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

must be defined as NOT NULL. The columns that are specified for
start-column-name and end-column-name must not identify a column that is
defined with a GENERATED clause.

start-column-name
Identifies the column that records the start value for the period. The name
must identify an existing column in the table. start-column-name must not
be the same as a column that is used in the definition of another period for
the table.

end-column-name
Identifies the column that records the end value for the period. The name
must identify an existing column in the table. end-column-name must not be
the same as a column that is used in the definition of another period for
the table.

ADD unique-constraint:

CONSTRAINT constraint-name
Names the primary key or unique key constraint. If a constraint name is not
specified, a unique constraint name is generated. If a name is specified, it must
be different from the names of any referential, check, primary key, or unique
key constraints previously specified on the table. If the table space is implicitly
created, the enforcing primary key and unique key indexes are also implicitly
created.

PRIMARY KEY(column-name,...)
Defines a primary key composed of the identified columns. Each column name
must be an unqualified name that identifies a column of the table. The same
column must not be identified more than one time. The following types of
columns cannot be specified in a PRIMARY KEY clause:
v a LOB column
v a ROWID column
v a DECFLOAT column
v an XML column
v a distinct type column that is based on a LOB, ROWID, or DECFLOAT data

type
v a row change timestamp column
v a Unicode column in an EBCDIC table

The number of identified columns must not exceed 64. In addition, the sum of
the length attributes of the columns must not be greater than 2000 -2m, where
m is the number of varying-length columns in the key. The table must not have
a primary key and the identified columns must be defined as NOT NULL.

The set of columns in the primary key cannot be the same as the set of
columns of another unique key.

The table must have a unique index with a unique key that is identical to the
primary key. The keys are identical only if they have the same number of
columns and the nth column name of one is the same as the nth column name
of the other. If the table is in a table space that is implicitly created, and no
unique index is defined on the identified columns, DB2 will automatically
create a primary index. The privilege set must include the INDEX privilege on
the table and the USE privilege on the buffer pool and the storage group. The
implicitly created primary key index is owned by the owner of the base table.

1020 SQL Reference

|

The identified columns are defined as the primary key of the table. The
description of the index is changed to indicate that it is a primary index. If the
table has more than one unique index with a key that is identical to the
primary key, the selection of the primary index is arbitrary.

BUSINESS_TIME WITHOUT OVERLAPS
BUSINESS_TIME WITHOUT OVERLAPS can be specified as the last item
in the list. If BUSINESS_TIME WITHOUT OVERLAPS is specified, the list
must include at least one column-name or key-expression. When WITHOUT
OVERLAPS is specified, the values for the rest of the specified keys are
unique with respect to the time for the BUSINESS_TIME period. When
BUSINESS_TIME WITHOUT OVERLAPS is specified, the columns of the
BUSINESS_TIME period must not be specified as part of the constraint.
The specification of BUSINESS_TIME WITHOUT OVERLAPS adds the
following to the constraint:
v The end column of the BUSINESS_TIME period in ascending order
v The start column of the BUSINESS_TIME period in ascending order

UNIQUE(column-name,...)
Defines a unique key composed of the identified columns with the specified
constraint-name. If a constraint-name is not specified, a name is generated. Each
column name must be an unqualified name that identifies a column of the
table. The same column must not be identified more than one time. The
following types of columns cannot be specified in a UNIQUE clause:
v a LOB column
v a ROWID column
v a DECFLOAT column
v an XML column
v a distinct type column that is based on a LOB, ROWID, or DECFLOAT data

type
v a Unicode column in an EBCDIC table

Each identified column must be defined as NOT NULL. The number of
identified columns must not exceed 64. In addition, the sum of the length
attributes of the columns must not be greater than 2000 - n for padded indexes
and 2000 - n - 2m for nonpadded indexes, where n is the number of columns
that can contain null values and m is the number of varying-length columns in
the key.

The set of columns in the unique key cannot be the same as the set of columns
of the primary key or another unique key. A unique key is a duplicate if it is
the same as the primary key or a previously defined unique key. The
specification of a duplicate unique key is ignored with a warning.

The table must have a unique index with a key that is identical to the unique
key. The keys are identical only if they have the same number of columns and
the nth column name of one is the same as the nth column name of the other.
If the table is in a table space that is implicitly created, and no unique index is
defined on the identified columns, DB2 will automatically create a unique
index to enforce the unique key constraint. The privilege set must include the
INDEX privilege on the table and the USE privilege on the buffer pool and the
storage group. The implicitly created unique key index is owned by the owner
of the base table.

The identified columns are defined as a unique key of the table. The
description of the index is changed to indicate that it is enforcing a unique key

Chapter 5. Statements 1021

|

constraint. If the table has more than one unique index with a key that is
identical to the unique key, the selection of the enforcing index is arbitrary.

BUSINESS_TIME WITHOUT OVERLAPS
BUSINESS_TIME WITHOUT OVERLAPS can be specified as the last item
in the list. If BUSINESS_TIME WITHOUT OVERLAPS is specified, the list
must include at least one column-name or key-expression. When WITHOUT
OVERLAPS is specified, the values for the rest of the specified keys are
unique with respect to the time for the BUSINESS_TIME period. When
BUSINESS_TIME WITHOUT OVERLAPS is specified, the columns of the
BUSINESS_TIME period must not be specified as part of the constraint.
The specification of BUSINESS_TIME WITHOUT OVERLAPS adds the
following to the constraint:
v The end column of the BUSINESS_TIME period in ascending order
v The start column of the BUSINESS_TIME period in ascending order

ADD referential-constraint:

CONSTRAINT constraint-name
Names the referential constraint. If a constraint name is not specified, a unique
constraint name is generated. If a name is specified, it must be different from
the names of any referential, check, primary key, or unique key constraints
previously specified on the table.

FOREIGN KEY (column-name,...) references-clause
Specifies a referential constraint with the specified constraint-name.

FOREIGN KEY cannot be specified if the table is a history table or an archive
table.

Let T1 denote the object table of the ALTER TABLE statement.

The foreign key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of T1. The same column must not be identified more than one time.
The following types of columns cannot be specified in the FOREIGN KEY
clause:
v a LOB column
v a ROWID column
v a DECFLOAT column
v an XML column
v a distinct type column that is based on a LOB, ROWID, or DECFLOAT data

type
v a security label column
v a row change timestamp column
v a Unicode column in an EBCDIC table

The number of identified columns must not exceed 64 and the sum of their
length attributes must not exceed 255 minus the number of columns that allow
null values. The referential constraint is a duplicate if the FOREIGN KEY and
the parent table are the same as the FOREIGN KEY and parent table of an
existing referential constraint on T1. The specification of a duplicate referential
constraint is ignored with a warning.

The foreign key of the referential constraint cannot reference a parent key that
contains BUSINESS_TIME WITHOUT OVERLAPS.

1022 SQL Reference

|
|

|

REFERENCES table-name (column-name,...)
The table name specified after REFERENCES must identify a table that exists
at the current server.

table-name must not identify a catalog table, a declared global temporary table,
a history table, or an archive table.

Let T2 denote the identified parent table and let T1 denote the table that is
being changed (T1 and T2 can be the same table).

T2 must have a unique index and the privilege set on T2 must include the
ALTER or REFERENCES privilege on the parent table, or the REFERENCES
privilege on the columns of the nominated parent key.

The parent key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of T2. The same column must not be identified more than one time.
The following types of columns cannot be specified in a REFERENCES clause:
v a LOB column
v a ROWID column
v a DECFLOAT column
v an XML column
v a distinct type column that is based on a LOB, ROWID, or DECFLOAT data

type
v a security label column
v a row change timestamp column
v a Unicode column in an EBCDIC table

The list of column names in the parent key must be identical to the list of
column names in a primary key or unique key in the parent table T2. The
column names must be specified in the same order as in the primary key or
unique key. If any of the referenced columns in T2 has a non-numeric data
type, T2 and T1 must use the same encoding scheme.

If a list of column names is not specified, then T2 must have a primary key.
Omission of a list of column names is an implicit specification of the columns
of the primary key for T2.

The specified foreign key must have the same number of columns as the
parent key of T2 and, except for their names, default values, null attributes and
check constraints, the description of the nth column of the foreign key must be
identical to the description of the nth column of the nominated parent key. If
the foreign key includes a column defined as a distinct type, the corresponding
column of the nominated parent key must be the same distinct type. If a
column of the foreign key has a field procedure, the corresponding column of
the nominated parent key must have the same field procedure and an identical
field description. A field description is a description of the encoded value as it is
stored in the database for a column that has been defined to have an
associated field procedure.

The table space that contains T1 must be available to DB2. If T1 is populated,
its table space is placed in a check pending status. A table in a segmented table
space is populated if the table is not empty. A table in a table space that is not
segmented is considered populated if the table space has ever contained any
records.

Chapter 5. Statements 1023

|
|

|

The referential constraint specified by the FOREIGN KEY clause defines a
relationship in which T2 is the parent and T1 is the dependent. A description
of the referential constraint is recorded in the catalog.

ON DELETE
The delete rule of the relationship is determined by the ON DELETE clause.
For more on the concepts used here, see “Referential constraints” on page 23.

If T1 and T2 are the same table, CASCADE or NO ACTION must be specified.
SET NULL must not be specified unless some column of the foreign key allows
null values. Also, SET NULL must not be specified if any nullable column of
the foreign key is a column of the key of a partitioning index. The default
value for the rule depends on the value of the CURRENT RULES special
register when the ALTER TABLE statement is processed. If the value of the
register is 'DB2', the delete rule defaults to RESTRICT; if the value is 'SQL', the
delete rule defaults to NO ACTION.

The delete rule applies when a row of T2 is the object of a DELETE or
propagated delete operation and that row has dependents in T1. Let p denote
such a row of T2.
v If RESTRICT or NO ACTION is specified, an error occurs and no rows are

deleted.
v If CASCADE is specified, the delete operation is propagated to the

dependents of p in T1.
v If SET NULL is specified, each nullable column of the foreign key of each

dependent of p in T1 is set to null.

A cycle involving two or more tables must not cause a table to be
delete-connected to itself. Thus, if the relationship would form a cycle:
v The referential constraint cannot be defined if each of the existing

relationships that would be part of the cycle have a delete rule of
CASCADE.

v CASCADE must not be specified if T2 is delete-connected to T1.

If T1 is delete-connected to T2 through multiple paths, those relationships in
which T1 is a dependent and which form all or part of those paths must have
the same delete rule and it must not be SET NULL. For example, assume that
T1 is a dependent of T3 in a relationship with a delete rule of r and that one of
the following is true:
v T2 and T3 are the same table.
v T2 is a descendent of T3 and the deletion of rows from T3 cascades to T2.
v T2 and T3 are both descendents of the same table and the deletion of rows

from that table cascades to both T2 and T3.

In this case, the referential constraint cannot be defined when r is SET NULL.
When r is other than SET NULL, the referential constraint can be defined, but
the delete rule that is implicitly or explicitly specified in the FOREIGN KEY
clause must be the same as r.

ENFORCED or NOT ENFORCED
Indicates whether or not the referential constraint is enforced by DB2 during
normal operations, such as insert, update, or delete.

ENFORCED
Specifies that the referential constraint is enforced by DB2 during normal
operations (such as data change operations) and that it is guaranteed to be
correct. ENFORCED is the default.

1024 SQL Reference

NOT ENFORCED
Specifies that the referential constraint is not enforced by DB2 during
normal operations (such as data change operations). NOT ENFORCED
should only be used when the data that is stored in the table is verified to
conform to the constraint by some other method than relying on DB2.

ENABLE QUERY OPTIMIZATION
Specifies that the constraint can be used for query optimization. DB2 uses the
information in query optimization using materialized query tables with the
assumption that the constraint is correct. This is the default.

ADD check-constraint:

CONSTRAINT constraint-name
Names the check constraint. If constraint-name is not specified, a unique
constraint name is derived from the name of the first column in the
check-condition specified in the definition of the check constraint. If a name is
specified, it must be different from the names of any referential, check, primary
key, or unique key constraints previously specified on the table.

CHECK (check-condition)
Defines a check constraint. At any time, check-condition must be true or
unknown for every row of the table. A check-condition can evaluate to unknown
if a column that is an operand of the predicate is null. A check-condition that
evaluates to unknown does not violate the check constraint. A check-condition is
a search condition, with the following restrictions:
v It can refer only to the columns of table table-name.
v The columns cannot be any of the following types of columns:

– LOB columns
– ROWID columns
– DECFLOAT columns
– XML columns
– distinct type columns that are based on LOB, ROWID, and DECFLOAT

data types
– security label columns
– Unicode columns in an EBCDIC table

v It can be up to 7400 bytes long, not including redundant blanks.
v It must not contain any of the following:

– Subselects
– Built-in or user-defined functions
– CAST specifications
– Cast functions other than those created when the distinct type was

created
– Host variables
– Global variables
– Parameter markers
– Special registers
– Columns that include a field procedure
– CASE expressions
– ROW CHANGE expressions
– Row expressions
– DISTINCT predicates
– GX constants (hexadecimal graphic string constants)
– Sequence references
– OLAP specifications

Chapter 5. Statements 1025

|

|

v If a check-condition refers to a LOB column (including a distinct type that is
based on a LOB), the reference must occur within a LIKE predicate.

v The AND and OR logical operators can be used between predicates. The
NOT logical operator cannot be used.

v The first operand of every predicate must be the column name of a column
in the table.

v The second operand in the check-condition must be either a constant or a
column name of a column in the table.
– If the second operand of a predicate is a constant, and if the constant is:

- A floating-point number, then the column data type must be floating
point.

- A decimal number, then the column data type must be either floating
point or decimal.

- A big integer number, then the column data type must not be an
integer or a small integer

- An integer number, then the column data type must not be a small
integer.

- A small integer number, then the column data type must be small
integer.

- A decimal constant, then its precision must not be larger than the
precision of the column.

– If the second operand of a predicate is a column, then both columns of
the predicate must have:
- The same data type
- Identical descriptions with the exception that the specification of the

NOT NULL and DEFAULT clauses for the columns can be different,
and that string columns with the same data type can have different
length attributes

Effects of defining a check constraint on a populated table: When a check
constraint is defined on a populated table and the value of the special register
CURRENT RULES is 'DB2', the check constraint is not immediately enforced
on the table. The check constraint is added to the description of the table, and
the table space that contains the table is placed in a check pending status. For
a description of the check pending status and the implications for utility
operations, see DB2 Utility Guide and Reference.

When a check constraint is defined on a populated table and the value of the
special register CURRENT RULES is 'STD', the check constraint is checked
against all rows of the table. If no violations occur, the check constraint is
added to the table. If any rows violate the new check constraint, an error
occurs and the description of the table is unchanged.

DROP constraint:

DROP PRIMARY KEY
Drops the definition of the primary key and all referential constraints in which
the primary key is a parent key. The table must have a primary key and the
privilege set must include the ALTER or REFERENCES privilege on every
dependent table of the table.

The description of the primary index is changed to indicate that it is not a
primary index. If the table space was implicitly created, the corresponding
enforcing index is dropped if the primary key is dropped.

DROP UNIQUE constraint-name
Drops the definition of the unique key constraint and all referential constraints
in which the unique key is a parent key. The table must have a unique key.

1026 SQL Reference

The privilege set must include the ALTER or REFERENCES privilege on every
dependent table of the table. The description of the enforcing index is changed
to indicate that it is not enforcing a unique key constraint. If the table space is
implicitly created, the corresponding enforcing index is dropped if the unique
key is dropped.

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must
identify a referential constraint in which the table is the dependent table, and
the privilege set must include the ALTER or REFERENCES privilege on the
parent table of that relationship, or the REFERENCES privilege on the columns
of the parent table of that relationship.

DROP CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must identify an
existing check constraint defined on the table.

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify an
existing primary key, unique key, check, or referential constraint defined on the
table.

DROP CONSTRAINT must not be used on the same ALTER TABLE statement
as DROP PRIMARY KEY, DROP UNIQUE KEY, DROP FOREIGN KEY or
DROP CHECK.

ADD partitioning:

ADD PARTITION BY RANGE
Specifies the range partitioning scheme for the table (the columns used to
partition the data). When this clause is specified, the table uses table-controlled
partitioning. The number of partitions specified in the ADD PARTITION BY
RANGE clause has to be the same as the number of partitions defined in the
table space.

This clause applies only to tables in a partitioned table space. If the table is
already complete by having established either table-controlled partitioning or
index-controlled partitioning, the ADD PARTITION BY RANGE clause is not
allowed. If this clause is used, then the ENDING AT clause cannot be used on
a subsequent CREATE INDEX statement for this table.

partition-expression
Specifies the key data over which the range is defined to determine the
target data partition of the data.

column-name
Specifies the columns of the key. Each column-name must identify a
column of the table. Do not specify more than 64 columns, the same
column more than one time, a qualified column name, or any of the
following types of columns:
v a BINARY or VARBINARY column
v a LOB column
v DECFLOAT column
v an XML column
v a column with a distinct type that is based on any of the preceding

data types
v a row change timestamp column
v a Unicode column in an EBCDIC table

Chapter 5. Statements 1027

|

The sum of length attributes of the columns must not be greater than
255 - n, where n is the number of columns that can contain null values.

A timestamp with time zone column (or a column with a distinct type
that is based on the timestamp with time zone data type) can only be
specified as the last column in a partitioning key.

NULLS LAST
Specifies that null values are treated as positive infinity for purposes of
comparison.

ASC
Puts the entries in ascending order by the column. ASC is the default.

DESC
Puts the entries in descending order by the column.

partition-element
Specifies ranges for a data partitioning key and the table space where rows
of the table in the range will be stored.

PARTITION integer
Specifies a number of a physical partition in the table space. A
PARTITION clause must be specified for every partition of the table
space. In the context, highest means highest in the sorting sequence of
the columns. In a column that is defined as ascending (ASC), highest
and lowest have the usual meanings. In a column that is defined as
descending (DESC), the lowest actual value is the highest in the sorting
sequence.

ENDING AT (constant, MAXVALUE, or MINVALUE...)
Specifies the limit key for a partition boundary. Specify at least one
value (constant, MAXVALUE, or MINVALUE) after ENDING AT in
each PARTITION clause. You can use as many values as there are
columns in the key. The concatenation of all the values is the highest
value of the key for ascending and the lowest for descending.

constant
Specifies a constant value with a data type that must conform to
the rules for assigning that value to the column. If a string constant
is longer or shorter than required by the length attribute of its
column, the constant is either truncated or padded on the right to
the required length. If the column is ascending, the padding
character is X'FF'. If the column is descending, the padding
character is X'00'. The precision and scale of a decimal constant
must not be greater than the precision and scale of its
corresponding column. A hexadecimal string constant (GX) cannot
be specified.

MAXVALUE
Specifies a value greater than the maximum value for the limit key
of a partition boundary (that is, all X'FF' regardless of whether the
column is ascending or descending). If all of the columns in the
partitioning key are ascending, a constant or the MINVALUE
clause cannot be specified following MAXVALUE. After
MAXVALUE is specified, all subsequent columns must specify
MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the

1028 SQL Reference

limit key of a partition boundary (that is, all X'00' regardless of
whether the column is ascending or descending). If all of the
columns in the partitioning key are descending, a constant or the
MAXVALUE clause cannot be specified following MINVALUE.
After MINVALUE is specified, all subsequent columns must be
MINVALUE.

The key values are subject to the rules listed for the ENDING AT
clause for a partition definition. See list of rules.

INCLUSIVE
Specifies that the specified range values are included in the data
partition.

HASH SPACE integerK|M|G
Specifies the amount of fixed hash space to preallocate for the partition
that is associated with the partition element. If HASH SPACE is
omitted from the partition element, the HASH SPACE value that is
specified in the ORGANIZE BY CLAUSE is used.

The HASH SPACE keyword in the partition-element must only be
specified if the table is defined to use hash organization.

K Indicates that the integer value is to be multiplied by 1024 to
specify the hash space size in bytes. The integer must be
between 256 and 268435456.

M Indicates that the integer value is to be multiplied by 1048576
to specify the hash space size in bytes. The integer must be
between 1 and 262144.

G Indicates that the integer value is to be multiplied by
1073741824 to specify the hash space size in bytes. The integer
must be between 1 and 256 for a partition by range table and
must be between 1 and 131072 for a non-partitioned table.

If a value greater than 4G is specified, the data sets for the table space
are associated with a DFSMS data class that has been specified with
extended format and extended addressability.

ADD PARTITION:

ADD PARTITION
Specifies that a partition is added to the table and each partitioned index on
the table. The new partition is the next physical partition not being used until
the maximum for the table space has been reached. ADD PARTITION must not
be specified for nonpartitioned tables. Adding a partition is not allowed if the
table is a materialized query table or a materialized query table is defined on
the table. However, adding a partition is allowed if an accelerated query table
is defined on the table. A partition cannot be added if the table space definition
is incomplete because a partitioning key or partitioning index is missing. If the
table uses index-controlled partitioning, it is converted to use table-controlled
partitioning.

If the table is in a partition-by-growth table space, a new partition can be
added until the number of partitions reaches the MAXPARTITIONS limit. The
total number of table space partitions cannot exceed the value that is specified
for MAXPARTITIONS for the table space.

Chapter 5. Statements 1029

The maximum number of partitions allowed depends on how the table space
was originally created. If DSSIZE was specified when the table space was
created, it is non-zero in the catalog. The maximum number of partitions
allowed is shown in Table 104.

Table 104. Maximum number of partitions allowed

DSSIZE
Page size 4
KB Page size 8 KB

Page size 16
KB Page size 32 KB

1GB-4GB 4096 4096 4096 4096

8GB 2048 4096 4096 4096

16GB 1024 2048 4096 4096

32GB 512 1024 2048 4096

64GB 256 512 1024 2048

128GB 128 256 512 1024

256GB 64 128 256 512

If LARGE was specified when the table space was created, the maximum
number of partitions is shown in the fourth row of Table 105. For more than
254 partitions when LARGE or DSSIZE is not specified, the maximum number
of partitions is determined by the page size of the table space.

Table 105. Maximum number of partitions when DSSIZE = 0

Type of table space
Number of existing
partitions Maximum partitions

non-large 1 to 16 16

non-large 17 to 32 32

non-large 33 to 64 64

large N/A 4096

The existing table space PRIQTY and SECQTY attributes of the previous logical
partition are used for the space attributes of the new partition. For each
partitioned index, the existing PRIQTY and SECQTY attributes of the previous
partition are used.

To specify specific space attributes for the new partition, use additional ALTER
TABLESPACE and ALTER INDEX statements.

HASH SPACE cannot be specified with ADD PARTITION. For
partition-by-growth table spaces, the hash space value is not applicable at the
partition level. For range-partitioned universal table spaces, the hash space
value is inherited from base table.

ENDING AT (constant, MAXVALUE, or MINVALUE, ...)
Specifies the high key limit for the new partition. The new partition's key limit
must be higher when partitioning is ascending and lower when it is
descending. Specify at least one value (constant, MAXVALUE, or MINVALUE)
after ENDING AT in the PARTITION clause. You can use as many values as
there are columns in the key. The concatenation of all the values is the highest
value of the key in the corresponding partition of the index. ENDING AT
cannot be specified for a table in a partition-by growth table space, but must
be specified if the table is in a range-partitioned table space.

1030 SQL Reference

constant
Specifies a constant value with a data type that must conform to the rules
for assigning that value to the column. If a string constant is longer or
shorter than required by the length attribute of its column, the constant is
either truncated or padded on the right to the required length. If the
column is ascending, the padding character is X'FF'. If the column is
descending, the padding character is X'00'. The precision and scale of a
decimal constant must not be greater than the precision and scale of its
corresponding column. A hexadecimal string constant (GX) cannot be
specified.

MAXVALUE
Specifies a value greater than the maximum value for the limit key of a
partition boundary (that is, all X'FF' regardless of whether the column is
ascending or descending). If all of the columns in the partitioning key are
ascending, a constant or the MINVALUE clause cannot be specified
following MAXVALUE. After MAXVALUE is specified, all subsequent
columns must specify MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the limit key
of a partition boundary (that is, all X'00' regardless of whether the column
is ascending or descending). If all of the columns in the partitioning key
are descending, a constant or the MAXVALUE clause cannot be specified
following MINVALUE. After MINVALUE is specified, all subsequent
columns must be MINVALUE.

The key values are subject to the following rules:
v The first value corresponds to the first column of the key, the second value

to the second column, and so on. Using fewer values than there are columns
in the key has the same effect as using the highest or lowest values for the
omitted columns, depending on whether they are ascending or descending.

v The highest value of the key in any partition must be lower than the highest
value of the key in the next partition.

v The values specified for the last partition are enforced. The value specified
for the last partition is the highest value of the key that can be placed in the
table. If the limit was not previously enforced, any existing key values that
are greater than the value that is specified for the added partition are placed
into the discard data set when REORG is run.

v If a key includes a ROWID column or a column with a distinct type that is
based on a ROWID data type, 17 bytes of the constant that is specified for
the corresponding ROWID column are considered.

v The combination of the number of table space partitions and the
corresponding limit key size cannot exceed the number of partitions * (106 +
limit key size in bytes) < 65394

v If the concatenation of all the values exceeds 255 bytes, only the first 255
bytes are considered.

INCLUSIVE
Specifies that the specified range values are included in the data partition.

ALTER PARTITION:

ALTER PARTITION
Specifies that the partitioning limit key for the identified partition is to be
changed.

Chapter 5. Statements 1031

This clause applies only to tables in a partitioned table space. ALTER
PARTITION must not be specified for a table in a partition-by-growth table
space or for tables that have XML columns.

integer
If integer is specified, it must be in the range 1 to n, where n is the number
of partitions in the table. When this option is specified for any partition
except for the last, both the identified partition and the partition following
are placed in advisory REORG-pending (AREOR) status.

ENDING AT (constant, MAXVALUE, or MINVALUE...)
Specifies the highest value of the partitioning key for the identified
partition.

In this context, highest means highest in the sorting sequences of the
columns. In a column defined as ascending (ASC), highest and lowest have
their usual meanings. In a column defined as descending (DESC) the
lowest actual value is highest in the sorting sequence.

Specify at least one value after ENDING AT in each ALTER PARTITION
clause. You can use as many values as there are columns in the key. The
concatenation of all the values is the highest value of the key in the
corresponding partition. The length of each highest key value (the limit
key) is the same as the length of the partitioning key.

constant
Specifies a constant value with a data type that must conform to the
rules for assigning that value to the column. If a string constant is
longer or shorter than required by the length attribute of its column,
the constant is either truncated or padded on the right to the required
length. If the column is ascending, the padding character is X'FF'. If the
column is descending, the padding character is X'00'. The precision and
scale of a decimal constant must not be greater than the precision and
scale of its corresponding column. A hexadecimal string constant (GX)
cannot be specified.

MAXVALUE
Specifies a value greater than the maximum value for the limit key of a
partition boundary (that is, all X'FF' regardless of whether the column
is ascending or descending). If all of the columns in the partitioning
key are ascending, a constant or the MINVALUE clause cannot be
specified following MAXVALUE. After MAXVALUE is specified, all
subsequent columns must specify MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the limit
key of a partition boundary (that is, all X'00' regardless of whether the
column is ascending or descending). If all of the columns in the
partitioning key are descending, a constant or the MAXVALUE clause
cannot be specified following MINVALUE. After MINVALUE is
specified, all subsequent columns must be MINVALUE.

The key values are subject to the rules listed for the ENDING AT clause for
a partition definition. See list of rules.

The value that is specified must not be equal to or beyond the range of the
partition boundaries of the adjacent partitions.

INCLUSIVE
Specifies that the specified range values are included in the data partition.

1032 SQL Reference

|
|
|
|

HASH SPACE integerK|M|G
Specifies the amount of fixed hash space to preallocate for the partition
that is associated with the partition element. If HASH SPACE is omitted
from the partition element, the HASH SPACE value that is specified in the
ORGANIZE BY CLAUSE is used.

The HASH SPACE keyword in the partition-element must only be specified
if the table is defined to use hash organization.

K Indicates that the integer value is to be multiplied by 1024 to
specify the hash space size in bytes. The integer must be between
256 and 268435456.

M Indicates that the integer value is to be multiplied by 1048576 to
specify the hash space size in bytes. The integer must be between 1
and 262144.

G Indicates that the integer value is to be multiplied by 1073741824 to
specify the hash space size in bytes. The integer must be between 1
and 256 for a partition by range table and must be between 1 and
131072 for a non-partitioned table.

If a value greater than 4G is specified, the data sets for the table space are
associated with a DFSMS data class that has been specified with extended
format and extended addressability.

If the table uses index-controlled partitioning, it is converted to use
table-controlled partitioning. The high limit key for the last partition is set to
the highest possible value for ascending key columns or the lowest possible
value for descending key columns.

ROTATE PARTITION:

ROTATE PARTITION FIRST or integerTO LAST
Specifies that the first logical partition or the physical partition that
corresponds to integer is to be rotated to become the last partition. Processing
resets the specified partition to empty, and the limit key that is associated with
the partition is set to the constant that is specified with the boundary
specification clause. For ascending limit keys, the new limit key must be higher
than the limit key for the preexisting last logical partition prior to this
statement being processed. For descending limit keys, the new limit must be
lower than the limit for the preexisting last logical partition prior to this
statement being processed.

The table definition must be complete and must contain more than one
partition. This clause must be followed by the ENDING AT clause, which
specifies the new high key limit for this partition, which is now logically last.

Rotating a partition occurs immediately. If there is a referential constraint with
DELETE RESTRICT on the table, the ROTATE might fail. If the table uses
index-controlled partitioning, it is converted to use table-controlled
partitioning.

After an ALTER TABLE statement with the ROTATE PARTITION clause is run,
the RUNSTATS utility or the REORG utility with the STATISTICS option
should be run on the table space to ensure effective access paths are available
for selection.

Chapter 5. Statements 1033

If the table has a security label column, the user must have a valid security
label to rotate partitions. In addition, if write-down is in effect, the user must
have the write-down privilege.

ROTATE PARTITION must not be specified in the following situations:
v The table is a materialized query table or a materialized query table is

defined on the table.
v The table is in a partition-by-growth table space.
v The table has XML columns.
v The table is a system-period temporal table or a history table.
v The table is an archive-enabled table or an archive table.

Adding a partition is allowed if an accelerated query table is defined on the
table.

integer
Specifies a positive integer that represents a physical partition number as
identified by the PARTITION column of the SYSIBM.SYSTABLEPART catalog
table. The partition must be a data partition that exists in the table. The
partition cannot be the last partition of the table.

ENDING AT (constant, MAXVALUE, or MINVALUE...)
The ENDING AT clause specifies the new high key limit for the existing
partition holding the oldest data.

In this context, highest means highest in the sorting sequences of the columns.
In a column defined as ascending (ASC), highest and lowest have their usual
meanings. In a column defined as descending (DESC) the lowest actual value
is highest in the sorting sequence.

Specify at least one value after ENDING AT. You can use as many values as
there are columns in the key. The concatenation of all the values is the highest
value of the key in the corresponding partition. The length of each highest key
value (the limit key) is the same as the length of the partitioning key.

constant
Specifies a constant value with a data type that must conform to the rules
for assigning that value to the column. If a string constant is longer or
shorter than required by the length attribute of its column, the constant is
either truncated or padded on the right to the required length. If the
column is ascending, the padding character is X'FF'. If the column is
descending, the padding character is X'00'. The precision and scale of a
decimal constant must not be greater than the precision and scale of its
corresponding column. A hexadecimal string constant (GX) cannot be
specified.

MAXVALUE
Specifies a value greater than the maximum value for the limit key of a
partition boundary (that is, all X'FF' regardless of whether the column is
ascending or descending). If all of the columns in the partitioning key are
ascending, a constant or the MINVALUE clause cannot be specified
following MAXVALUE. After MAXVALUE is specified, all subsequent
columns must specify MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the limit key
of a partition boundary (that is, all X'00' regardless of whether the column
is ascending or descending). If all of the columns in the partitioning key

1034 SQL Reference

|

are descending, a constant or the MAXVALUE clause cannot be specified
following MINVALUE. After MINVALUE is specified, all subsequent
columns must be MINVALUE.

The key values are subject to the rules listed for the ENDING AT clause for a
partition definition. See list of rules.

INCLUSIVE
Specifies that the specified range values are included in the data partition.

RESET
Specifies that the existing data in the first logical partition is deleted. In
addition the key entries from the associated physical and logical index
partitions are deleted. In a partitioned table with limit values that are in
ascending sequence, ALTER TABLE ROTATE PARTITION FIRST TO LAST
logically operates as if the partition with the lowest high key limit were
dropped and then a new partition was added with the specified high key limit.
The new key limit for the partition must be higher than any other partition in
the table. For descending limit keys, the rotation operates as the partition with
the highest limit values becomes the partition with the lowest limit values.

If the partition contains referential integrity parent relationships, has DATA
CAPTURE logging enabled, or has a delete row trigger, then each data row in
the partition must be deleted individually. If a table does not have any of these
attribute settings, then the data rows are removed by deleting and redefining
the underlying data sets.

ADD VERSIONING:

ADD VERSIONING
Specifies that the table is a system-period temporal table.

The table must not already be defined as a system-period temporal table, a
history table, an archive-enabled table, or an archive table.

A SYSTEM_TIME period and a transaction-start-ID column must be defined for
the table. The data type, length, precision, and scale for a transaction-start-ID
column must be defined the same as the row-begin column and row-end column
of the SYSTEM_TIME period in the table. The table must be the only table in
the table space. The table must not be a materialized query table, an
incomplete table, an auxiliary table, a table that is involved in a clone
relationship, a table that was implicitly created for an XML column, or a table
that contains a security label column. ADD VERSIONING must not be
specified with other clauses on the ALTER TABLE statement.

The privilege set must include the privileges to issue an ALTER TABLE
statement for the associated history table.

Historical versions of the rows in the table are retained by DB2. A
system-period temporal table contains extra information that indicates when a
row is inserted into the table, and when it is updated or deleted. An associated
history table is used to store the historical rows of the table. When data in the
system-period temporal table is updated, the previous version of the row is
kept in the associated history table. When data in a system-period temporal
table is deleted, the last version of the row is inserted into the history table.

References to the table can include a period clause to indicate which versions
of the data are returned.

Chapter 5. Statements 1035

|
|

USE HISTORY TABLE history-table-name
Specifies a history table in which to keep the historical rows of the
system-period temporal table.

history-table-name must identify a table that exists at the current server and
must not identify one of the following tables:
v a catalog table
v an existing system-period temporal table
v an existing history table
v an archive-enabled table
v an archive table
v a declared global temporary table
v a created global temporary table
v a materialized query table
v a view
v an auxiliary table
v a table that was implicitly created for an XML column
v a table that is involved in a clone relationship

The history table must be the only table in the table space. The history table
must not contain an identity column, a row change timestamp column, a
row-begin column, a row-end column, a transaction-start-ID column, a column
mask, a row mask, or a security label column. The history table must not
include a period and must not have an incomplete table definition.

The encoding scheme and CCSID for the system-period temporal table and
identified history table must be the same.

The system-period temporal table and the identified history table must have
the same number and order of columns. The following attributes of the
corresponding columns of the two tables must be the same:
v name
v data type
v length (excluding inline LOB length), precision, and scale
v subtype and CCSID
v null attribute
v hidden attribute
v field procedure

If a column of the system-period temporal table is defined as ROWID
GENERATED ALWAYS, the corresponding history column should be defined
as ROWID GENERATED ALWAYS.

If a column of the system-period temporal table is defined as GENERATED
ALWAYS FOR EACH ROW ON UPDATE OF ROW CHANGE TIMESTAMP or
GENERATED AS IDENTITY, the corresponding column in the history table
cannot be defined with a GENERATED attribute.

DROP VERSIONING:

DROP VERSIONING
Specifies that the table is no longer a system-period temporal table. table-name
must identify a system-period temporal table. Historical data will no longer be
recorded and maintained for the table. The definition of the columns and data
of the table table-name are not changed, but the table is no longer treated as a

1036 SQL Reference

|

|

system-period temporal table. The SYSTEM_TIME period is retained. The
relationship between the system-period temporal table and history table is
removed. The history table is not dropped, only the relationship between the
two tables is removed. Subsequent queries that reference the table must not
specify a SYSTEM_TIME period specification for the table.

Packages and statements in the dynamic statement cache that use the
SYSTEM_TIME period are invalidated.

Versioning cannot be dropped if there are any views, materialized query table
definitions, or inline SQL table functions that depend on the SYSTEM_TIME
period.

DROP VERSIONING must not be specified with any other clauses on the
ALTER TABLE statement.

The privilege set must include the privileges to issue an ALTER TABLE
statement for the associated history table.

ADD MATERIALIZED QUERY:

ADD MATERIALIZED QUERY materialized-query-definition
Changes a base table to a materialized query table. Supplies a definition for a
regular table to make it a materialized query table. The table specified by
table-name and the result columns of the fullselect must not have the following
characteristics:
v Be already defined as a materialized query table
v Have any primary keys, unique constraints (unique indexes), referential

constraints (foreign keys), check constraints, or triggers defined
v Be referenced in the definition of another materialized query table
v Be directly or indirectly referenced in the fullselect

v Be in an incomplete state
v Be a system-period temporal table or a history table
v Be a base table that has been activated for the row access controls or column

access controls
v Be a base table for which a row permission or a column mask has been

defined
v Be an archive-enabled table or an archive table

If table-name does not meet these criteria, an error occurs.

The fullselect must not contain a period specification.

The object that is specified in the FROM clause of the fullselect cannot be a
view with columns of length 0.

fullselect
Defines the query on which the table is based. The columns of the existing
table must meet the following characteristics:
v Have the same number of columns
v Have exactly the same column definitions
v Have the same column names in the same ordinal positions

The fullselect must not directly or indirectly reference a base table that has
been activated for the row access controls or column access controls or
reference a base table for which a row permission or a column mask has
been defined.

Chapter 5. Statements 1037

|

|

The outer SELECT clause of fullselect must not result in a column that is an
array.

If fullselect is specified, the owner of the table being altered must have the
SELECT privilege on the tables or views referenced in the fullselect.
Having SELECT privilege means that the owner has at least one of the
following authorizations:
v Ownership of the tables or views referenced in the fullselect
v The SELECT privilege on the tables and views referenced in the

fullselect
v SYSADM authority
v DBADM authority for the database in which the table of the fullselect

reside

If the owner of the table does not have the SELECT privilege, the following
authorization IDs must have SYSADM authority or DBADM authority for
the database in which the tables of the fullselect reside:
v For embedded statements, the authorization ID of the owner of the plan

or package
v For dynamically prepared statements, the SQL authorization ID of the

process

For details about specifying fullselect for a materialized query table, see the
definition of fullselect in the “CREATE TABLE” on page 1388 statement.

Altering a table to change it from a base table to a materialized query table
with REFRESH DEFERRED causes any packages that are dependent on the
table to be invalidated.

refreshable-table-options
Specifies the materialized query table options for altering a regular table to
a materialized query table. The ORDER BY clause is allowed, but it is used
only by REFRESH. The ORDER BY clause can improve the locality of
reference of data in the materialized query table.

DATA INITIALLY DEFERRED
Specifies that the data in the table is not validated as part of the
ALTER TABLE statement. A REFRESH TABLE statement can be used
to make sure the data in the materialized query table is the same as
the result of the query in which the table is based.

REFRESH DEFERRED
Specifies that the data in the table can be refreshed at any time using
the REFRESH TABLE statement. The data in the table only reflects the
result of the query as a snapshot at the time when the REFRESH
TABLE statement is processed or as updated by the user for a
user-maintained materialized query table.

MAINTAINED BY SYSTEM or MAINTAINED BY USER
Specifies how the data in the materialized query table is maintained.

MAINTAINED BY SYSTEM
Specifies that the data in the materialized query table table-name is
to be maintained by the system. Only the REFRESH TABLE
statement is allowed on the table.

MAINTAINED BY USER
Specifies that the data in materialized query table table-name is to

1038 SQL Reference

|
|

be maintained by the user, who can use LOAD utility or SQL data
change statements and REFRESH TABLE statements on the table.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether this materialized query table can be used for
optimization.

ENABLE QUERY OPTIMIZATION
Specifies that the materialized query table can be used for query
optimization. If the fullselect specified does not satisfy the
restrictions for query optimization, an error occurs. For detailed
rules to satisfy query optimization, see materialized-query-definition
in the “CREATE TABLE” on page 1388 statement.

DISABLE QUERY OPTIMIZATION
Specifies that the materialized query table cannot be used for query
optimization. The table can still be queried directly.

ALTER MATERIALIZED QUERY:

ALTER MATERIALIZED QUERY materialized-query-table-alteration
Changes attributes of a materialized query table. The table-name must identify a
materialized query table.

SET refreshable-table-alteration
Changes how the table is maintained or whether the table can be used in
query optimization.

MAINTAINED BY SYSTEM
Specifies that the data in a materialized query table table-name is to be
maintained by the system.

MAINTAINED BY USER
Specifies that the data in the materialized query table table-name is to
be maintained by the user.

ENABLE QUERY OPTIMIZATION
Specifies that materialized query table table-name can be used in query
optimization. If the fullselect specified for the materialized query table
does not satisfy the restrictions for automatic query optimization, an
error occurs. For detailed rules to satisfy query optimization, see
“CREATE TABLE” on page 1388.

DISABLE QUERY OPTIMIZATION
Specifies that materialized query table table-name cannot be used for
query optimization. The table can still be queried directly.

DROP MATERIALIZED QUERY:

DROP MATERIALIZED QUERY
Changes a materialized query table so that it is no longer considered a
materialized query table. The table specified by table-name must be defined as a
materialized query table. The definition of columns and data of the name are
not changed, but the table can no longer be used for query optimization and is
no longer valid for use with the REFRESH TABLE statement.

Altering a table to change from a materialized query table to a base table with
the DROP MATERIALIZED QUERY clause causes any packages dependent on
the table to be invalidated.

Chapter 5. Statements 1039

DATA CAPTURE:

DATA CAPTURE
Specifies whether the logging of the following actions on the table is
augmented by additional information:
v SQL data change operations
v Adding columns (using the ADD COLUMN clause)
v Changing columns (using the ALTER COLUMN clause)

For guidance on intended uses of the expanded log records, see:
v The description of data propagation to IMS in IMS DataPropagator: An

Introduction

v The instructions for using Remote Recovery Data Facility (RRDF) in Remote
Recovery Data Facility Program Description and Operations

v The instructions for reading log records in DB2 Administration Guide

NONE
Do not record additional information to the log.

CHANGES
Write additional data about SQL updates to the log. Information about the
values that are represented by any LOB or XML columns is not available.
Do not specify DATA CAPTURE CHANGES for tables that reside in table
spaces that specify NOT LOGGED.

The DATA CAPTURE CHANGES clause can be specified for a table for
which row access controls or column access control are active. However,
the access controls do not protect data that is written to the log.

For details about the recording of additional data for logged updates to
catalog tables, see “Notes” on page 979.

VOLATILE:

VOLATILE or NOT VOLATILE
Specifies how DB2 is to choose access to the table.

VOLATILE
Specifies that DB2 is to use index access to the table whenever possible for
SQL operations. However, be aware that list prefetch and certain other
optimization techniques are disabled when VOLATILE is used.

One instance in which you might want to use VOLATILE is for a table
whose size can vary greatly. If statistics are taken when the table is empty
or has only a few rows, those statistics might not be appropriate when the
table has many rows. Another instance in which you might want to use
VOLATILE is for a table that contains groups of rows, as defined by the
primary key on the table. All but the last column of the primary key of
such a table indicate the group to which a given row belongs. The last
column of the primary key is the sequence number indicating the order in
which the rows are to be read from the group. VOLATILE maximizes
concurrency of operations on rows within each group, since rows are
usually accessed in the same order for each operation.

NOT VOLATILE
Specifies that DB2 is to base SQL access to the table on the current
statistics.

1040 SQL Reference

CARDINALITY
An optional keyword that currently has no effect, but that is provided for
DB2 family compatibility.

ADD CLONE:

ADD CLONE clone-table-name
Specifies that a clone table, identified by clone-table-name, is created for the
table that is being altered. The name, including the implicit or explicit
qualifiers, must not identify a table, view, alias, or synonym that exists at the
current server. The name must not identify a table that exists in the
SYSPENDINGOBJECTS catalog table. The clone table is created in the same
table space as the base table and has the same structure as the base table. This
includes, but is not limited to, column names, data types, null attributes, check
constraints, indexes. When ADD CLONE is used to create a clone of the
specified base table, the base table must conform to the following rules:
v Reside in a DB2-managed universal table space
v If the table space or any of its dependent objects (LOBs, XMLs, or indexes) is

created with the DEFINE NO clause, all data sets must already be created
v Be the only table in the table space
v Not be defined with a clone table
v Not be defined to use hash organization.
v Not be involved in any referential constraint
v Not be defined with any after triggers
v Not be a materialized query table
v Not have any pending changes
v Not have any active versioning
v Not have an incomplete definition
v Not be a created global temporary table or a declared global temporary table
v Not be a system-period temporal table or a history table
v Not be an archive-enabled table or an archive table

The base table and the clone table are considered unrelated with regard to
access controls. Row access control or column access control can be activated
independently for the base table, the clone table, or both.

DROP CLONE:

DROP CLONE
Specifies that the clone table that is associated with the specified base table is
dropped. table-name must identify a base table that exists at the current server
and the table must have a clone table defined.

When a clone table is dropped, any row permissions or column masks that are
defined for the clone table are also dropped. If the clone table is referenced in
the definition of a row permission or a column mask, the ALTER statement
returns an error

RESTRICT ON DROP:

ADD RESTRICT ON DROP
Restricts dropping the table and the database and table space that contain the
table.

Chapter 5. Statements 1041

|

DROP RESTRICT ON DROP
Removes the restriction on dropping the table and the database and table space
that contain the table.

ADD organization:

ADD ORGANIZE BY HASH
Specifies that a hash is to be used for the data organization of the table.

ADD ORGANIZE BY HASH must not be specified if the table is already
defined with the APPEND YES clause, or if the table space is defined with the
MEMBER CLUSTER clause

ALTER TABLE ADD ORGANIZE BY HASH is allowed only if the table is in
either a partition-by-growth table space or a range-partitioned universal table
space.

ADD ORGANIZE BY HASH must not be specified on tables that are using
basic row format.

ADD ORGANIZE BY HASH must not be specified if a user specified
clustering index exists.

ADD ORGANIZE BY HASH must not be specified for global temporary tables.

After ALTER TABLE with ADD ORGANIZE BY HASH runs:
v Any packages that are dependent on the table are invalidated.
v All columns that are part of the hash key are no longer updatable. SQL

statements that update a column of the hash key return an error.
v The entire table space that contains the table must be reorganized.

UNIQUE
Specifies that DB2 enforces uniqueness of the hash key columns,
preventing the table from containing two or more rows with the same
value of the hash key.

(column-name,...)
The list of column names defines the hash key that is used to determine
where a row will be placed.

Each column-name must be an unqualified name that identifies a column of
the table. The same column must not be specified more than one time and
the specified columns must be defined as NOT NULL. The number of
specified columns must not exceed 64, and the sum of their length
attributes must not exceed 255. A specified column cannot be any of the
following types of columns:
v a LOB column
v a DECFLOAT column
v an XML column
v a distinct type column that is based on one of the preceding data types
v a Unicode column in an EBCDIC table

If the table is defined as partition by range, the list of column names must
specify all of the column names that are specified in the partition-expression
for the table, and must specify the column names in the same order as
partition-expression. If the ORGANIZE BY clause contains more columns
than the partition-expression for the table, partition-expression determines the
partition number.

1042 SQL Reference

|

HASH SPACE integerK|M|G
Specifies the amount of fixed hash space to preallocate for the table. If the
table is range-partitioned, this is the space for each partition.

The default is 64M for a table in a partition-by-growth universal table
space or 64M for each partition of a partition by range universal table
space.

K Indicates that the integer value is to be multiplied by 1024 to
specify the hash space size in bytes. The integer must be between
256 and 268435456.

M Indicates that the integer value is to be multiplied by 1048576 to
specify the hash space size in bytes. The integer must be between 1
and 262144.

G Indicates that the integer value is to be multiplied by 1073741824 to
specify the hash space size in bytes. The integer must be between 1
and 256 for a partition by range table and must be between 1 and
131072 for a non-partitioned table.

If a value greater than 4G is specified, the data sets for the table space are
associated with a DFSMS data class that has been specified with extended
format and extended addressability.

ALTER ORGANIZATION:

ALTER ORGANIZATION SET HASH SPACE integer
Changes the fixed hash space that is used for the data organization for the
table. The table must be defined to use hash organization.

If the table is defined as range-partitioned, the value specified by integer is per
partition and applies to each partition of the table. For tables that are not
range-partitioned, integer applies to the whole table.

The new hash space value will be applied when the table space is reorganized
using the REORG utility.

HASH SPACE integerK|M|G
Specifies the amount of fixed hash space to preallocate for the table. If the
table is range-partitioned, this is the space for each partition.

K Indicates that the integer value is to be multiplied by 1,024 to
specify the hash space size in bytes. The integer must be between
256 and 67,108,864.

M Indicates that the integer value is to be multiplied by 1,048,576 to
specify the hash space size in bytes. The integer must be between 1
and 65,536.

G Indicates that the integer value is to be multiplied by 1,073,741,824
to specify the hash space size in bytes. The integer must be
between 1 and 64 for a range-partitioned table and must be
between 1 and 131,072 for a non-partitioned table.

If a value greater than 4G is specified, the data sets for the table space are
associated with a DFSMS data class that has been specified with extended
format and extended addressability.

Chapter 5. Statements 1043

DROP ORGANIZATION:

DROP ORGANIZATION
Specifies that the data organization definition for the table is dropped. The
entire table becomes inaccessible and is placed in REORG-pending status.
REORG must be run to make the table accessible. If the table is in a partition
by range universal table space, the entire table space must be reorganized at
one time.

If any type of clustering is required, you must create the clustering index or
add the MEMBER CLUSTER clause to the table.

After the next time the REORG utility is run, the hash space value will be
cleared and the implicitly created hash overflow index will be dropped.

DROP ORGANIZATION must only be specified if the table is defined to use
hash organization.

To change the columns that are specified for the hash key for a table that uses
hash organization, the definition of the hash key must be dropped by using
ALTER DROP ORGANIZATION, then the new columns for the hash key can
be specified with ALTER ADD organization-clause.

ROW ACCESS CONTROL:

ACTIVATE ROW ACCESS CONTROL
Specifies that row access control should be activated for the table. If the table is
an alias or a synonym, row access control is activated for the base table.

The table must not be one of the following tables:
v A created temporary table
v A table that is directly or indirectly referenced in the definition of a

materialized query table
v A table that has a security label column
v A system-period temporal table
v A history table
v An archive-enabled table
v An archive table

If a trigger exists for the table, the trigger must be defined with the SECURED
clause.

The table must not be referenced in the definition of a view if the following
conditions are true:
v The view is defined with the WITH CHECK OPTION clause
v An INSTEAD OF trigger exists for the view and the trigger is not defined

with the SECURED clause.

A default row permission is implicitly created for the table and allows no
access to any of the rows of the table, unless there is another row permission
that is enabled and that provides access for the authorization IDs or roles that
are specified in the definition of the row permission. A query that references
the table before such a row permission exists and is enabled will return a
warning that there is no data in the table.

ACTIVATE ROW ACCESS CONTROL must not be specified if a period is
defined for the table, because a default row permission cannot be defined for a
table with a period specification.

1044 SQL Reference

|

|

When the table is referenced in a SELECT, INSERT, UPDATE, DELETE, or
MERGE statement, all row permissions that are enabled for the table, including
the default row permission, are applied to control the set of rows that are
accessible for the table. If any row permission that is enable is invalid because
a previous attempt to regenerate the row permission was unsuccessful, row
access control cannot be activated.

ACTIVATE ROW ACCESS CONTROL is ignored if row access control is
already activated for the table.

DEACTIVATE ROW ACCESS CONTROL
Specifies that row access control for the table is deactivated. When the table is
referenced in a SELECT, INSERT, UPDATE, DELETE, or MERGE statement,
any existing row permissions for the table that are enable are not applied to
control the set of rows that are accessible for the table.

DEACTIVATE ROW ACCESS CONTROL is ignored if row access control is
already defined as not activated for the table.

COLUMN ACCESS CONTROL:

ACTIVATE COLUMN ACCESS CONTROL
Specifies that column access control should be activated for the table. If the
table is an alias or a synonym, column access control is activated for the base
table.

The table must not be one of the following tables:
v A created temporary table
v A table that is directly or indirectly referenced in the definition of a

materialized query table
v A system-period temporal table
v A history table
v An archive-enabled table
v An archive table

If a trigger exists for the table, the trigger must be defined with the SECURED
clause.

The table must not be referenced in the definition of a view if the following
conditions are true:
v The view is defined with the WITH CHECK OPTION clause
v An INSTEAD OF trigger exists for the view and the trigger is not defined

with the SECURED clause.

When column access control is activated, access to the table is not restricted.
However, when the table is referenced in a SELECT, INSERT, UPDATE,
DELETE, or MERGE statement, all column masks that are enabled for the table
are applied to mask the values that are returned for the columns that are
referenced in the final result table or to determine the new values that are used
in the SQL data change statements. If any enabled column mask is invalid
because a previous attempt to regenerate it was unsuccessful, column access
control cannot be activated

ACTIVATE COLUMN ACCESS CONTROL is ignored if column access control
is already activated for the table.

DEACTIVATE COLUMN ACCESS CONTROL
Specifies that column access control for the table is deactivated. When the table
is referenced in a SELECT, INSERT, UPDATE, DELETE, or MERGE statement,

Chapter 5. Statements 1045

|

|

any existing column masks that are enabled for the table are not applied to
control the values that are returned for the columns that are referenced in the
final result table or to determine if the new values can be used in the SQL data
change statements.

DEACTIVATE COLUMN ACCESS CONTROL is ignored if column access
control is already defined as not activated for the table.

APPEND:

APPEND NO or APPEND YES
Specifies whether append processing is used for the table. The APPEND clause
must not be specified for a table in a work file table space.

If the base table is in a range-partitioned table space, the APPEND option on
the LOB table might be different for each partition (depending if the LOB table
space and associated objects for each partition are created explicitly or
implicitly). If the base table is in a partition-by-growth table space, the
APPEND attributes of LOB table will be inherited by each partition.

NO Specifies that append processing is not used for the table. For insert and
LOAD operations, DB2 will attempt to place data rows in a well clustered
manner with respect to the value in the row's cluster key columns.

YES
Specifies that data rows are placed into the table without regard to
clustering during the insert and LOAD operations.

AUDIT:

AUDIT
Alters the auditing attribute of the table. For information about audit trace
classes, see DB2 Administration Guide.

NONE
Specifies that no auditing is to be done when the table is accessed.

CHANGES
Specifies that auditing is to be done when the table is accessed during the
first insert, update, or delete operation. However, the auditing is done only
if the appropriate audit trace class is active.

ALL
Specifies that auditing is to be done when the table is accessed during the
first operation of any kind performed by a utility or application process.
However, the auditing is done only if the appropriate audit trace class is
active and the access is not performed with COPY, RECOVER, REPAIR, or
any stand-alone utility.

The ALTER TABLE statement is audited for successful and failed attempts in
the following cases, if the appropriate audit trace class is active:
v AUDIT attribute is changed to NONE, CHANGES, or ALL on an audited

or non-audited table.
v AUDIT CHANGES or AUDIT ALL is in effect.

VALIDPROC:

VALIDPROC
Names a validation procedure for the table or inhibits the execution of any
existing validation procedure.

1046 SQL Reference

program-name
Designates program-name as the new validation exit routine for the table.

The validation procedure can inhibit a data change operation on any row
of the table. Before the operation takes place, the row is passed to the
procedure. The values that are represented by any LOB or XML columns in
the table are not passed to the validation procedure. On an insert or
update operation, if the table has a security label column and the user does
not have write-down privilege, the user's security label value is passed to
the validation routine as the value of the column. After examining the row,
the procedure returns a value that indicates whether the operation should
proceed. A typical use is to impose restrictions on the values that can
appear in various columns.

A table can have only one validation procedure at a time. When you name
a new procedure, any existing procedure is no longer used. The new
procedure is not used to validate existing table rows. It is used only to
validate rows that are loaded, inserted, updated, or deleted after execution
of the ALTER TABLE statement.

The table must not be an EBCDIC table that includes a Unicode column.

Related information:

Validation routines (DB2 Administration Guide)

NULL
Discontinues the use of any validation routine for the table.

ENABLE ARCHIVE:

ENABLE ARCHIVE
Specifies that the table is an archive-enabled table.

The table must satisfy the following criteria:
v The table must not already be defined as an archive-enabled table or an

archive table.
v The table must not contain a period.
v The table must be the only table in the table space.
v The table must not have a column mask or row permission defined.
v The table must not be one of the following tables:

– A materialized query table
– An incomplete table
– An auxiliary table
– A table that is involved in a clone relationship
– A table that was implicitly created for an XML column
– A table that contains a security label column
– A system-period temporal table
– A history table

ENABLE ARCHIVE must not be specified with other clauses on the ALTER
TABLE statement.

The privilege set must include the privileges to issue an ALTER TABLE
statement for the associated archive table.

For archive-enabled tables, DB2 retains archived versions of the rows. When
data in an archive-enabled table is deleted, and the

Chapter 5. Statements 1047

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_validationroutine.htm#db2z_validationroutine

SYSIBMADM.MOVE_TO_ARCHIVE global variable is set to Y, the last version
of the row is inserted into the archive table.

The SYSIBMADM.GET_ARCHIVE global variable and the
ARCHIVESENSITIVE bind option determine whether rows in the associated
archive table are included when an archive-enabled table is referenced in a
table-reference.

Related information:

Archive-enabled tables and archive tables (Introduction to DB2 for z/OS)
“References to built-in global variables” on page 223
ARCHIVESENSITIVE bind option (DB2 Commands)

USE archive-table-name
Specifies an archive table in which to keep archived rows of the
archive-enabled table.

archive-table-name must identify a table that exists at the current server. The
table must satisfy the following criteria:
v The table must be the only table in the table space.
v The table must not have an incomplete table definition.
v The table must not be defined as the parent or child in an existing referential

constraint.
v The table must not include a period.
v The table must not include a row permission or column mask.
v The table cannot be one of the following tables:

– A catalog table
– An archive-enabled table
– An existing archive table
– A system-period temporal table
– A history table
– A declared global temporary table
– A created global temporary table
– A materialized query table
– A view
– An auxiliary table
– A table that was implicitly created for an XML column
– A clone table
– A table that has a clone defined on it

v The table must not contain any of the following columns:
– An identity column
– A row-begin column
– A row-end column
– A transaction-start-ID column
– A security label column

The privilege set must include the privileges to issue an ALTER TABLE
statement for the associated archive table.

1048 SQL Reference

|
|

|
|
|
|

|

|

|

|

|
|
|

|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_archivetables.htm#db2z_archivetables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptarchivesensitive.htm#db2z_bindoptarchivesensitive

The archive-enabled table and the associated archive table must have the same
number and order of columns. The following attributes for the corresponding
columns of the two tables must be the same:
v Name
v Data type
v Length (excluding inline LOB length or XML length in the base table),

precision, and scale
v FOR BIT, SBCS, or MIXED DATA attribute for character string columns
v Null attribute
v Hidden attribute
v CCSID
v Field procedure

If a column of an archive-enabled table is defined as ROWID, the
corresponding column of the archive table must also be defined as ROWID
with the GENERATED ALWAYS attribute.

If a column of an archive-enabled table is defined as row change timestamp,
the corresponding column of the archive table must also be defined as row
change timestamp with the GENERATED ALWAYS attribute.

DISABLE ARCHIVE:

DISABLE ARCHIVE
Specifies that the table is no longer an archive-enabled table.

table-name must identify an archive-enabled table. The definition of the
columns and data of the table table-name are not changed, but the table is no
longer treated as an archive-enabled table. The relationship between the
archive-enabled table and the associated archive table is removed. The archive
table is not dropped. However, by removing the relationship between the
archive table and the archive-enabled table, the behavior of the archive-enabled
table changes as follows:
v Subsequent queries that reference the table do not consider rows in the

archive table regardless of the setting of the SYSIBMADM.GET_ARCHIVE
global variable or the ARCHIVESENSITIVE bind option.

v Deleted rows are not moved to the archive table regardless of the setting of
the SYSIBMADM.MOVE_TO_ARCHIVE global variable.

Packages and statements in the dynamic statement cache that reference the
table are invalidated.

DISABLE ARCHIVE must not be specified with any other clauses on the
ALTER TABLE statement.

The privilege set must include the privileges to issue an ALTER TABLE
statement for the associated archive table

Notes®

Order of processing of clauses:
When there is more than one clause, they are processed in the following
order:
1. VALIDPROC
2. AUDIT
3. DATA CAPTURE

Chapter 5. Statements 1049

|
|
|

|

|

|
|

|

|

|

|

|

|
|
|

|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

4. ROTATE
5. VOLATILE clauses
6. APPEND clauses
7. DROP clauses
8. ALTER clauses
9. RENAME clause

10. ADD clauses

Within each of these stages, the order in which the user specifies the
clauses is the order in which they are performed.

Altering the data type, length, precision, or scale of a column:
When you change the data type, length, precision, or scale of a column, the
following information applies to indexes, limit keys, check constraints, and
invalidation:
v Restrictions. The ALTER TABLE statement is not allowed if any of the

following conditions are true:
– The column is referenced in a referential constraint.
– The column has a field procedure routine.
– The column is defined as an identity column.
– The column is defined as an security label column
– The table has an edit or validation routine.
– The subsystem parameter RESTRICT_ALT_COL_FOR_DCC is set to

YES, the table is defined with DATA CAPTURE CHANGES, and the
ALTER TABLE statement specifies an ALTER COLUMN clause that
attempts to drop the default value for a column.

– The table is a created temporary table.
– The table is a materialized query table or the table is referenced by a

materialized query table.
– The data type changed is not to a compatible data type.
– The new length or data type specification could result in a loss of

significance because of a shorter length or less precision in the data
type.

– For a conversion from decimal to float, a unique index or a unique
constraint exists on the column.

– For a conversion from other numeric data type to DECFLOAT, a
partitioning key, check constraint, index, or a unique constraint exists
on the column.

– The existing default value for a column cannot be assigned to the new
data type.

– Increasing the column length results in an existing index that
references the column exceeding the maximum size of an index.

– Increasing the column length results in the partitioning key using that
column exceeding the maximum size for a partitioning key.

– Table definition is incomplete because unique index for enforcing a
unique constraint (primary key or unique key) is missing.

v Indexes.

– If the index has a changed character column, the index is in advisory
REORG-pending (AREO*) status.

1050 SQL Reference

– If the index has a changed numeric column, the index remains in
REBUILD-pending (RBDP) status.

– If the index has a changed timestamp (with or without time zone)
column, the index is in advisory REORG-pending (AREO*) status.

v Length of partitioned index keys. When a table is altered and the length of
a column in the PARTITIONING KEY is changed, DB2 changes the
length of the limit key (the highest key value) for a partition too. The
length of the limit key is increased by the same amount that the length
of the column is increased.

v Check constraints. If a check constraint refers to the column being altered,
the length of the column is also changed in the check constraint.

v Statistics. The RUNSTATS utility should be run to collect new COLUMN
statistics for all altered columns. Even though the COLCARDF value is
valid, the HIGH2KEY and LOW2KEY values are invalid, and any
SYSCOLSTATS catalog entries for the column are removed. Any
frequencies or histogram statistics which include this column should also
be collected again.

When you change a column from a fixed to varying length or change the
length of a varying-length column, process the ALTER TABLE statements
in the same unit of work or do a reorganization between the ALTER
TABLE statements to avoid anomalies with the lengths and padding of
individual values.

Referencing columns in ADD, ALTER, and RENAME clauses:
A column can only be referenced once in an ADD COLUMN, an ALTER
COLUMN, or a RENAME COLUMN clause in a single ALTER TABLE
statement. However, that same column can be referenced multiple times
for adding or dropping constraints in the same ALTER TABLE statement.

Because a distinct type is subject to the same restrictions as its source type,
all the syntactic rules that apply to LOB, ROWID, and DECFLOAT
columns apply to distinct type columns that are based on LOBs, row IDs,
and DECFLOATs. For example, if a table has an explicitly created ROWID
column, you cannot add a column with a distinct type that is sourced on a
row ID.

Adding a column to table T only changes the description of T. If the
catalog description of T is used to create a table T' and a facility such as
DSN1COPY is used to effectively copy T into T', queries that refer to the
added column in T' will fail because the data does not match its
description. To avoid this problem, run the REORG utility against the table
space of T before making the copy.

Restrictions on a clone table:
Tables that are involved in a clone relationship (base tables and their
associated clone tables) have the following restrictions:
v You cannot use the RUNSTATS utility on a clone table.
v Objects that are involved in a clone relationship do not use the

FASTSWITCH naming convention when the REORG utility is run. This
includes both the base table and the clone table objects (data and index),
as well as LOB and XML objects.

v For a partitioned table, if a mixture of 'I' and 'J' data sets exists when a
clone table is created, the mixture of 'I' and 'J' data sets can be changed
only by first dropping the clone table.

v Catalog and directory tables cannot have clone tables.

Chapter 5. Statements 1051

v Indexes cannot be created on a clone table. When an index is created on
a base table that is involved in a clone relationship, the index on the
clone table will be created implicitly and will be put into
rebuild-pending status.

v Implicitly created auxiliary table spaces (table spaces for LOB and XML
columns) and auxiliary indexes for the base table are always created as
DEFINE YES.

v Before triggers cannot be created on a clone table. Before triggers that
are created on a base table apply to both the base table and the clone
table.

v You cannot rename a base table that has a clone and you cannot rename
a clone table.

v Real-time statistics tables cannot have clone tables.
v You cannot drop an auxiliary table or an auxiliary index of an object that

is involved in a clone relationship.

If the table is involved in a clone relationship, no other table altering can
take place. If a table change is required, the clone table objects must be
dropped so that the base table object attributes can be modified. After the
table and index changes and such are completed, the clone table objects
can be recreated.

Size restriction for the object descriptor of a table in the SYSIBM.SYSOBDS
catalog table:

The following cases might result in an error being returned if the ALTER
TABLE statement results in a versioned object descriptor that is larger than
30,000 bytes being added (or updated) in the SYSIBM.SYSOBDS catalog
table:
v An ALTER TABLE statement that results in the first version of the object

descriptor being generated for the table
v An ALTER TABLE statement that results in the first version of the object

descriptor being generated for one or more of the indexes that are
defined on the table

v An ALTER TABLE ALTER COLUMN SET DATA TYPE statement on an
existing decimal column on a versioned table

You might need to drop and recreate the table if the object descriptor for
the table exceeds 30,000 bytes. Alternatively, you can reduce the size of the
object descriptor for the table by reducing the size of the default value for
varying-length columns in the table by issuing an ALTER TABLE ALTER
COLUMN SET DEFAULT statement. You can also drop unnecessary
column defaults to reduce the size of the object descriptor for the table.

Altering the attributes of an existing identity column:
Existing values for the identity column are unaffected by the ALTER
TABLE statement. The changed identity column attributes affect values
generated after the ALTER statement has executed. DB2 does not validate
any of the existing identity column values against the new identity column
attributes. For example, duplicate values might be generated even if NO
CYCLE is in effect, such as when an ascending identity column altered to
become a descending identity column.

Any existing values in the cache that have not yet been used might be lost.
Loss of cached values can also occur if the ALTER statement returns an
error or is rolled back.

1052 SQL Reference

Pending changes to the definition of a table:
Issuing the ALTER TABLE statement with certain options can cause a
pending change to the definition of a table. When an ALTER TABLE
statement that causes pending changes to the definition is executed,
semantic validation and authorization checking are performed. However,
changes to the table definition and data are not applied and the table space
is placed in advisory REORG-pending state (AREOR). The pending
changes are recorded in the SYSIBM.SYSPENDINGDDL catalog table. Run
the REORG utility with the SHRLEVEL CHANGE or SHRLEVEL
REFERENCE options on the table space to apply the pending changes to
the definition and data of the table space. When the pending changes are
applied, dependent packages are invalidated, the corresponding entries in
the SYSIBM.SYSPENDINGDDL catalog table are removed, and the
advisory REORG-pending state is removed.

The following ALTER TABLE options can cause pending changes to the
definition of the table under certain conditions:
v DROP COLUMN, if the data sets of the table space are already created
v ALTER PARTITION, to change the limit keys for the following types of

partitioned table spaces:
– Range-partitioned universal table spaces
– Partitioned table spaces (non-universal) with table-controlled

partitioning

Restrictions when objects have pending definition changes:
The following statements cannot be executed if the table space, or any
objects within that table space, has pending definition changes:
v ALTER TABLE with immediate options
v CREATE INDEX on the table
v ALTER INDEX ADD COLUMN or ADD INCLUDE COLUMN of any

index defined on the table
v ALTER INDEX REGENERATE of any index defined on the table

The following statements cannot be executed if the table has pending
definition changes:
v CREATE TRIGGER on the table
v CREATE TRIGGER of an INSTEAD OF trigger on a view that is

dependent the table
v CREATE PERMISSION on the table or that references the table
v CREATE MASK on the table or that references the table
v CREATE FUNCTION of an inline SQL table function that references the

table
v CREATE TABLE or ALTER TABLE that defines a materialized query

table that references the table

The following statements cannot be executed if the table contains any
columns with pending definition changes:
v CREATE VIEW that references a column with pending definition

changes
v ALTER TABLE with the ADD VERSIONING clause that references a

history table that contains columns with pending definition changes
v ALTER TABLE with the ENABLE ARCHIVE clause that references an

archive table that contains columns with pending definition changes

Chapter 5. Statements 1053

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|
|

|
|

|

|

|
|

|

|
|

|

|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

Adding a LOB column:
If the table space that contains the table is implicitly created and you add a
LOB column to the table, the following object are implicitly created:
v A LOB table space
v An auxiliary table
v An auxiliary index

If the base table is involved in a clone relationship, implicitly created LOB
table spaces and implicitly created indexes are always created with the
DEFINE YES attribute.

Adding a ROWID column:
When you add a ROWID column to an existing table, DB2 ensures that the
same, unique row ID value is returned for a row whenever it is accessed. If
the table already has an implicitly hidden ROWID column, DB2 also
ensures that the values in the two ROWID columns are identical.

If the table space that contains the table is implicitly created and you add a
ROWID column that is defined as GENERATED BY DEFAULT to the table,
an enforcing index for the ROWID column is implicitly created. If the table
already has an implicitly hidden ROWID column and the ROWID column
that you add is defined as GENERATED BY DEFAULT, DB2 changes the
implicitly hidden ROWID column to have the GENERATED BY DEFAULT
attribute and does not implicitly create an enforcing index for the ROWID
column.

When you add a ROWID column that is defined as GENERATED BY
DEFAULT and the ROWID index is implicitly created, the privilege set
requires the INDEX privilege on the table and the USE privilege on the
buffer pool and the storage group. The implicitly created ROWID index is
owned by the owner of the table.

Reorganizing a table space has no effect on the values in a ROWID
column.

Adding an identity column:
When you add an identity column to a table that is not empty, DB2 places
the table space that contains the table in the REORG pending state. When
the REORG utility is subsequently run, DB2 generates the values for the
identity column in all existing rows and then removes the REORG pending
status. These values are guaranteed to be unique, and their order is
system-determined.

Adding a row change timestamp column:
When you add a row change timestamp column to an existing table, the
initial value for existing rows is not stored at the time of the ALTER
statement. DB2 places the table space into an advisory-REORG pending
state. When the REORG utility is subsequently run, DB2 generates the
values for the row change timestamp column in all existing rows and then
removes the REORG pending status. These values will not change unless
the row is updated.

XML version support when adding an XML column:
When an XML column is added to a table that is in a universal table space,
the XML column and the associated XML table will support XML versions
if it is the first XML column in the table or if all the other XML columns in
the table support XML versions. Similarly, when a clone table is associated

1054 SQL Reference

with the base table, any XML columns and associated XML tables will
support XML versions if the existing XML columns in the base table
support XML versions.

Effect of adding a column on views:
Adding a column to a table has no effect on existing views.

Considerations for implicitly hidden columns:
A column that is defined as implicitly hidden can be explicitly referenced
on the ALTER statement. For example, an implicitly hidden column can be
altered, can be specified as part of a referential constraint or a check
constraint, or a materialized query table definition.

Cascaded effects of adding or altering a column:
Adding a column to a table has no cascaded effects to views that reference
the table. For example, adding a column to a table does not cause the
column to be added to any dependent views, even if those views were
created with a SELECT clause. But altering a column can cause other
cascaded effects. The following table lists the cascaded effect of altering the
data type, precision, scale, or length of a column.

Table 106. Cascaded effect of altering a column's data type, precision, scale, or length

Operation Effect

Alter of a column referenced by a view If the data type, length, precision, or scale for
a column is altered, all the views that are
dependent on the altered table are
reevaluated at alter time with the new
column attributes. If errors are encountered
during the view regeneration process, the
ALTER TABLE statement fails. The new
internal structure of each dependent view is
not saved at alter time, and subsequent
references to a dependent view will cause the
view to be regenerated again. Use the ALTER
VIEW statement to regenerate a dependent
view and have the new internal structure
saved.

Alter of a column referenced in the key of an
index or a unique constraint (unique key or
primary key)

The alter is allowed unless DECIMAL with a
fraction is being converted to a floating
value. In this case, the loss of precision can
result in a loss of uniqueness. For numeric
data type conversions, the index is placed in
REBUILD-pending status. For character data
type conversions, the index key columns are
converted on first-write access. The index is
not placed in REBUILD-pending status.

Alter of a column referenced in a package The alter is allowed. All packages dependent
on the table in which the column is being
altered are invalidated.

Alter of a column referenced in the body of a
user-defined function or procedure

Alter is allowed. If there is a package
associated with the function or procedure, it
is invalidated.

Alter of a column referenced in the
parameter list of a user-defined function or
procedure

Alter is allowed. The attributes of the
existing function or procedure are
unchanged. To access the new definition of
the column, the function or procedure must
be dropped and recreated.

Chapter 5. Statements 1055

Table 106. Cascaded effect of altering a column's data type, precision, scale, or
length (continued)

Operation Effect

Alter of a column referenced by a trigger Alter is allowed. All trigger packages that are
dependent on the table of the column are
invalidated.

Alter of a column referenced in a CHECK
constraint

Alter is not allowed.

Adding a partition:
When you add a partition to a table, if the boundary for the last partition
was not previously enforced, it is enforced after the partition is added, and
the last two logical partitions are left in REORG-pending (REORP) status.
If the last partition before the new one is added was in REORG-pending
status, the added partition is also placed in REORG-pending status.

Adding a partition for a table that is in a partition-by-growth table space and
has LOB columns:

If a table resides in the partition-by-growth table space that has LOB
columns, its associated LOB table spaces can be created either explicitly or
implicitly when the base table is created, depending on value that is in
effect for SQLRULES:
v When SQLRULES = STD, the LOB table space is created implicitly for

the first partition or for the number of partitions in the NUMPARTS
clause, if it is specified in the CREATE TABLESPACE statement.

v When SQLRULES = DB2, the table definition will remain incomplete
until the LOB table space is explicitly created for the first partition or for
the number of partitions in the NUMPARTS clause, if it is specified in
the CREATE TABLESPACE statement. In this case, if the LOB table space
is not created before the first SQL data change statement operates
against the table, the table that resides in the partition-by-growth table
space remains with its definition in incomplete state. The table cannot be
updated through SQL or LOAD.

Attributes that are inherited from the previous LOB table space partition when a
LOB table space is created implicitly:

The following attributes apply to implicitly created LOB table space:
v BUFFERPOOL
v DATASET
v ERASERULE
v GBPCACHE
v LOCKMAX
v LOG
v CLOSE
v DSSIZE
v LOCKSIZE

Row format for newly added partitions:
When the value of the RRF subsystem parameter is ENABLE, newly added
partitions that are created using the ADD PARTITION clause (or partitions
that are added because the table space is partition-by-growth) will be
created in re-ordered row format. When the value of the RRF subsystem

1056 SQL Reference

parameter is DISABLE, newly added partitions will be created in basic row
format, except for the following table spaces:
v For table spaces that are already using basic row format and that contain

tables with edit procedures, newly created partition will always be in
basic row format regardless of value of the RRF parameter.

v For table spaces that are already using re-ordered row format and that
contain tables with edit procedures, newly created partition will always
be in re-ordered row format regardless of value of the RRF parameter.

v Newly created partitions of an XML table space will always be in
re-ordered format.

Rotating a partition from first to last:
Running ALTER TABLE to rotate the first logical partition to become the
last logical partition can be very time consuming. During the reset
operation, all rows from the partition are deleted. In addition, the keys for
the deleted rows are also deleted from all nonpartitioned indexes, which
requires that each nonpartitioned index must be scanned.

When you rotate partitions, if the boundary for the last partition was not
previously enforced, it is enforced after ROTATE FIRST TO LAST is issued,
and the last two logical partitions are left in REORG-pending (REORP)
status. If the last partition before ROTATE FIRST TO LAST was issued was
in REORG-pending status, the last two logical partitions are left in
REORG-pending status.

Effect of changes on applications:
Applications might need to be changed to correspond to changes to the
columns in a table. For example, if you increase the length of a column,
you need to increase the length of variables into which that column is
fetched. If you change the data type of a column, you also might need to
change the data type of the corresponding variable to avoid performance
degradation.

If you rename or drop a column, you need to change any references to that
column to avoid unexpected results.

Invalidation of packages:
All of the packages that refer to the table are invalidated when any of the
following conditions are true:
v The table is a created temporary table or a materialized query table.
v The table is changed to add or drop a materialized query definition.
v The AUDIT attribute of the table is changed.
v A DATE, TIME, TIMESTAMP WITHOUT TIME ZONE, or TIMESTAMP

WITH TIME ZONE column is added and its default value for added
rows is CURRENT DATE, CURRENT TIME, CURRENT TIMESTAMP
(with corresponding timestamp precision) WITHOUT TIME ZONE, or
CURRENT TIMESTAMP (with corresponding timestamp precision)
WITH TIME ZONE respectively.

v A security label is added.
v The length attribute of a CHAR, VARCHAR, GRAPHIC, VARGRAPHIC,

BINARY, or VARBINARY column has changed. See Table 103 on page
1014.

v A column data type, precision, scale, or subtype is changed.
v A column is renamed.

Chapter 5. Statements 1057

|
|

v The table is partitioned and a partition is added or one of the existing
partitions is changed or rotated

v An identity attribute of an identity column has changed
v A column is dropped

When a referential constraint is defined with a delete rule of CASCADE or
SET NULL, all packages that refer to the parent table of the constraint are
invalidated. Furthermore, all packages that refer to tables from which
deletes cascade to this parent table are also invalidated.

Altering a base table or a user-maintained materialized query table to
change it to a system-maintained materialized query table causes any
packages that are dependent on the table to be invalidated because data
change statements are not allowed on system-maintained materialized
query tables. Altering a materialized query table to change it to a base
table causes any packages that are dependent on the table to be invalidated
because the REFRESH TABLE statement is invalid on a base table.

Invalidation of packages by RENAME COLUMN:
ALTER TABLE RENAME COLUMN will invalidate any package that is
dependent on the table in which the column is renamed. Any attempt to
execute the invalidated package will trigger an automatic rebind of the
package.

The automatic rebind will fail if the column is referenced in the package
because the referenced column no longer exists in the table. In this case,
applications that reference the package need to be modified, recompiled,
and rebound to return the expected result.

The automatic rebind will succeed in either of the following cases:
v The package does not reference the column. In this case, the renaming of

the column does not affect the query results that are returned by the
package. The application does not need to be modified as a result of
renaming the column.

v The package does reference the column, but after the column is
renamed, another column with the name of the original column is added
to the table. In this case, any query that references the name of the
original column might return a different result set. In order to restore the
expected results, the application would need to be modified to specify
the new column name.

Example: The following scenario shows how renaming a column can cause
a package to return unexpected results:
CREATE TABLE MYTABLE (MYCOL1 INT);
INSERT INTO TABLE MYTABLE
VALUES (1);
SELECT MYCOL1 FROM MYTABLE -- this is the statement in

-- the package MYPACKAGE,
-- the query returns
-- a value of 1

ALTER TABLE MYTABLE
RENAME COLUMN
MYCOL1 TO MYCOL2; -- MYPACKAGE is invalidated

-- and automatic rebind
-- of MYPACKAGE will fail
-- at this point

ALTER TABLE MYTABLE
ADD COLUMN MYCOL1 VARCHAR(10); -- automatic rebind

1058 SQL Reference

|

-- of MYPACKAGE
-- will be successful

INSERT INTO TABLE MYTABLE (MYCOL1)
VALUES (’ABCD’);

At this point an application executes MYPACKAGE, which results in a
successful automatic rebind. However, the statement in the package will
return 'ABCD' instead of the expected '1'.

Dropping constraints and check pending status:
If a table space or partition is in check pending status because it contains a
table with rows that violate constraints, dropping the constraints removes
the check pending status.

Altering materialized query tables:
The ALTER TABLE statement can be used to register an existing table at
the current server as a materialized query table, change the attributes of an
existing materialized query table, or change an existing materialized query
table into a base table.

The isolation level at the time when a base table is first altered to become a
materialized query table by the ALTER TABLE statement is the isolation
level for the materialized query table.

Altering a table to change it to a materialized query table with query
optimization enabled makes the table eligible for use in query rewrite
immediately. Therefore, pay attention to the accuracy of the data in the
table. If necessary, the table should be altered to a materialized query table
with query optimization disabled, and then the table should be refreshed
and enabled with query optimization.

When a base table is altered into a materialized query table or a
user-maintained query table is altered into a system-maintained one, the
REFRESH_TIME column of the row for the table in SYSIBM.SYSVIEWS
contains the current timestamp. When a system-maintained materialized
query table is altered into a user-maintained materialized query table, the
REFRESH_TIME column of the row for the table in SYSIBM.SYSVIEWS
does not change.

The LOAD utility is not allowed on a system-maintained query table, but
it is allowed on a user-maintained materialized query table.

Considerations for running utilities while altering tables:
You cannot execute the ALTER TABLE statement while a utility has control
of the table space that contains the table.

Restrictions on field procedures, edit procedures, and validation exit procedures:
Field procedures, edit procedures that are defined as WITH ROW
ATTRIBUTES, and validation exit procedures cannot be used on tables that
have column names that are larger than 18 EBCDIC bytes. If you have
tables that have field procedures or validation exit procedures and you add
a column where the column name is larger than 18 bytes, the field
procedures and validation exit procedures for the table will be invalidated.

Consider using triggers to replace the functionality on field procedures,
edit procedures that are defined as WITH ROW ATTRIBUTES, and
validation exit procedures on tables where the column names are larger
than 18 EBCDIC bytes.

Chapter 5. Statements 1059

Restrictions on SQL data change statements in the same commit scope as ALTER
TABLE:

SQL data change statements that affect an index cannot be performed in
the same commit scope as ALTER TABLE statements that affect that index.

Restrictions on DATA CAPTURE CHANGES:
If the table is in advisory REORG-pending state, you cannot alter the table
to use the DATA CAPTURE CHANGES clause.

Capturing changes to the DB2 catalog:
To have logged changes to a DB2 catalog table augmented with
information for data capture, specify ALTER TABLE xxx DATA CAPTURE
CHANGES where xxx is the name of a catalog table (SYSIBM.xxx). Data
capture of catalog table changes provides the possibility of creating and
managing a shadow of the catalog.

When changes to the hash organization of a table take place:
An alter of the table that uses hash organization will take effect
immediately in terms of enforcing the unique hash key. However, the
physical organization of the table space is converted to hash organization
after REORG.

In a range-partitioned universal table space, if individual partitions are
altered to specify HASH SPACE, the new hash space values take effect
after the REORG utility is run on the individual partitions.

Buffer pool, DSSIZE, and MAXPARTITIONS considerations for tables using
hash organization:

DB2 will calculate an optimum buffer pool size for hash organization
based on the definition of the table and validate the calculated buffer pool
size with the buffer pool of the explicitly created table space. If the buffer
pool sizes are different, DB2 will return an error.

If the table is a range-partitioned universal table space, the DSSIZE value
for the table space must be large enough to fit the HASH SPACE
specification for each partition.

If the table is in a partition-by-growth table space, the total space
calculated from the DSSIZE and MAXPARTITIONS values for the table
space must be large enough for the implicitly or explicitly specified HASH
SPACE.

Changing the hash space value:
To change the HASH SPACE value for all partitions of a range-partitioned
universal table space or to change the total HASH SPACE for a
partition-by-growth table space, use the ALTER ORGANIZATION SET
HASH SPACE (integer) clause. To change HASH SPACE value for more
than one, but not all partitions of a range-partitioned universal table space
you must specify separate ALTER TABLE statements for each partition and
specify the ALTER PARTITION (integer) and HASH SPACE (integer)
clauses.

Hash space and DB2 page size:
If the specified hash space is less than or equal to 64 MB (the DB2 default),
DB2 will add extra space for DB2 system pages. If the specified hash space
is greater than 64 MB, DB2 will use part of the hash space for DB2 system
pages. The amount of space needed for DB2 system pages depends on
SEGSIZE and PAGESIZE. The larger the SEGSIZE and/or PAGESIZE

1060 SQL Reference

becomes, the larger the requirement for DB2 system pages. DB2 can reserve
up to 5 MB for system pages for the highest SEGSIZE value (64) and
PAGESIZE value (32K).

Hash space and DSSIZE:
Depending on certain table space characteristics, DB2 needs to reserve
space for the hash overflow area. Therefore, the amount of hash space
cannot be equal to the DSSIZE value. The maximum amount of hash space
that can be specified is approximately 20% less than the DSSIZE value.
DB2 returns an error if the amount of hash space is too large. If the
amount of hash space is too large, specify a larger value of DSSIZE, or
decrease the amount of hash space.

Specifying APPEND for tables that use hash organization:
Append processing is not applicable to tables with hash organization since
there is no key clustering in hash organization. For insert operations into
tables with hash organization, DB2 will use the internal hash algorithm to
determine the location of the row.

Restrictions for tables with hash organization:
Tables that use hash organization are subject to the following restrictions:
v If the table already uses hash organization, DB2 will returns an error.
v A table that is defined to use hash organization cannot be created in a

LOB table space or XML table space.
v The data type of columns that are specified in a hash key cannot be

changed.
v Partition level REORG is not allowed after the table is changed using the

ALTER ADD HASH ORGANIZATION clause or the ALTER DROP
ORGANIZATION clause.

v The MAXROWS clause is applicable only to the hash overflow area of
the table space for tables with hash organization. The fixed hash area of
each page will contain as many rows as it can hold, up to a maximum of
255.

v DB2 implicitly creates a hash overflow index when hash organization is
added to a table. The hash overflow index is in rebuild-pending state
until the REORG utility is run.

Row access control that is activated explicitly:
The ACTIVATE ROW ACCESS CONTROL clause is used to activate row
access control for a table. When this happens, a default row permission is
implicitly created and allows no access to any rows of the table, unless
later another enabled row permission exists that provides access for the
authorization IDs or roles that are specified in the definition of the
permission. The default row permission is always enabled.

When the table is referenced in a data manipulation statement, all enabled
row permissions that have been created for the table, including the default
row permission, are implicitly applied by DB2 to control which rows in the
table are accessible. A row access control search condition is derived by
application of the logical OR operator to the search condition in each
enabled row permission. This derived search condition acts as a filter to
the table before any user specified operations such as predicates, grouping,
ordering, etc. are processed. This derived search condition permits the
authorization IDs or roles that are specified in the permission definitions to
access certain rows in the table. See the description of subselect for
information on how the application of enabled row permissions affects the

Chapter 5. Statements 1061

fetch operation. See the data change statements for information on how the
application of enabled row permissions affects the data change operation.

When the ACTIVATE ROW ACCESS CONTROL clause is used, all the
packages and dynamic cached statements that reference the table are
invalidated.

Row access control remains enforced until the DEACTIVATE ROW
ACCESS CONTROL clause is used to stop enforcing it.

Implicit object that is created when row access control is activated for a table:
When the ACTIVATE ROW ACCESS CONTROL clause is used to activate
row access control for a table, DB2 implicitly creates a default row
permission for the table. The default row permission prevents all access to
the table. The implicitly created row permission is in the same schema of
the base table and has a name in the form of
SYS_DEFAULT_ROW_PERMISSION__table-name ... up to 128 UTF-8 bytes.
Notice two underscores after "PERMISSION". If this name is not unique,
the last 4 bytes are reserved for a unique number 'nnnn', where 'nnnn' is a
four alphanumeric characters starting at '0000' and is incremented by 1
value each time until a unique name is found. The owner of the default
row permission is SYSIBM.

The default row permission is always enabled.

The default row permission is dropped when row access control is
deactivated or when the table is dropped.

Activating column access control:
The ACTIVATE COLUMN ACCESS CONTROL clause is used to activate
column access control for a table. The access to the table is not restricted
but when the table is referenced in a data manipulation statement, all
enabled column masks that have been created for the table are applied to
mask the column values referenced in the final result table of the queries
or to determine the new values used in the data change statements.

When column masks are used to mask the column values, they determine
the values in the final result table. If a column has a column mask and the
column (a simple reference to a column name or embedded in an
expression) appears in the outermost select list, the column mask is
applied to the column to produce the values for the final result table. If the
column does not appear in the outermost select list but it participates in
the final result table, for example, it appears in a materialized table
expression or view, the column mask is applied to the column in such a
way that the masked value is included in the result table of the
materialized table expression or view so that it can be used in the final
result table.

The application of column masks does not interfere with the operations of
other clauses within the statement such as the WHERE, GROUP BY,
HAVING, SELECT DISTINCT, and ORDER BY. The rows returned in the
final result table remain the same, except that the values in the resultant
rows might have been masked by the column masks. As such, if the
masked column also appears in an ORDER BY sort-key, the order is based
on the original column values and the masked values in the final result
table might not reflect that order; similarly, the masked values might not
reflect the uniqueness enforced by SELECT DISTINCT. If the masked
column is embedded in an expression, the result of the expression can
become different because the column mask is applied on the column before
the expression evaluation can take place. If the expression in a query is the

1062 SQL Reference

same as the expression used to mask the column value in the column mask
definition, the result of the expression in the query might remain
unchanged. For example, the expression in the query is 'XXX-XX-' ||
SUBSTR(SSN, 8, 4) and the same expression appears in the column mask
definition. In this particular example, the user can replace the expression in
the query with column SSN to avoid the same expression gets evaluated
twice.

The following are the contexts where the column masks are used by DB2
to mask the column values for the result of a query. Certain restrictions
might apply to some contexts. Those restrictions are described in a
separate list.
v the outermost SELECT clause of a SELECT or SELECT INTO statement,

or if the column does not appear in the outermost select list but it
participates in the final result table, the outermost SELECT clause of the
corresponding materialized table expression or view where the column
appears.

v the outermost SELECT clause of a SELECT FROM INSERT, UPDATE,
DELETE, or MERGE statement

v the outermost SELECT clause that are used to derive the new values for
an INSERT, UPDATE, or MERGE statement, or a SET transition-variable
assignment statement

v the same applies to a scalar-fullselect expression that does not use set
operators and appears in the outermost SELECT clause of the above
statements, the right side of a SET variable assignment statement, the
VALUES INTO statement, or the VALUES statement.

v the same applies to the SQL statements or the equivalences such as the
assignment statement that appears in a native SQL procedure or a
non-inline user-defined SQL function.

If a CASE expression appears in the above contexts, the column masks are
not applied in the search conditions of the WHEN clauses.

A column mask is created as a stand alone object without knowing all of
the contexts in which it might be used. To mask a column value in the
final result table, the column mask definition is merged into the statement
by DB2. When the column mask definition is brought into the context of
the statement, it might conflict with certain SQL semantics in the
statement. Therefore, in some situations, the combination of the statement
and the application of a column mask can return an error. The following
describes when the error might be returned:
1. The column masks cannot be applied to the columns in the select lists

that derive the final result table of set operations because one of the
set operators that are used to derive the final result table is EXCEPT
ALL, EXCEPT DISTINCT, INTERSECT ALL, or INTERSECT
DISTINCT.

2. The column mask cannot be applied to the column in the select lists of
a scalar-fullselect expression if the result of scalar-fullselect expression
is derived from set operation EXCEPT or INTERSECT.

3. If the subselect contains a GROUP BY clause, the column mask cannot
be applied to a column in the corresponding select list if none of the
following conditions is satisfied:

Chapter 5. Statements 1063

|
|
|
|
|

|
|
|

v The column must identify a column-name in the GROUP BY clause
and the column must not be referenced in an expression in the
GROUP BY clause. Furthermore, its column mask definition must
satisfy the following condition:
– any columns that are referenced in the column mask definition

that come from the same table of the column to which the
column mask is applied must identify a column-name in the
GROUP BY clause

– the column mask must not be referenced in an expression in the
GROUP BY clause

v The column must be specified under an aggregate function and its
column mask definition must satisfy the following conditions:
– The column mask definition must not reference a scalar-fullselect
– The column mask definition must not reference an aggregate

function
4. If the subselect contains a GROUP BY clause, and a column in the

corresponding select list maps directly or indirectly to a column name
or an expression in a materialized table expression or view, the
column in the subselect where the GROUP BY is specified must be
specified under an aggregate function.

5. If the subselect does not contain a GROUP BY clause, and a column in
the corresponding select list is specified under an aggregate function,
the column mask cannot be applied if the column mask definition
references:
v a scalar-fullselect
v an aggregate function

6. If the FROM clause in a subselect references a recursive common table
expression, and if the result of the recursive common table expression
is used to derive the final result table, the column mask cannot be
applied to a column that is referenced in the fullselect of the recursive
common table expression.

7. If the FROM clause in a subselect contains a data-change-table-reference,
and if an INCLUDE clause is specified as part of the SQL data change
statement, the column mask cannot be applied to the columns that are
used to derive the values for these additional columns in the
outermost select list.

8. If the FROM clause in a subselect references an external table
user-defined function or an inline SQL table user-defined function,
and if the result of the function is used to derive the final result table,
the column mask cannot be applied to the column that is an argument
of the function.

9. If an OLAP specification is referenced in a select list that derives the
final result table, the column mask cannot be applied to the column
that is referenced in the partitioning expression or the sort key
expression of the OLAP specification.

10. If a user-defined function is defined with the NOT SECURED option,
the argument of the function must not reference a column for which a
column mask is enabled and the column access control is activated for
its table. This rule applies to user-defined functions that are referenced
anywhere in the statement.

To avoid the above error situations at bind time, one of the following
actions must be taken:

1064 SQL Reference

v modify or remove the above contexts from the statement
v disable the column mask
v drop the column mask, modify the definition, and recreate the column

mask
v deactivate the column access control for the table

In other situations, if the statement contains a SELECT DISTINCT, and a
column mask is applied to a column that directly or indirectly derives the
result of SELECT DISTINCT, the statement might return a result that is not
deterministic. The following examples illustrate when such results might
be returned:
1. If the column mask definition references other columns from the same

table of the column to which the column mask is applied, the result of
SELECT DISTINCT can not be deterministic.

2. If the column is referenced in the argument of built-in scalar functions
(such as COALESCE, IFNULL, NULLIF, MAX, MIN, LOCATE,
TOTALORDER), the result of SELECT DISTINCT might not be
deterministic.

3. If the column is referenced in the argument of an aggregation function,
the result of SELECT DISTINCT might not be deterministic. If
DISTINCT is specified, the argument of the function must not reference
a column with a column mask.

4. If the column is embedded in an expression and the expression
contains a function that is not deterministic or has an external action,
the result of SELECT DISTINCT might not be deterministic.

With UNION DISTINCT, the elimination of the duplicate rows is based on
the unmasked values in R1 and R2. Because all rows are from R1 or R2,
the output values in the result table of the union may vary when one or
more of the following conditions occur:
v The expression corresponding to the nth column in R1 references

columns with column masks, but the expression corresponding to the
nth column in R2 does not, or vise versa.

v The expressions corresponding to the nth column in R1 and R2 reference
columns with different column masks.

v The column mask definition references columns that are not the same
target column for which the column mask is defined, and those columns
are not part of the UNION DISTINCT operation. It is recommended that
the column mask definition does not reference other columns from the
target table.

For example, a row in R1 is derived from the masked value, and a row in
R2 is derived from the unmasked value. If the row in the result table is
from R1, the masked value is returned. If the row in the result table is
from R2, the unmasked value is returned.

EXCEPT and INTERSECT can be intermixed with UNION if the rows in
R1 and R2 for EXCEPT and INTERSECT do not reference columns with
column masks

If the column is not nullable, most likely its column mask definition will
not consider a null value for the column. After the column access control is
activated for the target table, if the target table is the null-padded table in
an outer join operation, the column value in the final result table might be
a null.

Chapter 5. Statements 1065

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

When the columns are used to derive the new values for an INSERT,
UPDATE, MERGE, or a SET transition-variable assignment statement, the
original column values, not the masked values, are used. If the columns
have column masks, those column masks are applied to ensure the
evaluation of the access control rules at run time masks the column to
itself, not to a constant or an expression. This is to ensure the masked
values are the same as the original column values. If a column mask does
not mask the column to itself, the existing row is not updated or the new
row is not inserted and an error is returned at run time. The rules that are
used to apply column masks in order to derive the new values follow the
same rules described above for the final result table of a query. See the
data change statements for how the column masks are used to affect the
insertability and updatability

A column mask can be applied only to a base table column. If a
materialized table expression, materialized view, or common table
expression column is involved in the final result table, the above error
situations can occur inside the materialized table expression, materialized
view, or common table expression definition.

Column access control does not affect the XMLTABLE built-in function. If
the input to the XMLTABLE function is a column with a column mask, the
column mask is not applied.

When the ACTIVATE COLUMN ACCESS CONTROL clause is used, all the
packages and dynamic cached statements that reference the table are
invalidated. However, if no enabled column mask exists for the table, the
invalidation does not occur.

Column access control remains activated until the DEACTIVATE COLUMN
ACCESS CONTROL clause is used to stop enforcing it.

Row and column access control are not enforced when EXPLAIN tables are
populated by DB2:

Row and column access control can be enforced for EXPLAIN tables.
However, the enabled row permissions and column masks are not applied
when DB2 inserts rows into those tables.

Stop enforcing row or column access control:
The DEACTIVATE ROW ACCESS CONTROL clause is used to stop
enforcing row access control for a table. The default row permission is
dropped. Thereafter, when the table is referenced in a data manipulation
statement, explicitly created row permissions are not applied. The table is
accessible based on the granted privileges.

The DEACTIVATE COLUMN ACCESS CONTROL clause is used to stop
enforcing column access control for a table. Thereafter, when the table is
referenced in a data manipulation statement, the column masks are not
applied. The unmasked column values are used for the final result table.

The explicitly created row permissions or column masks, if any, remain but
have no effect.

All the packages and dynamic cached statements that reference the table
are invalidated when row or column access control is deactivated.

Secure triggers for row and column access control:
Triggers are used for database integrity, and as such a balance between row
and column access control (security) and database integrity is needed.
Enabled row permissions and column masks are not applied to the initial
values of transition variables and transition tables. Row and column access

1066 SQL Reference

control enforced for the triggering table is also ignored for any transition
variables or transition tables referenced in the trigger body. To ensure there
is no security concern for SQL statements in the trigger action to access
sensitive data in transition variables and transition tables, the trigger must
be created or altered with the SECURED option. If a trigger is not secure,
row and column access control cannot be enforced for the triggering table.

Secure user-defined functions for row and column access control:
If a row permission or column mask definition references a user-defined
function, the function must be altered with the SECURED option because
the sensitive data might be passed as arguments to the function.

DB2 considers the SECURED option an assertion that declares the user has
established a change control audit procedure for all changes to the
user-defined function. It is assumed that such a control audit procedure is
in place for all versions of the user-defined function, and that all
subsequent ALTER FUNCTION statements or changes to external packages
are being reviewed by this audit process.

Database operations where row and column access control is not applicable:
Row and column access control must not compromise database integrity.
Columns involved in primary keys, unique keys, indexes, check
constraints, and referential integrity (RI) must not be subject to row and
column access control. Column masks can be defined for those columns
but they are not applied during the process of key building or constraint or
RI enforcement.

Read-only cursors and read-only views:
The rules that are used to determine a read-only cursor or a read-only
view remain unaffected by row and column access control because those
rules are determined at bind time. The effect of application of enabled
column masks is not known until run time. Therefore, the data change
operation on a writable cursor or a writable view could still fail at run
time.

Considerations for adding a column to a system-period temporal table or
archive-enabled table:

v If the data type of the column is a distinct type:
– The owner of the history table or archive table must implicitly or

explicitly have the USAGE privilege on the distinct type.
– If the distinct type is unqualified, its schema matches the schema for

the following objects:
- The implicit schema for the distinct type for the column in the

history table is the same as the implicit schema that is determined
for the distinct type in the system-period temporal table.

- The implicit schema for the distinct type for the column in the
archive table is the same as the implicit schema that is determined
for the distinct type in the archive-enabled table.

–
v The syntax LONG VARCHAR or LONG VARGRAPHIC must not be

specified when you add a column to these types of tables. Use
VARCHAR or VARGRAPHIC instead.

v If the data type of the column is a LOB and the INLINE LENGTH clause
is not specified, DB2 determines the length. The implicit inline length

Chapter 5. Statements 1067

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

that is used for the column in the system-period temporal table or
archive-enabled table is also used for the corresponding column in the
history table or archive table.

v If the data type of the column is a LOB, auxiliary objects are implicitly
created for it in the system-period temporal table or archive-enabled
table. Auxiliary objects are also created for the corresponding column of
the history table or archive table.

Alternative syntax and synonyms:
To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following clauses:
v NOCACHE (single clause) as a synonym for NO CACHE
v NOCYCLE (single clause) as a synonym for NO CYCLE
v NOMINVALUE (single clause) as a synonym for NO MINVALUE
v NOMAXVALUE (single clause) as a synonym for NO MAXVALUE
v NOORDER (single clause) as a synonym for NO ORDER
v PART integer VALUES can be specified as an alternative to PARTITION

integer ENDING AT.
v VALUES as a synonym for ENDING AT
v DEFINITION ONLY as a synonym for WITH NO DATA
v SET MATERIALIZED QUERY AS DEFINITION ONLY as a synonym for

DROP MATERIALIZED QUERY
v SET SUMMARY AS DEFINITION ONLY as a synonym for DROP

MATERIALIZED QUERY
v SET MATERIALIZED QUERY AS (fullselect) as a synonym for ADD

MATERIALIZED QUERY (fullselect)
v SET SUMMARY AS (fullselect) as a synonym for ADD MATERIALIZED

QUERY (fullselect)
v TIMEZONE can be specified as an alternative to TIME ZONE.

Examples

Example 1: Column DEPTNAME in table DSN8B10.DEPT was created as a
VARCHAR(36). Increase its length to 50 bytes. Also, add the column BLDG to the
table DSN8B10.DEPT. Describe the new column as a character string column that
holds SBCS data.

ALTER TABLE DSN8B10.DEPT
ALTER COLUMN DEPTNAME SET DATA TYPE VARCHAR(50)
ADD BLDG CHAR(3) FOR SBCS DATA;

Example 2: Assign a validation procedure named DSN8EAEM to the table
DSN8B10.EMP.

ALTER TABLE DSN8B10.EMP
VALIDPROC DSN8EAEM;

Example 3: Disassociate the current validation procedure from the table
DSN8B10.EMP. After the statement is executed, the table no longer has a validation
procedure.

ALTER TABLE DSN8B10.EMP
VALIDPROC NULL;

Example 4: Define ADMRDEPT as the foreign key of a self-referencing constraint on
DSN8B10.DEPT.

1068 SQL Reference

|
|
|

|
|
|
|

ALTER TABLE DSN8B10.DEPT
FOREIGN KEY(ADMRDEPT) REFERENCES DSN8B10.DEPT ON DELETE CASCADE;

Example 5: Add a check constraint to the table DSN8B10.EMP which checks that
the minimum salary an employee can have is $10,000.

ALTER TABLE DSN8B10.EMP
ADD CHECK (SALARY >= 10000);

Example 6: Alter the PRODINFO table to define a foreign key that references a
non-primary unique key in the product version table (PRODVER_1). The columns
of the unique key are VERNAME, RELNO.

ALTER TABLE PRODINFO
FOREIGN KEY (PRODNAME,PRODVERNO)

REFERENCES PRODVER_1 (VERNAME,RELNO) ON DELETE RESTRICT;

Example 7: Assume that table DEPT has a unique index defined on column
DEPTNAME. Add a unique key constraint named KEY_DEPTNAME consisting of
column DEPTNAME to the DEPT table:

ALTER TABLE DSN8B10.DEPT
ADD CONSTRAINT KEY_DEPTNAME UNIQUE(DEPTNAME);

Example 8: Register the base table TRANSCOUNT as a materialized query table.
The result of the fullselect must provide a set of columns that match the columns
in the existing table (same number of columns, same column definitions, and same
names). So that you can maintain the table with insert, update, and delete
operations as well as the REFRESH TABLE statement, define the materialized
query table as user-maintained.

ALTER TABLE TRANSCOUNT ADD MATERIALIZED QUERY
(SELECT ACCTID, LOCID, YEAR, COUNT(*) as cnt
FROM TRANS
GROUP BY ACCTID, LOCID, YEAR)
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY USER;

Example 9: Assume that table TB1 has a column, COL1 that is defined as CHAR(4)
FOR BIT DATA WITH DEFAULT 'AB'. The value that is stored in the table will be
X'C1C24040'. After the following ALTER TABLE statement is run, the resulting
value that is stored in the table will be BX'C1C240400000':

ALTER TABLE TB1
ALTER COLUMN COL1
SET DATA TYPE BINARY(6);

Examples for column access controls

Example 1:
Based on the data in the CUSTOMER table, the SELECT DISTINCT
statement returns one row with the SALARY value 100,000. A column
mask, SALARY_MASK, is created to mask the salary value. After column
access control is activated for the CUSTOMER table, the column mask is
applied to SALARY column. A user with the 'MGR' ID (or role) issues a
SELECT DISTINCT statement. The SELECT DISTINCT statement still
returns one row because the removal of duplicates is based on the
unmasked value of the SALARY column, but the value that is returned in
that row is based on the masked SALARY value, which can be either
125,000 or 110,000.

The table CUSTOMER contains:

Chapter 5. Statements 1069

SALARY COMMISSION EMPID

100,000 25,000 123456

100,000 10,000 654321

CREATE MASK SALARY_MASK ON CUSTOMER
FOR COLUMN SALARY RETURN

CASE WHEN(SESSION_USER = ’MGR’)
THEN SALARY + COMMISSION

ELSE SALARY
END

ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT DISTINCT SALARY FROM CUSTOMER;

Example 2:
Based on the data in T1 abd T2 tables, the SELECT DISTINCT statement
using the COALESCE function returns one row with the T1.C1 value of 1.
A column mask, C1_MASK, is created to mask the value of T1.C1. After
column access control is activated for table T1, the column mask is applied
to column C1 of table T1. A user with the 'EMP' ID (or role) issues a
SELECT DISTINCT statement. The SELECT DISTINCT statement still
returns one row because the removal of duplicates is based on the
unmasked value of T1.C1 from the COALESCE function, but the value that
is returned in that row is based on the masked value of T1.C1 from the
COALESCE function. The returned value can be either 2 or 3.
INSERT INTO T1(C1) VALUES(1);
INSERT INTO T1(C1) VALUES(1);
INSERT INTO T2(C1) VALUES(2);
INSERT INTO T2(C1) VALUES(3);

CREATE MASK C1_MASK ON T1
FOR COLUMN C1 RETURN

CASE WHEN(SESSION_USER = ’EMP’)
THEN NULL

ELSE C1
END

ENABLE;

COMMIT;

ALTER TABLE T1
ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT DISTINCT COALESCE(T1.C1, T2.C1) FROM T1, T2;

Example 3:
Based on the data in the CUSTOMER table, the maximum income is the
same in the states CA and IL, 50,000, thus, the SELECT DISTINCT
statement returns one row. A column mask, INCOME_MASK, is created to
mask the income value. After column access control is activated for the
CUSTOMER table, the column mask is applied to the INCOME column
before the MAX aggregate function is evaluated. However, the INCOME_
MASK column mask, masks the income value of 0 as 100,000 in state IL.

1070 SQL Reference

As a result, the maximum income becomes 100,000 for state IL, but the
maximum income is still 50,000 for state CA. X.B is used in a predicate in
the SELECT DISTINCT statement, therefore, the original INCOME values
and the original results of the MAX(INCOME) function must be preserved.
So the SELECT DISTINCT statement still returns one row, but the value in
that row might not be deterministic, that is, the value might be 50,000 from
the 'CA' row or might be 100,000 from the 'IL' row.

The CUSTOMER table contains:

STATE INCOME

CA 40,000

CA 50,000

IL 0

IL 10,000

IL 50,000

CREATE MASK INCOME_MASK ON CUSTOMER
FOR COLUMN INCOME RETURN

CASE WHEN(INCOME = 0)
THEN 100000

ELSE INCOME
END

ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT DISTINCT B FROM
(SELECT STATE, MAX(INCOME) FROM CUSTOMER
GROUP BY STATE)
X(A, B)

WHERE B > 10000;

Example 4:
The expression INCOME + RAND() is not deterministic because the RAND
function is not deterministic. Based on the data in the CUSTOMER table,
the SELECT DISTINCT statement will, most likely, return two distinct
rows. However, it could return only one row. A column mask,
INCOME_MASK, is created to mask the income value. After column access
control is activated for the CUSTOMER table, the column mask is applied
to the INCOME column, which causes the masked value for both rows to
be the same. Because the RAND function is not deterministic, the SELECT
DISTINCT statement will, most likely, still return two distinct rows, but it
could return only one row.The uncertainty caused by the RAND function
causes the result of the SELECT DISTINCT statement to not be
deterministic.

The CUSTOMER table contains:

STATE INCOME

CA 40,000

CA 50,000

Chapter 5. Statements 1071

CREATE MASK INCOME_MASK ON CUSTOMER
FOR COLUMN INCOME RETURN

CASE WHEN(INCOME = 40,000)
THEN 50000

ELSE INCOME
END

ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT DISTINCT A FROM
(SELECT INCOME + RAND() FROM CUSTOMER)
X(A)
WHERE A > 10000;

Example 5:
A column mask, STATE_MASK, is created for the STATE column of the
CUSTOMER table to return a value that shows the city name with the state
if the city is SJ, SFO, or OKLD. Otherwise the city is not returned, just he
state. After column access control is activated for the CUSTOMER table, a
SELECT statement which groups results using the STATE column is issued.
However, because the CITY column that is referenced in the STATE_MASK
column mask is not a grouping column, a bind time error is returned to
signify that the STATE_MASK column mask is not appropriate for this
statement.

The CUSTOMER table contains:

STATE CITY INCOME

CA SJ 40,000

CA SC 30,000

CA SB 60,000

CA SFO 80,000

CA OKLD 50,000

CA SJ 70,000

NY NY 50,000

CREATE MASK STATE_MASK ON CUSTOMER
FOR COLUMN STATE RETURN

CASE WHEN(CITY = ’SJ’)
THEN CITY||’, ’||STATE

WHEN(CITY = ’SFO’)
THEN CITY||’, ’||STATE
WHEN(CITY = ’OKLD’)
THEN CITY||’, ’||STATE
ELSE ’ , ’||STATE
END

ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

1072 SQL Reference

SELECT STATE, AVG(INCOME) FROM CUSTOMER
GROUP BY STATE
HAVING STATE = ’CA’;

Chapter 5. Statements 1073

ALTER TABLESPACE
The ALTER TABLESPACE statement changes the description of a table space at the
current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v Ownership of the table space
v DBADM authority for its database
v SYSADM or SYSCTRL authority
v System DBADM

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

If BUFFERPOOL or USING STOGROUP is specified, additional privileges might be
required, as explained in the description of those clauses.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets that are held by each authorization ID and role of the process.

1074 SQL Reference

Syntax

�� �
(1) (2)

ALTER TABLESPACE table-space-name BUFFERPOOL bpname
database-name. CCSID ccsid-value

CLOSE YES
CLOSE NO
COMPRESS YES
COMPRESS NO

DROP PENDING CHANGES
DSSIZE integer G
LOCKMAX SYSTEM
LOCKMAXinteger
LOCKSIZE ANY
LOCKSIZE TABLESPACE
LOCKSIZE TABLE
LOCKSIZE PAGE
LOCKSIZE ROW
LOCKSIZE LOB
LOGGED
NOT LOGGED

MAXROWS integer
MAXPARTITIONS integer
MEMBER CLUSTER YES
MEMBER CLUSTER NO

SEGSIZE integer
TRACKMOD YES
TRACKMOD NO
using-block
free-block
gbpcache-block

�

�

� �
(2)

ALTER PARTITION integer using-block
free-block
gbpcache-block
COMPRESS YES
COMPRESS NO
TRACKMOD YES
TRACKMOD NO

��

Notes:

1 If you specify DROP PENDING CHANGES, DSSIZE, or SEGSIZE, no other clauses can be
specified in the same ALTER TABLESPACE statement.

2 The same clause must not be specified more than one time in a single ALTER TABLESPACE
statement. For example, if TRACKMOD YES is specified at the table space level, it must not be
specified after ALTER PARTITION.

using-block:

Chapter 5. Statements 1075

�� � USING VCAT catalog-name
USING STOGROUP stogroup-name

PRIQTY integer
SECQTY integer

ERASE YES
ERASE NO

��

�� � FREEPAGE integer
PCTFREE 5
PCTFREE smallint

FOR UPDATE smallint
smallint

��

�� GBPCACHE CHANGED
GBPCACHE ALL
GBPCACHE SYSTEM
GBPCACHE NONE

��

Description

database-name.table-space-name
Identifies the table space that is to be altered. The name must identify a table
space that exists at the current server. Omission of database-name is an implicit
specification of DSNDB04.

If you identify a partitioned table space, you can use the PARTITION clause.

BUFFERPOOL bpname
Identifies the buffer pool that is to be used for the table space. bpname must
identify an activated buffer pool.

The privilege set must include SYSADM or SYSCTRL authority or the USE
privilege for the buffer pool.

If bpname specifies a buffer pool with a smaller page size than the current page
size, the maximum record size of all tables in the table space must fit in the
smaller page size.

If bpname specifies a buffer pool with a different page size, the table space can
only be a universal table space (excluding XML table spaces) or a LOB table
space. If the table space is a partition-by-growth universal table space, the page
size must be valid depending on the values that are in effect for the
MAXPARTITIONS and DSSIZE options of the table space. If the table space is
a range-partitioned universal table space, the page size must be valid

free-block:

gbpcache-block:

1076 SQL Reference

depending on the values that are in effect for the current number of partitions
and the DSSIZE option of the table space.

The buffer pool change is a pending change to the definition of the table space
if the data sets of the table space are already created and if one of the
following conditions is true:
v Pending definition changes already exist for the table space or any objects

within the base table space.
v The specified buffer pool has a different page size than the buffer pool that

is currently being used for the table space.

Otherwise, the change is considered an immediate change.

If the change is considered an immediate change, the change to the description
of the table space takes effect the next time the data sets of the table space are
opened. The data sets can be closed and reopened by using a STOP
DATABASE command to stop the table space followed by a START
DATABASE command to start the table space.

If the change is a pending change to the definition of the table space, the
changes are not reflected in the definition or data at the time the ALTER
TABLESPACE statement is issued. Instead, the entire table space is placed in
an advisory REORG-pending state (AREOR). A subsequent reorganization of
the entire table space will apply the pending definition changes to the
definition and data of the table space.

When the pending page size change is applied, if the table space is a universal
table space that uses partition-by-growth organization, the number of partitions
is determined based on the amount of existing data and the new page size
value. Changing the page size to be larger can cause automatic creation of
additional partitions. If LOB columns exist, additional LOB table spaces and
auxiliary objects are implicitly created for the newly-created partitions
independent of whether SQLRULES (DB2) or SQLRULES (STD) is in effect or
whether the table space was explicitly or implicitly created. The new LOB
objects inherit the buffer pool attribute and authorization from the existing
LOB objects.

CCSID ccsid-value
Identifies the CCSID value to be used for the table space. ccsid-value must
identify a CCSID value that is compatible with the current value of the CCSID
for the table space. See “Notes” on page 850 for a list that shows the CCSID to
which a given CCSID can be changed and details about changing it.

Do not specify CCSID for a LOB table space, a table space that is implicitly
created for an XML column, or a table space in a work file database.

The CCSID of a table space cannot be changed if any of the following
conditions are true:
v The table space contains any table that has an index that contains

expressions.
v The table space contains a system-period temporal table or a history table.
v The table space contains an archive-enabled table or an archive table.
v The table space contains an EBCDIC table with a Unicode column

CLOSE
When the limit on the number of open data sets is reached, specifies the
priority in which data sets are closed.

Chapter 5. Statements 1077

|
|

|

|

YES
Eligible for closing before CLOSE NO data sets. This is the default unless
the table space is in a work file database.

NO Eligible for closing after all eligible CLOSE YES data sets are closed.

For a table space in a work file database, DB2 uses CLOSE NO regardless of
the value specified

COMPRESS
Specifies whether data compression applies to the rows of the table space or
partition. Do not specify COMPRESS for a LOB table space or a table space in
a work file database.

YES
Specifies data compression. The rows are not compressed until the LOAD
or REORG utility is run on the table in the table space or partition, or until
an insert operation is performed through the INSERT statement or the
MERGE statement.

NO Specifies no data compression. Inserted rows will not be compressed.
Updated rows will be decompressed. The dictionary used for compression
will be erased when the LOAD REPLACE, LOAD RESUME NO, or
REORG utility is run. See DB2 Performance Monitoring and Tuning Guide for
more information about the dictionary and data compression.

DROP PENDING CHANGES
Drops pending changes to the definition of the table space and any objects
within the table space. Pending changes to the definition of the table space or
any object within the table space must exist.

When the DROP PENDING CHANGES clause is specified, no other options
are allowed in the same ALTER TABLESPACE statement.

The DROP PENDING CHANGES clause also resets advisory REORG-pending
(AREOR) status except for tables that are converting to hash access.

DSSIZE integer G
A value, in gigabytes, that indicates the maximum size for each partition, or
for a LOB table space, the maximum size of each data set. DSSIZE can only be
specified for a universal table space or a LOB table space. When DSSIZE is
specified, no other options are allowed in the same ALTER TABLESPACE
statement.

The following are valid values for integer:

integer value
Meaning

1 1 gigabyte

2 2 gigabytes

4 4 gigabytes

8 8 gigabytes

16 16 gigabytes

32 32 gigabytes

64 64 gigabytes

128G 128 gigabytes

1078 SQL Reference

|
|

256G 256 gigabytes

If integer is greater than 4, the data sets for the table space must be associated
with a DFSMS data class that has been specified with an extended format and
extended addressability.

If the table space is a partition-by-growth universal table space, the DSSIZE
value must be valid depending on the values that are in effect for the
MAXPARTITIONS option and the page size of the table space.

If the table space is a partition by range universal table space, the DSSIZE
value must be valid depending on the values that are in effect for the current
number of partitions and the page size of the table space.

The DSSIZE value must be valid depending on the maximum PIECESIZE of
any associated non-partitioned secondary indexes.

The change to the DSSIZE is a pending change to the definition of the table
space if the data sets of the table space are already created and if one of the
following conditions is true:
v Pending definition changes already exist for the table space or any

associated indexes.
v The specified DSSIZE is different than the value that is currently being used

for the table space.

Otherwise, the change takes effect immediately.

If the change is a pending change to the definition of the table space, the
changes are not reflected in the definition or data at the time the ALTER
TABLESPACE statement is issued. Instead, the entire table space is placed in
an advisory REORG-pending state (AREOR). A subsequent reorganization of
the entire table space will apply the pending definition changes to the
definition and data of the table space.

If the table space is a partition-by-growth universal table space with the
pending DSSIZE change is applied, the number of partitions is determined
based on the amount of existing data in the table space and the new DSSIZE
value. Changing the DSSIZE value to be smaller might cause automatic growth
of additional partitions. If LOB columns exist, additional LOB table spaces and
auxiliary objects are implicitly created for the newly-grown partitions
independently of whether SQLRULES(DB2) or SQLRULES(STD) is in effect or
whether the table space was explicitly or implicitly created. The new LOB
objects inherit the buffer pool attribute and authorization from the existing
LOB objects.

LOCKMAX
Specifies the maximum number of page, row, or LOB locks an application
process can hold simultaneously in the table space. If a program requests more
than that number, locks are escalated. The page, row, or LOB locks are released
and the intent lock on the table space or segmented table is promoted to S or X
mode. If you specify LOCKMAX a for table space in a work file database, DB2
ignores the value because these types of locks are not used.

integer
Specifies the number of locks allowed before escalating, in the range 0 to
2 147 483 647.

Zero (0) indicates that the number of locks on the table or table space are
not counted and escalation does not occur.

Chapter 5. Statements 1079

SYSTEM
Indicates that the value of field LOCKS PER TABLE(SPACE) on installation
panel DSNTIPJ specifies the maximum number of page, row, or LOB locks
a program can hold simultaneously in the table or table space.

If you change LOCKSIZE and omit LOCKMAX, the following results occur:

LOCKSIZE Resultant LOCKMAX

TABLESPACE or TABLE 0

PAGE, ROW, or LOB Unchanged

ANY SYSTEM

If the lock size is TABLESPACE or TABLE, LOCKMAX must be omitted, or its
operand must be 0.

LOCKSIZE
Specifies the size of locks used within the table space and, in some cases, also
the threshold at which lock escalation occurs. Do not specify LOCKSIZE for a
table space in a work file database.

ANY
Specifies that DB2 can use any lock size.

In most cases, DB2 uses LOCKSIZE PAGE LOCKMAX SYSTEM for
non-LOB table spaces and LOCKSIZE LOB LOCKMAX SYSTEM for LOB
table spaces. However, when the number of locks acquired for the table
space exceeds the maximum number of locks allowed for a table space (an
installation parameter), the page or LOB locks are released and locking is
set at the next higher level. If the table space is segmented, the next higher
level is the table. If the table space is not segmented, the next higher level
is the table space.

TABLESPACE
Specifies table space locks.

TABLE
Specifies table locks. Use TABLE only for a segmented table space. Do not
use TABLE for a universal table space.

PAGE
Specifies page locks. Do not use PAGE for a LOB table space.

ROW
Specifies row locks. Do not use ROW for a LOB table space.

LOB
Specifies LOB locks. Use LOB only for a LOB table space.

Let S denote an SQL statement that refers to a table in the table space:
v The LOCKSIZE change affects S if S is prepared and executed after the

change. This includes dynamic statements and static statements that are not
bound because of VALIDATE(RUN).

v If the size specified by the new LOCKSIZE is greater than the size of the old
LOCKSIZE, the change affects S if S is a static statement that is executed
after the change.
The hierarchy of lock sizes, starting with the largest, is as follows:
– table space lock
– table lock (only for segmented table spaces)

1080 SQL Reference

– page lock, row lock, and LOB lock (which are at the same level)

LOGGED or NOT LOGGED
Specifies whether changes that are made to the data in the specified table
space are recorded in the log.

LOGGED
Specifies that changes that are made to the data in the specified table space
are recorded in the log. This applies to all tables in the specified table
space and to all indexes of those tables. Table spaces and indexes that are
created for XML columns inherit the logging attribute from the associated
base table space. Auxiliary indexes inherit the logging attribute from the
associated base table space. This can affect the logging attribute of
associated LOB table spaces. See “Notes” on page 1090 for more
information.

If the base table space is in informational copy-pending status (meaning
updates have been made to the table space) when you change from NOT
LOGGED to LOGGED, the base table space is placed in copy-pending
status. All indexes of tables in the table space are unchanged from their
current state; that is, if an index is currently in informational copy-pending
status, it will remain in information copy-pending status.

Specifying LOGGED for a LOB table space requires that the base table
space also specifies the LOGGED parameter.

LOGGED cannot be specified for XML table spaces. The logging attribute
of an XML table space is inherited from its base table space.

LOGGED cannot be specified for table spaces in DSNDB06 (the DB2
catalog) or in a work file database.

NOT LOGGED
Specifies that changes that are made to data in the specified table space are
not recorded in the log. This applies to all tables in the specified table
space and to all indexes of those tables. Table spaces and indexes that are
created for XML columns inherit the logging attribute from the associated
base table space. Auxiliary indexes inherit the logging attribute from the
associated base table space. This parameter can affect the logging attribute
of associated LOB table spaces. See “Notes” on page 1090 for more
information.

NOT LOGGED prevents undo and redo information from being recorded
in the log for the base table space; however, control information for the
specified base table space will continue to be recorded in the log. For a
LOB table space, changes to system pages and to auxiliary indexes are
logged.

NOT LOGGED is mutually exclusive with the DATA CAPTURE
CHANGES parameter of CREATE TABLE and ALTER TABLE. NOT
LOGGED will not be applied to the table space if any table in the table
space specifies DATA CAPTURE CHANGES.

NOT LOGGED cannot be specified for XML table spaces.

NOT LOGGED cannot be specified for table spaces in the following
databases:
v DSNDB06 (the DB2 catalog)
v a work file database

Chapter 5. Statements 1081

MAXROWS integer
Specifies the maximum number of rows that DB2 will consider placing on each
data page. The integer can range from 1 through 255.

The change takes effect immediately for new rows added. However, the space
class settings for some pages might be incorrect and could cause unproductive
page visits. It is highly recommended to reorganize the table space after
altering MAXROWS.

After ALTER TABLESPACE with MAXROWS is run, the table space is placed
into an advisory REORG-pending status. Run the REORG TABLESPACE utility
to remove the status.

Do not specify MAXROWS for a LOB table space, a table space that is
implicitly created for an XML column, a table space in a work file database, or
the DB2 catalog table spaces that are listed under “SQL statements allowed on
the catalog” on page 2113.

MAXPARTITIONS integer
Specifies that the table space is partition-by-growth. integer specifies the
maximum number of partitions to which the table space can grow or shrink.
integer must be in the range of 1 to 4096, depending on the value that is in
effect for DSSIZE and the page size of the table space, and must not be less
than the number of physical partitions that are already allocated for the table
space. See “CREATE TABLESPACE” on page 1455 for more information about
how DSSIZE and the page size are related.

MAXPARTITIONS can only be specified for a simple table space that contains
only one table, a segmented table space that contains only one table, or a
partitioned-by-growth universal table space. The table space must have
DB2-managed data sets.

Although physical data sets are not defined when the MAXPARTITIONS value
is issued, there can be storage and cpu overhead. If an increase in the number
of partitions is expected by using the MAXPARTITONS clause, be aware that
specifying an value larger than necessary, such as 4096 (the maximum value),
as a default for all of your partition-by-growth table spaces can cause larger
than expected storage requests.

The change to the value of MAXPARTITIONS is a pending change to the
definition of the table space if the data sets of the table space are already
created and one of the following conditions is true:
v Pending changes to the definition of the table space or associated indexes

already exist.
v The table space is converted from a simple table space to a

partition-by-growth universal table space.
v The table space is converted from a segmented table space to a

partition-by-growth universal table space.
v The table space is changed to use a different page size by specifying the

BUFFERPOOL option of ALTER TABLESPACE.
v The table space is changed to use a different DSSIZE by specifying the

DSSIZE option of ALTER TABLESPACE.

Otherwise, the change is an immediate change.

If the change is a pending change to the definition of the table space, the
changes are not reflected in the definition or data at the time the ALTER
TABLESPACE statement is issued. Instead, the entire table space is placed in

1082 SQL Reference

an advisory REORG-pending state (AREOR). A subsequent reorganization of
the entire table space will apply the pending definition changes to the
definition and data of the table space.

If MAXPARTITIONS is specified on a simple or segmented table space, the
table space is converted to a partition-by-growth universal table space that can
grow to a maximum number of integer partitions. The SEGSIZE is set to the
default of 32 if the SEGSIZE prior to conversion is less than 32. Otherwise, the
value of SEGSIZE is inherited from the original table space. The DSSIZE is set
to the default 4 gigabytes.

If the data sets of the table space are not defined, the number of partitions is
set to 1 during the conversion to a partition-by-growth universal table space
from a simple or segmented table space.

If the data sets of the table space are created, the number of partitions is
determined based on amount of existing data at the time the pending change
to the definition of the table space is applied. Partition growth can happen. If
LOB columns exist, additional LOB table spaces and auxiliary objects are
implicitly created for the newly-grown partitions, regardless of whether
SQLRULES(DB2) or SQLRULES(STD) is in effect or whether the table space
was explicitly or implicitly created. The new LOB objects inherit the buffer
pool attribute and thereby authorization from the existing LOB objects.

If the table space is defined with LOCKSIZE TABLE, the lock size will be reset
to LOCKSIZE TABLESPACE during conversion to a partition-by-growth
universal table space.

MEMBER CLUSTER YES or MEMBER CLUSTER NO
Specifies whether the table space uses the MEMBER CLUSTER page set
structure. The MEMBER CLUSTER clause can only be specified for a
partition-by-growth or range-partitioned universal table space. Changing the
MEMBER CLUSTER structure for a table space results in a pending definition
change for the table space. The table space is placed in advisory
REORG-pending state (AREOR). Running a utility like REORG with
SHRLEVEL(CHANGE) or SHRLEVEL(REFERENCE) on the entire table space
resets this state.

MEMBER CLUSTER YES
Specifies that the MEMBER CLUSTER page set structure is to be used for
the specified table space when the table space is already defined as a
partition-by-growth or range-partitioned universal table space.

MEMBER CLUSTER YES cannot be specified for LOB, workfile, or XML
table spaces, or for table spaces that are organized for hash access.

MEMBER CLUSTER NO
Specifies that the table space does not use the MEMBER CLUSTER page
set structure when the table space is already defined as a
partition-by-growth or range-partitioned universal table space. If the
universal table space is already defined to use the MEMBER CLUSTER
page set structure, specifying MEMBER CLUSTER NO on the ALTER
TABLESPACE statement removes the MEMBER CLUSTER page set
structure from the table space.

MEMBER CLUSTER NO is the default.

SEGSIZE integer
Specifies that the table space is a universal table space, where integer specifies
the number of pages that are to be assigned to each segment of the table space.

Chapter 5. Statements 1083

integer must be a multiple of 4 between 4 and 64 (inclusive). When SEGSIZE is
specified, no other options are allowed in the same ALTER TABLESPACE
statement.

SEGSIZE can only be specified for a universal table space or a partitioned table
space that uses table-controlled partitioning.

The change to the value of SEGSIZE is a pending change to the definition of
the table space if the data sets of the table space are already created and one of
the following conditions is true:
v Pending changes to the definition of the table space or its associated indexes

already exist.
v The specified SEGSIZE value for a universal table space is different than the

existing value.
v The table space is converted from a partitioned table space to a

range-partitioned universal table space.

Otherwise, the change is an immediate change.

If the change is a pending change to the definition of the table space, the
changes are not reflected in the definition or data at the time the ALTER
TABLESPACE statement is issued. Instead, the entire table space is placed in
an advisory REORG-pending state (AREOR). A subsequent reorganization of
the entire table space will apply the pending definition changes to the
definition and data of the table space.

If the existing FREEPAGE value (the number of pages to be left free) is greater
than or equal to the new SEGSIZE value, the number of pages is adjusted to be
one less than the new SEGSIZE value.

If the table space is a partitioned table space, the partitioned table space is
converted to a range-partitioned universal table space with a segment size
specified by integer. The MEMBER CLUSTER attribute is inherited from the
original table space. The number of partitions is inherited from the original
table space. If the original DSSIZE attribute has a value of 0, the DSSIZE is set
to the original maximum partition size. Otherwise, the DSSIZE attribute is
inherited from the original table space.

If the table space is a partition-by-growth universal table space when the
pending SEGSIZE change is applied, the number of partitions is determined
based on the amount of existing data in the table space and the new SEGSIZE
value. Changing the SEGSIZE value to be smaller might cause automatic
growth of additional partitions. If LOB columns exist, additional LOB table
spaces and auxiliary objects are implicitly created for the newly-grown
partitions independently of whether SQLRULES(DB2) or SQLRULES(STD) is in
effect or whether the table space was explicitly or implicitly created. The new
LOB objects inherit the buffer pool attribute and authorization from the
existing LOB objects.

TRACKMOD
Specifies whether DB2 tracks modified pages in the space map pages of the
table space or partition. Do not specify TRACKMOD for a LOB table space or
a table space in a work file database.

For the changed TRACKMOD option to take effect, the table space or partition
needs to be stopped and restarted. The table space or partition can be stopped
and restarted by running the STOP DATABASE command followed by the
START DATABASE command, or by running the REORG utility on the table

1084 SQL Reference

space or partition. See -STOP DATABASE (DB2) (DB2 Commands) and -START
DATABASE (DB2) (DB2 Commands) or REORG TABLESPACE (DB2 Utilities)
for information.

YES
DB2 tracks changed pages in the space map pages to improve the
performance of incremental image copy. For data sharing, changing
TRACKMOD to YES causes additional SCA (shared communication area)
storage to be used until after the next full or incremental image copy is
taken or until TRACKMOD is set back to NO.

NO DB2 does not track changed pages in the space map pages. It uses the
LRSN value in each page to determine whether a page has been changed.

FREEPAGE integer
Specifies how often to leave a page of free space when the table space is
loaded or reorganized. One free page is left after every integer pages; integer
can range from 0 to 255. FREEPAGE 0 leaves no free pages. Do not specify
FREEPAGE for a LOB table space, a table space that is implicitly created for an
XML column, or a table space in a work file database.

If the table space is segmented, the number of pages left free must be less than
the SEGSIZE value. If the number of pages to be left free is greater than or
equal to the SEGSIZE value, then the number of pages is adjusted downward
to one less than the SEGSIZE value.

This change to the description of the table space or partition has no effect until
data in the table space or partition is loaded or reorganized. For XML table
spaces, this change has no effect until data in the table space is reorganized.

Related information:

Reserving free space for table spaces (DB2 Performance)
Reserving free spaces for indexes (DB2 Performance)

PCTFREE smallint
Specifies what percentage of each page to leave as free space when the table
space is loaded or reorganized. The default value is PCTFREE 5, which
specifies that 5% of the space on each data page is reserved as free space. The
first record on each page is loaded without restriction. When additional records
are loaded, at least integer percent of free space is left on each page. integer can
range from 0 to 99. Do not specify PCTFREE for a LOB table space, a table
space that is implicitly created for an XML column, or a table space in a work
file database.

FOR UPDATE smallint
Specifies the percentage of space to reserve as free space on each page, for
use by subsequent UPDATE operations, when data is added to the table by
INSERT operations or utilities. The smallint value is an integer in the range
-1 to 99. FOR UPDATE -1 specifies that 5% of free space is reserved
initially, and the amount of free spaces is calculated automatically based on
certain real-time statistics values. The first record on each page is loaded
always loaded without restriction.

If this value is not specified, the value of the PCTFREE_UPD subsystem
parameter is used.

The value is recorded in the PCTFREE_UPD column of the
SYSIBM.SYSTABLEPART catalog table.

Chapter 5. Statements 1085

|
|
|
|
|
|
|
|

|
|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_stopdatabase.htm#db2z_cmd_stopdatabase
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_startdatabase.htm#db2z_cmd_startdatabase
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_startdatabase.htm#db2z_cmd_startdatabase
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_reorgtablespace.htm#db2z_utl_reorgtablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reservefreespacetable.htm#db2z_reservefreespacetable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reservefreespaceindex.htm#db2z_reservefreespaceindex

The FOR UPDATE smallint values do not apply to LOB table spaces, XML
table spaces, or table spaces that use hash organization.

The sum of the values for PCTFREE smallint and FOR UPDATEsmallint must
be less than or equal to 99.

If FOR UPDATEsmallint is not specified and the sum of PCTFREE smallint and
the PCTFREE_UPD subsystem parameter value is greater than or equal to 99,
DB2 uses a smaller value for PCTFREE_UPD.

This change to the description of the table space or partition has no effect until
data in the table space or partition is loaded or reorganized. For XML table
spaces, this change has no effect until data in the table space is reorganized.

Related information:

Reserving free space for table spaces (DB2 Performance)
Reserving free spaces for indexes (DB2 Performance)

USING
Specifies whether a data set for the table space or partition is managed by the
user or is managed by the DB2 system. If the table space is partitioned, USING
applies to the data set for the partition that is identified in the PARTITION
clause. If the table space is a partition-by-growth table space, USING can only
be specified at the table space level. If the table space is not partitioned,
USING applies to every data set that is eligible for the table space. (A
nonpartitioned table space can have more than one data set if PRIQTY+118 ×
SECQTY is at least 2 gigabytes.)

If the USING clause is specified, the table space or partition must be in the
stopped state when the ALTER TABLESPACE statement is executed. See
Altering storage attributes to determine how and when changes take effect. Do
not specify the USING clause if the table space is in a work file database.

VCAT catalog-name
Specifies a user-managed data set with a name that starts with
catalog-name. The VCAT clause must not be specified if the table space is a
partition-by-growth table space. You must specify the catalog name in the
form of an SQL identifier. You must specify an alias25 if the name of the
integrated catalog facility catalog is longer than eight characters. When the
new description of the table space is applied, the integrated catalog facility
catalog must contain an entry for the data set that conforms to the DB2
naming conventions set forth in DB2 Administration Guide.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of
those subsystems attempt to assign the same name to different data sets,
select a value for catalog-name that is not used by the other DB2
subsystems.

STOGROUP stogroup-name
Specifies a DB2-managed data set that resides on a volume of the
identified storage group. stogroup-name must identify a storage group that
exists at the current server and the privilege set must include SYSADM
authority, SYSCTRL authority, or the USE privilege for the storage group.
When the new description of the table space is applied, the description of
the storage group must include at least one volume serial number, each

25. The alias of an integrated catalog facility catalog

1086 SQL Reference

|
|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reservefreespacetable.htm#db2z_reservefreespacetable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reservefreespaceindex.htm#db2z_reservefreespaceindex

volume serial number must identify a volume that is accessible to z/OS for
dynamic allocation of the data set, and all identified volumes must be of
the same device type. Furthermore, the integrated catalog facility catalog
used for the storage group must not contain an entry for the data set.

If you specify USING STOGROUP and the current data set for the table
space or partition is managed by DB2:
v Omission of the PRIQTY clause is an implicit specification of the current

PRIQTY value.
v Omission of the SECQTY clause is an implicit specification of the current

SECQTY value.
v Omission of the ERASE clause is an implicit specification of the current

ERASE rule.

If you specify USING STOGROUP to convert from user-managed data sets
to DB2-managed data sets:
v Omission of the PRIQTY clause is an implicit specification of the default

value. For information on how DB2 determines the default value, see
Rules for primary and secondary space allocation.

v Omission of the SECQTY clause is an implicit specification of the default
value. For information on how DB2 determines the default value, see
Rules for primary and secondary space allocation.

v Omission of the ERASE clause is an implicit specification of ERASE NO.

PRIQTY integer
Specifies the minimum primary space allocation for a DB2-managed data set of
the table space or partition. This clause can be specified only if the data set is
managed by DB2, and if one of the following is true:
v USING STOGROUP is specified.
v A USING clause is not specified.

If PRIQTY is specified (with a value other than -1), the primary space
allocation is at least n kilobytes, where n is the value of integer with the
following exceptions:
v For 4 KB page sizes, if integer is less than 12, n is 12.
v For 8 KB page sizes, if integer is less than 24, n is 24.
v For 16 KB page sizes, if integer is less than 48, n is 48.
v For 32 KB page sizes, if integer is less than 96, n is 96.
v For any page size, if integer is greater than 67108864, n is 67108864.

For LOB table spaces, the exceptions are:
v For 4 KB pages sizes, if integer is less than 200, n is 200.
v For 8 KB pages sizes, if integer is less than 400, n is 400.
v For 16 KB pages sizes, if integer is less than 800, n is 800.
v For 32 KB pages sizes, if integer is less than 1600, n is 1600.
v For any page size, if integer is greater than 4194304, n is 4194304.

The maximum value allowed for PRIQTY is 64GB (67108864 kilobytes).

If PRIQTY -1 is specified, DB2 uses a default value for the primary space
allocation. For information on how DB2 determines the default value for
primary space allocation, see Rules for primary and secondary space allocation.

If PRIQTY is omitted and USING STOGROUP is specified, the value of
PRIQTY is its current value. (However, if the current data set is being changed
from being user-managed to DB2-managed, the value is its default value. See
the description of USING STOGROUP.)

Chapter 5. Statements 1087

If you specify PRIQTY and do not specify a value of -1, DB2 specifies the
primary space allocation to access method services using the smallest multiple
of p KB not less than n, where p is the page size of the table space. The
allocated space can be greater than the amount of space requested by DB2. For
example, it could be the smallest number of tracks that will accommodate the
request. To more closely estimate the actual amount of storage, see DEFINE
CLUSTER command (DFSMS Access Method Services for Catalogs).

At least one of the volumes of the identified storage group must have enough
available space for the primary quantity. Otherwise, the primary space
allocation will fail.

See Altering storage attributes to determine how and when changes to PRIQTY
take effect.

SECQTY integer
Specifies the minimum secondary space allocation for a DB2-managed data set
of the table space or partition. This clause can be specified only if the data set
is managed by DB2, and if one of the following is true:
v USING STOGROUP is specified.
v A USING clause is not specified.

If SECQTY -1 is specified, DB2 uses a default value for the secondary space
allocation.

If USING STOGROUP is specified and SECQTY is omitted, the value of
SECQTY is its current value. (However, if the current data set is being changed
from being user-managed to DB2-managed, the value is its default value. See
the description of USING STOGROUP.)

For information on the actual value that is used for secondary space allocation,
whether you specify a value or DB2 uses a default value, see Rules for primary
and secondary space allocation.

If you specify SECQTY and do not specify a value of -1, DB2 specifies the
secondary space allocation to access method services using the smallest
multiple of p KB not less than n, where p is the page size of the table space.
The allocated space can be greater than the amount of space requested by DB2.
For example, it could be the smallest number of tracks that will accommodate
the request. To more closely estimate the actual amount of storage, see the
description of the DEFINE CLUSTER command (DFSMS Access Method
Services for Catalogs) for z/OS DFSMS Access Method Services for catalogs.

See Altering storage attributes to determine how and when changes to
SECQTY take effect.

ERASE
Indicates whether the DB2-managed data sets for the table space or partition
are to be erased before they are deleted during the execution of a utility or an
SQL statement that drops the table space.

NO Does not erase the data sets. Operations involving data set deletion will
perform better than ERASE YES. However, the data is still accessible,
though not through DB2.

YES
Erases the data sets. As a security measure, DB2 overwrites all data in the
data sets with zeros before they are deleted.

This clause can be specified only if the data set is managed by DB2, and if one
of the following is true:

1088 SQL Reference

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

v USING STOGROUP is specified.
v A USING clause is not specified.

If you specify ERASE, the table space or partition must be in the stopped state
when the ALTER TABLESPACE statement is executed. If you specify ERASE
for a partitioned table space, you must also specify the ALTER PARTITION
clause. See Altering storage attributes to determine how and when changes
take effect.

GBPCACHE
In a data sharing environment, specifies what pages of the table space or
partition are written to the group buffer pool in a data sharing environment. In
a non-data-sharing environment, you can specify GBPCACHE for a table space
other than one in a work file database, but it is ignored. Do not specify
GBPCACHE for a table space in a work file database in either environment
(data sharing or not). In addition, you cannot alter the GBPCACHE value of
some DB2 catalog table spaces; for a list of these table spaces, see “SQL
statements allowed on the catalog” on page 2113.

CHANGED
When there is inter-DB2 R/W interest on the table space or partition,
updated pages are written to the group buffer pool. When there is no
inter-DB2 R/W interest, the group buffer pool is not used. Inter-DB2 R/W
interest exists when more than one member in the data sharing group has
the table space or partition open, and at least one member has it open for
update.

If the table space is in a group buffer pool that is defined to be used only
for cross-invalidation (GBPCACHE NO), CHANGED is ignored and no
pages are cached to the group buffer pool.

ALL
Indicates that pages are to be cached in the group buffer pool as they are
read in from DASD.

Exception: In the case of a single updating DB2 when no other DB2
subsystems have any interest in the page set, no pages are cached in the
group buffer pool.

If the table space is in a group buffer pool that is defined to be used only
for cross-invalidation (GBPCACHE NO), ALL is ignored and no pages are
cached to the group buffer pool.

SYSTEM
Indicates that only changed system pages within the LOB table space are
to be cached to the group buffer pool. A system page is a space map page
or any other page that does not contain actual data values.

Use SYSTEM only for a LOB table space.

NONE
Indicates that no pages are to be cached to the group buffer pool. DB2 uses
the group buffer pool only for cross-invalidation.

If you specify NONE, the table space or partition must not be in recover
pending status when the ALTER TABLESPACE statement is executed.

If you specify GBPCACHE in a data sharing environment, the table space or
partition must be in the stopped state when the ALTER TABLESPACE
statement is executed.

Chapter 5. Statements 1089

ALTER PARTITION integer
Specifies that the identified partition of the table space is to be changed. For a
table space that has n partitions, you must specify an integer in the range 1 to
n. You must not use this clause for a nonpartitioned table space, for a LOB
table space, or a partition-by-growth table space. At least one of the following
clauses must be specified:
v COMPRESS
v ERASE
v FREEPAGE
v GBPCACHE
v PCTFREE
v PRIQTY
v SECQTY
v TRACKMOD
v USING

The changes specified by these clauses affect only the identified partition.

Do not specify the following clauses for ALTER PARTITION for partitions of a
table space that is implicitly created for an XML column.
v CCSID
v FREEPAGE
v MAXROWS
v PCTFREE

Notes

Running utilities:
You cannot execute the ALTER TABLESPACE statement while a DB2 utility
has control of the table space.

Altering more than one partition:
To change FREEPAGE, PCTFREE, USING, PRIQTY, SECQTY, COMPRESS,
ERASE, or GBPCACHE for more than one partition, you must use separate
ALTER TABLESPACE statements.

Altering storage attributes:
The USING, PRIQTY, SECQTY, and ERASE clauses define the storage
attributes of the table space or partition. If you specify USING or ERASE
when altering storage attributes, the table space or partition must be in the
stopped state when the ALTER TABLESPACE statement is executed. You
can use a STOP DATABASE...SPACENAM... command to stop the table
space or partition.

If the catalog name changes, the changes take effect after you move the
data and start the table space or partition using the START
DATABASE...SPACENAM... command. The catalog name can be implicitly
or explicitly changed by the ALTER TABLESPACE statement. The catalog
name also changes when you move the data to a different device. See the
procedures for moving data in DB2 Administration Guide.

Changes to the secondary space allocation (SECQTY) take effect the next
time DB2 extends the data set; however, the new value is not reflected in
the integrated catalog until you use the REORG, RECOVER, or LOAD
REPLACE utility on the table space or partition. The changes to the other
storage attributes take effect the next time the page set is reset. For a
non-LOB table space, the page set is reset when you use the REORG,
RECOVER, or LOAD REPLACE utilities on the table space or partition. For
a LOB table space, the page set is reset when RECOVER is run on the LOB

1090 SQL Reference

table space or LOAD REPLACE is run on its associated base table space. If
there is not enough storage to satisfy the primary space allocation, a
REORG might fail. If you change the primary space allocation parameters
or erase rule, you can have the changes take effect earlier if you move the
data before you start the table space or partition.

Recommended GBPCACHE setting for LOB table spaces:
For LOB table spaces, use the GBPCACHE CHANGED option instead of
the GBPCACHE SYSTEM option. Due to the usage patterns of LOBs, the
use of GBPCACHE CHANGED can help avoid excessive and synchronous
writes to disk and the group buffer pool.

Altering table spaces for tables that use hash organization:
Certain attributes of the table space, such as buffer pool and page size,
might affect performance of tables that use hash organization. Changes
related to the hash organization of a table will be validated and might
generate error messages as described in “CREATE TABLE” on page 1388
and “ALTER TABLE” on page 984.

Altering the logging attribute of a table space:
If the logging attribute (specified with the LOGGED or NOT LOGGED
parameter) of a table space is altered frequently, the size of
SYSIBM.SYSCOPY might need to be increased.

The logging attribute of the table space cannot be altered if the table space
has been updated in the same unit of recovery.

A full image copy of the table space should be taken:
v Before altering a table space to NOT LOGGED
v After altering a table space to LOGGED

If a table space has data changes after an image copy is taken (the table
space is in informational COPY-pending state), and the table space is
altered from NOT LOGGED to LOGGED, the table space is marked
COPY-pending and a full image copy of the table space must be taken.

An XML table space with the LOGGED logging attribute has its logging
attribute altered to NOT LOGGED when the logging attribute of the
associated base table space is altered from LOGGED to NOT LOGGED.
When this happens, the logging attribute of the XML table space is said to
be linked to the logging attribute of the base table space. When the logging
attribute of the base table space is altered back to LOGGED, all logging
attributes that are linked for the associated XML table spaces are altered
back to LOGGED, and all of these links are dissolved.

A LOB table space with the LOGGED logging attribute has its logging
attribute altered to NOT LOGGED when the logging attribute of the
associated base table space is altered from LOGGED to NOT LOGGED.
When this happens, the logging attribute of the LOB table space is said to
be linked to the logging attribute of the base table space. When the logging
attribute of the base table space is altered back to LOGGED, all logging
attributes that are linked for the associated LOB table spaces are altered
back to LOGGED, and all of these links are dissolved.

You can dissolve the link between these logging attributes by altering the
logging attribute of the LOB table space to NOT LOGGED, even though it
has already been implicitly given this logging attribute. After such an alter,
the logging attribute of the LOB table space is unaffected when the logging
attribute of the base table is altered back to LOGGED. A LOB table space
with the NOT LOGGED logging attribute does not have this attribute

Chapter 5. Statements 1091

changed in any way if the logging attribute of the associated base table
space is altered from LOGGED to NOT LOGGED. When altered in this
way, the logging attributes of the LOB table space and the base table space
are not linked. If the base table space is altered back to LOGGED, the
logging attribute of any LOB table spaces that are not linked to the logging
attribute of the base table space remain unchanged.

Altering table spaces for DB2 catalog tables:
For details on altering options on catalog tables, see “SQL statements
allowed on the catalog” on page 2113.

Invalidation of packages:
All of the packages that refer to that table space are invalidated when any
of the following conditions are true:
v The SBCS CCSID attribute of a table space is changed.
v When changing the MAXPARTITIONS attribute of a table space.
v The SEGSIZE attribute of a partitioned table space is changed to convert

the table space to a range-partitioned universal table space.

Pending changes to the definition of a table space:
Issuing the ALTER TABLESPACE statement with certain options can cause
a pending change to the definition of a table space. When an ALTER
TABLESPACE statement that causes pending changes to the definition is
executed, semantic validation and authorization checking are performed.
However, changes to the table space definition and data are not applied
and the table space is placed in advisory REORG-pending state (AREOR).
The pending changes are recorded in the SYSIBM.SYSPENDINGDDL
catalog table. The REORG utility that specifies SHRLEVEL CHANGE or
REFERENCE should be run on the table space to apply the pending
changes to the definition and data of the table space. When the pending
changes are applied, dependent packages are invalidated, the
corresponding entries in the SYSIBM.SYSPENDINGDDL catalog table are
removed, and the advisory REORG-pending state is removed.

The following ALTER TABLESPACE options can cause pending changes to
the definition of the table space under certain conditions:
v BUFFERPOOL
v DSSIZE
v MAXPARTITIONS
v SEGSIZE

The changes that are caused by all other options occur when the ALTER
TABLESPACE statement is executed.

Restrictions on ALTER TABLESPACE statements that cause pending changes:
ALTER TABLESPACE statements that cause pending changes have the
following restrictions:
v Options that cause pending changes cannot be specified with options

that take effect immediately
v Options that cause pending changes cannot be specified for the

following objects:
– The catalog
– System objects
– Objects in a workfile database

v The DROP PENDING CHANGES clause cannot be specified for a
catalog table space

1092 SQL Reference

v If there are pending changes to the table space, you cannot use ALTER
TABLESPACE to change from a DB2-managed data set to a
user-managed data set

v If there are pending changes to the table space, you cannot specify the
following clauses:
– FREEPAGE
– ALTER PARTITION FREEPAGE

v If there are pending changes to the table space, or to tables contained in
the table space, you cannot specify the CCSID clause

v If the table space, or any table it contains is in an incomplete state, you
cannot specify options that cause pending changes

Alternative syntax and synonyms:
For compatibility with previous releases of DB2, the following keywords
are supported:
v You can specify the LOCKPART clause, but it has no effect. DB2 treats

all partitioned table spaces as if they were defined as LOCKPART YES.
LOCKPART YES specifies the use of selective partition locking. When all
the conditions for selective partition locking are met, DB2 locks only the
partitions that are accessed. When the conditions for selective partition
locking are not met, DB2 locks every partition of the table space.

v When altering the partitions of a partitioned table space, the ALTER
keyword that precedes PARTITION keyword is optional and if ALTER
keyword is omitted, then you can specify PART as a synonym for
PARTITION.

v You can specify LOG YES as a synonym for LOGGED and LOG NO as a
synonym for NOT LOGGED.

Examples

Example 1: Alter table space DSN8S11D in database DSN8D11A. BP2 is the buffer
pool associated with the table space. PAGE is the level at which locking is to take
place.

ALTER TABLESPACE DSN8D11A.DSN8S11D
BUFFERPOOL BP2
LOCKSIZE PAGE;

Example 2: Alter table space DSN8S11E in database DSN8D11A. The table space is
partitioned. Indicate that the data sets of the table space are not to be closed when
there are no current users of the table space. Also, change all of the partitions so
that DB2 will use a formula to determine any secondary space allocations, and
change partition 1 to use a PCTFREE value of 20.

ALTER TABLESPACE DSN8D11A.DSN8S11E
CLOSE NO
SECQTY -1
ALTER PARTITION 1 PCTFREE 20;

Example 3: The following statement changes the maximum number of partitions in
a partition-by-growth table space:
ALTER TABLESPACE TS01DB.TS01TS

MAXPARTITIONS 30;

Chapter 5. Statements 1093

|
|

ALTER TRIGGER
The ALTER TRIGGER statement changes the description of a trigger at the current
server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v Ownership of the trigger
v The ALTERIN privilege on the schema
v SYSADM authority
v SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the
privilege set is the set of privileges that are held by the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is the set of
privileges that are held by the SQL authorization ID of the process. The specified
trigger name can include a schema name (a qualifier). If the schema name is not
the same as one of the authorization ID of the process, one of the following
conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v The authorization ID of the process has the ALTERIN privilege on the schema.

At least one of the following privileges is required if the SECURED option is
specified:
v SECADM authority
v CREATE_SECURE_OBJECT privilege

Syntax

�� ALTER TRIGGER trigger-name SECURED
NOT SECURED

��

Description

trigger-name
Identifies the trigger that is to be changed. The trigger must exist at the current
server.

SECURED or NOT SECURED
Specifies that the trigger is to be changed to be secure or not secure. Changing

1094 SQL Reference

a trigger between SECURED and NOT SECURED causes an implicit rebind of
the trigger package. If an error is encountered during the implicit rebind of the
trigger package, the ALTER TRIGGER statement returns the error.

SECURED
Specifies the trigger is considered secure.

SECURED must be specified for a trigger if its subject table is using row
access control or column access control. SECURED must also be specified
for a trigger that is created for a view and one or more of the underlying
tables in the view definition is using row access control or column access
control.

NOT SECURED
Specifies the trigger is considered not secure.

NOT SECURED must not be specified for a trigger whose subject table is
using row access control or column access control. NOT SECURED must
also not be specified for a trigger that is created for a view and one or
more of the underlying tables in the view definition is using row access
control or column access control.

Notes

Changing a trigger from NOT SECURED to SECURED:
Typically, the security administrator will examine the data that is accessed
by a trigger, ensure that it is secure, and grant the
CREATE_SECURE_OBJECT privilege to the owner of the trigger. After the
trigger is changed to SECURED, the security administrator will revoke the
CREATE_SECURE_OBJECT privilege from the owner of the trigger.

The trigger is considered secure after the ALTER TRIGGER statement is
executed. DB2 treats the SECURED attribute as an assertion that declares
that the user has established an audit procedure for all activities in the
trigger body. If a secure trigger references user-defined functions, DB2
assumes those functions are secure without validation. If those functions
can access sensitive data, the user with SECADM authority needs to ensure
that those functions are allowed to access that data and that an audit
procedure is in place for all versions of those functions, and that all
subsequent ALTER FUNCTION statements or changes to external packages
are being reviewed by this audit process.

A trigger must be secure if its subject table is using row access control or
column access control. SECURED must also be specified for a trigger that
is created for a view and one or more of the underlying tables in the view
definition is using row access control or column access control.

Altering a trigger from SECURED to NOT SECURED:
The ALTER TRIGGER statement returns an error if the subject table of the
trigger is using row access control or column access control, or if the
trigger is for a view and one or more of the underlying tables in the view
definition is using row access control or column access control.

ALTER TRIGGER statement and implicit rebind:
The trigger package is implicitly rebound when the trigger is changed by
using the ALTER TRIGGER statement. No additional BIND related
privileges are required for this implicit rebind. If an error is encountered
during the implicit rebind, the ALTER TRIGGER statement fails and
returns the error.

Chapter 5. Statements 1095

Row access control and column access control that is not enforced for transition
variables and transition tables:

If row access control or column access control is enforced for the subject
table of the trigger, row permissions and column masks are not applied to
the initial values of transition variables and transition tables. Row access
control and column access control is enforced for the triggering table, but
is ignored for transition variables and transition tables that are referenced
in the body of the trigger body or are passed as arguments to user-defined
functions that are invoked in the body of the trigger. To ensure that there
are no security concerns for SQL statements accessing sensitive data in
transition variables and transition tables in the trigger action, the trigger
must be changed to use the SECURED option. If a trigger is not secure,
row access control and column access control cannot be enforced for the
triggering table.

Examples

Example 1: Change the definition of trigger TRIGGER1 to secured:
ALTER TRIGGER TRIGGER1
SECURED;

1096 SQL Reference

ALTER TRUSTED CONTEXT
The ALTER TRUSTED CONTEXT statement modifies the definition of a trusted
context at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v SYSADM authority
v SECADM authority

Privilege set: If the statement is embedded in an application program, the
privilege set is the set of privileges that are held by the owner of the plan or
package.

If the statement is dynamically prepared, the privilege set is the union of the set of
privileges that are held by each authorization ID of the process. If the statement is
run in a trusted context with a role, the privilege set is the union of the set of
privileges that are held by the role that is associated with the primary
authorization ID and the set of privileges that are held by each authorization ID of
the process.

Chapter 5. Statements 1097

Syntax

�� ALTER TRUSTED CONTEXT context-name �

� � �

�

�

�

(1)
ALTER SYSTEM AUTHID authorization-name

NO DEFAULT ROLE
WITHOUT ROLE AS OBJECT OWNER

DEFAULT ROLE role-name
WITH ROLE AS OBJECT OWNER AND QUALIFIER

ENABLE
DISABLE
NO DEFAULT SECURITY LABEL
DEFAULT SECURITY LABEL seclabel-name

,
(2) (5)

ATTRIBUTES (ADDRESS address-value)
(3)

ENCRYPTION encryption-value
SERVAUTH servauth-value

(4)
JOBNAME jobname-value

,
(5)

ADD ATTRIBUTES (ADDRESS address-value)
SERVAUTH servauth-value

(4)
JOBNAME jobname-value
,

(5)
DROP ATTRIBUTES (ADDRESS)

address-value
SERVAUTH

servauth-value
(4)

JOBNAME
jobname-value

user-clause

��

Notes:

1 These clauses can be specified in any order. Each clause must not be specified more than one
time.

2 This clause and the clauses that follow can be specified in any order. Each clause must not be
specified more than one time.

3 ENCRYPTION must not be specified more than one time.

4 JOBNAME must not be specified with ADDRESS, ENCRYPTION, or SERVAUTH.

5 Each pair of attribute name and corresponding value must be unique.

user-clause:

1098 SQL Reference

�� �

�

�

,

ADD USE FOR authorization-name
use-options

EXTERNAL SECURITY PROFILE profile-name
use-options

WITHOUT AUTHENTICATION
PUBLIC

WITH AUTHENTICATION
,

REPLACE USE FOR authorization-name
use-options

EXTERNAL SECURITY PROFILE profile-name
use-options

WITHOUT AUTHENTICATION
PUBLIC

WITH AUTHENTICATION
,

DROP USE FOR authorization-name
EXTERNAL SECURITY PROFILE profile-name
PUBLIC

��

��
ROLE role-name SECURITY LABEL seclabel-name

WITHOUT AUTHENTICATION

WITH AUTHENTICATION
��

Description

context-name
Identifies the trusted context to alter. context-name must refer to a trusted
context that exists at the current server.

ALTER
Specifies that changes are to be made to the definition of an existing trusted
context.

SYSTEM AUTHID authorization-name
Specifies that authorization-name is the system authorization ID for the trusted
context. The system authorization ID is the primary authorization ID of the
DB2 system that establishes the connection. For a remote connection, the
authorization ID is derived from the system used ID that is provided by the
external entity, such as a middleware server. For a local connection, the system
authorization ID is derived depending on the sources, as specified in Table 107.

Table 107. System authorization ID for a local connection

Source of local connection System authorization ID

Started task (RRSAF) USER parameter on JOB statement or RACF
USER.

TSO TSO logon ID

BATCH USER parameter on JOB statement

use-options:

Chapter 5. Statements 1099

authorization-name must not be associated with an existing trusted context.

NO DEFAULT ROLE or DEFAULT ROLE role-name
Specifies whether a default role is associated with a trusted connection that is
based on the specified trusted context. If a trusted connection for the specified
context is active, the change goes into effect at the next connection reuse
attempt or when a new connection is requested.

NO DEFAULT ROLE
Specifies that the trusted context does not have a default role. The
authorization ID of the process is the owner of any object that is created
using a trusted connection that is based on this trusted context. That
authorization ID must possess all of the privileges that are necessary to
create that object.

DEFAULT ROLE role-name
Specifies that role-name is the role for the trusted context. role-name must
identify a role that exists at the current server. This role is used with the
user in a trusted connection that is based on the specified trusted context
when the user does not have a user-specified role that is defined as part of
the definition of this trusted context.

WITHOUT ROLE AS OBJECT OWNER or WITH ROLE AS OBJECT OWNER AND QUALIFIER
Specifies whether a role is used as the owner of objects that are created using a
trusted connection that is based on the specified trusted context. If a trusted
connection for the specified context is active, the change goes into effect at the
next connection reuse attempt or when a new connection is requested.

WITHOUT ROLE AS OBJECT OWNER
Specifies that a role is not used as the owner of the objects that are created
using a trusted connection that is based on the specified trusted context.
The authorization ID of the process is the owner of any object that is the
created using a trusted connection that is based on this trusted context.
That authorization ID must possess all of the privileges that are necessary
to create the object.

WITHOUT ROLE AS OBJECT OWNER is the default.

WITH ROLE AS OBJECT OWNER AND QUALIFIER
Specifies that the context assigned role is the owner of the objects that are
created using a trusted connection that is based on this trusted context.
That role must possess all of the privileges that are necessary to create the
object. The context assigned role is the role that is defined for the user
within this trusted context, if one is defined. Otherwise, the role is the
default role that is associated with the trusted context. The role is also used
as the grantor for any GRANT statements that are issued, and the revoker
for any REVOKE statement that are issued using a trusted connection that
is based on this trusted context.

AND QUALIFIER
Specifies that the role-name will be used as the default for the
CURRENT SCHEMA special register. The role-name will also be
included in the SQL PATH (in place of CURRENT SQLID).

When WITH ROLE AS OBJECT OWNER AND QUALIFIER is not
specified, there is no change to the default of the CURRENT SCHEMA
special register and SQL PATH.

DISABLE or ENABLE
Specifies whether the trusted context is in the enabled or disabled state.

1100 SQL Reference

DISABLE
Specified that the trusted context is disabled. A trusted context that is
disabled is not considered when a trusted connection is established.

ENABLE
Specifies that the trusted context is enabled.

NO DEFAULT SECURITY LABEL or DEFAULT SECURITY LABELseclabel-name
Specifies whether a default security label is associated with a trusted
connection that is based on this trusted context. If a trusted connection for the
specified context is active, the change goes into effect at the next connection
reuse attempt or when a new connection is requested.

NO DEFAULT SECURITY LABEL
Specifies that the trusted context does not have a default security label.

DEFAULT SECURITY LABEL seclabel-name
Specifies that seclabel-name is the default security label for the trusted
context. seclabel-name is the security label that is used for multilevel
security verification. seclabel-name must identify one of the RACF
SECLABEL values that is defined for the SYSTEM AUTHID. This security
label is used in a trusted connection that is based on the specified trusted
context when the user does not have a specific security label defined as
part of the definition of this trusted context. In this case, seclabel-name must
also identify one of the RACF SECLABEL values that is defined for the
user.

ALTER ATTRIBUTES or ADD ATTRIBUTES
Specifies a list of one or more connection trust attributes to change or add to
the definition of a trusted context. The connection trust attributes are used to
define the trusted context. If ALTER ATTRIBUTES is specified and the attribute
is not currently part of the definition of the specified trusted context, an error
is returned. Existing specifications for the specified attributes are changed to
the new value if ALTER is specified. Attributes that are not specified retain the
previously specified values.

ADDRESS address-value
Specifies the actual communication address that is used by the connection
to communicate with the database manager. The protocol supported is only
for TCP/IP. Previously specified ADDRESS values are removed when
ALTER ATTRIBUTES is specified. The ADDRESS attribute can be specified
multiple times, but each address-value must be unique.

When establishing a trusted connection, if multiple values are defined for
the ADDRESS attribute for a trusted context, a candidate connection is
considered to match this attribute if the address that is used by a
connection matches any of the values that are defined for the ADDRESS
attribute of the trusted context.

address-value specifies a string constant that contains the value that is
associated with the ADDRESS trust attribute. address-value must be an IPv4
address, an IPv6 address, or a secure domain name with a length no
greater than 254 bytes. No validation of address-value is done at the time
the ALTER TRUSTED CONTEXT statement is processed. address-value must
be left justified within the string constant.
v An IPv4 address is represented as a dotted decimal address. An example

of an IPv4 address is 9.112.46.111.

Chapter 5. Statements 1101

v An IPv6 address is represented as a colon hexadecimal address. An
example of an IPv6 address is 2001:0DB8:0000:0000:0008:0800:200C:417A.
This address can also be express in a compressed form as
2001:DB8::8:800:200C:417A.

v A domain name is converted to an IP address by the domain name
server where a resulting IPv4 or IPv6 address is determined. An
example of a domain name is www.ibm.com. The gethostbyname socket
call is used to resolve the domain name.

ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream (network
encryption) for the connection.

encryption-value specifies a string constant that contains the value that is
associated with the ENCRYPTION trust attribute. encryption-value must be
left justified within the string constant. ENCRYPTION must not be
specified more than one time in the statement. encryption-value must be one
of the following:
v NONE, which specifies that no specific level of encryption is required.
v LOW, which specifies that a minimum of light encryption is required.

LOW corresponds to 64-bit DRDA encryption.
v HIGH, which specifies that strong encryption is required. HIGH

corresponds to SSL encryption.

ENCRYPTION cannot be specified if ADD ATTRIBUTES is specified. See
“CREATE TRUSTED CONTEXT” on page 1500 for more information about
the ENCRYPTION attribute.

JOBNAME jobname-value
Specifies the z/OS job name or started task name (depending on the
source of the address space) for local applications. Previously specified
values for JOBNAME are removed when ALTER ATTRIBUTES is specified.
The JOBNAME attribute can be specified multiple times, but each
jobname-value must be unique.

jobname-value specifies a string constant that contains the value that is
associated with the JOBNAME trust attribute. jobname-value is an EBCDIC 8
byte job name or started task name. jobname-value must be left justified
within the string constant. The last character in the name can be a wildcard
character (*) if the first character is an alphabetic character. If the job name
ends with a wildcard, any job names that match the specified characters
are considered for establishing the trusted connection.

The following table lists possible values for the job name depending on the
source of the address space).

Table 108. Job name for local connection

Source of the address space Job name

RRSAF Job name or started task name

TSO TSO logon ID

BATCH Job name on JOB statement

SERVAUTH servauth-value
Specifies the name of a resource in the RACF SERVAUTH class. This
resource is the network access security zone name that contains the IP
address of the connection that is used to communicate with DB2.
Previously specified values for SERVAUTH are removed when ALTER

1102 SQL Reference

ATTRIBUTES is specified. The SERVAUTH attribute can be specified
multiple times but each servauth-value must be unique.

servauth-value specifies a string constant that contains the value that is
associated with the SERVAUTH trust attribute. servauth-value is an EBCDIC
64 byte RACF SERVAUTH CLASS resource name. servauth-value must be
left justified in the string constant. No validation of servauth-value is done
at the time the ALTER TRUSTED CONTEXT statement is processed.

DROP ATTRIBUTES
Specifies that one or more attributes are dropped from the definition of a
trusted context. If the attribute is not currently specified as part of the
definition of a trusted context, an error is returned. The specification of DROP
ATTRIBUTES must not attempt to drop all of the existing attributes for a
trusted context.

ADDRESS address-value
Specifies that the identified communication address is removed from the
definition of the trusted context. address-value specifies a string constant
that contains the value of an existing ADDRESS trust attribute.

JOBNAME jobname-value
Specifies that the identified job name is removed from the definition of the
trusted context. jobname-value specifies a string constant that contains the
value of an existing JOBNAME trust attribute.

SERVAUTH servauth-value
Specifies that the identified servauth that is removed from the definition of
the trusted context. servauth-value specifies a string constant that contains
the value of an existing SERVAUTH trust attribute.

ADD USE FOR
Specifies additional users who can use a trusted connection that is based on
the specified trusted context.

authorization-name
Specifies that the trusted connection can be used by the specified
authorization-name. This is the DB2 primary authorization ID. The
authorization-name must not identify an authorization ID that is already
defined to use the trusted context, and must not be specified more than
one time in the ADD USE FOR clause.

ROLE role-name
Specifies that role-name is the role that is used when a trusted
connection is used by the specified authorization-name. The role-name
must identify a role that exists at the current server. The role that is
explicitly specified for the user overrides any default role that is
associated with the trusted context.

SECURITY LABEL seclabel-name
Specifies that seclabel-name is the security label to use for multilevel
security verification when the trusted connection is used by the
specified authorization-name. The seclabel-name must be one of the RACF
SECLABEL values that is defined for the user. The security label that is
explicitly specified for the user overrides any default security label that
is associated with the trusted context.

EXTERNAL SECURITY PROFILE profile-name
Specifies that the trusted connection can be used by the DB2 primary
authorization IDs that are permitted to use the specified profile-name in
RACF. The profile-name must not already be defined to use the trusted

Chapter 5. Statements 1103

context and must not be specified more than one time in the ADD USE
FOR clause. After you specify an external security profile, any user who is
permitted access to the RACF profile can use the trusted context in
addition to any users that are specified using the ADD USE FOR
authorization-name clause.

ROLE role-name
Specifies that role-name is the role that is used when a trusted
connection is used by any authorization ID that is permitted to use the
specified profile-name in RACF. The role-name must identify a role that
exists at the current server. The role that is explicitly specified for the
profile overrides any default role that is associated with the trusted
context.

SECURITY LABEL seclabel-name
Specifies that seclabel-name is the security label to use for multilevel
security verification when the trusted connection is used by any
authorization ID that is permitted to use the specified profile-name in
RACF. The seclabel-name must be one of the RACF SECLABEL values
that is defined for the user. The security label that is explicitly specified
for the profile overrides any default security label that is associated
with the trusted context.

PUBLIC
Specifies that a trusted connection that is based on the specified trusted
context can be used by any user. PUBLIC must not already be defined to
use the trusted context and must not be specified more than one time in
the ADD USE FOR clause.

All users that are using a trusted connection that is defined with PUBLIC
use the privileges that are associated with the default role for the
associated trusted context. If the default role is not defined for the trusted
context, there is no role associated with the users that use a trusted
connection that is based on the specified trusted context.

If the default security label for the trusted context is defined, all users that
are using the trusted context must have the security label defined as one of
the RACF SECLABEL values for the user. The default security label is used
for multilevel security verification with all users that are using the trusted
context.

The specifications for a user are determined in the following order of
precedence:
v authorization-name

v EXTERNAL SECURITY PROFILE profile-name

v PUBLIC

For example, assume that a trusted context is defined with use for JOE
WITH AUTHENTICATION, EXTERNAL SECURITY PROFILE SPROFILE
WITHOUT AUTHENTICATION (with JOE and SAM permitted to use the
RACF PROFILE SPROFILE), and PUBLIC WITH AUTHENTICATION. If
the trusted connection is used by JOE, authentication is required. If the
trusted connection is used by SAM, authentication is not required.
However, if the trusted connection is used by SALLY, authentication is
required.

REPLACE USE FOR
Specifies a change to the specified user or PUBLIC for who can use the trusted
context.

1104 SQL Reference

authorization-name
Specifies the authorization-name that is changed for use of the trusted
context. The trusted context must already be defined to allow use by
authorization-name, and authorization-name must not be specified more than
one time in the REPLACE USE FOR clause. The information that is
associated with authorization-name is changed as indicated.

ROLE role-name
Specifies that role-name is the role that is used when a trusted
connection is using the specified trusted context. The role-name must
identify a role that exists at the current server. The role that is
explicitly specified for the user overrides any default role that is
associated with the trusted context.

SECURITY LABEL seclabel-name
Specifies that seclabel-name is the security label to use for multilevel
security verification when the trusted connection is used by the
specified authorization-name. The seclabel-name must be one of the RACF
SECLABEL values that is defined for the user. The security label that is
explicitly specified for the user overrides any default security label that
is associated with the trusted context.

EXTERNAL SECURITY PROFILE profile-name
Specifies the profile-name to change attributes for use of the trusted
connection. The trusted context must already be defined to allow the use of
profile-name. profile-name must not be specified more than one time in the
REPLACE USE FOR clause. The information that is associated with the
profile name is changed as indicated.

ROLE role-name
Specifies that role-name is the role that is used when a trusted
connection is used by any authorization ID that is permitted to use the
specified profile-name in RACF. The role name must identify a role that
exists at the current server. The role that is explicitly specified for the
profile overrides any default role that is associated with the trusted
context.

SECURITY LABEL seclabel-name
Specifies that seclabel-name is the security label to use for multilevel
security verification when the trusted connection is used by any
authorization ID that is permitted to use the specified profile-name in
RACF. The seclabel-name must be one of the RACF SECLABEL values
that is defined for the user. The security label that is explicitly specified
for the user overrides any default security label that is associated with
the trusted context.

PUBLIC
Specifies that the attributes for use of the trusted connection by PUBLIC
are to be changed. PUBLIC must already be defined to use the trusted
context, and PUBLIC must not be specified more than one time in the
REPLACE USE FOR clause.

All users that are using a trusted connection that is defined with PUBLIC
use the privileges that are associated with the default role for the
associated trusted context. If the default role is not defined for the trusted
context, there is no role associated with the users that use a trusted
connection that is based on the specified trusted context.

If the default security label for the trusted context is defined, all users that
are using the trusted context must have the security label defined as one of

Chapter 5. Statements 1105

the RACF SECLABEL values for the user. The default security label is used
for multilevel security verification with all users that are using the trusted
context.

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether use of the trusted connection requires authentication of the
user.

WITHOUT AUTHENTICATION
Specifies that use of a trusted connection by the user does not require
authentication. WITHOUT AUTHENTICATION is the default.

WITH AUTHENTICATION
Specifies that use of a trusted connection requires the authentication token
with the authorization ID to authenticate the user.

DROP USE FOR
Specifies who can no longer use the trusted context. The users that are
removed from the definition of the trusted context are the specified users (or
PUBLIC) that are currently allowed to use the trusted context. If multiple users
are specified to be dropped, and one or more of those users cannot be
dropped, those users that can be dropped are dropped and a warning is
returned. If none of the specified users can be removed from the definition of
the trusted context, an error is returned.

authorization-name
Specifies the authorization-name that will no longer be able to use this
trusted context.

EXTERNAL SECURITY PROFILE profile-name
Removes the ability for the specified profile-name to use the trusted context.

PUBLIC
Specifies that PUBLIC users will no longer be able to use this trusted
context. The system authorization ID and individual authorization IDs that
have been explicitly enabled can still use the trusted context.

Notes

Precedence for authorization-name and authentication requirements: If the
authorization-name that is specified in the SYSTEM AUTHID clause is the same
authorization name that is specified in the ADD or REPLACE USE FOR
authorization-name clauses, the role or the security label that is specified for the
authorization-name takes precedence over the default value and the value that is
specified for the EXTERNAL SECURITY PROFILE profile-name (if one is specified).
If the authorization name that is specified in the SYSTEM AUTHID clause is
permitted to use one of the specified profile names and is not specified in ADD or
REPLACE USE for authorization-name, the role or the security label that is specified
for that profile-name takes precedence over the default value.

Authentication is required for SYSTEM AUTHID if the AUTHENTICATION clause
is specified in the ADD or REPLACE USE FOR clauses, or if the subsystem
parameter TCP/IP Already Verified is set to NO. For example, if authorization-name
is the same as the authorization name that is specified in the SYSTEM AUTHID
clause and the WITHOUT AUTHENTICATION clause is specified, but the TCP/IP
Already Verified subsystem parameter is set to NO, authentication is required for
SYSTEM AUTHID when the remote trusted connection is established. If
authorization-name is the SYSTEM AUTHID and the WITH AUTHENTICATION
clause is specified, but the TCP/IP Already Verified subsystem parameter is set to

1106 SQL Reference

YES, authentication is still required for SYSTEM AUTHID.

Order of precedence for users of a trusted connection: The specifications for a user
are determined in the following order of precedence:
v authorization-name

v EXTERNAL SECURITY PROFILE profile-name

v PUBLIC

For example, assume that a trusted context is defined with use for JOE WITH
AUTHENTICATION, EXTERNAL SECURITY PROFILE SPROFILE WITHOUT
AUTHENTICATION, and PUBLIC WITH AUTHENTICATION. Users JOE and
SAM are permitted to use the RACF PROFILE SPROFILE. If the trusted connection
is used by JOE, authentication is required. If the trusted connection is used by
SAM, authentication is not required. However, if user SALLY uses the trusted
connection, authentication is required.

User-clause SYSTEM AUTHID considerations: If the authorization-name that is
specified in the SYSTEM AUTHID clause is the same as the authorization-name that
is specified in the user-clause authorization-name, the role or the security label that
is specified for authorization-name takes precedence over the default value. The
value that is specified for the profile-name, is permitted to use the profile. If the
authorization name that is specified in the SYSTEM AUTHID clause is permitted to
use one of the profile names and is not defined in authorization-name, the role or
the security label that is specified for that profile-name takes precedence over the
default value.

If authentication is required for SYSTEM AUTHID, either by specification of the
AUTHENTICATION clause in the user-clause or by setting the value of the TCP/IP
Already Verified subsystem parameter to NO, the authentication requirement takes
precedence when establishing a remote trusted connection. For example, if
authorization-name is the same as the authorization name that is specified for
SYSTEM AUTHID and the WITHOUT AUTHENTICATION clause is specified, but
the TCP/IP Already Verified subsystem parameter is set to NO, an authentication
token is required for SYSTEM AUTHID when the remote trusted connection is
established. If authorization-name is the SYSTEM AUTHID and the WITH
AUTHENTICATION clause is specified, but the TCP/IP Already Verified
subsystem parameter is set to YES, an authentication token is still required for
SYSTEM AUTHID.

Order of operations: The order in which the clauses of the ALTER TRUSTED
CONTEXT statement are applied are as follows:
v DROP ATTRIBUTES
v DROP USE FOR
v ALTER
v ADD ATTRIBUTES
v ADD USE FOR
v REPLACE USE FOR

Effect of changes on existing trusted connections: If trusted connections exist for
the trusted context that is changed, the connections continue to use the unchanged
definition of the trusted context until the connection is terminated or an attempt at
reuse is made. If the trusted context is disabled while there are active trusted
connections that are based on this trusted context, the connections continue to be

Chapter 5. Statements 1107

used until terminated or an attempt at reuse is made. If the trust attributes are
changed, trusted connections that exist at the time that the trusted context is
changed will continue to be used.

When changes to a trusted context take place: The changes to the definition of a
trusted context take effect after the ALTER TRUSTED CONTEXT statement is
committed. If the ALTER TRUSTED CONTEXT statement results in an error or is
rolled back, the trusted context is not changed.

Role privileges: If no role is associated with the user or the trusted context, only
the privileges that are associated with the user are applicable. This is the same as
not using a trusted context.

Examples

Example 1: The following statement updates the default role of the trusted context
CTX1:

ALTER TRUSTED CONTEXT CTX1
ALTER DEFAULT ROLE CTXROLE2;

Example 2: The following statement changes the CTX3 trusted context to allow use
for BILL, and it also puts the trusted context into the disabled state:

ALTER TRUSTED CONTEXT CTX3
DISABLE
ADD USE FOR BILL;

Example 3: The following statement changes the CTX4 trusted context to allow the
previously defined user JOE to use the trusted context without authentication. The
statement also adds use for PUBLIC with authentication and TOM with a role of
SPLROLE:

ALTER TRUSTED CONTEXT CTX4
REPLACE USE FOR JOE WITHOUT AUTHENTICATION
ADD USE FOR PUBLIC WITH AUTHENTICATION,
TOM ROLE SPLROLE;

Example 4: The following statement changes the REMOTECTX to use a different
IPv4 address than it was originally defined to use. It also changes the encryption
settings from NONE to LOW. After the ALTER statement is processed, the
connection will be considered trusted only when it is established from 9.12.155.200
with low encryption. The connection will no longer be considered trusted if it is
established from the previously defined addresses:

ALTER TRUSTED CONTEXT REMOTECTX
ALTER ATTRIBUTES (ADDRESS ’9.12.155.200’,

ENCRYPTION ’LOW’);

1108 SQL Reference

ALTER VIEW
The ALTER VIEW statement regenerates a view using an existing view definition
at the current server. ALTER VIEW is primarily used during DB2 migration or
when DB2 maintenance is applied. To change a view definition (for example, to
add additional columns), you must drop the view and create a new view using the
CREATE VIEW statement.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v Ownership of the view
v SYSADM authority
v SYSCTRL authority
v System DBADM

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package. If the
statement is dynamically prepared, the privilege set is the union of the privilege
sets that are held by each authorization ID and role of the process.

Syntax

�� ALTER VIEW view-name REGENERATE ��

Description

view-name
Identifies the view to be regenerated. The name must identify a view that
exists at the current server.

REGENERATE
Specifies that the view is to be regenerated. The view definition in the catalog
is used, and existing authorizations and dependent views are retained. The
catalog is updated with the regenerated view definition. If the view cannot be
successfully regenerated, an error is returned.

Examples

Check the catalog to find any views that were marked with view regeneration
errors during catalog migration:

SELECT CREATOR,NAME FROM SYSIBM.SYSTABLES
WHERE TYPE = ’V’ AND STATUS = ’R’ AND TABLESTATUS = ’V’;

Assume that the query returned MYVIEW as the name of a view with a
regeneration error. Issue an ALTER VIEW statement to regenerate the view:

Chapter 5. Statements 1109

ALTER VIEW MYVIEW REGENERATE;

1110 SQL Reference

ASSOCIATE LOCATORS
The ASSOCIATE LOCATORS statement gets the result set locator value for each
result set returned by a stored procedure.

Invocation

This statement can be embedded in an application program. It is an executable
statement that can be dynamically prepared. It cannot be issued interactively.

Authorization

None required.

Syntax

�� ASSOCIATE
RESULT SET

LOCATOR
LOCATORS

�

,

(rs-locator-variable) �

� WITH PROCEDURE procedure-name
host-variable

��

Description

rs-locator-variable
Identifies a result set locator variable that has been declared according to the
rules for declaring result set locator variables.

WITH PROCEDURE procedure-name or host-variable
Identifies the stored procedure that returned one or more result sets. When the
ASSOCIATE LOCATORS statement is executed, the procedure name must
identify a stored procedure that the requester has already invoked using the
SQL CALL statement. The procedure name can be specified as a one-part,
two-part, or three-part name. The procedure name in the ASSOCIATE
LOCATORS statement must be specified the same way that it was specified on
the CALL statement. For example, if a two-part procedure name was specified
on the CALL statement, you must specify a two-part procedure name in the
ASSOCIATE LOCATORS statement.

If a host variable is used to specify the name:
v It must be a character string variable with a length attribute that is not

greater than 255.
v It must not be followed by an indicator variable.
v The value of the host variable is a specification that depends on the server.

Regardless of the server, the specification must:
– Be left justified within the host variable
– Not contain embedded blanks
– Be padded on the right with blanks if its length is less than that of the

host variable

Chapter 5. Statements 1111

Notes

Assignment of locator values: If the ASSOCIATE LOCATORS statement specifies
multiple locator variables, locator values are assigned to the locator variables in the
order that the associated cursors are opened regardless of whether they are still
open or not at run time. Locator values are assigned to the locator variables in the
same order that they would be placed in the SQLVAR entries in the SQLDA as a
result of a DESCRIBE PROCEDURE statement.

Locator values are not provided for cursors that are closed when control is
returned to the invoking application. If a cursor was closed and later opened again
before returning to the invoking application, the most recently executed OPEN
CURSOR statement for the cursor is used to determine the order in which the
locator values are returned for the procedure result sets. For example, assume
procedure P1 opens three cursors A, B, C, closes cursor B and then issues another
OPEN CURSOR statement for cursor B before returning to the invoking
application. The locator values assigned for the following ASSOCIATE LOCATORS
statement will be in the order A, C, B:
ASSOCIATE RESULT SET LOCATORS (:loc1, :loc2, :loc3) WITH PROCEDURE P1;

-- assigns locators for result set cursors A, C, and B

More than one locator can be associated with a result set. You can issue multiple
ASSOCIATE LOCATORS statements for the same stored procedure with different
result set locator variables to associate multiple locators with each result set.
v If the number of result set locator variables specified in the ASSOCIATE

LOCATORS statement is less than the number of result sets returned by the
stored procedure, all locator variables specified in the statement are assigned a
value, and a warning is issued. For example, assume procedure P1 exists and
returns four result sets. Each of the following ASSOCIATE LOCATORS
statement returns information on the first result set along with a warning that
not enough locators were provided to obtain information about all the result
sets.
CALL P1;
ASSOCIATE RESULT SET LOCATORS (:loc1) WITH PROCEDURE P1;

-- :loc1 is assigned a value for first result set, and a warning is returned
ASSOCIATE RESULT SET LOCATORS (:loc2) WITH PROCEDURE P1;

-- :loc2 is assigned a value for first result set, and a warning is returned
ASSOCIATE RESULT SET LOCATORS (:loc3) WITH PROCEDURE P1;

-- :loc3 is assigned a value for first result set, and a warning is returned
ASSOCIATE RESULT SET LOCATORS (:loc4) WITH PROCEDURE P1;

-- :loc4 is assigned a value for first result set, and a warning is returned

v If the number of result set locator variables that are listed in the ASSOCIATE
LOCATORS statement is greater than the number of locators returned by the
stored procedure, the extra locator variables are assigned a value of 0.

Accessing result sets from multiple CALL statements: An application can access to
result sets created by multiple CALL statements. The result sets can be created by
different procedure or by the same procedure invoked multiple times.
v Invoking different procedures: Invoking different procedures with the same name

can be done either explicitly by specifying the different collections or implicitly
with the use of the PACKAGE PATH. For example, to identify the different
collections explicitly, specify qualified names on the CALL statement. Although
both procedures are named P2, they are different procedures. After the second
CALL statement, result sets from both procedures are accessible to the
application.

1112 SQL Reference

CALL X.P2;
CALL Y.P2;

The collections for the two different procedures can also be determined
implicitly from the PACKAGE PATH when unqualified procedure names are
specified as part of the CALL statement. For example, assume that procedure P4
exists in collections X and Z. An application contains two CALL statements to
invoke procedure P4. The references to procedure P4 in the CALL statements are
unqualified. So, the PACKAGE PATH special register is used to resolve the
procedure name. Procedure X.P4 is invoked for the first CALL statement and
procedure Z.P4 is invoked by the second CALL statement. Following the second
CALL statement, result sets from both procedures are accessible to the
application.
SET CURRENT PACKAGE PATH = X, Y, Z;
CALL P4;
SET CURRENT PACKAGE PATH = PATH Z, Y, X;
CALL P4;

v Invoking the same procedure multiple times: If the server and requester are both the
same version of DB2, you can call a stored procedure multiple times within an
application and at the same nesting level. Each call to the same stored procedure
causes a unique instance of the stored procedure to run. If the stored procedure
returns result sets, each instance of the stored procedure opens its own set of
result set cursors. For more information on this situation, see Multiple calls to
the same stored procedure.
When a procedure is invoked multiple times in an application and there is a
need to process the result sets from the different instances at the same time, be
sure to use the ASSOCIATE LOCATORS statement after each CALL statement to
capture the locator values returned from each invocation of the procedure. For
example, assume that procedure P exists in collection Z and that an application
contains two CALL statements to invoke procedure P. The PACKAGE PATH is
used to determine the collection for the procedure in the first CALL statement,
and the collection is explicitly specified in the second CALL statement. Result
sets from both procedures can be accessible to the application following both
CALL statements if the locators for the result sets produced by the first CALL
statement are captured with an ASSOCIATE LOCATOR statement before
invoking the procedure the second time.
SET CURRENT PACKAGE PATH = X, Y, Z;
CALL P3;
ASSOCIATE LOCATORS ...
CALL Z.P3;
ASSOCIATE LOCATORS ...
-- process the result sets using the locators

Using host variables: If the ASSOCIATE LOCATORS statement contains host
variables, the following conditions apply:
v If the statement is executed statically, the contents of the host variables are

assumed to be in the encoding scheme that was specified in the ENCODING
parameter when the package or plan that contains the statement was bound.

v If the statement is executed dynamically, the contents of the host variables are
assumed to be in the encoding scheme that is specified in the APPLICATION
ENCODING bind option.

Examples

The statements in the following examples are assumed to be in PL/I programs.

Chapter 5. Statements 1113

Example 1: Use result set locator variables LOC1 and LOC2 to get the result set
locator values for the two result sets returned by stored procedure P1. Assume that
the stored procedure is called with a one-part name from current server SITE2.

EXEC SQL CONNECT TO SITE2;
EXEC SQL CALL P1;
EXEC SQL ASSOCIATE RESULT SET LOCATORS (:LOC1, :LOC2)

WITH PROCEDURE P1;

Example 2: Repeat the scenario in Example 1, but use a two-part name to specify an
explicit schema name for the stored procedure to ensure that stored procedure P1
in schema MYSCHEMA is used.

EXEC SQL CONNECT TO SITE2;
EXEC SQL CALL MYSCHEMA.P1;
EXEC SQL ASSOCIATE RESULT SET LOCATORS (:LOC1, :LOC2)

WITH PROCEDURE MYSCHEMA.P1;

Example 3: Use result set locator variables LOC1 and LOC2 to get the result set
locator values for the two result sets that are returned by the stored procedure
named by host variable HV1. Assume that host variable HV1 contains the value
SITE2.MYSCHEMA.P1 and the stored procedure is called with a three-part name.

EXEC SQL CALL SITE2.MYSCHEMA.P1;
EXEC SQL ASSOCIATE LOCATORS (:LOC1, :LOC2)

WITH PROCEDURE :HV1;

The preceding example would be invalid if host variable HV1 had contained the
value MYSCHEMA.P1, a two-part name. For the example to be valid with that
two-part name in host variable HV1, the current server must be the same as the
location name that is specified on the CALL statement as the following statements
demonstrate. This is the only condition under which the names do not have to be
specified the same way and a three-part name on the CALL statement can be used
with a two-part name on the ASSOCIATE LOCATORS statement.

EXEC SQL CONNECT TO SITE2;
EXEC SQL CALL SITE2.MYSCHEMA.P1;
EXEC SQL ASSOCIATE LOCATORS (:LOC1, :LOC2)

WITH PROCEDURE :HV1;

1114 SQL Reference

BEGIN DECLARE SECTION
The BEGIN DECLARE SECTION statement marks the beginning of an SQL declare
section. An SQL declare section contains declarations of host variables that are
eligible to be used as host variables in SQL statements in a program.

Invocation

This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java or REXX.

Authorization

None required.

Syntax

�� BEGIN DECLARE SECTION ��

Description

The BEGIN DECLARE SECTION statement can be coded in the application
program wherever variable declarations can appear in accordance with the rules of
the host language. It is used to indicate the beginning of a host variable declaration
section. A host variable section ends with an END DECLARE SECTION statement,
described in “END DECLARE SECTION” on page 1631.

The following rules are enforced by the precompiler only if the host language is C
or the STDSQL(YES) SQL processing option is specified:
v A variable referred to in an SQL statement must be declared within a host

variable declaration section of the source program in all host languages, other
than Java and REXX. Furthermore, the declaration of each variable must appear
before the first reference to the variable. Host variables are declared without the
use of these statements in Java, and they are not declared at all in REXX.

v BEGIN DECLARE SECTION and END DECLARE SECTION statements must be
paired and must not be nested.

v Host variable declaration sections can contain only host variable declarations,
SQL INCLUDE statements that include host variable declarations, or DECLARE
VARIABLE statements.

Notes

Host variable declaration sections are only required if the STDSQL(YES) option is
specified or the host language is C. However, declare sections can be specified for
any host language so that the source program can conform to IBM SQL. If declare
sections are used, but not required, variables declared outside a declare section
must not have the same name as variables declared within a declare section.

Chapter 5. Statements 1115

Example
EXEC SQL BEGIN DECLARE SECTION;

-- host variable declarations

EXEC SQL END DECLARE SECTION;

1116 SQL Reference

CALL
The CALL statement invokes a stored procedure.

Invocation

This statement can be embedded in an application program. This statement can be
executed interactively using the command line processor. Refer to DB2 Application
Programming and SQL Guide for information about using the command line
processor with the CALL statement. This statement can also be dynamically
prepared, but only from an ODBC or CLI driver that supports dynamic CALL
statements. IBM's ODBC and CLI drivers provide this capability.

Authorization

Invoking a stored procedure requires the EXECUTE privilege on the following:
v The stored procedure

You do not need the EXECUTE privilege on a stored procedure that was created
prior to Version 6 of DB2 for z/OS.

v For external procedures (including external SQL procedures), additional
authority is needed for the stored procedure package and most packages that
run in the stored procedure.
The authorization that is required for which packages is explained in detail in
Authorization to execute packages under the stored procedure.

Authorization to execute the stored procedure

The authorization ID or role that must have the EXECUTE privilege on the stored
procedure depends on the form of the CALL statement:
v For static SQL programs that use the syntax CALL procedure, the owner of the

plan or package that contains the CALL statement must have one of the
following:
– The EXECUTE privilege on the stored procedure
– Ownership of the stored procedure
– DATAACCESS authority
– SYSADM authority

v For static SQL programs that use the syntax CALL :host-variable, the
authorization ID or role of the plan or package that contains the CALL statement
must have one of the following:
– The EXECUTE privilege on the stored procedure
– Ownership of the stored procedure
– DATAACCESS authority
– SYSADM authority
The DYNAMICRULES behavior for the plan or package that contains the CALL
statement determines both the authorization ID or role and the privilege set that
is held by that authorization ID or role:

Run behavior
The privilege set is the union of the set of privileges that are held by the
SQL authorization ID and each authorization ID or role of the process.

Chapter 5. Statements 1117

Bind behavior
The privilege set is the privileges that are held by the primary
authorization ID of the owner of the package or plan.

Define behavior
The privilege set is the privileges that are held by the authorization ID
or role of the owner (definer) of the stored procedure or user-defined
function that issued the CALL statement.

Invoke behavior
The privilege set is the privileges that are held by the authorization ID
or role of the invoker of the stored procedure or user-defined function
that issued the CALL statement. However, if the invoker is the primary
authorization ID of the process or the CURRENT SQLID value, the
privilege set is the union of the set of privileges that are held by each
authorization ID or role.

For a list of the DYNAMICRULES values that specify run, bind, define, or
invoke behavior, see Table 6 on page 75.

Authorization to execute packages under the stored procedure (including nested
stored procedures)

The authorization that is required to run the stored procedure package and any
packages that are used under the stored procedure (including nested stored
procedures) apply to any form of the CALL statement as follows:
v Stored procedure package: One of the authorization IDs or roles that are defined

in Set of authorization IDs must have at least one of the following privileges or
authorities on the stored procedure package:
– The EXECUTE privilege
– Ownership of the package
– PACKADM authority for the package's collection
– SYSADM authority

A PKLIST entry is not required for the stored procedure package.
v User-defined function packages and trigger packages: If a stored procedure or

any application under the stored procedure invokes a user-defined function, DB2
requires only the owner (the definer), and not the invoker of the user-defined
function, to have EXECUTE authority on the user-defined function package.
However, the authorization ID or role of the SQL statement that invokes the
user-defined function must have EXECUTE authority on the function.
Similarly, if a trigger is used under a stored procedure, DB2 does not require
EXECUTE authority on the trigger package; however, the authorization ID or
role of the SQL statement that activates the trigger must have EXECUTE
authority on the trigger.
For more information about the EXECUTE authority for user-defined functions,
triggers, and user-defined function packages, see DB2 Administration Guide.
PKLIST entries are not required for any user-defined function packages or
trigger packages that are used under the stored procedure.

v Packages other than user-defined function, trigger, and stored procedure
packages: One of the authorization IDs or roles that is defined below under Set
of authorization IDs must have at least one of the following privileges or
authorities on any packages other than user-defined function and trigger
packages that are used under the stored procedure:
– The EXECUTE privilege

1118 SQL Reference

– Ownership of the package
– PACKADM authority for the package's collection
– SYSADM authority

PKLIST entries are required for any of these packages that are used under the
stored procedure.

For improved performance and simplicity, consider granting the EXECUTE ON
PACKAGE privilege for the stored procedure package, and for any packages that
run under the stored procedure, to the owner of the stored procedure.

Set of authorization IDs: DB2 checks the following authorization IDs, in the order
in which they are listed, for the required authorization to execute the stored
procedure package and any packages that run under the stored procedure other
than user-defined function and trigger packages as described previously.
Authorization checking ends after the first authorization ID that has EXECUTE ON
PACKAGE privileges for the target package is found.
v The owner (the definer) of the stored procedure.
v The owner of the plan that contains the CALL statement that invokes the stored

procedure if either of the following conditions is true:
– The calling application (a package or a DBRM that is bound directly to the

plan) is local.
– The calling application is distributed, the DB2 subsystem is both the requester

and the server, and the PRIVATE_PROTOCOL subsystem parameter is not set
to NO.

v The owner of the package that contains the CALL statement that invokes the
stored procedure if the calling application is distributed and either of the
following conditions is true:
– The DB2 subsystem is the server but not the requester.
– The DB2 subsystem is both the server and the requester and the

PRIVATE_PROTOCOL subsystem parameter is set to NO.
– The calling application uses Recoverable Resources Management Services

attachment facility (RRSAF) and has no plan.
v The authorization ID as determined by the value of the DYNAMICRULES bind

option for the plan or package that contains the CALL statement if the CALL
statement is in the form of CALL :host-variable.
– If the calling application is bound with the DYNAMICRULES(RUN) option,

DB2 checks either the authorization ID of the process at run time and its
secondary authorization IDs or the single authorization ID that is determined
by the other DYNAMICRULES bind option values.

– If the calling application is bound with a value other than
DYNAMICRULES(RUN), DB2 checks only a single authorization ID, even if
that ID fails the EXECUTE ON PACKAGE authorization check.

– If the calling application is a package and is bound with
DYNAMICRULES(BIND), DB2 checks the authorization ID of the package
owner. DB2 does not check the authorization ID of the plan owner.

Chapter 5. Statements 1119

Syntax

�� CALL procedure-name
variable

�

()
,

expression
NULL
TABLE transition-table-name

USING DESCRIPTOR descriptor-name

��

Description

procedure-name or host-variable
Identifies the procedure to call by the specified procedure-name or the procedure
name contained in the host-variable. The identified procedure must exist at the
current server.

If procedure-name specifies any of the three special characters that are alphabetic
extenders for national languages, $#@, specify the procedure name with a
host-variable.

If a host variable is used:
v It must be a CHAR or VARCHAR variable with a length attribute that is not

greater than 254.
v It must not be followed by an indicator variable.
v The value of the host variable is a specification that depends on the server.

Regardless of the server, the specification must:
– Be left justified within the host variable
– Not contain embedded blanks
– Be padded on the right with blanks if its length is less than that of the

host variable

In addition, the specification can:
– Contain upper and lowercase characters. Lowercase characters are not

folded to uppercase.
– Use a delimited identifier for any part of a three-part procedure name.

If the server is DB2 for z/OS, the specification must be a procedure name as
defined above.

When the CALL statement is executed, the procedure name or specification
must identify a stored procedure that exists at the server.

When the package that contains the CALL statement is bound, the stored
procedure that is invoked must be created if VALIDATE(BIND) is specified.
Although the stored procedure does not need to be created at bind time if
VALIDATE(RUN) is specified, it must be created when the CALL statement is
executed.

expression, NULL, or TABLE transition-table-name
Identifies a list of values to be passed as arguments to the stored procedure.
The nth value corresponds to the nth parameter in the procedure. Each
parameter that is defined using CREATE PROCEDURE as OUT or INOUT

1120 SQL Reference

|
|

|||

|
||

|
|
|
|

must be specified as a variable. An argument that is an array can be specified
only if the CALL statement is issued from SQL PL.

The number of arguments that are specified must be the same as the number
of parameters of a procedure that is defined at the current server with the
specified procedure name.

If USING DESCRIPTOR is specified, each host variable described by the
identified SQLDA is an argument, or part of an expression that is an argument
of the CALL statement. If host structures are not specified in the CALL
statement, the nth argument of the CALL statement corresponds to the nth
parameter in the stored procedure, and the number in each must be the same.
Otherwise, each reference to a host structure is replaced by a reference to each
of the variables contained in that host structure, and the resulting number of
arguments must be the same as the number of parameters defined for the
stored procedure.

However, a character FOR BIT DATA argument cannot be passed as input for a
parameter that is not defined as character FOR BIT DATA. Likewise, a
character argument that is not FOR BIT DATA cannot be passed as input for a
parameter that is defined as character FOR BIT DATA.

The attributes of the parameters are determined by the current server. In
addition to attributes such as data type and length, the description of each
parameter indicates how the stored procedure uses it:
v IN means as an input value
v OUT means as an output value
v INOUT means both as an input and an output value

All parameters that are not variables are assumed to be input parameters (IN).

expression
The argument is the result of the specified expression, which is evaluated
before the stored procedure is invoked.

If expression is a single variable, the corresponding parameter of the
procedure can be defined as IN, INOUT, or OUT. Otherwise, the
corresponding parameter of the procedure must be defined as IN. An
expression can contain any of the following items:
v Variable
v Constant
v Special register
v Session global variable
v Cast function with a variable or constant argument

A variable can identify a structure. Any variable or structure that is
specified must be described in the application program according to the
rules for declaring host structures and variables. A reference to a host
structure is replaced by a reference to each of the variables contained in the
host structure.

If the result of the expression can be the null value, either the description
of the procedure must allow for null parameters or the corresponding
parameter of the stored procedure must be defined as OUT.

expression must not reference an associative array value as an argument to
a function if the procedure is remote.

The following additional rules apply depending on how the corresponding
parameter was defined in the CREATE PROCEDURE statement for the
procedure:

Chapter 5. Statements 1121

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

v IN expression can contain references to multiple host variables. In
addition to the rules stated in “Expressions” on page 240 for expression,
expression cannot include a column name, a scalar subselect, a file
reference variable, an aggregate function, or a user-defined function that
is sourced on an aggregate function.

v INOUT or OUT expression can only be a single variable. expression cannot
include a file reference variable or an array element.

NULL
The parameter is a null value. The corresponding parameter of the
procedure must be defined as IN and the description of the procedure
must allow for null parameters.

TABLE transition-table-name
The parameter is a transition table, and it is passed to the procedure as a
table locator. You can use the CALL statement with the TABLE clause only
within the definition of the triggered action of a trigger. The name of a
transition table must be specified in the CALL statement if the
corresponding parameter of the procedure was defined in the TABLE LIKE
clause of the CREATE PROCEDURE statement. For information about
creating a trigger, see “CREATE TRIGGER” on page 1482 and DB2
Application Programming and SQL Guide.

There is no effect on the transition table on the return from the procedure
regardless of whether the parameter was defined as IN, INOUT, or OUT.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that contains a valid description of the host variables
that are to be passed as parameters to the stored procedure. If the stored
procedure has no parameters, an SQLDA is ignored.

Before the CALL statement is processed, the user must set the following
fields in the SQLDA:
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA. This number must not be less than SQLD. This field is not part
of the REXX SQLDA and therefore does not need to be set for REXX
programs.

v SQLDABC to indicate the number of bytes of storage allocated for the
SQLDA. This number must be not be less than SQLN*44+16. This field is
not part of the REXX SQLDA and therefore does not need to be set for
REXX programs.

v SQLD to indicate the number of variables used in the SQLDA when
processing the statement. This number must be the same as the number
of parameters of the stored procedure.

v SQLVAR occurrences to indicate the attributes of the variables.

There are additional considerations for setting the fields of the SQLDA
when a variable that is passed as a parameter to the stored procedure has
a LOB data type or is a LOB locator. For more information, see “SQL
descriptor area (SQLDA)” on page 2079.

The SQL CALL statement ignores distinct type information in the SQLDA.
Only the base SQL type information is used to process the input and
output parameters described by the SQLDA.

In REXX, only host variables USING DESCRIPTOR is supported. Since
global variables are not supported within the SQLDA, global variable are
not supported in REXX.

1122 SQL Reference

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|

See “Identifying an SQLDA in C or C++” on page 2099 for how to
represent descriptor-name in C.

Notes

Parameter assignments: When the CALL statement is executed, the value of each
of its arguments is assigned with storage assignment rules to the corresponding IN
or INOUT parameter of the stored procedure. In cases where the arguments of the
CALL statement are not an exact match to the data types of the parameters of the
stored procedure, each argument specified in the CALL statement is converted to
the data type of the corresponding parameter of the stored procedure at execution.
The conversion occurs according to the same rules as assignment to columns.

Control is passed to the stored procedure according to the calling conventions of
the host language.

When execution of the stored procedure is complete, the value of each parameter
of the stored procedure defined as OUT or INOUT is assigned to the
corresponding argument of the CALL statement. If an error is returned by the
procedure, OUT arguments are undefined, and INOUT arguments are unchanged.

A timestamp without time zone value must not be assigned to a timestamp with
time zone target.

The following rules apply when the value of an array argument is assigned to the
corresponding array parameter:
v For a local procedure call: The argument and the parameter must be defined as

the same array type.
v For a remote procedure call: The data type of the elements of the array

argument must be the same as the data type of the elements of the array
parameter. In addition, for IN or OUT parameters, all of the relevant conditions
in one of the rows in the following table must be true. For INOUT parameters,
all of the relevant conditions in row 1 of the following table must be true, or all
of the relevant conditions in rows 2 and 3 must be true. A relevant condition is
indicated with Y.

Relationship of argument to
associated parameter

Relationship
applies to IN
parameter

Relationship
applies to OUT
parameter

Relationship
applies to
INOUT
parameter

The argument is an ordinary
array, the parameter is an
ordinary array, and the
argument and parameter are
defined with the same data type
for the array indexes.

Y Y Y

Chapter 5. Statements 1123

|
|

|
|

|
|

|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|||

Relationship of argument to
associated parameter

Relationship
applies to IN
parameter

Relationship
applies to OUT
parameter

Relationship
applies to
INOUT
parameter

The argument is an ordinary
array, the parameter is an
associative array type, the
parameter is an IN or INOUT
parameter, and the data type of
the array indexes is INTEGER.
The associative array parameter
is assigned an associative array
value that is derived from the
ordinary array argument value.
The values of the array elements
in the ordinary array are
assigned to the target associative
array parameter, in the same
order as their order in the
ordinary array argument. The
index values in the target
associative array parameter are
assigned from 1 to the
cardinality of the ordinary array
argument value.

Y Y

The argument is an ordinary
array type, the parameter is an
associative array type, and the
parameter is an INOUT or OUT
parameter. The argument is
assigned an ordinary array value
that is derived from the
associative array parameter
value. The values of the array
elements in the associative array
value are assigned to the target
ordinary array, in an order
determined by DB2. The index
values in the target ordinary
array argument are assigned
from 1 to the cardinality of the
associative array parameter
value. The index values from the
associative array parameter
value are ignored.

Y Y

For details on the rules used to assign parameters, see “Assignment and
comparison” on page 121.

Conversion can occur when precision, scale, length, encoding scheme, or CCSID
differ between the argument specified in the CALL statement and the data type of
the corresponding parameter of the stored procedure. Conversion might occur for a
character string argument specified in the CALL statement when the corresponding
parameter of the stored procedure has a different encoding scheme or CCSID. For
example, an error occurs when the CALL statement passes an argument of mixed
data that actually contains DBCS characters as input for a parameter of the stored
procedure that is defined as FOR SBCS DATA. Likewise, an error occurs when the

1124 SQL Reference

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||

|

|

stored procedure returns mixed data that actually contains DBCS characters for an
argument of the CALL statement that is defined as FOR SBCS DATA.

Procedure signatures: A procedure is identified by its schema, a procedure name,
and its number of parameters. This is called a procedure signature, which must be
unique within the database. DB2 for z/OS does not support overloaded procedure
names (procedures with the same schema and procedure name, but with different
numbers of parameters).

SQL path: A procedure can be invoked by referring to a qualified name (schema
and procedure name), followed by an optional list of arguments that are enclosed
in parentheses. A procedure can also be invoked without the schema name, which
results in a choice of possible procedures in different schemas that have the same
procedure name and same number of parameters. In this case, the SQL path is
used to assist in procedure resolution. The SQL path is a list of schemas that is
searched to identify a procedure with the same name and number of parameters as
the procedure in the CALL statement. For CALL statements that explicitly specify a
procedure name, the SQL path is specified by using the platform-specific bind
option. For CALL host-variable statements, the SQL path is the value of the
CURRENT PATH special register when the procedure is invoked.

Procedure resolution: Given a procedure invocation, the database manager must
decide which of the possible procedures that has the same name to call.

A procedure name is a qualified or unqualified name. Each part of the name must
be composed of SBCS characters:
v A fully qualified procedure name is a three-part name. The first part is an SQL

identifier that contains the location name that identifies the DBMS at which the
procedure is stored. The second part is an SQL identifier that contains the
schema name of the stored procedure. The last part is an SQL identifier that
contains the name of the stored procedure. A period must separate each of the
parts. Any or all of the parts can be a delimited identifier.

v A two-part procedure name has one implicit qualifier. The implicit qualifier is
the location name of the current server. The two parts identify the schema name
and the name of the stored procedure. A period must separate the two parts.

v An unqualified procedure name is a one-part name with two implicit qualifiers.
The first implicit qualifier is the location name of the current server. The second
implicit qualifier depends on the server. If the server is DB2 for z/OS, the
implicit qualifier is the schema name. DB2 uses the SQL path to determine the
value of the schema name.
– If the procedure name is specified as a string constant on the CALL statement

(CALL procedure-name), the SQL path is the value of the PATH bind option
that is associated with the calling package or plan.

– If a host variable is specified for the procedure name on the CALL statement
(CALL host-variable), the SQL path is the value of the CURRENT PATH special
register.

DB2 searches the schema names in the SQL path from left to right until a stored
procedure with the specified schema name is found in the DB2 catalog. When a
matching schema.procedure-name is found, the search stops only if the following
conditions are true:
– The user is authorized to call the stored procedure.
– The number of parameters in the definition of the stored procedure matches

the number of parameters specified on the CALL statement.

Chapter 5. Statements 1125

If the list of schemas in the SQL path is exhausted before the procedure name is
resolved, an error is returned.

When the procedure is resolved depends on how the procedure name is specified.
For a CALL statement that specifies the procedure name using a host variable,
procedure resolution occurs at run time. For a CALL statement that contains the
name of the procedure as an identifier, procedure resolution occurs when the
CALL statement is bound.

Procedure resolution is done by the database manager using the following steps:
1. Find all procedures from the catalog where all of the following conditions are

true:
v For invocations where the schema name is specified (qualified references),

the schema name and the procedure name match the invocation name.
For invocations where the schema name is not specified (unqualified
references), the procedure name matches the invocation name, and the
procedure has a schema name that matches one of the schemas in the SQL
path.

v The number of defined parameters matches the number of arguments that
are specified in the invocation.

v The invoker has the EXECUTE privilege on the procedure.
2. Of the candidate procedures that remain from step 1, choose the procedure

whose schema is first in the SQL path. If no candidate procedures remain after
step 1, an error is returned.

3. For CALL statements that use a host variable to specify the procedure name,
the CURRENT ROUTINE VERSION special register can affect which version of
the native SQL procedure is invoked. If the CURRENT ROUTINE VERSION
special register is set, check if there is a version of the procedure with that
version name. If not, choose the currently active version of the procedure.
For CALL statements that do not use a host variable to specify the procedure
name, choose the currently active version of the procedure.

Version resolution: Normally, the currently active version of a native SQL
procedure will be used on a CALL statement. However, if the CALL statement is a
recursive call inside the body of the same stored procedure, and the original CALL
statement uses a version that is different from the currently active version, the
active version will not be used. The version from the original CALL statement will
be used for any recursive CALL statements until the entire stored procedure
finishes executing. This preserves the semantics of the version that is used by the
original CALL statement. This includes the case where the recursive call is indirect.
For example, assume that procedure SP1 call procedure SP2, which in turn
recursively calls SP1. The second invocation of procedure SP1 will use the version
of the procedure that is active at the time of the original CALL statement that
invoked procedure SP1.

Since the currently active version can be used at the next CALL statement, it is
possible that two or more versions of the same procedure can run at the same
time. There could be different versions of an SQL procedure loaded by a given
thread. For example, a CALL SP1 statement in an application will cause the
currently active version, SP1_V1, to load and execute. After this CALL statement
has completed, an ALTER PROCEDURE ALTER ACTIVE VERSION could execute
and change the active version of the procedure SP1 to version SP1_V2. Subsequent
CALL SP1 statements from the same thread will load the currently active version
of the procedure, SP1_V2, and execute it.

1126 SQL Reference

Parameter assignments: When the CALL statement is executed, the value of each
of its parameters is assigned with storage assignment rules to the corresponding
parameter of the procedure. Control is passed to the procedure according to the
calling conventions of the host language. When execution of the procedure is
complete, the value of each parameter of the procedure is assigned with storage
assignment rules to the corresponding parameter of the CALL statement defined as
OUT or INOUT. If an error is returned by the procedure, OUT arguments are
undefined and INOUT arguments are unchanged. For details on the assignment
rules, see “Assignment and comparison” on page 121.

Cursors and prepared statements in procedures: All cursors opened in the called
procedure that are not result set cursors are closed and all statements prepared in
the called procedure are destroyed when the procedure ends.

Result sets from procedures: Any cursors specified using the WITH RETURN
clause that the procedure leaves open when it returns identifies a result set. In a
procedure written in Java, all cursors are implicitly defined WITH RETURN.

Results sets are returned only when the procedure is called from CLI, JDBC, or
SQLJ. If the procedure was invoked from CLI or Java, and more than one cursor is
left open, the result sets can only be processed in the order in which the cursors
were opened. Only unread rows are available to be fetched. For example, if the
result set of a cursor has 500 rows, and 150 of those rows have been read by the
procedure at the time the procedure is terminated, then rows 151 through 500 will
be returned to the procedure.

Errors from procedures: A procedure can return errors or warnings using an
SQLSTATE-like SQL statement. Applications should be aware of the possible
SQLSTATEs that can be expected when a procedure is invoked. The possible
SQLSTATEs depend on how the procedure is coded. Procedures might also return
SQLSTATEs such as those that begin with '38' or '39' if DB2 encounters problems
executing the procedure. Applications should therefore be prepared to handle any
error SQLSTATE that can result from issuing a CALL statement.

Improving performance: The capability of calling stored procedures is provided to
improve the performance of DRDA distributed access. The capability is also useful
for local operations. The server can be the local DB2. In which case, packages are
still required.

All values of all parameters are passed from the requester to the server. To
improve the performance of this operation, host variables that correspond to OUT
parameters and have lengths of more than a few bytes should be set to null before
the CALL statement is executed.

Using the CALL statement in a trigger: When a trigger issues a CALL statement to
invoke a stored procedure, the parameters that are specified in the CALL statement
cannot be host variables and the USING DESCRIPTOR clause cannot be specified.

Nesting CALL statements: A program that is executing as a stored procedure, a
user-defined function, or a trigger can issue a CALL statement. When a stored
procedure, user-defined function, or trigger calls a stored procedure, user-defined
function, or trigger, the call is considered to be nested. Stored procedures,
user-defined functions, and triggers can be nested up to 64 levels deep on a single
system. Nesting can occur within a single DB2 subsystem or when a stored
procedure or user-defined function is invoked at a remote server.

Chapter 5. Statements 1127

If a stored procedure returns any query result sets, the result sets are returned to
the caller of the stored procedure. If the SQL CALL statement is nested, the result
sets are visible only to the program that is at the previous nesting level. For
example, Figure 18 illustrates a scenario in which a client program calls stored
procedure PROCA, which in turn calls stored procedure PROCB. Only PROCA can
access any result sets that PROCB returns; the client program has no access to the
query result sets. The number of query result sets that PROCB returns does not
count toward the maximum number of query results that PROCA can return.

Some stored procedures cannot be nested. A stored procedure, user-defined
function, or trigger cannot call a stored procedure that is defined with the
COMMIT ON RETURN attribute. Procedures that are defined with the
AUTONOMOUS attribute cannot call other procedures that are defined with the
AUTONOMOUS attribute.

Multiple calls to the same stored procedure: If the server and requester are both
Version 8 or later of DB2 for z/OS (running in new-function mode), you can call a
stored procedure multiple times within an application and at the same nesting
level. Each call to the same stored procedure causes a unique instance of the stored
procedure to run. If the stored procedure returns result sets, each instance of the
stored procedure opens its own set of result set cursors.

The application might receive a "resource unavailable message" if the CALL
statement causes the values of the maximum number of active stored procedures
or maximum number open cursors to be exceeded. The value of field MAX
STORED PROCEDURES (on installation panel DSNTIPX) defines the maximum
number of active stored procedures that are allowed per thread. The value of field
MAX OPEN CURSORS (on installation panel DSNTIPX) defines the maximum
number of open cursors (both result set cursors and regular cursors) that are
allowed per thread.

If you make multiple calls to the same stored procedure within an application, be
aware of the following considerations:
v A DESCRIBE PROCEDURE statement describes the last instance of the stored

procedure.
v The ASSOCIATE LOCATORS statement works on the last instance of the stored

procedure.
v The ALLOCATE CURSOR statement must specify a unique cursor name for a

result set returned from an instance of the stored procedure. Otherwise, you will
lose the data from the result sets that are returned from prior instances or calls
to the stored procedure.

Figure 18. Nested CALL statements

1128 SQL Reference

|
|
|

You should issue an ASSOCIATE LOCATORS statement (or DESCRIBE
PROCEDURE statement) after each call to the stored procedure to get a unique
locator value for each result set.

Using host variables: If the CALL statement contains host variables, the contents of
the host variables are assumed to be in the encoding scheme that was specified in
the ENCODING parameter when the package or plan that contains the statement
was bound.

Examples

Example 1: A PL/I application has been precompiled on DB2 ALPHA and a
package was created at DB2 BETA with the BIND subcommand. A CREATE
PROCEDURE statement was issued at BETA to define the procedure SUMARIZE,
which allows nulls and has two parameters. The first parameter is defined as IN
and the second parameter is defined as OUT. Some of the statements that the
application that runs at DB2 ALPHA might use to call stored procedure
SUMARIZE include:
EXEC SQL CONNECT TO BETA;
V1 = 528671;
IV = -1;
EXEC SQL CALL SUMARIZE(:V1,:V2 INDICATOR :IV);

Example 2: Suppose that stored procedure MYPROC exists and produces several
result sets. An application might include statements like the following to access the
result sets produced by MYPROC:
-- Invoke stored procedure MYPROC that returns several result sets
EXEC SQL CALL MYPROC (....);
-- Copy the locator values for the result sets into result set locator variables
EXEC SQL ASSOCIATE RESULT SET LOCATORS (:RS1, :RS2, :RS3) WITH PROCEDURE MYPROC;
-- Allocate cursors for the result set cursors
EXEC SQL ALLOCATE CSR1 CURSOR FOR RESULT SET :RS1;
EXEC SQL ALLOCATE CSR2 CURSOR FOR RESULT SET :RS2;
EXEC SQL ALLOCATE CSR3 CURSOR FOR RESULT SET :RS3;
-- Process data returned with the result set cursors
DO WHILE (SQLCODE = 0);
EXEC SQL FETCH CSR1 INTO
END;
EXEC SQL CLOSE CSR1;
-- do similar processing with other result sets
...

Example 3: Suppose that procedure FIND_CUSTOMERS has the following
parameters:
v An IN parameter that is an array of phone numbers
v An IN parameter that is a prefix value to search for a match
v An OUT parameter that returns an array of phone numbers

FIND_CUSTOMERS searches the input array variable for phone numbers that
match the prefix value, and returns an array that contains the phone numbers that
match the prefix value.

FIND_CUSTOMERS looks like this:
--
-- Create an SQL procedure with array parameters. The array parameters are defined
-- with the PHONENUMBERS array type. The procedure searches for numbers in
-- IN_PHONENUMBERS that begin with the given prefix, and returns the phone numbers
-- in the NUMBERS_OUT parameter.

Chapter 5. Statements 1129

|
|

|

|

|

|
|
|

|

|
|
|
|
|

--
CREATE PROCEDURE FIND_CUSTOMERS(

IN NUMBERS_IN PHONENUMBERS,
IN PREFIX CHAR(3),
OUT NUMBERS_OUT PHONENUMBERS)

BEGIN
DECLARE I, J INTEGER;

SET I = 1;
SET J = 1;

-- Initialize NUMBERS_OUT to an empty array using an array constructor with no elements
SET NUMBERS_OUT = ARRAY[];
WHILE i < CARDINALITY(NUMBERS_IN) DO

IF SUBSTR(NUMBERS_IN[I], 1, 3) = PREFIX THEN
SET NUMBERS_OUT[J] = NUMBERS_IN[I];
SET J = J + 1;

END IF;
SET I = I + 1;

END WHILE;
END %

In the calling routine, declare array variables, and initialize the input array with
values from an array constructor. Then invoke the procedure:
CREATE TYPE PHONENUMBERS AS VARCHAR(20) ARRAY[10]; -- Create an array type
DECLARE PNUMBER_ARRAY PHONENUMBERS; -- Declare input array variable
DECLARE PNUMBER_ARRAY_OUT PHONENUMBERS; -- Declare output array variable
SET PNUMBER_ARRAY = ARRAY[’416-305-3745’,

’905-414-4565’,
’416-305-3746’];

CALL FIND_CUSTOMERS(PNUMBER_ARRAY, -- NUMBERS_IN parameter (IN parm)
'416', -- PREFIX parameter (IN parm)
PNUMBER_ARRAY_OUT); -- NUMBERS_OUT parameter (OUT parm)

The CALL statement returns an array value with the following information in the
argument corresponding to the NUMBERS_OUT parameter, which sets the
PNUMBER_ARRAY_OUT variable:
['416-305-3745',
'416-305-3746']

1130 SQL Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|

CLOSE
The CLOSE statement closes a cursor. If a temporary copy of a result table was
created when the cursor was opened, that table is destroyed.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization

See “DECLARE CURSOR” on page 1535 for the authorization required to use a
cursor.

Syntax

�� CLOSE cursor-name ��

Description

cursor-name
Identifies the cursor to be closed. The cursor name must identify a declared
cursor as explained in “DECLARE CURSOR” on page 1535. When the CLOSE
statement is executed, the cursor must be in the open state.

Notes

Implicit cursor close: At the end of a unit of work, all open cursors declared
without the WITH HOLD option that belong to an application process are
implicitly closed.

Close cursors for performance: Explicitly closing cursors as soon as possible can
improve performance.

Procedure considerations: Special rules apply to cursors within procedures that
have not been closed before returning to the calling program. For more
information, see “CALL” on page 1117.

Allocated cursors: The cursor could have been allocated. See “ALLOCATE
CURSOR” on page 847.

Example

A cursor is used to fetch one row at a time into the application program variables
DNUM, DNAME, and MNUM. Finally, the cursor is closed. If the cursor is
reopened, it is again located at the beginning of the rows to be fetched.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8B10.DEPT
WHERE ADMRDEPT = ’A00’
END-EXEC.

Chapter 5. Statements 1131

EXEC SQL OPEN C1 END-EXEC.

EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM END-EXEC.

IF SQLCODE = 100
PERFORM DATA-NOT-FOUND

ELSE
PERFORM GET-REST-OF-DEPT
UNTIL SQLCODE IS NOT EQUAL TO ZERO.

EXEC SQL CLOSE C1 END-EXEC.

GET-REST-OF-DEPT.
EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM END-EXEC.

1132 SQL Reference

COMMENT
The COMMENT statement adds or replaces comments in the descriptions of
various objects in the DB2 catalog at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

For a comment on the following objects, the privilege set must include at least one
of the listed authorities or privileges:

Table, view, index, column, or alias for a table or view:

v Ownership of the table, view, alias, or index
v DBADM authority for its database (tables and indexes only)
v SYSADM or SYSCTRL authority
v System DBADM
v SECADM authority (if the table has an activated row permission or

column access control)

If the database is implicitly created, the database privileges must be on the
implicit database or on DSNDB04.

Distinct type, stored procedure, trigger, or user-defined function:

v Ownership of the distinct type, stored procedure, trigger, or user-defined
function

v The ALTERIN privilege on the schema (for the addition of comments)
v SYSADM or SYSCTRL authority
v System DBADM

Secure trigger or secure user-defined function:

v SECADM authority
v CREATE_SECURE_OBJECT privilege

Package:

v Ownership of the package
v The BINDAGENT privilege granted from the package owner
v PACKADM authority for the collection or for all collections
v SYSADM or SYSCTRL authority
v System DBADM

Role or a trusted context:

v Ownership of the object
v SYSADM or SYSCTRL authority
v SECADM

If the installation parameter SEPARATE SECURITY is NO, SYSADM
authority has implicit SECADM and SYSCTRL authority and can drop a
role or trusted context.

Sequence or alias for a sequence:

v Ownership of the sequence

Chapter 5. Statements 1133

|

|

v The ALTER privilege for the sequence if the target is a sequence
v The ALTERIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the
ALTERIN privilege on the schema.

Row permission or column mask:
SECADM authority

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the statement is dynamically prepared, the privilege set is determined by the
DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is
summarized in Table 94 on page 841. (For more information on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them,
see “Authorization IDs and dynamic SQL” on page 75.)

Syntax

�� COMMENT ON �

� alias-designator IS string-constant
COLUMN table-name .column-name

view-name
ACTIVE VERSION

function-designator
VERSION routine-version-id

INDEX index-name
PACKAGE collection-id.package-name

VERSION
version-id

PLAN plan-name
ACTIVE VERSION

PROCEDURE procedure-name
VERSION routine-version-id

ROLE role-name
SEQUENCE sequence-name
TABLE table-name

view-name
TRIGGER trigger-name
TRUSTED CONTEXT context-name
TYPE type-name
MASK mask-name
PERMISSION permission-name
VARIABLE variable-name
multiple-column-list

��

alias-designator

1134 SQL Reference

|

|

|
|

|||||
|

|
|||

|
||
||

�� ALIAS alias-name
(1)

PUBLIC

FOR TABLE

FOR SEQUENCE
��

Notes:

1 If PUBLIC is specified, FOR SEQUENCE must also be specified.

�� �

,

table-name (column-name IS string-constant)
view-name

��

��

�

FUNCTION function-name
,

()

parameter-type

SPECIFIC FUNCTION specific-name

��

�� data-type
(1)

AS LOCATOR

��

Notes:

1 AS LOCATOR can be specified only for a LOB data type or a distinct type that is based on a
LOB data type.

�� built-in-type
distinct-type-name
array-type-name

��

multiple-column-list

function-designator

parameter-type

data-type

Chapter 5. Statements 1135

|

|

|

|

||||||||||||||||||||||||||

|

|

||
||
||

|||||||||||||||||||||||||||||

|
||
||

|||

|
||
||

|||||||||||||||||

|

|

||
|
||
||

|||||||||||||||||||

|
||
|

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID

��

Description

alias-designator

ALIAS alias-name
Indicates a comment will be added or replaced for an alias. The name
must identify an alias that exists at the current server.

If the PUBLIC keyword is specified, alias-name must identify a public alias
that exists at the current server. The comment is applied to a public alias.

built-in-type

1136 SQL Reference

|

|

||

|
||

|

|
|
|

|
|

FOR TABLE
Specifies that the alias is for a table or a view. The comment replaces the
value of the REMARKS column of the SYSIBM.SYSTABLES catalog table
for the row that describes the alias.

FOR SEQUENCE
Specifies that the alias is for a sequence. The comment replaces the value
of the REMARKS column of the SYSIBM.SYSSEQUENCES catalog table for
the row that describes the alias.

COLUMN table-name.column-name or view-name.column-name
Identifies the column to which the comment applies. The name must identify a
column of a table or view that exists at the current server. The name must not
identify a column of a declared temporary table. The comment is placed into
the REMARKS column of the SYSIBM.SYSCOLUMNS catalog table, for the row
that describes the column.

Do not use TABLE or COLUMN to comment on more than one column in a
table or view. Give the table or view name and then, in parentheses, a list in
the form:

column-name IS string-constant,
column-name IS string-constant,...

The column names must not be qualified, each name must identify a column
of the specified table or view, and that table or view must exist at the current
server.

FUNCTION or SPECIFIC FUNCTION
Identifies the function to which the comment applies. The function must exist
at the current server, and it must be a function that was defined with the
CREATE FUNCTION statement or a cast function that was generated by a
CREATE TYPE statement. The comment is placed in the REMARKS column of
the SYSIBM.SYSROUTINES catalog table for the row that describes the
function.

The function can be identified by its name, function signature, or specific
name. If the function was defined with a table parameter (the LIKE TABLE
was specified in the CREATE FUNCTION statement to indicate that one of the
input parameters is a transition table), you must identify the function with its
function name, if it is unique, or with its specific name.

FUNCTION function-name
Identifies the function by its function name. There must be exactly one
function with function-name in the schema. The function can have any
number of input parameters. If the schema does not contain a function
with function-name, or if the schema contains more than one function with
this name, and error is returned.

FUNCTION function-name (parameter-type,...)
Identifies the SQL function by its function signature, which uniquely
identifies the function. A function with the function signature must exist in
the explicitly or implicitly specified schema.

If function-name() is specified, the function that is identified must have zero
parameters.

function-name
Identifies the name of the function. If the function was defined with a
table parameter (the LIKE TABLE name AS LOCATOR clause was
specified in the CREATE FUNCTION statement to indicate that one of
the input parameters is a transition table), the function signature

Chapter 5. Statements 1137

|
|
|
|

|
|
|
|

cannot be used to uniquely identify the function. Instead, use one of
the other syntax variations to identify the function with its function
name, if unique, or with its specific name.

(parameter-type,...)
Specifies the number of input parameters of the function and the name
and data type of each parameter.

(data-type,...)
Identifies the number of input parameters of the function and the data
type of each parameter. The data type of each parameter must match
the data type that was specified in the CREATE FUNCTION statement
for the parameter in the corresponding position. The number of data
types and the logical concatenation of the data types are used to
uniquely identify the function.

For data types that have a length, precision, or scale attribute, you can
use a set of empty parentheses, specify a value, or accept the default
values:
v Empty parentheses indicate that DB2 is to ignore the attribute when

determining whether the data types match.
For example, DEC() will be considered a match for a parameter of a
function defined with a data type of DEC(7,2). Similarly
DECFLOAT() will be considered a match for DECFLOAT(16) or
DECFLOAT(34).
FLOAT cannot be specified with empty parentheses because its
parameter value indicates different data types (REAL or DOUBLE).

v If you use a specific value for a length, precision, or scale attribute,
the value must exactly match the value that was specified (implicitly
or explicitly) in the CREATE FUNCTION statement.
The specific value for FLOAT(n) does not have to exactly match the
defined value of the source function because 1<=n<= 21 indicates
REAL and 22<=n<=53 indicates DOUBLE. Matching is based on
whether the data type is REAL or DOUBLE.

v If length, precision, or scale is not explicitly specified and empty
parentheses are not specified, the default length of the data type is
implied. The implicit length must exactly match the value that was
specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

For data types with a subtype or encoding scheme attribute, specifying
the FOR subtype DATA clause or the CCSID clause is optional.
Omission of either clause indicates that DB2 is to ignore the attribute
when determining whether the data types match. If you specify either
clause, it must match the value that was implicitly or explicitly
specified in the CREATE FUNCTION statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this
parameter. If AS LOCATOR is specified, the data type must be a LOB
or a distinct type based on a LOB.

SPECIFIC FUNCTION specific-name
Identifies a particular user-defined function by its specific name. The name
is implicitly or explicitly qualified with a schema name. A function with
the specific name must exist in the schema. If the specific name is not

1138 SQL Reference

qualified, it is implicitly qualified with a schema name as described in the
description for FUNCTION function-name.

ACTIVE VERSION
Specifies that the comment applies to the currently active version of the
routine that is specified by function-name.

ACTIVE VERSION is the default.

VERSION routine-version-id
Specifies that the comment applies only to the version of the routine that is
identified by routine-version-id. routine-version-id must identify a version of
the specified routine that already exists at the current server. If
routine-version-id is not specified, a null string is used as the version
identifier.

INDEX index-name
Identifies the index to which the comment applies. index-name must identify an
index that exists at the current server. The comment is placed in the REMARKS
column of the SYSIBM.SYSINDEXES catalog table for the row that describes
the index.

MASK mask-name
Identifies the column mask to which the comment applies. mask-name must
identify a column mask that exists at the current server. The comment is placed
in the REMARKS column of the SYSIBM.SYSCONTROLS catalog table for the
row that describes the column mask.

PACKAGE collection-id.package-name
Identifies the package to which the comment applies. You must qualify the
package name with a collection ID. collection-id.package-name must identify a
package that exists at the current server. The name plus the implicitly or
explicitly specified version-id must identify a package that exists at the current
server. Omission of the version-id is an implicit specification of the null version.

The name must not identify a trigger package or a package that is associated
with an SQL routine. Specify this clause to comment on a package that was
created as the result of a BIND COPY command used to deploy a version of a
native SQL procedure.

VERSION version-id
version-id is the version identifier that was assigned to the package's DBRM
when the DBRM was created. If version-id is not specified, a null version is
used as the version identifier.

Delimit the version identifier when it:
v Is generated by the VERSION(AUTO) precompiler option
v Begins with a digit
v Contains lowercase or mixed-case letters

For more on version identifiers, see the information on preparing an
application program for execution in DB2 Application Programming and SQL
Guide.

PERMISSION permission-name
Identifies the row permission to which the comment applies. permission-name
must identify a row permission that exists at the current server. The comment
is placed in the REMARKS column of the SYSIBM.SYSCONTROLS catalog
table for the row that describes the row permission.

Chapter 5. Statements 1139

PLAN plan-name
Identifies the plan to which the comment applies. plan-name must identify a
plan that exists at the current server.

PROCEDURE procedure-name
Identifies the procedure to which the comment applies. procedure-name must
identify a procedure that exists at the current server.

ACTIVE VERSION
Specifies that the comment applies to the currently active version of the
routine that is specified by procedure-name.

ACTIVE VERSION is the default.

VERSION routine-version-id
Specifies that the comment applies only to the version of the routine that is
identified by routine-version-id. routine-version-id must identify a version of
the specified routine that already exists at the current server. If
routine-version-id is not specified, a null string is used as the version
identifier.

ROLE role-name
Identifies the role to which the comment applies. role-name must identify a role
that exists at the current server. The comment is placed in the REMARKS
column of the SYSIBM.SYSROLES catalog table for the row that describes the
role.

SEQUENCE sequence-name
Identifies the sequence to which the comment applies.

sequence-name must identify a sequence that exists at the current server.
sequence-name must not be the name of an internal sequence object that is used
by DB2. The comment is placed in the REMARKS column of the
SYSIBM.SYSSEQUENCES catalog table for the row that describes the sequence.

TABLE table-name or view-name
Identifies the table or view to which the comment applies. table-name or
view-name must identify a table, auxiliary table, or view that exists at the
current server. table-name must not identify a declared temporary table. The
comment is placed in the REMARKS column of the SYSIBM.SYSTABLES
catalog table for the row that describes the table or view.

TRIGGER trigger-name
Identifies the trigger to which the comment applies. trigger-name must identify
a trigger that exists at the current server. The comment is placed in the
REMARKS column of the SYSIBM.SYSTRIGGERS catalog table for the row that
describes the trigger.

TRUSTED CONTEXT context-name
Identifies the trusted context to which the comment applies. context-name must
identify a trusted context that exists at the current server. The comment is
placed in the REMARKS column of the SYSIBM.SYSCONTEXT catalog table
for the row that describes the trusted context.

TYPE type-name
Identifies the user-defined type to which the comment applies. type-name must
identify a user-defined type that exists at the current server. The comment is
placed in the REMARKS column of the SYSIBM.SYSDATATYPES catalog table
for the row that describes the user-defined type.

1140 SQL Reference

|
|
|
|
|

VARIABLE variable-name
Identifies the global variable to which the comment applies. variable-name must
identify a global variable that exists at the current server. variable-name must
not identify a built-in global variable.

IS string-constant
Introduces the comment that you want to make. string-constant can be any SQL
character string constant of up to 762 bytes.

multiple-column-list
To comment on more than one column in a table or view with a single
COMMENT statement, specify the table or view name, followed by a list in
parentheses of the form:
(column-name IS string-constant,
column-name IS string-constant,
...)

Each column name must not be qualified, and must identify a column of the
specified table or view that exists at the current server.

Notes

Alternative syntax and synonyms:
To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following syntax alternatives:
v DATA TYPE or DISTINCT TYPE as a synonym for TYPE
v COMMENT ON ALIAS SYSPUBLIC.name can be specified as an

alternative to COMMENT ON PUBLIC ALIAS SYSPUBLIC.name

Examples

Example 1: Enter a comment on table DSN8B10.EMP.
COMMENT ON TABLE DSN8B10.EMP

IS ’REFLECTS 1ST QTR 81 REORG’;

Example 2: Enter a comment on view DSN8B10.VDEPT.
COMMENT ON TABLE DSN8B10.VDEPT

IS ’VIEW OF TABLE DSN8B10.DEPT’;

Example 3: Enter a comment on the DEPTNO column of table DSN8B10.DEPT.
COMMENT ON COLUMN DSN8B10.DEPT.DEPTNO

IS ’DEPARTMENT ID - UNIQUE’;

Example 4: Enter comments on the two columns in table DSN8B10.DEPT.
COMMENT ON DSN8B10.DEPT

(MGRNO IS ’EMPLOYEE NUMBER OF DEPARTMENT MANAGER’,
ADMRDEPT IS ’DEPARTMENT NUMBER OF ADMINISTERING DEPARTMENT’);

Example 5: Assume that you are SMITH and that you created the distinct type
DOCUMENT in schema SMITH. Enter comments on DOCUMENT.

COMMENT ON TYPE DOCUMENT
IS ’CONTAINS DATE, TABLE OF CONTENTS, BODY, INDEX, and GLOSSARY’;

Example 6: Assume that you are SMITH and you know that ATOMIC_WEIGHT is
the only function with that name in schema CHEM. Enter comments on
ATOMIC_WEIGHT.

Chapter 5. Statements 1141

|
|
|
|

|
|

COMMENT ON FUNCTION CHEM.ATOMIC_WEIGHT
IS ’TAKES ATOMIC NUMBER AND GIVES ATOMIC WEIGHT’;

Example 7: Assume that you are SMITH and that you created the function CENTER
in schema SMITH. Enter comments on CENTER, using the signature to uniquely
identify the function instance.

COMMENT ON FUNCTION CENTER (INTEGER, FLOAT)
IS ’USES THE CHEBYCHEV METHOD’;

Example 8: Assume that you are SMITH and that you created another function
named CENTER in schema JOHNSON. You gave the function the specific name
FOCUS97. Enter comments on CENTER, using the specific name to identify the
function instance.

COMMENT ON SPECIFIC FUNCTION JOHNSON.FOCUS97
IS ’USES THE SQUARING TECHNIQUE’;

Example 9: Assume that you are SMITH and that procedure OSMOSIS is in schema
BIOLOGY. Enter comments on OSMOSIS. Your comments will apply to the
currently active version of the procedure OSMOSIS.

COMMENT ON PROCEDURE BIOLOGY.OSMOSIS
IS ’CALCULATIONS THAT MODEL OSMOSIS’;

Example 11: Assume that you are SMITH and that trigger BONUS is in your
schema. Enter comments on BONUS.

COMMENT ON TRIGGER BONUS
IS ’LIMITS BONUSES TO 10% OF SALARY’;

Example 12: Provide a comment for package MYPKG, which is in collection
COLLIDA.

COMMENT ON COLLIDA.MYPKG
IS ’THIS IS MY PACKAGE’;

Example 14: Provide a comment on role ROLE1:
COMMENT ON ROLE ROLE1

IS ’Role defined for trusted context, ctx1’;

Example 15: Provide a comment on trusted context CTX1:
COMMENT ON TRUSTED CONTEXT CTX1

IS ’WEBSPHERE SERVER’;

Example 15: Provide a comment on column mask M1:
COMMENT ON MASK M1

IS ’Column mask for column EMP.SALARY’;

1142 SQL Reference

COMMIT
The COMMIT statement ends the unit of recovery in which it is executed and a
new unit of recovery is started for the process. The statement commits all changes
made by SQL schema statements and SQL data change statements during the unit
of work.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. It cannot be used
in the IMS or CICS environment.

Authorization

None required.

Syntax

��
WORK

COMMIT ��

Description

The COMMIT statement ends the unit of recovery in which it is executed and a
new unit of recovery is started for the process. The statement commits all changes
made by SQL schema statements and SQL data change statements during the unit
of work. For more information see Chapter 5, “Statements,” on page 833.

Notes

Recommended coding practices: Code an explicit COMMIT or ROLLBACK
statement at the end of an application process. Either an implicit commit or
rollback operation will be performed at the end of an application process
depending on the application environment. Thus, a portable application should
explicitly execute a COMMIT or ROLLBACK statement before execution ends in
those environments where explicit COMMIT or ROLLBACK is permitted.

Effect of COMMIT: All savepoints that are set within the unit of recovery are
released, and all changes are committed for the following statements that are
executed during the unit of recovery:
v ALTER
v COMMENT
v CREATE
v DELETE
v DROP
v EXPLAIN
v GRANT
v INSERT
v LABEL

Chapter 5. Statements 1143

v MERGE
v RENAME
v REVOKE
v UPDATE
v SELECT INTO with an SQL data change statement
v subselect with an SQL data change statement

SQL connections are ended when any of the following conditions apply:
v The connection is in the release pending status
v The connection is not in the release pending status but it is a remote connection

and:
– The DISCONNECT(AUTOMATIC) bind option is in effect, or
– The DISCONNECT(CONDITIONAL) bind option is in effect and an open

WITH HOLD cursor is not associated with the connection.

For existing connections, all LOB locators are disassociated, except for those
locators for which a HOLD LOCATOR statement has been issued without a
corresponding FREE LOCATOR statement. All open cursors that were declared
without the WITH HOLD option are closed. All open cursors that were declared
with the WITH HOLD option are preserved, along with any SELECT statements
that were prepared for those cursors.

Static and dynamic INSERT, UPDATE, DELETE, and MERGE statements that
reference declared global temporary tables that were defined without ON
COMMIT DROP TABLE and are bound with or use the RELEASE(DEALLOCATE)
option are kept past commit points. The statement is not kept across the commit
point if one of the following conditions is true:
v The declared global temporary table is defined with the ON COMMIT DROP

TABLE option.
v The statement uses the RELEASE(COMMIT) bind option.
v The statement also references a DB2 base object (for example, a table or view),

and one of the following statements is true:
– The base object reference is for a DB2 catalog table.
– At the commit point, DB2 determines that another DB2 thread is waiting for

an X-lock on the base object's database descriptor (DBD).
– The statement references an XML function or operation, and at the commit

point DB2 determines that the base object DBD S-lock for the XML operation
must be released.

– At the commit point, DB2 determines that a base object DBD S-lock that is
used by the statement must be released and cannot be maintained across the
commit point.

v DB2 determines that another DB2 thread is waiting for an X-lock on the DB2
package that contains the statement.

Prepared dynamic statements are kept past commit points if one of the following
conditions is true:
v Dynamic caching is enabled for your system. In that case, all prepared SELECT

and data change statements that are bound with KEEPDYNAMIC(YES) are kept
past the commit point.

v The statements reference a declared global temporary table that was defined
without ON COMMIT DROP TABLE, and the package was bound with or uses

1144 SQL Reference

|
|
|
|
|

|
|

|

|
|

|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

the RELEASE(DEALLOCATE) option. In that case, all prepared INSERT,
UPDATE, DELETE, and MERGE statements that reference the declared global
temporary table are kept across the commit point.

Prepared statements cannot be kept past a commit if any of the following
conditions is true:
v SQL RELEASE has been issued for that site.
v Bind option DISCONNECT(AUTOMATIC) was used.
v Bind option DISCONNECT(CONDITIONAL) was used and there are no open

WITH HOLD cursors for that site.
v The statement references a declared global temporary table, has no open WITH

HOLD cursor, and is in a package that is bound with the RELEASE(COMMIT)
option.

v The statement references a declared global temporary table that was defined
with the ON COMMIT DROP TABLE option. The statement also has no open
WITH HOLD cursor, and the statement’s package is bound with or uses the
RELEASE(DEALLOCATE) option.

All implicitly acquired locks are released, except for the following locks:
v Locks that are required for the cursors that were not closed
v Table and table space locks when the RELEASE parameter on the bind

command was not RELEASE(COMMIT)
v LOB locks and LOB table space locks that are required for held LOB locators

For an explanation of the duration of explicitly acquired locks, see DB2 Performance
Monitoring and Tuning Guide.

All rows of every created temporary table of the application process are deleted
with the exception that the rows of a created temporary table are not deleted if any
program in the application process has an open WITH HOLD cursor that is
dependent on that table. In addition, if RELEASE(COMMIT) is in effect, the logical
work files for the created temporary tables whose rows are deleted are also
deleted.

All rows of every declared temporary table of the application process are deleted
with these exceptions:
v The rows of a declared temporary table that is defined with the ON COMMIT

PRESERVE ROWS attribute are not deleted.
v The rows of a declared temporary table that is defined with the ON COMMIT

DELETE ROWS attribute are not deleted if any program in the application
process has an open WITH HOLD cursor that is dependent on that table.

Implicit commit operations: In all DB2 environments, the normal termination of a
process is an implicit commit operation.

Restrictions on the use of COMMIT: The COMMIT statement cannot be used in
the IMS or CICS environment. To cause a commit operation in these environments,
SQL programs must use the call prescribed by their transaction manager. The effect
of these commit operations on DB2 data is the same as that of the SQL COMMIT
statement.

Chapter 5. Statements 1145

|
|
|

|
|
|

|
|
|
|

The COMMIT statement cannot be used in a stored procedure if the procedure is
in the calling chain of a user-defined function or a trigger or DB2 is not the
commit coordinator.

Effect of commit on special registers: Issuing a COMMIT statement may cause
special registers to be re-initialized. Whether one of these special registers is
affected by a commit depends on whether the special register has been explicitly
set within the application process. For example, assume that the PATH special
register has not been explicitly set with a SET PATH statement in the application
process. After a commit, the value of PATH is re-initialized. For information on the
initialization of PATH, which can take the current value of CURRENT SQLID into
consideration, see “CURRENT PATH” on page 184.

Effect of commit on global variables: Global variables are not controlled at the
transaction level. Issuing a COMMIT statement does not effect the contents of a
global variable.

Example

Commit all DB2 database changes made since the unit of recovery was started.
COMMIT WORK;

1146 SQL Reference

|
|
|

CONNECT
The CONNECT statement connects an application process to a database server.
This server becomes the current server for the process. The CONNECT statement of
DB2 for z/OS is equivalent to CONNECT (Type 2) in IBM DB2 SQL Reference for
Cross-Platform Development.

Refer to “Distributed data” on page 35 for complete information about connections,
the current server, commit processing, and distributed and remote units of work.

Invocation

This statement can only be embedded within an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization

The primary authorization ID of the process or the authorization ID that is
specified in this statement must be authorized to connect to the specified server.
The server performs the authorization check when the statement is executed, and
determines the specific authorization that is required. See DB2 Administration Guide
for further information.

Syntax

�� CONNECT
TO location-name

host-variable authorization
RESET
authorization

��

�� USER host-variable USING host-variable ��

Description

TO location-name or host-variable
Identifies the server by the specified location name or by the location name
that is contained in the host variable. If a host variable is specified:
v It must be a CHAR or VARCHAR variable with a length attribute that is not

greater than 16. (A C NUL-terminated character string can be up to 17 bytes
long.)

v It must not be followed by an indicator variable.
v The location name must be left-justified within the host variable and must

conform to the rules for forming an ordinary identifier.
v If the length of the location name is less than the length of the host variable,

it must be padded on the right with blanks.

authorization:

Chapter 5. Statements 1147

v It must not contain lowercase characters.
v If used with an SQL procedure language application, host variable must be a

qualified SQL-variable name or a qualified SQL-parameter name.

When the CONNECT statement is executed:
v The location name must identify a server known to the local DB2 subsystem.

Hence, the location name must be the location name of the local DB2
subsystem or it must appear in the LOCATION column of the
SYSIBM.LOCATIONS table.

v The application process must not have an existing connection to the
specified server, if the SQLRULES(STD) bind option is in effect.

v The application process must be in a connectable state, if the transaction is
participating in a remote unit of work.

RESET
CONNECT RESET is equivalent to CONNECT TO x where x is the location
name of the local DB2 subsystem.
v If the SQLRULES(DB2) bind option is in effect, CONNECT RESET

establishes the local DB2 subsystem as the current SQL connection.
v If the SQLRULES(STD) bind option is in effect, CONNECT RESET

establishes the local DB2 subsystem as the current SQL connection only if
the connection does not exist.

authorization
Specifies an authorization ID and a password that is used to verify that the
authorization ID is authorized to connect to the server. Authorization cannot be
specified when the connection type is IMS or CICS for a connection to the local
DB2 subsystem. An attempt to do so causes an SQL error.

USER host-variable
Identifies the authorization name to use when connecting to the server. The
value of host-variable must satisfy the following rules:
v The value must be a CHAR or VARCHAR variable with a length

attribute that is not greater than 128.
v The value must be left-justified within the host variable and must

conform to the rules for forming an authorization name.
v The value must not be followed by an indicator variable.
v The value must be padded on the right with blanks if the length of the

authorization name is less than the length of the host variable.

For a connection to the local DB2 subsystem, a user ID that is longer than
8 characters causes an SQL error.

USING host-variable
Identifies the password of the authorization name to use when connecting
to the server. The value of host-variable must satisfy the following rules:
v The value must be a CHAR or VARCHAR variable with a length

attribute that is not greater than 128.
v The value must be left-justified.
v The value must not include an indicator variable.
v The value must be padded on the right with blanks if the length of the

password is less than the length of the host variable.
v The value must not contain lowercase characters.

For a connection to a DB2 subsystem, a password that is longer than 8
characters causes an SQL error.

1148 SQL Reference

CONNECT USER/USING is equivalent to CONNECT TO x USER/USING
where x is the location name of the local DB2 subsystem (which has the
semantic of CONNECT RESET).

CONNECT with no operand
This form of the CONNECT statement returns information about the current
server in the SQLERRP field of the SQLCA. SQLERRP returns blanks if the
application process is in the unconnected state.

Executing a CONNECT with no operand has no effect on connection states.

In a remote unit of work, this form of CONNECT does not require the
application process to be in a connectable state.

Notes

Successful connection: With the exception of a CONNECT with no operand
statement, if execution of the CONNECT statement is successful:
v One of the following scenarios takes place in a distributed unit of work:

– If the location name does not identify a server to which the application
process is already connected, an SQL connection to the server is created and
placed in the current and held state. The previously current SQL connection,
if any, is placed in the dormant state.

– If the location name identifies a server to which the application process is
already connected, the associated SQL connection is dormant, and the
SQLRULES(DB2) option is in effect, the SQL connection is placed in the
current state. The previously current SQL connection, if any, is placed in the
dormant state.

– If the location name identifies a server to which the application process is
already connected, the associated SQL connection is current, and the
SQLRULES(DB2) option is in effect, the states of all SQL connections of the
application process are unchanged.

v The following actions occur in a remote unit of work:
– The application process is connected to the specified server.
– An existing SQL connection of the application process is ended. As a result,

all cursors of that SQL connection are closed, all prepared statements of that
connection are destroyed, and so on.

v The location name is placed in the CURRENT SERVER special register.
v When CONNECT is used to connect back to the local DB2 subsystem, the

CURRENT SQLID special register is reinitialized if the USER/USING clause is
specified.

v

v Information about the server is placed in the SQLERRP field of the SQLCA. If
the server is a DB2 product, the information has the form pppvvrrm, where:
– ppp is:

ARI for DB2 Server for VSE & VM
DSN for DB2 for z/OS
QSQ for DB2 for i
SQL for DB2 for Linux, UNIX, and Windows

– vv is a two-digit version identifier such as '11'.
– rr is a two-digit release identifier such as '01'.
– m is a one-digit modification level.

Chapter 5. Statements 1149

- Values 0, 1, 2, 3, and 4 are reserved for modification levels in conversion
and enabling-new-function mode from Version 10 (CM10, CM10*, ENFM10,
and ENFM10*)

- Values 5, 6, 7, 8, and 9 are for modification levels in new-function mode.
For example, if the server is Version 9 of DB2 for z/OS in new-function mode
with the first level of maintenance, the value of SQLERRP is 'DSN09015'.

v Additional information about the connection is placed in the SQLERRMC field
of the SQLCA. The contents are product-specific.
Tip: Use the GET DIAGNOSTICS statement to get detailed diagnostic
information about the last SQL statement that was executed.

Unsuccessful connection: With the exception of a CONNECT with no operand
statement, if execution of the CONNECT statement is unsuccessful:
v In a distributed unit of work, the connection state of the application process

and the states of its SQL connections are unchanged unless the failure was
because an authorization check failed. If this is the case, the connection is placed
in the connectable and unconnected state.

v In a remote unit of work, the SQLERRP field of the SQLCA is set to the name of
the DB2 requester module that detected the error.
If execution of the CONNECT statement is unsuccessful because the application
process is not in the connectable state, the connection state of the application
process is unchanged. If execution of the CONNECT statement is unsuccessful
for any other reason, CURRENT SERVER is set to blanks and the application
process is placed in the connectable and unconnected state.

Authorization: If the server is a DB2 subsystem, a user is authenticated in the
following way:
v DB2 invokes RACF via the RACROUTE macro with REQUEST=VERIFY to

verify the password.
v If the password is verified, DB2 then invokes RACF again via the RACROUTE

macro with REQUEST=AUTH, to check whether the authorization ID is allowed
to use DB2 resources defined to RACF.

v DB2 then invokes the connection exit routine if one has been defined.
v The connection then has a primary authorization ID, possibly one or more

secondary IDs, and an SQL ID.

If the server is a remote DB2 subsystem, the requester generates authentication
tokens and sends them to the remote site in the following way:
v The SECURITY_OUT column in SYSIBM.LUNAMES for SNA or the

SECURITY_OUT column in SYSIBM.IPNAMES for TCP/IP must have one of the
following values:
– 'A' (already verified)
– 'D' (userid and security-sensitive data encryption; TCP/IP only)
– 'E' (userid, password, and security-sensitive data encryption; TCP/IP only)
– 'P' (password)

When the value is 'A', the user ID and password specified on the CONNECT is
still sent.
When the value is 'D', 'E', 'or 'P', the requester encrypts the user ID and
password specified on the CONNECT for TCP/IP. However, if the Integrated
Cryptographic Service Facility (ICSF) is not configured at the requester or if the
server does not support encryption, one of the following actions occurs:

1150 SQL Reference

|
|
|

– If the value of SECURITY_OUT in SYSIBM.IPNAMES is 'D' or 'E', SQLCODE
-904 is returned if ICSF is not configured at the requester, and SQLCODE
-30082 is returned if the server does not support encryption.

– If the value of SECURITY_OUT in SYSIBM.IPNAMES is 'P', the requester
does not encrypt the user ID and password and flows the tokens in clear text.

v For SNA, the ENCRYPTPSWDS column in SYSIBM.SYSLUNAMES must be not
contain 'Y'.

v The authorization ID and password are verified at the server.
v In all cases, outbound translation—as specified in SYSIBM.USERNAMES—is not

done.

Distributed unit of work: In general, the following are true:
v A CONNECT statement with the TO clause and the USER/USING clause can be

executed only if no current or dormant connection to the named server exists.
However, if the named server is the local DB2 subsystem and the CONNECT
statement is the first SQL statement that is executed after the DB2 thread is
created, the CONNECT statement executes successfully.

v A CONNECT statement without the TO clause but with the USER/USING
clause can be executed only if no current or dormant connection to the local DB2
subsystem exists. However, if the CONNECT statement is the first SQL
statement that is executed after the DB2 thread is created, the CONNECT
statement executes successfully.

Remote unit of work: If the authorization check fails, the connection is placed in
the connectable and unconnected state.

Precompiler options: Regardless of whether a program is precompiled with the
CONNECT(1) or CONNECT(2) option, DB2 for z/OS negotiates with the remote
server during the connection process to determine how to perform commits. If the
remote server does not support the two-phase commit protocol, DB2 downgrades
to perform one-phase commits.

Programs containing CONNECT statements that are precompiled with different
CONNECT precompiler options cannot execute as part of the same application
process. An error occurs when an attempt is made to execute the invalid
CONNECT statement.

Host variables: If a CONNECT statement contains host variables, the contents of
the host variables are assumed to be in the encoding scheme that was specified in
the ENCODING parameter when the package or plan that contains the statement
was bound.

Error processing: A CONNECT statement can return and indicate a successful
execution even when no physical connection yet exists. DB2 delays the physical
connection process, when possible, to economize on the number of messages it
sends to a server. Therefore, errors in CONNECT statement processing can be
reported following the next executable SQL statement, not immediately following
the CONNECT statement.

Restrictions on array types and array variables: In any SQL statement other than
a CALL statement, array types and array variables must not be referenced after a
connection at a remote server has been established. This restriction includes an
SQL statement that executes at a remote server as a result of a three-part name or
alias that resolves to an object at a remote server. An exception is that an array

Chapter 5. Statements 1151

|
|
|
|
|

element can be the target of a FETCH, SELECT INTO, SET assignment-statement, or
VALUES INTO statement in an SQL routine even when the statement is executed
at a remote server.

Examples

Example 1: Connect an application to a DBMS. The location name is in the
character-string variable LOCNAME, the authorization identifier is in the
character-string variable AUTHID, and the password is in the character-string
variable PASSWORD.

EXEC SQL CONNECT TO :LOCNAME USER :AUTHID USING :PASSWORD;

Example 2: Obtain information about the current server.
EXEC SQL CONNECT;

Example 3: Execute SQL statements in a distributed unit of work. The first
CONNECT statement creates a connection to the EASTDB server. The second
CONNECT statement creates a connection to the WESTDB server, and places the
SQL connection to EASTDB in the dormant state.

EXEC SQL CONNECT TO EASTDB;
-- execute statements referencing objects at EASTDB

EXEC SQL CONNECT TO WESTDB;
-- execute statements referencing objects at WESTDB

Example 4: Connect the application to a DBMS whose location identifier is in the
character-string variable LOC using the authorization identifier in the
character-string variable AUTHID and the password in the character-string variable
PASSWORD. Perform work for the user, and then release the connection and
connect again using a different user ID and password.

EXEC SQL CONNECT TO :LOC USER :AUTHID USING :PASSWORD;
-- execute SQL statements accessing data on the server

RELEASE :LOC;
EXEC SQL COMMIT;

-- set AUTHID and PASSWORD to new values
EXEC SQL CONNECT TO :LOC USER :AUTHID USING :PASSWORD;

-- execute SQL statements accessing data on the server

Example 5: Change servers in a remote unit of work. Assume that the application
connected to a remote DB2 server, opened a cursor, and fetched rows from the
cursor's result table. Subsequently, to connect to the local DB2 subsystem, the
application executes the following statements:

EXEC SQL COMMIT WORK;
EXEC SQL CONNECT RESET;

The COMMIT is required because opening the cursor caused the application to
enter the unconnectable and connected state.

If the cursor was declared with the WITH HOLD clause and was not closed with a
CLOSE statement, it would still be open even after execution of the COMMIT
statement. However, it would be closed with the execution of the CONNECT
statement.

1152 SQL Reference

|
|
|

Related concepts:

Explicit CONNECT statements (Introduction to DB2 for z/OS)
“Distributed data” on page 35
Related tasks:

Accessing distributed data by using explicit CONNECT statements (DB2
Application programming and SQL)

Reusing a local trusted connection through the SQL CONNECT statement
(Managing Security)

Chapter 5. Statements 1153

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_explicitconnectstatements.htm#db2z_explicitconnectstatements
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_accessconnectstmts.htm#db2z_accessconnectstmts
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_accessconnectstmts.htm#db2z_accessconnectstmts
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_reuselocaltrustedusql.htm#db2z_reuselocaltrustedusql
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_reuselocaltrustedusql.htm#db2z_reuselocaltrustedusql

CREATE ALIAS

The CREATE ALIAS statement defines an alias for a table, a view, or a sequence.
The definition is recorded in the DB2 catalog at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

To create an alias, the privilege set must include at least one of the listed
authorities or privileges:

To create an alias for a table or a view:
v The CREATEALIAS privilege
v SYSADM or SYSCTRL authority
v DBADM or DBCTRL authority on the database that contains the table, if the

alias is for a table and the value of field DBADM CREATE AUTH on installation
panel DSNTIPP is YES

v System DBADM

To create an alias for a sequence:
v The CREATEIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the owner of the plan or package is a role, this role must hold the privileges for
the privilege set. If the specified alias name includes a qualifier that is not the
same as this authorization ID, the privilege set must include one of the following
authorities:
v SYSADM or SYSCTRL authority
v DBADM or DBCTRL authority on the database that contains the table, if the

alias is for a table and the value of field DBADM CREATE AUTH on installation
panel DSNTIPP is YES

If ROLE AS OBJECT OWNER is in effect, the schema qualifier must be the same as
the role, unless the role has the CREATEIN privilege on the schema, SYSADM
authority, or SYSCTRL authority.

If ROLE AS OBJECT OWNER is not in effect, one of the following rules applies:
v If the privilege set lacks the CREATIN privilege on the schema, SYSADM

authority, or SYSCTRL authority, the schema qualifier (implicit or explicit) must
be the same as one of the authorization ids of the process.

v If the privilege set includes SYSADM authority or SYSCTRL authority, the
schema qualifier can be any valid schema name.

1154 SQL Reference

|
|

|
|

|

|

|

|

|

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process unless the process is within a
trusted context and the ROLE AS OBJECT OWNER clause is specified. If the
process is not running in a trusted context that is defined with the ROLE AS
OBJECT OWNER clause and the specified alias name includes a qualifier that is
not the same as this authorization ID:
v The privilege set must include SYSADM or SYSCTRL authority.
v The privilege set must include DBADM or DBCTRL authority on the database

that contains the table, if the alias is for a table and the value of field DBADM
CREATE AUTH on installation panel DSNTIPP is YES.

v The qualifier must be the same as one of the authorization IDs of the process
and the privileges that are held by that authorization ID must include the
CREATEALIAS privilege. This is an exception to the rule that the privilege set is
the privileges that are held by the SQL authorization ID of the process.

Syntax

�� CREATE ALIAS table-alias
PUBLIC sequence-alias

��

table-alias

��
TABLE

alias-name FOR table-name
view-name
alias-name2

��

sequence-alias

�� alias-name FOR SEQUENCE sequence-name ��

Description

PUBLIC
Specifies that the alias is an object in the system schema SYSPUBLIC.

The PUBLIC keyword is used to create a public alias. If the keyword PUBLIC
is not specified, the alias that is created is a private alias.

alias-name
Names the alias.

For a table alias, the name, including the implicit or explicit qualifier, must not
identify a table, view, or table alias that exists at the current server, or a table
that exists in the SYSIBM.SYSPENDINGOBJECTS catalog table.

Chapter 5. Statements 1155

|
|

|
|

|

|
|
|

For a sequence alias, the name, including the implicit or explicit qualifier, must
not identify a sequence or sequence alias that exists at the current server.

If a two-part name is specified, the schema name cannot begin with 'SYS',
except if PUBLIC is specified, in which case the schema name must be
SYSPUBLIC. The unqualified name must not be the same as an existing
synonym.

If the name is qualified, the name can be a two-part or three-part name. If a
three-part name is used, the first part must match the value of the field DB2
LOCATION NAME on installation panel DSNTIPR at the current server. (If the
current server is not the local DB2, this name is not necessarily the name in the
CURRENT SERVER special register.)

When an application uses three-part name aliases for remote objects and
DRDA access, the application program must be bound at each location that is
specified in the three-part names.

FOR TABLE table-name, view-name, or alias-name2
Identifies the table, view, or table alias for which alias-name is defined. If
another alias name is specified (alias-name2), it must not be the same as the
new alias-name that is being defined (in its fully-qualified form). If a table is
identified, it must not be an auxiliary table, a declared temporary table, or a
table that is implicitly created for an XML column.

The table or view need not exist at the time the alias is defined. If it does not
exist when the alias is created, a warning is returned. However, the referenced
object must exist when a SQL statement that contains the alias is used,
otherwise an error is returned. If it does exist, the referenced object can be at
the current server or at another server. The referenced name must not be an
alias that exists at the current server.

FOR SEQUENCE sequence-name
Identifies the sequence for which alias-name is defined. The sequence-name must
not be a sequence that is generated by the DB2 subsystem for an identity
column or a DOCID column. The schema name must not begin with 'SYS'
unless the schema name is 'SYSADM'. sequence-name must not be an existing
alias for a sequence.

The sequence need not exist at the time the alias is defined. If sequence-name
does not exist when the alias is created, a warning is returned. However, the
referenced object must exist when a SQL statement that contains the alias is
used, otherwise an error is returned.

Notes

Owner privileges:
There are no specific privileges on an alias. For more information about
ownership of an object, see “Authorization, privileges, permissions, masks,
and object ownership” on page 70.

PUBLIC aliases:
If the PUBLIC keyword is specified or if SYSPUBLIC is explicitly specified
as the schema qualifier for alias-name, a public alias is created.

Resolving an unqualified alias name:
When an unqualified alias name is resolved, private aliases are considered
before public aliases.

Conservative binding for aliases for synonyms:
The timestamp for creation of an alias for a synonym must be older than

1156 SQL Reference

|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

the timestamp that results from an explicit bind for the package that
contains the reference to the alias for the synonym. During the automatic
bind process, aliases for synonyms that are created in a release of the DB2
subsystem that is later than the release that was used to explicitly bind the
package are not considered for resolution of an alias for a synonym.

Example

Example 1: Create an alias for a catalog table at a DB2 with location name
DB2USCALABOA5281.

CREATE ALIAS LATABLES FOR DB2USCALABOA5281.SYSIBM.SYSTABLES;

Example 2: Create a public alias called SEQS for a sequence named JOE.JOESSEQ.
CREATE PUBLIC ALIAS SEQS FOR JOE.JOESSEQ;

The alias can be referenced as SYSPUBLIC.SEQS, or simply as SEQS if a private
sequence or alias named SEQS does not exist.

Chapter 5. Statements 1157

|
|
|
|
|

|

|

|
|

CREATE AUXILIARY TABLE
The CREATE AUXILIARY TABLE statement creates an auxiliary table at the
current server for storing LOB data.

Invocation

This statement can be embedded in an application program or issued interactively
if the value of special register CURRENT RULES is 'DB2' and the table space is
explicitly created when the statement is executed. It is an executable statement that
can be dynamically prepared only if DYNAMICRULES run behavior is implicitly
or explicitly specified.

Do not use this statement if the value of special register CURRENT RULES is 'STD'
or if the table space is implicitly created. When the values of the CURRENT
RULES special register is 'STD' and a base table is created with LOB columns or
altered such that LOB columns are added, DB2 automatically creates the LOB table
space, auxiliary table, and index on the auxiliary table for each LOB column. DB2
also automatically creates the LOB table space, auxiliary table, and index on the
auxiliary table for each LOB column if the table space is implicitly created. DB2
chooses the names and characteristics of these objects. For more information about
the names and the characteristics, see Creating a table with LOB columns.

Authorization

The privilege set that is defined below must include at least one of the following:
v The CREATETAB privilege for the database implicitly or explicitly specified by

the IN clause
v DBADM, DBCTRL, or DBMAINT authority for the database
v SYSADM or SYSCTRL authority
v System DBADM

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the application is bound in a trusted context with the ROLE AS OBJECT OWNER
clause specifies, a role is the owner. Otherwise, an authorization ID is the owner. If
the specified table name includes a qualifier that is not the same as this
authorization ID, the privilege set must include SYSADM or SYSCTRL authority,
DBADM authority for the database, or DBCTRL authority for the database.

If ROLE AS OBJECT OWNER is in effect, the schema qualifier must be the same as
the role, unless the role has the CREATEIN privilege on the schema, SYSADM
authority, or SYSCTRL authority.

If ROLE AS OBJECT OWNER is not in effect, one of the following rules applies:
v If the privilege set lacks the CREATIN privilege on the schema, SYSADM

authority, or SYSCTRL authority, the schema qualifier (implicit or explicit) must
be the same as one of the authorization ids of the process.

v If the privilege set includes SYSADM authority or SYSCTRL authority, the
schema qualifier can be any valid schema name.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process unless the process is within a
trusted context and the ROLE AS OBJECT OWNER clause is specified. In that case,

1158 SQL Reference

the privilege set is the set of privileges that are held by the role that is associated
with the primary authorization ID of the process. If the process is in a trusted
context, any authorization ID can be the qualifier. However, if the process is not in
a trusted context and if the specified table name includes a qualifier that is not the
same as the SQL authorization ID of the process, the following rules apply:
v If the privilege set includes SYSADM or SYSCTRL authority (or DBADM

authority for the database, or DBCTRL authority for the database when creating
a table), the schema qualifier can be any valid schema name.

v If the privilege set lacks SYSADM or SYSCTRL authority (or DBADM authority
for the database, or DBCTRL authority for the database when creating a table),
the schema qualifier is valid only if it is the same as one of the authorization IDs
of the process and the privilege set that are held by that authorization ID
includes all26 privileges needed to create the table.

Syntax

�� CREATE AUXILIARY TABLE aux-table-name
AUX

IN table-space-name
database-name.

�

� STORES table-name
APPEND NO

APPEND YES

COLUMN column-name
PART integer

��

Description

AUXILIARY or AUX
Specifies a table that is used to store the LOB data for a LOB column (or a
column with a distinct type that is based on a LOB data type).

aux-table-name
Names the auxiliary table. The name, including the implicit or explicit
qualifiers, must not identify a table, view, alias, or synonym that exists at the
current server, or a table that exists in the SYSIBM.SYSPENDINGOBJECTS
catalog table.

IN database-name.table-space-name or IN table-space-name
Identifies the table space in which the auxiliary table is created. The name
must identify an empty LOB table space that currently exists at the current
server. The LOB table space must be in the same database as the associated
base table.

If you specify a database and a table space, the table space must belong to the
specified database. If you specify only a table space, it must belong to the
database that contains the specified table space. If you specify only a table
space, this table space must belong to DSNDB04. This type of table space is
only created when SET CURRENT RULES='DB2' is specified.

STORES table-name COLUMN column-name
Identifies the base table and the column of that table that is to be stored in the
auxiliary table. If the base table is nonpartitioned, an auxiliary table must not

26. Exception: The CREATETAB privilege is checked on the SQL authorization ID of the process.

Chapter 5. Statements 1159

already exist for the specified column. If the base table is partitioned, an
auxiliary table must not already exist for the specified column and specified
partition.

The encoding scheme for the LOB data stored in the auxiliary table is the same
as the encoding scheme for the base table. It is either ASCII, EBCDIC, or
UNICODE depending on the value of the CCSID clause when the base table
was created.

APPEND NO or APPEND YES
Specifies whether append processing is used for the table. The APPEND clause
must not be specified for a table in a work file table space.

If the base table is in a range-partitioned table space, the APPEND option on
the LOB table might be different for each partition (depending if the LOB table
space and associated objects for each partition are created explicitly or
implicitly). If the base table is in a partition-by-growth table space, the
APPEND attributes of LOB table will be inherited by each partition.

APPEND NO
Specifies that append processing is not used for the table. For insert and
LOAD operations, DB2 will attempt to place data rows in a well clustered
manner with respect to the value in the row's cluster key columns.

APPEND NO is the default

APPEND YES
Specifies that data rows are placed into the table without regard to
clustering during the insert and LOAD operations.

PART integer
Specifies the partition of the base table for which the auxiliary table is to store
the specified column. You can specify PART only if the base table is defined in
a partitioned table space, and no other auxiliary table exists for the same LOB
column of the base table.

Notes

Owner privileges: There are no specific privileges on an auxiliary table. For more
information about ownership of an object, see “Authorization, privileges,
permissions, masks, and object ownership” on page 70.

Determining the number of auxiliary tables to create: If the base table is
nonpartitioned, you might need to create one LOB table space and one auxiliary
table for each LOB column in the base table. If the base table is partitioned, for
each LOB column, you might need to create one LOB table space and one auxiliary
table for each partition. For example if your base table has three partitions and two
LOB columns, you might need to create three LOB table spaces and three auxiliary
tables for each LOB column. In other words, you might need a total of six LOB
table spaces and six auxiliary tables.

Auxiliary tables in LOB table spaces that are logged: When you create an
auxiliary table in a LOB table space that is LOGGED, and the associated base table
space is NOT LOGGED, the logging attribute of the LOB table space is implicitly
changed to NOT LOGGED and the logging attributes of the base table space and
the LOB table space are linked.

Append processing and unused free space in a table: An update or delete of LOB
data creates some free space in the LOB table that can be used by the next insert. If

1160 SQL Reference

the table uses append processing, any free space that is not at the end of the table
space will not be reused during the insert operation. Any unused free space in the
table can be reclaimed by running the REORG utility with either the SHRELEVL
REFERENCE or SHRLEVEL CHANGE keywords. The REORG utility is not
influenced by the APPEND option.

Example

Assume that a column named EMP_PHOTO with a data type of BLOB(110K) has
been added to sample employee table DSN8B10.EMP for each employee's photo.
Create auxiliary table EMP_PHOTO_ATAB to store the BLOB data for the BLOB
column in LOB table space DSN8D11A.PHOTOLTS.

CREATE AUX TABLE EMP_PHOTO_ATAB
IN DSN8D11A.PHOTOLTS
STORES DSN8B10.EMP
COLUMN EMP_PHOTO;

Chapter 5. Statements 1161

CREATE DATABASE
The CREATE DATABASE statement defines a DB2 database at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v The CREATEDBA privilege
v The CREATEDBC privilege
v SYSADM or SYSCTRL authority
v System DBADM

If the database is created as a workfile database, the privilege set that is defined
below must include SYSADM authority.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process unless the process is within a
trusted context and the ROLE AS OBJECT OWNER clause is specified. In that case,
the privilege set is the set of privileges that are held by the role that is associated
with the primary authorization ID of the process.

See “Notes” on page 1164 for the authorization effect of a successful CREATE
DATABASE statement.

Syntax

�� CREATE DATABASE database-name �
(1)

BUFFERPOOL bpname
INDEXBP bpname
AS WORKFILE

FOR member-name
SYSDEFLT

STOGROUP stogroup-name
CCSID ASCII

EBCDIC
UNICODE

��

Notes:

1 The same clause must not be specified more than one time.

1162 SQL Reference

Description

database-name
Names the database. The name must not start with DSNDB and must not
identify a database that exists at the current server. database-name must not be
in the form of eight characters that start with DSN followed by exactly five
digits. If the database is to be a work file database in a data sharing
environment, DSNDB07 is an acceptable work file database name. However,
only one member of a data sharing group can use DSNDB07 as the name of its
work file database.

BUFFERPOOL bpname
Specifies the default buffer pool name to be used for table spaces created
within the database. If the database is a work file database, 8KB and 16KB
buffer pools cannot be specified. See “Naming conventions” on page 57 for
more details about bpname.

If you omit the BUFFERPOOL clause, the default 4-KB buffer pool for user
data that is specified on installation panel DSNTIP1 is used.

INDEXBP bpname
Specifies the default buffer pool name to be used for the indexes created
within the database. The name can identify a 4KB, 8KB, 16KB, or 32KB buffer
pool. See “Naming conventions” on page 57 for more details about bpname.

If you omit the INDEXBP clause, the buffer pool specified for user indexes on
installation panel DSNTIP1 is used. The default value for the user indexes field
on that panel is BP0.

AS WORKFILE
Specifies the database is a work file database. AS WORKFILE can be specified
only in a data sharing environment. Only one work file database can be
created for each DB2 subsystem. The work file database is used for work files,
created global temporary table, declared temporary tables, and sensitive static
scrollable cursors.

PUBLIC implicitly receives the CREATETAB privilege (without GRANT
authority) to define a declared temporary table in the work file database. This
implicit privilege is not recorded in the DB2 catalog and cannot be revoked.

The CCSID clause is not supported for a work file database. If you specify AS
WORKFILE, do not use the CCSID clause.

FOR member-name
Specifies the member for which this database is to be created. Specify FOR
member-name only in a data sharing environment.

If FOR member-name is not specified, the member is the DB2 subsystem on
which the CREATE DATABASE statement is executed.

STOGROUP stogroup-name
Specifies the storage group to be used, as required, as a default storage group
to support DASD space requirements for table spaces and indexes within the
database. The default is SYSDEFLT.

CCSID encoding-scheme
Specifies the default encoding scheme for data stored in the database. The
default applies to table spaces created in the database. All tables stored within
a table space must use the same encoding scheme.

ASCII Specifies that the data must be encoded using the ASCII CCSIDs of the
server.

Chapter 5. Statements 1163

EBCDIC
Specifies that the data must be encoded using the EBCDIC CCSIDs of
the server.

UNICODE
Specifies that the data must be encoded using the UNICODE CCSIDs
of the server.

Usually, each encoding scheme requires only a single CCSID. Additional
CCSIDs are needed when mixed, graphic, or UNICODE data is used.

The option defaults to the value of field DEF ENCODING SCHEME on
installation panel DSNTIPF.

Do not use the CCSID clause if you specify the AS WORKFILE clause.

Notes

If the statement is embedded in an application program, the owner of the plan or
package is the owner of the database. If the statement is dynamically prepared, the
SQL authorization ID of the process is the owner of the database.

If the owner of the database has the CREATEDBA, SYSADM, or SYSCTRL
authority, the owner acquires DBADM authority for the database. DBADM
authority for a database includes table privileges on all tables in that database.
Thus, if a user with SYSCTRL authority creates a database, that user has table
privileges on all tables in that database. This is an exception to the rule that
SYSCTRL authority does not include table privileges.

If the owner of the database has the CREATEDBC privilege, but not the
CREATEDBA privilege, the owner acquires DBCTRL authority for the database. In
this case, no authorization ID has DBADM authority for the database until it is
granted by an authorization ID with SYSADM authority.

Examples

Example 1: Create database DSN8D11P. Specify DSN8G110 as the default storage
group to be used for the table spaces and indexes in the database. Specify 8KB
buffer pool BP8K1 as the default buffer pool to be used for table spaces in the
database, and BP2 as the default buffer pool to be used for indexes in the database.

CREATE DATABASE DSN8D11P
STOGROUP DSN8G110
BUFFERPOOL BP8K1
INDEXBP BP2;

Example 2: Create database DSN8TEMP. Use the defaults for the default storage
group and default buffer pool names. Specify ASCII as the default encoding
scheme for data stored in the database.

CREATE DATABASE DSN8TEMP
CCSID ASCII;

1164 SQL Reference

CREATE FUNCTION
The CREATE FUNCTION statement registers a user-defined function with a
database server. Each type of function that you can register with this statement is
described separately.

External scalar
The function is written in a programming language and returns a scalar
value. The external executable routine is registered with a database server
along with various attributes of the function. See “CREATE FUNCTION
(external scalar)” on page 1166.

External table
The function is written in a programming language. It returns a table to
the subselect from which it was started by returning one row at a time,
each time that the function is started. The external executable routine is
registered with a database server along with various attributes of the
function. See “CREATE FUNCTION (external table)” on page 1191.

Sourced
The function is implemented by starting another function (either built-in,
external, SQL, or sourced) that exists at the server. The function inherits the
attributes of the underlying source function. See “CREATE FUNCTION
(sourced)” on page 1210.

SQL scalar
The function is written exclusively in SQL statements and returns a scalar
value. The body of an SQL scalar function is written in the SQL procedural
language. The function is defined at the current server along with various
attributes of the function. See “CREATE FUNCTION (SQL scalar)” on page
1224.

SQL table
The function is written exclusively in SQL statements and returns a set of
rows. The body of an SQL table function is written in the SQL procedural
language. The function is defined at the current server along with various
attributes of the function. See “CREATE FUNCTION (SQL table)” on page
1251.

Chapter 5. Statements 1165

CREATE FUNCTION (external scalar)
This CREATE FUNCTION statement registers a user-defined external scalar
function with a database server. A scalar function returns a single value each time
it is invoked.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set defined below must include at least one of the following:
v The CREATEIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

If the authorization ID that is used to create the function has installation SYSADM
authority, the function is identified as system-defined function.

Additional privileges are required if the function uses a table as a parameter, refers
to a distinct type, or is to run in a WLM (workload manager) environment. These
privileges are:
v The SELECT privilege on any table that is an input parameter to the function.
v The USAGE privilege on each distinct type that the function references.
v Authority to create programs in the specified WLM environment. This

authorization is obtained from an external security product, such as RACF.

At least one of the following additional privileges is required if the SECURED
option is specified
v SECADM authority
v CREATE_SECURE_OBJECT privilege

When LANGUAGE is JAVA and a jar-name is specified in the EXTERNAL NAME
clause, the privilege set must include USAGE on the JAR file.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the owner is a role, the implicit schema match does not apply and this role needs
to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for
which the ROLE AS OBJECT OWNER clause is specified, the privilege set is the
set of privileges that are held by the SQL authorization ID of the process. If the
schema name is not the same as the SQL authorization ID of the process, one of
the following conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.

1166 SQL Reference

v The SQL authorization ID of the process has the CREATEIN privilege on the
schema.

Syntax

�� CREATE FUNCTION function-name

�

()
,

parameter-declaration

�

�
(1)

RETURNS data-type2
(2)

AS LOCATOR
data-type3 CAST FROM data-type4

(2)
AS LOCATOR

option-list ��

Notes:

1 This clause and the clauses that follow in the option-list can be specified in any order.

2 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

�� data-type
parameter-name (1)

AS LOCATOR
TABLE LIKE table-name AS LOCATOR

view-name

��

Notes:

1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

�� built-in-type
distinct-type-name

��

parameter-declaration:

data-type:

built-in-type:

Chapter 5. Statements 1167

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID

��

��
SPECIFIC specific-name

�PARAMETER CCSID ASCII
EBCDIC
UNICODE

(1)
VARCHAR NULTERM

STRUCTURE

�

option-list: (The clauses in the option list can be specified in any order)

1168 SQL Reference

� EXTERNAL
NAME external-program-name

identifier

LANGUAGE ASSEMBLE
C
COBOL
JAVA
PLI

PARAMETER STYLE SQL
PARAMETER STYLE JAVA

�

�
NOT DETERMINISTIC

DETERMINISTIC

FENCED RETURNS NULL ON NULL INPUT

CALLED ON NULL INPUT

READS SQL DATA

MODIFIES SQL DATA
CONTAINS SQL
NO SQL

�

�
EXTERNAL ACTION

NO EXTERNAL ACTION

NO PACKAGE PATH

PACKAGE PATH package-path

NO SCRATCHPAD

100
SCRATCHPAD

length

�

�
NO FINAL CALL

FINAL CALL ALLOW PARALLEL
(2)

DISALLOW PARALLEL

NO DBINFO

DBINFO

NO COLLID

COLLID collection-id
�

�
WLM ENVIRONMENT name

(name)

ASUTIME NO LIMIT

ASUTIME LIMIT integer

STAY RESIDENT NO

STAY RESIDENT YES
�

�
PROGRAM TYPE SUB

PROGRAM TYPE MAIN

SECURITY DB2

SECURITY USER
DEFINER

STOP AFTER SYSTEM DEFAULT FAILURES

STOP AFTER integer FAILURES
CONTINUE AFTER FAILURE

�

�
RUN OPTIONS runtime-options

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS

STATIC DISPATCH
�

�
NOT SECURED

SECURED
��

Notes:

1 The same clause must not be specified more than one time.

2 If NOT DETERMINISTIC, EXTERNAL ACTION, SCRATCHPAD, or FINAL CALL is specified,
DISALLOW PARALLEL is the default.

Chapter 5. Statements 1169

external-java-routine-name:

jar-name:
method-name

method-signature

jar-name:

schema-name.
jar-id

method-name:

�

package-id .
(1)

/

class-id .
(2)

!

method-id

method-signature:

�

()
,

java-datatype

Notes:

1 The slash (/) is supported for compatibility with previous release of DB2 for z/OS.

2 The exclamation point (!) is supported for compatibility with other products in the DB2 family.

Description

function-name
Names the user-defined function. The name is implicitly or explicitly qualified
by a schema name.

The combination of name, schema name, the number of parameters, and the
data type of each parameter (without regard for any length, precision, scale,
subtype or encoding scheme attributes of the data type) must not identify a
user-defined function that exists at the current server. If the function has more
than 30 parameters, only the first 30 parameters are used to determine whether
the function is unique.

You can use the same name for more than one function if the function
signature of each function is unique.
v The unqualified form of function-name must not be any of the following

system-reserved keywords even if you specify them as delimited identifiers:
ALL LIKE UNIQUE
AND MATCH UNKNOWN
ANY NOT =
BETWEEN NULL ¬=
DISTINCT ONLY <

1170 SQL Reference

EXCEPT OR <=
EXISTS OVERLAPS ¬<
FALSE SIMILAR >
FOR SOME >=
FROM TABLE ¬>
IN TRUE <>
IS TYPE

The schema name can be 'SYSTOOLS' or 'SYSFUN' if the user who executes the
CREATE statement has SYSADM or SYSCTRL privilege. Otherwise, the schema
name must not begin with 'SYS' unless the schema name is 'SYSADM'.

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the
data type of each parameter. All of the parameters for a function are input
parameters and are nullable. There must be one entry in the list for each
parameter that the function expects to receive. Although not required, you can
give each parameter a name.

A function can have no parameters. In this case, you must code an empty set
of parentheses, for example:

CREATE FUNCTION WOOFER()

parameter-name
Specifies the name of the input parameter. The name is an SQL identifier,
and each name in the parameter list must not be the same as any other
name.

data-type
Specifies the data type of the input parameter. The data type can be a
built-in data type or a distinct type.

built-in-type
The data type of the input parameter is a built-in data type.

For information on the data types, see built-in-type.

For parameters with a character or graphic data type, the
PARAMETER CCSID clause or CCSID clause indicates the encoding
scheme of the parameter. If you do not specify either of these clauses,
the encoding scheme is the value of field DEF ENCODING SCHEME
on installation panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length,
precision, scale, subtype, or encoding scheme attributes for the
parameter are those of the source type of the distinct type.

If you specify the name of the distinct type without a schema name,
DB2 resolves the schema name by searching the schemas in the SQL
path.

The implicitly or explicitly specified encoding scheme of all of the
parameters with a character or graphic string data type must be the
same—either all ASCII, all EBCDIC, or all UNICODE.

Although parameters with a character data type have an implicitly or
explicitly specified subtype (BIT, SBCS, or MIXED), the function program
can receive character data of any subtype. Therefore, conversion of the
input data to the subtype of the parameter might occur when the function

Chapter 5. Statements 1171

is invoked. An error occurs if mixed data that actually contains DBCS
characters is used as the value for an input parameter that is declared with
an SBCS subtype.

Parameters with a datetime data type or a distinct type are passed to the
function as a different data type:
v A datetime type parameter is passed as a character data type, and the

data is passed in ISO format.
The encoding scheme for a datetime type parameter is the same as the
implicitly or explicitly specified encoding scheme of any character or
graphic string parameters. If no character or graphic string parameters
are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

v A distinct type parameter is passed as the source type of the distinct
type.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the
function instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type based on a LOB
data type. Passing locators instead of values can result in fewer bytes
being passed to the function, especially when the value of the
parameter is very large.

The AS LOCATOR clause has no effect on determining whether data
types can be promoted, nor does it affect the function signature, which
is used in function resolution.

TABLE LIKE table-name or view-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the
function is invoked, the actual values in the transition table are not passed
to the function. A single value is passed instead. This single value is a
locator to the table, which the function uses to access the columns of the
transition table. A function with a table parameter can only be invoked
from the triggered action of a trigger.

The use of TABLE LIKE provides an implicit definition of the transition
table. It specifies that the transition table has the same number of columns
as the identified table or view. If a table is specified, the transition table
includes columns that are defined as implicitly hidden in the table. The
columns have the same data type, length, precision, scale, subtype, and
encoding scheme as the identified table or view, as they are described in
catalog tables SYSCOLUMNS and SYSTABLESPACE. The number of
columns and the attributes of those columns are determined at the time the
CREATE FUNCTION statement is processed. Any subsequent changes to
the number of columns in the table or the attributes of those columns do
not affect the parameters of the function.

table-name or view-name must identify a table or view that exists at the
current server. A view cannot have columns of length 0. The name must
not identify a declared temporary table. The table that is identified can
contain XML columns; however, the function cannot reference those XML
columns. The name does not have to be the same name as the table that is
associated with the transition table for the trigger. An unqualified table or
view name is implicitly qualified according to the following rules:
v If the CREATE FUNCTION statement is embedded in a program, the

implicit qualifier is the authorization ID in the QUALIFIER bind option

1172 SQL Reference

when the plan or package was created or last rebound. If QUALIFIER
was not used, the implicit qualifier is the owner of the plan or package.

v If the CREATE FUNCTION statement is dynamically prepared, the
implicit qualifier is the SQL authorization ID in the CURRENT SCHEMA
special register.

When the function is invoked, the corresponding columns of the transition
table identified by the table locator and the table or view identified in the
TABLE LIKE clause must have the same definition. The data type, length,
precision, scale, and encoding scheme of these columns must match
exactly. The description of the table or view at the time the CREATE
FUNCTION statement was executed is used.

Additionally, a character FOR BIT DATA column of the transition table
cannot be passed as input for a table parameter for which the
corresponding column of the table specified at the definition is not defined
as character FOR BIT DATA. (The definition occurs with the CREATE
FUNCTION statement.) Likewise, a character column of the transition table
that is not FOR BIT DATA cannot be passed as input for a table parameter
for which the corresponding column of the table specified at the definition
is defined as character FOR BIT DATA.

For more information about using table locators, see DB2 Application
Programming and SQL Guide.

RETURNS
Specifies the data type for the result of the function. Consider this clause in
conjunction with the optional CAST FROM clause.

data-type2
Specifies the data type of the output. The output parameter is nullable.

The same considerations that apply to the data type and nullability of
input parameter, as described under data-type, apply to the data type of
the result of the function.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the
actual value. You can specify AS LOCATOR only if the output from the
function has a LOB data type or a distinct type based on a LOB data
type.

data-type3 CAST FROM data-type4
Specifies the data type of the output of the function (data-type4) and the
data type in which that output is returned to the invoking statement
(data-type3). The two data types can be different. For example, for the
following definition, the function returns a DOUBLE value, which DB2
converts to a DECIMAL value and then passes to the statement that
invoked the function:

CREATE FUNCTION SQRT(DECIMAL(15,0))
RETURNS DECIMAL(15,0) CAST FROM DOUBLE
...

The value of data-type4 can be any built-in data type and must be castable
to data-type3. The value for data-type3 can be any built-in data type. (For
information on casting data types, see “Casting between data types” on
page 111.) The encoding scheme of the parameters, if they are string data
types, must be the same.

Chapter 5. Statements 1173

If the PARAMETER VARCHAR clause is specified, data-type3 and data-type4
should be specified as VARCHAR.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the
value. You can specify AS LOCATOR only if data-type4 is a LOB data
type or a distinct type based on a LOB data type.

SPECIFIC specific-name
Specifies a unique name for the function. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must
not identify the specific name of another function that exists at the current
server.

The unqualified form of specific-name is an SQL identifier. The qualified form is
an SQL identifier (the schema name) followed by a period and an SQL
identifier.

If you do not specify a schema name, it is the same as the explicit or implicit
schema name of the function name (function-name). If you specify a schema
name, it must be the same as the explicit or implicit schema name of the
function name.

If you do not specify the SPECIFIC clause, the default specific name is the
name of the function. However, if the function name does not provide a
unique specific name or if the function name is a single asterisk, DB2 generates
a specific name in the form of:
SQLxxxxxxxxxxxx

where ’xxxxxxxxxxxx’ is a string of 12 characters that make the name unique.

The specific name is stored in the SPECIFIC column of the SYSROUTINES
catalog table. The specific name can be used to uniquely identify the function
in several SQL statements (such as ALTER FUNCTION, COMMENT, DROP,
GRANT, and REVOKE) and must be used in DB2 commands (START
FUNCTION, STOP FUNCTION, and DISPLAY FUNCTION). However, the
function cannot be invoked by its specific name.

PARAMETER CCSID or VARCHAR
Specifies the encoding scheme for character and graphic string parameters, and
in the case of LANGUAGE C, specifies that representation of variable length
string parameters.

CCSID
Indicates whether the encoding scheme for character and graphic string
parameters is ASCII, EBCDIC, or UNICODE. The default encoding scheme
is the value specified in the CCSID clauses of the parameter list or
RETURNS clause, or in the field DEF ENCODING SCHEME on installation
panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for
all string parameters. If individual CCSID clauses are specified for
individual parameters in addition to this PARAMETER CCSID clause, the
value specified in all of the CCSID clauses must be the same value that is
specified in this clause.

This clause also specifies the encoding scheme to be used for
system-generated parameters of the routine such as message tokens and
DBINFO.

1174 SQL Reference

VARCHAR
Specifies that the representation of the values of varying length character
string-parameters, including, if applicable, the output of the function, for
functions which specify LANGUAGE C.

This option can only be specified if LANGUAGE C is also specified.

NULTERM
Specifies that variable length character string parameters are
represented in a NUL-terminated string form.

STRUCTURE
Specifies that variable length character string parameters are
represented in a VARCHAR structure form.

Using the PARAMETER VARCHAR clause, there is no way to specify the
VARCHAR form of an individual parameter as there is with the
PARAMETER CCSID clause. The PARAMETER VARCHAR clause only
applies to parameters in the parameter list of a function and in the
RETURNS clause. It does not apply to system-generated parameters of the
routine such as message tokens and DBINFO.

In a data sharing environment, you should not specify the PARAMETER
VARCHAR clause until all members of the data sharing group support the
clause. If some group members support this clause and others do not, and
PARAMETER VARCHAR is specified in an external routine, the routine
will encounter different parameter forms depending on which group
member invokes the routine.

EXTERNAL
Specifies that the CREATE FUNCTION statement is being used to define a new
function that is based on code that is written in an external programming
language.

DB2 loads the load module when the function is invoked. The load module is
created when the program that contains the function body is compiled and
link-edited. The load module does not need to exist when the CREATE
FUNCTION statement is executed. However, it must exist and be accessible by
the current server when the function is invoked.

You can specify the EXTERNAL clause in one of the following ways:
EXTERNAL
EXTERNAL NAME PKJVSP1
EXTERNAL NAME ’PKJVSP1’

If you specify an external program name, you must use the NAME keyword.
For example, this syntax is not valid:

EXTERNAL PKJVSP1

NAME external-program-name or identifier
Identifies the user-written code that implements the user-defined function.

If LANGUAGE is JAVA, external-program-name must be specified and
enclosed in single quotation marks, with no extraneous blanks within the
single quotation marks. It must specify a valid external-java-routine-name. If
multiple external-program-names are specified, the total length of all of them
must not be greater than 1305 bytes and they must be separated by a space
or a line break. Do not specify a JAR file for a JAVA function for which NO
SQL is also specified.

An external-java-routine-name contains the following parts:

Chapter 5. Statements 1175

jar-name
Identifies the name given to the JAR file when it was installed in the
database. The name contains jar-id, which can optionally be qualified
with a schema. Examples are "myJar" and "mySchema.myJar." The
unqualified jar-id is implicitly qualified with a schema name according
to the following rules:
v If the statement is embedded in a program, the schema name is the

authorization ID in the QUALIFIER bind option when the package
or plan was created or last rebound. If the QUALIFIER was not
specified, the schema name is the owner of the package or plan.

v If the statement is dynamically prepared, the schema name is the
SQL authorization ID in the CURRENT SCHEMA special register.

If jar-name is specified, it must exist when the CREATE FUNCTION
statement is processed.

If jar-name is not specified, the function is loaded from the class file
directly instead of being loaded from a JAR file. DB2 searches the
directories in the CLASSPATH associated with the WLM Environment.
Environmental variables for Java routines are specified in a data set
identified in a JAVAENV DD card on the JCL used to start the address
space for a WLM-managed function.

method-name
Identifies the name of the method and must not be longer than 254
bytes. Its package, class, and method ID's are specific to Java and as
such are not limited to 18 bytes. In addition, the rules for what these
can contain are not necessarily the same as the rules for an SQL
ordinary identifier.

package-id
Identifies a package. The concatenated list of package-ids identifies
the package that the class identifier is part of. If the class is part of
a package, the method name must include the complete package
prefix, such as "myPacks.UserFuncs." The Java virtual machine
looks in the directory "/myPacks/UserFuncs/" for the classes.

class-id
Identifies the class identifier of the Java object.

method-id
Identifies the method identifier with the Java class to be invoked.

method-signature
Identifies a list of zero or more Java data types for the parameter list
and must not be longer than 1024 bytes. Specify the method-signature if
the user-defined function involves any input or output parameters that
can be NULL. When the function being created is called, DB2 searches
for a Java method with the exact method-signature. The number of
java-datatype elements specified indicates how many parameters that
the Java method must have.

A Java procedure can have no parameters. In this case, you code an
empty set of parentheses for method-signature. If a Java method-signature
is not specified, DB2 searches for a Java method with a signature
derived from the default JDBC types associated with the SQL types
specified in the parameter list of the CREATE FUNCTION statement.

For other values of LANGUAGE, the name can be a string constant that is
no longer than 8 characters. It must conform to the naming conventions for

1176 SQL Reference

load modules. Alphabetical extenders for national languages can be used
as the first character and as subsequent characters in the load module
name.

If you do not specify the NAME clause, 'NAME function-name' is implicit.
In this case, function-name must not be longer than 8 characters.

LANGUAGE
Specifies the language interface convention to which the body of the function
is written. All programs must be designed to run in IBM's Language
Environment environment.

ASSEMBLE
The function is written in Assembler.

C The function is written in C or C++.

COBOL
The function is written in COBOL, including the object-oriented language
extensions.

JAVA
The user-defined function is written in Java and is executed in the Java
Virtual Machine. When LANGUAGE JAVA is specified, the EXTERNAL
NAME clause must also be specified with a valid external-java-routine-name
and PARAMETER STYLE must be specified with JAVA.

Do not specify LANGUAGE JAVA when SCRATCHPAD, FINAL CALL,
DBINFO, PROGRAM TYPE MAIN, or RUN OPTIONS is in effect.

PLI
The function is written in PL/I.

PARAMETER STYLE
Specifies the conventions for passing parameters to and returning a value from
the function.

SQL
Specifies the parameter passing convention that supports passing null
values both as input and for output. The parameters that are passed
between the invoking SQL statement and the function include:
v n parameters for the input parameters that are specified for the function
v A parameter for the result of the function
v n parameters for the indicator variables for the input parameters
v A parameter for the indicator variable for the result
v The SQLSTATE to be returned to DB2
v The qualified name of the function
v The specific name of the function
v The SQL diagnostic string to be returned to DB2
v The function can also pass from zero to three additional parameters:

– The scratchpad, if SCRATCHPAD is specified
– The call type, if FINAL CALL is specified
– The DBINFO structure, if DBINFO is specified

JAVA
Indicates that the user-defined function uses a convention for passing
parameters that conforms to the Java and SQLJ specifications.

Chapter 5. Statements 1177

PARAMETER STYLE JAVA can be specified only if LANGUAGE is
specified as JAVA. JAVA must be specified for PARAMETER STYLE when
LANGUAGE JAVA is specified.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the
function is invoked with the same input arguments.

NOT DETERMINISTIC
The function might not return the same result each time that the function
is invoked with the same input arguments. The function depends on some
state values that affect the results. DB2 uses this information to disable the
merging of views and table expressions when processing SELECT or SQL
data change statements that refer to this function. An example of a
function that is not deterministic is one that generates random numbers, or
any function that contains SQL statements.

NOT DETERMINISTIC is the default.

Some functions that are not deterministic can receive incorrect results if the
function is executed by parallel tasks. Specify the DISALLOW PARALLEL
clause for these functions.

DETERMINISTIC
The function always returns the same result each time that the function is
invoked with the same input arguments. An example of a deterministic
function is a function that calculates the square root of the input. DB2 uses
this information to enable the merging of views and table expressions for
SELECT or SQL data change statements that refer to this function.
DETERMINISTIC is not the default. If applicable, specify DETERMINISTIC
to prevent non-optimal access paths from being chosen for SQL statements
that refer to this function.

DB2 does not verify that the function program is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

FENCED
Specifies that the external function runs in an external address space to prevent
the function from corrupting DB2 storage.

FENCED is the default.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null at
execution time.

RETURNS NULL ON NULL INPUT
The function is not called if any of the input arguments is null. The result
is the null value. RETURNS NULL ON INPUT is the default.

CALLED ON NULL INPUT
The function is called regardless of whether any of the input arguments are
null, making the function responsible for testing for null argument values.
The function can return a null or nonnull value.

MODIFIES SQL DATA, READS SQL DATA, CONTAINS SQL, or NO SQL
Specifies the classification of SQL statements that the function can execute. DB2
verifies that the SQL statements that the function issues are consistent with this
specification. For the data access classification of each statement, see Table 162
on page 2030.

1178 SQL Reference

MODIFIES SQL DATA
Specifies that the function can execute any SQL statement except the
statements that are not supported in functions. Do not specify MODIFIES
SQL DATA when ALLOW PARALLEL is in effect.

READS SQL DATA
Specifies that the function can execute statements with a data access
indication of READS SQL DATA, CONTAINS SQL, or NO SQL. The
function cannot execute SQL statements that modify data. The default is
READS SQL DATA.

CONTAINS SQL
Specifies that the function can execute only SQL statements with an access
indication of CONTAINS SQL or NO SQL. The function cannot execute
statements that read or modify data.

NO SQL
Specifies that the function can execute only SQL statements with a data
access classification of NO SQL. Do not specify NO SQL for a JAVA
function that uses a JAR file.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that DB2 does not manage. An example of an external action is sending
a message or writing a record to a file.

Because DB2 uses the RRS attachment for external functions, DB2 can
participate in two-phase commit with any other resource manager that uses
RRS. For resource managers that do not use RRS, there is no coordination of
commit or rollback operations on non-DB2 resources.

EXTERNAL ACTION
Specifies that the function can take an action that changes the state of an
object that DB2 does not manage.

Some SQL statements that invoke functions with external actions can result
in incorrect results if parallel tasks execute the function. For example, if the
function sends a note for each initial call to it, one note is sent for each
parallel task instead of once for the function. Specify the DISALLOW
PARALLEL clause for functions that do not work correctly with
parallelism.

If you specify EXTERNAL ACTION, DB2:
v Materializes the views and table expressions in SELECT or data change

statements statements that refer to the function. This materialization can
adversely affect the access paths that are chosen for the SQL statements
that refer to this function. Do not specify EXTERNAL ACTION if the
function does not have an external action.

v Does not move the function from one task control block (TCB) to
another between FETCH operations.

v Does not allow another function or stored procedure to use the TCB
until the cursor is closed. This is also applicable for cursors declared
WITH HOLD.

The only changes to resources made outside of DB2 that are under the
control of commit and rollback operations are those changes made under
RRS control.

EXTERNAL ACTION is the default.

Chapter 5. Statements 1179

NO EXTERNAL ACTION
Specifies that the function does not take any action that changes the state
of an object that DB2 does not manage. DB2 uses this information to
enable the merging of views and table expressions for SELECT and data
change statements that refer to this function. If applicable, specify NO
EXTERNAL ACTION to prevent non-optimal access paths from being
chosen for SQL statements that refer to this function.

Although the scope of global variables are beyond the scope of the routine,
global variables can be set in the routine body when NO EXTERNAL
ACTION is specified.

DB2 does not verify that the function program is consistent with the
specification of EXTERNAL ACTION or NO EXTERNAL ACTION.

NO PACKAGE PATH or PACKAGE PATH package-path
Specifies the package path to use when the function is run. This is the list of
the possible package collections into which the DBRM this is associated with
the function is bound.

NO PACKAGE PATH
Specifies that the list of package collections for the function is the same as
the list of package collection IDs for the program that invokes the function.
If the program that invokes the function does not use a package, DB2
resolves the package by using the CURRENT PACKAGE PATH special
register, the CURRENT PACKAGESET special register, or the PKLIST bind
option (in this order). For information about how DB2 uses these three
items, see DB2 Application Programming and SQL Guide.

PACKAGE PATH package-path
Specifies a list of package collections, in the same format as the SET
CURRENT PACKAGE PATH special register.

If the COLLID clause is specified with PACKAGE PATH, the COLLID
clause is ignored when the function is invoked.

The package-path value that is provided when the function is created is
checked when the function is invoked. If package-path contains
SESSION_USER (or USER), PATH, or PACKAGE PATH, an error is
returned when the package-path value is checked.

NO SCRATCHPAD or SCRATCHPAD
Specifies whether DB2 is to provide a scratchpad for the function. It is strongly
recommended that external functions be reentrant, and a scratchpad provides
an area for the function to save information from one invocation to the next.

NO SCRATCHPAD
Specifies that a scratchpad is not allocated and passed to the function. NO
SCRATCHPAD is the default.

SCRATCHPAD length
Specifies that when the function is invoked for the first time, DB2 allocates
memory for a scratchpad. A scratchpad has the following characteristics:
v length must be between 1 and 32767. The default value is 100 bytes.
v DB2 initializes the scratchpad to all binary zeros (X'00''s).
v The scope of a scratchpad is the SQL statement. For each reference to the

function in an SQL statement, there is one scratchpad. For example,
assuming that function UDFX was defined with the SCRATCHPAD
keyword, three scratchpads are allocated for the three references to
UDFX in the following SQL statement:

1180 SQL Reference

|
|
|

SELECT A, UDFX(A) FROM TABLEB
WHERE UDFX(A) > 103 OR UDFX(A) < 19;

If the function is run under parallel tasks, one scratchpad is allocated for
each parallel task of each reference to the function in the SQL statement.
This can lead to unpredictable results. For example, if a function uses
the scratchpad to count the number of times that it is invoked, the count
reflects the number of invocations done by the parallel task and not the
SQL statement. Specify the DISALLOW PARALLEL clause for functions
that will not work correctly with parallelism.

v The scratchpad is persistent. DB2 preserves its content from one
invocation of the function to the next. Any changes that the function
makes to the scratchpad on one call are still there on the next call. DB2
initializes the scratchpads when it begins to execute an SQL statement.
DB2 does not reset scratchpads when a correlated subquery begins to
execute.

v The scratchpad can be a central point for the system resources that the
function acquires. If the function acquires system resources, specify
FINAL CALL to ensure that DB2 calls the function one more time so
that the function can free those system resources.

Each time the function invoked, DB2 passes an additional argument to the
function that contains the address of the scratchpad.

If you specify SCRATCHPAD, DB2:
v Does not move the function from one task control block (TCB) to

another between FETCH operations.
v Does not allow another function or stored procedure to use the TCB

until the cursor is closed. This is also applicable for cursors declared
WITH HOLD.

Do not specify SCRATCHPAD when LANGUAGE JAVA is in effect.

NO FINAL CALL or FINAL CALL
Specifies whether a final call is made to the function. A final call enables the
function to free any system resources that it has acquired. A final call is useful
when the function has been defined with the SCRATCHPAD keyword and the
function acquires system resource and anchors them in the scratchpad.

NO FINAL CALL
Specifies that a final call is not made to the function. The function does not
receive an additional argument that specifies the type of call. NO FINAL
CALL is the default.

FINAL CALL
Specifies that a final call is made to the function. To differentiate between
final calls and other calls, the function receives an additional argument that
specifies the type of call. The types of calls are:

First call
Specifies that the first call to the function for this reference to the
function in this SQL statement. A first call is a normal call—SQL
arguments are passed and the function is expected to return a
result.

Normal call
Specifies that SQL arguments are passed and the function is
expected to return a result.

Chapter 5. Statements 1181

Final call
Specifies that the last call to the function to enable the function to
free resources. A final call is not a normal call. If an error occurs,
DB2 attempts to make the final call unless the function abended. A
final call occurs at these times:
v End of statement: When the cursor is closed for cursor-oriented

statements, or the execution of the statement has completed.
v End of a parallel task: When the function is executed by parallel

tasks.
v End of transaction: When normal end of statement processing

does not occur. For example, the logic of an application, for
some reason, bypasses closing the cursor.

If a commit operation occurs while a cursor defined as WITH
HOLD is open, a final call is made when the cursor is closed or the
application ends. If a commit occurs at the end of a parallel task, a
final call is made regardless of whether a cursor defined as WITH
HOLD is open.

If a commit, rollback, or abort operation causes the final call, the function
cannot issue any SQL statements when it is invoked.

Some functions that use a final call can receive incorrect results if parallel
tasks execute the function. For example, if a function sends a note for each
final call to it, one note is sent for each parallel task instead of once for the
function. Specify the DISALLOW PARALLEL clause for functions that have
inappropriate actions when executed in parallel.

Do not specify FINAL CALL when LANGUAGE JAVA is in effect.

ALLOW or DISALLOW PARALLEL
For a single reference to the function, specifies whether parallelism can be used
when the function is invoked. Although parallelism can be used for most
scalar functions, some functions such as those that depend on a single copy of
the scratchpad cannot be invoked with parallel tasks.

Consider these characteristics when determining which clause to use:
v If all invocations of the function are completely independent from one

another, specify ALLOW PARALLEL.
v If each invocation of the function updates the scratchpad, providing values

that are of interest to the next invocation, such as incrementing a counter,
specify DISALLOW PARALLEL.

v If the scratchpad is used only so that some expensive initialization
processing is performed a minimal number of times, specify ALLOW
PARALLEL.

v If the function performs some external action that should apply to only one
partition, specify DISALLOW PARALLEL.

v If the function is defined with MODIFIES SQL DATA, specify DISALLOW
PARALLEL, not ALLOW PARALLEL.

ALLOW PARALLEL is the default unless NOT DETERMINISTIC, EXTERNAL
ACTION, SCRATCHPAD, or FINAL CALL is specified, in which case,
DISALLOW PARALLEL is the default.

ALLOW PARALLEL
Specifies that DB2 can consider parallelism for the function. Parallelism is
not forced on the SQL statement that invokes the function or on any SQL
statement in the function. Existing restrictions on parallelism apply.

1182 SQL Reference

DISALLOW PARALLEL
Specifies that DB2 does not consider parallelism for the function.

NO DBINFO or DBINFO
Specifies whether additional status information is passed to the function when
it is invoked.

NO DBINFO
No additional information is passed. NO DBINFO is the default.

DBINFO
An additional argument is passed when the function is invoked. The
argument is a structure that contains information such as the application
runtime authorization ID, the schema name, the name of a table or column
that the function might be inserting into or updating, and identification of
the database server that invoked the function. For details about the
argument and its structure, see DB2 Application Programming and SQL
Guide.

Do not specify DBINFO when LANGUAGE JAVA is in effect.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the function is
executed. This is the package collection into which the DBRM that is associated
with the function program is bound.

NO COLLID
The package collection for the function is the same as the package
collection of the program that invokes the function. If a trigger invokes the
function, the collection of the trigger package is used. If the invoking
program does not use a package, DB2 resolves the package by using the
CURRENT PACKAGE PATH special register, the CURRENT PACKAGESET
special register, or the PKLIST bind option (in this order). For details about
how DB2 uses these three items, see the information on package resolution
in DB2 Application Programming and SQL Guide.

NO COLLID is the default.

COLLID collection-id
The name of the package collection that is to be used when the function is
executed.

WLM ENVIRONMENT
Identifies the WLM (workload manager) application environment in which the
function is to run. The name of the WLM environment is an SQL identifier.

If you do not specify WLM ENVIRONMENT, the function runs in the
WLM-established stored procedure address space that is specified at
installation time. When LANGUAGE is JAVA, you must specify WLM
ENVIRONMENT, and the WLM environment in which the function is to run
must be Java-enabled.

name
The WLM environment in which the function must run. If another
user-defined function or a stored procedure calls the function and that
calling routine is running in an address space that is not associated with
the WLM environment, DB2 routes the function request to a different
address space.

(name,*)
When an SQL application program directly invokes the function, the WLM
environment in which the function runs.

Chapter 5. Statements 1183

If another user-defined function or a stored procedure calls the function,
the function runs in same environment that the calling routine uses. In this
case, authorization to run the function in the WLM environment is not
checked because the authorization of the calling routine suffices.

Users must have the appropriate authorization to execute functions in the
specified WLM environment. For an example of a RACF command that
provides this authorization, see Running external functions in WLM
environments.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of the function can run. The value is unrelated to the ASUTIME
column of the resource limit specification table. This option is ignored if
LANGUAGE JAVA is specified.

When you are debugging a function, setting a limit can be helpful if the
function gets caught in a loop. For information on service units, see z/OS MVS
Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units. NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the
range of 1 to 2 147 483 647. If the procedure uses more service units than
the specified value, DB2 cancels the procedure. The CPU cycles that are
consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

STAY RESIDENT
Specifies whether the load module for the function is to remain resident in
memory when the function ends. This option is ignored if LANGUAGE JAVA
is specified.

NO The load module is deleted from memory after the function ends. Use NO
for non-reentrant functions. NO is the default.

YES
The load module remains resident in memory after the function ends. Use
YES for reentrant functions.

PROGRAM TYPE
Specifies whether the function program runs as a main routine or a subroutine.

SUB
The function runs as a subroutine. With LANGUAGE JAVA, PROGRAM
TYPE SUB is the only valid option. SUB is the default.

MAIN
The function runs as a main routine.

SECURITY
Specifies how the function interacts with an external security product, such as
RACF, to control access to non-SQL resources.

DB2
The function does not require an external security environment. If the
function accesses resources that an external security product protects, the
access is performed using the authorization ID that is associated with the
WLM-established stored procedure address space.

1184 SQL Reference

DB2 is the default.

USER
An external security environment should be established for the function. If
the function accesses resources that the external security product protects,
the access is performed using the primary authorization ID of the process
that invoked the function.

DEFINER
An external security environment should be established for the function. If
the function accesses resources that the external security product protects,
the access is performed using the authorization ID of the owner of the
function.

STOP AFTER SYSTEM DEFAULT FAILURES, STOP AFTER nn FAILURES, or CONTINUE
AFTER FAILURE

Specifies whether the routine is to be put in a stopped state after some number
of failures.

STOP AFTER SYSTEM DEFAULT FAILURES
Specifies that this routine should be placed in a stopped state after the
number of failures indicated by the value of field MAX ABEND COUNT
on installation panel DSNTIPX. This is the default.

STOP AFTER nn FAILURES
Specifies that this routine should be placed in a stopped state after nn
failures. The value nn can be an integer from 1 to 32767.

CONTINUE AFTER FAILURE
Specifies that this routine should not be placed in a stopped state after any
failure.

RUN OPTIONS runtime-options
Specifies the Language Environment runtime options to be used for the
function. You must specify runtime-options as a character string that is no
longer than 254 bytes. If you do not specify RUN OPTIONS or pass an empty
string, DB2 does not pass any runtime options to Language Environment, and
Language Environment uses its installation defaults. For a description of the
Language Environment runtime options, see z/OS Language Environment
Programming Reference.

Do not specify RUN OPTIONS when LANGUAGE JAVA is in effect.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.

INHERIT SPECIAL REGISTERS
Specifies that the values of special registers are inherited according to the
rules listed in the table for characteristics of special registers in a
user-defined function in Table 40 on page 205.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
user-defined function in Table 40 on page 205.

STATIC DISPATCH
At function resolution time, DB2 chooses a function based on the static (or
declared) types of the function parameters. STATIC DISPATCH is the default.

Chapter 5. Statements 1185

NOT SECURED or SECURED
Specifies if the function is considered secure for row access control and column
access control.

NOT SECURED
Specifies that the function is not considered as secure for row access
control and column access control.

NOT SECURED is the default.

When the function is invoked, the arguments of the function must not
reference a column for which a column mask is enabled when the table is
using active column access control.

SECURED
Specifies that the function is considered secure for row access control and
column access control.

The function must be defined with SECURED when it is referenced in a
row permission or a column mask.

Notes

Owner privileges:
The owner is authorized to execute the function (EXECUTE privilege) and
has the ability to grant these privileges to others. For more information, see
“GRANT (function or procedure privileges)” on page 1703. For more
information about ownership of the object, see “Authorization, privileges,
permissions, masks, and object ownership” on page 70.

Choosing data types for parameters:
When you choose the data types of the input and output parameters for
your function, consider the rules of promotion that can affect the values of
the parameters. (See “Promotion of data types” on page 110). For example,
a constant that is one of the input arguments to the function might have a
built-in data type that is different from the data type that the function
expects, and more significantly, might not be promotable to that expected
data type. Based on the rules of promotion, consider using the following
data types for parameters:
v INTEGER instead of SMALLINT
v DOUBLE instead of REAL
v VARCHAR instead of CHAR
v VARGRAPHIC instead of GRAPHIC
v VARBINARY instead of BINARY

For portability of functions across platforms that are not DB2 for z/OS, do
not use the following data types, which might have different
representations on different platforms:
v FLOAT. Use DOUBLE or REAL instead.
v NUMERIC. Use DECIMAL instead.

Specifying the encoding scheme for parameters:
The implicitly or explicitly specified encoding scheme of all of the
parameters with a character or graphic string data type (both input and
output parameters) must be the same—either all ASCII, all EBCDIC, or all
UNICODE.

Determining the uniqueness of functions in a schema:
At the current server, the function signature of each function, which is the

1186 SQL Reference

qualified function name combined with the number and data types of the
input parameters, must be unique. If the function has more than 30 input
parameters, only the data types of the first 30 are used to determine
uniqueness. This means that two different schemas can each contain a
function with the same name that have the same data types for all of their
corresponding data types. However, a single schema must not contain
multiple functions with the same name that have the same data types for
all of their corresponding data types.

When determining whether corresponding data types match, DB2 does not
consider any length, precision, or scale attributes in the comparison. DB2
considers the synonyms of data types as a match. For example, REAL and
FLOAT, and DOUBLE and FLOAT are considered a match. Therefore,
CHAR(8) and CHAR(35) are considered to be the same, as are
DECIMAL(11,2), DECIMAL(4,3), DECFLOAT(16) and DECFLOAT(34),
TIMESTAMP(6) and TIMESTAMP(9), TIMESTAMP(6) WITH TIME ZONE
and TIMESTAMP(9) WITH TIME ZONE. Furthermore, the character and
graphic types, and the timestamp types are considered to be the same. For
example, the following are considered to be the same type: CHAR and
GRAPHIC, VARCHAR and VARGRAPHIC, CLOB and DBCLOB,
TIMESTAMP WITHOUT TIME ZONE and TIMESTAMP WITH TIME
ZONE. CHAR(13) and GRAPHIC(8) are considered to be the same type.
An error is returned if the signature of the function being created is a
duplicate of a signature for an existing user-defined function with the same
name and schema.

Assume that the following statements are executed to create four functions
in the same schema. The second and fourth statements fail because they
create functions that are duplicates of the functions that the first and third
statements created.

CREATE FUNCTION PART (INT, CHAR(15)) ...
CREATE FUNCTION PART (INTEGER, CHAR(40)) ...
CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (DEC(10,7)) ...

Character string representation considerations:
The PARAMETER VARCHAR clause is specific to LANGUAGE C
functions because of the native use of NUL-terminated strings in C.
VARCHAR structure representation is useful when character string data is
known to contain embedded NUL-terminators. It is also useful when it
cannot be guaranteed that character string data does not contain embedded
NUL-terminators.

PARAMETER VARCHAR does not apply to fixed length character strings,
VARCHAR FOR BIT DATA, CLOB, DBCLOB, or implicitly generated
parameters. The clause does not apply to VARCHAR FOR BIT DATA
because BIT DATA can contain X'00' characters, and its value
representation starts with length information. It does not apply to LOB
data because a LOB value representation starts with length information.

PARAMETER VARCHAR does not apply to optional parameters that are
implicitly provided to an external function. For example, a CREATE
FUNCTION statement for LANGUAGE C must also specify PARAMETER
STYLE SQL, which returns an SQLSTATE NUL-terminated character string;
that SQLSTATE will not be represented in VARCHAR structured form.
Likewise, none of the parameters that represent the qualified name of the
function, the specific name of the function, or the SQL diagnostic string
that is returned to the database manager will be represented in VARCHAR
structured form.

Chapter 5. Statements 1187

Considerations for accessing message tokens and DBINFO:
DB2 returns system-generated parameters from a routine, such as message
tokens and DBINFO. The message tokens and DBINFO are character string
data. The CCSID for system-generated string parameters is determined
from the CCSID that is in effect for string parameters that are defined for
the routine. If the parameter list for the routine does not include any
character or graphic string parameters, the CCSID for system-generated
string parameters is determined from the PARAMETER CCSID option that
is in effect for the routine. For example, with a Unicode database, you can
specify PARAMETER CCSID EBCDIC to have the system-generated string
parameters returned to the invoking application in EBCDIC.

Overriding a built-in function:
Giving a function the same name as a built-in function is not a
recommended practice unless you are trying to change the functionality of
the built-in function.

If you do intend to create a function with the same name as a built-in
function, be careful to maintain the uniqueness of its function signature. If
your function has the same name and data types of the corresponding
parameters of the built-in function but implements different logic, DB2
might choose the wrong function when the function is invoked with an
unqualified function name. Thus, the application might fail, or perhaps
even worse, run successfully but provide an inappropriate result.

Running external functions in WLM environments:
You can use the WLM ENVIRONMENT clause to identify the address
space in which a function or is to run. Using different WLM environments
lets you isolate one group of programs from another. For example, you
might choose to isolate programs based on security requirements and place
all payroll applications in one WLM environment because those
applications deal with data, such as employee salaries.

To prevent a user from defining functions in sensitive WLM environments,
DB2 invokes the external security manager to determine whether the user
has authorization to issue CREATE FUNCTION statements that refer to the
specified WLM environment. The following example shows the RACF
command that authorizes DB2 user DB2USER1 to register a function on
DB2 subsystem DB2A that runs in the WLM environment named
PAYROLL.

PERMIT DB2A.WLMENV.PAYROLL CLASS(DSNR) ID(DB2USER1) ACCESS(READ)

Scrollable cursors specified with user-defined functions:
A row can be fetched more than once with a scrollable cursor. Therefore, if
a scrollable cursor is defined with a function that is not deterministic in the
select list of the cursor, a row can be fetched multiple times with different
results for each fetch. Similarly, if a scrollable cursor is defined with a
user-defined function with external action, the action is executed with
every fetch.

Creating a secure function:
Typically, the security administrator will examine the data that is accessed
by a function, ensure that it is secure, and grant the
CREATE_SECURE_OBJECT privilege to someone who currently requires
the privileges to create a secure user-defined function. After the function is
created, they will revoke the CREATE_SECURE_OBJECT privilege from the
function owner.

1188 SQL Reference

Invoking other user-defined functions in a secure function:
If a secure user-defined function invokes other user-defined functions, DB2
does not validate whether those nested user-defined functions have the
SECURED attribute. If those nested functions can access sensitive data, the
security administrator needs to ensure that those functions are allowed to
access the sensitive data and should ensure that a change control audit
procedure has been established for all changes to those functions.

SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table:
If a row permission or a column mask definition references a user-defined
function, the user-defined function must be secure because the sensitive
data might be passed as arguments to the function. The column SECURE
in the EXPLAIN table DSN_FUNCTION_TABLE indicates whether a
user-defined function is considered secure.

Functions and global variables:
The content of global variables that are referenced in functions is inherited
from the caller. Global variables cannot be modified in or by functions.

Alternative syntax and synonyms:
To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following keywords:
v VARIANT as a synonym for NOT DETERMINISTIC
v NOT VARIANT as a synonym for DETERMINISTIC
v NOT NULL CALL as a synonym for RETURNS NULL ON NULL

INPUT
v NULL CALL as a synonym for CALLED ON NULL INPUT
v PARAMETER STYLE DB2SQL as a synonym for PARAMETER STYLE

SQL
v TIMEZONE can be specified as an alternative to TIME ZONE.

Examples

Example 1: Assume that you want to write an external function program in C that
implements the following logic:

output = 2 * input - 4

The function should return a null value if and only if one of the input arguments
is null. The simplest way to avoid a function call and get a null result when an
input value is null is to specify RETURNS NULL ON NULL INPUT on the
CREATE FUNCTION statement or allow it to be the default. Write the statement
needed to register the function, using the specific name MINENULL1.

CREATE FUNCTION NTEST1 (SMALLINT)
RETURNS SMALLINT
EXTERNAL NAME ’NTESTMOD’
SPECIFIC MINENULL1
LANGUAGE C
DETERMINISTIC
NO SQL
FENCED
PARAMETER STYLE SQL
RETURNS NULL ON NULL INPUT
NO EXTERNAL ACTION;

Example 2: Assume that user Smith wants to register an external function named
CENTER in schema SMITH. The function program will be written in C and will be
reentrant. Write the statement that Smith needs to register the function, letting DB2
generate a specific name for the function.

Chapter 5. Statements 1189

|
|
|

CREATE FUNCTION CENTER (INTEGER, FLOAT)
RETURNS FLOAT
EXTERNAL NAME ’MIDDLE’
LANGUAGE C
DETERMINISTIC
NO SQL
FENCED
PARAMETER STYLE SQL
NO EXTERNAL ACTION
STAY RESIDENT YES;

Example 3: Assume that user McBride (who has administrative authority) wants to
register an external function named CENTER in the SMITH schema. McBride plans
to give the function specific name FOCUS98. The function program uses a
scratchpad to perform some one-time only initialization and save the results. The
function program returns a value with a FLOAT data type. Write the statement
McBride needs to register the function and ensure that when the function is
invoked, it returns a value with a data type of DECIMAL(8,4).

CREATE FUNCTION SMITH.CENTER (FLOAT, FLOAT, FLOAT)
RETURNS DECIMAL(8,4) CAST FROM FLOAT
EXTERNAL NAME ’CMOD’
SPECIFIC FOCUS98
LANGUAGE C
DETERMINISTIC
NO SQL
FENCED
PARAMETER STYLE SQL
NO EXTERNAL ACTION
SCRATCHPAD
NO FINAL CALL;

Example 4: The following example registers a Java user-defined function that
returns the position of the first vowel in a string. The user-defined function is
written in Java, is to be run fenced, and is the FINDVWL method of class
JAVAUDFS.

CREATE FUNCTION FINDV (CLOB(100K))
RETURNS INTEGER
FENCED
LANGUAGE JAVA
PARAMETER STYLE JAVA
EXTERNAL NAME ’JAVAUDFS.FINDVWL’
NO EXTERNAL ACTION
CALLED ON NULL INPUT
DETERMINISTIC
NO SQL;

1190 SQL Reference

CREATE FUNCTION (external table)
This CREATE FUNCTION statement registers a user-defined external table
function with a database server. A user-defined external table function can be used
in the FROM clause of a subselect. It returns a table to the subselect by returning
one row at a time each time it is invoked.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set defined below must include at least one of the following:
v The CREATEIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

If the authorization ID that is used to create the function has installation SYSADM
authority, the function is identified as system-defined function.

Additional privileges are required if the function uses a table as a parameter, refers
to a distinct type, or is to run in a WLM (workload manager) environment. These
privileges are:
v The SELECT privilege on any table that is an input parameter to the function.
v The USAGE privilege on each distinct type that the function references.
v Authority to create programs in the specified WLM environment. This

authorization is obtained from an external security product, such as RACF.

At least one of the following additional privileges is required if the SECURED
option is specified
v SECADM authority
v CREATE_SECURE_OBJECT privilege

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the owner is a role, the implicit schema match does not apply and this role needs
to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for
which the ROLE AS OBJECT OWNER clause is specified, the privilege set is the
set of privileges that are held by the SQL authorization ID of the process. If the
schema name is not the same as the SQL authorization ID of the process, one of
the following conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v The SQL authorization ID of the process has the CREATEIN privilege on the

schema.

Chapter 5. Statements 1191

Syntax

�� CREATE FUNCTION function-name

�

()
,

parameter-declaration

�

� �

,
(2)

RETURNS TABLE(column-name data-type)
(1)

AS LOCATOR
GENERIC TABLE

option-list ��

Notes:

1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

2 This clause and the clauses that follow in the option-list can be specified in any order.

�� parameter-type
parameter-name

��

�� data-type
(1)

AS LOCATOR
TABLE LIKE table-name AS LOCATOR

view-name

��

Notes:

1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

�� built-in-type
distinct-type-name

��

parameter-declaration:

parameter-type:

data-type:

1192 SQL Reference

|||||||

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID

��

built-in-type:

option-list: (The clauses in the option-list can be specified in any order.)

Chapter 5. Statements 1193

��
SPECIFIC specific-name

�
(1)

PARAMETER CCSID ASCII
EBCDIC
UNICODE

VARCHAR NULTERM
STRUCTURE

�

� EXTERNAL
NAME string

identifier

LANGUAGE ASSEMBLE
C
COBOL
PLI

PARAMETER STYLE SQL �

�
NOT DETERMINISTIC

DETERMINISTIC

FENCED RETURNS NULL ON NULL INPUT

CALLED ON NULL INPUT

READS SQL DATA

CONTAINS SQL
NO SQL

�

�
EXTERNAL ACTION

NO EXTERNAL ACTION

NO PACKAGE PATH

PACKAGE PATH package-path

NO SCRATCHPAD

100
SCRATCHPAD

length

�

�
NO FINAL CALL

FINAL CALL
DISALLOW PARALLEL

NO DBINFO

DBINFO CARDINALITY integer
�

�
NO COLLID

COLLID collection-id WLM ENVIRONMENT name
(name)

ASUTIME NO LIMIT

ASUTIME LIMIT integer
�

�
STAY RESIDENT NO

STAY RESIDENT YES

PROGRAM TYPE SUB

PROGRAM TYPE MAIN

SECURITY DB2

SECURITY USER
DEFINER

�

�
RUN OPTIONS runtime-options

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS

STATIC DISPATCH
�

�
STOP AFTER SYSTEM DEFAULT FAILURES

STOP AFTER integer FAILURES
CONTINUE AFTER FAILURE

NOT SECURED

SECURED
��

Notes:

1 The same clause must not be specified more than one time.

Description

function-name
Names the user-defined function. The name is implicitly or explicitly qualified
by a schema name.

1194 SQL Reference

The combination of name, schema name, the number of parameters, and the
data type of each parameter27 (without regard for any length, precision, scale,
subtype or encoding scheme attributes of the data type) must not identify a
user-defined function that exists at the current server.

You can use the same name for more than one function if the function
signature of each function is unique.
v The unqualified form of function-name must not be any of the following

system-reserved keywords even if you specify them as delimited identifiers:
ALL LIKE UNIQUE
AND MATCH UNKNOWN
ANY NOT =
BETWEEN NULL ¬=
DISTINCT ONLY <
EXCEPT OR <=
EXISTS OVERLAPS ¬<
FALSE SIMILAR >
FOR SOME >=
FROM TABLE ¬>
IN TRUE <>
IS TYPE

The schema name can be 'SYSTOOLS' or 'SYSFUN' if the user who executes the
CREATE statement has SYSADM or SYSCTRL privilege. Otherwise, the schema
name must not begin with 'SYS' unless the schema name is 'SYSADM'.

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the
data type of each parameter. All of the parameters for a function are input
parameters and are nullable. There must be one entry in the list for each
parameter that the function expects to receive. Although not required, you can
give each parameter a name.

A function can have no parameters. In this case, you must code an empty set
of parentheses, for example:

CREATE FUNCTION WOOFER()

parameter-name
Specifies the name of the input parameter. The name is an SQL identifier,
and each name in the parameter list must not be the same as any other
name. The same name cannot be used for a parameter name and a column
name.

data-type
Specifies the data type of the input parameter. The data type can be a
built-in data type or a user-defined type.

built-in-type
The data type of the input parameter is a built-in data type.

For information on the data types, see built-in-type.

For parameters with a character or graphic data type, the
PARAMETER CCSID clause or CCSID clause indicates the encoding
scheme of the parameter. If you do not specify either of these clauses,
the encoding scheme is the value of field DEF ENCODING SCHEME
on installation panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length,

27. If the function has more than 30 parameters, only the first 30 parameters are used to determine whether the function is unique.

Chapter 5. Statements 1195

|
|

precision, scale, subtype, or encoding scheme attributes for the
parameter are those of the source type of the distinct type.

If you specify the name of the distinct type without a schema name,
DB2 resolves the schema name by searching the schemas in the SQL
path.

Although parameters with a character data type have an implicitly or
explicitly specified subtype (BIT, SBCS, or MIXED), the function program
can receive character data of any subtype. Therefore, conversion of the
input data to the subtype of the parameter might occur when the function
is invoked. An error occurs if mixed data that actually contains DBCS
characters is used as the value for an input parameter that is declared with
an SBCS subtype.

Parameters with a datetime data type or a distinct type are passed to the
function as a different data type:
v A datetime type parameter is passed as a character data type, and the

data is passed in ISO format.
The encoding scheme for a datetime type parameter is the same as the
implicitly or explicitly specified encoding scheme of any character or
graphic string parameters. If no character or graphic string parameters
are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

v A distinct type parameter is passed as the source type of the distinct
type.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the
function instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type that is based on a
LOB data type. Passing locators instead of values can result in fewer
bytes being passed to the function, especially when the value of the
parameter is very large.

The AS LOCATOR clause has no effect on determining whether data
types can be promoted, nor does it affect the function signature, which
is used in function resolution.

TABLE LIKE table-name or view-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the
function is invoked, the actual values in the transition table are not passed
to the function. A single value is passed instead. This single value is a
locator to the table, which the function uses to access the columns of the
transition table. A function with a table parameter can only be invoked
from the triggered action of a trigger.

The use of TABLE LIKE provides an implicit definition of the transition
table. It specifies that the transition table has the same number of columns
as the identified table or view. If a table is specified, the transition table
includes columns that are defined as implicitly hidden in the table. The
columns have the same data type, length, precision, scale, subtype, and
encoding scheme as the identified table or view, as they are described in
catalog tables SYSCOLUMNS and SYSTABLESPACE. The number of
columns and the attributes of those columns are determined at the time the
CREATE FUNCTION statement is processed. Any subsequent changes to
the number of columns in the table or the attributes of those columns do
not affect the parameters of the function.

1196 SQL Reference

table-name or view-name must identify a table or view that exists at the
current server. A view cannot have columns of length 0. The name must
not identify a declared temporary table. The table that is identified can
contain XML columns; however, the function cannot reference those XML
columns. The name does not have to be the same name as the table that is
associated with the transition table for the trigger. An unqualified table or
view name is implicitly qualified according to the following rules:
v If the CREATE FUNCTION statement is embedded in a program, the

implicit qualifier is the authorization ID in the QUALIFIER bind option
when the plan or package was created or last rebound. If QUALIFIER
was not used, the implicit qualifier is the owner of the plan or package.

v If the CREATE FUNCTION statement is dynamically prepared, the
implicit qualifier is the SQL authorization ID in the CURRENT SCHEMA
special register.

When the function is invoked, the corresponding columns of the transition
table identified by the table locator and the table or view identified in the
TABLE LIKE clause must have the same definition. The data type, length,
precision, scale, and encoding scheme of these columns must match
exactly. The description of the table or view at the time the CREATE
FUNCTION statement was executed is used.

Additionally, a character FOR BIT DATA column of the transition table
cannot be passed as input for a table parameter for which the
corresponding column of the table specified at the definition is not defined
as character FOR BIT DATA. (The definition occurs with the CREATE
FUNCTION statement.) Likewise, a character column of the transition table
that is not FOR BIT DATA cannot be passed as input for a table parameter
for which the corresponding column of the table specified at the definition
is defined as character FOR BIT DATA.

For more information about using table locators, see DB2 Application
Programming and SQL Guide.

RETURNS TABLE(column-name data-type ...)
Identifies that the output of the function is a table. The parentheses that follow
the keyword enclose the list of names and data types of the columns of the
table.

column-name
Specifies the name of the column. The name is an SQL identifier and must
be unique within the RETURNS TABLE clause for the function.

data-type
Specifies the data type of the column. The column is nullable.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the
actual value. You can specify AS LOCATOR only for a LOB data type
or a distinct type based on a LOB data type.

RETURNS GENERIC TABLE
Specifies that the output of the function is a generic table. This option can only
be specified if LANGUAGE C is also specified.

The names and data types of the columns must be declared when the table
function is references using the typed-correlation-clause of the subselect.

Related information:

“typed-correlation-clause” on page 786

Chapter 5. Statements 1197

|
|
|

|
|

|

|

SPECIFIC specific-name
Specifies a unique name for the function. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must
not identify the specific name of another function that exists at the current
server.

The unqualified form of specific-name is an SQL identifier. The qualified form is
an SQL identifier (the schema name) followed by a period and an SQL
identifier.

If you do not specify a schema name, it is the same as the explicit or implicit
schema name of the function name (function-name). If you specify a schema
name, it must be the same as the explicit or implicit schema name of the
function name.

If you do not specify the SPECIFIC clause, the default specific name is the
name of the function. However, if the function name does not provide a
unique specific name or if the function name is a single asterisk, DB2 generates
a specific name in the form of:
SQLxxxxxxxxxxxx

where ’xxxxxxxxxxxx’ is a string of 12 characters that make the name unique.

The specific name is stored in the SPECIFIC column of the SYSROUTINES
catalog table. The specific name can be used to uniquely identify the function
in several SQL statements (such as ALTER FUNCTION, COMMENT, DROP,
GRANT, and REVOKE) and in DB2 commands (START FUNCTION, STOP
FUNCTION, and DISPLAY FUNCTION). However, the function cannot be
invoked by its specific name.

PARAMETER CCSID or VARCHAR

CCSID
Indicates whether the encoding scheme for character or graphic string
parameters is ASCII, EBCDIC, or UNICODE. The default encoding scheme
is the value specified in the CCSID clauses of the parameter list or
RETURNS TABLE clause, or in the field DEF ENCODING SCHEME on
installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for
character or graphic string parameters. If individual CCSID clauses are
specified for individual parameters in addition to this PARAMETER
CCSID clause, the value specified in all of the CCSID clauses must be the
same value that is specified in this clause.

This clause also specifies the encoding scheme to be used for
system-generated parameters of the routine such as message tokens and
DBINFO.

VARCHAR
Specifies that the representation of the values of varying length character
string-parameters, including, if applicable, the output of the function, for
functions which specify LANGUAGE C.

This option can only be specified if LANGUAGE C is also specified.

NULTERM
Specifies that variable length character string parameters are
represented in a NUL-terminated string form.

1198 SQL Reference

|

STRUCTURE
Specifies that variable length character string parameters are
represented in a VARCHAR structure form.

Using the PARAMETER VARCHAR clause, there is no way to specify the
VARCHAR form of an individual parameter as these is with PARAMETER
CCSID. The PARAMETER VARCHAR clause only applies to parameters in
the parameter list of a function and in the RETURNS TABLE clause. It does
not apply to system-generated parameters of the routine such as message
tokens and DBINFO.

In a data sharing environment, you should not specify the PARAMETER
VARCHAR clause until all members of the data sharing group support the
clause. If some group members support this clause and others do not, and
PARAMETER VARCHAR is specified in an external routine, the routine
will encounter different parameter forms depending on which group
member invokes the routine.

EXTERNAL
Specifies that the function being registered is based on code that is written in
an external programming language and adheres to the documented linkage
conventions and interface of that language.

If you do not specify the NAME clause, 'NAME function-name' is implicit. In
this case, function-name must not be longer than 8 characters.

NAME string or identifier
Identifies the name of the load module that contains the user-written code
that implements the logic of the function.

For other values of LANGUAGE, the name can be a string constant that is
no longer than 8 characters. It must conform to the naming conventions for
load modules. Alphabetical extenders for national languages can be used
as the first character and as subsequent characters in the load module
name.

DB2 loads the load module when the function is invoked. The load module is
created when the program that contains the function body is compiled and
link-edited. The load module does not need to exist when the CREATE
FUNCTION statement is executed. However, it must exist and be accessible by
the current server when the function is invoked.

You can specify the EXTERNAL clause in one of the following ways:
EXTERNAL
EXTERNAL NAME PKJVSP1
EXTERNAL NAME ’PKJVSP1’

If you specify an external program name, you must use the NAME keyword.
For example, this syntax is not valid:

EXTERNAL PKJVSP1

LANGUAGE
Specifies the application programming language in which the function
program is written. All programs must be designed to run in IBM's Language
Environment environment.

ASSEMBLE
The function is written in Assembler.

C The function is written in C or C++. The VARCHAR clause can only be
specified is LANGUAGE C is specified.

Chapter 5. Statements 1199

COBOL
The function is written in COBOL, including the object-oriented language
extensions.

PLI
The function is written in PL/I.

PARAMETER STYLE SQL
Specifies the linkage convention that the function program uses to receive
input parameters from and pass return values to the invoking SQL statement.

PARAMETER STYLE SQL specifies the parameter passing convention that
supports passing null values both as input and for output.

If the RETURNS TABLE clause is specified, the parameters that are passed
between the invoking SQL statement and the function include:
v n parameters for the input parameters that are specified for the function
v m parameters for the result columns of the function that are specified on the

RETURNS TABLE clause
v n parameters for the indicator variables for the input parameters
v m parameters for the indicator variables of the result columns of the function

that are specified on the RETURNS TABLE clause
v The SQLSTATE to be returned to DB2
v The qualified name of the function
v The specific name of the function
v The SQL diagnostic string to be returned to DB2
v The scratchpad, if SCRATCHPAD is specified
v The call type
v The DBINFO structure, if DBINFO is specified

If the RETURNS GENERIC TABLE clause is specified, the parameters that are
passed between the invoking SQL statement and the function include:
v n parameters for the input parameters that are specified for the function
v n parameters for the indicator variables for the input parameters
v m parameters for the result columns of the function that are specified on the

RETURNS GENERIC TABLE clause
v A result table descriptor that contains the following:

– m result columns of the function that are specified in the
typed-correlation-clause of the table-function-reference in a SELECT statement

– An array of m, 4-byte addresses to the values of the result columns
– An array of m, null indicators of the result columns

v The SQLSTATE to be returned to DB2
v The qualified name of the function
v The specific name of the function
v The SQL diagnostic string to be returned to DB2
v The scratchpad, if SCRATCHPAD is specified
v The call type
v The DBINFO structure, if DBINFO is specified

For complete details about the structure of the parameter list that is passed, see
DB2 Application Programming and SQL Guide.

1200 SQL Reference

|
|

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns function returns the same results each
time that the function is invoked with the same input arguments.

NOT DETERMINISTIC
The function might not return the same results each time that the function
is invoked with the same input arguments. The function depends on some
state values that affect the results. DB2 uses this information to disable the
merging of views and table expressions when processing SELECT and SQL
data change statements that refer to this function. An example of a
function that is not deterministic is one that generates random numbers, or
any function that contains SQL statements.

NOT DETERMINISTIC is the default.

DETERMINISTIC
The function always returns the same result each time that the function is
invoked with the same input arguments. An example of a deterministic
function is a function that calculates the square root of the input. DB2 uses
this information to enable the merging of views and table expressions for
SELECT and SQL data change statements that refer to this function.
DETERMINISTIC is not the default. If applicable, specify DETERMINISTIC
to prevent non-optimal access paths from being chosen for SQL statements
that refer to this function.

DB2 does not verify that the function program is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

FENCED
Specifies that the function runs in an external address space to prevent the
function from corrupting DB2 storage.

FENCED is the default.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null at
execution time.

RETURNS NULL ON NULL INPUT
The function is not called if any of the input arguments is null. The result
is an empty table, which is a table with no rows. RETURNS NULL ON
INPUT is the default.

CALLED ON NULL INPUT
The function is called regardless of whether any of the input arguments are
null, making the function responsible for testing for null argument values.
The function can return an empty table, depending on its logic.

READS SQL DATA, CONTAINS SQL, or NO SQL
Specifies which SQL statements, if any, can be executed in the function or any
routine that is called from this function. The default is READS SQL DATA. For
the data access classification of each statement, see Table 162 on page 2030.

READS SQL DATA
Specifies that the function can execute statements with a data access
indication of READS SQL DATA, CONTAINS SQL, or NO SQL. The
function cannot execute SQL statements that modify data.

Chapter 5. Statements 1201

CONTAINS SQL
Specifies that the function can execute only SQL statements with an access
indication of CONTAINS SQL or NO SQL. The function cannot execute
statements that read or modify data.

NO SQL
Specifies that the function can execute only SQL statements with a data
access classification of NO SQL.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that DB2 does not manage. An example of an external action is sending
a message or writing a record to a file.

Because DB2 uses the RRS attachment for functions, DB2 can participate in
two-phase commit with any other resource manager that uses RRS. For
resource managers that do not use RRS, there is no coordination of commit or
rollback operations on non-DB2 resources.

EXTERNAL ACTION
The function can take an action that changes the state of an object that DB2
does not manage.

If you specify EXTERNAL ACTION, DB2:
v Materializes the views and table expressions in SELECT and SQL data

change statements that refer to the function. This materialization can
adversely affect the access paths that are chosen for the SQL statements
that refer to this function. Do not specify EXTERNAL ACTION if the
function does not have an external action.

v Does not move the function from one task control block (TCB) to
another between FETCH operations.

v Does not allow another function or stored procedure to use the TCB
until the cursor is closed. This is also applicable for cursors declared
WITH HOLD.

The only changes to resources made outside of DB2 that are under the
control of commit and rollback operations are those changes made under
RRS control.

EXTERNAL ACTION is the default.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object
that DB2 does not manage. DB2 uses this information to enable the
merging of views and table expressions for SELECT and SQL data change
statements that refer to this function. If applicable, specify NO EXTERNAL
ACTION to prevent non-optimal access paths from being chosen for SQL
statements that refer to this function.

Although the scope of global variables are beyond the scope of the routine,
global variables can be set in the routine body when NO EXTERNAL
ACTION is specified.

NO PACKAGE PATH or PACKAGE PATH package-path
Specifies the packagecpath to use when the function is run. This is the list of
the possible package collections into which the DBRM this is associated with
the function is bound.

NO PACKAGE PATH
Specifies that the list of package collections for the function is the same as
the list of package collection IDs for the program that invokes the function.

1202 SQL Reference

|
|
|

If the program that invokes the function does not use a package, DB2
resolves the package by using the CURRENT PACKAGE PATH special
register, the CURRENT PACKAGESET special register, or the PKLIST bind
option (in this order). For information about how DB2 uses these three
items, see DB2 Application Programming and SQL Guide.

PACKAGE PATH package-path
Specifies a list of package collections, in the same format as the SET
CURRENT PACKAGE PATH special register.

If the COLLID clause is specified with PACKAGE PATH, the COLLID
clause is ignored when the function is invoked.

The package-path value that is provided when the function is created is
checked when the function is invoked. If package-path contains
SESSION_USER (or USER), PATH, or PACKAGE PATH, an error is
returned when the package-path value is checked.

NO SCRATCHPAD or SCRATCHPAD
Specifies whether DB2 provides a scratchpad for the function. It is strongly
recommended that functions be reentrant, and a scratchpad provides an area
for the function to save information from one invocation to the next.

NO SCRATCHPAD
Specifies that a scratchpad is not allocated and passed to the function. NO
SCRATCHPAD is the default.

SCRATCHPAD length
Specifies that when the function is invoked for the first time, DB2 allocates
memory for a scratchpad. A scratchpad has the following characteristics:
v length must be between 1 and 32767. The default value is 100 bytes.
v DB2 initializes the scratchpad to all binary zeros (X'00''s).
v The scope of a scratchpad is the SQL statement. Each reference to the

function in an SQL statement has a scratchpad. For example, assuming
that function UDFX was defined with the SCRATCHPAD keyword, two
scratchpads are allocated for the two references to UDFX in the
following SQL statement:

SELECT *
FROM TABLE (UDFX(A)), TABLE (UDFX(B));

v The scratchpad is persistent. DB2 preserves its content from one
invocation of the function to the next. Any changes that the function
makes to the scratchpad on one call are still there on the next call. DB2
initializes the scratchpads when it begins to execute an SQL statement.
DB2 does not reset scratchpads when a correlated subquery begins to
execute.

v The scratchpad can be a central point for the system resources that the
function acquires. If the function acquires system resources, specify
FINAL CALL to ensure that DB2 calls the function one more time so
that the function can free those system resources.

Each time the function invoked, DB2 passes an additional argument to the
function that contains the address of the scratchpad.

If you specify SCRATCHPAD, DB2:
v Does not move the function from one task control block (TCB) to another

between FETCH operations.

Chapter 5. Statements 1203

v Does not allow another function or stored procedure to use the TCB until
the cursor is closed. This is also applicable for cursors declared WITH
HOLD.

NO FINAL CALL or FINAL CALL
Specifies whether a first call and a final call are made to the function.

NO FINAL CALL
A first call and final call are not made to the function. NO FINAL CALL is
the default.

FINAL CALL
A first call and final call are made to the function in addition to one or
more open, fetch, or close calls.

The types of calls are:

First call
A first call occurs only if the function was defined with FINAL CALL.
Before a first call, the scratchpad is set to binary zeros. Argument
values are passed to the function, and the function might acquire
memory or perform other one-time only resource initialization.
However, the function should not return any data to DB2, but it can
set return values for the SQL-state and diagnostic-message arguments.

Open call
An open call occurs unless the function returns an error. The scratchpad
is set to binary zeros only if the function was defined with NO FINAL
CALL. Argument values are passed to the function, and the function
might perform any one-time initialization actions that are required.
However, the function should not return any data to DB2.

Fetch call
A fetch call occurs unless the function returns an error during the first
call or open call. Argument values are passed to the function, and DB2
expects the function to return a row of data or the end-of-table
condition. If a scratchpad is also passed to the function, it remains
untouched from the previous call.

Close call
A close call occurs unless the function returns an error during the first
call, open call, or fetch call. No SQL-argument or SQL-argument-ind
values are passed to the function, and if the function attempts to
examine these values, unpredictable results might occur. If a
scratchpad is also passed to the function, it remains untouched from
the previous call.

The function should not return any data to DB2, but it can set return
values for the SQL-state and diagnostic-message arguments. Also on
close call, a function that is defined with NO FINAL CALL should
release any system resources that it acquired. (A function that is
defined with FINAL CALL should release any acquired resources on
the final call.)

Final The final call balances the first call, and like the first call, occurs only if
the function was defined with FINAL CALL. The function can set
return values for the SQL-state and diagnostic-message arguments. The
function should also release any system resources that it acquired. A
final call occurs at these times:

1204 SQL Reference

v End of statement: When the cursor is closed for cursor-oriented
statements, or the execution of the statement has completed.

v End of transaction: When normal end of statement processing does
not occur. For example, the logic of an application, for some reason,
bypasses closing the cursor.

If a commit, rollback, or abort operation causes the final call, the function
cannot issue any SQL statements when it is invoked.

DISALLOW PARALLEL
Specifies that DB2 does not consider parallelism for the function.

NO DBINFO or DBINFO
Specifies whether additional status information is passed to the function when
it is invoked.

NO DBINFO
No additional information is passed. NO DBINFO is the default.

DBINFO
An additional argument is passed when the function is invoked. The
argument is a structure that contains information such as the application
run time authorization ID, the schema name, the name of a table or
column that the function might be inserting into or updating, and
identification of the database server that invoked the function. For details
about the argument and its structure, see DB2 Application Programming and
SQL Guide.

CARDINALITY integer
Specifies an estimate of the expected number of rows that the function returns.
The number is used for optimization purposes. The value of integer must range
from 0 to 2147483647.

If you do not specify CARDINALITY, DB2 assumes a finite value. The finite
value is the same value that DB2 assumes for tables for which the RUNSTATS
utility has not gathered statistics.

If a function has an infinite cardinality—the function never returns the
“end-of-table” condition and always returns a row, then a query that requires
the “end-of-table” to work correctly will need to be interrupted. Thus, avoid
using such functions in queries that involve GROUP BY and ORDER BY.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the function is
executed. This is the package collection into which the DBRM that is associated
with the function program is bound.

NO COLLID
The package collection for the function is the same as the package
collection of the program that invokes the function. If a trigger invokes the
function, the collection of the trigger package is used. If the invoking
program does not use a package, DB2 resolves the package by using the
CURRENT PACKAGE PATH special register, the CURRENT PACKAGESET
special register, or the PKLIST bind option (in this order). For details about
how DB2 uses these three items, see the information on package resolution
in DB2 Application Programming and SQL Guide.

NO COLLID is the default.

COLLID collection-id
The name of the package collection that is to be used when the external is
executed.

Chapter 5. Statements 1205

WLM ENVIRONMENT
Identifies the WLM (workload manager) application environment in which the
function is to run. The name of the WLM environment is an SQL identifier.

If you do not specify WLM ENVIRONMENT, the function runs in the
WLM-established stored procedure address space that is specified at
installation time.

name
The WLM environment in which the function must run. If another
user-defined function or a stored procedure calls the function and that
calling routine is running in an address space that is not associated with
the WLM environment, DB2 routes the function request to a different
address space.

(name,*)
When an SQL application program directly invokes the function, the WLM
environment in which the function runs.

If another user-defined function or a stored procedure calls the function,
the function runs in same environment that the calling routine uses. In this
case, authorization to run the function in the WLM environment is not
checked because the authorization of the calling routine suffices.

Users must have the appropriate authorization to execute functions in the
specified WLM environment. For an example of a RACF command that
provides this authorization, see Running external functions in WLM
environments.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of the function can run. The value is unrelated to the ASUTIME
column of the resource limit specification table.

When you are debugging a function, setting a limit can be helpful if the
function gets caught in a loop. For information on service units, see z/OS MVS
Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units. NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the
range of 1 to 2 147 483 647. If the procedure uses more service units than
the specified value, DB2 cancels the procedure. The CPU cycles that are
consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

STAY RESIDENT
Specifies whether the load module for the function is to remain resident in
memory when the function ends.

NO The load module is deleted from memory after the function ends. Use NO
for non-reentrant functions. NO is the default.

YES
The load module remains resident in memory after the function ends. Use
YES for reentrant functions.

PROGRAM TYPE
Specifies whether the function program runs as a main routine or a subroutine.

1206 SQL Reference

SUB
The function runs as a subroutine. SUB is the default.

MAIN
The function runs as a main routine.

SECURITY
Specifies how the function interacts with an external security product, such as
RACF, to control access to non-SQL resources.

DB2
The function does not require an external security environment. If the
function accesses resources that an external security product protects, the
access is performed using the authorization ID that is associated with the
WLM-established stored procedure address space.

DB2 is the default.

USER
An external security environment should be established for the function. If
the function accesses resources that the external security product protects,
the access is performed using the primary authorization ID of the process
that invoked the function.

DEFINER
An external security environment should be established for the function. If
the function accesses resources that the external security product protects,
the access is performed using the authorization ID of the owner of the
function.

RUN OPTIONS runtime-options
Specifies the Language Environment run time options to be used for the
function. You must specify runtime-options as a character string that is no
longer than 254 bytes. If you do not specify RUN OPTIONS or pass an empty
string, DB2 does not pass any run time options to Language Environment, and
Language Environment uses its installation defaults.

For a description of the Language Environment run time options, see z/OS
Language Environment Programming Reference.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.

INHERIT SPECIAL REGISTERS
Specifies that the values of special registers are inherited according to the
rules listed in the table for characteristics of special registers in a
user-defined function in Table 40 on page 205.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
user-defined function in Table 40 on page 205.

STATIC DISPATCH
At function resolution time, DB2 chooses a function based on the static (or
declared) types of the function parameters. STATIC DISPATCH is the default.

STOP AFTER SYSTEM DEFAULT FAILURES, STOP AFTER nn FAILURES, or CONTINUE
AFTER FAILURE

Specifies whether the routine is to be put in a stopped state after some number
of failures.

Chapter 5. Statements 1207

STOP AFTER SYSTEM DEFAULT FAILURES
Specifies that this routine should be placed in a stopped state after the
number of failures indicated by the value of field MAX ABEND COUNT
on installation panel DSNTIPX. This is the default.

STOP AFTER nn FAILURES
Specifies that this routine should be placed in a stopped state after nn
failures. The value nn can be an integer from 1 to 32767.

CONTINUE AFTER FAILURE
Specifies that this routine should not be placed in a stopped state after any
failure.

NOT SECURED or SECURED
Specifies if the function is considered secure for row access control and column
access control.

NOT SECURED
Specifies that the function is not considered as secure for row access
control and column access control.

NOT SECURED is the default.

When the function is invoked, the arguments of the function must not
reference a column for which a column mask is enabled when the table is
using active column access control.

SECURED
Specifies that the function is considered secure for row access control and
column access control.

The function must be defined with SECURED when it is referenced in a
row permission or a column mask.

Notes

See “Notes” on page 1186 for information about:
v Owner privileges
v Choosing data types for parameters
v Specifying the encoding scheme for parameters
v Determining the uniqueness of functions in a schema
v Character string representation considerations
v Overriding a built-in function
v Scrollable cursors specified with user-defined functions
v Creating a secure function
v Invoking other user-defined functions in a secure function
v SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table
v Functions and global variables

Determining if a table function is a generic table function:
To identify if a table function is a generic table function, you can query the
SYSIBM.SYSROUTINES catalog table. The function is a generic table
function if the value of the RESULT_COLS column is 0 (zero) when the
value of the ROUTINETYPE column if 'F' and the value of the
FUNCTIONTYPE column is 'T'.

1208 SQL Reference

|

|
|
|
|
|
|

Alternative syntax and synonyms:
To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following keywords:
v VARIANT as a synonym for NOT DETERMINISTIC
v NOT VARIANT as a synonym for DETERMINISTIC
v NOT NULL CALL as a synonym for RETURNS NULL ON NULL

INPUT
v NULL CALL as a synonym for CALLED ON NULL INPUT
v PARAMETER STYLE DB2SQL as a synonym for PARAMETER STYLE

SQL
v TIMEZONE can be specified as an alternative to TIME ZONE.

Example

Example 1: The following example registers a table function written to return a row
consisting of a single document identifier column for each known document in a
text management system. The first parameter matches a given subject area and the
second parameter contains a given string.

Within the context of a single session, the table function always returns the same
table; therefore, it is defined as DETERMINISTIC. In addition, the DISALLOW
PARALLEL keyword is added because table functions cannot operate in parallel.

Although the size of the output for DOCMATCH is highly variable,
CARDINALITY 20 is a representative value and is specified to help DB2.

CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))
RETURNS TABLE (DOC_ID CHAR(16))

EXTERNAL NAME ABC
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
FENCED
SCRATCHPAD
FINAL CALL
DISALLOW PARALLEL
CARDINALITY 20;

Example 2: The following example registers a generic table function:
CREATE FUNCTION tf6(p1 VARCHAR(10))
RETURNS GENERIC TABLE
EXTERNAL NAME ’tf6’
LANGUAGE C
PARAMETER STYLE SQL
DETERMINISTIC
NO EXTERNAL ACTION
FENCED
SCRATCHPAD
FINAL CALL;

Note that LANGUAGE C must be specified, and the names and data type of the
result columns must be declared when the table function is referenced in the
SELECT clause.

Chapter 5. Statements 1209

|

|
|
|
|
|
|
|
|
|
|

|
|
|

CREATE FUNCTION (sourced)
This CREATE FUNCTION statement registers a user-defined function that is based
on an existing scalar or aggregate function with a database server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set defined below must include at least one of the following:
v The CREATEIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

If the authorization ID that is used to create the function has installation SYSADM
authority, the function is identified as system-defined function.

Additional privileges are required for the source function, and other privileges are
also needed if the function uses a table as a parameter, or refers to a distinct type.
These privileges are:
v The EXECUTE privilege for the function that the SOURCE clause references.
v The SELECT privilege on any table that is an input parameter to the function.
v The USAGE privilege on each distinct type that the function references.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the owner is a role, the implicit schema match does not apply and this role needs
to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for
which the ROLE AS OBJECT OWNER clause is specified, the privilege set is the
set of privileges that are held by the SQL authorization ID of the process. If the
schema name is not the same as the SQL authorization ID of the process, one of
the following conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v The SQL authorization ID of the process has the CREATEIN privilege on the

schema.

1210 SQL Reference

Syntax

�� CREATE FUNCTION function-name

�

(1)
()

,

parameter-declaration

RETURNS data-type2 �

�
(2)

AS LOCATOR
SPECIFIC specific-name PARAMETER CCSID ASCII

EBCDIC
UNICODE

�

�

�

SOURCE function-name
,

(parameter-type)
SPECIFIC specific-name

��

Notes:

1 RETURNS, SPECIFIC, and SOURCE can be specified in any order.

2 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

�� parameter-type
parameter-name

��

�� data-type
(1)

AS LOCATOR
(2)

TABLE LIKE table-name AS LOCATOR
view-name

��

Notes:

1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

2 The TABLE LIKE name AS LOCATOR clause can only be specified for the parameter list of the
function that is being defined.

parameter-declaration:

parameter-type:

Chapter 5. Statements 1211

�� built-in-type
distinct-type-name

��

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID

��

data-type:

built-in-type:

1212 SQL Reference

Description

function-name
Names the user-defined function. The name is implicitly or explicitly qualified
by a schema name.

The combination of name, schema name, the number of parameters, and the
data type of each parameter28 (without regard for any length, precision, scale,
subtype or encoding scheme attributes of the data type) must not identify a
user-defined function that exists at the current server.

If the function is sourced on an existing function to enable the use of the
existing function with a distinct type, the name can be the same name as the
existing function. In general, more than one function can have the same name
if the function signature of each function is unique.

You can use the same name for more than one function if the function
signature of each function is unique.
v The unqualified form of function-name must not be any of the following

system-reserved keywords even if you specify them as delimited identifiers:
ALL LIKE UNIQUE
AND MATCH UNKNOWN
ANY NOT =
BETWEEN NULL ¬=
DISTINCT ONLY <
EXCEPT OR <=
EXISTS OVERLAPS ¬<
FALSE SIMILAR >
FOR SOME >=
FROM TABLE ¬>
IN TRUE <>
IS TYPE

The schema name can be 'SYSTOOLS' or 'SYSFUN' if the user who executes the
CREATE statement has SYSADM or SYSCTRL privilege. Otherwise, the schema
name must not begin with 'SYS' unless the schema name is 'SYSADM'.

(parameter-declaration,...)
Specifies the number of input parameters of the function and the data type of
each parameter. All of the parameters for a function are input parameters and
are nullable. There must be one entry in the list for each parameter that the
function expects to receive. Although not required, you can give each
parameter a name.

A function can have no parameters. In this case, you must code an empty set
of parentheses, for example:

CREATE FUNCTION WOOFER()

parameter-name
Specifies the name of the input parameter. The name is an SQL identifier,
and each name in the parameter list must not be the same as any other
name.

data-type
Specifies the data type of the input parameter. The data type can be a
built-in data type or a distinct type.

built-in-type
The data type of the input parameter is a built-in data type.

28. If the function has more than 30 parameters, only the first 30 parameters are used to determine whether the function is unique.

Chapter 5. Statements 1213

For information on the data types, see built-in-type.

For parameters with a character or graphic data type, the
PARAMETER CCSID clause or CCSID clause indicates the encoding
scheme of the parameter. If you do not specify either of these clauses,
the encoding scheme is the value of field DEF ENCODING SCHEME
on installation panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length,
precision, scale, subtype, or encoding scheme attributes for the
parameter are those of the source type of the distinct type.

The implicitly or explicitly specified encoding scheme of all of the
parameters with a character or graphic string data type must be the
same—either all ASCII, all EBCDIC, or all UNICODE.

Although parameters with a character data type have an implicitly or
explicitly specified subtype (BIT, SBCS, or MIXED), the function program
can receive character data of any subtype. Therefore, conversion of the
input data to the subtype of the parameter might occur when the function
is invoked.

Parameters with a datetime data type or a distinct type are passed to the
function as a different data type:
v A datetime type parameter is passed as a character data type, and the

data is passed in ISO format.
The encoding scheme for a datetime type parameter is the same as the
implicitly or explicitly specified encoding scheme of any character or
graphic string parameters. If no character or graphic string parameters
are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

v A distinct type parameter is passed as the source type of the distinct
type.

You can specify any built-in data type or distinct type that matches or can
be cast to the data type of the corresponding parameter of the source
function (the function that is identified in the SOURCE clause). (For
information on casting data types, see “Casting between data types” on
page 111.) Length, precision, or scale attributes do not have be specified for
data types with these attributes. When specifying data types with these
attributes, follow these rules:
v An empty set of parentheses can be used to indicate that the length,

precision, or scale is the same as the source function.
v If length, precision, or scale is not explicitly specified, and empty

parentheses are not specified, the default values are used.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the
function instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type based on a LOB
data type. Passing locators instead of values can result in fewer bytes
being passed to the function, especially when the value of the
parameter is very large.

The AS LOCATOR clause has no effect on determining whether data
types can be promoted, nor does it affect the function signature, which
is used in function resolution.

1214 SQL Reference

TABLE LIKE table-name or view-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the
function is invoked, the actual values in the transition table are not passed
to the function. A single value is passed instead. This single value is a
locator to the table, which the function uses to access the columns of the
transition table. A function with a table parameter can only be invoked
from the triggered action of a trigger.

The use of TABLE LIKE provides an implicit definition of the transition
table. It specifies that the transition table has the same number of columns
as the identified table or view. If a table is specified, the transition table
includes columns that are defined as implicitly hidden in the table. The
columns have the same data type, length, precision, scale, subtype, and
encoding scheme as the identified table or view, as they are described in
catalog tables SYSCOLUMNS and SYSTABLESPACE. The number of
columns and the attributes of those columns are determined at the time the
CREATE FUNCTION statement is processed. Any subsequent changes to
the number of columns in the table or the attributes of those columns do
not affect the parameters of the function.

table-name or view-name must identify a table or view that exists at the
current server. A view cannot have columns of length 0. The name must
not identify a declared temporary table. The table that is identified can
contain XML columns; however, the function cannot reference those XML
columns. The name does not have to be the same name as the table that is
associated with the transition table for the trigger. An unqualified table or
view name is implicitly qualified according to the following rules:
v If the CREATE FUNCTION statement is embedded in a program, the

implicit qualifier is the authorization ID in the QUALIFIER bind option
when the plan or package was created or last rebound. If QUALIFIER
was not used, the implicit qualifier is the owner of the plan or package.

v If the CREATE FUNCTION statement is dynamically prepared, the
implicit qualifier is the SQL authorization ID in the CURRENT SCHEMA
special register.

When the function is invoked, the corresponding columns of the transition
table identified by the table locator and the table or view identified in the
TABLE LIKE clause must have the same definition. The data type, length,
precision, scale, and encoding scheme of these columns must match
exactly. The description of the table or view at the time the CREATE
FUNCTION statement was executed is used.

Additionally, a character FOR BIT DATA column of the transition table
cannot be passed as input for a table parameter for which the
corresponding column of the table specified at the definition is not defined
as character FOR BIT DATA. (The definition occurs with the CREATE
FUNCTION statement.) Likewise, a character column of the transition table
that is not FOR BIT DATA cannot be passed as input for a table parameter
for which the corresponding column of the table specified at the definition
is defined as character FOR BIT DATA.

For more information about using table locators, see DB2 Application
Programming and SQL Guide.

RETURNS
Identifies the output of the function.

data-type2
Specifies the data type of the output. The output is nullable.

Chapter 5. Statements 1215

You can specify any built-in data type or distinct type that can be cast from
the data type of the result of the source function. (For information on
casting data types, see “Casting between data types” on page 111.) For
additional rules that apply to the data type that you can specify, see Rules
for creating sourced functions.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the
actual value. You can specify AS LOCATOR only if the output from the
function has a LOB data type or a distinct type based on a LOB data
type.

SPECIFIC specific-name
Provides a unique name for the function. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must
not identify the specific name of another function that exists at the current
server.

The unqualified form of specific-name is an SQL identifier. The qualified form is
an SQL identifier (the schema name) followed by a period and an SQL
identifier.

If you do not specify a schema name, it is the same as the explicit or implicit
schema name of the function name (function-name). If you specify a schema
name, it must be the same as the explicit or implicit schema name of the
function name.

If you do not specify the SPECIFIC clause, the default specific name is the
name of the function. However, if the function name does not provide a
unique specific name or if the function name is a single asterisk, DB2 generates
a specific name in the form of:
SQLxxxxxxxxxxxx

where ’xxxxxxxxxxxx’ is a string of 12 characters that make the name unique.

The specific name is stored in the SPECIFIC column of the SYSROUTINES
catalog table. The specific name can be used to uniquely identify the function
in several SQL statements (such as ALTER FUNCTION, COMMENT, DROP,
GRANT, and REVOKE) and in DB2 commands (START FUNCTION, STOP
FUNCTION, and DISPLAY FUNCTION). However, the function cannot be
invoked by its specific name.

PARAMETER CCSID
Indicates whether the encoding scheme for character and graphic string
parameters is ASCII, EBCDIC, or UNICODE. The default encoding scheme is
the value specified in the CCSID clauses of the parameter list or RETURNS
clause, or in the field DEF ENCODING SCHEME on installation panel
DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for
character and graphic string parameters. If individual CCSID clauses are
specified for individual parameters in addition to this PARAMETER CCSID
clause, the value specified in all of the CCSID clauses must be the same value
that is specified in this clause.

This clause also specifies the encoding scheme to be used for system-generated
parameters of the routine such as message tokens and DBINFO.

SOURCE
Specifies that the new function is being defined as a sourced function. A
sourced function is implemented by another function (the source function). The

1216 SQL Reference

source function must be a scalar or aggregate function that exists at the current
server, and it must be one of the following types of functions:
v A function that was defined with a CREATE FUNCTION statement
v A cast function that was generated by a CREATE TYPE statement for a

distinct type
v A built-in function

If the source function is not a built-in function, the particular function can be
identified by its name, function signature, or specific name.

If the source function is a built-in function, the SOURCE clause must include a
function signature for the built-in function. The source function must not be
any of the built-in functions shown in Table 109 (if a particular syntax is
shown, only the indicated form cannot be specified).

Table 109. Built-in functions that cannot be the source function. When listed with specific
conditions, the function cannot be a source function under those conditions. Otherwise, the
function cannot be a source function regardless of its arguments.

Type of function Restricted functions

Aggregate ARRAY_AGG
COUNT(*)
COUNT_BIG(*)
XMLAGG

Chapter 5. Statements 1217

|
|

|

Table 109. Built-in functions that cannot be the source function (continued). When listed with
specific conditions, the function cannot be a source function under those conditions.
Otherwise, the function cannot be a source function regardless of its arguments.

Type of function Restricted functions

Scalar function ARRAY_DELETE
ARRAY_FIRST
ARRAY_LAST
ARRAY_NEXT
ARRAY_PRIOR
CARDINALITY
CHAR(datetime-expression, second-argument) where

second-argument is ISO, USA, EUR, JIS, or LOCAL
or if CHAR is specified with OCTETS,

CODEUNITS16, or CODEUNITS32.
CHARACTER_LENGTH
CLOB if OCTETS, CODEUNITS16, or

CODEUNITS32 is specified
COALESCE if a parameter is an array
DBCLOB if OCTETS, CODEUNITS16, or

CODEUNITS32 is specified
DECODE
DECRYPT_BIT where second argument is DEFAULT
DECRYPT_CHAR where second argument is DEFAULT
DECRYPT_DB where second argument is DEFAULT
EXTRACT
GETVARIABLE where second argument is DEFAULT
GRAPHIC if OCTETS, CODEUNITS16, or

CODEUNITS32 is specified
IFNULL if a parameter is an array
INSERT if OCTETS, CODEUNITS16, or

CODEUNITS32 is specified
LEFT if OCTETS, CODEUNITS16, or

CODEUNITS32 is specified
LOCAL
LOCATE if OCTETS, CODEUNITS16, or

CODEUNITS32 is specified
MAX
MAX_CARDINALITY
MIN
NULLIF
POSITION
RID
RIGHT if OCTETS, CODEUNITS16, or

CODEUNITS32 is specified
STRIP where multiple arguments are specified
SUBSTRING
TRIM where the first argument is BOTH, B,

LEADING, L, TRAILING, T,
or the first or second argument is FROM

TRIM_ARRAY
VARCHAR if OCTETS, CODEUNITS16, or

CODEUNITS32 is specified
VARGRAPHIC if OCTETS, CODEUNITS16, or

CODEUNITS32 is specified
XMLCONCAT
XMLELEMENT
XMLFOREST
XMLNAMESPACES

1218 SQL Reference

|
|
|
|
|
|

|

|

|

|

If you base the sourced function directly or indirectly on an external scalar
function, the sourced function inherits the attributes of the external scalar
function. This can involve several layers of sourced functions. For example,
assume that function A is sourced on function B, which in turn is sourced on
function C. Function C is an external scalar function. Functions A and B inherit
all of the attributes that are specified on the EXTERNAL clause of the CREATE
FUNCTION statement for function C.

function-name
Identifies the function that is to be used as the source function. The source
function can be defined with any number of parameters. If more than one
function is defined with the specified name in the specified or implicit
schema, an error is returned.

If you specify an unqualified function-name, DB2 searches the schemas of
the SQL path. DB2 selects the first schema that has only one function with
this name on which the user has EXECUTE authority. An error is returned
if a function is not found or a schema has more than one function with this
name.

function-name (parameter-type,...)
Identifies the function that is to be used as the source function by its
function signature, which uniquely identifies the function. Thefunction-name
(parameter-type,...) must identify a function with the specified signature. The
specified parameters must match the data types in the corresponding
position that were specified when the function was created. DB2 uses the
number of data types and the logical concatenation of the data types to
identify the specific function instance. Synonyms for data types are
considered a match.

If the function was defined with a table parameter (the LIKE TABLE name
AS LOCATOR clause was specified in the CREATE FUNCTION statement
to indicate that one of the input parameters is a transition table), the
function signature cannot be used to uniquely identify the function.
Instead, use one of the other syntax variations to identify the function with
its function name, if unique, or its specific name.

If function-name() is specified, the identified function must have zero
parameters.

function-name
Identifies the function name of the source function. If you specify an
unqualified name, DB2 searches the schemas of the SQL path.
Otherwise, DB2 searches for the function in the specified schema.

parameter-type,...
Identifies the parameters of the function.

If an unqualified distinct type name is specified, DB2 searches the SQL
path to resolve the schema name for the distinct type.

Empty parentheses are allowed for some data types that are specified
in this context. For data types that have a length, precision, or scale
attribute, use one of the following specifications:
v Empty parentheses indicate that DB2 ignores the attribute when

determining whether the data types match. For example, DEC() is
considered a match for a parameter of a function that is defined
with a data type of DEC(7,2). However, FLOAT cannot be specified
with empty parentheses because its parameter value indicates a
specific data type (REAL or DOUBLE).

Chapter 5. Statements 1219

v If a specific value for a length, precision, or scale attribute is
specified, the value must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. If the
data type is FLOAT, the precision does not need to exactly match the
value that was specified because matching is based on the data type
(REAL or DOUBLE).

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. The implicit length must exactly match the value that
was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

If you omit the FOR subtype DATA clause or the CCSID clause for data
types with a subtype or encoding scheme attribute, DB2 is to ignore
the attribute when determining whether the data types match. An
exception to ignoring the attribute is FOR BIT DATA. A character FOR
BIT DATA parameter of the new function cannot correspond to a
parameter of the source function that is not defined as character FOR
BIT DATA. Likewise, a character parameter of the new function that is
not FOR BIT DATA cannot correspond to a parameter of the source
function that is defined as character FOR BIT DATA.

The number of input parameters in the function that is being created
must be the same as the number of parameters in the source function.
If the data type of each input parameter is not the same as or castable
to the corresponding parameter of the source function, an error occurs.
The data type of the final result of the source function must match or
be castable to the result of the sourced function.

AS LOCATOR
Specifies that the function is defined to receive a locator for this
parameter. If AS LOCATOR is specified, the data type must be a LOB
or distinct type that is based on a LOB.

SPECIFIC specific-name
Identifies the function to be used as the source function by its specific
name.

If you specify an unqualified specific-name, DB2 searches the SQL path to
locate the schema. DB2 selects the first schema that contains a function
with this specific name for which the user has EXECUTE authority. DB2
returns an error if it cannot find a function with the specific name in one
of the schemas in the SQL path.

If you specify a qualified specific-name, DB2 searches the named schema for
the function. DB2 returns an error if it cannot find a function with the
specific name.

Notes

Owner privileges:
The owner is authorized to execute the function (EXECUTE privilege) in
the following cases:
v If the underlying function is a user-defined function, and the owner is

authorized with the grant option to execute the underlying function, the
privilege on the new function includes the grant option. Otherwise, the
owner can execute the new function but cannot grant others the
privilege to do so.

1220 SQL Reference

v If the underlying function is a built-in function, the owner is authorized
with the grant option to execute the underlying built-in function and the
privilege on the new function includes the grant option.

For more information, see “GRANT (function or procedure privileges)” on
page 1703. For more information about ownership of the object, see
“Authorization, privileges, permissions, masks, and object ownership” on
page 70.

Choosing data types for parameters:
When you choose the data types of the input and output parameters for
your function, consider the rules of promotion that can affect the values of
the parameters. (See “Promotion of data types” on page 110). For example,
a constant that is one of the input arguments to the function might have a
built-in data type that is different from the data type that the function
expects, and more significantly, might not be promotable to that expected
data type. Based on the rules of promotion, consider using the following
data types for parameters:
v INTEGER instead of SMALLINT
v DOUBLE instead of REAL
v VARCHAR instead of CHAR
v VARGRAPHIC instead of GRAPHIC
v VARBINARY instead of BINARY

For portability of functions across platforms that are not DB2 for z/OS, do
not use the following data types, which might have different
representations on different platforms:
v FLOAT. Use DOUBLE or REAL instead.
v NUMERIC. Use DECIMAL instead.

Specifying the encoding scheme for parameters:
The implicitly or explicitly specified encoding scheme of all of the
parameters with a character or graphic string data type (both input and
output parameters) must be the same—either all ASCII, all EBCDIC, or all
UNICODE.

Determining the uniqueness of functions in a schema:
At the current server, the function signature of each function, which is the
qualified function name combined with the number and data types of the
input parameters, must be unique. If the function has more than 30 input
parameters, only the data types of the first 30 are used to determine
uniqueness. This means that two different schemas can each contain a
function with the same name that have the same data types for all of their
corresponding data types. However, a single schema must not contain
multiple functions with the same name that have the same data types for
all of their corresponding data types.

When determining whether corresponding data types match, DB2 does not
consider any length, precision, or scale attributes in the comparison. DB2
considers the synonyms of data types as a match. For example, REAL and
FLOAT, and DOUBLE and FLOAT are considered a match. Therefore,
CHAR(8) and CHAR(35) are considered to be the same, as are
DECIMAL(11,2), DECIMAL(4,3), DECFLOAT(16) and DECFLOAT(34),
TIMESTAMP(6) and TIMESTAMP(9), TIMESTAMP(6) WITH TIME ZONE
and TIMESTAMP(9) WITH TIME ZONE. Furthermore, the character and
graphic types, and the timestamp types are considered to be the same. For
example, the following are considered to be the same type: CHAR and

Chapter 5. Statements 1221

GRAPHIC, VARCHAR and VARGRAPHIC, CLOB and DBCLOB,
TIMESTAMP WITHOUT TIME ZONE and TIMESTAMP WITH TIME
ZONE. CHAR(13) and GRAPHIC(8) are considered to be the same type.
An error is returned if the signature of the function being created is a
duplicate of a signature for an existing user-defined function with the same
name and schema.

Assume that the following statements are executed to create four functions
in the same schema. The second and fourth statements fail because they
create functions that are duplicates of the functions that the first and third
statements created.

CREATE FUNCTION PART (INT, CHAR(15)) ...
CREATE FUNCTION PART (INTEGER, CHAR(40)) ...
CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (DEC(10,7)) ...

Rules for creating sourced functions:
Assume that the function that is being created is named NEWF and the
source function is named SOURCEF. Consider the following rules when
creating a sourced function:
v The unqualified names of the sourced function and source function can

be different (NEWF and SOURCEF).
v The number of input parameters for NEWF and SOURCEF must be the

same.
v When specifying the input parameters and output for NEWF, you can

specify a value for the precision, scale, subtype, or encoding scheme for
a data type with any of these attributes or use empty parentheses.
Empty parentheses, such as VARCHAR(), indicate that the value of the
attribute is the same as the attribute for the corresponding parameter of
SOURCEF, or that is determined by data type promotion. If you specify
any values for the attributes, DB2 checks the values against the
corresponding input parameters and returned output of SOURCEF as
described next.

v When the CREATE FUNCTION statement is executed, DB2 checks the
input parameters of NEWF against those of SOURCEF. The data type of
each input parameter of NEWF function must be either the same as, or
promotable to, the data type of the corresponding parameter of
SOURCEF. (For information on the promotion of data types, see
“Casting between data types” on page 111.)
This checking does not guarantee that an error will not occur when
NEWF is invoked. For example, an argument that matches the data type
and length or precision attributes of a NEWF parameter might not be
promotable if the corresponding SOURCEF parameter has a shorter
length or less precision. In general, do not define the parameters of a
sourced function with length or precision attributes that are greater than
the attributes of the corresponding parameters of the source function.

v When the CREATE FUNCTION statement is executed, DB2 checks the
data type identified in the RETURNS clause of NEWF against the data
type that SOURCEF returns. The data type that SOURCEF returns must
be either the same as, or promotable to, the RETURNS data type of
NEWF.
This checking does not guarantee that an error will not occur when
NEWF is invoked. For example, the value of a result that matches the
data type and length or precision attributes of those specified for
SOURCEF's result might not be promotable if the RETURNS data type

1222 SQL Reference

of NEWF has a shorter length or less precision. Consider the possible
effects of defining the RETURNS data type of a sourced function with
length or precision attributes that are less than the attributes defined for
the data type returned by source function.

Scrollable cursors specified with user-defined functions:
A row can be fetched more than once with a scrollable cursor. Therefore, if
a scrollable cursor is defined with a function that is not deterministic in the
select list of the cursor, a row can be fetched multiple times with different
results for each fetch. Similarly, if a scrollable cursor is defined with a
user-defined function with external action, the action is executed with
every fetch.

SECURED functions:
The sourced user-defined function inherits the SECURED or NOT
SECURED attribute from the source function in which only the topmost
user-defined function is considered. If the topmost user-defined function is
secure, any nested user-defined functions are also considered secure. DB2
does not validate whether those nested user-defined functions are secure. If
those nested functions can access sensitive data, the security administrator
needs to ensure that those functions are allowed to access sensitive data
and should ensure that a change control audit procedure has been
established for all changes to those functions.

If the sourced function is using the VERIFY_GROUP_FOR_USER or
VERIFY_ ROLE_FOR_USER function as its source, the sourced function
must specify only two input parameters.

Functions and global variables:
The content of global variables that are referenced in functions is inherited
from the caller.

If the function references global variables, the level of SQL data access
must be at least CONTAINS SQL. If the function contains SQL statements
that make modifications to global variables, the level of SQL data access
must be MODIFIES SQL DATA.

Examples

Example 1: Assume that you created a distinct type HATSIZE, which you based on
the built-in data type INTEGER. You want to have an AVG function to compute
the average hat size of different departments. Create a sourced function that is
based on built-in function AVG.

CREATE FUNCTION AVE (HATSIZE) RETURNS HATSIZE
SOURCE SYSIBM.AVG (INTEGER);

When you created distinct type HATSIZE, two cast functions were generated,
which allow HATSIZE to be cast to INTEGER for the argument and INTEGER to
be cast to HATSIZE for the result of the function.

Example 2: After Smith registered the external scalar function CENTER in his
schema, you decide that you want to use this function, but you want it to accept
two INTEGER arguments instead of one INTEGER argument and one FLOAT
argument. Create a sourced function that is based on CENTER.

CREATE FUNCTION MYCENTER (INTEGER, INTEGER)
RETURNS FLOAT
SOURCE SMITH.CENTER (INTEGER, FLOAT);

Chapter 5. Statements 1223

|
|
|

|
|
|
|

CREATE FUNCTION (SQL scalar)
The CREATE FUNCTION (SQL Scalar) statement defines an SQL scalar function at
the current server and specifies the source statements for the function. The body of
the function is written in the SQL procedural language. The function returns a
single value each time it is invoked.

If the function that is created with the CREATE FUNCTION (SQL scalar) statement
could have been defined prior to DB2 Version 10 for z/OS, the function is an inline
SQL scalar function. No package will be created for an inline SQL scalar function.
However, if the function could have been defined prior to DB2 Version 10 for
z/OS, except that an input parameter or the RETURNS parameter uses the XML
data type, the function will still be considered an inline SQL scalar function.

For non-inline SQL scalar functions, you can define multiple versions of the
function. Use CREATE FUNCTION to define the initial version, and ALTER
FUNCTION to define subsequent versions. For information about the SQL control
statements that are supported in SQL functions, refer to Chapter 6, “SQL control
statements for SQL routines,” on page 1963.

Invocation

For an inline SQL function, this statement can be embedded in an application
program or issued interactively. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is implicitly or
explicitly specified.

For a non-inline SQL function, this statement can only be dynamically prepared
but the DYNAMICRULES run behavior must be specified implicitly or explicitly.

Authorization

The privilege set defined below must include at least one of the following:
v The CREATEIN privilege on the schema and the required authorization to add a

new package or a new version of an existing package, depending on the value
of the BIND NEW PACKAGE field on installation panel DSNTIPP

v SYSADM or SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

If the authorization ID that is used to create the function has installation SYSADM
authority, the function is identified as system-defined function.

If a user-defined type is referenced (as the data type of a parameter or an SQL
variable), the privilege set must also include at least one of the following:
v Ownership of the user-defined type
v The USAGE privilege on the user-defined type
v SYSADM authority

If the function uses a table as a parameter, the privilege set must also include at
least one of the following:
v Ownership of the table

1224 SQL Reference

|
|

|

|

v The SELECT privilege on the table
v SYSADM authority

At least one of the following additional privileges is required if the SECURED
option is specified
v SECADM authority
v CREATE_SECURE_OBJECT privilege

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the owner is a role, the implicit schema match does not apply and this role needs
to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for
which the ROLE AS OBJECT OWNER clause is specified, the privilege set is the
set of privileges that are held by the SQL authorization ID of the process. If the
schema name is not the same as the SQL authorization ID of the process, one of
the following conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v The SQL authorization ID of the process has the CREATEIN privilege on the

schema.

Syntax

�� CREATE FUNCTION function-name

�

()
,

parameter-declaration

�

� RETURNS data-type2
VERSION V1

VERSION routine-version-id

� option-list

�

� SQL-routine-body ��

�� parameter-name parameter-type ��

parameter-declaration:

parameter-type:

Chapter 5. Statements 1225

�� data-type
TABLE LIKE table-name AS LOCATOR

view-name

��

�� built-in-type
distinct-type-name
array-type-name

��

data-type:

1226 SQL Reference

|

built-in-type:

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID
XML

��

�� SQL-control-statement
simple-return-statement

��

SQL-routine-body:

simple-return-statement:

Chapter 5. Statements 1227

�� RETURN expression
NULL

��

option-list: (The options in the option-list can be specified in any order, but each one can only be specified one time)

1228 SQL Reference

��
(1) LANGUAGE SQL NOT DETERMINISTIC EXTERNAL ACTION

SPECIFIC specific-name DETERMINISTIC NO EXTERNAL ACTION
�

�
READS SQL DATA CALLED ON NULL INPUT STATIC DISPATCH

CONTAINS SQL RETURNS NULL ON NULL INPUT ALLOW PARALLEL
MODIFIES SQL DATA DISALLOW PARALLEL

�

�
DISALLOW DEBUG MODE PARAMETER CCSID ASCII QUALIFIER schema-name
ALLOW DEBUG MODE PARAMETER CCSID EBCDIC
DISABLE DEBUG MODE PARAMETER CCSID UNICODE

�

�
ASUTIME NO LIMIT INHERIT SPECIAL REGISTERS

PACKAGE OWNER authorization-name ASUTIME LIMIT integer DEFAULT SPECIAL REGISTERS
�

�
CURRENT DATA NO DEGREE 1

WLM ENVIRONMENT FOR DEBUG MODE name CURRENT DATA YES DEGREE ANY
�

�
CONCURRENT ACCESS RESOLUTION USE CURRENTLY COMMITTED
CONCURRENT ACCESS RESOLUTION WAIT FOR OUTCOME

�

�
DYNAMICRULES RUN WITHOUT EXPLAIN

DYNAMICRULES BIND APPLICATION ENCODING SCHEME ASCII WITH EXPLAIN
DYNAMICRULES DEFINEBIND APPLICATION ENCODING SCHEME EBCDIC
DYNAMICRULES DEFINERUN APPLICATION ENCODING SCHEME UNICODE
DYNAMICRULES INVOKEBIND
DYNAMICRULES INVOKERUN

�

�
WITHOUT IMMEDIATE WRITE ISOLATION LEVEL CS OPTHINT ''

WITH IMMEDIATE WRITE ISOLATION LEVEL RS OPTHINT string-constant
ISOLATION LEVEL RR
ISOLATION LEVEL UR

�

�

�

REOPT NONE VALIDATE RUN

, REOPT ALWAYS VALIDATE BIND ROUNDING DEC_ROUND_CEILING
REOPT ONCE ROUNDING DEC_ROUND_DOWN

SQL PATH schema-name ROUNDING DEC_ROUND_FLOOR
SYSTEM PATH ROUNDING DEC_ROUND_HALF_DOWN
SESSION USER ROUNDING DEC_ROUND_HALF_EVEN
USER ROUNDING DEC_ROUND_HALF_UP

ROUNDING DEC_ROUND_UP

�

�
FOR UPDATE CLAUSE REQUIRED NOT SECURED

DATE FORMAT ISO DECIMAL(15) FOR UPDATE CLAUSE OPTIONAL TIME FORMAT ISO SECURED
DATE FORMAT EUR DECIMAL(31) TIME FORMAT EUR
DATE FORMAT USA DECIMAL(15,s) TIME FORMAT USA
DATE FORMAT JIS DECIMAL(31,s) TIME FORMAT JIS
DATE FORMAT LOCAL TIME FORMAT LOCAL

�

�
BUSINESS_TIME SENSITIVE YES

BUSINESS_TIME SENSITIVE NO

SYSTEM_TIME SENSITIVE YES

SYSTEM_TIME SENSITIVE NO

ARCHIVE SENSITIVE YES

ARCHIVE SENSITIVE NO
�

�
APPLCOMPAT compatibility-level

��

Notes:

1 Only LANGUAGE SQL, SPECIFIC, PARAMETER CCSID, NOT DETERMINISTIC,
DETERMINISTIC, EXTERNAL ACTION, NO EXTERNAL ACTION, CONTAINS SQL, READS
SQL DATA, STATIC DISPATCH, CALLED ON NULL INPUT, NOT SECURED, and SECURED
can be specified for an inline SQL scalar function. If other options are specified, the function will
be considered a non-inline SQL scalar function.

Chapter 5. Statements 1229

Description

function-name
Names the function. If function-name already exists with the specified signature,
an error is returned even if VERSION is specified with a routine-version-id that
is different from any existing version identifier for the function that is specified
in function-name.29

(parameter-declaration,...)

Specifies the number of input parameters of the function and the name and
data type of each parameter. Each parameter-declaration specifies an input
parameter for the function. A function can have zero or more input parameters.
There must be one entry in the list for each parameter that the function expects
to receive. All of the parameters for a function are input parameters and are
nullable. If the function has more than 30 parameters, only the first 30
parameters are used to determine if the function is unique.

parameter-name
Specifies the name of the input parameter. The name is an SQL identifier,
and each name in the parameter list must not be the same as any other
name.

data-type
Specifies the data type of the input parameter. The data type can be a
built-in data type or a user-defined type.

built-in-type
The data type of the input parameter is a built-in data type.

For information on the data types, see built-in-type.

For parameters with a character or graphic data type, the
PARAMETER CCSID clause or CCSID clause indicates the encoding
scheme of the parameter. If you do not specify either of these clauses,
the encoding scheme is the value of field DEF ENCODING SCHEME
on installation panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length,
precision, scale, subtype, or encoding scheme attributes for the
parameter are those of the source type of the distinct type. The distinct
type must not be based on a LOB data type.

If you specify the name of the distinct type without a schema name,
DB2 resolves the distinct type by searching the schemas in the SQL
path.

array-type-name
The data type of the input parameter is a user-defined array type.

If you specify array-type-name without a schema name, DB2 resolves
the array type by searching the schemas in the SQL path.

The implicitly or explicitly specified encoding scheme of all of the
parameters with a character or graphic string data type must be the
same—either all ASCII, all EBCDIC, or all UNICODE.

Although parameters with a character data type have an implicitly or
explicitly specified subtype (BIT, SBCS, or MIXED), the function program

29. If the function has more than 30 parameters, only the first 30 parameters are used to determine whether the function is unique.

1230 SQL Reference

|
|

|
|

|
|

can receive character data of any subtype. Therefore, conversion of the
input data to the subtype of the parameter might occur when the function
is invoked. An error occurs if mixed data that actually contains DBCS
characters is used as the value for an input parameter that is declared with
an SBCS subtype.

Parameters with a datetime data type or a distinct type are passed to the
function as a different data type:
v A datetime type parameter is passed as a character data type, and the

data is passed in ISO format.
The encoding scheme for a datetime type parameter is the same as the
implicitly or explicitly specified encoding scheme of any character or
graphic string parameters. If no character or graphic string parameters
are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

v A distinct type parameter is passed as the source type of the distinct
type.

RETURNS
Identifies the output of the function.

data-type2
Specifies the data type of the output. The output is nullable.

The same considerations that apply to the data type of input parameter, as
described under data-type, apply to the data type of the output of the
function.

VERSION routine-version-id
Specifies the version identifier for the first version of the function that is to be
generated. You can use an ALTER FUNCTION statement with the ADD
VERSION clause or the BIND DEPLOY command to create additional versions
of the function.

routine-version-id
An SQL identifier of up to 64 EBCDIC bytes that designates a version
of a routine. The UTF-8 representation of the name must not exceed
122 bytes.

V1 is the default version identifier.

SPECIFIC specific-name
Specifies a unique name for the function. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must
not identify the specific name of another function that exists at the current
server.

The unqualified form of specific-name is an SQL identifier. The qualified form is
an SQL identifier (the schema name) followed by a period and an SQL
identifier.

If you do not specify a schema name, it is the same as the explicit or implicit
schema name of the function name (function-name). If you specify a schema
name, it must be the same as the explicit or implicit schema name of the
function name.

If you do not specify the SPECIFIC clause, the default specific name is the
name of the function. However, if the function name does not provide a
unique specific name or if the function name is a single asterisk, DB2 generates
a specific name in the form of:
SQLxxxxxxxxxxxx

Chapter 5. Statements 1231

where ’xxxxxxxxxxxx’ is a string of 12 characters that make the name unique.

The specific name is stored in the SPECIFIC column of the SYSROUTINES
catalog table. The specific name can be used to uniquely identify the function
in several SQL statements (such as ALTER FUNCTION, COMMENT, DROP,
GRANT, and REVOKE) and must be used in DB2 commands (START
FUNCTION, STOP FUNCTION, and DISPLAY FUNCTION). However, the
function cannot be invoked by its specific name.

RETURN
Specifies a simple form of the RETURN statement that will not result in the
creation of a package when RETURN is the only statement in the function
body. The RETURN statement specifies the result of the function.

expression
The data type of the result must be assignable to the data type that is
defined for the function result, using the storage assignment rules as
described in “Assignment and comparison” on page 121. An aggregate
function, a user-defined function that is sourced on an aggregate function,
or an OLAP specification must not be specified for the RETURN statement.
See “Expressions” on page 240 for information on expressions. For this
simple form of the RETURN statement, expression cannot contain a scalar
fullselect. If expression contains a fullselect, the function is a non-inline
function, a package is created, and the RETURN statement is subject to the
rules specified in “RETURN statement” on page 2003.

NULL
Specifies that the null value is returned.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the
function is invoked with the same input arguments.

NOT DETERMINISTIC
The function might not return the same result each time that the function
is invoked with the same input arguments. The function depends on some
state values that affect the results. DB2 uses this information to disable the
merging of views and table expressions when processing SELECT and SQL
data change statements that refer to this function. An example of a
function that is not deterministic is one that generates random numbers.

NOT DETERMINISTIC must be specified explicitly or implicitly if the
function program accesses a special register or invokes another function
that is not deterministic. NOT DETERMINISTIC is the default.

DETERMINISTIC
The function always returns the same result function each time that the
function is invoked with the same input arguments. An example of a
deterministic function is a function that calculates the square root of the
input. DB2 uses this information to enable the merging of views and table
expressions for SELECT and SQL data change statements that refer to this
function. DETERMINISTIC is not the default. If applicable, specify
DETERMINISTIC to prevent non-optimal access paths from being chosen
for SQL statements that refer to this function.

DB2 does not verify that the function program is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

1232 SQL Reference

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that DB2 does not manage. An example of an external action is sending
a message or writing a record to a file.

EXTERNAL ACTION
The function can take an action that changes the state of an object that DB2
does not manage.

Some SQL statements that invoke functions with external actions can result
in incorrect results if parallel tasks execute the function. For example, if the
function sends a note for each initial call to it, one note is sent for each
parallel task instead of once for the function. Specify the DISALLOW
PARALLEL clause for functions that do not work correctly with
parallelism.

If you specify EXTERNAL ACTION, then DB2:
v Materializes the views and table expressions in SELECT and SQL data

change statements that refer to the function. This materialization can
adversely affect the access paths that are chosen for the SQL statements
that refer to this function. Do not specify EXTERNAL ACTION if the
function does not have an external action.

v Does not move the function from one task control block (TCB) to
another between FETCH operations.

v Does not allow another function or stored procedure to use the TCB
until the cursor is closed. This is also applicable for cursors declared
WITH HOLD.

The only changes to resources made outside of DB2 that are under the
control of commit and rollback operations are those changes made under
RRS control.

EXTERNAL ACTION must be specified implicitly or explicitly specified if
the SQL routine body invokes a function that is defined with EXTERNAL
ACTION. EXTERNAL ACTION is the default.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object
that DB2 does not manage. DB2 uses this information to enable the
merging of views and table expressions for SELECT and SQL data change
statements that refer to this function. If applicable, specify NO EXTERNAL
ACTION to prevent non-optimal access paths from being chosen for SQL
statements that refer to this function.

Although the scope of global variables are beyond the scope of the routine,
global variables can be set in the routine body when NO EXTERNAL
ACTION is specified.

DB2 does not verify that the function program is consistent with the
specification of EXTERNAL ACTION or NO EXTERNAL ACTION.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Specifies which SQL statements, if any, can be executed in the function or any
routine that is called from the function. For the data access classification of
each statement, see Table 162 on page 2030.

MODIFIES SQL DATA
Specifies that the function can execute any SQL statement except the
statements that are not supported in functions. Do not specify MODIFIES
SQL DATA when ALLOW PARALLEL is in effect.

Chapter 5. Statements 1233

|
|
|

READS SQL DATA
Specifies that the function can execute statements with a data access
classification of READS SQL DATA, CONTAINS SQL, or NO SQL. The
function cannot execute SQL statements that modify data.

READS SQL DATA is the default.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data
access classification of CONTAINS SQL or NO SQL. The function cannot
execute SQL statements that read or modify data.

CALLED ON NULL INPUT or RETURNS NULL ON NULL INPUT
Specifies whether the function is invoked if any of the input arguments is null
at execution time.

CALLED ON NULL INPUT
Specifies that the function is to be invoked if any, or if all, of the argument
values are null. Specifying CALLED ON NULL INPUT means that the
body of the function must be coded to test for null argument values.

CALLED ON NULL INPUT is the default.

RETURNS NULL ON NULL INPUT
Specifies that the function is not invoked and returns the null value if any
of the input argument values is null.

STATIC DISPATCH
At function resolution time, DB2 chooses a function based on the static (or
declared) types of the function parameters. STATIC DISPATCH is the default.

ALLOW PARALLEL or DISALLOW PARALLEL
Specifies if the function can be run in parallel. The default is DISALLOW
PARALLEL, if you specify one or more of the following clauses:
v NOT DETERMINISTIC
v EXTERNAL ACTION
v MODIFIES SQL DATA

Otherwise, ALLOW PARALLEL is the default.

ALLOW PARALLEL
Specifies that the function can be run in parallel.

DISALLOW PARALLEL
Specifies that the function cannot be run in parallel.

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether this version of the routine can be run in debugging mode.
The default is determined using the value of the CURRENT DEBUG MODE
special register.

ALLOW DEBUG MODE
Specifies that this version of the routine can be run in debugging mode.
When this version of the routine is invoked and debugging is attempted, a
WLM environment must be available.

DISALLOW DEBUG MODE
Specifies that this version of the routine cannot be run in debugging mode.

You can use an ALTER statement to change this option to ALLOW DEBUG
MODE for this initial version of the routine.

1234 SQL Reference

DISABLE DEBUG MODE
Specifies that this version of the routine can never be run in debugging
mode.

This version of the routine cannot be changed to specify ALLOW DEBUG
MODE or DISALLOW DEBUG MODE after this version of the routine has
been created or altered to use DISABLE DEBUG MODE. To change this
option, drop the routine and create it again using the option that you want.
An alternative to dropping and recreating the routine is to create a version
of the routine that uses the option that you want and making that version
the active version.

When DISABLE DEBUG MODE is in effect, the WLM ENVIRONMENT
FOR DEBUG MODE is ignored.

PARAMETER CCSID
Indicates whether the encoding scheme for character or graphic string
parameters is ASCII, EBCDIC, or UNICODE. The default encoding scheme is
the value that is specified in the CCSID clauses of the parameter list or in the
field DEF ENCODING SCHEME on installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for
character or graphic string parameters. If individual CCSID clauses are
specified for individual parameters in addition to this PARAMETER CCSID
clause, the value that is specified in all of the CCSID clauses must be the same
value that is specified in this clause.

If the data type for a parameter is a user-defined distinct type that is defined
as a character or graphic type string, the CCSID of the distinct type must be
the same as the value that is specified in this clause.

If the data type for a parameter is a user-defined array type that is defined
with character or graphic string array elements, or a character string array
index, the CCSID of these array attributes must be the same as the value that
is specified in this clause.

This clause also specifies the encoding scheme that will be used for
system-generated parameters of the routine.

QUALIFIER schema-name
Specifies the implicit qualifier that is used for unqualified names of tables,
views, indexes, and aliases that are referenced in the routine body. The default
value is the same as the default schema.

PACKAGE OWNER authorization-name
Specifies the owner of the package that is associated with the first version of
the routine. The SQL authorization ID of the process is the default value.

The authorization ID must have the privileges that are required to execute the
SQL statements that are contained in the routine body and must contain the
necessary bind privileges. The value of PACKAGE OWNER is subject to
translation when it is sent to a remote system.

If the privilege set lacks SYSADM or SYSCTRL authority, authorization-name
must be the same as one of the authorization IDs of the process or the
authorization ID of the process. If the privilege set includes SYSADM or
SYSCTRL authority, authorization-name can be any authorization ID that
contains the necessary bind privileges.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single

Chapter 5. Statements 1235

invocation of a routine can run. The value is unrelated to the ASUTIME
column of the resource limit specification table.

When you are debugging a routine, setting a limit can be helpful in case the
routine gets caught in a loop. For information on service units, see z/OS MVS
Initialization and Tuning Guide.

NO LIMIT
Specifies that there is no limit on the service units.

NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the
range of 1 to 2 147 483 647. If the procedure uses more service units than
the specified value, DB2 cancels the procedure. The CPU cycles that are
consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.

INHERIT SPECIAL REGISTERS
Specifies that the values of special registers are inherited, according to the
rules that are listed in the table for characteristics of special registers in a
routine in Table 40 on page 205.

INHERIT SPECIAL REGISTERS is the default.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
routine in Table 40 on page 205.

WLM ENVIRONMENT FOR DEBUG MODE name
Specifies the WLM (workload manager) application environment that is used
by DB2 when debugging the routine. The name of the WLM environment is an
SQL identifier.

If you do not specify WLM ENVIRONMENT FOR DEBUG MODE, DB2 uses
the default WLM-established stored procedure address space specified at
installation time.

To define a routine that is to run in a specified WLM application environment,
you must have the appropriate authority for the WLM application
environment. For an example of a RACF command that provides this
authorization, see Running stored procedures.

The WLM ENVIRONMENT FOR DEBUG MODE value is ignored when
DISABLE DEBUG MODE is in effect.

CURRENT DATA(YES) or CURRENT DATA(NO)
Specifies whether to require data currency for read-only and ambiguous
cursors when the isolation level of cursor stability is in effect. CURRENT
DATA also determines whether block fetch can be used for distributed,
ambiguous cursors.

YES
Specifies that data currency is required for read-only and ambiguous
cursors. DB2 acquired page or row locks to ensure data currency. Block
fetch is ignored for distributed, ambiguous cursors.

NO Specifies that data currency is not required for read-only and ambiguous

1236 SQL Reference

cursors. Block fetch is allowed for distributed, ambiguous cursors. Use of
CURRENT DATA(NO) is not recommended if the routine attempts to
dynamically prepare and execute a DELETE WHERE CURRENT OF
statement against an ambiguous cursor after that cursor is opened. You
receive a negative SQLCODE if your routine attempts to use a DELETE
WHERE CURRENT OF statement for any of the following cursors:
v A cursor that is using block fetch
v A cursor that is using query parallelism
v A cursor that is positioned on a row that is modified by this or another

application process

NO is the default.

DEGREE
Specifies whether to attempt to run a query using parallel processing to
maximize performance.

1 Specifies that parallel processing should not be used.

1 is the default.

ANY
Specifies that parallel processing can be used.

CONCURRENT ACCESS RESOLUTION
Specifies the whether processing uses only committed data or whether it will
wait for commit or rollback of data that is in the process of being updated.

WAIT FOR OUTCOME
Specifies that processing will wait for the commit or rollback of data that is
in the process of being updated.

USE CURRENTLY COMMITTED
Specifies that processing use the currently committed version of the data
when data that is in the process of being updated is encountered. USE
CURRENTLY COMMITTED is applicable on scans that access tables that
are defined in universal table spaces with row or page level lock size.

When there is lock contention between a read transaction and an insert
transaction, USE CURRENTLY COMMITTED is applicable to scans with
isolation level CS or RS. Applicable scans include intent read scans for
read-only and ambiguous queries and for updatable cursors. USE
CURRENTLY COMMITTED is also applicable to scans initiated from
WHERE predicates of UPDATE or DELETE statements and the subselect of
INSERT statements.

When there is lock contention is between a read transaction and a delete
transaction, USE CURRENTLY COMMITTED is applicable to scans with
isolation level CS and when CURRENTDATA(NO) is specified.

DYNAMICRULES
Specifies the values that apply, at run time, for the following dynamic SQL
attributes:
v The authorization ID that is used to check authorization
v The qualifier that is used for unqualified objects
v The source for application programming options that DB2 uses to parse and

semantically verify dynamic SQL statements

DYNAMICRULES also specifies whether dynamic SQL statements can include
GRANT, REVOKE, ALTER, CREATE, DROP, and RENAME statements.

Chapter 5. Statements 1237

In addition to the value of the DYNAMICRULES clause, the run time
environment of a routine controls how dynamic SQL statements behave at run
time. The combination of the DYNAMICRULES value and the run time
environment determines the value for the dynamic SQL attributes. That set of
attribute values is called the dynamic SQL statement behavior. The following
values can be specified:

RUN
Specifies that dynamic SQL statements are to be processed using run
behavior.

RUN is the default.

BIND
Specifies that dynamic SQL statements are to be processed using bind
behavior.

DEFINEBIND
Specifies that dynamic SQL statements are to be processed using either
define behavior or bind behavior.

DEFINERUN
Specifies that dynamic SQL statements are to be processed using either
define behavior or run behavior.

INVOKEBIND
Specifies that dynamic SQL statements are to be processed using either
invoke behavior or bind behavior.

INVOKERUN
Specifies that dynamic SQL statements are to be processed using either
invoke behavior or run behavior.

See “Authorization IDs and dynamic SQL” on page 75 for information on the
effects of these options.

APPLICATION ENCODING SCHEME
Specifies the default encoding scheme for SQL variables in static SQL
statements in the routine body. The value is used for defining an SQL variable
in a compound statement if the CCSID clause is not specified as part of the
data type, and the PARAMETER CCSID routine option is not specified.

ASCII
Specifies that the data is encoded using the ASCII CCSIDs of the server.

EBCDIC
Specifies that the data is encoded using the EBCDIC CCSIDs of the server.

UNICODE
Specifies that the data is encoded using the Unicode CCSIDs of the server.

See the ENCODING bind option in DB2 Command Reference for information
about how the default for this option is determined.

WITH EXPLAIN or WITHOUT EXPLAIN
Specifies whether information will be provided about how SQL statements in
the routine will execute.

WITHOUT EXPLAIN
Specifies that information will not be provided about how SQL statements
in the routine will execute.

1238 SQL Reference

You can get EXPLAIN output for a statement that is embedded in a
routine that is specified using WITHOUT EXPLAIN by embedding the
SQL statement EXPLAIN in the routine body. Otherwise, the value of the
EXPLAIN option applies to all explainable SQL statements in the routine
body, and to the fullselect portion of any DECLARE CURSOR statements.

WITHOUT EXPLAIN is the default.

WITH EXPLAIN
Specifies that information will be provided about how SQL statements in
the routine will execute. Information is inserted into the table
owner.PLAN_TABLE. owner is the authorization ID of the owner of the
routine. Alternatively, the authorization ID of the owner of the routine can
have an alias as owner.PLAN_TABLE that points to the base table,
PLAN_TABLE. owner must also have the appropriate SELECT and INSERT
privileges on that table. WITH EXPLAIN does not obtain information for
statements that access remote objects. PLAN_TABLE must have a base
table and can have multiple aliases with the same table name,
PLAN_TABLE, but have different schema qualifiers. It cannot be a view or
a synonym and should exist before the version is added or replaced. In all
inserts to owner.PLAN_TABLE, the value of QUERYNO is the statement
number that is assigned by DB2.

The WITH EXPLAIN option also populates two optional tables if they
exist: DSN_STATEMNT_TABLE and DSN_FUNCTION_TABLE.
DSN_STATEMNT_TABLE contains an estimate of the processing cost for
an SQL statement. See DB2 Application Programming and SQL Guide for
more information. DSN_FUNCTION_TABLE contains information about
function resolution. See DB2 Application Programming and SQL Guide for
more information.

For a description of the tables that are populated by the WITH EXPLAIN
option, see “EXPLAIN” on page 1642.

WITH IMMEDIATE WRITE or WITHOUT IMMEDIATE WRITE
Specifies whether immediate writes are to be done for updates that are made
to group buffer pool dependent page sets or partitions. This option is only
applicable for data sharing environments. The IMMEDWRITE subsystem
parameter has no affect of this option. DB2 Command Reference shows the
implied hierarchy of the IMMEDWRITE bind option (which is similar to this
routine option) as it affects run time.

WITHOUT IMMEDIATE WRITE
Specifies that normal write activity is performed. Updated pages that are
group buffer pool dependent are written at or before phase one of commit
or at the end of abort for transactions that have been rolled back.

WITHOUT IMMEDIATE WRITE is the default.

WITH IMMEDIATE WRITE
Specifies that updated pages that are group buffer pool dependent are
immediately written as soon as the buffer update completes. Updated
pages are written immediately even if the buffer is updated during
forward progress or during the rollback of a transaction. WITH
IMMEDIATE WRITE might impact performance.

ISOLATION LEVEL RR, RS, CS, or UR
Specifies how far to isolate the routine from the effects of other running
applications. For information about isolation levels, see DB2 Performance
Monitoring and Tuning Guide.

Chapter 5. Statements 1239

RR Specifies repeatable read.

RS Specifies read stability.

CS Specifies cursor stability. CS is the default.

UR Specifies uncommitted read.

OPTHINT string-constant
Specifies whether query optimization hints are used for static SQL statements
that are contained within the body of the routine.

string-constant is a character string of up to 128 bytes in length, which is used
by the DB2 subsystem when searching the PLAN_TABLE for rows to use as
input. The default value is an empty string, which indicates that the DB2
subsystem does not use optimization hints for static SQL statements.

Optimization hints are only used if optimization hints are enabled for your
system. See DB2 Installation Guide for information about enabling optimization
hints.

SQL PATH
Specifies the SQL path that the DB2 subsystem uses to resolve unqualified
user-defined data types, functions, and procedure names (in CALL statements)
in the body of the routine. The maximum length of the SQL path is 2048 bytes.
DB2 calculates the length by taking each schema-name that is specified and
removing any trailing blanks from it, adding a delimiter on the left and right
sides, and adding one comma after each schema name except for the last
name. The length of the resulting string cannot exceed 2048 bytes.

schema-name
Identifies a schema. DB2 does not verify that the schema exists when the
CREATE statement is processed. The same schema name should not
appear more than one time in the list of schema names.

SYSPUBLIC must not be specified for the SQL path.

SYSTEM PATH
Specifies the schema names "SYSIBM", "SYSFUN", "SYSPROC",
"SYSIBMADM".

SESSION_USER or USER
Specifies the value of the SESSION_USER (or USER) special register. At the
time the CREATE statement is processed, the actual length is included in
the total length of the list of schema names that is specified for the SQL
PATH option.

REOPT
Specifies if DB2 will determine the access path at run time by using the values
of SQL variables or SQL parameters, parameter markers, and special registers.

NONE
Specifies that DB2 does not determine the access path at run time by using
the values of SQL variables or SQL parameters, parameter markers, and
special registers.

NONE is the default.

ALWAYS
Specifies that DB2 always determines the access path at run time each time
an SQL statement is run. Do not specify REOPT ALWAYS with the WITH
KEEP DYNAMIC or NODEFER PREPARE clauses.

1240 SQL Reference

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|

ONCE
Specifies that DB2 determine the access path for any dynamic SQL
statements only once, at the first time the statement is opened. This access
path is used until the prepared statement is invalidated or removed from
the dynamic statement cache and need to be prepared again.

VALIDATE RUN or VALIDATE BIND
Specifies whether to recheck, at run time, errors of the type "OBJECT NOT
FOUND" and "NOT AUTHORIZED" that are found during bind or rebind. The
option has no effect if all objects and needed privileges exist.

VALIDATE RUN
Specifies that if needed objects or privileges do not exist when the
CREATE statement is processed, warning messages are returned, but the
CREATE statement succeeds. The DB2 subsystem rechecks for the objects
and privileges at run time for those SQL statements that failed the checks
during processing of the CREATE statement. The authorization checks the
use of the authorization ID of the owner of the routine.

VALIDATE RUN is the default.

VALIDATE BIND
Specifies that if needed objects or privileges do not exist at the time the
CREATE statement is processed, an error is issued and the CREATE
statement fails.

ROUNDING
Specifies the rounding mode for manipulation of DECFLOAT data. The default
value is taken from the DEFAULT DECIMAL FLOATING POINT ROUNDING
MODE in DECP.

DEC_ROUND_CEILING
Specifies numbers are rounded towards positive infinity.

DEC_ROUND_DOWN
Specifies numbers are rounded towards 0 (truncation).

DEC_ROUND_FLOOR
Specifies numbers are rounded towards negative infinity.

DEC_ROUND_HALF_DOWN
Specifies numbers are rounded to nearest; if equidistant, round down.

DEC_ROUND_HALF_EVEN
Specifies numbers are rounded to nearest; if equidistant, round so that the
final digit is even.

DEC_ROUND_HALF_UP
Specifies numbers are rounded to nearest; if equidistant, round up.

DEC_ROUND_UP
Specifies numbers are rounded away from 0.

DATE FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the date format for result values that are string representations of
date or time values. See “String representations of datetime values” on page
101 for more information.

The default format is specified in the DATE FORMAT field of installation panel
DSNTIP4 of the system where the routine is defined. You cannot use the
LOCAL option unless you have a date exit routine.

Chapter 5. Statements 1241

DECIMAL(15), DECIMAL(31), DECIMAL(15,s), or DECIMAL(31,s)
Specifies the maximum precision that is to be used for decimal arithmetic
operations. See “Arithmetic with two decimal operands” on page 244 for more
information. The default format is specified in the DECIMAL ARITHMETIC
field of installation panel DSNTIPF of the system where the routine is defined.
If the form pp.s is specified, s must be a number between 1 and 9. s represents
the minimum scale that is to be used for division.

FOR UPDATE CLAUSE OPTIONAL or FOR UPDATE CLAUSE REQUIRED
Specifies whether the FOR UPDATE clause is required for a DECLARE
CURSOR statement if the cursor is to be used to perform positioned updates.

FOR UPDATE CLAUSE REQUIRED
Specifies that a FOR UPDATE clause must be specified as part of the
cursor definition if the cursor will be used to make positioned updates.

FOR UPDATE CLAUSE REQUIRED is the default.

FOR UPDATE CLAUSE OPTIONAL
Specifies that the FOR UPDATE clause does not need to be specified in
order for a cursor to be used for positioned updates. The routine body can
include positioned UPDATE statements that update columns that the user
is authorized to update.

The FOR UPDATE clause with no column list applies to static or dynamic SQL
statements. Even if you do not use this clause, you can specify FOR UPDATE
OF with a column list to restrict updates to only the columns that are named
in the FOR UPDATE clause and to specify the acquisition of update locks.

TIME FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the time format for result values that are string representations of
date or time values. See “String representations of datetime values” on page
101 for more information.

The default format is specified in the TIME FORMAT field of installation panel
DSNTIP4 of the system where the routine is defined. You cannot use the
LOCAL option unless you have a date exit routine.

NOT SECURED or SECURED
Specifies if the function is considered secure for row access control and column
access control. The SECURED or NOT SECURED option applies to all future
versions of the function.

NOT SECURED
Specifies that the function is not considered secure for row access control
and column access control.

NOT SECURED is the default.

When the function is invoked, the arguments of the function must not
reference a column for which a column mask is enabled when the table is
using active column access control.

SECURED
Specifies that the function is considered secure for row access control and
column access control.

The function must be secure when it is referenced in a row permission or a
column mask.

BUSINESS_TIME SENSITIVE
Determines whether references to application-period temporal tables in both

1242 SQL Reference

|
|

static and dynamic SQL statements are affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

YES
References to application-period temporal tables are affected by the value
of the CURRENT TEMPORAL BUSINESS_TIME special register. YES is the
default value.

NO References to application-period temporal tables are not affected by the
value of the CURRENT TEMPORAL BUSINESS_TIME special register.

Related information:

“CURRENT TEMPORAL BUSINESS_TIME” on page 194

SYSTEM_TIME SENSITIVE
Determines whether references to system-period temporal tables in both static
and dynamic SQL statements are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

YES
References to system-period temporal tables are affected by the value of
the CURRENT TEMPORAL SYSTEM_TIME special register. YES is the
default value.

NO References to system-period temporal tables are not affected by the value
of the CURRENT TEMPORAL SYSTEM_TIME special register.

Related information:

“CURRENT TEMPORAL SYSTEM_TIME” on page 196

ARCHIVE SENSITIVE
Determines whether references to archive-enabled tables in SQL statements are
affected by the value of the SYSIBMADM.GET_ARCHIVE global variable.

YES
References to archive-enabled tables are affected by the value of the
SYSIBMADM.GET_ARCHIVE global variable. YES is the default value.

NO References to archive-enabled tables are not affected by the value of the
SYSIBMADM.GET_ARCHIVE global variable.

Related information:

“References to built-in global variables” on page 223

APPLCOMPAT compatibility-level
Specifies the package compatibility level behavior for static SQL, If this option
is not specified then the behavior is determined, in priority order, by the
compatibility-level of the last BIND or REBIND of the package or the
APPLCOMPAT system parameter. The following values of compatibility-level
can be specified:

V10R1
The static SQL statements in the package have V10R1 compatibility
behavior.

V11R1
The static SQL statements in the package have V11R1 compatibility
behavior.

Related information:

Chapter 5. Statements 1243

|
|

|
|
|
|

||
|

|

|

|
|
|
|

|
|
|
|

||
|

|

|

|
|
|

|
|
|

||
|

|

|

|
|
|
|
|
|

|
|
|

|
|
|

|

APPL COMPAT LEVEL field (APPLCOMPAT subsystem parameter) (DB2
Installation and Migration)

SQL-routine-body
Specifies a single SQL statement, including a compound statement. See
Chapter 6, “SQL control statements for SQL routines,” on page 1963 for more
information about defining SQL functions.

An error is issued if an SQL function calls a procedure and the procedure
issues a COMMIT, ROLLBACK, CONNECT, RELEASE, or SET CONNECTION
statement.

If the SQL-routine-body is a compound statement, it must contain at least one
RETURN statement and a RETURN statement must be executed when the
function is invoked.

SQL-routine-body must not contain a period specification or period clause.

An ALTER FUNCTION (SQL scalar) statement or an ALTER PROCEDURE
(SQL native) statement with an ADD VERSION clause or a REPLACE clause is
not allowed in an SQL-routine-body.

Notes

Choosing data types for parameters:
When you choose the data types of the input and output parameters for
your function, consider the rules of promotion that can affect the values of
the parameters. (See “Promotion of data types” on page 110). For example,
a constant that is one of the input arguments to the function might have a
built-in data type that is different from the data type that the function
expects, and more significantly, might not be promotable to that expected
data type. Based on the rules of promotion, consider using the following
data types for parameters:
v INTEGER instead of SMALLINT
v DOUBLE instead of REAL
v VARCHAR instead of CHAR
v VARGRAPHIC instead of GRAPHIC
v VARBINARY instead of BINARY

For portability of functions across platforms that are not DB2 for z/OS, do
not use the following data types, which might have different
representations on different platforms:
v FLOAT. Use DOUBLE or REAL instead.
v NUMERIC. Use DECIMAL instead.

Specifying the encoding scheme for parameters:
The implicitly or explicitly specified encoding scheme of all of the
parameters with a character or graphic string data type (both input and
output parameters) must be the same—either all ASCII, all EBCDIC, or all
UNICODE.

Identifier resolution:
See Chapter 6, “SQL control statements for SQL routines,” on page 1963 for
information on how names are resolved to columns, SQL variables, or SQL
parameters within an SQL routine.

1244 SQL Reference

|
|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_applcompat.htm#db2z_ipf_applcompat
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_applcompat.htm#db2z_ipf_applcompat

If duplicate names are used for columns and SQL variables and
parameters, qualify the duplicate names by using the table designator for
columns, the routine name for parameters, and the label name for SQL
variables.

Determining the uniqueness of functions in a schema:
At the current server, the function signature of each function, which is the
qualified function name combined with the number and data types of the
input parameters, must be unique. If the function has more than 30 input
parameters, only the data types of the first 30 are used to determine
uniqueness. This means that two different schemas can each contain a
function with the same name that have the same data types for all of their
corresponding data types. However, a single schema must not contain
multiple functions with the same name that have the same data types for
all of their corresponding data types.

When determining whether corresponding data types match, DB2 does not
consider any length, precision, or scale attributes in the comparison. DB2
considers the synonyms of data types as a match. For example, REAL and
FLOAT, and DOUBLE and FLOAT are considered a match. Therefore,
CHAR(8) and CHAR(35) are considered to be the same, as are
DECIMAL(11,2), DECIMAL(4,3), DECFLOAT(16) and DECFLOAT(34),
TIMESTAMP(6) and TIMESTAMP(9), TIMESTAMP(6) WITH TIME ZONE
and TIMESTAMP(9) WITH TIME ZONE. Furthermore, the character and
graphic types, and the timestamp types are considered to be the same. For
example, the following are considered to be the same type: CHAR and
GRAPHIC, VARCHAR and VARGRAPHIC, CLOB and DBCLOB,
TIMESTAMP WITHOUT TIME ZONE and TIMESTAMP WITH TIME
ZONE. CHAR(13) and GRAPHIC(8) are considered to be the same type.
An error is returned if the signature of the function being created is a
duplicate of a signature for an existing user-defined function with the same
name and schema.

Assume that the following statements are executed to create four functions
in the same schema. The second and fourth statements fail because they
create functions that are duplicates of the functions that the first and third
statements created.

CREATE FUNCTION PART (INT, CHAR(15)) ...
CREATE FUNCTION PART (INTEGER, CHAR(40)) ...
CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (DEC(10,7)) ...

Overriding a built-in function:
Giving a function the same name as a built-in function is not a
recommended practice unless you are trying to change the functionality of
the built-in function.

If you do intend to create a function with the same name as a built-in
function, be careful to maintain the uniqueness of its function signature. If
your function has the same name and data types of the corresponding
parameters of the built-in function but implements different logic, DB2
might choose the wrong function when the function is invoked with an
unqualified function name. Thus, the application might fail, or perhaps
even worse, run successfully but provide an inappropriate result.

Self-referencing function:
The body of an SQL function (that is, the expression or NULL in the
RETURN clause of the CREATE FUNCTION statement) cannot contain a

Chapter 5. Statements 1245

recursive invocation of itself or to another function that invokes it, because
such a function would not exist to be referenced.

Scrollable cursors specified with user-defined functions:
A row can be fetched more than once with a scrollable cursor. Therefore, if
a scrollable cursor is defined with a function that is not deterministic in the
select list of the cursor, a row can be fetched multiple times with different
results for each fetch. Similarly, if a scrollable cursor is defined with a
user-defined function with external action, the action is executed with
every fetch.

Versions of a function:
The CREATE FUNCTION statement for an SQL function defines the initial
version of the function. You can define additional versions using the ADD
VERSION clause of the ALTER FUNCTION statement. All versions of a
function share the same function signature and the same specific name.
However, the parameters names can differ between versions of a functions.
Only one version of the function can be considered to be the active version
of the function.

Considerations for packages:
A package is generated for most SQL scalar functions. An exception is
when the body of the function contains only simple-return-statement, and
the options are limited to the following clauses:
v LANGUAGE SQL
v SPECIFIC
v PARAMETER CCSID
v NOT DETERMINISTIC
v DETERMINISTIC
v EXTERNAL ACTION
v NO EXTERNAL ACTION
v READS SQL DATA
v CONTAINS SQL
v STATIC DISPATCH
v CALLED ON NULL INPUT
v SECURED
v NOT SECURED

When the function conforms to the previous conditions, the function is
created as an inline function and a package is not created.

A package is created for a non-inline function. The package that is
associated with the first version of a function is named as follows:
v location is set to the value of the CURRENT SERVER special register.
v collection-id (schema) for the package is the same as the schema qualifier

of the function.
v package-id is the same as the specific name of the function.
v version-id is the same as the version identifier for the initial version of

the function.

The package is generated using the bind options that correspond to the
implicitly or explicitly specified function options. In addition to the
corresponding bind options, the package is generated using the following
bind options:

1246 SQL Reference

v FLAG(I)
v SQLERROR(NOPACKAGE)
v ENABLE(*)

Correspondence of function options to bind command options:
The following table lists options for CREATE FUNCTION and ALTER
FUNCTION and the corresponding bind command option. See BIND and
REBIND options (DB2 Commands) for information about the BIND
command options.

Table 110. Correspondence of function options to bind options

CREATE FUNCTION or ALTER
FUNCTION option bind command option

APPLICATION ENCODING SCHEME ENCODING(ASCII), ENCODING(EBCDIC),
ENCODING(UNICODE)

ARCHIVE SENSITIVE NO ARCHIVESENSITIVE(NO)

ARCHIVE SENSITIVE YES ARCHIVESENSITIVE(YES)

BUSINESS_TIME SENSITIVE NO BUSTIMESENSITIVE(NO)

BUSINESS_TIME SENSITIVE YES BUSTIMESENSITIVE(YES)

CURRENTDATA NO CURRENTDATA(NO)

CURRENTDATA YES CURRENTDATA(YES)

DYNAMICRULES DYNAMICRULES(RUN),
DYNAMICRULES(BIND),
DYNAMICRULES(DEFINEBIND),
DYNAMICRULES(DEFINERUN),
DYNAMICRULES(INVOKEBIND),
DYNAMICRULES(INVOKERUN)

ISOLATION LEVEL ISOLATION(RR), ISOLATION(RS),
ISOLATION(CS), ISOLATION(UR)

OPTHINT OPTHINT

PACKAGE OWNER OWNER

QUALIFIER QUALIFIER

REOPT ALWAYS REOPT(ALWAYS)

REOPT NONE REOPT(NONE)

REOPT ONCE REOPT(ONCE)

ROUNDING DEC_ROUND_CEILING ROUNDING(CEILING)

ROUNDING DEC_ROUND_DOWN ROUNDING(DOWN)

ROUNDING DEC_ROUND_FLOOR ROUNDING(FLOOR)

ROUNDING DEC_ROUND_HALF_DOWN ROUNDING(HALFDOWN)

ROUNDING DEC_ROUND_HALF_EVEN ROUNDING(HALFEVEN)

ROUNDING DEC_ROUND_HALF_UP ROUNDING(HALFUP)

ROUNDING DEC_ROUND_UP ROUNDING(UP)

SQL PATH PATH

SYSTEM_TIME SENSITIVE NO SYSTIMESENSITIVE(NO)

SYSTEM_TIME SENSITIVE YES SYSTIMESENSITIVE(YES)

VALIDATE BIND VALIDATE(BIND)

VALIDATE RUN VALIDATE(RUN)

Chapter 5. Statements 1247

||

||

||

||

||

||

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

Table 110. Correspondence of function options to bind options (continued)

CREATE FUNCTION or ALTER
FUNCTION option bind command option

WITH EXPLAIN EXPLAIN(YES)

WITHOUT EXPLAIN EXPLAIN(NO)

WITH IMMEDIATE WRITE IMMEDWRITE(YES)

WITHOUT IMMEDIATE WRITE IMMEDWRITE(NO)

Considerations for SQL processor programs:
SQL processor programs, such as SPUFI, the command line processor, and
DSNTEP2, might not correctly parse SQL statements in the routine body
that end with semicolons. These processor programs accept multiple SQL
statements as input, with each statement separated with a terminator
character. Processor programs that use a semicolon as the SQL statement
terminator can truncate a CREATE FUNCTION statement with embedded
semicolons and pass only a portion of it to DB2. Therefore, you might need
to change the SQL terminator character for these processor programs. For
information on changing the terminator character for SPUFI and DSNTEP2,
see Setting the SQL terminator character in a SPUFI input data set (DB2
Application programming and SQL).

Lines within definitions of an SQL function:
When a non-inline SQL function is created, information is retained on lines
in the CREATE statement. Lines are determined by the presence of the new
line control character.

Invoking the function:
If a function is specified in the select-list of a select-statement and is the
function specifies EXTERNAL ACTION or MODIFIES SQL DATA, the
function will only be invoked for each row that is returned. Otherwise, the
function might be invoked for rows that are not selected.

Error handling in SQL functions:
You should consider the possible exceptions that can occur for each SQL
statement in the body of a non-inline SQL function. Any exception
SQLSTATE that is not handled within the function (using a handler),
results in the exception SQLSTATE being returned for the SQL statement
that caused the function to be invoked.

Dependent objects:
An SQL routine is dependent on objects that are referenced in the routine
body.

Considerations for a function that is defined using a TABLE LIKE name AS
LOCATOR clause:

If a function is defined with a table parameter (the TABLE LIKE name AS
LOCATOR clause was specified in the CREATE FUNCTION statement to
indicate that one of the input parameters is a transition table), the function
cannot be changed with an ALTER FUNCTION statement if the change
requires that the parameter list be specified. For example, to add or replace
a version of an SQL scalar function, the function must be dropped and
re-created.

Functions and global variables:
The content of global variables that are referenced in functions is inherited
from the caller. Global variables cannot be modified in or by functions.

1248 SQL Reference

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_setsqlterminator.htm#db2z_setsqlterminator
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_setsqlterminator.htm#db2z_setsqlterminator

Considerations for a function with a parameter that is defined as an array type:
A function that is defined with a parameter or RETURNS data-type2 that is
an array type can be invoked only from within an SQL PL context.

Creating a secure function:
Typically, the security administrator will examine the data that is accessed
by a function, ensure that it is secure, and grant the
CREATE_SECURE_OBJECT privilege to someone who currently requires
the privileges to create a secure user-defined function. After the function is
created, they will revoke the CREATE_SECURE_OBJECT privilege from the
function owner.

DB2 treats the SECURED attribute as an assertion that declares that the
security administrator has established an audit procedure for all changes to
the user-defined function. DB2 assumes that such a control audit procedure
is in place for all subsequent ALTER FUNCTION statements or changes to
external packages. If the function is a non-inline SQL function, DB2
assumes that such a control audit procedure is in place for all versions of
the function, and that all subsequent ALTER FUNCTION statements or
changes to external packages are being reviewed by this audit process.

Invoking other user-defined functions in a secure function:
When a secure user-defined function is referenced in an SQL data change
statement that references a table that is using row access control or column
access control, and if the secure user-defined function invokes other
user-defined functions, the nested user-defined functions are not validated
as secure. If those nested functions can access sensitive data, the security
administrator needs to ensure that those functions are allowed to access
sensitive data and should ensure that a change control audit procedure has
been established for all changes to those functions.

The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table:
The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table
indicates if a user-defined function is considered secure.

Deploying a non-inline SQL scalar function:
When a BIND DEPLOY command is issued to deploy a non-inline SQL
scalar function to a target location, the SECURED and NOT SECURED
options are included in the deployment process.

When deploying a non-inline SQL scalar function, if a function with the
same target name does not exist at the target location, the deployed
function is created as a new function at the target location with the same
SECURED or NOT SECURED option that is specified (or the default of
NOT SECURED is used) in the source of the deployment.

When deploying a non-inline SQL scalar function, if a function with the
same target name already exists at the target location, the deployed
function is either added as a new version of the function, or the deployed
function is used to replace an existing version of the function. The
SECURED or NOT SECURED option of the deployed function must be the
same as that of the existing function at the target location.

Alternative syntax and synonyms:
To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following keywords:
v VARIANT as a synonym for NOT DETERMINISTIC
v NOT VARIANT as a synonym for DETERMINISTIC
v NOT NULL CALL as a synonym for RETURNS NULL ON NULL

INPUT

Chapter 5. Statements 1249

|
|
|

v NULL CALL as a synonym for CALLED ON NULL INPUT
v TIMEZONE can be specified as an alternative to TIME ZONE.

For an inline SQL scalar function, the RETURNS clause and the clauses in
the option-list can be specified in any order. For a non-inline SQL scalar
function, the RETURNS clause must precede the options-list. For both inline
and non-inline SQL scalar functions, the RETURN-statement must be
specified after the RETURNS clause and the options-list in the routine body.

Examples

Example 1: Define a scalar function that returns the tangent of a value using
existing SIN and COS built-in functions:

CREATE FUNCTION TAN (X DOUBLE)
RETURNS DOUBLE
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN SIN(X)/COS(X);

Example 2: Define a scalar function that returns the text of an input string, in
reverse order:

CREATE FUNCTION REVERSE(INSTR VARCHAR(4000))
RETURNS VARCHAR(4000)
DETERMINISTIC NO EXTERNAL ACTION CONTAINS SQL
BEGIN
DECLARE REVSTR, RESTSTR VARCHAR(4000) DEFAULT ’’;
DECLARE LEN INT;
IF INSTR IS NULL THEN
RETURN NULL;
END IF;
SET (RESTSTR, LEN) = (INSTR, LENGTH(INSTR));
WHILE LEN > 0 DO
SET (REVSTR, RESTSTR, LEN)

= (SUBSTR(RESTSTR, 1, 1) CONCAT REVSTR,
SUBSTR(RESTSTR, 2, LEN - 1),
LEN - 1);

END WHILE;
RETURN REVSTR;

END#

1250 SQL Reference

CREATE FUNCTION (SQL table)
The CREATE FUNCTION (SQL table) statement creates an SQL table function at
the current server. The function returns a set of rows.

Invocation

This statement can only be dynamically prepared only if DYNAMICRULES run
behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following
privileges or authorities:
v The CREATEIN privilege on the schema
v SYSADM authority
v SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

If the authorization ID that is used to create the function has installation SYSADM
authority, the function is identified as system-defined function.

If a distinct type is referenced (i.e. as the data type of a parameter or SQL
variable), the privilege set must also include at least one of the following:
v Ownership of the distinct type
v The USAGE privilege on the distinct type
v SYSADM authority

If the function uses a table as a parameter, the privilege set must also include at
least one of the following:
v Ownership of the table
v The SELECT privilege on the table
v SYSADM authority

At least one of the following additional privileges is required if the SECURED
option is specified
v SECADM authority
v CREATE_SECURE_OBJECT privilege

Privilege set: If the statement is embedded in an application program, the
privilege set is the set of privileges that are held by the owner of the plan or
package. If the owner is a role, matching of the implicit schema name does not
apply and the role must include one of the previously listed privileges or
authorities.

If the statement is dynamically prepared and is not running in a trusted context for
which the ROLE AS OBJECT OWNER clause is specified, the privilege set is the
set of privileges that are held by the SQL authorization ID of the process. If the
schema name is not the same as the SQL authorization ID of the process, one of
the following conditions must be met:

Chapter 5. Statements 1251

v The privilege set includes SYSADM authority
v The privilege set includes SYSCTRL authority
v The SQL authorization ID of the process has the CREATEIN privilege on the

schema

Syntax

�� CREATE FUNCTION function-name

�

()
,

parameter-declaration

�

� RETURNS TABLE �

,

(column-name data-type2) option-list �

� SQL-routine-body ��

parameter-declaration:

�� parameter-name parameter-type ��

parameter-type:

�� data-type1
TABLE LIKE table-name AS LOCATOR

view-name

��

data-type1, data-type2:

�� built-in-type
distinct-type-name

��

1252 SQL Reference

built-in-type:

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID
XML

��

Chapter 5. Statements 1253

option-list:

��
(1) LANGUAGE SQL

SPECIFIC specific-name
�

�
NOT DETERMINISTIC

DETERMINISTIC

EXTERNAL ACTION

NO EXTERNAL ACTION

READS SQL DATA

CONTAINS SQL
�

�
CALLED ON NULL INPUT INHERIT SPECIAL REGISTERS

�

�
STATIC DISPATCH

CARDINALITY integer
�

�
PARAMETER CCSID ASCII

EBCDIC
UNICODE

NOT SECURED

SECURED
��

Notes:

1 The options in the option-list can be specified in any order. However, the
same clause cannot be specified more than one time.

SQL-routine-body:

�� RETURN statement
BEGIN ATOMIC RETURN statement END

��

Description

function-name
Names the user-defined function. The name is implicitly or explicitly qualified
by a schema name. The combination of the name, the schema name, the
number of parameters, and the data type of each parameter (without regard to
any length, precision, scale, subtype, or encoding scheme attribute of the data
type) must not identify a user-defined function that exists at the current server.

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the
name and data type of each parameter. All of the parameters for a function are
input parameters and are nullable. There must be one entry in the list for each
parameter that the function expects to receive.

parameter-name
Specifies the name of the input parameter. Each name in the parameter list
must not be the same as any other name.

1254 SQL Reference

data-type1
Specifies the data type of the input parameter. The data type can be a
built-in data type or a distinct type.

built-in-type
The data type of the parameter is a built-in data type.

For more information on the data types, including the subtype of
character data types (the FOR subtype DATA clause), see built-in types.
However, the varying length string data types have different maximum
lengths for this statement than for the CREATE TABLE statement. The
maximum lengths for parameters (and SQL variables) are as follows:
v VARCHAR or VARBINARY: 32704
v VARGRAPHIC: 16352

For parameters with a character or graphic data type, the
PARAMETER CCSID clause or the CCSID clause indicates the
encoding scheme of the parameter. If you do not specify either of the
CCSID clauses, the encoding scheme is the value of the DEF
ENCODING SCHEME field on installation panel DSNTIPF.

Although an input parameter with a character data type has an
implicitly or explicitly specified subtype (BIT, SBCS, or MIXED), the
value that is actually passed in the input parameter can have any
subtype. Therefore, conversion of the input data to the subtype of the
parameter might occur when the function is invoked. With ASCII or
EBCDIC, an error occurs if mixed data that actually contains DBCS
characters is used as the value for an input parameter that is declared
with an SBCS subtype.

distinct-type-name
The data type of the parameter is a distinct type. Any length, precision,
scale, subtype, or encoding scheme attributes for the parameter are
those of the source type for the distinct type.

TABLE LIKE table-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the
function is invoked, the actual values in the transition table are not
passed to the function. A single value is passed instead. This value is a
locator for the table, which the function uses to access the columns of
the transition table. The table that is identified can contain XML
columns; however, the function cannot reference those XML columns.

A function with a table parameter can only be invoked from the
triggered action of a trigger.

RETURNS TABLE
Specifies that the output of the function is a table. The RETURN statement in
an SQL table function must return a table result. The parentheses that follow
the RETURNS TABLE keyword delimit a list of name and data type pairs of
the columns of the output table. All parameters for a function are input
parameters and are nullable.

column-name
Specifies the name of the column. The name cannot be qualified, and must
be unique within the RETURNS TABLE clause for the function.

data-type2
Specifies the data type and attributes of the column of the output table.

Chapter 5. Statements 1255

For SQL table functions, the result table of the function might include
multiple encoding schemes – similar to what a view definition can include.

LANGUAGE SQL
Specifies that the function is written exclusively in SQL.

SPECIFIC specific-name
Specifies a unique name for the function.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the
function is invoked with the same input arguments. DB2 does not verify that
the function program is consistent with the specification of NOT
DETERMINISTIC or DETERMINISTIC.

NOT DETERMINISTIC
Specifies that the function might not return the same result table each time
that the function is invoked with the same input arguments, even when
the referenced data in the database has not changed. The function depends
on some state values that might affect the results. DB2 uses this
information to disable the merging of views and table expressions when
processing SELECT and SQL data change statements that refer to this
function. An example of a table function that is not deterministic is one
which references special registers, other functions that are not
deterministic, or a sequence in a way that affects the table function's result
table. NOT DETERMINISTIC is the default.

DETERMINISTIC
Specifies that the function always returns the same result table each time
that the function is invoked with the same input arguments (provided that
the referenced data in the database has not changed). DB2 uses this
information to enable the merging of views and table expressions for
SELECT and SQL data change statements that refer to this function.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function contains an external action. DB2 does not verify
that the function program is consistent with the specification of EXTERNAL
ACTION or NO EXTERNAL ACTION.

EXTERNAL ACTION
The function performs some external action (outside the scope of the
function program). Thus, the function must be invoked with each
successive function invocation. EXTERNAL ACTION must be specified if
the function invokes another function that has external actions.
EXTERNAL ACTION is the default.

NO EXTERNAL ACTION
The function does not perform any external action. It need not be called
with each successive function invocation. Functions that are defined with
NO EXTERNAL ACTION might perform better than functions that are
defined with EXTERNAL ACTION because the function might not be
invoked for each successive function invocation.

Although the scope of global variables are beyond the scope of the routine,
global variables can be set in the routine body when NO EXTERNAL
ACTION is specified.

READS SQL DATA or CONTAINS SQL
Specifies the classification of SQL statements that the function (any routine that
is invoked from this function) can execute. DB2 verifies that the SQL
statements that the function issues are consistent with this specification.

1256 SQL Reference

|
|
|

READS SQL DATA
Specifies that the function can execute statements with a data access
indication of READS SQL DATA or CONTAINS SQL. The function cannot
execute SQL statements that modify data.

READS SQL DATA is the default.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data
access indication of CONTAINS SQL. The function cannot execute
statements that read or modify data.

CALLED ON NULL INPUT
Specifies that the function is called regardless of whether any of the input
arguments are null, making the function responsible for testing for null
argument values. The function can return an empty table, depending on its
logic.

CALLED ON NULL INPUT is the default.

INHERIT SPECIAL REGISTERS
Specifies that existing values of special registers are inherited upon entry to the
function. INHERIT SPECIAL REGISTERS is the default.

STATIC DISPATCH
At function resolution time, DB2 chooses a function based on the static (or
declared) types of the function parameters. STATIC DISPATCH is the default.

CARDINALITY integer
Specifies an estimate of the expected number of rows that the function returns.
The number is used for optimization purposes. The value of integer must be
between 0 and 2147483647.

If you do not specify CARDINALITY, DB2 assumes a finite value. The finite
value is the same value that DB2 assumes for tables for which the RUNSTATS
utility has not gathered statistics.

If a function has an infinite cardinality (the function never returns the
end-of-table condition and always returns a row), a query that requires the
end-of-table condition to work correctly will need to be interrupted.

PARAMETER CCSID
Specifies the encoding scheme for character and graphic string parameters is
ASCII, EBCDIC, or UNICODE. The default encoding scheme is the value that
is specifies in the CCSID clauses of the parameter list or RETURNS clause, or
in the DEF ENCODING SCHEME field on installation panel DSNTIPF. This
clause provides a convenient way to specify the encoding scheme for character
and graphic string parameters. If individual CCSID clauses are specified for
individual parameters in addition to this PARAMETER CCSID clause, the
value specified in all of the CCSID clauses must be the same value that is
specified in this clause. This clause also specifies the encoding scheme that is
used for system-generated parameters of the routine such as message tokens
and DBINFO.

NOT SECURED or SECURED
Specifies if the function is considered secure for row access control and column
access control. The SECURED or NOT SECURED option applies to all future
versions of the function.

NOT SECURED
Specifies that the function is not considered secure for row access control
and column access control.

Chapter 5. Statements 1257

NOT SECURED is the default.

When the function is invoked, the arguments of the function must not
reference a column for which a column mask is enabled when the table is
using active column access control.

SECURED
Specifies that the function is considered secure for row access control and
column access control.

The function must be secure when it is referenced in a row permission or a
column mask.

SQL-routine-body

RETURN-statement
Specifies the return value of the function. A RETURN statement must be
specified for an SQL table function.

ATOMIC
ATOMIC indicates that an unhandled exception condition within the RETURN
statement causes the statement to be rolled back.

Notes

Identifier resolution:
See Chapter 6, “SQL control statements for SQL routines,” on page 1963 for
information on how names are resolved to columns, SQL variables, or SQL
parameters within an SQL routine.

If duplicate names are used for columns and SQL variables and
parameters, qualify the duplicate names by using the table designator for
columns, the routine name for parameters, and the label name for SQL
variables.

Referencing date and time special registers:
If an SQL function contains multiple references to any of the date or time
special registers, all references return the same value. In addition, this
value is the same value that is returned by the register invocation in the
statement that invoked the function.

Scrollable cursors specified with user-defined functions:
A row can be fetched more than once with a scrollable cursor. Therefore, if
a scrollable cursor is defined with a function that is not deterministic in the
select list of the cursor, a row can be fetched multiple times with different
results for each fetch. Similarly, if a scrollable cursor is defined with a
user-defined function with external action, the action is executed with
every fetch.

Dependent objects:
An SQL routine is dependent on objects that are referenced in the routine
body.

Considerations for columns that are defined with a field procedure:
The body of an SQL table function must not reference a column that is
defined with a field procedure, and the RETURNS clause of an SQL table
function must not reference a column that is defined with a field
procedure. An SQL table function must not be invoked with an expression
that is derived from a column that is defined with a field procedure.

Creating a secure function:
Typically, the security administrator will examine the data that is accessed

1258 SQL Reference

by a function, ensure that it is secure, and grant the
CREATE_SECURE_OBJECT privilege to someone who currently requires
the privileges to create a secure user-defined function. After the function is
created, they will revoke the CREATE_SECURE_OBJECT privilege from the
function owner.

DB2 treats the SECURED attribute as an assertion that declares that the
security administrator has established an audit procedure for all changes to
the user-defined function. DB2 assumes that such a control audit procedure
is in place for all subsequent ALTER FUNCTION statements or changes to
external packages. If the function is a non-inline SQL function, DB2
assumes that such a control audit procedure is in place for all versions of
the function, and that all subsequent ALTER FUNCTION statements or
changes to external packages are being reviewed by this audit process.

Invoking other user-defined functions in a secure function:
When a secure user-defined function is referenced in an SQL data change
statement that references a table that is using row access control or column
access control, and if the secure user-defined function invokes other
user-defined functions, the nested user-defined functions are not validated
as secure. If those nested functions can access sensitive data, the security
administrator needs to ensure that those functions are allowed to access
sensitive data and should ensure that a change control audit procedure has
been established for all changes to those functions.

The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table:
The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table
indicates if a user-defined function is considered secure.

Functions and global variables:
The content of global variables that are referenced in functions is inherited
from the caller. Global variables cannot be modified in or by functions.

Restrictions involving pending definition changes:
CREATE FUNCTION is not allowed if the function is an inline SQL table
function that references a table that has pending definition changes.

Alternative syntax and synonyms:
To provide compatibility with previously releases of DB2 or other products
int he DB2 family, DB2 supports the following keywords:
v VARIANT as a synonym for NOT DETERMINISTIC
v NOT VARIANT as a synonym for DETERMINISTIC
v NULL CALL as a synonym for CALLED ON NULL INPUT

Examples

Example 1: Define a table function, JTABLE, to return a table with 3 columns:
CREATE FUNCTION JTABLE (COLD_VALUE CHAR(9), T2_FLAG CHAR(1))
RETURNS TABLE (COLA INT, COLB INT, COLC INT)
LANGUAGE SQL
SPECIFIC DEPTINFO
NOT DETERMINISTIC
READS SQL DATA
RETURN
SELECT A.COLA, B.COLB, B.COLC
FROM TABLE1 AS A
LEFT OUTER JOIN
TABLE2 AS B
ON A.COL1 = B.COL1 AND T2_FLAG = ’Y’
WHERE A.COLD = COLD_VALUE;

Chapter 5. Statements 1259

|
|
|

|
|
|

Example 2: Define a table function that returns the employees in a specified
department number. The function simply returns the employees for the requested
department:
CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))
RETURNS TABLE (EMPNO CHAR(6), LASTNAME VARCHAR(15), FIRSTNAME VARCHAR(12))
LANGUAGE SQL
READS SQL DATA
NO EXTERNAL ACTION
DETERMINISTIC
RETURN
SELECT EMPNO, LASTNAME, FIRSTNME
FROM YEMP
WHERE YEMP.WORKDEPT = DEPTEMPLOYEES.DEPTNO;

1260 SQL Reference

CREATE GLOBAL TEMPORARY TABLE
The CREATE GLOBAL TEMPORARY TABLE statement creates a description of a
temporary table at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

The privilege set that is defined below must include at least one of the following:
v The CREATETMTAB system privilege
v The CREATETAB database privilege for any database
v DBADM, DBCTRL, or DBMAINT authority for any database
v SYSADM or SYSCTRL authority
v System DBADM

However, DBADM, DBCTRL, or DBMAINT authority is not sufficient authority if
you are creating a temporary table for someone else and the table qualifier is not
your authorization ID.

Additional privileges might be required when the data type of a column is a
distinct type or the LIKE clause is specified. See the description of distinct-type and
LIKE for the details.

Privilege set: The privilege set is the same as the privilege set for the CREATE
TABLE statement. See Privilege Set for details.

Syntax

�� CREATE GLOBAL TEMPORARY TABLE table-name �

,

(column-definition)
LIKE table-name

view-name

�

�
CCSID ASCII

EBCDIC
UNICODE

��

column-definition:

Chapter 5. Statements 1261

�� column-name data-type
NOT NULL

��

�� built-in-type
distinct-type-name

��

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) FOR SBCS DATA

VARCHAR (integer) MIXED
CHARACTER VARYING BIT
CHAR

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE

��

data-type:

built-in-type:

1262 SQL Reference

Description

table-name
Names the temporary table. The name, including the implicit or explicit
qualifier, must not identify a table, view, alias, synonym, or temporary table
that exists at the database server, or a table that exists in the
SYSIBM.SYSPENDINGOBJECTS catalog table.

The qualification rules for a temporary table are the same as for other tables.

The owner acquires ALL PRIVILEGES on the table WITH GRANT OPTION
and the authority to drop the table.

column-definition
Defines the attributes of a column for each instance of the table. The number of
columns defined must not exceed 750. The maximum record size must not
exceed 32714 bytes. The maximum row size must not exceed 32706 bytes (8
bytes less than the maximum record size).

column-name
Names the column. The name must not be qualified and must not be the same
as the name of another column in the table.

data-type
Specifies the data type of the column. The data type can be a built-in data type
or a distinct type.

built-in-type
The data type of the column is a built-in data type.

For more information on and the rules that apply to the data types, see
built-in-type.

distinct-type
Any distinct type except one that is based on a LOB or ROWID data type.
The privilege set must implicitly or explicitly include the USAGE privilege
on the distinct type.

NOT NULL
Specifies that the column cannot contain nulls. Omission of NOT NULL
indicates that the column can contain nulls.

LIKE table-name or view-name
Specifies that the columns of the table have exactly the same name and
description as the columns of the identified table or view. The name specified
after LIKE must identify a table, view, or temporary table that exists at the
current server. A view cannot contain columns of length 0.

table-name or view-name must not contain a Unicode column in an EBCDIC
table

The privilege set must implicitly or explicitly include the SELECT privilege on
the identified table or view.

This clause is similar to the LIKE clause on CREATE TABLE, but it has the
following differences:
v If any column of the identified table or view has an attribute value that is

not allowed for a column in a temporary table, that attribute value is
ignored. The corresponding column in the new temporary table has the
default value for that attribute unless otherwise indicated.

v If any column of the identified table or view allows a default value other
than null, that default value is ignored and the corresponding column in the

Chapter 5. Statements 1263

|
|

new temporary table has no default value. A default value other than null is
not allowed for any column in a temporary table.

CCSID encoding-scheme
Specifies the encoding scheme for string data stored in the table.

ASCII Specifies that the data must be encoded by using the ASCII CCSIDs of
the server.

An error occurs if a valid ASCII CCSID has not been specified for the
installation.

EBCDIC
Specifies that data must be encoded by using the EBCDIC CCSIDs of
the server.

An error occurs if a valid EBCDIC CCSID has not been specified for
the installation.

UNICODE
Specifies that data must be encoded by using the CCSIDs of the server
for Unicode.

An error occurs if a valid CCSID for Unicode has not been specified
for the installation.

Usually, each encoding scheme requires only a single CCSID. Additional
CCSIDs are needed when mixed, graphic, or Unicode data is used. An error
occurs if CCSIDs have not been defined.

For the creation of temporary tables, the CCSID clause can be specified
whether or not the LIKE clause is specified. If the CCSID clause is specified,
the encoding scheme of the new table is the scheme that is specified in the
CCSID clause. If the CCSID clause is not specified, the encoding scheme of the
new table is the same as the scheme for the table specified in the LIKE clause.

Notes

Owner privileges: The owner of the table has all table privileges (see “GRANT
(table or view privileges)” on page 1721) with the ability to grant these privileges
to others. For more information about ownership of the object, see “Authorization,
privileges, permissions, masks, and object ownership” on page 70.

Instantiation and termination: Let T be a temporary table defined at the current
server and let P denote an application process:
v An empty instance of T is created as a result of the first implicit or explicit

reference to T in an OPEN, SELECT INTO or SQL data change operation that is
executed by any program in P.

v Any program in P can reference T and any reference to T by a program in P is a
reference to that instance of T.
When a commit operation terminates a unit of work in P and no program in P
has an open WITH HOLD cursor that is dependent on T, the commit includes
the operation DELETE FROM T.

v When a rollback operation terminates a unit of work in P, the rollback includes
the operation DELETE FROM T.

v When the connection to the database server at which an instance of T was
created terminates, the instance of T is destroyed. However, the definition of T
remains. A DROP TABLE statement must be executed to drop the definition of T.

1264 SQL Reference

Restrictions and extensions: Let T denote a temporary table:
v Columns of T cannot have default values other than null.
v A column of T cannot have a LOB or ROWID data type (or a distinct type based

on one).
v T cannot have unique constraints, referential constraints, or check constraints.
v T cannot be defined as the parent in a referential constraint.
v T cannot be referenced in:

– A CREATE INDEX statement.
– A LOCK TABLE statement.
– As the object of an UPDATE statement in which the object is T or a view of T.

However, you can reference T in the WHERE clause of an UPDATE statement
(including the update operation of the MERGE statement).

– DB2 utility commands.
v If T is referenced in the fullselect of a CREATE VIEW statement, you cannot

specify a WITH CHECK OPTION clause in the CREATE VIEW statement.
v ALTER TABLE T is valid only if the statement is used to add a column to T.

Any column that you add to T must have a default value of null.
When you alter T, any packages that refer to the table are invalidated, and DB2
automatically rebinds the packages the next time they are run.

v DELETE FROM T or a view of T is valid only if the statement does not include a
WHERE or WHERE CURRENT OF clause. In addition, DELETE FROM view of T
is valid only if the view was created (CREATE VIEW) without the WHERE
clause. A DELETE FROM statement deletes all the rows from the table or view.

v You can refer to T in the FROM clause of any subselect. If you refer to T in the
first FROM clause of a select-statement, you cannot specify a FOR UPDATE
clause.

v You cannot use a DROP DATABASE statement to implicitly drop T. To drop T,
reference T in a DROP TABLE statement.

v A temporary table instantiated by an SQL statement using a three-part table
name can be accessed by another SQL statement using the same name in the
same application process for as long as the DB2 connection which established
the instantiation is not terminated.

v GRANT ALL PRIVILEGES ON T is valid, but you cannot grant specific
privileges on T.
Of the ALL privileges, only the ALTER, INSERT, DELETE, and SELECT
privileges can actually be used on T.

v REVOKE ALL PRIVILEGES ON T is valid, but you cannot revoke specific
privileges from T.

v A COMMIT operation deletes all rows of every temporary table of the
application process, but the rows of T are not deleted if any program in the
application process has an open WITH HOLD cursor that is dependent on T. In
addition, if RELEASE(COMMIT) is in effect and no open WITH HOLD cursors
are dependent on T, all logical work files for T are also deleted.

v A ROLLBACK operation deletes all rows and all logical work files of every
temporary table of the application process.

v You can reuse threads when using a temporary table, and a logical work file for
a temporary table name remains available until deallocation. A new logical work
file is not allocated for that temporary table name when the thread is reused.

v You can refer to T in the following statements:

Chapter 5. Statements 1265

ALTER FUNCTION
ALTER PROCEDURE
COMMENT
CREATE ALIAS
CREATE FUNCTION

CREATE PROCEDURE
CREATE SYNONYM
CREATE TABLE LIKE
CREATE VIEW
DESCRIBE TABLE

DECLARE TABLE
DELETE (if it does not
include a WHERE clause)
DROP TABLE
INSERT
LABEL
SELECT INTO

Alternative syntax and synonyms: For compatibility with previous releases of DB2,
you can specify LONG VARCHAR as a synonym for VARCHAR(integer) and
LONG VARGRAPHIC as a synonym for VARGRAPHIC(integer) when defining the
data type of a column. However, the use of these synonyms is not encouraged
because after the statement is processed, DB2 considers a LONG VARCHAR
column to be VARCHAR and a LONG VARGRAPHIC column to be
VARGRAPHIC.

Examples

Example 1: Create a temporary table, CURRENTMAP. Name two columns, CODE
and MEANING, both of which cannot contain nulls. CODE contains numeric data
and MEANING has character data. Assuming a value of NO for the field MIXED
DATA on installation panel DSNTIPF, column MEANING has a subtype of SBCS:
CREATE GLOBAL TEMPORARY TABLE CURRENTMAP

(CODE INTEGER NOT NULL, MEANING VARCHAR(254) NOT NULL);

Example 2: Create a temporary table, EMP:
CREATE GLOBAL TEMPORARY TABLE EMP

(TMPDEPTNO CHAR(3) NOT NULL,
TMPDEPTNAME VARCHAR(36) NOT NULL,
TMPMGRNO CHAR(6) ,
TMPLOCATION CHAR(16));

1266 SQL Reference

CREATE INDEX
The CREATE INDEX statement creates a partitioning index or a secondary index
and an index space at the current server. The columns included in the key of the
index are columns of a table at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v The INDEX privilege on the table
v Ownership of the table
v DBADM authority for the database that contains the table
v SYSADM or SYSCTRL authority
v System DBADM

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

If the index is created using an expression, the EXECUTE privilege is required on
any user-defined function that is invoked in the index expression.

Additional privileges might be required, as explained in the description of the
BUFFERPOOL and USING STOGROUP clauses.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the specified index name includes a qualifier that is not the same as this owner, the
privilege set must include SYSADM or SYSCTRL authority, or DBADM or
DBCTRL authority for the database.

If ROLE AS OBJECT OWNER is in effect, the schema qualifier must be the same as
the role, unless the role has the CREATEIN privilege on the schema, SYSADM
authority, or SYSCTRL authority.

If ROLE AS OBJECT OWNER is not in effect, one of the following rules applies:
v If the privilege set lacks the CREATIN privilege on the schema, SYSADM

authority, or SYSCTRL authority, the schema qualifier (implicit or explicit) must
be the same as one of the authorization ids of the process.

v If the privilege set includes SYSADM authority or SYSCTRL authority, the
schema qualifier can be any valid schema name.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process unless the process is within a
trusted context and the ROLE AS OBJECT OWNER clause is specified. In that case,
the privilege set is the set of privileges that are held by the role that is associated
with the primary authorization ID of the process. However, if the specified index
name includes a qualifier that is not the same as this authorization ID, the
following rules apply:

Chapter 5. Statements 1267

v If the privilege set includes SYSADM or SYSCTRL authority (or DBADM
authority for the database, or DBCTRL authority for the database when creating
a table), the schema qualifier can be any valid schema name.

v If the privilege set lacks SYSADM or SYSCTRL authority (or DBADM authority
for the database, or DBCTRL authority for the database when creating a table),
the schema qualifier is valid only if it is the same as one of the authorization IDs
of the process and the privilege set that are held by that authorization ID
includes all privileges needed to create the index. This is an exception to the rule
that the privilege set is the privileges that are held by the SQL authorization ID
of the process.

Syntax

�� CREATE
UNIQUE

WHERE NOT NULL

INDEX index-name ON �

� �

,
ASC

table-name (column-name)
key-expression DESC , BUSINESS_TIME WITHOUT OVERLAPS

RANDOM
aux-table-name

�

� other-options ��

other-options:

1268 SQL Reference

��
XML-index-specification

�

,

INCLUDE (column-name)

�

� �
(1)

NOT CLUSTER

CLUSTER
PARTITIONED
NOT PADDED (2)

PADDED
using-specification
free-specification
gbpcache-specification
DEFINE YES

DEFINE NO
COMPRESS NO

COMPRESS YES
INCLUDE NULL KEYS

EXCLUDE NULL KEYS

�

�

� �

,

RANGE (1)
PARTITION BY (partition-element)

using-specification
free-specification
gbpcache-specification

�

� �
(1)

BUFFERPOOL bpname
CLOSE YES

CLOSE NO
DEFER NO

DEFER YES
PIECESIZE integer K

M
G

COPY NO

COPY YES

��

Notes:

1 The same clause must not be specified more than one time.

2 The value of field PAD INDEXES BY DEFAULT (on installation panel DSNTIPE) determines the
default. When the value is NO, NOT PADDED is the default. When the value is YES, PADDED is
the default. For more information, see the description of the PADDED or NOT PADDED options.

XML-index-specification:

Chapter 5. Statements 1269

||

�� GENERATE KEY USING
GENERATE KEYS USING

XMLPATTERN XML-pattern-clause AS SQL-data-type ��

��
prolog

pattern-expression ��

�� � declare namespace NCName = StringLiteral ;
declare default element namespace StringLiteral ;

��

��

� / forward-axis element-name
// *

nsprefix:*
*:NCName

.

�

�
(1)

/ @attribute-name
// attribute::attribute-name

@*
attribute::*

forward-axis text()
function-step

��

Notes:

1 pattern-expression cannot be an empty string.

XML-pattern-clause:

prolog:

pattern-expression:

forward-axis:

1270 SQL Reference

��
child::

descendant::
self::
descendant-or-self::

��

�� fn::upper-case(.)
fn::exists (element-name)

*
nsprefix:*
*:NCName
child::element-name
child::*
child::nsprefix:*
child::*:NCName
@attribute-name
attribute::attribute-name
@*
attribute::*

��

�� SQL VARCHAR (integer)
(34)

DECFLOAT
DATE

(12)
TIMESTAMP

��

function-step:

SQL-data-type:

using-specification:

Chapter 5. Statements 1271

�� USING

�

VCAT catalog-name

(1)
STOGROUP stogroup-name

PRIQTY 12

PRIQTY integer
SECQTY integer

ERASE NO

ERASE YES

��

Notes:

1 The same clause must not be specified more than once.

�� �
FREEPAGE 0

FREEPAGE integer
PCTFREE 10 (1)

PCTFREE integer

��

Notes:

1 The same clause must not be specified more than one time.

��
GBPCACHE CHANGED

GBPCACHE ALL
NONE

��

�� PARTITION integer

�

,
AT INCLUSIVE

ENDING (constant)
MAXVALUE
MINVALUE

��

free-specification:

gbpcache-specification:

partition-element:

1272 SQL Reference

Description

UNIQUE
Prevents the table from containing two or more rows with the same value of
the index key. When UNIQUE is used, all null values for a column are
considered equal. For example, if the key is a single column that can contain
null values, that column can contain only one null value. The constraint is
enforced when rows of the table are updated or new rows are inserted.

The constraint is also checked during the execution of the CREATE INDEX
statement. If the table already contains rows with duplicate key values, the
index is not created.

UNIQUE WHERE NOT NULL
Prevents the table from containing two or more rows with the same value of
the index key where all null values for a column are not considered equal.
Multiple null values are allowed. Otherwise, this is identical to UNIQUE.

INDEX index-name
Names the index. The name must not identify an index that exists at the
current server or in the SYSIBM.SYSPENDINGOBJECTS catalog table.

The associated index space also has a name. That name appears as a qualifier
in the names of data sets defined for the index. If the data sets are managed by
the user, the name is the same as the second (or only) part of index-name. If this
identifier consists of more than eight characters, only the first eight are used.
The name of the index space must be unique among the names of the index
spaces and table spaces of the database for the identified table. If the data sets
are defined by DB2, DB2 derives a unique name.

If the index is an index on a declared temporary table, the qualifier, if explicitly
specified, must be SESSION. If the index name is unqualified, DB2 uses
SESSION as the implicit qualifier.

ON table-name or aux-table-name
Identifies the table on which the index is created. The name can identify a base
table, a materialized query table, a declared temporary table, or an auxiliary
table.

table-name
Identifies the base table, materialized query table, or declared temporary
table on which the index is created. The name must identify a table that
exists at the current server. (The name of a declared temporary table must
be qualified with SESSION.)

The name must not identify a clone table. The name must not identify a
created temporary table or a table that is implicitly created for an XML
column. If the index that is being created is for XML values, the table can
contain an XML column, otherwise, the table must not contain an XML
column. The name cannot identify a catalog table or declared temporary
table if the index is created using expressions.

If the table has enforced row or column access controls, the row
permissions and column masks are not applied during key generation.

column-name,...
Specifies the columns of the index key.

Each column-name must identify a column of the table. Do not specify
more than 64 columns or the same column more than one time. Do not
qualify column-name.

Chapter 5. Statements 1273

Do not specify a column for column-name that is defined as follows:
v a LOB column (or a column with a distinct type that is based on a

LOB data type)
v a DECFLOAT column (or a column with a distinct type that is based

on a DECFLOAT data type)
v a BINARY or VARBINARY column (or a column with a distinct type

that is based on a BINARY or VARBINARY data type) when the
PARTITION BY RANGE clause is also specified

v a VARBINARY column (or a column with a distinct type that is
based on a VARBINARY data type) when the PADDED clause is also
specified

v a row change timestamp column when the PARTITION BY RANGE
clause is also specified.

v a timestamp with time zone column (or a column with a distinct
type that is based on the timestamp with time zone data type) when
the PARTITION or PARTITION BY RANGE clause is also specified.

A column with an XML type can only be specified if the
XMLPATTERN clause is also specified. If the XMLPATTERN clause is
specified, only one column can be identified and the column must be
an XML type. The resulting index is an XML index.

If the column is a Unicode column in an EBCDIC table, the index key
is converted to Unicode and the index is treated as an expression-based
index, subject to the same restrictions as other expression-based
indexes.

The sum of the length attributes of the columns must not be greater
than the following limits, where n is the number of columns that can
contain null values and m is the number of varying-length columns in
the key:
v 2000 - n for a padded, nonpartitioning index
v 2000 - n - 2m for a nonpadded, nonpartitioning index
v 255 - n for a partitioning index (padded or nonpadded)
v 255 - n - 2m for a nonpadded, partitioning index

key-expression
Specifies an expression that returns a scalar value. An index with a key
that includes one or more expressions consisting of more than just a
column name is an expression-based index.key-expression cannot be
specified with the GENERATE KEY USING clause or the INCLUDE
clause. key-expression has the following restrictions:
v Each key-expression must contain as least one reference to a column

of table-name.
All references to columns of table-name must be unqualified.
Referenced columns cannot be LOB, XML, or DECFLOAT data types
or a distinct type that is based on one of these data types.
Referenced columns cannot include any FIELDPROCs or a
SECURITY LABEL. Referenced columns cannot be implicitly hidden
(that is, defined with the IMPLICITLY HIDDEN attribute).

v key-expression must not including the following:
– A subquery
– An aggregate function
– A function that is not deterministic function
– A function that has an external action

1274 SQL Reference

|
|
|

|
|
|

|
|
|
|

– A user-defined function
– The VERIFY_GROUP_FOR_USER or VERIFY_ROLE_FOR_USER

functions
– A sequence reference
– A host variable
– A parameter marker
– A special register
– An expression for which implicit time zone value apply (or

example, cast a timestamp to a timestamp with time zone)
– A CASE expression
– An OLAP specification

v If key-expression references a cast function, the privilege set must
implicitly include EXECUTE authority on the generated cast
functions for the distinct type.

v If key-expression references the LOWER or UPPER functions, the
input string-expression cannot be FOR BIT DATA, and the function
invocation must contain the locale-name argument.

v If key-expression references the TRANSLATE function, the function
invocation must contain the to-string argument.

v If key-expression references the SUBSTR function, the function can
reference the inline portion of a LOB column.

v The same expression cannot be used more than one time in the same
index.

v The data type of the result of the expression cannot be a LOB, XML,
DECFLOAT, or array value. However, the data type of the
intermediate result can be a LOB value, but not an XML or
DECFLOAT value.

v If a Unicode column in an EBCDIC table is referenced in a
key-expression, the encoding scheme of the index keys must either be
all Unicode or all EBCDIC. Otherwise, the encoding schema of the
result of a key-expression must be the same encoding scheme as the
table.

The maximum length of the text string of each key-expression is 4000
bytes after conversion to UTF-8. The maximum number of
key-expression in an extended index is 64.

ASC
Puts the index entries in ascending order by the column. ASC cannot
be specified with the GENERATE KEY USING clause.

ASC is the default.

DESC
Puts the index entries in descending order by the column. DESC
cannot be specified with the GENERATE KEY USING clause or if the
ON clause contains key-expression.

DESC cannot be specified if the column is a Unicode column in an
EBCDIC table.

RANDOM
Index entries are put in a random order by the column. RANDOM
cannot be specified in the following cases:
v A varying length column is part of the index key and the index is

defined with the NOT PADDED option

Chapter 5. Statements 1275

|
|
|
|

|
|
|
|
|

|
|

v A column of the index key is defined as TIMESTAMP WITH TIME
ZONE

v The index is an XML index. An XML index is defined with the
GENERATE KEY USING clause

v The index is part of the partitioning key
v A column of the index key is a Unicode column in an EBCDIC table
v The index is an expression-based index

BUSINESS_TIME WITHOUT OVERLAPS
BUSINESS_TIME WITHOUT OVERLAPS can only be specified for
an index that is defined as UNIQUE. When BUSINESS_TIME
WITHOUT OVERLAPS is specified, the values for the rest of the
specified keys are unique with respect to any period of time.

BUSINESS_TIME WITHOUT OVERLAPS can be specified as the last
item in the list. The list must include at least one column-name or
key-expression.

When BUSINESS_TIME WITHOUT OVERLAPS is specified, the
columns of the BUSINESS_TIME period must not be specified as
key-expressions.

When BUSINESS_TIME WITHOUT OVERLAPS is specified, the
following columns are added to the index:
v The end column of the BUSINESS_TIME period in ascending order
v The start column of the BUSINESS_TIME period in ascending order

BUSINESS_TIME WITHOUT OVERLAPS must not be specified for a
PARTITIONED index.

aux-table-name
Identifies the auxiliary table on which the index is created. The name must
identify an auxiliary table that exists at the current server. If the auxiliary
table already has an index, do not create another one. An auxiliary table
can only have one index.

Do not specify any columns for the index key. The key value is implicitly
defined as a unique 19 byte value that is system generated.

If qualified, table-name or aux-table-name can be a two-part or three-part name.
If a three-part name is used, the first part must match the value of the field
DB2 LOCATION NAME of installation panel DSNTIPR at the current server.
(If the current server is not the local DB2, this name is not necessarily the
name in the CURRENT SERVER special register.) Whether the name is
two-part or three-part, the authorization ID that qualifies the name is the
owner of the index.

The table space that contains the named table must be available to DB2 so that
its data sets can be opened. If the table space is EA-enabled, the data sets for
the index must be defined to belong to a DFSMS data class that has the
extended format and addressability attributes.

GENERATE KEY USING
Along with XMLPATTERN, GENERATE KEY USING is required to generate
an XML index.

XMLPATTERN
When an XML column is indexed, only parts of the documents will be
indexed. To identify those parts, a path expression that follows the

1276 SQL Reference

|

XMLPATTERN clause is specified. Only values of those element, attribute, or
text nodes which match the specified pattern are indexed. An XML pattern can
be specified using an optional namespace declaration where namespace
prefixes are mapped to namespace URIs and by providing a path expression.
The path expression is similar to a path expression in XQuery except that the
paths that are specified for the XML index can support child axis,
self-or-descendant axis, wildcard expressions, or attribute only. The maximum
length of an XML pattern text is 4000 bytes after being converted to UTF-8.
Refer to DB2 XML Guide for more information about XQuery.

prolog
To use qualified names in the pattern-expression, namespace prefixes need to be
declared. A default namespace can also be declared for use with unqualified
names.

declare namespace NCName=StringLiteral
The namespace prefix, NCName, is mapped to a namespace URI that is
identified in StringLiteral. Multiple namespaces can be declared, but each
namespace prefix must be unique within the list of namespace
declarations. NCName is an XML name as defined by the XML 1.0
standard. NCName cannot include a colon character. The namespace URI
cannot be http://www.w3.org/XML/1998/namespace or http://w3.org/2000/
xmlns/.

declare default element namespace StringLiteral
Specifies the default namespace URI for unqualified names of elements and
types. StringLiteral is a namespace URI. If no default element namespace is
declared, unqualified names of element and types are in no namespace.
Only one default namespace can be declared.

pattern-expression
Pattern-expression is used to identify those nodes in an XML document that are
indexed. Pattern-expression cannot be an empty or invalid string, and the
XQuery expression cannot be nested more than 50 levels. pattern-expression
cannot be an XQuery updating expression.

/ (forward slash)
Separates path expression steps.

// (double forward slash)
Abbreviated syntax for /descendant-or-self::node()/

. (dot)
Abbreviated syntax for /self::node()/

child::
Specifies children of the context node. child:: is the default if no forward
axis is specified.

descendant::
Specifies the descendants of the context node.

self::
Specifies the current context node.

descendant-or-self::
Specifies the context node and the descendents of the context node.

element-name
Identifies an element in an XML document. element-name is an XML
QName that can have one of the following forms:

Chapter 5. Statements 1277

nsprefix:NCName
nsprefix explicitly specifies a namespace prefix that must be
declared.

NCName
An unqualified XML name that uses the default namespace.

* (an asterisk)
Indicates any element name. If * is prefixed by attribute:: or @, * indicates
any attribute name.

nsprefix:*
Indicates any NCName within the specified namespace.

*:NCName
Indicates a specific XML name in any of the currently declared
namespaces.

attribute:: or @
Specifies attributes of the context node.

attribute-name
Identifies an attribute in an XML document. attribute-name is an XML
QName that can have one of the following forms:

nsprefix:NCName
nsprefix explicitly specifies a namespace prefix that must be
declared.

NCName
An unqualified XML name that uses the default namespace.

text()
Matches any text node.

fn:upper-case(.)
Specifies an element node or an attribute node that identifies the key value
for the index for each node that is specified by the context step (the part of
pattern-expression that is specified prior to fn:upper-case).

The context step of fn:upper-case() must specify an element node or an
attribute node. The argument of fn:upper-case() must be a self step. The
key values of an XML value index must be specified as the SQL data type
VARCHAR. The length of the VARCHAR value can be any value that is
allowed in DB2.

fn:exists()
Specifies an element node that identifies the key value for the index for
each node that is specified by the context step (the part of pattern-expression
that is specified prior to fn:exists).

The context step of fn:exists() must specify an element node. The argument
of fn:exists() must be either a single step of a child element node or an
attribute node. The name test part can be a wildcard character for either
the namespace prefix or NCName. The key values of an XML value index
for an XPath expression that ends with fn:exists() must be specified as the
SQL data type VARCHAR(1). The key value will be "T" or "F". "T" implies
that fn:exists() evaluates to true and "F" implies that fn:exists() evaluates to
false.

AS SQL data-type
Specifies that indexed values are stored as an instance of the specified SQL
data type. Casting to the specified data type can result in a loss of precision of

1278 SQL Reference

the values. For example, a loss of precision can occur when an XML integer
value is cast to the SQL data type DECFLOAT. If the cast causes a loss of
precision, the result will be rounded to the approximate value when it is stored
in the index. The cast result cannot be outside of the range that is supported
by the SQL data type. If the value cannot be cast to the specified data type, the
document is still inserted into the table, but the index entry for that value is
not created. No error or warning code is returned.

If the index is unique, the uniqueness is enforced on the value after it is cast to
the specified type. Because rounding can occur during the cast to the SQL data
type, if a value is cast to the same key value as a document that the table
already contains, DB2 will return duplicate key errors at insert time, or fail to
create the index.

VARCHAR (integer)
The length integer is a value in the range of 1 to 1000 bytes. If VARCHAR
is specified with a length, the specified length is treated as a constraint. If
documents are inserted into a table (or exist in the table at create index
time) that have nodes with values that are longer than the specified length,
the insert or index creation will fail.

DECFLOAT
DECFLOAT can be specified to index numeric values. For the cast to
succeed, the string must be a valid XML numeric type. Otherwise the
value will be ignored and no insert to the index will occur. The result of
the cast cannot be outside of the range that DECFLOAT can represent.
Because the XML Schema data type for numeric values allows greater
precision than the SQL data type, the result might be rounded to fit into
the SQL data type. The DECFLOAT values that are stored in the index are
the normalized numeric values.

DATE
The SQL DATE data type values will be normalized to UTC (Coordinated
Universal Time) before being stored in the index. For invalid xs:date
values, the value will be ignored without being inserted into the index. The
XML schema data type for DATE allows for greater precision than the SQL
data type. If an out-of-range value is encountered, an error is returned.

TIMESTAMP (12)
The SQL TIMESTAMP data type values will be normalized to UTC
(Coordinated Universal Time) before being stored in the index. If the value
that is specified in the document does not specify the time zone, DB2 will
use the implicit time zone to normalize the value to UTC. For invalid
xs:dateTime values, the value will be ignored without being inserted into
the index. The XML schema data type for timestamps allows for greater
precision than the SQL data type. If an out-of range value is encountered,
an error is returned. Only a precision of 12 fractional digits is allowed for
an SQL TIMESTAMP index key.

INCLUDE (column-name)
Specifies additional columns to append to the set of index key columns of a
unique index. Any column that is specified using INCLUDE column-name is
not used to enforce uniqueness. The included columns might improve
performance for some queries using index only access.

The UNIQUE clause must be specified when INCLUDE is specified. Columns
that are specified in the INCLUDE clause count towards the limits for the

Chapter 5. Statements 1279

number of columns and the limits on the sum of the length attributes of the
columns that are specified in the index. The total number of columns for the
index cannot exceed 64.

column-name must be distinct from the columns that are used to enforce
uniqueness and from other columns specified in the INCLUDE clause.
column-name must be unqualified, must identify a column of the specified
table, and must not be one of the existing columns of the index. column-name
must not identify a LOB or DECFLOAT column (or a distinct type that is
based on one of those types).

The INCLUDE clause cannot be specified for the following types of indexes:
v A non-unique index
v A partitioning index when index-controlled partitioning is used
v An auxiliary index
v An XML index
v An extended index
v An expression-based index

CLUSTER or NOT CLUSTER
Specifies whether the index is the clustering index for the table. This clause
must not be specified for an index on an auxiliary table, or on a table that is
defined to use hash organization.

CLUSTER
The index is to be used as the clustering index of the table. CLUSTER
cannot be specified if XMLPATTERN or key-expression is specified.

NOT CLUSTER
The index is not to be used as the clustering index of the table.

PARTITIONED
Specifies that the index is data partitioned (that is, partitioned according to the
partitioning scheme of the underlying data). A partitioned index can be created
only on a partitioned table space, not on a partition-by-growth table space.
PARTITIONED cannot be specified if XMLPATTERNor if BUSINESS_TIME
WITHOUT OVERLAPS is specified. The types of partitioned indexes are
partitioning and secondary.

An index is considered a partitioning index if the specified index key columns
match or comprise a superset of the columns specified in the partitioning key,
are in the same order, and have the same ascending or descending attributes.

If PARTITION BY was not specified when the table was created, the CREATE
INDEX statement must have the ENDING AT clause specified to define a
partitioning index and use index-controlled partitioning. This index is created
as a partitioned index even if the PARTITIONED keyword is not specified.
When a partitioning index is created, if both the PARTITIONED and ENDING
AT keywords are omitted, the index will be non-partitioned. If PARTITIONED
is specified, the USING specification with PRIQTY and SECQTY specifications
are optional. If these space parameters are not specified, default values are
used.

A secondary index is any index defined on a partitioned table space that does
not meet the definition of the partitioning index. For partitioned secondary
indexes (data-partitioned secondary indexes), the ENDING AT clause is not
allowed because the partitioning scheme of the index is predetermined by that
of the underlying data. UNIQUE and UNIQUE WHERE NOT NULL are not
allowed unless the columns in the index are a superset of the partitioning

1280 SQL Reference

columns. If a partitioned secondary index is created on a table that uses
index-controlled partitioning, the table is converted to use table-controlled
partitioning.

Index-controlled partitioning cannot be used if the
PREVENT_NEW_IXCTRL_PART subsystem parameter is set to YES.

Related information:

PREVENT INDEX PART CREATE field (PREVENT_NEW_IXCTRL_PART
subsystem parameter) (DB2 Installation and Migration)

NOT PADDED or PADDED
Specifies how varying-length string columns are to be stored in the index. If
the index contains no varying-length columns, this option is ignored, and a
warning message is returned. Indexes that do not have varying-length string
columns are always created as physically padded indexes.

NOT PADDED
Specifies that varying-length string columns are not to be padded to their
maximum length in the index. The length information for a varying-length
column is stored with the key.

NOT PADDED must be used if the definition of the index refers to a
Unicode column in an EBCDIC table.

NOT PADDED is ignored and has no effect if the index is being created on
an auxiliary table. Indexes on auxiliary tables are always padded.

PADDED
Specifies that varying-length string columns within the index are always
padded with the default pad character to their maximum length. PADDED
cannot be specified if XMLPATTERN is specified. PADDED cannot be
specified for indexes that are defined on VARBINARY columns.

When the index contains at least one varying-length column, the default for
the option depends on the value of field PAD INDEXES BY DEFAULT on
installation panel DSNTIPE:
v When the value of this field is NO, new indexes are not padded unless

PADDED is specified.
v When the value of this field is YES, new indexes are padded unless NOT

PADDED is specified.

The components of the USING clause are discussed below, first for
non-partitioned indexes and then for partitioned indexes.

Using clause for non-partitioned indexes
For non-partitioned indexes, the USING clause indicates whether the data sets
for the index are to be managed by the user or managed by DB2. If DB2
definition is specified, the clause also gives space allocation parameters
(PRIQTY and SECQTY) and an erase rule (ERASE).

If you omit USING, the data sets will be managed by DB2 on volumes listed in
the default storage group of the database that is associated with the table. That
default storage group must exist. With no USING clause, PRIQTY, SECQTY,
and ERASE assume their default values.

Chapter 5. Statements 1281

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_preventnewixctrlpart.htm#db2z_dsntip715
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_preventnewixctrlpart.htm#db2z_dsntip715

VCAT catalog-name
Specifies that the first data set for the index is managed by the user, and
that following data sets, if needed, are also managed by the user.

The data sets defined for the index are linear VSAM data sets cataloged in
an integrated catalog facility catalog identified by catalog-name. An alias30

must be used if catalog-name is longer than eight characters.

Conventions for index data set names are given in DB2 Administration
Guide. catalog-name is the first qualifier for each data set name.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of
those subsystems attempt to assign the same name to different data sets,
select a value for catalog-name that is not used by the other DB2
subsystems.

Do not specify VCAT for an index on a declared temporary table or if the
table space is partition-by-growth.

STOGROUP stogroup-name
Specifies that DB2 will define and manage the data sets for the index. Each
data set will be defined on a volume listed in the identified storage group.
The values specified (or the defaults) for PRIQTY and SECQTY determine
the primary and secondary allocations for the data set. If
PRIQTY+118×SECQTY is 2 gigabytes or greater, more than one data set
could eventually be used, but only the first is defined during execution of
this statement.

To use USING STOGROUP, the privilege set must include SYSADM
authority, SYSCTRL authority, or the USE privilege for that storage group.
Moreover, stogroup-name must identify a storage group that exists at the
current server and includes in its description at least one volume serial
number. The description can indicate that the choice of volumes will be left
to Storage Management Subsystem (SMS). Each volume specified in the
storage group must be accessible to z/OS for dynamic allocation of the
data set, and all these volumes must be of the same device type.

The integrated catalog facility catalog used for the storage group must not
contain an entry for the first data set of the index. If the catalog is
password protected, the description of the storage group must include a
valid password.

The storage group supplies the data set name. The first level qualifier is
also the name of, or an alias for, the integrated catalog facility catalog on
which the data set is to be cataloged. The naming convention for the data
set is the same as if the data set is managed by the user.

Do not specify the STOGROUP option when you create indexes on the
DB2 catalog. User-created indexes on the catalog should be user-managed.

PRIQTY integer
Specifies the minimum primary space allocation for a DB2-managed
data set. When you specify PRIQTY (with a value other than -1), the
primary space allocation is at least n kilobytes, where n is:

12 If integer is less than 12
integer

If integer is between 12 and 4194304

30. The alias of an integrated catalog facility catalog

1282 SQL Reference

2097152
If both of the following conditions are true:
v integer is greater than 2097152.
v The index is a non-partitioned index on a table space that is

not defined with the LARGE or DSSIZE attribute.
4194304

If integer is greater than 4194304

If you do not specify PRIQTY or specify PRIQTY -1, DB2 uses a default
value for the primary space allocation; for information on how DB2
determines the default value, see Rules for primary and secondary
space allocation.

If you specify PRIQTY and do not specify a value of -1, DB2 specifies
the primary space allocation to access method services using the
smallest multiple of 4KB not less than n. The allocated space can be
greater than the amount of space requested by DB2. For example, it
could be the smallest number of tracks that will accommodate the
space requested. To more closely estimate the actual amount of storage,
see DEFINE CLUSTER command (DFSMS Access Method Services for
Catalogs).

When determining a suitable value for PRIQTY, be aware that two of
the pages of the primary space could be used by DB2 for purposes
other than storing index entries.

SECQTY integer
Specifies the minimum secondary space allocation for a DB2-managed
data set. If you do not specify SECQTY, DB2 uses a formula to
determine a value. For information on the actual value that is used for
secondary space allocation, whether you specify a value or not, see
Rules for primary and secondary space allocation.

If you specify SECQTY and do not specify a value of -1, DB2 specifies
the secondary space allocation to access method services using the
smallest multiple of 4KB not less than n. The allocated space can be
greater than the amount of space requested by DB2. For example, it
could be the smallest number of tracks that will accommodate the
space requested. To more closely estimate the actual amount of storage,
see DEFINE CLUSTER command (DFSMS Access Method Services for
Catalogs).

ERASE
Indicates whether the DB2-managed data sets are to be erased when
they are deleted during the execution of a utility or an SQL statement
that drops the index.

NO Does not erase the data sets. Operations involving data set deletion
will perform better than ERASE YES. However, the data is still
accessible, though not through DB2. This is the default.

YES
Erases the data sets. As a security measure, DB2 overwrites all data
in the data sets with zeros before they are deleted.

USING clause for partitioned indexes:
If the index is partitioned, there is a PARTITION clause for each partition.
Within a PARTITION clause, a USING clause is optional. If a USING clause is
present, it applies to that partition in the same way that a USING clause for a
secondary index applies to the entire index.

Chapter 5. Statements 1283

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

When a USING specification is absent from a PARTITION clause, the USING
clause parameters for the partition depend on whether a USING clause is
specified before the PARTITION clauses.
v If the USING clause is specified, it applies to every PARTITION clause that

does not include a USING clause.
v If the USING clause is not specified, the following defaults apply to the

partition:
– Data sets are managed by DB2
– The default storage group for the database is used
– A value of 12 is used for PRIQTY and SECQTY
– A value of NO is used for ERASE

VCAT catalog-name
Specifies a user-managed data set with a name that starts with the
specified catalog name. You must specify an alias for the integrated catalog
facility catalog if the name of the integrated catalog facility catalog is
longer than eight characters.

If n is the number of the partition, the identified integrated catalog facility
catalog must already contain an entry for the nth data set of the index,
conforming to the DB2 naming convention for data sets set forth in DB2
Administration Guide.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of
those subsystems attempt to assign the same name to different data sets,
select a value for catalog-name that is not used by the other DB2
subsystems.

DB2 assumes one and only one data set for each partition.

STOGROUP stogroup-name
If USING STOGROUP is used, explicitly or by default, for a partition n,
DB2 defines the data set for the partition during the execution of the
CREATE INDEX statement, using space from the named storage group.
The privilege set must include SYSADM authority, SYSCTRL authority, or
the USE privilege for that storage group. The integrated catalog facility
catalog used for the storage group must NOT contain an entry for the nth
data set of the index.

stogroup-name must identify a storage group that exists at the current server
and the privilege set must include SYSADM authority, SYSCTRL authority,
or the USE privilege for the storage group.

If you omit PRIQTY, SECQTY, or ERASE from a USING STOGROUP clause
for some partition, their values are given by the next USING STOGROUP
clause that governs that partition: either a USING clause that is not in any
PARTITION clause, or a default USING clause. DB2 assumes one and only
one data set for each partition.

FREEPAGE integer
Specifies how often to leave a page of free space when index entries are
created as the result of executing a DB2 utility or when creating an index for a
table with existing rows. One free page is left for every integer pages. The
value of integer can range from 0 to 255. The default is 0, leaving no free pages.

Do not specify FREEPAGE for an index on a declared temporary table.

1284 SQL Reference

PCTFREE integer
Determines the percentage of free space to leave in each nonleaf page and leaf
page when entries are added to the index or index partition as the result of
executing a DB2 utility or when creating an index for a table with existing
rows. The first entry in a page is loaded without restriction. When additional
entries are placed in a nonleaf or leaf page, the percentage of free space is at
least as great as integer.

The value of integer can range from 0 to 99, however, if a value greater than 10
is specified, only 10 percent of free space will be left in nonleaf pages. The
default is 10.

Do not specify PCTFREE for an index on a declared temporary table.

If the index is partitioned , the values of FREEPAGE and PCTFREE for a
particular partition are given by the first of these choices that applies:

v The values of FREEPAGE and PCTFREE given in the PARTITION clause for
that partition. Do not use more than one free-specification in any PARTITION
clause.

v The values given in a free-specification that is not in any PARTITION clause.
v The default values FREEPAGE 0 and PCTFREE 10.

GBPCACHE
In a data sharing environment, specifies what index pages are written to the
group buffer pool. In a non-data-sharing environment, the option is ignored
unless the index is on a declared temporary table. Do not specify GBPCACHE
for an index on a declared temporary table in either environment (data sharing
or non-data-sharing).

CHANGED
Specifies that updated pages are written to the group buffer pool, when
there is inter-DB2 R/W interest on the index or partition. When there is no
inter-DB2 R/W interest, the group buffer pool is not used. Inter-DB2 R/W
interest exists when more than one member in the data sharing group has
the index or partition open, and at least one member has it open for
update. GBPCACHE CHANGED is the default.

If the index is in a group buffer pool that is defined as GBPCACHE(NO),
CHANGED is ignored and no pages are written to the group buffer pool.

ALL
Indicates that pages are written to the group buffer pool as they are read in
from DASD.

Exception: In the case of a single updating DB2 subsystem when no other
DB2 subsystems have any interest in the page set, no pages are written to
the group buffer pool.

If the index is in a group buffer pool that is defined as GBPCACHE(NO),
ALL is ignored and no pages are written to the group buffer pool.

NONE
Indicates that no pages are written to the group buffer pool. DB2 uses the
group buffer pool only for cross-invalidation.

If the index is partitioned, the value of GBPCACHE for a particular partition
is given by the first of these choices that applies:
1. The value of GBPCACHE given in the PARTITION clause for that partition.

Do not use more than one gbpcache-specification in any PARTITION clause.

Chapter 5. Statements 1285

2. The value given in a gbpcache-specification that is not in any PARTITION
clause.

3. GBPCACHE CHANGED is the default value.

DEFINE
Specifies when the underlying data sets for the index are physically created.
The SPACE column in catalog table SYSINDEXPART is used to record the
status of the data sets (undefined or allocated). If the DEFINE keyword is not
specified, the define attribute is inherited from the current state of the base
table space.

YES
The data sets are created when the index is created (the CREATE INDEX
statement is executed).

NO The data sets are not created until data is inserted into the index.

DEFINE NO is applicable only for DB2-managed data sets (USING
STOGROUP is specified). Use DEFINE NO especially when performance of
the CREATE INDEX statement is important or DASD resource is
constrained.

Do not use DEFINE NO on an index if you use a program outside of DB2
to propagate data into a table on which that index is defined. If you use
DEFINE NO on an index of a table and data is then propagated into the
table from a program that is outside of DB2, the index space data sets are
allocated, but the DB2 catalog will not reflect this fact. As a result, DB2
treats the data sets for the index space as if they have not yet been
allocated. The resulting inconsistency causes DB2 to deny application
programs access to the data until the inconsistency is resolved.

DEFINE NO is ignored for user-managed data sets (USING VCAT is
specified). DEFINE NO is also ignored if the index is being created on a
table that is not empty or on an auxiliary table.

Do not specify DEFINE NO if the index is created on a base table that is
involved in a clone relationship.

Do not specify DEFINE NO for an index on a declared temporary table.

COMPRESS NO or COMPRESS YES
Specifies whether compression for index data will be used. If the index is
partitioned, the clause will apply to all partitions.

COMPRESS NO
Specifies that no index compression will be used.

COMPRESS NO is the default.

COMPRESS YES
Specifies that index compression will be used. The bufferpool that is used
to create the index must be 8K, 16K, or 32K in size. The physical page size
on disk will be 4K. The index compression will take place immediately.

Index compression is recommended for applications that do sequential
insert operations with few or no delete operations. Random inserts and
deletes can adversely effect compression. Index compress is also
recommended for applications where the indexes are created primarily for
scan operations.

INCLUDE NULL KEYS or EXCLUDE NULL KEYS
Specifies whether an index entry will be created when every key column
contains the NULL value.

1286 SQL Reference

|
|
|

INCLUDE NULL KEYS
Specifies that an index entry will be created when every key column
contains the NULL value.

INCLUDE NULL KEYS is the default.

EXCLUDE NULL KEYS
Specifies that no index entry will be created when every key column
contains the NULL value. If any key column is not null the index entry
will be created.

EXCLUDE NULL KEYS must not be specified with the following:
v UNIQUE

v BUSINESS_TIME WITHOUT OVERLAPS

v XML-index-specification

v key-expression

v INCLUDE (column-name)

EXCLUDE NULL KEYS must also not be specified if any of the columns
that are identified by column-name are defined as NOT NULL, or if the
index is defined as a partitioning index for use with index-controlled
partitioning.

PARTITION BY RANGE
Specifies the partitioning index for the table, which determines the partitioning
scheme for the data in the table.

PARTITION BY RANGE should only be specified if the table space is
partitioned and the partitioning schema has not already been established.

PARTITION BY RANGE must not be specified if the index is an extended
index, is defined with the BUSINESS_TIME WITHOUT OVERLAPS, or if the
table is in a universal table space (ranged-partitioned or partition-by-growth
table space).

partition-element
Specifies the range for each partition.

PARTITION integer
A PARTITION clause specifies the highest value of the index key in
one partition of a partitioning index. In this context, highest means
highest in the sorting sequences of the index columns. In a column
defined as ascending (ASC), highest and lowest have their usual
meanings. In a column defined as descending (DESC), the lowest actual
value is highest in the sorting sequence.

If you use CLUSTER, and the table is contained in a partitioned table
space, you must use exactly one PARTITION clause for each partition
(defined with NUMPARTS on CREATE TABLESPACE). If there are p
partitions, the value of integer must range from 1 through p.

The length of the highest value of a partition (also called the limit key)
is the same as the length of the partitioning index.

ENDING AT(constant, MAXVALUE, or MINVALUE...)
Specifies that this is the partitioning index and indicates how the data
will be partitioned. The table space is marked complete after this
partitioning index is created. You must use at least one value (constant,
MAXVALUE, or MINVALUE) after ENDING AT in each PARTITION
clause. You can use as many as there are columns in the key. The
concatenation of all the values is the highest value of the key in the

Chapter 5. Statements 1287

|
|
|

|

|
|
|
|

|

|

|

|

|

|

|
|
|
|

corresponding partition of the index unless the VALUES statement was
already specified when the table or previous index was created.

constant
Specifies a constant value with a data type that must conform to
the rules for assigning that value to the column. If a string constant
is longer or shorter than required by the length attribute of its
column, the constant is either truncated or padded on the right to
the required length. If the column is ascending, the padding
character is X'FF'. If the column is descending, the padding
character is X'00'. The precision and scale of a decimal constant
must not be greater than the precision and scale of its
corresponding column. A hexadecimal string constant (GX) cannot
be specified.

MAXVALUE
Specifies a value greater than the maximum value for the limit key
of a partition boundary (that is, all X'FF' regardless of whether the
column is ascending or descending). If all of the columns in the
partitioning key are ascending, a constant or the MINVALUE
clause cannot be specified following MAXVALUE. After
MAXVALUE is specified, all subsequent columns must be
MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the
limit key of a partition boundary (that is, all X'00' regardless of
whether the column is ascending or descending). If all of the
columns in the partitioning key are descending, a constant or the
MAXVALUE clause cannot be specified following MAXVALUE.
After MINVALUE is specified, all subsequent columns must be
MINVALUE.

The key values are subject to the following rules:
v The first value corresponds to the first column of the key, the second

value to the second column, and so on. Using fewer values than
there are columns in the key has the same effect as using the highest
or lowest values for the omitted columns, depending on whether
they are ascending or descending.

v If a key includes a ROWID column or a column with a distinct type
that is based on a ROWID data type, 17 bytes of the constant that is
specified for the corresponding ROWID column are considered.

v The highest value of the key in any partition must be lower than the
highest value of the key in the next partition.

v If the concatenation of all the values exceeds 255 bytes, only the first
255 bytes are considered.

v The highest value of the key in the last partition depends on how
the table space is defined. For table spaces that are created without
the LARGE or DSSIZE options, the values that you specify after
VALUES are not enforced. The highest value of the key that can be
placed in the table is the highest possible value of the key.
For large partitioned table space, the values you specify are
enforced. The value specified for the last partition is the highest
value of the key that can be placed in the table. Any key values
greater than the value that is specified for the last partition are out
of range.

1288 SQL Reference

ENDING AT can be specified only if the ENDING AT clause was not
specified on a previous CREATE or ALTER TABLE statement for the
underlying table.

INCLUSIVE
Specifies that the specified range values are included in the data
partition.

BUFFERPOOL bpname
Identifies the buffer pool that is to be used for the index. The bpname must
identify an activated 4KB, 8KB, 16KB, or 32KB buffer pool and the privilege set
must include SYSADM or SYSCTRL authority or the USE privilege for the
buffer pool.

The default is the default 4KB buffer pool for indexes in the database. A buffer
pool with a smaller size should be chosen for indexes with random insert
patterns. A buffer pool with a larger size should be chosen for indexes with
sequential insert patterns.

See “Naming conventions” on page 57 for more details about bpname. See DB2
Command Reference for a description of active and inactive buffer pools.

CLOSE
Specifies whether or not the data set is eligible to be closed when the index is
not being used and the limit on the number of open data sets is reached.

YES
Eligible for closing. This is the default unless the index is on a declared
temporary table.

NO Not eligible for closing.

If the limit on the number of open data sets is reached and there are no
page sets that specify CLOSE YES to close, page sets that specify CLOSE
NO will be closed.

For an index on a declared temporary table, DB2 uses CLOSE NO regardless of
the value specified.

DEFER
Indicates whether the index is built during the execution of the CREATE
INDEX statement. Regardless of the option specified, the description of the
index and its index space is added to the catalog. If the table is determined to
be empty and DEFER YES is specified, the index is neither built nor placed in
a rebuild-pending status. Refer to DB2 Administration Guide for more
information about using DEFER. Do not specify DEFER for an index on a
declared temporary table or an auxiliary table.

NO The index is built. This is the default.

YES
The index is not built. If the table is populated, the index is placed in a
rebuild-pending status and a warning message is issued; the index must be
rebuilt by the REBUILD INDEX utility.

PIECESIZE integer
Specifies the maximum addressability of each data set for a non-partitioned
index. The subsequent keyword K, M, or G, indicates the units of the value
that is specified in integer.

Chapter 5. Statements 1289

K Indicates that the integer value is to be multiplied by 1024 to specify
the maximum data set size in bytes. integer must be a power of two
between 1 and 268435456.

M Indicates that the integer value is to be multiplied by 1048576 to specify
the maximum data set size in bytes. integer must be a power of two
between 1 and 262144.

G Indicates that the integer value is to be multiplied by 1073741824 to
specify the maximum data set size in bytes. integer must be a power of
two between 1 and 256.

Table 111 shows the valid values for the data set size, which depend on the
size of the table space.

Table 111. Valid values of PIECESIZE clause

K units M units G units Size attribute of table space

256K

512K

1024K 1M

2048K 2M

4096K 4M

8192K 8M

16384K 16M

32768K 32M

65536K 64M

131072K 128M

262144K 256M

524288K 512M

1048576K 1024M 1G

2097152K 2048M 2G

4194304K 4096M 4G LARGE, DSSIZE 4G (or greater)

8388608K 8192M 8G DSSIZE 8G (or greater)

16777216K 16384M 16G DSSIZE 16G (or greater)

33554432K 32768M 32G DSSIZE 32G (or greater)

67108864K 65536M 64G DSSIZE 64G (or greater)

134217728K 131072M 128G DSSIZE 128G (or greater)

268435456K 262144M 256G DSSIZE 256G

PIECESIZE has no effect on primary and secondary space allocation as it is
only a specification of the maximum amount of data that a data set can hold
and not the actual allocation of storage.

If you change the PIECESIZE value with the ALTER INDEX statement, the
index is put into REBUILD-pending status.

See the following for additional information:
v Number of pieces and maximum piece size for non-partitioned indexes and

data-partitioned secondary indexes
v Choosing a value for PIECESIZE

1290 SQL Reference

COPY
Indicates whether the COPY utility is allowed for the index. Do not specify
COPY for an index on a declared temporary table.

NO Does not allows full image or concurrent copies or the use of the
RECOVER utility on the index. NO is the default.

YES
Allows full image or concurrent copies and the use of the RECOVER utility
on the index.

Notes

Owner privileges:
The owner of the table has all table privileges (see “GRANT (table or view
privileges)” on page 1721) with the ability to grant these privileges to
others. For more information about ownership of the object, see
“Authorization, privileges, permissions, masks, and object ownership” on
page 70.

Effects of the DEFER clause:
If DEFER NO is implicitly or explicitly specified, the CREATE INDEX
statement cannot be executed while a DB2 utility has control of the table
space that contains the identified table.

If the identified table already contains data and if the index build is not
deferred, CREATE INDEX creates the index entries for it. If the table does
not yet contain data, CREATE INDEX creates a description of the index;
the index entries are created when data is inserted into the table.

Errors evaluating the expressions for an index:
Errors that occur during the evaluation of an expression for an index are
returned when the expression is evaluated. This can occur on an SQL data
change statement, SELECT from an SQL data change statement, or the
REBUILD INDEX utility. For example, the evaluation of the expression 10
/ column_1 returns an error if the value in column_1 is 0. The error is
returned during CREATE INDEX processing if the table is not empty and
contains a row with a value of zero in column_1, otherwise the error is
returned during the processing of the insert or update operation when a
row with a value of zero in column_1 is inserted or updated.

Result length of expressions that return a string type:
If the result data type of key-expression is a string type and the result length
cannot be calculated at bind time, the length is set to the maximum
allowable length of that data type or the largest length that DB2 can
estimate. In this case, the CREATE INDEX statement can fail because the
total key length might exceed the limit of an index key.

For example, the result length of the expression REPEAT(’A’, CEIL(1.1)) is
VARCHAR(32767) and the result length of the expression
SUBSTR(DESCRIPTION,1,INTEGER(1.2)) is the length of the DESCRIPTION
column. Therefore, a CREATE INDEX statement that uses any of these
expressions as a key-expression might not be created because the total key
length might exceed the limit of an index key.

Use of ASC or DESC on key columns:
There are no restrictions on the use of ASC or DESC for the columns of a
parent key or foreign key. An index on a foreign key does not have to have
the same ascending and descending attributes as the index of the
corresponding parent key.

Chapter 5. Statements 1291

EBCDIC, ASCII, and UNICODE encoding schemes for an index:
An index has the same encoding scheme as its associated table.

Number of pieces and maximum piece size for non-partitioned indexes and
data-partitioned secondary indexes

The largest amount of data that an index can hold is the maximum
number of pieces for the index times the maximum amount of data that a
piece can hold.

For a non-partitioned index, the maximum amount of data that an index
can hold is defined by using the PIECESIZE parameter.

The default piece size for an index is as follows:
v 2 GB (PIECESIZE 2 G) for indexes of table spaces created without the

LARGE or DSSIZE option
v 4 GB (PIECESIZE 4 G) for indexes of table spaces created with the

LARGE or DSSIZE option
v 4 GB (PIECESIZE 4 G) for auxiliary indexes

The following tables list the maximum number of pieces and the default
index piece size for various table spaces.

Table 112. Maximum number of pieces and the default index piece size for a partitioned table space that is created
without the LARGE or DSSIZE clauses and has a NUMPART value of less than or equal to 64

Definition of
partitioned table
space (non-large),
NUMPART value

Partitioned index Non-partitioned index

Maximum number of
pieces

Default index piece
size

Maximum number of
pieces

Default index piece
size

NUMPARTS <= 16 16 4G 32 2G

NUMPART >= 17
but
NUMPARTS <= 32

32 2G 32 2G

NUMPART >= 33 64 1G 32 2G

Table 113. Maximum number of pieces and the default index piece size for a partitioned table space that is created
with the LARGE or DSSIZE clauses or has a NUMPART value of greater than or equal to 65

Definition of
partitioned table
space (large)

Partitioned index Non-partitioned index

Maximum number of
pieces

Default index piece
size

Maximum number of
pieces

Default index piece
size

v LARGE clause -
specified

v DSSIZE clause - not
specified

MIN(4096, 2^32/
(x/y))
- see note 1

4G MIN(4096, 2^32/
(x/y))
- see note 2

4G

v LARGE clause - not
specified

v DSSIZE clause - not
specified

v NUMPARTS clause
- greater than 64
but less than 256

MIN(4096, 2^32/
(x/y))
- see note 1

4G MIN(4096, 2^32/
(x/y))
- see note 2

4G

1292 SQL Reference

Table 113. Maximum number of pieces and the default index piece size for a partitioned table space that is created
with the LARGE or DSSIZE clauses or has a NUMPART value of greater than or equal to 65 (continued)

Definition of
partitioned table
space (large)

Partitioned index Non-partitioned index

Maximum number of
pieces

Default index piece
size

Maximum number of
pieces

Default index piece
size

v LARGE clause - not
specified

v DSSIZE clause -
specified or
NUMPARTS clause
- greater than or
equal to 256

MIN(4096, 2^32/
(x/y))
- see note 1

MIN(x, 2^32/
(MIN(4096, 2^32/(x/y)
))
* z)
- see note 1 for
values of x and y.
z is the page
size of the index.

MIN(4096, 2^32/
(x/y))
- see note 2

4G

Note:

1. For a partitioned index, the formula MIN(4096, 2^32 / (x / y)), determines the maximum number of partitions
in the table space, where x and y have the following values:

x is the DSSIZE of the table space

y is the page size of the table space

2. For a non-partitioned index, the formula MIN(4096, 2^32 / (x / y)), determines the maximum number of pieces
for the non-partitioned index, where x and y have the following values:

x is the piece size of the index (stored in the PIECESIZE column of the SYSIBM.SYSINDEXES catalog table)

y is the page size of the index (stored in the PGSIZE column of the SYSIBM.SYSINDEXES catalog table)

Table 114. Maximum number of pieces and the default index piece size for a non-partitioned
table space

Type of non-partitioned
table space Maximum number of pieces Default index piece size

non-segmented table space 32 2G

segmented table space 32 2G

LOB, auxiliary, or XML table
space

32 4G

Choosing a value for PIECESIZE:
To choose a value for PIECESIZE, divide the size of the non-partitioned
index by the number of data sets that you want. For example, to ensure
that you have five data sets for the non-partitioned index, and your index
is 10MB (and not likely to grow much), specify PIECESIZE 2 M. If your
non-partitioned index is likely to grow, choose a larger value.

Remember that 32 data sets is the limit if the underlying table space is not
defined as LARGE or with a DSSIZE parameter and that the limit is 4096
for objects with greater than 254 parts. For a non-partitioned index on a
table space that is defined as LARGE or with a DSSIZE parameter, the
maximum is MIN(4096, 232 / (index piece size/index page size)).

Keep the PIECESIZE value in mind when you are choosing values for
primary and secondary quantities. Ideally, the value of your primary
quantity plus the secondary quantities should be evenly divisible into
PIECESIZE.

Dropping an index:
Partitioning indexes can be dropped. If the table space is using
index-controlled partitioning, the table space is converted to
table-controlled partitioning. Secondary indexes that are not indexes on

Chapter 5. Statements 1293

auxiliary tables can be dropped simply by dropping the indexes. An empty
index on an auxiliary table can be explicitly dropped; a populated index
can be dropped only by dropping other objects. For details, see Dropping
an index on an auxiliary table and an auxiliary table.

If the index is a unique index that enforces a primary key, unique key, or
referential constraint, the constraint must be dropped before the index is
dropped. See “DROP” on page 1609.

Unique indexes and enforcement of UNIQUE or PRIMARY KEY specifications
for a table:

A table requires a unique index (that is not defined as UNIQUE WHERE
NOT NULL) if you use the UNIQUE or PRIMARY KEY clause in the
CREATE or ALTER TABLE statements, or if there is a ROWID column that
is defined as GENERATED BY DEFAULT. DB2 implicitly creates those
unique indexes if the table space is explicitly created and the CREATE or
ALTER TABLE statement is processed by the schema processor or if the
table space is implicitly created; otherwise, you must explicitly create them.
If any of the unique indexes that must be explicitly defined do not exist,
the definition of the table is incomplete, and the following rules apply:
v Let K denote a key for which a required unique index does not exist and

let n denote the number of unique indexes that remain to be created
before the definition of the table is complete. (For a new table that has
no indexes, K is its primary key or any of the keys defined in the
CREATE or ALTER TABLE statement as UNIQUE and n is the number
of such keys. After the definition of a table is complete, an index cannot
be dropped if it is enforcing a primary key or unique key.)

v The creation of the unique index reduces n by one if the index key is
identical to K. The keys are identical only if they have the same columns
in the same order.

v If n is now zero, the creation of the index completes the definition of the
table.

v If K is a primary key, the description of the index indicates that it is a
primary index. If K is not a primary key, the description of the index
indicates that it enforces the uniqueness of a key defined as UNIQUE in
the CREATE or ALTER TABLE statement.

A unique index cannot be created on a materialized query table.

Unique indexes and XML columns:
If the index is an XML index on a unique XML column, the uniqueness
applies to values of the specified pattern across all documents of that
column, and the uniqueness is enforced on the value after the value is cast
to the specified SQL data type. Because the data type conversion might
result in a loss of precision and normalization, multiple values that appear
unique in the XML document might still result in duplicate errors. If the
index is defined using an expression, the uniqueness is enforced against
the values that are stored in the index, not against the original values of
the columns. The WHERE NOT NULL specification is ignored with a
warning if XMLPATTERN is also specified, and the index is treated as if
UNIQUE had been specified.

Defining an XML index using an XPath pattern-expression that includes
functions:

An XPath pattern-expression that includes functions (including fn:exists() or
fn:upper-case()) will have two parts. The first part is referred to as the
context step and specifies the XPath of the element node or attribute node

1294 SQL Reference

for which an index entry will be created (the element or attributes NodeID
will be included in the index). The context step follows the same syntax as
the XPath pattern-expression for an XML index, except that for fn:exists() it
has to specify an element node, and for fn:upper-case() it has to specify an
element node or an attribute node.

The second part is referred to as the function expression step and specifies
the fn:exists() or fn:upper-case() XPath function. The function expression
step is the right-most part of an XPath pattern-expression. For each node
specified by the context step, the function expression step specifies the key
value for the index. For example, in the XPath pattern-expression
/purchaseOrder/items/item/fn:exists(shipDate), the context step is
/purchaseOrder/items/item, and the function expression step is
fn:exists(shipDate).

Use of PARTITIONED keyword:
When a partitioned index is created and no additional keywords are
specified, the index is non-partitioned. If the keyword PARTITIONED is
specified, the index is partitioned. If PARTITION BY RANGE is specified,
the index is both data-partitioned and key-partitioned because it is defined
on the partitioning columns of the table. Any index on a partitioned table
space that does not meet the definition of a partitioning index is a
secondary index. When a secondary index is created and no additional
keywords are specified, the secondary index is non-partitioned (NPSI). If
the keyword PARTITIONED is specified, the index is a data-partitioned
secondary index (DPSI).

Creating a partitioning index for a table created without partition boundaries:
When a table is created without specifying partition boundaries using the
ENDING AT clause, the table is incomplete until a partitioning index is
created. The first index that is created for a table must specify both the
PARTITION and the ENDING AT clauses.

When the PARTITION clause is specified while creating an index, either
the PARTITIONED clause, or the ENDING AT clause must also be
specified.

Considerations for tables that are involved in a clone relationship:
If an index is created on a base table that is involved in a clone
relationship, an index with the same name is also created on the clone
table. The index on the clone table will be placed in rebuild-pending status
unless the clone table is empty when the index is created.

Considerations for tables that contain a row change timestamp column:
To create an index that refers to a row change timestamp column in the
table, values must already exist in the column for all rows. Values are
stored in row change timestamp columns whenever a row is inserted or
updated in the table. If the row change timestamp column is added to an
existing table that contains rows, the values for the row change timestamp
column is not materialized and stored at the time of the ALTER TABLE
statement. Values are materialized for these rows when they are updated,
or when a REORG or a LOAD REPLACE utility is run on the table or table
space.

Restriction on table spaces when there are pending changes to the definition:
A CREATE INDEX statement is not allowed if there are pending changes
to the definition of the table space or to any objects in the table space. In

Chapter 5. Statements 1295

addition, an index that references an expression cannot be created on a
table where the inline length of a LOB column has been changed and the
table space has not been reorganized.

Effects of DEFINE NO and INCLUDE NULL KEYS or EXCLUDE NULL KEYS:
When INCLUDE NULL KEYS is specified (implicitly or explicitly) with
DEFINE NO and the table that is being indexed is populated, a warning is
returned, the index is created, and the data set is defined. When EXCLUDE
NULL KEYS is specified, it is possible that the data set will not be defined
if the all rows for the table that is being indexed contain the NULL value
for all key columns. The index will be empty after the CREATE INDEX
statement. However, if DEFINE NO is specified with EXCLUDE NULL
KEYS a warning is returned.

Creating indexes on DB2 catalog tables:
To avoid problems during recovery of the DB2 catalog, any user-created
indexes on DB2 catalog tables should be created in user-managed data sets.

For details on creating indexes on catalog tables, see “SQL statements
allowed on the catalog” on page 2113.

EA-enabled index data sets:
If an index is created for an EA-enabled table space, the data sets for the
index must be set up to belong to a DFSMS data class that has the
extended format and extended addressability attributes.

Alternative syntax and synonyms:
To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following keywords when creating a
partitioned index:
v PART integer VALUES as an alternative syntax for PARTITION integer

ENDING. The PARTITION BY RANGE keyword that precedes the
partition-element clause is optional.

Although these keywords are supported as alternatives, they are not the
preferred syntax.

Examples

Example 1: Create a unique index, named DSN8B10.XDEPT1, on table
DSN8B10.DEPT. Index entries are to be in ascending order by the single column
DEPTNO. DB2 is to define the data sets for the index, using storage group
DSN8G110. Each data set should hold 1 megabyte of data at most. Use 512
kilobytes as the primary space allocation for each data set and 64 kilobytes as the
secondary space allocation. These specifications enable each data set to be
extended up to 8 times before a new data set is used—512KB + (8*64KB)= 1024KB.
Make the index padded.

The data sets can be closed when no one is using the index and do not need to be
erased if the index is dropped.

CREATE UNIQUE INDEX DSN8B10.XDEPT1
ON DSN8B10.DEPT

(DEPTNO ASC)
PADDED
USING STOGROUP DSN8G110

PRIQTY 512
SECQTY 64

1296 SQL Reference

|
|
|
|
|
|
|
|
|

ERASE NO
BUFFERPOOL BP1
CLOSE YES
PIECESIZE 1M;

For the above example, the underlying data sets for the index will be created
immediately, which is the default (DEFINE YES). Assuming that table
DSN8B10.DEPT is empty, if you wanted to defer the creation of the data sets until
data is first inserted into the index, you would specify DEFINE NO instead of
accepting the default behavior. Specifying PADDED ensures that the varying-length
character string columns in the index are padded with blanks.

Example 2: Create a cluster index, named XEMP2, on table EMP in database
DSN8B10. Put the entries in ascending order by column EMPNO. Let DB2 define
the data sets for each partition using storage group DSN8G110. Make the primary
space allocation be 36 kilobytes, and allow DB2 to use the default value for
SECQTY, which for this example is 12 kilobytes (3 times 4KB). If the index is
dropped, the data sets need not be erased.

There are to be 4 partitions, with index entries divided among them as follows:
Partition 1: entries up to H99
Partition 2: entries above H99 up to P99
Partition 3: entries above P99 up to Z99
Partition 4: entries above Z99

Associate the index with buffer pool BP1 and allow the data sets to be closed when
no one is using the index. Enable the use of the COPY utility for full image or
concurrent copies and the RECOVER utility.

CREATE INDEX DSN8B10.XEMP2
ON DSN8B10.EMP

(EMPNO ASC)
USING STOGROUP DSN8G110

PRIQTY 36
ERASE NO
CLUSTER
PARTITION BY RANGE
(PARTITION 1 ENDING AT(’H99’),
PARTITION 2 ENDING AT(’P99’),
PARTITION 3 ENDING AT(’Z99’),
PARTITION 4 ENDING AT(’999’))

BUFFERPOOL BP1
CLOSE YES
COPY YES;

Example 3: Create a secondary index, named DSN8B10.XDEPT1, on table
DSN8B10.DEPT. Put the entries in ascending order by column DEPTNO. Assume
that the data sets are managed by the user with catalog name DSNCAT and each
data set is to hold 1GB of data, at most, before the next data set is used.

CREATE UNIQUE INDEX DSN8B10.XDEPT1
ON DSN8B10.DEPT

(DEPTNO ASC)
USING VCAT DSNCAT
PIECESIZE 1048576K;

Example 4: Assume that a column named EMP_PHOTO with a data type of
BLOB(110K) was added to the sample employee table for each employee's photo
and auxiliary table EMP_PHOTO_ATAB was created in LOB table space

Chapter 5. Statements 1297

DSN8D11A.PHOTOLTS to store the BLOB data for the column. Create an index
named XPHOTO on the auxiliary table. The data sets are to be user-managed with
catalog name DSNCAT.

CREATE UNIQUE INDEX DSN8B10.XPHOTO
ON DSN8B10.EMP_PHOTO_ATAB
USING VCAT DSNCAT
COPY YES;

In this example, no columns are specified for the key because auxiliary indexes
have implicitly generated keys.

1298 SQL Reference

CREATE MASK
The CREATE MASK statement creates a column mask at the current server. A
column mask is used for column access control and specifies the value that should
be returned for a specified column.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include the following authority:
SECADM authority

SECADM authority can create a column mask in any schema. Additional privileges
are not needed to reference other objects in the mask definition. For example, the
SELECT privilege is not needed query a table, and the EXECUTE privilege is not
needed to invoke a user-defined function.

Privilege set: If the statement is embedded in an application program, the
privilege set is the set of privileges that are held by the owner of the package. If
the statement is dynamically prepared, the privilege set is the set of privileges that
are held by the SQL authorization ID of the process. However, if the process is
running in a trusted context that is defined with the ROLE AS OBJECT OWNER
AND QUALIFIER clause, the privilege set is the set of privileges that are held by
the role that is in effect.

Syntax

�� CREATE MASK mask-name ON table-name
AS

correlation-name

FOR COLUMN column-name �

� RETURN case-expression
DISABLE

ENABLE
��

Description

mask-name
Specifies the names the column mask. The name, including the implicit or
explicit qualifier, must not identify a column mask or a row permission that
already exists at the current server.

ON table-name
Identifies the table for which the column mask is created. The name must
identify a table that exists at the current server. It must not identify any of the
following objects:
v An auxiliary table

Chapter 5. Statements 1299

v A created or declared temporary table
v A view
v A catalog table
v An alias
v A synonym
v A materialized query table or table that is directly or indirectly referenced in

the definition of a materialized query table
v A table that was implicitly created for an XML column
v A table that contains a period
v A history table
v An archive-enabled table
v An archive table

correlation-name
Specifies a correlation name that can be used within case-expression to designate
the table. For information about correlation-name, see “Correlation names” on
page 209.

FOR COLUMN column-name
Identifies the column to which the mask applies. column-name must be an
unqualified name that identifies a column of the specified table. A mask must
not already exist for the column. The column must not be:
v a LOB column or a distinct type column that is based on a LOB
v an XML column
v defined with a FIELDPROC
v a Unicode column in an EBCDIC table

RETURN case-expression
Specifies a CASE expression that determines the value that is returned for the
column. The result of the CASE expression is returned in place of the column
value in a row. The result data type, null attribute, data length, subtype,
encoding scheme, and CCSID of the CASE expression must be identical to
those attributes of the column that is specified by column-name. If the data type
of column-name is a user-defined data type, the result data type of the CASE
expression must be the same user-defined type. The CASE expression must not
reference any of the following objects:
v A remote object
v The table for which the column mask is being defined
v A created global temporary table or a declared global temporary table
v An auxiliary table
v A table that was implicitly created for an XML column
v A column that is defined with a FIELDPROC
v A LOB column or a distinct type column that is based on a LOB
v An XML column
v A select list notation * or name.* in the SELECT clause
v A table function
v A collection-derived table (UNNEST)
v A user-defined function that is defined as not secure
v A function that is not deterministic or that has an external action or is

defined with the MODIFIES SQL DATA option

1300 SQL Reference

|

|

|

|

|

v An aggregate function, unless it is specified in a subquery
v A built-in table function
v An XMLTABLE table function
v An XMLEXISTS predicate
v An OLAP specification
v A ROW CHANGE expression
v A sequence reference
v A host variable, SQL variable, SQL parameter, or trigger transition variable
v A parameter marker
v A table reference that contains a period specification
v A view that includes any of the preceding restrictions in its definition

The encoding scheme of the specified table is used to evaluate the CASE
expression. Tables and language elements that require multiple encoding
scheme evaluation must not be referenced in the CASE expression. See
“Determining the encoding scheme and CCSID of a string” on page 47 for
language elements that require multiple evaluation.

If the CASE expression references tables for which row or column access
control is active, access controls for those tables are not cascaded.

DISABLE or ENABLE
Specifies that the column mask is to be enabled or disabled for column access
control.

DISABLE
Specifies that the column mask is to be disabled for column access control.
The column mask will remain disabled regardless of whether column
access control is activated for the table.

DISABLE is the default.

ENABLE
Specifies that the column mask is to be enabled for column access control.
If column access control is not currently active for the table, the column
mask will become enabled when column access control is activated for the
table. If column access control is currently active for the table, the column
mask becomes enabled immediately and all packages and statements in the
dynamic statement cache that reference the table are invalidated.

Notes

How column masks affect queries:
The application of enabled column masks does not interfere with the
operations of other clauses within the statement such as the WHERE,
GROUP BY, HAVING, SELECT DISTINCT, or ORDER BY. The rows that
are returned in the final result table remain the same, except that the
values in the resulting rows might have been masked by the column
masks. As such, if the masked column also appears in an ORDER BY
clause with a sort-key expression, the order is based on the original values
of the column and the masked values in the final result table might not
reflect that order. Similarly, the masked values might not reflect the
uniqueness enforced by a SELECT DISTINCT statement. If the masked
column is embedded in an expression, the result of the expression might
become different because the column mask is applied on the column before
the expression evaluation can take place. For example, a column mask on
column SSN might change the result of the aggregate function

Chapter 5. Statements 1301

COUNT(DISTINCT SSN) because the DISTINCT operation is performed on the
masked values. However, if the expression in the query is the same as the
expression that is used to mask the column value in the definition of the
column mask, the result of the expression might remain unchanged. For
example, the expression in the query is ’XXX-XX-’ || SUBSTR(SSN, 8, 4)
and the same expression appears in the definition of the column mask. In
this particular example, you can replace the expression in the query with
column SSN to avoid the same expression being evaluated twice.

Conflicts between the definition of a column mask and SQL:
A column mask is created as a stand alone object, without knowing all of
the contexts in which it might be used. To mask the value of a column in
the final result table, the definition of the column mask is merged into a
query by DB2. When the definition of the column mask is brought into the
context of the statement, it might conflict with certain SQL semantics in the
statement. Therefore, in some situations, the combination of the statement
and the application of the column mask can return an error. When this
happens, either the statement needs to be modified or the column mask
must be dropped or re-created with a different definition. See “ALTER
TABLE” on page 984 for those situations in which a bind time error might
be issued for the statement.

Column masks and null columns:
If the column is not nullable, the definition of its column mask will not,
most likely, consider a null value for the column. After the column access
control is activated for the table, if the table is the null-padded table in an
outer join, the value of he column in the final result table might be a null.
To ensure that the column mask can mask a null value, if the table is the
null-padded table in an outer join, DB2 will add "WHEN target-column IS
NULL THEN NULL" as the first WHEN clause to the column mask
definition. This forces a null value to always be masked as a null value.
For a nullable column, this removes the ability to mask a null value as
something else. Example 5 shows this added WHEN clause.

Column mask values for SQL data change statements
When columns are used to derive new values for an INSERT, UPDATE,
MERGE, or a SET transition-variable assignment statement, the original
values of the column, not the masked values, are used to derive the new
values. If the columns have column masks, those column masks are
applied to ensure that the evaluation of the access control rules at run time
masks the column to itself, not to a constant or an expression. This is to
ensure that the masked values are the same as the original column values.
If a column mask does not mask the column to itself, the existing row is
not updated or the new row is not inserted and an error is returned at run
time. The rules that are used to apply column masks in order to derive the
new values follow the same rules for the final result table of a query.

Column masks that are created before column access control is activated:
The CREATE MASK statement is an independent statement that can be
used to create a column access control mask before column access control
is activated for a table. The only requirement is that the table and the
columns exist before the mask is created. Multiple column masks can be
created for a table but a column can have one mask only.

The definition of a mask is stored in the DB2 catalog. Dependency on the
table for which the mask is being created and dependencies on other
objects referenced in the definition are recorded. No package or dynamic
cached statement is invalidated. A column mask can be created as enabled

1302 SQL Reference

or disabled for column access control. An enabled column mask does not
take effect until the ALTER TABLE statement with the ACTIVATE
COLUMN ACCESS CONTROL clause is used to activate column access
control for the table. SECADM authority is required to issue such an
ALTER TABLE statement. A disabled column mask remains ineffective
even when column access control is activated for the table. The ALTER
MASK statement can be used to alter between ENABLE and DISABLE.

After column access control is activated for a table, when the table is
referenced in a data manipulation statement, all enabled column masks
that have been created for the table are implicitly applied by DB2 to mask
the values returned for the columns referenced in the final result table of
the queries or to determine the new values used in the data change
statements.

Creating column masks before activating column access control for a table
is the recommended sequence to avoid multiple invalidations of packages
and dynamic cached statements that reference the table.

Column masks that are created after column access control is activated:
The enabled column masks become effective as soon as they are
committed. All the packages and dynamic cached statements that reference
the table are invalidated. Thereafter, when the table is referenced in a data
manipulation statement, all enabled column masks are implicitly applied
by DB2 to the statement. Any disabled column mask remains ineffective
even when column access control is activated for the table.

No cascaded effect when column or row access control enforced tables are
referenced in column mask definitions:

A column mask definition may reference tables and columns that are
currently enforced by row or column access control. Access control from
those tables and columns are ignored when the table for which the column
mask is being created is referenced in a data manipulation statement.

Multiple column masks and row permissions sharing the same environment
variables:

Multiple column masks and row permissions can be created for a table.
They must use the same set of environment variables. The set of
environment variables is determined when the first column mask or row
permission is created for the table.

The catalog table SYSENVIRONMENT contains the list of environment
variables. The following table shows which environment variable must be
the same among the multiple column masks and row permissions.

Table 115. Environment Variables in SYSIBM.SYSENVIRONMENT

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

ENVID Internal identifier of
the environment

Assigned by DB2 Assigned by DB2 Yes

CURRENT_SCHEMA The qualifier used to
qualify unqualified
objects such as tables,
views. etc.

Package owner Value of
CURRENT_SCHEMA
special register

Yes

Chapter 5. Statements 1303

Table 115. Environment Variables in SYSIBM.SYSENVIRONMENT (continued)

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

PATHSCHEMAS The schema path used
to qualify unqualified
object such as
user-defined functions
and CAST functions
for user-defined data
types.

PATH bind option Value of
CURRENT_PATH
special register

Yes

APPLICATION_
ENCODING_
CCSID

The CCSID of the
application
environment

ENCODING bind
option

CURRENT
APPLICATION
ENCODING
SCHEME special
register

Yes

ORIGINAL_
ENCODING_
CCSID

The original CCSID of
the statement text
string

CCSID(n)
pre-compiler option
or EBCDIC CCSID on
DSNTIPF installation
panel

CCSID based on DEF
ENCODING
SCHEME on
DSNTIPF installation
panel

Yes

DECIMAL_POINT The decimal point
indicator

COMMA or PERIOD
precompiler option or
DECIMAL POINT IS
on DSNTIPF
installation panelv

DECIMAL POINT IS
on DSNTIPF
installation panel

Yes

MIN_DIVIDE_SCALE The minimum divide
scale

MINIMUM DIVIDE
SCALE on DSNTIP4
installation panel

MINIMUM DIVIDE
SCALE on DSNTIP4
installation panelv

Yesv

STRING_DELIMITER The string delimiter
that is used in
COBOL string
constants

APOST precompiler
option or STRING
DELIMITER on
DSNTIPF installation
panel

STRING DELIMITER
on DSNTIPF
installation panel

No

SQL_
STRING_
DELIMITER

The SQL string
delimiter that is used
in constants

APOSTSQL
pre-compiler option
or SQL STRING
DELIMITER on
DSNTIPF installation
panel

SQL STRING
DELIMITER on
DSNTIPF installation
panel

Yes

MIXED_DATA Uses mixed DBCS
data

MIXED DATA on
DSNTIPF installation
panel

MIXED DATA on
DSNTIPF installation
panel

Yes

DECIMAL_
ARITHMETIC

The rules that are to
be used for
CURRENT
PRECISION and
when both operands
in a decimal operation
have a precision of 15
or less.

DEC(15) or DEC(31)
precompiler option or
DECIMAL
ARITHMETIC on
DSNTIP4 installation
panel

DECIMAL
ARITHMETIC on
DSNTIP4 installation
panel

Yes

1304 SQL Reference

|
|
|
|
|
|
|

Table 115. Environment Variables in SYSIBM.SYSENVIRONMENT (continued)

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

DATE_FORMAT The date format DATE pre-compiler
option or DATE
FORMAT on
DSNTIP4 installation
panel

DATE FORMAT on
DSNTIP4 installation
panel

Yes

TIME_FORMAT The time format TIME pre-compiler
option or TIME
FORMAT on
DSNTIP4 installation
panel

TIME FORMAT on
DSNTIP4 installation
panel

Yes

FLOAT_FORMAT The floating point
format

FLOAT (S390 | IEEE)
pre-compiler option
or default of FLOAT
S390

Default of FLOAT
S390

No

HOST_LANGUAGE The host language HOST pre-compiler
option or
LANGUAGE
DEFAULT on
DSNTIPF installation
panel

LANGUAGE
DEFAULT on
DSNTIPF installation
panel

No

CHARSET The character set CCSID(n)
pre-compiler option
or EBCDIC CCSID on
DSNTIPF installation
panel

EBCDIC CCSID on
DSNTIPF installation
panel

No

FOLD FOLD is only
applicable when
HOST_LANGUAGE
is C or CPP.
Otherwise FOLD is
blank.

HOST(C(FOL D)
precompiler option or
default of NO FOLD

default of NO FOLD No

ROUNDING The rounding mode
that is used when
arithmetic and casting
operations are
performed on
DECFLOAT data.

ROUNDING bind
option

CURRENT
DECFLOAT
ROUNDING MODE
special register

Yes

Note: In a data sharing environment, if a separate DSNHDECP module is provided for each member of the group,
the DSNHDECP settings for each environment variable should be the same in all members of the data sharing group,
otherwise an error might be issued when multiple column masks or row permissions are created.

Ordinary SQL identifiers specified in a static CREATE MASK statement in a
COBOL application:

If the CREATE MASK statement is a static statement in a COBOL
application, the ordinary SQL identifiers used in the column mask
definition must not follow the rules for naming COBOL words. They must
follow the rules for naming “SQL identifiers” on page 55. For example, the
COBOL word 1ST-TIME is not allowed as an ordinary SQL identifier in a
column mask definition; change it to FIRST_TIME or put it in the
delimiters.

Chapter 5. Statements 1305

Encoding scheme and CCSIDs of the data manipulation statement after column
masks are applied:

The encoding scheme and CCSIDs of the data manipulation statement is
not affected by the column masks that are implicitly applied by DB2 for
the column access control. The column mask definition is evaluated using
its target table's encoding scheme and CCSIDs.

Consideration for DB2 limits:
If the data manipulation statement already approaches some DB2 limits in
the statement, it should be noted that the more enabled column masks and
enabled row permissions are created, the more likely they would impact
some limits. For example, they may cause the statement to exceed the
maximum total length (32600 bytes) of columns of a query operation
requiring sort and evaluating aggregate functions (MULTIPLE DISTINCT
and GROUP BY). This is because the enabled column mask and enabled
row permission definitions are implicitly merged into the statement when
the table is referenced in a data manipulation statement. See "Limits in
DB2 for z/OS" in SQL Reference for the limits of a statement.

Restrictions involving pending definition changes:
CREATE MASK is not allowed if the mask is defined on a table or
references a table that has pending definition changes.

Examples

Example 1:
After column access control is activated for table EMPLOYEE, Paul from
the payroll department can see the social security number of the employee
whose employee number is 123456. Mary who is a manager can see the
last four characters only of the social security number. Peter who is neither
cannot see the social security number.
CREATE MASK SSN_MASK ON EMPLOYEE

FOR COLUMN SSN RETURN
CASE

WHEN (VERIFY_GROUP_FOR_USER(SSESSION_USER,’PAYROLL’) = 1)
THEN SSN
WHEN (VERIFY_GROUP_FOR_USER(SESSION_USER,’MGR’) = 1)
THEN ’XXX-XX-’ || SUBSTR(SSN,8,4)
ELSE NULL

END
ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT SSN FROM EMPLOYEE
WHERE EMPNO = 123456;

Example 2:
In the SELECT statement, column SSN is embedded in an expression that
is the same as the expression used in the column mask SSN_MASK. After
column access control is activated for table EMPLOYEE, the column mask
SSN_MASK is applied to column SSN in the SELECT statement. For this
particular expression, the SELECT statement produces the same result as
before column access control is activated for all users. The user can replace
the expression in the SELECT statement with column SSN to avoid the
same expression gets evaluated twice.

1306 SQL Reference

|
|
|

CREATE MASK SSN_MASK ON EMPLOYEE
FOR COLUMN SSN RETURN

CASE
WHEN (1 = 1)
THEN ’XXX-XX-’ || SUBSTR(SSN,8,4)

ELSE NULL
END

ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT ’XXX-XX-’ || SUBSTR(SSN,8,4) FROM EMPLOYEE
WHERE EMPNO = 123456;

Example 3:
A state government conducted a survey for the library usage of the
households in each city. Fifty households in each city were sampled in the
survey. Each household was given an option, opt-in or opt-out, whether to
show their usage in any reports generated from the result of the survey.

A SELECT statement is used to generate a report to show the average
hours used by households in each city. Column mask CITY_MASK is
created to mask the city name based on the opt-in or opt-out information
chosen by the sampled households. However, after column access control
is activated for table LIBRARY_ USAGE, the SELECT statement receives a
bind time error. This is because column mask CITY_MASK references
another column LIBRARY_OPT and LIBRARY_OPT does not identify a
grouping column.
CREATE MASK CITY_MASK ON LIBRARY_USAGE

FOR COLUMN CITY RETURN
CASE

WHEN (LIBRARY_OPT = ’OPT-IN’)
THEN CITY

ELSE ’ ’
END

ENABLE;

COMMIT;

ALTER TABLE LIBRARY_USAGE
ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT CITY, AVG(LIBRARY_TIME) FROM LIBRARY_USAGE
GROUP BY CITY;

Example 4:
Employee with EMPNO 123456 earns bonus $8000 and salary $80000 in
May. When the manager retrieves his salary, the manager receives his
salary, not the null value. This is because of no cascaded effect when
column mask SALARY_MASK references column BONUS for which
column mask BONUS_MASK is defined.
CREATE MASK SALARY_MASK ON EMPLOYEE

FOR COLUMN SALARY RETURN
CASE

WHEN (BONUS < 10000)
THEN SALARY

ELSE NULL

Chapter 5. Statements 1307

END
ENABLE;

COMMIT;

CREATE MASK BONUS_MASK ON EMPLOYEE
FOR COLUMN BONUS RETURN

CASE
WHEN (BONUS > 5000)
THEN NULL
ELSE BONUS

END
ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT SALARY FROM EMPLOYEE
WHERE EMPNO = 123456;

Example 5:
This example shows DB2 adds "WHEN target-column IS NULL THEN
NULL" as the first WHEN clause to the column mask definition then
merges the column mask definition into the statement.
CREATE EMPLOYEE (EMPID INT,

DEPTID CHAR(8),
SALARY DEC(9,2) NOT NULL,
BONUS DEC(9,2));

CREATE MASK SALARY_MASK ON EMPLOYEE
FOR COLUMN SALARY RETURN

CASE
WHEN SALARY < 10000
THEN CAST(SALARY*2 AS DEC(9,2))
ELSE COALESCE(CAST(SALARY/2 AS DEC(9,2)), BONUS)

END
ENABLE;

COMMIT;

CREATE MASK BONUS_MASK ON EMPLOYEE
FOR COLUMN BONUS RETURN

CASE
WHEN BONUS > 1000
THEN BONUS
ELSE NULL

END
ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT SALARY FROM DEPT
LEFT JOIN EMPLOYEE ON DEPTNO = DEPTID;

/* When SALARY_MASK is merged into the above statement,
* ’WHEN SALARY IS NULL THEN NULL’ is added as the
* first WHEN clause, as follows:

1308 SQL Reference

*/

SELECT CASE WHEN SALARY IS NULL THEN NULL
WHEN SALARY < 10000 THEN CAST(SALARY*2 AS DEC(9,2))
ELSE COALESCE(CAST(SALARY/2 AS DEC(9,2)), BONUS)

END SALARY
FROM DEPT

LEFT JOIN EMPLOYEE ON DEPTNO = DEPTID;

Chapter 5. Statements 1309

CREATE PERMISSION
The CREATE PERMISSION statement creates a row permission for row access
control at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include the following authority:
v SECADM authority

SECADM authority can create a row permission in any schema. Additional
privileges are not needed to reference other objects in the permission definition.
For example, the SELECT privilege is not needed to retrieve from a table, and the
EXECUTE privilege is not needed to invoke a user-defined function.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the package. If the
statement is dynamically prepared, the privilege set is the set of privileges that are
held by the SQL authorization ID of the process. However, if it is running in a
trusted context defined with the ROLE AS OBJECT OWNER AND QUALIFIER
clause, the privilege set is the set of privileges that are held by the role in effect.

Syntax

�� CREATE PERMISSION permission-name ON table-name
AS

correlation-name

�

� FOR ROWS WHERE search-condition ENFORCED FOR ALL ACCESS
DISABLE

ENABLE
��

Description

permission-name
Names the row permission for row access control. The name, including the
implicit or explicit qualifier, must not identify a row permission or a column
mask that already exists at the current server

ON table-name
Identifies the table on which the row permission is created. The name must
identify a table that exists at the current server. It must not identify any of the
following objects:
v An auxiliary table
v A created or declared temporary table
v A view

1310 SQL Reference

v A catalog table
v An alias
v A synonym
v A materialized query table or table that is directly or indirectly referenced in

the definition of a materialized query table
v A table that was implicitly created for an XML column
v A table that contains a period
v A history table
v An archive-enabled table
v An archive table
v A table that has a security label column.

correlation-name
Can be used within search-condition to designate the table. For the explanation
of correlation-name, see “Correlation names” on page 209.

FOR ROWS WHERE
Indicates that a row permission is created. A row permission specifies a search
condition under which rows of the table can be accessed.

search-condition
Specifies a condition that can be true, false, or unknown for a row of the table.
search-condition follows the same rules that are used by the search condition in
a WHERE clause of a subselect. In addition, the search condition must not
reference any of the following objects:
v A remote object
v The table for which the row permission is being defined
v A table that has a security label column
v A created global temporary table or a declared global temporary table
v An auxiliary table
v A table that was implicitly created for an XML column
v A collection-derived table (UNNEST)
v A table function
v A host variable, SQL variable, SQL parameter, or trigger transition variable
v A user-defined function that is defined as not secure
v A function that is not deterministic or that has an external action or is

defined with the MODIFIES SQL DATA option
v A parameter marker
v A column that is defined with a FIELDPROC
v A LOB column or a distinct type column that is based on a LOB
v An XML column
v A Unicode column in an EBCDIC table
v An XMLEXISTS predicate
v An OLAP specification
v A ROW CHANGE expression
v A sequence reference
v A select list notation * or name.* in the SELECT clause
v A table reference that contains a period specification
v A view that includes any of the preceding restrictions in its definition

Chapter 5. Statements 1311

|

|

|

|

|

The encoding scheme of the table is used to evaluate the search-condition. Tables
and language elements that require multiple encoding scheme evaluation must
not be referenced in the search-condition. See “Determining the encoding scheme
and CCSID of a string” on page 47 for those language elements.

If the search-condition references tables for which row or column access control
is activated, access control from those tables is not cascaded.

ENFORCED FOR ALL ACCESS
Specifies that the row permission applies to all references of the table. If row
access control is activated for the table, when the table is referenced in a data
manipulation statement, DB2 implicitly applies the row permission to control
the access of the table. If the reference of the table is for a fetch operation such
as SELECT, the application of the row permission determines what set of rows
can be retrieved by the user who requested the fetch operation. If the reference
of the table is for a data change operation such as INSERT, the application of
the row permission determines whether all rows to be changed are insertable
or updatable by the user who requested the data change operation.

DISABLE or ENABLE
Specifies that the row permission is to be enabled or disabled for row access
control.

DISABLE
Specifies that the row permission is to be disabled for row access control.
The row permission will remain ineffective regardless the row access
control is activated for the table or not.

DISABLE is the default.

ENABLE
Specifies that the row permission is to be enabled for row access control. If
row access control is not currently activated for the table, the row
permission will become effective when row access control is activated for
the table. If row access control is currently activated for the table, the row
permission becomes effective immediately and all packages and dynamic
cached statements that reference the table are invalidated.

Notes

How row permission are applied and how they affect certain statements:
See the ALTER TABLE statement with the ACTIVATE ROW ACCESS
CONTROL clause for information on how to activate row access control
and how row permissions are applied. See the description of subselect for
information on how the application of row permissions affects the fetch
operation. See the data change statements for information on how the
application of row permissions affects the data change operation.

Row permissions that are created before row access control is activated for a
table: The CREATE PERMISSION statement is an independent statement that can

be used to create a row permission before row access control is activated
for a table. The only requirement is that the table and the columns exist
before the permission is created. Multiple row permissions can be created
for a table.

The definition of the row permission is stored in the DB2 catalog.
Dependency on the table for which the permission is being created and
dependencies on other objects referenced in the definition are recorded. No
package or dynamic cached statement is invalidated. A row permission can
be created as enabled or disabled for row access control. An enabled row

1312 SQL Reference

permission does not take effect until the ALTER TABLE statement with the
ACTIVATE ROW ACCESS CONTROL clause is used to activate row access
control for the table. A disabled row permission remains ineffective even
when row access control is activated for the table. The ALTER
PERMISSION statement can be used to alter between ENABLE and
DISABLE.

After row access control is activated for a table, when the table is
referenced in a data manipulation statement, all enabled row permissions
that are defined for the table are implicitly applied by DB2 to control
access to the table.

Creating row permissions before activating row access control for a table is
the recommended sequence to avoid multiple invalidations of packages
and dynamic cached statements that reference the table.

Row permissions that are created after row access control is activated for a
table: An enabled row permission becomes effective as soon as it is committed.

All the packages and dynamic cached statements that reference the table
are invalidated. Thereafter, when the table is referenced in a data
manipulation statement, all enabled row permissions are implicitly applied
to the statement. Any disabled row permission remains ineffective even
when row access control is activated for the table.

No cascaded effect when row or column access control enforced tables are
referenced in row permission definitions:

A row permission definition may reference tables and columns that are
currently enforced by row or column access control. Access control from
those tables are ignored when the table for which the row permission is
being created is referenced in a data manipulation statement.

Multiple column masks and row permissions sharing the same environment
variables:

Multiple column masks and row permissions can be created for a table.
They must use the same set of environment variables. The set of
environment variables is determined when the first column mask or row
permission is created for the table.

The catalog table SYSENVIRONMENT contains the list of environment
variables. The following table shows which environment variable must be
the same among the multiple column masks and row permissions.

Table 116. Environment Variables in SYSIBM.SYSENVIRONMENT

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

ENVID Internal identifier of
the environment

Assigned by DB2 Assigned by DB2 Yes

CURRENT_SCHEMA The qualifier used to
qualify unqualified
objects such as tables,
views. etc.

Package owner Value of
CURRENT_SCHEMA
special register

Yes

Chapter 5. Statements 1313

Table 116. Environment Variables in SYSIBM.SYSENVIRONMENT (continued)

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

PATHSCHEMAS The schema path used
to qualify unqualified
object such as
user-defined functions
and CAST functions
for user-defined data
types.

PATH bind option Value of
CURRENT_PATH
special register

Yes

APPLICATION_
ENCODING_
CCSID

The CCSID of the
application
environment

ENCODING bind
option

CURRENT
APPLICATION
ENCODING
SCHEME special
register

Yes

ORIGINAL_
ENCODING_
CCSID

The original CCSID of
the statement text
string

CCSID(n)
pre-compiler option
or EBCDIC CCSID on
DSNTIPF installation
panel

CCSID based on DEF
ENCODING
SCHEME on
DSNTIPF installation
panel

Yes

DECIMAL_POINT The decimal point
indicator

COMMA or PERIOD
precompiler option or
DECIMAL POINT IS
on DSNTIPF
installation panelv

DECIMAL POINT IS
on DSNTIPF
installation panel

Yes

MIN_DIVIDE_SCALE The minimum divide
scale

MINIMUM DIVIDE
SCALE on DSNTIP4
installation panel

MINIMUM DIVIDE
SCALE on DSNTIP4
installation panelv

Yesv

STRING_DELIMITER The string delimiter
that is used in
COBOL string
constants

APOST precompiler
option or STRING
DELIMITER on
DSNTIPF installation
panel

STRING DELIMITER
on DSNTIPF
installation panel

No

SQL_
STRING_
DELIMITER

The SQL string
delimiter that is used
in constants

APOSTSQL
pre-compiler option
or SQL STRING
DELIMITER on
DSNTIPF installation
panel

SQL STRING
DELIMITER on
DSNTIPF installation
panel

Yes

MIXED_DATA Uses mixed DBCS
data

MIXED DATA on
DSNTIPF installation
panel

MIXED DATA on
DSNTIPF installation
panel

Yes

DECIMAL_
ARITHMETIC

The rules that are to
be used for
CURRENT
PRECISION and
when both operands
in a decimal operation
have a precision of 15
or less.

DEC(15) or DEC(31)
precompiler option or
DECIMAL
ARITHMETIC on
DSNTIP4 installation
panel

DECIMAL
ARITHMETIC on
DSNTIP4 installation
panel

Yes

1314 SQL Reference

|
|
|
|
|
|
|

Table 116. Environment Variables in SYSIBM.SYSENVIRONMENT (continued)

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

DATE_FORMAT The date format DATE pre-compiler
option or DATE
FORMAT on
DSNTIP4 installation
panel

DATE FORMAT on
DSNTIP4 installation
panel

Yes

TIME_FORMAT The time format TIME pre-compiler
option or TIME
FORMAT on
DSNTIP4 installation
panel

TIME FORMAT on
DSNTIP4 installation
panel

Yes

FLOAT_FORMAT The floating point
format

FLOAT (S390 | IEEE)
pre-compiler option
or default of FLOAT
S390

Default of FLOAT
S390

No

HOST_LANGUAGE The host language HOST pre-compiler
option or
LANGUAGE
DEFAULT on
DSNTIPF installation
panel

LANGUAGE
DEFAULT on
DSNTIPF installation
panel

No

CHARSET The character set CCSID(n)
pre-compiler option
or EBCDIC CCSID on
DSNTIPF installation
panel

EBCDIC CCSID on
DSNTIPF installation
panel

No

FOLD FOLD is only
applicable when
HOST_LANGUAGE
is C or CPP.
Otherwise FOLD is
blank.

HOST(C(FOL D)
precompiler option or
default of NO FOLD

default of NO FOLD No

ROUNDING The rounding mode
that is used when
arithmetic and casting
operations are
performed on
DECFLOAT data.

ROUNDING bind
option

CURRENT
DECFLOAT
ROUNDING MODE
special register

Yes

Note: In a data sharing environment, if a separate DSNHDECP module is provided for each member of the group,
the DSNHDECP settings for each environment variable should be the same in all members of the data sharing group,
otherwise an error might be issued when multiple column masks or row permissions are created.

Ordinary SQL identifiers specified in a static CREATE PERMISSION statement
in a COBOL application:

If the CREATE PERMISSION statement is a static statement in a COBOL
application, the ordinary SQL identifiers used in the row permission
definition must not follow the rules for naming COBOL words
(DSNH20474, reason code 14). They must follow the rules for naming SQL
identifiers as described in the topic “SQL identifiers” in DB2 SQL
Reference. For example, the COBOL word 1ST-TIME is not allowed as an

Chapter 5. Statements 1315

ordinary SQL identifier in a row permission definition; change it to
FIRST_TIME or put it in the delimiters.

Encoding scheme and CCSIDs of the data manipulation statement after row
permissions are applied:

The encoding scheme and CCSIDs of the data manipulation statement is
not affected by the row permissions that are implicitly applied by DB2 for
the row access control. The row permission definition is evaluated using its
target table's encoding scheme and CCSIDs.

Consideration for DB2 limits:
If the data manipulation statement already approaches some DB2 limits in
the statement, it should be noted that the more enabled row permissions
and enabled column masks are created, the more likely they would impact
some limits. For example, they may cause the statement to exceed the
maximum total length (32600 bytes) of columns of a query operation
requiring sort and evaluating aggregate functions (MULTIPLE DISTINCT
and GROUP BY). This is because the enabled column mask and enabled
row permission definitions are implicitly merged into the statement when
the table is referenced in a data manipulation statement. See "Limits in
DB2 for z/OS" in SQL Reference for the limits of a statement.

Restrictions involving pending definition changes:
CREATE PERMISSION is not allowed if the permission is defined on a
table or references a table that has pending definition changes.

Examples

Example 1:
Secure user-defined function ACCOUNTING_UDF in row permission
SALARY_ROW_ACCESS processes the sensitive data in column SALARY.
After row access control is activated for table EMPLOYEE, Accountant Paul
retrieves the salary of employee with EMPNO 123456 who is making
$100,000 a year. Paul may or may not see the row depending on the output
value from user-defined function ACCOUNTING_UDF.
CREATE PERMISSION SALARY_ROW_ACCESS ON EMPLOYEE

FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER,’MGR’,’ACCOUNTING’) = 1
AND
ACCOUNTING_UDF(SALARY) < 120000

ENFORCED FOR ALL ACCESS
ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
ACTIVATE ROW ACCESS CONTROL;

COMMIT;

SELECT SALARY FROM EMPLOYEE
WHERE EMPNO = 123456;

Example 2:
The tellers in a bank can only access customers from their branch. All
tellers have secondary authorization ID TELLER. The customer service
representatives are allowed to access all customers of the bank. All
customer service representatives have secondary authorization ID CSR. A
row permission is created for each group of personnel in the bank
accordingly to the access rule defined by SECADM authority. After row
access control is activated for table CUSTOMER, in the SELECT statement

1316 SQL Reference

|
|
|

the search conditions of both row permissions are merged into the
statement and they are combined with the logic OR operator to control the
set of rows accessible by each group.
CREATE PERMISSION TELLER_ROW_ACCESS ON CUSTOMER

FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER,’TELLER’) = 1
AND
BRANCH = (SELECT HOME_BRANCH FROM INTERNAL_INFO

WHERE EMP_ID = SESSION_USER)
ENFORCED FOR ALL ACCESS
ENABLE;

COMMIT;

CREATE PERMISSION CSR_ROW_ACCESS ON CUSTOMER
FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER,’CSR’) = 1
ENFORCED FOR ALL ACCESS
ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
ACTIVATE ROW ACCESS CONTROL;

COMMIT;

SELECT * FROM CUSTOMER;

Chapter 5. Statements 1317

CREATE PROCEDURE
The CREATE PROCEDURE statement registers a stored procedure with a database
server. You can register the following types of procedures with this statement, each
of which is described separately.
v External

The procedure is written in a programming language such as C, COBOL, or
Java. The external executable is referenced by a procedure defined at the server
along with various attributes of the procedure. See “CREATE PROCEDURE
(external)” on page 1319.

v SQL (external)
The procedure is written exclusively in SQL statements, but is implemented as
an external program. The body of an SQL procedure is written in the SQL
procedural language. The procedure body is defined at the current server along
with various attributes of the procedure. See “CREATE PROCEDURE (SQL -
external)” on page 1338.

v SQL (native)
The procedure is written exclusively in SQL statements, but is implemented
natively in DB2. The body of an SQL procedure is written in the SQL procedural
language. The procedure body is defined at the current server along with
various attributes of the procedure. See “CREATE PROCEDURE (SQL - native)”
on page 1350.

1318 SQL Reference

CREATE PROCEDURE (external)
The CREATE PROCEDURE statement defines an external stored procedure at the
current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is specified implicitly or explicitly.

Authorization

The privilege set that is defined below must include at least one of the following:
v The CREATEIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

If the authorization ID that is used to create the procedure has installation
SYSADM authority, the procedure is identified as system-defined procedure.

When LANGUAGE is JAVA and a jar-name is specified in the EXTERNAL NAME
clause, the privilege set must include USAGE on the JAR file, the Java archive file.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the owner is a role, the implicit schema match does not apply and this role needs
to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for
which the ROLE AS OBJECT OWNER clause is specified, the privilege set is the
set of privileges that are held by the SQL authorization ID of the process. If the
schema name is not the same as the SQL authorization ID of the process, one of
the following conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v The SQL authorization ID of the process has the CREATEIN privilege on the

schema.

The authorization ID that is used to create the stored procedure must have
authority to define programs that run in the specified WLM environment. In
addition, if the stored procedure uses a user-defined type as a parameter, this
authorization ID must have the USAGE privilege on each parameter that is defined
as a user-defined type.

Chapter 5. Statements 1319

|
|
|
|
|

Syntax

�� CREATE PROCEDURE procedure-name

�

()
,

parameter-declaration

�

� option-list ��

��
IN

OUT
(1)

INOUT

parameter-name
parameter-type ��

Notes:

1 For a REXX stored procedure, only one parameter can have type OUT or INOUT. That parameter
must be declared last.

�� data-type
(1)

AS LOCATOR
TABLE LIKE table-name AS LOCATOR

view-name

��

Notes:

1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

�� built-in-type
distinct-type-name

��

parameter-declaration:

parameter-type:

data-type:

built-in-type:

1320 SQL Reference

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID

��

option-list: (The options can be specified in any order.)

Chapter 5. Statements 1321

��
DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer

�
(1)

PARAMETER CCSID ASCII
EBCDIC
UNICODE

(2)
VARCHAR NULTERM

STRUCTURE

�

� EXTERNAL
(3)

NAME string
identifier

LANGUAGE ASSEMBLE
C
COBOL
JAVA
PLI
REXX

MODIFIES SQL DATA

READS SQL DATA
CONTAINS SQL
NO SQL

�

�
PARAMETER STYLE SQL

PARAMETER STYLE GENERAL
GENERAL WITH NULLS
JAVA

NOT DETERMINISTIC

DETERMINISTIC
�

�
NO PACKAGE PATH

PACKAGE PATH package-path

FENCED NO DBINFO

DBINFO

NO COLLID

COLLID collection-id
�

�
WLM ENVIRONMENT name

(name , *)

ASUTIME NO LIMIT

ASUTIME LIMIT integer

STAY RESIDENT NO

STAY RESIDENT YES
�

�
PROGRAM TYPE SUB

MAIN

SECURITY DB2

SECURITY USER
DEFINER

STOP AFTER SYSTEM DEFAULT FAILURES

STOP AFTER integer FAILURES
CONTINUE AFTER FAILURE

�

�
RUN OPTIONS runtime-options

COMMIT ON RETURN NO

COMMIT ON RETURN YES
�

�
INHERIT SPECIAL REGISTERS CALLED ON NULL INPUT

DEFAULT SPECIAL REGISTERS DISALLOW DEBUG MODE
ALLOW DEBUG MODE
DISABLE DEBUG MODE

��

Notes:

1 The same clause must not be specified more than one time.

2 The VARCHAR clause can only be specified is LANGUAGE C is specified.

3 With LANGUAGE JAVA, use a valid external-java-routine-name.

1322 SQL Reference

external-java-routine-name:

jar-name :
method-name

method-signature

jar-name:

schema-name.
jar-id

method-name:

�

package-id .
(1)

/

class-id .
(2)

!

method-id

method-signature:

�

()
,

java-datatype

Notes:

1 The slash (/) is supported for compatibility with previous releases of DB2 for z/OS.

2 The exclamation point (!) is supported for compatibility with other products in the DB2 family.

Description

procedure-name
Names the stored procedure. The name cannot be a single asterisk, even if you
specify it as a delimited identifier ("*"). The name, including the implicit or
explicit qualifier, must not identify an existing stored procedure at the current
server.

The schema name can be 'SYSIBM' or 'SYSPROC'. It can also be 'SYSTOOLS' if
the user who executes the CREATE statement has SYSADM or SYSCTRL
privilege. Otherwise, the schema name must not begin with 'SYS' unless the
schema name is 'SYSADM'.

(parameter-declaration,...)
Specifies the number of parameters of the stored procedure and the data type
of each parameter, and optionally, the name of each parameter. A parameter for
a stored procedure can be used only for input, only for output, or for both
input and output. If an error is returned by the procedure, OUT parameters are
undefined and INOUT parameters are unchanged.

Chapter 5. Statements 1323

All parameters are nullable except for numeric parameters in Java procedures,
where numeric parameters, other than the DECIMAL types are not nullable in
order to conform to the SQL/JRT standard.

IN Identifies the parameter as an input parameter to the procedure. The value
of the parameter on entry to the procedure is the value that is returned to
the calling SQL application, even if changes are made to the parameter
within the procedure.

IN is the default.

OUT
Identifies the parameter as an output parameter that is returned by the
stored procedure.

INOUT
Identifies the parameter as both an input and output parameter for the
stored procedure.

parameter-name
Names the parameter for use as an SQL variable. The name cannot be the
same as any other parameter-name for the procedure.

data-type
Specifies the data type of the parameter. The data type can be a built-in
data type or a user-defined type.

If you specify the name of a user-defined type without a schema name,
DB2 resolves the user-defined type by searching the schemas in the SQL
path.

built-in-type
The data type of the parameter is a built-in data type.

For more information on the data types, see built-in-type.

For parameters with a character or graphic data type, the
PARAMETER CCSID clause or CCSID clause indicates the encoding
scheme of the parameter. If you do not specify either of these clauses,
the encoding scheme is the value of field DEF ENCODING SCHEME
on installation panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length,
precision, scale, subtype, or encoding scheme attributes for the
parameter are those of the source type of the distinct type.

Although an input parameter with a character data type has an implicitly
or explicitly specified subtype (BIT, SBCS, or MIXED), the value that is
actually passed in the input argument on the CALL statement can have
any subtype. Therefore, conversion of the input data to the subtype of the
parameter might occur when the procedure is called. With ASCII or
EBCDIC, an error occurs if mixed data that actually contains DBCS
characters is used as the value for an input parameter that is declared with
an SBCS subtype.

Parameters with a datetime data type or a distinct type are passed to the
function as a different data type:
v A datetime type parameter is passed as a character data type, and the

data is passed in ISO format.

1324 SQL Reference

|
|

|
|
|

The encoding scheme for a datetime type parameter is the same as the
implicitly or explicitly specified encoding scheme of any character or
graphic string parameters. If no character or graphic string parameters
are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

v A distinct type parameter is passed as the source type of the distinct
type.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the
procedure instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type based on a LOB data
type. Passing locators instead of values can result in fewer bytes being
passed to the procedure, especially when the value of the parameter is
very large.

The AS LOCATOR clause has no effect on determining whether data types
can be promoted.

TABLE LIKE table-name or view-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the procedure
is called, the actual values in the transition table are not passed to the stored
procedure. A single value is passed instead. This single value is a locator to the
table, which the procedure uses to access the columns of the transition table. A
procedure with a table parameter can only be invoked from the triggered
action of a trigger.

The use of TABLE LIKE provides an implicit definition of the transition table.
It specifies that the transition table has the same number of columns as the
identified table or view. If a table is specified, the transition table includes
columns that are defined as implicitly hidden in the table. The columns have
the same data type, length, precision, scale, subtype, and encoding scheme as
the identified table or view, as they are described in catalog tables
SYSCOLUMNS and SYSTABLESPACES. The number of columns and the
attributes of those columns are determined at the time the CREATE
PROCEDURE statement is processed. Any subsequent changes to the number
of columns in the table or the attributes of those columns do not affect the
parameters of the procedure.

table-name or view-name must identify a table or view that exists at the current
server. The name must not identify a declared temporary table. The table that
is identified can contain XML columns; however, the procedure cannot
reference those XML columns. The name does not have to be the same name as
the table that is associated with the transition table for the trigger. An
unqualified table or view name is implicitly qualified according to the
following rules:
v If the CREATE PROCEDURE statement is embedded in a program, the

implicit qualifier is the authorization ID in the QUALIFIER bind option
when the plan or package was created or last rebound. If QUALIFIER was
not used, the implicit qualifier is the owner of the plan or package.

v If the CREATE PROCEDURE statement is dynamically prepared, the implicit
qualifier is the SQL authorization ID in the CURRENT SCHEMA special
register.

When the procedure is called, the corresponding columns of the transition
table identified by the table locator and the table or view identified in the
TABLE LIKE clause must have the same definition. The data type, length,

Chapter 5. Statements 1325

precision, scale, and encoding scheme of these columns must match exactly.
The description of the table or view at the time the CREATE PROCEDURE
statement was executed is used.

Additionally, a character FOR BIT DATA column of the transition table cannot
be passed as input for a table parameter for which the corresponding column
of the table specified at the definition is not defined as character FOR BIT
DATA. (The definition occurs with the CREATE PROCEDURE statement.)
Likewise, a character column of the transition table that is not FOR BIT DATA
cannot be passed as input for a table parameter for which the corresponding
column of the table specified at the definition is defined as character FOR BIT
DATA.

For more information about using table locators, see DB2 Application
Programming and SQL Guide.

FENCED
Specifies that the procedure runs in an external address space.

DYNAMIC RESULT SETS integer
Specifies the maximum number of query result sets that the stored procedure
can return. The default is DYNAMIC RESULT SETS 0, which indicates that
there are no result sets. The value must be between 0 and 32767.

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether the procedure can be run in debugging mode. When
DYNAMICRULES run behavior is in effect, the default is determined by using
the value of the CURRENT DEBUG MODE special register. Otherwise the
default is DISALLOW DEBUG MODE.

Do not specify this option unless LANGUAGE JAVA is in effect.

ALLOW DEBUG MODE
Specifies that the JAVA procedure can be run in debugging mode.

DISALLOW DEBUG MODE
Specifies that the JAVA procedure cannot be run in debugging mode.

You can use an ALTER PROCEDURE statement to change this option to
ALLOW DEBUG MODE.

DISABLE DEBUG MODE
Specifies that the JAVA procedure can never be run in debugging mode.

The procedure cannot be changed to specify ALLOW DEBUG MODE or
DISALLOW DEBUG MODE once the procedure has been created or altered
using DISABLE DEBUG MODE. To change this option, you must drop and
re-create the procedure using the option that you want.

PARAMETER CCSID or PARAMETER VARCHAR
Specifies the encoding scheme for string parameters, and in the case of
LANGUAGE C, specifies the representation of variable length string
parameters.

CCSID
Indicates whether the encoding scheme for character or graphic string
parameters is ASCII, EBCDIC, or UNICODE. The default encoding scheme
is the value specified in the CCSID clauses of the parameter list or in the
field DEF ENCODING SCHEME on installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for
character or graphic string parameters. If individual CCSID clauses are
specified for individual parameters in addition to this PARAMETER

1326 SQL Reference

CCSID clause, the value specified in all of the CCSID clauses must be the
same value that is specified in this clause.

This clause also specifies the encoding scheme to be used for
system-generated parameters of the routine such as message tokens and
DBINFO.

VARCHAR
Specifies that the representation of the values of varying length character
string-parameters for procedures that specify LANGUAGE C.

This option can only be specified if LANGUAGE C is also specified.

NULTERM
Specifies that variable length character string parameters are
represented in a NUL-terminated string form.

STRUCTURE
Specifies that variable length character string parameters are
represented in a VARCHAR structure form.

Using the PARAMETER VARCHAR clause, there is no way to specify the
VARCHAR form of an individual parameter as these is with PARAMETER
CCSID. The PARAMETER VARCHAR clause only applies to parameters in
the parameter list of a procedure and in the RETURNS clause. It does not
apply to system-generated parameters of the routine such as message
tokens and DBINFO.

In a data sharing environment, you should not specify the PARAMETER
VARCHAR clause until all members of the data sharing group support the
clause. If some group members support this clause and others do not, and
PARAMETER VARCHAR is specified in an external routine, the routine
will encounter different parameter forms depending on which group
member invokes the routine.

EXTERNAL
Specifies that the CREATE PROCEDURE statement is being used to define a
new procedure that is based on code written in an external programming
language. If the NAME clause is not specified, 'NAME procedure-name' is
assumed. The NAME clause is required for a LANGUAGE JAVA procedure
because the default name is not valid for a Java procedure. In some cases, the
default name will not be valid. To avoid invalid names, specify the NAME
clause for the following types of procedures:
v A procedure that is defined as LANGUAGE JAVA
v A procedure that has a name that is greater than 8 bytes in length, contains

an underscore, or does not conform to the rules for an ordinary identifier.

NAME string or identifier
Identifies the user-written code that implements the stored procedure.

If LANGUAGE is JAVA, string must be specified and enclosed in single
quotation marks, with no extraneous blanks within the single quotation
marks. It must specify a valid external-java-routine-name. If multiple strings
are specified, the total length of all of them must not be greater than 1305
bytes and they must be separated by a space or a line break.

An external-java-routine-name contains the following parts:

jar-name
Identifies the name given to the JAR file when it was installed in the
database. The name contains jar-id, which can optionally be qualified

Chapter 5. Statements 1327

with a schema. Examples are "myJar" and "mySchema.myJar." The
unqualified jar-id is implicitly qualified with a schema name according
to the following rules:
v If the statement is embedded in a program, the schema name is the

authorization ID in the QUALIFIER bind option when the package
or plan was created or last rebound. If the QUALIFIER was not
specified, the schema name is the owner of the package or plan.

v If the statement is dynamically prepared, the schema name is the
SQL authorization ID in the CURRENT SCHEMA special register.

If jar-name is specified, it must exist when the CREATE PROCEDURE
statement is processed. Do not specify a jar-name for a JAVA procedure
for which NO SQL is also specified.

If jar-name is not specified, the procedure is loaded from the class file
directly instead of being loaded from a JAR file. DB2 searches the
directories in the CLASSPATH associated with the WLM Environment.
Environmental variables for Java routines are specified in a data set
identified in a JAVAENV DD card on the JCL used to start the address
space for a WLM-managed stored procedure.

method-name
Identifies the name of the method and must not be longer than 254
bytes. Its package, class, and method ID's are specific to Java and as
such are not limited to 18 bytes. In addition, the rules for what these
can contain are not necessarily the same as the rules for an SQL
ordinary identifier.

package-id
Identifies a package. The concatenated list of package-ids identifies
the package that the class identifier is part of. If the class is part of
a package, the method name must include the complete package
prefix, such as "myPacks.StoredProcs." The Java virtual machine
looks in the directory "/myPacks/StoredProcs/" for the classes.

class-id
Identifies the class identifier of the Java object.

method-id
Identifies the method identifier with the Java class to be invoked.

method-signature
Identifies a list of zero or more Java data types for the parameter list
and must not be longer than 1024 bytes. Specify the method-signature if
the procedure involves any input or output parameters that can be
NULL. When the stored procedure being created is called, DB2
searches for a Java method with the exact method-signature. The number
of java-datatype elements specified indicates how many parameters that
the Java method must have.

A Java procedure can have no parameters. In this case, you code an
empty set of parentheses for method-signature. If a Java method-signature
is not specified, DB2 searches for a Java method with a signature
derived from the default JDBC types associated with the SQL types
specified in the parameter list of the CREATE PROCEDURE statement.

For other values of LANGUAGE, the value must conform to the naming
conventions for MVS load modules: the value must be less than or equal to
8 bytes, and it must conform to the rules for an ordinary identifier with the
exception that it must not contain an underscore.

1328 SQL Reference

LANGUAGE
This mandatory clause is used to specify the language interface convention to
which the procedure body is written. All programs must be designed to run in
the server's environment. Assembler, C, COBOL, and PL/I programs must be
designed to run in IBM's Language Environment.

ASSEMBLE
The stored procedure is written in Assembler.

C The stored procedure is written in C or C++.

COBOL
The stored procedure is written in COBOL, including the OO-COBOL
language extensions.

JAVA
The stored procedure is written in Java and is executed in the Java Virtual
Machine. When LANGUAGE JAVA is specified, the EXTERNAL NAME
clause must be specified with a valid external-java-routine-name and
PARAMETER STYLE must be specified with JAVA. The procedure must be
a public static method of the specified Java class.

Do not specify LANGUAGE JAVA when DBINFO, PROGRAM TYPE
MAIN, or RUN OPTIONS is specified.

PLI
The stored procedure is written in PL/I.

REXX
The stored procedure is written in REXX. Do not specify LANGUAGE
REXX when PARAMETER STYLE SQL is in effect. When REXX is
specified, the procedure must use PARAMETER STYLE GENERAL or
GENERAL WITH NULLS.

MODIFIES SQL DATA, READS SQL DATA, CONTAINS SQL, or NO SQL
Specifies which SQL statements, if any, can be executed in the procedure or
any routine that is called from this procedure. The default is MODIFIES SQL
DATA. For the data access classification of each statement, see Table 162 on
page 2030.

MODIFIES SQL DATA
Specifies that the procedure can execute any SQL statement except
statements that are not supported in procedures.

READS SQL DATA
Specifies that the procedure can execute statements with a data access
indication of READS SQL DATA, CONTAINS SQL, or NO SQL. The
procedure cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the procedure can execute only SQL statements with an
access indication of CONTAINS SQL or NO SQL. The procedure cannot
execute statements that read or modify data.

NO SQL
Specifies that the procedure can execute only SQL statements with a data
access classification of NO SQL. Do not specify NO SQL for a JAVA
procedure that uses a JAR file.

PARAMETER STYLE
Identifies the linkage convention used to pass parameters to and return values
from the stored procedure. All of the linkage conventions provide arguments to

Chapter 5. Statements 1329

the stored procedure that contain the parameters specified on the CALL
statement. Some of the linkage conventions pass additional arguments to the
stored procedure that provide more information to the stored procedure. For
more information on linkage conventions, see DB2 Application Programming and
SQL Guide.

SQL
Specifies that, in addition to the parameters on the CALL statement,
several additional parameters are passed to the stored procedure. The
following parameters are passed:
v The first n parameters that are specified on the CREATE PROCEDURE

statement.
v n parameters for indicator variables for the parameters.
v The SQLSTATE to be returned.
v The qualified name of the stored procedure.
v The specific name of the stored procedure.
v The SQL diagnostic string to be returned to DB2.
v If DBINFO is specified, the DBINFO structure.

PARAMETER STYLE SQL is the default. Do not specify PARAMETER
STYLE SQL when LANGUAGE REXX or LANGUAGE JAVA is in effect.

GENERAL
Specifies that the stored procedure uses a parameter passing mechanism
where the stored procedure receives only the parameters specified on the
CALL statement. Arguments to procedures defined with this parameter
style cannot be null.

GENERAL WITH NULLS
Specifies that, in addition to the parameters on the CALL statement as
specified in GENERAL, another argument is also passed to the stored
procedure. The additional argument contains an indicator array with an
element for each of the parameters on the CALL statement. In C, this is an
array of short INTS. The indicator array enables the stored procedure to
accept or return null parameter values.

JAVA
Specifies that the stored procedure uses a parameter passing convention
that conforms to the Java and SQLJ Routines specifications. PARAMETER
JAVA can be specified only if LANGUAGE is JAVA. JAVA must be
specified for PARAMETER STYLE when LANGUAGE is JAVA.

INOUT and OUT parameters are passed as single-entry arrays. The INOUT
and OUT parameters are declared in the Java method as single-element
arrays of the Java type.

For REXX stored procedures (LANGUAGE REXX), GENERAL and GENERAL
WITH NULLS are the only valid values for PARAMETER STYLE; therefore,
specify one of these values and do not allow PARAMETER STYLE to default to
SQL.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the stored procedure returns the same results each time the
stored procedure is called with the same IN and INOUT arguments.

DETERMINISTIC
The stored procedure always returns the same results each time the stored

1330 SQL Reference

procedure is called with the same IN and INOUT arguments, if the
referenced data in the database has not changed.

NOT DETERMINISTIC
The stored procedure might not return the same result each time the
procedure is called with the same IN and INOUT arguments, even when
the referenced data in the database has not changed. NOT
DETERMINISTIC is the default.

DB2 does not verify that the stored procedure code is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

NO PACKAGE PATH or PACKAGE PATH package-path
Specifies the package path to use when the procedure is run. This is the list of
the possible package collections into which the DBRM this is associated with
the procedure is bound.

NO PACKAGE PATH
Specifies that the list of package collections for the procedure is the same
as the list of package collection IDs for the calling program. If the calling
program does not use a package, DB2 resolves the package by using the
CURRENT PACKAGE PATH special register, the CURRENT PACKAGESET
special register, or the PKLIST bind option (in this order). For information
about how DB2 uses these three items, see DB2 Application Programming
and SQL Guide.

PACKAGE PATH package-path
Specifies a list of package collections, in the same format as the SET
CURRENT PACKAGE PATH special register.

If the COLLID clause is specified with PACKAGE PATH, the COLLID
clause is ignored when the routine is invoked.

The package-path value that is provided when the procedure is created is
checked when the CALL statement is prepared. If package-path contains
SESSION_USER (or USER), PATH, or PACKAGE PATH, an error is
returned when the package-path value is checked.

NO DBINFO or DBINFO
Specifies whether additional status information is passed to the stored
procedure when it is invoked.

NO DBINFO
Additional information is not passed. NO DBINFO is the default.

DBINFO
An additional argument is passed when the stored procedure is invoked.
The argument is a structure that contains information such as the name of
the current server, the application run time authorization ID and
identification of the version and release of the database manager that
invoked the procedure. For details about the argument and its structure,
see DB2 Application Programming and SQL Guide.

DBINFO can be specified only if PARAMETER STYLE SQL is specified.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the stored procedure
is executed. This is the package collection into which the DBRM that is
associated with the stored procedure is bound.

NO COLLID
The package collection for the stored procedure is the same as the package

Chapter 5. Statements 1331

collection of the calling program. If the invoking program does not use a
package, DB2 resolves the package by using the CURRENT PACKAGE
PATH special register, the CURRENT PACKAGESET special register, or the
PKLIST bind option (in this order). For details about how DB2 uses these
three items, see the information on package resolution in DB2 Application
Programming and SQL Guide.

NO COLLID is the default.

COLLID collection-id
The package collection for the stored procedure is the one specified.

For REXX stored procedures, collection-id can be DSNREXRR, DSNREXRS,
DSNREXCR, or DSNREXCS.

WLM ENVIRONMENT
Identifies the WLM (workload manager) environment in which the stored
procedure is to run when the DB2 stored procedure address space is
WLM-established. The name of the WLM environment is an SQL identifier.

If you do not specify WLM ENVIRONMENT, the stored procedure runs in the
default WLM-established stored procedure address space specified at
installation time.

name
The WLM environment in which the stored procedure must run. If another
stored procedure or a user-defined function calls the stored procedure and
that calling routine is running in an address space that is not associated
with the specified WLM environment, DB2 routes the stored procedure
request to a different address space.

(name,*)
When an SQL application program directly calls a stored procedure, the
WLM environment in which the stored procedure runs.

If another stored procedure or a user-defined function calls the stored
procedure, the stored procedure runs in the same WLM environment that
the calling routine uses.

To define a stored procedure that is to run in a specified WLM environment,
you must have appropriate authority for the WLM environment. For an
example of a RACF command that provides this authorization, see Running
stored procedures.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of a stored procedure can run. The value is unrelated to the
ASUTIME column of the resource limit specification table. This option is
ignored if LANGUAGE JAVA is specified.

When you are debugging a stored procedure, setting a limit can be helpful in
case the stored procedure gets caught in a loop. For information on service
units, see z/OS MVS Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units. NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the
range of 1 to 2 147 483 647. If the procedure uses more service units than

1332 SQL Reference

the specified value, DB2 cancels the procedure. The CPU cycles that are
consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

STAY RESIDENT
Specifies whether the stored procedure load module is to remain resident in
memory when the stored procedure ends. This option is ignored if
LANGUAGE JAVA is specified.

NO The load module is deleted from memory after the stored procedure ends.
NO is the default.

YES
The load module remains resident in memory after the stored procedure
ends.

PROGRAM TYPE
Specifies whether the stored procedure runs as a main routine or a subroutine.

SUB
The stored procedure runs as a subroutine. With LANGUAGE JAVA,
PROGRAM TYPE SUB is the only valid option.

MAIN
The stored procedure runs as a main routine. With LANGUAGE REXX,
PROGRAM TYPE MAIN is always in effect.

The default for PROGRAM TYPE is:
v MAIN with LANGUAGE REXX
v SUB with LANGUAGE JAVA
v For other languages, the default depends on the value of the CURRENT

RULES special register:
– MAIN when the value is DB2
– SUB when the value is STD

SECURITY
Specifies how the stored procedure interacts with an external security product,
such as RACF, to control access to non-SQL resources.

DB2
The stored procedure does not require a special external security
environment. If the stored procedure accesses resources that an external
security product protects, the access is performed using the authorization
ID associated with the stored procedure address space. DB2 is the default.

USER
An external security environment should be established for the stored
procedure. If the stored procedure accesses resources that the external
security product protects, the access is performed using the authorization
ID of the user who invoked the stored procedure.

DEFINER
An external security environment should be established for the stored
procedure. If the stored procedure accesses resources that the external
security product protects, the access is performed using the authorization
ID of the owner of the stored procedure.

STOP AFTER SYSTEM DEFAULT FAILURES, STOP AFTER nn FAILURES, or CONTINUE
AFTER FAILURE

Specifies whether the routine is to be put in a stopped state after some number
of failures.

Chapter 5. Statements 1333

STOP AFTER SYSTEM DEFAULT FAILURES
Specifies that this routine should be placed in a stopped state after the
number of failures indicated by the value of field MAX ABEND COUNT
on installation panel DSNTIPX. This is the default.

STOP AFTER nn FAILURES
Specifies that this routine should be placed in a stopped state after nn
failures. The value nn can be an integer from 1 to 32767.

CONTINUE AFTER FAILURE
Specifies that this routine should not be placed in a stopped state after any
failure.

RUN OPTIONS runtime-options
Specifies the Language Environment run time options to be used for the stored
procedure. For a REXX stored procedure, specifies the Language Environment
run time options to be passed to the REXX language interface to DB2. You
must specify runtime-options as a character string that is no longer than 254
bytes. If you do not specify RUN OPTIONS or pass an empty string, DB2 does
not pass any run time options to Language Environment, and Language
Environment uses its installation defaults.

Do not specify RUN OPTIONS when LANGUAGE JAVA is in effect.

For a description of the Language Environment run time options, see z/OS
Language Environment Programming Reference.

COMMIT ON RETURN
Indicates whether DB2 commits the transaction immediately on return from the
stored procedure.

NO DB2 does not issue a commit when the stored procedure returns. NO is the
default.

YES
DB2 issues a commit when the stored procedure returns if the following
statements are true:
v The SQLCODE that is returned by the CALL statement is not negative.
v The stored procedure is not in a must abort state.

The commit operation includes the work that is performed by the calling
application process and the stored procedure.

If the stored procedure returns result sets, the cursors that are associated
with the result sets must have been defined as WITH HOLD to be usable
after the commit.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine. The default is
INHERIT SPECIAL REGISTERS.

INHERIT SPECIAL REGISTERS
Specifies that the values of special registers are inherited according to the
rules listed in the table for characteristics of special registers in a stored
procedure in Table 40 on page 205.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
stored procedure in Table 40 on page 205.

1334 SQL Reference

CALLED ON NULL INPUT
Specifies that the procedure is to be called even if any or all argument values
are null, which means that the procedure must be coded to test for null
argument values. The procedure can return null or nonnull values. CALLED
ON NULL INPUT is the default.

Notes

Owner privileges: The owner is authorized to call the procedure (EXECUTE
privilege) and grant others the privilege to call the procedure. See “GRANT
(function or procedure privileges)” on page 1703. For more information about
ownership of the object, see “Authorization, privileges, permissions, masks, and
object ownership” on page 70.

Choosing data types for parameters: When you choose the data types of the
parameters for your stored procedure, consider the rules of promotion that can
affect the values of the parameters. (See “Promotion of data types” on page 110).
For example, a constant that is one of the input arguments to the stored procedure
might have a built-in data type that is different from the data type that the
procedure expects, and more significantly, might not be promotable to that
expected data type. Based on the rules of promotion, using the following data
types for parameters is recommended:
v INTEGER instead of SMALLINT
v DOUBLE instead of REAL
v VARCHAR instead of CHAR
v VARGRAPHIC instead of GRAPHIC
v VARBINARY instead of BINARY

For portability of functions across platforms that are not DB2 for z/OS, do not use
the following data types, which might have different representations on different
platforms:
v FLOAT. Use DOUBLE or REAL instead.
v NUMERIC. Use DECIMAL instead.

Specifying the encoding scheme for parameters: The encoding scheme of all of the
parameters with a character or graphic string data type (both input and output
parameters) must be the same—either all ASCII, all EBCDIC, or all UNICODE. If
you specify the encoding scheme on the individual parameters, instead of using
the PARAMETER CCSID to specify it for all parameters at once or allowing the
encoding scheme to default to the system value, ensure that they all agree.

Character string representation considerations: The PARAMETER VARCHAR
clause is specific to LANGUAGE C routines because of the native use of
NUL-terminated strings in C. VARCHAR structure representation is useful when
character string data is known to contain embedded NUL-terminators. It is also
useful when it cannot be guaranteed that character string data does not contain
embedded NUL-terminators.

PARAMETER VARCHAR does not apply to fixed length character strings,
VARCHAR FOR BIT DATA, CLOB, DBCLOB, or implicitly generated parameters.
The clause does not apply to VARCHAR FOR BIT DATA because BIT DATA can
contain X'00' characters, and its value representation starts with length information.
It does not apply to LOB data because a LOB value representation starts with
length information.

Chapter 5. Statements 1335

PARAMETER VARCHAR does not apply to optional parameters that are implicitly
provided to an external procedure. For example, a CREATE PROCEDURE
statement for LANGUAGE C must also specify PARAMETER STYLE SQL, which
returns an SQLSTATE NUL-terminated character string; that SQLSTATE will not be
represented in VARCHAR structured form. Likewise, none of the parameters that
represent the qualified name of the procedure, the specific name of the procedure,
or the SQL diagnostic string that is returned to the database manager will be
represented in VARCHAR structured form.

Running stored procedures: You can use the WLM ENVIRONMENT clause to
identify the address space in which a stored procedure is to run. Using different
WLM environments lets you isolate one group of programs from another. For
example, you might choose to isolate programs based on security requirements and
place all payroll applications in one WLM environment because those applications
deal with sensitive data, such as employee salaries.

Regardless of where the stored procedure is to run, DB2 invokes RACF to
determine whether you have appropriate authorization. You must have
authorization to issue CREATE PROCEDURE statements that refer to the specified
WLM environment or the DB2-established stored procedure address space. For
example, the following RACF command authorizes DB2 user DB2USER1 to define
stored procedures on DB2 subsystem DB2A that run in the WLM environment
named PAYROLL.

PERMIT DB2A.WLMENV.PAYROLL CLASS(DSNR) ID(DB2USER1) ACCESS(READ)

Accessing result sets from nested stored procedures: When another stored
procedure or a user-defined function calls a stored procedure, only the calling
routine can access the result sets that the stored procedure returns. The result sets
are not returned to the application that contains the outermost stored procedure or
user-defined function in the sequence of nested calls.

When a stored procedure is nested, the result sets that are returned by the stored
procedure are accessible only by the calling routine. The result sets are not
returned to the application that contains the outermost stored procedure or
user-defined function in the sequence of nested calls.

Restrictions for nested stored procedures: A stored procedure, user-defined
function, or trigger cannot call a stored procedure that is defined with the
COMMIT ON RETURN clause.

Stored procedures and user-defined session global variables:
The content of user-defined session global variables that are referenced in
routines is inherited from the caller. User-defined session global variables
can be modified in stored procedures, except when the stored procedure is
called by a trigger or a function.

If the procedure contains references to user-defined session global
variables, the level of SQL data access must be at least CONTAINS SQL. If
the procedure contains SQL statements that modify user-defined session
global variables, the level of SQL data access must be MODIFIES SQL
DATA.

Alternative syntax and synonyms: To provide compatibility with previous releases
of DB2 or other products in the DB2 family, DB2 supports the following keywords:
v RESULT SET as a synonym for DYNAMIC RESULT SET
v RESULT SETS as a synonym for DYNAMIC RESULT SETS

1336 SQL Reference

|
|
|
|
|

|
|
|
|
|

v STANDARD CALL as a synonym for DB2SQL
v SIMPLE CALL as a synonym for GENERAL
v SIMPLE CALL WITH NULLS as a synonym for GENERAL WITH NULLS
v VARIANT as a synonym for NOT DETERMINISTIC
v NOT VARIANT as a synonym for DETERMINISTIC
v NULL CALL as a synonym for CALLED ON NULL INPUT
v PARAMETER STYLE DB2SQL as a synonym for PARAMETER STYLE SQL

Examples

Example 1: Create the definition for a stored procedure that is written in COBOL.
The procedure accepts an assembly part number and returns the number of parts
that make up the assembly, the total part cost, and a result set. The result set lists
the part numbers, quantity, and unit cost of each part. Assume that the input
parameter cannot contain a null value and that the procedure is to run in a WLM
environment called PARTSA.

CREATE PROCEDURE SYSPROC.MYPROC(IN INT, OUT INT, OUT DECIMAL(7,2))
LANGUAGE COBOL
EXTERNAL NAME MYMODULE
PARAMETER STYLE GENERAL
WLM ENVIRONMENT PARTSA
DYNAMIC RESULT SETS 1;

Example 2: Create the definition for the stored procedure described in Example 1,
except use the linkage convention that passes more information than the parameter
specified on the CALL statement. Specify Language Environment run time options
HEAP, BELOW, ALL31, and STACK.

CREATE PROCEDURE SYSPROC.MYPROC(IN INT, OUT INT, OUT DECIMAL(7,2))
LANGUAGE COBOL
EXTERNAL NAME MYMODULE
PARAMETER STYLE SQL
WLM ENVIRONMENT PARTSA
DYNAMIC RESULT SETS 1
RUN OPTIONS ’HEAP(,,ANY),BELOW(4K,,),ALL31(ON),STACK(,,ANY,)’;

Example 3: Create the procedure definition for a stored procedure, written in Java,
that is passed a part number and returns the cost of the part and the quantity that
is currently available.

CREATE PROCEDURE PARTS_ON_HAND(IN PARTNUM INT,
OUT COST DECIMAL(7,2),
OUT QUANTITY INT)

LANGUAGE JAVA
EXTERNAL NAME ’PARTS.ONHAND’
PARAMETER STYLE JAVA;

Chapter 5. Statements 1337

CREATE PROCEDURE (SQL - external)
The CREATE PROCEDURE statement defines an external SQL procedure at the
current server and specifies the source statements for the procedure. This is the
only type of SQL procedure that is available for versions of DB2 prior to Version 9.

For information about the SQL control statements that are supported in external
SQL procedures, refer to “SQL control statements for external SQL procedures” on
page 2032.

Invocation

This statement can only be dynamically prepared, but the DYNAMICRULES run
behavior must be specified implicitly or explicitly. It is intended to be processed
using one of the following methods:
v JCL
v The DB2 for z/OS SQL procedure processor (DSNTPSMP) (IBM Optim™

Development Studio uses this method.)

Issuing the CREATE PROCEDURE statement from another context will result in an
incomplete procedure definition even though the statement processing returns
without error. For more information on preparing SQL procedures for execution,
see DB2 Application Programming and SQL Guide.

Authorization

The privilege set that is defined below must include at least one of the following:
v The CREATEIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

If the authorization ID that is used to create the procedure has installation
SYSADM authority, the procedure is identified as system-defined procedure.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the owner is a role, the implicit schema match does not apply and this role needs
to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for
which the ROLE AS OBJECT OWNER clause is specified, the privilege set is the
set of privileges that are held by the SQL authorization ID of the process. If the
schema name is not the same as the SQL authorization ID of the process, one of
the following conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v The SQL authorization ID of the process has the CREATEIN privilege on the

schema.

The authorization ID that is used to create the stored procedure must have
authority to create programs that are to be run in the specified WLM environment.

1338 SQL Reference

The owner of the procedure is determined by how the CREATE PROCEDURE
statement is invoked:
v If the statement is embedded in a program, the owner is the authorization ID of

the owner of the plan or package.
v If the statement is dynamically prepared, the owner is the SQL authorization ID

in the CURRENT SQLID special register.

The owner is implicitly given the EXECUTE privilege with the GRANT option for
the procedure.

Syntax

�� CREATE PROCEDURE procedure-name

�

()
,

parameter-declaration

�

� option-list SQL-routine-body ��

��
IN

parameter-name parameter-type
OUT
INOUT

��

�� built-in-type
TABLE LIKE table-name AS LOCATOR

��

parameter-declaration:

parameter-type:

built-in-type:

Chapter 5. Statements 1339

�� SMALLINT
INTEGER
INT

(5,0)
DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

��

option-list: (The options can be specified in any order, but each option can be specified only one time)

1340 SQL Reference

�� LANGUAGE SQL

(1)
FENCED

(1)
EXTERNAL NAME 'string'

identifier

�

�
DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer PARAMETER CCSID ASCII
EBCDIC
UNICODE

�

�
NULTERM

PARAMETER VARCHAR STRUCTURE

NOT DETERMINISTIC

DETERMINISTIC

CALLED ON NULL INPUT
�

�
MODIFIES SQL DATA

READS SQL DATA
CONTAINS SQL

NO DBINFO NO COLLID

COLLID collection-id
�

�
WLM ENVIRONMENT name

(name , *)

ASUTIME NO LIMIT

ASUTIME LIMIT integer

STAY RESIDENT NO

STAY RESIDENT YES
�

�
PROGRAM TYPE MAIN

PROGRAM TYPE SUB

SECURITY DB2

SECURITY USER
SECURITY DEFINER

RUN OPTIONS run-time-options
�

�
COMMIT ON RETURN NO

COMMIT ON RETURN YES

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS

STOP AFTER SYSTEM DEFAULT FAILURES

STOP AFTER integer FAILURES
CONTINUE AFTER FAILURE

��

Notes:

1 Either the FENCED or EXTERNAL NAME clause must be specified to indicate that the definition
is for an external SQL procedure.

Description

procedure-name
Names the procedure. The name, including the implicit or explicit qualifier,
must not identify an existing stored procedure at the current server.

(parameter-declaration,...)
Specifies the number of parameters of the procedure, the data type of each
parameter, and the name of each parameter. A parameter for a procedure can
be used only for input, only for output, or for both input and output. If an

Chapter 5. Statements 1341

error is returned by the procedure, OUT parameters are undefined, and
INOUT parameters are unchanged. All of the parameters are nullable.

IN Identifies the parameter as an input parameter to the procedure. The value
of the parameter on entry to the procedure is the value that is returned to
the calling SQL application, even if changes are made to the parameter
within the procedure.

IN is the default.

OUT
Identifies the parameter as an output parameter that is returned by the
procedure. If the parameter is not set within the procedure, the null value
is returned.

INOUT
Identifies the parameter as both an input and output parameter for the
procedure. If the parameter is not set within the procedure, its input value
is returned.

parameter-name
Names the parameter for use as an SQL variable. parameter-name is an SQL
identifier and must not be a delimited identifier that includes lowercase
letters or special characters. A parameter name cannot be the same as the
name of any other parameter for this version of the procedure.

parameter-type
Specifies the data type of the parameter.

built-in-type
The data type of the parameter is a built-in data type.

For more information on the data types, including the subtype of
character data types (the FOR subtype DATA clause), see built-in-type.
For external SQL procedures, the maximum limit for VARCHAR is
32767 and for VARGRAPHIC is 16382.

For parameters with a character or graphic data type, the
PARAMETER CCSID clause or CCSID clause indicates the encoding
scheme of the parameter. If you do not specify either of these clauses,
the encoding scheme is the value of field DEF ENCODING SCHEME
on installation panel DSNTIPF.

Although an input parameter with a character data type has an
implicitly or explicitly specified subtype (BIT, SBCS, or MIXED), the
value that is actually passed in the input parameter can have any
subtype. Therefore, conversion of the input data to the subtype of the
parameter might occur when the procedure is called. With ASCII or
EBCDIC, an error occurs if mixed data that actually contains DBCS
characters is used as the value for an input parameter that is declared
with an SBCS subtype.

A parameter with a datetime data type is passed to the SQL procedure
as a character data type, and the data is passed in ISO format.

The encoding scheme for a datetime type parameter is determined as
follows:
v If there are one or more parameters with a character or graphic data

type, the encoding scheme of the datetime type parameter is the
same as the encoding scheme of the character or graphic parameters.

1342 SQL Reference

v Otherwise, the encoding scheme is the value of field DEF
ENCODING SCHEME on installation panel DSNTIPF.

TABLE LIKE table-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the
procedure is called, the actual values in the transition table are not
passed to the procedure. A single value is passed instead. This single
value is a locator to the table, which the procedure uses to access the
columns of the transition table. A procedure with a table parameter can
only be invoked from the triggered action of a trigger.

The transition table includes columns that are defined as implicitly
hidden in the table. The table that is identified can contain XML
columns; however, the procedure cannot reference those XML columns.

For more information about the TABLE LIKE clause, see TABLE LIKE.
For more information about using table locators, see DB2 Application
Programming and SQL Guide.

LANGUAGE
Specifies the application programming language in which the procedure is
written.

SQL
The procedure is written in DB2 SQL procedural language.

FENCED
Specifies that the procedure runs in an external address space. FENCED also
specifies that the SQL procedure program is an MVS load module with an
external name.

DYNAMIC RESULT SETS integer
Specifies the maximum number of query result sets that the procedure can
return. The default is DYNAMIC RESULT SETS 0, which indicates that the
procedure can return no result sets. The value of integer must be between 0
and 32767.

PARAMETER CCSID
Indicates whether the encoding scheme for character and graphic string
parameters is ASCII, EBCDIC, or UNICODE. The default encoding scheme is
the value that is specified in the CCSID clauses of the parameter list or in the
field DEF ENCODING SCHEME on installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for
character and graphic string parameters. If individual CCSID clauses are
specified for individual parameters in addition to this PARAMETER CCSID
clause, the value that is specified in all of the CCSID clauses must be the same
value that is specified in this clause.

This clause also specifies the encoding scheme that is to be used for
system-generated parameters of the routine such as message tokens and
DBINFO.

PARAMETER VARCHAR
Specifies that the representation of the values of varying length character
string-parameters for procedures that specify LANGUAGE C.

NULTERM
Specifies that variable length character string parameters are represented in
a NUL-terminated string form.

NULTERM is the default.

Chapter 5. Statements 1343

STRUCTURE
Specifies that variable length character string parameters are represented in
a VARCHAR structure form.

The PARAMETER VARCHAR clause only applies to parameters in the
parameter list of a procedure and in the RETURNS clause. It does not apply to
system-generated parameters of the routine such as message tokens and
DBINFO.

In a data sharing environment, you should not specify the PARAMETER
VARCHAR clause until all members of the data sharing group support the
clause. If some group members support this clause and others do not, and
PARAMETER VARCHAR is specified, the routine will encounter different
parameter forms depending on which group member invokes the routine.

EXTERNAL NAME 'string' or identifier
Specifies the name of the MVS load module for the program that runs when
the procedure name is specified in an SQL CALL statement. The value must
conform to the naming conventions for MVS load modules: the value must be
less than or equal to 8 bytes, and it must conform to the rules for an ordinary
identifier with the exception that it must not contain an underscore.

EXTERNAL NAME procedure-name is the default. In some cases, the default
name will not be valid. To avoid an invalid name, specify EXTERNAL NAME
for a procedure that has a name that is greater than 8 bytes in length, contains
an underscore, or does not conform to the rules for an ordinary identifier.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the procedure returns the same results each time the
procedure is called with the same IN and INOUT arguments.

NOT DETERMINISTIC
The procedure might not return the same result each time the procedure is
called with the same IN and INOUT arguments, even when the referenced
data in the database has not changed.

NOT DETERMINISTIC is the default.

DETERMINISTIC
The procedure always returns the same results each time the stored
procedure is called with the same IN and INOUT arguments, if the
referenced data in the database has not changed.

DB2 does not verify that the procedure code is consistent with the specification
of DETERMINISTIC or NOT DETERMINISTIC.

CALLED ON NULL INPUT
Specifies that the procedure is to be called even if any or all argument values
are null, which means that the procedure must be coded to test for null
argument values. The procedure can return null or non-null values.

CALLED ON NULL INPUT is the default.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Specifies the classification of SQL statements that the procedure can execute.
For the data access classification of each statement, see Table 162 on page 2030.
Statements that are not supported in any procedure return an error.

MODIFIES SQL DATA
Specifies that the procedure can execute any SQL statement except
statements that are not supported in procedures.

1344 SQL Reference

MODIFIES SQL DATA is the default.

READS SQL DATA
Specifies that the procedure can execute statements with a data access
indication of READS SQL DATA or CONTAINS SQL. The procedure
cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the procedure can execute only SQL statements with a data
access indication of CONTAINS SQL. The procedure cannot execute
statements that read or modify data.

NO DBINFO
Specifies that no additional status information that is known by DB2 is passed
to the procedure when it is invoked.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the procedure is
executed. This is the package collection into which the DBRM that is associated
with the procedure is bound.

NO COLLID
Specifies that the package collection for the procedure is the same as the
package collection of the calling program. If the invoking program does
not use a package, DB2 resolves the package by using the CURRENT
PACKAGE PATH special register, the CURRENT PACKAGESET special
register, or the PKLIST bind option (in this order). For details about how
DB2 uses these three items, see the information on package resolution in
DB2 Application Programming and SQL Guide.

NO COLLID is the default.

COLLID collection-id
Specifies the package collection for the procedure.

WLM ENVIRONMENT name or (name,*)
Identifies the WLM (workload manager) environment in which the stored
procedure is to run when the DB2 stored procedure address space is
WLM-established. The name of the WLM environment is an SQL identifier.

If you do not specify WLM ENVIRONMENT, the procedure runs in the default
WLM-established stored procedure address space that is specified at
installation time.

name
The WLM environment in which the procedure must run. If another
procedure or a user-defined function calls the procedure and that calling
routine is running in an address space that is not associated with the
specified WLM environment, DB2 routes the procedure request to a
different address space.

(name,*)
When an SQL application program directly calls a procedure, name
specifies the WLM environment in which the procedure runs.

If another procedure or a user-defined function calls the stored procedure,
the procedure runs in the same WLM environment that the calling routine
uses.

Chapter 5. Statements 1345

To define a procedure that is to run in a specified WLM environment, you
must have appropriate authority for the WLM environment. For an example of
a RACF command that provides this authorization, see Running stored
procedures.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of a procedure can run. The value is unrelated to the ASUTIME
column of the resource limit specification table.

When you are debugging a procedure, setting a limit can be helpful in case the
procedure gets caught in a loop. For information on service units, see z/OS
MVS Initialization and Tuning Guide.

NO LIMIT
There is no limit on the number of CPU service units that the procedure
can run.

NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the
range of 1 to 2 147 483 647. If the procedure uses more service units than
the specified value, DB2 cancels the procedure. The CPU cycles that are
consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

STAY RESIDENT
Specifies whether the load module for the procedure remains resident in
memory when the procedure ends.

NO The load module is deleted from memory after the procedure ends.

NO is the default.

YES
The load module remains resident in memory after the procedure ends.

PROGRAM TYPE
Specifies whether the procedure runs as a main routine or a subroutine.

MAIN
The procedure runs as a main routine.

MAIN is the default.

SUB
The procedure runs as a subroutine.

SECURITY
Specifies how the procedure interacts with an external security product, such
as RACF, to control access to non-SQL resources.

DB2
The procedure does not require a special external security environment. If
the procedure accesses resources that an external security product protects,
the access is performed using the authorization ID that is associated with
the address space in which the procedure runs.

DB2 is the default.

USER
An external security environment should be established for the procedure.

1346 SQL Reference

If the procedure accesses resources that the external security product
protects, the access is performed using the authorization ID of the user
who invoked the procedure.

DEFINER
An external security environment should be established for the procedure.
If the procedure accesses resources that the external security product
protects, the access is performed using the authorization ID of the owner
of the procedure.

RUN OPTIONS run-time-options
Specifies the Language Environment run time options that are to be used for
the procedure. You must specify run-time-options as a character string that is no
longer than 254 bytes. If you do not specify RUN OPTIONS or pass an empty
string, DB2 does not pass any run time options to Language Environment, and
Language Environment uses its installation defaults.

For a description of the Language Environment run time options, see z/OS
Language Environment Programming Reference.

COMMIT ON RETURN
Indicates whether DB2 commits the transaction immediately on return from the
procedure.

NO DB2 does not issue a commit when the procedure returns.

NO is the default.

YES
DB2 issues a commit when the procedure returns if the following
statements are true:
v A positive SQLCODE is returned by the CALL statement.
v The procedure is not in a must abort state.

The commit operation includes the work that is performed by the calling
application process and the procedure.

If the procedure returns result sets, the cursors that are associated with the
result sets must have been defined as WITH HOLD to be usable after the
commit.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.

INHERIT SPECIAL REGISTERS
Specifies that the values of special registers are inherited, according to the
rules that are listed in the table for characteristics of special registers in a
procedure in Table 40 on page 205.

INHERIT SPECIAL REGISTERS is the default.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
procedure in Table 40 on page 205.

STOP AFTER SYSTEM DEFAULT FAILURES, STOP AFTER nn FAILURES, or CONTINUE
AFTER FAILURE

Specifies the routine is stopped after failures.

Chapter 5. Statements 1347

STOP AFTER SYSTEM DEFAULT FAILURES
Specifies that this routine should be placed in a stopped state after the
number of failures indicated by the value of field MAX ABEND COUNT
on installation panel DSNTIPX.

STOP AFTER SYSTEM DEFAULT FAILURES is the default.

STOP AFTER nn FAILURES
Specifies that this routine should be placed in a stopped state after nn
failures. The value nn can be an integer from 1 to 32767.

CONTINUE AFTER FAILURE
Specifies that this routine should not be placed in a stopped state after any
failure.

SQL-routine-body
Specifies the statements that define the body of the SQL procedure. For
information on the SQL control statements that are supported in external SQL
procedures, see “SQL control statements for external SQL procedures” on page
2032.

Notes

See “Notes” on page 1335 for information about:
v Owner privileges
v Choosing data types for parameters
v Specifying the encoding scheme for parameters
v Environments for running stored procedures
v Accessing result sets from nested stored procedures

Error handling in SQL procedures: You should consider the possible exceptions that
can occur for each SQL statement in the body of a procedure. Any exception
SQLSTATE that is not handled within the procedure using a handler within a
compound statement results in the exception SQLSTATE being returned to the
caller of the procedure.

Stored procedures and user-defined session global variables:
The content of user-defined session global variables that are referenced in
routines is inherited from the caller. User-defined session global variables
can be modified in stored procedures, except when the stored procedure is
called by a trigger or a function.

If the procedure contains references to user-defined session global
variables, the level of SQL data access must be at least CONTAINS SQL. If
the procedure contains SQL statements that modify user-defined session
global variables, the level of SQL data access must be MODIFIES SQL
DATA.

Alternative syntax and synonyms: To provide compatibility with previous releases
of DB2 or other products in the DB2 family, DB2 supports the following keywords:
v RESULT SET and RESULT SETS as synonyms for DYNAMIC RESULT SETS
v VARIANT as a synonym for NOT DETERMINISTIC
v NOT VARIANT as a synonym for DETERMINISTIC

1348 SQL Reference

|
|
|
|
|

|
|
|
|
|

Examples

Example 1: Create the definition for an SQL procedure. The procedure accepts an
employee number and a multiplier for a pay raise as input. The following tasks are
performed in the procedure body:
v Calculate the employee's new salary.
v Update the employee table with the new salary value.
CREATE PROCEDURE UPDATESALARY
(IN EMPLOYEE_NUMBER CHAR(10),
IN RATE DECIMAL(6,2))
LANGUAGE SQL
FENCED
EXTERNAL NAME ’USALARY1’
MODIFIES SQL DATA
UPDATE EMP
SET SALARY = SALARY * RATE
WHERE EMPNO = EMPLOYEE_NUMBER

Example 2: Create the definition for the SQL procedure described in example 1, but
specify that the procedure has these characteristics:
v The procedure runs in a WLM environment called PARTSA.
v The same input always produces the same output.
v SQL work is committed on return to the caller.
v The Language Environment run time options to be used when the SQL

procedure executes are 'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)'.
CREATE PROCEDURE UPDATESALARY
(IN EMPLOYEE_NUMBER CHAR(10),
IN RATE DECIMAL(6,2))
LANGUAGE SQL
FENCED
EXTERNAL NAME ’USALARY2’
MODIFIES SQL DATA
WLM ENVIRONMENT PARTSA
DETERMINISTIC
RUN OPTIONS ’MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)’
COMMIT ON RETURN YES

UPDATE EMP
SET SALARY = SALARY * RATE
WHERE EMPNO = EMPLOYEE_NUMBER

For more examples of SQL procedures, see “SQL control statements for external
SQL procedures” on page 2032.

Chapter 5. Statements 1349

CREATE PROCEDURE (SQL - native)
The CREATE PROCEDURE statement defines an SQL procedure at the current
server and specifies the source statements for the procedure. You can define
multiple versions of the procedure. CREATE PROCEDURE is used to define the
initial version, and ALTER PROCEDURE is used to define subsequent versions.

For information about the SQL control statements that are supported in native SQL
procedures, refer to Chapter 6, “SQL control statements for SQL routines,” on page
1963.

Invocation

This statement can only be dynamically prepared, and the DYNAMICRULES run
behavior must be specified implicitly or explicitly.

Authorization

The privilege set that is defined below must include at least one of the following:
v The CREATEIN privilege on the schema and the required authorization to add a

new package or a new version of an existing package depending on the value of
the BIND NEW PACKAGE field on installation panel DSNTIPP

v SYSADM authority
v SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

If a user-defined type is referenced (as the data type of a parameter or SQL
variable), the privilege set must also include at least one of the following privileges
or authorities:
v Ownership of the user-defined type
v The USAGE privilege on the user-defined type
v SYSADM authority

If the procedure uses a table as a parameter, the privilege set must also include at
least one of the following privileges or authorities:
v Ownership of the table
v The SELECT privilege on the table
v SYSADM authority

If the authorization ID that is used to create the procedure has installation
SYSADM authority, the procedure is identified as system-defined procedure.

Privilege set: The privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and
the ROLE AS OBJECT OWNER clause is specified. In that case, the privileges set is
the privileges that are held by the role that is associated with the primary
authorization ID of the process and the owner is that role.

If the statement is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that

1350 SQL Reference

|
|
|

|

|

|

are held by the SQL authorization ID of the process. If the schema name is not the
same as the SQL authorization ID of the process, one of the following conditions
must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v The SQL authorization ID of the process has the CREATEIN privilege on the

schema.

The privilege set must also include the privileges required to execute the
statements in SQL-routine-body.

If the WLM ENVIRONMENT FOR DEBUG MODE clause is specified, the privilege
set must have authority to define programs that run in the specified WLM
environment.

The owner of the procedure is the SQL authorization ID in the CURRENT SQLID
special register unless the process is running within a trusted context and the
ROLE AS OBJECT OWNER clause is specified. In that case, the owner of the
procedure is the role that is associated with the primary authorization ID of the
process.

The owner is implicitly given the EXECUTE privilege with the GRANT option for
the procedure.

Syntax

�� CREATE PROCEDURE procedure-name

�

()
,

parameter-declaration

�

�
VERSION V1

VERSION routine-version-id option-list
SQL-routine-body ��

�� parameter-name parameter-type ��

�� data-type
TABLE LIKE table-name AS LOCATOR

view-name

��

parameter-declaration:

parameter-type:

Chapter 5. Statements 1351

�� built-in-type
distinct-type-name
array-type-name

��

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
XML

��

data-type:

built-in-type:

option-list: (The options can be specified in any order, but each one can only be specified one time.)

1352 SQL Reference

|

��
LANGUAGE SQL NOT DETERMINISTIC MODIFIES SQL DATA CALLED ON NULL INPUT

DETERMINISTIC READS SQL DATA
CONTAINS SQL

�

�
DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer DISALLOW DEBUG MODE PARAMETER CCSID ASCII QUALIFIER schema-name
ALLOW DEBUG MODE PARAMETER CCSID EBCDIC
DISABLE DEBUG MODE PARAMETER CCSID UNICODE

�

�
ASUTIME NO LIMIT COMMIT ON RETURN NO INHERIT SPECIAL REGISTERS

PACKAGE OWNER authorization-name ASUTIME LIMIT integer COMMIT ON RETURN YES DEFAULT SPECIAL REGISTERS
AUTONOMOUS

�

�
CURRENT DATA NO DEGREE 1

WLM ENVIRONMENT FOR DEBUG MODE name DEFER PREPARE CURRENT DATA YES DEGREE ANY
NODEFER PREPARE

�

�
CONCURRENT ACCESS RESOLUTION USE CURRENTLY COMMITTED
CONCURRENT ACCESS RESOLUTION WAIT FOR OUTCOME

�

�
DYNAMICRULES RUN WITHOUT EXPLAIN WITHOUT IMMEDIATE WRITE

DYNAMICRULES BIND APPLICATION ENCODING SCHEME ASCII WITH EXPLAIN WITH IMMEDIATE WRITE
DYNAMICRULES DEFINEBIND APPLICATION ENCODING SCHEME EBCDIC
DYNAMICRULES DEFINERUN APPLICATION ENCODING SCHEME UNICODE
DYNAMICRULES INVOKEBIND
DYNAMICRULES INVOKERUN

�

�

�

ISOLATION LEVEL CS WITHOUT KEEP DYNAMIC OPTHINT ''

ISOLATION LEVEL RS WITH KEEP DYNAMIC OPTHINT string-constant ,
ISOLATION LEVEL RR
ISOLATION LEVEL UR SQL PATH schema-name

SYSTEM PATH
SESSION USER
USER

�

�
RELEASE AT COMMIT REOPT NONE VALIDATE RUN

RELEASE AT DEALLOCATE REOPT ALWAYS VALIDATE BIND ROUNDING DEC_ROUND_CEILING
REOPT ONCE ROUNDING DEC_ROUND_DOWN

ROUNDING DEC_ROUND_FLOOR
ROUNDING DEC_ROUND_HALF_DOWN
ROUNDING DEC_ROUND_HALF_EVEN
ROUNDING DEC_ROUND_HALF_UP
ROUNDING DEC_ROUND_UP

�

�
FOR UPDATE CLAUSE REQUIRED

DATE FORMAT ISO DECIMAL(15) FOR UPDATE CLAUSE OPTIONAL TIME FORMAT ISO
DATE FORMAT EUR DECIMAL(31) TIME FORMAT EUR
DATE FORMAT USA DECIMAL(15,s) TIME FORMAT USA
DATE FORMAT JIS DECIMAL(31,s) TIME FORMAT JIS
DATE FORMAT LOCAL TIME FORMAT LOCAL

BUSINESS_TIME SENSITIVE YES

BUSINESS_TIME SENSITIVE NO
�

�
SYSTEM_TIME SENSITIVE YES

SYSTEM_TIME SENSITIVE NO

ARCHIVE SENSITIVE YES

ARCHIVE SENSITIVE NO APPLCOMPAT compatibility-level
��

SQL-routine-body:

Chapter 5. Statements 1353

|

��
(1)

SQL-control-statement
ALTER DATABASE statement
ALTER FUNCTION statement (external scalar, external table, sourced, SQL scalar, or SQL table)
ALTER INDEX statement
ALTER PROCEDURE statement (external, SQL - external, or SQL - native)
ALTER SEQUENCE statement
ALTER STOGROUP statement
ALTER TABLE statement
ALTER TABLESPACE statement
ALTER TRUSTED CONTEXT statement
ALTER VIEW statement
COMMENT statement
COMMIT statement
CONNECT statement
CREATE ALIAS statement
CREATE DATABASE statement
CREATE FUNCTION statement (external scalar, external table, or sourced)
CREATE GLOBAL TEMPORARY TABLE statement
CREATE INDEX statement
CREATE PROCEDURE statement (external)
CREATE ROLE statement
CREATE SEQUENCE statement
CREATE STOGROUP statement
CREATE SYNONYM statement
CREATE TABLE statement
CREATE TABLESPACE statement
CREATE TRUSTED CONTEXT statement
CREATE TYPE statement
CREATE VIEW statement
DECLARE GLOBAL TEMPORARY TABLE statement
DELETE statement
DROP statement
EXCHANGE statement
EXECUTE IMMEDIATE statement
GRANT statement
INSERT statement
LABEL statement
LOCK TABLE statement
MERGE statement
REFRESH TABLE statement
RELEASE statement
RELEASE SAVEPOINT statement
RENAME statement
REVOKE statement
ROLLBACK statement
SAVEPOINT statement
SELECT INTO statement
SET CONNECTION statement
SET special-register statement
TRUNCATE statement
UPDATE statement
VALUES INTO statement

��

Notes:

1 An ALTER FUNCTION statement (SQL scalar) or an ALTER PROCEDURE statement (SQL
native) with an ADD VERSION or REPLACE clause are not allowed in an SQL-routine-body.

Description

procedure-name
Names the procedure. If procedure-name already exists, an error is returned even
if VERSION is specified with a version-id that is different from any existing
version identifier for the procedure that is specified in procedure-name.

(parameter-declaration,...)
Specifies the number of parameters of the procedure, the data type and usage
of each parameter, and the name of each parameter for the version of the

1354 SQL Reference

procedure that is being defined. The number of parameters and the specified
data type and usage of each parameter must match the data types in the
corresponding position of the parameter for all other versions of this
procedure. Synonyms for data types are considered to be a match.

IN, OUT, and INOUT specify the usage of the parameter. The usage of the
parameters must match the implicit or explicit usage of the parameters of other
versions of the same procedure.

IN Identifies the parameter as an input parameter to the procedure. The value
of the parameter on entry to the procedure is the value that is returned to
the calling SQL application, even if changes are made to the parameter
within the procedure.

IN is the default.

OUT
Identifies the parameter as an output parameter that is returned by the
procedure. If the parameter is not set within the procedure, the null value
is returned.

INOUT
Identifies the parameter as both an input and output parameter for the
procedure. If the parameter is not set within the procedure, its input value
is returned.

parameter-name
Names the parameter for use as an SQL variable. A parameter name
cannot be the same as the name of any other parameter for this version of
the procedure. The name of the parameter in this version of the procedure
can be different than the name of the corresponding parameter for other
versions of this procedure.

built-in-type
The data type of the parameter is a built-in data type.

For more information on the data types, including the subtype of character
data types (the FOR subtype DATA clause), see built-in-type. However, the
varying length string data types have different maximum lengths than for
the CREATE TABLE statement. The maximum lengths for parameters (and
SQL variables) are as follows: 32704 for VARCHAR or VARBINARY, and
16352 for VARGRAPHIC.

For parameters with a character or graphic data type, the PARAMETER
CCSID clause or CCSID clause indicates the encoding scheme of the
parameter. If you do not specify either of these clauses, the encoding
scheme is the value of field DEF ENCODING SCHEME on installation
panel DSNTIPF.

Although an input parameter with a character data type has an implicitly
or explicitly specified subtype (BIT, SBCS, or MIXED), the value that is
actually passed in the input parameter can have any subtype. Therefore,
conversion of the input data to the subtype of the parameter might occur
when the procedure is called. With ASCII or EBCDIC, an error occurs if
mixed data that actually contains DBCS characters is used as the value for
an input parameter that is declared with an SBCS subtype.

Parameters with a datetime data type or a distinct type are passed to the
function as a different data type:
v A datetime type parameter is passed as a character data type, and the

data is passed in ISO format. The encoding scheme for a datetime type

Chapter 5. Statements 1355

parameter is the same as the implicitly or explicitly specified encoding
scheme of any character or graphic string parameters. If no character or
graphic string parameters are passed, the encoding scheme is the value
of field DEF ENCODING SCHEME on installation panel DSNTIPF.

v A distinct type parameter is passed as the source type of the distinct
type.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the
procedure instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type based on a LOB data
type. Passing locators instead of values can result in fewer bytes being
passed to the procedure, especially when the value of the parameter is
very large.

The AS LOCATOR clause has no effect on determining whether data types
can be promoted.

distinct-type-name
The data type of the input parameter is a distinct type. Any length,
precision, scale, subtype, or encoding scheme attributes for the parameter
are those of the source type of the distinct type. The distinct type must not
be based on a LOB data type.

array-type-name
The data type of the input parameter is a user-defined array type.

If you specify array-type-name without a schema name, DB2 resolves the
array type by searching the schemas in the SQL path.

TABLE LIKE table-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the procedure
is called, the actual values in the transition table are not passed to the
procedure. A single value is passed instead. This single value is a locator to the
table, which the procedure uses to access the columns of the transition table.
The table that is identified can contain XML columns; however, the procedure
cannot reference those XML columns. A procedure with a table parameter can
only be invoked from the triggered action of a trigger. For additional
information about using table locators, refer to DB2 Application Programming
and SQL Guide.

VERSION routine-version-id
Specifies the version identifier for the first version of the procedure that is to
be generated. See “Naming conventions” on page 57 for information about
specifying routine-version-id. You can use an ALTER PROCEDURE statement
with the ADD VERSION clause or the BIND DEPLOY command to create
additional versions of the procedure.

V1 is the default version identifier.

See Versions of a procedure for more information about the use of versions for
procedures.

LANGUAGE SQL
Specifies that the procedure is written in the DB2 SQL procedural language.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the procedure returns the same results each time it is called
with the same IN and INOUT arguments.

1356 SQL Reference

|
|

|
|

DETERMINISTIC
The procedure always returns the same results each time it is called with
the same IN and INOUT arguments if the data that is referenced in the
database has not changed.

NOT DETERMINISTIC
The procedure might not return the same result each time it is called with
the same IN and INOUT arguments, even when the data that is referenced
in the database has not changed.

NOT DETERMINISTIC is the default.

DB2 does not verify that the procedure code is consistent with the specification
of DETERMINISTIC or NOT DETERMINISTIC.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Specifies the classification of SQL statements that the procedure can execute.

MODIFIES SQL DATA
Specifies that the procedure can execute any SQL statement except
statements that are not supported in procedures.

MODIFIES SQL DATA is the default.

READS SQL DATA
Specifies that the procedure can execute statements with a data access
indication of READS SQL DATA or CONTAINS SQL. The procedure
cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the procedure can execute only SQL statements with a data
access indication of CONTAINS SQL. The procedure cannot execute
statements that read or modify data.

CALLED ON NULL INPUT
Specifies that the procedure will be called if any, or even if all parameter
values are null.

DYNAMIC RESULT SETS integer
Specifies the maximum number of query result sets that the procedure can
return. The default is DYNAMIC RESULT SETS 0, which indicates that there
are no result sets. The value must be between 0 and 32767.

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether this version of the routine can be run in debugging mode.
The default is determined using the value of the CURRENT DEBUG MODE
special register.

ALLOW DEBUG MODE
Specifies that this version of the routine can be run in debugging mode.
When this version of the routine is invoked and debugging is attempted, a
WLM environment must be available.

DISALLOW DEBUG MODE
Specifies that this version of the routine cannot be run in debugging mode.

You can use an ALTER statement to change this option to ALLOW DEBUG
MODE for this initial version of the routine.

DISABLE DEBUG MODE
Specifies that this version of the routine can never be run in debugging
mode.

Chapter 5. Statements 1357

This version of the routine cannot be changed to specify ALLOW DEBUG
MODE or DISALLOW DEBUG MODE after this version of the routine has
been created or altered to use DISABLE DEBUG MODE. To change this
option, drop the routine and create it again using the option that you want.
An alternative to dropping and recreating the routine is to create a version
of the routine that uses the option that you want and making that version
the active version.

When DISABLE DEBUG MODE is in effect, the WLM ENVIRONMENT
FOR DEBUG MODE is ignored.

PARAMETER CCSID
Indicates whether the encoding scheme for character or graphic string
parameters is ASCII, EBCDIC, or UNICODE. The default encoding scheme is
the value that is specified in the CCSID clauses of the parameter list or in the
field DEF ENCODING SCHEME on installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for
character or graphic string parameters. If individual CCSID clauses are
specified for individual parameters in addition to this PARAMETER CCSID
clause, the value that is specified in all of the CCSID clauses must be the same
value that is specified in this clause.

If the data type for a parameter is a user-defined distinct type that is defined
as a character or graphic type string, the CCSID of the distinct type must be
the same as the value that is specified in this clause.

If the data type for a parameter is a user-defined array type that is defined
with character or graphic string array elements, or a character string array
index, the CCSID of these array attributes must be the same as the value that
is specified in this clause.

This clause also specifies the encoding scheme that will be used for
system-generated parameters of the routine.

QUALIFIER schema-name
Specifies the implicit qualifier that is used for unqualified names of tables,
views, indexes, and aliases that are referenced in the routine body. The default
value is the same as the default schema.

PACKAGE OWNER authorization-name
Specifies the owner of the package that is associated with the first version of
the routine. The SQL authorization ID of the process is the default value.

The authorization ID must have the privileges that are required to execute the
SQL statements that are contained in the routine body and must contain the
necessary bind privileges. The value of PACKAGE OWNER is subject to
translation when it is sent to a remote system.

If the privilege set lacks SYSADM or SYSCTRL authority, authorization-name
must be the same as one of the authorization IDs of the process or the
authorization ID of the process. If the privilege set includes SYSADM or
SYSCTRL authority, authorization-name can be any authorization ID that
contains the necessary bind privileges.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of a routine can run. The value is unrelated to the ASUTIME
column of the resource limit specification table.

1358 SQL Reference

When you are debugging a routine, setting a limit can be helpful in case the
routine gets caught in a loop. For information on service units, see z/OS MVS
Initialization and Tuning Guide.

NO LIMIT
Specifies that there is no limit on the service units.

NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the
range of 1 to 2 147 483 647. If the procedure uses more service units than
the specified value, DB2 cancels the procedure. The CPU cycles that are
consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

COMMIT ON RETURN NO, COMMIT ON RETURN YES, or AUTONOMOUS
Indicates whether DB2 commits the transaction immediately on return from the
procedure.

COMMIT ON RETURN NO
DB2 does not issue a commit when the procedure returns. NO is the
default.

COMMIT ON RETURN YES,
DB2 issues a commit when the procedure returns if the following
statements are true:
v The SQLCODE that is returned by the CALL statement is not negative.
v The procedure is not in a must-abort state.

The commit operation includes the work that is performed by the calling
application process and by the procedure.

If the procedure returns result sets, the cursors that are associated with the
result sets must have been defined as WITH HOLD to be usable after the
commit.

AUTONOMOUS
DB2 executes the SQL procedure in a unit of work that is independent
from the calling application. When this option is specified the procedure
follows the rules of the COMMIT ON RETURN YES option before
returning to the calling application. However, it does not commit changes
in the calling application. When autonomous is specified:
v DYNAMIC RESULT SETS 0 must be in effect.
v Stored procedure parameters must not be defined as:

– A LOB type
– The XML data type
– A distinct data type that is based on a LOB or XML value
– An array type that is defined with array elements that are a LOB type

A value must not be assigned to a global variable when an autonomous
procedure is executing.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.

INHERIT SPECIAL REGISTERS
Specifies that the values of special registers are inherited, according to the
rules that are listed in the table for characteristics of special registers in a
routine in Table 40 on page 205.

Chapter 5. Statements 1359

|

|
|
|
|
|
|

|

|

|

|

|

|

|
|

INHERIT SPECIAL REGISTERS is the default.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
routine in Table 40 on page 205.

WLM ENVIRONMENT FOR DEBUG MODE name
Specifies the WLM (workload manager) application environment that is used
by DB2 when debugging the routine. The name of the WLM environment is an
SQL identifier.

If you do not specify WLM ENVIRONMENT FOR DEBUG MODE, DB2 uses
the default WLM-established stored procedure address space specified at
installation time.

To define a routine that is to run in a specified WLM application environment,
you must have the appropriate authority for the WLM application
environment. For an example of a RACF command that provides this
authorization, see Running stored procedures.

The WLM ENVIRONMENT FOR DEBUG MODE value is ignored when
DISABLE DEBUG MODE is in effect.

DEFER PREPARE or NODEFER PREPARE
Specifies whether to defer preparation of dynamic SQL statements that refer to
remote objects, or to prepare them immediately.

The default depends on the value in effect for the REOPT option. If REOPT
NONE is in effect, the default is inherited from the plan at run time.
Otherwise, the default is DEFER PREPARE.

DEFER PREPARE
Specifies that the preparation of dynamic SQL statements that refer to
remote objects will be deferred.

Refer to the DEFER(PREPARE) option in DB2 Command Reference for
considerations with distributed processing.

NODEFER PREPARE
Specifies that the preparation of dynamic SQL statements that refer to
remote objects will not be deferred.

CURRENT DATA(YES) or CURRENT DATA(NO)
Specifies whether to require data currency for read-only and ambiguous
cursors when the isolation level of cursor stability is in effect. CURRENT
DATA also determines whether block fetch can be used for distributed,
ambiguous cursors.

YES
Specifies that data currency is required for read-only and ambiguous
cursors. DB2 acquired page or row locks to ensure data currency. Block
fetch is ignored for distributed, ambiguous cursors.

NO Specifies that data currency is not required for read-only and ambiguous
cursors. Block fetch is allowed for distributed, ambiguous cursors. Use of
CURRENT DATA(NO) is not recommended if the routine attempts to
dynamically prepare and execute a DELETE WHERE CURRENT OF
statement against an ambiguous cursor after that cursor is opened. You
receive a negative SQLCODE if your routine attempts to use a DELETE
WHERE CURRENT OF statement for any of the following cursors:
v A cursor that is using block fetch

1360 SQL Reference

v A cursor that is using query parallelism
v A cursor that is positioned on a row that is modified by this or another

application process

NO is the default.

DEGREE
Specifies whether to attempt to run a query using parallel processing to
maximize performance.

1 Specifies that parallel processing should not be used.

1 is the default.

ANY
Specifies that parallel processing can be used.

CONCURRENT ACCESS RESOLUTION
Specifies the whether processing uses only committed data or whether it will
wait for commit or rollback of data that is in the process of being updated.

WAIT FOR OUTCOME
Specifies that processing will wait for the commit or rollback of data that is
in the process of being updated.

USE CURRENTLY COMMITTED
Specifies that processing use the currently committed version of the data
when data that is in the process of being updated is encountered. USE
CURRENTLY COMMITTED is applicable on scans that access tables that
are defined in universal table spaces with row or page level lock size.

When there is lock contention between a read transaction and an insert
transaction, USE CURRENTLY COMMITTED is applicable to scans with
isolation level CS or RS. Applicable scans include intent read scans for
read-only and ambiguous queries and for updatable cursors. USE
CURRENTLY COMMITTED is also applicable to scans initiated from
WHERE predicates of UPDATE or DELETE statements and the subselect of
INSERT statements.

When there is lock contention is between a read transaction and a delete
transaction, USE CURRENTLY COMMITTED is applicable to scans with
isolation level CS and when CURRENTDATA(NO) is specified.

DYNAMICRULES
Specifies the values that apply, at run time, for the following dynamic SQL
attributes:
v The authorization ID that is used to check authorization
v The qualifier that is used for unqualified objects
v The source for application programming options that DB2 uses to parse and

semantically verify dynamic SQL statements

DYNAMICRULES also specifies whether dynamic SQL statements can include
GRANT, REVOKE, ALTER, CREATE, DROP, and RENAME statements.

In addition to the value of the DYNAMICRULES clause, the run time
environment of a routine controls how dynamic SQL statements behave at run
time. The combination of the DYNAMICRULES value and the run time
environment determines the value for the dynamic SQL attributes. That set of
attribute values is called the dynamic SQL statement behavior. The following
values can be specified:

Chapter 5. Statements 1361

RUN
Specifies that dynamic SQL statements are to be processed using run
behavior.

RUN is the default.

BIND
Specifies that dynamic SQL statements are to be processed using bind
behavior.

DEFINEBIND
Specifies that dynamic SQL statements are to be processed using either
define behavior or bind behavior.

DEFINERUN
Specifies that dynamic SQL statements are to be processed using either
define behavior or run behavior.

INVOKEBIND
Specifies that dynamic SQL statements are to be processed using either
invoke behavior or bind behavior.

INVOKERUN
Specifies that dynamic SQL statements are to be processed using either
invoke behavior or run behavior.

See “Authorization IDs and dynamic SQL” on page 75 for information on the
effects of these options.

APPLICATION ENCODING SCHEME
Specifies the default encoding scheme for SQL variables in static SQL
statements in the routine body. The value is used for defining an SQL variable
in a compound statement if the CCSID clause is not specified as part of the
data type, and the PARAMETER CCSID routine option is not specified.

ASCII
Specifies that the data is encoded using the ASCII CCSIDs of the server.

EBCDIC
Specifies that the data is encoded using the EBCDIC CCSIDs of the server.

UNICODE
Specifies that the data is encoded using the Unicode CCSIDs of the server.

See the ENCODING bind option in DB2 Command Reference for information
about how the default for this option is determined.

WITH EXPLAIN or WITHOUT EXPLAIN
Specifies whether information will be provided about how SQL statements in
the routine will execute.

WITHOUT EXPLAIN
Specifies that information will not be provided about how SQL statements
in the routine will execute.

You can get EXPLAIN output for a statement that is embedded in a
routine that is specified using WITHOUT EXPLAIN by embedding the
SQL statement EXPLAIN in the routine body. Otherwise, the value of the
EXPLAIN option applies to all explainable SQL statements in the routine
body, and to the fullselect portion of any DECLARE CURSOR statements.

WITHOUT EXPLAIN is the default.

1362 SQL Reference

WITH EXPLAIN
Specifies that information will be provided about how SQL statements in
the routine will execute. Information is inserted into the table
owner.PLAN_TABLE. owner is the authorization ID of the owner of the
routine. Alternatively, the authorization ID of the owner of the routine can
have an alias as owner.PLAN_TABLE that points to the base table,
PLAN_TABLE. owner must also have the appropriate SELECT and INSERT
privileges on that table. WITH EXPLAIN does not obtain information for
statements that access remote objects. PLAN_TABLE must have a base
table and can have multiple aliases with the same table name,
PLAN_TABLE, but have different schema qualifiers. It cannot be a view or
a synonym and should exist before the version is added or replaced. In all
inserts to owner.PLAN_TABLE, the value of QUERYNO is the statement
number that is assigned by DB2.

The WITH EXPLAIN option also populates two optional tables if they
exist: DSN_STATEMNT_TABLE and DSN_FUNCTION_TABLE.
DSN_STATEMNT_TABLE contains an estimate of the processing cost for
an SQL statement. See DB2 Application Programming and SQL Guide for
more information. DSN_FUNCTION_TABLE contains information about
function resolution. See DB2 Application Programming and SQL Guide for
more information.

For a description of the tables that are populated by the WITH EXPLAIN
option, see “EXPLAIN” on page 1642.

WITH IMMEDIATE WRITE or WITHOUT IMMEDIATE WRITE
Specifies whether immediate writes are to be done for updates that are made
to group buffer pool dependent page sets or partitions. This option is only
applicable for data sharing environments. The IMMEDWRITE subsystem
parameter has no affect of this option. DB2 Command Reference shows the
implied hierarchy of the IMMEDWRITE bind option (which is similar to this
routine option) as it affects run time.

WITHOUT IMMEDIATE WRITE
Specifies that normal write activity is performed. Updated pages that are
group buffer pool dependent are written at or before phase one of commit
or at the end of abort for transactions that have been rolled back.

WITHOUT IMMEDIATE WRITE is the default.

WITH IMMEDIATE WRITE
Specifies that updated pages that are group buffer pool dependent are
immediately written as soon as the buffer update completes. Updated
pages are written immediately even if the buffer is updated during
forward progress or during the rollback of a transaction. WITH
IMMEDIATE WRITE might impact performance.

ISOLATION LEVEL RR, RS, CS, or UR
Specifies how far to isolate the routine from the effects of other running
applications. For information about isolation levels, see DB2 Performance
Monitoring and Tuning Guide.

RR Specifies repeatable read.

RS Specifies read stability.

CS Specifies cursor stability. CS is the default.

UR Specifies uncommitted read.

Chapter 5. Statements 1363

WITH KEEP DYNAMIC or WITHOUT KEEP DYNAMIC
Specifies whether DB2 keeps dynamic SQL statements after commit points.

WITHOUT KEEP DYNAMIC
Specifies that DB2 does not keep dynamic SQL statements after commit
points.

WITHOUT KEEP DYNAMIC is the default.

WITH KEEP DYNAMIC
Specifies that DB2 keeps dynamic SQL statements after commit points. If
you specify WITH KEEP DYNAMIC, the application does not need to
prepare an SQL statement after every commit point. DB2 keeps the
dynamic SQL statement until one of the following occurs:
v The application process ends
v A rollback operations occurs
v The application executes an explicit PREPARE statement with the same

statement identifier as the dynamic SQL statement

If you specify WITH KEEP DYNAMIC, and the prepared statement cache
is active, the DB2 subsystem keeps a copy of the prepared statement in the
cache. If the prepared statement cache is not active, the subsystem keeps
only the SQL statement string past a commit point. If the application
executes an OPEN, EXECUTE, or DESCRIBE operation for that statement,
the statement is implicitly prepared.

If you specify WITH KEEP DYNAMIC, DDF server threads that are used
to execute procedures or packages that have this option in effect will
remain active. Active DDF server threads are subject to idle thread
timeouts, as described in DB2 Installation Guide for installation panel
DSNTIPR.

If you specify WITH KEEP DYNAMIC, you must not specify REOPT
ALWAYS. WITH KEEP DYNAMIC and REOPT ALWAYS are mutually
exclusive. However, you can specify WITH KEEP DYNAMIC and REOPT
ONCE.

Use WITH KEEP DYNAMIC to improve performance if your DRDA client
application uses a cursor that is defined as WITH HOLD. The DB2
subsystem automatically closes a held cursor when there are no more rows
to retrieve, which eliminates an extra network message.

OPTHINT string-constant
Specifies whether query optimization hints are used for static SQL statements
that are contained within the body of the routine.

string-constant is a character string of up to 128 bytes in length, which is used
by the DB2 subsystem when searching the PLAN_TABLE for rows to use as
input. The default value is an empty string, which indicates that the DB2
subsystem does not use optimization hints for static SQL statements.

Optimization hints are only used if optimization hints are enabled for your
system. See DB2 Installation Guide for information about enabling optimization
hints.

SQL PATH
Specifies the SQL path that DB2 uses to resolve unqualified user-defined type,
function, and procedure names in the procedure body. The default value is
"SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", and the value of the
QUALIFIER option, which is the qualifier for the procedure that is the target of
the statement.

1364 SQL Reference

Schemas "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM" do not need to be
explicitly specified. If any of these schemas is not explicitly specified, it is
implicitly assumed at the beginning the SQL path.

DB2 calculates the length by taking each schema-name specified and removing
any trailing blanks from it, adding two delimiters around it, and adding one
comma after each schema name except for the last one. The length of the
resulting string cannot exceed the length of the CURRENT SCHEMA special
register. If you do not specify the "SYSIBM", "SYSFUN", "SYSPROC",
"SYSIBMADM", schemas, they are not included in the length of the SQL path.
If the total length of the SQL path exceeds the length of the CURRENT PATH
special register, DB2 returns an error for the CREATE statement.

Related information:

“SQL path” on page 64
“CURRENT SCHEMA” on page 191
“CURRENT PATH” on page 184

schema-name
Specifies a schema. DB2 does not validate that the specified schema
actually exists when the CREATE statement is processed.

SYSPUBLIC must not be specified for the SQL path.

schema-name-list
Specifies a comma separated list of schema names. The same schema name
should not appear more than one time in the list of schema names. The
number of schema names that you can specify is limited by the maximum
length of the resulting SQL path.

SYSPUBLIC must not be specified for the SQL path.

SYSTEM PATH
Specifies the schema names "SYSIBM", "SYSFUN", "SYSPROC",
"SYSIBMADM".

SESSION_USER or USER
Specifies the value of the SESSION_USER or USER special register, which
represents a maximum 8 byte (in EBCDIC) schema-name. At the time the
CREATE statement is processed, this length is included in the total length
of the list of schema names that is specified for the PATH bind option.

RELEASE AT
Specifies when to release resources that the procedure uses: either at each
commit point or when the procedure terminates.

COMMIT
Specifies that resources will be released at each commit point.

COMMIT is the default.

DEALLOCATE
Specifies that resources will be released only when the procedure
terminates. DEALLOCATE has no effect on dynamic SQL statements,
which always use RELEASE AT COMMIT, with this exception: When you
use the RELEASE AT DEALLOCATE clause and the WITH KEEP
DYNAMIC clause, and the subsystem is installed with a value of YES for
the field CACHE DYNAMIC SQL on installation panel DSNTIP8, the
RELEASE AT DEALLOCATE option is honored for dynamic SELECT and
data change statements.

Chapter 5. Statements 1365

|

|

Locks that are acquired for dynamic statements are held unit one of the
following events occurs:
v The application process ends.
v The application process issues a PREPARE statement with the same

statement identifier. (Locks are released at the next commit point).
v The statement is removed from the prepared statement cache because

the statement has not been used. (Locks are released at the next commit
point).

v An object that the statement is dependent on is dropped or altered, or a
privilege that the statement needs is revoked. (Locks are released at the
next commit point).

RELEASE AT DEALLOCATE can increase the package or plan size because
additional items become resident in the package or plan. For more
information about how the RELEASE clause affects locking and
concurrency, see DB2 Performance Monitoring and Tuning Guide.

REOPT
Specifies if DB2 will determine the access path at run time by using the values
of SQL variables or SQL parameters, parameter markers, and special registers.

NONE
Specifies that DB2 does not determine the access path at run time by using
the values of SQL variables or SQL parameters, parameter markers, and
special registers.

NONE is the default.

ALWAYS
Specifies that DB2 always determines the access path at run time each time
an SQL statement is run. Do not specify REOPT ALWAYS with the WITH
KEEP DYNAMIC or NODEFER PREPARE clauses.

ONCE
Specifies that DB2 determine the access path for any dynamic SQL
statements only once, at the first time the statement is opened. This access
path is used until the prepared statement is invalidated or removed from
the dynamic statement cache and need to be prepared again.

VALIDATE RUN or VALIDATE BIND
Specifies whether to recheck, at run time, errors of the type "OBJECT NOT
FOUND" and "NOT AUTHORIZED" that are found during bind or rebind. The
option has no effect if all objects and needed privileges exist.

VALIDATE RUN
Specifies that if needed objects or privileges do not exist when the
CREATE statement is processed, warning messages are returned, but the
CREATE statement succeeds. The DB2 subsystem rechecks for the objects
and privileges at run time for those SQL statements that failed the checks
during processing of the CREATE statement. The authorization checks the
use of the authorization ID of the owner of the routine.

VALIDATE RUN is the default.

VALIDATE BIND
Specifies that if needed objects or privileges do not exist at the time the
CREATE statement is processed, an error is issued and the CREATE
statement fails.

1366 SQL Reference

ROUNDING
Specifies the rounding mode for manipulation of DECFLOAT data. The default
value is taken from the DEFAULT DECIMAL FLOATING POINT ROUNDING
MODE in DECP.

DEC_ROUND_CEILING
Specifies numbers are rounded towards positive infinity.

DEC_ROUND_DOWN
Specifies numbers are rounded towards 0 (truncation).

DEC_ROUND_FLOOR
Specifies numbers are rounded towards negative infinity.

DEC_ROUND_HALF_DOWN
Specifies numbers are rounded to nearest; if equidistant, round down.

DEC_ROUND_HALF_EVEN
Specifies numbers are rounded to nearest; if equidistant, round so that the
final digit is even.

DEC_ROUND_HALF_UP
Specifies numbers are rounded to nearest; if equidistant, round up.

DEC_ROUND_UP
Specifies numbers are rounded away from 0.

DATE FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the date format for result values that are string representations of
date or time values. See “String representations of datetime values” on page
101 for more information.

The default format is specified in the DATE FORMAT field of installation panel
DSNTIP4 of the system where the routine is defined. You cannot use the
LOCAL option unless you have a date exit routine.

DECIMAL(15), DECIMAL(31), DECIMAL(15,s), or DECIMAL(31,s)
Specifies the maximum precision that is to be used for decimal arithmetic
operations. See “Arithmetic with two decimal operands” on page 244 for more
information. The default format is specified in the DECIMAL ARITHMETIC
field of installation panel DSNTIPF of the system where the routine is defined.
If the form pp.s is specified, s must be a number between 1 and 9. s represents
the minimum scale that is to be used for division.

FOR UPDATE CLAUSE OPTIONAL or FOR UPDATE CLAUSE REQUIRED
Specifies whether the FOR UPDATE clause is required for a DECLARE
CURSOR statement if the cursor is to be used to perform positioned updates.

FOR UPDATE CLAUSE REQUIRED
Specifies that a FOR UPDATE clause must be specified as part of the
cursor definition if the cursor will be used to make positioned updates.

FOR UPDATE CLAUSE REQUIRED is the default.

FOR UPDATE CLAUSE OPTIONAL
Specifies that the FOR UPDATE clause does not need to be specified in
order for a cursor to be used for positioned updates. The routine body can
include positioned UPDATE statements that update columns that the user
is authorized to update.

The FOR UPDATE clause with no column list applies to static or dynamic SQL
statements. Even if you do not use this clause, you can specify FOR UPDATE

Chapter 5. Statements 1367

OF with a column list to restrict updates to only the columns that are named
in the FOR UPDATE clause and to specify the acquisition of update locks.

TIME FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the time format for result values that are string representations of
date or time values. See “String representations of datetime values” on page
101 for more information.

The default format is specified in the TIME FORMAT field of installation panel
DSNTIP4 of the system where the routine is defined. You cannot use the
LOCAL option unless you have a date exit routine.

BUSINESS_TIME SENSITIVE
Determines whether references to application-period temporal tables in both
static and dynamic SQL statements are affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

YES
References to application-period temporal tables are affected by the value
of the CURRENT TEMPORAL BUSINESS_TIME special register. YES is the
default value.

NO References to application-period temporal tables are not affected by the
value of the CURRENT TEMPORAL BUSINESS_TIME special register.

Related information:

“CURRENT TEMPORAL BUSINESS_TIME” on page 194

SYSTEM_TIME SENSITIVE
Determines whether references to system-period temporal tables in both static
and dynamic SQL statements are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

YES
References to system-period temporal tables are affected by the value of
the CURRENT TEMPORAL SYSTEM_TIME special register. YES is the
default value.

NO References to system-period temporal tables are not affected by the value
of the CURRENT TEMPORAL SYSTEM_TIME special register.

Related information:

“CURRENT TEMPORAL SYSTEM_TIME” on page 196

ARCHIVE SENSITIVE
Determines whether references to archive-enabled tables in SQL statements are
affected by the value of the SYSIBMADM.GET_ARCHIVE global variable.

YES
References to archive-enabled tables are affected by the value of the
SYSIBMADM.GET_ARCHIVE global variable. YES is the default value.

NO References to archive-enabled tables are not affected by the value of the
SYSIBMADM.GET_ARCHIVE global variable.

Related information:

“References to built-in global variables” on page 223

APPLCOMPAT compatibility-level
Specifies the package compatibility level behavior for static SQL, If this option
is not specified then the behavior is determined, in priority order, by the

1368 SQL Reference

|
|
|
|

|
|
|
|

||
|

|

|

|
|
|
|

|
|
|
|

||
|

|

|

|
|
|

|
|
|

||
|

|

|

|
|
|

compatibility-level of the last BIND of the package or the APPLCOMPAT system
parameter. The following values of compatibility-level can be specified:

V10R1
The static SQL statements in the package have V10R1 compatibility
behavior.

V11R1
The static SQL statements in the package have V11R1 compatibility
behavior.

Related information:

APPL COMPAT LEVEL field (APPLCOMPAT subsystem parameter) (DB2
Installation and Migration)

SQL-routine-body
Specifies the statements that define the body of the SQL procedure. For
information on the SQL control statements that are supported in native SQL
procedures, see Chapter 6, “SQL control statements for SQL routines,” on page
1963. If an SQL-procedure-statement is the only statement in the procedure body,
the statement must not end with a semicolon.

Notes

Additional Notes:
See “Notes” on page 1335 for information about:
v Owner privileges
v Choosing data types for parameters
v Environments for running stored procedures
v Accessing result sets from nested stored procedures

Versions of a procedure:
The CREATE PROCEDURE statement for an SQL procedure defines the
initial version of the procedure. You can define additional versions using
the ADD VERSION clause of the ALTER PROCEDURE statement. All
versions of a procedure share the same procedure signature and the same
specific name. However, the parameters names can differ between versions
of a procedure. Only one version of the procedure can be considered to be
the active version of the procedure.

Characteristics of the package that is generated for a procedure:
The package that is associated with the first version of a procedure is
named as follows:
v location is set to the value of the CURRENT SERVER special register
v collection-id (schema) for the package is the same as the schema qualifier

of the procedure.
v package-id is the same as the specific name of the procedure
v version-id is the same as the version identifier for the initial version of

the procedure.

If you want to change the collection-id for the name of the package, you
need to make a copy of the package.

The package is generated using the bind options that correspond to the
implicitly or explicitly specified procedure options. See "Implicit rebinding
and regeneration that occurs because of an ALTER PROCEDURE
statement" in Chapter 6, “SQL control statements for SQL routines,” on
page 1963

Chapter 5. Statements 1369

|
|

|
|
|

|
|
|

|

|
|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_applcompat.htm#db2z_ipf_applcompat
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_applcompat.htm#db2z_ipf_applcompat

page 1963 for more information. In addition to the corresponding bind
options, the package is generated using the following bind options:
v DBPROTOCOL(DRDA)
v FLAG(1)
v SQLERROR(NOPACKAGE)
v ENABLE(*)

See Table 98 on page 969 for additional information about the
correspondence of procedure options to bind options.

Considerations for SQL processor programs:
SQL processor programs, such as SPUFI, the command line processor, and
DSNTEP2, might not correctly parse SQL statements in the routine body
that end with semicolons. These processor programs accept multiple SQL
statements as input, with each statement separated with a terminator
character. Processor programs that use a semicolon as the SQL statement
terminator can truncate a CREATE FUNCTION statement with embedded
semicolons and pass only a portion of it to DB2. Therefore, you might need
to change the SQL terminator character for these processor programs. For
information on changing the terminator character for SPUFI and DSNTEP2,
see DB2 Application Programming and SQL Guide.

Identifier resolution:
See Chapter 6, “SQL control statements for SQL routines,” on page 1963 for
information on how names are resolved to columns, SQL variables, or SQL
parameters within an SQL routine.

If duplicate names are used for columns and SQL variables and
parameters, qualify the duplicate names by using the table designator for
columns, the routine name for parameters, and the label name for SQL
variables.

Lines within the SQL procedure definition:
When a procedure is created, information is retained on lines in the
CREATE statement. Lines are determined by the presence of the new line
control character.

Error handling in SQL procedures:
You should consider the possible exceptions that can occur for each SQL
statement in the body of a procedure. Any exception SQLSTATE that is not
handled within the procedure using a handler within a compound
statement or a compound statement that is nested within that compound
statement results in the exception SQLSTATE being returned to the caller of
the procedure.

Stored procedures and user-defined session global variables:
The content of user-defined session global variables that are referenced in
routines is inherited from the caller. User-defined session global variables
can be modified in stored procedures, except when the stored procedure is
called by a trigger or a function.

If the procedure contains references to user-defined session global
variables, the level of SQL data access must be at least CONTAINS SQL. If
the procedure contains SQL statements that modify user-defined session
global variables, the level of SQL data access must be MODIFIES SQL
DATA.

Specifying the encoding scheme for parameters:
The encoding scheme of all of the parameters with a character or graphic

1370 SQL Reference

|
|
|
|
|

|
|
|
|
|

|
|

string data type, distinct type with a CCSID, or an array type with a
CCSID (both input and output parameters) must be the same—either all
ASCII, all EBCDIC, or all UNICODE. If you specify the encoding scheme
on the individual parameters, instead of using PARAMETER CCSID to
specify it for all parameters at once or allowing the encoding scheme to
default to the system value, ensure that all encoding schemes agree.

Stored procedures with a parameter that is defined as an array type:
A procedure that is defined with a parameter that is an array type can be
invoked only from within an SQL PL context.

Compatibilities:
For compatibility with previous versions of DB2, the following clauses can
be specified, but they will be ignored and a warning will be issued:
v STAY RESIDENT
v PROGRAM TYPE
v RUN OPTIONS
v NO DBINFO
v COLLID or NOCOLLID
v SECURITY
v PARAMETER STYLE GENERAL WITH NULLS
v STOP AFTER SYSTEM DEFAULT FAILURES
v STOP AFTER nn FAILURES
v CONTINUE AFTER FAILURES
v PARAMETER VARCHAR

If the FENCED or EXTERNAL clause is specified, an external SQL
procedure will be generated. See “CREATE PROCEDURE (SQL - external)”
on page 1338 for more information.

If WLM ENVIRONMENT is specified without the FOR DEBUG MODE
keywords, and error is returned. If WLM ENVIRONMENT is specified for
a native SQL procedure, WLM ENVIRONMENT FOR DEBUG MODE must
be specified.

Alternative syntax and synonyms:
To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following keywords:
v RESULT SET and RESULT SETS as synonyms for DYNAMIC RESULT

SETS
v VARIANT as a synonym for NOT DETERMINISTIC
v NOT VARIANT as a synonym for DETERMINISTIC
v NULL CALL as a synonym for CALLED ON NULL

Examples

Example 1: Create the definition for an SQL procedure. The procedure accepts an
employee number and a multiplier for a pay raise as input. The following tasks are
performed in the procedure body:
v Calculate the employee's new salary.
v Update the employee table with the new salary value.
CREATE PROCEDURE UPDATE_SALARY_1
(IN EMPLOYEE_NUMBER CHAR(10),
IN RATE DECIMAL(6,2))
LANGUAGE SQL

Chapter 5. Statements 1371

|
|
|
|
|
|

|
|
|

MODIFIES SQL DATA
UPDATE EMP
SET SALARY = SALARY * RATE
WHERE EMPNO = EMPLOYEE_NUMBER

Example 2: Create the definition for the SQL procedure described in example 1, but
specify that the procedure has these characteristics:
v The same input always produces the same output.
v SQL work is committed on return to the caller.
CREATE PROCEDURE UPDATE_SALARY_1
(IN EMPLOYEE_NUMBER CHAR(10),
IN RATE DECIMAL(6,2))
LANGUAGE SQL
MODIFIES SQL DATA
DETERMINISTIC
COMMIT ON RETURN YES

UPDATE EMP
SET SALARY = SALARY * RATE
WHERE EMPNO = EMPLOYEE_NUMBER

Example 3: Create the definition for an SQL procedure that uses arrays as IN and
OUT parameters. The procedure is named GETWEEKENDS. It accepts an array of
DATE values as input, and returns an array that contains only the dates that fall
on a Saturday or Sunday. For example, if the input dates are a Saturday, a Friday,
and a Sunday, the procedure returns only the dates that fall on Saturday and
Sunday.

Suppose that the following user-defined array type has been defined:
CREATE TYPE DATEARRAY AS DATE ARRAY[100];

After the array type is created, any references to it need to specify the fully
qualified user-defined array type name. Otherwise, the schema for the type needs
to be in the CURRENT PATH.

Suppose that the SQL procedure is defined like this:
CREATE PROCEDURE GETWEEKENDS(IN MYDATES DATEARRAY, OUT WEEKENDS DATEARRAY)
BEGIN
-- ARRAY INDEX VARIABLES
DECLARE DATEINDEX, WEEKENDINDEX INT DEFAULT 1;
-- VARIABLE TO STORE THE ARRAY LENGTH OF MYDATES,
-- INITIALIZED USING THE CARDINALITY FUNCTION.
DECLARE DATESCOUNT INT;
SET DATESCOUNT = CARDINALITY(MYDATES);
-- FOR EACH DATE IN MYDATES, IF THE DATE IS A SUNDAY OR SATURDAY,
-- ADD IT TO THE OUTPUT ARRAY NAMED "WEEKENDS"
WHILE DATEINDEX <= DATESCOUNT DO
IF DAYOFWEEK(MYDATES[DATEINDEX]) IN (1, 7) THEN
SET WEEKENDS[WEEKENDINDEX] = MYDATES[DATEINDEX];
SET WEEKENDINDEX = WEEKENDINDEX + 1;
END IF;
SET DATEINDEX = DATEINDEX + 1;
END WHILE;
END

Also suppose that input array MYDATES contains the following content:
[’2012-04-28’, ’2012-02-10’,’2012-03-18’]

After the procedure returns, output array WEEKENDS contains the following
content:
[’2012-04-28’, ’2012-03-18’]

1372 SQL Reference

|
|
|
|
|
|

|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

Example 4: Create the definition for an SQL procedure that uses arrays as OUT
parameters. The procedure is named GET_PHONES. It returns an array that
contains phone numbers for employee 1775. If more than five phone numbers exist
for the employee, an error is returned because the array is defined for only five
elements.

Suppose that the following user-defined array type and table have been defined:
CREATE TYPE PHONELIST AS DECIMAL(10, 0) ARRAY[5];
CREATE TABLE EMP_PHONES(ID INTEGER, PHONENUMBER DECIMAL(10,0));

The SQL procedure is defined like this:
CREATE PROCEDURE GET_PHONES(OUT EPHONES PHONELIST)
BEGIN
SELECT ARRAY_AGG(PHONENUMBER)
INTO EPHONES
FROM EMP_PHONES
WHERE ID = 1775;

END

For more examples of SQL procedures, see Chapter 6, “SQL control statements for
SQL routines,” on page 1963.

Chapter 5. Statements 1373

|
|
|
|
|

|

|
|

|

|
|
|
|
|
|
|

CREATE ROLE
The CREATE ROLE statement creates a role at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following
authorities:
v SYSADM authority
v SYSCTRL authority
v SECADM

Privilege set: If the statement is embedded in an application program, the
privilege set is the set of privileges that are held by the owner of the plan or
package.

If the statement is dynamically prepared, the privilege set is the set of privileges
that are held by the SQL authorization ID of the process or by the role that is
associated with the primary authorization ID, if the statement is run in a trusted
context and the ROLE AS OBJECT OWNER clause is specified.

Syntax

�� CREATE ROLE role-name ��

Description

role-name
Names the role. The name must not identify a role that exists at the current
server. The name must not begin with the characters 'SYS' and must not be
'DBADM', ‘NONE', 'NULL', 'PUBLIC', or 'SECADM'.

Examples

The following statement creates a role named TELLER.
CREATE ROLE TELLER;

1374 SQL Reference

CREATE SEQUENCE
The CREATE SEQUENCE statement creates a sequence at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v The CREATEIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the of the owner of the plan or
package. If the application is bound in a trusted context with the ROLE AS
OBJECT OWNER clause specified, a role is the owner. Otherwise, an authorization
ID is the owner.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process unless the process is within a
trusted context and the ROLE AS OBJECT OWNER clause is specified. In that case,
the privileges set is the privileges that are held by the role that is associated with
the primary authorization ID of the process.

If the data type of the sequence is a distinct type, the privilege set must include
the USAGE privilege on the distinct type.

Chapter 5. Statements 1375

Syntax

�� CREATE SEQUENCE sequence-name �
(1)

INTEGER
AS data-type
START WITH numeric-constant

INCREMENT BY 1
INCREMENT BY numeric-constant
NO MINVALUE
MINVALUE numeric-constant
NO MAXVALUE
MAXVALUE numeric-constant
NO CYCLE
CYCLE
CACHE 20
NO CACHE
CACHE integer-constant
NO ORDER
ORDER

��

Notes:

1 The same clause must not be specified more than once. Separator commas can be specified
between sequence attributes when a sequence is defined.

�� built-in-type
distinct-type-name

��

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

��

Description

sequence-name
Names the sequence. The name, including the implicit or explicit qualifiers,
must not identify an existing sequence at the current server, including the
sequence names that are generated by DB2.

data-type:

built-in-type:

1376 SQL Reference

The schema name must not begin with 'SYS' unless the schema name is
'SYSADM'.

AS data-type
Specifies the data type to be used for the sequence value. The data type can be
any exact numeric data type (SMALLINT, INTEGER, BIGINT, or DECIMAL
with a scale of zero), or a user-defined distinct type for which the source type
is an exact numeric data type with a scale of zero. The default, when AS is not
specified, is INTEGER. If DECIMAL is specified, the default is DECIMAL(5,0).

START WITH numeric-constant
Specifies the first value for the sequence. The value can be any positive or
negative value that could be assigned to the a column of the data type that is
associated with the sequence without non-zero digits existing to the right of
the decimal point.

If the START WITH clause is not explicitly specified with a value, the default is
the MINVALUE for ascending sequences and MAXVALUE for descending
sequences.

This value is not necessarily the value that a sequence would cycle to after
reaching the maximum or minimum value of the sequence. The START WITH
clause can be used to start a sequence outside the range that is used for cycles.
The range used for cycles is defined by MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the sequence. The value
can be any positive or negative value (including 0) that could be assigned to a
column of the data type that is associated with the sequence without any
non-zero digits existing to the right of the decimal point. The default is 1.

If INCREMENT BY is positive, the sequence ascends. If INCREMENT BY is
negative, the sequence descends. If INCREMENT is 0, the sequence is treated
as an ascending sequence.

The absolute value of INCREMENT BY can be greater than the difference
between MAXVALUE and MINVALUE.

MINVALUE or NO MINVALUE
Specifies the minimum value at which a descending sequence either cycles or
stops generating values or an ascending sequence cycles to after reaching the
maximum value. The default is NO MINVALUE.

MINVALUE numeric-constant
Specifies the minimum end of the range of values for the sequence. The
last value that is generated for a cycle of a descending sequence will be
equal to or greater than this value. MINVALUE is the value to which an
ascending sequence cycles to after reaching the maximum value.

The value can be any positive or negative value that could be assigned to
the a column of the data type that is associated with the sequence without
non-zero digits existing to the right of the decimal point. The value must
be less than or equal to the maximum value.

For the effects of defining MINVALUE and MAXVALUE with the same
value, see Defining a constant sequence.

NO MINVALUE
Specifies that the minimum end point of the range of values for the
sequence has not been specified explicitly. In such a case, the default value
for MINVALUE becomes one of the following:

Chapter 5. Statements 1377

v For an ascending sequence, the value is the START WITH value or 1 if
START WITH is not specified.

v For a descending sequence, the value is the minimum value of the data
type that is associated with the sequence.

MAXVALUE or NO MAXVALUE
Specifies the maximum value at which an ascending sequence either cycles or
stops generating values or an descending sequence cycles to after reaching the
minimum value. The default is NO MAXVALUE.

MAXVALUE numeric-constant
Specifies the maximum end of the range of values for the sequence. The
last value that is generated for a cycle of an ascending sequence will be
less than or equal to this value. MAXVALUE is the value to which a
descending sequence cycles to after reaching the minimum value.

The value can be any positive or negative value that could be assigned to
the a column of the data type that is associated with the sequence without
non-zero digits existing to the right of the decimal point. The value must
be greater than or equal to the minimum value.

For the effects of defining MAXVALUE and MINVALUE with the same
value, see Defining a constant sequence.

NO MAXVALUE
Specifies the maximum end point of the range of values for the sequence
has not been specified explicitly. In such a case, the default value for
MAXVALUE becomes one of the following:
v For an ascending sequence, the value is the maximum value of the data

type that is associated with the sequence.
v For a descending sequence, the value is the START WITH value or -1 if

START WITH is not specified.

CYCLE or NO CYCLE
Specifies whether or not the sequence should continue to generate values after
reaching either its maximum or minimum value. The boundary of the sequence
can be reached either with the next value landing exactly on the boundary
condition or by overshooting it. The default is NO CYCLE.

CYCLE
Specifies that the sequence continue to generate values after either the
maximum or minimum value has been reached. If this option is used, after
an ascending sequence reaches its maximum value, it generates its
minimum value. After a descending sequence reaches its minimum value,
it generates its maximum value. The maximum and minimum values for
the sequence defined by the MINVALUE and MAXVALUE options
determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated by the
sequence. When a sequence is defined with CYCLE, any application
conversion tools for converting applications from other vendor platforms
to DB2 should also explicitly specify MINVALUE, MAXVALUE, and
START WITH values.

NO CYCLE
Specifies that the sequence cannot generate more values once the
maximum or minimum value for the sequence has been reached. The NO
CYCLE option (the default) can be altered to CYCLE at any time during
the life of the sequence.

1378 SQL Reference

When the next value is being generated for a sequence if the maximum
value (for an ascending sequence) or the minimum value (for a descending
sequence) of the logical range of the sequence is exceeded and the NO
CYCLE option is in effect, an error occurs.

CACHE or NO CACHE
Specifies whether or not to keep some preallocated values in memory for faster
access. This is a performance and tuning option.

CACHE integer-constant
Specifies the maximum number of values of the sequence that DB2 can
preallocate and keep in memory. Preallocating values in the cache reduces
synchronous I/O when values are generated for the sequence. The actual
number of values that DB2 caches is always the lesser of the number in
effect for the CACHE option and the number of remaining values within
the logical range. Thus, the CACHE value is essentially an upper limit for
the size of the cache.

In the event the system is shut down (either normally or through a system
failure), all cached sequence values that have not been used in committed
statements are lost (that is, they will never be used). The value specified
for the CACHE option is the maximum number of sequence values that
could be lost when the system is shut down.

The minimum value is 2. The default is CACHE 20.

In a data sharing environment, you can use the CACHE and NO ORDER
options to allow multiple DB2 members to cache sequence values
simultaneously.

NO CACHE
Specifies that values of the sequence are not to be preallocated. This option
ensures that there is not a loss of values in the case of a system failure.
When NO CACHE is specified, the values of the sequence are not stored in
the cache. In this case, every request for a new value for the sequence
results in synchronous I/O.

ORDER or NO ORDER
Specifies whether the sequence numbers must be generated in order of request.
The default is NO ORDER.

ORDER
Specifies that the sequence numbers are generated in order of request.
Specifying ORDER might disable the caching of values. There is no
guarantee that values are assigned in order across the entire server unless
NO CACHE is also specified. ORDER applies only to a single-application
process.

NO ORDER
Specifies that the sequence numbers do not need to be generated in order
of request.

In a data sharing environment, if the CACHE and NO ORDER options are in
effect, multiple caches can be active simultaneously, and the requests for next
value assignments from different DB2 members might not result in the
assignment of values in strict numeric order. For example, if members DB2A
and DB2B are using the same sequence, and DB2A gets the cache values 1 to
20 and DB2B gets the cache values 21 to 40, the actual order of values assigned
would be 1,21,2 if DB2A requested for next value first, then DB2B requested,
and then DB2A again requested. Therefore, to guarantee that sequence

Chapter 5. Statements 1379

numbers are generated in strict numeric order among multiple DB2 members
using the same sequence concurrently, specify the ORDER option.

Notes

Owner privileges: The owner is authorized to change (ALTER privilege) or use
(USAGE privilege) the sequence and grant others these privileges. See “GRANT
(sequence privileges)” on page 1714. For more information about ownership of the
object see “Authorization, privileges, permissions, masks, and object ownership”
on page 70.

Relationship of MINVALUE and MAXVALUE: MINVALUE must not be greater
than MAXVALUE. Although MINVALUE is typically less than MAXVALUE,
MINVALUE can equal MAXVALUE. If START WITH were the same value as
MINVALUE and MAXVALUE, the sequence would be constant. The request for the
next value in a constant sequence appears to have no effect because all of the
values that are generated by the sequence are in fact the same value.

Defining sequences that cycle: When you define a sequence, you can choose to
have it cycle automatically or not when the maximum or minimum value for the
sequence has been reached.
v Implicitly or explicitly defining a sequence with NO CYCLE causes the sequence

to not cycle automatically after the boundary is reached. However, you can use
the ALTER SEQUENCE statement to cycle the sequence manually. ALTER
SEQUENCE allows you to restart or extend the sequence, which causes sequence
values to continue to be generated.

v Explicitly defining a sequence with CYCLE causes the sequence to cycle
automatically after the boundary is reached. Sequence values continue to be
generated after the sequence cycles.
When a sequence is defined to cycle automatically, the maximum or minimum
value that is generated for a sequence might not be the actual MAXVALUE or
MINVALUE value that is specified if the increment is a value other than 1 or -1.
For example, the sequence defined with START WITH=1, INCREMENT=2,
MAXVALUE=10 will generate a maximum value of 9, and will not generate the
value 10.
When a sequence is defined with CYCLE, any application conversion tools (for
converting applications from other vendor platforms to DB2) should also
explicitly specify MINVALUE, MAXVALUE, and START WITH.

Defining a constant sequence: You can define a sequence such that it always
returns the same (or a constant) value. To create a constant sequence, use either of
these techniques when defining the sequence:
v Specify an INCREMENT value of zero and a START WITH value that does not

exceed MAXVALUE.
v Specify the same value for START WITH, MINVALUE, and MAXVALUE, and

specify CYCLE.

A constant sequence can be used as a numeric global variable. You can use ALTER
SEQUENCE to adjust the values that are generated for a constant sequence.

Consumed values of a sequence: After DB2 generates a value for a sequence, that
value can be said to be "consumed" regardless of whether or not that value is used
by the application or not. The value is not reused within the current cycle. A
consumed value might not be used when the statement that caused the value to be

1380 SQL Reference

generated fails for some reason or is rolled back after the value was generated.
Generated but unused values can constitute gaps in a sequence.

Gaps in a sequence: Consecutive values in a sequence differ by the constant
INCREMENT BY value specified for the sequence. However, gaps can occur in the
values that are assigned to a sequence object by DB2.

The following situations are some examples of how gaps can be introduced in the
sequence values:
v A transaction has advanced the sequence and then rolls back.
v The SQL statement leading to the generation of the next value fails after the

value was generated.
v The NEXT VALUE expression is used in the SELECT statement of a cursor in a

DRDA environment where the client uses block-fetch and not all retrieved rows
are fetched by the application.

v The sequence is altered and then the alteration is rolled back.
v The sequence (or an identity column table) is dropped and then the drop is

rolled back.
v The SYSIBM.SYSSEQ table space is stopped or closed for any reason (including

when DSMAX is reached)
v The DB2 subsystem is stopped or goes down

Values of such gaps are not available for the current cycle, unless the sequence is
altered and restarted in a specific way to make them available.

A sequence is incremented independently of a transaction. Thus, a given
transaction increments the sequence two times might see a gap in the two numbers
that it receives if other transactions concurrently increment the same sequence.
Most applications can tolerate these instances as these are not really gaps.

Duplicate sequence values: It is possible the duplicate values can be generated for
a sequence. Duplicate values are most likely to occur when a sequence is defined
with the CYCLE option, is defined as a constant sequence, or is altered. For
example, the following situations could cause duplicate sequence values:
v A sequence is defined with the attributes START WITH=2, INCREMENT BY 2,

MINVALUE=2, MAXVALUE=10, and CYCLE.
v The ALTER SEQUENCE statement is used to restart the sequence with a value

that has already been generated.
v The ALTER SEQUENCE statement is used to reverse the ascending direction of a

sequence by changing the INCREMENT BY value from a positive to a negative.

Using sequences: A sequence can be referenced using a sequence-reference. A
sequence reference can appear in most places that an expression can appear. A
sequence reference can specify whether the value to be returned is a newly
generated value or the previously generated value. A NEXT VALUE sequence
expression is used to generate a new value. A PREVIOUS VALUE sequence
expression is used to obtain the last assigned value of a sequence. For more
information, see “Sequence reference” on page 291.

Alternative syntax and synonyms: To provide compatibility with previous releases
of DB2 or other products in the DB2 family, DB2 supports the following keywords:
v NOMINVALUE (single key word) as a synonym for NO MINVALUE
v NOMAXVALUE (single key word) as a synonym for NO MAXVALUE

Chapter 5. Statements 1381

v NOCYCLE (single key word) as a synonym for NO CYCLE
v NOCACHE (single key word) as a synonym for NO CACHE
v NOORDER (single key word) as a synonym for NO ORDER

Examples

Example 1: Create a sequence names "org_seq" that starts at 1 increments by 1, does
not cycle, and caches 24 values at a time:

CREATE SEQUENCE ORDER_SEQ
START WITH 1
INCREMENT BY 1
NO MAXVALUE
NO CYCLE
CACHE 24;

INCREMENT 1, NO MAXVALUE, and NO CYCLE are defaults and do not need to
be specified.

Example 2: The following example shows how to create and use a sequence named
"order_seq" in a table named "orders":

CREATE SEQUENCE ORDER_SEQ
START WITH 1
INCREMENT BY 1
NO MAXVALUE
NO CYCLE
CACHE 20;
INSERT INTO ORDERS (ORDERNO, CUSTNO)

VALUES (NEXT VALUE FOR ORDER_SEQ, 123456);

or to update the orders:
UPDATE ORDERS

SET ORDERNO = NEXT VALUE FOR ORDER_SEQ
WHERE CUSTNO = 123456;

Example 3: The following example shows how to use the same sequence number as
a unique key value in two separate tables by referencing the sequence number
with a NEXT VALUE expression for the first row to generate the sequence value
and with a PREVIOUS VALUE expression for the other rows to refer to the
sequence value most recently generated.

INSERT INTO ORDERS (ORDERNO, CUSTNO)
VALUES (NEXT VALUE FOR ORDER_SEQ, 123456);
INSERT INTO LINE_ITEMS (ORDERNO, PARTNO, QUANTITY)

VALUES (PREVIOUS VALUE FOR ORDER_SEQ, 987654, 100);

If NEXT VALUE is invoked in the same statement as the PREVIOUS VALUE, then
regardless of their order in the statement, PREVIOUS VALUE returns the previous
(unincremented) value and NEXT VALUE returns the next value.

1382 SQL Reference

CREATE STOGROUP
The CREATE STOGROUP statement creates a storage group at the current server.
Storage from the identified volumes can later be allocated for table spaces and
index spaces.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v The CREATESG privilege
v SYSADM or SYSCTRL authority

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the of the owner of the plan or
package. If the application is bound in a trusted context with the ROLE AS
OBJECT OWNER clause specified, a role is the owner. Otherwise, an authorization
ID is the owner.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process unless the process is within a
trusted context and the ROLE AS OBJECT OWNER clause is specified. In that case,
the privileges set is the privileges that are held by the role that is associated with
the primary authorization ID of the process.

Syntax

�� CREATE STOGROUP stogroup-name

�

�

,
(1)

VOLUMES (volume-id)
,

'*'

VCAT catalog-name �

�
DATACLASdc-name MGMTCLASmc-name STORCLASsc-name

��

Notes:

1 The same volume-id must not be specified more than once.

Description

stogroup-name
Names the storage group. The name must not identify a storage group that
exists at the current server.

Chapter 5. Statements 1383

VOLUMES(volume-id,...) or VOLUMES('*',...)
Defines the volumes of the storage group. Each volume-id is a volume serial
number of a storage volume. The volume serial number can have a maximum
of six characters and is specified as an identifier or a string constant.

If the data set that is associated with the storage group is not managed by
Storage Management Subsystem (SMS), VOLUMES must be specified.
Asterisks are recognized only by SMS. SMS usage is recommended, rather than
using DB2 to allocate data to specific volumes. Having DB2 select the volume
requires non-SMS usage or assigning an SMS Storage Class with guaranteed
space. However, because guaranteed space reduces the benefits of SMS
allocation, it is not recommended. If one or more of the DATACLAS,
MGMTCLAS, or STORCLAS clauses are specified, VOLUMES can be omitted.
If the VOLUMES clause is omitted, the volume selection is controlled by SMS.

If you do choose to use specific volume assignments, additional manual space
management must be performed. Free space must be managed for each
individual volume to prevent failures during the initial allocation and
extension. This process generally requires more time for space management
and results in more space shortages. Guaranteed space should be used only
where the space needs are relatively small and do not change.

VCAT catalog-name
Identifies the integrated catalog facility catalog for the storage group. You must
specify an alias31 if the name of the integrated catalog facility catalog is longer
than 8 characters.

The designated catalog is the one in which entries are placed for the data sets
created by DB2 with the aid of the storage group. These are linear VSAM data
sets for associated table or index spaces or for their partitions. For each such
space or partition, association is made through a USING clause in a CREATE
TABLESPACE, CREATE INDEX, ALTER TABLESPACE, or ALTER INDEX
statement. For more on the association, see the descriptions of those statements
in this chapter.

Conventions for data set names are given in DB2 Administration Guide.
catalog-name is the first qualifier for each data set name.

One or more DB2 subsystems could share integrated catalog facility catalogs
with the current server. To avoid the chance of having one of those subsystems
attempt to assign the same name to different data sets, select a value for
catalog-name that is not used by the other DB2 subsystems.

DATACLAS dc-name
Identifies the name of the SMS data class to associate with the DB2 storage
group. The SMS data class name must be from 1-8 characters in length. The
SMS storage administrator defines the data class that can be used. DATACLAS
must not be specified more than one time.

MGMTCLAS mc-name
Identifies the name of the SMS management class to associate with the DB2
storage group. The SMS management class name must be from 1-8 characters
in length. The SMS storage administrator defines the management class that
can be used. MGMTCLAS must not be specified more than one time.

STORCLAS sc-name
Identifies the name of the SMS storage class to associate with the DB2 storage
group. The SMS storage class name must be from 1-8 characters in length. The

31. The alias of an integrated catalog facility catalog.

1384 SQL Reference

SMS storage administrator defines the storage class that can be used.
STORCLAS must not be specified more than one time.

Notes

Device types: When the storage group is used at run time, an error can occur if the
volumes in the storage group are of different device types, or if a volume is not
available to z/OS for dynamic allocation of data sets.

When a storage group is used to extend a data set, all volumes in the storage
group must be of the same device type as the volumes used when the data set was
defined. Otherwise, an extend failure occurs if an attempt is made to extend the
data set.

Number of volumes: There is no specific limit on the number of volumes that can
be defined for a storage group. However, the maximum number of volumes that
can be managed for a storage group is 133.

z/OS imposes a limit on the number of volumes that can be allocated per data set
(currently, 59 volumes). For the latest information on that restriction, see z/OS
DFSMS Access Method Services for Catalogs.

Storage group owner: If the statement is embedded in an application program, the
owner of the plan or package is the owner of the storage group. If the statement is
dynamically prepared, the SQL authorization ID of the process is the owner of the
storage group. The owner has the privilege of altering and dropping the storage
group.

Specifying volume IDs: A new storage group must have either specific volume IDs
or non-specific volume IDs. You cannot create a storage group that contains a
mixture of specific and non-specific volume IDs.

Verifying the existence of volumes and classes: When processing the VOLUMES,
DATACLAS, MGMTCLAS, or STORCLAS clauses, DB2 does not check the
existence of the volumes or classes or determine the types of devices that are
identified or if SMS is active. Later, when the storage group allocates data sets, the
list of volumes is passed in the specified order to Data Facilities (DFSMSdfp). See
DB2 Administration Guide for more information about creating DB2 storage groups.

Example

Create storage group, DSN8G110, of volumes ABC005 and DEF008. DSNCAT is the
integrated catalog facility catalog name.

CREATE STOGROUP DSN8G110
VOLUMES (ABC005,DEF008)
VCAT DSNCAT;

Chapter 5. Statements 1385

CREATE SYNONYM
The CREATE SYNONYM statement defines a synonym for a table or view at the
current server.

Important: Synonyms behave differently with DB2 for z/OS than with the other
DB2 family products. Synonyms are not recommended for use when writing new
SQL statements or when creating portable applications. Use aliases instead.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified. The statement
cannot be processed in a trusted context that is defined with a role as the object
owner.

Authorization

None required.

Syntax

�� CREATE SYNONYM synonym FOR authorization-name. table-name
view-name

��

Description

synonym
Names the synonym. The name must not identify a synonym, table, view, or
alias that exists at the current server and that is owned by the owner of the
synonym that is being created and must not identify a table that exists in the
SYSIBM.SYSPENDINGOBJECTS catalog table. The unqualified name must not
be the same as an existing synonym.

FOR authorization-name.table-name or authorization-name.view-name
Identifies the object to which the synonym applies. The name must consist of
two parts and must identify a table, view, or alias that exists at the current
server. If a table is identified, it must not be an auxiliary table or a declared
temporary table. If an alias is identified, it must be an alias for a table or view
at the current server and the synonym is defined for that table or view. The
name must not identify a table that was implicitly created for an XML column.

Notes

Owner privileges: There are no specific privileges on a synonym. For more
information about ownership of an object, see “Authorization, privileges,
permissions, masks, and object ownership” on page 70.

The authorization ID recorded as the owner of a synonym is the only authorization
ID for which the synonym is defined.

1386 SQL Reference

If an alias is used to denote the table or view, the name of that table or view, not
the alias, is recorded in the catalog as the definition of the synonym. That severs
the connection between the synonym and alias, and even if the alias is dropped
and redefined, the synonym is still in effect and names the original table or view.

Example

Define DEPT as a synonym for the table DSN8B10.DEPT.
CREATE SYNONYM DEPT

FOR DSN8B10.DEPT;

Chapter 5. Statements 1387

CREATE TABLE
The CREATE TABLE statement defines a table. The definition must include its
name and the names and attributes of its columns. The definition can include other
attributes of the table, such as its primary key and its table space.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v The CREATETAB privilege for the database explicitly specified by the IN clause.

If the IN clause is not specified, the CREATETAB privilege on database
DSNDB04 is required.

v DBADM, DBCTRL, or DBMAINT authority for the database explicitly specified
by the IN clause. If the IN clause is not specified, DBADM, DBCTRL, or
DBMAINT authority for database DSNDB04 is required.

v SYSADM or SYSCTRL authority
v System DBADM

If the table space is created implicitly, the privilege set that is defined below must
include at least one of the following:
v The CREATETS privilege for the database explicitly specified by the IN clause.

If the IN clause is not specified, the CREATETS privilege on database DSNDB04
is required.

v DBADM, DBCTRL, or DBMAINT authority for the database explicitly specified
by the IN clause. If the IN clause is not specified, DBADM, DBCTRL, or
DBMAINT authority for database DSNDB04 is required.

v SYSADM or SYSCTRL authority

The privilege set must also have the USE privilege for the default buffer pool and
default storage group of the database if the database is specified in the IN clause.

For tables that are created in an implicit database, the database authority must be
held on DSNDB04.

Additional privileges might be required in the following conditions:
v The clause IN, LIKE or FOREIGN KEY is specified.
v The data type of a column is a distinct type.
v The table space is implicitly created.
v A fullselect is specified.
v A column is defined as a security label column.

See the description of the appropriate clauses for details about these privileges.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package.

1388 SQL Reference

If the application is bound in a trusted context with the ROLE AS OBJECT
OWNER clause specified:
v A role is the owner of the table that is being created
v The privilege set is the set of privileges that are held by that role
v The schema qualifier (implicit or explicit) must be the same as the role, unless

the role has the CREATEIN privilege on the schema, or SYSADM, SYSCTRL, or
System DBADM authority

Otherwise, an authorization ID is the owner of the plan or package, and the
following rules apply:
v If the privilege set lacks the CREATEIN privilege on the schema, SYSADM

authority, SYSCTRL authority, and System DBADM authority, the schema
qualifier (implicit or explicit) must be the same as the authorization ID of the
owner of the plan or package.

v If the privilege set lacks SYSADM authority, SYSCTRL authority, and System
DBADM authority, and the table is explicitly qualified, the authorization ID that
is the same as the schema name must have all the necessary privileges to create
the table, and that authorization ID is the owner of the table. Otherwise, the
authorization ID of the owner of the plan or package must have all the
necessary privileges to create the table, and that authorization ID is the owner of
the table.

v If the privilege set includes SYSADM authority, SYSCTRL authority, or System
DBADM authority, the schema qualifier (implicit or explicit) can be any schema
name. However, if the table is explicitly qualified, the authorization ID that is
the same as the schema name is the owner of the table. Otherwise, the
authorization ID of the owner of the plan or package is the owner of the table.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process unless the process is within a
trusted context and the ROLE AS OBJECT OWNER clause is in effect. When ROLE
AS OBJECT OWNER is in effect, the privileges set is the privileges that are held by
the role that is associated with the primary authorization ID of the process, and the
owner of the table is that role. The schema qualifier (implicit or explicit) must be
the same as that role, unless the role has CREATEIN privilege on the schema, or
SYSADM authority, SYSCTRL authority, or System DBADM authority.

For the case where the SQL authorization ID of the process holds the privileges,
the following rules apply:
v If the privilege set lacks CREATEIN privilege on the schema, SYSADM authority,

SYSCTRL authority, and System DBADM authority, the schema qualifier must be
the same as one of the authorization IDs of the process.

v If the privilege set lacks SYSADM authority, SYSCTRL authority, and System
DBADM authority, and the table is explicitly qualified, then the authorization ID
that is the same as the schema name must have all the necessary privileges to
create the table, and that authorization ID is the owner of the table. Otherwise,
the SQL authorization ID of the process must include all privileges that are
needed to create the table, and that authorization ID is the owner of the table.

v If the privilege set includes SYSADM authority, SYSCTRL authority, or System
DBADM authority, the schema qualifier can be any schema name. However, if
the table is explicitly qualified, then the authorization ID that is the same as the
schema name is the owner of the table. Otherwise, the SQL authorization ID of
the process is the owner of the table.

Chapter 5. Statements 1389

Syntax

�� CREATE TABLE table-name �

,

(column-definition)
period-definition
unique-constraint
referential-constraint
check-constraint

LIKE table-name
view-name copy-options

as-result-table
copy-options

materialized-query-definition

�

� �
(1)

IN table-space-name
database-name.

IN DATABASE database-name
partitioning-clause
organization-clause

WITH ROW ATTRIBUTES
EDITPROC program-name

WITHOUT ROW ATTRIBUTES
VALIDPROC program-name

AUDIT NONE

AUDIT CHANGES
AUDIT ALL

OBID integer
DATA CAPTURE NONE

DATA CAPTURE CHANGES
WITH RESTRICT ON DROP
CCSID ASCII

EBCDIC
UNICODE

CARDINALITY
NOT VOLATILE

CARDINALITY
VOLATILE
LOGGED

NOT LOGGED
COMPRESS NO

COMPRESS YES
NO

APPEND YES
DSSIZE integer G
BUFFERPOOL bpname
MEMBER CLUSTER

TRACKMOD YES

TRACKMOD NO

��

1390 SQL Reference

Notes:

1 The same clause must not be specified more than once.

��
(1)

column-name data-type �

� �

�

(2)

NOT NULL
generated-column-definition
column-constraint
WITH

DEFAULT
constant
SESSION_USER
USER

CURRENT SQLID
NULL
(3)

cast-function-name (constant)
SESSION_USER
USER

CURRENT SQLID
NULL

FIELDPROC program-name
,

(constant)
(4)

AS SECURITY LABEL
(5)

IMPLICITLY HIDDEN
(6)

INLINE LENGTH integer

��

Notes:

1 Data type is optional if as-row-change-timestamp-clause is specified

2 The same clause must not be specified more than one time.

3 This form of the DEFAULT value can only be used with columns that are defined as a distinct
type.

4 AS SECURITY LABEL can be specified only for a CHAR(8) data type and requires that the NOT
NULL and WITH DEFAULT clauses be specified.

5 IMPLICITLY HIDDEN must not be specified for a column defined as a ROWID, or a distinct type
that is based on a ROWID.

6 INLINE LENGTH only applies to a column with a LOB data type or a distinct type that is based
on a LOB data type.

column-definition:

data-type:

Chapter 5. Statements 1391

�� built-in-type
distinct-type-name

��

built-in-type:

1392 SQL Reference

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) FOR SBCS DATA

CHARACTER VARYING (integer) MIXED
CHAR BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) FOR SBCS DATA

CLOB K MIXED
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID
XML

(XML-type-modifer)

��

Chapter 5. Statements 1393

�� �

,

XMLSCHEMA XML-schema-specification
ELEMENT element-name

��

�� ID registered-XML-schema-name
URL target-namespace
NO NAMESPACE LOCATION schema-location

��

��
ALWAYS

GENERATED
BY DEFAULT as-identity-clause

as-row-change-timestamp-clause
ALWAYS

GENERATED as-row-transaction-timestamp-clause
as-row-transaction-start-id-clause

��

XML-type-modifer:

XML-schema-specification:

generated-column-definition:

as-identity-clause:

1394 SQL Reference

��

�

AS IDENTITY

(1) START WITH 1
(START WITH numeric-constant)

INCREMENT BY 1
INCREMENT BY numeric-constant
NO MINVALUE
MINVALUE numeric-constant
NO MAXVALUE
MAXVALUE numeric-constant
NO CYCLE
CYCLE
CACHE 20
NO CACHE
CACHE integer-constant
NO ORDER
ORDER

��

Notes:

1 Separator commas can be specified between attributes when an identity column is defined.

�� FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP ��

�� AS ROW BEGIN
END

��

�� AS TRANSACTION START ID ��

��
CONSTRAINT constraint-name

PRIMARY KEY
UNIQUE
references-clause

CHECK(check-condition)

��

as-row-change-timestamp-clause:

as-row-transaction-timestamp-clause:

as-row-transaction-start-id-clause:

column-constraint:

period-definition:

Chapter 5. Statements 1395

�� PERIOD SYSTEM_TIME
BUSINESS_TIME

(begin-column-name , end-column-name) ��

��
CONSTRAINT constraint-name

PRIMARY KEY
UNIQUE

�

� �

,

(column-name)
(1)

,BUSINESS_TIME WITHOUT OVERLAPS

��

Notes:

1 If BUSINESS_TIME WITHOUT OVERLAPS is specified, the BUSINESS_TIME period will not
overlap in time periods for the same column-name values.

��
CONSTRAINT constraint-name

FOREIGN KEY �

,

(column-name) references-clause ��

�� REFERENCES table-name

�

,

(column-name)

ON DELETE RESTRICT
NO ACTION
CASCADE
SET NULL

�

�
ENFORCED

NOT ENFORCED

ENABLE QUERY OPTIMIZATION
��

unique-constraint:

referential-constraint:

references-clause:

check-constraint:

1396 SQL Reference

��
CONSTRAINT constraint-name

CHECK (check-condition) ��

��

�

AS (fullselect) WITH NO DATA
,

(column-name)

��

�� �

COLUMN ATTRIBUTES
(1) EXCLUDING IDENTITY

COLUMN ATTRIBUTES
INCLUDING IDENTITY

COLUMN ATTRIBUTES
EXCLUDING ROW CHANGE TIMESTAMP

COLUMN ATTRIBUTES
INCLUDING ROW CHANGE TIMESTAMP

COLUMN
(2) EXCLUDING DEFAULTS

COLUMN
INCLUDING DEFAULTS
USING TYPE DEFAULTS

(3)
EXCLUDING XML TYPE MODIFIERS

��

Notes:

1 These clauses can be specified in any order and must not be specified more than one time.

2 EXCLUDING COLUMN DEFAULTS, INCLUDING COLUMN DEFAULTS, and USING TYPE
DEFAULTS must not be specified with the LIKE clause.

3 EXCLUDING XML TYPE MODIFIERS must be specified with the LIKE clause if the identified
table has an XML type modifier and none of the XML columns of the new table has an XML type
modifier. EXCLUDING XML TYPE MODIFIERS is not supported when a view is identified in a
LIKE clause and the view contains XML columns.

as-result-table:

copy-options:

partitioning-clause:

Chapter 5. Statements 1397

�� � �

, ,
RANGE

PARTITION BY (partition-expression) (partition-element)
SIZE

EVERY integer-constant G

��

��
NULLS LAST ASC

column-name
DESC

��

�� PARTITION integer
AT

ENDING �

,

(constant)
MAXVALUE
MINVALUE

HASH SPACE integer K
M
G

�

�
INCLUSIVE

��

�� ORGANIZE BY HASH UNIQUE �

,

(column-name)
HASH SPACE 64 M

HASH SPACE integer K
M
G

��

��

�

,

(column-name)

AS (fullselect)
refreshable-table-options

��

partition-expression:

partition-element:

organization-clause

materialized-query-definition

refreshable-table-options:

1398 SQL Reference

�� DATA INITIALLY DEFERRED REFRESH DEFERRED �
(1)

MAINTAINED BY SYSTEM

MAINTAINED BY USER
ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

��

Notes:

1 The same clause must not be specified more than one time.

Description

table-name
Names the table. The name, including the implicit or explicit qualifier, must
not identify a table, view, alias, or synonym that exists at the current server or
a table that exists in the SYSIBM.SYSPENDINGOBJECTS catalog table. The
unqualified name must not be the same as an existing synonym.

If the name is qualified, the name can be a two-part or three-part name. If a
three-part name is used, the first part must match the value of field DB2
LOCATION NAME on installation panel DSNTIPR at the current server. (If the
current server is not the local DB2, this name is not necessarily the name in the
CURRENT SERVER special register.)

column-name
Names a column of the table. For a dependent table, up to 749 columns can be
named. For a table that is not a dependent, this number is 750. Do not qualify
column-name and do not use the same name for more than one column of the
table.

built-in-type
Specifies the data type of the column as one of the following built-in data
types, and for character string data types, specifies the subtype. For more
information about defining a table with a LOB column (CLOB, BLOB, or
DBCLOB), see Creating a table with LOB columns.

SMALLINT
For a small integer.

INTEGER or INT
For a large integer.

BIGINT
For a big integer.

DECIMAL(integer,integer) or DEC(integer,integer)
DECIMAL(integer) or DEC(integer)
DECIMAL or DEC

For a decimal number. The first integer is the precision of the number. That
is, the total number of digits, which can range from 1 to 31. The second
integer is the scale of the number. That is, the number of digits to the right
of the decimal point, which can range from 0 to the precision of the
number.

Chapter 5. Statements 1399

You can use DECIMAL(p) for DECIMAL(p,0) and DECIMAL for
DECIMAL(5,0).

You can also use the word NUMERIC instead of DECIMAL. For example,
NUMERIC(8) is equivalent to DECIMAL(8). Unlike DECIMAL, NUMERIC
has no allowable abbreviation.

DECFLOAT(integer)
For a decimal floating-point number. The value of integer must be either 16
or 34 and represents the number of significant digits that can be stored. If
integer is omitted, the DECFLOAT column will be capable of representing
34 significant digits.

FLOAT(integer)
FLOAT

For a floating-point number. If integer is between 1 and 21 inclusive, the
format is single precision floating-point. If the integer is between 22 and 53
inclusive, the format is double precision floating-point.

You can use DOUBLE PRECISION or FLOAT for FLOAT(53).

REAL
For single precision floating-point.

DOUBLE or DOUBLE PRECISION
For double precision floating-point

CHARACTER(integer) or CHAR(integer)
CHARACTER or CHAR

For a fixed-length character string of length integer, which can range from 1
to 255. If the length specification is omitted, a length of 1 character is
assumed.

VARCHAR(integer), CHAR VARYING(integer), or CHARACTER VARYING(integer)
For a varying-length character string of maximum length integer, which can
range from 1 to the maximum record size minus 10 bytes. See Table 119 on
page 1448 to determine the maximum record size.

FOR subtype DATA
Specifies a subtype for a character string column, which is a column with a
data type of CHAR, VARCHAR, or CLOB. Do not use the FOR subtype
DATA clause with columns of any other data type (including any distinct
type). subtype can be one of the following:

SBCS
Column holds single-byte data.

MIXED
Column holds mixed data. Do not specify MIXED if the value of field
MIXED DATA on installation panel DSNTIPF is NO unless the CCSID
UNICODE clause is also specified, or the table is being created in a
Unicode table space or database.

BIT
Column holds BIT data. Do not specify BIT for a CLOB column.

Only character strings are valid when subtype is BIT.

If you do not specify the FOR clause, the column is defined with a default
subtype. For ASCII or EBCDIC data:
v The default is SBCS when the value of field MIXED DATA on

installation panel DSNTIPF is NO.

1400 SQL Reference

v The default is MIXED when the value is YES.

For Unicode data, the default subtype is MIXED.

A security label column is always considered SBCS data, regardless of the
encoding scheme of the table.

CCSID 1208
Specifies that the column is a Unicode column encoded in UTF8. This
clause must not be specified for an ASCII or Unicode table.

CLOB(integer [K|M|G]), CHAR LARGE OBJECT(integer [K|M|G]), or CHARACTER
LARGE OBJECT(integer [K|M|G])
CLOB, CHAR LARGE OBJECT, or CHARACTER LARGE OBJECT

For a character large object (CLOB) string of the specified maximum length
in bytes. The maximum length must be in the range of 1 to 2 147 483 647.
A CLOB column has a varying-length. It cannot be referenced in certain
contexts regardless of its maximum length. For more information, see
“Restrictions using LOBs” on page 97.

When integer is not specified, the default length is 1M. The maximum
value that can be specified for integer depends on whether a units indicator
is also specified as shown in the following list.

integer The maximum value for integer is 2 147 483 647. The maximum
length of the string is integer.

integer K
The maximum value for integer is 2 097 152. The maximum length
is 1024 times integer.

integer M
The maximum value for integer is 2048. The maximum length is
1 048 576 times integer.

integer G
The maximum value for integer is 2. The maximum length is
1 073 741 824 times integer.

If you specify a value that evaluates to 2 gigabytes (2 147 483 648), DB2
uses a value that is one byte less, or 2 147 483 647.

GRAPHIC(integer)
GRAPHIC

For a fixed-length graphic string of length integer, which can range from 1
to 127. If the length specification is omitted, a length of 1 character is
assumed.

VARGRAPHIC(integer)
For a varying-length graphic string of maximum length integer, which must
range from 1 to n/2, where n is the maximum row size minus 2 bytes.

CCSID 1200
Specifies that the column is a Unicode column encoded in UTF16. This
clause must not be specified for an ASCII or Unicode table.

DBCLOB(integer [K|M|G])
DBCLOB

For a double-byte character large object (DBCLOB) string of the specified
maximum length in double-byte characters. The maximum length must be
in the range of 1 through 1 073 741 823. A DBCLOB column has a

Chapter 5. Statements 1401

|
|
|

|
|
|

varying-length. It cannot be referenced in certain contexts regardless of its
maximum length. For more information, see “Restrictions using LOBs” on
page 97.

When integer is not specified, the default length is 1M. The meaning of
integer K|M|G is similar to CLOB. The difference is that the number
specified is the number of double-byte characters.

BINARY(integer)
A fixed-length binary string of length integer. The integer can range from 1
through 255. If the length specification is omitted, a length of 1 byte is
assumed.

BINARY VARYING(integer) or VARBINARY(integer)
A varying-length binary string of maximum length integer, which can range
from 1 through 32704. The length is limited by the page size of the table
space.

BLOB (integer [K|M|G] or BINARY LARGE OBJECT(integer [K|M|G])
BLOB or BINARY LARGE OBJECT

For a binary large object (BLOB) string of the specified maximum length in
bytes. The maximum length must be in the range of 1 through
2 147 483 647. A BLOB column has a varying-length. It cannot be
referenced in certain contexts regardless of its maximum length. For more
information, see “Restrictions using LOBs” on page 97.

When integer is not specified, the default length is 1M. The meaning of
integer K|M|G is the same as for CLOB.

DATE
For a date.

TIME
For a time.

TIMESTAMP(integer) WITHOUT TIME ZONE
For a timestamp. integer specifies the optional timestamp precision attribute
and must be in the range from 0 to 12. The timestamp precision denotes
the number of fractional second digits that are included in the timestamp.
The default is 6.

TIMESTAMP(integer) WITH TIME ZONE
For a timestamp with time zone. integer specifies the optional timestamp
precision attribute and must be in the range from 0 to 12. The timestamp
precision denotes the number of fractional second digits that are included
in the timestamp. The default is 6.

ROWID
For a row ID type.

A table can have only one ROWID column. The values in a ROWID
column are unique for every row in the table and cannot be updated. You
must specify NOT NULL with ROWID.

XML
For an XML document. Only well-formed XML documents can be inserted
into an XML column.

If the XML column is the first XML column that you create for the table, a
BIGINT DOCID column is implicitly created and is used to store a unique
document identifier for the XML columns of a row.

1402 SQL Reference

XMLSCHEMA
Specifies one or more XML schemas that are used to validate the XML
value. The same XML schema can not be specified more than one time.

If the XML value has already been validated, for example, the XML value
is the result of the DSN_XMLVALIDATE function or from an XML column
with a type modifier, and the XML schema against which the XML value is
validated is one of the schemas specified in the XML-type-modifier, DB2
accepts the XML value without revalidation.

XML-schema-specification
Specifies one XML schema. The XML schema can be identified by
using either the registered XML-schema-name or the schema's target
namespace followed by an optional schema location. Any XML schema
that is referenced in this clause must be registered in the XML schema
repository prior to use.

ID registered-XML-schema-name
Identifies an XML schema by using its registered-XML-schema-name.
The name must uniquely identify an existing XML schema in the
XML schema repository at the current server. If no XML schema by
this name exists, an error is returned.

The schema qualifier must be SYSXSR.

URI target-namespace
Specifies the target namespace URI of the XML schema. The value
for the target-namespace URI is a character string constant which is
not empty. The URI must be the target namespace of a registered
XML schema and, if no LOCATION clause is specified, it must
uniquely identify the registered XML schema.

NO NAMESPACE
Specifies that the XML schema has no target namespace. There
must be a registered XML schema that has no target namespace. If
no LOCATION clause is specified, there must be only one such
registered XML schema.

LOCATION schema-location
Specifies the XML schema location URI of the XML schema. The
value of schema-location is a character string constant that is not
empty. The schema location URI, combined with the target
namespace URI, must identify a registered XML schema.

ELEMENT element-name
Specifies the name of the global element declaration. element-name must
match the local name of the root element node in the instance XML
document. The namespace name of the root element node must be the
same as the target namespace URI.

distinct-type-name
Specifies the data type of the column is a distinct type (a user-defined data
type). The length, precision, and scale of the column are respectively the
length, precision, and scale of the source type of the distinct type. The privilege
set must implicitly or explicitly include the USAGE privilege on the distinct
type.

The encoding scheme of the distinct type must be the same as the encoding
scheme of the table. The subtype for the distinct type, if it has the attribute, is
the subtype with which the distinct type was created.

Chapter 5. Statements 1403

If the column is to be used in the definition of the foreign key of a referential
constraint, the data type of the corresponding column of the parent key must
have the same distinct type.

NOT NULL
Prevents the column from containing null values. Omission of NOT NULL
implies that the column can contain null values.

column-constraint
The column-constraint of a column-definition provides a shorthand method of
defining a constraint composed of a single column. Thus, if a column-constraint
is specified in the definition of column C, the effect is the same as if that
constraint were specified as a unique-constraint, referential-constraint, or
check-constraint in which C is the only identified column.

CONSTRAINT constraint-name
Names the constraint. If a constraint name is not specified, a unique
constraint name is generated. If the name is specified, it must be different
from the names of any referential, check, primary key, or unique key
constraints previously specified on the table.

PRIMARY KEY
Provides a shorthand method of defining a primary key composed of a
single column. Thus, if PRIMARY KEY is specified in the definition of
column C, the effect is the same as if the PRIMARY KEY(C) clause is
specified as a separate clause.

The NOT NULL clause must be specified with this clause. PRIMARY KEY
cannot be specified more than one time in a column definition, and must
not be specified if the UNIQUE clause is specified in the definition. This
clause must also not be specified if the definition is for one of the
following types of columns:
v a LOB column
v a ROWID column
v a DECFLOAT column
v a distinct type column that is based on a LOB, ROWID, or DECFLOAT

data type
v an XML column
v a row change timestamp column
v a Unicode column in an EBCDIC table

The table is marked as unavailable until its primary index is explicitly
created unless the CREATE TABLE statement is processed by the schema
processor or the table space that contains the table is implicitly created. In
that case, DB2 implicitly creates an index to enforce the uniqueness of the
primary key and the table definition is considered complete. (For more
information about implicitly created indexes, see Implicitly created
indexes.)

UNIQUE
Provides a shorthand method of defining a unique key composed of a
single column. Thus, if UNIQUE is specified in the definition of column C,
the effect is the same as if the UNIQUE(C) clause is specified as a separate
clause.

The NOT NULL clause must be specified with this clause. UNIQUE cannot
be specified more than one time in a column definition and must not be

1404 SQL Reference

|

specified if the PRIMARY KEY clause is specified in the column definition
or if the definition is for one of the following types of columns:
v a LOB column
v a ROWID column
v a DECFLOAT column
v a distinct type column that is based on a LOB, ROWID, or DECFLOAT

data type
v an XML column
v a row change timestamp column
v a Unicode column in an EBCDIC table

The table is marked as unavailable until all the required indexes are
explicitly created unless the CREATE TABLE statement is processed by the
schema processor or the table space that contains the table is implicitly
created. In that case, DB2 implicitly creates the indexes that are required
for the unique keys and the table definition is considered complete. (For
more information about implicitly created indexes, see Implicitly created
indexes.)

references-clause
The references-clause of a column-definition provides a shorthand method of
defining a foreign key composed of a single column. Thus, if
references-clause is specified in the definition of column C, the effect is the
same as if the references-clause were specified as part of a FOREIGN KEY
clause in which C is the only identified column.

Do not specify references-clause in the definition of the following types of
columns because these types of columns cannot be a foreign key:
v a LOB column
v a ROWID column
v a DECFLOAT column
v a distinct type column that is based on a LOB, ROWID, or DECFLOAT

data type
v an XML column
v a row change timestamp column
v a security label column
v a Unicode column in an EBCDIC table

CHECK (check-condition)
CHECK (check-condition) provides a shorthand method of defining a check
constraint that applies to a single column. For conformance with the SQL
standard, if CHECK is specified in the column definition of column C, no
columns other than C should be referenced in the check condition of the
check constraint. The effect is the same as if the check condition were
specified as a separate clause.

DEFAULT
Specifies the default value that is assigned to the column in the absence of a
value specified on an insert or update operation or LOAD. DEFAULT must not
be specified more than one time in the same column-definition. Do not specify
DEFAULT for the following types of columns because DB2 generates default
values:
v An identity column (a column that is defined AS IDENTITY)
v A ROWID column (or a distinct type that is based on a ROWID)
v A row change timestamp column

Chapter 5. Statements 1405

|

|

v A row-begin column
v A row-end column
v A transaction-start-id column
v An XML column

Do not specify a value after the DEFAULT keyword for a security label
column. DB2 provides the default value for a security label column.

If a CCSID clause is specified for the column, do not specify a value after the
DEFAULT keyword. Alternatively, DEFAULT NULL can be specified.

If a value is not specified after DEFAULT, the default value depends on the
data type of the column, as follows:

Data Type
Default Value

Numeric
0

Big integer
0

Fixed-length character string
Blanks

Fixed-length graphic string
Blanks

Fixed-length binary string
Hexadecimal zeros

Varying-length string
A string of length 0

Inline BLOB
Hexadecimal zeros

Inline CLOB
Blanks

Inline DBCLOB
Blanks

Date CURRENT DATE
Time CURRENT TIME
TIMESTAMP(integer) WITHOUT TIME ZONE

CURRENT TIMESTAMP(p) WITHOUT TIME ZONE where p is the
corresponding timestamp precision.

TIMESTAMP(integer) WITH TIME ZONE
CURRENT TIMESTAMP(p) WITH TIME ZONE where p is the
corresponding timestamp precision.

If the column is defined as timestamp with time zone the default value
must include a time zone.

Distinct type
The default of the source data type

A default value other than the one that is listed above can be specified in one
of the following forms:
v WITH DEFAULT for a default value of an empty string
v DEFAULT NULL for a default value of null

Omission of NOT NULL and DEFAULT from a column-definition, for a column
other than an identity column, is an implicit specification of DEFAULT NULL.
For an identity column, it is an implicit specification of NOT NULL, and DB2
generates default values.

1406 SQL Reference

|
|

constant
Specifies a constant as the default value for the column. The value of the
constant must conform to the rules for assigning that value to the column.

A character or graphic string constant must be short enough so that its
UTF-8 representation requires no more than 1536. A hexadecimal graphic
string constant (GX) cannot be specified.

In addition, the length of the constant value cannot be greater than the
INLINE LENGTH attribute for LOB columns.

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register at the
time of an SQL data change statement or LOAD as the default value for
the column. If SESSION_USER is specified, the data type of the column
must be a character string with a length attribute greater than or equal to 8
characters when the value is expressed in CCSID 37.If the data type of the
column is an inline CLOB, the INLINE LENGTH attribute must be greater
than or equal to 8 characters when the value is expressed as CCSID 37.

CURRENT SQLID
Specifies the value of the SQL authorization ID of the process at the time
of an insert or update operation or LOAD as the default value for the
column. If CURRENT SQLID is specified, the data type of the column
must be a character string with a length attribute greater than or equal to
the length attribute of the CURRENT SQLID special register.If the data
type of the column is an inline CLOB, the INLINE LENGTH attribute must
be greater than or equal to the length attribute of the CURRENT SQLID
special register.

NULL
Specifies null as the default value for the column. If NOT NULL is
specified, DEFAULT NULL must not be specified with the same
column-definition.

cast-function-name
The name of the cast function that matches the name of the distinct type
for the column. A cast function can only be specified if the data type of the
column is a distinct type.

The schema name of the cast function, whether it is explicitly specified or
implicitly resolved through function resolution, must be the same as the
explicitly or implicitly specified schema name of the distinct type.

constant
Specifies a constant as the argument. The constant must conform to the
rules of a constant for the source type of the distinct type.The length of
the constant cannot be greater than the INLINE LENGTH attribute for
LOB columns.

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register at the
time a row is inserted as the default for the column. The source type of
the distinct type of the column must be a CHAR, VARCHAR, or inline
CLOB with a length attribute (inline length attribute for CLOB) that is
greater than or equal to the length attribute of the SESSION_USER
special register.

CURRENT SQLID
Specifies the value of the CURRENT SQLID special register at the time
a row is inserted as the default for the column. The source type of the

Chapter 5. Statements 1407

distinct type of the column must be a CHAR, VARCHAR, or inline
CLOB with a length attribute (or inline length attribute for CLOB) that
is greater than or equal to the length attribute of the CURRENT SQLID
special register.

NULL
Specifies the NULL value as the argument.

In a given column definition:
v DEFAULT and FIELDPROC cannot both be specified.
v NOT NULL and DEFAULT NULL cannot both be specified.

Table 117 summarizes the effect of specifying the various combinations of the
NOT NULL and DEFAULT clauses on the CREATE TABLE statement
column-description clause.

Table 117. Effect of specifying combinations of the NOT NULL and DEFAULT clauses

If NOT NULL is: And DEFAULT is: The effect is:

Specified1 Omitted An error occurs if a value is not
provided for the column on an insert
or update operation or LOAD.

Specified without an operand The system defined nonnull default
value is used.

constant The specified constant is used as the
default value.

SESSION_USER The value of the SESSION_USER
special register at the time of an
insert or update operation or LOAD
is used as the default value.

CURRENT SQLID The SQL authorization ID of the
process at the time of an insert or
update operation or LOAD is used as
the default value.

NULL An error occurs during the execution
of CREATE TABLE.

Omitted Omitted Equivalent to an implicit specification
of DEFAULT NULL.

Specified without an operand The system defined nonnull default
value is used.

constant The specified constant is used as the
default value.

SESSION_USER The value of the SESSION_USER
special register at execution time is
used as the default value.

CURRENT SQLID The SQL authorization ID of the
process is used as the default value.

NULL Null is used as the default value.

Note: The table does not apply to a column with a ROWID data type or to an identity
column.

1408 SQL Reference

GENERATED
Specifies that DB2 generates values for the column. GENERATED must be
specified if the column is to be considered one of the following types of
columns:
v An identity column
v A row change timestamp column.
v A ROWID column
v A row-begin column
v A row-end column
v A transaction-start-id column

GENERATED must only be specified for these types of columns. GENERATED
must not be specified with default-clause in a column definition.

GENERATED must not be specified if the column definition references global
variables.

ALWAYS
Specifies that DB2 will always generate a value for the column when a row
is inserted or updated and a default value must be generated. ALWAYS is
the default and recommended value.

BY DEFAULT
Specifies that DB2 will generate a value for the column when a row is
inserted or updated and a default value must be generated, unless an
explicit value is specified.

For a row change timestamp column, DB2 inserts or updates a specified
value but does not verify that the value is unique for the column unless
the row change timestamp column has a unique constraint or a unique
index that specifies only the row change timestamp column.

For a ROWID column, DB2 uses a specified value only if it is a valid row
ID value that was previously generated by DB2 and the column has a
unique, single-column index. Until this index is created on the ROWID
column, the SQL insert or update operation and the LOAD utility cannot
be used to add rows to the table. If the table space is explicitly created and
the value of the CURRENT RULES special register is 'STD' when the
CREATE TABLE statement is processed, or if the table space is implicitly
created, DB2 implicitly creates the index on the ROWID column. The name
of this index is 'I' followed by the first ten characters of the column name
followed by seven randomly generated characters. If the column name is
less than ten characters, DB2 adds underscore characters to the end of the
name until it has ten characters. The implicitly created index has the COPY
NO attribute.

For an identity column, DB2 inserts a specified value but does not verify
that it a unique value for the column unless the identity column has a
unique, single-column index.

BY DEFAULT is the recommended value only when you are using data
propagation.

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
Specifies that the column is a timestamp column for the table. DB2
generates a value for the column for each row as the row is inserted, and
for any row in which any column is updated. The value that is generated
for a row change timestamp column is a timestamp that corresponds to the

Chapter 5. Statements 1409

|
|

insert or update time of the row. If multiple rows are inserted or updated
with a single statement, the value for the row change timestamp column
might be different for each row.

A table can only have one row change timestamp column.

If data-type is specified, it must be TIMESTAMP WITHOUT TIME ZONE
with a precision of 6.

A row change timestamp column cannot have a DEFAULT clause. NOT
NULL must be specified for a row change timestamp column.

AS ROW BEGIN
Specifies that the column contains timestamp data and that the values are
generated by DB2. DB2 generates a value for the column for each row as
the row is inserted, and for every row in which any column is updated.
The generated value is a timestamp that corresponds to the start time that
is associated with the most recent transaction. If multiple rows are inserted
with a single SQL statement, the values for the transaction start timestamp
column are the same.

For a system-period temporal table, DB2 ensures the uniqueness of the
generated values for a row-begin column across transactions. If multiple
rows are inserted or updated within a single SQL transaction, the values
for the row-begin column are the same for all the rows and are unique
from the values that are generated for the column for another transaction.
A row-begin column is required as the begin column of a SYSTEM_TIME
period.

A table can have only one column defined as AS ROW BEGIN. If a data
type is specified, it must be TIMESTAMP(12) WITHOUT TIME ZONE or
TIMESTAMP(12) WITH TIME ZONE. If the column is defined as
TIMESTAMP(12) WITH TIME ZONE, the values are stored in UTC, with a
time zone of +00:00. If no data type is specified, the column is defined as
TIMESTAMP(12) WITHOUT TIME ZONE. A column defined as a
row-begin column cannot have a DEFAULT clause, and must be defined as
NOT NULL. A row-begin column is not updatable.

A value for a row-begin column is composed of a TIMESTAMP(9) value
that is unique per transaction per data sharing member followed by 3
digits that indicate the data sharing member number.

AS ROW END
Specifies that a value for the data type of the column is assigned by DB2
whenever a row is inserted or any column in the row is updated. The
value that is assigned for a TIMESTAMP WITHOUT TIME ZONE column
is the TIMESTAMP value '9999-12-30-00.00.00.000000000000'. The value that
is assigned for a TIMESTAMP WITH TIME ZONE column is the
TIMESTAMP value '9999-12-30-00.00.00.000000000000 +00:00'.

A row-end column is required as the second column of a SYSTEM_TIME
period.

A table can have only one row-end column. If a data type is not specified,
the column is defined as TIMESTAMP(12) WITHOUT TIME ZONE. If a
data type is specified, it must be TIMESTAMP(12) WITHOUT TIME ZONE
or TIMESTAMP(12) WITH TIME ZONE. If the column is defined as
TIMESTAMP WITH TIME ZONE, the values are stored in UTC, with a
time zone of +00:00. A row-end column cannot have a DEFAULT clause
and must be defined as NOT NULL. A row-end column is not updatable.

1410 SQL Reference

AS TRANSACTION START ID
Specifies that the value is assigned by DB2 whenever a row is inserted into
the table or any column in the row is updated. DB2 assigns a unique
timestamp value per transaction or the null value. The null value is
assigned to the transaction-start-ID column if the column is nullable.
Otherwise, the value is generated using the time-of-day clock during
execution of the first data change statement in the transaction that requires
a value to be assigned to a row-begin column or transaction-start-ID
column in the table, or when a row in a system-period temporal table is
deleted. If multiple rows are inserted or updated within a single SQL
transaction, the values for the transaction-start-ID column are the same for
all the rows and are unique from the values that are generated for the
column for another transaction.

A transaction-start-ID column is required for a system-period temporal
table.

A table can have only one transaction-start-ID column. If a data type is not
specified, the column is defined as TIMESTAMP(12) WITHOUT TIME
ZONE. If a data type is specified, it must be TIMESTAMP(12) WITHOUT
TIME ZONE or TIMESTAMP(12) WITH TIME ZONE. If the column is
defined as TIMESTAMP WITH TIME ZONE, the values are stored in UTC,
with a time zone of +00:00. A transaction-start-ID column cannot have a
DEFAULT clause. A transaction-start-ID column is not updatable.

A value for a transaction-start-ID column is composed of a TIMESTAMP(9)
value that is unique per transaction per data sharing member followed by
3 digits that indicate the data sharing member number.

PERIOD
Defines a period for the table. begin-column-name must not be the same as
end-column-name. The data type, length, precision, and scale for
begin-column-name must be the same as for end-column-name.

SYSTEM_TIME (begin-column-name,end-column-name)
Defines a system period with the name SYSTEM_TIME. There must
not be a column in the table with the name SYSTEM_TIME. A table
can have only one SYSTEM_TIME period. begin-column-name must be
defined as AS ROW BEGIN and end-column-name must be defined as
AS ROW END.

BUSINESS_TIME (begin-column-name,end-column-name)
Defines an application period with the name BUSINESS_TIME. There
must not be a column in the table with the name BUSINESS_TIME. A
table can have only one BUSINESS_TIME period. begin-column-name
and end-column-name must be defined as DATE or TIMESTAMP(6)
WITHOUT TIME ZONE, and the columns must be defined as NOT
NULL. begin-column-name and end-column-name must not identify a
column that is defined with a GENERATED clause.

A system generated check constraint named
DB2_GENERATED_CHECK_CONSTRAINT_FOR_BUSINESS_TIME is
generated to ensure that the value for end-column-name is greater than
the value for begin-column-name. The table is placed in a check pending
status.
DB2_GENERATED_CHECK_CONSTRAINT_FOR_BUSINESS_TIME
must not be the name of an existing check constraint.

begin-column-name
Identifies the column that records the beginning of the period of time

Chapter 5. Statements 1411

in which a row is valid. The name must identify a column that exists
in the table and must not be the same as a column that is used in the
definition of another period for the table. begin-column-name must not
be the same as end-column-name. The data type and precision for
begin-column-name must be the same as for end-column-name.

For a SYSTEM_TIME period, begin-column-name must be defined as AS
ROW BEGIN.

For a BUSINESS_TIME period, the column must not be defined with a
GENERATED clause.

end-column-name
Identifies the column that records the end of the period of time in
which a row is valid. In the history table that is associated with a
system-period temporal table, the history table column that
corresponds to end-column-name in the system-period temporal table is
set to reflect the deletion of the row. The name must identify a column
that exists in the table and must not be the same as a column that is
used in the definition of another period for the table.

For a SYSTEM_TIME period, end-column-name must be defined as AS
ROW END.

For a BUSINESS_TIME period, the column must not be defined with a
GENERATED clause.

AS IDENTITY
Specifies that the column is an identity column for the table. A table can
have only one identity column. AS IDENTITY can be specified only if the
data type for the column is an exact numeric type with a scale of zero
(SMALLINT, INTEGER, BIGINT, DECIMAL with a scale of zero, or a
distinct type based on one of these types).

An identity column is implicitly NOT NULL. An identity column cannot
have a WITH DEFAULT clause.

Defining a column AS IDENTITY does not necessarily ensure the
uniqueness of the values. To ensure uniqueness of the values, define a
unique, single-column index on the identity column.

START WITH numeric-constant
Specifies the first value that is generated for the identity column. The
value can be any positive or negative value that could be assigned to
the column without non-zero digits existing to the right of the decimal
point.

If a value is not explicitly specified when the identity column is
defined, the default is the MINVALUE for an ascending identity
column and the MAXVALUE for a descending identity column. This
value is not necessarily the value that would be cycled to after
reaching the maximum or minimum value for the identity column. The
START WITH clause can be used to start the generation of values
outside the range that is used for cycles. The range used for cycles is
defined by MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity
column. The value can be any positive or negative value (including 0)

1412 SQL Reference

that does not exceed the value of a large integer constant, and could be
assigned to the column without any non-zero digits existing to the
right of the decimal point.

If this value is negative, the values for the identity column descend. If
this value is 0 or positive, the values for the identity column ascend.
The default is 1.

MINVALUE or NO MINVALUE
Specifies the minimum value at which a descending identity column
either cycles or stops generating values or an ascending identity
column cycles to after reaching the maximum value.

NO MINVALUE
Specifies that the minimum end point of the range of values for the
identity column has not be set. In such a case, the default value for
MINVALUE becomes one of the following:
v For an ascending identity column, the value is the START WITH

value or 1 if START WITH is not specified.
v For a descending identity column, the value is the minimum

value of the data type of the column.

The default is NO MINVALUE.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value that is
generated for this identity column. This value can be any positive
or negative value that could be assigned to this column without
non-zero digits existing to the right of the decimal point. The value
must be less than or equal to the maximum value.

MAXVALUE or NO MAXVALUE
Specifies the maximum value at which an ascending identity column
either cycles or stops generating values or a descending identity
column cycles to after reaching the minimum value.

NO MAXVALUE
Specifies that the minimum end point of the range of values for the
identity column has not be set. In such a case, the default value for
MAXVALUE becomes one of the following:
v For an ascending identity column, the value is the maximum

value of the data type associated with the column.
v For a descending identity column, the value is the START WITH

value -1 if START WITH is not specified.

The default is NO MAXVALUE.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value that is
generated for this identity column. This value can be any positive
or negative value that could be assigned to this column without
non-zero digits existing to the right of the decimal point. The value
must be greater than or equal to the minimum value.

CYCLE or NO CYCLE
Specifies whether this identity column should continue to generate
values after reaching either its maximum or minimum value. The
default is NO CYCLE.

Chapter 5. Statements 1413

NO CYCLE
Specifies that values will not be generated for the identity column
after the maximum or minimum value has been reached.

CYCLE
Specifies that values continue to be generated for the identity
column after the maximum or minimum value has been reached. If
this option is used, after an ascending identity column reaches the
maximum value, it generates its minimum value. After a
descending identity column reaches its minimum value, it
generates its maximum value. The maximum and minimum values
for the identity column determine the range that is used for
cycling.

When CYCLE is in effect, duplicate values can be generated by
DB2 for an identity column. However, if a unique index exists on
the identity column and a non-unique value is generated for it, an
error occurs.

CACHE integer-constant or NO CACHE
Specifies whether to keep some preallocated values in memory.
Preallocating and storing values in the cache improves the performance
of inserting rows into a table. The default is CACHE 20.

NO CACHE
Specifies that values for the identity column and sequences are not
preallocated and stored in the cache, ensuring that values will not
be lost in the case of a system failure. In this case, every request
for a new value for the identity column or sequence results in
synchronous I/O.

In a data sharing environment, use NO CACHE if you need to
guarantee that the identity column and sequence values are
generated in the order in which they are requested.

CACHE integer-constant
Specifies the maximum number of values of the identity column
sequence that DB2 can preallocate and keep in memory.

During a DB2 shutdown, all cached identity column values and
sequence values that are yet to be assigned will be lost and will
not be used. Therefore, the value that is specified for CACHE also
represents the maximum number of identity column values and
sequence values that will be lost during a DB2 shutdown.

The minimum value is 2.

In a data sharing environment, you can use the CACHE and NO
ORDER options to allow multiple DB2 members to cache sequence
values simultaneously.

ORDER or NO ORDER
Specifies whether the identity column values must be generated in
order of request. The default is NO ORDER.

NO ORDER
Specifies that the values do not need to be generated in order of
request.

ORDER
Specifies that the values are generated in order of request.

1414 SQL Reference

Specifying ORDER might disable the caching of values. ORDER
applies only to a single-application process.

In a data sharing environment, if the CACHE and NO ORDER options
are in effect, multiple caches can be active simultaneously, and the
requests for identity values from different DB2 members might not
result in the assignment of values in strict numeric order. For example,
if members DB2A and DB2B are using the identity column, and DB2A
gets the cache values 1 to 20 and DB2B gets the cache values 21 to 40,
the actual order of values assigned would be 1,21,2 if DB2A requested
a value first, then DB2B requested, and then DB2A again requested.
Therefore, to guarantee that identity values are generated in strict
numeric order among multiple DB2 members using the same identity
column, specify the ORDER option.

FIELDPROC program-name
Designates program-name as the field procedure exit routine for the column. A
field procedure can be specified only for a column with a length attribute that
is not greater than 255 bytes. FIELDPROC can only be specified for columns
that are a built-in character string or graphic string data types. The column
must not be one of the following:
v a LOB column
v a security label column
v a row change timestamp column
v a column with the TIMESTAMP WITH TIME ZONE data type
v a Unicode column in an EBCDIC table

The field procedure encodes and decodes column values: before a value is
inserted in the column, it is passed to the field procedure for encoding. Before
a value from the column is used by a program, it is passed to the field
procedure for decoding. A field procedure could be used, for example, to alter
the sorting sequence of values entered in the column.

The field procedure is also invoked during the processing of the CREATE
TABLE statement. When so invoked, the procedure provides DB2 with the
column's field description. The field description defines the data characteristics
of the encoded values. By contrast, the information you supply for the column
in the CREATE TABLE statement defines the data characteristics of the
decoded values.

Related information:

Field procedures (DB2 Administration Guide)
“Character and graphic string comparisons” on page 135

constant
Is a parameter that is passed to the field procedure when it is invoked. A
parameter list is optional. The nth parameter specified in the FIELDPROC
clause on CREATE TABLE corresponds to the nth parameter of the
specified field procedure. The maximum length of the parameter list is 254
bytes, including commas but excluding insignificant blanks and the
delimiting parentheses.

If you omit FIELDPROC, the column has no field procedure.

AS SECURITY LABEL
Specifies that the column will contain security label values. This also indicates
that the table is defined with multilevel security with row level granularity. A

Chapter 5. Statements 1415

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_fieldprocedure.htm#db2z_fieldprocedure

table can have only one security label column. To define a table with a security
label column, the primary authorization ID of the statement must have a valid
security label, and the RACF SECLABEL class must be active. In addition, the
following conditions are also required:
v The data type of the column must be CHAR(8).
v The subtype of the column must be SBCS.
v The column must be defined with the NOT NULL and WITH DEFAULT

clauses.
v The WITH DEFAULT clause must not specify a default value (DB2

determines the default value)
v No field procedures, check constraints, or referential constraints are defined

on the column.
v No edit procedure for the table can be defined with row attribute sensitivity.

For information about using multilevel security, see DB2 Administration Guide.

IMPLICITLY HIDDEN
Specifies that the column is not visible in the result for SQL statements unless
you explicitly refer to the column by name. For example, assuming that the
table T1 includes a column that is defined with the IMPLICITLY HIDDEN
clause, the result of a SELECT * would not include the implicitly hidden
column. However, the result of a SELECT statement that explicitly refers to the
name of the implicitly hidden column would include that column in the result
table.

IMPLICITLY HIDDEN must not be specified for a column that is defined as a
ROWID, or a distinct type that is based on a ROWID. IMPLICITLY HIDDEN
must not be specified for all columns of a table.

INLINE LENGTH integer
Specifies the maximum length for the column, if the column is a LOB column
and the table is in a universal table space. INLINE LENGTH cannot be
specified if the column is not a LOB column (or a distinct type that is based on
a LOB) or if the table is not in a universal table space.

For BLOB and CLOB columns, integer specifies the maximum number of bytes
that are stored in the base table space for the column. integer must be between
0 and 32680 (inclusive) for a BLOB or CLOB column.

For a DBCLOB column, integer specifies the maximum number of double-byte
characters that are stored in the table space for the column. integer must be
between 0 and 16340 (inclusive) for a DBCLOB column.

If INLINE LENGTH is specified, the value of integer cannot be greater than the
maximum length of the LOB column.

If the INLINE LENGTH clause is not specified, the maximum length of the
LOB column depends on the following conditions:
v If a distinct type is not used or the distinct type that is used has been

created without the INLINE LENGTH attribute, the LOB column will use
the value of the LOB INLINE LENGTH parameter on installation panel
DSNTIPD as the default inline length when the value of LOB INLINE
LENGTH does not exceed the maximum length of the LOB column. If the
value of LOB INLINE LENGTH exceeds the maximum length of the LOB
column, the maximum length is the inline length of this LOB column.

v If a distinct type that has been created with the INLINE LENGTH attribute
is used, the LOB column inherits the inline length from the distinct type.

Regardless of how the length is determined, the inline length of the LOB
cannot be greater than its maximum length.

1416 SQL Reference

CONSTRAINT constraint-name
Names the constraint. If a constraint name is not specified, a unique constraint
name is generated. If a name is specified, it must be different from the names
of any referential, check, primary key, or unique key constraints previously
specified on the table.

PRIMARY KEY(column-name,...)
Defines a primary key composed of the identified columns. The clause must
not be specified more than one time and the same column must not be
identified more than one time. The identified columns must be defined as NOT
NULL. Each column-name must be an unqualified name that identifies a
column of the table except for the following types of columns:
v a LOB column
v a ROWID column
v a DECFLOAT column
v a distinct type column that is based on a LOB, ROWID, or DECFLOAT
v an XML column
v a row change timestamp column
v a Unicode column in an EBCDIC table

The number of identified columns must not exceed 64. In addition, the sum of
the length attributes of the columns must not be greater than 2000 - 2m, where
m is the number of varying-length columns in the key.

The table is marked as unavailable until its primary index is explicitly created
unless the table space is explicitly created and the CREATE TABLE statement is
processed by the schema processor, or the table space is implicitly created. In
that case, DB2 implicitly creates an index to enforce the uniqueness of the
primary key and the table definition is considered complete. (For more
information about implicitly created indexes, see Implicitly created indexes.)

BUSINESS_TIME WITHOUT OVERLAPS can be specified as the last item in
the list. If BUSINESS_TIME WITHOUT OVERLAPS is specified, the list must
include at least one column-name or key-expression. When WITHOUT
OVERLAPS is specified, the values for the rest of the specified keys are unique
with respect to the time for the BUSINESS_TIME period. When
BUSINESS_TIME WITHOUT OVERLAPS is specified, the columns of the
BUSINESS_TIME period must not be specified as part of the constraint. The
specification of BUSINESS_TIME WITHOUT OVERLAPS adds the following to
the constraint:
v The end column of the BUSINESS_TIME period in ascending order
v The begin column of the BUSINESS_TIME period in ascending order

UNIQUE(column-name,...)
Defines a unique key composed of the identified columns. Each column-name
must be an unqualified name that identifies a column of the table. Each
identified column must be defined as NOT NULL. The same column must not
be identified more than one time. The following types of columns cannot be
identified:
v a LOB column
v a ROWID column
v a DECFLOAT column
v a distinct type column that is based on a LOB, ROWID, or DECFLOAT
v a row change timestamp column
v a Unicode column in an EBCDIC table

Chapter 5. Statements 1417

|

|

The number of identified columns must not exceed 64. In addition, the sum of
the length attributes of the columns must not be greater than 2000 - 2m, where
m is the number of varying-length columns in the key.

A unique key is a duplicate if it is the same as the primary key or a previously
defined unique key. The specification of a duplicate unique key is ignored with
a warning.

The table is marked as unavailable until all the required indexes are explicitly
created unless the table space is explicitly created and the CREATE TABLE
statement is processed by the schema processor, or the table space is implicitly
created. In these cases, DB2 implicitly creates the indexes that are required for
the unique keys and the table definition is considered complete. (For more
information about implicitly created indexes, see Implicitly created indexes.)

BUSINESS_TIME WITHOUT OVERLAPS can be specified as the last item in
the list. If BUSINESS_TIME WITHOUT OVERLAPS is specified, the list must
include at least one column-name or key-expression. When WITHOUT
OVERLAPS is specified, the values for the rest of the specified keys are unique
with respect to the time for the BUSINESS_TIME period. When
BUSINESS_TIME WITHOUT OVERLAPS is specified, the columns of the
BUSINESS_TIME period must not be specified as part of the constraint. The
specification of BUSINESS_TIME WITHOUT OVERLAPS adds the following to
the constraint:
v The end column of the BUSINESS_TIME period in ascending order
v The begin column of the BUSINESS_TIME period in ascending order

CONSTRAINT constraint-name
Names the referential constraint. If a constraint name is not specified, a unique
constraint name is generated. If a name is specified, it must be different from
the names of any referential, check, primary key, or unique key constraints
previously specified on the table.

FOREIGN KEY (column-name,...) references-clause
Each specification of the FOREIGN KEY clause defines a referential constraint.

The foreign key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of the table. The same column must not be identified more than one
time. The column cannot be any of the followinf types of columns:
v a LOB column
v a ROWID column
v a DECFLOAT column
v an XML column
v a row change timestamp column
v a security label column
v a Unicode column in an EBCDIC table

The number of identified columns must not exceed 64. The sum of the column
length attributes must not exceed 255 minus the number of columns that allow
null values. The referential constraint is a duplicate if the FOREIGN KEY and
parent table are the same as the FOREIGN KEY and parent table of a
previously defined referential constraint. The specification of a duplicate
referential constraint is ignored with a warning.

1418 SQL Reference

|

REFERENCES table-name (column-name,...)
The table name that is specified after REFERENCES must identify a table that
exists at the current server32. The table name must not identify one of the
following tables:
v A catalog table
v A declared global temporary table
v A history table
v An archive table

In the following discussion, let T2 denote an identified table and let T1 denote
the table that you are creating (T1 and T2 cannot be the same table32).

T2 must have a unique index. The privilege set must include the ALTER or
REFERENCES privilege on the parent table, or the REFERENCES privilege on
the columns of the nominated parent key.

The parent key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of T2. The same column must not be identified more than one time.
The identified column cannot be any of the following types of columns:
v a LOB column
v a ROWID column
v a DECFLOAT column
v an XML column
v a row change timestamp column
v a security label column
v a Unicode column in an EBCDIC table

The list of column names in the parent key must match the list of column
names in a primary key or unique key in the parent table T2. The column
names must be specified in the same order as in the primary key or unique
key. If any of the referenced columns in T2 has a non-numeric data type, T2
and T1 must use the same encoding scheme.

If a list of column names is not specified, T2 must have a primary key.
Omission of a list of column names is an implicit specification of the columns
of the primary key for T2.

The specified foreign key must have the same number of columns as the
parent key of T2. The description of the nth column of the foreign key must be
identical to the description of the nth column of the nominated parent key. The
exception is that their names, default values, null attributes, and check
constraints do not have to match. If the foreign key includes a column that is
defined as a distinct type, the corresponding column of the nominated parent
key must be the same distinct type. If a column of the foreign key has a field
procedure, the corresponding column of the nominated parent key must have
the same field procedure and an identical field description. A field description
is a description of the encoded value as it is stored in the database for a
column that is defined to have an associated field procedure.

The referential constraint that is specified by a FOREIGN KEY clause defines a
relationship in which T2 is the parent and T1 is the dependent. A description
of the referential constraint is recorded in the catalog.

32. This restriction is relaxed when the statement is processed by the schema processor and the other table is created within the
same CREATE SCHEMA.

Chapter 5. Statements 1419

|

|

ON DELETE
The delete rule of the relationship is determined by the ON DELETE clause.
For more on the concepts used here, see “Referential constraints” on page 23.

SET NULL must not be specified unless some column of the foreign key allows
null values. The default value for the rule depends on the value of the
CURRENT RULES special register when the CREATE TABLE statement is
processed. If the value of the register is 'DB2', the delete rule defaults to
RESTRICT; if the value is 'STD', the delete rule defaults to NO ACTION.

The delete rule applies when a row of T2 is the object of a DELETE or
propagated delete operation and that row has dependents in T1. Let p denote
such a row of T2. Then:
v If RESTRICT or NO ACTION is specified, an error occurs and no rows are

deleted.
v If CASCADE is specified, the delete operation is propagated to the

dependents of p in T1.
v If SET NULL is specified, each nullable column of the foreign key of each

dependent of p in T1 is set to null.

Let T3 denote a table identified in another FOREIGN KEY clause (if any) of the
CREATE TABLE statement. The delete rules of the relationships involving T2
and T3 must be the same and must not be SET NULL if:
v T2 and T3 are the same table.
v T2 is a descendent of T3 and the deletion of rows from T3 cascades to T2.
v T2 and T3 are both descendents of the same table and the deletion of rows

from that table cascades to both T2 and T3.

ENFORCED or NOT ENFORCED
Indicates whether or not the referential constraint is enforced by DB2 during
normal operations, such as insert, update, or delete.

ENFORCED
Specifies that the referential constraint is enforced by the DB2 during
normal operations (such as insert, update, or delete) and that it is
guaranteed to be correct. This is the default.

NOT ENFORCED
Specifies that the referential constraint is not enforced by DB2 during
normal operations, such as insert, update, or delete. This option should
only be used when the data that is stored in the table is verified to
conform to the constraint by some other method than relying on the
database manager.

ENABLE QUERY OPTIMIZATION
Specifies that the constraint can be used for query optimization. DB2 uses the
information in query optimization using materialized query tables with the
assumption that the constraint is correct. This is the default.

check-constraint

CONSTRAINT constraint-name
Names the check constraint. The constraint name must be different from the
names of any referential, check, primary key, or unique key constraints
previously specified on the table.

If constraint-name is not specified, a unique constraint name is derived from the
name of the first column in the check-condition specified in the definition of the
check constraint.

1420 SQL Reference

CHECK (check-condition)
Defines a check constraint. At any time, the check-condition must be true or
unknown for every row of the table. A check-condition can evaluate to unknown
if a column that is an operand of the predicate is null. A check-condition that
evaluates to unknown does not violate the check constraint. A check-condition is
a search condition, with the following restrictions:
v It can refer only to columns of table table-name.
v The columns cannot be the following types of columns:

– LOB columns
– ROWID columns
– DECFLOAT columns
– distinct type columns that are based on LOB, ROWID, and DECFLOAT

data types
– XML columns
– security label columns
– Unicode columns in an EBCDIC table

v It can be up to 3800 bytes long, not including redundant blanks.
v It must not contain any of the following:

– Subselects
– Built-in or user-defined functions
– CAST specifications
– Cast functions other than those created when the distinct type was

created
– Host variables
– Parameter markers
– Special registers
– Global variables
– Columns that include a field procedure
– CASE expressions
– ROW CHANGE expressions
– Row expressions
– DISTINCT predicates
– GX constants (hexadecimal graphic string constants)
– Sequence references
– OLAP specifications

v If a check-condition refers to a LOB column (including a distinct type that is
based on a LOB), the reference must occur within a LIKE predicate.

v The AND and OR logical operators can be used between predicates. The
NOT logical operator cannot be used.

v The first operand of every predicate must be the column name of a column
in the table.

v The second operand in the check-condition must be either a constant or a
column name of a column in the table.
– If the second operand of a predicate is a constant, and if the constant is:

- A floating-point number, then the column data type must be floating
point.

Chapter 5. Statements 1421

|

|

- A decimal number, then the column data type must be either floating
point or decimal.

- An integer number, then the column data type must not be a small
integer.

- A small integer number, then the column data type must be small
integer.

- A decimal constant, then its precision must not be larger than the
precision of the column.

– If the second operand of a predicate is a column, then both columns of
the predicate must have:
- The same data type.
- Identical descriptions with the exception that the specification of the

NOT NULL and DEFAULT clauses for the columns can be different,
and that string columns with the same data type can have different
length attributes.

ORGANIZE BY HASH
Specifies that a hash is to be used for the data organization of the table.

If PARTITION BY RANGE is specified, and the IN clause specifies a table
space, the table space must be a partition by range universal table space.

If PARTITION BY RANGE is not specified, and an IN clause is specified, the
IN clause must identify a partition-by-growth universal table space.

ORGANIZE BY HASH must not be specified if the table is defined with
APPEND YES.

ORGANIZE BY HASH must not be specified if the table is using basic row
format.

UNIQUE
Specifies that DB2 enforces uniqueness of the hash key columns,
preventing the table from containing two or more rows with the same
value of the hash key.

(column-name,...)

The list of column names defines the hash key that is used to determine
where a row will be placed. Each column-name must be an unqualified
name that identifies a column of the table. The same column must not be
specified more than once and the specified columns must be defined as
NOT NULL. The number of specified columns must not exceed 64, and the
sum of their length attributes must not exceed 255. A specified column
cannot be any of the following types:
v a LOB column
v a DECFLOAT column
v a XML column
v a distinct type column that is based on one of the preceding data types
v a Unicode column in an EBCDIC table

If PARTITION BY RANGE is also specified, the list of column names must
specify all of the column names that are specified in partition-expression for
the table, and must specify the column names in the same order as
partition-expression. If the ORGANIZE BY clause contains more columns
than partition-expression, partition-expression determines the partition
number.

1422 SQL Reference

|

HASH SPACE integerK|M|G
Specifies the amount of fixed hash space to preallocate for the table. If the
table is partitioned by range, this is the space for each partition.

The default is 64M for a table in a partition-by-growth universal table
space or 64M for each partition of a partition by range universal table
space.

K Indicates that the integer value is to be multiplied by 1024 to
specify the hash space size in bytes. The integer must be between
256 and 268435456.

M Indicates that the integer value is to be multiplied by 1048576 to
specify the hash space size in bytes. The integer must be between 1
and 262144.

G Indicates that the integer value is to be multiplied by 1073741824 to
specify the hash space size in bytes. The integer must be between 1
and 256 for a partition by range table and must be between 1 and
131072 for a non-partitioned table.

If a value greater than 4G is specified, the data sets for the table space are
associated with a DFSMS data class that has been specified with extended
format and extended addressability.

LIKE table-name or view-name
Specifies that the columns of the table have exactly the same name and
description as the columns of the identified table or view.

The name that is specified after LIKE must identify a table or view that exists
at the current server or a declared temporary table. A view cannot contain
columns of length 0.

table-name or view-name must not contain a Unicode column in an EBCDIC
table.

The privilege set must implicitly or explicitly include the SELECT privilege on
the identified table or view. If the identified table or view contains a column
with a distinct type, the USAGE privilege on the distinct type is also needed.
An identified table must not be an auxiliary table or a clone table. An
identified view must not include a column that is an explicitly defined ROWID
column (including a distinct type that is based on a ROWID), an identity
column, or a row change timestamp column.

The use of LIKE is an implicit definition of n columns, where n is the number
of columns in the identified table (including implicitly hidden columns) or
view. A column of the new table that corresponds to an implicitly hidden
column in the existing table will also be defined as implicitly hidden. The
implicit definition includes all attributes of the n columns as they are described
in SYSCOLUMNS with the following exceptions:
v When a table is identified in the LIKE clause and a column in the table has a

field procedure, the corresponding column of the new table has the same
field procedure and the field description. However, the field procedure is not
invoked during the execution of the CREATE TABLE statement. When a
view is identified in the LIKE clause, none of the columns of the new table
will have a field procedure. This is true even in the case that a column of a
base table underlying the view has a field procedure defined.

v When a table is identified in the LIKE clause and a column in the table is an
identity column, the corresponding column of the new table inherits only

Chapter 5. Statements 1423

|
|

the data type of the identity column; none of the identity attributes of the
column are inherited unless the INCLUDING IDENTITY clause is specified.

v When a table is identified in the LIKE clause and a column in the table is a
security label column, the corresponding column of the new table inherits
only the data type of the security label column; none of the security label
attributes of the column are inherited.

v When a table is identified in the LIKE clause and the table contains a
ROWID column (explicitly-defined or implicitly hidden), the corresponding
columns of the new table inherits the ROWID columns.

v When a table is identified in the LIKE clause and the table contains row
change timestamp column, a transaction-start-ID column, a row-begin
column, or a row-end column, the corresponding column of the new table
inherits only the data type of the original column. The new column is not
considered a generated column.

v When a table is identified in the LIKE clause and the table contains an inline
LOB column, the corresponding columns of the new table will inherit the
inline attribute if the table is in an universal table space. Otherwise, the
inline attribute of the table identified in the LIKE clause is ignored.

v When a view is identified in the LIKE clause, the default value that is
associated with the corresponding column of the new table depends on the
column of the underlying base table for the view. If the column of the base
table does not have a default, the new column does not have a default. If the
column of the base table has a default, the default of the new column is:
– Null if the column of the underlying base table allows nulls.
– The default for the data type of the underlying base table if the

underlying base table does not allow nulls.

The above defaults are chosen regardless of the current default of the base
table column. The existence of an INSTEAD OF trigger does not affect the
inheritance of default values.

v When a table that uses table-controlled partitioning is identified in the LIKE
clause, the new table does not inherit partitioning scheme of that table. You
can add these partition boundaries by specifying ALTER TABLE with the
ADD PARTITION BY RANGE clause.

v The CCSID of the column is determined by the implicit or explicit CCSID
clause. For more information, see the CCSID clause.

v When a table is identified in the LIKE clause and the table includes a period,
the new table does not inherit the period.

v When the table that is identified in the LIKE clause is a system-period
temporal table, the new table is not a system-period temporal table.

v When the table that is identified in the LIKE clause has row access controls
or column access controls activated, the new table does not inherit the row
access controls or the column access controls.

The implicit definition does not include any other attributes of the identified
table or view. For example, the new table does not have a primary key or
foreign key. The table is created in the table space implicitly or explicitly
specified by the IN clause, and the table has any other optional clause only if
the optional clause is specified.

AS (fullselect)
Specifies that the table definition is based on the column definitions from the
result of a query expression. The use of AS (fullselect) is an implicit definition
of n columns for the table, where n is the number of columns that would result

1424 SQL Reference

from the fullselect. The columns of the new table are defined by the columns
that result from the fullselect. Every select list element must have a unique
name. The AS clause can be used in the select-clause to provide unique names.

The implicit definition includes the column name, data type, length, precision,
scale, and nullability characteristic of each of the result columns of fullselect.
The length of each column must not be 0. Other column attributes, such as
DEFAULT and IDENTITY, are not inherited from the fullselect. A column of the
new table that corresponds to an implicitly hidden column of a base table
referenced in the fullselect is not considered hidden in the new table. A
FIELDPROC is inherited for a column if the corresponding select item of the
fullselect is a column that can be mapped to a column of a base table or a view.
The new table contains a security label column if only one table in the fullselect
contains a security label column and the primary authorization ID of the
statement has a valid security label. If more than one table in the fullselect
contains a security label column, an error occurs.

The implicit definition does not include any other attributes of the identified
table or view. For example, the new table does not have a primary key or
foreign key. The table is created in the table space implicitly or explicitly
specified by the IN clause, and the table has any other optional clause only if
the optional clause is specified.

The owner of the table being created must have the SELECT privilege on the
tables or views referenced in the fullselect, or the privilege set must include
SYSADM or DBADM authority for the database in which the tables of the
fullselect reside. Having SELECT privilege means that the owner has at least
one of the following authorizations:
v Ownership of the tables or views referenced in the fullselect
v The SELECT privilege on the tables and views referenced in the fullselect
v SYSADM authority
v DBADM authority for the database in which the tables of the fullselect

reside

The rules for establishing the qualifiers for names used in the fullselect are the
same as the rules used to establish the qualifiers for table-name.

The fullselect must not:
v Result in a column having a ROWID, BLOB, CLOB, DBCLOB, or XML data

type or a distinct type based on these data types.
v Include multiple security label columns.
v Include a PREVIOUS VALUE or a NEXT VALUE expression.
v Refer to host variables or include parameter markers.
v Include an SQL data change statement in the FROM clause.
v Reference data that is encoded with different CCSID sets.
v Result in a column that is an array
v Reference a remote object.

If the WITH NO DATA clause is not specified, the new table is considered a
materialized query table.

WITH NO DATA
Specifies that the query is used only to define the attributes of the new table.
The table is not populated using the results of the query and the REFRESH
TABLE statement cannot be used.

Chapter 5. Statements 1425

|

If the tables that are specified in the fullselect use row access controls or column
access controls, the row access controls and the column access controls are not
defined for the new table.

copy-options
Specifies whether identity column attributes, row change timestamp attributes,
and column defaults are inherited from the definition of the source of the
result table.

EXCLUDING IDENTITY COLUMN ATTRIBUTES or INCLUDING IDENTITY COLUMN
ATTRIBUTES

Specifies whether identity column attributes are inherited from the
definition of the source of the result table.

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that identity column attributes are not inherited from the
definition of the source of the result table. This is the default.

INCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that, if available, identity column attributes (such as START
WITH, INCREMENT BY, and CACHE values) are inherited from the
definition of the source table. These attributes can be inherited if the
element of the corresponding column in the table, view, or fullselect is
the name of a column of a table or the name of a column of a view
that directly or indirectly maps to the column name of a base table
with the identity attribute. In other cases, the columns of the new
temporary table do not inherit the identity attributes. The columns of
the new table do not inherit the identity attributes in the following
cases:
v The select list of the fullselect includes multiple instances of an

identity column name (that is, selecting the same column more than
one time).

v The select list of the fullselect includes multiple identity columns
(that is, it involves a join).

v The identity column is included in an expression in the select list.
v The fullselect includes a set operation.

EXCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES or INCLUDING ROW CHANGE
TIMESTAMP COLUMN ATTRIBUTES

Specifies whether row change timestamp column attributes are inherited
from the definition of the source of the result table.

EXCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES
Specifies that row change timestamp column attributes are not
inherited from the source result table definition. This is the default.

INCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES
Specifies that, if available, row change timestamp column attributes are
inherited from the definition of the source table. These attributes can
be inherited if the element of the corresponding column in the table,
view, or fullselect is the name of a column of a table or the name of a
column of a view that directly or indirectly maps to the column name
of a base table defined as a row change timestamp column. In other
cases, the columns of the new temporary table do not inherit the row
change timestamp column attributes. The columns of the new table do
not inherit the row change timestamp attributes in the following cases:

1426 SQL Reference

v The select list of the fullselect includes multiple instances of a row
change timestamp column name (that is, selecting the same column
more than one time).

v The select list of the fullselect includes multiple row change
timestamp column names (that is, it involves a join).

v The row change timestamp column is included in an expression in
the select list.

v The fullselect includes a set operation (such as union).

EXCLUDING COLUMN DEFAULTS, INCLUDING COLUMN DEFAULTS, or USING TYPE
DEFAULTS

Specifies whether column defaults are inherited from the source result
table definition. EXCLUDING COLUMN DEFAULTS, INCLUDING
COLUMN DEFAULTS, and USING TYPE DEFAULTS must not be specified
if the LIKE clause is specified.

EXCLUDING COLUMN DEFAULTS
Specifies that the column defaults are not inherited from the definition
of the source table. The default values of the column of the new table
are either null or there are no default values. If the column can be null,
the default is the null value. If the column cannot be null, there is no
default value, and an error occurs if a value is not provided for a
column on an insert or update operation, or LOAD for the new table.

INCLUDING COLUMN DEFAULTS
Specifies that column defaults for each updatable column of the
definition of the source table are inherited. Columns that are not
updatable do not have a default defined in the corresponding column
of the created table. The existence of an INSTEAD OF trigger for a
view does not affect the inheritance of default values.

USING TYPE DEFAULTS
Specifies that the default values for the table depend on data type of
the columns that result from fullselect, as follows:

Data type
Default value

Numeric
0

Fixed-length character string
Blanks

Fixed-length graphic string
Blanks

Fixed-length binary string
Hexadecimal zeros

Varying-length string
A string of length 0

Fixed-length char or fixed-length graphic
A string of blanks

Fixed-length binary
Hexadecimal zeros

Date CURRENT DATE
Time CURRENT TIME
Timestamp(integer) without time zone

CURRENT TIMESTAMP(p) WITHOUT TIME ZONE where p is
the corresponding timestamp precision.

Chapter 5. Statements 1427

Timestamp(integer) with time zone
CURRENT TIMESTAMP(p) WITH TIME ZONE where p is the
corresponding timestamp precision.

WITH RESTRICT ON DROP
Indicates that the table can be dropped only by using REPAIR DBD DROP. In
addition, the database and table space that contain the table can be dropped
only by using REPAIR DBD DROP.

The WITH RESTRICT ON DROP clause can be removed using the ALTER
TABLE statement with the DROP RESTRICT ON DROP clause. After the WITH
RESTRICT ON DROP clause is removed from the definition of the table, the
table, the database, and the containing table space can be dropped using the
DROP statement.

IN database-name.table-space-name or IN DATABASE database-name
Identifies the database and table space in which the table is created. Both
forms are optional.

If you specify both a database and a table space, the database must be
described in the catalog on the current server. The database must not be
DSNDB06 or a work file database. The table space must belong to the database
that you specify and must not be an XML table space.

If you specify a database but not a table space, a table space is implicitly
created in database-name. The name of the table space is derived from the name
of the table. The qualifier of the table space is the same as the qualifier of the
table. The buffer pool that is used is the default buffer pool for user data that
is specified on installation panel DSNTIP1. If you specify a table space but not
a database, the database that contains the table space is used.

If you specify neither a table space or a database, a database is implicitly
created with the name DSNxxxxx, where xxxxx is a five-digit number. A table
space is also implicitly created.

If you specify a table space, it cannot be one of the following table spaces:
v A table space that was created implicitly
v A partitioned or a partition-by-growth table space that already contains a

table
v A LOB table space
v A table space that already contains a system-period temporal table, a history

table, an archive-enabled table, or an archive table

If you specify a partitioned table space, you cannot load or use the table until
its partitioned scheme is created.

You cannot specify the name of an implicitly created database, That is, you
specify a database name that is eight characters, DSNxxxxx, where xxxxx is a
five-digit number.

To create a table space implicitly, the privilege set must have: SYSADM or
SYSCTRL authority; DBADM, DBCTRL, or DBMAINT authority for the
database; or the CREATETS privilege for the database. You must also have the
USE privilege for the default buffer pool in the database and default storage
group.

If you specify a table space name, you must have SYSADM or SYSCTRL
authority, DBADM authority for the database, or the USE privilege for the
table space.

1428 SQL Reference

|
|

PARTITION BY RANGE or PARTITION BY SIZE
Specifies the partitioning scheme for the table.

PARTITION BY RANGE
Specifies the range partitioning scheme for the table (the columns that are
used to partition the data). When this clause is specified, the table space is
complete, and it is not necessary to create a partitioned index on the table.
If this clause is used, the ENDING AT clause cannot be used on a
subsequent CREATE INDEX statement for this table.

If this clause is specified, the IN database-name.table-space-name clause is
required. This clause applies only to tables in a partitioned table space.
PARTITION BY RANGE must not be specified for a table that is created in
a partition-by-growth table space.

partition-expression
Specifies the key data over which the range is defined to determine the
target data partition of the data.

column-name
Specifies the columns of the key. Each column-name must identify a
column of the table. Do not specify more than 64 columns or the
same column more than one time. The sum of length attributes of
the columns must not be greater than 255 - n, where n is the
number of columns that can contain null values. Do not specify a
qualified column name.

A timestamp with time zone column (or a column with a distinct
type that is based on the timestamp with time zone data type) can
only be specified as the last column in a partitioning key.

Do not specify a column for column-name if the column is defined
as follows:
v a LOB column (or a column with a distinct type that is based on

a LOB data type)
v a BINARY column (or a column with a distinct type that is

based on a BINARY data type)
v a VARBINARY column (or a column with a distinct type that is

based on a VARBINARY data type)
v a DECFLOAT column (or a column with a distinct type that is

based on a DECFLOAT data type)
v an XML column
v a row change timestamp column
v a Unicode column in an EBCDIC table

NULLS LAST
Specifies that null values are treated as positive infinity for
purposes of comparison.

ASC
Puts the entries in ascending order by the column. ASC is the
default.

DESC
Puts the entries in descending order by the column.

partition-element
Specifies ranges for a data partitioning key and the table space where
rows of the table in the range will be stored.

Chapter 5. Statements 1429

|

PARTITION integer
integer is the physical number of a partition in the table space. A
PARTITION clause must be specified for every partition of the
table space. In this context, highest means highest in the sorting
sequences of the columns. In a column defined as ascending (ASC),
highest and lowest have their usual meanings. In a column defined
as descending (DESC), the lowest actual value is highest in the
sorting sequence.

ENDING AT (constant, MAXVALUE, or MINVALUE, ...)
Defines the limit key for a partition boundary. Specify at least one
value (constant, MAXVALUE, or MINVALUE) after ENDING AT in
each PARTITION clause. You can use as many values as there are
columns in the key. The concatenation of all values is the highest
value of the key for ascending and the lowest for descending.

constant
Specifies a constant value with a data type that must conform
to the rules for assigning that value to the column. If a string
constant is longer or shorter than required by the length
attribute of its column, the constant is either truncated or
padded on the right to the required length. If the column is
ascending, the padding character is X'FF'. If the column is
descending, the padding character is X'00'. The precision and
scale of a decimal constant must not be greater than the
precision and scale of its corresponding column. A hexadecimal
string constant (GX) cannot be specified.

MAXVALUE
Specifies a value greater than the maximum value for the limit
key of a partition boundary (that is, all X'FF' regardless of
whether the column is ascending or descending). If all of the
columns in the partitioning key are ascending, a constant or
the MINVALUE clause cannot be specified following
MAXVALUE. After MAXVALUE is specified, all subsequent
columns must be MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for
the limit key of a partition boundary (that is, all X'00'
regardless of whether the column is ascending or descending).
If all of the columns in the partitioning key are descending, a
constant or the MAXVALUE clause cannot be specified
following MINVALUE. After MINVALUE is specified, all
subsequent columns must be MINVALUE.

The key values are subject to the following rules:
v The first value corresponds to the first column of the key, the

second value to the second column, and so on. Using fewer
values than there are columns in the key has the same effect as
using the highest or lowest values for the omitted columns,
depending on whether they are ascending or descending.

v The highest value of the key in any partition must be lower than
the highest value of the key in the next partition for ascending
cases.

v The values specified for the last partition are enforced. The value
specified for the last partition is the highest value of the key that

1430 SQL Reference

can be placed in the table. Any key values greater than the value
specified for the last partition are out of range.

v If the concatenation of all the values exceeds 255 bytes, only the
first 255 bytes are considered.

v If a key includes a ROWID column or a column with a distinct
type that is based on a ROWID data type, 17 bytes of the
constant that is specified for the corresponding ROWID column
are considered.

v If a null value is specified for the partitioning key and the key is
ascending, an error is returned unless MAXVALUE is specified.
If the key is descending, an error is returned unless MINVALUE
is specified..

HASH SPACE integerK|M|G
Specifies the amount of fixed hash space to preallocate for the
partition that is associated with the partition-element. If HASH
SPACE is omitted from the partition element, the HASH SPACE
value from the ORGANIZE BY clause is used.

If HASH SPACE is not specified, each partition will use the HASH
SPACE value specified in organization-clause.

The HASH SPACE keyword in partition-element must only be
specified if organization-clause is also specified.

K Indicates that the integer value is to be multiplied by 1024
to specify the hash space size in bytes. The integer must be
between 256 and 268435456.

M Indicates that the integer value is to be multiplied by
1048576 to specify the hash space size in bytes. The integer
must be between 1 and 262144.

G Indicates that the integer value is to be multiplied by
1073741824 to specify the hash space size in bytes. The
integer must be between 1 and 256 for a partition by range
table and must be between 1 and 131072 for a
non-partitioned table.

If a value greater than 4G is specified, the data sets for the table
space are associated with a DFSMS data class that has been
specified with extended format and extended addressability.

INCLUSIVE
Specifies that the specified range values are included in the data
partition.

PARTITION BY SIZE
Specifies that the table is created in a partition-by-growth table space. If the
IN clause is also specified, the IN clause must identify a
partition-by-growth table space.

EVERY integer G
Specifies that the table is to be partitioned by growth, every integer G
bytes. integer must not be greater than 256. If the IN clause identifies a
table space, integer must be the same as the DSSIZE value that is in
effect for the table space that will contain the table.

EDITPROC program-name
Identifies the user-written code that implements the edit procedure for the

Chapter 5. Statements 1431

table. The edit procedure must exist at the current server. The procedure is
invoked during the execution of an SQL data change statement or LOAD and
all row retrieval operations on the table.

An edit routine receives an entire table row, and can transform that row in any
way. Also, it receives a transformed row and must change the row back to its
original form.

You must not specify an edit routine for a table with a LOB column, or for an
EBCDIC table with a Unicode column.

For information on writing an EDITPROC exit routine, see Edit procedures
(DB2 Administration Guide).

WITH ROW ATTRIBUTES
Specifies that the edit procedure parameter list contains an address for the
description of a row. WITH ROW ATTRIBUTES must not be specified for a
table with an identity, LOB, XML, ROWID, or SECURITY LABEL column.
WITH ROW ATTRIBUTES is the default. When WITH ROW ATTRIBUTES
is specified, the column names in the table must not be longer than 18
EBCDIC SBCS characters in length.

WITHOUT ROW ATTRIBUTES
Specifies that the description of the row is not provided to the edit
procedure. On entry to the edit procedure, the address for the row
description in the parameter list contains a value of zero.

VALIDPROC program-name
Designates program-name as the validation exit routine for the table. Writing a
validation exit routine is described in DB2 Administration Guide.

The validation routine can inhibit a load, insert, update, or delete operation on
any row of the table: before the operation takes place, the procedure is passed
the row. The values that are represented by any LOB or XML columns in the
table are not passed to the validation routine. On an insert or update
operation, if the table has a security label column and the user does not have
write-down privilege, the user's security label value is passed to the validation
routine as the value of the column. After examining the row, the procedure
returns a value that indicates whether the operation should proceed. A typical
use is to impose restrictions on the values that can appear in various columns.

A table can have only one validation procedure at a time. In an ALTER TABLE
statement, you can designate a replacement procedure or discontinue the use
of a validation procedure.

If you omit VALIDPROC, the table has no validation routine.

You must not specify a validation routine for an EBCDIC table with a Unicode
column.

AUDIT
Identifies the types of access to this table that causes auditing to be performed.
For information about audit trace classes, see DB2 Administration Guide.

If a materialized query table is refreshed with the REFRESH TABLE statement,
the auditing also occurs during the REFRESH TABLE operation. AUDIT works
as usual for LOAD and SQL data change operations on a user-maintained
materialized query table.

NONE
Specifies that no auditing is to be done when this table is accessed. This is
the default.

1432 SQL Reference

|
|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_editroutine.htm#db2z_editroutine
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_editroutine.htm#db2z_editroutine

CHANGES
Specifies that auditing is to be done when the table is accessed during the
first insert, update, or delete operation. However, the auditing is done only
if the appropriate audit trace class is active.

ALL
Specifies that auditing is to be done when the table is accessed during the
first operation of any kind performed by a utility or application process.
However, the auditing is done only if the appropriate audit trace class is
active and the access is not performed with COPY, RECOVER, REPAIR, or
any stand-alone utility.

If the table is subsequently altered with an ALTER TABLE statement, the
ALTER TABLE statement is audited for successful and failed attempts in the
following cases, if the appropriate audit trace class is active:
v AUDIT attribute is changed to NONE, CHANGES, or ALL on an audited

or non-audited table.
v AUDIT CHANGES or AUDIT ALL is in effect.

OBID integer
Identifies the OBID to be used for this table. An OBID is the identifier for an
object's internal descriptor. The integer must be greater than 1 and must not
identify an existing or previously used OBID of the database. If you omit
OBID, DB2 generates a value.

The following statement retrieves the value of OBID:
SELECT OBID

FROM SYSIBM.SYSTABLES
WHERE CREATOR = ’ccc’ AND NAME = ’nnn’;

Here, nnn is the table name and ccc is the creator of the table.

DATA CAPTURE
Specifies whether the logging of the following actions on the table is
augmented by additional information:
v SQL data change operations
v Adding columns (using the ADD COLUMN clause of the ALTER TABLE

statement)
v Changing columns (using the ALTER COLUMN clause of the ALTER TABLE

statement)

For guidance on intended uses of the expanded log records, see:
v The description of data propagation to IMS in IMS DataPropagator: An

Introduction

v The instructions for using Remote Recovery Data Facility (RRDF) in Remote
Recovery Data Facility Program Description and Operations

v The instructions for reading log records in DB2 Administration Guide

If a materialized query table is refreshed with the REFRESH TABLE statement,
the logging of the augmented information occurs during the REFRESH TABLE
operation. DATA CAPTURE works as usual for insert, update, and delete
operations on a user-maintained materialized query table.

NONE
Do not record additional information to the log. This is the default.

CHANGES
Write additional data about SQL updates to the log. Information about the

Chapter 5. Statements 1433

values that are represented by any LOB or XML columns is not available.
Do not specify DATA CAPTURE CHANGES for tables that reside in table
spaces that specify NOT LOGGED.

CCSID encoding-scheme
Specifies the encoding scheme for string data stored in the table. If the IN
clause is specified with a table space, the value must agree with the encoding
scheme that is already in use for the specified table space. The specific CCSIDs
for SBCS, mixed, and graphic data are determined by the table space or
database specified in the IN clause. If the IN clause is not specified, the value
specified is used for the table being created as well as for the table space that
DB2 implicitly creates. The specific CCSIDs for SBCS, mixed, and graphic data
are determined by the default CCSIDs for the server for the specified encoding
scheme. The valid values are ASCII, EBCDIC, and UNICODE.

If the CCSID clause is not specified, the encoding scheme for the table depends
on the IN clause:
v If the IN clause is specified, the encoding scheme already in use for the table

space or database specified in the IN clause is used.
v If the IN clause is not specified, the encoding scheme of the new table is the

same as the scheme for the table that is specified in the LIKE clause.

If the CCSID clause is specified for a materialized query table, the encoding
scheme specified in the clause must be the same as the scheme for the result
CCSID of the fullselect. The CCSID must also be the same as the CCSID of the
table space for the table being created.

VOLATILE or NOT VOLATILE
Specifies how DB2 is to choose access to the table.

VOLATILE
Specifies that index access should be used on this table whenever possible
for SQL operations.

One instance in which you might want to use VOLATILE is for a table
whose size can vary greatly. If statistics are taken when the table is empty
or has only a few rows, those statistics might not be appropriate when the
table has many rows. Another instance in which you might want to use
VOLATILE is for a table that contains groups of rows, as defined by the
primary key on the table. All but the last column of the primary key of
such a table indicate the group to which a given row belongs. The last
column of the primary key is the sequence number indicating the order in
which the rows are to be read from the group. VOLATILE maximizes
concurrency of operations on rows within each group, since rows are
usually accessed in the same order for each operation.

NOT VOLATILE
Specifies that SQL access to this table should be based on the current
statistics. NOT VOLATILE is the default.

CARDINALITY
An optional keyword that currently has no effect, but that is provided for
DB2 family compatibility.

LOGGED or NOT LOGGED
Specifies whether changes that are made to the data in the implicitly created
table space are recorded in the log. This parameter applies to the implicitly
created table space and to all indexes of this table. XML table spaces and
indexes associated with the XML table spaces inherit the logging attribute from

1434 SQL Reference

the associated base table space. Auxiliary indexes also inherit the logging
attribute from the associated base table space.

Do not specify LOGGED or NOT LOGGED if the table space name is
specified by using the IN table-space-name clause.

LOGGED
Specifies that changes that are made to the data in the implicitly created
table space are recorded in the log.

LOGGED is the default.

NOT LOGGED
Specifies that changes that are made to data in the implicitly created table
space are not recorded in the log.

NOT LOGGED prevents undo and redo information from being recorded
in the log. However, control information for the implicitly created table
space will continue to be recorded in the log.

COMPRESS YES or COMPRESS NO
Specifies whether data compression applies to the rows of the implicitly
created table space. The default is specified by the value of the subsystem
parameter USE DATA COMPRESSION.

Do not specify COMPRESS YES or COMPRESS NO if the table space name is
specified by using the IN table-space-name clause.

COMPRESS YES
Specifies that data compression applies to the rows of the implicitly created
table space. The rows are not compressed until the LOAD or REORG
utility is run on the table in the implicitly created table space.

COMPRESS NO
Specifies that data compression is not used for the rows of the implicitly
created table space.

APPEND NO or APPEND YES
Specifies whether append processing is used for the table. The APPEND clause
must not be specified for a table that is created in a work file table space.

NO Specifies that append processing is not used for the table. For insert and
LOAD operations, DB2 will attempt to place data rows in a well clustered
manner with respect to the value in the row's cluster key column.

NO is the default.

YES
Specifies that data rows are to be placed into the table by disregarding the
clustering during insert and LOAD operations.

DSSIZE integer G
Specifies the maximum size for the implicitly created partition-by-growth or
range-partitioned universal table space. This value is only applied to the
implicitly created base table space, not to any associated implicitly created
XML or LOB table spaces.

Do not specify DSSIZE integer G if any of the following conditions are true:
v The table space name is specified by using the IN table-space-name clause.
v The PARTITION BY clause includes the EVERY integer-constant G clause.

The default is specified by the value of the subsystem parameter MAXIMUM
PARTITION SIZE.

Chapter 5. Statements 1435

For more detailed information about the DSSIZE clause, refer to “CREATE
TABLESPACE” on page 1455.

BUFFERPOOL bpname
Specifies the buffer pool be use for the implicitly created table space and
determines the page size of the table space. For 4KB, 8KB, 16KB and 32KB
page buffer pools, the page sizes are 4 KB, 8 KB, 16 KB, and 32 KB,
respectively.

bpname must identify an activated buffer pool. The privilege set must include
SYSADM authority, SYSCTRL authority, or the USE privilege on the buffer
pool.

Do not specify BUFFERPOOL bpname if the table space name is specified by
using the IN table-space-name clause.

If you do not specify the BUFFERPOOL clause for an implicitly created table
space, the default buffer pool of the database is used unless the record length
exceeds the page size. If the record length exceeds the page size, do not specify
the BUFFERPOOL clause. In this case, DB2 will choose a suitable buffer pool
for the implicitly table space.

Refer to “Naming conventions” on page 57 for more information about bpname.

MEMBER CLUSTER
Specifies that data that is inserted by an insert operation is not clustered by the
implicit clustering index (the first index) or the explicit clustering index. DB2
places the data in the implicitly created table space based on available space.

Do not specify MEMBER CLUSTER if the table space name is specified by
using the IN table-space-name clause.

TRACKMOD YES or TRACKMOD NO
Specifies whether DB2 tracks modified pages in the space map pages of the
implicitly created table space. The default is specified by the value of the
subsystem parameter TRACK MODIFIED PAGES.

Do not specify TRACKMOD YES or TRACKMOD NO if the table space
name is specified by using the IN table-space-name clause.

TRACKMOD YES
Changed pages are tracked in the space map pages to help improve
performance of incremental image copies.

TRACKMOD NO
Changed pages are not tracked in the space map pages. DB2 uses the
LRSN value in each page to determine whether a page has been changed.

materialized-query-definition
Specifies that the column definitions of the materialized query table are based
on the result of a fullselect. If materialized-query-table-options are specified, the
REFRESH TABLE statement can be used to populate the table with the results
of the fullselect.

column-name
Names the columns in the table. If a list of column names is specified, it
must consist of as many names as there are columns in the result table of
the fullselect. Each column-name must be unique and unqualified. If a list of
column names is not specified, the columns of the table inherit the names
of the columns of the result table of the fullselect.

A list of column names must be specified if the result table of the fullselect
has duplicate column names or an unnamed column. An unnamed column

1436 SQL Reference

is a column derived from a constant, function, expression, or set operation
that is not named using the AS clause of the select list.

AS (fullselect)
Specifies that the table definition is based on the column definitions from
the result of a query expression. The use of AS (fullselect) is an implicit
definition of n columns for the table, where n is the number of columns
that would result from the fullselect. The columns of the new table are
defined by the columns that result from the fullselect. Every select list
element must have a unique name. The AS clause can be used in the
select-clause to provide unique names.

The implicit definition includes the column name, data type, length,
precision, scale, and nullability characteristic of each of the result columns
of fullselect. Other column attributes, such as DEFAULT, IDENTITY, and
unique constraints, are not inherited from the fullselect. A column of the
new table that corresponds to an implicitly hidden column of a base table
referenced in the fullselect is not considered hidden in the new table. The
generated column attributes are not inherited from the fullselect. That is,
the new column of the materialized query table is not considered as a
generated column. A FIELDPROC is inherited for a column if the
corresponding select item of the fullselect is a column that can be directly
mapped to a column of a base table or a view in the FROM clause of the
fullselect. The materialized query table contains a security label column if
only one table in the fullselect contains a security label column and the
primary authorization ID of the statement has a valid security label.

Authorization for creating materialized query tables:
The owner of the table being created must have the SELECT
privilege on the tables or views referenced in the fullselect, or the
privilege set must include SYSADM or DBADM authority for the
database in which the tables of the fullselect reside. Having
SELECT privilege means that the owner has at least one of the
following authorizations:
v Ownership of the tables or views referenced in the fullselect
v The SELECT privilege on the tables and views referenced in the

fullselect
v SYSADM authority
v DBADM authority for the database in which the tables of the

fullselect reside

The rules for establishing the qualifiers for names used in the
fullselect are the same as the rules used to establish the qualifiers
for table-name.

The following restrictions apply when creating materialized query tables.
When fullselect does not satisfy the restrictions, an error occurs:

General restrictions: The following restrictions apply:
v The length of each result column of the fullselect must not be 0.
v The fullselect cannot contain a column of a LOB or XML data type.
v No more than one table in the fullselect can contain a security label

column.
v The fullselect must not contain a period specification.
v The object that is specified in the FROM clause of the fullselect cannot

be a view with columns of length 0.

Chapter 5. Statements 1437

v The fullselect cannot contain a reference to a created global temporary
table, a declared global temporary table, or another materialized query
table.

v The fullselect cannot directly or indirectly reference a base table that has
been activated for the row or column access control or a base table for
which a row permission or a column mask has been defined.

v The fullselect must not refer to host variables or include parameter
markers.

v The fullselect must not refer to global variables.

Additional restrictions when ENABLE QUERY OPTIMIZATION is in
effect:

v The fullselect must be a subselect.
v The outermost SELECT list of the subselect must not reference data that

is encoded with different CCSID sets.
v The subselect cannot include the following:

– A special register
– A scalar fullselect
– A row change timestamp column
– A ROW CHANGE expression
– An expression for which implicit time zone values apply (for

example, cast a timestamp to a timestamp with time zone)
– The RAND built-in function
– The RID built-in function
– A user-defined scalar or table function that is not deterministic or that

has external actions
– Any predicates that include a subquery
– A row expression predicate
– A join using the INNER JOIN syntax, or an outer join
– A lateral correlation
– A nested table expression or view that requires temporary

materialization
– A direct or indirect reference to a table that uses activated row or

column access controls, or a table for which row or column access
controls have been defined.

– A FETCH FIRST clause
– A reference to a global variable
– A collection-derived table (UNNEST)

v If a table with a security label is referenced, the security label column
must be referenced in the outer select list of the subselect.

v If the subselect references a view, the fullselect in the view definition
must satisfy all other restrictions.

refreshable-table-options
Specifies the options for a refreshable materialized query table. The
ORDER BY clause is allowed, but it is used only by REFRESH. The
ORDER BY clause can improve the locality of reference of data in the
materialized query table.

DATA INITIALLY DEFERRED
Specifies that the data is not inserted into the materialized query table

1438 SQL Reference

when it is created. Use the REFRESH TABLE statement to populate the
materialized query table, or use the INSERT statement to insert data
into a user-maintained materialized query table.

REFRESH DEFERRED
Specifies that the data in the table can be refreshed at any time using
the REFRESH TABLE statement. The data in the table only reflects the
result of the query as a snapshot at the time when the REFRESH
TABLE statement is processed or when it was last updated for a
user-maintained materialized query table.

MAINTAINED BY SYSTEM or MAINTAINED BY USER
Specifies how the data in the materialized query table is maintained.

MAINTAINED BY SYSTEM
Specifies that the materialized query table is maintained by the
system. Only the REFRESH statement is allowed on the table. This
is the default.

MAINTAINED BY USER
Specifies that the materialized query table is maintained by the
user, who can use the LOAD utility, an SQL data change statement,
a SELECT from data change statement, or REFRESH TABLE SQL
statements on the table.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether this materialized query table can be used for
optimization.

ENABLE QUERY OPTIMIZATION
Specifies that the materialized query table can be used for query
optimization. If the fullselect specified does not satisfy the
restrictions for query optimization, an error occurs.

ENABLE QUERY OPTIMIZATION is the default.

The fullselect must not contain a period specification.

DISABLE QUERY OPTIMIZATION
Specifies that the materialized query table cannot be used for query
optimization. The table can still be queried directly.

Notes

Owner privileges:
The owner of the table has all table privileges (see “GRANT (table or view
privileges)” on page 1721) with the ability to grant these privileges to
others. For more information about ownership of the object, see
“Authorization, privileges, permissions, masks, and object ownership” on
page 70.

Table design:
Designing tables is part of the process of database design. For information
on design, see Introduction to DB2 for z/OS.

Creating a table in a segmented table space:
A table cannot be created in a segmented table space if any of the
following conditions are true:
v The available space in the data set is less than the segment size specified

for the table space, and
v The data set cannot be extended.

Chapter 5. Statements 1439

Creating a table with graphic and mixed data columns:
You cannot create an ASCII or EBCDIC table with a GRAPHIC,
VARGRAPHIC, or DBCLOB column or a CHAR, VARCHAR, or CLOB
column defined as FOR MIXED DATA when the setting for installation
option MIXED DATA is NO.

Creating a table with distinct type columns based on LOB, ROWID, and
DECFLOAT columns:

Because a distinct type is subject to the same restrictions as its source type,
all the syntactic rules that apply to LOB columns (CLOB, DBCLOB, and
BLOB), ROWID columns, and DECFLOAT columns apply to distinct type
columns that are based on LOBs, row IDs, and DECFLOATs. For example,
a table cannot have both an explicitly defined ROWID column and a
column with a distinct type that is based on a row ID.

Tables with inline LOB columns:
If the 32K page size is exceeded for a table in an universal table space, DB2
recalculates the record size using 0 as the inline length for LOB columns
that do not specify the INLINE LENGTH clause. After the recalculation, if
the 32K page size is still exceeded, the CREATE TABLE statement returns
an error.

You cannot create a table with an inline LOB column in a table space that
has basic row format.

Creating a table with LOB columns:
A table with a LOB column (CLOB, DBCLOB, or BLOB) must also have a
ROWID column and one or more auxiliary tables. When you create the
table, DB2 implicitly generates a ROWID column for you. This is called an
implicitly hidden ROWID column, and DB2:
v Creates the column with a name of

DB2_GENERATED_ROWID_FOR_LOBSnn.
DB2 appends nn only if the column name already exists in the table,
replacing nn with 00 and incrementing by 1 until the name is unique
within the row.

v Defines the column as GENERATED ALWAYS.
v Appends the implicitly hidden ROWID column to the end of the row

after all the other explicitly defined columns.

For example, assume that DB2 generated an implicitly hidden ROWID
column named DB2_GENERATED_ROWID_FOR_LOBS for table
MYTABLE. The result table for a SELECT * statement for table MYTABLE
would not contain that ROWID column. However, the result table for
SELECT COL1, DB2_GENERATED_ROWID_FOR_LOBS would include the
implicitly hidden ROWID column.

If the MIXED DATA subsystem parameter is set to yes, and a lowercase or
mixed case hexadecimal constant is specified as the default value for a
LOB column, the CREATE TABLE statement returns an error.

The definition of the table is marked incomplete until an auxiliary table is
created in a LOB table space for each LOB column in the base table and
index is created on each auxiliary table. The auxiliary table stores the
actual values of a LOB column. If you create a table with a LOB column in
a partitioned table space, there must be one auxiliary table defined for each
partition of the base table space.

Unless DB2 implicitly creates the LOB table space, auxiliary table, and
index on the auxiliary table for each LOB column in the base table, you

1440 SQL Reference

need to create these objects using the CREATE TABLESPACE, CREATE
AUXILIARY TABLE, and CREATE INDEX statements.

If the table space that contains the table is explicitly created and the value
of the CURRENT RULES special register is 'STD' when the CREATE
TABLE statement is processed, or the table space that contains the table is
implicitly created, DB2 implicitly creates the LOB table space, auxiliary
table, and index on the auxiliary table for each LOB column in the base
table.

The privilege set must include the following privileges:
v The USE privilege on the buffer pool and the storage group that is used

by the XML objects
v If the base table space is explicitly created, CREATETS is also required

on the database that contains the table (DSNDB04 if the database is
implicitly created)

DB2 chooses the names of implicitly created objects using these
conventions:

LOB table space
Name is 8 characters long, consisting of an 'L' followed by 7
random characters.

auxiliary table
Name is 18 characters long. The first five characters of the name
are the first five characters of the name of the base table. The
second five characters are the first five characters of the name of
the LOB column. The last eight characters are randomly generated.
If a base table name or a LOB column name is less than five
characters, DB2 adds underscore characters to the name to pad it
to a length of five characters.

index on the auxiliary table
Name is 18 characters long. The first character of the name is an 'I'.
The next ten characters are the first ten characters of the name of
the auxiliary table. The last seven characters are randomly
generated. The index has the COPY NO attribute.

The other attributes of these implicitly created objects are those that would
have been created by their respective CREATE statements with all optional
clauses omitted, with the following exceptions:
v The database name is the database name of the base table.
v If the LOB table space is implicitly created, the buffer pool is determined

by the DEFAULT BUFFER POOL FOR USER LOB DATA fields of
installation panel DSNTIP1. The appropriate USE privilege is required
on that buffer pool.

Utility REPORT TABLESPACESET identifies the LOB table spaces that DB2
implicitly created.

Creating a table with an XML column:
When a table is created with an XML column, an XML table space, XML
table, and a node ID index and document ID index are implicitly created.

The privilege set must include the following privileges:
v The USE privilege on the buffer pool and the storage group that is used

by the XML objects

Chapter 5. Statements 1441

v If the base table space is explicitly created, CREATETS is also required
on the database that contains the table (DSNDB04 if the database is
implicitly created)

The buffer pool for the XML table space is determined by the DEFAULT
BUFFER POOL FOR USER XML DATA fields of installation panel
DSNTIP1. The appropriate USE privilege is required on that buffer pool.

The XML table space will have a larger DSSIZE than the base table space if
the base table space is partitioned by range. If the base table space is
partitioned by growth, the default DSSIZE of 4GB will be used for the
XML table space. The DSSIZE for an XML table space that is associated
with a partitioned by range base table space is determined as follows.

Table 118. Default DSSIZE for XML table spaces, given base table space DSSIZE and page
size

Base table space
DSSIZE

4KB base page
size

8KB base page
size

16KB base page
size

32KB base page
size

1GB - 4GB 4GB 4GB 4GB 4GB

8GB 32GB 16GB 16GB 16GB

16GB 64GB 32GB 16GB 16GB

32GB 64GB 64GB 32GB 16GB

64GB 64GB 64GB 64GB 32GB

128GB 256GB 256GB 128GB 64GB

256GB 256GB 256GB 256GB 128GB

For example: for a base table space that has a DSSIZE of 8GB and a page
size of 8KB, the XML table space will have a DSSIZE of 16GB.

Naming convention for implicitly created XML objects:
Implicitly created XML table spaces names will be Xyyynnnn, where yyy is
derived from the first three bytes of the base table name (if the name is
shorter than 3, yyy is padded with X). nnnn is a numeric string that will
start at 0000 and be incremented by 1 until a unique number is found.

Implicitly created XML table names will be Xyyyyyyyyyyyyyyyyyynnn,
where yyyyyyyyyyyyyyyyyy is the first 18 UTF-8 bytes of the base table
name or of the entire name if it is less than 18. nnn will only be appended
if the name already exists in the table. If the name already exists, nnn will
be replaced with 000 and will be incremented by 1 until the name is
unique.

Implicitly created document ID index names will be
I_DOCIDyyyyyyyyyyyyyyyyyynnn, where yyyyyyyyyyyyyyyyyy is the first 18
UTF-8 bytes of the base table name or the entire name if it is less than 18.
nnn will only be appended if the index already exists in the table. If the
index already exists, nnn will be replaced with 000 and will be incremented
by 1 until the name is unique.

Implicitly created node ID index names will be
I_NODEIDyyyyyyyyyyyyyyyyyynnn, where yyyyyyyyyyyyyyyyyy is the first
18 UTF-8 bytes of the XML table name or the entire name if it is less than
18. nnn will only be appended if the index already exists in the table. If the
index already exists, nnn will be replaced with 000 and will be incremented
by 1 until the name is unique.

1442 SQL Reference

Creating a table with an identity column:
When a table has an identity column, DB2 can automatically generate
sequential numeric values for the column as rows are inserted into the
table. Thus, identity columns are ideal for primary keys. Identity columns
and ROWID columns are similar in that both types of columns contain
values that DB2 generates. ROWID columns are used in large object (LOB)
table spaces and can be useful in direct-row access. ROWID columns
contain values of the ROWID data type, which returns a 40 byte
VARCHAR value that is not regularly ascending or descending. ROWID
data values are therefore not well suited to many application uses, such as
generating employee numbers or product numbers. For data that is not
LOB data and that does not require direct-row access, identity columns are
usually a better approach, because identity columns contain existing
numeric data types and can be used in a wide variety of uses for which
ROWID values would not be suitable.

When a table is recovered to a point-in-time, it is possible that a large gap
in the generated values for the identity column might result. For example,
assume a table has an identity column that has an incremental value of 1
and that the last generated value at time T1 was 100 and DB2 subsequently
generates values up to 1000. Now, assume that the table space is recovered
back to time T1. The generated value of the identity column for the next
row that is inserted after the recovery completes will be 1001, leaving a
gap from 100 to 1001 in the values of the identity column.

If you want to ensure that an identity column has unique values, create a
unique index on the column.

Creating a table with a LONG VARCHAR or LONG VARGRAPHIC column:
Although the syntax LONG VARCHAR and LONG VARGRAPHIC is
allowed for compatibility with previous releases of DB2, its use is not
encouraged. VARCHAR(integer) and VARGRAPHIC(integer) is the
recommended syntax, because after the CREATE TABLE statement is
processed, DB2 considers a LONG VARCHAR column to be VARCHAR
and a LONG VARGRAPHIC column to be VARGRAPHIC.

When a column is defined using the LONG VARCHAR or LONG
VARGRAPHIC syntax, DB2 determines the length attribute of the column.
You can use the following information, which is provided for existing
applications that require the use of the LONG VARCHAR or
LONGVARGRAPHIC syntax, to calculate the byte count and the character
count of the column.

To calculate the byte count, use this formula:

2*(INTEGER((INTEGER((m-i-k)/j))/2))

Where:

m Is the maximum row size (8 less than the maximum record size)

i Is the sum of the byte counts of all columns in the table that are
not LONG VARCHAR or LONG VARGRAPHIC

j is the number of LONG VARCHAR and LONG VARGRAPHIC
columns in the table

k k is the number of LONG VARCHAR and LONG VARGRAPHIC
columns that allow nulls

To find the character count:

Chapter 5. Statements 1443

1. Find the byte count.
2. Subtract 2.
3. If the data type is LONG VARGRAPHIC, divide the result by 2. If the

result is not an integer, drop the fractional part.

Considerations for a Unicode column in an EBCDIC table:
A column in an EBCDIC table can be defined for data encoded as Unicode
UTF8 or UTF16. Specify the CCSID clause as the last part of the
built-in-type specification to define a Unicode column. The CCSID clause
can only be specified with the VARCHAR or VARGRAPHIC keywords as
indicated, where n is the declared length:

Unicode encoding Valid column definition

UTF8 VARCHAR(n) CCSID 1208

UTF16 VARGRAPHIC(n) CCSID 1200

If the IN DATABASE clause is specified:
If you specify IN DATABASE (either explicitly or by default), but do not
specify a table space, a table space is implicitly created in database-name.
The name of the table space is derived from the table name. The qualifier
of the table space is the same as the qualifier of the table. The owner of the
table space is SYSIBM.

If range-partitioning is not specified, the implicitly created table space is a
partition-by-growth table space with MAXPARTITIONS 256, SEGSIZE 32,
and DSSIZE 4G.

If range-partitioning is specified, the table space will be partitioned based
on the number of parts specified on the CREATE TABLE statement with
defaults of SEGSIZE 32, LOCKSIZE ANY, and LOCKMAX SYSTEM.

If the IN clause is not specified:
If you do not specify the IN clause, the DB2 subsystem will implicitly
create a table space as described previously, but the DB2 subsystem will
also choose a database. The DB2 subsystem creates a name in the form of
DSNnnnnn, where nnnnn is between 00001 and the maximum value of the
sequence SYSIBM.DSNSEQ_IMPLICITDB, which has a default of 10000,
inclusive. The owner of the database is SYSIBM.
v If DSNnnnnn already exists and is an implicitly created database, the

DB2 subsystem creates the table in that database.
v If DSNnnnnn does not exist, the DB2 subsystem creates a database with

the name DSNnnnnn.

If DSNnnnnn cannot be created because of a deadlock, timeout, or resource
unavailable condition, the DB2 subsystem increments nnnnn by one and
tries the resultant database name. If the DB2 subsystem reaches the
maximum value of the sequence SYSIBM.DSNSEQ_IMPLICITDB, and the
corresponding database name is not available, the DB2 subsystem sets
nnnnn to 00001 and tries the resultant database name. If the DB2
subsystem attempts to create the table a number of times that is equal to
the maximum value of the sequence SYSIBM.DSNSEQ_IMPLICITDB
without success, an error occurs.

Implicitly created table space attributes:
The attributes of the implicitly created table space can be changed by using
the “ALTER TABLESPACE” on page 1074 statement.

1444 SQL Reference

|
|
|
|
|
|

|||

||

||
|

|

Defining a system-period temporal table:
A system-period temporal table definition includes the following:
v A system period named SYSTEM_TIME which is defined using a

row-begin column and a row-end column.
v A transaction-start-ID column.
v A system-period data versioning definition which includes the name of

the associated history table.

To ensure that the history table cannot be implicitly dropped when a
system-period temporal table is dropped, use the WITH RESTRICT ON
DROP clause in the definition of the history table.

Defining an application-period temporal table:
An application-period temporal table definition includes an application
period named BUSINESS_TIME. The application period is defined using a
begin timestamp column and an end timestamp column.

Data change operations on an application-period temporal table might
result in an automatic insert of one or two additional rows when a row is
updated or deleted. When an update or delete of a row in an
application-period temporal table is specified for a portion of the period
that is represented by that row, the row is updated or deleted and one or
two rows are automatically inserted to represent the portion of the row
that is not changed. New values are generated for each generated column
in an application-period temporal table for each row that is automatically
inserted as a result of an update or delete operation on the table. If a
generated column is defined as part of a unique or primary key, parent key
in a referential constraint, or unique index, it is possible that an automatic
insert will violate a constraint or index, in which case an error is returned.

Bitemporal tables:
A table that is defined for system-period data versioning and contains a
BUSINESS_TIME period is referred to as a bitemporal table.

Considerations for transaction-start-ID columns:
A transaction-start-ID column contains a null value if the column allows
null values. A row-begin column which is unique from other row-begin
column values that are generated for other transactions exists with the
transaction-start-ID column. Given that the column might contain null
values, consider using one of the following methods when retrieving a
value from the column:
COALESCE (transaction_start_id_col, row_begin_col)
CASE WHEN transaction_start_id_col IS NOT NULL
THEN transaction_start_id_col
ELSE row_begin_col

END

If the IN clause is specified with ORGANIZE BY HASH:
If you specify IN DATABASE (either explicitly or by default), and
ORGANIZE BY HASH, DB2 will calculate an optimum buffer pool for
hash organization based on the definition of the table and validate the
calculated buffer pool with the buffer pool of the explicitly created table
space. If the buffer pool sizes are different, DB2 will return an error.

If the table is in a range-partitioned universal table space, the DSSIZE
value for the table space must be large enough to fit the HASH SPACE
specification for each partition.

Chapter 5. Statements 1445

If the table is in a partition-by-growth table space, the total space
calculated from the DSSIZE and MAXPARTITIONS values for the table
space must be large enough for the implicitly or explicitly specified HASH
SPACE.

If the IN clause is not specified with ORGANIZE BY HASH:
If you do not specify IN DATABASE (either explicitly or by default), DB2
will use the default DSSIZE of 4G for each partition for a range-partition
universal table space or use the value that is specified in the partitioning
clause. The hash space value that is specified on CREATE TABLE will be
validated, per part, to ensure that the specified DSSIZE is adequate. If the
DSSIZE is not adequate, an error will be returned.

If the maximum number of partitions needed for the specified hash space
is more than the maximum number of partitions allowed, DB2 to will
return an error.

If the selected buffer pool is not available, a error will be returned.

Creating a table with hash organization and LOB columns:
If the table space is a partition-by-growth universal table space, DB2 will
preallocate as many partitions as needed depending on the value specified
for HASH SPACE. If DB2 needs to implicitly create the LOB object in a
new partition, the privilege set for the implicitly created LOB objects must
include the USE privilege on the buffer pool for the LOB table space.

Hash space and DB2 page size:
If the specified hash space is less than or equal to 64 MB (the DB2 default),
DB2 will add extra space for DB2 system pages. If the specified hash space
is greater than 64 MB, DB2 will use part of the hash space for DB2 system
pages. The amount of space needed for DB2 system pages depends on
SEGSIZE and PAGESIZE. The larger the SEGSIZE and/or PAGESIZE
becomes, the larger the requirement for DB2 system pages. DB2 can reserve
up to 5 MB for system pages for the highest SEGSIZE value (64) and
PAGESIZE value (32K).

Hash space and DSSIZE:
Depending on certain table space characteristics, DB2 needs to reserve
space for the hash overflow area. Therefore, the amount of hash space
cannot be equal to the DSSIZE value. The maximum amount of hash space
that can be specified is approximately 20% less than the DSSIZE value.
DB2 returns an error if the amount of hash space is too large. If the
amount of hash space is too large, specify a larger value of DSSIZE, or
decrease the amount of hash space.

Specifying APPEND with ORGANIZE BY HASH:
Append processing is not applicable to tables with hash organization since
there is no key clustering in hash organization. For insert operations into
tables with hash organization, DB2 will use the internal hash algorithm to
determine the location of the row.

Restrictions for tables with hash organization:
Tables that use hash organization are subject to the following restrictions:
v A table that is defined to use hash organization cannot be created in a

LOB table space or XML table space.
v ORGANIZE BY HASH must not be specified if the table space is defined

with the MEMBER CLUSTER clause.

1446 SQL Reference

v The MAXROWS clause is applicable only to the hash overflow area of
the table space for tables with hash organization. The fixed hash area of
each page will contain as many rows as it can hold, up to a maximum of
255.

v The ORGANIZE BY HASH UNIQUE (column-list) clause is required
when specifying HASH SPACE integer K|M|G in the partition-element.
The organization-clause applies to the entire table and the partition-element
clause applies at the partition level.

v DB2 will automatically create a hash overflow index when a table is
created with hash organization.

Implicitly created table spaces:
If the table space is implicitly created, all of the following required system
objects will also be implicitly created:
v The enforcing primary key index
v The enforcing unique key index
v Any necessary LOB table spaces, auxiliary table spaces, and auxiliary

indexes
v The ROWID index (if the ROWID column is defined as GENERATED

BY DEFAULT)

When DB2 implicitly creates a base table space for a table with LOB
columns that can have inline LOBs, DB2 creates the base table space in
reordered row format, regardless of the value of the RRF subsystem
parameter.

When DB2 implicitly creates a table space for a table with hash
organization, DB2 creates the table space in reordered row format,
regardless of the value of the RRF subsystem parameter.

Implicitly created indexes:
When the PRIMARY KEY or UNIQUE clause is used in the CREATE
TABLE statement and the CREATE TABLE statement is processed by the
schema processor or the table space that contains the table is implicitly
created, DB2 implicitly creates the unique indexes used to enforce the
uniqueness of the primary or unique keys.

When a ROWID column is defined as GENERATED BY DEFAULT in the
CREATE TABLE statement, and the CREATE TABLE statement is
processed by SET CURRENT RULES = 'STD' or the table space that
contains the table is implicitly created, DB2 implicitly creates the unique
indexes used to enforce the uniqueness of the ROWID column.

The privilege set must include the USE privilege of the buffer pool.

Each index is created as if the following CREATE INDEX statement were
issued:
CREATE UNIQUE INDEX xxx ON table-name (column1,...)

Where:
v xxx is the name of the index that DB2 generates.
v table-name is the name of the table specified in the CREATE TABLE

statement.
v (column1,...) is the list of column names that were specified in the

UNIQUE or PRIMARY KEY clause of the CREATE TABLE statement, or
the column is a ROWID column that is defined as GENERATED BY
DEFAULT.

Chapter 5. Statements 1447

For more information about the schema processor, see DB2 Administration
Guide.

In addition, if the table space that contains the table is implicitly created,
DB2 will check the DEFINE DATA SET subsystem parameter to determine
whether to define the underlying data set for the index space of the
implicitly created index on the base table.

If DEFINE DATA SET is NO, the index is created as if the following
CREATE INDEX statement is issued:
CREATE UNIQUE INDEX xxx ON table-name (column1,...) DEFINE NO

Maximum record size:
The maximum record size of a table depends on the page size of the table
space, whether the table space is organized for hash access, and whether
the EDITPROC clause is specified, as shown in Table 119.

The initial page size of the table space is the size of its buffer, which is
determined by the BUFFERPOOL clause that was explicitly or implicitly
specified when the table space was created. When the record size reaches
90 percent of the maximum record size for the page size of the table space,
the next largest page size is automatically used.

Table 119. Maximum record size, in bytes

Page Size
= 4KB

Page Size
= 8KB

Page Size
= 16KB

Page Size
= 32KB

Non-hash table 4056 8138 16330 32714

Non-hash table
with
EDITPROC=YES

4046 8128 16320 32704

Hash table (hash
home page)

3817 7899 16091 32475

Hash table with
EDITPROC=YES
(hash home
page)

3807 7889 16081 32465

The maximum record size corresponds to the maximum length of a
VARCHAR column if that column is the only column in the table.

If the table space that contains the table is implicitly created, the proper
buffer pool size is chosen according to the actual record size. If the record
size reaches 90% of the maximum record size for the page size of the table
space, the next largest page size will be used. Table 120 shows 90% of the
maximum record size:

Table 120. 90% of Maximum record size, in bytes

Page Size
= 4KB

Page Size
= 8KB

Page Size
= 16KB

Page Size
= 32KB

Non-hash table 3650 7324 14697 29443

Non-hash table
with
EDITPROC=YES

3641 7315 14688 29434

1448 SQL Reference

Table 120. 90% of Maximum record size, in bytes (continued)

Page Size
= 4KB

Page Size
= 8KB

Page Size
= 16KB

Page Size
= 32KB

Hash table (hash
home page)

3435 7109 14482 29228

Hash table with
EDITPROC=YES
(hash home
page)

3426 7100 14473 29219

Byte counts:
The sum of the byte counts of the columns must not exceed the maximum
row size of the table. The maximum row size is eight less than the
maximum record size.

For columns that do not allow null values, Table 121 gives the byte counts
of columns by data type. For columns that allow null values, the byte
count is one more than shown in the table.

Table 121. Byte counts of columns by data type

Data Type Byte Count

INTEGER 4

SMALLINT 2

BIGINT 8

FLOAT(n) If n is between 1 and 21, the byte count is 4. If n is between 22
and 53, the byte count is 8.

DECIMAL INTEGER(p/2)+1, where p is the precision

DECFLOAT(16) 9

DECFLOAT(34) 17

CHAR(n) n

VARCHAR(n) n+2

CLOB 6

Inline CLOB 6 + inline byte count

GRAPHIC(n) 2n

VARGRAPHIC(n) 2n+2

DBCLOB 6

Inline DBCLOB 6 + (inline char count * 2)

BINARY(n) n

VARBINARY(n) n+2

BLOB 6

Inline BLOB 6 + inline byte count

DATE 4

TIME 3

TIMESTAMP(p) WITHOUT
TIME ZONE

INTEGER((p+1)/2) + 7 where p is the precision

TIMESTAMP(p) WITH
TIME ZONE

INTEGER((p+1)/2) + 9 where p is the precision

Chapter 5. Statements 1449

Table 121. Byte counts of columns by data type (continued)

Data Type Byte Count

ROWID 19

distinct type The length of the source data type upon which the distinct type
was based

Creating a materialized query table:
If the fullselect in the CREATE TABLE statement contains a SELECT *, the
select list of the subselect is determined at the time the materialized query
table is created. In addition, any references to user-defined functions are
resolved at the same time. The isolation level at the time when the
CREATE TABLE statement is executed is the isolation level for the
materialized query table. After a materialized query table is created, the
REFRESH_TIME column of the row for the table in the SYSIBM.SYSVIEWS
catalog table contains the default timestamp.

The owner of a materialized query table has all the table privileges with
the grant option on the table irrespective of whether the owner has the
necessary privileges on the base tables, views, functions, and sequences.

No unique constraints or unique indexes can be created for materialized
query tables. Thus, a materialized query table cannot be a parent table in a
referential constraint.

When you are creating user-maintained materialized query tables, you
should create the materialized query table with query optimization
disabled and then enable the table for query optimization after it is
populated. Otherwise, DB2 might rewrite queries to use the empty
materialized query table, and you will not get accurate results.

Considerations for implicitly hidden columns:
A column that is defined as implicitly hidden is not part of the result table
of a query that specifies * in a SELECT list. However, an implicitly hidden
column can be explicitly referenced in a query. For example, an implicitly
hidden column can be referenced in the SELECT list or in a predicate in a
query. Additionally, an implicitly hidden column can be explicitly
referenced in a COMMENT, CREATE INDEX statement, ALTER TABLE
statement, INSERT statement, MERGE statement, UPDATE statement, or
RENAME statement. An implicitly hidden column can be referenced in a
referential constraint. A REFERENCES clause that does not contain a
column list refers implicitly to the primary key of the parent table. It is
possible that the primary key of the parent table includes a column defined
as implicitly hidden. Such a referential constraint is allowed.

If the SELECT list of the fullselect of a materialized query definition
explicitly refers to an implicitly hidden column, that column will be part of
the materialized query table.

If the SELECT list of the fullselect of a view definition (CREATE VIEW
statement) explicitly refers to an implicitly hidden column, that column
will be part of the view, however the view column is not considered
'hidden'.

Restrictions on field procedures, edit procedures, and validation exit procedures:
Field procedures, edit procedures, and validation exit procedures cannot be
used on tables that have column names that are larger than 18 EBCDIC
bytes. If you have tables that have field procedures or validation exit

1450 SQL Reference

procedures and you add a column where the column name is larger than
18 bytes, the field procedures and validation exit procedures for the table
will be invalidated.

Consider using triggers to replace the functionality on field procedures,
edit procedures, and validation exit procedures on tables where the column
names are larger than 18 EBCDIC bytes.

Restrictions on SQL data change statements in the same unit of work as
CREATE TABLE:

SQL data change statements cannot follow, in the same unit of work,
CREATE TABLE statements that specify the PARTITION BY clause.

Creating a table while a utility runs:
You cannot use CREATE TABLE while a DB2 utility has control of the table
space implicitly or explicitly specified by the IN clause.

Restrictions involving pending definition changes:
A CREATE TABLE statement is not allowed if there are pending changes to
the definition of the table space, if the CREATE TABLE statement specifies
a FOREIGN KEY clause that reference a column for which there are
pending definition changes, or if the CREATE TABLE statement specifies a
materialized query table definition that references a table for which there
are pending definition changes.

Alternative syntax and synonyms:
To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following clauses:
v NOCACHE (single clause) as a synonym for NO CACHE
v NOCYCLE (single clause) as a synonym for NO CYCLE
v NOMINVALUE (single clause) as a synonym for NO MINVALUE
v NOMAXVALUE (single clause) as a synonym for NO MAXVALUE
v NOORDER (single clause) as a synonym for NO ORDER
v PART integer VALUES can be specified as an alternative to PARTITION

integer ENDING AT.
v VALUES as a synonym for ENDING AT
v DEFINITION ONLY as a synonym for WITH NO DATA
v SUMMARY between CREATE and TABLE
v TIMEZONE can be specified as an alternative to TIME ZONE.

Examples

Example 1: Create a table named DSN8B10.DEPT in the table space DSN8S11D of
the database DSN8D11A. Name the five columns DEPTNO, DEPTNAME,
MGRNO, ADMRDEPT, and LOCATION, allowing only MGRNO and LOCATION
to contain nulls, and designating DEPTNO as the only column in the primary key.
All five columns hold character string data. Assuming a value of NO for the field
MIXED DATA on installation panel DSNTIPF, all five columns have the subtype
SBCS.

CREATE TABLE DSN8B10.DEPT
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16) ,
PRIMARY KEY(DEPTNO))
IN DSN8D11A.DSN8S11D;

Chapter 5. Statements 1451

|
|
|
|
|
|
|

Example 2: Create a table named DSN8B10.PROJ in an implicitly created table space
of the database DSN8D11A. Assign the table a validation procedure named
DSN8EAPR.

CREATE TABLE DSN8B10.PROJ
(PROJNO CHAR(6) NOT NULL,
PROJNAME VARCHAR(24) NOT NULL,
DEPTNO CHAR(3) NOT NULL,
RESPEMP CHAR(6) NOT NULL,
PRSTAFF DECIMAL(5,2) ,
PRSTDATE DATE ,
PRENDATE DATE ,
MAJPROJ CHAR(6) NOT NULL)
IN DATABASE DSN8D11A
VALIDPROC DSN8EAPR;

Example 3: Assume that table PROJECT has a non-primary unique key that consists
of columns DEPTNO and RESPEMP (the department number and employee
responsible for a project). Create a project activity table named ACTIVITY with a
foreign key on that unique key.

CREATE TABLE ACTIVITY
(PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
ACTDEPT CHAR(3) NOT NULL,
ACTOWNER CHAR(6) NOT NULL,
ACSTAFF DECIMAL(5,2) ,
ACSTDATE DATE NOT NULL,
ACENDATE DATE ,
FOREIGN KEY (ACTDEPT,ACTOWNER)

REFERENCES PROJECT (DEPTNO,RESPEMP) ON DELETE RESTRICT)
IN DSN8D11A.DSN8S11D;

Example 4: Create an employee photo and resume table EMP_PHOTO_RESUME
that complements the sample employee table. The table contains a photo and
resume for each employee. Put the table in table space DSN8D11A.DSN8S11E. Let
DB2 always generate the values for the ROWID column.

CREATE TABLE DSN8B10.EMP_PHOTO_RESUME
(EMPNO CHAR(6) NOT NULL,
EMP_ROWID ROWID NOT NULL GENERATED ALWAYS,
EMP_PHOTO BLOB(110K),
RESUME CLOB(5K),
PRIMARY KEY (EMPNO))
IN DSN8D11A.DSN8S11E
CCSID EBCDIC;

Example 5: Create an EMPLOYEE table with an identity column named EMPNO.
Define the identity column so that DB2 will always generate the values for the
column. Use the default value, which is 1, for the first value that should be
assigned and for the incremental difference between the subsequently generated
consecutive numbers.

CREATE TABLE EMPLOYEE
(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
ID SMALLINT,
NAME CHAR(30),
SALARY DECIMAL(5,2),
DEPTNO SMALLINT)
IN DSN8D11A.DSN8S11D;

Example 6: Assume a very large transaction table named TRANS contains one row
for each transaction processed by a company. The table is defined with many
columns. Create a materialized query table for the TRANS table that contain daily
summary data for the date and amount of a transaction.

1452 SQL Reference

CREATE TABLE STRANS AS
(SELECT YEAR AS SYEAR, MONTH AS SMONTH, DAY AS SDAY, SUM(AMOUNT) AS SSUM
FROM TRANS
GROUP BY YEAR, MONTH, DAY)
DATA INITIALLY DEFERRED REFRESH DEFERRED;

Example 7: The following example creates a table in a partition-by-growth table
space and includes the APPEND option:

CREATE TABLE TS01TB
(C1 SMALLINT,
C2 DECIMAL(9,2),
C3 CHAR(4))

APPEND YES
IN TS01DB.TS01TS;

Example 8: The following example creates a table in a partition-by-growth table
space where the table space is implicitly created:

CREATE TABLE TS02TB
(C1 SMALLINT,
C2 DECIMAL(9,2),
C3 CHAR(4))

PARTITION BY SIZE EVERY 4G
IN DATABASE DSNDB04;

Example 9: Create a table, EMP_INFO, that contains a phone number and address
for each employee. Include a row change timestamp column in the table to track
the modification of employee information:

CREATE TABLE EMP_INFO
(EMPNO CHAR(6) NOT NULL,
EMP_INFOCHANGE NOT NULL

GENERATED ALWAYS FOR EACH ROW ON UPDATE
AS ROW CHANGE TIMESTAMP,

EMP_ADDRESS VARCHAR(300),
EMP_PHONENO CHAR(4),
PRIMARY KEY (EMPNO));

Example 10: Create a table, TB01, that uses a range partitioning scheme with a
segment size of 4 and 4 partitions.
CREATE TABLE TB01 (

ACCT_NUM INTEGER,
CUST_LAST_NM CHAR(15),
LAST_ACTIVITY_DT VARCHAR(25),
COL2 CHAR(10),
COL3 CHAR(25),
COL4 CHAR(25),
COL5 CHAR(25),
COL6 CHAR(55),
STATE CHAR(55))

IN DBB.TS01

PARTITION BY (ACCT_NUM)
(PARTITION 1 ENDING AT (199),
PARTITION 2 ENDING AT (299),
PARTITION 3 ENDING AT (399),
PARTITION 4 ENDING AT (MAXVALUE));

Example 11: Create a table, policy_info, that uses a SYSTEM_TIME period and
create a history table, hist_policy_info. Then issue an ALTER TABLE statement to
associate the policy_info table with the hist_policy_info table.
CREATE TABLE policy_info

(policy_id CHAR(10) NOT NULL,
coverage INT NOT NULL,

Chapter 5. Statements 1453

sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
create_id TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,
PERIOD SYSTEM_TIME(sys_start,sys_end));

CREATE TABLE hist_policy_info
(policy_id CHAR(10) NOT NULL,
coverage INT NOT NULL,
sys_start TIMESTAMP(12) NOT NULL,
sys_end TIMESTAMP(12) NOT NULL,
create_id TIMESTAMP(12));

ALTER TABLE policy_info
ADD VERSIONING USE HISTORY TABLE hist_policy_info;

Example 12: Create a table, policy_info, that uses a BUSINESS_TIME period.
CREATE TABLE policy_info
(policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
PERIOD BUSINESS_TIME(bus_start, bus_end));

Example 13: Create a table, policy_info, that uses both a SYSTEM_TIME period and
a BUSINESS_TIME period to keep historical rows and track a user-specified time
period. A table that specifies both a SYSTEM_TIME period and a BUSINESS_TIME
period is sometimes referred to as a bitemporal table. To enable retention of
historical rows, a history table, hist_policy_info, also needs to be created and
associated (using the ALTER TABLE statement) with the policy_info table.
CREATE TABLE policy_info
(policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
create_id TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,
PERIOD BUSINESS_TIME(bus_start, bus_end),
PERIOD SYSTEM_TIME(sys_start, sys_end));

CREATE TABLE hist_policy_info
(policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
sys_start TIMESTAMP(12) NOT NULL,
sys_end TIMESTAMP(12) NOT NULL),
create_id TIMESTAMP(12);

ALTER TABLE policy_info
ADD VERSIONING USE HISTORY TABLE hist_policy_info;

1454 SQL Reference

CREATE TABLESPACE
The CREATE TABLESPACE statement defines a segmented, partitioned, or
universal table space at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v The CREATETS privilege for the database
v DBADM, DBCTRL, or DBMAINT authority for the database
v SYSADM or SYSCTRL authority
v System DBADM

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

Additional privileges might be required, as explained in the description of the
BUFFERPOOL and USING STOGROUP clauses.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the of the owner of the plan or
package. If the application is bound in a trusted context with the ROLE AS
OBJECT OWNER clause specified, a role is the owner. Otherwise, an authorization
ID is the owner.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process unless the process is within a
trusted context and the ROLE AS OBJECT OWNER clause is specified. In that case,
the privileges set is the privileges that are held by the role that is associated with
the primary authorization ID of the process.

Chapter 5. Statements 1455

Syntax

�� CREATE
LOB

TABLESPACE table-space-name
DSNDB04

IN database-name

�

� �
(1)

using-block
free-block
gbpcache-block
DEFINE YES

DEFINE NO
LOGGED

NOT LOGGED
TRACKMOD YES

TRACKMOD NO

DSSIZE integer G
�

�
partition-by-growth-specification
partition-by-range-specification

SEGSIZE integer

�
(1)

BUFFERPOOL bpname
CCSID ASCII

EBCDIC
UNICODE

CLOSE YES

CLOSE NO
COMPRESS NO

COMPRESS YES
LOCKMAX SYSTEM

integer
LOCKSIZE ANY

LOCKSIZE TABLESPACE
LOCKSIZE TABLE
LOCKSIZE PAGE
LOCKSIZE ROW
LOCKSIZE LOB

MAXROWS integer
SEGSIZE integer

��

Notes:

1 The same clause must not be specified more than one time.

using-block:

1456 SQL Reference

�� USING

�

(1)
VCAT catalog-name

(2)
STOGROUP stogroup-name

PRIQTY integer
SECQTY integer

ERASE NO

ERASE YES

��

Notes:

1 USING VCAT must not be specified if MAXPARTITIONS is also specified.

2 The same clause must not be specified more than one time.

�� �
FREEPAGE 0 (1)

FREEPAGE integer
PCTFREE 5
PCTFREE smallint

FOR UPDATE smallint
smallint

��

Notes:

1 The same clause must not be specified more than one time.

��
GBPCACHE CHANGED

GBPCACHE ALL
GBPCACHE SYSTEM
GBPCACHE NONE

��

free-block:

gbpcache-block:

partition-by-growth-specification:

Chapter 5. Statements 1457

�� MAXPARTITIONS integer �
(1)

MEMBER CLUSTER
NUMPARTS integer

��

Notes:

1 The same clause must not be specified more than one time

�� �

� �

(1)

NUMPARTS integer
, MEMBER CLUSTER

(1)
(PARTITION integer using-block)

free-block
gbpcache-block
COMPRESS NO

COMPRESS YES
TRACKMOD YES

TRACKMOD NO
MEMBER CLUSTER

��

Notes:

1 The same clause must not be specified more than one time

Description

LOB
Identifies the table space as LOB table space. A LOB table space is used to hold
LOB values.

The LOB table space must be in the same database as its associated base table
space. Do not specify LOB for a table space in a work file database.

table-space-name
Names the table space. The name, qualified with the database-name implicitly or
explicitly specified by the IN clause, must not identify a table space, index
space, or LOB table space that exists at the current serveror that exists in the
SYSPENDINGOBJECTS catalog table.

A table space that is for declared temporary tables must be in the work file
database. PUBLIC implicitly receives the USE privilege (without GRANT
authority) on any table space created in the work file database. This implicit
privilege is not recorded in the DB2 catalog, and it cannot be revoked.

IN database-name
Specifies the database in which the table space is created. database-name must
identify a database that exists at the current server and must not specify the
following:
v DSNDB06 for any type of table space
v A work file database for a LOB table space

partition-by-range-specification:

1458 SQL Reference

v A TEMP database
v An implicitly created database

If the table space is for declared temporary tables or static scrollable cursors,
the name of the work file database must be specified.

DSNDB04 is the default.

The components of the USING clause are discussed below, first for
nonpartitioned table spaces and then for partitioned table spaces. If you
omit USING, the default storage group of the database must exist.

USING clause for nonpartitioned table spaces:
For nonpartitioned table spaces, the USING clause indicates whether the data
set for the table space is defined by you or by DB2. If DB2 is to define the data
set, the clause also gives space allocation parameters and an erase rule.

If you omit USING, DB2 defines the data sets using the default storage group
of the database and the defaults for PRIQTY, SECQTY, and ERASE.

VCAT catalog-name
Specifies that the first data set for the table space is managed by the user,
and following data sets, if needed, are also managed by the user.

The data sets defined for the table space are linear VSAM data sets
cataloged in an integrated catalog facility catalog identified by catalog-name.
An alias33 must be used if the catalog name is longer than eight characters.

Conventions for table space data set names are given in DB2 Administration
Guide. catalog-name is the first qualifier for each data set name.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of
those subsystems attempt to assign the same name to different data sets,
select a value for catalog-name that is not used by the other DB2
subsystems.

VCAT must not be specified if MAXPARTITIONS is also specified.

STOGROUP stogroup-name
Specifies that DB2 will define and manage the data sets for the table space.
Each data set will be defined on a volume of the identified storage group.
The values specified (or the defaults) for PRIQTY and SECQTY determine
the primary and secondary allocations for the data set. The storage group
supplies the name of a volume for the data set and the first-level qualifier
for the data set name. The first-level qualifier is also the name of, or an
alias33 for, the integrated catalog facility catalog on which the data set is to
be cataloged. The naming conventions for the data set are the same as if
the data set is managed by the user. As was mentioned above for VCAT,
the first-level qualifier could cause naming conflicts if the local DB2 can
share integrated catalog facility catalogs with other DB2 subsystems.

stogroup-name must identify a storage group that exists at the current
server. SYSADM or SYSCTRL authority, or the USE privilege on the storage
group, is required.

The description of the storage group must include at least one volume
serial number, or it must indicate that the choice of volumes is left to
Storage Management Subsystem (SMS). If volume serial numbers appear in

33. The alias of an integrated catalog facility catalog.

Chapter 5. Statements 1459

the description, each must identify a volume that is accessible to z/OS for
dynamic allocation of the data set, and all identified volumes must be of
the same device type.

The integrated catalog facility catalog used for the storage group must not
contain an entry for the first data set of the table space. If the integrated
catalog facility catalog is password protected, the description of the storage
group must include a valid password.

PRIQTY integer
Specifies the minimum primary space allocation for a DB2-managed
data set. When you specify PRIQTY with a value other than -1, the
primary space allocation is at least n kilobytes, where n is the value of
integer with the following exceptions:
v For 4KB page sizes, if integer is less than 12, n is 12.
v For 8KB page sizes, if integer is less than 24, n is 24.
v For 16KB page sizes, if integer is less than 48, n is 48.
v For 32KB page sizes, if integer is less than 96, n is 96.
v For any page size, if integer is greater than 67108864, n is 67108864.

For LOB table spaces, the exceptions are:
v For 4KB page sizes, if integer is less than 200, n is 200.
v For 8KB page sizes, if integer is less than 400, n is 400.
v For 16KB page sizes, if integer is less than 800, n is 800.
v For 32KB page sizes, if integer is less than 1600, n is 1600.
v For any page size, if integer is greater than 67108864, n is 67108864.

If you do not specify PRIQTY or specify PRIQTY -1, DB2 uses a default
value for the primary space allocation; for information on how DB2
determines the default value, see Rules for primary and secondary
space allocation.

If you specify PRIQTY and do not specify a value of -1, DB2 specifies
the primary space allocation to access method services using the
smallest multiple of p KB not less than n, where p is the page size of
the table space. The allocated space can be greater than the amount of
space requested by DB2. For example, it could be the smallest number
of tracks that will accommodate the request. The amount of storage
space requested must be available on some volume in the storage
group based on VSAM space allocation restrictions. Otherwise, the
primary space allocation will fail. To more closely estimate the actual
amount of storage, see DEFINE CLUSTER command (DFSMS Access
Method Services for Catalogs).

Executing this statement causes only one data set to be created.
However, you might have more data than this one data set can hold.
DB2 automatically defines more data sets when they are needed.
Regardless of the value in PRIQTY, when a data set reaches its
maximum size, DB2 creates a new one. To enable a data set to reach its
maximum size without running out of extents, it is recommended that
you allow DB2 to automatically choose the value of the secondary
space allocations for extents.

If you do choose to explicitly specify SECQTY, to avoid wasting space,
use the following formula to make sure that PRIQTY and its associated
secondary extent values do not exceed the maximum size of the data
set:

1460 SQL Reference

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

PRIQTY + (number of extents * SECQTY) <= DSSIZE (implicit or explicit)

SECQTY integer
Specifies the minimum secondary space allocation for a DB2-managed
data set. If you do not specify SECQTY, DB2 uses a formula to
determine a value. For information on the actual value that is used for
secondary space allocation, whether you specify a value or not, see
Rules for primary and secondary space allocation.

If you specify SECQTY and do not specify a value of -1, DB2 specifies
the secondary space allocation to access method services using the
smallest multiple of p KB not less than n, where p is the page size of
the table space. The allocated space can be greater than the amount of
space requested by DB2. For example, it could be the smallest number
of tracks that will accommodate the request. To more closely estimate
the actual amount of storage, see DEFINE CLUSTER command
(DFSMS Access Method Services for Catalogs).

ERASE
Indicates whether the DB2-managed data sets for the table space or
partition are to be erased when they are deleted during the execution
of a utility or an SQL statement that drops the table space.

NO Does not erase the data sets. Operations involving data set deletion
will perform better than ERASE YES. However, the data is still
accessible, though not through DB2. This is the default.

YES
Erases the data sets. As a security measure, DB2 overwrites all data
in the data sets with zeros before they are deleted.

USING clause for partitioned table spaces:
If the table space is partitioned, there is a USING clause for each partition;
either one you give explicitly or one provided by default. Except as explained
below, the meaning of the clause and the rules that apply to it are the same as
for a nonpartitioned table space.

The USING clause for a particular partition is the first of these choices that can
be found:
v A USING clause in the PARTITION clause for the partition
v A USING clause that is not in any PARTITION clause
v An implicit USING STOGROUP clause that identifies the default storage

group of the database and accepts the defaults for PRIQTY, SECQTY, and
ERASE

VCAT catalog-name
Indicates that the data set for the partition is managed by the user using
the naming conventions set forth in DB2 Administration Guide. As was true
for the nonpartitioned case, catalog-name identifies the catalog for the data
set and supplies the first-level qualifier for the data set name.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of
those subsystems attempt to assign the same name to different data sets,
select a value for catalog-name that is not used by the other DB2
subsystems.

DB2 assumes one and only one data set for each partition.

STOGROUP stogroup-name
Indicates that DB2 will create a data set for the partition with the aid of a

Chapter 5. Statements 1461

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/14.0?ACTION=MATCHES&REQUEST=define+cluster+command&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

storage group named stogroup-name. The data set is defined during the
execution of this statement. DB2 assumes one and only one data set for
each partition.

The stogroup-name must identify a storage group that exists at the current
server and the privilege set must include SYSADM authority, SYSCTRL
authority, or the USE privilege for the storage group. The integrated
catalog facility catalog used for the storage group must not contain an
entry for that data set.

When USING STOGROUP is specified for a partition, the defaults for
PRIQTY, SECQTY, and ERASE are the values specified in the USING
STOGROUP clause that is not in any PARTITION clause. If that USING
STOGROUP clause is not specified, the defaults are those specified in the
description of PRIQTY, SECQTY, and ERASE.

FREEPAGE integer
Specifies how often to leave a page of free space when the table space or
partition is loaded or reorganized. You must specify an integer in the range 0
to 255. If you specify 0, no pages are left as free space. Otherwise, one free
page is left after every n pages, where n is the specified integer value. However,
if the table space is segmented and the integer you specify is not less than the
segment size, n is one less than the segment size.

If the table space is segmented, the number of pages left free must be less than
the SEGSIZE value. If the number of pages to be left free is greater than or
equal to the SEGSIZE value, then the number of pages is adjusted downward
to one less than the SEGSIZE value.

The default is FREEPAGE 0, leaving no free pages. Do not specify FREEPAGE
for a LOB table space or a table space in a work file database.

For XML table spaces, this change has no effect until data in the table space is
reorganized.

FREEPAGE does not apply to hash-organized table spaces.

Related information:

Reserving free space for table spaces (DB2 Performance)
Reserving free spaces for indexes (DB2 Performance)

PCTFREE smallint
Indicates what percentage of each page to leave as free space when the table is
loaded or reorganized. smallint in the range from 0 to 99. The first record on
each page is loaded without restriction. When additional records are loaded, at
least smallint percent of free space is left on each page.

The default is PCTFREE 5, which means that 5% of the space on each pages is
reserved as free space. Do not specify PCTFREE for a LOB table space or a
table space in a work file database.

For XML table spaces, this change has no effect until data in the table space is
reorganized.

PCTFREE does not apply to table spaces for hash-organized tables except
when AUTOESTSPACE(YES) is specified in a REORG TABLESPACE
invocation.

FOR UPDATE smallint
Specifies the percentage of space to reserve as free space on each page, for
use by subsequent UPDATE operations, when data is added to the table by

1462 SQL Reference

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reservefreespacetable.htm#db2z_reservefreespacetable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reservefreespaceindex.htm#db2z_reservefreespaceindex

INSERT operations or utilities. The smallint value is an integer in the range
-1 to 99. FOR UPDATE -1 specifies that 5% of free space is reserved
initially, and the amount of free spaces is calculated automatically based on
certain real-time statistics values. The first record on each page is loaded
always loaded without restriction.

If this value is not specified, the value of the PCTFREE_UPD subsystem
parameter is used.

The value is recorded in the PCTFREE_UPD column of the
SYSIBM.SYSTABLEPART catalog table.

The FOR UPDATE smallint values do not apply to LOB table spaces, XML
table spaces, or table spaces that use hash organization.

The sum of the values for PCTFREE smallint and FOR UPDATEsmallint must
be less than or equal to 99.

If the table space is partitioned, the values of FREEPAGE and PCTFREE for a
particular partition are given by the first of these choices that apply:
v The values of FREEPAGE and PCTFREE given in the PARTITION clause for

that partition
v The values given in a free-block that is not in any PARTITION clause
v The default values are FREEPAGE 0 and PCTFREE 5.

Related information:

Reserving free space for table spaces (DB2 Performance)
Reserving free spaces for indexes (DB2 Performance)

GBPCACHE
In a data sharing environment, specifies what pages of the table space or
partition are written to the group buffer pool in a data sharing environment. In
a non-data-sharing environment, you can specify GBPCACHE for a table space
other than one in a work file database, but it is ignored. Do not specify
GBPCACHE for a table space in a work file database in either environment
(data sharing or non-data-sharing).

CHANGED
When there is inter-DB2 R/W interest on the table space or partition,
updated pages are written to the group buffer pool. When there is no
inter-DB2 R/W interest, the group buffer pool is not used. Inter-DB2 R/W
interest exists when more than one member in the data sharing group has
the table space or partition open, and at least one member has it open for
update. GBPCACHE CHANGED is the default.

If the table space is in a group buffer pool that is defined to be used only
for cross-invalidation (GBPCACHE NO), CHANGED is ignored and no
pages are cached to the group buffer pool.

ALL
Indicates that pages are to be cached in the group buffer pool as they are
read in from DASD.

Exception: In the case of a single updating DB2 when no other DB2s have
any interest in the page set, no pages are cached in the group buffer pool.

If the table space is in a group buffer pool that is defined to be used only
for cross-invalidation (GBPCACHE NO), ALL is ignored and no pages are
cached to the group buffer pool.

Chapter 5. Statements 1463

|
|
|
|
|

|
|

|
|

|
|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reservefreespacetable.htm#db2z_reservefreespacetable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reservefreespaceindex.htm#db2z_reservefreespaceindex

SYSTEM
Indicates that only changed system pages within the LOB table space are
to be cached to the group buffer pool. A system page is a space map page
or any other page that does not contain actual data values.

Use SYSTEM only for a LOB table space.

NONE
Indicates that no pages are to be cached to the group buffer pool. DB2 uses
the group buffer pool only for cross-invalidation.

If you specify NONE, the table space or partition must not be in recover
pending status and must be in the stopped state when the CREATE
TABLESPACE statement is executed.

If the table space is partitioned, the value of GBPCACHE for a particular
partition is given by the first of these choices that applies:
1. The value of GBPCACHE given in the PARTITION clause for that partition.

Do not use more than one gbpcache-block in any PARTITION clause.
2. The value given in a gbpcache-block that is not in any PARTITION clause.
3. The default value CHANGED.

DEFINE
Specifies when the underlying data sets for the table space are physically
created.

YES
The data sets are created when the table space is created (the CREATE
TABLESPACE statement is executed). YES is the default.

If MAXPARTITIONS is also specified, only the first partition is created
when the table space is created. Additional partitions are created as
needed.

NO The data sets are not created until data is inserted into the table space.
DEFINE NO is applicable only for DB2-managed data sets (USING
STOGROUP is specified). DEFINE NO is ignored for user-managed data
sets (USING VCAT is specified). DB2 uses the SPACE column in catalog
table SYSTABLEPART to record the status of the data sets (undefined or
allocated).

Do not specify DEFINE NO for a table space in a work file database.
DEFINE NO is not recommended if you intend to use any tools outside of
DB2 to manipulate data, such as to load data, because data sets might then
exist when DB2 does not expect them to exist. When DB2 encounters this
inconsistent state, applications will receive an error.

For table spaces that are created with DEFINE NO, point-in-time recover
will not work before data sets exist and before a recovery copy exists.

LOGGED or NOT LOGGED
Specifies whether changes that are made to the data in the specified table
space are recorded in the log.

LOGGED
Specifies that changes that are made to the data in the specified table space
are recorded in the log. This applies to all tables that are created in the
specified table space and to all indexes of those tables. XML table spaces
and their indexes inherit the logging attribute from the associated base
table space. Auxiliary indexes also inherit the logging attribute from the
associated base table space.

1464 SQL Reference

LOGGED cannot be specified for table spaces in DSNDB06 (the DB2
catalog) or in a work file database.

LOGGED is the default.

NOT LOGGED
Specifies that changes that are made to data in the specified table space are
not recorded in the log. This parameter applies to all tables that are created
in the specified table space and to all indexes of those tables. XML table
spaces and their indexes inherit the logging attribute from the associated
base table space. Auxiliary indexes inherit the logging attribute from the
associated base table space.

NOT LOGGED prevents undo and redo information from being recorded
in the log; however, control information for the specified table space will
continue to be recorded in the log.

NOT LOGGED cannot be specified for table spaces in the following
databases:
v DSNDB06 (the DB2 catalog)
v a work file database

TRACKMOD
Specifies whether DB2 tracks modified pages in the space map pages of the
table space or partition. Do not specify TRACKMOD for a LOB table space. Do
not specify TRACKMOD for a table space in a work file database.

YES
DB2 tracks changed pages in the space map pages to improve the
performance of incremental image copy.

NO DB2 does not track changed pages in the space map pages. It uses the
LRSN value in each page to determine whether a page has been changed.

If the table space is partitioned, the value of TRACKMOD for a particular
partition is given by the first of these choices that applies:
1. The value of TRACKMOD given in the PARTITION clause for that

partition.
2. The value given in a trackmod-block that is not in any PARTITION clause.
3. The default value YES.

If TRACKMOD is not specified, the default value as specified in the subsystem
parameter TRACK MODIFIED PAGES is used.

DSSIZE integerG
Specifies the maximum size for each partition, or for LOB table spaces, each
data set. If you specify DSSIZE, you must also specify the NUMPARTS,
MAXPARTITIONS, or LOB clause. Do not specify DSSIZE for a table space in a
work file database unless MAXPARTITIONS is also specified.

The following values are valid:
1G 1 gigabyte
2G 2 gigabytes
4G 4 gigabytes
8G 8 gigabytes
16G 16 gigabytes
32G 32 gigabytes
64G 64 gigabytes
128G 128 gigabytes
256G 256 gigabytes

Chapter 5. Statements 1465

To specify a value greater than 4G, the data sets for the table space must be
associated with a DFSMS data class that has been specified with extended
format and extended addressability.

If NUMPARTS is also specified, the maximum size of each partition depends
on the value of NUMPARTS, as shown in the following table. Otherwise, the
maximum size of each partition is 4G.

Table 122. Maximum partition size depending on value of NUMPARTS

Value of NUMPARTS
Maximum partition size (default for
DSSIZE)

1 to 16 4GB (4G)

17 to 32 2GB (2G)

33 to 64 1GB (1G)

65 to 254 4GB (4G)

If NUMPARTS is greater than 254, the maximum partition size (and the default
for DSSIZE) depends on the page size of the table space, as shown in the
following table. The partition size shown is not necessarily the actual number
of bytes used or allocated for any one partition; it is the largest number that
can be logically addressed. Each partition occupies one data set.

Table 123. Maximum partition size depending on page size

Page size
Maximum partition size (default for
DSSIZE)

4K 4GB (4G)

8K 8GB (8G)

16K 16GB (16G)

32K 32GB (32G)

If DSSIZE is explicitly specified, the maximum number of partitions that can be
specified or is the default is limited by the maximum table space size. For
example:
v For a partitioned table space with a 4K page size, if DSSIZE 64GB is

specified, the maximum NUMPARTS value is 256.
v For a partitioned table space with an 8K page size, if DSSIZE 64GB is

specified, the maximum NUMPARTS value is 512.
v For a partitioned table space with a 32K page size, if DSSIZE 128GB is

specified, the maximum NUMPARTS value is 1024.

See Table 125 on page 1468 for more information on the relationship between
DSSIZE, NUMPARTS, and the table space size.

For LOB table spaces, if DSSIZE is not specified, the default for the maximum
size of each data set is 4GB. The maximum number of data sets is 254.

For a description of the maximum size of a LOB table space (or the maximum
size of LOB data for each column of a base table), see Large object table spaces
(Introduction to DB2 for z/OS).

MAXPARTITIONS integer
Specifies that the table space is a partition-by-growth table space. The data set
for the first partition is allocated unless the DEFINE NO clause is specified for
the partition. The data sets for additional partitions are not allocated until they
are needed.

1466 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_largeobjecttablespaces.htm#db2z_largeobjecttablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_largeobjecttablespaces.htm#db2z_largeobjecttablespaces

integer specifies the maximum number of partitions to which the table space
can grow. integer must be in the range of 1 to 4096, depending on the
corresponding value of the DSSIZE clause. The following table shows the
maximum value for MAXPARTITIONS in relation to the page size or DSSIZE
value for the table space.

Table 124. Maximum value for MAXPARTITIONS given the page size or DSSIZE value for
the table space

DSSIZE value 4K page size 8K page size 16K page size 32K page size

1G - 4G (1 GB to
4 GB)

4096 4096 4096 4096

8G (8 GB) 2048 4096 4096 4096

16G (16 GB) 1024 2048 4096 4096

32G (32 GB) 512 1024 2048 4096

64G (64 GB) 254 512 1024 2048

128G (128 GB) 128 256 512 1024

256G (256 GB) 64 128 256 512

If MAXPARTITIONS is specified for a table space in a work file database, the
table space will be a partition-by-growth table space. If the DSSIZE or
NUMPARTS clauses are not specified in addition to the MAXPARTITIONS
clause for a table space in a work file database, the default values for DSSIZE
and NUMPARTS will be used. If MAXPARTITIONS is not specified for a table
space in a work file database, the table space will be a segmented table space.

Although physical data sets are not defined when the MAXPARTITIONS value
is issued, there can be storage and cpu overhead. If an increase in the number
of partitions is expected by using the MAXPARTITONS clause, be aware that
specifying an value larger than necessary, such as 4096 (the maximum value),
as a default for all of your partition-by-growth table spaces can cause larger
than expected storage requests.

MEMBER CLUSTER
Specifies that data inserted by an insert operation is not clustered by the
implicit clustering index (the first index) or the explicit clustering index.
Instead, DB2 chooses where to locate the data in the table space based on
available space.

Do not specify MEMBER CLUSTER for segmented table spaces.

Do not specify MEMBER CLUSTER for a LOB table space or a table space in a
work file database.

MEMBER CLUSTER can be specified with MAXPARTITIONS.

NUMPARTS integer
Indicates that the table space is partitioned. If MAXPARTITIONS is also
specified, the table space is a partition-by-growth table space, otherwise, the
table space is a range-partitioned table space.

integer
Specifies the number of partitions. If n is specified for a
partition-by-growth table space, integer indicates the number of partitions
that are initially created unless DEFINE NO is specified. integer must be a
value between 1 and 4096 inclusive and must be less than or equal to the
value that is specified for the MAXPARTITIONS clause.

Chapter 5. Statements 1467

The maximum size of each partition depends on the value that is specified for
DSSIZE. If DSSIZE is not specified, the number of partitions that are specified
determines the maximum size of each partition. For a summary of the values
for the maximum size of each partition, see Table 122 on page 1466 and
Table 123 on page 1466.

The maximum number of partitions that a table space can have depends on the
page size and DSSIZE. The total table space size depends on how many
partitions it has and DSSIZE. Page size affects table size because it affects how
many partitions a table space can have. The following table shows the
maximum number of partitions for DSSIZE and page size and total table space
size for both EA-enabled (extended addressability) and non-EA-enabled data
sets. (Specifying a DSSIZE greater than 4GB requires EA-enabled data sets.)

Table 125. Table space size given page size and partitions

Type of RID Page size DSSIZE

Maximum
number of
partitions

Total table space
size

5-byte EA 4KB 1GB 4096 4TB

5-byte EA 4KB 2GB 4096 8TB

5-byte EA 4KB 4GB 4096 16TB

5-byte EA 4KB 8GB 2048 16TB

5-byte EA 4KB 16GB 1024 16TB

5-byte EA 4KB 32GB 512 16TB

5-byte EA 4KB 64GB 256 16TB

5-byte EA 4KB 128GB 128 16TB

5-byte EA 4KB 256GB 64 16TB

5-byte EA 8KB 1GB 4096 4TB

5-byte EA 8KB 2GB 4096 8TB

5-byte EA 8KB 4GB 4096 16TB

5-byte EA 8KB 8GB 4096 32TB

5-byte EA 8KB 16GB 2048 32TB

5-byte EA 8KB 32GB 1024 32TB

5-byte EA 8KB 64GB 512 32TB

5-byte EA 8KB 128GB 256 32TB

5-byte EA 8KB 256GB 128 32TB

5-byte EA 16KB 1GB 4096 4TB

5-byte EA 16KB 2GB 4096 8TB

5-byte EA 16KB 4GB 4096 16TB

5-byte EA 16KB 8GB 4096 32TB

5-byte EA 16KB 16GB 4096 64TB

5-byte EA 16KB 32GB 2048 64TB

5-byte EA 16KB 64GB 1024 64TB

5-byte EA 16KB 128GB 512 64TB

5-byte EA 16KB 256GB 256 64TB

5-byte EA 32KB 1GB 4096 4TB

5-byte EA 32KB 2GB 4096 8TB

1468 SQL Reference

Table 125. Table space size given page size and partitions (continued)

Type of RID Page size DSSIZE

Maximum
number of
partitions

Total table space
size

5-byte EA 32KB 4GB 4096 16TB

5-byte EA 32KB 8GB 4096 32TB

5-byte EA 32KB 16GB 4096 64TB

5-byte EA 32KB 32GB 4096 128TB

5-byte EA 32KB 64GB 2048 128TB

5-byte EA 32KB 128GB 1024 128TB

5-byte EA 32KB 256GB 512 128TB

5-byte (non-EA)
LARGE

4KB (4GB) 4096 16TB

For a description of the maximum size of a LOB table space (or the maximum
size of LOB data for each column of a base table), see Large object table spaces
(Introduction to DB2 for z/OS).

If you omit NUMPARTS, the table space is segmented with a SEGSIZE of 4,
LOCKSIZE ANY (unless it is explicitly specified), is not partitioned, and
initially occupies one data set.

Do not specify NUMPARTS for a LOB table space. Do not specify NUMPARTS
for a table space in a work file database unless the MAXPARTITIONS clause is
also specified.

PARTITION integer
Specifies to which partition the following using-block or free-block applies. integer
can range from 1 to the number of partitions given by NUMPARTS.

You can code the PARTITION clause (and any using-block or free-block that
follows it) as many times as needed. If you use the same partition number
more than once, only the last specification for that partition is used.

The PARTITION clause must not be specified if the table space is a
partition-by-growth table space.

BUFFERPOOL bpname
Identifies the buffer pool to be used for the table space and determines the
page size of the table space. For 4KB, 8KB, 16KB and 32KB page buffer pools,
the page sizes are 4 KB, 8 KB, 16 KB, and 32 KB, respectively. The bpname must
identify an activated buffer pool, and the privilege set must include SYSADM
or SYSCTRL authority, or the USE privilege on the buffer pool. If the table
space is to be created in a work file database, you cannot specify 8KB and
16KB buffer pools.

If you do not specify the BUFFERPOOL clause, the default buffer pool of the
database is used unless the table space that is being created is a LOB table
space. If you do not specify the BUFFERPOOL clause and the table space that
is being created is a LOB table space, the default buffer pool is the buffer pool
that is specified in the DEFAULT BUFFER POOL FOR USER LOB DATA field
on installation panel DSNTIP1.

See “Naming conventions” on page 57 for more details about bpname. See
-ALTER BUFFERPOOL (DB2) (DB2 Commands) for a description of active and
inactive buffer pools.

Chapter 5. Statements 1469

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_largeobjecttablespaces.htm#db2z_largeobjecttablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_largeobjecttablespaces.htm#db2z_largeobjecttablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_alterbufferpool.htm#db2z_cmd_alterbufferpool

LOCKSIZE
Specifies the size of locks used within the table space and, in some cases, also
the threshold at which lock escalation occurs. Do not use this clause for a table
space in a work file database.

ANY
Specifies that DB2 can use any lock size.

In most cases, DB2 uses LOCKSIZE PAGE LOCKMAX SYSTEM for
non-LOB table spaces and LOCKSIZE LOB LOCKMAX SYSTEM for LOB
table spaces. However, when the number of locks acquired for the table
space exceeds the maximum number of locks allowed for a table space (the
NUMLKTS subsystem parameter), the page or LOB locks are released and
locking is set at the next higher level.

If the table space is segmented, the next higher level is the table. If the
table space is segmented and not partitioned, the next higher level is the
table. If the table space is partitioned, the next higher level is the partition.

If the table space is implicitly created, DB2 uses LOCKSIZE ROW.

TABLESPACE
Specifies table space locks.

TABLE
Specifies table locks. Use TABLE only for a segmented table space. Do not
use TABLE for a universal table space.

PAGE
Specifies page locks. Do not use PAGE for a LOB table space.

ROW
Specifies row locks. Do not use ROW for a LOB table space.

LOB
Specifies LOB locks. Use LOB only for a LOB table space.

LOCKMAX
Specifies the maximum number of page, row, or LOB locks an application
process can hold simultaneously in the table space. If a program requests more
than that number, locks are escalated. The page, row, or LOB locks are released
and the intent lock on the table space or segmented table is promoted to S or X
mode. If you specify LOCKMAX for a table space in a work file database, DB2
ignores the value because these types of locks are not used.

integer
Specifies the number of locks allowed before escalating, in the range 0 to
2 147 483 647.

Zero (0) indicates that the number of locks on the table or table space are
not counted and escalation does not occur.

SYSTEM
Indicates that the value of LOCKS PER TABLE(SPACE), on installation
panel DSNTIPJ, specifies the maximum number of page, row, or LOB locks
a program can hold simultaneously in the table or table space.

The following table summarizes the results of specifying a LOCKSIZE value
while omitting LOCKMAX.

LOCKSIZE Resultant LOCKMAX

ANY SYSTEM

1470 SQL Reference

LOCKSIZE Resultant LOCKMAX

TABLESPACE, TABLE, PAGE,
ROW, or LOB

0

If the lock size is TABLESPACE or TABLE, LOCKMAX must be omitted, or its
operand must be 0.

CLOSE
When the limit on the number of open data sets is reached, specifies the
priority in which data sets are closed.

YES
Eligible for closing before CLOSE NO data sets. This is the default unless
the table space is in a work file database.

NO Eligible for closing after all eligible CLOSE YES data sets are closed.

For a table space in a work file database, DB2 uses CLOSE NO regardless of
the value specified.

COMPRESS
Specifies whether data compression applies to the rows of the table space or
partition. Do not specify COMPRESS for a LOB table space or a table space in
a work file database.

For partitioned table spaces, the COMPRESS attribute for each partition is the
value from the first of the following conditions that apply:
v The value specified in the COMPRESS clause in the PARTITION clause for

the partition
v The value specified in the COMPRESS clause that is not in any PARTITION

clause
v An implicit COMPRESS NO by default.

For more information about data compression, see Compressing your data
(DB2 Performance).

YES
Specifies data compression. The rows are not compressed until the LOAD
or REORG utility is run on the table in the table space or partition, or until
an insert operation is performed through the INSERT statement or the
MERGE statement.

NO Specifies no data compression for the table space or partition.

CCSID encoding-scheme
Specifies the encoding scheme for tables stored in the table space.

If you do not specify a CCSID when it is allowed, the default is the encoding
scheme of the database in which the table space resides, except for table spaces
in database DSNDB04; for table spaces in DSNDB04, the default is the value of
field DEF ENCODING SCHEME on installation panel DSNTIPF.

ASCII Specifies that the data is to be encoded using ASCII CCSIDs. If the
database in which the table space is to reside is already defined as
ASCII, the ASCII CCSIDs associated with that database are used.
Otherwise, the default ASCII CCSIDs of the server are used.

EBCDIC
Specifies that the data is to be encoded using EBCDIC CCSIDs.

Chapter 5. Statements 1471

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_compressdataperf.htm#db2z_compressdataperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_compressdataperf.htm#db2z_compressdataperf

UNICODE
Specifies that the data is to be encoded using the UNICODE CCSIDs of
the server.

Usually, each encoding scheme requires only a single CCSID. Additional
CCSIDs are needed when mixed, graphic, or Unicode data is used.

All data stored within a table space must use the same encoding scheme unless
the table space is in a work file database.

Do not specify CCSID for a LOB table space or a table space in a work file
database. The encoding scheme for a LOB table space is inherited from the
base table space. A table space in a work file database does not have an
associated encoding scheme because the table space can contain created and
declared temporary tables with a mixture of encoding schemes.

MAXROWS integer
Specifies the maximum number of rows that DB2 will consider placing on each
data page. The integer can range from 1 through 255. This value is considered
for insert operations, LOAD, and REORG. For LOAD and REORG (which do
not apply for a table space in the work file database), the PCTFREE
specification is considered before MAXROWS; therefore, fewer rows might be
stored than the value you specify for MAXROWS.

If you do not specify MAXROWS, the default number of rows is 255.

Do not use MAXROWS for a LOB table space or a table space in a work file
database.

SEGSIZE integer
Specifies the type of table space that will be created depending on the values
of the SEGSIZE, MAXPARTITIONS, and NUMPARTS clauses. integer specifies
the number of pages that are to be assigned to each segment of the table space.
integer must be a multiple of 4 between 0 and 64 (inclusive). integer cannot be 0
for an XML table space. Do not specify SEGSIZE for a LOB table space.

If SEGSIZE is not specified and only the NUMPARTS clause is specified, either
a partitioned table space or a range-partitioned universal table space is created
depending on the value of the DPSEGSZ subsystem parameter:
v If the value of DPSEGSZ is greater than 0 (zero), the table space will be a

range-partitioned universal table with a SEGSIZE value that is equal to the
value of DPSEGSZ.

v If the value of DPSEGSZ is equal to 0 (zero), the table space will be a
partitioned table space.

If SEGSIZE is not specified and only the MAXPARTITIONS clause is specified,
a partition-by-growth universal table space is created with a SEGSIZE that
depends on the value of the DPSEGSZ subsystem parameter:
v If the value of DPSEGSZ is greater than 0 (zero), the table space will have a

SEGSIZE value that is equal to the value of DPSEGSZ.
v If the value of DPSEGSZ is equal to 0 (zero), the table space will have a

SEGSIZE value of 32.

The DPSEGSZ subsystem parameter has no effect on segmented table spaces.

The following table lists the type of table space depending on the specification
of the SEGSIZE, MAXPARTITIONS, and NUMPARTS clauses:

1472 SQL Reference

Table 126. Type of table space depending on value of SEGSIZE, MAXPARTITIONS, and
NUMPARTS clauses

SEGSIZE clause
MAXPARTITIONS
clause NUMPARTS clause Type of table space

specified specified not specified partition-by-growth
table space

specified not specified not specified segmented table
space

specified not specified specified range-partitioned
universal table space

specified with a value
of 0

not specified specified partitioned table
space

not specified specified specified partition-by-growth
table space

v SEGSIZE = 32 if
DPSEGSZ = 0

v SEGSIZE = n if
DPSEGSZ = n,
where n is a
non-zero value for
DPSEGSZ.

not specified specified not specified partition-by-growth
table space

v SEGSIZE = 32 if
DPSEGSZ = 0

v SEGSIZE = n if
DPSEGSZ = n,
where n is a
non-zero value for
DPSEGSZ.

not specified not specified specified One of the following:

v partitioned table
space if DPSEGSZ
is specified with a
value of 0.

v range-partitioned
universal table
space with a
SEGSIZE = n if
DPSEGSZ = n,
where n is a
non-zero value for
DPSEGSZ.

not specified not specified not specified segmented table
space with an implicit
specification of
SEGSIZE 4

Notes

Segmented table spaces:
If neither LOB, NUMPARTS, nor SEGSIZE are specified, the table space
that is created is a segmented table space. See Types of DB2 table spaces
(Introduction to DB2 for z/OS) for a discussion of types of table spaces.

Chapter 5. Statements 1473

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_typesofdb2tablespaces.htm#db2z_typesofdb2tablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_typesofdb2tablespaces.htm#db2z_typesofdb2tablespaces

Universal table spaces:
If NUMPARTS and SEGSIZE are specified, the table space that is created is
a range-partitioned universal table space. If MAXPARTITIONS or
MAXPARTITIONS and SEGSIZE are specified, the table space that is
created is a partition-by-growth universal table space. If a
range-partitioned universal table space contains an XML column, the
corresponding XML table space will be range-partitioned universal as well.
See Universal table spaces (Introduction to DB2 for z/OS) for information
about universal table spaces.

MAXROWS value for table spaces that specify LOCKSIZE PAGE:
For a table space that is defined with LOCKSIZE PAGE that has long
columns or specifies MAXROWS 8 or less, there will be no wait for read
access. For tables with more rows per page, or if all rows are being
accessed or updated, there might be a wait for read access.

Table spaces in a work file database:
The following restrictions apply to table spaces created in a work file
database:
v They can be created for another member only if both the executing DB2

subsystem and the other member can access the work file data sets. That
is required whether the data sets are user-managed or in a DB2 storage
group.

v They cannot use 8 KB or 16 KB page sizes. (The buffer pool in which
you define the table space determines the page size. For example, a table
space that is defined in a 4 KB buffer pool has 4 KB page sizes.)

v When you create a table space in a work file database, the following
clauses are not allowed:

CCSID
COMPRESS
DEFINE NO
DSSIZE1

FREEPAGE
GBPCACHE

LARGE
LOB
LOCKPART
LOCKSIZE
LOGGED
MAXROWS

MEMBER CLUSTER
NOT LOGGED
NUMPARTS1

PCTFREE
TRACKMOD

1: DSSIZE and NUMPARTS must not be specified for a table space in a work file database
unless MAXPARTITIONS is also specified.

Table spaces for declared temporary tables:
Declared temporary tables and sensitive static scrollable cursors must
reside in segmented table spaces in the work file database. At least one
table space with a 32KB page size must exist in the work file database
before a declared temporary table can be defined and used or before
sensitive static scrollable cursors are opened.

Table spaces in the work file database are shared by work files, created and
declared global temporary tables and sensitive static scrollable cursor result
tables. You cannot specify which table space is to be used for any specific
object.

When you create table spaces in the work file database, it is recommended
that you give each table space the same segment size, with the same
minimum primary and secondary space allocation values for the data sets,
to maximize the use of all the table spaces for all objects in all application
processes.

Creating LOB table spaces:
When you create a LOB table space, the following clauses are not allowed:

1474 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_universaltablespaces.htm#db2z_universaltablespaces

CCSID
COMPRESS
FREEPAGE
LOCKSIZE TABLE

LOCKSIZE PAGE
LOCKSIZE ROW
MAXPARTITIONS
NUMPARTS

PCTFREE
SEGSIZE
TRACKMOD

Recommended GBPCACHE setting for LOB table spaces:
For LOB table spaces, use the GBPCACHE CHANGED option instead of
the GBPCACHE SYSTEM option. Due to the usage patterns of LOBs, the
use of GBPCACHE CHANGED can help avoid excessive and synchronous
writes to disk and the group buffer pool.

Altering the logging attribute of a table space:
See “Notes” on page 1090 of “ALTER TABLESPACE” on page 1074 for
information about altering the logging attributes of a table space.

Table space row formats:
Depending on the value of the RRF subsystem parameter, newly created
table spaces will be in either re-ordered row format or basic row format.
When the value of the RRF parameter is ENABLE, table spaces will be
created in re-ordered row format. When the value of the RRF parameter is
DISABLE, newly created table spaces will be created in basic row format.
This includes universal table spaces, except for XML table spaces, which
are always created in re-ordered row format, regardless of the value of the
RRF parameter.

Making a partitioned table space larger:
Depending on the needs of your application, you might need to increase
the size of a partitioned table space to hold more data by either adding
more partitions or by increasing the size of the existing partitions:
v To add more partitions, use the ALTER TABLE statement with the ADD

PARTITION clause.
v To increase the size of the partitions, use the following steps:

– If the table space is a range-partitioned universal table space, specify
a larger DSSIZE using the ALTER TABLESPACE statement if the
DSSIZE of the table space is not already at the maximum.

– If the table space is not a range-partitioned universal table space:
1. Convert the table space to a range-partitioned universal table

space by specifying a SEGSIZE value and a NUMPARTS value
using the ALTER TABLESPACE statement

2. Run the REORG utility with the SHRLEVEL CHANGE or
SHRLEVEL REFERENCE option on the table space to apply the
new SEGSIZE value

3. Specify a larger DSSIZE using the ALTER TABLESPACE statement

Related links:

“ALTER TABLESPACE” on page 1074
REORG TABLESPACE (DB2 Utilities)

Redistributing data between existing partitions:
If you need to redistribute the data between the existing partitions to make
better use of the space within the existing table, you can use either of these
two methods:

Chapter 5. Statements 1475

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_reorgtablespace.htm#db2z_utl_reorgtablespace

v Use the ALTER TABLE statement with the ALTER PARTITION clause.
You can alter the partitions to specify new partition boundaries to
explicitly specify how to redistribute the data. Any affected partitions are
set to REORG-pending status.

v Use the REORG utility with the REBALANCE keyword. REBALANCE
specifies that the data is evenly redistributed across the partitions that
are reorganized. SeeREORG TABLESPACE (DB2 Utilities) for information
about using the REORG utility.

Rules for primary and secondary space allocation:
You can specify the primary and secondary space allocation for table
spaces and indexes or allow DB2 to choose them. Having DB2 choose the
values, especially the secondary space quantity, increases the possibility of
reaching the maximum data set size before running out of extents.

In the following rules that describe how allocation works, these terms are
used:

PRIQTY, SECQTY
The keywords for CREATE TABLESPACE, ALTER TABLESPACE,
CREATE INDEX, and ALTER INDEX.

specified-priqty
The user-specified value for PRIQTY.

specified-secqty
The user-specified value for SECQTY.

actual-priqty
The actual primary space allocation, in kilobytes.

actual-priqty-cylinders
The actual primary space allocation, in cylinders.

actual-secqty
The actual secondary space allocation, in kilobytes.

actual-secqty-cylinders
The actual secondary space allocation, in cylinders.

calculated-extent-cylinders
A value that is calculated by DB2 using a sliding scale. A sliding
scale means that the first secondary extent allocations are smaller
than later secondary allocations. For example, Figure 19 on page
1477 shows the sliding scale of secondary extent allocations that
DB2 uses for a 64-GB data set. The size of each secondary extent is
larger for each secondary extent that is allocated up to the 127th
extent. For the 127th secondary extent and any subsequent extents,
the secondary size allocation is 559 cylinders.

1476 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_reorgtablespace.htm#db2z_utl_reorgtablespace

The rules are:
v Rule 1 (for primary space allocation)

If PRIQTY is specified and specified-priqty is not equal to -1, actual-priqty
is at least specified-priqty KB.
If PRIQTY is not specified or specified-priqty is equal to -1, actual-priqty is
determined as follows:
– For a table space, if the TSQTY subsystem parameter value is

specified and is greater than 0, actual-priqty is at least the value of
TSQTY.
If the TSQTY subsystem parameter is not specified or is 0,
actual-priqty is one cylinder for a non-LOB table space. actual-priqty is
10 cylinders for a LOB table space.

– For an index, if the IXQTY subsystem parameter value is specified
and is greater than 0, actual-priqty is at least the value of IXQTY.
If the IXQTY subsystem parameter is not specified or is 0, actual-priqty
is one cylinder.

v Rule 2 (for secondary space allocation)

If SECQTY is not specified, the following formulas determine
actual-secqty:
– If the maximum size of a data set in the table space or index is less

than 32 GB, the formula is:
actual-secqty-cylinders=
MAX(0.1*actual-priqty-cylinders, MIN(calculated-extent-cylinders, 127))

– If the maximum size of a data set in the table space or index is 32 GB
or greater, the formula is:
actual-secqty-cylinders=
MAX(0.1*actual-priqty-cylinders, MIN(calculated-extent-cylinders, 559))

Extent number

600

500

400

300

200

100

0
1 17 22 48 66 81 87 112 127 146 161 177 182 208 226 241

Sliding scale for a 64-GB data set

E
xt

en
t s

iz
e

(C
Y

LS
)

Figure 19. Sliding scale allocation of secondary extents for a 64 GB data set

Chapter 5. Statements 1477

v Rule 3 (for secondary space allocation)

If SECQTY is 0, actual-secqty is 0.
v Rule 4 (for secondary space allocation)

This is the only rule that depends on the value of subsystem parameter
MGEXTSZ (field OPTIMIZE EXTENT on installation panel DSNTIP7).
If MGEXTSZ is YES:
– If SECQTY is specified and specified-secqty is not equal to -1 or 0, the

following formulas determine actual-secqty:
- If the maximum size of a data set in the table space or index is less

32 GB, the formula is:
actual-secqty-cylinders=
MAX(MIN(calculated-extent-cylinders, 127),specified-secqty-cylinders)

- If the maximum size of a data set in the table space or index is 32
GB or greater, the formula is:
actual-secqty-cylinders=
MAX(MIN(calculated-extent-cylinders, 559),specified-secqty-cylinders)

If MGEXTSZ is NO:
– For a table space, if SECQTY is n, the secondary space allocation is at

least n kilobytes, with the following exceptions:
- If SECQTY is greater than 4194304, n is 4194304 kilobytes.
- For LOB table spaces:

v For 4KB page sizes, if integer is greater than 0 and less than 200,
n is 200.

v For 8KB page sizes, if integer is greater than 0 and less than 400,
n is 400.

v For 16KB page sizes, if integer is greater than 0 and less than 800,
n is 800.

v For 32KB page sizes, if integer is greater than 0 and less than
1600, n is 1600.

v For any page size, if integer is greater than 4194304, n is 4194304.
– For an index, if SECQTY is integer, the secondary space allocation is at

least n kilobytes, where n is:
12 If SECQTY and PRIQTY are omitted
4194304

If integer is greater than 4194304
integer If integer is not greater than 4194304

v Rule 5 (for secondary space allocation): When a table space requires a
new piece, the primary allocation quantity of the new piece is
determined as follows:
– If the value of subsystem parameter MGEXTSZ is NO, the primary

quantity from rule 1 is used.
– Otherwise, the maximum of the following values is used:

- The quantity that is calculated through sliding scale methodology
- The primary quantity from rule 1
- The specified SECQTY value

Alternative syntax and synonyms:
For compatibility with previous releases of DB2, the following keywords
are supported:

1478 SQL Reference

v You can specify the LOCKPART clause, but it has no effect. DB2 treats
all table spaces as if they were defined as LOCKPART YES. LOCKPART
YES specifies the use of selective partition locking. When all the
conditions for selective partition locking are met, DB2 locks only the
partitions that are accessed. When the conditions for selective partition
locking are not met, DB2 locks every partition of the table space.
LOCKSIZE TABLESPACE and LOCKPART YES are mutually exclusive.

v When creating a partitioned table space, you can specify PART as a
synonym for PARTITION.

v When specifying the logging attributes for a table space, you can specify
LOG YES as a synonym for LOGGED, and you can specify LOG NO as
a synonym for NOT LOGGED.

v You can specify the LARGE clause when creating partitioned table
spaces, but DSSIZE is the preferred clause to use when specifying the
partition size.

Although these keywords are supported as alternatives, they are not the
preferred syntax.

Examples

Example 1: Create table space DSN8S11D in database DSN8D11A. Let DB2 define
the data sets, using storage group DSN8G110. The primary space allocation is 52
kilobytes; the secondary, 20 kilobytes. The data sets need not be erased before they
are deleted.

Locking on tables in the space is to take place at the page level. Associate the table
space with buffer pool BP1. The data sets can be closed when no one is using the
table space.

CREATE TABLESPACE DSN8S11D
IN DSN8D11A
USING STOGROUP DSN8G110

PRIQTY 52
SECQTY 20
ERASE NO

LOCKSIZE PAGE
BUFFERPOOL BP1
CLOSE YES;

For the above example, the underlying data sets for the table space will be created
immediately, which is the default (DEFINE YES). If you want to defer the creation
of the data sets until data is first inserted into the table space, you would specify
DEFINE NO instead of accepting the default behavior.

Example 2: Assume that a large query database application uses a table space to
record historical sales data for marketing statistics. Create large table space
SALESHX in database DSN8D11A for the application. Create it with 82 partitions,
specifying that the data in partitions 80 through 82 is to be compressed.

Let DB2 define the data sets for all the partitions in the table space, using storage
group DSN8G110. For each data set, the primary space allocation is 4000 kilobytes,
and the secondary space allocation is 130 kilobytes. Except for the data set for
partition 82, the data sets do not need to be erased before they are deleted.

Locking on the table is to take place at the page level. There can only be one table
in a partitioned table space. Associate the table space with buffer pool BP1. The

Chapter 5. Statements 1479

data sets cannot be closed when no one is using the table space. If there are no
CLOSE YES data sets to close, DB2 might close the CLOSE NO data sets when the
DSMAX is reached.

CREATE TABLESPACE SALESHX
IN DSN8D11A
USING STOGROUP DSN8G110

PRIQTY 4000
SECQTY 130
ERASE NO

NUMPARTS 82
(PARTITION 80

COMPRESS YES,
PARTITION 81
COMPRESS YES,
PARTITION 82
COMPRESS YES
ERASE YES)

LOCKSIZE PAGE
BUFFERPOOL BP1
CLOSE NO;

Example 3: Assume that a column named EMP_PHOTO with a data type of
BLOB(110K) has been added to the sample employee table for each employee's
photo. Create LOB table space PHOTOLTS in database DSN8D11A for the auxiliary
table that will hold the BLOB data.

Let DB2 define the data sets for the table space, using storage group DSN8G110.
For each data set, the primary space allocation is 3200 kilobytes, and the secondary
space allocation is 1600 kilobytes. The data sets do not need to be erased before
they are deleted. (Because ERASE NO is the default, the clause does not have to be
explicitly specified to get that behavior.)

CREATE LOB TABLESPACE PHOTOLTS
IN DSN8D11A
USING STOGROUP DSN8G110

PRIQTY 3200
SECQTY 1600

LOCKSIZE LOB
BUFFERPOOL BP16K0
GBPCACHE SYSTEM
NOT LOGGED
CLOSE NO;

Example 4: The following example creates a range-partitioned universal table space,
TS1, in database DSN8D11A using storage group DSN8G110. The table space has
16 pages per segment and has 55 partitions. It specifies LOCKSIZE ANY.

CREATE TABLESPACE TS1
IN DSN8D11A
USING STOGROUP DSN8G110
NUMPARTS 55
SEGSIZE 16
LOCKSIZE ANY;

Example 5: The following example creates a range-partitioned universal table space,
TS2, in database DSN8D11A using storage group DSN8G110. The table space has
64 pages per segment and has seven defer-defined partitions, where every other
partition is compressed.

CREATE TABLESPACE TS2
IN DSN8D11A
USING STOGROUP DSN8G110
NUMPARTS 7
(

1480 SQL Reference

PARTITION 1 COMPRESS YES,
PARTITION 3 COMPRESS YES,
PARTITION 5 COMPRESS YES,
PARTITION 7 COMPRESS YES
)
SEGSIZE 64
DEFINE NO;

Example 6: The following example creates a partition-by-growth table space that
has a maximum size of 2 GB for each partition, four pages per segment with a
maximum of 24 partitions for the table space.
CREATE TABLESPACE TS01TS IN TS01DB USING STOGROUP SG1

DSSIZE 2G
MAXPARTITIONS 24
LOCKSIZE ANY
SEGSIZE 4;

Chapter 5. Statements 1481

CREATE TRIGGER
The CREATE TRIGGER statement defines a trigger in a schema and builds a
trigger package at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v The CREATEIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

In defining a trigger on a table, the privilege set that is defined below must include
SYSADM authority or each of the following:
v The SELECT privilege on the table on which the trigger is defined if any

transition variables or transition tables are specified
v The SELECT privilege on any table or view to which the search condition of

triggered action refers
v The necessary privileges to invoke the triggered SQL statements in the triggered

action
v The authorization to define a trigger on the table, which must include at least

one of the following:
– The TRIGGER privilege on the table on which the trigger is defined
– The ALTER privilege on the table on which the trigger is defined
– DBADM authority on the database that contains the table
– SYSCTRL authority

If the database is implicitly created, the database privileges must be on the
implicit database or on DSNDB04.

In defining a trigger on a view, the privilege set that is defined below must include
SYSADM authority or each of the following:
v The SELECT privilege on any table or view to which the search condition of

triggered action refers
v The necessary privileges to invoke the triggered SQL statements in the triggered

action
v The authorization to define a trigger on the view, which must include at least

one of the following:
– Ownership of the view on which the trigger is defined
– SYSCTRL authority

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the owner is a role, the implicit schema match does not apply and this role needs
to include one of the previously listed conditions.

1482 SQL Reference

If the statement is dynamically prepared and is not running in a trusted context for
which the ROLE AS OBJECT OWNER clause is specified, the privilege set is the
set of privileges that are held by the SQL authorization ID of the process. The
specified trigger name can include a schema name (a qualifier). If the schema name
is not the same as the SQL authorization ID of the process, one of the following
conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v The SQL authorization ID of the process has the CREATEIN privilege on the

schema.

At least one of the following privileges is required if the SECURED option is
specified:
v SECADM authority
v CREATE_SECURE_OBJECT privilege

Syntax

�� CREATE TRIGGER trigger-name NO CASCADE BEFORE
AFTER
INSTEAD OF

�

INSERT
DELETE
UPDATE

,

OF column-name

�

� ON table-name
view-name

�
(1) AS

REFERENCING OLD correlation-name
AS

NEW correlation-name
AS

OLD_TABLE table-identifier
AS

NEW_TABLE table-identifier

�

� FOR EACH ROW
FOR EACH STATEMENT

MODE DB2SQL
NOT SECURED

SECURED
triggered-action ��

Notes:

1 The same clause must not be specified more than one time.

��
WHEN (search-condition)

SQL-trigger-body ��

triggered-action

Chapter 5. Statements 1483

��

�

triggered-SQL-statement

BEGIN ATOMIC triggered-SQL-statement ; END

��

Description

trigger-name
Names the trigger. The name, including the implicit or explicit schema name,
must not identify a trigger that exists at the current server.

The name is also used to create the trigger package; therefore, the name must
also not identify a package that is already described in the catalog. The schema
name becomes the collection-id of the trigger package. Although trigger-name
can be specified as an ordinary or delimited identifier, the name should
conform to the rules for an ordinary identifier. Refer to The implicitly created
trigger package for additional information.

The schema name must not begin with 'SYS' unless the name is 'SYSADM', or
the schema name is 'SYSTOOLS' and the user who executes the CREATE
statement has SYSADM or SYSCTRL privilege.

NO CASCADE BEFORE
Specifies that the trigger is a before trigger. DB2 executes the triggered action
before it applies any changes caused by an insert, delete, or update operation
on the subject table. It also specifies that the triggered action does not activate
other triggers because the triggered action of a before trigger cannot contain
any updates.

NO CASCADE BEFORE must not be specified when view-name is also
specified. FOR EACH ROW must be specified for a BEFORE trigger.

AFTER
Specifies that the trigger is an after trigger. DB2 executes the triggered action
after it applies any changes caused by an insert, delete, or update operation on
the subject table. AFTER must not be specified if view-name is also specified.

INSTEAD OF
Specifies that the trigger is an instead of trigger. The associated triggered
action replaces the action against the subject view. Only one INSTEAD OF
trigger is allowed for each type of operation on a given subject view. DB2
executes the triggered-action instead of the insert, update, or delete operation
on the subject view.

INSTEAD OF must not be specified when table-name is also specified. The
WHEN clause can not be specified for an INSTEAD OF trigger. FOR EACH
STATEMENT must not be specified for an INSTEAD OF trigger.

INSERT
Specifies that the trigger is an insert trigger. DB2 executes the triggered action
whenever there is an insert operation on the subject table. However, if the
insert trigger is defined on any explain table, and the insert operation was
caused by DB2 adding a row to the table, the triggered action is not to be
executed.

SQL-trigger-body

1484 SQL Reference

DELETE
Specifies that the trigger is a delete trigger. DB2 executes the triggered action
whenever there is a delete operation on the subject table.

UPDATE
Specifies that the trigger is an update trigger. DB2 executes the triggered action
whenever there is an update operation on the subject table.

If you do not specify a list of column names, an update operation on any
column of the subject table, including columns that are subsequently added
with the ALTER TABLE statement, activates the triggered action.

OF column-name,...
Each column-name that you specify must be a column of the subject table
and must appear in the list only once. An update operation on any of the
listed columns activates the triggered action.

UPDATE OF column-name cannot be specified for an INSTEAD OF trigger.

ON table-name
Identifies the subject table of the BEFORE or AFTER trigger definition. The
name must identify a base table that exists at the current server. It must not
identify a materialized query table, a clone table, a temporary table, an
auxiliary table, an alias, a synonym, a real-time statistics table, or a catalog
table.

ON view-name
Identifies the subject view of the INSTEAD OF trigger definition. The name
must identify a view that exists at the current server.

view-name must not specify a view where any of the following conditions are
true:
v The view is defined with the WITH CASCADED CHECK option (a

symmetric view)
v The view on which a symmetric view has been defined
v The view references data that is encoded with different encoding schemes or

CCSID values
v The view has a column that is a ROWID column
v The view has a column that is based on an underlying column of any of the

following types:
– A security label column
– A row change timestamp column
– A ROW BEGIN column
– A ROW END column
– A transaction start ID column

v The view has a column that is defined (directly or indirectly) as an
expression

v The view has a column that is based on a column of a result table that
involves a set operator

v The view has columns that have field procedures
v All of the underlying tables of the view are catalog tables
v All of the underlying tables of the view are created global temporary tables
v All of the underlying tables of the view are clone tables
v The view has other views that are dependent on it

REFERENCING
Specifies the correlation names for the transition variables and the table names

Chapter 5. Statements 1485

for the transition tables. For the rows in the subject table that are modified by
the triggering SQL operation (insert, delete, or update), a correlation name
identifies the columns of a specific row. table-identifiers identify the complete set
of affected rows. Transition variables with XML types cannot be referenced
inside of a trigger. If the column of a transition table is referenced, the data
type of the column cannot be XML.

Each row that is affected by the triggering SQL operation is available to the
triggered action by qualifying column names with correlation-names that are
specified as follows:

OLD AS correlation-name
Specifies the correlation name that identifies the values in the row prior to
the triggering SQL operation.

NEW AS correlation-name
Specifies the correlation name that identifies the values in the row as
modified by the triggering SQL operation and by any SET statement in a
before trigger that has already been executed.

The complete set of rows that are affected by the triggering operation is
available to the triggered action by using table-identifiers that are specified as
follows:

OLD_TABLE AS table-identifier
Specifies the name of a temporary table that identifies the values in the
complete set of rows that are modified rows by the triggering SQL
operation prior to any actual changes.

NEW_TABLE AS table-identifier
Specifies the name of a temporary table that identifies the values in the
complete set of rows as modified by the triggering SQL operation and by
any SET statement in a before trigger that has already been executed.

Only one OLD and one NEW correlation-name can be specified for a trigger.
Only one OLD_TABLE and one NEW_TABLE table-identifier can be specified
for a trigger. All of the correlation-names and table-identifiers must be unique
from one another.

Table 127 on page 1487 summarizes the allowable combinations of transition
variables and transition tables that you can specify for the various trigger
types. The OLD correlation-name and the OLD_TABLE table-identifier are valid
only if the triggering event is either a delete operation or an update operation.
For a delete operation, the OLD correlation-name captures the values of the
columns in the deleted row, and the OLD_TABLE table-identifier captures the
values in the set of deleted rows. For an update operation, the OLD
correlation-name captures the values of the columns of a row before the update
operation, and the OLD_TABLE table-identifier captures the values in the set of
updated rows.

The NEW correlation-name and the NEW_TABLE table-identifier are valid only if
the triggering event is either an insert operation or an update operation. For
both operations, the NEW correlation-name captures the values of the columns
in the inserted or updated row and the NEW_TABLE table-identifier captures
the values in the set of inserted or updated rows. For BEFORE triggers, the
values of the updated rows include the changes from any SET statements in
the triggered action of BEFORE triggers.

The OLD and NEW correlation-name variables cannot be modified in an AFTER
or INSTEAD OF trigger.

1486 SQL Reference

Table 127. Allowable combinations of attributes in a trigger definition

Granularity
Activation
time

Triggering
SQL operation

Transition
variables
allowed1

Transition tables
allowed1

FOR EACH ROW

BEFORE

DELETE OLD None

INSERT NEW None

UPDATE OLD, NEW None

AFTER

DELETE OLD OLD_TABLE

INSERT NEW NEW_TABLE

UPDATE OLD, NEW OLD_TABLE,
NEW_TABLE

INSTEAD OF

DELETE OLD OLD_TABLE

INSERT NEW NEW_TABLE

UPDATE OLD, NEW OLD_TABLE,
NEW_TABLE

FOR EACH
STATEMENT

AFTER

DELETE None OLD_TABLE

INSERT None NEW_TABLE

UPDATE None OLD_TABLE,
NEW_TABLE

Note:

1. If a transition table or variable is referenced where it is not allowed, an error is returned.

A transition variable that has a character data type inherits the subtype and
CCSID of the column of the subject table. During the execution of the triggered
action, the transition variables are treated like host variables. Therefore,
character conversion might occur. However, unlike a host variable, a transition
variable can have the bit data attribute, and character conversion never occurs
for bit data. A transition variable is considered to be bit data if the column of
the table to which it corresponds is bit data.

You cannot modify a transition table; transition tables are read-only. Although
a transition table does not inherit any edit or validation procedures from the
subject table, it does inherit the encoding scheme and field procedures of the
subject table.

The scope of each correlation-name and each table-identifier is the entire trigger
definition.

FOR EACH ROW or FOR EACH STATEMENT
Specifies the conditions for which DB2 executes the triggered action.

FOR EACH ROW
Specifies that DB2 executes the triggered action for each row of the subject
table that the triggering SQL operation modifies. If the triggering SQL
operation does not modify any rows, the triggered action is not executed.

FOR EACH STATEMENT
Specifies that DB2 executes the triggered action only one time for the
triggering operation. Even if the triggering operation does not modify or
delete any rows, the triggered action is executed one time.

FOR EACH STATEMENT must not be specified for a BEFORE or
INSTEAD OF trigger.

Chapter 5. Statements 1487

MODE DB2SQL
Specifies the mode of the trigger. MODE DB2SQL triggers are activated after
all of the row operations have occurred.

NOT SECURED or SECURED
Specifies whether the trigger is considered secure. NOT SECURED is the
default.

SECURED
Specifies the trigger is considered secure.

SECURED must be specified for a trigger if its subject table is using row
access control or column access control. SECURED must also be specified
for a trigger that is created for a view and one or more of the underlying
tables in the view definition is using row access control or column access
control.

NOT SECURED
Specifies the trigger is considered not secure.

NOT SECURED must not be specified for a trigger whose subject table is
using row access control or column access control. NOT SECURED must
also not be specified for a trigger that is created for a view and one or
more of the underlying tables in the view definition is using row access
control or column access control.

triggered-action
Specifies the action to be performed when the trigger is activated. The
triggered-action is composed of one or more SQL statements and an optional
condition that controls whether the statements are executed.

WHEN (search-condition)
Specifies a condition that evaluates to true, false, or unknown. The
triggered SQL statements are executed only if the search-condition evaluates
to true. If the WHEN clause is omitted, the associated SQL statements are
always executed. The condition for a before trigger must not include a
subselect that references the subject table.

The WHEN clause must not be specified for an INSTEAD OF trigger.

search-condition must not reference the following items:
v A system-period temporal table if the trigger package is generated with

the SYSTIMESENSITIVE(YES) bind option
v An archive-enabled table if the trigger package is generated with the

ARCHIVESENSITIVE(YES) bind option

SQL-trigger-body
Specifies the SQL statements that are to be executed for the triggered
action.

triggered-SQL-statement
Specifies a single SQL statement that is to be executed for the triggered
action.

BEGIN ATOMIC triggered-SQL-statement,... END
Specifies a list of SQL statements that are to be executed for the
triggered action. The statements are executed in the order in which
they are specified.

SQL processor programs, such as SPUFI, the command line processor,
and DSNTEP2, might not correctly parse SQL statements in the
triggered action that are ended with semicolons. These processor

1488 SQL Reference

|

|
|

|
|

programs accept multiple SQL statements, each separated with a
terminator character, as input. Processor programs that use a semicolon
as the SQL statement terminator can truncate a CREATE TRIGGER
statement with embedded semicolons and pass only a portion of it to
DB2. Therefore, you might need to change the SQL terminator
character for these processor programs. For information on changing
the terminator character for SPUFI and DSNTEP2, see DB2 Application
Programming and SQL Guide.

Only certain SQL statements can be specified in the SQL-trigger-body. Table 128
shows the list of allowable SQL statements, which differs depending on
whether the trigger is being defined as BEFORE, AFTER, or INSTEAD OF. An
'X' in the table indicates that the statement is valid.

Table 128. Allowable SQL statements

SQL statement

Trigger activation time

BEFORE AFTER INSTEAD OF

CALL X X X

DELETE (searched) X X

fullselect X X X

INSERT X X

MERGE X X

REFRESH TABLE X X

SET transition
variable

X

SIGNAL X X X

UPDATE (searched) X X

VALUES X X X

The statements in the triggered action have these restrictions:
v They must not refer to host variables, parameter markers, undefined

transition variables, or declared temporary tables.
v They must only refer to a table or view that is at the current server.
v They must only invoke a stored procedure or user-defined function that is at

the current server. An invoked routine can, however, access a server other
than the current server.

v They must not contain a fullselect that refers to the subject table if the
trigger is defined as BEFORE.

v They must not modify a column that is part of a BUSINESS_TIME period.

The triggered action can refer to the values in the set of affected rows. This
action is supported through the use of transition variables and transition
tables.

Transition variables use the names of the columns in the subject table qualified
by a specified name that identifies whether the reference is to the old value
(before the update) or the new value (after the update). A transition variable
can be referenced in search-condition or triggered-SQL-statement of the triggered
action wherever a host variable is allowed in the statement if it were issued
outside the body of a trigger.

Chapter 5. Statements 1489

Transition tables can be referenced in the triggered action of an after trigger.
Transition tables are read-only. Transition tables also use the name of the
columns of the subject table but have a name specified that allows the
complete set of affected rows to be treated as a table. The name of the
transition table can be referenced in triggered-SQL-statement of the triggered
action whenever a table name is allowed in the statement if it were issued
outside the body of a trigger. The name of the transition table can be specified
in search-condition or triggered-SQL-statement of the triggered action whenever a
column name is allowed in the statement if it were issued outside the body of
a trigger.

In addition, a transition table can be passed as a parameter to a user-defined
function or procedure specifying the TABLE keyword before the name of the
transition table. When the function or procedure is invoked, a table locator is
passed for the transition table.

A transition variable or transition table is not affected after being returned
from a procedure invoked from within a triggered action regardless of whether
the corresponding parameter was defined in the CREATE PROCEDURE
statement as IN, INOUT, or OUT.

Notes

Owner privileges:
When an INSTEAD OF trigger is defined, the associated privilege (INSERT,
UPDATE, or DELETE on the view) is given to the owner of the view. The
owner is granted the privilege with the ability to grant that privilege to
others. For more information about ownership of an object, see
“Authorization, privileges, permissions, masks, and object ownership” on
page 70.

Execution authorization:
The user executing the triggering SQL operation does not need authority to
execute a triggered-SQL-statement. A triggered-SQL-statement will execute
using the authority of the owner of the trigger.

Activating a trigger:
Only insert, delete, or update operations can activate a trigger. The
activation of a trigger might cause trigger cascading. Trigger cascading is the
result of the activation of one trigger that executes SQL statements that
cause the activation of other triggers or even the same trigger again. The
triggered actions might also cause updates as a result of the original
modification, which can result in the activation of additional triggers. With
trigger cascading, a significant chain of triggers might be activated, causing
a significant change to the database as a result of a single insert, delete, or
update operation.

Loading a table with the LOAD utility does not activate any triggers that
are defined for the table if SHRLEVEL NONE is specified as part of the
LOAD utility or if the default SHRLEVEL option for LOAD is taken. If
SHRLEVEL CHANGE is specified as part of the LOAD utility, triggers are
activated when loading a table with the LOAD utility.

Adding triggers to enforce constraints:
Adding a trigger on a table that already has rows in it will not cause the
triggered action to be executed. Thus, if the trigger is designed to enforce
constraints on the data in the table, the data in the existing rows might not
satisfy those constraints.

1490 SQL Reference

Multiple triggers:
Multiple triggers that have the same triggering SQL operation and
activation time can be defined on a table. The triggers are activated in the
order in which they were created. For example, the trigger that was created
first is executed first; the trigger that was created second is executed
second.

Read-only views:
The addition of an INSTEAD OF trigger for a view affects the read only
characteristic of the view. If a read-only view has a dependency
relationship with an INSTEAD OF trigger, the type of operation that is
defined for the INSTEAD OF trigger defines whether the view is deletable,
insertable, or updatable.

The creation of an INSTEAD OF trigger causes dependent packages, plans,
and statements in the dynamic statement cache to be marked invalid if the
view definition is not read-only.

Invalidation of plans and packages:
A trigger package becomes invalid if an object or privilege on which it
depends is dropped or revoked. The next time the trigger is activated, DB2
attempts to rebind the invalid trigger package. If the automatic rebind is
unsuccessful, the trigger package remains invalid.

You cannot create another package from the trigger package, such as with
the BIND COPY command. The only way to drop a trigger package is to
drop the trigger or the subject table. Dropping the trigger drops the trigger
package; dropping the subject table drops the trigger and the trigger
package.

DB2 creates the trigger package with the following initial attributes (some
of these attributes can be modified using the REBIND TRIGGER
PACKAGE command):
v ACTION(ADD)
v ARCHIVESENSITIVE(YES)
v BUSTIMESENSITIVE(YES)
v CURRENTDATA(NO)
v DBPROTOCOL(DRDA)
v DEGREE(1)
v DESCSTAT(value from the DESCSTAT subsystem parameter)
v DYNAMICRULES(BIND)
v ENABLE(*)
v ENCODING(0)
v EXPLAIN(NO)
v FLAG(I)
v ISOLATION(CS)
v REOPT(NONE) and NODEFER(PREPARE)
v OPTHINT
v OWNER(authorization ID) or ROLE of appropriate
v PATH(path)
v RELEASE(COMMIT)
v ROUNDING(value from the CURRENT DECFLOAT ROUNDING

MODE special register)

Chapter 5. Statements 1491

|

|

|

v SQLERROR(NOPACKAGE)
v SYSTIMESENSITIVE(YES)
v QUALIFIER(authorization ID)
v VALIDATE(BIND)

The values of OWNER, QUALIFIER, and PATH are set depending on
whether the CREATE TRIGGER statement is embedded in a program or
issued interactively. If the statement is embedded in a program, OWNER
and QUALIFIER are the owner and qualifier of the package or plan. PATH
is the value from the PATH bind option. If the statement is issued
interactively, both OWNER and QUALIFIER are the SQL authorization ID.
PATH is the value in the CURRENT PATH special register.

Transition variable values and INSTEAD OF triggers:
The initial values for new transition variables or new transition table
columns that are visible in an INSTEAD OF INSERT trigger are set as
follows:
v If a value is explicitly specified for a column in the insert operation, the

corresponding new transition variable is that explicitly specified value.
v If a value is not explicitly specified for a column in the insert operation

or the DEFAULT clause is specified, the corresponding new transition
variable is:
– the default value of the underlying table column if the view column

is updatable (without the INSTEAD OF trigger)
– otherwise, the null value
If a view column is not nullable and does not have a default, the value
must be explicitly specified in the insert operation.

The initial values for new transition variables that are visible in an
INSTEAD OF UPDATE trigger are set as follows:
v If a value is explicitly specified for a column in the update operation, the

corresponding new transition variable is that explicitly specified value
v If the DEFAULT clause is explicitly specified for a column in the update

operation, the corresponding new transition variable is:
– the default value of the underlying table column if the view column

is updatable (without the INSTEAD OF trigger)
– otherwise, the null value
If a view column is not nullable and does not have a default, the value
must be explicitly specified in the update operation.

v Otherwise, the corresponding new transition variable is the existing
value of the column in the row.

Considerations for a MERGE statement:
The MERGE statement can execute insert and update operations. The
applicable INSERT or UPDATE triggers are activated for the MERGE
statement when an insert or update operation is executed.

Considerations for implicitly hidden columns:
In the body of a trigger, a trigger transition variable that corresponds to an
implicitly hidden column can be referenced. A trigger transition table, that
corresponds to a table with an implicitly hidden column, includes that
column as part of the transition table. Likewise, a trigger transition
variable will exist for the column that is defined as implicitly hidden. A
trigger transition variable that corresponds to an implicitly hidden column
can be referenced in the body of a trigger.

1492 SQL Reference

|

Considerations for the special plan, statement, and function tables for
EXPLAIN:

You can create a trigger on PLAN_TABLE, DSN_STATEMNT_TABLE, or
DSN_FUNCTION_TABLE. However, insert triggers that are defined on
these tables are not activated when DB2 adds rows to the tables.

Adding columns to a subject table or a table referenced in the triggered action:
If a column is added to the subject table after triggers have been defined,
the following rules apply:
v If the trigger is an update trigger that was defined without an explicit

list of column names, an update to the new column activates the trigger.
v If the subject table is referenced in the triggered-action, the new column is

not accessible to the SQL statements until the trigger package is
rebound.

v The OLD_TABLE and the NEW_TABLE transition tables contain the new
column, but the column cannot be referenced unless the trigger is
re-created. If the transition tables are passed to a user-defined function
or a stored procedure, the user-defined function or stored procedure
must be re-created with the new definition of the table (that is, the
function or procedure must be dropped and re-created), and the package
for the user-defined function or stored procedure must be rebound.

If a column is added to any table that is referenced in the triggered-action,
the new column is not accessible to the SQL statements until the trigger
package is rebound.

Altering the attributes of a column that the triggered action references:
If a column is altered in the table on which the trigger is defined (the
subject table), the alter is processed, and the dependent trigger packages
are invalidated.

Renaming the table for which the trigger is defined, or tables referenced in the
triggered action:

You cannot rename a table for which a trigger is defined (the subject table).
Except for the subject table, you can rename any table to which the SQL
statements in the triggered action refer. After renaming such a table, drop
the trigger and then re-create the trigger so that it refers to the renamed
table.

Dependencies when dropping objects and revoking privileges:
The following dependencies apply to a trigger:
v Dropping the subject table (the table on which the trigger is defined)

causes the trigger and its package to also be dropped.
v Dropping any table, view, alias, or index that is referenced or used

within the SQL statements in the triggered action causes the trigger and
its package to be invalidated. Dropping a referenced synonym has no
effect.

v Dropping a user-defined function that is referenced by the SQL
statements in the triggered action is not allowed. An error occurs.

v Dropping a sequence that is referenced by the SQL statements in the
triggered action is not allowed. An error occurs.

v Revoking a privilege on which the trigger depends causes the trigger
and its package to be invalidated.

Errors executing triggers:
Severe errors that occur during the execution of triggered SQL statements
are returned with SQLCODE -901, -906, -911, and -913 and the

Chapter 5. Statements 1493

corresponding SQLSTATE. Non-severe errors raised by a triggered SQL
statement that is a SIGNAL statement or that contains a RAISE_ERROR
function are returned with SQLCODE -438 and the SQLSTATE that is
specified in the SIGNAL statement or the RAISE_ERROR condition. Other
non-severe errors are returned with SQLCODE -723 and SQLSTATE 09000.
Warnings are not returned.

Special registers:
The values of the special registers are saved before a trigger is activated
and are restored on return from the trigger.

The following table describes how special registers are set on entry to the
trigger body. Some of the special registers are applicable only to dynamic
SQL. Although dynamic SQL statements are not allowed directly in the
triggered SQL statements, they are allowed in a user-defined function or
stored procedure that is invoked by the triggered SQL statements.

Table 129. Rules for the values of special registers in triggers

Special register The value is

CURRENT DATE
CURRENT TIME
CURRENT TIMESTAMP
CURRENT TEMPORAL
BUSINESS_TIME
CURRENT TEMPORAL
SYSTEM_TIME

Inherited from the triggering SQL operation
(delete, insert, update). All triggered SQL
statements, including the SQL statements in a
user-defined function or a stored procedure
invoked by the trigger, inherit these values.

CURRENT PACKAGESET Set to the schema name of the trigger

CURRENT TIMEZONE Set to the TIMEZONE parameter

1494 SQL Reference

|
|
|
|

Table 129. Rules for the values of special registers in triggers (continued)

Special register The value is

v CURRENT CLIENT_ACCTNG
v CURRENT CLIENT_APPLNAME
v CURRENT CLIENT_USERID
v CURRENT CLIENT_WRKSTNNAME
v

CURRENT APPLICATION
ENCODING SCHEME

v

CURRENT DECFLOAT ROUNDING
MODE

v CURRENT DEBUG MODE
v CURRENT DEGREE
v CURRENT GET_ACCEL_ARCHIVE
v CURRENT LC_CTYPE
v

CURRENT MAINTAINED
TABLE TYPES

v CURRENT MEMBER
v CURRENT OPTIMIZATION HINT
v CURRENT PATH
v CURRENT PACKAGE PATH
v CURRENT PRECISION
v CURRENT QUERY ACCELERATION
v CURRENT REFRESH AGE
v CURRENT RULES
v CURRENT SERVER
v CURRENT SQLID
v SESSION_USER

Inherited from the triggering SQL operation
(delete, insert, update)

Result sets for stored procedures:
If a trigger invokes a stored procedure that returns result sets, the
application that activated the trigger cannot access those result sets.

Transaction isolation:
All of the statements in the SQL-trigger-body run under the isolation level
in effect for the trigger.

Limiting processor time:
The DB2 resource limit facility allows you to specify the maximum amount
of processor time for a dynamic, manipulative SQL statement such as
SELECT or SQL data change statements. The execution of a trigger is
counted as part of the triggering SQL statement.

Characteristics of the package that is generated for a trigger:

The package that is associated with the trigger is named as follows:
v location is set to the value of the CURRENT SERVER special register
v collection-id (schema) for the package is the same as the schema qualifier

of the trigger
v package-id is the same as the name of the trigger
v version-id is the same as the empty string

The package is generated with the bind options that correspond to the
implicitly or explicitly specified trigger options.

Chapter 5. Statements 1495

Multiple versions of a trigger package are not allowed. Use the REBIND
command to explicitly rebind the trigger package. To specify the name of a
trigger package for the bind commands, the trigger name must conform to
the rules for an ordinary identifier.

A trigger package becomes invalid if an object or a privilege on which it
depends is dropped or revoked. The next time that the trigger is activated,
DB2 attempts to rebind the invalid trigger package. If the automatic rebind
is unsuccessful, the trigger package remains invalid.

You cannot create another package from the trigger package, such as with
the BIND COPY command. The only way to drop a trigger package is to
drop the trigger or the subject table. Dropping the trigger drops the trigger
package. Dropping the subject table drops the trigger and the trigger
package.

Creating a trigger with the SECURED option:
Typically, the security administrator will examine the data that is accessed
by a trigger, ensure that it is secure, and grant the
CREATE_SECURE_OBJECT privilege to someone who requires the
privileges to create a secured trigger. After the trigger is created, the
security administrator will revoke the CREATE_SECURE_OBJECT privilege
from the owner of the trigger.

The trigger is considered secure after the CREATE TRIGGER statement is
executed. DB2 treats the SECURED attribute as an assertion that declares
that the user has established an audit procedure for all activities in the
trigger body. If a secure trigger references user-defined functions, DB2
assumes those functions are secure without validation. If those functions
can access sensitive data, the user with SECADM authority needs to ensure
that those functions are allowed to access that data and that an audit
procedure is in place for all versions of those functions, and that all
subsequent ALTER FUNCTION statements or changes to external packages
are being reviewed by this audit process.

A trigger must be secure if its subject table is using row access control or
column access control. SECURED must also be specified for a trigger that
is created for a view and one or more of the underlying tables in the view
definition is using row access control or column access control.

Creating a trigger with the NOT SECURED option:
The CREATE TRIGGER statement returns an error if the subject table of
the trigger is using row access control or column access control, or if the
trigger is for a view and one or more of the underlying tables in the view
definition is using row access control or column access control.

Row and column access control that is not enforced for transition variables and
transition tables:

If row access control or column access control is enforced for the subject
table of the trigger, row permissions and column masks are not applied to
the initial values of transition variables and transition tables. Row access
control and column access control is enforced for the triggering table, but
is ignored for transition variables and transition tables that are referenced
in the body of the trigger body or are passed as arguments to user-defined
functions that are invoked in the body of the trigger. To ensure that there
are no security concerns for SQL statements accessing sensitive data in
transition variables and transition tables in the trigger action, the trigger
must be created with the SECURED option. If a trigger is not secure, the
CREATE TRIGGER statement returns an error.

1496 SQL Reference

The implicitly created trigger package:
When you create a trigger, DB2 automatically creates a trigger package
with the same name as the trigger name. The collection name of the trigger
package is the schema name of the trigger, and the version identifier is the
empty string. Multiple versions of a trigger package are not allowed.

Use the REBIND command to explicitly rebind the trigger package. To
specify the name of a trigger package for the bind commands, the name
must conform to the rules for an ordinary identifier.

Defining triggers on tables that contain XML columns:
Although a trigger can be defined on a table that contains an XML column,
an XML column cannot be referenced with a trigger transition variable in
the trigger body. An SQL-procedure-statement cannot reference a transition
variable that is an XML data type.

Triggers and global variables:
The content of a global variable that is references by a trigger is inherited
from the caller. Global variables cannot be modified in or by a trigger.

Restrictions involving pending definition changes:
CREATE TRIGGER is not allowed if the trigger is defined on a table for
which there are pending definition changes.

Errors binding triggers:
When a CREATE TRIGGER statement is bound, the SQL statements within
the triggered action might not be fully parsed. Syntax errors in those
statements might not be caught until the CREATE TRIGGER statement is
executed.

Alternative syntax and synonyms:
To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following keywords:
v OLD TABLE as a synonym for OLD_TABLE
v NEW TABLE as a synonym for NEW_TABLE

Examples

Example 1: Create two triggers that track the number of employees that a company
manages. The subject table is the EMPLOYEE table, and the triggers increment and
decrement a column with the total number of employees in the COMPANY_STATS
table. The tables have these columns:

EMPLOYEE table: ID, NAME, ADDRESS, and POSITION
COMPANY_STATS table: NBEMP, NBPRODUCT, and REVENUE

This example shows the use of transition variables in a row trigger to maintain
summary data in another table.

Create the first trigger, NEW_HIRE, so that it increments the number of employees
each time a new person is hired; that is, each time a new row is inserted into the
EMPLOYEE table, increase the value of column NBEMP in table
COMPANY_STATS by 1.

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END

Chapter 5. Statements 1497

|
|
|

|
|
|

Create the second trigger, FORM_EMP, so that it decrements the number of
employees each time an employee leaves the company; that is, each time a row is
deleted from the table EMPLOYEE, decrease the value of column NBEMP in table
COMPANY_STATS by 1.

CREATE TRIGGER FORM_EMP
AFTER DELETE ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1;
END

Example 2: Create a trigger, REORDER, that invokes user-defined function
ISSUE_SHIP_REQUEST to issue a shipping request whenever a parts record is
updated and the on-hand quantity for the affected part is less than 10% of its
maximum stocked quantity. User-defined function ISSUE_SHIP_REQUEST orders a
quantity of the part that is equal to the part's maximum stocked quantity minus its
on-hand quantity; the function also ensures that the request is sent to the
appropriate supplier.

The parts records are in the PARTS table. Although the table has more columns,
the trigger is activated only when columns ON_HAND and MAX_STOCKED are
updated.
CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS NROW
FOR EACH ROW MODE DB2SQL
WHEN (NROW.ON_HAND < 0.10 * NROW.MAX_STOCKED)
BEGIN ATOMIC

VALUES(ISSUE_SHIP_REQUEST(NROW.MAX_STOCKED - NROW.ON_HAND, NROW.PARTNO));
END

Example 3: Repeat the scenario in Example 2 except use a fullselect instead of a
VALUES statement to invoke the user-defined function. This example also shows
how to define the trigger as a statement trigger instead of a row trigger. For each
row in the transition table that evaluates to true for the WHERE clause, a shipping
request is issued for the part.
CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW_TABLE AS NTABLE
FOR EACH STATEMENT MODE DB2SQL

BEGIN ATOMIC
SELECT ISSUE_SHIP_REQUEST(MAX_STOCKED - ON_HAND, PARTNO)

FROM NTABLE
WHERE (ON_HAND < 0.10 * MAX_STOCKED);

END

Example 4: Assume that table EMPLOYEE contains column SALARY. Create a
trigger, SAL_ADJ, that prevents an update to an employee's salary that exceeds
20% and signals such an error. Have the error that is returned with an SQLSTATE
of '75001' and a description. This example shows that the SIGNAL statement is
useful for restricting changes that violate business rules.

CREATE TRIGGER SAL_ADJ
AFTER UPDATE OF SALARY ON EMPLOYEE
REFERENCING OLD AS OLD_EMP

NEW AS NEW_EMP
FOR EACH ROW MODE DB2SQL
WHEN (NEW_EMP.SALARY > (OLD_EMP.SALARY * 1.20))

BEGIN ATOMIC
SIGNAL SQLSTATE ’75001’ (’Invalid Salary Increase - Exceeds 20

END

1498 SQL Reference

Example 5: Assume that the following statements create a table, WEATHER (which
stores temperature values in Fahrenheit), and a view, CELSIUS_WEATHER for
users who prefer to work in Celsius instead of Fahrenheit:

CREATE TABLE WEATHER
(CITY VARCHAR(25),
TEMPF DECIMAL(5,2));

CREATE VIEW CELSIUS_WEATHER (CITY, TEMPC) AS
SELECT CITY, (TEMPF-32)/1.8
FROM WEATHER;

The following INSTEAD OF trigger is used on the CELSIUS_WEATHER view to
convert Celsius values to Fahrenheit values and then insert the Fahrenheit value
into the WEATHER table:

CREATE TRIGGER CW_INSERT INSTEAD OF INSERT
ON CELSIUS_WEATHER
REFERENCING NEW AS NEWCW
FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC
INSERT INTO WEATHER VALUES

(NEWCW.CITY,
1.8*NEWCW.TEMPC+32)

END;

Chapter 5. Statements 1499

CREATE TRUSTED CONTEXT
The CREATE TRUSTED CONTEXT statement defines a trusted context at the
current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v SYSADM authority
v SECADM authority

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the application is bound in a trusted context with the ROLE AS OBJECT OWNER
clause specified, a role is the owner. Otherwise, an authorization ID is the owner.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process unless the process is within a
trusted context and the ROLE AS OBJECT OWNER clause is specified. In that case,
the privileges set is the privileges that are held by the role that is associated with
the primary authorization ID of the process.

1500 SQL Reference

Syntax

�� CREATE TRUSTED CONTEXT context-name �

� BASED UPON CONNECTION USING SYSTEM AUTHID authorization-name �

�
NO DEFAULT ROLE

WITHOUT ROLE AS OBJECT OWNER
DEFAULT ROLE role-name

WITH ROLE AS OBJECT OWNER AND QUALIFIER

DISABLE

ENABLE
�

�
NO DEFAULT SECURITY LABEL

DEFAULT SECURITY LABEL seclabel-name
�

� �

�

,
(1) (3)

ATTRIBUTES (ADDRESS address-value)
(2)

ENCRYPTION encryption-value
SERVAUTH servauth-value

,

JOBNAME jobname-value

�

�

�

,

WITH USE FOR authorization-name
user-options

EXTERNAL SECURITY PROFILE profile-name
user-options

WITHOUT AUTHENTICATION
PUBLIC

WITH AUTHENTICATION

��

Notes:

1 This clause and the clauses that follow can be specified in any order. Each clause must not be
specified more than one time.

2 ENCRYPTION must not be specified more than one time.

3 Each pair of attribute name and corresponding value must be unique.

user-options:

Chapter 5. Statements 1501

��
(1) WITHOUT AUTHENTICATION

ROLE role-name SECURITY LABEL seclabel-name WITH AUTHENTICATION
��

Notes:

1 These clauses can be specified in any order. Each clause must not be specified more than one
time.

Description

context-name
Names the trusted context. The name must not identify a trusted context that
exists at the current server.

BASED UPON CONNECTION USING SYSTEM AUTHID authorization-name
Specifies that the context is a connection that is established by the
authorization ID that is specified by authorization-name. The system
authorization ID is the primary authorization ID. For a remote connection, it is
derived from the system user ID that is provided by an external entity, such as
a middleware server. For a local connection, the system authorization ID is
derived depending on the sources, as specified in Table 130.

Table 130. System authorization ID for a local connection

Source of local connection System authorization ID

Started task (RRSAF) USER parameter on JOB statement or RACF
USER.

TSO TSO logon ID

BATCH USER parameter on JOB statement

authorization-name must not be associated with an existing trusted context.

NO DEFAULT ROLE or DEFAULT ROLE role-name
Specifies whether a default role is associated with a trusted connection that is
based on the specified trusted context.

NO DEFAULT ROLE
Specifies that the trusted context does not have a default role. The
authorization ID of the process is the owner of any object that is created
using a trusted connection that is based on this trusted context. That
authorization ID must possess all of the privileges that are necessary to
create that object.

NO DEFAULT ROLE is the default.

DEFAULT ROLE role-name
Specifies that role-name is the role for the trusted context. role-name must
identify a role that exists at the current server. This role is used with the
user in a trusted connection that is based on the specified trusted context
when the user does not have a user-specified role that is defined as part of
the definition of this trusted context.

WITHOUT ROLE AS OBJECT OWNER or WITH ROLE AS OBJECT OWNER AND QUALIFIER
Specifies whether a role is used as the owner of objects that are created using a
trusted connection that is based on the specified trusted context.

WITHOUT ROLE AS OBJECT OWNER
Specifies that a role is not used as the owner of the objects that are created

1502 SQL Reference

using a trusted connection that is based on the specified trusted context.
The authorization ID of the process is the owner of any object that is the
created using a trusted connection that is based on this trusted context.
That authorization ID must possess all of the privileges that are necessary
to create the object.

WITHOUT ROLE AS OBJECT OWNER is the default.

WITH ROLE AS OBJECT OWNER AND QUALIFIER
Specifies that the context assigned role is the owner of the objects that are
created using a trusted connection that is based on this trusted context and
that role must possess all of the privileges that are necessary to create the
object. The context assigned role is the role that is defined for the user
within this trusted context, if one is defined. Otherwise, the role is the
default role that is associated with the trusted context. The role is also used
as the grantor for any GRANT statements that are issued, and the revoker
for any REVOKE statement that are issued using a trusted connection that
is based on this trusted context.

AND QUALIFIER
Specifies that role-name will be used as the default for the CURRENT
SCHEMA special register. The role-name will also be included in the
SQL PATH (in place of CURRENT SQLID).

When WITH ROLE AS OBJECT OWNER AND QUALIFIER is not
specified, there is no change to the default for the CURRENT
SCHEMA special register and the SQL PATH.

DISABLE or ENABLE
Specifies whether the trusted context is created in the enabled or disabled state.

DISABLE
Specified that the trusted context is disabled when it is created. A trusted
context that is disabled is not considered when a trusted connection is
established. DISABLE is the default.

ENABLE
Specifies that the trusted context is enabled when it is created.

NO DEFAULT SECURITY LABEL or DEFAULT SECURITY LABEL seclabel-name
Specifies whether the trusted connection has a default security label.

NO DEFAULT SECURITY LABEL
Specifies that the trusted context does not have a default security label.

DEFAULT SECURITY LABEL seclabel-name
Specifies that seclabel-name is the default security label for the trusted
context and is the security label that is used for multilevel security
verification. seclabel-name must identify one of the RACF SECLABEL values
that is defined for the SYSTEM AUTHID. This security label is used for a
trusted connection that is based on the specified trusted context when the
user does not have a specific security label defined as part of the definition
of this trusted context. In this case, seclabel-name must also identify one of
the RACF SECLABEL values that is defined for the user.

ATTRIBUTES
Specifies a list of one or more connection trust attributes that are used to
define the trusted context.

ADDRESS address-value
Specifies the actual communication address that is used by the connection

Chapter 5. Statements 1503

to communicate with the database manager. The protocol supported is only
for TCP/IP. The ADDRESS attribute can be specified multiple times, but
each address-value must be unique.

When establishing a trusted connection, if multiple values are defined for
the ADDRESS attribute for a trusted context, a candidate connection is
considered to match this attribute if the address that is used by a
connection matches any of the defined values for the ADDRESS attribute
of the trusted context.

address-value specifies a string constant that contains the value that is
associated with the ADDRESS trust attribute. address-value must be an IPv4
address, an IPv6 address, or a secure domain name with a length no
greater than 254 bytes. No validation of address-value is done at the time
the CREATE TRUSTED CONTEXT statement is processed. address-value
must be left justified within the string constant.
v An IPv4 address is represented as a dotted decimal address. An example

of an IPv4 address is 9.112.46.111
v An IPv6 address is represented as a colon hexadecimal address. An

example of an IPv6 address is 2001:0DB8:0000:0000:0008:0800:200C:417A.
This address can also be express in a compressed form as
2001:DB8::8:800:200C:417A.

v A domain name is converted to an IP address by the domain name
server where a resulting IPv4 or IPv6 address is determined. An
example of a domain name is www.ibm.com. The gethostbyname socket
call is used to resolve the domain name.

ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream (network
encryption).

encryption-value specifies a string constant that contains the value that is
associated with the ENCRYPTION trust attribute. encryption-value must be
left justified within the string constant. ENCRYPTION must not be
specified more than one time in the statement. encryption-value must be one
of the following:
v NONE, which specifies that no specific level of encryption is required.
v LOW, which specifies that a minimum of light encryption is required.

LOW corresponds to 64-bit DRDA encryption.
v HIGH, which specifies that strong encryption is required. HIGH

corresponds to SSL encryption.

The following table summarizes when a trusted context can be used
depending on the encryption that is used by the existing connection. If the
trusted context cannot be used for the connection, a warning is returned.

Table 131. Summary of when trusted context can be used by an existing connection

Encryption that is used by
the existing connection

Value of the ENCRYPTION
clause for the trusted context

Can the trusted context be
used for the connection?

No encryption NONE Yes

No encryption LOW No

No encryption HIGH No

Low encryption (64-bit) NONE Yes

Low encryption (64-bit) LOW Yes

Low encryption (64-bit) HIGH No

1504 SQL Reference

Table 131. Summary of when trusted context can be used by an existing
connection (continued)

Encryption that is used by
the existing connection

Value of the ENCRYPTION
clause for the trusted context

Can the trusted context be
used for the connection?

High encryption (128-bit) NONE Yes

High encryption (128-bit) LOW Yes

High encryption (128-bit) HIGH Yes

JOBNAME jobname-value
Specifies the z/OS job name or started task name (depending on the
source of the address space) for local applications. The JOBNAME attribute
can be specified multiple times, but each jobname-value must be unique.

jobname-value specifies a string constant that contains the value that is
associated with the JOBNAME trust attribute. jobname-value is an EBCDIC 8
byte value that specifies the job name or the started task name. The value
must be left justified within the string constant. The last character in the
name can be a wildcard character (*) if the first character is an alphabetic
character. If the job name ends with a wildcard, any job names that begin
with the specified characters are considered for establishing the trusted
connection.

The following table lists possible values for the job name depending on the
source of the address space.

Table 132. Job name for local connection

Source of the address space Job name

RRSAF Job name or started task name

TSO TSO logon ID

BATCH Job name on JOB statement

SERVAUTH servauth-value
Specifies the name of a resource in the RACF SERVAUTH class. This
resource is the network access security zone name that contains the IP
address of the connection that is used to communicate with DB2. The
SERVAUTH attribute can be specified multiple times but each
servauth-value must be unique.

servauth-value specifies a string constant that contains the value that is
associated with the SERVAUTH trust attribute. servauth-value is an EBCDIC
64 byte RACF SERVAUTH CLASS resource name. servauth-value must be
left justified in the string constant. No validation of servauth-value is done
at the time the CREATE TRUSTED CONTEXT statement is processed.

WITH USE FOR
Specifies who can use a trusted connection that is based on the specified
trusted context.

authorization-name
Specifies that the trusted connection can be used by the specified
authorization-name. This is the DB2 primary authorization ID. The
authorization-name must not be specified more than one time in the WITH
USE FOR clause.

ROLE role-name
Specifies that role-name is the role that is used when a trusted

Chapter 5. Statements 1505

connection is used by the specified authorization-name. The role-name
must identify a role that exists at the current server. The role that is
explicitly specified for the user overrides any default role that is
associated with the trusted context.

SECURITY LABEL seclabel-name
Specifies that seclabel-name is the security label to use for multilevel
security verification when the trusted connection is used by the
specified authorization-name. The seclabel-name must be one of the RACF
SECLABEL values that is defined for the user. The security label that is
explicitly specified for the user overrides any default security label that
is associated with the trusted context.

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether use of the trusted connection requires authentication
of the user.

WITHOUT AUTHENTICATION
Specifies that use of a trusted connection by the user does not
require authentication. WITHOUT AUTHENTICATION is the
default.

WITH AUTHENTICATION
Specifies that use of a trusted connection requires the
authentication token with the authorization ID to authenticate the
user. If a trusted connection is established locally, the
authentication token is the password that is provided by the
CONNECT statement with the USER and USING clauses. If the
trusted connection is established from a remote client, the
authentication token can be one of the following tokens:
v password
v RACF Passticket
v Kerberos token

EXTERNAL SECURITY PROFILE profile-name
Specifies that the trusted connection can be used by the DB2 primary
authorization IDs that are permitted to use the specified profile-name in
RACF. The profile-name must not be specified more than one time in the
WITH USE FOR clause.

ROLE role-name
Specifies that role-name is the role that is used when a trusted
connection is used by any authorization ID permitted to use the
specified profile-name in RACF. The role-name must identify a role that
exists at the current server. The role that is explicitly specified for the
profile overrides any default role that is associated with the trusted
context.

SECURITY LABEL seclabel-name
Specifies that seclabel-name is the security label to use for multilevel
security verification when the trusted connection is used by any
authorization ID that is permitted to use the specified profile-name in
RACF. The seclabel-name must be one of the RACF SECLABEL values
that is defined for the user. The security label that is explicitly specified
for the profile overrides any default security label that is associated
with the trusted context.

1506 SQL Reference

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether use of the trusted connection requires authentication
of the user.

WITHOUT AUTHENTICATION
Specifies that use of a trusted connection by the user does not
require authentication. WITHOUT AUTHENTICATION is the
default.

WITH AUTHENTICATION
Specifies that use of a trusted connection requires the
authentication token with the authorization ID to authenticate the
user. If a trusted connection is established locally, the
authentication token is the password that is provided by the
CONNECT statement with the USER and USING clauses. If the
trusted connection is established from a remote client, the
authentication token can be one of the following tokens:
v password
v RACF Passticket
v Kerberos token

PUBLIC
Specifies that a trusted connection that is based on the specified trusted
context can be used by any user. All users that are using a trusted
connection that is defined with PUBLIC use the privileges that are
associated with the default role for the associated trusted context. If the
default role is not defined for the trusted context, there is no role
associated with the users that use a trusted connection that is based on the
specified trusted context.

If the default security label for the trusted context is defined, all users that
are using the trusted context must have the security label defined as one of
the RACF SECLABEL values for the user. The default security label is used
for multilevel security verification with all users that are using the trusted
context.

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether use of the trusted connection requires authentication of
the user.

WITHOUT AUTHENTICATION
Specifies that use of a trusted connection by the user does not require
authentication. WITHOUT AUTHENTICATION is the default.

WITH AUTHENTICATION
Specifies that use of a trusted connection requires the authentication
token with the authorization ID to authenticate the user. If a trusted
connection is established locally, the authentication token is the
password that is provided by the CONNECT statement with the USER
and USING clauses. If the trusted connection is established from a
remote client, the authentication token can be one of the following
tokens:
v password
v RACF Passticket
v Kerberos token

Chapter 5. Statements 1507

Notes

Owner privileges: There are no specific privileges on a trusted context.

Requirement for trusted connections: To use trusted connections, you cannot set the
ALL subsystem parameter to ALL and set the RESTART subsystem parameter to
DEFER on installation panel DSNTIPS.

Order of precedence for users of a trusted connection: The specifications for a user
are determined in the following order of precedence:
v authorization-name

v EXTERNAL SECURITY PROFILE profile-name

v PUBLIC

For example, assume that a trusted context is defined with use for JOE WITH
AUTHENTICATION, EXTERNAL SECURITY PROFILE SPROFILE WITHOUT
AUTHENTICATION, and PUBLIC WITH AUTHENTICATION. Users JOE and
SAM are permitted to use the RACF PROFILE SPROFILE. If the trusted connection
is used by JOE, authentication is required. If the trusted connection is used by
SAM, authentication is not required. However, if user SALLY uses the trusted
connection, authentication is required.

User-clause SYSTEM AUTHID considerations: If the authorization-name that is
specified in the SYSTEM AUTHID clause is the same as the authorization-name that
is specified in the user-clause authorization-name, the role or the security label that
is specified for authorization-name takes precedence over the default value. The
value that is specified for the profile-name, is permitted to use the profile. If the
authorization name that is specified in the SYSTEM AUTHID clause is permitted to
use one of the profile names and is not defined in authorization-name, the role or
the security label that is specified for that profile-name takes precedence over the
default value.

If authentication is required for SYSTEM AUTHID, either by specification of the
AUTHENTICATION clause in the user-clause or by setting the value of the TCP/IP
Already Verified subsystem parameter to NO, the authentication requirement takes
precedence when establishing a remote trusted connection. For example, if
authorization-name is the same as the authorization name that is specified for
SYSTEM AUTHID and the WITHOUT AUTHENTICATION clause is specified, but
the TCP/IP Already Verified subsystem parameter is set to NO, an authentication
token is required for SYSTEM AUTHID when the remote trusted connection is
established. If authorization-name is the SYSTEM AUTHID and the WITH
AUTHENTICATION clause is specified, but the TCP/IP Already Verified
subsystem parameter is set to YES, an authentication token is still required for
SYSTEM AUTHID.

Specifying a role in the definition of a trusted context: The definition of a trusted
context can designate a role for a specific authorization ID, and a default role for
use for an authorization ID for which a specific role has not been specified in the
definition of the trusted context. This role can be used with a trusted connection
that is based on the trusted context, but it does not make the role available outside
of a trusted connection that is based on the trusted context. When an SQL
statement that is not a CREATE, GRANT, or REVOKE statement is issued using a
trusted connection, the privileges that are held by a role that is in effect for the
authorization ID within the definition of the associated trusted context are
considered in addition to other privileges that are directly held by the

1508 SQL Reference

authorization ID of the statement. The CREATE, GRANT, and REVOKE statements
only consider the privileges of the role that is in effect for the trusted connection,
or the authorization ID of the statement if a role is not in effect for the trusted
connection. If ROLE AS OBJECT OWNER is in effect for a trusted connection, the
role that is in effect for the authorization ID for the trusted connection becomes the
owner of any object that is created while using the trusted connection.

When a newly created trusted context takes effect: The newly created trusted
context takes effect after the CREATE TRUSTED CONTEXT statement is
committed. If the CREATE TRUSTED CONTEXT statement results in an error or is
rolled back, no trusted context is created.

Examples

Example 1: The following statement creates a trusted context called CTX1, which is
based on a connection and can only be used by users JOE and SAM.
Authentication information is required for JOE to use the trusted connection. The
trusted context specifies a default role called CTXROLE. However, when JOE uses
the trusted connection, the default role is overridden by the user role, ROLE1.
When SAM uses the trusted connection, SAM uses the default role. CTX1 is
enabled when it is created.

CREATE TRUSTED CONTEXT CTX1
BASED UPON CONNECTION USING SYSTEM AUTHID ADMF001
ATTRIBUTES (ADDRESS ’9.30.131.203’,

ENCRYPTION ’LOW’)
DEFAULT ROLE CTXROLE
ENABLE
WITH USE FOR SAM, JOE ROLE ROLE1 WITH AUTHENTICATION;

Example 2: The following statement creates a trusted context, CTX2, for a started
task, WASPROD. CTX2 is based on a connection, can be used by user SALLY,
specifies a default role CTXROLE, and is enabled when it is created. SALLY uses
the default role that is associated with the trusted context.

CREATE TRUSTED CONTEXT CTX2
BASED UPON CONNECTION USING SYSTEM AUTHID ADMF002
ATTRIBUTES (JOBNAME ’WASPROD’)
DEFAULT ROLE CTXROLE WITH ROLE AS OBJECT OWNER AND QUALIFIER
ENABLE
WITH USE FOR SALLY;

Chapter 5. Statements 1509

CREATE TYPE
The CREATE TYPE statement defines a user-defined data type at the current
server.

The following types of user-defined data types can be defined:

Array A user-defined data type that is an ordinary array or an associative array.
The elements of an array type are based on one of the built-in data types.
See “CREATE TYPE (array)” on page 1511.

Distinct
A user-defined data type that shares a common representation with one of
the built-in data types. Functions that cast between the user-defined
distinct type and the source built-in data type are generated when the
user-defined distinct type is created. Optionally, support for comparison
operations to use with the user-defined distinct type can be generated
when the user-defined distinct type is created. See “CREATE TYPE
(distinct)” on page 1516.

1510 SQL Reference

|

|
|

|

||
|
|

|
|
|
|
|
|
|
|

CREATE TYPE (array)
The CREATE TYPE (array) statement defines an array type at the current server.
An array type is a user-defined data type that is an ordinary array or an
associative array. The elements of an array type are based on one of the built-in
data types.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package.

Authorization

The privilege set that is defined below must include at least one of the following:
v The CREATEIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package.

If the statement is running under a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the owner is a role. The implicit schema
match does not apply, and this role needs to include one of the previously listed
conditions.

If the statement is dynamically prepared and is not running in a trusted context for
which the ROLE AS OBJECT OWNER clause is specified, the privilege set is the
set of privileges that are held by the SQL authorization ID of the process. The
specified distinct type name can include a schema name (a qualifier). If the schema
name is not the same as the SQL authorization ID of the process, one of the
following conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v The SQL authorization ID of the process has the CREATEIN privilege on the

schema.

Syntax

�� CREATE TYPE array-type-name AS built-in-type
2147483647

ARRAY []
integer-constant

data-type2

��

built-in-type:

Chapter 5. Statements 1511

|

|

|
|
|
|

|

|
|
|
|

|

|

|

|

|

|
|

|
|

|
|
|
|

|
|
|
|
|
|

|

|
|

|
|

|||||||||||||||||||||||||||||||||||||

|
||
|

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE

��

�� INTEGER
INT
VARCHAR (integer)
CHARACTER VARYING CCSID ASCII FOR SBCS DATA
CHAR EBCDIC MIXED

UNICODE BIT

��

Description

array-type-name
Names the array type. The name, including the implicit or explicit qualifier,
must not identify any other built-in or user-defined type that exists at the
current server.

data-type2:

1512 SQL Reference

|

||

|
|

|||

|

|

|
|
|
|

The unqualified form of array-type-name must not be any of the following
system-reserved keywords, even if you specify them as delimited identifiers:
ALL LIKE UNIQUE
AND MATCH UNKNOWN
ANY NOT =
BETWEEN NULL ¬=
DISTINCT ONLY <
EXCEPT OR <=
EXISTS OVERLAPS ¬<
FALSE SIMILAR >
FOR SOME >=
FROM TABLE ¬>
IN TRUE <>
IS TYPE

The schema name can be 'SYSTOOLS' if the user who executes the CREATE
statement has SYSADM or SYSCTRL privilege. Otherwise, the schema name
must not begin with 'SYS' unless the schema name is 'SYSADM'.

built-in-type
Specifies the built-in data type of the array elements. The data type must not
be ROWID or XML. For more information on built-in data types, see
built-in-type in CREATE TABLE.

CCSID ASCII, EBCDIC, or UNICODE in a built-in-type specification
If the data type is a character string, and a CCSID clause is not specified for
built-in-type, the default CCSID is determined as follows:
v If data-type2 is a character string data type with an explicit CCSID clause,

that same CCSID value is used for built-in-type.
v If data-type2 is a character string data type without an explicit CCSID clause,

the CCSID for built-in-type is determined from the encoding scheme that is
indicated by the value of field DEF ENCODING SCHEME on installation
panel DSNTIPF.

If a CCSID clause is specified for built-in-type and for data-type2, the CCSID
values must be the same.

FOR SBCS, MIXED, or BIT DATA in a built-in-type specification
Specifies a subtype for a character string data type (VARCHAR). Do not use
this clause with any other data type.

SBCS Single-byte data.

MIXED
Mixed data. Do not specify MIXED if the value of field MIXED DATA
on installation panel DSNTIPF is NO unless the CCSID UNICODE
clause is also specified.

BIT Bit data.

If you do not specify the FOR SBCS DATA, FOR MIXED DATA, or FOR BIT
DATA clause, the default value is determined as follows:
v For ASCII or EBCDIC data:

– The default is SBCS when the value of field MIXED DATA on installation
panel DSNTIPF is NO.

– The default is MIXED when the value is YES.
v For Unicode data, the default subtype is MIXED.

ARRAY[integer-constant]
Specifies that the type is an ordinary array with a maximum cardinality of
integer-constant. The value must be an integer that is greater than 0 and less

Chapter 5. Statements 1513

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|

||

|
|
|
|

||

|
|

|

|
|

|

|

|
|
|

than or equal to the largest positive integer value (2147483647). The default is
2147483647. Each varying-length string array element is allocated as its
maximum length.

The cardinality of an array value is determined by the highest element position
that is assigned to the array value. The maximum cardinality of an array is
limited by the total amount of memory that is available to DB2 applications.
Therefore, although an array with a large cardinality can be created, not all
elements might be available for use. An attempt to assign a value to an array
element when there is not enough memory results in an error.

ARRAY[data-type2]
Specifies that the type is an associative array that is indexed by values of data
type data-type2. The data type must be the INTEGER or VARCHAR data type.
The value that is specified as the index during assignment of a value to an
array element must be assignable to a value of data-type2.

The cardinality of an array value is determined by the number of unique index
values that are used when during assignment of array elements.

CCSID ASCII, EBCDIC, or UNICODE in a data-type2 specification
If the data type is a character string, and a CCSID clause is not specified for
data-type2, the default CCSID is determined as follows:
v If built-in-type is a character string data type with an explicit CCSID clause,

that same CCSID value is used for data-type2.
v If built-in-type is a character string data type without an explicit CCSID

clause, the CCSID for data-type2 is determined from the encoding scheme
that is indicated by the value of field DEF ENCODING SCHEME on
installation panel DSNTIPF.

If a CCSID clause is specified for built-in-type and for data-type2, the CCSID
values must be the same.

FOR SBCS, MIXED, or BIT DATA in a data-type2 specification
Specifies a subtype for a character string data type (VARCHAR). Do not use
this clause with any other data type.

SBCS Single-byte data.

MIXED
Mixed data. Do not specify MIXED if the value of field MIXED DATA
on installation panel DSNTIPF is NO unless the CCSID UNICODE
clause is also specified.

BIT Bit data.

If you do not specify the FOR SBCS DATA, FOR MIXED DATA, or FOR BIT
DATA clause, the default value is determined as follows:
v For ASCII or EBCDIC data:

– The default is SBCS when the value of field MIXED DATA on installation
panel DSNTIPF is NO.

– The default is MIXED when the value is YES.
v For Unicode data, the default subtype is MIXED.

Notes

Array type usage: A user-defined array type can only be used as the data type of:
v An SQL variable
v A parameter or RETURNS data-type of an SQL scalar function

1514 SQL Reference

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|

||

|
|
|
|

||

|
|

|

|
|

|

|

|

|

|

|

v A parameter of a native SQL procedure
v The target data type for a CAST specification

Generated cast functions: The successful execution of the CREATE TYPE (array)
statement causes the DB2 database manager to generate cast functions for the
user-defined array type. Those cast functions are recorded in the DB2 catalog. The
unqualified names of the two cast functions are ARRAY and the name of the array
type. A generated cast function cannot be explicitly dropped. The cast functions
that are generated for an array type are implicitly dropped when the array type is
dropped with the DROP statement.

Examples

Example 1: Create an ordinary array user-defined type named PHONENUMBERS,
with a maximum of 50 elements. The elements are of the DECIMAL(10,0) data
type.
CREATE TYPE PHONENUMBERS AS DECIMAL(10,0) ARRAY[50];

Example 2: Create an ordinary array user-defined type named NUMBERS, in the
schema GENERIC. You do not know the maximum number of elements, so you
use the default value. The elements are of the DECFLOAT(34) data type.
CREATE TYPE GENERIC.NUMBERS AS DECFLOAT(34) ARRAY[];

Example 3: Create an associative array user-defined type named
PERSONAL_PHONENUMBERS. The elements are of the DECIMAL(16, 0) data
type. The array type is indexed by strings such as 'Home', 'Work', or 'Cell', so the
index data type must be VARCHAR.
CREATE TYPE PERSONAL_PHONENUMBERS AS DECIMAL(16,0) ARRAY[VARCHAR(8)];

Example 4: Create an associative array user-defined type named CAPITALSARRAY.
The elements are capital cities. The index values are province, territory, or country
names, so the index data type must be VARCHAR.
CREATE TYPE CAPITALSARRAY AS VARCHAR(30) ARRAY[VARCHAR(20)];

Example 5: Create an associative array user-defined type named PRODUCTS. The
elements are product descriptions of up to 40 characters. The index values are
product numbers, which have the INTEGER data type.
CREATE TYPE PRODUCTS AS VARCHAR(40) ARRAY[INTEGER];

Chapter 5. Statements 1515

|

|

|
|
|
|
|
|
|

|

|
|
|

|

|
|
|

|

|
|
|
|

|

|
|
|

|

|
|
|

|

|

CREATE TYPE (distinct)
The CREATE TYPE (distinct) statement defines a distinct type, which is a data type
that a user defines. A distinct type must be based on one of the built-in data types.

Successful execution of the statement also generates:
v A function to cast between the distinct type and its source type
v A function to cast between the source type and its distinct type
v As appropriate, support for the use of comparison operators with the distinct

type

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v The CREATEIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the owner is a role, the implicit schema match does not apply and this role needs
to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for
which the ROLE AS OBJECT OWNER clause is specified, the privilege set is the
set of privileges that are held by the SQL authorization ID of the process. The
specified distinct type name can include a schema name (a qualifier). If the schema
name is not the same as the SQL authorization ID of the process, one of the
following conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v The SQL authorization ID of the process has the CREATEIN privilege on the

schema.

1516 SQL Reference

Syntax

�� CREATE TYPE distinct-type-name AS source-data-type
(1)

INLINE LENGTH integer

��

Notes:

1 INLINE LENGTH can only be specified when source-data-type is a LOB data type.

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID

��

source-data-type

Chapter 5. Statements 1517

Description

distinct-type-name
Names the distinct type. The name, including the implicit or explicit qualifier,
must not identify a distinct type that exists at the current server.
v The unqualified form of distinct-type-name must not be the name of a built-in

data type, BOOLEAN, or any of following system-reserved keywords even if
you specify them as delimited identifiers:
ALL LIKE UNIQUE
AND MATCH UNKNOWN
ANY NOT =
BETWEEN NULL ¬=
DISTINCT ONLY <
EXCEPT OR <=
EXISTS OVERLAPS ¬<
FALSE SIMILAR >
FOR SOME >=
FROM TABLE ¬>
IN TRUE <>
IS TYPE

v The qualified form of distinct-type-name is an SQL identifier (the schema
name) followed by a period and an SQL identifier.

The schema name can be 'SYSTOOLS' if the user who executes the CREATE
statement has SYSADM or SYSCTRL privilege. Otherwise, the schema name
must not begin with 'SYS' unless the schema name is 'SYSADM'.

source-data-type
Specifies the data type that is used as the basis for the internal representation
of the distinct type. The data type must be a built-in data type. For more
information on built-in data types, see built-in-type.

If the distinct type is based on a character or graphic string data type, the FOR
clause indicates the subtype. If you do not specify the FOR clause, the distinct
type is defined with the default subtype. For ASCII or EBCDIC data, the
default is SBCS when the value of field MIXED DATA on installation panel
DSNTIPF is NO. The default is MIXED when the value is YES. For UNICODE
character data, the default subtype is mixed.

If the distinct type is based on a string data type, the CCSID clause indicates
whether the encoding scheme of the data is ASCII, EBCDIC or UNICODE. If
you do not specify CCSID ASCII, CCSID EBCDIC, or UNICODE, the encoding
scheme is the value of field DEF ENCODING SCHEME on installation panel
DSNTIPF.

INLINE LENGTH integer
Specifies the default inline length for columns that reference the distinct type.
INLINE LENGTH can only be specified when source-data-type is a LOB data
type. Only columns in a table that is in a universal table space can inherit the
specified inline length for the distinct type. If the table is not in a universal
table space, the specified inline length is ignored.

Where source-data-type is BLOB and CLOB, integer specifies the maximum
number of bytes that are stored in the base table space for columns that
reference this distinct type. integer must be between 0 and 32680 (inclusive) for
a BLOB or CLOB source-data-type.

Where source-data-type is DBCLOB, integer specifies the maximum number of
double-byte characters that are stored in the table space for columns that
reference the distinct type. integer must be between 0 and 16340 (inclusive) for
a DBCLOB source-data-type.

1518 SQL Reference

If INLINE LENGTH is specified with a value of 0 for integer, any column that
references the distinct type will not have an inline length unless the CREATE
TABLE or ALTER TABLE ADD statement specifies an inline length for the
column.

If INLINE LENGTH is not specified, any column that reference the distinct
type takes its default vale from the value of the LOB INLINE LENGTH
parameter on installation panel DSNTIPD.

integer cannot be greater than the maximum length of the distinct type.

Notes

Owner privileges:
The owner of the distinct type is authorized to define columns, parameters,
or variables with the distinct type (USAGE privilege) with the ability to
grant these privileges to others. See “GRANT (type or JAR file privileges)”
on page 1725. The owner is also authorized to invoke the generated cast
function (EXECUTE privilege; see “GRANT (function or procedure
privileges)” on page 1703). The owner is given the USAGE and EXECUTE
privileges with the GRANT option. For more information about ownership
of the object, see “Authorization, privileges, permissions, masks, and object
ownership” on page 70.

Source data types with DBCS or mixed data:
When the implicit or explicit encoding scheme is ASCII or EBCDIC and the
source data type is graphic or a character type is MIXED DATA, then the
value of field FOR MIXED DATA on installation panel DSNTIPF must be
YES; otherwise, an error occurs.

Generated cast functions:
The successful execution of the CREATE TYPE (distinct) statement causes
DB2 to generate the following cast functions:
v A function to convert from the distinct type to its source data type
v A function to convert from the source data type to the distinct type
v A function to cast from a data type A to distinct type DT, where A is

promotable to the source data type S of distinct type DT

For some source data types, DB2 supports an additional function to
convert from:
– INTEGER to the distinct type if the source type is SMALLINT
– VARCHAR to the distinct type if the source type is CHAR
– VARGRAPHIC to the distinct type if the source type is GRAPHIC
– VARBINARY to the distinct type if the source type is BINARY
– DOUBLE to the distinct type if the source type is REAL

The cast functions are created as if the following statements were executed:
CREATE FUNCTION source-type-name (distinct-type-name)

RETURNS source-type-name ...
CREATE FUNCTION distinct-type-name (source-type-name)

RETURNS distinct-type-name ...

Even if you specified a length, precision, or scale for the source data type
in the CREATE TYPE (distinct) statement, the name of the cast function
that converts from the distinct type to the source type is simply the name
of the source data type. The data type of the value that the cast function
returns includes any length, precision, or scale values that you specified for
the source data type. (See Table 133 on page 1520 for details.)

Chapter 5. Statements 1519

The name of the cast function that converts from the source type to the
distinct type is the name of the distinct type. The input parameter of the
cast function has the same data type as the source data type, including the
length, precision, and scale.

For example, assume that a distinct type named T_SHOESIZE is created
with the following statement:

CREATE TYPE (distinct) CLAIRE.T_SHOESIZE AS VARCHAR(2)

When the statement is executed, DB2 also generates the following cast
functions. VARCHAR converts from the distinct type to the source type,
and T_SHOESIZE converts from the source type to the distinct type.

FUNCTION CLAIRE.VARCHAR (CLAIRE.T_SHOESIZE) RETURNS SYSIBM.VARCHAR (2)
FUNCTION CLAIRE.T_SHOESIZE (SYSIBM.VARCHAR (2)) RETURNS CLAIRE.T_SHOESIZE

Notice that function VARCHAR returns a value with a data type of
VARCHAR(2) and that function T_SHOESIZE has an input parameter with
a data type of VARCHAR(2).

The schema of the generated cast functions is the same as the schema of
the distinct type. No other function with the same name and function
signature must already exist in the database.

In the preceding example, if T_SHOESIZE had been sourced on a
SMALLINT, CHAR, or GRAPHIC data type instead of a VARCHAR data
type, another cast function would have been generated in addition to the
two functions to cast between the distinct type and the source data type.
For example, assume that T_SHOESIZE is created with this statement:

CREATE TYPE (distinct) CLAIRE.T_SHOESIZE AS CHAR(2)

When the statement is executed, DB2 generates these cast functions:
FUNCTION CLAIRE.CHAR (CLAIRE.T_SHOESIZE) RETURNS SYSIBM.CHAR (2)
FUNCTION CLAIRE.T_SHOESIZE (SYSIBM.CHAR (2)) RETURNS CLAIRE.T_SHOESIZE
FUNCTION CLAIRE.T_SHOESIZE (SYSIBM.VARCHAR (2)) RETURNS CLAIRE.T_SHOESIZE

Notice that the third function enables the casting of a VARCHAR(2) to
T_SHOESIZE. This additional function is created to enable casting a
constant, such as 'AB', directly to the distinct type. Without the additional
function, you would have to first cast 'AB', which has a data type of
VARCHAR, to a data type of CHAR and then cast it to the distinct type.

You cannot explicitly drop a generated cast function. The cast functions
that are generated for a distinct type are implicitly dropped when the
distinct type is dropped with the DROP statement.

For each built-in data type that can be the source data type for a distinct
type, the following table gives the names of the generated cast functions,
the data types of the input parameters, and the data types of the values
that the functions returns.

Table 133. CAST functions on distinct types

Source type name Function name Parameter-type Return-type

SMALLINT distinct-type-name SMALLINT distinct-type-name

distinct-type-name INTEGER distinct-type-name

SMALLINT distinct-type-name SMALLINT

INTEGER distinct-type-name INTEGER distinct-type-name

INTEGER distinct-type-name INTEGER

1520 SQL Reference

Table 133. CAST functions on distinct types (continued)

Source type name Function name Parameter-type Return-type

BIGINT distinct-type-name BIGINT distinct-type-name

BIGINT distinct-type-name BIGINT

DECIMAL distinct-type-name DECIMAL (p,s) distinct-type-name

DECIMAL distinct-type-name DECIMAL (p,s)

NUMERIC distinct-type-name DECIMAL (p,s) distinct-type-name

DECIMAL distinct-type-name DECIMAL (p,s)

REAL distinct-type-name REAL distinct-type-name

distinct-type-name DOUBLE distinct-type-name

REAL distinct-type-name REAL

DECFLOAT distinct-type-name DECFLOAT(n) DECFLOAT(n)

DECFLOAT distinct-type-name DECFLOAT(n)

FLOAT(n) where n<=21 distinct-type-name REAL distinct-type-name

distinct-type-name DOUBLE distinct-type-name

REAL distinct-type-name REAL

FLOAT(n) where n>21 distinct-type-name DOUBLE distinct-type-name

DOUBLE distinct-type-name DOUBLE

FLOAT distinct-type-name DOUBLE distinct-type-name

DOUBLE distinct-type-name DOUBLE

DOUBLE distinct-type-name DOUBLE distinct-type-name

DOUBLE distinct-type-name DOUBLE

DOUBLE PRECISION distinct-type-name DOUBLE distinct-type-name

distinct-type-name CHAR (n) distinct-type-name

CHAR distinct-type-name CHAR (n)

distinct-type-name VARCHAR (n) distinct-type-name

DOUBLE distinct-type-name DOUBLE

CHAR
CHARACTER

distinct-type-name CHAR (n) distinct-type-name

CHAR distinct-type-name CHAR (n)

distinct-type-name VARCHAR (n) distinct-type-name

VARCHAR
CHARACTER VARYING
CHAR VARYING

distinct-type-name VARCHAR (n) distinct-type-name

VARCHAR distinct-type-name VARCHAR (n)

CLOB distinct-type-name CLOB (n) distinct-type-name

CLOB distinct-type-name CLOB (n)

GRAPHIC distinct-type-name GRAPHIC (n) distinct-type-name

GRAPHIC distinct-type-name GRAPHIC (n)

distinct-type-name VARGRAPHIC (n) distinct-type-name

VARGRAPHIC distinct-type-name VARGRAPHIC (n) distinct-type-name

VARGRAPHIC distinct-type-name VARGRAPHIC (n)

DBCLOB distinct-type-name DBCLOB (n) distinct-type-name

DBCLOB distinct-type-name DBCLOB (n)

Chapter 5. Statements 1521

Table 133. CAST functions on distinct types (continued)

Source type name Function name Parameter-type Return-type

BINARY distinct-type-name BINARY(n) distinct-type-name

BINARY distinct-type-name BINARY(n)

distinct-type-name VARBINARY(n) distinct-type-name

VARBINARY distinct-type-name VARBINARY(n) distinct-type-name

VARBINARY distinct-type-name VARBINARY(n)

BLOB distinct-type-name BLOB (n) distinct-type-name

BLOB distinct-type-name BLOB (n)

DATE distinct-type-name DATE distinct-type-name

DATE distinct-type-name DATE

TIME distinct-type-name TIME distinct-type-name

TIME distinct-type-name TIME

TIMESTAMP distinct-type-name TIMESTAMP distinct-type-name

TIMESTAMP distinct-type-name TIMESTAMP(p) WITHOUT
TIME ZONE

TIMESTAMP(p) WITH
TIME ZONE

distinct-type-name TIMESTAMP WITH TIME
ZONE

distinct-type-name

TIMESTAMP_TZ distinct-type-name TIMESTAMP(p) WITH
TIME ZONE

ROWID distinct-type-name ROWID distinct-type-name

ROWID distinct-type-name ROWID

Notes: NUMERIC and FLOAT are not recommended when creating a distinct type for a portable application. Use
DECIMAL and DOUBLE (or REAL) instead.

Built-in functions:
When a distinct type is defined, the built-in functions (such as AVG, MAX,
and LENGTH) are not automatically supported for the distinct type. You
can use a built-in function on a distinct type only after a sourced
user-defined function, which is based on the built-in function, has been
created for the distinct type. For information on defining sourced
user-defined functions, see “CREATE FUNCTION (sourced)” on page 1210.

Arithmetic operators with distinct type operands:
A distinct type cannot be used with arithmetic operators even if its source
data type is numeric.

For additional information see “Arithmetic with distinct type operands” on
page 250.

Alternative syntax and synonyms:
The WITH COMPARISONS clause, which specifies that system-generated
comparison operators are to be created for comparing two instances of the
distinct type, can be specified as the last clause of the statement. Use
WITH COMPARISONS only if it is required for compatibility with other
products in the DB2 family. If the source data type is either BLOB, CLOB,
or DBCLOB and WITH COMPARISONS is specified, a warning occurs as
in previous releases.

To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following clauses:

1522 SQL Reference

v DISTINCT TYPE as a synonym for TYPE
v TIMEZONE can be specified as an alternative to TIME ZONE

.

Examples

Example 1: Create a distinct type named SHOESIZE that is based on an INTEGER
data type.

CREATE TYPE SHOESIZE AS INTEGER;

The successful execution of this statement also generates two cast functions.
Function INTEGER(SHOESIZE) returns a value with data type INTEGER, and
function SHOESIZE(INTEGER) returns a value with distinct type SHOESIZE.

Example 2: Create a distinct type named MILES that is based on a DOUBLE data
type.

CREATE TYPE MILES AS DOUBLE;

The successful execution of this statement also generates two cast functions.
Function DOUBLE(MILES) returns a value with data type DOUBLE, and function
MILES(DOUBLE) returns a value with distinct type MILES.

Chapter 5. Statements 1523

CREATE VARIABLE
The CREATE VARIABLE statement creates a global variable at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following:
v The CREATEIN privilege on the schema
v System DBADM authority
v SYSADM authority
v SYSCTRL authority

Privilege set: The authorization ID that matches the schema name implicitly has
the CREATEIN privilege on the schema. If the statement is embedded in an
application program, the privilege set is the set of privileges that are held by the
owner of the package. If the owner is a role, the implicit schema does not apply
and this role needs to include one of the previously listed privileges or authorities.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process unless the process is within a
trusted context and the ROLE AS OBJECT OWNER AND QUALIFIER clause is in
effect. If the schema name is not the same as the SQL authorization ID of the
process, one of the following conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v The SQL authorization ID of the process has the CREATEIN privilege on the

schema.

When the ROLE AS OBJECT OWNER AND QUALIFIER clause is in effect, the
privilege set is the set privileges that are held by the role. If the schema name does
not match this role, one of the following conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v This role has the CREATEIN privilege on the schema.

Syntax

��
DEFAULT NULL

CREATE VARIABLE variable-name data-type
DEFAULT constant

special-register

��

data-type:

1524 SQL Reference

|

|

|

|

|
|
|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|

|

|

|
|

|||||||||||||||||||||||||||||

|
||
||

�� built-in-type ��

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) FOR SBCS DATA

CHARACTER VARYING (integer) MIXED
CHAR BIT

VARCHAR
(1)

GRAPHIC
(integer)

VARGRAPHIC (integer)
(1)

BINARY
(integer)

BINARY VARYING (integer)
VARBINARY

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE

��

Description

variable name
Names the global variable. The name, including the implicit or explicit
qualifier, must not identify a global variable that exists at the current server. If
the qualifier is not specified, the contents of the CURRENT SCHEMA special
register is used.

data-type
Specifies the data type of the global variable.

built-in-type
The data type of the global variable is a built-in type. For information
about the data types, see built-in-type. The data type cannot be a LOB data
type, ROWID, or XML.

built-in-type:

Chapter 5. Statements 1525

|

|||||||||||
|
||
|

|||

|

|

|
|
|
|
|

|
|

|
|
|
|

DEFAULT
Specifies a value for the global variable when it is first referenced in the
session. The default value is determined on this first reference. If the DEFAULT
clause is not specified, the default for the global variable is the null value.

NULL
Specifies null as the default value for the global variable. The value of a
global variable is always nullable.

constant
Specifies that the value of the constant is the default value for the global
variable. The value of the constant must conform to the rules for assigning
that value to the global variable. constant cannot be any of the constants
NAN, SNAN, or INFINITY.

special-register
Specifies that the value of the special register, when the global variable is
instantiated, is used as the default value of the global variable. The value
of the specified special register must conform to the rules for assigning that
value to the global variable. The following special registers must not be
specified:
v CURRENT GET_ACCEL_ARCHIVE
v CURRENT QUERY_ACCELERATION
v CURRENT TEMPORAL BUSINESS_TIME
v CURRENT TEMPORAL SYSTEM_TIME

Notes

Session scope:
global variables have a session scope. Although they are available for use
to all sessions that are active at the current server, the value of the global
variable is private for each session.

Modifications to the value of a global variable:
global variables are not under transaction control. Modifications to the
value of a global variable are not preserved when the transaction ends
with either a COMMIT or ROLLBACK statement.

Privileges to use a global variable:
Reading from or writing to a global variable requires that the authorization
ID or role that is in effect have the appropriate privileges on the global
variable. The owner of the variable is implicitly granted all privileges on
the variable.

Setting the default value:
After a global variable has been created, it is instantiated to its default
value when it is first referenced within a given scope. If a global variable is
referenced within a statement, it is instantiated independently from the
execution of that statement.

Using a newly created global variable:
If a global variable is created within a session, it cannot be used by other
sessions until the unit of work has committed. However, the newly created
global variable can be used within the session in which it is created before
the unit of work commits.

1526 SQL Reference

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

CREATE VIEW
The CREATE VIEW statement creates a view on tables or views at the current
server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

For every table or view identified in the fullselect, the privilege set that is defined
below must include at least one of the following:
v The SELECT privilege on the table or view
v Ownership of the table or view
v DBADM authority for the database (tables only)
v DATAACCESS authority
v SYSADM authority
v SQLADM authority (catalog tables only)
v System DBADM authority (catalog tables only)
v ACCESSCTRL authority (catalog tables only)
v SYSCTRL authority (catalog tables only)

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

Authority requirements depend in part on the choice of the owner of the view. For
information on how to choose the owner, see the description of view-name in
“Description” on page 1109.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the of the owner of the plan or
package. If the application is bound in a trusted context with the ROLE AS
OBJECT OWNER clause specified, a role is the owner. Otherwise, an authorization
ID is the owner.
v If this privilege set includes SYSADM authority, the owner of the view can be

any authorization ID. If that set includes SYSCTRL but not SYSADM authority,
the following is true: the owner of the view can be any authorization ID,
provided the view does not refer to user tables or views in the first FROM
clause of its defining fullselect. (It could refer instead, for example, to catalog
tables or views thereof.)
If the view satisfies the rules in the preceding paragraph, and if no errors are
present in the CREATE statement, the view is created, even if the owner has no
privileges at all on the tables and views identified in the fullselect of the view
definition.

v If the privilege set includes system DBADM authority, the owner of the view can
be any authorization ID. However, to create a view on a user table, either the
owner of the view or the creator must have the SELECT privilege on all the
tables or views in the CREATE VIEW statement.

Chapter 5. Statements 1527

v If the privilege set lacks system DBADM, SYSADM and SYSCTRL but includes
DBADM authority on at least one of the databases that contains a table from
which the view is created, the owner of the view can be any authorization ID if
all of the following conditions are true:
– The value of field DBADM CREATE AUTH was set to YES on panel

DSNTIPP during DB2 installation.
– The view is not based only on views.

Note: The owner of the view must have the SELECT privilege on all tables and
views in the CREATE VIEW statement, or, if the owner does not have the
SELECT privilege on a table, the creator must have DBADM authority on the
database that contains that table.

v If the privilege set lacks SYSADM, SYSCTRL, system DBADM, and DBADM
authority, or if the authorization ID of the application plan or package fails to
meet any of the previous conditions, the owner of the view must be the owner
of the application plan or package.

If ROLE AS OBJECT OWNER is in effect, the schema qualifier must be the same as
the role, unless the role has the CREATEIN privilege on the schema, SYSADM
authority, system DBADM authority, or SYSCTRL authority.

If ROLE AS OBJECT OWNER is not in effect, one of the following rules applies:
v If the privilege set lacks the CREATIN privilege on the schema, SYSADM

authority, system DBADM authority, or SYSCTRL authority, the schema qualifier
(implicit or explicit) must be the same as one of the authorization ids of the
process.

v If the privilege set includes system DBADM authority, SYSADM authority or
SYSCTRL authority, the schema qualifier can be any valid schema name.

If the statement is dynamically prepared, the following rules apply:
v If the SQL authorization ID of the process has SYSADM authority, the owner of

the view can be any authorization ID. If that authorization ID has SYSCTRL but
not SYSADM authority, the following is true: the owner of the view can be any
authorization ID, provided the view does not refer to user tables or views in the
first FROM clause of its defining fullselect. (It could refer instead, for example,
to catalog tables or views thereof.)
If the view satisfies the rules in the preceding paragraph, and if no errors are
present in the CREATE statement, the view is created, even if the owner has no
privileges at all on the tables and views identified in the fullselect of the view
definition.

v If the SQL authorization ID of the process has system DBADM authority, the
owner of the view can be any authorization ID. However, to create a view on a
user table, either the owner of the view or the SQL authorization ID must have
the SELECT privilege on all the tables or views in the CREATE VIEW statement.

v If SQL authorization ID of the process lacks system DBADM authority, SYSADM
and SYSCTRL but includes DBADM authority on at least one of the databases
that contains a table from which the view is created, the owner of the view can
be different from the SQL authorization ID if all of the following conditions are
true:
– The value of field DBADM CREATE AUTH was set to YES on panel

DSNTIPP during DB2 installation.
– The view is not based only on views.

1528 SQL Reference

Note: The owner of the view must have the SELECT privilege on all tables and
views in the CREATE VIEW statement, or, if the owner does not have the
SELECT privilege on a table, the creator must have DBADM authority on the
database that contains that table.

v If the SQL authorization ID of the process lacks SYSADM, SYSCTRL, system
DBADM authority, or DBADM authority, or if the SQL authorization ID of the
process fails to meet any of the previous conditions, only the authorization IDs
of the process can own the view. In this case, the privilege set is the privileges
that are held by the authorization ID selected for ownership.

Syntax

�� CREATE VIEW view-name

�

,

(column-name)

AS

�

,

WITH common-table-expression

�

� fullselect
CASCADED

WITH CHECK OPTION
LOCAL

��

Description

view-name
Names the view. The name, including the implicit or explicit qualifier, must
not identify a table, view, alias, or synonym that exists at the current server or
a table that exists in the SYSIBM.SYSPENDINGOBJECTS catalog table. The
unqualified name must not be the same as an existing synonym.

If the name is qualified, the name can be a two-part or three-part name. If a
three-part name is used, the first part must match the value of the field DB2
LOCATION NAME of installation panel DSNTIPR at the current server. (If the
current server is not the local DB2, this name is not necessarily the name in the
CURRENT SERVER special register.)

column-name,...
Names the columns in the view. If you specify a list of column names, it must
consist of as many names as there are columns in the result table of the
fullselect. Each name must be unique and unqualified. If you do not specify a
list of column names, the columns of the view inherit the names of the
columns of the result table of the fullselect.

You must specify a list of column names if the result table of the fullselect has
duplicate column names or an unnamed column (a column derived from a
constant, function, or expression that was not given a name by the AS clause).
For more details about unnamed columns, see the information about names of
result columns under “select-clause” on page 765.

AS Identifies the view definition.

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows. The
fullselect must not contain a period specification. For an explanation of
common table expression, see “common-table-expression” on page 820.

Chapter 5. Statements 1529

fullselect
Defines the view. At any time, the view consists of the rows that would result
if the fullselect were executed.

The fullselect must conform to the following rules:
v The fullselect must not refer to any host variables or parameter markers

(question marks).
v The fullselect must not refer to any declared temporary tables.
v The fullselect must not include an invocation of the UNPACK function.
v The fullselect must not contain a period specification.
v The FROM clause of the fullselect must not include a data-change-table-

reference.
v The FROM clause of the fullselect must not include a view for which an

INSTEAD OF trigger is defined.
v The outer SELECT list of the fullselect must not result in a column that is an

array.

For an explanation of fullselect, see “fullselect” on page 811.

WITH CASCADED CHECK OPTION or WITH LOCAL CHECK OPTIONS
Specifies that every row that is inserted or updated through the view must
conform to the definition of the view. A row that does not conform to the
definition of the view is a row that cannot be retrieved using that view.

The CHECK OPTION clause must not be specified if the view is read-only,
includes a subquery, references a function that is not deterministic or has an
external action, or if the fullselect of the view refers to a created temporary
table. If the CHECK OPTION clause is specified for an updatable view that
does not allow inserts, it applies to updates only.

If the CHECK OPTION clause is omitted, the definition of the view is not used
in the checking of any insert or update operations that use the view. Some
checking might still occur during insert or update operations if the view is
directly or indirectly dependent on another view that includes the CHECK
OPTION clause. Because the definition of the view is not used, rows might be
inserted or updated through the view that do not conform to the definition of
the view.

The difference between the two forms of the check option, CASCADED and
LOCAL, is meaningful only when a view is dependent on another view. The
default is CASCADED. The view on which another view is directly or
indirectly defined is an underlying view.

CASCADED
Update and insert operations on view V must satisfy the search conditions
of view V and all underlying views, regardless of whether the underlying
views were defined with a check option. Furthermore, every updatable
view that is directly or indirectly defined on view V inherits those search
conditions (the search conditions of view V and all underlying views of V)
as a constraint on insert or update operations. WITH CASCADED CHECK
OPTION must not be specified if a view on which the specified view
definition is dependent has an INSTEAD OF trigger defined.

LOCAL
Update and insert operations on view V must satisfy the search conditions
of view V and underlying views that are defined with a check option
(either WITH CASCADED CHECK OPTION or WITH LOCAL CHECK
OPTION). Furthermore, every updatable view that is directly or indirectly

1530 SQL Reference

|
|

defined on view V inherits those search conditions (the search conditions
of view V and all underlying views of V that are defined with a check
option) as a constraint on insert or update operations.

The LOCAL form of the CHECK option lets you update or insert rows that
do not conform to the search condition of view V. You can perform these
operations if the view is directly or indirectly defined on a view that was
defined without a check option.

Table 134 illustrates the effect of using the default check option, CASCADED.
The information in Table 134 is based on the following views:
v CREATE VIEW V1 AS SELECT COL1 FROM T1 WHERE COL1 > 10
v CREATE VIEW V2 AS SELECT COL1 FROM V1 WITH CASCADED CHECK

OPTION
v CREATE VIEW V3 AS SELECT COL1 FROM V2 WHERE COL1 < 100

Table 134. Examples using default check option, CASCADED

SQL statement Description of result

INSERT INTO V1 VALUES(5) Succeeds because V1 does not have a check option
and it is not dependent on any other view that has a
check option.

INSERT INTO V2 VALUES(5) Results in an error because the inserted row does not
conform to the search condition of V1 which is
implicitly is part of the definition of V2.

INSERT INTO V3 VALUES(5) Results in an error because the inserted row does not
conform to the search condition of V1.

INSERT INTO V3 VALUES(200) Succeeds even though it does not conform to the
definition of V3 (V3 does not have the view check
option specified); it does conform to the definition of
V2 (which does have the view check option specified).

The difference between CASCADED and LOCAL is shown best by example.
Consider the following updatable views, where x and y represent either
LOCAL or CASCADED:

V1 is defined on Table T0.
V2 is defined on V1 WITH x CHECK OPTION.
V3 is defined on V2.
V4 is defined on V3 WITH y CHECK OPTION.
V5 is defined on V4.

This example shows V1 as an underlying view for V2 and V2 as dependent on
V1.

Table 135 shows the views in which search conditions are checked during an
insert or update operation:

Table 135. Views in which search conditions are checked during insert and update operations

View used in
INSERT or
UPDATE operation

x = LOCAL
y = LOCAL

x = CASCADED
y = CASCADED

x = LOCAL
y = CASCADED

x = CASCADED
y = LOCAL

V1 None None None None

V2 V2 V2, V1 V2 V2, V1

V3 V2 V2, V1 V2 V2, V1

Chapter 5. Statements 1531

Table 135. Views in which search conditions are checked during insert and update operations (continued)

View used in
INSERT or
UPDATE operation

x = LOCAL
y = LOCAL

x = CASCADED
y = CASCADED

x = LOCAL
y = CASCADED

x = CASCADED
y = LOCAL

V4 V4, V2 V4, V3, V2, V1 V4, V3, V2, V1 V4, V2, V1

V5 V4, V2 V4, V3, V2, V1 V4, V3, V2, V1 V4, V2, V1

Notes

Owner privileges
The owner of a view always acquires the SELECT privilege on the view
and the authority to drop the view. If all of the privileges that are required
to create the view are held with the GRANT option before the view is
created, the owner of the view receives the SELECT privilege with the
GRANT option. Otherwise, the owner receives the SELECT privilege
without the GRANT option. For example, assume that a view definition
also refers to a user-defined function. If the owner's EXECUTE privilege on
the user-defined function is held without the GRANT option, the owner
acquires the SELECT privilege on the view without the GRANT option.

The owner can also acquire INSERT, UPDATE, and DELETE privileges on
the view. Acquiring these privileges is possible if the view is not
"read-only", which means a single table of view is identified in the first
FROM clause of the fullselect. For each privilege that the owner has on the
identified table or view (INSERT, UPDATE, and DELETE) before the new
view is created, the owner acquires that privilege on the view. The owner
receives the privilege with the GRANT option if the privilege is held on
the table or view with the GRANT option. Otherwise, the owner receives
the privileges without the GRANT option.

With appropriate DB2 authority, a process can create views for those who
have no authority to create the views themselves. The owner of such a
view has the SELECT privilege on the view, without the GRANT option,
and can drop the view.

For more information on the ownership of an object, see “Authorization,
privileges, permissions, masks, and object ownership” on page 70.

Authorization for views created for other users:
When a process with appropriate authority creates a view for another user
that does not have authorization for the underlying table or view, the
SELECT privilege for the created view is implicitly granted to the user.

Considerations for row access control and column access control:
The view definition might reference a table for which row access control or
column access control is activated. If the view definition references a table
for which row access control or column access control is activated, the
WITH CHECK OPTION clause must not be specified if the search
conditions from the view or from the underlying views will be checked
during an insert or update operation. Note that the WITH CHECK
OPTION clause is ignored if such search conditions do not exist.

Read-only views:
A view is read-only if one or more of the following statements is true of its
definition:

1532 SQL Reference

v The first FROM clause identifies more than one table or view, or
identifies a table function, a nested table expression, a common table
expression, or a collection-derived table.

v The first SELECT clause specifies the keyword DISTINCT.
v The outer fullselect contains a GROUP BY clause.
v The outer fullselect contains a HAVING clause.
v The first SELECT clause contains an aggregate function.
v It contains a subquery such that the base object of the outer fullselect,

and of the subquery, is the same table.
v The first FROM clause identifies a read-only view.
v The first FROM clause identifies a system-maintained materialized query

table.
v The outer fullselect is not a subselect (contains a set operator).

A read-only view cannot be the object of an SQL data change statement or
a TRUNCATE statement. A view that includes GROUP BY or HAVING
cannot be referred to in a subquery of a basic predicate.

Insertable views:
A view is insertable if an INSTEAD OF trigger for the insert operation has
been defined for the view, or if at least one column of the view is
updatable (independent of an INSTEAD OF trigger for update).

Considerations for implicitly hidden columns:
It is possible that the result table of the fullselect will include a column of
a base table that is defined as implicitly hidden. This can occur when the
implicitly hidden column is explicitly referenced in the fullselect of the
view definition. However, the corresponding column of the view does not
inherit the implicitly hidden attribute. Columns of a view cannot be
defined as hidden.

Testing a view definition:
You can test the semantics of your view definition by executing SELECT *
FROM view-name.

The two forms of a view definition:
Both the source and the operational form of a view definition are stored in
the DB2 catalog. Those two forms are not necessarily equivalent because
the operational form reflects the state that exists when the view is created.
For example, consider the following statement:

CREATE VIEW V AS SELECT * FROM S;

In this example, S is a synonym or alias for A.T, which is a table with
columns C1, C2, and C3. The operational form of the view definition is
equivalent to:

SELECT C1, C2, C3 FROM A.T;

Adding columns to A.T using ALTER TABLE and dropping S does not
affect the operational form of the view definition. Thus, if columns are
added to A.T or if S is redefined, the source form of the view definition
can be misleading.

View restrictions:
A view definition cannot contain references to remote objects. A view
definition cannot map to more than 15 base table instances. A view
definition cannot reference a declared global temporary table.

Chapter 5. Statements 1533

|
|
|

Restrictions involving pending definition changes:
CREATE VIEW is not allowed if the view references a column on which
there are pending definition changes.

Considerations for inline LOB columns:
If the view references a table that contains an inline LOB column and DB2
determines that the inline attribute can be passed on to the view, the view
will then inherit the inline attribute, otherwise the inline attribute is not
inherited by the view.

Considerations for XML columns:
If the view has an XML column and the column of the underlying base
table for the view has an XML type modifier, the view column has the
same type modifier. However, if there is an instead of trigger defined on
the view, validation of the column, according to XML schemas in the type
modifier, is not enforced during insert or update to this view.

Examples

Example 1: Create the view DSN8B10.VPROJRE1. PROJNO, PROJNAME, PROJDEP,
RESPEMP, FIRSTNME, MIDINIT, and LASTNAME are column names. The view is
a join of tables and is therefore read-only.

CREATE VIEW DSN8B10.VPROJRE1
(PROJNO,PROJNAME,PROJDEP,RESPEMP,
FIRSTNME,MIDINIT,LASTNAME)
AS SELECT ALL
PROJNO,PROJNAME,DEPTNO,EMPNO,
FIRSTNME,MIDINIT,LASTNAME
FROM DSN8B10.PROJ, DSN8B10.EMP
WHERE RESPEMP = EMPNO;

In the example, the WHERE clause refers to the column EMPNO, which is
contained in one of the base tables but is not part of the view. In general, a column
named in the WHERE, GROUP BY, or HAVING clause need not be part of the
view.

Example 2: Create the view DSN8B10.FIRSTQTR that is the UNION ALL of three
fullselects, one for each month of the first quarter of 2000. The common names are
SNO, CHARGES, and DATE.

CREATE VIEW DSN8B10.FIRSTQTR (SNO, CHARGES, DATE) AS
SELECT SNO, CHARGES, DATE
FROM MONTH1
WHERE DATE BETWEEN ’01/01/2000’ and ’01/31/2000’

UNION All
SELECT SNO, CHARGES, DATE
FROM MONTH2
WHERE DATE BETWEEN ’02/01/2000’ and ’02/29/2000’

UNION All
SELECT SNO, CHARGES, DATE
FROM MONTH3
WHERE DATE BETWEEN ’03/01/2000’ and ’03/31/2000’;

1534 SQL Reference

|
|
|

DECLARE CURSOR
The DECLARE CURSOR statement defines a cursor.

Invocation

This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java.

Authorization

For each table or view identified in the SELECT statement of the cursor, the
privilege set must include at least one of the following:
v The SELECT privilege
v Ownership of the object
v DBADM authority for the corresponding database (tables only)
v SYSADM authority
v SYSCTRL authority (catalog tables only)
v DATAACCESS authority

If the select-statement contains an SQL data change statement, the authorization
requirements of that statement also apply to the DECLARE CURSOR statement.

The SELECT statement of the cursor is one of the following:
v The prepared select statement identified by statement-name

v The specified select-statement

If statement-name is specified:

v The privilege set is determined by the DYNAMICRULES behavior in effect (run,
bind, define, or invoke) and is summarized in Table 94 on page 841. (For more
information on these behaviors, including a list of the DYNAMICRULES bind
option values that determine them, see “Authorization IDs and dynamic SQL”
on page 75.)

v The authorization check is performed when the SELECT statement is prepared.
v The cursor cannot be opened unless the SELECT statement is successfully

prepared.

If select-statement is specified:

v The privilege set consists of the privileges that are held by the authorization ID
of the owner of the plan or package.

v If the plan or package is bound with VALIDATE(BIND), the authorization check
is performed at bind time, and the bind is unsuccessful if any required privilege
does not exist.

v If the plan or package is bound with VALIDATE(RUN), an authorization check
is performed at bind time, but all required privileges need not exist at that time.
If all privileges exist at bind time, no authorization checking is performed when
the cursor is opened. If any privilege does not exist at bind time, an
authorization check is performed the first time the cursor is opened within a
unit of work. The OPEN is unsuccessful if any required privilege does not exist.

Chapter 5. Statements 1535

Syntax

�� DECLARE cursor-name
NO SCROLL

ASENSITIVE
SCROLL

INSENSITIVE
DYNAMIC

SENSITIVE
STATIC

CURSOR �

� �
(1)

holdability
returnability
rowset-positioning

FOR select-statement
statement-name

��

Notes:

1 The same clause must not be specified more than once.

��
WITHOUT HOLD

WITH HOLD
��

��
WITHOUT RETURN

TO CALLER
WITH RETURN

TO CLIENT

��

��
WITHOUT ROWSET POSITIONING

WITH ROWSET POSITIONING
��

Description

cursor-name
Names the cursor. The name must not identify a cursor that has already been

holdability:

returnability:

rowset-positioning:

1536 SQL Reference

declared in the source program. The name is usually VARCHAR(128); however,
if the cursor is defined WITH RETURN, the name is limited to VARCHAR(30).

NO SCROLL or SCROLL
Specifies whether the cursor is scrollable or not scrollable.

NO SCROLL
Specifies that the cursor is not scrollable. This is the default.

SCROLL
Specifies that the cursor is scrollable. For a scrollable cursor, whether the
cursor has sensitivity to inserts, updates, or deletes depends on the cursor
sensitivity option in effect for the cursor. If a sensitivity option is not
specified, ASENSITIVE is the default.

ASENSITIVE
Specifies that the cursor should be as sensitive as possible. This is the
default.

A cursor that defined as ASENSITIVE will be either insensitive or
sensitive dynamic; it will not be sensitive static. For information about
how the effective sensitivity of the cursor is returned to the application
with the GET DIAGNOSTICS statement or in the SQLCA, see “OPEN”
on page 1775.

INSENSITIVE
Specifies that the cursor does not have sensitivity to inserts, updates,
or deletes that are made to the rows underlying the result table. As a
result, the size of the result table, the order of the rows, and the values
for each row do not change after the cursor is opened. In addition, the
cursor is read-only. The SELECT statement or attribute-string of the
PREPARE statement cannot contain a FOR UPDATE clause, and the
cursor cannot be used for positioned updates or deletes.

SENSITIVE
Specifies that the cursor has sensitivity to changes that are made to the
database after the result table is materialized. The cursor is always
sensitive to updates and deletes that are made using the cursor (that is,
positioned updates and deletes using the same cursor). When the
current value of a row no longer satisfies the select-statement or
statement-name, that row is no longer visible through the cursor. When
a row of the result table is deleted from the underlying base table, the
row is no longer visible through the cursor.

If DB2 cannot make changes visible to the cursor, then an error is
issued at bind time for OPEN CURSOR. DB2 cannot make changes
visible to the cursor when the cursor implicitly becomes read-only. For
example, when the result table must be materialized, as when the
FROM clause of the SELECT statement contains more than one table or
view. The current list of conditions that result in an implicit read-only
cursor can be found in Read-only cursors.

The default is DYNAMIC.

DYNAMIC
Specifies that the result table of the cursor is dynamic, meaning
that the size of the result table might change after the cursor is
opened as rows are inserted into or deleted from the underlying
table, and the order of the rows might change. Rows that are
inserted, deleted, or updated by statements that are executed by
the same application process as the cursor are visible to the cursor

Chapter 5. Statements 1537

immediately. Rows that are inserted, deleted, or updated by
statements that are executed by other application processes are
visible only after the statements are committed. If a column for an
ORDER BY clause is updated via a cursor or any means outside
the process, the next FETCH statement behaves as if the updated
row was deleted and re-inserted into the result table at its correct
location. At the time of a positioned update, the cursor is
positioned before the next row of the original location and there is
no current row, making the row appear to have moved.

If a SENSITIVE DYNAMIC cursor is not possible, an error is
returned. For example, if a temporary table is needed an error is
returned. The SELECT statement of a cursor that is defined as
SENSITIVE DYNAMIC cannot contain an SQL data change
statement.

The FETCH FIRST n ROWS ONLY clause must not be specified for
the outermost fullselect for a sensitive dynamic cursor.

STATIC
Specifies that the size of the result table and the order of the rows
do not change after the cursor is opened. Rows inserted into the
underlying table are not added to the result table regardless of
how the rows are inserted. Rows in the result table do not move if
columns in the ORDER BY clause are updated in rows that have
already been materialized. Positioned updates and deletes are
allowed if the result table is updatable. The SELECT statement of a
cursor that is defined as SENSITIVE STATIC cannot contain an
SQL data change statement.

A STATIC cursor has visibility to changes made by this cursor
using positioned updates or deletes. Committed changes made
outside this cursor are visible with the SENSITIVE option of the
FETCH statement. A FETCH SENSITIVE can result in a hole in the
result table (that is, a difference between the result table and its
underlying base table). If an updated row in the base table of a
cursor no longer satisfies the predicate of its SELECT statement, an
update hole occurs in the result table. If a row of a cursor was
deleted in the base table, a delete hole occurs in the result table.
When a FETCH SENSITIVE detects an update hole, no data is
returned (a warning is issued), and the cursor is left positioned on
the update hole. When a FETCH SENSITIVE detects a delete hole,
no data is returned (a warning is issued), and the cursor is left
positioned on the delete hole.

Updates through a cursor result in an automatic re-fetch of the
row. This re-fetch means that updates can create a hole themselves.
The re-fetched row also reflects changes as a result of triggers
updating the same row. It is important to reflect these changes to
maintain the consistency of data in the row.

Using a function that is not deterministic (built-in or user-defined)
in the WHERE clause of the select-statement or statement-name of a
SENSITIVE STATIC cursor can cause misleading results. This
situation occurs because DB2 constructs a temporary result table
and retrieves rows from this table for FETCH INSENSITIVE
statements. When DB2 processes a FETCH SENSITIVE statement,
rows are fetched from the underlying table and predicates are
re-evaluated. Using a function that is not deterministic can yield a

1538 SQL Reference

different result on each FETCH SENSITIVE of the same row, which
could also result in the row no longer being considered a match.

A FETCH INSENSITIVE on a SENSITIVE STATIC SCROLL cursor
is not sensitive to changes made outside the cursor, unless a
previous FETCH SENSITIVE has already refreshed that row;
however, positioned updates and delete changes with the cursor
are visible.

STATIC cursors are insensitive to insertions.

WITHOUT HOLD or WITH HOLD
Specifies whether the cursor should be prevented from being closed as a
consequence of a commit operation.

WITHOUT HOLD
Does not prevent the cursor from being closed as a consequence of a
commit operation. This is the default.

WITH HOLD
Prevents the cursor from being closed as a consequence of a commit
operation. A cursor declared with WITH HOLD is closed at commit time if
one of the following is true:
v The connection associated with the cursor is in the release pending

status.
v The bind option DISCONNECT(AUTOMATIC) is in effect.
v The environment is one in which the option WITH HOLD is ignored.

When WITH HOLD is specified, a commit operation commits all of the
changes in the current unit of work. For example, with a non-scrollable
cursor, an initial FETCH statement is needed after a COMMIT statement to
position the cursor on the row that follows the row that the cursor was
positioned on before the commit operation.

WITH HOLD has no effect on an SQL data change statement within a
SELECT statement. When a COMMIT is issued, the changes caused by the
SQL data change statement are committed, regardless of whether or not the
cursor is declared WITH HOLD.

All cursors are implicitly closed by a connect (Type 1) or rollback
operation. A cursor is also implicitly closed by a commit operation if WITH
HOLD is ignored or not specified.

Cursors that are declared with WITH HOLD in CICS or in IMS
non-message-driven programs will not be closed by a rollback operation if
the cursor was opened in a previous unit of work and no changes have
been made to the database in the current unit of work. The cursor cannot
be closed because CICS and IMS do not broadcast the rollback request to
DB2 for a null unit of work.

If a cursor is closed before the commit operation, the effect is the same as
if the cursor was declared without the option WITH HOLD.

WITH HOLD is ignored in IMS message driven programs (MPP, IFP, and
message-driven BMP). WITH HOLD maintains the cursor position in a
CICS pseudo-conversational program until the end-of-task (EOT).

For details on restrictions that apply to declaring cursors with WITH
HOLD, see DB2 Application Programming and SQL Guide.

WITHOUT RETURN or WITH RETURN
Specifies whether the result table of the cursor is intended to be used as a

Chapter 5. Statements 1539

result set that will be returned from a procedure. If statement-name is specified,
the default is the corresponding prepare attribute of the statement. Otherwise,
the default is WITHOUT RETURN.

WITHOUT RETURN
Specifies that the result table of the cursor is not intended to be used as a
result set that will be returned from a procedure.

WITH RETURN
Specifies that the result table of the cursor is intended to be used as a
result set that will be returned from a procedure. WITH RETURN is
relevant only if the DECLARE CURSOR statement is contained within the
source code for a procedure. In other cases, the precompiler might accept
the clause, but it has not effect.

When a cursor that is declared using the WITH RETURN TO CALLER
clause remains open at the end of a program or routine, that cursor defines
a result set from the program or routine. Use the CLOSE statement to close
a cursor that is not intended to be a result set from the program or routine.
Although DB2 will automatically close any cursors that are not declared
using with a WITH RETURN clause, the use of the CLOSE statement is
recommended to increase the portability of applications.

For non-scrollable cursors, the result set consists of all rows from the
current cursor position to the end of the result table. For scrollable cursors,
the result set consists of all rows of the result table.

TO CALLER
Specifies that the cursor can return a result set to the caller of the
procedure. The caller is the program or routine that executed the SQL
CALL statement that invokes the procedure that contains the
DECLARE CURSOR statement. For example, if the caller is a
procedure, the result set, is returned to the procedure. If the caller is a
client application, the result set is returned to the client application.

If the statement is contained within the source code for a procedure,
WITH RETURN TO CALLER specifies that the cursor can be used as a
result set cursor. A result set cursor is used when the result table of a
cursor is to be returned from a procedure. Specifying TO CALLER is
optional.

In other cases, the clause is ignored and the cursor cannot be used as a
result set cursor.

TO CLIENT
Specifies that the cursor can return a result set to the client application.
This cursor is invisible to any intermediate nested procedures. If a
function or trigger calls the procedure (either directly or indirectly), the
result set cannot be returned to the client and the cursor will be closed
after the procedure finishes.

rowset-positioning
Specifies whether multiple rows of data can be accessed as a rowset on a single
FETCH statement for the cursor. The default is WITHOUT ROWSET
POSITIONING.

WITHOUT ROWSET POSITIONING
Specifies that the cursor can be used only with row-positioned FETCH
statements. The cursor is to return a single row for each FETCH statement
and the FOR n ROWS clause cannot be specified on a FETCH statement
for this cursor. WITHOUT ROWSET POSITIONING or single row access

1540 SQL Reference

refers to how data is fetched from the database engine. For remote access,
data might be blocked and returned to the client in blocks.

WITH ROWSET POSITIONING
Specifies that the cursor can be used with either row-positioned or
rowset-positioned FETCH statements. This cursor can be used to return
either a single row or multiple rows, as a rowset, with a single FETCH
statement. ROWSET POSITIONING refers to how data is fetched from the
database engine. For remote access, if any row qualifies, at least 1 row is
returned as a rowset. The size of the rowset depends on the number of
rows specified on the FETCH statement and on the number of rows that
qualify. Data might be blocked and returned to the client in blocks.

select-statement
Specifies the result table of the cursor. See “select-statement” on page 819 for
an explanation of select-statement.

The select-statement must not include parameter markers (except for REXX), but
can include references to host variables. In host languages, other than REXX,
the declarations of the host variables must precede the DECLARE CURSOR
statement in the source program. In REXX, parameter markers must be used in
place of host variables and the statement must be prepared.

The USING clause of the OPEN statement can be used to specify host variables
that will override the values of the host variables or parameter markers that
are specified as part of the statement in the DECLARE CURSOR statement.

The select-statement of the cursor must not contain an SQL data change
statement if the cursor is defined as SENSITIVE DYNAMIC or SENSITIVE
STATIC.

The outer select list of the select-statement of a scrollable cursor must not be an
array value.

statement-name
Identifies the prepared select-statement that specifies the result table of the
cursor whenever the cursor is opened. The statement-name must not be identical
to a statement name specified in another DECLARE CURSOR statement of the
source program. For an explanation of prepared SELECT statements, see
“PREPARE” on page 1781.

The prepared select-statement of the cursor must not contain an SQL data
change statement if the cursor is defined as SENSITIVE DYNAMIC or
SENSITIVE STATIC.

Notes

A cursor in the open state designates a result table and a position relative to the
rows of that table. The table is the result table specified by the SELECT statement
of the cursor.

Read-only cursors: If the result table is read-only, the cursor is read-only.The cursor
that references a view with instead of triggers are read-only since positioned
UPDATE and positioned DELETE statements are not allowed using those cursors.
The result table is read-only if one or more of the following statements is true about
the SELECT statement of the cursor:
v The first FROM clause identifies or contains any of the following:

– More than one table or view
– A catalog table with no updatable columns

Chapter 5. Statements 1541

|
|

– A read-only view
– A nested table expression
– A table function
– A system-maintained materialized query table
– A single table that is a system-period temporal table, and a period

specification for SYSTEM_TIME is used
– A single view that directly or indirectly references a system-period temporal

table in the FROM clause of the outer fullselect of the view definition, and a
period specification for SYSTEM_TIME is used

v The first SELECT clause specifies the keyword DISTINCT, contains an aggregate
function, or uses both

v It contains an SQL data change statement
v The outer subselect contains a GROUP BY clause, a HAVING clause, or both

clauses
v It contains a subquery such that the base object of the outer subselect, and of the

subquery, is the same table
v Any of the following operators or clauses are specified:

– A set operator
– An ORDER BY clause (except when the cursor is declared as SENSITIVE

STATIC scrollable)
– A FOR READ ONLY clause

v It is executed with isolation level UR and a FOR UPDATE clause is not
specified.

If the result table is not read-only, the cursor can be used to update or delete the
underlying rows of the result table.

Tables for which row or column access controls are enforced: The select-statement of
the cursor can reference a table for which row or column access controls are
enforced. The row or column access controls do not effect the determination of
whether the cursor is read-only and do not effect the cursor sensitivity.

Work file database requirement for static scrollable cursors: To use a static
scrollable cursor, you must first create a work file database and at least one table
space with a 32KB page size in this database because a static scrollable cursor
requires a temporary table for its result table while the cursor is open. DB2 chooses
a table space to use for the temporary result table. Dynamic scrollable cursors do
not require a declared temporary table.

For static scrollable cursor declarations that contain empty strings, DB2 assigns one
byte in the temporary table space for each empty string. The following example
shows a scrollable cursor declaration with an empty string:
EXEC SQL DECLARE CSROWSTAT SENSITIVE STATIC SCROLL CURSOR

WITH ROWSET POSITIONING WITH HOLD FOR
SELECT ID1,’’
FROM TB;

Cursors in COBOL and Fortran programs: In COBOL and Fortran source
programs, the DECLARE CURSOR statement must precede all statements that
explicitly refer to the cursor by name. This rule does not necessarily apply to the
other host languages because the precompiler provides a two-pass option for these
languages. This rule applies to other host languages if the two-pass option is not
used.

1542 SQL Reference

|
|

|
|
|

Cursors in REXX: If host variables are used in a DECLARE CURSOR statement
within a REXX procedure, the DECLARE CURSOR statement must be the object of
a PREPARE and EXECUTE.

Scope of a cursor: The scope of cursor-name is the source program in which it is
defined; that is, the application program submitted to the precompiler. Thus, you
can only refer to a cursor by statements that are precompiled with the cursor
declaration. For example, a COBOL program called from another program cannot
use a cursor that was opened by the calling program. Furthermore, a cursor
defined in a Fortran subprogram can only be referred to in that subprogram.
Cursors that specify WITH RETURN in a procedure and are left open are returned
as result sets.

Although the scope of a cursor is the program in which it is declared, each
package (or DBRM of a plan) created from the program includes a separate
instance of the cursor, and more than one instance of the cursor can be used in the
same execution of the program. For example, assume a program is precompiled
with the CONNECT(2) option and its DBRM is used to create a package at location
X and a package at location Y. The program contains the following SQL statements:

DECLARE C CURSOR FOR ...
CONNECT TO X
OPEN C
FETCH C INTO ...
CONNECT TO Y
OPEN C
FETCH C INTO ...

The second OPEN C statement does not cause an error because it refers to a
different instance of cursor C. The same notion applies to a single location if the
packages are in different collections.

A SELECT statement is evaluated at the time the cursor is opened. If the same
cursor is opened, closed, and then opened again, the results can be different. If the
SELECT statement of the cursor contains CURRENT DATE, CURRENT TIME or
CURRENT TIMESTAMP, all references to these special registers yields the same
respective datetime value on each FETCH operation. The value is determined
when the cursor is opened. Multiple cursors using the same SELECT statement can
be opened concurrently. They are each considered independent activities.

Blocking of data: To process data more efficiently, DB2 might block data for
read-only cursors. If a cursor is not going to be used in a positioned UPDATE or
positioned DELETE statement, define the cursor as FOR READ ONLY.

Positioned deletes and isolation level UR: Specify FOR UPDATE if you want to
use the cursor for a positioned DELETE and the isolation level is UR because of a
BIND option. In this case, the isolation level is CS.

Returning a result set from a stored procedure: A cursor that is declared in a stored
procedure returns a result set when all of the following conditions are true:
v The cursor is declared with the WITH RETURN option. In a distributed

environment, blocks of each result set of the cursor's data are returned with the
CALL statement reply.

v The cursor is left open after exiting from the stored procedure. A cursor declared
with the SCROLL option must be left positioned before the first row before
exiting from the stored procedure.

Chapter 5. Statements 1543

v The cursor is declared with the WITH HOLD option if the stored procedure is
defined to commit on return.

The result set is the set of all rows after the current position of the cursor after
exiting the stored procedure. The result set is assumed to be read-only. If that same
procedure is reinvoked, open result set cursors for a stored procedure at a given
site are automatically closed by the database management system.

Scrollable cursors specified with user-defined functions: A row can be fetched more
than once with a scrollable cursor. Therefore, if a scrollable cursor is defined with a
function that is not deterministic in the select list of the cursor, a row can be
fetched multiple times with different results for each fetch. (However, the value of
a funtion that is not deterministic in the WHERE clause of a scrollable cursor is
captured when the cursor is opened and remains unchanged until the cursor is
closed.) Similarly, if a scrollable cursor is defined with a user-defined function with
external action, the action is executed with every fetch.

Multiple instances of a cursor that is defined with RETURN TO CLIENT: If the
cursor is declared in a native SQL procedure, a cursor that is declared as WITH
RETURN TO CLIENT can be opened even when a cursor with the same name is
already in the open state. In this case, the already open cursor becomes a result set
cursor and is no longer accessible by using its cursor name. A new cursor is
opened and becomes accessible by using the cursor name. When a CLOSE
statement is issued, the last instance of the cursor will be closed. Closing the new
cursor does not make the cursor that was previously accessible by that name
accessible by the cursor name again. Cursors that become result set cursors in this
way cannot be accessed at the server and can be processed only at the client.

Examples

The statements in the following examples are assumed to be in PL/I programs.

Example 1: Declare C1 as the cursor of a query to retrieve data from the table
DSN8B10.DEPT. The query itself appears in the DECLARE CURSOR statement.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8B10.DEPT
WHERE ADMRDEPT = ’A00’;

Example 2: Declare C1 as the cursor of a query to retrieve data from the table
DSN8810.DEPT. Assume that the data will be updated later with a searched update
and should be locked when the query executes. The query itself appears in the
DECLARE CURSOR statement.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8B10.DEPT
WHERE ADMRDEPT = ’A00’
FOR READ ONLY WITH RS USE AND KEEP EXCLUSIVE LOCKS;

Example 3: Declare C2 as the cursor for a statement named STMT2.
EXEC SQL DECLARE C2 CURSOR FOR STMT2;

Example 4: Declare C3 as the cursor for a query to be used in positioned updates of
the table DSN8B10.EMP. Allow the completed updates to be committed from time
to time without closing the cursor.

1544 SQL Reference

EXEC SQL DECLARE C3 CURSOR WITH HOLD FOR
SELECT * FROM DSN8B10.EMP

FOR UPDATE OF WORKDEPT, PHONENO, JOB, EDLEVEL, SALARY;

Instead of specifying which columns should be updated, you could use a FOR
UPDATE clause without the names of the columns to indicate that all updatable
columns are updated.

Example 5: In stored procedure SP1, declare C4 as the cursor for a query of the
table DSN8B10.PROJ. Enable the cursor to return a result set to the caller of SP1,
which performs a commit on return.

EXEC SQL DECLARE C4 CURSOR WITH HOLD WITH RETURN FOR
SELECT PROJNO, PROJNAME
FROM DSN8B10.PROJ
WHERE DEPTNO = ’A01’;

Example 6: In the following example, the DECLARE CURSOR statement associates
the cursor name C5 with the results of the SELECT and specifies that the cursor is
scrollable. C5 allows positioned updates and deletes because the result table can be
updated.

EXEC SQL DECLARE C5 SENSITIVE STATIC SCROLL CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8B10.DEPT
WHERE ADMRDEPT = ’A00’;

Example 7: In the following example, the DECLARE CURSOR statement associates
the cursor name C6 with the results of the SELECT and specifies that the cursor is
scrollable.

EXEC SQL DECLARE C6 INSENSITIVE SCROLL CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8B10.DEPT
WHERE DEPTNO;

Example 8: The following example illustrates how an application program might
use dynamic scrollable cursors. First create and populate a table.

CREATE TABLE ORDER
(ORDERNUM INTEGER,
CUSTNUM INTEGER,
CUSTNAME VARCHAR(20),
ORDERDATE CHAR(8),
ORDERAMT DECIMAL(8,3),
COMMENTS VARCHAR(20));

Populate the table by inserting or loading about 500 rows.
EXEC SQL DECLARE CURSOR ORDERSCROLL

SENSITIVE DYNAMIC SCROLL FOR
SELECT ORDERNUM, CUSTNAME, ORDERAMT, ORDERDATE FROM ORDER
WHERE ORDERAMT > 1000
FOR UPDATE OF COMMENTS;

Open the scrollable cursor.
OPEN CURSOR ORDERSCROLL;

Fetch forward from the scrollable cursor.
-- Loop-to-fill-screen

-- do 10 times
FETCH FROM ORDERSCROLL INTO :HV1, :HV2, :HV3, :HV4;
-- end

Chapter 5. Statements 1545

Fetch RELATIVE from the scrollable cursor.
-- Skip-forward-100-rows

FETCH RELATIVE +100
FROM ORDERSCROLL INTO :HV1, :HV2, :HV3, :HV4;

-- Skip-backward-50-rows
FETCH RELATIVE -50
FROM ORDERSCROLL INTO :HV1, :HV2, :HV3, :HV4;

Fetch ABSOLUTE from the scrollable cursor.
-- Re-read-the-third-row

FETCH ABSOLUTE +3
FROM ORDERSCROLL INTO :HV1, :HV2, :HV3, :HV4;

Fetch RELATIVE from scrollable cursor.
-- Read-the-third-row-from current position

FETCH SENSITIVE RELATIVE +3
FROM ORDERSCROLL INTO :HV1, :HV2, :HV3, :HV4;

Do a positioned update through the scrollable cursor.
-- Update-the-current-row

UPDATE ORDER SET COMMENTS = "Expedite"
WHERE CURRENT OF ORDERSCROLL;

Close the scrollable cursor.
CLOSE CURSOR ORDERSCROLL;

Example 9: Declare C1 as the cursor of a query to retrieve a rowset from the table
DEPT. The prepared statement is MYCURSOR.

EXEC SQL DECLARE C1 CURSOR
WITH ROWSET POSITIONING FOR MYCURSOR;

1546 SQL Reference

DECLARE GLOBAL TEMPORARY TABLE
The DECLARE GLOBAL TEMPORARY TABLE statement defines a declared
temporary table for the current application process. The declared temporary table
resides in the work file database and its description does not appear in the system
catalog. It is not persistent and cannot be shared with other application processes.
Each application process that defines a declared temporary table of the same name
has its own unique description and instance of the temporary table. When the
application process terminates, the temporary table is dropped.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None are required, unless the LIKE clause is specified when additional privileges
might be required.

PUBLIC implicitly has the following privileges without GRANT authority for
declared temporary tables:
v The CREATETAB privilege to define a declared temporary table in the database

that is defined AS WORKFILE, which is the database for declared temporary
tables.

v The USE privilege to use the table spaces in the database that is defined as
WORKFILE.

v All table privileges on the table and authority to drop the table. (Table privileges
for a declared temporary table cannot be granted or revoked.)

These implicit privileges are not recorded in the DB2 catalog and cannot be
revoked.

Chapter 5. Statements 1547

Syntax

�� DECLARE GLOBAL TEMPORARY TABLE table-name �

,

(column-definition)
LIKE table-name copy-options

view-name
as-result-table

�

� �
(1)

CCSID ASCII
EBCDIC
UNICODE

ON COMMIT DELETE ROWS

ON COMMIT PRESERVE ROWS
ON COMMIT DROP TABLE
LOGGED

ON ROLLBACK DELETE ROWS
NOT LOGGED

ON ROLLBACK PRESERVE ROWS

��

Notes:

1 The same clause must not be specified more than one time.

��
(1)

column-name data-type �

WITH
DEFAULT

constant
SESSION_USER
USER

CURRENT SQLID
NULL

GENERATED ALWAYS
BY DEFAULT identity-options

NOT NULL

��

Notes:

1 The same clause must not be specified more than once.

column-definition:

data-type:

1548 SQL Reference

�� built-in-type
distinct-type-name

��

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) FOR SBCS DATA

CHARACTER VARYING (integer) MIXED
CHAR BIT

VARCHAR
(1)

GRAPHIC
(integer)

VARGRAPHIC (integer)
(1)

BINARY
(integer)

BINARY VARYING (integer)
VARBINARY

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE

��

�� AS (fullselect) WITH NO DATA ��

built-in-type:

as-result-table:

copy-options:

Chapter 5. Statements 1549

�� �

COLUMN ATTRIBUTES
(1) EXCLUDING IDENTITY

COLUMN ATTRIBUTES
INCLUDING IDENTITY

COLUMN
(2) EXCLUDING DEFAULTS

COLUMN
INCLUDING DEFAULTS
USING TYPE DEFAULTS

��

Notes:

1 These clauses can be specified in any order and must not be specified more than one time.

2 EXCLUDING COLUMN DEFAULTS, INCLUDING COLUMN DEFAULTS, and USING TYPE
DEFAULTS must not be specified with the LIKE clause.

��

�

AS IDENTITY

(1) START WITH 1
(START WITH numeric-constant)

INCREMENT BY 1
INCREMENT BY numeric-constant
NO MINVALUE
MINVALUE numeric-constant
NO MAXVALUE
MAXVALUE numeric-constant
NO CYCLE
CYCLE
CACHE 20
NO CACHE
CACHE integer-constant

��

Notes:

1 Separator commas can be specified between the attributes when an identity column is defined

Description

table-name
Names the temporary table. The qualifier, if specified explicitly, must be
SESSION. If the qualifier is not specified, it is implicitly defined to be
SESSION.

If a table, view, synonym, or alias already exists with the same name and an
implicit or explicit qualifier of SESSION:
v The declared temporary table is still defined with SESSION.table-name. An

error is not issued because the resolution of a declared temporary table
name does not include the persistent and shared names in the DB2 catalog
tables.

identity-options:

1550 SQL Reference

v Any references to SESSION.table-name will resolve to the declared temporary
table rather than to any existing SESSION.table-name whose definition is
persistent and is in the DB2 catalog tables.

column-definition
Defines the attributes of a column for each instance of the table. The number of
columns defined must not exceed 750. The maximum record size must not
exceed 32683 bytes. The maximum row size must not exceed 32675 bytes (8
bytes less than the maximum record size).

column-name
Names the column. The name must not be qualified and must not be the same
as the name of another column in the table.

data-type
Specifies the data type of the column. The data type can be any built-in data
type that can be specified for the CREATE TABLE statement except for a LOB
(BLOB, CLOB, and DBCLOB), ROWID, or XML type. The FOR subtype DATA
clause can be specified as part of data-type. For more information on the data
types and the rules that apply to them, see built-in-type.

DEFAULT
Specifies a default value for the column. This clause must not be specified
more than once in the same column-definition.

Omission of NOT NULL and DEFAULT from a column-definition is an implicit
specification of DEFAULT NULL.

If DEFAULT is specified without a value after it, the default value of the
column depends on the data type of the column, as follows:

Data type
Default value

Numeric
0

Fixed-length character string
A string of blanks

Fixed-length graphic string
A string of blanks

Fixed-length binary string
Hexadecimal zeros

Varying-length string
A string of length 0

Date CURRENT DATE
Time CURRENT TIME
Timestamp

CURRENT TIMESTAMP(p) where p is the corresponding timestamp
precision.

Timestamp with time zone
CURRENT TIMESTAMP(p) WITH TIME ZONE where p is the
corresponding timestamp precision.

A default value other than the one that is listed above can be specified in one
of the following forms:

constant
Specifies a constant as the default value for the column. The value of the
constant must conform to the rules for assigning that value to the column.
A hexadecimal graphic string constant (GX) cannot be specified.

Chapter 5. Statements 1551

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register at the
time of an insert or update operation or LOAD as the default value for the
column. The data type of the column must be a character string with a
length attribute greater than or equal to the length attribute of the
SESSION_USER special register.

CURRENT SQLID
Specifies the value of the SQL authorization ID of the process at the time
of an SQL data change statement or LOAD as the default value for the
column. The data type of the column must be a character string with a
length attribute greater than or equal to the length attribute of the
CURRENT SQLID special register.

NULL
Specifies null as the default value for the column. If NOT NULL was
specified, DEFAULT NULL must not be specified within the same
column-definition.

GENERATED
Specifies that DB2 generates values for the column. GENERATED must be
specified if the column is to be considered an IDENTITY column. If DEFAULT
is specified for the column for an update operation, DB2 generates a value for
both GENERATED ALWAYS and GENERATED BY DEFAULT.

ALWAYS
Specifies that DB2 always generates a value for the column when a row is
inserted into the table.

BY DEFAULT
Specifies that DB2 generates a value for the column when a row is inserted
into the table unless a value is specified. BY DEFAULT is the
recommended value only when you are using data propagation.

Defining a column as GENERATED BY DEFAULT does not necessarily
guarantee the uniqueness of the values. To ensure uniqueness of the
values, define a unique, single-column index on the column.

AS IDENTITY
Specifies that the column is an identity column for the table. A table can have
only one identity column. AS IDENTITY can be specified only if the data type
for the column is an exact numeric type with a scale of zero (SMALLINT,
INTEGER, BIGINT, DECIMAL with a scale of zero).

An identity column is implicitly NOT NULL. An identity column cannot have
a DEFAULT clause. For the descriptions of the identity attributes, see the
description of the AS IDENTITY clause in “CREATE TABLE” on page 1388.

NOT NULL
Specifies that the column cannot contain nulls. Omission of NOT NULL
indicates that the column can contain nulls.

LIKE table-name or view-name
Specifies that the columns of the table have the same name, data type, and
nullability attributes as the columns of the identified table or view. If a table is
identified, the column default attributes are also defined by that table. If row
permissions or column access control is enforced for the table specified by
table-name, row and column access controls are not inherited by the new table.
The name specified must identify a table, view, synonym, or alias that exists at
the current server. The identified table must not be an auxiliary table.

1552 SQL Reference

The privilege set must include the SELECT privilege on the identified table or
view.

This clause is similar to the LIKE clause on CREATE TABLE, but it has the
following differences:
v If LIKE results in a column having a LOB data type, a ROWID data type, or

distinct type, the DECLARE GLOBAL TEMPORARY TABLE statement fails.
v In addition to these data type restrictions, if any column has any other

attribute value that is not allowed in a declared temporary table, that
attribute value is ignored. The corresponding column in the new temporary
table has the default value for that attribute unless otherwise indicated.

table-name or view-name must not contain a Unicode column in an EBCDIC
table

When the identified object is a table, the column name, data type, nullability,
and default attributes are determined from the columns of the specified table;
any identity column attributes are inherited only if the INCLUDING
IDENTITY COLUMN ATTRIBUTES clause is specified.

as-result-table
Specifies that the table definition is based on the column definitions from the
result of a query expression.

The behavior of these column attributes is controlled with the INCLUDING or
USING TYPE DEFAULTS clauses, which are defined below.

AS (fullselect)
Specifies an implicit definition of n columns for the declared global
temporary table, where n is the number of columns that would result from
the fullselect. The columns of the new table are defined by the columns that
result from the fullselect. Every select list element must have a unique
name. The AS clause can be used in the select-clause to provide unique
names. The implicit definition includes the column name, data type, and
nullability characteristic of each of the result columns of fullselect. A
column of the new table that corresponds to an implicitly hidden column
of a base table referenced in the fullselect is not considered hidden in the
new table.Row and column access controls that are enforced on the base
table are not cascaded to the new table.

The result table of the fullselect must not contain a column that has a LOB
data type, a ROWID data type, an XML data type or a distinct type.

If fullselect results in other column attributes that are not applicable for a
declared temporary table, those attributes are ignored in the implicit
definition for the declared temporary table.

If fullselect results in a row change timestamp column, the corresponding
column of the new table inherits only the data type of the row change
timestamp column. The new column is not considered as a generated
column.

The fullselect must not refer to host variables or include parameter markers
(question marks). The outermost SELECT list of the fullselect must not
reference data that is encoded with different CCSID sets, and must not
result in a column that is an array.

WITH NO DATA
Specifies that the fullselect is not executed. You can use the INSERT INTO

Chapter 5. Statements 1553

|
|

|
|
|
|

statement with the same fullselect specified in the AS clause to populate the
declared temporary table with the set of rows from the result table of the
fullselect.

copy-options
Specifies whether identity column attributes and column defaults are inherited
from the definition of the source of the result table.

EXCLUDING IDENTITY COLUMN ATTRIBUTES or INCLUDING IDENTITY COLUMN
ATTRIBUTES

Specifies whether identity column attributes are inherited from the
columns resulting from the fullselect, table-name, or view-name.

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that the table does not inherit the identity attributes of the
columns resulting from the fullselect, table-name, or view-name.

INCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that the table inherits the identity attributes, if any, of the
columns resulting from the fullselect or table-name. In general, the
identity attributes are copied if the element of the corresponding
column in the table or fullselect is the name of a table column that
directly or indirectly maps to the name of a base table column that is
an identity column.

If the INCLUDING IDENTITY COLUMN ATTRIBUTES clause is
specified with the AS fullselect clause, the columns of the new table do
not inherit the identity attribute in the following cases:
v The select list of the fullselect includes multiple instances of an

identity column name (that is, selecting the same column more than
once).

v The select list of the fullselect includes multiple identity columns
(that is, it involves a join).

v The identity column is included in an expression in the select list.
v The fullselect includes a set operation.

If INCLUDING IDENTITY COLUMN ATTRIBUTES is not specified,
the new table will not have an identity column.

If the LIKE clause identifies a view, INCLUDING IDENTITY
COLUMN ATTRIBUTES must not be specified.

EXCLUDING COLUMN DEFAULTS, INCLUDING COLUMN DEFAULTS, or USING TYPE
DEFAULTS

Specifies whether the table inherits the default values of the columns of the
fullselect. EXCLUDING COLUMN DEFAULTS, INCLUDING COLUMN
DEFAULTS, and USING TYPE DEFAULTS must not be specified if the
LIKE clause is specified.

EXCLUDING COLUMN DEFAULTS
Specifies that the table does not inherit the default values of the
columns of the fullselect. The default values of the column of the new
table are either null or there are no default values. If the column can be
null, the default is the null value. If the column cannot be null, there is
no default value, and an error occurs if a value is not provided for a
column on an insert operation for the new table.

INCLUDING COLUMN DEFAULTS
Specifies that the table inherits the default values of the columns of the
fullselect. A default value is the value that is assigned to the column

1554 SQL Reference

when a value is not specified on an insert operation or LOAD.
Columns resulting from the fullselect that are not updatable will not
have a default defined in the corresponding column of the created
table.

USING TYPE DEFAULTS
Specifies that the default values for the declared temporary table
depend on the data type of the columns that result from fullselect, as
follows:

Data type
Default value

Numeric
0

Fixed-length character string
Blanks

Fixed-length graphic string
Blanks

Fixed-length binary string
Hexadecimal zeros

Varying-length string
A string of length 0

Date CURRENT DATE
Time CURRENT TIME
Timestamp

CURRENT TIMESTAMP(p) where p is the corresponding
timestamp precision.

Timestamp(integer) with time zone
CURRENT TIMESTAMP(p) WITH TIME ZONE where p is the
corresponding timestamp precision.

CCSID encoding-scheme
Specifies the encoding scheme for string data that is stored in the table. For
declared temporary tables, the encoding scheme for the data cannot be
specified for the table space or database, and all data in one table space or the
database need not use the same encoding scheme. Because there can be only
one work file database for all declared temporary tables for each DB2 member,
there can be a mixture of encoding schemes in both the database and each
table space.

For the creation of temporary tables, the CCSID clause can be specified
whether or not the LIKE clause is specified. If the CCSID clause is specified,
the encoding scheme of the new table is the scheme that is specified in the
CCSID clause. If the CCSID clause is not specified, the encoding scheme of the
new table is the same as the scheme for the table specified in the LIKE clause
or as the scheme for the table identified by the AS (fullselect) clause.

ASCII Specifies that the data is encoded by using the ASCII CCSIDs of the
server.

EBCDIC
Specifies that the data is encoded by using the EBCDIC CCSIDs of the
server.

UNICODE
Specifies that the data is encoded by using the UNICODE CCSIDs of
the server.

Chapter 5. Statements 1555

An error occurs if the CCSIDs for the encoding scheme have not been defined.
Usually, each encoding scheme requires only a single CCSID. Additional
CCSIDs are needed when mixed, graphic, or UNICODE data is used.

ON COMMIT
Specifies what happens to the table for a commit operation. The default is ON
COMMIT DELETE ROWS.

DELETE ROWS
Specifies that all of the rows of the table are deleted if there is no open
cursor that is defined as WITH HOLD that references the table.

PRESERVE ROWS
Specifies that all of the rows of the table are preserved. Thread reuse
capability is not available to any application process or thread that
contains, at its most recent commit, an active declared temporary table that
was defined with the ON COMMIT PRESERVE ROWS clause.

DROP TABLE
Specifies that the table is implicitly dropped at commit if there is no open
cursor that is defined as WITH HOLD that references the table. If there is
an open cursor defined as WITH HOLD on the table at commit, the rows
are preserved.

LOGGED or NOT LOGGED
Specifies whether operations for the table are to be logged. This option also
applies to any indexes that are associated with the table. Indexes inherit the
logging attribute from their associated tables.

LOGGED
Specifies that insert, update, or delete operations for the declared
temporary table are logged. Create and drop actions for the table are
also logged. This is the default option.

NOT LOGGED
Specifies that insert, update, or delete operations for the declared
temporary table are not logged. However, create and drop actions for
the table are logged.

ON ROLLBACK DELETE ROWS
Specifies that when a ROLLBACK or ROLLBACK TO
SAVEPOINT statement is issued, all rows of the global
temporary table are deleted. This is the default.

ON ROLLBACK PRESERVE ROWS
Specifies that when a ROLLBACK or ROLLBACK TO
SAVEPOINT statement is issued, all rows of the global
temporary table are preserved.

If a ROLLBACK or ROLLBACK TO SAVEPOINT statement is issued,
the following actions occur for tables that were created or dropped:
v If the table was created within the unit of work or savepoint, the

table is dropped.
v If the table was dropped within the unit of work or savepoint, the

table is re-created without any data.

For statements that insert multiple rows, the ATOMIC and NOT
ATOMIC CONTINUE ON SQLEXCEPTION options of the INSERT
statement determine the result of an error. If ATOMIC is specified, an
error during insertion causes all rows in the global temporary table to
be deleted. If NOT ATOMIC CONTINUE ON SQLEXCEPTION is

1556 SQL Reference

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

specified, an error during insertion causes all rows in the table to be
deleted, but the next insert is processed. At the end of the insert, the
table includes only the rows that were inserted after the last error.

Restriction: In CREATE TABLESPACE and ALTER TABLESPACE statements,
LOG YES and LOG NO can be used as syntax alternatives for LOGGED and
NOT LOGGED, respectively. These syntax alternatives cannot be used in a
DECLARE GLOBAL TEMPORARY TABLE statement.

Notes

Instantiation, scope, and termination: For the following explanations, P denotes an
application process, and T is a declared temporary table executed in P:
v An empty instance of T is created when a DECLARE GLOBAL TEMPORARY

TABLE statement is executed in P.
v Any SQL statement in P can reference T, and any of those references to T in P is

a reference to that same instance of T. ()
If a DECLARE GLOBAL TEMPORARY statement is specified within an SQL PL
compound statement, the scope of the declared temporary table is the
application process and not just the compound statement. A declared temporary
table cannot be defined multiple times by the same name in other compound
statements in that application process, unless the table has been dropped
explicitly.

v If T was declared at a remote server, the reference to T must use the same DB2
connection that was used to declare T and that connection must not have been
terminated after T was declared. When the connection to the database server at
which T was declared terminates, T is dropped.

v If T was defined with the ON COMMIT DELETE ROWS clause specified
implicitly or explicitly, when a commit operation terminates a unit of work in P
and there is no open WITH HOLD cursor in P that is dependent on T, the
commit deletes all rows from T.

v If T is defined with the ON COMMIT DROP TABLE clause, when a commit
operation terminates a unit of work in P and no program in P has a WITH
HOLD cursor open that is dependent on T, the commit includes the operation
DROP TABLE T.

v When a rollback operation terminates a unit of work or savepoint in P, and that
unit of work or savepoint includes the declaration of SESSION.T, the changes to
table T are undone.
When a rollback operation terminates a unit of work or savepoint in P, and that
unit of work or savepoint includes the declaration of SESSION.T, the rollback
drops table T.
When a rollback operation terminates a unit of work or savepoint in P, and that
unit of work or savepoint includes the drop of the declaration of declared
temporary table SESSION.T, the rollback undoes the drop of table T.

v When the application process that declared T terminates, T is dropped.
v When a rollback operation terminates a unit of work or a savepoint in P, and

that unit of work or savepoint includes a modification to SESSION.T the
following actions occur:
– If NOT LOGGED was specified, all rows from SESSION.T are deleted unless

ON ROLLBACK PRESERVE ROWS was also specified.
– If NOT LOGGED was not specified, the changes to table T are undone.

Chapter 5. Statements 1557

|
|
|

|
|
|
|

|
|
|

|
|

|

v If NOT LOGGED was specified and an INSERT, UPDATE or DELETE statement
fails during execution (not a compilation error), all rows from SESSION.T are
deleted.

v When a rollback operation terminates a unit of work or a savepoint in P, and
that unit of work or savepoint includes the declaration of SESSION.T, the
rollback includes the operation DROP SESSION.T.

v When a rollback operation terminates a unit of work or a savepoint in P, and
that unit of work or savepoint includes the drop of a declared temporary table
SESSION.T, the rollback undoes the drop of the table. If NOT LOGGED was
specified, the table is also emptied.

v When the application process that declared T terminates or disconnects from the
database, T is dropped and its instantiated rows are destroyed.

Privileges: When a declared temporary table is defined, PUBLIC is implicitly
granted all table privileges on the table and authority to drop the table. These
implicit privileges are not recorded in the DB2 catalog and cannot be revoked. This
enables any SQL statement in the application process to reference a declared
temporary table that has already been defined in that application process.

Referring to a declared temporary table in other SQL statements: Many SQL
statements support declared temporary tables. To refer to a declared temporary
table in an SQL statement other than DECLARE GLOBAL TEMPORARY TABLE,
you must qualify the table name with SESSION. You can either specify SESSION
explicitly in the table name or use the QUALIFIER bind option to specify SESSION
as the qualifier for all SQL statements in the plan or package.

If you use SESSION as the qualifier for a table name but the application process
does not include a DECLARE GLOBAL TEMPORARY TABLE statement for the
table name, DB2 assumes that you are not referring to a declared temporary table.
DB2 resolves such table references to a table whose definition is persistent and
appears in the DB2 catalog tables.

With the exception of the DECLARE GLOBAL TEMPORARY TABLE statement,
any static SQL statement that references a declared temporary table is
incrementally bound at run time. This is because the definition of the declared
temporary table does not exist until the DECLARE GLOBAL TEMPORARY
statement is executed in the application process that contains those SQL statements
and the definition does not persist when the application process finishes running.

When a plan or package is bound, any static SQL statement (other than the
DECLARE GLOBAL TEMPORARY TABLE statement) that references a table-name
that is qualified by SESSION, regardless of whether the reference is for a declared
temporary table, is not completely bound. However, the bind of the plan or
package succeeds if there are no other errors. These static SQL statements are then
incrementally bound at run time when the static SQL statement is issued. Object
dependencies are not recorded in SYSIBM.SYSPLANDEP or SYSIBM.SYSPACKDEP
tables. These incremental binds are necessary because:
v The definition of the declared temporary table does not exist until the DECLARE

GLOBAL TEMPORARY TABLE statement for the table is executed in the same
application process that contains those SQL statements. Therefore, DB2 must
wait until the plan or package is run to determine if SESSION.table-name refers
to a base table or a declared temporary table.

v The definition of a declared temporary table does not persist after the table it is
explicitly dropped (DROP statement), implicitly dropped (ON COMMIT DROP
TABLE), or the application process that defined it finishes running. When the

1558 SQL Reference

|
|
|

|
|
|

|
|
|
|

|
|

application process terminates or is re-used as a reusable application thread, the
instantiated rows of the table are deleted and the definition of the declared
temporary table is dropped if it has not already been explicitly or implicitly
dropped.

After the plan or package is bound, any static SQL statement that refers to a
table-name that is qualified by SESSION has a new statement status of M in the
DB2 catalog table (STATUS column of SYSIBM.SYSSTMT or
SYSIBM.SYSPACKSTMT).

Thread reuse: If a declared temporary table is defined in an application process that
is running as a local thread, the application process or local thread that declared
the table qualifies for explicit thread reuse if:
v The table was defined with both the default ON COMMIT DELETE ROWS

attribute and the NOT LOGGED ON ROLLBACK DELETE ROWS attribute.
v The table was defined with PRESERVE ROWS specified on either the ON

COMMIT or NOT LOGGED ON ROLLBACK option and the table was explicitly
dropped with the DROP TABLE statement before the thread's commit operation.

v The table was defined with the ON COMMIT DROP TABLE attribute. When a
declared temporary table is defined with the ON COMMIT DROP TABLE and a
commit occurs, the table is implicitly dropped if there are no open cursors
defined with the WITH HOLD option.

When the thread is reused, the declared temporary table is dropped and its rows
are destroyed. However, if you do not explicitly or implicitly drop all declared
temporary tables before or when your thread performs a commit and the thread
becomes idle waiting to be reused, as with all thread reuse situations, the idle
thread holds resources and locks. This includes some declared temporary table
resources and locks on the table spaces and the database descriptor (DBD) for the
work file database. So, instead of using the implicit drop feature of thread reuse to
drop your declared temporary tables, it is recommended that you:
v Use the DROP TABLE statement to explicitly drop your declared temporary

tables before the thread performs a commit and becomes idle.
v Define the declared temporary tables with ON COMMIT DROP TABLE clause so

that the tables are implicitly dropped when a commit occurs.

Explicitly dropping the tables before a commit occurs or having them implicitly
dropped when the commit occurs enables you to maximize the use of declared
temporary table resources and release locks when multiple threads are using
declared temporary table.

Remote threads qualify for thread reuse differently than local threads. If a declared
temporary table is defined (with or without ON COMMIT DELETE ROWS) in an
application process that is running as a remote or DDF thread (also known as
Database Access Thread or DBAT), the remote thread qualifies for thread reuse
only when the declared temporary table is explicitly dropped before the thread
performs a commit operation. Dropping the declared temporary table enables the
remote thread to qualify for the implicit thread reuse that is supported for DDF
threads via connection pooling and to become an inactive DBAT (type 1 inactive
thread) or an inactive connection (type 2 inactive thread).

Parallelism support: Only I/O and CP parallelism are supported. Any query that
involves a declared temporary table is limited to parallel tasks on a single CPC.

Chapter 5. Statements 1559

|
|

|
|
|

Restrictions on the use of declared temporary tables: Declared temporary tables
cannot:
v Be specified in referential constraints.
v Be referenced in any SQL statements that are defined in an SQL function body

(CREATE FUNCTION or ALTER FUNCTION statements), a trigger body
(CREATE TRIGGER statement). If you refer a table name that is qualified with
SESSION in a trigger body, DB2 assumes that you are referring to a base table.

v Be referenced in a CREATE INDEX statement unless the schema name of the
index is SESSION.

In addition, do not refer to a declared temporary table in any of the following
statements.

ALTER INDEX
ALTER TABLE
COMMENT
CREATE ALIAS
CREATE FUNCTION (TABLE LIKE clause)
CREATE PROCEDURE (TABLE LIKE clause)
CREATE TRIGGER

CREATE VIEW
GRANT (table or view
privileges)
LABEL
LOCK TABLE
REFRESH TABLE
RENAME
REVOKE (table or view
privileges)

Declared global temporary tables and dynamic statement caching: The DB2
dynamic statement cache feature does not support dynamic SQL statements that
reference declared temporary tables, even if the SQL statement also includes
references to base or persistent tables. DB2 will not insert such statements into the
dynamic statement cache. Instead, these dynamic statements are processed as if
statement caching is not in effect. Declared temporary tables are unique and
specific to an application process or DB2 thread, cannot be shared across threads,
are not described in the DB2 catalog, and do not persist beyond termination of the
DB2 thread or application process. These attributes prevent the use of the dynamic
statement cache feature where tables and SQL statements are shared across threads
or application processes.

Table space requirements in the work file database: DB2 stores all declared
temporary tables in the work file database. You cannot define a declared
temporary table unless a table space with at least an 32KB page size exists in the
work file database.

Alternative syntax and synonyms: To provide compatibility with previous releases,
DB2 allows you to specify:
v LONG VARCHAR as a synonym for VARCHAR(integer) and LONG

VARGRAPHIC as a synonym for VARGRAPHIC(integer) when defining the data
type of a column.
However, the use of these synonyms is not encouraged because after the
statement is processed, DB2 considers a LONG VARCHAR column to be
VARCHAR and a LONG VARGRAPHIC column to be VARGRAPHIC.

v DEFINITION ONLY as a synonym for WITH NO DATA.
v TIMEZONE can be specified as an alternative to TIME ZONE.

1560 SQL Reference

Examples

Example 1: Define a declared temporary table with column definitions for an
employee number, salary, commission, and bonus.

DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP
(EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9, 2),
BONUS DECIMAL(9, 2),
COMM DECIMAL(9, 2))
CCSID EBCDIC
ON COMMIT PRESERVE ROWS;

Example 2: Assume that base table USER1.EMPTAB exists and that it contains three
columns, one of which is an identity column. Declare a temporary table that has
the same column names and attributes (including identity attributes) as the base
table.

DECLARE GLOBAL TEMPORARY TABLE TEMPTAB1
LIKE USER1.EMPTAB
INCLUDING IDENTITY
ON COMMIT PRESERVE ROWS;

In the above example, DB2 uses SESSION as the implicit qualifier for TEMPTAB1.

Chapter 5. Statements 1561

DECLARE STATEMENT
The DECLARE STATEMENT statement is used for application program
documentation. It declares names that are used to identify prepared SQL
statements.

Invocation

This statement can only be embedded in an application program. It is not an
executable statement.

Authorization

None required.

Syntax

�� �

,

DECLARE statement-name STATEMENT ��

Description

statement-name STATEMENT
Lists one or more names that are used in your application program to identify
prepared SQL statements.

Example

This example shows the use of the DECLARE STATEMENT statement in a PL/I
program.

EXEC SQL DECLARE OBJECT_STATEMENT STATEMENT;

EXEC SQL INCLUDE SQLDA;
EXEC SQL DECLARE C1 CURSOR FOR OBJECT_STATEMENT;

(SOURCE_STATEMENT IS "SELECT DEPTNO, DEPTNAME,
MGRNO FROM DSN8B10.DEPT WHERE ADMRDEPT = ’A00’")

EXEC SQL PREPARE OBJECT_STATEMENT FROM SOURCE_STATEMENT;
EXEC SQL DESCRIBE OBJECT_STATEMENT INTO SQLDA;

/* Examine SQLDA */

EXEC SQL OPEN C1;

DO WHILE (SQLCODE = 0);
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA;

/* Print results */

END;

EXEC SQL CLOSE C1;

1562 SQL Reference

DECLARE TABLE
The DECLARE TABLE statement is used for application program documentation.
It also provides the precompiler with information used to check your embedded
SQL statements. (The DCLGEN subcommand can be used to generate declarations
for tables and views described in any accessible DB2 catalog.

For more on DCLGEN, see DB2 Application Programming and SQL Guide and DB2
Command Reference.)

Invocation

This statement can only be embedded in an application program. It is not an
executable statement.

Authorization

None required.

Syntax

�� DECLARE table-name
view-name

�

� �

,

TABLE(column-name built-in-type)
distinct-type-name NOT NULL

NOT NULL WITH DEFAULT

��

built-in-type:

Chapter 5. Statements 1563

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer)

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer)

CLOB K
M
G

(1)
GRAPHIC

(integer)
VARGRAPHIC (integer)

(1M)
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME
TIMESTAMP

ROWID
XML

��

1564 SQL Reference

Description

table-name or view-name
Specifies the name of the table or view to document. If the table is defined in
your application program, the description of the table in the SQL statement in
which it is defined (for example, CREATE TABLE or DECLARE GLOBAL
TEMPORARY TABLE statement) and the DECLARE TABLE statement must be
identical.

column-name
Specifies the name of a column of the table or view.

The precompiler uses these names to check for consistency of names within
your SQL statements. It also uses the data type to check for consistency of
names and data types within your SQL statements.

built-in-type
Specifies the built-in data type of the column. Use one of the built-in data
types.

SMALLINT
For a small integer.

INTEGER or INT
For a large integer.

BIGINT
For a big integer.

DECIMAL(integer,integer) or DEC(integer,integer)
DECIMAL(integer) or DEC(integer)
DECIMAL or DEC

For a decimal number. The first integer is the precision of the number. That
is, the total number of digits, which can range from 1 to 31. The second
integer is the scale of the number. That is, the number of digits to the right
of the decimal point, which can range from 0 to the precision of the
number.

You can use DECIMAL(p) for DECIMAL(p,0) and DECIMAL for
DECIMAL(5,0).

You can also use the word NUMERIC instead of DECIMAL. For example,
NUMERIC(8) is equivalent to DECIMAL(8). Unlike DECIMAL, NUMERIC
has no allowable abbreviation.

FLOAT(integer)
FLOAT

For a floating-point number. If integer is between 1 and 21 inclusive, the
format is single precision floating-point. If the integer is between 22 and 53
inclusive, the format is double precision floating-point.

You can use DOUBLE PRECISION or FLOAT for FLOAT(53).

REAL
For single precision floating-point.

DOUBLE or DOUBLE PRECISION
For double precision floating-point

DECFLOAT(integer)
For a decimal floating-point number. The value of integer must be either 16

Chapter 5. Statements 1565

or 34 and represents the number of significant digits that can be stored. If
integer is omitted, the DECFLOAT column will be capable of representing
34 significant digits.

CHARACTER(integer) or CHAR(integer)
CHARACTER or CHAR

For a fixed-length character string of length integer, which can range from 1
to 255. If the length specification is omitted, a length of 1 character is
assumed.

VARCHAR(integer), CHAR VARYING(integer), or CHARACTER VARYING(integer)
For a varying-length character string of maximum length integer, which can
range from 1 to the maximum record size minus 10 bytes. See Table 119 on
page 1448 to determine the maximum record size.

CLOB(integer [K|M|G]), CHAR LARGE OBJECT(integer [K|M|G]), or CHARACTER
LARGE OBJECT(integer [K|M|G])
CLOB, CHAR LARGE OBJECT, or CHARACTER LARGE OBJECT

For a character large object (CLOB) string of the specified maximum length
in bytes. The maximum length must be in the range of 1 to 2 147 483 647.
A CLOB column has a varying-length. It cannot be referenced in certain
contexts regardless of its maximum length. For more information, see
“Restrictions using LOBs” on page 97.

When integer is not specified, the default length is 1M. The maximum
value that can be specified for integer depends on whether a units indicator
is also specified as shown in the following list.

integer The maximum value for integer is 2 147 483 647. The maximum
length of the string is integer.

integer K
The maximum value for integer is 2 097 152. The maximum length
is 1024 times integer.

integer M
The maximum value for integer is 2048. The maximum length is
1 048 576 times integer.

integer G
The maximum value for integer is 2. The maximum length is
1 073 741 824 times integer.

If you specify a value that evaluates to 2 gigabytes (2 147 483 648), DB2
uses a value that is one byte less, or 2 147 483 647.

GRAPHIC(integer)
GRAPHIC

For a fixed-length graphic string of length integer, which can range from 1
to 127. If the length specification is omitted, a length of 1 character is
assumed.

VARGRAPHIC(integer)
For a varying-length graphic string of maximum length integer, which must
range from 1 to n/2, where n is the maximum row size minus 2 bytes.

CCSID 1200
Specifies that the column is a Unicode column encoded in UTF16. This
clause must not be specified for an ASCII or Unicode table.

DBCLOB(integer [K|M|G])

1566 SQL Reference

|
|
|

DBCLOB
For a double-byte character large object (DBCLOB) string of the specified
maximum length in double-byte characters. The maximum length must be
in the range of 1 through 1 073 741 823. A DBCLOB column has a
varying-length. It cannot be referenced in certain contexts regardless of its
maximum length. For more information, see “Restrictions using LOBs” on
page 97.

When integer is not specified, the default length is 1M. The meaning of
integer K|M|G is similar to CLOB. The difference is that the number
specified is the number of double-byte characters.

BINARY(integer)
A fixed-length binary string of length integer. The integer can range from 1
through 255. If the length specification is omitted, a length of 1 byte is
assumed.

BINARY VARYING(integer) or VARBINARY(integer)
A varying-length binary string of maximum length integer, which can range
from 1 through 32704. The length is limited by the page size of the table
space.

BLOB (integer [K|M|G] or BINARY LARGE OBJECT(integer [K|M|G])
BLOB or BINARY LARGE OBJECT

For a binary large object (BLOB) string of the specified maximum length in
bytes. The maximum length must be in the range of 1 through
2 147 483 647. A BLOB column has a varying-length. It cannot be
referenced in certain contexts regardless of its maximum length. For more
information, see “Restrictions using LOBs” on page 97.

When integer is not specified, the default length is 1M. The meaning of
integer K|M|G is the same as for CLOB.

DATE
For a date.

TIME
For a time.

TIMESTAMP(integer) WITHOUT TIME ZONE
For a timestamp. integer specifies the optional timestamp precision attribute
and must be in the range from 0 to 12. The timestamp precision denotes
the number of fractional second digits that are included in the timestamp.
The default is 6.

TIMESTAMP(integer) WITH TIME ZONE
For a timestamp with time zone. integer specifies the optional timestamp
precision attribute and must be in the range from 0 to 12. The timestamp
precision denotes the number of fractional second digits that are included
in the timestamp. The default is 6.

ROWID
For a row ID type.

A table can have only one ROWID column. The values in a ROWID
column are unique for every row in the table and cannot be updated. You
must specify NOT NULL with ROWID.

XML
For an XML document. Only well-formed XML documents can be inserted
into an XML column.

Chapter 5. Statements 1567

If the XML column is the first XML column that you create for the table, a
BIGINT DOCID column is implicitly created and is used to store a unique
document identifier for the XML columns of a row.

distinct-type-name
Specifies the distinct type (user-defined data type) of the column. An implicit
or explicit schema name qualifies the name.

NOT NULL
Specifies that the column does not allow null values and does not provide a
default value.

NOT NULL WITH DEFAULT
Specifies that the column does not allow null values but provides a default
value.

Notes

Error handling during processing: If an error occurs during the processing of the
DECLARE TABLE statement, a warning message is issued, and the precompiler
continues processing your source program.

Documenting a distinct type column: Although you can specify the name of a
distinct type as the data type of a column in the DECLARE TABLE statement, use
the built-in data type on which the distinct type is based instead. Using the base
type enables the precompiler to check the embedded SQL statements for errors;
otherwise, error checking is deferred until bind time.

To determine the source data type of the distinct type, check the value of column
SOURCETYPE in catalog table SYSDATATYPES.

Examples

Example 1: Declare the sample employee table, DSN8B10.EMP.
EXEC SQL DECLARE DSN8B10.EMP TABLE

(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) ,
PHONENO CHAR(4) ,
HIREDATE DATE ,
JOB CHAR(8) ,
EDLEVEL SMALLINT ,
SEX CHAR(1) ,
BIRTHDATE DATE ,
SALARY DECIMAL(9,2) ,
BONUS DECIMAL(9,2) ,
COMM DECIMAL(9,2));

Example 2: Assume that table CANADIAN_SALES keeps information for your
company's sales in Canada. The table was created with the following definition:

CREATE TABLE CANADIAN_SALES
(PRODUCT_ITEM INTEGER,
MONTH INTEGER,
YEAR INTEGER,
TOTAL CANADIAN_DOLLAR);

CANADIAN_DOLLAR is a distinct type that was created with the following
statement:

1568 SQL Reference

CREATE TYPE CANADIAN_DOLLAR AS DECIMAL(9,2);

Declare the CANADIAN_SALES table, using the source type for
CANADIAN_DOLLAR instead of the distinct type name.

DECLARE TABLE CANADIAN_SALES
(PRODUCT_ITEM INTEGER,
MONTH INTEGER,
YEAR INTEGER,
TOTAL DECIMAL(9,2);

Chapter 5. Statements 1569

DECLARE VARIABLE
The DECLARE VARIABLE statement defines a CCSID for a host variable and the
subtype of the variable. When it appears in an application program, the DECLARE
VARIABLE statement causes the DB2 precompiler to tag a host variable with a
specific CCSID. When the host variable appears in an SQL statement, the DB2
precompiler places this CCSID into the structures that it generates for the SQL
statement.

Invocation

This statement can only be embedded in an application program. It is not an
executable statement.

Authorization

None required.

Syntax

�� �

,
CCSID EBCDIC

DECLARE host-variable VARIABLE
CCSID ASCII FOR SBCS DATA
CCSID UNICODE FOR MIXED DATA

FOR BIT DATA
CCSID integer-constant

��

Description

host-variable
Identifies a character or graphic string host variable defined in the program.
An indicator variable cannot be specified for the host-variable.

CCSID ASCII, EBCDIC, or UNICODE
Specifies that the appropriate default CCSID for the specified encoding scheme
of the server should be used.

CCSID ASCII
Specifies that the default ASCII CCSID for the type of the variable at the
server should be used.

CCSID EBCDIC
Specifies that the default EBCDIC CCSID for the type of the variable at the
server should be used. CCSID EBCDIC is the default if this option is not
specified.

CCSID UNICODE
Specifies that the default UNICODE CCSID for the type of the variable at
the server should be used.

FOR SBCS DATA, FOR MIXED DATA, or FOR BIT DATA
Specifies the type of data contained in the variable host-variable. The FOR
clause cannot be specified when declaring a graphic host variable.

1570 SQL Reference

For ASCII or EBCDIC data, if this clause is not specified when declaring a
character host variable, the default is FOR SBCS DATA if MIXED DATA = NO
on the installation panel DSNTIPF. The default is FOR MIXED DATA if MIXED
DATA = YES on the installation panel DSNTIPF.

For UNICODE data, the default is always FOR MIXED DATA, regardless of
the setting of MIXED DATA on the installation panel DSNTIPF.

FOR SBCS DATA
Specifies that the values of the host variable can contain only SBCS
(single-byte character set) data.

FOR MIXED DATA
Specifies that the values of the host variable can contain both SBCS data
and DBCS data.

FOR BIT DATA
Specifies that the values of the host-variable are not associated with a
coded character set and, therefore, are never converted. The CCSID of a
FOR BIT DATA host variable is 65535.

CCSID integer-constant
Specifies that the values of the host variable contain data that is encoded using
CCSID integer-constant. If the integer is an SBCS CCSID, the host variable is
SBCS data. If the integer is a mixed data CCSID, the host variable is mixed
data. For character host variables, the CCSID specified must be an SBCS,
mixed CCSID, or UNICODE (UTF-8) CCSID. For graphic host variables, the
CCSID specified must be a DBCS or UNICODE (UTF-16) CCSID. The valid
range of values for the integer is 1 - 65533.

Notes

Placement of statement: The DECLARE VARIABLE statement can be specified
anywhere in an application program that SQL statements are valid with the
following exception. The DECLARE VARIABLE statement must occur before an
SQL statement that refers to a host variable specified in the DECLARE VARIABLE
statement.

CCSID exceptions for EXECUTE IMMEDIATE or PREPARE: When the host
variable appears in an SQL statement, the DB2 precompiler places the appropriate
numeric CCSID into the structures it generates for the SQL statement. This
placement of the CCSID occurs for any SQL statement other than the EXECUTE
IMMEDIATE or PREPARE statements. The placement of the CCSID also occurs for
a host-variable in an EXECUTE IMMEDIATE or PREPARE statement, but it does not
occur for a variable in a string-expression in an EXECUTE IMMEDIATE or
PREPARE statement.

If a PL/1 application program contains at least one DECLARE VARIABLE
statement, a string-expression in any EXECUTE IMMEDIATE or PREPARE statement
cannot be preceded by a colon. An expression that consists of just a variable name
preceded by a colon is interpreted as a host-variable.

Specific host languages: If a DECLARE VARIABLE statement is used in an
assembler source program, the ONEPASS SQL processing option must not be used.
If a DECLARE VARIABLE statement is used in a C, C++, or PL/I source program,
the TWOPASS SQL processing option must be used. For those languages, or
COBOL, the host-variable definition can either precede or follow a DECLARE
VARIABLE statement that refers to that variable. If a DECLARE VARIABLE

Chapter 5. Statements 1571

statement is used in a FORTRAN source program, then the host-variable definition
must precede the DECLARE VARIABLE statement.

Example

Example: Define the following host variables using PL/I data types: FRED as fixed
length bit data, JEAN as fixed length UTF-8 (mixed) data, DAVE as varying length
UTF-8 (mixed) data, PETE as fixed length graphic UTF-16 data, and AMBER as
varying length graphic UTF-16 data.

Use the DECLARE VARIABLE statement to specify a data subtype or CCSID for
these host variables: FRED as CCSID EBCDIC, JEAN as CCSID 1208 or CCSID
UNICODE, DAVE as CCSID 1208 or CCSID UNICODE, PETE as CCSID 1200 or
CCSID UNICODE, and AMBER as CCSID 1200 or CCSID UNICODE.

EXEC SQL BEGIN DECLARE SECTION;
DCL FRED CHAR(10);

EXEC SQL DECLARE :FRED VARIABLE CCSID EBCDIC FOR BIT DATA;
DCL JEAN CHAR(30);

EXEC SQL DECLARE :JEAN VARIABLE CCSID 1208;
DCL DAVE CHAR(9) VARYING;

EXEC SQL DECLARE :DAVE VARIABLE CCSID UNICODE;
DCL PETE GRAPHIC(10);

EXEC SQL DECLARE :PETE VARIABLE CCSID 1200;
DCL AMBER GRAPHIC(20) VARYING;

EXEC SQL DECLARE :AMBER VARIABLE CCSID UNICODE;
EXEC SQL END DECLARE SECTION;

1572 SQL Reference

DELETE
The DELETE statement deletes rows from a table or view or activates an instead of
delete trigger. The table or view can be at the current server or any DB2 subsystem
with which the current server can establish a connection. Deleting a row from a
view deletes the row from the table on which the view is based if no instead of
trigger is defined for the delete operation on this view. If such a trigger is defined,
the trigger is activated instead of the delete operation.

There are two forms of this statement:
v The searched DELETE form is used to delete one or more rows, optionally

determined by a search condition.
v The positioned DELETE form specifies that one or more rows corresponding to

the current cursor position are to be deleted.

Invocation

This statement can be embedded in an application program or issued interactively.
A positioned DELETE is embedded in an application program. Both the embedded
and interactive forms are executable statements that can be dynamically prepared.

Authorization

Authority requirements depend on whether the object identified in the statement is
a user-defined table, a catalog table, or a view, and whether the statement is a
searched DELETE and SQL standard rules are in effect:

When a table other than a catalog table is identified: The privilege set must
include at least one of the following:
v The DELETE privilege on the table
v Ownership of the table
v DBADM authority on the database that contains the table
v SYSADM authority

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

When a catalog table is identified: The privilege set must include at least one of
the following:
v DBADM authority on the catalog database
v SYSCTRL authority
v SYSADM authority

When a view is identified: The privilege set must include at least one of the
following:
v The DELETE privilege on the view
v SYSADM authority

If the search-condition in a searched DELETE contains a reference to a column of the
table or view, or the expression in the assignment-clause contains a reference to a
column of the table or view, the privilege set must include at least one of the
following:
v The SELECT privilege on the table or view

Chapter 5. Statements 1573

v Ownership of the table or view
v DBADM authority on the database that contains the table, if the target is a table

and that table that is not a catalog table
v DATAACCESS
v SYSADM authority

If the search-condition in a searched DELETE includes a subquery, or if the
assignment-clause includes a scalar-fullselect or a row-fullselect, see “Authorization” on
page 762 for an explanation of the authorization required.

The owner of a view, unlike the owner of a table, might not have DELETE
authority on the view (or might have DELETE authority without being able to
grant it to others). The nature of the view itself can preclude its use for DELETE.
For more information, see the description of authority in “CREATE VIEW” on page
1527.

If the statement is embedded in an application program, the privilege set is the
privileges that are held by the owner of the plan or package. If the statement is
dynamically prepared, the privilege set is determined by the DYNAMICRULES
behavior in effect (run, bind, define, or invoke) and is summarized in Table 94 on
page 841. (For more information on these behaviors, including a list of the
DYNAMICRULES bind option values that determine them, see “Authorization IDs
and dynamic SQL” on page 75.)

�� DELETE FROM table-name
view-name period-clause correlation-name

�

�
include-column SET assignment-clause WHERE search-condition

�

� �
(1)

isolation-clause
SKIP LOCKED DATA

QUERYNO integer
��

Notes:

1 The same clause must not be specified more than one time.

searched delete:

positioned delete:

1574 SQL Reference

�� DELETE FROM table-name
view-name correlation-name

WHERE CURRENT OF cursor-name �

�
FOR ROW host-variable OF ROWSET

integer-constant

��

�� FOR PORTION OF BUSINESS_TIME FROM value1 TO value2 ��

�� �

,

INCLUDE (column-name data-type) ��

�� built-in-type
distinct-type

��

period-clause:

include-column:

data-type:

built-in-type:

Chapter 5. Statements 1575

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0

NUMERIC (integer)
,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1)

GRAPHIC
(integer)

VARGRAPHIC (integer)
(1)

BINARY
(integer)

BINARY VARYING (integer)
VARBINARY

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE

��

assignment clause:

1576 SQL Reference

�� �

� �

,

column-name= expression
NULL

, ,
(1)

(column-name) = (expression)
NULL

(2)
row-fullselect

��

Notes:

1 The number of expressions and NULL keywords must match the number of column-names.

2 The number of columns in the select list must match the number of column-names.

�� WITH RR
RS
CS

��

Description

FROM table-name or view-name
Identifies the table or view from which rows are to be deleted. The name must
identify a table or view that exists at the DB2 subsystem that is identified by
the implicitly or explicitly specified location name. The name must not
identify:
v An auxiliary table
v A catalog table for which deletes are not allowed
v A view of such a catalog table
v A read-only view (For a description of a read-only view, see “CREATE

VIEW” on page 1527.)
v A system-maintained materialized query table
v A table that is implicitly created for an XML column
v An archive-enabled table if the SYSIBMADM.GET_ARCHIVE global variable

is set to Y, the ARCHIVESENSITIVE bind option is set to YES, and the
operation is a positioned delete

In an IMS or CICS application, the DB2 subsystem that contains the identified
table or view must be a remote server that supports two-phase commit.

period-clause
Specifies that a period clause applies to the target of the delete operation. The
same period name must not be specified more than one time. If the target of
the delete operation is a view:
v The FROM clause of the outer fullselect of the view definition must include

a reference, directly or indirectly, to an application-period temporal table.
v An INSTEAD OF trigger must not be defined for that view.

isolation-clause:

Chapter 5. Statements 1577

|
|
|

|
|

|
|

|

FOR PORTION OF BUSINESS_TIME
Specifies that the delete only applies to row values for the portion of the
BUSINESS_TIME period in the row that is specified by the period clause.
BUSINESS_TIME must be a period that is defined on the table.

FROM value1 TO value2
Specifies that the delete operation applies to rows for the period that is
specified from value1 to value2. No rows are deleted if value1 is greater than
or equal to value2, or if value1 or value2 is the null value.

For the period condition that is specified with FROM value1 TO value2, the
period that is specified by period-name in a row of the target table of the
delete covers one of the following ranges:
v If the value of the begin column is less than value1 and the value of the

end column is greater than value1, the range overlaps the beginning of
the specified period.

v If the value of the end column is greater than or equal to value2 and the
value of the begin column is less than value2, the range overlaps the end
of the specified period.

v If the value for the begin column for period-name in the row is greater
than or equal to value1 and the value for the corresponding end column
in the row is less than or equal to value2, the range is fully contained
within the specified period.

v If the row overlaps the beginning of the specified period or the end of
the specified period, but not both, the range is partially contained in the
specified period.

v If the period in the row overlaps the beginning of the specified period
and overlaps the end of the specified period, the range fully overlaps the
specified period.

v If both columns of period-name are less than or equal to value1 or are
greater than or equal to value2, the range is not contained in the period.

If the period period-name in a row is not contained in the specified period,
the row is not deleted. Otherwise, the delete operation is applied based on
the specification of the PORTION OF clause and how the values in the
columns of period-name overlap the specified period as follows:
v If the period period-name in a row is fully contained within the specified

period, the row is deleted.
v If the period period-name in a row is partially contained in the specified

period and overlaps the beginning of the specified period:
– The row is deleted.
– A row is inserted using the original values from the row, except that

the end column is set to value1.
v If the period period-name in a row is partially contained in the specified

period and overlaps the end of the specified period:
– The row is deleted.
– A row is inserted using the original values from the row, except that

the begin column is set to value2.
v If the period period-name in a row fully overlaps the specified period:

– The row is deleted.
– A row is inserted using the original values from the row, except that

the end column is set to value1.

1578 SQL Reference

– An additional row is inserted using the original values from the row,
except that the begin column is set to value2.

Any existing delete triggers are activated for the rows that are deleted, and
any existing insert triggers are activated for the rows that are implicitly
inserted.

value1, value2
Specifies expressions that return a value of a built-in data type. The result
of each expression must be comparable to the data type of the columns of
the specified period. See the comparison rules described in “Assignment
and comparison” on page 121. Each expression can contain any of the
following supported operands:
v A constant
v A special register
v A variable (host variable, SQL variable, SQL parameter, or transition

variable)
v An array element specification
v A built-in scalar function whose arguments are supported operands
v A CAST specification where the cast operand is a supported operand
v An expression that uses arithmetic operators and operands

Each expression must not have a timestamp precision that is greater than
the precision of the columns for the period.

If the begin and end columns of the period are defined as TIMESTAMP
WITHOUT TIME ZONE, each expression must not return a value of a
timestamp with a time zone.

A period clause for a view must not contain a global variable or an
untyped parameter marker.

correlation-name
Specifies an alternate name that can be used within the search-condition to
designate the table or view. (For an explanation of correlation names, see
“Correlation names” on page 209.)

include-column
Specifies a set of columns that are included, along with the columns of
table-name or view-name, in the result table of the DELETE statement when it is
nested in the FROM clause of the outer fullselect that is used in a subselect,
SELECT statement, or in a SELECT INTO statement. The included columns are
appended to the end of the list of columns that is identified by table-name or
view-name. If no value is assigned to a column that is specified by an
include-column, a NULL value is returned for that column.

INCLUDE
Introduces a list of columns that are to be included in the result table of
the DELETE statement. The included columns are only available if the
DELETE statement is nested in the FROM clause of a SELECT statement or
a SELECT INTO statement.

column-name
Specifies the name for a column of the result table of the DELETE
statement that is not the same name as another included column nor a
column in the table or view that is specified in table-name or view-name.

Chapter 5. Statements 1579

|

|
|

data-type
Specifies the data type of the included column. The included columns are
nullable.

built-in-type
Specifies a built-in data type. See “CREATE TABLE” on page 1388 for a
description of each built-in type.

The CCSID 1208 and CCSID 1200 clauses must not be specified for an
include column.

distinct-type
Specifies a distinct type. Any length, precision, or scale attributes for
the column are those of the source type of the distinct type as specified
by using the CREATE TYPE statement.

SET
Introduces the assignment of values to columns.

assignment-clause
The assignment-clause introduces a list of one or more column-names and
the values that are to be assigned to the columns. The column-names are the
only columns that can be set using the assignment-clause.

column-name
Identifies an INCLUDE column.

Assignments to included columns are only processed when the DELETE
statement is nested in the FROM clause of a SELECT statement or a
SELECT INTO statement. The columns that are named in the INCLUDE
clause are the only columns that can be set using the SET clause. The null
value is returned for an included column that is not set by using an
explicit SET clause.

expression
Indicates the new value of the column. The expression is any expression of
the type described in “Expressions” on page 240. It must not include an
aggregate function.

A column-name in an expression must identify a column of the table or
view. For each row that is deleted, the value of the column in the
expression is the value of the column in the row before the row is deleted.

NULL
Specifies the null value as the new value of the column. Specify NULL
only for nullable columns.

row-fullselect
Specifies a fullselect that returns a single row. The column values are
assigned to each of the corresponding column-names. If the fullselect returns
no rows, the null value is assigned to each column; an error occurs if any
column that is to be deleted is not nullable. An error also occurs if there is
more than one row in the result.

If the fullselect refers to columns that are to be deleted, the value of such a
column in the fullselect is the value of the column in the row before the
row is deleted.

WHERE
Specifies the rows to be deleted. You can omit the clause, give a search
condition, or specify a cursor. For a created temporary table or a view of a

1580 SQL Reference

|
|

created temporary table, you must omit the clause. When the clause is omitted,
all the rows of the table or view are deleted.

search-condition
Is any search condition as described in Chapter 2, “Language elements,” on
page 53. Each column-name in the search condition, other than in a
subquery, must identify a column of the table or view.

The search condition is applied to each row of the table or view and the
deleted rows are those for which the result of the search condition is true.

If the search condition contains a subquery, the subquery can be thought of
as being executed each time the search condition is applied to a row, and
the results used in applying the search condition. In actuality, a subquery
with no correlated references is executed just once, whereas it is possible
that a subquery with a correlated reference must be executed once for each
row.

Let T2 denote the object table of a DELETE statement and let T1 denote a
table that is referred to in the FROM clause of a subquery of that
statement. T1 must not be a table that can be affected by the DELETE on
T2. Thus, the following rules apply:
v T1 must not be a dependent of T2 in a relationship with a delete rule of

CASCADE or SET NULL, unless the result of the subquery is
materialized before the DELETE action is executed.

v T1 must not be a dependent of T3 in a relationship with a delete rule of
CASCADE or SET NULL if deletes of T2 cascade to T3.

WHERE CURRENT OF cursor-name
Identifies the cursor to be used in the delete operation. cursor-name must
identify a declared cursor as explained in the description of the DECLARE
CURSOR statement in “DECLARE CURSOR” on page 1535. If the DELETE
statement is embedded in a program, the DECLARE CURSOR statement must
include select-statement rather than statement-name.

The table or view named must also be named in the FROM clause of the
SELECT statement of the cursor, and the result table of the cursor must be
capable of being deleted. For an explanation of read-only result tables, see
Read-only cursors. Note that the object of the DELETE statement must not be
identified as the object of the subquery in the WHERE clause of the SELECT
statement of the cursor.

If the cursor is ambiguous and the plan or package was bound with
CURRENTDATA(NO), DB2 might return an error to the application if DELETE
WHERE CURRENT OF is attempted for any of the following:
v A cursor that is using block fetching
v A cursor that is using query parallelism
v A cursor that is positioned on a row that has been modified by this or

another application process

When the DELETE statement is executed, the cursor must be open and
positioned on a row or rowset of the result table.
v If the cursor is positioned on a single row, that row is the one deleted, and

after the deletion the cursor is positioned before the next row of its result
table. If there is no next row, the cursor positioned after the last row.

Chapter 5. Statements 1581

v If the cursor is positioned on a rowset, all rows corresponding to the rows of
the current rowset are deleted, and after the deletion the cursor is positioned
before the next rowset of its result table. If there is no next rowset, the
cursor positioned after the last rowset.

A positioned DELETE must not be specified for a cursor that references a view
on which an instead of delete trigger is defined, even if the view is an
updatable view.

FOR ROW n OF ROWSET
Specifies which row of the current rowset is to be deleted. The corresponding
row of the rowset is deleted, and the cursor remains positioned on the current
rowset. If the rowset consists of a single row, or all other rows in the rowset
have already been deleted, then the cursor is positioned before the next rowset
of the result table. If there is no next rowset, the cursor is positioned after the
last rowset.

host-variable or integer-constant is assigned to an integral value k. If host-variable
is specified, it must be an exact numeric type with scale zero, must not include
an indicator variable, and k must be in the range of 1 to 32767. The cursor
must be positioned on a rowset, and the specified value must be a valid value
for the set of rows most recently retrieved for the cursor.

If the specified row cannot be deleted, an error is returned. It is possible that
the specified row is within the bounds of the rowset most recently requested,
but the current rowset contains less than the number of rows that were
implicitly or explicitly requested when that rowset was established.

If, via a positioned delete against a sensitive static cursor that specifies a
particular row of the current rowset, and that row has been identified as a
delete hole (that is, a row in the result table whose corresponding row has
deleted from the base table), an error is returned.

If, via a positioned delete against a sensitive static cursor that specifies a
particular row of the current rowset, and that row has been identified as an
update hole (that is, a row in the result table whose corresponding row has
been updated so that it no longer satisfies a predicate of the SELECT
statement), an error is returned.

It is possible for another application process to delete a row in the base table of
the SELECT statement so that the specified row of the cursor no longer has a
corresponding row in the base table. An attempt to delete such a row results in
an error.

If the FOR ROW n OF ROWSET clause is not specified, the current position of
cursor determines the rows that are affected by the statement:
v If the cursor is positioned on a single row, that row is the one deleted. After

the row is deleted, the cursor is positioned before the next row of its result
table. If there is no next row, the cursor positioned after the last row.

v If the cursor is positioned on a rowset, all rows corresponding to the rows of
the current rowset are deleted. After the rows are deleted, the cursor is
positioned before the next rowset of its result table. If there is no next
rowset, the cursor positioned after the last rowset.

isolation-clause
Specifies the isolation level used when locating the rows to be deleted by the
statement.

WITH
Introduces the isolation level, which may be one of the following:

1582 SQL Reference

RR Repeatable read
RS Read stability
CS Cursor stability

The default isolation level of the statement is the isolation level of the package
or plan in which the statement is bound, with the package isolation taking
precedence over the plan isolation. When a package isolation is not specified,
the plan isolation is the default.

SKIP LOCKED DATA
The SKIP LOCKED DATA clause specifies that rows are skipped when
incompatible locks are held on the row by other transactions. These rows can
belong to any accessed table that is specified in the statement. SKIP LOCKED
DATA can be used only when isolation CS or RS is in effect and applies only
to row level or page level locks.

For DELETE statements, SKIP LOCKED DATA can be specified only in the
searched form of the DELETE statement. SKIP LOCKED DATA is ignored if it
is specified when the isolation level that is in effect is repeatable read (WITH
RR) or uncommitted read (WITH UR). The default isolation level of the
statement depends on the isolation level of the package or plan with which the
statement is bound, with the package isolation taking precedence over the plan
isolation. When a package isolation is not specified, the plan isolation is the
default.

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output
and trace records. The number is used for the QUERYNO column of the plan
table for the rows that contain information about this SQL statement. This
number is also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is the
statement number assigned during precompilation. Thus, if the application
program is changed and then precompiled, that statement number might
change.

Using the QUERYNO clause to assign unique numbers to the SQL statements
in a program is helpful:
v For simplifying the use of optimization hints for access path selection
v For correlating SQL statement text with EXPLAIN output in the plan table

For information on using optimization hints, such as enabling the system for
optimization hints and setting valid hint values, and for information on
accessing the plan table, see DB2 Performance Monitoring and Tuning Guide.

Notes

Delete operation errors:
If an error occurs during the execution of any delete operation, no changes
are made. If an error occurs during the execution of a positioned delete,
the position of the cursor is unchanged. However, it is possible for an error
to make the position of the cursor invalid, in which case the cursor is
closed. It is also possible for a delete operation to cause a rollback, in
which case the cursor is closed.

Position of cursor:
If an application process deletes a row on which any of its cursors are
positioned, those cursors are positioned before the next row of the result
table. Let C be a cursor that is positioned before row R (as a result of an

Chapter 5. Statements 1583

OPEN, a DELETE through C, a DELETE through some other cursor, or a
searched DELETE). In the presence of an SQL data change statements that
affect the base table from which R is derived, the next FETCH operation
referencing C does not necessarily position C on R. For example, the
operation can position C on R', where R' is a new row that is now the next
row of the result table.

Locking:
Unless appropriate locks already exist, one or more exclusive locks are
acquired during the execution of a successful delete operation. Until the
locks are released by a commit or rollback operation, the effect of the
delete operation can only be perceived by the application process that
performed the deletion and the locks can prevent other application
processes from performing operations on the table. Locks are not acquired
when rows are deleted from a declared temporary table unless all the rows
are deleted (DELETE FROM T). When all the rows are deleted from a
declared temporary table, a segmented table lock is acquired on the pages
for the table and no other table in the table space is affected.

Triggers:
Delete operations can cause triggers to be activated. A trigger might cause
other statements to be executed or might raise error conditions that are
based on the deleted rows. If a DELETE statement on a view causes an
INSTEAD OF trigger to be activated, referential integrity is checked against
the updates that are performed in the trigger and not against the
underlying tables of the view that cause the trigger to be activated.

Triggers defined on a table for which row or column access control is also
enforced:

Row permissions and column masks are not applied to the initial values of
transition variables and transition tables. Row and column access control
that is enforced for the triggering table is also ignored for any transition
variables or transition tables that are referenced in the trigger body or that
are passed as arguments to user-defined functions that are invoked in the
trigger body. To ensure that no security concern exists for SQL statements
in the trigger action (access to sensitive data in transition variables and
transition tables, for example), the trigger must be secure. For information
about securing a trigger, see “CREATE TRIGGER” on page 1482 and
“ALTER TRIGGER” on page 1094.

Referential integrity:
If the identified table or the base table of the identified view is a parent,
the rows selected must not have any dependents in a relationship with a
delete rule of RESTRICT or NO ACTION. In addition, the delete operation
must not cascade to descendent rows that have dependents in a
relationship with a delete rule of RESTRICT or NO ACTION.

If the delete operation is not prevented by a RESTRICT or NO ACTION
delete rule, the selected rows are deleted and any rows that are dependents
of the selected rows are also deleted.
v The nullable columns of foreign keys in any rows that are their

dependents in a relationship governed by a delete rule of SET NULL are
set to the null value.

v Any rows that are their dependents in a relationship governed by a
delete rule of CASCADE are also deleted, and these rules apply, in turn,
to those rows.

1584 SQL Reference

The only difference between NO ACTION and RESTRICT is when the
referential constraint is enforced. RESTRICT (IBM SQL rules) enforces the
rule immediately, and NO ACTION (SQL standard rules) enforces the rule
at the end of the statement. This difference matters only in the case of a
searched DELETE involving a self-referencing constraint that deletes more
than one row. NO ACTION might allow the DELETE to be successful
where RESTRICT (if it were allowed) would prevent it.

Check constraint:
A check constraint can prevent the deletion of a row in a parent table
when there are dependents in a relationship with a delete rule of SET
NULL. If deleting a row in the parent table would cause a column in a
dependent table to be set to null and there is a check constraint that
specifies that the column must not be null, the row is not deleted.

Referential constraints defined on a table for which row or column access
control is enforced:

Row and column access controls do not effect referential constraints.

Nesting user-defined functions or stored procedures:
A DELETE statement can implicitly or explicitly refer to user-defined
functions or stored procedures. This is known as nesting of SQL statements.
A user-defined function or stored procedure that is nested within the
DELETE must not access the table from which you are deleting rows.

Indexes with VARBINARY columns:
If the identified table has an index on a VARBINARY column or a column
that is a distinct type that is based on VARBINARY data type, that index
column cannot specify the DESC attribute. To use the SQL data change
operation on the identified table, either drop the index or alter the data
type of the column to BINARY and then rebuild the index.

Number of rows deleted:
Except as noted below, a delete operation sets SQLERRD(3) in the SQLCA
to the number of deleted rows. This number does not include any rows
that were deleted as a result of a CASCADE delete rule or a trigger.

DELETE FROM T without a WHERE clause deletes all rows of T. If a table T is
contained in a segmented table space and is not a parent table, this
deletion will be performed without accessing T. The SQLERRD(3) field is
set to -1. (For a complete description of the SQLCA, including exceptions
to the above, see “SQL communication area (SQLCA)” on page 2069.

Rules for positioned DELETE with SENSITIVE STATIC scrollable cursor:
When a SENSITIVE STATIC scrollable cursor has been declared, the
following rules apply:
v Delete attempt of delete holes or update holes. If, with a positioned delete

against a SENSITIVE STATIC scrollable cursor, an attempt is made to
delete a row that has been identified as a delete hole (that is, a row in
the result table whose corresponding row has been deleted from the base
table), an error occurs.
If an attempt is made to delete a row that has been identified as an
update hole (that is, a row in the result table whose corresponding row
has been updated so that it no longer satisfies the predicate of the
SELECT statement), an error occurs.

v Delete operations. Positioned delete operations with SENSITIVE STATIC
scrollable cursors perform as follows:

Chapter 5. Statements 1585

1. The SELECT list items in the target row of the base table of the
cursor are compared with the values in the corresponding row of the
result table (that is, the result table must still agree with the base
table). If the values are not identical, the delete operation is rejected
and an error occurs. The operation can be attempted again after a
successful FETCH SENSITIVE has occurred for the target row.

2. The WHERE clause of the SELECT statement is re-evaluated to
determine whether the current values in the base table still satisfy
the search criteria. The values in the SELECT list are compared to
determine that these values have not changed. If the WHERE clause
evaluates as true, and the values in the SELECT list have not
changed, the delete operation is allowed to proceed. Otherwise, an
error occurs, the delete operation is rejected, and an update hole
appears in the cursor.

3. After the base table row is successfully deleted, the temporary result
table is updated and the row is marked as a delete hole.

v Rollback of delete holes. Delete holes are usually permanent. Once a delete
hole is identified, it remains a delete hole until the cursor is closed.
However, if a positioned delete using this cursor actually caused the
creation of the hole (that is, this cursor was used to make the changes
that resulted in the hole) and the delete was subsequently rolled back,
then the row is no longer considered a delete hole.

v Result table. Any deletes, either positioned or searched, to rows of the
base table on which a SENSITIVE STATIC scrollable cursor is defined
are reflected in the result table if a positioned update or positioned
delete is attempted with the scrollable cursor. A SENSITIVE STATIC
scrollable cursor sees these deletes when a FETCH SENSITIVE is
attempted.

If the FOR ROW n OF ROWSET clause is not specified, the entire rowset
fetched by the most recent FETCH statement that returned data for the
specified cursor is deleted.

Deleting rows from a table with multilevel security:
When you delete rows from a table with multilevel security, DB2 compares
the security label of the user (the primary authorization ID) to the security
label of the row. The delete proceeds according to the following rules:
v If the security label of the user and the security label of the row are

equivalent, the row is deleted.
v If the security label of the user dominates the security label of the row,

the user's write-down privilege determines the security the result of the
DELETE statement:
– If the user has write-down privilege or write-down control is not

enabled, the row is deleted.
– If the user does not have write-down privilege and write-down

control is enabled, the row is not deleted.
v If the security label of the row dominates the security label of the user,

the row is not deleted.

Deleting rows from a table for which row and column access control is
enforced:

When a DELETE statement is issued for a table for which row access
control is enforced, the rules specified in the row permissions affect
whether a row can be deleted. Typically those rules are based on the
authorization ID or role of the process.

1586 SQL Reference

A table for which row access control is enforced has at least one row
permission, the default row permission that prevents all access to the table.
When multiple row permissions are defined and enabled for a table, a row
access control search condition is derived by using the logical OR operator
to the search condition in each enabled permission. This row access control
search condition is applied to the table to determine which rows are
accessible to the authorization ID or role of the DELETE statement. If the
WHERE clause is specified in the DELETE statement, the user-specified
predicates are applied on the accessible rows to determine the rows to be
deleted. If there is no WHERE clause, the accessible rows are the rows to
be deleted.

If there are rows to be deleted, and there is a DELETE trigger for the table,
the trigger is activated.

When a DELETE statement is issued for a table for which column access
control is enforced, column masks do not affect the DELETE statement.

The preceding rules are not applicable to include-columns. include-columns
are subject to the rules for the select list because they are not the columns
of the object table of the DELETE statement.

Other SQL statements in the same unit of work:
The following statements cannot follow a DELETE statement in the same
unit of work:
v An ALTER TABLE statement that changes the data type of a column

(ALTER COLUMN SET DATA TYPE)
v An ALTER INDEX statement that changes the padding attribute of an

index with varying-length columns (PADDED to NOT PADDED or vice
versa)

Considerations for a system-period temporal table:
If the DELETE statement has a search condition that contains a correlated
subquery that references the history table (explicitly referencing the name
of the history table or implicitly referenced through the use of a period
specification in the FROM clause), the deleted rows that are stored as
historical rows are potentially visible for delete operations for the rows that
are subsequently processed for the statement.

The mass delete operation is not used for a DELETE statement that does
not contain a search condition if the table is defined as a system-period
temporal table.

Considerations for a history table:
When a row of a system-period temporal table is deleted, a historical copy
of the row is inserted into the corresponding history table and the end
timestamp of the historical row is captured in the form of a system
determined value that corresponds to the time of the data change
operation. DB2 generates a value using the time-of-day clock during
execution of the first data change statement in the transaction that requires
a value to be assigned to a row-begin or transaction-start-ID column in a
table. This also occurs when a row in a system-period temporal table is
deleted. DB2 ensures the uniqueness of the generated values for an end
column in a history table across transactions. If a conflicting transaction is
updating the same row in the system-period temporal table and the row
that is to be inserted into the associated history table will have a value for
the end column that is greater than the value of the corresponding begin
column, an error is returned.

Chapter 5. Statements 1587

Effect of the CURRENT TEMPORAL SYSTEM_TIME and CURRENT
TEMPORAL BUSINESS_TIME special registers

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a
non-null value, the underlying target of the DELETE statement cannot be a
system-period temporal table. This restriction applies regardless of whether
the system-period temporal table is directly or indirectly referenced.

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a
non-null value, the DELETE statement is affected if the following
conditions are also true:
v An application-period temporal table is the target of the DELETE

statement.
v The BUSTIMESENSITIVE bind option is set to YES.

In this situation, DB2 implicitly adds the following additional predicates to
the statement:

bt_begin <= CURRENT TEMPORAL BUSINESS_TIME
AND bt_end > CURRENT TEMPORAL BUSINESS_TIME

In the preceding code, bt_begin and bt_end are the begin and end columns
of the BUSINESS_TIME period of the target table of the DELETE
statement.

Deleting rows from archive-enabled tables:
If the target of the DELETE statement is an archive-enabled table, existing
rows in the associated archive table are not affected.

When a row of an archive-enabled table is deleted, the effect on the
associated archive table is determined by the setting of the
SYSIBMADM.MOVE_TO_ARCHIVE global variable. If the global variable
is set to Y, a copy of a deleted row is inserted into the associated archive
table. Otherwise, a copy of a deleted row is not inserted into the associated
archive table.

A data change statement cannot reference an archive-enabled table when a
system-period temporal table or application-period temporal table is also
referenced.

Syntax alternatives:
For compatibility with other SQL implementations, the FROM keyword can
be omitted.

Examples

Assume that the statements in the examples are embedded in PL/I programs.

Example 1: From the table DSN8B10.EMP delete the row on which the cursor C1 is
currently positioned.

EXEC SQL DELETE FROM DSN8B10.EMP WHERE CURRENT OF C1;

Example 2: From the table DSN8B10.EMP, delete all rows for departments E11 and
D21.

EXEC SQL DELETE FROM DSN8B10.EMP
WHERE WORKDEPT = ’E11’ OR WORKDEPT = ’D21’;

Example 3: From employee table X, delete the employee who has the most
absences.

1588 SQL Reference

|
|
|
|
|
|

|
|
|

|
|

|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

EXEC SQL DELETE FROM EMP X
WHERE ABSENT = (SELECT MAX(ABSENT) FROM EMP Y
WHERE X.WORKDEPT = Y.WORKDEPT);

Example 4: Assuming that cursor CS1 is positioned on a rowset consisting of 10
rows of table T1, delete all 10 rows in the rowset.
EXEC SQL DELETE FROM T1 WHERE CURRENT OF CS1;

Example 5: Assuming cursor CS1 is positioned on a rowset consisting of 10 rows of
table T1, delete the fourth row of the rowset.
EXEC SQL DELETE FROM T1 WHERE CURRENT OF CS1 FOR ROW 4 OF ROWSET;

Example 6: Delete rows in table T1 if the value for column COL2 matches the
cardinality of array INTA. The array INTA is specified as an argument for the
CARDINALITY function in the DELETE statement.
CREATE TYPE INTARRAY AS INTEGER ARRAY[6];
DECLARE INTA AS INTARRAY;
SET INTA = ARRAY[1, 2, 3, 4, 5];
CREATE TABLE T1 (COL1 CHAR(7), COL2 INT);
INSERT INTO T1 VALUES(’abc’, 10);
DELETE FROM T1 WHERE COL2 = CARDINALITY(INTA);

Chapter 5. Statements 1589

|
|
|

|
|
|
|
|
|

|

DESCRIBE
The DESCRIBE statement obtains information about an object. You can obtain the
following types of information with this statement, each of which is described
separately.
v Cursors

Gets information about the result set that is associated with the cursor. This
information, such as column information, is put into a descriptor. See
“DESCRIBE CURSOR” on page 1591.

v Input parameter markers of a prepared statement.
Gets information about the input parameter markers in a prepared statement.
This information is put into a descriptor. See “DESCRIBE INPUT” on page 1593.

v The output of a prepared statement
Gets information about a prepared statement or information about the select list
columns in a prepared SELECT statement. This information is put into a
descriptor. See “DESCRIBE OUTPUT” on page 1596.

v Procedures
Gets information about the result sets returned by a stored procedure. The
information, such as the number of result sets, is put into a descriptor. See
“DESCRIBE PROCEDURE” on page 1603.

v Tables
Gets information about a table or view. This information is put into a descriptor.
See “DESCRIBE TABLE” on page 1606.

1590 SQL Reference

DESCRIBE CURSOR
The DESCRIBE CURSOR statement obtains information about the result set that is
associated with the cursor. The information, such as column information, is put
into a descriptor. Use DESCRIBE CURSOR for result set cursors from stored
procedures. The cursor must be defined with the ALLOCATE CURSOR statement.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

�� DESCRIBE CURSOR cursor-name INTO descriptor-name
host-variable

��

Description

cursor-name or host-variable
Identifies a cursor by the specified cursor-name or the cursor name contained in
host-variable. The name must identify a cursor that has already been allocated
in the source program.

A column of the result table of the cursor must not be an array.

If host-variable is used:
v It must be a character string variable that has a maximum length of 18 bytes.
v It must not be followed by an indicator variable.
v The cursor name must be left justified within the host variable and must not

contain embedded blanks.
v If the length of the cursor name is less than the length of the host variable, it

must be padded on the right with blanks.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA). The information returned in the
SQLDA describes the columns in the result set associated with the named
cursor.

The considerations for allocating and initializing the SQLDA are similar to
those of a varying-list SELECT statement. For more information, see DB2
Application Programming and SQL Guide.

For REXX: The SQLDA is not allocated before it is used.

After the DESCRIBE CURSOR statement is executed, the contents of the
SQLDA are the same as after a DESCRIBE for a SELECT statement, with the
following exceptions:
v The first 5 bytes of the SQLDAID field are set to 'SQLRS'.

Chapter 5. Statements 1591

|

v Bytes 6 to 8 of the SQLDAID field are reserved. If the cursor is declared
WITH HOLD in a stored procedure, the high-order bit of the 8th byte is set
to 1.

These exceptions do not apply to a REXX SQLDA, which does not include the
SQLDAID field.

Notes

Using cursors for result sets: Column names are included in the information that
DESCRIBE CURSOR obtains when the statement that generates the result set is
either:
v Dynamic
v Static and the value of field DESCRIBE FOR STATIC on installation panel

DSNTIP4 was YES when the package or stored procedure was bound. If the
value of the field was NO, the returned information includes only the data type
and length of the columns.

Using host variables: If the DESCRIBE CURSOR statement contains host variables,
the contents of the host variables are assumed to be in the encoding scheme that
was specified in the ENCODING parameter when the package or plan that
contains the statement was bound.

Examples

The statements in the following examples are assumed to be in PL/I programs.

Example 1: Place information about the result set associated with cursor C1 into the
descriptor named by :sqlda1.

EXEC SQL DESCRIBE CURSOR C1 INTO :sqlda1

Example 2: Place information about the result set associated with the cursor named
by :hv1 into the descriptor named by :sqlda2.

EXEC SQL DESCRIBE CURSOR :hv1 INTO :sqlda2

1592 SQL Reference

DESCRIBE INPUT
The DESCRIBE INPUT statement obtains information about the input parameter
markers of a prepared statement.

For an explanation of prepared statements, see “PREPARE” on page 1781 and
“DESCRIBE PROCEDURE” on page 1603.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

The statement can be executed if the privilege set for PREPARE includes the
EXPLAIN privilege.

Syntax

�� DESCRIBE INPUT statement-name INTO descriptor-name ��

Description

statement-name
Identifies the prepared statement. When the DESCRIBE INPUT statement is
executed, the name must identify a statement that has been prepared by the
application process at the current server. An input parameter marker must not
refer to an array value.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in “SQL
descriptor area (SQLDA)” on page 2079. See “Identifying an SQLDA in C or
C++” on page 2099 for how to represent descriptor-name in C. The information
returned in the SQLDA describes the parameter markers.

Before the DESCRIBE INPUT statement is executed, the user must set the
SQLN field in the SQLDA and the SQLDA must be allocated. Considerations
for initializing and allocating the SQLDA are similar to those for the
DESCRIBE statement (see “DESCRIBE” on page 1590). An occurrence of an
extended SQLVAR is needed for each parameter in addition to the required
base SQLVAR only if the input data contains LOBs.

For REXX: The SQLDA is not allocated before it is used.

After the DESCRIBE INPUT statement is executed, all the fields in the SQLDA
except SQLN are either set by DB2 or ignored. The SQLDA contents are similar
to the contents returned for the DESCRIBE statement (see page The SQLDA
contents returned after DESCRIBE) with these exceptions:
v In the SQLDAID, DB2 sets the value of the seventh byte only to the space

character or '2'. A value of '3' is never used. The value '2' indicates that two
SQLVAR entries (an occurrence of both a base SQLVAR and an extended

Chapter 5. Statements 1593

|
|
|
|

SQLVAR) are required for each parameter because the input data contains
LOBs. The seventh byte is a space character when either of the following
conditions is true:
– The input data does not contain LOBs. Only a base SQLVAR occurrence is

needed for each parameter.
– Only a base SQLVAR occurrence is needed for each column of the result,

and the SQLDA is not large enough to contain the returned information.
v The SQLD field is set to the number of parameter markers being described.

The value is 0 if the statement being described does not have input
parameter markers.

v The SQLNAME field is not used.
v The SQLDATATYPE is set to a nullable, regardless of the usage of the

parameter markers in the prepared statement.
v The SQLDATATYPE-NAME is not used if an extended SQLVAR entry is

present. DESCRIBE INPUT does not return information about distinct types.

For complete information on the contents of the fields, see “SQL descriptor
area (SQLDA)” on page 2079.

Notes

Preparing the SQLDA for OPEN or EXECUTE: This note is relevant if you are
applying DESCRIBE INPUT to a prepared statement and you intend to use the
SQLDA in an OPEN or EXECUTE statement. To prepare the SQLDA for that
purpose:
v Set SQLDATA to a valid address.
v If SQLTYPE is odd, set SQLIND to a valid address.

For the meaning of those fields in that context, see “SQL descriptor area (SQLDA)”
on page 2079.

Support for extended dynamic SQL in a distributed environment: Unlike the
DESCRIBE statement, which can be used in a distributed environment to describe
static SQL statements generated by extended dynamic SQL, you cannot describe
host variables in static SQL statements that are generated by extended dynamic
SQL. A DESCRIBE INPUT statement issued against such static SQL statements
always fails.

For information on how the DESCRIBE statement supports extended dynamic SQL,
see Support for extended dynamic SQL in a distributed environment.

Using host variables: If the DESCRIBE INPUT statement contains host variables,
the contents of the host variables are assumed to be in the encoding scheme that
was specified in the ENCODING parameter when the package or plan that
contains the statement was bound.

Example

Execute a DESCRIBE INPUT statement with an SQLDA that has enough SQLVAR
occurrences to describe any number of input parameters a prepared statement
might have. Assume that five parameter markers at most will need to be described
and that the input data does not contain LOBs.

/* STMT1_STR contains INSERT statement with VALUES clause */
EXEC SQL PREPARE STMT1_NAME FROM :STMT1_STR;
... /* code to set SQLN to 5 and to allocate the SQLDA */

1594 SQL Reference

EXEC SQL DESCRIBE INPUT STMT1_NAME INTO :SQLDA;
.
.
.

This example uses the first technique described in Allocating the SQLDA to
allocate the SQLDA.

Chapter 5. Statements 1595

DESCRIBE OUTPUT
The DESCRIBE OUTPUT statement obtains information about a prepared
statement.

For an explanation of prepared statements, see “PREPARE” on page 1781 and
“DESCRIBE PROCEDURE” on page 1603.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization

The statement can be executed if the privilege set for PREPARE includes the
EXPLAIN privilege.

See “PREPARE” on page 1781 for the authorization required to create a prepared
statement.

Syntax

��
OUTPUT

DESCRIBE statement-name INTO descriptor-name
NAMES

USING LABELS
ANY
BOTH

��

Description

OUTPUT
When a statement-name is specified, optional keyword to indicate that the
describe will return information about the select list columns in a the prepared
SELECT statement.

statement-name
Identifies the prepared statement. When the DESCRIBE statement is executed,
the name must identify a statement that has been prepared by the application
process at the current server. A column of the result table of the prepared
statement must not be an array.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in “SQL
descriptor area (SQLDA)” on page 2079. See “Identifying an SQLDA in C or
C++” on page 2099 for how to represent descriptor-name in C.

For languages other than REXX: Before the DESCRIBE statement is executed, the
user must set the following variable in the SQLDA and the SQLDA must be
allocated.

SQLN Indicates the number of SQLVAR occurrences provided in the SQLDA.

1596 SQL Reference

|
|
|
|

DB2 does not change this value. For techniques to determine the
number of required occurrences, see Allocating the SQLDA.

For REXX: The SQLDA is not allocated before it is used. An SQLDA consists of
a set of stem variables. There is one occurrence of variable stem.SQLD,
followed by zero or more occurrences of a set of variables that is equivalent to
an SQLVAR structure. Those variables begin with stem.n.

After the DESCRIBE statement is executed, all the fields in the SQLDA except
SQLN are either set by DB2 or ignored. For information on the contents of the
fields, see The SQLDA contents returned after DESCRIBE.

USING
Indicates what value to assign to each SQLNAME variable in the SQLDA. If
the requested value does not exist, SQLNAME is set to a length of 0.

NAMES
Assigns the name of the column. This is the default.

LABELS
Assigns the label of the column. (Column labels are defined by the LABEL
statement.)

ANY
Assigns the column label, and if the column has no label, the column
name.

BOTH
Assigns both the label and name of the column. In this case, two or three
occurrences of SQLVAR per column, depending on whether the result set
contains distinct types, are needed to accommodate the additional
information. To specify this expansion of the SQLVAR array, set SQLN to
2×n or 3×n, where n is the number of columns in the object being
described. For each of the columns, the first n occurrences of SQLVAR,
which are the base SQLVAR entries, contain the column names. Either the
second or third n occurrences of SQLVAR, which are the extended SQLVAR
entries, contain the column labels. If there are no distinct types, the labels
are returned in the second set of SQLVAR entries. Otherwise, the labels are
returned in the third set of SQLVAR entries.

Notes

Using PREPARE INTO clause: Information about a prepared statement can also be
obtained by using the INTO clause of the PREPARE statement.

Allocating the SQLDA: Before the DESCRIBE or PREPARE INTO statement is
executed, the value of SQLN must be set to a value greater than or equal to zero to
indicate how many occurrences of SQLVAR are provided in the SQLDA. Also,
enough storage must be allocated to contain the number of occurrences that SQLN
specifies. To obtain the description of the columns of the result table of a prepared
SELECT statement, the number of occurrences of SQLVAR must be at least equal to
the number of columns. Furthermore, if USING BOTH is specified, or if the
columns include LOBs or distinct types, the number of occurrences of SQLVAR
should be two or three times the number of columns. See “Determining how many
SQLVAR occurrences are needed” on page 2084 for more information.

First technique: Allocate an SQLDA with enough occurrences of SQLVAR to
accommodate any select list that the application will have to process. At the

Chapter 5. Statements 1597

extreme, the number of SQLVARs could equal three times the maximum number of
columns allowed in a result table. After the SQLDA is allocated, the application
can use the SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated, even when
most of this storage is not used for a particular select list.

Second technique: Repeat the following two steps for every processed select list:
1. Execute a DESCRIBE statement with an SQLDA that has no occurrences of

SQLVAR; that is, an SQLDA for which SQLN is zero.
2. Allocate a new SQLDA with enough occurrences of SQLVAR. Use the values

that are returned in SQLD and SQLCODE to determine the number of SQLVAR
entries that are needed. The value of SQLD is the number of columns in the
result table, which is either the required number of occurrences of SQLVAR or a
fraction of the required number (see “Determining how many SQLVAR
occurrences are needed” on page 2084 for details). If the SQLCODE is +236,
+237, +238, or +239, the number of SQLVAR entries that is needed is two or
three times the value in SQLD, depending on whether USING BOTH was
specified. Set SQLN to reflect the number of SQLVAR entries that have been
allocated.

3. Execute the DESCRIBE statement again, using the new SQLDA.

This technique allows better storage management than the first technique, but it
doubles the number of DESCRIBE statements.

Third technique: Allocate an SQLDA that is large enough to handle most (hopefully,
all) select lists but is also reasonably small. If an execution of DESCRIBE fails
because SQLDA is too small, allocate a larger SQLDA and execute the DESCRIBE
statement again.

For the new larger SQLDA, use the values that are returned in SQLD and
SQLCODE from the failing DESCRIBE statement to calculate the number of
occurrences of SQLVAR that are needed, as described in technique two. Remember
to check for SQLCODEs +236, +237, +238, and +239, which indicate whether
extended SQLVAR entries are needed because the data includes LOBs or distinct
types.

This third technique is a compromise between the first two techniques. Its
effectiveness depends on a good choice of size for the original SQLDA.

The SQLDA contents returned on DESCRIBE: After a DESCRIBE statement is
executed, the following list describes the contents of the SQLDA fields as they are
set by DB2 or ignored. These descriptions do not necessarily apply to the uses of
an SQLDA in other SQL statements (EXECUTE, OPEN, FETCH). For more on the
other uses, see “SQL descriptor area (SQLDA)” on page 2079.

SQLDAID
DB2 sets the first 6 bytes to 'SQLDA ' (5 letters followed by the space
character) and the eighth byte to a space character. The seventh byte is set
to indicate the number of SQLVAR entries that are needed to describe each
column of the result table as follows:

space The value of space occurs when:
v USING BOTH was not specified and the columns being

described do not include LOBs or distinct types. Each column

1598 SQL Reference

only needs one SQLVAR entry. If the SQL standard option is yes,
DB2 sets SQLCODE to warning code +236. Otherwise,
SQLCODE is zero.

v USING BOTH was specified and the columns being described
do not include LOBs or distinct types. Each column needs two
SQLVAR entries. DB2 sets SQLD to two times the number of
columns of the result table. The second set of SQLVARs is used
for the labels.

2 Each column needs two SQLVAR entries. Two entries per column
are required when:
v USING BOTH was not specified and the columns being

described include LOBs or distinct types or both. DB2 sets the
second set of SQLVAR entries with information for the LOBs or
distinct types being described.

v USING BOTH was specified and the columns include LOBs but
not distinct types. DB2 sets the second set of SQLVAR entries
with information for the LOBs and labels for the columns being
described.

3 Each column needs three SQLVAR entries. Three entries are
required only when USING BOTH is specified and the columns
being described include distinct types. The presence of LOB data
does not matter. It is the distinct types and not the LOBs that cause
the need for three SQLVAR entries per column when labels are also
requested. DB2 sets the second set of SQLVAR entries with
information for the distinct types (and LOBs, if any) and the third
set of SQLVAR entries with the labels of the columns being
described.

A REXX SQLDA does not contain this field.

SQLDABC
The length of the SQLDA in bytes. DB2 sets the value to SQLN×44+16.

A REXX SQLDA does not contain this field.

SQLD If the prepared statement is a query, DB2 sets the value to the number of
columns in the object being described (the value is actually twice the
number of columns in the case where USING BOTH was specified and the
result table does not include LOBs or distinct types). Otherwise, if the
statement is not a query, DB2 sets the value to 0.

SQLVAR
An array of field description information for the column being described.
There are two types of SQLVAR entries—the base SQLVAR and the
extended SQLVAR.

If the value of SQLD is 0, or is greater than the value of SQLN, no values
are assigned to any occurrences of SQLVAR. If the value of SQLN was set
so that there are enough SQLVAR occurrences to describe the specified
columns (columns with LOBs or distinct types and a request for labels
increase the number of SQLVAR entries that are needed), the values are
assigned to the first n occurrences of SQLVAR so that the first occurrence
of SQLVAR contains a description of the first column, the second
occurrence of SQLVAR contains a description of the second column, and so
on. This first set of SQLVAR entries are referred to as base SQLVAR entries.
Each column always has a base SQLVAR entry.

Chapter 5. Statements 1599

If the DESCRIBE statement included the USING BOTH clause, or the
columns being described include LOBs or distinct types, additional
SQLVAR entries are needed. These additional SQLVAR entries are referred
to as the extended SQLVAR entries. There can be up to two sets of extended
SQLVAR entries for each column.

For REXX, the SQLVAR is a set of stem variables that begin with stem.n,
instead of a structure. The REXX SQLDA uses only a base SQLVAR. The
way in which DB2 assigns values to the SQLVAR variables is the same as
for other languages. That is, the stem.1 variables describe the first column
in the result table, the stem.2 variables describe the second column in the
result table, and so on. If USING BOTH is specified, the stem.n+1 variables
also describe the first column in the result table, the stem.n+2 variables also
describe the second column in the result table, and so on.

The base SQLVAR:

SQLTYPE
A code that indicates the data type of the column and whether the
column can contain null values. For the possible values of
SQLTYPE, see Table 169 on page 2090.

SQLLEN
A length value depending on the data type of the result columns.
SQLLEN is 0 for LOB and XML data types. For the other possible
values of SQLLEN, see Table 169 on page 2090.

In a REXX SQLDA, for DECIMAL or NUMERIC columns, DB2 sets
the SQLPRECISION and SQLSCALE fields instead of the SQLLEN
field.

SQLDATA
The CCSID of a string column. For possible values, see Table 170
on page 2093.

In a REXX SQLDA, DB2 sets the SQLCCSID field instead of the
SQLDATA field.

SQLIND
Reserved.

SQLNAME
The unqualified name or label of the column, depending on the
value of USING (NAMES, LABELS, ANY, or BOTH). The field is a
string of length 0 if the column does not have a name or label. For
more details on unnamed columns, see the discussion of the names
of result columns under “select-clause” on page 765. This value is
returned in the encoding scheme specified by the ENCODING
bind option for the plan or package that contains the statement.

The extended SQLVAR:

SQLLONGLEN
The length attribute of a BLOB, CLOB, or DBCLOB column.

* Reserved.

SQLDATALEN
Not Used.

1600 SQL Reference

SQLDATATYPE-NAME
For a distinct type, the fully qualified distinct type name.
Otherwise, the value is the fully qualified name of the built-in data
type.

For a label, the label for the column.

This value is returned in the encoding scheme specified by the
ENCODING bind option for the plan or package that contains this
statement.

The REXX SQLDA does not use the extended SQLVAR.

Performance considerations: Although DB2 does not change the value of SQLN,
you might want to reset this value after the DESCRIBE statement is executed. If
the contents of SQLDA from the DESCRIBE statement is used in a later FETCH
statement, set SQLN to n (where n is the number of columns of the result table)
before executing the FETCH statement. For details, see Preparing the SQLDA for
data retrieval.

Preparing the SQLDA for data retrievals: This note is relevant if you are applying
DESCRIBE to a prepared query and you intend to use the SQLDA in the FETCH
statements you employ to retrieve the result table rows. To prepare the SQLDA for
that task, you must set the SQLDATA field of SQLVAR. SQLIND must be set if
SQLTYPE is odd, and SQLNAME must be set when overriding the CCSID. For the
meaning of those fields in that context, see “SQL descriptor area (SQLDA)” on
page 2079.

Also, SQLN and SQLDABC should be reset (if necessary) to n and n×44+16, where
n is the number of columns in the result table. Doing so can improve performance
when the rows of the result table are fetched.

Support for extended dynamic SQL in a distributed environment: In a distributed
environment where DB2 for z/OS is the server and the requester supports
extended dynamic SQL, such as DB2 Server for VSE & VM, a DESCRIBE statement
that is executed against an SQL statement in the extended dynamic package
appears to DB2 as a DESCRIBE statement against a static SQL statement in the
DB2 package. A DESCRIBE statement cannot normally be issued against a static
SQL statement. However, a DESCRIBE against a static SQL statement that is
generated by extended dynamic SQL executes without error if the package has
been rebound after field DESCRIBE FOR STATIC on installation panel DSNTIP4
has been set to YES.

YES indicates that DB2 generates an SQLDA for the DESCRIBE at bind time so that
DESCRIBE requests for static SQL statements can be satisfied at execution time. For
more information, see DB2 Installation Guide.

Avoiding double preparation when using REOPT(ALWAYS) or REOPT(ONCE): If
bind option REOPT(ALWAYS) or REOPT(ONCE) is in effect, DESCRIBE causes the
statement to be prepared if it is not already prepared. If issued before an OPEN or
an EXECUTE, the DESCRIBE causes the statement to be prepared without input
variables. If the statement has input variables, the statement must be prepared
again when it is opened or executed. When REOPT(ONCE) is in effect, the
statement is always prepared twice even if there are no input variables. Therefore,
to avoid preparing statements twice, issue the DESCRIBE after the OPEN. For
non-cursor statements, open and fetch processing are performed on the EXECUTE.
So, if a DESCRIBE must be issued, the statement will be prepared twice.

Chapter 5. Statements 1601

The use of a prepared statement for an EXPLAIN statement can cause duplicate
entries in the explain tables when the prepared statement specifies the
REOPT(ALWAYS) bind option and is executed using the jcc driver.

Errors occurring on DESCRIBE: In local and remote processing, the
DEFER(PREPARE) and REOPT(ALWAYS)/REOPT(ONCE) bind options can cause
some errors that are normally issued during PREPARE processing to be issued on
DESCRIBE.

Considerations for implicitly hidden columns: A DESCRIBED OUTPUT statement
only returns information about implicitly hidden columns if the column (of a base
table that is defined as implicitly hidden) is explicitly specified as part of the
SELECT list of the final result table of the query described. If implicitly hidden
columns are not part of the result table of a query, a DESCRIBE OUTPUT
statement that returns information about that query will not contain information
about any implicitly hidden columns.

Using host variables: If the DESCRIBE statement contains host variables, the
contents of the host variables are assumed to be in the encoding scheme that was
specified in the ENCODING parameter when the package or plan that contains the
statement was bound.

Considerations for array elements: CCSID UNICODE is returned for a result
column that corresponds to a reference to an array element with a datetime data
type.

Example

In a PL/I program, execute a DESCRIBE statement with an SQLDA that has no
occurrences of SQLVAR. If SQLD is greater than zero, use the value to allocate an
SQLDA with the necessary number of occurrences of SQLVAR and then execute a
DESCRIBE statement using that SQLDA. This is the second technique described in
Allocating the SQLDA.

EXEC SQL BEGIN DECLARE SECTION;
DCL STMT1_STR CHAR(200) VARYING;

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLDA;
EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;
... /* code to prompt user for a query, then to generate */

/* a select-statement in the STMT1_STR */
EXEC SQL PREPARE STMT1_NAME FROM :STMT1_STR;
... /* code to set SQLN to zero and to allocate the SQLDA */
EXEC SQL DESCRIBE STMT1_NAME INTO :SQLDA;
... /* code to check that SQLD is greater than zero, to set */

/* SQLN to SQLD, then to re-allocate the SQLDA */
EXEC SQL DESCRIBE STMT1_NAME INTO :SQLDA;
... /* code to prepare for the use of the SQLDA */
EXEC SQL OPEN DYN_CURSOR;
... /* loop to fetch rows from result table */
EXEC SQL FETCH DYN_CURSOR USING DESCRIPTOR :SQLDA;
.
.
.

1602 SQL Reference

|
|
|

DESCRIBE PROCEDURE
The DESCRIBE PROCEDURE statement gets information about the result sets
returned by a stored procedure. The information, such as the number of result sets,
is put into a descriptor.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

�� DESCRIBE PROCEDURE procedure-name INTO descriptor-name
host-variable

��

Description

procedure-name or host-variable
Identifies the stored procedure that returned one or more result sets. When the
DESCRIBE PROCEDURE statement is executed, the procedure name must
identify a stored procedure that the requester has already invoked using the
SQL CALL statement. The procedure name can be specified as a one, two, or
three-part name. The procedure name in the DESCRIBE PROCEDURE
statement must be specified the same way that it was specified on the CALL
statement. For example, if a two-part procedure name was specified on the
CALL statement, you must specify a two-part procedure name in the
DESCRIBE PROCEDURE statement.

If a host variable is used:
v It must be a character string variable with a length attribute that is not

greater than 254.
v It must not be followed by an indicator variable.
v The value of the host variable is a specification that depends on the database

server. Regardless of the server, the specification must:
– Be left justified within the host variable
– Not contain embedded blanks
– Be padded on the right with blanks if its length is less than that of the

host variable

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA). The information returned in the
SQLDA describes the result sets returned by the stored procedure.

Considerations for allocating and initializing the SQLDA are similar to those
for DESCRIBE TABLE.

The contents of the SQLDA after executing a DESCRIBE PROCEDURE
statement are:

Chapter 5. Statements 1603

v The first 5 bytes of the SQLDAID field are set to 'SQLPR'.
A REXX SQLDA does not contain SQLDAID.

v Bytes 6 to 8 of the SQLDAID field are reserved.
v The SQLD field is set to the total number of result sets. A value of 0 in the

field indicates there are no result sets.
v There is one SQLVAR entry for each result set.
v The SQLDATA field of each SQLVAR entry is set to the result set locator

value associated with the result set.
For a REXX SQLDA, SQLLOCATOR is set to the result set locator value.

v The SQLIND field of each SQLVAR entry is set to the estimated number of
rows in the result set
For a REXX SQLDA, the SQLIND field is not used for DESCRIBE.

v The SQLNAME field is set to the name of the cursor used by the stored
procedure to return the result set. This value is returned in the encoding
scheme specified by the ENCODING bind option for the plan or package
that contains this statement.

Notes

SQLDA information: A value of -1 in the SQLIND field indicates that an estimated
number of rows in the result set is not provided. DB2 for z/OS always sets
SQLIND to -1. For a REXX SQLDA, the SQLIND field is not used for DESCRIBE.

DESCRIBE PROCEDURE does not return information about the parameters
expected by the stored procedure.

Assignment of locator values: Locator values are assigned to the SQLVAR entries
in the SQLDA in the order that the associated cursors are opened at run time.
Locator values are not provided for cursors that are closed when control is
returned to the invoking application. If a cursor was closed and later re-opened
before returning to the invoking application, the most recently executed OPEN
CURSOR statement for the cursor is used to determine the order in which the
locator values are returned for the procedure result sets. For example, assume
procedure P1 opens three cursors A, B, C, closes cursor B and then issues another
OPEN CURSOR statement for cursor B before returning to the invoking
application. The locator values are assigned in the order A, C, B.

Alternatively, an ASSOCIATE LOCATORS statement can be used to copy the
locator values to result set locator variables.

Using host variables: If the DESCRIBE PROCEDURE statement contains host
variables, the contents of the host variables are assumed to be in the encoding
scheme that was specified in the ENCODING parameter when the package or plan
that contains the statement was bound.

Examples

The statements in the following examples are assumed to be in PL/I programs.

Example 1: Place information about the result sets returned by stored procedure P1
into the descriptor named by SQLDA1. Assume that the stored procedure is called
with a one-part name from current server SITE2.

1604 SQL Reference

EXEC SQL CONNECT TO SITE2;
EXEC SQL CALL P1;
EXEC SQL DESCRIBE PROCEDURE P1 INTO :SQLDA1;

Example 2: Repeat the scenario in Example 1, but use a two-part name to specify an
explicit schema name for the stored procedure to ensure that stored procedure P1
in schema MYSCHEMA is used.

EXEC SQL CONNECT TO SITE2;
EXEC SQL CALL MYSCHEMA.P1;
EXEC SQL DESCRIBE PROCEDURE MYSCHEMA.P1 INTO :SQLDA1;

Example 3: Place information about the result sets returned by the stored procedure
identified by host variable HV1 into the descriptor named by SQLDA2. Assume
that host variable HV1 contains the value SITE2.MYSCHEMA.P1 and the stored
procedure is called with a three-part name.

EXEC SQL CALL SITE2.MYSCHEMA.P1;
EXEC SQL DESCRIBE PROCEDURE :HV1 INTO :SQLDA2;

The preceding example would be invalid if host variable HV1 had contained the
value MYSCHEMA.P1, a two-part name. For the example to be valid with that
two-part name in host variable HV1, the current server must be the same as the
location name that is specified on the CALL statement as the following statements
demonstrate. This is the only condition under which the names do not have to be
specified the same way and a three-part name on the CALL statement can be used
with a two-part name on the DESCRIBE PROCEDURES statement.

EXEC SQL CONNECT TO SITE2;
EXEC SQL CALL SITE2.MYSCHEMA.P1;
EXEC SQL ASSOCIATE LOCATORS (:LOC1, :LOC2)

WITH PROCEDURE :HV1;

Chapter 5. Statements 1605

DESCRIBE TABLE
The DESCRIBE TABLE statement obtains information about a designated table or
view.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization

The privileges that are held by the authorization ID that owns the plan or package
must include at least one of the following (if there is a plan, authorization checking
is done only against the plan owner):
v Ownership of the table or view
v The SELECT, INSERT, UPDATE, DELETE, or REFERENCES privilege on the

object
v The ALTER or INDEX privilege on the object (tables only)
v DBADM authority over the database that contains the object (tables only)
v SYSADM authority
v SYSCTRL authority (catalog tables only)
v ACCESSCTRL authority (catalog tables only)
v System DBADM
v DATAACCESS authority
v EXPLAIN authority
v SQLADM authority

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

For an RRSAF application that does not have a plan and in which the requester
and the server are DB2 for z/OS systems, authorization to execute the package is
performed against the primary or secondary authorization ID of the process.

Syntax

�� DESCRIBE TABLE host-variable INTO descriptor-name
NAMES

USING LABELS
ANY
BOTH

��

Description

TABLE host-variable
Identifies the table or view. The name must not identify an auxiliary table.
When the DESCRIBE statement is executed, the host variable must contain a
name which identifies a table or view that exists at the current server. This

1606 SQL Reference

variable must be a fixed-length or varying-length character string with a length
attribute less than 256. The name must be followed by one or more blanks if
the length of the name is less than the length of the variable. It cannot contain
a period as the first character and it cannot contain embedded blanks. In
addition, the quotation mark is the escape character regardless of the value of
the string delimiter option. An indicator variable must not be specified for the
host variable.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in “SQL
descriptor area (SQLDA)” on page 2079. See “Identifying an SQLDA in C or
C++” on page 2099 for how to represent descriptor-name in C.

For languages other than REXX: Before the DESCRIBE statement is executed, the
user must set the following variable in the SQLDA and the SQLDA must be
allocated.

SQLN Indicates the number of SQLVAR occurrences provided in the SQLDA.
DB2 does not change this value. For techniques to determine the
number of required occurrences, see Allocating the SQLDA.

For REXX: The SQLDA is not allocated before it is used. An SQLDA consists of
a set of stem variables. There is one occurrence of variable stem.SQLD,
followed by zero or more occurrences of a set of variables that is equivalent to
an SQLVAR structure. Those variables begin with stem.n.

After the DESCRIBE statement is executed, all the fields in the SQLDA except
SQLN are either set by DB2 or ignored. For information on the contents of the
fields, see The SQLDA contents returned after DESCRIBE.

USING
Indicates what value to assign to each SQLNAME variable in the SQLDA. If
the requested value does not exist, SQLNAME is set to a length of 0.

NAMES
Assigns the name of the column. This is the default.

LABELS
Assigns the label of the column. (Column labels are defined by the LABEL
statement.)

ANY
Assigns the column label, and if the column has no label, the column
name.

BOTH
Assigns both the label and name of the column. In this case, two or three
occurrences of SQLVAR per column, depending on whether the result set
contains distinct types, are needed to accommodate the additional
information. To specify this expansion of the SQLVAR array, set SQLN to
2×n or 3×n, where n is the number of columns in the object being
described. For each of the columns, the first n occurrences of SQLVAR,
which are the base SQLVAR entries, contain the column names. Either the
second or third n occurrences of SQLVAR, which are the extended SQLVAR
entries, contain the column labels. If there are no distinct types, the labels
are returned in the second set of SQLVAR entries. Otherwise, the labels are
returned in the third set of SQLVAR entries.

For a declared temporary table, the name of the column is assigned regardless
of the value specified in the USING clause because declared temporary tables
cannot have labels.

Chapter 5. Statements 1607

Notes

See “DESCRIBE OUTPUT” on page 1596 for information about the following
topics:
v Allocating the SQLDA
v The SQLDA contents that are returned on DESCRIBE
v Performance considerations for DESCRIBE
v Using host variables in DESCRIBE statements

Considerations for implicitly hidden columns: A DESCRIBE TABLE statement does
return information about implicitly hidden columns in tables.

1608 SQL Reference

DROP
The DROP statement removes an object at the current server. Except for storage
groups, any objects that are directly or indirectly dependent on that object are
deleted. Whenever an object is deleted, its description is deleted from the catalog
at the current server, and any packages that refer to the object are invalidated.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

To drop the following objects, the privilege set must include at least one of the
listed authorities or privileges:

Table, table space, or index:

v Ownership of the object (for an index, the owner is the owner of the
table or index)

v DBADM authority
v SYSADM or SYSCTRL authority
v System DBADM

If the table space is in a database that is implicitly created, the database
privileges must be on the implicit database or on DSNDB04.

Database:

v The DROP privilege on the database
v DBADM or DBCTRL authority for the database
v SYSADM or SYSCTRL authority
v System DBADM

If the database is implicitly created, the privileges must be on the implicit
database or on DSNDB04.

Storage group, or view:

v Ownership of the object
v SYSADM or SYSCTRL authority
v System DBADM

Alias for a table or view:

v Ownership of the object
v SYSADM or SYSCTRL authority
v System DBADM

Alias for a sequence:

v Ownership of the object
v The DROPIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

Package:

v Ownership of the package

Chapter 5. Statements 1609

|

|

|

|

|

|

|

|

|

v The BINDAGENT privilege granted from the package owner
v PACKADM authority for the collection or for all collections
v SYSADM or SYSCTRL authority

Synonym:
Ownership of the synonym

Role or trusted context:

v Ownership of the object
v SYSADM or SYSCTRL authority
v SECADM

If the installation parameter SEPARATE SECURITY is NO, SYSADM
authority has implicit SECADM and SYSCTRL authority and can drop a
role or trusted context.

Row permission or column mask:
At least SECADM authority

Distinct type, stored procedure, trigger, user-defined function, global variable, or
sequence:

v Ownership of the object 34

v The DROPIN privilege on the schema
v SYSADM or SYSCTRL authority
v System DBADM

The authorization ID that matches the schema name implicitly has the
DROPIN privilege on the schema.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the statement is dynamically prepared, the privilege set is the union of the
privilege sets that are held by each authorization ID of the process. If running in a
trusted context with a role, the privilege set also includes those privileges that are
held by the role that is associated with the primary authorization ID. However, the
implicit schema match does not apply to the role when determining if DROPIN
schema privilege is held.

34. Not applicable for stored procedures defined in releases of DB2 for z/OS prior to Version 6.

1610 SQL Reference

|
|

Syntax

��

�

DROP alias-designator
DATABASE database-name

RESTRICT
FUNCTION function-name

()
,

parameter-type
RESTRICT

SPECIFIC FUNCTION specific-name
INDEX index-name
MASK mask-name
PACKAGE collection-id.package-name

VERSION
version-id

PERMISSION permission-name
RESTRICT

PROCEDURE procedure-name
RESTRICT

ROLE role-name
RESTRICT

SEQUENCE sequence-name
STOGROUP stogroup-name
SYNONYM synonym
TABLE table-name

alias-name
TABLESPACE table-space-name

database-name.
TRIGGER trigger-name
TRUSTED CONTEXT context-name

RESTRICT
TYPE type-name

RESTRICT
VARIABLE variable-name
VIEW view-name

alias-name

��

��
FOR TABLE

ALIAS alias-name
(1) FOR SEQUENCE

PUBLIC

��

Notes:

1 If PUBLIC is specified, FOR SEQUENCE must also be specified.

alias-designator:

parameter type:

Chapter 5. Statements 1611

|

||||

|

|||||||||||||||||||||||||

|

�� data-type
(1)

AS LOCATOR

��

Notes:

1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

�� built-in-type
distinct-type-name
array-type-name

��

data type:

built-in-type:

1612 SQL Reference

|

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC(integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID
XML

��

Description

alias-designator

PUBLIC
Specifies that the alias to be dropped is a public alias. The alias-name must
identify an alias that exists in the SYSPUBLIC schema.

If the PUBLIC keyword is specified, alias-name must identify a public alias
that exists at the current server.

ALIAS alias-name
Identifies the alias to be dropped. The alias-name must identify an alias that
exists at the current server.

Chapter 5. Statements 1613

|

|
|
|

|
|

|
|
|

Dropping an alias for a table or view has no effect on any view,
materialized query table, or synonym that was defined using the alias. If
the alias is referenced in the definition of a row permission or a column
mask, it cannot be dropped.

Dropping an alias for a sequence has no effect on any view or materialized
query table that was defined using the alias. If the alias is referenced in the
definition of an inline SQL function, it cannot be dropped. When an alias
for a sequence is dropped, all packages that refer to the sequence alias are
invalidated.

If the alias is referenced in the definition of a row permission or a column
mask, the alias cannot be dropped.

FOR TABLE
Specifies that the alias to be dropped is for a table or view. Dropping an
alias for a table has no effect on any view, materialized query table, or
synonym that was defined using the alias.

FOR SEQUENCE
Specifies that the alias to be dropped is for a sequence. Dropping an alias
for a sequence has no effect on any view, or materialized query table that
was defined using the alias.

DATABASE database-name
Identifies the database to drop. The name must identify a database that exists
at the current server. DSNDB04 or DSNDB06 must not be specified. The
privilege set must include SYSADM authority.

Whenever a database is dropped, all of its table spaces, tables, index spaces,
and indexes are also dropped. Any pending changes to the definitions of the
table spaces and indexes in the database are also dropped.

You can drop a database that contains a history table only if the database also
contains the associated system-period temporal table. You can drop a database
that contains a system-period temporal table when the associated history table
is in another database. In this case, the action cascades to drop the history table
in the other database.

You can drop a database that contains an archive table only if the database also
contains the associated archive-enabled table. You can drop a database that
contains an archive-enabled table when the associated archive table is
contained in another database. In this case, the action cascades to drop the
archive table in the other database.

FUNCTION or SPECIFIC FUNCTION
Identifies the function to drop. The function must exist at the current server,
and it must have been defined with the CREATE FUNCTION statement. The
particular function can be identified by its name, function signature, or specific
name.

Functions that are implicitly generated by the CREATE TYPE statement cannot
be dropped using the DROP statement. They are implicitly dropped when the
distinct type is dropped.

As indicated by the default keyword RESTRICT, the function is not dropped if
any of the following dependencies exist:
v Another function is sourced on the function.
v A view uses the function.
v A trigger package uses the function.

1614 SQL Reference

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

v The definition of a materialized query table uses the function.
v The definition of a row permission or a column mask uses the function.

When a function is dropped, all privileges on the function are also dropped.
Any packages that are dependent on the function dropped are made
inoperative.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly
one function. The function can have any number of parameters defined for
it. If there is more than one function of the specified name in the specified
or implicit schema, an error is returned.

FUNCTION function-name (parameter-type,...)
Identifies the function by its function signature, which uniquely identifies
the function. The function-name (parameter-type, ...) must identify a function
with the specified function signature. The specified parameters must match
the data types in the corresponding position that were specified when the
function was created. The number of data types, and the logical
concatenation of the data types is used to identify the specific function
instance which is to be dropped. Synonyms for data types are considered a
match.

If the function was defined with a table parameter (the LIKE TABLE name
AS LOCATOR clause was specified in the CREATE FUNCTION statement
to indicate that one of the input parameters is a transition table), the
function signature cannot be used to uniquely identify the function.
Instead, use one of the other syntax variations to identify the function with
its function name, if unique, or its specific name.

If function-name () is specified, the function identified must have zero
parameters.

function-name
Identifies the name of the function.

(parameter-type,...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, DB2 searches the SQL
path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one
of the following:
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match. For
example, DEC() will be considered a match for a parameter of a
function defined with a data type of DEC(7,2). Similarly
DECFLOAT() will be considered a match for DECFLOAT(16) or
DECFLOAT(34). However, FLOAT cannot be specified with empty
parenthesis because its parameter value indicates a specific data type
(REAL or DOUBLE).

v If a specific value for a length, precision, or scale attribute is
specified, the value must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. If the
data type is FLOAT, the precision does not have to exactly match the
value that was specified because matching is based on the data type
(REAL or DOUBLE).

Chapter 5. Statements 1615

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. The implicit length must exactly match the value that
was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

For data types with a subtype or encoding scheme attribute, specifying
the FOR subtype DATA clause or the CCSID clause is optional.
Omission of either clause indicates that DB2 ignores the attribute when
determining whether the data types match. If you specify either clause,
it must match the value that was implicitly or explicitly specified in the
CREATE FUNCTION statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this
parameter. If AS LOCATOR is specified, the data type must be a LOB
or a distinct type based on a LOB.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify
a specific function that exists at the current server.

INDEX index-name
Identifies the index to drop. The name must identify a user-defined index that
exists at the current server but must not identify a populated index on an
auxiliary table or an index that was implicitly created for a table that contains
an XML column. (For details on dropping user-defined indexes on catalog
tables, see “SQL statements allowed on the catalog” on page 2113.) A
populated index on an auxiliary table can only be dropped by dropping the
base table. The name must not identify an auxiliary table for an object that is
involved in a clone relationship.

If the index that is dropped was created by specifying the ENDING AT clause
to define partition boundaries, the table is converted to use table-controlled
partitioning. The high limit key for the last partition is set to the highest
possible value for ascending key columns or the lowest possible value for
descending key columns.

Whenever an index is directly or indirectly dropped, its index space is also
dropped. The name of a dropped index space cannot be reused until a commit
operation is performed. Any pending changes to the definitions of the index is
also dropped.

If the index is a unique index used to enforce a unique constraint (primary or
unique key), the unique constraint must be dropped before the index can be
dropped. In addition, if a unique constraint supports a referential constraint,
the index cannot be dropped unless the referential constraint is dropped.

However, a unique index (for a unique key only) can be dropped without first
dropping the unique key constraint if the unique key was created in a release
of DB2 before Version 7 and if the unique key constraint has no associated
referential constraints. For information about dropping constraints, see “ALTER
TABLE” on page 984.

If the table space is explicitly created and a unique index is dropped and that
index was defined on a ROWID column that is defined as GENERATED BY
DEFAULT, the table can still be used, but rows cannot be inserted into that
table.

If the table space is implicitly created, the index cannot be dropped if it is
defined on a ROWID column that is defined as GENERATED BY DEFAULT.

1616 SQL Reference

If an empty index on an auxiliary table is dropped, the base table is marked
incomplete. If the base table space is implicitly created, the index on an
auxiliary table cannot be dropped.

Drop index will result in the deletion of rows in the SYSCOLDIST and
SYSCOLDISTATS catalog tables if no other indexes on the table have the same
column group in their key sequence prefix.

MASK mask-name
Identifies the column mask to drop. The name must identify a column mask
that exists at the current server.

PACKAGE collection-id.package-name
Identifies the package version to drop. The name plus the implicitly or
explicitly specified version-id must identify a package version that exists at the
current server. Omission of the version-id is an implicit specification of the null
version.

The name must not identify a trigger package or a package that is associated
with an SQL routine. A trigger package can only be dropped by dropping the
associated trigger or subject table. A package that is associated with a native
SQL procedure can only be dropped with an ALTER PROCEDURE statement
with a DROP VERSION clause that specifies the particular version that is to be
dropped, or with a DROP PROCEDURE statement if it is the only version that
is defined for the procedure.

Specify this clause to drop a package that is created as the result of a BIND
COPY command used to deploy a version of a native SQL procedure.

If a package has current, previous, and original copies, the DROP statement
will drop all copies.

VERSION version-id
version-id is the version identifier that was assigned to the package's DBRM
when the DBRM was created. If version-id is not specified, a null version is
used as the version identifier.

Delimit the version identifier when it:
v Is generated by the VERSION(AUTO) precompiler option
v Begins with a digit
v Contains lowercase or mixed-case letters

For more on version identifiers, see the information on preparing an
application program for execution in DB2 Application Programming and SQL
Guide.

PERMISSION permission-name
Identifies the row permission to drop. The name must identify a row
permission that exists at the current server. The name must not identify the
default row permission that was created implicitly by DB2.

PROCEDURE procedure-name
Identifies the stored procedure to drop. The name must identify a stored
procedure that has been defined with the CREATE PROCEDURE statement at
the current server.

All versions of the native SQL procedure are dropped; all privileges on the
procedure are also dropped. In addition, any packages that are dependent on
the procedure are marked invalid.

If the procedure is a native SQL procedure, use an ALTER PROCEDURE
statement with the DROP VERSION clause to drop a specific version of a

Chapter 5. Statements 1617

procedure. Use a DROP PACKAGE statement to drop a package for a version
of the procedure that is created using the BIND COPY command.

ROLE role-name
Identifies the role to drop. role-name must identify a role that exists at the
current server.

When a role is dropped, all privileges and authorities that have been
previously granted to that role are revoked. If the role that is dropped is the
owner of statements in the dynamic statement cache, the cached statements are
invalidated.

The role is not dropped if any REVOKE restrictions are encountered. REVOKE
restrictions include the following:
v Restrictions that are encountered when dependent privileges are included

when the privileges of a role are revoked.
v The role is the grantor of any privilege or authority that used ACCESSCTRL

or SECADM authority to perform the grant.

If RESTRICT is specified, the role is not dropped is any of the following
dependencies exist:
v The role is associated with any trusted context or any user in a trusted

context.
v The role is associated with a currently running thread.
v The role is the owner of any of the following objects:

Alias

Array type

Column mask

Database

Distinct type

Index

JAR file

Materialized query table

Package

Role

Row permission

Sequence

Storage group

Stored procedure

Table

Table space

Trigger

Trusted context

User-defined function

View

SEQUENCE sequence-name
Identifies the sequence to drop. The name must identify an existing sequence
at the current server.

sequence-name must not be the name of an internal sequence object that is used
by DB2 (including an implicitly generated sequence for a
DB2_GENERATED_DOCID_FOR_XML column). Sequences that are generated
by the system for identity columns or implicitly created databases cannot be
dropped by using the DROP SEQUENCE statement. A sequence object for an
identity column is implicitly dropped when the table that contains the identify
column is dropped.

The default keyword RESTRICT indicates that the sequence is not dropped if
any of the following dependencies exist:
v A trigger that uses the sequence in a NEXT VALUE or PREVIOUS VALUE

expression exists.
v An inline SQL function that uses the sequences in a NEXT VALUE or

PREVIOUS VALUE expression exists.

1618 SQL Reference

|

Whenever a sequence is dropped, all privileges on the sequence are also
dropped, and the packages that refer to the sequence are invalidated. Dropping
a sequence, even if the drop process is rolled back, results in the loss of the
still-unassigned cache values for the sequence.

STOGROUP stogroup-name
Identifies the storage group to drop. The name must identify a storage group
that exists at the current server but not a storage group that is used by any
table space or index space.

For information on the effect of dropping the default storage group of a
database, see Dropping a default storage group.

SYNONYM synonym
Identifies the synonym to drop. In a static DROP SYNONYM statement, the
name must identify a synonym that is owned by the owner of the plan or
package. In a dynamic DROP SYNONYM statement, the name must identify a
synonym that is owned by the SQL authorization ID. Thus, using interactive
SQL, a user with SYSADM authority can drop any synonym by first setting
CURRENT SQLID to the owner of the synonym.

Dropping a synonym has no effect on any view, materialized query table, or
alias that was defined using the synonym, nor does it invalidate any packages
that use such views, materialized query tables, or aliases.

If the synonym is referenced in the definition of a row permission or a column
mask, it cannot be dropped.

TABLE table-name or alias-name
Identifies the table to drop. The name must identify a table that exists at the
current server. It must not identify a catalog table, a table in a partitioned table
space, a table that is implicitly created for an XML column, or a populated
auxiliary table. A table in a partitioned table space can be dropped only by
dropping the table space. A populated auxiliary table or a table that is
implicitly created for an XML column can be dropped only by dropping the
associated base table.

If alias-name is specified, the actual table is dropped as if table-name were
specified. However, the alias is not dropped. It can be dropped by using the
DROP ALIAS statement.

When a table is directly or indirectly dropped, the following items are also
dropped:
v All privileges on the table
v All referential constraints in which the table is a parent or dependent
v All synonyms, views, and indexes that are defined on the table
v All row permissions (including the default row permission)
v All column masks that are created for the table

If the table space for the table was implicitly created, it is also dropped.
However, if the containing database was implicitly created, it is not dropped.
Any pending changes to the definitions of the dropped table space and indexes
are also dropped.

For more information, see Dropping an implicitly created database.

When a table is directly or indirectly dropped, all materialized query tables
that are defined on the table are also dropped. When a materialized query
table is directly or indirectly dropped, the following items are also dropped:
v All privileges on the materialized query table

Chapter 5. Statements 1619

v All synonyms, views, and indexes that are defined on the materialized query
table

Any alias that is defined on the materialized query table is not dropped. Any
packages that are dependent on the dropped materialized query table are
marked invalid.

You cannot use DROP TABLE to drop a clone table. You must use the ALTER
TABLE statement with the DROP CLONE clause to drop a clone table. If a
base table that is involved in a clone relationship is dropped, the associated
clone table is also dropped. You cannot drop an auxiliary table for an object
that is involved in a clone relationship.

The table cannot be dropped if it is defined as a history table for a
system-period temporal table.

The table cannot be dropped if it is referenced in the definition of a row
permission or a column mask.

To drop a system-period temporal table, the privilege set must also contain the
authorization that is required to drop the history table. The history table is
dropped when a system-period temporal table is dropped.

If a table with LOB columns is dropped, the auxiliary tables that are associated
with the table and the indexes on the auxiliary tables are also dropped. Any
LOB table spaces that were implicitly created for the auxiliary tables are also
dropped.

If a table with XML columns is dropped, all implicitly created objects for all
XML columns are also dropped.

If an empty auxiliary table is dropped, the definition of the base table is
marked incomplete. If the base table space is implicitly created, the auxiliary
table cannot be dropped.

If the table has a security label column, the primary authorization ID of the
DROP statement must have a valid security label, and the RACF SECLABEL
class must be active.

If a table that uses hash organization is dropped, all catalog entries for the
hash organization are cleaned up.

If an archive-enabled table is dropped, the archive table and any indexes that
are defined on the archive table are also dropped. To drop an archive-enabled
table, the privilege set must also contain the authorization that is required to
drop the archive table. An archive table cannot be explicitly dropped by using
the DROP statement.

TABLESPACE database-name.table-space-name
Identifies the table space to drop. The name must identify a table space that
exists at the current server. The database name must not be DSNDB06.
Omission of the database name is an implicit specification of DSNDB04.
table-space-name must not identify a table space that is implicitly created for an
XML column.

Whenever a table space is directly or indirectly dropped, all the tables in the
table space are also dropped. The name of a dropped table space cannot be
reused until a commit operation is performed. Any pending changes to the
definitions of the table space and its indexes are also dropped.

A LOB table space can be dropped only if it does not contain an auxiliary
table. If the LOB table space is implicitly created, it cannot be dropped.

1620 SQL Reference

|
|
|
|
|

Whenever a base table space that contains tables with LOB columns is
dropped, all the auxiliary tables and indexes on those auxiliary tables that are
associated with the base table space are also dropped.

Whenever a base table space that contains tables with XML columns is
dropped, all implicitly created objects for all XML columns are also dropped.

The table space cannot be dropped if it contains a history table or an archive
table.

TRIGGER trigger-name
Identifies the trigger to drop. The name must identify a trigger that exists at
the current server.

Whenever a trigger is directly or indirectly dropped, all privileges on the
trigger are also dropped and the associated trigger package is freed. The name
of that trigger package is the same as the trigger name and the collection ID is
the schema name.

When an INSTEAD OF trigger is dropped, the associated privilege is revoked
from anyone that possesses the privilege as a result of an implicit grant that
occurred when the trigger is created.

Dropping triggers causes certain packages to be marked invalid. For example,
if trigger-name specifies an INSTEAD OF trigger on a view V, another trigger
might depend on trigger-name through an update to the view V, and that
trigger package is invalidated.

If a trigger has current, previous, and original copies, the DROP statement will
drop all copies.

TRUSTED CONTEXT context-name
Identifies the trusted context to drop. The context-name must identify a trusted
context that exists at the current server. When a trusted context is dropped, all
associations to attributes (IP addresses, job names) and associations to users of
the trusted context are dropped. If the trusted context is dropped while trusted
connections for the context are active, the connections remain active until they
terminate or the next attempt at reuse is made.

TYPE type-name
Identifies the user-defined type to drop. The name must identify a user-defined
type that exists at the current server. The default keyword RESTRICT indicates
that the user-defined type is not dropped if any of the following dependencies
exist:
v The definition of a column of a table uses the user-defined type.
v The definition of an input or result parameter of a user-defined function

uses the user-defined type.
v The definition of a parameter of a stored procedure uses the user-defined

type.
v The definition of an extended index uses a cast function that is implicitly

generated for the user-defined type.
v The definition of an SQL variable in a procedure or function uses the

user-defined type.
v The definition of a row permission or a column mask uses the user-defined

type.
v A sequence exists for which the data type of the sequence is the user-defined

type.

Chapter 5. Statements 1621

|
|

|
|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

v One of the following dependencies exists on one of the cast functions that
are generated for the user-defined type:
– Another function is sourced from one of the cast functions
– A view uses one of the cast functions
– A trigger package uses one of the cast functions
– The definition of a materialized query table uses one of the cast functions

Whenever a user-defined type is dropped, all privileges on the distinct type are
also dropped. In addition, the cast functions that were generated when the
user-defined type was created and the privileges on those cast functions are
also dropped.

VARIABLE variable-name
Identifies the global variable to drop. The name must identify a global variable
that exists at the current server. The name must not identify a built-in global
variable. The default keyword RESTRICT indicates that the global variable is
not dropped if any of the following dependencies exist:
v The definition of a function, trigger, or view is dependent on the global

variable

Packages that are dependent on the global variable are marked invalid when
the global variable is dropped. If a statement that is in the dynamic statement
cache depends on the global variable and the global variable is dropped, the
statement in the dynamic statement cache will be invalidated if it is not in use.

VIEW view-name or alias-name
Identifies the view to drop. The name must identify a view that exists at the
current server.

Whenever a view is directly or indirectly dropped, all privileges on the view
and all synonyms and views that are defined on the view are also dropped.
Whenever a view is directly or indirectly dropped, all materialized query
tables defined on the view are also dropped.

If alias-name is specified, the actual view will be dropped as if view-name were
specified. However, the alias is not dropped and can be dropped using the
DROP ALIAS statement.

If the view is referenced in the definition of a row permission or a column
mask, it cannot be dropped.

Notes

Restrictions on DROP:
DROP is subject to these restrictions:
v DROP DATABASE cannot be performed while a DB2 utility has control

of any part of the database.
v DROP INDEX cannot be performed while a DB2 utility has control of

the index or its associated table space.
v DROP INDEX cannot be performed if the index is a unique index that is

defined on a ROWID column that is defined as GENERATED BY
DEFAULT and there are pending changes to the definition of the table
space or to any objects within the table space that are explicitly created.

v DROP INDEX cannot be performed if the index is an empty index on an
auxiliary table that resides in an explicitly created LOB table space and
there are pending changes to the definition of the base table space or to
any objects within the base table space.

1622 SQL Reference

|
|

|

|

|

|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

v DROP INDEX cannot be performed if the index is the hash overflow
index for a table that uses hash organization.

v DROP TABLE cannot be performed while a DB2 utility has control of the
table space that contains the table.

v DROP TABLE cannot be performed if the table space was explicitly
created and there are pending changes to the definition of the table
space.

v DROP TABLE cannot be performed if the table is an empty auxiliary
table and there are any pending changes to the definition of the base
table space or to any objects within the base table space.

v DROP TABLESPACE cannot be performed while a DB2 utility has
control of the table space.

In a data sharing environment, the following restrictions also apply:
v If any member has an active resource limit specification table (RLST)

you cannot drop the database or table space that contains the table, the
table itself, or any index on the table.

v If the member executing the drop cannot access the DB2-managed data
sets, only the catalog and directory entries for those data sets are
removed.

Objects that have certain dependencies cannot be dropped. For information
on these restrictions, see Table 138 on page 1627.

Recreating objects:
After an index or table space is dropped, a commit must be performed
before the object can be re-created with the same name. If a table that was
created without an IN clause (thereby causing a table space to be implicitly
created) is dropped, a table cannot be re-created with the same name until
a commit is performed.

Dropping a parent table:
DROP is not DELETE and therefore does not involve delete rules.

Dropping a default storage group:
If you drop the default storage group of a database, the database no longer
has a legitimate default. You must then specify USING in any statement
that creates a table space or index in the database. You must do this until
you either:
v Create another storage group with the same name using the CREATE

STOGROUP statement, or
v Designate another default storage group for the database using the

ALTER DATABASE statement.

Dropping an implicitly created database:
When a table that resides in an implicitly created table space is dropped,
the implicitly created table space and related objects are dropped.
However, the implicitly created database is not dropped. This can result in
a large number of empty databases in a system. These databases might be
eventually reused for newly created implicit table spaces. These implicitly
created databases can be dropped using DROP DATABASE.

Dropping a table space or index:
To drop a table space or index, the size of the buffer pool associated with
the table space or index must not be zero.

Dropping a LOB table space:
If the base table space is explicitly created, both explicitly created LOB

Chapter 5. Statements 1623

table spaces and implicitly created LOB table spaces can be dropped if it
does not contain any auxiliary tables. If the LOB table space is implicitly
created, it will be dropped automatically when the auxiliary table is
dropped. If the LOB table space is explicitly created, it is not dropped
when the auxiliary table is dropped, and can be explicitly dropped later.

If the base table space is implicitly created, the LOB table space cannot be
dropped. If the LOB table space is explicitly created, it can be dropped
when the auxiliary table is dropped. The following table shows the
relationship between the base table space, the LOB table space, and the use
of DROP for the LOB table space and base table space:

Table 136. Use of DROP for LOB table space

How base table was
created

How LOB table
space was created

Whether DROP can
be used on LOB
table space

State of LOB table
space if base table
space is dropped

Explicitly Explicitly Yes LOB table space
remains

Explicitly Implicitly Yes LOB table space is
dropped

Implicitly Explicitly Yes LOB table space
remains

Implicitly Implicitly No N/A

Dropping a database when data sets for DB2 objects have already been deleted:
When some of the data sets for DB2 objects that associated with the
database have already been deleted, DROP DATABASE will perform in the
following manner:

For DB2-managed objects:
The DROP DATABASE statement will delete the underlying data
sets if they exist. If the data sets do not exist, DROP DATABASE
will delete only the catalog entries for those data sets.

For user-managed objects:
The DROP DATABASE statement will delete only the catalog
entries for the data sets. The underlying data sets will need to be
manually deleted after the DROP DATABASE statement is
complete.

Dropping a table space in a work file database:
If one member of a data sharing group drops a table space in a work file
database, or an entire work file database, that belongs to another member,
DB2-managed data sets that the executing member cannot access are not
dropped. However, the catalog and directory entries for those data sets are
removed.

Dropping resource limit facility (governor) indexes, tables, and table spaces:
While the RLST is active, you cannot issue a DROP DATABASE, DROP
INDEX, DROP TABLE, or DROP TABLESPACE statement for an object
associated with an RLST that is active on any member of a data sharing
group. See Resource limit facility implications for data sharing (DB2 Data
Sharing Planning and Administration) for details.

Dropping a temporary table:
To drop a created temporary table or a declared temporary table, use the
DROP TABLE statement.

1624 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_resourcelimitfacilityds.htm#db2z_resourcelimitfacilityds
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_resourcelimitfacilityds.htm#db2z_resourcelimitfacilityds

Dropping a materialized query table:
To drop a materialized query table, use the DROP TABLE statement.

Dropping an alias:
Dropping a table or view does not drop its aliases. However, if you use the
DROP TABLE statement and specify an alias for a table or view, the table
or view will be dropped. To drop an alias, use the DROP ALIAS statement.

Dropping a table from an implicitly created table space:
If you drop a table from an implicitly created table space, the following
related objects are also dropped:
v The enforcing primary and unique key indexes
v Any LOB table spaces, auxiliary tables, and auxiliary indexes
v The ROWID index (if the ROWID column is defined as GENERATED

BY DEFAULT)

If any LOB columns are defined on the table, the LOB table space is
dropped if it was implicitly created. You can use the DROP statement to
drop a LOB table space only if one of the following conditions it true:
v The base table space is explicitly created
v The base table space is implicitly created but the LOB table space is

explicitly created

You cannot use the DROP statement to drop a LOB table space if both the
base table space and the LOB table space are implicitly created.

Dropping an index on an auxiliary table and an auxiliary table:
You can explicitly drop an empty index on an auxiliary table with the
DROP INDEX statement, unless the base table space is implicitly created.
An empty or populated index on an auxiliary table is implicitly dropped
when:
v The auxiliary table is empty and it is explicitly dropped (empty indexes

only).
v The associated base table for the auxiliary table is dropped.
v The base table space that contains the associated base table is dropped.

You can explicitly drop an empty auxiliary table with the DROP TABLE
statement, unless the base table space is implicitly created. An empty or
populated auxiliary table is implicitly dropped when:
v The associated base table for the auxiliary table is dropped.
v The base table space that contains the associated base table is dropped.

The following table shows which DROP statements implicitly or explicitly
cause an auxiliary table and the index on that table to be dropped, as
indicated by the 'D' in the column.

Table 137. Effect of various DROP statements on auxiliary tables and indexes that are in
explicitly created table spaces

Statement

Auxiliary table Index on auxiliary table

Populated Empty Populated Empty

DROP TABLESPACE
(base table space)

D D D D

DROP TABLE (base
table)

D D D D

DROP TABLE
(auxiliary table)

D D

Chapter 5. Statements 1625

Table 137. Effect of various DROP statements on auxiliary tables and indexes that are in
explicitly created table spaces (continued)

Statement

Auxiliary table Index on auxiliary table

Populated Empty Populated Empty

DROP INDEX (index
on auxiliary table)

D

Note: D indicates that the table or index is dropped.

Dropping a migrated index or table space:
Here, “migration” means migrated by the Hierarchical Storage Manager
(DFSMShsm). DB2 does not wait for any recall of the migrated data sets.
Hence, recall is not a factor in the time it takes to execute the statement.

Dropping a trusted context:
The drop of a trusted context takes effect after the DROP TRUSTED
CONTEXT statement is committed. If the DROP TRUSTED CONTEXT
statement results in an error or is rolled back, the trusted context is not
dropped.

Deleting SYSLGRNG records for dropped table spaces:
After dropping a table space, you cannot delete the associated records. If
you want to remove the records, you must quiesce the table space, and
then run the MODIFY RECOVERY utility before dropping the table space. If
you delete the SYSLGRNG records and drop the table space, you cannot
reclaim the table space.

Invalidation of packages and dynamic cached statements after dropping row
permissions or column masks:

If row or column access control is currently enforced for the table,
dropping the row permission or the column mask invalidates all packages
and dynamic cached statements that reference the table. Otherwise no
package or dynamic cached statement is invalidated.

Dependencies when dropping objects:
Whenever an object is directly or indirectly dropped, other objects that
depend on the dropped object might also be dropped. (The catalog stores
information about the dependencies of objects on each other.) The
following semantics determine what happens to a dependent object when
the object that it depends on (the underlying object) is dropped:

Cascade (D)
Dropping the underlying object causes the dependent object to be
dropped. However, if the dependent object cannot be dropped
because it has a restrict dependency on another object, the drop of
the underlying object fails.

Restrict (D)
The underlying object cannot be dropped if a dependent object
exists.

Inoperative (O)
Dropping the underlying object causes the dependent object to
become inoperative.

Invalidation (V)
Dropping the underlying object causes the dependent object to
become invalidated.

1626 SQL Reference

For objects that directly depend on others, the following table uses the
letter abbreviations above to summarize what happens to a dependent
object when its underlying object is specified in a DROP statement.
Additional objects can be indirectly affected, too.

To determine the indirect effects of a DROP statement, assess what
happens to the dependent object and whether the dependent object has
objects that depend on it. For example, assume that view B is defined on
table A and view C is defined on view B. In the following table, the 'D' in
the VIEW column of the DROP TABLE row indicates that view B is
dropped when table A is dropped. Next, because view C is dependent on
view B, check the VIEW column for DROP VIEW. The 'D' in the column
indicates that view C will be dropped, too.

The letters in the following table have the following meanings:
D Dependent object is dropped.
O Dependent object is made inoperative.
V Dependent object is invalidated.
R DROP statement fails.

Table 138. Effect of dropping objects that have dependencies

DROP statement

Type of object

A
l
i
a
s

D
a
t
a
b
a
s
e

F
u
n
c
t
i
o
n

G
l
o
b
a
l

v
a
r
i
a
b
l
e

I
n
d
e
x

P
a
c
k
a
g
e 1

P
r
o
c
e
d
u
r
e

S
e
q
u
e
n
c
e

S
t
o
g
r
o
u
p

S
y
n
o
n
y
m

T
a
b
l
e

T
a
b
l
e

s
p
a
c
e

T
r
i
g
g
e
r

T
y
p
e

V
i
e
w

DROP ALIAS V

DROP DATABASE D2 D D D

DROP FUNCTION R5

17

18

O R17

18
R R

DROP INDEX2,6 V V

DROP PACKAGE7

DROP PROCEDURE R
17

18

O R17

18
R

DROP ROLE V

DROP SEQUENCE R13 V R

DROP STOGROUP R8 R8

DROP SYNONYM

DROP TABLE9,10 D V D D11 D

DROP
TABLESPACE12

D V D

Chapter 5. Statements 1627

||

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

||||||||||||||||

||||||||||||||||

||||
|
|

||||
|
||||||||

||||||||||||||||

||||||||||||||||

||||
|
|

||||
|
||||||||

||||||||||||||||

||||||||||||||||

||||||||||||||||

||||||||||||||||

||||||||||||||||

|
|
|||||||||||||||

Table 138. Effect of dropping objects that have dependencies (continued)

DROP statement

Type of object

A
l
i
a
s

D
a
t
a
b
a
s
e

F
u
n
c
t
i
o
n

G
l
o
b
a
l

v
a
r
i
a
b
l
e

I
n
d
e
x

P
a
c
k
a
g
e 1

P
r
o
c
e
d
u
r
e

S
e
q
u
e
n
c
e

S
t
o
g
r
o
u
p

S
y
n
o
n
y
m

T
a
b
l
e

T
a
b
l
e

s
p
a
c
e

T
r
i
g
g
e
r

T
y
p
e

V
i
e
w

DROP TRIGGER V16

DROP TYPE R3 R14 R4 R R

DROP VARIABLE R V R R

DROP VIEW V D D15 D

Notes:

1. The PACKAGE column represents packages for user-defined functions, procedures, and
triggers, as well as other packages. The PACKAGE column also applies for plans.

2. The index space associated with the index is dropped.

3. If a function is dependent on the user-defined type being dropped, the user-defined
type cannot be dropped unless the function is one of the cast functions that was created
for the user-defined type.

4. If the definition of a parameter of a stored procedure uses the user-defined type, the
user-defined type cannot be dropped.

5. If other user-defined functions are sourced on the user-defined function being dropped,
the function cannot be dropped.

6. An index on an auxiliary table cannot be explicitly dropped.

7. A trigger package cannot be explicitly dropped with DROP PACKAGE. A trigger
package is implicitly dropped when the associated trigger or subject table is dropped.

8. A storage group cannot be dropped if it is used by any table space or index space.

9. An auxiliary table cannot be explicitly dropped with DROP TABLE. An auxiliary table
is implicitly dropped when the associated base table is dropped.

10. If an implicit table space was created when the table was created, the table space is also
dropped.

11. When a subject table is dropped, any associated triggers and related trigger packages
are also dropped.

12. A LOB table space cannot be dropped until the base table with the LOB columns is
dropped.

13. This restriction is only for SQL functions.

14. The index in this case must be an expression-based index.

15. When a subject view is dropped, any associated triggers and related trigger packages
are also dropped.

16. Any packages that have a dependency on an INSTEAD OF trigger will be marked
invalid.

17. A routine that is referenced by a non-inline SQL scalar function cannot be dropped.

18. A routine that is referenced by a native SQL procedure cannot be dropped.

1628 SQL Reference

|

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

||||||||||||||||

||||||||||||||||

||||||||||||||||

||||||||||||||||

|

|
|

|

|
|
|

|
|

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|

|
|

Alternative syntax and synonyms:
To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following keywords:
v DATA TYPE or DISTINCT TYPE as a synonym for TYPE
v PROGRAM as a synonym for PACKAGE
v DROP ALIAS SYSPUBLIC.name can be specified as an alternative to

DROP PUBLIC ALIAS SYSPUBLIC.name

Examples

Example 1: Drop table DSN8B10.DEPT.
DROP TABLE DSN8B10.DEPT;

Example 2: Drop table space DSN8S11D in database DSN8D11A.
DROP TABLESPACE DSN8D11A.DSN8S11D;

Example 3: Drop the view DSN8B10.VPROJRE1:
DROP VIEW DSN8B10.VPROJRE1;

Example 4: Drop the package DSN8CC0 with the version identifier VERSZZZZ. The
package is in the collection DSN8CC61. Use the version identifier to distinguish
the package to be dropped from another package with the same name in the same
collection.

DROP PACKAGE DSN8CC61.DSN8CC0 VERSION VERSZZZZ;

Example 5: Drop the package DSN8CC0 with the version identifier
“1994-07-14-09.56.30.196952”. When a version identifier is generated by the
VERSION(AUTO) precompiler option, delimit the version identifier.

DROP PACKAGE DSN8CC61.DSN8CC0 VERSION "1994-07-14-09.56.30.196952";

Example 6: Drop the distinct type DOCUMENT, if it is not currently in use:
DROP TYPE DOCUMENT;

Example 7: Assume that you are SMITH and that ATOMIC_WEIGHT is the only
function with that name in schema CHEM. Drop ATOMIC_WEIGHT.

DROP FUNCTION CHEM.ATOMIC_WEIGHT;

Example 8: Assume that you are SMITH and that you created the function CENTER
in schema SMITH. Drop CENTER, using the function signature to identify the
function instance to be dropped.

DROP FUNCTION CENTER(INTEGER, FLOAT);

Example 9: Assume that you are SMITH and that you created another function
named CENTER, which you gave the specific name FOCUS97, in schema
JOHNSON. Drop CENTER, using the specific name to identify the function
instance to be dropped.

DROP SPECIFIC FUNCTION JOHNSON.FOCUS97;

Example 10: Assume that you are SMITH and that stored procedure OSMOSIS is in
schema BIOLOGY. Drop OSMOSIS.

DROP PROCEDURE BIOLOGY.OSMOSIS;

Example 11: Assume that you are SMITH and that trigger BONUS is in your
schema. Drop BONUS.

Chapter 5. Statements 1629

|
|

DROP TRIGGER BONUS;

Example 12: Drop the role CTXROLE:
DROP ROLE CTXROLE;

Example 13: Drop the trusted context CTX1:
DROP TRUSTED CONTEXT CTX1;

1630 SQL Reference

END DECLARE SECTION
The END DECLARE SECTION statement marks the end of an SQL declare section.

Invocation

This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java or REXX.

Authorization

None required.

Syntax

�� END DECLARE SECTION ��

Description

The END DECLARE SECTION statement can be coded in the application program
wherever declarations can appear in accordance with the rules of the host
language. It is used to indicate the end of an SQL declare section. An SQL declare
section starts with a BEGIN DECLARE SECTION statement described in “BEGIN
DECLARE SECTION” on page 1115.

The following rules are enforced by the precompiler only if the host language is C
or the STDSQL(YES) precompiler option is specified:
v A variable referred to in an SQL statement must be declared within an SQL

declare section of the source program.
v BEGIN DECLARE SECTION and END DECLARE SECTION statements must be

paired and must not be nested.
v SQL declare sections can contain only host variable declarations, SQL INCLUDE

statements that include host variable declarations, or DECLARE VARIABLE
statements.

Notes

SQL declare sections are only required if the STDSQL(YES) option is specified or
the host language is C. However, SQL declare sections can be specified for any
host language so that the source program can conform to IBM SQL. If SQL declare
sections are used, but not required, variables declared outside an SQL declare
section should not have the same name as variables declared within an SQL
declare section.

Example
EXEC SQL BEGIN DECLARE SECTION;

-- host variable declarations

EXEC SQL END DECLARE SECTION;

Chapter 5. Statements 1631

EXCHANGE
The EXCHANGE statement switches the content of a base table and its associated
clone table.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set that is defined below must include at least one of the following
privileges:
v The INSERT and DELETE privileges on both the base table and the clone table
v Ownership of the both the base table and the clone table
v DBADM authority for the database
v SYSADM authority
v DATAACCESS authority

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the statement is dynamically prepared, the privilege set is the union of the
privilege sets that are held by each authorization ID of the process.

Syntax

�� EXCHANGE DATA BETWEEN TABLE table-name1 AND table-name2 ��

Description

table-name1 and table-name2
Identifies the base table and the associated clone table for which the exchange
of data will take place. Either table-name1 or table-name2 can identify the base
table. The other table name must identify a clone table that is associated with
the specified base table. The name of the base table and the name of the clone
table remain unchanged after a data exchange.

Notes

Rules and restrictions: Data exchanges cannot be done for a subset of a table's
partitions. There must be a commit between consecutive data exchanges using the
EXCHANGE statement.

Examples

Example: Exchange the data of the EMPLOYEE table and its clone table,
EMPCLONE.

EXCHANGE DATA BETWEEN TABLE EMPCLONE AND EMPLOYEE;

1632 SQL Reference

EXECUTE
The EXECUTE statement executes a prepared SQL statement.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization

See “PREPARE” on page 1781 for the authorization required to create a prepared
statement.

Syntax

�� EXECUTE statement-name

�

,

USING variable
USING DESCRIPTOR descriptor-name

(1)
source-row-data

��

Notes:

1 This option can be specified only when statement-name refers to a dynamic INSERT or MERGE
statement that is prepared with FOR MULTIPLE ROWS and is specified as part of the
ATTRIBUTES clause on the PREPARE statement.

�� �

,

USING host-variable-array
host-variable

USING DESCRIPTOR descriptor-name

(1)

FOR host-variable ROWS
integer-constant

��

Notes:

1 The FOR n ROWS clause is required on the EXECUTE statement if it is not specified as part of
the MERGE statement and a host variable array is specified. The FOR n ROWS clause is also
required if MERGE is used with multiple rows of source data. For an INSERT statement, the FOR
n ROWS clause can only be specified for a dynamic statement that contains only a single
multiple-row INSERT statement.

Description

statement-name
Identifies the prepared statement to be executed. statement-name must identify a

source-row-data:

Chapter 5. Statements 1633

|

statement that was previously prepared within the unit of work and the
prepared statement must not be a SELECT statement.

USING
Introduces a list of variables whose values are substituted for the parameter
markers (question marks) in the prepared statement. (For an explanation of
parameter markers, see “PREPARE” on page 1781.) If the prepared statement
includes parameter markers, you must include USING in the EXECUTE
statement. USING is ignored if there are no parameter markers.

For more on the substitution of values for parameter markers, see Parameter
marker replacement.

variable,...
Identifies a variable or a host structure that is declared in the application
program in accordance with the rules for declaring variables and host
structures. When the statement is executed, a reference to a structure is
replaced by a reference to each of its variables. The number of variables
must be the same as the number of parameter markers in the prepared
statement. The nth variable corresponds to the nth parameter marker in the
prepared statement. Where appropriate, locator variables and file reference
variables can be provided as the source of values for parameter markers.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that contains a valid description of the input host
variables.

Before invoking the EXECUTE statement, you must set the following fields in
the SQLDA:
v SQLN to indicate the number of SQLVAR occurrences that are provided in

the SQLDA
A REXX SQLDA does not contain this field.

v SQLABC to indicate the number of bytes of storage that are allocated for the
SQLDA

v SQLD to indicate the number of variables that are used in the SQLDA when
processing the statement

v SQLVAR entries to indicate the attributes of the variables

The SQLDA must have enough storage to contain all SQLVAR entries. If an
SQLVAR entry includes a LOB value or a distinct type based on a LOB, there
must be additional SQLVAR entries for each parameter. For more information
on the SQLDA, which includes a description of the SQLVAR and an
explanation on how to determine the number of SQLVAR entries, see “SQL
descriptor area (SQLDA)” on page 2079.

SQLD must be set to a value that is greater than or equal to zero and less than
or equal to SQLN. It must be the same as the number of parameter markers in
the prepared statement. The nth variable described by the SQLDA corresponds
to the nth parameter marker in the prepared statement.

See “Identifying an SQLDA in C or C++” on page 2099 for how to represent
descriptor-name in C.

source-row-data
The prepared statement must be an INSERT or MERGE statement for which
the FOR MULTIPLE ROWS clause is specified as part of the ATTRIBUTES
clause on the PREPARE statement.

USING host-variable-array or host-variable
Introduces a list of host variables or host variable arrays whose values are

1634 SQL Reference

substituted for the parameter markers (question marks) in the prepared
INSERT or MERGE statement. The number of columns specified in the INSERT
or MERGE statement must be less than or equal to the total number of host
variables or host variable arrays that are specified.

host-variable-array
Identifies a host-variable array that must be defined in the application
program in accordance with the rules for declaring a host variable array. A
reference to a structure is replaced by a reference to each of its variables.
The number of variables must be the same as the number of parameter
markers in the prepared statement. The nth variable supplies the value for
the nth parameter marker in the prepared statement.

host-variable
Identifies a variable that must be described in the application program in
accordance with the rules for declaring host variables.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of the host variable
arrays or host variables that contain the values to insert.

Before invoking the EXECUTE statement for a dynamic INSERT or MERGE
statement, you must set the following fields in the SQLDA:
v SQLN to indicate the number of SQLVAR entries that are provided in the

SQLDA.
v SQLABC to indicate the number of bytes of storage that are allocated for the

SQLDA.
v SQLD to indicate the number of variables, plus one, that are used in the

SQLDA that provide values for columns that are the source of the INSERT
or MERGE statement. SQLD must be set to a value that is greater than or
equal to zero and less than or equal to SQLN.

v SQLVAR entries to indicate the attributes of an element of the host variable
array for the SQLVAR entries that correspond to values that are provided for
the source columns of the INSERT or MERGE statement. Within each
SQLVAR, the following fields are set:
– SQLTYPE indicates the data type of the elements of the host variable

array.
– SQLDATA points to the corresponding host variable array.
– SQLLEN and SQLLONGLEN indicate the length of a single element of

the array.
v SQLNAME, the fifth and sixth bytes must contain a flag field and the

seventh and eighth bytes must contain a binary small integer (halfword) that
contains the dimension of the host-variable array and, if specified, the
corresponding indicator array.

The SQLDA must have enough storage to contain a SQLVAR entry for each
target column for which values are provided, plus an additional SQLVAR entry
for the number of rows. The DB2 system generates code to enter the required
information for this extra SQLVAR entry. Each SQLVAR entry describes a host
variable, host variable array, or buffer that contains the values for a column of
the source table. The last SQLVAR entry contains the number of rows of data.
For example, if the INSERT or MERGE statement is providing values for five
columns of the target table, six SQLVAR entries must be provided. If any value
is a LOB value, twice as many SQLVAR entries must be provided, and SQLN
must be set to the number of SQLVAR entries. Thus, if the INSERT or MERGE

Chapter 5. Statements 1635

statement is providing values for five columns of the source table, and some of
the values to insert are LOB values, 12 SQLVAR entries must be provided.

The SQLVAR entry for the number of rows must also contain a flag value. See
“Field descriptions of an occurrence of a base SQLVAR” on page 2085 for more
information.

You set the SQLDATA and SQLIND pointers to the beginning of the
corresponding arrays.

FOR host-variable or integer-constant ROWS
Specifies the number of rows of source data. The values for the insert or merge
operation are specified in the USING clause.

host-variable or integer-constant is assigned to an integral value k. If host-variable
is specified, it must be an exact numeric type with a scale of zero and must not
include an indicator variable. k must be in the range 0 to 32767.

FOR n ROWS cannot be specified on the EXECUTE statement if the statement
being processed is a dynamic INSERT or MERGE statement that includes a
FOR n ROWS clause.

Notes

Excessive processor time:
DB2 can stop the execution of a prepared SQL statement if the statement is
taking too much processor time to finish. When this happens, an error
occurs. The application that issued the statement is not terminated; it is
allowed to issue another SQL statement.

Parameter marker replacement:
Before the prepared statement is executed, each parameter marker in the
statement is effectively replaced by its corresponding host variable. The
replacement is an assignment operation in which the source is the value of
the host variable and the target is a variable within DB2. The assignment
rules are those described for assignment to a column in “Assignment and
comparison” on page 121. For a typed parameter marker, the attributes of
the target variable are those specified by the CAST specification. For an
untyped parameter marker, the attributes of the target variable are
determined according to the context of the parameter marker. For the rules
that affect parameter markers, see Parameter markers.

Let V denote a host variable that corresponds to parameter marker P. The
value of V is assigned to the target variable for P in accordance with the
rules for assigning a value to a column:
v V must be compatible with the target.
v If V is a string, its length must not be greater than the length attribute of

the target.
v If V is a number, the absolute value of its integral part must not be

greater than the maximum absolute value of the integral part of the
target.

v If the attributes of V are not identical to the attributes of the target, the
value is converted to conform to the attributes of the target.

v If the target cannot contain nulls, V must not be null.

When the prepared statement is executed, the value used in place of P is
the value of the target variable for P. For example, if V is CHAR(6) and the
target is CHAR(8), the value used in place of P is the value of V padded
on the right with two blanks.

1636 SQL Reference

Errors occurring on EXECUTE:
In local and remote processing, the DEFER(PREPARE) and
REOPT(ALWAYS)/REOPT(ONCE) bind options can cause some errors that
are normally issued during PREPARE processing to be issued on
EXECUTE.

Considerations for executing data definition statements written in native SQL
language:

A data definition statement written in native SQL language can only be
executed one time. To execute the data definition statement multiple times,
issue the PREPARE statement prior to each use of the EXECUTE statement
for the data definition statement.

Examples

Example 1: In this example, an INSERT statement with parameter markers is
prepared and executed. S1 is a structure that corresponds to the format of
DSN8B10.DEPT.

EXEC SQL PREPARE DEPT_INSERT FROM
’INSERT INTO DSN8B10.DEPT VALUES(?,?,?,?)’;

-- Check for successful execution and read values into S1
EXEC SQL EXECUTE DEPT_INSERT USING :S1;

Example 2: Assume that the IWH.PROGPARM table has 9 columns. Prepare and
execute a dynamic INSERT statement that inserts 5 rows of data into the
IWH.PROGPARM table. The values to be inserted are provided in arrays, where all
the values for a column are provided in an host-variable-array with the EXECUTE
statement.
STMT = ’INSERT INTO IWH.PROGPARM (IWHID, UPDATE_BY,UPDATE_TS,NAME,

SHORT_DESCRIPTION, ORDERNO, PARMDATA,
PARMDATALONG, VWPROGKEY)

VALUES (? , ? , ? , ? , ? , ? , ? , ? , ?)’;
ATTRVAR = ’FOR MULTIPLE ROWS’;
EXEC SQL PREPARE INS_STMT ATTRIBUTES :ATTRVAR FROM :STMT;
NROWS = 5;
EXEC SQL EXECUTE INS_STMT FOR :NROWS ROWS

USING :V1, :V2, :V3, :V4, :V5, :V6, :V7, :V8, :V9;

In this example, each host variable in the USING clause represents an array of
values for the corresponding column of the target of the INSERT statement.

Example 3: Using dynamically supplied values for an employee row, update the
master EMPLOYEE table if the data is for an existing employee or insert a new
row if the data is for a new employee.
hv_stmt =

"MERGE INTO EMPLOYEE AS T
USING (VALUES (CAST (? AS CHAR(6)), CAST (? AS VARCHAR(12)),

CAST (? AS CHAR(1)), CAST (? AS VARCHAR(15)),
CAST (? AS INTEGER)))

AS S (EMPNO, FIRSTNAME, MI, LASTNAME, SALARY)
ON T.EMPNO = S.EMPNO
WHEN MATCHED THEN UPDATE

SET SALARY = S.SALARY
WHEN NOT MATCHED THEN INSERT (EMPNO, FIRSTNAME, MI, LASTNAME, SALARY)

VALUES (S.EMPNO, S.FIRSTNAME, S.MI, S.LASTNAME, S.SALARY)
NOT ATOMIC CONTINUE ON SQLEXCEPTION";

hv_attr = ’FOR MULTIPLE ROWS’;
EXEC SQL

PREPARE merge_stmt
ATTRIBUTES :hv_attr FROM :hv_stmt;

Chapter 5. Statements 1637

|
|
|
|
|
|

hv_nrows = 5;
/* Initialize the hostvar array of hv_empno, hv_firstname... */
EXEC SQL

EXECUTE merge_stmt
USING :hv_empno, :hv_firstname, :hv_mi,

:hv_lastname, :hv_salary
FOR :hv_nrows ROWS;

Example 4: Suppose that the following array type, array variable, and table have
been defined.
CREATE TYPE INTARRAY AS INTEGER ARRAY[100];
CREATE TYPE STRINGARRAY AS VARCHAR(10) ARRAY[100];
CREATE TABLE T1 (COL1 CHAR(10), COL2 INT);

Use as an array variable as an input value for an expression in an EXECUTE
statement.
CREATE PROCEDURE PROCESSPERSONS (OUT WITHO STRINGARRAY, INOUT INT0 INT)
BEGIN
DECLARE INTA INTARRAY;
DECLARE STMT CHAR(100);
-- Initialize the array
SET INTA = ARRAY[1,INTEGER(2),3+0,4,5,6] ;
-- Use dynamic sql with an array parameter marker to
-- provide a value for a dynamic INSERT statement
SET STMT = ’INSERT INTO T1 VALUES(’XYZ’, CARDINALITY(CAST(? AS INTARRAY)))’;
PREPARE INS_STMT FROM STMT;
EXECUTE INS_STMT USING INTA;
-- INTA is an array variable used as input for the
-- INSERT statement
...
END

1638 SQL Reference

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

EXECUTE IMMEDIATE
EXECUTE IMMEDIATE combines the basic functions of the PREPARE and
EXECUTE statements. It can be used to prepare and execute an SQL statement that
contains neither host variables nor parameter markers.

The EXECUTE IMMEDIATE statement:
v Prepares an executable form of an SQL statement from a string form of the

statement
v Executes the SQL statement
v Destroys the executable form

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization

The authorization rules are those defined for the dynamic preparation of the SQL
statement specified by EXECUTE IMMEDIATE. For example, see “INSERT” on
page 1734 for the authorization rules that apply when an INSERT statement is
executed using EXECUTE IMMEDIATE.

Syntax

�� EXECUTE IMMEDIATE host-variable
string-expression

��

Description

host-variable
host-variable must be specified. It must identify a host variable that is described
in the application program in accordance with the rules for declaring character
or graphic string variables. If the source string is over 32KB in length, the
host-variable must be a CLOB or DBCLOB variable. The maximum source
length is 2MB although the host variable can be declared larger than 2MB. An
indicator variable must not be specified. In Assembler, C, COBOL, and PL/I,
the host variable must be a varying-length string variable. In C, it must not be
a NUL-terminated string. In SQL PL, an SQL variable is used in place of a host
variable and the value must not be null.

string-expression
string-expression is any PL/I expression that yields a string. string-expression
cannot be preceded by a colon. Variables that are within string-expression that
include operators or functions should not be preceded by a colon. When
string-expression is specified, the precompiler-generated structures for
string-expression use an EBCDIC CCSID and an informational message is
returned.

Chapter 5. Statements 1639

Notes

Allowable SQL statements:
The value of the identified host variable or the specified string-expression is
called the statement string.

The statement string must be one of the following SQL statements, and
cannot be the select-statement:

ALLOCATE CURSOR
ALTER
ASSOCIATE LOCATORS
COMMENT
COMMIT
CREATE
DECLARE GLOBAL TEMPORARY

TABLE
DELETE
DROP
EXPLAIN
FREE LOCATOR
GRANT
HOLD LOCATOR
INSERT
LABEL
LOCK TABLE
MERGE
REFRESH TABLE
RELEASE SAVEPOINT
RENAME

REVOKE
ROLLBACK
SAVEPOINT
SET CURRENT DEGREE
SET CURRENT DECFLOAT ROUNDING MODE
SET CURRENT DEBUG MODE
SET CURRENT LOCALE LC_CTYPE
SET CURRENT MAINTAINED TABLE TYPES

FOR OPTIMIZATION
SET CURRENT OPTIMIZATION HINT
SET CURRENT PRECISION
SET CURRENT QUERY ACCELERATION
SET CURRENT REFRESH AGE
SET CURRENT ROUTINE VERSION
SET CURRENT RULES
SET CURRENT SQLID
SET ENCRYPTION PASSWORD
SET PATH
SET SCHEMA
SIGNAL
TRUNCATE
UPDATE

The statement string must not:
v Begin with EXEC SQL
v End with END-EXEC or a semicolon
v Include references to variables
v Include parameter markers

Errors and error handling:
When an EXECUTE IMMEDIATE statement is executed, the specified
statement string is parsed and checked for errors. If the SQL statement is
invalid, it is not executed and the error condition that prevents its
execution is reported in the SQLCA. If the SQL statement is valid, but an
error occurs during its execution, that error condition is reported in the
SQLCA.

DB2 can stop the execution of a prepared SQL statement if the statement is
taking too much CPU time to finish. When this happens an error occurs.
The application that issued the statement is not terminated; it is allowed to
issue another SQL statement.

Effect of the CURRENT EXPLAIN MODE special register:
If the CURRENT EXPLAIN MODE special register is set to EXPLAIN, the
statement is prepared for explain only and is not executable, unless the
statement is a SET statement. Attempting to execute the prepared
statement will return an error. See the “CURRENT EXPLAIN MODE” on
page 175 special register for more information.

1640 SQL Reference

Performance considerations:
If the same SQL statement is to be executed more than once, it is more
efficient to use the PREPARE and EXECUTE statements rather than the
EXECUTE IMMEDIATE statement.

Examples

Example 1: In this PL/I example, the EXECUTE IMMEDIATE statement is used to
execute a DELETE statement in which the rows to be deleted are determined by a
search-condition specified by the value of PREDS.
EXEC SQL EXECUTE IMMEDIATE ’DELETE FROM DSN8B10.DEPT

WHERE’ || PREDS;

Example 2: Use C to execute the SQL statement in the host variable Qstring.
EXEC SQL INCLUDE SQLCA;
void main ()

{
EXEC SQL BEGINDECLARE SECTION;
char Qstring[100M =

"INSERT INTO WORK_TABLE SELECT * FROM EMPPROJACT WHERE ACTNO >= 100";
EXEC SQL END DECLARE SECTION;
.
.
.
EXEC SQL EXECUTE IMMEDIATE :Qstring;
return;
}

Chapter 5. Statements 1641

EXPLAIN
The EXPLAIN statement obtains information about access path selection for an
explainable statement. A statement is explainable if it is a SELECT, MERGE, or
INSERT statement, or the searched form of an UPDATE or DELETE statement. The
information that is obtained is placed in a set of supplied user tables that are
called EXPLAIN tables.

PSPI

The plan table contains information about the access path for the explained
statement. The statement table can be populated with information about the
estimated cost of executing the explainable statement. The function table can be
populated with information about how DB2 resolves the user-defined functions
that are referred to in the explainable statement. Other EXPLAIN tables can be
populated with additional information about the execution of the explainable
statement. For a complete list of EXPLAIN tables, see “EXPLAIN tables” on page
2470.

Using EXPLAIN in queries that references system-period temporal tables that are
enabled for system data versioning, the result will show the system-period
temporal tables and the history tables in EXPLAIN output if the query needs to
reference both tables to satisfy the query.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

The authorization rules are those defined for the SQL statement specified in the
EXPLAIN statement. For example, see the description of the DELETE statement for
the authorization rules that apply when a DELETE statement is explained.

If the EXPLAIN statement is embedded in an application program, the
authorization rules that apply are those defined for embedding the specified SQL
statement in an application program. In addition, the owner of the plan or package
must also have one of the following characteristics:
v Be the owner of a plan table named PLAN_TABLE
v Have an alias on a plan table named owner.PLAN_TABLE and have SELECT and

INSERT privileges on the table

If the EXPLAIN statement is dynamically prepared, the authorization rules that
apply are those defined for dynamically preparing the specified SQL statement. In
addition, the SQL authorization ID of the process or the role this is associated with
the process (if the EXPLAIN statement is running in a trusted context that specifies
the ROLE AS OBJECT OWNER AND QUALIFIER clause) must also have one of
the following characteristics:
v Be the owner of a plan table named PLAN_TABLE
v Have an alias on a plan table named owner.PLAN_TABLE and have SELECT and

INSERT privileges on the table

1642 SQL Reference

To issue the EXPLAIN statement with the PLAN and ALL keywords, the privilege
set that is defined below must include at least one of the following:
v EXPLAIN
v SQLADM
v System DBADM
v The authorization rules that are defined for the SQL statement specified in the

EXPLAIN statement. For example, the authorization rules that apply when a
DELETE statement is explained are the authorization rules for the DELETE
statement.

The authorization rules are different if the STMTCACHE keyword is specified to
have a cached statement explained. The privilege set must include at least one of
the following:
v SQLADM authority
v SYSADM authority
v The authority that is required to share the cached statement.
v System DBADM authority

For the STMTCACHE ALL keyword, the privilege set must include at least one of
the following:
v SQLADM authority
v System DBADM authority
v SYSADM authority to explain all statements in the dynamic statement cache

If the privilege set does not have the required authority, only those statements that
have the same authorization ID as the privilege set are explained.

For the PACKAGE keyword, the privilege set must include at least one of the
following:
v SQLADM authority
v SYSADM authority
v SYSOPR authority
v SYSCTRL authority

Privilege set: The privilege set comprises the union of authorities that are held by
the authorization IDs of the process. If the process is running in a trusted context
with a role, this role would be included as an authorization ID of the process.

Syntax

�� EXPLAIN PLAN FOR explainable-sql-statement
ALL SET QUERYNO=integer

STMTCACHE ALL
STMTID id-host-variable

integer-constant
STMTTOKEN token-host-variable

string-constant
PACKAGE package-scope-specification

��

Chapter 5. Statements 1643

�� COLLECTION collection-name PACKAGE package-name
VERSION version-name

�

�
COPY copy-id

��

Description

PLAN
Inserts one row into the plan table for each step used in executing
explainable-sql-statement. The steps for enforcing referential constraints are not
included.

If a statement table exists, one row that provides a cost estimate of processing
the explainable statement is inserted into the statement table. If the explainable
statement is a SELECT FROM data-change-statement, two rows are inserted into
the statement table.

If a function table exists, one row is inserted into the function table for each
user-defined function that is referred to by the explainable statement.

If additional EXPLAIN tables exist, rows are also inserted into those tables.

Related reference:

“EXPLAIN tables” on page 2470
“PLAN_TABLE” on page 2471
“DSN_STATEMNT_TABLE” on page 2573
“DSN_FUNCTION_TABLE” on page 2509

ALL
Has the same effect as PLAN.

SET QUERYNO = integer
Associates integer with explainable-sql-statement. The column QUERYNO is given
the value integer in every row inserted into the plan table, statement table, or
function table by the EXPLAIN statement. If QUERYNO is not specified, DB2
itself assigns a number. For an embedded EXPLAIN statement, the number is
the statement number that was assigned by the precompiler and placed in the
DBRM.

FOR explainable-sql-statement
Specifies the SQL statement to be explained. explainable-sql-statement can be any
explainable SQL statement. If EXPLAIN is embedded in a program, the
statement can contain references to host variables. If EXPLAIN is dynamically
prepared, the statement can contain parameter markers. Host variables that
appear in the statement must be defined in the statement's program.

The statement must refer to objects at the current server.

explainable-sql-statement must not contain a QUERYNO clause. To specify the
value of the QUERYNO column in plan table for the statement being
explained, use the SET QUERYNO = clause of the EXPLAIN statement.

package-scope-specification:

1644 SQL Reference

explainable-sql-statement cannot be a statement-name or a host-variable. To use
EXPLAIN to get information about dynamic SQL statements, you must prepare
the entire EXPLAIN statement dynamically.

To obtain information about an explainable SQL statement that references a
declared temporary table, the EXPLAIN statement must be executed in the
same application process in which the table was declared. For static EXPLAIN
statements, the information is not obtained at bind-time but at run time when
the EXPLAIN statement is incrementally bound.

STMTCACHE
Specifies that statements in the dynamic statement cache are to be explained.
In a data sharing environment, the statements in the dynamic statement cache
of the data sharing member where EXPLAIN STMTCACHE is executed are
explained.

ALL
Specifies that all of the cached statements are to be explained.
STMTCACHE ALL returns one row for each cached statement to the
DSN_STATEMENT_CACHE_TABLE. These rows contain identifying
information about the statements in the cache, as well as statistics that
reflect the execution of the statements by all processes that have executed
the statement. Records are not returned to other EXPLAIN tables when
STMTCACHE ALL is specified.

STMTID id-host-variable or integer-constant
Specifies that the cached statement with the specified statement ID is to be
explained. The value contained in id-host-variable or specified by
integer-constant identifies the statement ID. STMTCACHE STMTID returns
rows to the following EXPLAIN tables:
v PLAN_TABLE
v DSN_STATEMNT_TABLE
v DSN_FUNCTION_TABLE
v DSN_STATEMENT_CACHE_TABLE

The statement ID is an integer that uniquely identifies a statement that has
been cached in the dynamic statement cache. The statement ID of a cached
statement can be retrieved through IFI monitor facilities from IFCID 0316
or 0124. Some diagnostic trace records, such as IFCIDs 0173, 0196, and
0337, also show the statement ID.

The QUERYNO column of each EXPLAIN table record that is returned
contains the statement ID value.

STMTTOKEN id-host-variable or string-constant
Specifies that the cached statements with the specified statement token are
to be explained. The value contained in token-host-variable or specified by
string-constant identifies the statement token. STMTCACHE STMTTOKEN
returns rows to the following EXPLAIN tables:
v PLAN_TABLE
v DSN_STATEMNT_TABLE
v DSN_FUNCTION_TABLE
v DSN_STATEMENT_CACHE_TABLE

The statement token must be a character string that is no longer than 240
bytes. The application program that originally prepares and inserts a
statement into the cache associates a statement token with the cached

Chapter 5. Statements 1645

statement. The program can make this association with the RRSAF SET_ID
function, or the sqleseti API if the program is connected remotely.

The STMTTOKEN column of each PLAN_TABLE record that is returned
contains the statement token value. The QUERYNO column of each
EXPLAIN table record that is returned contains the statement ID value.

Related information:

“DSN_STATEMENT_CACHE_TABLE” on page 2567

PACKAGE
Specifies that all static SQL statements in the package that matches the
specified scope are explained. The explain information is added to the
PLAN_TABLE that is owned by the current user. Packages that are bound
prior to DB2 Version 9.1 for z/OS are not explained.

COLLECTION collection-name
Specifies that only statements under the specified collection-name are to be
explained. collection-name is a string constant or a host variable that
represents the collection name.

PACKAGE package-name
Specifies that only statements under the specified package-name are to be
explained. package-name is a string constant or a host variable that
represents the package name.

VERSION version-name
Specifies that only statements under the specified version-name are to be
explained. version-name is a string constant or a host variable that
represents the version name.

COPY copy-id
Specifies that only statements under the specified copy-id are to be
explained. copy-id must be one of the following values:
v CURRENT
v PREVIOUS
v ORIGINAL

If the COPYID clause is not specified, statements under all copies that exist
for that package (CURRENT, PREVIOUS, and ORIGINAL) are explained.

The HINT_USED column in the PLAN_TABLE is populated with EXPLAIN
PACKAGE: copy-id. copy-id in the HINT_USED column will be one of the
following values:
v “0” - the current copy
v “1” - the previous copy
v “2” - the original copy

Notes

Output from EXPLAIN:
DB2 inserts one or more rows of data into a plan table and other existing
EXPLAIN tables. A plan table must exist before the operation that results in
EXPLAIN output. For information about valid plan table formats see
“PLAN_TABLE” on page 2471. You can find a sample CREATE TABLE
statement for each EXPLAIN table in member DSNTESC of the
SDSNSAMP library.

1646 SQL Reference

Unless you need the information that is provided by the additional
EXPLAIN tables, it is not necessary to create those tables to use EXPLAIN.
However, a statement cache table is required when the STMTCACHE ALL
keyword is specified as part of an EXPLAIN statement.

Column access control or row permissions enforced for EXPLAIN tables:
Column access control and row permissions can be enforced for EXPLAIN
tables. However, row permissions and column masks are not applied when
DB2 inserts rows into those tables.

If the statement to be explained references tables for which row or column
access control is activated, the following information from row permission
and column mask definitions created for the tables might appear in the
EXPLAIN tables:
v DSN_FUNCTION_TABLE - user-defined functions
v DSN_PREDICAT_TABLE - predicates (except predicates in CASE WHEN

clauses)
v DSN_STRUCT_TABLE - query blocks
v PLAN_TABLE - access path of subqueries

In addition, the complete or partial definition text might appear in
EXPLAIN tables like DSN_FUNCTION_TABLE, DSN_PREDICAT_TABLE,
DSN_QUERY_TABLE, DSN_SORTKEY_TABLE,
DSN_STATEMENT_CACHE_TABLE, and
DSN_STATEMENT_RUNTIME_INFO.

Impact to the existing access paths when the table has enforced column access
control or row permissions:

The predicates from the row permissions are considered in the access path
selection. Therefore, they are shown in the EXPLAIN tables for the
performance tuning purpose.

EXPLAIN tables:
Each row in an EXPLAIN table describes some aspect of a step in the
execution of a query or subquery in an explainable statement. The column
values for the row identify, among other things, the query or subquery, the
tables and other objects involved, the methods used to carry out each step,
and cost information about those methods.

Instances of these tables might also be created and used by certain
optimization tools. For information about the meanings of different values
in plan table and other EXPLAIN tables, see .

For information about how to correlate information across EXPLAIN
tables, see Correlating information across EXPLAIN tables (DB2
Performance).

Important: Do not manually manipulate the data in EXPLAIN tables that
are created by optimization tools.

Plan table
owner.PLAN_TABLE.

Function table
owner.DSN_FUNCTION_TABLE.

Statement table
owner.DSN_STATEMNT_TABLE.

Chapter 5. Statements 1647

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_correlateexplaintables.htm#db2z_correlateexplaintables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_correlateexplaintables.htm#db2z_correlateexplaintables

Statement cache table
owner.DSN_STATEMENT_CACHE_TABLE.

Structure table
owner.DSN_STRUCT_TABLE.

Predicate table
owner.DSN_PREDICAT_TABLE.

Detailed cost table
owner.DSN_DETCOST_TABLE.

Sort table
owner.DSN_SORT_TABLE.

Sort key table
owner.DSN_SORTKEY_TABLE.

Filter table
owner.DSN_FILTER_TABLE.

Page range table
owner.DSN_PGRANGE_TABLE.

Parallel group table
owner.DSN_PGROUP_TABLE.

Parallel task table
owner.DSN_PTASK_TABLE.

View reference table
owner.DSN_VIEWREF_TABLE.

Query table
owner.DSN_QUERY_TABLE.

Query information table
owner.DSN_QUERYINFO_TABLE.

Predicate selectivity table
owner.DSN_PREDICATE_SELECTIVITY.

Statistics feedback table table
owner.DSN_STAT_FEEDBACK

Examples

Example 1: Determine the steps required to execute the query 'SELECT X.ACTNO...'.
Assume that no set of rows in the PLAN_TABLE has the value 13 for the
QUERYNO column.

EXPLAIN PLAN SET QUERYNO = 13
FOR SELECT X.ACTNO, X.PROJNO, X.EMPNO, Y.JOB, Y.EDLEVEL

FROM DSN8B10.EMPPROJACT X, DSN8B10.EMP Y
WHERE X.EMPNO = Y.EMPNO

AND X.EMPTIME > 0.5
AND (Y.JOB = ’DESIGNER’ OR Y.EDLEVEL >= 12)

ORDER BY X.ACTNO, X.PROJNO;

Example 2: Retrieve the information returned in Example 1. Assume that a
statement table exists, so also retrieve the estimated cost of processing the query.
Use the following query, which joins the plan table and the statement table.

SELECT * FROM PLAN_TABLE A, DSN_STATEMNT_TABLE B
WHERE A.QUERYNO = 13 and B.QUERYNO = 13
ORDER BY A.QBLOCKNO, A.PLANNO, A.MIXOPSEQ;

1648 SQL Reference

|
|

|
|

Example 3: Have the cached statement with statement ID 124 explained. Assume
that host variable SID contains 124.
EXPLAIN STMTCACHE STMTID :SID;

Example 4: Have one row of data for each statement in the dynamic statement
cache written to the DSN_STATEMENT_CACHE_TABLE.
EXPLAIN STMTCACHE ALL;

Example 5: Assume that you want to use the plan table that was created by
ADMF001 and your authorization ID is SYSADM. If you have an alias on
ADMF001.PLAN_TABLE (CREATE ALIAS SYSADM.PLAN_TABLE FOR
ADMF001.PLAN_TABLE) and sufficient INSERT and SELECT privileges on the
table, the following EXPLAIN statement will execute and ADMF001.PLAN_TABLE
will be populated.

EXPLAIN PLAN SET QUERYNO = 101
FOR SELECT * FROM DSN8B10.EMP;

Example 6: Add explain information to the current user’s PLAN_TABLE for all
static SQL statements in the current copy of the package 'COLLA.PACK52604':

EXPLAIN PACKAGE COLLECTION ’COLLA’ PACKAGE ’PACK52604’ COPY ’CURRENT’;

PSPI

Related concepts:

Interpreting data access by using EXPLAIN (DB2 Performance)
Related tasks:

Checking how DB2 resolves functions by using DSN_FUNCTION_TABLE (DB2
Application programming and SQL)

Capturing EXPLAIN information (DB2 Performance)
Related reference:

EXPLAIN bind option (DB2 Commands)

EXPLAIN tables (DB2 Performance)

Chapter 5. Statements 1649

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_interpretdataaccess.htm#db2z_interpretdataaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_checkfunctionresolution.htm#db2z_checkfunctionresolution
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_checkfunctionresolution.htm#db2z_checkfunctionresolution
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_captureexplaininfo.htm#db2z_captureexplaininfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptexplain.htm#db2z_bindoptexplain
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_explaintables.htm#db2z_explaintables

FETCH
The FETCH statement positions a cursor on a row of its result table. It can return
zero, one, or multiple rows and assigns the values of the rows to variables if there
is a target specification.

There are two forms of this statement:
v Single row fetch: positions the cursor and, optionally, retrieves data from a

single row of the result table.
v Multiple row fetch: positions the cursor on zero or more rows of the result table

and, optionally, returns data if there is a target specification.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. Multiple row fetch is
not supported in REXX, Fortran, or SQL Procedure applications35. The FETCH
statement with the WITH CONTINUE clause is not supported in REXX.

Authorization

See “DECLARE CURSOR” on page 1535 for an explanation of the authorization
required to use a cursor.

Syntax

�� FETCH
(1)

INSENSITIVE
(2)

SENSITIVE

(3)
WITH CONTINUE

fetch-orientation
FROM

�

� cursor-name
single-row-fetch
multiple-row-fetch

��

Notes:

1 The default depends on the sensitivity of the cursor. If INSENSITIVE is specified on the
DECLARE CURSOR, then the default is INSENSITIVE and if SENSITIVE is specified on the
DECLARE CURSOR, then the default is SENSITIVE.

2 If INSENSITIVE or SENSITIVE is specified, single-row-fetch or multiple-row-fetch must be specified.

3 If WITH CONTINUE is specified, single-row-fetch must be specified.

35. ASSEMBLER and other languages are supported, but this support is limited to statements that allow USING DESCRIPTOR. The
precompiler does not recognize host-variable-arrays except in C/C++, COBOL, and PL/I.

fetch-orientation

1650 SQL Reference

fetch-orientation:

(1)
BEFORE

(1)
AFTER

row-positioned
rowset-positioned

row-positioned:

NEXT

PRIOR
FIRST
LAST
CURRENT

CONTINUE
ABSOLUTE host-variable

integer-constant
RELATIVE host-variable

integer-constant

rowset-positioned:

NEXT ROWSET
PRIOR ROWSET
FIRST ROWSET
LAST ROWSET
CURRENT ROWSET
ROWSET STARTING AT ABSOLUTE host-variable

RELATIVE integer-constant

Notes:

1 If BEFORE or AFTER is specified, SENSITIVE, INSENSITIVE, single-row-fetch, or
multiple-row-fetch must not be specified.

fetch-type

Chapter 5. Statements 1651

single-row-fetch:

�

(1)

,

INTO target-variable
array-variable[array-index]

INTO DESCRIPTOR descriptor-name

target-variable:

host-variable-name
SQL-parameter-name
SQL-variable-name

multiple-row-fetch:

(2)

FOR host-variable ROWS
integer-constant

�

,

INTO host-variable-array
INTO DESCRIPTOR descriptor-name

Notes:

1 For single-row-fetch, a host-variable-array can be specified instead of a host variable and the
descriptor can describe host-variable-arrays. In either case, data is returned only for the first
entry of the host-variable-array.

2 This clause is optional. If this clause is not specified and either a rowset size has not been
established yet or a row positioned FETCH statement was the last type of FETCH statement
issued for this cursor, the rowset size is implicitly one. If the last FETCH statement issued for this
cursor was a rowset positioned FETCH statement and this clause is not specified, the rowset size
is the same size as the previous rowset positioned FETCH.

Description

INSENSITIVE
Returns the row from the result table as it is. If the row has been previously
fetched with a FETCH SENSITIVE, it reflects changes made outside this cursor
before the FETCH SENSITIVE statement was issued. Positioned updates and
deletes are reflected with FETCH INSENSITIVE if the same cursor was used
for the positioned update or delete.

INSENSITIVE can only be specified for cursors declared as INSENSITIVE or
SENSITIVE STATIC (or if the cursor is declared as ASENSITIVE and DB2
defaults to INSENSITIVE). Otherwise, if the cursor is declared as SENSITIVE
DYNAMIC (or if the cursor is declared as ASENSITIVE and DB2 defaults to
SENSITIVE DYNAMIC), an error occurs and the FETCH statement has no
effect. For an INSENSITIVE cursor, specifying INSENSITIVE is optional
because it is the default.

1652 SQL Reference

|||

|||

SENSITIVE
Updates the fetched row in the result table from the corresponding row in the
base table of the cursor's SELECT statement and returns the current values.
Thus, it reflects changes made outside this cursor. SENSITIVE can only be
specified for a sensitive cursor. Otherwise, if the cursor is insensitive, an error
occurs and the FETCH statement has no effect. For a SENSITIVE cursor,
specifying SENSITIVE is optional because it is the default.

When the cursor is declared as SENSITIVE STATIC and a FETCH SENSITIVE
is requested, the following steps are taken:
1. DB2 retrieves the row of the database that corresponds to the row of the

result table that is about to be fetched.
2. If the corresponding row has been deleted, a "delete hole" occurs in the

result table, a warning is issued, the cursor is repositioned on the "hole",
and no data is fetched. (DB2 marks a row in the result table as a "delete
hole" when the corresponding row in the database is deleted.)

3. If the corresponding row has not been deleted, the predicate of the
underlying SELECT statement is re-evaluated. If the row no longer satisfies
the predicate, an "update hole" occurs in the result table, a warning is
issued, the cursor is repositioned on the "hole," and no data is fetched.
(DB2 marks a row in the result table as an "update hole" when an update
to the corresponding row in the database causes the row to no longer
qualify for the result table.)

4. If the corresponding row does not result in a delete or an update hole in
the result table, the cursor is repositioned on the row of the result table and
the data is fetched.

WITH CONTINUE
Specifies that the DB2 subsystem should prepare to allow subsequent FETCH
CURRENT CONTINUE operations to access any truncated LOB or XML result
column following an initial FETCH operation that provides output variables
that are not large enough to hold the entire LOB or XML columns. When the
WITH CONTINUE clause is specified, the DB2 subsystem takes the following
actions that can differ from the case where the FETCH statement does not
include the WITH CONTINUE clause:
v If truncation occurs when returning an XML or LOB column, the DB2

subsystem will remember the truncation position and will not discard the
remaining data.

v If truncation occurs when returning an XML or LOB column, the DB2
subsystem returns the total length that would have been required to hold all
of the data of the LOB or XML column. This will either be in the first four
bytes of the LOB host variable structure or in the 4 byte area that is pointed
to by the SQLDATALEN pointer in the SQLVAR entry of the SQLDA for that
host variable. What is returned depends on the programming method that is
used. See “SQL descriptor area (SQLDA)” on page 2079 for details about the
SQLDA contents.

v If returning XML data, the result column will be fully materialized in the
database before the data is returned.

If the CURRENT CONTINUE clause is specified, the WITH CONTINUE
behavior is assumed.

AFTER
Positions the cursor after the last row of the result table. Values are not
assigned to host variables. The number of rows of the result table are returned

Chapter 5. Statements 1653

in the SQLERRD1 and SQLERRD2 fields of the SQLCA for cursors with an
effective sensitivity of INSENSITIVE or SENSITIVE STATIC.

BEFORE
Positions the cursor before the first row of the result table. Values are not
assigned to host variables.

row-positioned
Positioning of the cursor with row-positioned fetch orientations NEXT, PRIOR,
CURRENT and RELATIVE is done in relation to the current cursor position.
Following a successful row-positioned FETCH statement, the cursor is
positioned on a single row of data. If the cursor is enabled for rowsets,
positioning is performed relative to the current row or the first row of the
current rowset, and the cursor is positioned on a rowset consisting of a single
row.

NEXT
Positions the cursor on the next row or rows of the result table relative to
the current cursor position, and returns data if a target is specified. NEXT
is the only row-positioned fetch operation that can be explicitly specified
for cursors that are defined as NO SCROLL. NEXT is the default if no
other cursor positioning is specified. If a specified row reflects a hole, a
warning is issued and data values are not assigned to host variables for
that row.

Table 139 lists situations for different cursor positions and the results when
NEXT is used.

Table 139. Results when NEXT is used with different cursor positions

Current state of the cursor Result of FETCH NEXT

Before the first row Cursor is positioned on the first row1 and
data is returned if requested.

On the last row or after the last row A warning occurs, values are not assigned to
host variables, and the cursor position is
unchanged.

Before a hole For a SENSITIVE STATIC cursor, a warning
occurs for a delete hole or an update hole,
values are not assigned to host variables, and
the cursor is positioned on the hole.

Unknown An error occurs, values are not assigned to
host variables, and the cursor position
remains unknown.

Note:

1. This row is not applicable in the case of a forward-only cursor (that is when NO
SCROLL was specified implicitly or explicitly).

PRIOR
Positions the cursor on the previous row or rows of the result table relative
to the current cursor position, and returns data if a target is specified. If a
specified row reflects a hole, a warning is issued, and data values are not
assigned to host variables for that row.

Table 140 on page 1655 lists situations for different cursor positions and the
results when PRIOR is used.

1654 SQL Reference

Table 140. Results when PRIOR is used with different cursor positions

Current state of the cursor Result of FETCH PRIOR

Before the first row or on the first row A warning occurs, values are not assigned to
host variables, and the cursor position is
unchanged.

After a hole For a SENSITIVE STATIC cursor, a warning
occurs for a delete hole or an update hole,
values are not assigned to host variables, and
the cursor is positioned on the hole.

After the last row Cursor is positioned on the last row.

Unknown An error occurs, values are not assigned to
host variables, and the cursor position
remains unknown.

FIRST
Positions the cursor on the first row of the result table, and returns data if
a target is specified. For a SENSITIVE STATIC cursor, if the first row of the
result table is a hole, a warning occurs for a delete hole or an update hole
and values are not assigned to host variables.

LAST
Positions the cursor on the last row of the result table, and returns data if a
target is specified. The number of rows of the result table is returned in the
SQLERRD1 and SQLERRD2 fields of the SQLCA for an insensitive or
sensitive static cursor. For a SENSITIVE STATIC cursor, if the last row of
the result table is a hole, a warning occurs for a delete hole or an update
hole and values are not assigned to host variables.

CURRENT
The cursor position is not changed, data is returned if a target is specified.
If the cursor was positioned on a rowset of more than one row, the cursor
position is on the first row of the rowset.

Table 141 lists situations in which errors occur with the CURRENT clause.

Table 141. Situations in which errors occur with CURRENT

Current state of the cursor Result of FETCH CURRENT

Before the first row or after the last row A warning occurs, values are not assigned to
host variables, and the cursor position is
unchanged.

On a hole For a SENSITIVE STATIC, a warning occurs
for a delete hole or an update hole, values
are not assigned to host variables, and the
cursor is positioned on the hole.

If the cursor is defined as a rowset cursor,
with isolation level UR or a sensitive
dynamic scrollable cursor, it is possible that a
different row will be returned than the
FETCH that established the most recent
cursor position. This can occur while fetching
a row again when it is determined to not be
there anymore. In this case, fetching
continues moving forward to get the row of
data.

Chapter 5. Statements 1655

Table 141. Situations in which errors occur with CURRENT (continued)

Current state of the cursor Result of FETCH CURRENT

Unknown An error occurs, values are not assigned to
host variables, and the cursor position
remains unknown.

CONTINUE
The cursor positioning is not changed, and data is returned if a target
is specified. The FETCH CURRENT CONTINUE statement retrieves
remaining data for any LOB or XML column result values that were
truncated on a previous FETCH or FETCH CURRENT CONTINUE
statement. It assigns the remaining data for those truncated columns to
the host variables that are referenced in the statement or pointed to by
the descriptor. The data that is returned for previously-truncated result
values begins at the point of truncation. This form of the CURRENT
clause must only be used after a single-row FETCH WITH CONTINUE
or FETCH CURRENT CONTINUE statement that has returned partial
data for one or more LOB or XML columns. The cursor must be open
and positioned on a row.

FETCH CURRENT CONTINUE must pass host variables entries for all
columns in the SELECT list, even though the non-LOB columns or
non-XML columns will not return any data.

ABSOLUTE
host-variable or integer-constant is assigned to an integral value k. If a
host-variable is specified, it must be an exact numeric type with zero scale
and must not include an indicator variable. The possible data types for the
host variable are DECIMAL(n,0) or integer. The DECIMAL data type is
limited to DECIMAL(18,0). An integer-constant can be up to 31 digits,
depending on the application language.

If k=0, the cursor is positioned before the first row of the result table.
Otherwise, ABSOLUTE positions the cursor to row k of the result table if
k>0, or to k rows from the bottom of the table if k<0. For example,
"ABSOLUTE -1" is the same as "LAST".

Data is returned if the specified position is within the rows of the result
table, and a target is specified.

If an absolute position is specified that is before the first row or after the
last row of the result table, a warning occurs, values are not assigned to
host variables, and the cursor is positioned either before the first row or
after the last row. If the resulting cursor position is after the last row for
INSENSITIVE and SENSITIVE STATIC scrollable cursors, the number of
rows of the result table are returned in the SQLERRD1 and SQLERRD2
fields of the SQLCA. If row k of the result table is a hole, a warning occurs
and values are not assigned to host variables.

FETCH ABSOLUTE 0 results in positioning before the first row and a
warning is issued. FETCH BEFORE results in positioning before the first
row and no warning is issued.

Table 142 lists some synonymous specifications.

Table 142. Synonymous scroll specifications for ABSOLUTE

Specification Alternative

ABSOLUTE 0 (but with a warning) BEFORE (without a warning)

1656 SQL Reference

Table 142. Synonymous scroll specifications for ABSOLUTE (continued)

Specification Alternative

ABSOLUTE +1 FIRST

ABSOLUTE -1 LAST

ABSOLUTE -m, 0<m≤n ABSOLUTE n+1-m

ABSOLUTE n LAST

ABSOLUTE -n FIRST

ABSOLUTE x (with a warning) AFTER (without a warning)

ABSOLUTE -x (with a warning) BEFORE (without a warning)

Note: Assume: 0<=m<=n<x Where, n is the number of rows in the result table.

RELATIVE
host-variable or integer-constant is assigned to an integral value k. If a
host-variable is specified, it must be an exact numeric type with zero scale
and must not include an indicator variable. The possible data types for the
host variable are DECIMAL(n,0) or integer. The DECIMAL data type is
limited to DECIMAL(18,0).

If the cursor is positioned before the first row, or after the last row of the
result table, the cursor position is determined as follows:
v If n is 0, the cursor position is unchanged, values are not assigned to

host variables, and a warning occurs
v If n is positive, and the cursor is positioned before the first row, the

cursor is positioned on a rowset starting at row n

v If n is positive, and the cursor is positioned after the last row, a warning
occurs

v If n is negative, and the cursor is positioned before the first row, a
warning occurs

v If n is negative, and the cursor is positioned after the last row, the cursor
is positioned on a rowset starting as row n from the end of the result
table

An integer-constant can be up to 31 digits, depending on the application
language.

Data is returned if the specified position is within the rows of the result
table, and a target is specified.

RELATIVE positions the cursor to the row in the result table that is either k
rows after the current row if k>0, or ABS(k) rows before the current row if
k<0. For example, "RELATIVE -1" is the same as "PRIOR". If k=0, the
position of the cursor does not change (that is, "RELATIVE 0" is the same
as "CURRENT").

If a relative position is specified that results in positioning before the first
row or after the last row, a warning is issued, values are not assigned to
host variables, and the cursor is positioned either before the first row or
after the last row. If the resulting cursor position is after the last row for
INSENSITIVE and SENSITIVE STATIC scrollable cursors, the number of
rows of the result table is returned in the SQLERRD1 and SQLERRD2
fields of the SQLCA. If the cursor is positioned on a hole and RELATIVE 0
is specified or if the target row is a hole, a warning occurs and values are
not assigned to host variables.

Chapter 5. Statements 1657

If the cursor is defined as a rowset cursor, with isolation level UR or a
sensitive dynamic scrollable cursor, it is possible that a different row will
be returned than the FETCH that established the most recent cursor
position. This can occur while fetching a row again when it is determined
to not be there anymore. In this case, fetching continues moving forward to
get the row data.

If the cursor position is unknown and RELATIVE 0 is specified, an error
occurs.

Table 143 lists some synonymous specifications.

Table 143. Synonymous Scroll Specifications for RELATIVE

Specification Alternative

RELATIVE +1 NEXT

RELATIVE -1 PRIOR

RELATIVE 0 CURRENT

RELATIVE +r (with a warning) AFTER (without a warning)

RELATIVE -r (with a warning) BEFORE (without a warning)

Note:

r has to be large enough to position the cursor beyond either end of the result table.

rowset-positioned

Positioning of the cursor with rowset-positioned fetch orientations NEXT
ROWSET, PRIOR ROWSET, CURRENT ROWSET, and ROWSET STARTING AT
RELATIVE is done in relation to the current cursor position. Following a
successful row-positioned FETCH statement, the cursor is positioned on a
rowset of data. The number of rows in the rowset is determined either
explicitly or implicitly. The FOR n ROWS clause in the multiple-row-fetch
clause is used to explicitly specify the size of the rowset. Positioning is
performed relative to the current row or first row of the current rowset, and
the cursor is positioned on all rows of the rowset.

A rowset-positioned fetch orientation must not be specified if the current
cursor position is not defined to access rowsets. NEXT ROWSET is the only
rowset-positioned fetch orientation that can be specified for cursors that are
defined as NO SCROLL.

If a row of the rowset reflects a hole, a warning is returned, data values are not
assigned to host variable arrays for that row (that is, the corresponding
positions in the target host variable arrays are untouched), and -3 is returned
in all provided indicator variables for that row. If a hole is detected, and at
least one indicator variable is not provided, an error occurs.

NEXT ROWSET
Positions the cursor on the next rowset of the result table relative to the
current cursor position, and returns data if a target is specified. The next
rowset is logically obtained by fetching the row that follows the current
rowset and fetching additional rows until the number of rows that is
specified implicitly or explicitly in the FOR n ROWS clause is obtained or
the last row of the result table is reached.

If the cursor is positioned before the first row of the result table, the cursor
is positioned on the first rowset.

1658 SQL Reference

If the cursor is positioned on the last row or after the last row of the result
table, the cursor position is unchanged, values are not assigned to host
variable arrays, and a warning occurs.

If a row of the rowset reflects a hole, the following actions occur:
v A warning is returned.
v Data values are not assigned to the host-variable-arrays for that row

(that is, the corresponding positions in the target host-variable-arrays are
untouched).

v A value of -3 is returned in all of the indicator variables that are
provided for the row.

If a hole is detected and at least one indicator variable is not provided, an
error is returned.

If the cursor is not positioned because of a prior error, values are not
assigned to the host-variable-array, and an error is returned. If a row of the
rowset would be after the last row of the result table, values are not
assigned to host-variable-arrays for that row and any subsequent requested
rows of the rowset, and a warning is returned.

NEXT ROWSET is the only rowset positioned fetch orientation that can be
explicitly be specified for cursors that are defined as NO SCROLL.

PRIOR ROWSET
Positions the cursor on the previous rowset of the result table relative to
the current position, and returns data if a target is specified.

The prior rowset is logically obtained by fetching the row that precedes the
current rowset and fetching additional rows until the number of rows that
is specified implicitly or explicitly in the FOR n ROWS clause is obtained
or the last row of the result table is reached.

If the cursor is positioned after the last row of the result table, the cursor is
positioned on the last rowset.

If the cursor is positioned before the first row or on the first row of the
result table, the cursor position is unchanged, values are not assigned to
host variable arrays, and a warning occurs.

If a row would be before the first row of the result table, the cursor is
positioned on a partial rowset that consists of only those rows that are
prior to the current position of the cursor starting with the first row of the
result table, and a warning is returned. Values are not assigned to the
host-variable-arrays for the rows in the rowset for which the warning is
returned.

Although the rowset is logically obtained by fetching backwards from
before the current rowset, the data is returned to the application starting
with the first row of the rowset, to the end of the rowset.

If a row of the rowset reflects a hole, the following actions occur:
v A warning is returned.
v Data values are not assigned to the host-variable-arrays for that row

(that is, the corresponding positions in the target host-variable-arrays are
untouched).

v A value of -3 is returned in all of the indicator variables that are
provided for the row.

If a hole is detected and at least one indicator variable is not provided, an
error is returned.

Chapter 5. Statements 1659

If the cursor is not positioned because of a prior error, values are not
assigned to the host-variable-array, and an error is returned.

FIRST ROWSET
Positions the cursor on the first rowset of the result table, and returns data
if a target is specified.

If a row of the rowset reflects a hole, the following actions occur:
v A warning is returned.
v Data values are not assigned to the host-variable-arrays for that row

(that is, the corresponding positions in the target host-variable-arrays are
untouched).

v A value of -3 is returned in all of the indicator variables that are
provided for the row.

If a hole is detected and at least one indicator variable is not provided, an
error is returned.

If the result table contains fewer rows than specified implicitly or explicitly
in the FOR n ROWS clause, values are not assigned to host-variable-arrays
after the last row of the result table, and a warning is returned.

LAST ROWSET
Positions the cursor on the last rowset of the result table and returns data
if a target is specified. The last rowset is logically obtained by fetching the
last row of the result table and fetching prior rows until the number of
rows in the rowset is obtained or the first row of the result table is
reached. Although the rowset is logically obtained by fetching backwards
from the bottom of the result table, the data is returned to the application
starting with the first row of the rowset, to the end of the rowset, which is
also the end of the result table.

If a row of the rowset reflects a hole, the following actions occur:
v A warning is returned.
v Data values are not assigned to the host-variable-arrays for that row

(that is, the corresponding positions in the target host-variable-arrays are
untouched).

v A value of -3 is returned in all of the indicator variables that are
provided for the row.

If a hole is detected and at least one indicator variable is not provided, an
error is returned.

If the result table contains fewer rows than specified implicitly or explicitly
in the FOR n ROWS clause, the last rowset is the same as the first rowset,
values are not assigned to host-variable-arrays after the last row of the
result table, and a warning is returned.

CURRENT ROWSET
If the FOR n ROWS clause specifies a number different from the number of
rows specified implicitly or explicitly in the FOR n ROWS clause on the
most recent FETCH statement for this cursor, the cursor is repositioned on
the specified number of rows, starting with the first row of the current
rowset. If the cursor is positioned before the first row, or after the last row
of the result table, the cursor position is unchanged, values are not
assigned to host variable arrays, and a warning occurs. If the FOR n ROWS
clause is not specified, it is possible that the FETCH statement will position
the cursor on a partial rowset when the FETCH CURRENT ROWSET
statement is processed. In this case, DB2 attempts to position the cursor on

1660 SQL Reference

a full rowset starting with the first row of the current rowset. Otherwise,
the position of the cursor on the current rowset is unchanged. Data is
returned if a target is specified.

With isolation level UR or a sensitive dynamic scrollable cursor, it is
possible that different rows will be returned than the FETCH that
established the most recent rowset cursor position. This can occur while
refetching the first row of the rowset when it is determined to not be there
anymore. In this case, fetching continues moving forward to get the first
row of data for the rowset. This can also occur when changes have been
made to other rows in the current rowset such that they no longer exist or
have been logically moved within (or out of) the result table of the cursor.

If the cursor is not positioned because of a prior error, values are not
assigned to the host-variable-array, and an error occurs.

If the current rowset contains fewer rows than specified implicitly or
explicitly in the FOR n ROWS clause, values are not assigned to
host-variable-arrays after the last row, and a warning is returned.

ROWSET STARTING AT ABSOLUTE or RELATIVE host-variable or
integer-constant

Positions the cursor on the rowset beginning at the row of the result table
that is indicated by the ABSOLUTE or RELATIVE specification, and returns
data if a target is specified.

host-variable or integer-constant is assigned to an integral value k. If
host-variable is specified, it must be an exact numeric type with scale zero,
and must not include an indicator variable. The possible data types for the
host variable are DECIMAL(n,0) or integer, where the DECIMAL data type
is limited to DECIMAL(18,0). If a constant is specified, the value must be
an integer.

If a row of the result table would be after the last row or before the first
row of the result table, values are not assigned to host-variable-arrays for
that row and a warning is returned.

ABSOLUTE
If k=0, an error occurs. If k>0, the first row of the rowset is row k. If
k<0, the rowset is positioned on the ABS(k) rows from the bottom of
the result table. Assume that ABS(k) is equal to the number of rows for
the rowset and that there are enough row to return a complete rowset:
v FETCH ROWSET STARTING AT ABSOLUTE -k is the same as

FETCH LAST ROWSET.
v FETCH ROWSET STARTING AT ABSOLUTE 1 is the same as

FETCH FIRST ROWSET.

RELATIVE
If k=0 and the FOR n ROWS clause does not specify a number
different from the number most recently specified implicitly or
explicitly for this cursor, then the position of the cursor does not
change (that is, "RELATIVE ROWSET 0" is the same as "CURRENT
ROWSET"). If k=0 and the FOR n ROWS clause specifies a number
different from the number most recently specified implicitly or
explicitly for this cursor, then the cursor is repositioned on the
specified number of rows, starting with the first row of the current
rowset.

If the cursor is positioned before the first row, or after the last row of
the result table, the cursor position is determined as follows:

Chapter 5. Statements 1661

v If n is 0, the cursor position is unchanged, values are not assigned to
host variables, and a warning occurs. This is the same as FETCH
CURRENT ROWSET.

v If n is positive, and the cursor is positioned before the first row, the
cursor is positioned on a rowset starting a row n.

v If n is positive, and the cursor is positioned after the last row, a
warning occurs.

v If n is negative, and the cursor is positioned before the first row, a
warning occurs.

v If n is negative, and the cursor is positioned after the last row, the
cursor is positioned on a rowset starting at row n from the bottom of
the result table.

Otherwise, RELATIVE repositions the cursor so that the first row of the
new rowset cursor position is on the row in the result table that is
either k rows after the first row of the current rowset cursor position if
k>0, or ABS(k) rows before the first row of the current rowset cursor
position if k<0. Assume that ABS(k) is equal to the number of rows for
the resulting rowset
v FETCH ROWSET STARTING AT RELATIVE -k is the same as

FETCH PRIOR ROWSET.
v FETCH ROWSET STARTING AT RELATIVE k is the same as FETCH

NEXT ROWSET.
v FETCH ROWSET STARTING AT RELATIVE 0 is the same as FETCH

CURRENT ROWSET.

When ROWSET STARTING AT RELATIVE -n is specified and there are
not enough rows between the current position of the cursor and the
beginning of the result table to return a complete rowset:
v A warning is returned.
v Values are not assigned to the host-variable-arrays.
v The cursor is positioned before the first row.

If a row of the rowset reflects a hole, If a row of the rowset reflects a hole,
the following actions occur:
v A warning is returned.
v Data values are not assigned to the host-variable-arrays for that row

(that is, the corresponding positions in the target host-variable-arrays are
untouched).

v A value of -3 is returned in all of the indicator variables that are
provided for the row.

If a hole is detected and at least one indicator variable is not provided, an
error is returned. If a row of the rowset is unknown, values are not
assigned to host variable arrays for that row, and an error is returned. If a
row of the rowset would be after the last row or before the first row of the
result table, values are not assigned to host-variable-arrays for that row,
and a warning is returned.

cursor-name
Identifies the cursor to be used in the fetch operation. The cursor name must
identify a declared cursor, as explained in the description of the DECLARE
CURSOR statement in “DECLARE CURSOR” on page 1535, or an allocated
cursor, as explained in “ALLOCATE CURSOR” on page 847. When the FETCH
statement is executed, the cursor must be in the open state.

1662 SQL Reference

If a single-row-fetch or multiple-row-fetch clause is not specified, the cursor
position is adjusted as specified, but no data is returned to the user.

single-row-fetch
When single-row-fetch is specified, SENSITIVE or INSENSITIVE can be specified
though there is a default. The default depends on the sensitivity of the cursor.
If the sensitivity of the cursor is INSENSITIVE, then the default is
INSENSITIVE. If the effective sensitivity of the cursor is SENSITIVE
DYNAMIC or SENSITIVE STATIC, then the default is SENSITIVE. The
single-row-fetch or multiple-row-fetch clause must not be specified when the
FETCH BEFORE or FETCH AFTER option is specified. They are required when
FETCH BEFORE or FETCH AFTER is not specified. If an individual fetch
operation causes the cursor to be positioned or to remain positioned on a row
if there is a target specification, the values of the result table are assigned to
host variables as specified by the single-fetch-clause.

INTO target-variable or array-variable[array-index]
Identifies one or more targets for the assignment of output values. The
number of targets in the INTO clause must equal the number of values
that are to be assigned. The first value in the result row is assigned to the
first target in the list, the second value to the second target, and so on. A
target variable must not be specified more than once in the INTO clause.
Each assignment to a target is made in sequence through the list according
to the rules described in “Assignment and comparison” on page 121.

The value 'W' is assigned to the SQLWARN3 field of the SQLCA if the
number of targets is less than the number of result column values.

If an error occurs on any assignment, the value is not assigned to the
target, and no more values are assigned to the specified targets. Any values
that have already been assigned remain assigned.

host-variable-name
Identifies the host variable that is the assignment target. For LOB
output values, the target can be a regular host variable (if it is large
enough), a LOB locator variable, or a LOB file reference variable.

SQL-parameter-name
Identifies the parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL
variables must be declared before they are used.

array-variable [array-index]
Specifies an array element that is the target of the assignment.

An array element must not be specified as the target for an
assignment if common-table-expression is also specified in the
statement.

[array-index]
An expression that specifies which element in the array is
the target of the assignment.

For an ordinary array, the array index expression must be
castable to INTEGER, and must not be the null value. The
index value must be between 1 and the maximum
cardinality that is defined for the array.

Chapter 5. Statements 1663

|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

For an associative array, the array index expression must
be castable to the index data type of the associative array,
and must not be the null value.

array-index must not be:
v An expression that references the CURRENT DATE,

CURRENT TIME, or CURRENT TIMESTAMP special
register

v A nondeterministic function
v A function that is defined with EXTERNAL ACTION
v A function that is defined with MODIFIES SQL DATA
v A sequence expression

INTO DESCRIPTOR descriptor-name
Identifies an SQLDA that contains a valid description of the host output
variables. Result values from the associated SELECT statement are returned
to the application program in the output host variables.

Before the FETCH statement is processed, you must set the following fields
in the SQLDA:
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA
A REXX SQLDA does not contain this field.

v SQLABC to indicate the number of bytes of storage allocated in the
SQLDA

v SQLD to indicate the number of variables used in the SQLDA when
processing the statement

v SQLVAR occurrences to indicate the attributes of the variables

The SQLDA must have enough storage to contain all SQLVAR occurrences.
Each SQLVAR occurrence describes a host variable or buffer into which a
value in the result table is to be assigned. If LOBs are present in the
results, there must be additional SQLVAR entries for each column of the
result table. If the result table contains only base types and distinct types,
multiple SQLVAR entries are not needed for each column. However, extra
SQLVAR entries are needed for distinct types as well as for LOBs in
DESCRIBE and PREPARE INTO statements. For more information on the
SQLDA, which includes a description of the SQLVAR and an explanation
on how to determine the number of SQLVAR occurrences, see “SQL
descriptor area (SQLDA)” on page 2079.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN.

See “Identifying an SQLDA in C or C++” on page 2099 for how to
represent descriptor-name in C.

multiple-row-fetch
Retrieves multiple rows of data from the result table of a query. The FOR n
ROWS clause of the FETCH statement controls how many rows are returned
on a single FETCH statement. The fetch orientation determines whether the
resulting cursor position (for example, on a single row, rowset, before, or after
the result table). Fetching stops when an error is returned, all requested rows
are fetched, or the end of data condition is reached.

1664 SQL Reference

|
|
|

|

|
|
|

|

|

|

|

Fetching multiple rows of data can be done with scrollable or non-scrollable
cursors. The operations used to define, open, and close a cursor used for
fetching multiple rows of data are the same as for those used for single row
FETCH statements.

If the BEFORE or AFTER option is specified, neither single-row-fetch or
multiple-row-fetch can be specified.

FOR host-variable or integer-constant ROWS
host-variable or integer-constant is assigned to an integral value k. If a host
variable is specified, it must be an exact numeric type with a scale of zero
and must not include an indicator variable. Furthermore, k must be in the
range, 0<k<=32767.

This clause must not be specified if a row-positioned fetch-orientation
clause was specified. This clause must also not be specified for a cursor
that is defined without rowset access.

If a rowset fetch orientation is specified and this clause is not specified, the
number of rows in the resulting rowset is determined as follows:
v If the most recent FETCH statement for this cursor was a

rowset-positioned FETCH, the number of rows of the rowset is implicitly
determined by the number of rows that was most recently specified
(implicitly or explicitly) for this cursor.

v When the most recent FETCH statement for this cursor was either
FETCH BEFORE or FETCH AFTER and the most recent FETCH
statement for this cursor prior to that was a rowset-positioned FETCH,
the number of rows of the rowset is implicitly determined by the
number of rows that were most recently specified (implicitly or
explicitly) for this cursor.

v Otherwise, the rowset consists of a single row.

For result set cursors, the number of rows for a rowset cursor position,
established in the procedure that defined the rowset, is not inherited by the
caller when the rowset is returned. Use the FOR n ROWS clause on the
first rowset FETCH statement for the result set in the calling program to
establish the number of rows for the cursor. Otherwise, the rowset consists
of a single row.

The cursor is positioned on the row or rowset that is specified by the
orientation clause (for example, NEXT ROWSET), and those rows are
fetched if a target is specified. After the cursor is positioned on the first
row being fetched, the next k-1 rows are fetched. Fetching moves forward
from the cursor position in the result table and continues until the end of
data condition is returned, k-1 rows have been fetched, or an assignment
error is returned.

The resulting cursor position depends on the fetch orientation that is
specified:
v For a row-positioned fetch orientation, the cursor is positioned at the last

row successfully retrieved.
v For a rowset-positioned fetch orientation, the cursor is positioned on all

the rows retrieved.

The values from each individual fetch are placed in data areas that are
described in the INTO or USING clause. If a target specification is
provided for a rowset-positioned FETCH, the host variable arrays must be
specified as the target specification, and the arrays must be defined with a
dimension of 1 or greater. The target specification must be defined as an

Chapter 5. Statements 1665

array for a rowset-positioned FETCH even if the number of rows that is
specified implicitly or explicitly is one. See Diagnostics information for
rowset positioned FETCH statements.

INTO host-variable-array
Identifies for each column of the result table a host-variable-array to
receive the data that is retrieved with this FETCH statement. If the number
of host-variable-arrays is less than the number of columns of the result
table, the SQLWARN3 field of the SQLCA is set to 'W'. No warning is
given if there are more host-variable-arrays than the number of columns in
the result table.

Each host-variable-array must be defined in the application program in
accordance with the rules for declaring an array. A host-variable-array is
used to return the values for a column of the result table. The number of
rows to be fetched must be less than or equal to the dimension of each of
the host-variable-arrays.

An optional indicator array can be specified for a host-variable-array. It
should be specified if the SQLTYPE of any SQLVAR occurrence indicates
that the column of the result table is nullable. Additionally, if an operation
may result in null values, such as an UPDATE operation that results in a
hole, is performed in the application, an indicator array should be
specified. Otherwise an error occurs if null values are encountered. The
indicators are returned as small integers.

INTO DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or more
host-variable-arrays or buffers into which the values for a column of the
result table are to be returned.

Before the FETCH statement is processed, you must set the following fields
in the SQLDA:
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA.
v SQLABC to indicate the number of bytes of storage allocated for the

SQLDA.
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement.
v SQLVAR occurrences to indicate the attributes of an element of the

host-variable-array. Within each SQLVAR representing an array:
– SQLTYPE indicates the data type of the elements of the

host-variable-array.
– SQLDATA field points to the first element of the host-variable-array.
– The length fields (SQLLEN and SQLLONGLEN) are set to indicate

the maximum length of a single element of the array.
– SQLNAME - The length of SQLNAME must be set to 8, and the first

two bytes of the data portion of SQLNAME must be initialized to
X'0000'. The fifth and sixth bytes must contain a flag field and the
seventh and eighth bytes must be initialized to a binary small integer
(half word) representation of the dimension of the host-variable-array,
and the corresponding indicator array, if one is specified.

The SQLVAR entry for the number of rows must also contain a flag
value. The number of rows to be fetched must be less than or equal to
the dimension of each of the host variable arrays.

1666 SQL Reference

You set the SQLDATA and SQLIND pointers to the beginning of the
corresponding arrays. The SQLDA must have enough storage to contain all
SQLVAR occurrences. Each SQLVAR occurrence describes a
host-variable-array or buffer into which the values for a column in the
result table are to be returned. If any column of the result table is a LOB,
two SQLVAR entries must be provided for each SQLVAR, and SQLN must
be set to two times the number of SQLVARS. SQLD must be set to a value
greater than or equal to zero and less than or equal to SQLN.

Notes

Assignment to targets:
The nth target identified by the INTO clause or described in the SQLDA
corresponds to the nth column of the result table of the cursor. The data
type of target must be compatible with its corresponding value. If the
value is numeric, the target must have the capacity to represent the whole
part of the value. For a datetime value, the target must be a character
string variable of a minimum length as defined in “String representations
of datetime values” on page 101. When the target is a host variable, if the
value is null, an indicator variable must be specified.

Assignments are made in sequence through the list. Each assignment to a
target is made according to the rules described in Chapter 2, “Language
elements,” on page 53. If the number of targets is less than the number of
values in the row, the SQLWARN3 field of the SQLCA is set to 'W'. There
is no warning if there are more targets than the number of result columns.
If the target is a host variable and the value is null, an indicator variable
must be provided. If an assignment error occurs, the value is not assigned
to the target and no more values are assigned to targets. Any values that
have already been assigned to targets remain assigned.

If more than one assignment is included in the same assignment statement,
all expressions are evaluated before the assignments are performed. For
example, a reference to a variable in an expression always uses the value
of the variable prior to any assignment in the assignment statement.

Normally, you use LOB locators to assign and retrieve data from LOB
columns. However, because of compatibility rules, you can also use LOB
locators to assign data to targets with other data types. For more
information on using locators, see Saving storage when manipulating LOBs
by using LOB locators (DB2 Application programming and SQL).

A timestamp without time zone value must not be assigned to a timestamp
with time zone target.

The default encoding scheme for the data is the value in the bind option
ENCODING, which is the option for application encoding. If this statement
is used with functions such as LENGTH or SUBSTRING that are operating
on LOB locators, and the LOB data that is specifies by the locator is in a
different encoding scheme from the ENCODING bind option, LOB
materialization and character conversion occur. To avoid LOB
materialization and character conversion, select the LOB data from the
SYSIBM.SYSDUMMYA, SYSIBM.SYSDUMMYE, or SYSIBM.SYSDUMMYU
sample table.

Restrictions on using the WITH CONTINUE and CURRENT CONTINUE
clauses:

When using the WITH CONTINUE clause, the DB2 system will only
reserve truncated data for result set columns of the BLOB, CLOB,

Chapter 5. Statements 1667

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_savestoragelob.htm#db2z_savestoragelob
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_savestoragelob.htm#db2z_savestoragelob

DBCLOB, or XML data type, and only when the output host variable data
type is the appropriate LOB data type.

If an application uses FETCH WITH CONTINUE, and truncated data
remains after the FETCH operation, the application cannot perform any
intervening operation on that cursor before performing the FETCH
CURRENT CONTINUE. If intervening operations on that cursor are
performed, the truncated data is lost.

FETCH CURRENT CONTINUE is not supported with multi-row fetch.
Also, FETCH CURRENT CONTINUE is not supported for non-LOB and
non-XML columns that have been truncated. If truncation occurs for these
non-LOB and non-XML columns, the truncated data will be discarded as
usual.

Result column evaluation considerations:
If an error occurs as the result of an arithmetic expression in the SELECT
list of an outer SELECT statement (division by zero, or overflow) or a
numeric conversion error occurs, the result is the null value. As in any
other case of a null value, an indicator variable must be provided and the
main variable is unchanged. In this case, however, the indicator variable is
set to -2. Processing of the statement continues as if the error had not
occurred. (However, this error causes a positive SQLCODE.) If you do not
provide an indicator variable, a negative value is returned in the
SQLCODE field of the SQLCA. Processing of the statement terminates
when the error is encountered. No value is assigned to the host variable or
to later variables, though any values that have already been assigned to
variables remain assigned.

If the specified host variable is not large enough to contain the result, a
warning is returned and W is assigned to SQLWARN1 in the SQLCA. The
actual length of the result is returned in the indicator variable associated
with the host-variable, if an indicator is provided. It is possible that a
warning may not be returned on a FETCH operation. This occurs as a
result of optimizations, such as the use of system temporary tables or
blocking. It is also possible that the returned warning applies to a
previously fetched row. When a datetime value is returned, the length of
the variable must be large enough to store the complete value. Otherwise,
a warning or an error is returned.

Cursor positioning:
An open cursor has three possible positions:
v Before a row
v On a row or rowset
v After the last row

When a scrollable or non-scrollable cursor is opened, it is positioned before
the first row in the result table. If a cursor is on a row, that row is called
the current row of the cursor. If a cursor is on a rowset, the rows are called
the current rowset of the cursor.

A cursor referred to in an UPDATE or DELETE statement must be
positioned on a row or rowset. A cursor can only be on a row or rowset as
a result of a FETCH statement.

If the cursor was declared SENSITIVE STATIC SCROLL, a row may be a
hole, from which no values may be fetched, updated, or deleted. Holes do
not exist with sensitive dynamic cursors because there is no temporary

1668 SQL Reference

result table. For information about holes in the result table of a cursor, see
DB2 Application Programming and SQL Guide.

For scrollable cursors, the cursor position after an error varies depending
on the type of error:
v When an operation is attempted against an update or delete hole, or

when an update or delete hole is detected, the cursor is positioned on
the hole.

v When a FETCH operation is attempted past the end of file, the cursor is
positioned after the last row.

v When a FETCH operation is attempted before the beginning of file, the
cursor is positioned before the first row.

v When an error causes the cursor position to be invalid such as when a
single row positioned update or positioned delete error occurs that
causes a rollback, the cursor is closed.

Cursor position after exception condition:
If an error occurs during the execution of a fetch operation, the position of
the cursor and the result of any later fetch is unpredictable. It is possible
for an error to occur that makes the position of the cursor invalid, in which
case the cursor is closed.

If an individual fetch operation specifies a destination that is outside the
range of the cursor, a warning is issued (except for FETCH BEFORE or
FETCH AFTER), the cursor is positioned before or after the result table,
and values are not assigned to host variables.

Concurrency and scrollability:
The current row of a cursor cannot be updated or deleted by another
application process if it is locked. Unless it is already locked because it was
inserted or updated by the application process during the current unit of
work, the current row of a cursor is not locked if:
v The isolation level is UR, or
v The isolation level is CS, and

– The result table of the cursor is read-only
– The bind option CURRENTDATA(NO) is in effect

A dynamic scrollable cursor is useful when it is more important to the
application to see updated rows and newly inserted rows and there is no
need to see deleted rows. The isolation level of CS should be used for
maximum concurrency with dynamic scrollable cursors. Specifying an
isolation level of RR or RS severely restricts the update of the table, thus
defeating the purpose of a SENSITIVE DYNAMIC scrollable cursor. If the
application needs a constant result table, a SENSITIVE STATIC scrollable
cursor with an isolation level of CS should be used.

Sensitivity of SENSITIVE STATIC SCROLL cursors to database changes:
When SENSITIVE STATIC SCROLL has been declared, the following rules
apply:
v For the result of an update operation to be visible within a cursor after

"open," the update operation must be a positioned update executed
against the cursor, or a FETCH SENSITIVE in a STATIC cursor must be
executed against a row which has been updated by some other means
(that is, a searched update, committed updates of others, or an update
with another cursor in the same process).

Chapter 5. Statements 1669

v Another process can update the base table of the SELECT statement so
that the current values no longer satisfy the WHERE clause. In this case,
an "update hole" effectively exists during the time the values in the base
table do not satisfy the WHERE clause, and the row is no longer
accessible through the cursor. When an attempt is made to fetch a row
that has been identified as an update hole, no values are returned, and a
warning is issued.
Under SENSITIVE STATIC SCROLL cursors, update holes are only
identified during positioned update, positioned delete, and FETCH
SENSITIVE operations. Each positioned update, positioned delete, and
FETCH SENSITIVE operation does the necessary tests to determine if an
update hole exists.

v For the result of a delete operation to be visible within a SENSITIVE
STATIC SCROLL cursor, the delete operation must be a positioned delete
executed against the cursor or a FETCH SENSITIVE in a STATIC cursor
must be executed against a row that has been deleted by some other
means (that is, a searched delete, committed deletes of others, or a delete
with another cursor in the same process).

v Another process, or the even the same process, may delete a row in the
base table of the SELECT statement so that a row of the cursor no longer
has a corresponding row in the base table. In this case, a "delete hole"
effectively exists, and that row is no longer accessible through the cursor.
When an attempt is made to fetch a row that has been identified as a
delete hole, no values are returned, and a warning is issued.
Under SENSITIVE STATIC SCROLL cursors, delete holes are identified
during positioned update, positioned delete, and FETCH SENSITIVE
operations.

v Inserts into the base table or tables of SENSITIVE STATIC SCROLL
cursors are not seen after the cursor is opened.

LOB locators:
When information is retrieved into LOB locators and it is not necessary to
retain the locator across FETCH statements, it is a good practice to issue a
FREE LOCATOR statement before issuing another FETCH statement
because locator resources are limited.

Isolation level considerations:
The isolation level of the statement (specified implicitly or explicitly) can
affect the result of a rowset-positioned FETCH statement. This is possible
when changes are made to the tables underlying the cursor when isolation
level UR is used with a dynamic scrollable cursor, or with other isolation
levels when rows have been added by the application fetching from the
cursor. These situations can occur with the following fetch orientations:

PRIOR ROWSET
With a dynamic scrollable cursor and isolation level UR, the content of
a prior rowset can be affected by other activity within the table. It is
possible that a row that previously qualified for the cursor, and was
included as a member of the "prior" rowset, has since been deleted or
modified before it is actually returned as part of the rowset for the
current statement. To avoid this behavior, use an isolation level other
than UR.

CURRENT ROWSET
With a dynamic scrollable cursor, additional rows can be added
between rows that form the rowset that was returned to the user. With
isolation level RR, these rows can only be added by the application

1670 SQL Reference

fetching from the cursor. For isolation levels other than RR, other
applications can insert rows that can affect the results of a subsequent
FETCH CURRENT ROWSET. To avoid this behavior, use a static
scrollable cursor instead of a dynamic scrollable cursor.

LAST ROWSET
With a dynamic scrollable cursor and isolation level UR, the content of
the last rowset can be affected by other activity within the table. It is
possible that a row that previously qualified for the cursor, and was
included as a member of the "last" rowset, has since been deleted or
modified before it is actually returned as part of the rowset for the
current statement. To avoid this behavior, use an isolation level other
than UR.

ROWSET STARTING AT RELATIVE -n (where -n is a negative number)
With a dynamic scrollable cursor and isolation level UR, the content of
a prior rowset can be affected by other activity within the table. It is
possible that a row that previously qualified for the cursor, and was
included as a member of the "prior" rowset, has since been deleted or
modified before it is actually returned as part of the rowset for the
current statement. To avoid this behavior, use an isolation level other
than UR.

Row positioned and rowset positioned FETCH statement interaction:
The following table demonstrates the interaction between row positioned
and rowset positioned FETCH statements. The table is based on the
following assumptions:
v TABLE T1 has 15 rows
v CURSOR CS1 is declared as follows:

DECLARE CS1 SCROLL CURSOR WITH ROWSET POSITIONING FOR
SELECT * FROM T1;

v An OPEN CURSOR statement has been successfully executed for
CURSOR CS1 and the FETCH statements in the table are executed in the
order that they appear in the table.

Table 144. Interaction between row positioned and rowset positioned FETCH statements

FETCH Statement Cursor Position

FETCH FIRST Cursor is positioned on row 1.

FETCH FIRST ROWSET Cursor is positioned on a rowset of size 1, consisting
of row 1.

FETCH FIRST ROWSET FOR 5
ROWS

Cursor is positioned on a rowset of size 5, consisting
of rows 1, 2, 3, 4, and 5.

FETCH CURRENT ROWSET Cursor is positioned on a rowset of size 5, consisting
of rows 1, 2, 3, 4, and 5.

FETCH CURRENT Cursor is positioned on row 1

FETCH FIRST ROWSET FOR 5
ROWS

Cursor is positioned on a rowset of size 5, consisting
of rows 1, 2, 3, 4, and 5.

FETCH or FETCH NEXT Cursor is positioned on row 2.

FETCH NEXT ROWSET Cursor is positioned on a rowset of size 1, consisting
of row 3.

FETCH NEXT ROWSET FOR 3
ROWS

Cursor is positioned on a rowset of size 3, consisting
of rows 4,5, and 6.

FETCH NEXT ROWSET Cursor is positioned on a rowset of size 3, consisting
of rows 7,8, and 9.

Chapter 5. Statements 1671

Table 144. Interaction between row positioned and rowset positioned FETCH
statements (continued)

FETCH Statement Cursor Position

FETCH LAST Cursor is positioned on row 15.

FETCH LAST ROWSET FOR 2 ROWS Cursor is positioned on a rowset of size 2, consisting
of rows 14 and 15.

FETCH PRIOR ROWSET Cursor is positioned on a rowset of size 2, consisting
of rows 12 and 13.

FETCH ABSOLUTE 2 Cursor is positioned on row 2.

FETCH ROWSET STARTING AT
ABSOLUTE 2 FOR 3 ROWS

Cursor is positioned on a rowset of size 3, consisting
of rows 2, 3, and 4.

FETCH RELATIVE 2 Cursor is positioned on row 4.

FETCH ROWSET STARTING AT
ABSOLUTE 2 FOR 4 ROWS

Cursor is positioned on a rowset of size 4, consisting
of rows 2, 3, 4, and 5.

FETCH RELATIVE -1 Cursor is positioned on row 1.

FETCH ROWSET STARTING AT
ABSOLUTE 3 FOR 2 ROWS

Cursor is positioned on a rowset of size 2, consisting
of rows 3 and 4.

FETCH ROWSET STARTING AT
RELATIVE 4

Cursor is positioned on a rowset of size 2, consisting
of rows 7 and 8.

FETCH PRIOR Cursor is positioned on row 6.

FETCH ROWSET STARTING AT
ABSOLUTE 13 FOR 5 ROWS

Cursor is positioned on a rowset of size 3, consisting
of rows 13, 14, and 15.

FETCH FIRST ROWSET Cursor is positioned on a rowset of size 5, consisting
of rows 1, 2, 3, 4, and 5.
Note: Even though the previous FETCH statement
returned only 3 rows because EOF was encountered,
DB2 will remember that 5 rows were requested by
the previous FETCH statement.

Considerations for using the FOR n ROWS clause with the FETCH FIRST n
ROWS ONLY clause:

A clause specifying the number of rows that you want can be specified in
the SELECT statement of a cursor, the FETCH statement for a cursor, or
both. However, these clauses have different effects:
v In the SELECT statement, a FETCH FIRST n ROWS ONLY clause

controls the maximum number of rows that can be accessed with the
cursor. When a FETCH statement attempts to retrieve a row beyond the
number specified in the FETCH FIRST n ROWS ONLY clause of the
SELECT statement, an end-of-data condition occurs.

v In a FETCH statement, a FOR n ROWS clause controls the number of
rows that are returned for a single FETCH statement.

Both of these clauses can be specified.

Diagnostics information for rowset positioned FETCH statements:
A single FETCH statement from a rowset cursor might encounter zero, one,
or more conditions. If the current cursor position is not valid for the fetch
orientation, a warning occurs and the statement terminates. If a warning or
non-terminating error (such as a bind out error) occurs during the fetch of
a row, processing continues. In this case, a summary message is returned
for the FETCH statement, and additional information about each fetched
row is available with the GET DIAGNOSTICS statement. Use the GET

1672 SQL Reference

DIAGNOSTICS statement to obtain information about all of the conditions
that are encountered for one of these FETCH statements. See “GET
DIAGNOSTICS” on page 1679 for more information.

The SQLCA returns some information about errors and warnings that are
found while fetching from a rowset cursor. Processing stops when the end
of data is encountered, or when a terminating condition occurs. After each
FETCH statement from a rowset cursor, information is returned to the
program through the SQLCA. The SQLCA is set as follows:
v SQLCODE contains the SQLCODE.
v SQLSTATE contains the SQLSTATE.
v SQLERRD1 and SQLERRD2 contain the number of rows of the result

table if the cursor is positioned on the last row of the result table.
v SQLERRD3 contains the actual number of rows returned. If SQLERRD3

is less than the number of rows requested, an error or end-of-data
condition occurred.

v SQLWARN flags are set to represent all the warnings that were
accumulated while processing the FETCH statement.

Consider the following examples, where 10 rows are fetched with a single
FETCH statement.
v Example 1: Assume that an error is detected on the 5th row. SQLERRD3

is set to 4 for the 4 returned rows, SQLSTATE is set to 22537, and
SQLCODE is set to -354. This information is also available from the GET
DIAGNOSTICS statement (the information that is returned is generated
from connected server, which may differ across different servers). For
example:
GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;
-- Results of the statement:
-- num_rows = 4 and num_cond = 1 (1 condition)

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 22537, sqlcode = -354, and row_num = 5

v Example 2: Assume that an end-of-data condition is detected on the 6th
row and that the cursor does not have immediate sensitivity to updates.
SQLERRD3 is set to 5 for the 5 returned rows, SQLSTATE is set to 02000,
and SQLCODE is set to +100. This information is also available from the
GET DIAGNOSTICS statement. For example:
GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;
-- Results of the statement:
-- num_rows = 5 and num_cond = 1 (1 condition)

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 02000, sqlcode = 100, and row_num = 6

v Example 3: Assume that an bind out error condition is detected on the
5th row, the condition is recorded, and processing continues. Also,
assume that an end-of-data condition is detected on the 8th row.
SQLERRD3 is set to 7 for the 7 returned rows, SQLSTATE is set to 02000,
and SQLCODE is set to +100. Processing to complete the FETCH
statement is performed, and the bind out error that occurred is noted.
An additional SQLCODE is recorded for the bind out error. SQLCODE is
set to –354, and SQLSTATE is set to 01668. Use the GET DIAGNOSTICS
statement to determine what went on. For example:

Chapter 5. Statements 1673

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;
-- Results of the statement:
-- num_rows = 7 and num_cond = 3 (3 conditions)

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 01668, sqlcode = -354, and row_num = 0

GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 02000, sqlcode = 100, and row_num = 0

GET DIAGNOSTICS CONDITION 3 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 22003, sqlcode = -302, and row_num = 5

In some cases, DB2 returns a warning if indicator variables are provided,
or an error if indicator variables are not provided. These errors can be
thought of as data mapping errors that result in a warning if indicator
variables are provided.
v If indicator variables are provided, DB2 returns all rows to the user,

marking the errors in the indicator variables. The SQLCODE and
SQLSTATE contain the warning from the last data mapping error. The
GET DIAGNOSTICS statement can be used to retrieve information about
all the data mapping errors that have occurred.

v If some or no indicator variables are provided, all rows are returned as
above until the first data mapping error that does not have indicator
variables is detected. The rows successfully fetched are returned and the
SQLSTATE, SQLCODE, and SQLWARN flags are set, if necessary. (The
SQLCODE may be 0 or a positive value).

It is possible, if a data mapping error occurs, for the positioning of the
cursor to be successful. In this case, the cursor is positioned on the rowset
that encountered the data mapping error.

Consider the following examples, which try to fetch 10 rows with a single
FETCH statement.
v Example 1: Assume that indicators have been provided for values

returned for column 1, but not for column 2. The 5th row has a data
mapping error (+802) for column 1, and the 7th row has a data mapping
error for column 2 (-802 is returned because an indicator was not
provided for column 2). SQLERRD3 is set to 6 for the 6 returned rows,
SQLSTATE and SQLCODE are set to the error from the 7th row fetched.
The indicator variable for the 5th row column 1 indicates that a data
mapping error was found. This information is also available from the
GET DIAGNOSTICS statement, for example:
GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;
-- Results of the statement:
-- num_rows = 6 and num_cond = 2 (2 conditions)

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 01519, sqlcode = +802, and row_num = 5

GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 22003, sqlcode = -802, and row_num = 7

The resulting cursor position is unknown.

1674 SQL Reference

v Example 2: Assume that null indicators are provided, that rows 3 and 5
are holes, and that data exists for the other requested rows. SQLERRD3
is set to 10 to reflect that 10 fetches were completed and that information
has been returned for the 10 requested rows. Eight rows actually contain
data. For two rows, indicator variables are set to indicate no data was
returned for those rows. SQLSTATE is set to 02502, SQLCODE is set to
+222, and all null indicators for rows 3 and 5 are set to -3 to indicate
that a hole was detected. This information is also available from the GET
DIAGNOSTICS statement, for example:
GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;
-- Results of the statement:
-- num_rows = 10 and num_cond = 2 (2 conditions)

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 02502, sqlcode = +222, and row_num = 3

GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 02502, sqlcode = +222, and row_num = 5

If a null indicator was not provided for any variable in a row that was a
hole, an error occurs.

SQLCA usage summary:
For multiple-row-fetch, the fields of the SQLCA are set as follows:

Condition
Action: Resulting Values Stored in the SQLCA

Fields

Errors Data SQLSTATE SQLCODE SQLERRD3

No1 Return all requested rows 00000 0 Number of rows
requested

No1 Return data for subset of
requested rows, end of data

02000 +100 Number of rows
rows

No1 Return all requested rows sqlstate(2) sqlcode(2) Number of rows
requested

Yes1 Return successfully fetched
rows

sqlstate(3) sqlcode(3) Number of rows

Yes1 Return successfully fetched
rows

sqlstate(4) sqlcode(4) Number of rows

Notes:

1. SQLWARN flags may be set in all cases, even if there are no other warnings or errors
indicated. The warning flags are an accumulation of all warning flags set while
processing the multiple-row-fetch.

2. sqlcode is the last positive SQLCODE, and sqlstate is the corresponding SQLSTATE
value.

3. Database Server detected error. sqlcode is the first negative SQLCODE encountered,
sqlstate is the corresponding SQLSTATE value.

4. Client detected error. sqlcode is the first negative SQLCODE encountered, sqlstate is one
of the following SQLSTATEs: 22002, 22008, 22509, 22518, or 55021.

Providing indicator variables for error conditions:
If an error occurs as the result of an arithmetic expression in the SELECT
list of an outer SELECT statement (division by zero or overflow) or a
numeric conversion error occurs, the result is the null value. As in any

Chapter 5. Statements 1675

other case of a null value, an indicator variable must be provided and the
main variable is unchanged. In this case, however, the indicator variable is
set to -2. Processing of the statement continues as if the error had not
occurred. (However, this error causes a positive SQLCODE.)

If you do not provide an indicator variable, a negative value is returned in
the SQLCODE field of the SQLCA. Processing of the statement terminates
when the error is encountered. No value is assigned to the host variable or
to later variables, though any values that have already been assigned to
variables remain assigned. Additionally, a -3 is returned in all indicators
provided by the application when a hole was detected for the row on a
rowset positioned FETCH, and values were not returned for the row.
Processing of the statement terminates if a hole is detected and at least one
indicator variable was not provided by the application.

Alternative syntax and synonyms:
USING DESCRIPTOR can be specified as a synonym for INTO
DESCRIPTOR.

Example

Example 1: The FETCH statement fetches the results of the SELECT statement into
the application program variables DNUM, DNAME, and MNUM. When no more
rows remain to be fetched, the not found condition is returned.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM DSN8B10.DEPT
WHERE ADMRDEPT = ’A00’;
EXEC SQL OPEN C1;
DO WHILE (SQLCODE = 0);
EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM;
END;
EXEC SQL CLOSE C1;

Example 2: For an example of FETCH statements with a dynamic scrollable cursor,
see Example 8.

Example 3: Fetch the last 5 rows of the result table C1 using cursor C1:
FETCH ROWSET STARTING AT ABSOLUTE -5

FROM C1 FOR 5 ROWS INTO DESCRIPTOR :MYDESCR;

Example 4: Fetch 6 rows starting at row 10 for cursor CURS1, and fetch the data
into three host-variable-arrays:
FETCH ROWSET STARTING AT ABSOLUTE 10

FROM CURS1 FOR 6 ROWS
INTO :hav1, :hva2, :hva3;

Alternatively, a descriptor could have been specified in an INTO DESCRIPTOR
clause where the information in the SQLDA reflects the data types of the
host-variable-arrays:
FETCH ROWSET STARTING AT ABSOLUTE 10

FROM CURS1 FOR 6 ROWS
INTO DESCRIPTOR :MYDESCR;

Example 5: Suppose that the following array type, array variable, and table have
been defined.
CREATE TYPE INTARRAY AS INTEGER ARRAY[100];
CREATE TABLE T1 (COL1 CHAR(10), COL2 INT);

1676 SQL Reference

|
|

|
|

Use an array variable as an output target for a FETCH statement. The array
variable is specified in the INTO clause of the FETCH statement.
CREATE PROCEDURE PROCESSINTARRAY (OUT INTOUTARRAY INTARRAY)
BEGIN
DECLARE INTA INTARRAY;
DECLARE INTB INTARRAY;
DECLARE INTV INTEGER DEFAULT 1;
DECLARE STMT CHAR(100);
DECLARE C2 CURSOR FOR S1;
--
-- Initialize the array
--
SET INTA = ARRAY[1,INTEGER(2),3+0,4,5,6] ;
--
-- Use dynamic SQL with an array parameter marker and a parameter marker
-- containing the index to retrieve the value from the array parameter.
-- The array is referenced in a predicate.
--
SET STMT = ’SELECT COL1 FROM T1 WHERE COL2 = CAST(? AS INTARRAY)[?]’;
PREPARE S1 FROM STMT;
OPEN C2 USING INTA, INTV;
FETCH C2 INTO INTB ; -- INTB is an array variable that is used

-- as a target for the fetch statement.
CLOSE C2;
SET INTOUTARRAY=INTB;
END

Chapter 5. Statements 1677

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FREE LOCATOR
The FREE LOCATOR statement removes the association between a LOB locator
variable and its value.

Invocation

This statement can only be embedded in an application program. It cannot be
issued interactively. It is an executable statement that can be dynamically prepared.
However, the EXECUTE statement with the USING clause must be used to execute
the prepared statement. FREE LOCATOR cannot be used with the EXECUTE
IMMEDIATE statement. It must not be specified in Java.

Authorization

None required.

Syntax

�� FREE LOCATOR �

,

host-variable ��

Description

host-variable, ...
Identifies one or more locator variables that must be declared in accordance
with the rules for declaring locator variables. The locator variable type must be
a binary large object locator, a character large object locator, or a double-byte
character large object locator.

The host-variable must currently have a locator assigned to it. That is, a locator
must have been assigned during this unit of work (by a FETCH, SELECT
INTO, assignment statement, SET host-variable statement, or VALUES INTO
statement) and must not subsequently have been freed (by a FREE LOCATOR
statement); otherwise, an error is returned.

If more than one locator is specified and an error is returned on one of the
locators, it is possible that some locators have been freed and others have not
been freed.

Example

Assume that the employee table contains columns RESUME, HISTORY, and
PICTURE and that locators have been established in a program to represent the
column values. Free the CLOB locator variables LOCRES and LOCHIST, and the
BLOB locator variable LOCPIC.

EXEC SQL FREE LOCATOR :LOCRES, :LOCHIST, :LOCPIC

1678 SQL Reference

GET DIAGNOSTICS
The GET DIAGNOSTICS statement provides diagnostic information about the last
SQL statement (other than a GET DIAGNOSTICS statement) that was executed.
This diagnostic information is gathered as the previous SQL statement is executed.
Some of the information available through the GET DIAGNOSTICS statement is
also available in the SQLCA.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

��
CURRENT

GET DIAGNOSTICS
STACKED

statement-information
condition-information
combined-information

��

statement-information:

Chapter 5. Statements 1679

statement-information:

�

,

host-variable1 = statement-information-item-name
host-variable1 = DB2_GET_DIAGNOSTICS_DIAGNOSTICS
host-variable1 = DB2_SQL_NESTING_LEVEL

statement-information-item-name:

�

,

DB2_LAST_ROW
DB2_NUMBER_PARAMETER_MARKERS
DB2_NUMBER_RESULT_SETS
DB2_NUMBER_ROWS
DB2_RETURN_STATUS
DB2_SQL_ATTR_CURSOR_HOLD
DB2_SQL_ATTR_CURSOR_ROWSET
DB2_SQL_ATTR_CURSOR_SCROLLABLE
DB2_SQL_ATTR_CURSOR_SENSITIVITY
DB2_SQL_ATTR_CURSOR_TYPE
MORE
NUMBER
ROW_COUNT

condition-information:

1680 SQL Reference

condition-information:

CONDITION host-variable2
integer

�

� �

,

host-variable3 = condition-information-item-name
connection-information-item-name

condition-information-item-name:

CATALOG_NAME
CONDITION_NUMBER
CURSOR_NAME
DB2_ERROR_CODE1
DB2_ERROR_CODE2
DB2_ERROR_CODE3
DB2_ERROR_CODE4
DB2_INTERNAL_ERROR_POINTER
DB2_LINE_NUMBER
DB2_MESSAGE_ID
DB2_MODULE_DETECTING_ERROR
DB2_ORDINAL_TOKEN_n
DB2_REASON_CODE
DB2_RETURNED_SQLCODE
DB2_ROW_NUMBER
DB2_SQLERRD_SET
DB2_SQLERRD1
DB2_SQLERRD2
DB2_SQLERRD3
DB2_SQLERRD4
DB2_SQLERRD5
DB2_SQLERRD6
DB2_TOKEN_COUNT
MESSAGE_TEXT
RETURNED_SQLSTATE
SERVER_NAME

connection-information-item-name:

DB2_AUTHENTICATION_TYPE
DB2_AUTHORIZATION_ID
DB2_CONNECTION_STATE
DB2_CONNECTION_STATUS
DB2_ENCRYPTION_TYPE
DB2_SERVER_CLASS_NAME
DB2_PRODUCT_ID

combined-information:

Chapter 5. Statements 1681

combined-information:

�

,
(1)

host-variable4 = ALL STATEMENT
(2)

CONDITION
CONNECTION host-variable5

integer

Notes:

1 STATEMENT can only be specified once.

2 CONDITION and CONNECTION can only be specified once if host-variable5 or integer is not
also specified.

Description

Diagnostic information is provided in three main areas: statement information,
condition information, and combined information. After the execution of an SQL
statement, information about the execution of the statement is provided as
statement information, and at least one instance of condition information is
provided. The number of instances of the condition information is indicated by the
NUMBER item that is available in the statement information. Combined
information contains a text representation of all the information gathered about the
execution of the SQL statement.

The diagnostic information that is provided is specific to the server. If you are
connected to a server other than DB2 for z/OS, see that product's documentation
for the diagnostic information that is returned.

CURRENT
Specifies that information is to be returned from the first diagnostics area. It
corresponds to the previous SQL statement that was executed that was not a
GET DIAGNOSTICS or compound statement. CURRENT is the default.

STACKED
Specifies that information is to be returned from the stacked diagnostics area.
The stacked diagnostics area is only available within a handler in a native SQL
procedure and non-inline SQL functions. The stacked diagnostics area
corresponds to the previous SQL statement (that was not a GET
DIAGNOSTICS or compound statement) that was executed before the handler
was entered. If the GET DIAGNOSTICS statement is the first statement within
a handler, the current diagnostics area and the stacked diagnostics area contain
the same diagnostics information.

statement-information
Provides information about the last SQL statement executed.

host-variable1
Identifies a variable described in the program in accordance with the rules for
declaring host variables. The data type of the host variable must be the data
type as specified in Data types for GET DIAGNOSTICS items.

The host variable is assigned the value of the specified statement information
item. If the value is truncated when assigning it to the host variable, a warning

1682 SQL Reference

is returned and the GET_DIAGNOSTICS_DIAGNOSTICS item of the
diagnostics area is updated with the details of this condition. If a
DIAGNOSTICS item is not set, then the host variable is set to a default value,
based on its data type: 0 for an exact numeric field, an empty string for a
VARCHAR field, and blanks for a CHAR field.

DB2_GET_DIAGNOSTICS_DIAGNOSTICS
Contains textual information about errors or warnings that might have
occurred in the execution of the GET DIAGNOSTICS statement. The format of
the information is similar to what would be returned by a GET DIAGNOSTICS
:hv = ALL statement.

DB2_SQL_NESTING_LEVEL
Identifies the current level of nesting or recursion that is in effect when the
GET DIAGNOSTICS statement was executed. Each level of nesting
corresponds to a nested or recursive invocation of a packaged SQL function,
packaged SQL procedure, or trigger. If the GET DIAGNOSTICS statement is
executed outside of a level of nesting, the value of zero is returned.

statement-information-item-name:

DB2_LAST_ROW
For a multiple-row FETCH statement, contains a value of +100 if the last
row currently in the table is in the set of rows that have been fetched. For
cursors that are not sensitive to updates, there would be no need to do a
subsequent FETCH, because the result would be an end-of-data indication.
For cursors that are sensitive to updates, a subsequent FETCH may return
more data if a row had been inserted before the FETCH was executed. For
statements other than multiple-row FETCH statements, or for multiple-row
FETCH statements that do not contain the last row, this variable contains
the value 0.

An end of data warning might not occur and DB2_LAST_ROW might not
contain +100 when the number of rows returned is equal to the number of
rows requested and the last row of data returned is the last row of data.

DB2_NUMBER_PARAMETER_MARKERS
For a PREPARE statement, contains the number of parameter markers in
the prepared statement. Otherwise, or if the server only returns an SQLCA,
the value zero is returned.

DB2_NUMBER_RESULT_SETS
For a CALL statement, contains the actual number of result sets returned
by the procedure. Otherwise, or if the server only returns an SQLCA, the
value zero is returned.

DB2_NUMBER_ROWS
If the previous SQL statement was an OPEN or a FETCH that caused the
size of the result table to be known, returns the number of rows in the
result table. For SENSITIVE DYNAMIC cursors, this value can be thought
of as an approximation because rows that are inserted and deleted will
affect the next retrieval of this value. If the previous SQL statement was a
PREPARE statement, returns the estimated number of rows in the result
table for the prepared statement. Otherwise, or if the server only returns an
SQLCA, the value zero is returned.

DB2_RETURN_STATUS
Identifies the status value returned from the stored procedure associated
with the previously executed SQL statement, provided that the statement

Chapter 5. Statements 1683

was a CALL statement that invoked a procedure that returns a status.
Otherwise, or if the server only returns an SQLCA, the value zero is
returned.

DB2_SQL_ATTR_CURSOR_HOLD
For an ALLOCATE or OPEN statement, indicates whether a cursor can be
held open across multiple units of work.
v N indicates that this cursor does not remain open across multiple units

of work.
v Y indicates that this cursor remains open across multiple units of work.

Otherwise, a blank is returned.

DB2_SQL_ATTR_CURSOR_ROWSET
For an ALLOCATE or OPEN statement, indicates whether or not a cursor
can be accesses using rowset positioning.
v N indicates that this cursor supports only row positioned operations.
v Y indicates that this cursor supports rowset positioned operations.

Otherwise, a blank is returned.

DB2_SQL_ATTR_CURSOR_SCROLLABLE
For an ALLOCATE or OPEN statement, indicates whether or not a cursor
can be scrolled forward and backward.
v N indicates that this cursor is not scrollable.
v Y indicates that this cursor is scrollable.

Otherwise, a blank is returned.

DB2_SQL_ATTR_CURSOR_SENSITIVITY
For an ALLOCATE or OPEN statement, indicates whether or not a cursor
does or does not show updates to cursor rows made by other connections.
v I indicates insensitive.
v S indicates sensitive.

Otherwise, a blank is returned.

DB2_SQL_ATTR_CURSOR_TYPE
For an ALLOCATE or OPEN statement, indicates the type of cursor,
whether a cursor type is forward-only, static, or dynamic.
v F indicates a forward cursor.
v D indicates a dynamic cursor.
v S indicates a static cursor.

Otherwise, a blank is returned.

MORE
Indicates whether some of the warning and errors from the previous SQL
statement were stored or discarded.
v N indicates that all the warnings and errors from the previous SQL

statement are stored in the diagnostic area.
v Y indicates that some of the warnings and errors from the previous SQL

statement were discarded because the amount of storage needed to
record warnings and errors exceeded 65535 bytes.

NUMBER
Returns the number of errors and warnings detected by the execution of
the previous SQL statement, other than a GET DIAGNOSTICS statement,
that have been stored in the diagnostics area. If the previous SQL

1684 SQL Reference

statement returned an SQLSTATE of 00000 or no previous SQL statement
has been executed, the number returned is one.

The GET DIAGNOSTICS statement itself may return information via the
SQLSTATE parameter, but does not modify the previous contents of the
diagnostics area, except for the DB2_GET_DIAGNOSTICS_DIAGNOSTICS
item.

ROW_COUNT
Identifies the number of rows associated with the previous SQL statement
that was executed.

If the previous SQL statement is a DELETE, INSERT, UPDATE, or MERGE
statement, ROW_COUNT indicates the number of rows that are qualified
to be deleted, inserted, or updated by that statement, excluding rows that
are affected by triggers or referential integrity constraints. The count does
not include rows that are inserted as a result of processing a FOR
PORTION OF clause for in an SQL data change statement.

For the OPEN of a cursor for a SELECT with a data change statement, or a
SELECT INTO statement, SQLERRD(3) contains the number of rows
affected by the embedded data change statement. The value is 0 if the SQL
statement fails, indicating that all changes made in executing the statement
canceled.

A value of -1 indicates a mass delete from a table in a segmented table
space and the DELETE statement did not include selection criteria, or a
truncate operation. If the delete was against a view, then neither the
DELETE statement nor the nor the definition of the view included selection
criteria.

For a REFRESH TABLE statement, SQLERRD(3) contains the number of
rows inserted into the materialized query table.

If the previous SQL statement is a multiple-row FETCH, ROW_COUNT
identifies the number of rows fetched.

Otherwise, or if the server only returns an SQLCA, the value zero is
returned.

condition-information
Assigns the values of the specified condition information to the associated host
variables. The host variable specified must be of the data type that is
compatible with the data type of the specified diagnostic-ID or an error occurs.
If the value of the condition is truncated when assigning it to the host variable,
an error occurs. If an indicator variable was provided, the length of the value
is returned in the indicator variable.

If a DIAGNOSTICS item is not set, then the host variable is set to a default
value, based on the data type of the item. The specific value will be 0 for a
numeric field, an empty string for a VARCHAR field, and blanks for a CHAR
field.

host-variable2 or integer
Identifies the diagnostic for which information is requested. Each diagnostic
that occurs while executing an SQL statement is assigned an integer. The value
1 indicates the first diagnostic, 2 indicates the second diagnostic, and so on. If
the value is 1, the diagnostic information that is retrieved corresponds to the
condition that is indicated by the SQLSTATE value actually returned by the
execution of the previous SQL statement (other than a GET DIAGNOSTICS
statement). The host variable specified must be an integer data type or an error

Chapter 5. Statements 1685

occurs. An indicator variable is not allowed for this host variable. If a value is
specified that is less than or equal to zero or greater than the number of
available diagnostics, an error occurs.

host-variable3
Identifies a variable described in the program in accordance with the rules for
declaring host variables. The data type of the host variable must be the data
type as specified in Data types for GET DIAGNOSTICS items for the indicated
condition-information item.

condition-information-item-name

CATALOG_NAME
If the returned SQLSTATE is any one of the following values, the
constraint that caused the error is a referential, check, or unique constraint.
The location (RDB) name of the server that generated the condition is
returned.
v Class 09 (Triggered Action Exception),
v Class 23 (Integrity Constraint Violation)
v Class 27 (Triggered Data Change Violation)
v 40002 (Transaction Rollback - Integrity Constraint Violation)
v 40004 (Transaction Rollback - Triggered Action Exception)

If the returned SQLSTATE is class 42 (Syntax Error or Access Rule
Violation), the server name of the table that caused the error is returned.

If the returned SQLSTATE is class 44 (WITH CHECK OPTION Violation),
the server name of the view that caused the error is returned.

Otherwise, the empty string is returned.

The actual server name may be different than the server name specified,
either implicitly or explicitly, on the CONNECT statement because of the
use of aliases or synonyms.

CONDITION_NUMBER
Returns the number of the diagnostic returned.

CURSOR_NAME
If the returned SQLSTATE is class 24 (Invalid Cursor State), the name of
the cursor is returned. Otherwise, the empty string is returned.

DB2_ERROR_CODE1
Returns an internal error code. Otherwise, or if the server only returns an
SQLCA, the value 0 is returned.

DB2_ERROR_CODE2
Returns an internal error code. Otherwise, or if the server only returns an
SQLCA, the value 0 is returned.

DB2_ERROR_CODE3
Returns an internal error code. Otherwise, or if the server only returns an
SQLCA, the value 0 is returned.

DB2_ERROR_CODE4
Returns an internal error code. Otherwise, or if the server only returns an
SQLCA, the value 0 is returned.

DB2_INTERNAL_ERROR_POINTER
For some errors, this is a negative value that is an internal error pointer.
Otherwise, the value 0 is returned.

1686 SQL Reference

DB2_LINE_NUMBER
Returns the line number where an error is encountered in parsing a
dynamic statement. Also returns the line number where an error is
encountered in parsing, binding, or executing a CREATE or ALTER
statement for a native SQL procedure. DB2_LINE_NUMBER also returns
the line number when a CALL statement invokes a native SQL procedure
and the procedure returns with an error. This information is not returned
for an external SQL procedure.

This value will only be meaningful if the statement source contains new
line control characters.

DB2_MESSAGE_ID
Corresponds to the message that is contained in the MESSAGE_TEXT
diagnostic item (for example, DSNT102I or DSNU180I).

DB2_MODULE_DETECTING_ERROR
Returns an identifier indicating which module detected the error. For a
SIGNAL statement that is issued from a routine, the value 'ROUTINE' is
returned. Otherwise, the string 'DSN ' is returned.

DB2_ORDINAL_TOKEN_n
Returns the nth token. n must be a value from 1 to 100. For example,
DB2_ORDINAL_TOKEN_1 would return the value of the first token,
DB2_ORDINAL_TOKEN_2 the second token, and so on. A numeric value
for a token is converted to characters before being returned. If there is no
value for the token, or if the server only returns an SQLCA, an empty
string is returned.

DB2_REASON_CODE
Contains the reason code for errors that have a reason code token in the
message text. Otherwise, the value zero is returned.

DB2_RETURNED_SQLCODE
Returns the SQLCODE for the specified diagnostic.

DB2_ROW_NUMBER
Returns the number of the row where the condition was encountered,
when such information is available and applicable. If SQLCODE +1– or
+20237 is returned, DB2_ROW_NUMBER returns a value of 0.

DB2_SQLERRD_SET
A value of Y indicates that the DB2_SQLERRD1 through DB2_SQLERRD
items might be set. These items are set only when communicating with a
server that returns the SQLCA SQL communications area and not the new
diagnostics area. Otherwise, a blank is returned.

DB2_SQLERRD1
Returns the value of sqlerrd(1) from the SQLCA that is returned by the
server. Otherwise, the value zero is returned.

DB2_SQLERRD2
Returns the value of sqlerrd(2) from the SQLCA that is returned by the
server. Otherwise, the value zero is returned.

DB2_SQLERRD3
Returns the value of sqlerrd(3) from the SQLCA that is returned by the
server. Otherwise, the value zero is returned.

DB2_SQLERRD4
Returns the value of sqlerrd(4) from the SQLCA that is returned by the
server. Otherwise, the value zero is returned.

Chapter 5. Statements 1687

DB2_SQLERRD5
Returns the value of sqlerrd(5) from the SQLCA that is returned by the
server. Otherwise, the value zero is returned.

DB2_SQLERRD6
Returns the value of sqlerrd(6) from the SQLCA that is returned by the
server. Otherwise, the value zero is returned.

DB2_TOKEN_COUNT
Returns the number of tokens available for the specified diagnostic ID.

MESSAGE_TEXT
Returns the message text that is associated with the SQLCODE. This is the
short text, including substituted tokens. The message text does not contain
the message number. When the SQLCODE is 0, the empty string is
returned, even if the RETURNED_SQLSTATE value indicates a warning
condition.

RETURNED_SQLSTATE
Returns the SQLSTATE for the specified diagnostic.

SERVER_NAME
If the previous SQL statement is a CONNECT, DISCONNECT, or SET
CONNECTION statement, returns the name of the server specified in the
previous statement is returned. Otherwise, the name of the server where
the statement executes is returned.

connection-information-item-name
Provides information about the last SQL statement executed if it was a
CONNECT statement.

DB2_AUTHENTICATION_TYPE
Contains an authentication type value of:
v ‘S' for a server authentication
v ‘C' for client authentication
v ‘T' for trusted server authentication
v Otherwise, or if the server only returns an SQLCA, a blank is returned

DB2_AUTHORIZATION_ID
Authorization ID used by connected server. Because of user ID translation
and authorization exits, the local user ID may not be the authorized ID
used by the server.

DB2_CONNECTION_STATE
Contains the connection state:
v -1 if the connection is unconnected
v 1 if the connection is connected

Otherwise, or if the server only returns an SQLCA, the value zero is
returned.

DB2_CONNECTION_STATUS
Contains a value of:
v 1 if committable updates can be performed on the connection for this

unit of work
v 2 if no committable updates can be performed on the connection for this

unit of work

Otherwise, or if the server only returns an SQLCA, the value zero is
returned.

1688 SQL Reference

DB2_SERVER_CLASS_NAME
For a CONNECT or SET CONNECTION statement, contains one of the
following values:
v QAS for DB2 for i
v QDB2 forDB2 for z/OS
v QDB2/2 for DB2 for OS/2
v QDB2/6000 for DB2 for AIX®

v QDB2/6000 PE for DB2 for AIX Parallel Edition
v QDB2/AIX64 for DB2 for AIX 64-bit
v QDB2/HPUX for DB2 for HP-UX
v QDB2/HP64 for DB2 for HP-UX 64-bit
v QDB2/LINUX for DB2 for Linux, UNIX, and Windows
v QDB2/LINUX390 for DB2 for Linux, UNIX, and Windows
v QDB2/LINUXIA64 for DB2 for Linux, UNIX, and Windows
v QDB2/LINUXPPC forDB2 for Linux, UNIX, and Windows
v QDB2/LINUXPPC64 for DB2 for Linux, UNIX, and Windows
v QDB2/LINUXZ64 for DB2 for Linux, UNIX, and Windows
v QDB2/NT for DB2 for Linux, UNIX, and Windows
v QDB2/NT64 for DB2 for Linux, UNIX, and Windows
v QDB2/PTX for DB2 for NUMA-Q®

v QDB2/SCO for DB2 for SCO UnixWare
v QDB2/SGI for DB2 for Silicon Graphics
v QDB2/SNI for DB2 for Siemens Nixdorf
v QDB2/SUN for DB2 for SUN Solaris
v QDB2/SUN64 for DB2 for SUN Solaris 64-bit
v QDB2/Windows 95 for DB2 for Linux, UNIX, and Windows
v QSQLDS/VM for DB2 Server for VSE & VM
v QSQLDS/VSE for DB2 Server for VSE & VM

Otherwise, the empty string is returned.

DB2_ENCRYPTION_TYPE
The level of encryption for the connection:
v A indicates only the authentication tokens (authid and password) are

encrypted.
v D indicates all data is encrypted for the connection.
v Otherwise, a blank is returned.

DB2_PRODUCT_ID
Returns a product signature. If the application server is an IBM relational
database product, the form is pppvvrrm, where:
v ppp identifies the product as follows:

– ARI for DB2 Server for VSE & VM
– DSN for DB2 for z/OS
– QSQ for DB2 for i
– SQL for all other DB2 products

v vv is a two-digit version identifier such as '11'
v rr is a two-digit release identifier such as ‘01'
v m is a one-digit modification level.

Chapter 5. Statements 1689

– Values 0, 1, 2, 3, and 4 are reserved for modification levels in
conversion and enabling-new-function mode from Version 10 (CM10,
CM10*, ENFM10, and ENFM10*)

– Values 5, 6, 7, 8, and 9 are for modification levels in new-function
mode.

For example, if the application server is Version 9 of DB2 for z/OS in
new-function mode with the latest maintenance, the value would be
‘DSN09015'.

combined-information
Provides a text representation of all the information gathered about the
execution of the SQL statement.

ALL
Indicates that all diagnostic items that are set for the last SQL statement
executed are to be combined into one string. The format of the string is a
semicolon separated list of all of the available diagnostic information in the
form: <item-name>[(<condition-number>)]=<value-converted-to-
character>;... as shown in the following example:
NUMBER=1;RETURNED_SQLSTATE=02000;DB2_RETURNED_SQLCODE=+100;

host-variable4
Identifies a variable described in the program in accordance with the rules
for declaring host variables. The data type of the host variable must be
VARCHAR. If the length of host-variable4 is not sufficient to hold the full
returned diagnostic string, the string is truncated, a warning is returned,
and the GET_DIAGNOSTICS_DIAGNOSITICS item of the diagnostics area
is updated with the details of this condition.

STATEMENT
Indicates that all statement-information-item-name diagnostic items that
are set for the last SQL statement executed should be combined into one
string. The format is the same as described for the ALL option.

CONDITION
Indicates that all condition-information-item-name diagnostic items that are
set for the last SQL statement executed should be combined into one
string. If host-variable5 or integer is supplied after CONDITION, the format
is the same as described above for the ALL option. If host-variable5 or
integer is not supplied, the format includes a condition number entry at
the beginning of the information for that condition in the form:

CONDITION_NUMBER=X;<item-name>=<value-converted-to-character>;...
where X is the number of the condition, as shown in the following
example:
CONDITION_NUMBER=1;RETURNED_SQLSTATE=02000;RETURNED_SQLCODE=100;

CONDITION_NUMBER=2;RETURNED_SQLSTATE=01004;

CONNECTION
Indicates that all connection-information-item-name diagnostic items that
are set for the last SQL statement executed should be combined into one
string. If host-variable5 or integer is supplied after CONNECTION, the
format is the same as described for the ALL option. If host-variable5 or
integer is not supplied, then the format includes a condition number entry
at the beginning of the information for that condition in the form:

CONNECTION_NUMBER=X;<item-name>=<value-converted-to-
character>;... where X is the number of the condition, as shown in the
following example:

1690 SQL Reference

|
|
|

CONNECTION_NUMBER=1;CONNECTION_NAME=SVL1;DB2_PRODUCT_ID=DSN08010;

host-variable5 or integer
Identifies the diagnostic for which ALL CONDITION or ALL
CONNECTION information is requested. The host variable specified must
be an integer data type or an error occurs. An indicator variable is not
allowed for this host variable or an error occurs. If a value is specified that
is less than or equal to zero or greater than the number of available
diagnostics, an error occurs.

Notes

Effect of the statement in a native SQL procedure:
The GET DIAGNOSTICS statement does not change the contents of the
diagnostics area except for DB2_GET_DIAGNOSTICS_DIAGNOSTICS.

If you want information about an error, the GET DIAGNOSTICS statement
must be the first executable statement specified in the handler that will
handle the error condition.

If you want information about a warning and a handler will get control for
the warning condition, the GET DIAGNOSTICS statement must be the first
executable statement specified in that handler.

If you want information about a warning and a handler will not get
control for the warning condition, the GET DIAGNOSTICS statement must
be the next statement executed after that previous statement.

Considerations for the SQLSTATE and SQLCODE SQL variables:
The GET DIAGNOSTICS statement does not change the value of the
SQLSTATE and SQLCODE SQL variables.

Data types for items:
When a diagnostic item is assigned to a host variable, SQL variable, or
SQL parameter, the data type of the target must be compatible with the
data type of the requested diagnostic item.

Data types for GET DIAGNOSTICS items

Table 145. Data types for GET DIAGNOSTICS items

Type of information Item Data type

Statement Information DB2_GET_DIAGNOSTICS_DIAGNOSTICS VARCHAR(32672)

DB2_LAST_ROW INTEGER

DB2_NUMBER_PARAMETER_MARKERS INTEGER

DB2_NUMBER_RESULT_SETS INTEGER

DB2_NUMBER_ROWS DECIMAL(31,0)

DB2_RETURN_STATUS INTEGER

DB2_SQL_ATTR_CURSOR_HOLD CHAR(1)

DB2_SQL_ATTR_CURSOR_ROWSET CHAR(1)

DB2_SQL_ATTR_CURSOR_SCROLLABLE CHAR(1)

DB2_SQL_ATTR_CURSOR_SENSITIVITY CHAR(1)

DB2_SQL_ATTR_CURSOR_TYPE CHAR(1)

MORE CHAR(1)

NUMBER INTEGER

ROW_COUNT DECIMAL(31,0)

Chapter 5. Statements 1691

Table 145. Data types for GET DIAGNOSTICS items (continued)

Type of information Item Data type

Statement Information DB2_SQL_NESTING_LEVEL INTEGER

Condition Information CATALOG_NAME VARCHAR(128)

CONDITION_NUMBER INTEGER

CURSOR_NAME VARCHAR(128)

DB2_ERROR_CODE1 INTEGER

DB2_ERROR_CODE2 INTEGER

DB2_ERROR_CODE3 INTEGER

DB2_ERROR_CODE4 INTEGER

DB2_INTERNAL_ERROR_POINTER INTEGER

DB2_LINE_NUMBER INTEGER

DB2_MESSAGE_ID CHAR(10)

DB2_MODULE_DETECTING_ERROR CHAR(8)

DB2_ORDINAL_TOKEN_n VARCHAR(515)

DB2_REASON_CODE INTEGER

DB2_RETURNED_SQLCODE INTEGER

DB2_ROW_NUMBER DECIMAL(31,0)

DB2_TOKEN_COUNT INTEGER

MESSAGE_TEXT VARCHAR(32672)

RETURNED_SQLSTATE CHAR(5)

SERVER_NAME VARCHAR(128)

Connection
Information

DB2_AUTHENTICATION_TYPE CHAR(1)

DB2_AUTHORIZATION_ID VARCHAR(128)

DB2_CONNECTION_STATE INTEGER

DB2_CONNECTION_STATUS INTEGER

DB2_ENCRYPTION_TYPE CHAR(1)

DB2_PRODUCT_ID VARCHAR(8)

DB2_SERVER_CLASS_NAME CHAR(128)

Combined Information ALL VARCHAR(32672)

DRDA considerations
The GET DIAGNOSTICS statement is supported from a current DB2 for
z/OS client, regardless of the level of the server (a DB2 for z/OS Version 7
or a DB2 for Windows Version 7, for example). When the application is
connected to servers that do not support the Open Group Version 3 DRDA
standard, the diagnostic information that is returned by the servers is
available in the condition information.

Alternative syntax and synonyms:
To provide compatibility with previous releases of DB2 or other products
in the DB2 family, DB2 supports the following keywords:
v RETURN_STATUS as a synonym for DB2_RETURN_STATUS
v EXCEPTION as a synonym for CONDITION

1692 SQL Reference

Examples

Example 1: In an application, use the GET DIAGNOSTICS statement to determine
how many rows were updated.
long rcount;
EXEC SQL UPDATE T1 SET C1 = C1 + 1;
EXEC SQL GET DIAGNOSTICS :rcount = ROW_COUNT;

After execution of this code segment, rcount will contain the number of rows that
were updated.

Example 2: In an application, use the GET DIAGNOSTICS statement to handle
multiple SQL Errors.
long numerrors, counter;
char retsqlstate[5];
long hva[5];
EXEC SQL INSERT INTO T1 FOR 5 ROWS VALUES (:hva) NOT ATOMIC

CONTINUE ON SQLEXCEPTION;
EXEC SQL GET DIAGNOSTICS :numerrors = NUMBER;
for (i=1;i < numerrors;i++)
{
EXEC SQL GET DIAGNOSTICS CONDITION :i :retsqlstate = RETURNED_SQLSTATE;
...

Execution of this code segment sets and prints retsqlstate with the SQLSTATE for
each error that was encountered in the previous SQL statement.

Example 3: Retrieve information about a connection.
EXEC SQL GET DIAGNOSTICS CONDITION :HV_PRODUCT_ID = DB2_PRODUCT_ID;

Example 4: Use the GET DIAGNOSTICS statement to retrieve information that is
similar to what is returned in the SQLCA:
EXEC SQL GET DIAGNOSTICS CONDITION 1

:dasqlcode = DB2_RETURNED_SQLCODE,
:datokencnt = DB2_TOKEN_COUNT,
:datoken1 = DB2_ORDINAL_TOKEN_1,
:datoken2 = DB2_ORDINAL_TOKEN_2,
:datoken3 = DB2_ORDINAL_TOKEN_3,
:datoken4 = DB2_ORDINAL_TOKEN_4,
:datoken5 = DB2_ORDINAL_TOKEN_5,
:dasqlerrd1b = DB2_MESSAGE_ID,
:damsgtext = MESSAGE_TEXT,
:dasqlerrp = DB2_MODULE_DETECTING_ERROR,
:dasqlstate = RETURNED_SQLSTATE;

Example 5: Specify the STACKED keyword on a GET DIAGNOSTICS statement
that is used within a handler to access information in the diagnostics area that
caused the handler to be activated:
CREATE PROCEDURE divide2 (IN numerator INTEGER,

IN denominator INTEGER,
OUT divide_result INTEGER,
OUT divide_error VARCHAR(70))

LANGUAGE SQL
BEGIN

DECLARE msg_text CHAR(70) DEFAULT ’’;
DECLARE divide_error CHAR(70) DEFAULT ’’;

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
BEGIN

INSERT; -- insert row into a log table

Chapter 5. Statements 1693

-- get diagnostic information for the INSERT statement
GET CURRENT DIAGNOSTICS CONDITION 1 msg_text = MESSAGE_TEXT;

-- get information about condition that activated the handler
GET STACKED DIAGNOSTICS CONDITION 1 divide_error = MESSAGE_TEXT;

END;

SET divide_result = numerator/denominator;
END;

The first GET DIAGNOSTICS statement obtains diagnostic information about the
INSERT statement.

The second GET DIAGNOSTICS statement specifies the STACKED keyword. The
use of the STACKED keyword allows access the stacked diagnostics area which
contains the diagnostic information for the condition that caused the handler to be
activated. The information about the original condition is still accessible within the
handler even after another statement has been issued, such as the INSERT
statement in the example.

Example 6: The following application logs information whenever a routine is
invoked directly by an application rather than indirectly by another routine. The
application uses the GET DIAGNOSTICS statement that specifies
DB2_SQL_NESTING_LEVEL to obtain the current nesting level, and invokes the
LOG_INVOCATION procedure if the nesting level is 1:
CREATE OR REPLACE PROCEDURE TEST
MODIFIES SQL DATA
LANGUAGE SQL
BEGIN

DECLARE NESTING_LEVEL INT DEFAULT 0;

GET DIAGNOSTICS NESTING_LEVEL = DB2_SQL_NESTING_LEVEL;

--
-- If routine is invoked at nesting level 1,
-- invoke a routine to log the invocation.
--
IF (NESTING_LEVEL = 1) THEN

CALL LOG_INVOCATION();
END IF;

--
-- Remainder of procedure logic
--
...

END

1694 SQL Reference

GRANT
The DB2 GRANT statement grants privileges to authorization IDs. There is a
separate form of the statement for each of these classes of privilege:
v Collection
v Database
v Distinct type
v Function or stored procedure
v Package
v Plan
v Schema
v Sequence
v System
v Table or view
v Distinct type, array type, or JAR file
v Variable
v Use

The applicable objects are always at the current server. The grants are recorded in
the current server's catalog.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

If the authorization mechanism was not activated when the DB2 subsystem was
installed, an error condition occurs.

Authorization

To grant a privilege P, the privilege set must include one of the following:
v The privilege P WITH GRANT OPTION
v Ownership of the object on which P is a privilege
v SECADM authority

Note: If installation parameter SEPARATE SECURITY is NO, SYSADM authority
has implicit SECADM authority.

v ACCESSCTRL authority

The presence of ACCESSCTRL authority in the privilege set allows the granting of
all authorities except:
v System DBADM
v CREATE_SECURE_OBJECT privilege
v DATAACCESS
v ACCESSCTRL

Note: If installation parameter SEPARATE SECURITY is NO, SYSCTRL authority
has implicit ACCESSCTRL authority that allows the granting of all privileges
except:

Chapter 5. Statements 1695

|

|

– DBADM on databases
– DELETE, INSERT, SELECT, and UPDATE on user tables or views
– EXECUTE on plans, packages, functions, or stored procedures
– PACKADM on collections
– SYSADM authority
– USAGE on distinct types, JARs, and sequences
– READ, WRITE on global variables

Except for views, the GRANT option for privileges on a table is also inherent in
DBADM authority for its database, provided DBADM authority was acquired with
the GRANT option. See “CREATE VIEW” on page 1527 for a description of the
rules that apply to views.

If the statement is embedded in an application program, the privilege set is the
privileges that are held by the owner of the plan or package. The owner can be a
role. If the statement is dynamically prepared, the privilege set is the privileges
that are held by the SQL authorization ID of the process. However, if the process is
running in a trusted context that is defined with the ROLE AS OBJECT OWNER
CLAUSE, the privilege set is the privileges that are held by the role in effect.

Syntax

�� GRANT authorization-specification �

,

TO authorization-name
ROLE role-name
PUBLIC

WITH GRANT OPTION
��

Description

authorization-specification
Specifies one or more privileges for the class of privilege. The same privilege
must not be specified more than once.

TO Specifies to what authorization IDs the privileges are granted.

authorization-name,...
Lists one or more authorization IDs.

ROLE role-name
Lists one or more role names. Each name must identify a role that exists at
the current server.

The value of the CURRENT RULES special register determines whether
you can use the ID or role of the GRANT statement itself (to grant
privileges to yourself). When CURRENT RULES is:

DB2 You cannot use the ID or role of the GRANT statement.
STD

You can use the ID or role of the GRANT statement.

PUBLIC
Grants the privileges to all users at the current server, including database
requesters using DRDA access.

1696 SQL Reference

|

CREATE_SECURE_OBJECT must not be granted to PUBLIC.

ACCESSCTRL, DATAACCESS and system DBADM authorities cannot be
granted to PUBLIC.

WITH GRANT OPTION
Allows the named users to grant the privileges to others. Granting an
administrative authority with this option allows the user to specifically grant
any privilege belonging to that authority. If you omit WITH GRANT OPTION,
the named users cannot grant the privileges to others unless they have that
authority from some other source.

GRANT authority cannot be passed to PUBLIC. When WITH GRANT OPTION
is used with PUBLIC, a warning is issued, and the named privileges are
granted, but without GRANT authority.

If you grant the CREATE_SECURE_OBJECT system privilege, the WITH
GRANT OPTION clause is ignored because the CREATE_SECURE_OBJECT
system privilege cannot be granted to others.

GRANT ACCESSCTRL, DATAACCESS and system DBADM authorities cannot
be passed to others. If WITH GRANT OPTION is used when granting these
authorities, a warning is issued and the named authorities are granted, but
without GRANT authority.

Notes

For more on DB2 privileges, read DB2 Administration Guide.

A grant is the granting of a specific privilege by a specific grantor to a specific
grantee. The grantor for a given GRANT statement is the authorization ID for the
privilege set; that is, the SQL authorization ID of the process or a role, or the
authorization ID of the owner of the plan or package. Grant statements that are
made in a trusted context that is defined with the ROLE AS OBJECT OWNER
clause result in the grantor being the role that is in effect. If the statement is
prepared dynamically, the grantor is the role that is associated with the ID that is
running the statement. If the statement is embedded in an application program
that was bound in a trusted context that was defined with the ROLE AS OBJECT
OWNER clause the owner of the plan or package is a role which is the grantor. If
the ROLE AS OBJECT OWNER clause is not specified for the trusted context, the
grantor is the authorization ID of the process.

The grantee, as recorded in the catalog, is an authorization ID or PUBLIC.

Duplicate grants from the same grantor are not recorded in the catalog. Otherwise,
the result of executing a GRANT statement is recorded as one or more grants in
the current server's catalog.

If more than one privilege or authorization-name is specified after the TO keyword
and one of the grants is in error, execution of the statement is stopped and no
grants are made. The status of the privilege or privileges granted is recorded in the
catalog for each authorization-name.

Different grantors can grant the same privilege to a single grantee. The grantee
retains that privilege as long as one or more of those grants are recorded in the
catalog. Privileges that imply other privileges are also termed authorities. Grants are
removed from the catalog by executing SQL REVOKE statements.

Chapter 5. Statements 1697

Whenever a grant is made for a database, distinct type, package, plan, schema,
stored procedure, table, trigger, user-defined function, view, or USE privilege for
an object that does not exist, an SQL return code is issued and the grant is not
made.

The grantee, as recorded in the catalog for PUBLIC AT ALL LOCATIONS is
PUBLIC*.

1698 SQL Reference

GRANT (collection privileges)
This form of the GRANT statement grants privileges on collections.

Syntax

�� �

,

GRANT CREATE ON COLLECTION collection-id
PACKADM IN *

�

,

TO authorization-name
ROLE role-name
PUBLIC

�

�
WITH GRANT OPTION

��

Description

CREATE IN
Grants the privilege to use the BIND subcommand to create packages in the
designated collections.

The word ON can be used instead of IN.

PACKADM ON
Grants package administrator authority for the designated collections.

The word IN can be used instead of ON.

COLLECTION collection-id,...
Identifies the collections on which the specified privilege is granted. The
collections do not have to exist.

COLLECTION *
Indicates that the specified privilege is granted on all collections including
those that do not currently exist.

TO Refer to “GRANT” on page 1695 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 1695 for a description of the WITH GRANT
OPTION clause.

Examples

Example 1: Grant the privilege to create new packages in collections QAACLONE
and DSN8CC61 to CLARK.

GRANT CREATE IN COLLECTION QAACLONE, DSN8CC61 TO CLARK;

Example 2: Grant the privileges to create new packages in collection DSN8CC91 to
role ROLE1:

GRANT CREATE IN COLLECTION DSN8CC91 TO ROLE ROLE1;

Chapter 5. Statements 1699

GRANT (database privileges)
This form of the GRANT statement grants privileges on databases.

Syntax

�� GRANT �

,

DBADM
DBCTRL
DBMAINT
CREATETAB
CREATETS
DISPLAYDB
DROP
IMAGCOPY
LOAD
RECOVERDB
REORG
REPAIR
STARTDB
STATS
STOPDB

�

,

ON DATABASE database-name �

,

TO authorization-name
ROLE role-name
PUBLIC

�

�
WITH GRANT OPTION

��

Description

Each keyword listed grants the privilege described, but only as it applies to or
within the databases named in the statement.

DBADM
Grants the database administrator authority.

DBCTRL
Grants the database control authority.

DBMAINT
Grants the database maintenance authority.

CREATETAB
Grants the privilege to create new tables. To create tables in an implicitly
created database, CREATETAB privileges are needed on the DSNDB04
database. For a work file database, PUBLIC implicitly has the CREATETAB
privilege (without GRANT authority) to define declared temporary tables; this
privilege is not recorded in the DB2 catalog, and it cannot be revoked.

CREATETS
Grants the privilege to create new table spaces.

DISPLAYDB
Grants the privilege to issue the DISPLAY DATABASE command.

1700 SQL Reference

DROP
Grants the privilege to issue the DROP or ALTER DATABASE statements for
the designated databases.

IMAGCOPY
Grants the privilege to run the COPY, MERGECOPY, and QUIESCE utilities
against table spaces of the specified databases, and to run the MODIFY
RECOVERY utility.

LOAD
Grants the privilege to use the LOAD utility to load tables.

RECOVERDB
Grants the privilege to use the RECOVER and REPORT utilities to recover
table spaces and indexes.

REORG
Grants the privilege to use the REORG utility to reorganize table spaces and
indexes.

REPAIR
Grants the privilege to use the REPAIR and DIAGNOSE utilities.

STARTDB
Grants the privilege to issue the START DATABASE command.

STATS
Grants the privilege to use the RUNSTATS utility to update statistics, the
CHECK utility to test whether indexes are consistent with the data they index,
and the MODIFY STATISTICS utility to delete unwanted statistics history
records from the corresponding catalog tables.

STOPDB
Grants the privilege to issue the STOP DATABASE command.

ON DATABASE database-name,...
Identifies databases on which privileges are to be granted. For each named
database, the grantor must have all the specified privileges with the GRANT
option. Each name must identify a database that exists at the current server.
DSNDB01 must not be identified; however, a grant of a privilege on DSNDB06
implies the granting of the same privilege on DSNDB01 for utility operations
only.

Database privileges granted on DSNDB04 are applicable to all implicitly
created databases. This means that a user with the STOPDB privilege on
DSNDB04 can also stop database objects in any implicitly created database.
Similarly, having DBADM on DSNDB04 allows access to all tables in all
implicitly created databases. However, having a database privilege on
DSNDB04 does not allow granting of this privilege on an implicitly created
database to others.

TO Refer to “GRANT” on page 1695 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 1695 for a description of the WITH GRANT
OPTION clause.

Examples

Example 1: Grant drop privileges on database DSN8D11A to user PEREZ.

Chapter 5. Statements 1701

GRANT DROP
ON DATABASE DSN8D11A
TO PEREZ;

Example 2: Grant repair privileges on database DSN8D11A to all local users.
GRANT REPAIR

ON DATABASE DSN8D11A
TO PUBLIC;

Example 3: Grant authority to create new tables and load tables in database
DSN8D11A to users WALKER, PIANKA, and FUJIMOTO, and give them grant
privileges.

GRANT CREATETAB,LOAD
ON DATABASE DSN8D11A
TO WALKER,PIANKA,FUJIMOTO
WITH GRANT OPTION;

Example 4: Grant load privileges to database DSN9D91A to role ROLE1:
GRANT LOAD

ON DATABASE DSN9D91A
TO ROLE ROLE1;

1702 SQL Reference

GRANT (function or procedure privileges)
This form of the GRANT statement grants privileges on user-defined functions,
cast functions that are generated for distinct types, array types, and stored
procedures.

Syntax

�� GRANT EXECUTE ON �

� �

�

�

�

,

FUNCTION function-name
()

,

parameter-type

*
,

SPECIFIC FUNCTION specific-name
,

PROCEDURE procedure-name
*

�

� �

,

TO authorization-name
ROLE role-name
PUBLIC

WITH GRANT OPTION
��

�� data-type
(1)

AS LOCATOR

��

Notes:

1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

parameter-type:

data-type:

Chapter 5. Statements 1703

|
|
|

�� built-in-type
distinct-type-name
array-type-name

��

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (length) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID
XML

��

Description

EXECUTE
Grants the privilege to run the identified user-defined function, cast function
that was generated for a distinct type, or stored procedure.

built-in-type:

1704 SQL Reference

|

FUNCTION or SPECIFIC FUNCTION
Identifies the function on which the privilege is granted. The function must
exist at the current server, and it must be a function that was defined with the
CREATE FUNCTION statement or a cast function that was generated by a
CREATE TYPE statement. The function can be identified by name, function
signature, or specific name.

If the function was defined with a table parameter (the LIKE TABLE was
specified in the CREATE FUNCTION statement to indicate that one of the
input parameters is a transition table), the function signature cannot be used to
identify the function. Instead, identify the function with its function name, if
unique, or with its specific name.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly
one function. The function can have any number of parameters defined for
it. If there is more than one function of the specified name in the specified
or implicit schema, an error is returned.

An * can be specified for a qualified or unqualified function-name. An * (or
schema-name.*) indicates that the privilege is granted on all the functions in
the schema including those that do not currently exist. SYSADM authority
is required if an * (or schema-name.*) is specified. Specifying an * does not
affect any EXECUTE privileges that are already granted on a function.

FUNCTION function-name (parameter-type,...)
Identifies the function by its function signature, which uniquely identifies
the function. The function-name (parameter-type, ...) must identify a function
with the specified function signature. The specified parameters must match
the data types in the corresponding position that were specified when the
function was created. The number of data types, and the logical
concatenation of the data types is used to identify the specific function
instance on which the privilege is to be granted. Synonyms for data types
are considered a match.

If the function was defined with a table parameter (the LIKE TABLE name
AS LOCATOR clause was specified in the CREATE FUNCTION statement
to indicate that one of the input parameters is a transition table), the
function signature cannot be used to uniquely identify the function.
Instead, use one of the other syntax variations to identify the function with
its function name, if unique, or its specific name.

If function-name () is specified, the function identified must have zero
parameters.

function-name
Identifies the name of the function. If you do not explicitly qualify the
function name with a schema name, the function name is implicitly
qualified with a schema name as described in the preceding
description for FUNCTION function-name.

(parameter-type,...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, DB2 searches the SQL
path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one
of the following:
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match. For

Chapter 5. Statements 1705

example, DEC() will be considered a match for a parameter of a
function defined with a data type of DEC(7,2). Similarly,
DECFLOAT() will be considered a match for DECFLOAT(16) or
DECFLOAT(34). However, FLOAT cannot be specified with empty
parenthesis because its parameter value indicates a specific data type
(REAL or DOUBLE).

v If a specific value for a length, precision, or scale attribute is
specified, the value must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. If the
data type is FLOAT, the precision does not have to exactly match the
value that was specified because matching is based on the data type
(REAL or DOUBLE).

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. The implicit length must exactly match the value that
was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

For data types with a subtype or encoding scheme attribute, specifying
the FOR subtype DATA clause or the CCSID clause is optional.
Omission of either clause indicates that DB2 ignores the attribute when
determining whether the data types match. If you specify either clause,
it must match the value that was implicitly or explicitly specified in the
CREATE FUNCTION statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this
parameter. If AS LOCATOR is specified, the data type must be a LOB
or a distinct type based on a LOB.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify
a specific function that exists at the current server.

PROCEDURE procedure-name
Identifies a stored procedure that is defined at the current server. The name,
including the implicit or explicit schema name, must identify a stored
procedure that exists at the current server.

An * can be specified for a qualified or unqualified procedure-name. An * (or
schema-name.*) indicates that the privilege is granted on all the stored
procedures in the schema including those that do not currently exist.
Specifying an * does not affect any EXECUTE privileges that are already
granted on a stored procedure.

TO Refer to “GRANT” on page 1695 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 1695 for a description of the WITH GRANT
OPTION clause.

Examples

Example 1: Grant the EXECUTE privilege on function CALC_SALARY to user
JONES. Assume that there is only one function in the schema with function name
CALC_SALARY.

GRANT EXECUTE ON FUNCTION CALC_SALARY TO JONES;

1706 SQL Reference

Example 2: Grant the EXECUTE privilege on procedure VACATION_ACCR to all
users at the current server.

GRANT EXECUTE ON PROCEDURE VACATION_ACCR TO PUBLIC;

Example 3: Grant the EXECUTE privilege on function DEPT_TOTALS to the
administrative assistant and give the assistant the ability to grant the EXECUTE
privilege on this function to others. The function has the specific name
DEPT85_TOT. Assume that the schema has more than one function that is named
DEPT_TOTALS.

GRANT EXECUTE ON SPECIFIC FUNCTION DEPT85_TOT TO ADMIN_A
WITH GRANT OPTION;

Example 4: Grant the EXECUTE privilege on function NEW_DEPT_HIRES to HR
(Human Resources). The function has two input parameters with data types of
INTEGER and CHAR(10), respectively. Assume that the schema has more than one
function that is named NEW_DEPT_HIRES.

GRANT EXECUTE ON FUNCTION NEW_DEPT_HIRES (INTEGER, CHAR(10))
TO HR;

You can also code the CHAR(10) data type as CHAR().

Example 5: Grant the EXECUTE privilege on function FIND_EMPDEPT to role
ROLE1:
GRANT EXECUTE ON FUNCTION FIND_EMPDEPT TO ROLE ROLE1;

Chapter 5. Statements 1707

GRANT (package privileges)
This form of the GRANT statement grants privileges on packages.

Syntax

��

�

GRANT ALL
,

BIND
COPY

EXECUTE
RUN

ON PACKAGE �

,

collection-id. package-name
*

�

� �

,

TO authorization-name
ROLE role-name WITH GRANT OPTION
PUBLIC

��

Description

BIND
Grants the privilege to use the BIND and REBIND subcommands for the
designated packages.

The BIND package privilege can also be used to allow a user to add a new
version of an existing package. For details on the authorization required to
create new packages and new versions of existing packages, see “Notes” on
page 1709.

COPY
Grants the privilege to use the COPY option of the BIND subcommand for the
designated packages.

EXECUTE
Grants the privilege to run application programs that use the designated
packages and to specify the packages following PKLIST for the BIND PLAN
and REBIND PLAN commands. RUN is an alternate name for the same
privilege.

ALL
Grants all package privileges for which you have GRANT authority for the
packages named in the ON clause.

ON PACKAGE collection-id.package-name,...
Identifies packages for which you are granting privileges. The granting of a
package privilege applies to all versions of a package. The list can
simultaneously contain items of the following two forms:
v collection-id.package-name explicitly identifies a single package. The name

must identify a package that exists at the current server.
v collection-id.* applies to every package in the indicated collection. This

includes packages that currently exist and future packages. The grant applies
to a collection at the current server, but the collection-id does not have to
identify a collection that exists when the grant is made.

1708 SQL Reference

To grant a privilege in this form requires PACKADM with the WITH
GRANT OPTION over the collection or all collections, SYSADM, or
SYSCTRL authority. Because of this fact, WITH GRANT OPTION, if
included in the statement, is ignored for grants of this form, but not for
grants for specific packages.

TO Refer to “GRANT” on page 1695 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 1695 for a description of the WITH GRANT
OPTION clause.

Notes

The authorization required to add a new package or a new version of an existing
package depends on the value of field BIND NEW PACKAGE on installation panel
DSNTIPP. The default value is BINDADD.

If the value of BIND NEW PACKAGE is BINDADD, the owner must have one of
the following to add a new package or a new version of an existing package to a
collection:
v The BINDADD system privilege and either the CREATE IN privilege or

PACKADM authority for the collection or for all collections
v SYSADM or SYSCTRL authority

If the value of BIND NEW PACKAGE is BIND, the owner must have one of the
following to add a new package or a new version of an existing package to a
collection:
v The BINDADD system privilege and either the CREATE IN privilege or

PACKADM authority for the collection or for all collections
v SYSADM or SYSCTRL authority
v PACKADM authority for the collection or for all collections
v Users with the BIND package privilege can also add a new version of an

existing package

Alternative syntax and synonyms: To provide compatibility with previous releases
of DB2 or other products in the DB2 family, DB2 supports specifying PROGRAM
as a synonym for PACKAGE.

Examples

Example 1: Grant the privilege to copy all packages in collection DSN8CC61 to
LEWIS.

GRANT COPY ON PACKAGE DSN8CC61.* TO LEWIS;

Example 2: You have the BIND privilege with GRANT authority over the package
CLCT1.PKG1. You have the EXECUTE privilege with GRANT authority over the
package CLCT2.PKG2. You have no other privileges with GRANT authority over
any package in the collections CLCT1 AND CLCT2. Hence, the following
statement, when executed by you, grants LEWIS the BIND privilege on
CLCT1.PKG1 and the EXECUTE privilege on CLCT2.PKG2, and makes no other
grant. The privileges granted include no GRANT authority.

GRANT ALL ON PACKAGE CLCT1.PKG1, CLCT2.PKG2 TO JONES;

Chapter 5. Statements 1709

Example 3: Grant the privileges to run all packages in collection DSN9CC13 to role
ROLE1:
GRANT EXECUTE ON PACKAGE DSN9CC13.* TO ROLE ROLE1;

1710 SQL Reference

GRANT (plan privileges)
This form of the GRANT statement grants privileges on plans.

Syntax

�� �

,

GRANT BIND
EXECUTE

�

,

ON PLAN plan-name �

,

TO authorization-name
ROLE role-name
PUBLIC

�

�
WITH GRANT OPTION

��

Description

BIND
Grants the privilege to use the BIND, REBIND, and FREE subcommands for
the identified plans. (The authority to create new plans using BIND ADD is a
system privilege.)

EXECUTE
Grants the privilege to run programs that use the identified plans.

ON PLAN plan-name,...
Identifies the application plans on which the privileges are granted. For each
identified plan, you must have all specified privileges with the GRANT option.

TO Refer to “GRANT” on page 1695 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 1695 for a description of the WITH GRANT
OPTION clause.

Examples

Example 1: Grant the privilege to bind plan DSN8IP11 to user JONES.
GRANT BIND ON PLAN DSN8IP11 TO JONES;

Example 2: Grant privileges to bind and execute plan DSN8CP11 to all users at the
current server.

GRANT BIND,EXECUTE ON PLAN DSN8CP11 TO PUBLIC;

Example 3: Grant the privilege to execute plan DSN8CP11 to users ADAMSON and
BROWN with grant option.

GRANT EXECUTE ON PLAN DSN8CP11 TO ADAMSON,BROWN WITH GRANT OPTION;

Example 4: Grant the privileges to bind the DSN91PLN plan to role ROLE1:
GRANT BIND ON PLAN DSN91PLN TO ROLE ROLE1;

Chapter 5. Statements 1711

GRANT (schema privileges)
This form of the GRANT statement grants privileges on schemas.

Syntax

�� GRANT �

,

ALTERIN
CREATEIN
DROPIN

ON SCHEMA �

,

schema-name
*

�

,

TO authorization-name
ROLE role-name
PUBLIC

�

�
WITH GRANT OPTION

��

Description

ALTERIN
Grants the privilege to alter stored procedures and user-defined functions, or
specify a comment for distinct types, cast functions that are generated for
distinct types, sequences, stored procedures, triggers, and user-defined
functions in the designated schemas.

CREATEIN
Grants the privilege to create distinct types, sequences, stored procedures,
triggers, and user-defined functions in the designated schemas.

DROPIN
Grants the privilege to drop distinct types, sequences, stored procedures,
triggers, and user-defined functions in the designated schemas.

SCHEMA schema-name
Identifies the schemas on which the privilege is granted. The schemas do not
need to exist when the privilege is granted.

SCHEMA *
Indicates that the specified privilege is granted on all schemas including those
that do not currently exist.

TO Refer to “GRANT” on page 1695 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 1695 for a description of the WITH GRANT
OPTION clause.

Notes

Grant on SYSPUBLIC:
Privileges can be granted on the reserved schema SYSPUBLIC. Granting
CREATEIN privilege allows the user to create a public alias and granting
DROPIN privilege allows the user to drop any public alias.

1712 SQL Reference

|

|
|
|
|

Examples

Example 1: Grant the CREATEIN privilege on schema T_SCORES to user JONES.
GRANT CREATEIN ON SCHEMA T_SCORES TO JONES;

Example 2: Grant the CREATEIN privilege on schema VAC to all users at the
current server.

GRANT CREATEIN ON SCHEMA VAC TO PUBLIC;

Example 3: Grant the ALTERIN privilege on schema DEPT to the administrative
assistant and give the grantee the ability to grant ALTERIN privileges on this
schema to others.

GRANT ALTERIN ON SCHEMA DEPT TO ADMIN_A
WITH GRANT OPTION;

Example 4: Grant the CREATEIN, ALTERIN, and DROPIN privileges on schemas
NEW_HIRE, PROMO, and RESIGN to HR (Human Resources).

GRANT CREATEIN, ALTERIN, DROPIN ON SCHEMA NEW_HIRE, PROMO, RESIGN TO HR;

Example 5: Grant the ALTERIN privileges on the EMPLOYEE schema to role
ROLE1:
GRANT ALTERIN ON SCHEMA EMPLOYEE TO ROLE ROLE1;

Chapter 5. Statements 1713

GRANT (sequence privileges)
This form of the GRANT statement grants privileges on a user-defined sequence.

Syntax

�� � �

, ,

GRANT ALTER ON SEQUENCE sequence-name
(1)

USAGE

�

,

TO authorization-name
ROLE role-name
PUBLIC

�

�
WITH GRANT OPTION

��

Notes:

1 The keyword SELECT is an alternative keyword for USAGE.

Description

ALTER
Grants the privilege to alter a sequence or record a comment on a sequence.

USAGE
Grants the USAGE privilege to use a sequence. This privilege is needed when
the NEXT VALUE or PREVIOUS VALUE expression is invoked for a sequence
name.

SEQUENCE sequence-name
Identifies the sequence. The name, including the implicit or explicit schema
qualifier, must uniquely identify an existing sequence at the current server. If
no sequence by this name exists in the explicitly or implicitly specified schema,
an error occurs. sequence-name must not be the name of an internal sequence
object that is used by DB2.

TO Refer to “GRANT” on page 1695 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 1695 for a description of the WITH GRANT
OPTION clause.

Examples

Example 1: Grant USAGE privilege on sequence MYNUM to user JONES.
GRANT USAGE

ON SEQUENCE MYNUM
TO JONES;

Example 2: Grant USAGE privileges on sequence ORDER_SEQ to role ROLE1:
GRANT USAGE ON SEQUENCE ORDER_SEQ TO ROLE ROLE1;

1714 SQL Reference

GRANT (system privileges)
This form of the GRANT statement grants system privileges.

Authorization

To grant the CREATE_SECURE_OBJECT system privilege, the privileges that are
held by the authorization ID of the statement must include SECADM authority.

Syntax

�� �

,

GRANT ACCESSCTRL
ARCHIVE ON SYSTEM
BINDADD
BINDAGENT
BSDS
CREATEALIAS
CREATEDBA
CREATEDBC
CREATESG
CREATETMTAB
CREATE_SECURE_OBJECT
DATAACCESS

(1) WITH ACCESSCTRL WITH DATAACCESS
DBADM

WITHOUT ACCESSCTRL WITHOUT DATAACCESS
DEBUGSESSION
DISPLAY
EXPLAIN
MONITOR1
MONITOR2
RECOVER
SQLADM
STOPALL
STOSPACE
SYSADM
SYSCTRL
SYSOPR
TRACE

�

� �

,

TO authorization-name
ROLE role-name
PUBLIC

(2)
WITH GRANT OPTION

��

Notes:

1 The ACCESSCTRL and DATAACCESS clauses can be specified in any order.

2 The WITH GRANT OPTION can be specified but is ignored for DBADM, DATAACCESS, and
ACCESSCTRL.

Chapter 5. Statements 1715

Description

ACCESSCTRL
Grants the ACCESSCTRL authority. ACCESSCTRL allows the user to grant all
authorities and privileges, except system DBADM, DATAACCESS,
ACCESSCTRL, and privileges on security related objects.

A warning is issued if the WITH GRANT OPTION is specified when granting
this authority.

ACCESSCTRL cannot be granted to PUBLIC.

ARCHIVE
Grants the privilege to use the ARCHIVE LOG and SET LOG commands.

BINDADD
Grants the privilege to create plans and packages by using the BIND
subcommand with the ADD option.

BINDAGENT
Grants the privilege to issue the BIND, FREE PACKAGE, or REBIND
subcommands for plans and packages and the DROP PACKAGE statement on
behalf of the grantor. The privilege also allows the holder to copy and replace
plans and packages on behalf of the grantor.

A warning is issued if WITH GRANT OPTION is specified when granting this
privilege.

BSDS
Grants the privilege to issue the RECOVER BSDS command.

CREATEALIAS
Grants the privilege to use the CREATE ALIAS statement.

CREATEDBA
Grants the privilege to issue the CREATE DATABASE statement and acquire
DBADM authority over those databases.

CREATEDBC
Grants the privilege to issue the CREATE DATABASE statement and acquire
DBCTRL authority over those databases.

CREATESG
Grants the privilege to create new storage groups.

CREATETMTAB
Grants the privilege to use the CREATE GLOBAL TEMPORARY TABLE
statement.

CREATE_SECURE_OBJECT
Grants the privilege to create a secure object.

DATAACCESS
Grants the DATAACCESS authority. DATAACCESS allows the user to access
data in all user tables, views, and materialized query tables in a DB2
subsystem and allows the user to execute plans, packages, functions, and
procedures.

A warning is issued if the WITH GRANT OPTION is specified when granting
this authority.

DATAACCESS cannot be granted to PUBLIC.

1716 SQL Reference

DBADM
Grants the DBADM authority. DBADM allows the user to manage all objects in
the DB2 subsystem, except security objects.

A warning is issued if the WITH GRANT OPTION is specified when granting
this authority.

DBADM cannot be granted to PUBLIC.

WITH ACCESSCTRL
Specifies that the ACCESSCTRL authority is granted along with the system
DBADM authority. ACCESSCTRL allows system DBADM to grant all
authorities and privileges, except system DBADM, DATAACCESS,
ACCESSCTRL authorities and privileges on security related objects.
ACCESSCTRL can be used to REVOKE privileges using the BY clause.

WITH ACCESSCTRL is the default.

WITHOUT ACCESSCTRL
Specifies that system DBADM authority is not granted the ACCESSCTRL
authority.

WITH DATAACCESS
Specifies that the DATAACCESS authority is granted along with the
system DBADM authority. DATAACCESS allows the system DBADM to
access data in all user tables, views, and materialized query tables in a DB2
subsystem and allows the user to execute plans, packages, functions, and
procedures.

WITH DATAACCESS is the default.

WITHOUT DATAACCESS
Specifies that system DBADM authority is not granted the DATAACCESS
authority.

DISPLAY
Grants the privilege to use the following commands:
v The DISPLAY ARCHIVE command for archive log information
v The DISPLAY BUFFERPOOL command for the status of buffer pools
v The DISPLAY DATABASE command for the status of all databases
v The DISPLAY LOCATION command for statistics about threads with a

distributed relationship
v The DISPLAY LOG command for log information, including the status of the

offload task
v The DISPLAY THREAD command for information on active threads within

DB2
v The DISPLAY TRACE command for a list of active traces

DEBUGSESSION
Grants the privilege to attach a debug client to the current application process
connection, which enables client application debugging of native SQL or Java
procedures that are executed within the session.

EXPLAIN
Grants the privilege to issue the following without requiring the privileges
needed to execute the statement:
v EXPLAIN statement with the options:

– PLAN
– ALL

Chapter 5. Statements 1717

v PREPARE statement
v DESCRIBE TABLE statement
v Explain dynamic SQL statements that execute under the special register

CURRENT EXPLAIN MODE, when CURRENT EXPLAIN MODE =
EXPLAIN

v BIND options: EXPLAIN(ONLY) and SQLERROR(CHECK)
EXPLAIN(ONLY) allows to explain the statements.
SQLERROR(CHECK) performs all syntax and semantic checks on the SQL
statements that are being bound.

MONITOR1
Grants the privilege to obtain IFC data classified as serviceability data,
statistics, accounting, and other performance data that does not contain
potentially secure data.

MONITOR2
Grants the privilege to obtain IFC data classified as containing potentially
sensitive data such as SQL statement text and audit data. Users with
MONITOR2 privileges have MONITOR1 privileges.

RECOVER
Grants the privilege to issue the RECOVER INDOUBT command.

SQLADM
Grants the authority to perform the following actions without requiring any
additional privileges:
v DESCRIBE TABLE statement
v EXPLAIN statement with the following options:

– PLAN
– ALL
– STMTCACHE ALL
– STMTID
– STMTTOKEN
– MONITORED STMTS

v PREPARE statement
v Explain dynamic SQL statements that execute under the special register

CURRENT EXPLAIN MODE, when CURRENT EXPLAIN MODE =
EXPLAIN

v BIND options: EXPLAIN(ONLY) and SQLERROR(CHECK)
EXPLAIN(ONLY) allows to explain the statements.
SQLERROR(CHECK) performs all syntax and semantic checks on the SQL
statements that are being bound.

v START command
v STOP command
v DISPLAY PROFILE command
v Execute the RUNSTATS utility and the MODIFY STATISTICS utility in any

database.
v MONITOR2 privilege to obtain IFC data classified as containing potentially

sensitive data, such as SQL statement text and audit data, as well as IFC
data classified as serviceability data, statistics, accounting, and other
performance data.

1718 SQL Reference

STOPALL
Grants the privilege to issue the STOP DB2 command.

STOSPACE
Grants the privilege to use the STOSPACE utility.

SYSADM
Grants all DB2 privileges except for a few reserved for installation SYSADM
authority. The privileges the user possesses are all grantable, including the
SYSADM authority itself. The privileges the user lacks restrict what the user
can do with the directory and the catalog. Using WITH GRANT OPTION
when granting SYSADM is redundant but valid. For more on SYSADM and
installation SYSADM authority, see DB2 Administration Guide.

SYSCTRL
Grants the system control authority, which allows the user to have most of the
privileges of a system administrator but excludes the privileges to read or
change user data. Using WITH GRANT OPTION when granting SYSCTRL is
redundant but valid. For more information on SYSCTRL authority, see DB2
Administration Guide.

SYSOPR
Grants the privilege to have system operator authority.

TRACE
Grants the privilege to issue the MODIFY TRACE, START TRACE, and STOP
TRACE commands.

TO Refer to “GRANT” on page 1695 for a description of the TO clause.

WITH GRANT OPTION
If you grant the SYSADM or SYSCTRL system privilege, WITH GRANT
OPTION is valid but unnecessary. It is unnecessary because whoever is
granted SYSADM or SYSCTRL has that authority and all the privileges it
implies, with the GRANT option.

Examples

Example 1: Grant DISPLAY privileges to user LUTZ.
GRANT DISPLAY

TO LUTZ;

Example 2: Grant BSDS and RECOVER privileges to users PARKER and SETRIGHT,
with the WITH GRANT OPTION.

GRANT BSDS,RECOVER
TO PARKER,SETRIGHT
WITH GRANT OPTION;

Example 3: Grant TRACE privileges to all local users.
GRANT TRACE

TO PUBLIC;

Example 4: Grant ARCHIVE privileges to role ROLE1:
GRANT ARCHIVE TO ROLE ROLE1;

Example 5: SECADM Linda grants the privilege to Steve to create a secure object:
GRANT CREATE_SECURE_OBJECT
TO STEVE;

Chapter 5. Statements 1719

Example 6: Grant system DBADM with ACCESSCTRL and with DATAACCESS to
role, ADMINROLE and authid, SALLY. Since GRANT system DBADM also grants
ACCESSCTRL and DATAACCESS by default, WITH ACCESSCTRL and WITH
DATAACCESS clauses need not be specified explicitly.

GRANT DBADM ON SYSTEM
TO ROLE ADMINROLE;
GRANT DBADM, ACCESSCTRL, DATAACCESS
ON SYSTEM
TO SALLY;

Example 7: Grant system DBADM without ACCESSCTRL and without
DATAACCESS to John. The WITHOUT ACCESSCTRL and WITHOUT
DATAACCESS clauses need to be specified explicitly.

GRANT DBADM WITHOUT ACCESSCTRL
WITHOUT DATAACCESS
ON SYSTEM
TO JOHN;

1720 SQL Reference

GRANT (table or view privileges)
This form of the GRANT statement grants privileges on tables and views.

Syntax

�� GRANT

�

�

�

PRIVILEGES
ALL

,

ALTER
DELETE
INDEX
INSERT
REFERENCES

,

(column-name)
SELECT
TRIGGER
UPDATE

,

(column-name)

�

,
TABLE

ON table-name
view-name

�

� �

,

TO authorization-name
ROLE role-name
PUBLIC

WITH GRANT OPTION
��

Description

ALL or ALL PRIVILEGES
Grants all table or view privileges for which you have GRANT authority, for
the tables and views named in the ON clause.

If you do not use ALL, you must use one or more of the keywords in the
following list. For each keyword that you use, you must have GRANT
authority for that privilege on every table or view identified in the ON clause.

ALTER
Grants the privilege to alter the specified table or create a trigger on the
specified table. ALTER cannot be used if the statement identifies an auxiliary
table or a view.

DELETE
Grants the privilege to delete rows in the specified table or view. DELETE
cannot be granted on an auxiliary table.

INDEX
Grants the privilege to create an index on the specified table. INDEX cannot be
granted on a view.

Chapter 5. Statements 1721

INSERT
Grants the privilege to insert rows into the specified table or view. INSERT
cannot be granted on an auxiliary table.

REFERENCES
Grants the privilege to add a referential constraint in which the specified table
is a parent. If a list of column names is not specified or if REFERENCES is
granted via the specification of ALL PRIVILEGES, the grantee can define
referential constraints using all columns of the table as a parent key, even those
added later via the ALTER TABLE statement. This privilege cannot be granted
on a view or auxiliary table.

REFERENCES(column-name,...)
Grants the privilege to add or drop a referential constraint in which the
specified table is a parent using only those columns that are specified in the
column list as a parent key. Each column-name must be an unqualified name
that identifies a column of the table identified in the ON clause. This privilege
cannot be granted on a view or auxiliary table.

SELECT
Grants the privilege to create a view or read data from the specified table or
view. SELECT cannot be granted on an auxiliary table.

TRIGGER
Grants the privilege to create a trigger on the specified table. TRIGGER cannot
be granted on an auxiliary table or a view.

UPDATE
Grants the privilege to update rows in the specified table or view. UPDATE
cannot be granted on an auxiliary table.

UPDATE(column-name,...)
Grants the privilege to update only the columns named. Each column-name
must be the unqualified name of a column of every table or view identified in
the ON clause. Each column-name must not identify a column of an auxiliary
table.

ON table-name or view-name
Specifies the tables or views on which you are granting the privileges. The list
can be a list of table names or view names, or a combination of the two. A
declared temporary table and a table that is implicitly created for an XML
column must not be identified.

If you use GRANT ALL, then for each named table or view, the privilege set
(described in ““Authorization” on page 1695” in “GRANT” on page 1695)
must include at least one privilege with the GRANT option.

TO Refer to “GRANT” on page 1695 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 1695 for a description of the WITH GRANT
OPTION clause.

Notes

The REFERENCES privilege does not replace the ALTER privilege. It was added to
conform to the SQL standard. To define a foreign key that references a parent table,
you must have either the REFERENCES or the ALTER privilege, or both.

1722 SQL Reference

For a created temporary table, only ALL or ALL PRIVILEGES can be granted.
Specific table privileges cannot be granted. In addition, only the ALTER, DELETE,
INSERT, and SELECT privileges apply to a created temporary table.

For a view of a created temporary table, either ALL or the specific UPDATE,
DELETE, INSERT and SELECT privileges can be granted. When ALL is specified
only the UPDATE, DELETE, INSERT, and SELECT privileges apply to a view on
created temporary table. However, the UPDATE operation of the view is not
allowed.

To grant table privileges on a created temporary table, the privilege set must
include one of the following:
v SYSADM
v DBADM on DSNDB06
v Ownership of the created temporary table

To grant table privileges on a view of a created temporary table, the privilege set
must include one of the following:
v SYSADM
v ownership of the created temporary table

For a declared temporary table, no privileges can be granted. When a declared
temporary table is defined, PUBLIC implicitly receives all table privileges (without
GRANT authority) for the table. These privileges are not recorded in the DB2
catalog, and they cannot be revoked.

For an auxiliary table, only the INDEX privilege can be granted. DELETE, INSERT,
SELECT, and UPDATE privileges on the base table that is associated with the
auxiliary table extend to the auxiliary table.
v ALTER
v INDEX
v REFERENCES
v TRIGGER

Examples

Example 1: Grant SELECT privileges on table DSN8B10.EMP to user PULASKI.
GRANT SELECT ON DSN8B10.EMP TO PULASKI;

Example 2: Grant UPDATE privileges on columns EMPNO and WORKDEPT in
table DSN8B10.EMP to all users at the current server.

GRANT UPDATE (EMPNO,WORKDEPT) ON TABLE DSN8B10.EMP TO PUBLIC;

Example 3: Grant all privileges on table DSN8B10.EMP to users KWAN and
THOMPSON, with the WITH GRANT OPTION.

GRANT ALL ON TABLE DSN8B10.EMP TO KWAN,THOMPSON WITH GRANT OPTION;

Example 4: Grant the SELECT and UPDATE privileges on the table DSN8B10.DEPT
to every user in the network.

GRANT SELECT, UPDATE ON TABLE DSN8B10.DEPT
TO PUBLIC;

Chapter 5. Statements 1723

Even with this grant, it is possible that some network users do not have access to
the table at all, or to any other object at the subsystem where the table exists.
Controlling access to the subsystem involves the communications databases at the
subsystems in the network. The tables for the communication databases are
described in “DB2 catalog tables” on page 2102. Controlling access is described in
DB2 Administration Guide.

Example 5: Grant ALTER privileges on table DSN9910.EMP to role ROLE1:
GRANT ALTER ON TABLE DSN9910.EMP TO ROLE ROLE1;

1724 SQL Reference

GRANT (type or JAR file privileges)
This form of the GRANT statement grants the privilege to use distinct types, array
types, or JAR files.

Syntax

�� GRANT USAGE ON �

�

,

TYPE type-name
,

JAR jar-name

�

,

TO authorization-name
ROLE role-name
PUBLIC

�

�
WITH GRANT OPTION

��

Description

USAGE
Grants the privilege to use the distinct type in tables, functions procedures, or
the privilege to use the JAR file.

TYPE type-name
Identifies the user-defined type. The name, including the implicit or explicit
schema name, must identify a unique user-defined type that exists at the
current server.

JAR jar-name
Identifies the JAR file. The name, including the implicit or explicit schema
name, must identify a unique JAR file that exists at the current server.

TO Refer to “GRANT” on page 1695 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 1695 for a description of the WITH GRANT
OPTION clause.

Notes

Alternative syntax and synonyms: To provide compatibility with previous releases
of DB2 or other products in the DB2 family, DB2 supports DATA TYPE or
DISTINCT TYPE as a synonym for TYPE.

Examples

Example 1: Grant the USAGE privilege on distinct type SHOE_SIZE to user JONES.
This GRANT statement does not give JONES the privilege to execute the cast
functions that are associated with the distinct type SHOE_SIZE.

GRANT USAGE ON TYPE SHOE_SIZE TO JONES;

Example 2: Grant the USAGE privilege on distinct type US_DOLLAR to all users at
the current server.

Chapter 5. Statements 1725

|
|

|

|
|
|
|

GRANT USAGE ON TYPE US_DOLLAR TO PUBLIC;

Example 3: Grant the USAGE privilege on distinct type CANADIAN_DOLLAR to
the administrative assistant (ADMIN_A), and give this user the ability to grant the
USAGE privilege on the distinct type to others. The administrative assistant cannot
grant the privilege to execute the cast functions that are associated with the distinct
type CANADIAN_DOLLAR because WITH GRANT OPTION does not give the
administrative assistant the EXECUTE authority on these cast functions.

GRANT USAGE ON TYPE CANADIAN_DOLLAR TO ADMIN_A
WITH GRANT OPTION;

Example 4: Grant the USAGE privilege on the distinct type MILES to role ROLE1 at
the current server:
GRANT USAGE ON TYPE MILES

TO ROLE ROLE1;

1726 SQL Reference

GRANT (variable privileges)
This form of the GRANT statement grants privileges on global variables.

Syntax

��

�

PRIVILEGES
GRANT ALL

,

READ
WRITE

ON VARIABLE variable-name �

� �

,

TO authorization-name
ROLE role-name WITH GRANT OPTION
PUBLIC

��

Description

ALL PRIVILEGES
Grants both READ and WRITE privileges on the specified global variable.

READ
Grants the privilege to access the content of the specified global variable.

WRITE
Grants the privilege to modify the content of the specified global variable.

ON VARIABLE variable-name
Identifies the global variable for which you are granting privileges.
variable-name, including an implicit or explicit qualifier, must identify a global
variable that exists at the current server.

TO Refer to “GRANT” on page 1695 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 1695 for a description of the WITH GRANT
OPTION clause.

Examples

Example 1: Grant the read privilege on the ACCOUNTNO variable on the current
server to user Jones:
GRANT READ ON VARIABLE ACCOUNTNO TO JONES;

Chapter 5. Statements 1727

|

|

|
|

|||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||

|
||

|

|
|

|
|

|
|

|
|
|
|

||

|
|
|

|

|
|

|

|

GRANT (use privileges)
This form of the GRANT statement grants authority to use particular buffer pools,
storage groups, or table spaces.

Syntax

�� GRANT USE OF �

�

�

,

BUFFERPOOL bpname
ALL BUFFERPOOLS

,

STOGROUP stogroup-name
,

TABLESPACE table-space-name
database-name.

�

� �

,

TO authorization-name
ROLE role-name
PUBLIC

WITH GRANT OPTION
��

Description

BUFFERPOOL bpname,...
Grants the privilege to refer to any of the identified buffer pools in a CREATE
INDEX, CREATE TABLESPACE, ALTER INDEX, or ALTER TABLESPACE
statement. See “Naming conventions” on page 57 for more details about
bpname.

ALL BUFFERPOOLS
Grants the privilege to refer to any buffer pool in a CREATE INDEX, CREATE
TABLESPACE, ALTER INDEX, or ALTER TABLESPACE statement.

STOGROUP stogroup-name,...
Grants the privilege to refer to any of the identified storage groups in a
CREATE INDEX, CREATE TABLESPACE, ALTER INDEX, or ALTER
TABLESPACE statement.

TABLESPACE database-name.table-space-name,...
Grants the privilege to refer to any of the identified table spaces in a CREATE
TABLE statement. The default for database-name is DSNDB04.

You cannot grant the privilege for table spaces that are for declared temporary
tables (table spaces in a work file database). For these table spaces, PUBLIC
implicitly has the TABLESPACE privilege (without GRANT authority); this
privilege is not recorded in the DB2 catalog, and it cannot be revoked.

TO Refer to “GRANT” on page 1695 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 1695 for a description of the WITH GRANT
OPTION clause.

1728 SQL Reference

Notes

You can grant privileges for only one type of object with each statement. Thus, you
can grant the use of several table spaces with one statement, but not the use of a
table space and a storage group. For each object you identify, you must have the
USE privilege with GRANT authority.

Examples

Example 1: Grant authority to use buffer pools BP1 and BP2 to user MARINO.
GRANT USE OF BUFFERPOOL BP1,BP2

TO MARINO;

Example 2: Grant to all local users the authority to use table space DSN8S11D in
database DSN8D11A.

GRANT USE OF TABLESPACE
DSN8D11A.DSN8S11D
TO PUBLIC;

Example 3: Grant authority to use storage group SG1 to role ROLE1:
GRANT USE OF STOGROUP SG1

TO ROLE ROLE1;

Chapter 5. Statements 1729

HOLD LOCATOR
The HOLD LOCATOR statement allows a LOB locator variable to retain its
association with a value beyond a unit of work.

Invocation

This statement can only be embedded in an application program. It cannot be
issued interactively. It is an executable statement that can be dynamically prepared.
However, the EXECUTE statement with the USING clause must be used to execute
the prepared statement. HOLD LOCATOR cannot be used with the EXECUTE
IMMEDIATE statement.

Authorization

None required.

Syntax

�� HOLD LOCATOR �

,

host-variable ��

Description

host-variable, ...
Identifies one or more locator variables that must be declared in accordance
with the rules for declaring locator variables. The locator variable type must be
a binary large object locator, a character large object locator, or a double-byte
character large object locator.

The host-variable must currently have a locator assigned to it. That is, a locator
must have been assigned during this unit of work (by a FETCH, SELECT
INTO, assignment statement, SET host-variable statement, or VALUES INTO
statement); otherwise, an error is returned.

If more than one locator is specified and an error is returned on one of the
locators, it is possible that some locators have been held and others have not
been held.

Notes

A host-variable LOB locator variable that has the hold property is freed (has its
association between it and its value removed) when:
v The SQL FREE LOCATOR statement is executed for the locator variable.
v The SQL ROLLBACK statement is executed.
v The SQL session is terminated.

Example

Assume that the employee table contains columns RESUME, HISTORY, and
PICTURE and that locators have been established in a program to represent the

1730 SQL Reference

values represented by the columns. Give the CLOB locator variables LOCRES and
LOCHIST, and the BLOB locator variable LOCPIC the hold property.

EXEC SQL HOLD LOCATOR :LOCRES, :LOCHIST, :LOCPIC

Chapter 5. Statements 1731

INCLUDE
The INCLUDE statement inserts application code, including declarations and
statements, into a source program.

Invocation

This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java or REXX.

Authorization

None required.

Syntax

�� INCLUDE SQLCA
SQLDA
member-name

��

Description

SQLCA
Indicates that the description of an SQL communication area (SQLCA) is to be
included. INCLUDE SQLCA must not be specified more than once in the same
application program. In COBOL, INCLUDE SQLCA must be specified in the
Working-Storage Section or the Linkage Section. INCLUDE SQLCA must not
be specified if the program is prepared (either with the DB2 precompiler or
coprocessor) with the STDSQL(YES) SQL processing option.

For a description of the SQLCA, see “SQL communication area (SQLCA)” on
page 2069.

SQLDA
Indicates that the description of an SQL descriptor area (SQLDA) is to be
included. It must not be specified in a Fortran. For a description of the
SQLDA, see “SQL descriptor area (SQLDA)” on page 2079.

member-name
Names a member of the partitioned data set to be the library input when your
application program is prepared (either with the DB2 precompiler or
coprocessor). It must be an SQL identifier.

The member can contain any host language source statements and any SQL
statements other than an INCLUDE statement. In COBOL, INCLUDE
member-name must not be specified in other than the Data Division or the
Procedure Division.

Notes

When your application program is prepared (either with the DB2 precompiler or
coprocessor), the INCLUDE statement is replaced by source statements. Thus, the
INCLUDE statement must be specified at a point in your application program
where the resulting source statements are acceptable to the compiler.

1732 SQL Reference

The INCLUDE statement cannot refer to source statements that themselves contain
INCLUDE statements.

The declarations that are generated by DCLGEN can be used in an application
program by specifying the same member in the INCLUDE statement as in the
DCLGEN LIBRARY parameter.

Example

Include an SQL communications area in a PL/I program.
EXEC SQL INCLUDE SQLCA;

Chapter 5. Statements 1733

INSERT
The INSERT statement inserts rows into a table or view or activates the INSTEAD
OF INSERT trigger. The table or view can be at the current server or any DB2
subsystem with which the current server can establish a connection. Inserting a
row into a view inserts the row into the table on which the view is based if no
INSTEAD OF INSERT trigger is defined on the specified view. If an INSTEAD OF
INSERT trigger is defined, the trigger is activated instead of the INSERT statement.

There are three forms of this statement:
v The INSERT via VALUES form is used to insert a single row into the table or

view using the values provided or referenced.
v The INSERT via SELECT form is used to insert one or more rows into the table

or view using values from other tables, or views, or both.
v The INSERT via FOR n ROWS form is used to insert multiple rows into the table

or view using values provided or referenced. Although not required, the values
can come from host-variable arrays. This form of INSERT is supported in SQL
procedure applications. However, since host-variable arrays are not supported in
SQL procedure applications, the support is limited to insertion of scalar values.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

Authority requirements depend on whether the object identified in the statement is
a user-defined table, a catalog table for which inserts are allowed, or a view:

When a user-defined table is identified: The privilege set must include at least one
of the following:
v The INSERT privilege on the table
v Ownership of the table
v DBADM authority on the database that contains the table
v SYSADM authority
v DATAACCESS authority

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

When a catalog table is identified: The privilege set must include at least one of
the following:
v DBADM authority on the catalog database
v SYSCTRL authority
v SYSADM authority
v DATAACCESS authority

When a view is identified: The privilege set must include at least one of the
following:
v The INSERT privilege on the view
v SYSADM authority

1734 SQL Reference

v DATAACCESS authority

The owner of a view, unlike the owner of a table, might not have INSERT
authority on the view (or can have INSERT authority without being able to grant it
to others). The nature of the view itself can preclude its use for INSERT. For more
information, see the discussion of authority in “CREATE VIEW” on page 1527.

If the INSERT statement is embedded in a SELECT statement, the privilege set
must include the SELECT privilege on the table or view.

If a fullselect is specified, the privilege set must include authority to execute the
fullselect. For more information about the authorization rules, see “Authorization”
on page 762.

If the statement is embedded in an application program, the privilege set is the
privileges that are held by the owner of the plan or package. If the statement is
dynamically prepared, the privilege set is determined by the DYNAMICRULES
behavior in effect (run, bind, define, or invoke) and is summarized in Table 94 on
page 841. (For more information on these behaviors, including a list of the
DYNAMICRULES bind option values that determine them, see “Authorization IDs
and dynamic SQL” on page 75.)

Syntax

�� INSERT INTO table-name
view-name

�

,

(column-name)

include-column OVERRIDING USER VALUE
�

�

�

�

VALUES expression
DEFAULT
NULL
,

(expression)
DEFAULT
NULL

fullselect
, isolation-clause QUERYNO integer

WITH common-table-expression
multiple-row-insert

��

�� �

,

INCLUDE (column-name data-type) ��

include-column:

data-type:

Chapter 5. Statements 1735

�� built-in-type
distinct-type

��

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0

NUMERIC (integer)
,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1)

GRAPHIC
(integer)

VARGRAPHIC (integer)
(1)

BINARY
(integer)

BINARY VARYING (integer)
VARBINARY

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE

��

�� WITH RR
RS
CS

��

built-in-type:

isolation-clause:

1736 SQL Reference

��

�

VALUES expression
host-variable-array
NULL
DEFAULT

,

(expression)
host-variable-array
NULL
DEFAULT

(1)
FOR host-variable ROWS

integer-constant

�

�
ATOMIC

(2)
NOT ATOMIC CONTINUE ON SQLEXCEPTION

��

Notes:

1 The FOR n ROWS clause must be specified for a static multiple-row-insert. However, this clause
is optional for a dynamic INSERT statement. For a dynamic statement, the FOR n ROWS clause
is specified on the EXECUTE statement.

2 The ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION clauses can be specified for a
static multiple-row-insert. However, this clause must not be specified for a dynamic INSERT
statement. For a dynamic statement, the ATOMIC or NOT ATOMIC CONTINUE ON
SQLEXCEPTION clause is specified as an attribute on the PREPARE statement.

Description

INTO table-name or view-name
Identifies the object of the INSERT statement. The name must identify a table
or view that exists at the current server. The name must not identify:
v An auxiliary table
v A catalog table
v A read-only view unless an instead of trigger is defined for the insert

operation on the view. (For a description of a read-only view, see “CREATE
VIEW” on page 1527.)

v A view column that is derived from a constant, expression, or scalar function
v A view column that is derived from the base table column as some other

column of the view
v A materialized query table
v A table that is implicitly created for an XML column

In an IMS or CICS application, the DB2 subsystem that contains the identified
table or view must be a remote server that supports two-phase commit.

column-name,...
Specifies the columns for which insert values are provided. Each name must
identify a column of the table or view. The columns can be identified in any
order, but the same column must not be identified more than one time. If
extended indicator variables are not enabled, a view column that cannot accept

multiple-row-insert:

Chapter 5. Statements 1737

insert values must not be identified. If extended indicator variables are not
enabled, and if the object of the INSERT statement is a view with columns that
cannot accept insert values, a list of column names must be specified, and the
list must not identify these columns. If a qualifier is specified, it must be valid
(that is, the table name must be the table or view name specified after the
INTO keyword, and if a qualifier is specified for the table name, it must match
the default qualifier).

Omission of the column list is an implicit specification of a list in which every
column of the table (that is not defined as implicitly hidden) or view is
identified in left-to-right order. This list is established when the statement is
prepared and therefore does not include columns that were added to the table
after the statement was prepared.

The effect of a rebind on INSERT statements that do not include a column list
is that the implicit list of names is re-established. Therefore, the number of
columns into which data is inserted can change and cause an error.

include-column
Specifies a set of columns that are included, along with the columns of
table-name or view-name, in the result table of the INSERT statement when it is
nested in the FROM clause of the outer fullselect that is used in a subselect, a
SELECT statement, or in a SELECT INTO statement. The included columns are
appended to the end of the list of columns that is identified by table-name or
view-name.

INCLUDE
Introduces a list of columns that is to be included in the result table of the
INSERT statement. The included columns are only available if the INSERT
statement is nested in the FROM clause of a SELECT statement or a
SELECT INTO statement.

column-name
Specifies the name for a column of the result table of the INSERT statement
that is not the same name as another included column nor a column in the
table or view that is specified in table-name or view-name.

data-type
Specifies the data type of the included column. The included columns are
nullable.

built-in-type
Specifies a built-in data type. See “CREATE TABLE” on page 1388 for a
description of each built-in type.

The CCSID 1208 and CCSID 1200 clauses must not be specified for an
include column.

distinct-type
Specifies a distinct type. Any length, precision, or scale attributes for
the column are those of the source type of the distinct type as specified
by using the CREATE TYPE statement.

OVERRIDING USER VALUE
Specifies that the value specified in the VALUES clause or produced by a
fullselect for a column that is defined as either GENERATED ALWAYS or
GENERATED BY DEFAULT is ignored. Instead, a system-generated value is
inserted, overriding the user-specified value.

If OVERRIDING USER VALUE is specified, the implicit or explicit list of
column must include a column that is defined as either GENERATED ALWAYS

1738 SQL Reference

|
|

or GENERATED BY DEFAULT. For example, a ROWID column, an identity
column, or a row change timestamp column.

VALUES
Specifies one new row in the form of a list of values. The number of values in
the VALUES clause must be equal to the number of names in the column list
and the columns that are identified in the INCLUDE clause. The first value is
inserted in the first column in the list, the second value in the second column,
and so on. If more than one value is specified, the list of values must be
enclosed in parentheses. Assignments to included columns are only processed
when the INSERT statement is nested in the FROM clause in a SELECT
statement or a SELECT INTO statement.

expression
Any expression of the type described in “Expressions” on page 240. The
expression must not include a column name. If expression is a host variable,
the host variable can identify a structure. Any host variable or structure
that is specified must be described in the application program according to
the rules for declaring host structures and variables.

If expression is a host variable, it can include an indicator variable or an
indicator array (in the case of a host structure). When extended indicator
variables are enabled, an expression must not be more complex than a
reference to a single host variable if the indicator is set to an extended
indicator value of default (-5) or unassigned (-7). In addition:
v A CAST specification can be used if either of the following is true:

– The target column is defined as nullable.
– The target column is defined as NOT NULL with a non-null default,

the source of the CAST specification is a single host variable, and the
data attributes (data type, length, precision, and scale) of the host
variable are the same as the result of the cast specification.

v A scalar fullselect can be used if either of the following is true for each
expression in the select list of the fullselect:
– The target column that corresponds to the expression is defined as

nullable.
– The expression is not more complex than a reference to a single host

variable for which the indicator is set to an extended indicator value
of default (-5) or unassigned (-7), or the expression is a CAST
specification which would have been valid as a stand-alone
expression.

DEFAULT
The default value that is assigned to the column. If the column is a
ROWID column, an identity column, a row-begin column, a row-end column,
or a transaction-start-ID column, DB2 will generate a value for the column.
You can specify DEFAULT only for columns that have an assigned default
value, ROWID columns, and identity columns.

For information on default values of data types, see the description of the
DEFAULT clause for “CREATE TABLE” on page 1388.

NULL
Specifies the null value as the value of the column. Specify NULL only for
nullable columns.

If the implicit or explicit list of columns includes a ROWID, an identity
column, or a row change timestamp column that was defined as GENERATED

Chapter 5. Statements 1739

ALWAYS, you must specify DEFAULT unless you specify the OVERRIDING
USER VALUE clause to indicate that any user-specified value will be ignored
and a unique system-generated value will be inserted.

For a ROWID or identity column that is defined as GENERATED BY
DEFAULT, you can specify a value. However, a value can be inserted into
ROWID column defined BY DEFAULT only if a single-column unique index is
defined on the ROWID column and the specified value is a valid row ID value
that was previously generated by DB2. When a value is inserted into an
identity column defined BY DEFAULT, DB2 does not verify that the specified
value is a unique value for the column unless the identity column has a
single-column unique index.

Although an implicitly hidden DOCID column for XML values is defined as
GENERATED ALWAYS, you can include the DOCID column in the explicit list
of columns and specify a value for it. However, DB2 will ignore the value.

WITH common-table-expression
Specifies a common table expression. For an explanation of common table
expression, see “common-table-expression” on page 820.

fullselect
Specifies a set of new rows in the form of the result table of a fullselect. If the
result table is empty, SQLCODE is set to +100, and SQLSTATE is set to '02000'.

The base object of the INSERT statement and the base object of the fullselect or
any subquery of the fullselect can be the same table. In this case, the fullselect
is evaluated completely before any rows are inserted.

For an explanation of fullselect, see “fullselect” on page 811.

The number of columns in the result table must be equal to the number of
names in the column list and the columns that are identified in the INCLUDE
clause. The value of the first column of the result is inserted in the first column
in the list, the second value in the second column, and so on. Any values that
are produced for a generated column must conform to the rules that are
described for those columns under the VALUES clause. Assignments to
included columns are only processed when the INSERT statement is nested in
the FROM clause of a SELECT statement or a SELECT INTO statement.

If the expression that specifies the value of a result column is a variable, the
host variable can include an indicator variable. When extended indicator
variables are enabled, the target column that corresponds to an expression in
the select list of the fullselect that involves a host variable with an extended
indicator value of default (-5) or unassigned (-7), must be defined as nullable
and either of the following expressions:
v The expression must not be more complex than a reference to a single host

variable.
v The expression must be a CAST specification with the following

characteristics:
– The source of the CAST specification must be a single host variable.
– The data attributes (data type, length, precision, and scale) of the host

variable are the same as the result of the cast specification.

If the object table is self-referencing, the fullselect must not return more than
one row.

isolation-clause
Specifies the isolation level that is used when the fullselect is executed.

1740 SQL Reference

WITH
Introduces the isolation level, which can be one of the following
values:
RR Repeatable read
RS Read stability
CS Cursor stability

The default isolation level of the statement is the isolation level of the
package or plan in which the statement is bound, with the package
isolation taking precedence over the plan isolation. When a package
isolation is not specified, the plan isolation is the default.

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output
and trace records. The number is used for the QUERYNO column of the
plan table for the rows that contain information about this SQL statement.
This number is also used in the QUERYNO column of the
SYSIBM.SYSSTMT and SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number that is associated with the SQL
statement is the statement number that is assigned during precompilation.
Thus, if the application program is changed and then precompiled, that
statement number might change.

Using the QUERYNO clause to assign unique numbers to the SQL
statements in a program is helpful:
v For simplifying the use of optimization hints for access path selection
v For correlating SQL statement text with EXPLAIN output in the plan

table

For information about using optimization hints, such as enabling the
system for optimization hints and setting valid hint values, and for
information about accessing the plan table, see DB2 Performance Monitoring
and Tuning Guide.

multiple-row-insert

VALUES
Specifies the items for the rows to be inserted. The number of items in the
VALUES clause must equal the number of names in the implicit or explicit
column list. The first item in the list provides the value (or values) for the first
column in the list. The second item in the list provides the value (or values) for
the second column, and so on.

expression
Any expression of the type described in “Expressions” on page 240. The
expression must not include a column name. For each row that is inserted,
the corresponding column is assigned the value of the expression.

host-variable-array
Each host-variable array must be defined in the application program in
accordance with the rules for declaring an array. A host-variable array
contains the data for a column of table that is a target of the INSERT. The
number of rows to be inserted must be less than or equal to the dimension
of each of the host-variable arrays.

An optional indicator array can be specified for each host-variable array. It
should be specified if the SQLTYPE of any SQLVAR occurrence indicates

Chapter 5. Statements 1741

that the SQLVAR is nullable. The indicators must be small integers. The
indicator array must be large enough to contain an indicator for each row
of input data.

If extended indicator variables are enabled, the extended indicator variable
values of DEFAULT or UNASSIGNED can be used inside the indicator
array.

DEFAULT
Specifies that the default value is assigned to the column. For each row
inserted, the corresponding column is assigned its default value. DEFAULT
can be specified only for columns that have a default value. For
information on default values of data types, see the description of the
DEFAULT clause for “CREATE TABLE” on page 1388.

NULL
Specifies the null value as the value of the column in each row inserted.
For each row inserted, the corresponding column is assigned the NULL
value. Specify NULL only for nullable columns.

FOR host-variable or integer-constant ROWS
Specifies the number of rows to be inserted. For a dynamic INSERT statement,
this clause can be specified on the EXECUTE statement. For more information,
see the EXECUTE statement. However, this clause is required when a dynamic
SELECT statement contains more than one multiple-row INSERT statement.

host-variable or integer-constant is assigned to an integral value k. If host-variable
is specified, it must be an exact numeric type with scale zero, and must not
include an indicator variable. Furthermore, k must be in the range,
0<k<=32767. k rows are inserted into the target table from the specified source
data.

If a parameter marker is specified in this clause, a value must be provided
with the USING clause of the associated EXECUTE or OPEN statement.

ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION
Specifies whether all of the rows should be inserted as an atomic operation or
not.

ATOMIC
Specifies that if the insert for any row fails, all changes made to the
database by any of the inserts, including changes made by successful
inserts, are undone. This is the default.

NOT ATOMIC CONTINUE ON SQLEXCEPTION
Specifies that, regardless of the failure of any particular insert of a row, the
INSERT statement will not undo any changes made to the database by the
successful inserts of other rows, and inserting will be attempted for
subsequent rows. However, the minimum level of atomicity is at least that
of a single insert (that is, it is not possible for a partial insert to complete),
including any triggers that might have been executed as a result of the
INSERT statement.

This clause is only valid for a static INSERT statement. This clause must
also not be specified if the INSERT statement is contained within a
SELECT statement. For a dynamic INSERT statement, specify the clause on
the PREPARE statement. For more information, see “PREPARE” on page
1781.

1742 SQL Reference

Notes

Insert rules:
Insert values must satisfy the following rules. If they do not, or if any
other errors occur during the execution of the INSERT statement, no rows
are inserted and the position of the cursors are not changed.
v Default values. The value inserted in any column that is not in the

column list is the default value of the column. Columns without a
default value must be included in the column list. Similarly, if you insert
into a view, the default value is inserted into any column of the base
table that is not included in the view. Hence, all columns of the base
table that are not in the view must have a default value.

v Length. If the insert value of a column is a number, the column must be
a numeric column with the capacity to represent the integral part of the
number. If the insert value of a column is a string, the column must be
either a string column with a length attribute at least as great as the
length of the string, or a datetime column if the string represents a date,
time, or timestamp.

v Assignment. Insert values are assigned to columns in accordance with the
assignment rules described in Chapter 2, “Language elements,” on page
53.

v Uniqueness constraints. If the identified table or the base table of the
identified view has one or more unique indexes, each row inserted into
the table must conform to the constraints imposed by those indexes.

v Referential constraints. Each nonnull insert value of a foreign key must be
equal to some value of the parent key of the parent table in the
relationship.

v Check constraints. The identified table or the base table of the identified
view might have one or more check constraints. Each row inserted must
conform to the conditions imposed by those constraints. Thus, each
check condition must be true or unknown.

v Field and validation procedures. If the identified table or the base table of
the identified view has a field or validation procedure, each row inserted
must conform to the constraints imposed by that procedure.

v Indexes with VARBINARY columns. If the identified table has an index on
a VARBINARY column or a column that is a distinct type that is based
on VARBINARY data type, that index column cannot specify the DESC
attribute. To use the SQL data change operation on the identified table,
either drop the index or alter the data type of the column to BINARY
and then rebuild the index.

v Views and the WITH CHECK OPTION. For views defined with WITH
CHECK OPTION, each row you insert into the view must conform to
the definition of the view. If the view you name is dependent on other
views whose definitions include WITH CHECK OPTION, the inserted
rows must also conform to the definitions of those views. For an
explanation of the rules governing this situation, see “CREATE VIEW”
on page 1527.
For views that are not defined with WITH CHECK OPTION, you can
insert rows that do not conform to the definition of the view. Those rows
cannot appear in the view but are inserted into the base table of the
view.

v Omitting the column list. When you omit the column list, you must
specify a value for every column that was present in the table when the
INSERT statement was bound or (for dynamic execution) prepared.

Chapter 5. Statements 1743

v Triggers. An INSERT statement might cause triggers to be activated. A
trigger might cause other statements to be executed or raise error
conditions based on the insert values. If an INSERT statement for a view
activates an INSTEAD OF trigger, the validity, referential integrity, and
check constraints are checked against the data changes that are
performed in the trigger, and not against the definition of the view that
activates the trigger or the definition of the underlying tables or views.
When triggers are processed for an INSERT statement that inserts
multiple rows depends on the atomicity option that is in effect for the
INSERT statement:
– ATOMIC. The inserts are processed as a single statement. Any

statement level triggers are activated one time for the statement, and
the transition tables will include all of the rows that were inserted.

– NOT ATOMIC CONTINUE ON SQLEXCEPTION. The inserts are
processed separately. Any statement level triggers are processed for
each row that is inserted, and the transition table includes the
individual row that is inserted. When errors are encountered with this
option in effect, processing continues, and some of the specified rows
will not be inserted. In this case, if an insert trigger is defined on the
underlying base table, the statement level triggers will only be
activated for rows that were successfully inserted.
Regardless of the failure of any particular source row, the INSERT
statement will not undo any changes that are made to the database by
the statement. Insert will be attempted for rows that follow the failed
row. However, the minimum level of atomicity is at least that of a
single source row (that is, it is not possible for a partial insert
operation to complete), including any triggers that might have been
activated as a result of the INSERT statement.

Inserting XML documents:
When XML documents are inserted into a table that contains an XML
index, the XML values that are inserted into the index are cast to the data
type that is specified on the CREATE INDEX statement. If the XML value
cannot be cast to the specified data type, the XML value is ignored for the
XML index but the document is still inserted into the table. If the data type
that is specified for casting is DECFLOAT, values can be rounded when
they are inserted into the index. If the index is unique, the rounding that
happens during the cast can result in duplicate values.

Number of rows inserted:
Normally, after an INSERT statement completes execution, the value of
SQLERRD(3) in the SQLCA is the number of rows inserted. The value in
SQLERRD(3) does not include the number of rows that were inserted as
the result of a trigger.

For a complete description of the SQLCA, including exceptions to the
above statement, see “SQL communication area (SQLCA)” on page 2069.

Nesting user-defined functions or stored procedures:
An INSERT statement can implicitly or explicitly refer to user-defined
functions or stored procedures. This is known as nesting of SQL statements.
A user-defined function or stored procedure that is nested within the
INSERT must not access the table into which you are inserting values.

Locking:
Unless appropriate locks already exist, one or more exclusive locks are
acquired at the execution of a successful insert operation. Until a commit

1744 SQL Reference

or rollback operation releases the locks, only the application process that
performed the insert can access the inserted row. If LOBs are not inserted
into the row, application processes that are running with uncommitted read
can also access the inserted row. The locks can also prevent other
application processes from performing operations on the table. However,
application processes that are running with uncommitted read can access
locked pages and rows.

Locks are not acquired on declared temporary tables.

Inserting rows into a table with multilevel security :
When you insert rows into a table with multilevel security, DB2 determines
the value for the security label column of the row according to the
following rules:
v If the user (the primary authorization ID) has write-down privilege or

write-down control is not enabled, the user can set the security label for
the row to any valid security label. The value that is specified must be
assignable to a column that is defined as CHAR(8) FOR SBCS DATA
NOT NULL. If the user does not specify a value for the security label or
specifies DEFAULT, the security label of the row becomes the same as
the security label of the user.

v If the user does not have write-down privilege and write-down control
is enabled, the security label of the row becomes the same as the
security label of the user.

Inserting rows into a table for which row or column access control is enforced:
When an INSERT statement is issued for a table for which row or column
access control is enforced, the rules specified in the enabled row
permissions or column masks determine whether the row can be inserted.
Typically those rules are based on the authorization ID or role of the
process. The following rules describe how the enabled row permissions
and column masks are used during INSERT:
v A row to be inserted must not be effected by enabled column masks

whose columns are referenced while deriving the source values for the
row.
When a column is referenced while deriving the values of a new row, if
the column has an enabled column mask, the masked value is used to
derive the new values. If the object table is also column access control
activated, the column mask that is applied to derive the new values
must ensure that the evaluation of the access control rules defined in the
column mask resolves the column to itself, not to a constant or to an
expression. If the column mask does not mask the column to itself, the
new value cannot be used for insert and an error is returned at run time.
If the OVERRIDING USER VALUE clause is specified, the corresponding
values in the new row are ignored, and the above rule for column masks
is not applicable to those values.

v If the row can be inserted, and there is a BEFORE INSERT trigger for the
table, the trigger is activated.
Within the trigger actions, the new values for insert can be modified in
the transition variables. When the values return from the trigger, the
final values for the new values are the ones for insert.

v A row to be inserted must conform to the enabled row permissions.
When multiple enabled row permissions are defined for a table, a row
access control search condition is derived by application of the logical
OR operator to the search condition in each enabled row permission. A

Chapter 5. Statements 1745

row that conforms to the enabled row permissions is a row that if the
row is inserted it can be retrieved back using the row access control
search condition.
Column masks are not applicable in this process.

v If the rows can be inserted, and there is an AFTER INSERT trigger for
the table, the trigger is activated.

The preceding rules are not applicable to the include-columns. The
include-columns are subject to the rules for the select list because they are
not the columns of the object table of the INSERT statement.

Extended indicator variable usage:
When extended indicator variables are enabled, negative indicator values
that are outside the range of -1 through -7 must not be specified, and the
default and unassigned extended indicator values must not be specified in
contexts in which they are not supported.

Extended indicator variables:
In an INSERT statement, a value of unassigned has the effect of setting the
column to its default value.

If a target column is not updatable, it must be assigned the extended
indicator value of unassigned, unless it is an identity column that is
defined as GENERATED ALWAYS. If the target column is an identity
column that is defined as GENERATED ALWAYS, it must be assigned the
DEFAULT keyword or the extended indicator values of default or
unassigned unless the OVERRIDING USER VALUE clause is specified.

Extended indicator variables and insert triggers:
The activation of insert triggers is not affected by the use of extended
indicator variables. If all columns in the implicit or explicit column list
have been assigned an extended indicator value of unassigned or default,
an insert where all columns have their respective default values is
attempted, and, if successful, the insert trigger is activated.

Extended indicator variables and deferred error checks:
When extended indicator variables are enabled, validation that would
otherwise be done in statement preparation (to recognize an insert into a
non-updatable column) is deferred until statement execution. If statement
validation fails, an error is returned when the statement is run, not at
statement preparation.

Table space data compression during an insert operation:
If the table space is defined with the COMPRESS YES option, and data is
inserted into a table in the table space, the first rows are stored
uncompressed. When a DB2-determined amount of data has been inserted
into the table, a compression dictionary is created and stored in the table
space. The rows that are inserted into the table after the dictionary is
created are stored compressed using the compression dictionary.

Generated columns:
A generated column that is defined as GENERATED ALWAYS should not
be specified in the column-list unless the corresponding entry in the
VALUES list is DEFAULT or an extended indicator that specifies that a
default value is to be assigned. Specify the OVERRIDING USER VALUE
clause to indicate that any user-specified value should be ignored and DB2
should assign the default value when a row is inserted.

1746 SQL Reference

Inserting rows into system-period temporal tables:
When a row for a system-period temporal table is inserted, DB2 assigns
values to the following columns as indicated:
v A row-begin column is assigned a value that is generated by reading the

time-of-day clock during execution of the first data change statement in
the transaction that requires a value to be assigned to a row-begin column
or a transaction-start-ID column in a table. This also occurs when a row
in a system-period temporal table is deleted. DB2 ensures the
uniqueness of the generated values for a row-begin column across
transactions. If multiple rows are inserted within a single SQL
transaction, the values for the row-begin column are the same for all of
the rows and are unique from the values that are generated for the
column by another transaction.

v A row-end column is assigned the a value for the data type of the
column.

v A transaction-start-ID column is assigned a unique value per transaction
or the null value. The null value is assigned to the transaction-start-ID
column if the column is nullable. Otherwise, the value is generated by
reading the time-of-day clock during execution of the first data change
statement in the transaction that requires a value to be assigned to a
row-begin column or transaction-start-ID column in a table. This also
occurs when a row in a system-period temporal table is deleted. If
multiple rows are inserted within a single SQL transaction, the values
for the transaction-start-ID column are the same for all the rows and are
unique from the values that are generated for the column by another
transaction.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a
non-null value, the underlying target of the INSERT statement cannot be a
system-period temporal table. This restriction applies regardless of whether
the system-period temporal table is directly or indirectly referenced.

Inserting rows into application-period temporal tables:
When a row is inserted into an application-period temporal table, an error
is returned if the period that is defined by the begin column and end
column of the application period overlap with the period that is defined by
the begin column and end column of the application period for another
row in the table.

Inserting rows into archive-enabled tables:
You cannot insert rows into an archive-enabled table if the value of the
SYSIBMADM.MOVE_TO_ARCHIVE global variable is Y. Otherwise, if this
global variable is not set to Y, you can specify an archive-enabled table as
the target of the INSERT statement. In this case, the content of the
associated archive table is not affected.

A data change statement must not reference an archive-enabled table when
a system-period temporal table or application-period temporal table is also
referenced.

INSERT without a column list:
An INSERT statement without a column list does not include implicitly
hidden columns, so columns that are defined as implicitly hidden must
have a defined default value.

Chapter 5. Statements 1747

|
|
|
|

|
|
|
|
|
|

|
|
|

Inserting a row into catalog table SYSIBM.SYSSTRINGS:
If the object table is SYSIBM.SYSSTRINGS, only certain values can be
specified, as described in Specifying conversion procedures (DB2
Administration Guide).

Datetime representation when using datetime registers:
As explained in Datetime special registers, when two or more datetime
registers are implicitly or explicitly specified in a single SQL statement,
they represent the same point in time. This is also true when multiple rows
are inserted. When ATOMIC is in effect for the INSERT statement, the
special registers are evaluated one time for the processing of the statement.
If NOT ATOMIC is in effect, the special registers are evaluated as each row
of source data is processed.

Non-atomic processing of an INSERT statement:
When NOT ATOMIC is specified the rows of source data are processed
separately. Any references to special registers, sequence expressions, and
functions in the INSERT statement are evaluated as each row of source
data is processed, Statement level triggers are activated as each row of
source data is processed.

If one or more errors occur during the execution of an insert of a row,
processing continues. The row that was being inserted at the time of the
error is not inserted. Execution continues with the next row to be inserted,
and any other changes made during the execution of the multiple-row
INSERT statement are not backed out. However, the insert of an individual
row is an atomic action.

Diagnostics information for a multiple-row INSERT statement:
A single multiple-row INSERT statement might encounter multiple
conditions. These conditions can be errors or warnings. Use the GET
DIAGNOSTICS statement to obtain information about all of the conditions
that are encountered for one of these INSERT statements. See “GET
DIAGNOSTICS” on page 1679 for more information.

If a warning occurs during the execution of an insert of a row, processing
continues.

When multiple errors or warnings occur with a non-atomic INSERT
statement, diagnostic information for each row is available using the GET
DIAGNOSTICS statement. The SQLSTATE and SQLCODE reflect a
summary of what happened during the INSERT statement:
v SQLSTATE 01659, SQLCODE +252. All rows were inserted, but one or

more warnings occurred.
v SQLSTATE 22529, SQLCODE -253. At least one row was successfully

inserted, but one or more errors occurred. Some warnings might also
have occurred.

v SQLSTATE 22530, SQLCODE -254. No row was inserted. One or more
errors occurred while trying to insert multiple rows of data.

v SQLSTATE 429BI, SQLCODE -20252. More errors occurred that DB2 is
capable of recording. Statement processing is terminated.

When ATOMIC is in effect, if an insert value violates any constraints or if
any other error occurs during the execution of an insert of a row, all
changes made during the execution of the multiple-row INSERT statement
are backed out. The SQLCA reflects the last warning encountered.

1748 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_specifyconversionprocedure.htm#db2z_specifyconversionprocedure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_specifyconversionprocedure.htm#db2z_specifyconversionprocedure

After an INSERT statement that inserts multiple rows of data, both atomic
and non-atomic, information is returned to the program through the
SQLCA. The SQLCA is set as follows:
v SQLCODE contains the SQLCODE.
v SQLSTATE contains the SQLSTATE.
v SQLERRD3 contains the number of rows actually inserted. SQLERRD3 is

the number of rows inserted, if this is less than the number of rows
requested, then an error occurred.

v SQLWARN flags are set if they were set during any single insert
operation.

The SQLCA is used to return information on errors and warnings found
during a multiple-row insert. If indicator arrays are provided, the indicator
variable values are used to determine if the value from the host-variable
array, or NULL, will be used. The SQLSTATE contains the warning from
the last data mapping error.

Specifying the number of rows for a dynamic multiple-row INSERT statement:
Be aware of these considerations when specifying the number of rows to
be inserted with a dynamic multiple-row INSERT statement that uses
host-variable arrays:
v The FOR n ROWS clause can be specified as part of an INSERT

statement or as part of an EXECUTE statement, but not both
v In the INSERT statement, you can specify a numeric constant in the FOR

n ROWS clause to indicate the number of rows to be inserted or specify
a parameter marker to indicate that the number of rows will be specified
with the associated EXECUTE or OPEN statement. A multiple-row
INSERT statement that is contained within a SELECT statement must
include a FOR n ROWS clause.

v In an EXECUTE statement, when a dynamic INSERT statement is not
contained within a SELECT statement, the number of rows can be
specified with either the FOR n ROWS clause or the USING clause of
the EXECUTE statement:
– If the INSERT statement did not contain a FOR n ROWS clause, a

value for the number of rows to be inserted can be specified in the
FOR n ROWS clause of the EXECUTE statement with a numeric
constant or host variable.

– If a parameter marker was specified as part of a FOR n ROWS clause
in the INSERT statement, a value for the number of rows must be
specified with the USING clause of the EXECUTE statement.

v In an OPEN statement, when a dynamic SELECT statement contains one
or more INSERT statements that have FOR n ROWS clauses with
parameter markers, the values for the number of rows to be inserted
(that is, the values for the parameter markers) must be specified with the
USING clause of the OPEN statement.

DRDA considerations for a multiple-row INSERT statement:
DB2 for z/OS limits the size of user data and control information to 10M
(except for LOBs, which are processed in a different data stream) for a
single multiple-row INSERT statement using host-variable arrays.

Multiple-row insert and fetch statements are supported by any requester or
server that supports the DRDA Version 3 protocols. If an attempt is made
to issue a multiple-row INSERT or FETCH statement on a server that does
not support DRDA Version 3 protocols, an error occurs.

Chapter 5. Statements 1749

When a multiple-row INSERT statement is executed at a DB2 for z/OS
requester, the number of rows being inserted at the requester might not be
known in some cases. These cases include:
v The FOR n ROWS clause contains a constant value for n for either a

static or dynamic INSERT statement.
v Host variables are specified on the USING clause of an EXECUTE

statement for a dynamic INSERT statement.

In either case, if the number of rows that is being inserted is not known,
the requester might flow more data than is required to the server. The
number of rows that is actually inserted will be correct because the server
knows the correct number of rows to insert. However, performance can be
adversely affected. Consider the following scenario:
...
long serial_num [10];
struct {
short len;
char data [18];
}name [20]
...
EXEC SQL INSERT INTO T1 VALUES (:serial_num, :name) FOR 5 ROWS

At the requester, when this statement is executed, the number of rows
being inserted, 5, is not known. As a result, the requester will flow 10
values for serial_num and 10 values for name to the server (because the
maximum number of rows that can be inserted without error is 10, which
is the size of the smallest host-variable array).

Use the following programming techniques to avoid or minimize problems:
v Avoid using constant values for n in the FOR n ROWS clause of INSERT

statements. For static INSERT statements, this technique ensures that the
value for n will be known at the requester.

v For dynamic INSERT statements, use the USING DESCRIPTOR clause
instead of the USING host-variables clause on the EXECUTE statement. If
a USING DESCRIPTOR clause is used on the EXECUTE statement, the
value for 'n' must be indicated in the DESCRIPTOR.

v If neither of the above methods can be used:
– Declare your host-variable arrays as small as possible, or indicate that

the size of your host-variable arrays are the size of 'n' in your
descriptor. This avoids sending large numbers of host-variable-array
entries that will not be used to the server.

– Ensure that varying length string arrays are initialized to a length of 0
(zero). This minimizes the amount of data that is sent to the server.

– Ensure that decimal host-variable arrays are initialized to valid
values. This avoids a negative SQLCODE from being returned if the
requester encounters invalid decimal data.

Other SQL statements in the same unit of work:
The following statements cannot follow an INSERT statement in the same
unit of work:
v An ALTER TABLE statement that changes the data type of a column

(ALTER COLUMN SET DATA TYPE)
v An ALTER INDEX statement that changes the padding attribute of an

index with varying-length columns (PADDED to NOT PADDED or vice
versa)

1750 SQL Reference

Examples

Example 1: Insert values into sample table DSN8B10.EMP.
INSERT INTO DSN8B10.EMP

VALUES (’000205’,’MARY’,’T’,’SMITH’,’D11’,’2866’,
’1981-08-10’,’ANALYST’,16,’F’,’1956-05-22’,
16345,500,2300);

Example 2: Assume that SMITH.TEMPEMPL is a created temporary table. Populate
the table with data from sample table DSN8B10.EMP.

INSERT INTO SMITH.TEMPEMPL
SELECT *
FROM DSN8B10.EMP;

Example 3: Assume that SESSION.TEMPEMPL is a declared temporary table.
Populate the table with data from department D11 in sample table DSN8B10.EMP.

INSERT INTO SESSION.TEMPEMPL
SELECT *
FROM DSN8B10.EMP
WHERE WORKDEPT=’D11’;

Example 4: Insert a row into sample table DSN8B10.EMP_PHOTO_RESUME. Set
the value for column EMPNO to the value in host variable HV_ENUM. Let the
value for column EMP_ROWID be generated because it was defined with a row ID
data type and with clause GENERATED ALWAYS.

INSERT INTO DSN8B10.EMP_PHOTO_RESUME(EMPNO, EMP_ROWID)
VALUES (:HV_ENUM, DEFAULT);

You can only insert user-specified values into ROWID columns that are defined as
GENERATED BY DEFAULT and not as GENERATED ALWAYS. Therefore, in the
above example, if you were to try to insert a value into EMP_ROWID instead of
specifying DEFAULT, the statement would fail unless you also specify
OVERRIDING USER VALUE. For columns that are defined as GENERATED
ALWAYS, the OVERRIDING USER VALUE clause causes DB2 to ignore any
user-specified value and generate a value instead.

For example, assume that you want to copy the rows in
DSN8B10.EMP_PHOTO_RESUME to another table that has a similar definition
(both tables have a ROWID columns defined as GENERATED ALWAYS). For the
following INSERT statement, the OVERRIDING USER VALUE clause causes DB2
to ignore the EMP_ROWID column values from DSN8B10.EMP_PHOTO_RESUME
and generate values for the corresponding ROWID column in
B.EMP_PHOTO_RESUME.

INSERT INTO B.EMP_PHOTO_RESUME
OVERRIDING USER VALUE
SELECT * FROM DSN8B10.EMP_PHOTO_RESUME;

Example 5: Assume that the T1 table has one column. Insert a variable (:hv) number
of rows of data into the T1 table. The values to be inserted are provided in a
host-variable array (:hva).
EXEC SQL INSERT INTO T1 FOR :hv ROWS VALUES (:hva:hvind) ATOMIC;

In this example, :hva represents the host-variable array and :hvind represents the
array of indicator variables.

Example 6: Assume that the T2 table has 2 columns, C1 is a SMALL INTEGER
column, and C2 is an INTEGER column. Insert 10 rows of data into the T2 table.

Chapter 5. Statements 1751

The values to be inserted are provided in host-variable arrays :hva1 (an array of
INTEGERS) and :hva2 (an array of DECIMAL(15,0) values). The data values for
:hva1 and :hva2 are represented in Table 146:

Table 146. Data values for :hva1 and :hva2

Array entry :hva1 :hva2

1 1 32768

2 -12 90000

3 79 2

4 32768 19

5 8 36

6 5 24

7 400 36

8 73 4000000000

9 -200 2000000000

10 35 88

EXEC SQL INSERT INTO T2 (C1, C2)
FOR 10 ROWS VALUES (:hva1:hvind1, :hva2:hvind2)
NOT ATOMIC CONTINUE ON SQLEXCEPTION;

After execution of the INSERT statement, the following information will be in the
SQLCA:
SQLCODE = -253
SQLSTATE = 22529
SQLERRD3 = 8

Although an attempt was made to insert 10 rows, only 8 rows of data were
inserted. Processing continued after the first failed insert because NOT ATOMIC
CONTINUE ON SQLEXCEPTION was specified. You can use the GET
DIAGNOSTICS statement to find further information, for example:
GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

The result of this statement is num_rows = 8 and num_cond = 2 (2 conditions).
GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE,

:sqlcode = DB2_RETURNED_SQLCODE,
:row_num = DB2_ROW_NUMBER;

The result of this statement is sqlstate = 22003, sqlcode = -302, and row_num = 4.
GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,

:sqlcode = DB2_RETURNED_SQLCODE,
:row_num = DB2_ROW_NUMBER;

The result of this statement is sqlstate = 22003, sqlcode = -302, and row_num = 8.

Example 7: Assume the above table T2 with two columns. C1 is a SMALL
INTEGER column, and C2 is an INTEGER column. Insert 8 rows of data into the
T2 table. The values to be inserted are provided in host-variable arrays :hva1 (an
array of INTEGERS) and :hva2 (an array of DECIMAL(15,0) values.) The data
values for :hva1 and :hva2 are represented in Table 146.
EXEC SQL INSERT INTO T2 (C1, C2)

FOR 8 ROWS VALUES (:hva1:hvind1, :hva2:hvind2)
NOT ATOMIC CONTINUE ON SQLEXCEPTION;

1752 SQL Reference

After execution of the INSERT statement, the following information will be in the
SQLCA:
SQLCODE = -253
SQLSTATE = 22529
SQLERRD3 = 6

Although an attempt was made to insert 8 rows, only 6 rows of data were inserted.
Processing continued after the first failed insert because NOT ATOMIC
CONTINUE ON SQLEXCEPTION was specified. You can use the GET
DIAGNOSTICS statement to find further information, for example:
GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

The result of this statement is num_rows = 68 and num_cond = 2 (2 conditions).
GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE,

:sqlcode = DB2_RETURNED_SQLCODE,
:row_num = DB2_ROW_NUMBER;

The result of this statement is sqlstate = 22003, sqlcode = -302, and row_num = 4.
GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,

:sqlcode = DB2_RETURNED_SQLCODE,
:row_num = DB2_ROW_NUMBER;

The result of this statement is sqlstate = 22003, sqlcode = -302, and row_num = 8.

Example 8: Assume that table T1 has two columns. Insert a variable number (:hvn)
or rows into T1. The values to be inserted are in host-variable arrays :hva and
:hvb. In this example, the INSERT statement is contained within the SELECT
statement of cursor CS1. The SELECT statement makes use of two other input host
variables (:hv1 and :hv2) in the WHERE clause. Either a static or dynamic INSERT
statement can be used.
-- Static INSERT statement:
DECLARE CS1 CURSOR WITH ROWSET POSITIONING FOR

SELECT *
FROM FINAL TABLE

(INSERT INTO T1 VALUES (:hva, :hvb) FOR :hvn ROWS)
WHERE C1 > :hv1 AND C2 < :hv2;

OPEN CS1;
-- Dynamic INSERT statement:
PREPARE INSSTMT FROM

’SELECT *
FROM FINAL TABLE

(INSERT INTO T1 VALUES (? , ?) FOR ? ROWS)
WHERE C1 > ? AND C2 < ?’;

DECLARE CS1 CURSOR WITH ROWSET POSITIONING FOR :INSSTMT;
OPEN CS1 USING :hva, :hvb, :hvn, :hv1, :hv2; (or OPEN CS1 USING DESCRIPTOR ...)

If the host-variable arrays for the multiple-row INSERT statement were to be
specified using a descriptor, that descriptor (SQLDA) would have to describe all
input host variables in the statement, and the order of the entries in the SQLDA
should be the same as the order of the order of the host variables, host-variable
arrays, and values for the FOR n ROWS clauses in the statement. For example,
given the statement above, the SQLVAR entries in the descriptor must be assigned
in the following order: :hvn, :hva, :hvb, :hv1, hv2. In addition, the SQLVAR entries
for host-variable arrays must be tagged in the SQLDA as column arrays (by
specifying a special value in part of the SQLNAME field for a host variable), and
the SQLVAR entry for the number of rows value must be tagged in the SQLDA (by
specifying another special value in part of the SQLNAME field for the host
variable).

Chapter 5. Statements 1753

Example 9: Insert a row into table T1. The row contains the value 'xyz' for column
COL1, and the cardinality of array INTA for column COL2.
CREATE TYPE INTARRAY AS INTEGER ARRAY [6];
DECLARE INTA AS INTARRAY;
SET INTA = ARRAY [1, 2, 3, 4, 5];
CREATE TABLE T1 (COL1 CHAR(7), COL2 INT);
INSERT INTO T1 VALUES (’xyz’, CARDINALITY(INTA));

Example 10: Insert the values from arrays CHARA and INTA into table T1. For a
row of T1, a value of the CHARA array is used for column COL1, and the value of
the INTA array with the same array index is used for column COL2.
CREATE TYPE INTARRAY AS INTEGER ARRAY[10];
CREATE TYPE CHARARRAY AS CHAR(7) ARRAY[10];
DECLARE INTA AS INTARRAY;
DECLARE CHARA AS CHARARRAY;
SET INTA = ARRAY[1, 2, 3, 4, 5];
SET CHARA = ARRAY[’a’, ’b’, ’c’, ’d’];
CREATE TABLE T1 (COL1 CHAR(7), COL2 INT);
INSERT INTO T1
SELECT *
FROM UNNEST(CHARA, INTA) AS (COL1, COL2);

Example 11: Insert three rows of data into table T1. For each inserted row, assign
the value of the tenth element in the INTA array variable to the COL1 column.
CREATE TYPE INTARRAY AS INTEGER ARRAY[10];
DECLARE INTA AS INTARRAY;
CREATE VARIABLE VAR1 AS INTEGER;
CREATE VARIABLE VAR2 AS INTEGER;
SET INTA = ARRAY[10, 20, 30, 40, 50, 60, 70, 80, 90, 100];
CREATE TABLE T1 (COL1 INT, COL2 CHAR(10));
SET VAR1 = 10;
SET VAR2 = 3;
-- Perform a multiple row insert (specifying a FOR n ROWS clause).
-- The value to be inserted is specified by a reference to an array element.
INSERT INTO T1 (COL1) VALUES(INTA[VAR1]) FOR VAR2 ROWS;

The result of the these operations is that a value of 100 is assigned to column
COL1 for three rows.

1754 SQL Reference

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

LABEL
The LABEL statement adds or replaces labels in the descriptions of tables, views,
aliases, or columns in the catalog at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

The privilege set that is defined below must include at least one of the following:
v Ownership of the table, view, or alias
v DBADM authority for its database (tables only)
v SYSADM or SYSCTRL authority
v System DBADM

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the statement is dynamically prepared, the privilege set is determined by the
DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is
summarized in Table 94 on page 841. (For more details on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them,
see “Authorization IDs and dynamic SQL” on page 75.)

Syntax

��

�

LABEL ON TABLE table-name IS string-constant
view-name

ALIAS alias-name
COLUMN table-name.column-name

view-name.column-name
,

table-name (column-name IS string-constant)
view-name

��

Description

TABLE table-name or view-name
Identifies the table or view to which the label applies. The name must identify
a table or view that exists at the current server. table-name must not identify a
declared temporary table. The label is placed into the LABEL column of the
SYSIBM.SYSTABLES catalog table for the row that describes the table or view.

ALIAS alias-name
Identifies the alias to which the label applies. The name must identify an alias

Chapter 5. Statements 1755

|

for a table or view that exists at the current server. The label is placed in the
LABEL column of the SYSIBM.SYSTABLES catalog table for the row that
describes the alias.

COLUMN table-name.column-name or view-name.column-name
Identifies the column to which the label applies. The name must identify a
column of a table or view that exists at the current server. The name must not
identify a column of a declared temporary table. The label is placed in the
LABEL column of the SYSIBM.SYSCOLUMNS catalog table in the row that
describes the column.

Do not use TABLE or COLUMN to define a label for more than one column
in a table or view. Give the table or view name and then, in parentheses, a list
in the form:

column-name IS string-constant,
column-name IS string-constant,...

See Example 2 below.

The column names must not be qualified, each name must identify a column
of the specified table or view, and that table or view must exist at the current
server.

IS Introduces the label you want to provide.

string-constant
Can be any SQL character string constant of up to 30 bytes in length.

Examples

Example 1: Enter a label on the DEPTNO column of table DSN8B10.DEPT.
LABEL ON COLUMN DSN8B10.DEPT.DEPTNO

IS ’DEPARTMENT NUMBER’;

Example 2: Enter labels on two columns in table DSN8B10.DEPT.
LABEL ON DSN8B10.DEPT
(MGRNO IS ’EMPLOYEE NUMBER FOR THE MANAGER’,
ADMRDEPT IS ’ADMINISTERING DEPARTMENT’);

1756 SQL Reference

|
|
|

LOCK TABLE
The LOCK TABLE statement requests a lock on a table or table space at the current
server. The lock is not acquired if the process already holds an appropriate lock.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

The privilege set that is defined below must include at least one of the following:
v The SELECT privilege on the identified table (the SELECT privilege does not

apply to the auxiliary table)
v Ownership of the table
v DBADM authority for the database
v SYSADM or SYSCTRL authority
v DATAACCESS authority

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the statement is dynamically prepared, the privilege set is determined by the
DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is
summarized in Table 94 on page 841. (For more details on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them,
see “Authorization IDs and dynamic SQL” on page 75.)

Syntax

�� LOCK TABLE table-name
PARTITION integer

IN SHARE MODE
EXCLUSIVE

��

Description

table-name
Identifies the table to be locked. The name must identify a table that exists at
the current server. It must not identify a view, a temporary table (created or
declared), or a catalog table. The lock might or might not apply exclusively to
the table. The effect of locking an auxiliary table is to lock the LOB table space
that contains the auxiliary table.

PARTITION integer
Identifies the partition of a partitioned table space to lock. The table identified
by table-name must belong to a partitioned table space. The value specified for
integer must be an integer that is no greater than the number of partitions in
the table space.

Chapter 5. Statements 1757

IN SHARE MODE
For a lock on a table that is not an auxiliary table, requests the acquisition of a
lock that prevents other processes from executing anything but read-only
operations on the table. For a lock on a LOB table space, IN SHARE mode
requests a lock that prevents storage from being reallocated. When a LOB table
space is locked, other processes can delete LOBs or update them to a null
value, but they cannot insert LOBs with a nonnull value. The type of lock that
the process holds after execution of the statement depends on what lock, if any,
the process already holds.

IN EXCLUSIVE MODE
Requests the acquisition of an exclusive lock for the application process. Until
the lock is released, it prevents concurrent processes from executing any
operations on the table. However, unless the lock is on a LOB table space,
concurrent processes that are running at an isolation level of uncommitted read
(UR) can execute read-only operations on the table.

Notes

Releasing locks: If LOCK TABLE is a static SQL statement, the RELEASE option of
bind determines when DB2 releases a lock. For RELEASE(COMMIT), DB2 releases
the lock at the next commit point. For RELEASE(DEALLOCATE), DB2 releases the
lock when the plan is deallocated (the application ends).

If LOCK TABLE is a dynamic SQL statement, DB2 uses RELEASE(COMMIT) and
releases the lock at the next commit point, unless the table or table space is
referenced by cached dynamic statements. Caching allows DB2 to keep prepared
statements in memory past commit points. In this case, DB2 holds the lock until
deallocation or until the commit after the prepared statements are freed from
memory. Under some conditions, if a lock is held past a commit point, DB2
demotes the lock state of a segmented table or a nonsegmented table space to an
intent lock at the commit point.

Syntax alternatives and synonyms: For compatibility with previous releases of
DB2, PART can be specified as a synonym for PARTITION.

Example

Obtain a lock on the sample table named DSN8B10.EMP, which resides in a
partitioned table space. The lock obtained applies to every partition and prevents
other application programs from either reading or updating the table.

LOCK TABLE DSN8B10.EMP IN EXCLUSIVE MODE;

1758 SQL Reference

Related concepts:

Lock size (DB2 Performance)

The duration of a lock (DB2 Performance)
Related tasks:

Controlling concurrent access to tables (DB2 Performance)

Programming for concurrency (DB2 Performance)
Related reference:

ISOLATION bind option (DB2 Commands)

RELEASE bind option (DB2 Commands)

DYNAMICRULES bind option (DB2 Commands)

Chapter 5. Statements 1759

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_sizeoflock.htm#db2z_sizeoflock
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_lockduration.htm#db2z_lockduration
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_locktablestatement.htm#db2z_locktablestatement
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapps4concurrency.htm#db2z_programapps4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptisolation.htm#db2z_bindoptisolation
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptrelease.htm#db2z_bindoptrelease
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptdynamicrules.htm#db2z_bindoptdynamicrules

MERGE
The MERGE statement updates a target (a table or view, or the underlying tables
or views of a fullselect) using the specified input data. Rows in the target that
match the input data are updated as specified, and rows that do not exist in the
target are inserted. Updating or inserting a row into a view updates or inserts the
row into the tables on which the view is based, if no INSTEAD OF trigger is
defined on this view.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

The privileges that are held by the privilege set that is defined below must include
at least one of the following privileges:
v SYSADM authority
v Ownership of the table
v DATAACCESS authority
v If the search condition contains a reference to a column of the table or view, the

SELECT privilege for the referenced table or view
v If the insert operation is specified, the INSERT privilege for the table or view
v If the update operation is specified, at least one of the following privileges is

required:
– the UPDATE privilege for the table or view
– the UPDATE privilege on each column that is updated
– If the right side of the assignment clause contains a reference to a column of

the table or view, the SELECT privilege for the referenced table or view

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

If the insert operation or assignment clause includes a subquery, the privileges that
are held by the privilege set must also include at least one of the following
privileges:
v SYSADM authority
v The SELECT privilege on every table or view that is identified in the subquery
v Ownership of the tables or views that are identified in the subquery
v DATAACCESS authority

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the statement is dynamically prepared, the privilege set is determined by the
DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is
summarized in Table 94 on page 841. (For more information on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them,
see “Authorization IDs and dynamic SQL” on page 75.)

1760 SQL Reference

Syntax

�� MERGE INTO table-name
view-name AS

correlation-name
include-columns

�

� USING source-table ON search-condition �

� � WHEN matching-condition THEN modification-operation �

�
NOT ATOMIC CONTINUE ON SQLEXCEPTION QUERYNO integer

��

�� �

,

INCLUDE (column-name data-type) ��

�� built-in-type
distinct-type

��

include-columns:

data-type:

built-in-type:

Chapter 5. Statements 1761

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0

NUMERIC (integer)
,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1)

GRAPHIC
(integer)

VARGRAPHIC (integer)
(1)

BINARY
(integer)

BINARY VARYING (integer)
VARBINARY

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE

��

�� (VALUES values-single-row)
(1)

values-multiple-row

AS
correlation-name �

,

(column-name) ��

Notes:

1 The NOT ATOMIC clause must be specified when values-multiple-row is specified.

source-table:

values-single-row:

1762 SQL Reference

��

�

expression
,

(expression)

��

��

�

expression
host-variable-array

,

(expression)
host-variable-array

(1)
FOR host-variable ROWS

integer-constant
��

Notes:

1 For a static MERGE statement, if FOR n ROWS is not specified, values-multiple-row is treated as
values-single-row. For a dynamic MERGE statement, FOR n ROWS does not need to be specified
in the MERGE statement. It can be specified in the EXECUTE statement, but cannot be specified
in both the MERGE and EXECUTE statements.

�� MATCHED
NOT

��

�� UPDATE SET assignment-clause
insert-operation

��

values-multiple-row:

matching-condition:

modification-operation:

assignment-clause:

Chapter 5. Statements 1763

�� �

� �

,
(1)

column-name = expression
DEFAULT
NULL

, ,

(column-name) = (expression)
DEFAULT
NULL

��

Notes:

1 The number of expressions, DEFAULT, and NULL keywords must match the number of
column-names.

��

�

�

INSERT VALUES expression
, DEFAULT

NULL
(column-name) ,

(expression)
DEFAULT
NULL

��

Description

INTO table-name or view-name
Identifies the target of the insert or update operations of the MERGE
statement. The name must identify a table or view that exists at the current
server. The name must not identify:
v A catalog table
v A created global temporary table
v A read-only view
v A system-maintained materialized query table
v A table that is implicitly created for an XML column

If a view is specified as the target of the MERGE statement, the view must not
be defined with any INSTEAD OF triggers.

AS correlation-name
correlation-name provides an alternate name that can be used when referencing
columns of the intermediate result table. If no correlation-name is specified, the
name of the intermediate result table is the name of the target table or view of
the MERGE statement. Otherwise, the name is the correlation-name.

include-column
Specifies a set of columns that are included, along with the columns of the
specified table or view, in the result table of the MERGE statement when it is
nested in the FROM clause of the outer fullselect that is used in a SELECT
statement, or in a SELECT INTO statement. The included columns are

insert-operation:

1764 SQL Reference

appended to the end of the list of columns that are identified by table-name or
view-name. If a value is not specified for an included column, a null value is
returned for that column.

INCLUDE
Introduces a list of columns that is to be included in the result table of the
MERGE statement. The included columns are only available if the MERGE
statement is nested in the FROM clause of a SELECT statement or a
SELECT INTO statement. INCLUDE can only be specified when the
MERGE statement is nested in the FROM clause of a SELECT statement.

column-name
Specifies the name for a column of the result table of the MERGE
statement that is not the same name as another included column or a
column in the table or view that is specified in table-name or view-name.

data-type
Specifies the data type of the included column. The included columns are
nullable.

Columns with the following data types can not be used as INCLUDE
columns:
v LONG VARCHAR,
v LONG VARGRAPHIC,
v XML
v LOBs
v distinct types that are based on any of the listed data types.

built-in-type
Specifies a built-in data type. See “CREATE TABLE” on page 1388 for a
description of each built-in type.

The CCSID 1208 and CCSID 1200 clauses must not be specified for an
include column.

distinct-type
Specifies a distinct type. Any length, precision, or scale attributes for
the column are those of the source type of the distinct type as specified
by using the CREATE TYPE statement.

USING VALUES values-single-row or values-multiple-row
Specifies the values for the row data to merge into the target table or view.
values-single-row specifies a single row of source data. values-multiple-row
specifies multiple rows of source data.

expression
Specifies an expression of the type that is described in “Expressions” on
page 240. The expression must not include a column name. The expression
must not reference a NEXT VALUE or PREVIOUS VALUE expression. If
the expression is a single host variable, the host variable can identify a
structure. Any host variable or structure that is specified must be described
in the application program according to the rules for declaring host
structures and variables.

If the expression is a host variable, or if a host variable is being explicitly
cast, the host variable can include an indicator variable or an indicator
array (in the case of a host structure). Either indicator variables or indicator
arrays can be enabled for extended indicator variables.

Chapter 5. Statements 1765

|
|

To provide a null value, specify the NULL keyword on a CAST
specification.

host-variable-array
Specifies a host variable array. Each host variable array must be defined in
the application program in accordance with the rules for declaring an
array. A host variable array contains the data to merge into a target
column. The number of rows must be less than or equal to the dimension
of each of the host variable arrays. An optional indicator array can be
specified for each host variable array. An indicator array should be
specified if the SQLTYPE of any SQLVAR occurrence indicates that a
column is nullable. The indicator array can be enabled for extended
indicator variables. The dimension of the indicator array must be large
enough to contain an indicator for each row of input data.

A host structure is not supported in host-variable-array.

host-variable-array is supported in C/C++, COBOL, and PL/I.

FOR host-variable or integer-constant ROWS
Specifies the number of rows to merge. For a dynamic MERGE statement,
this clause can be specified on the EXECUTE statement. host-variable or
integer-constant is assigned to a value k. If host-variable is specified, it must
be an exact numeric type with a scale of zero and must not include an
indicator variable. k must be in the range of 1 to 32767. k rows are merged
into the target from the specified source data.

If a parameter marker is specified in FOR n ROWS, a value must be
provided with the USING clause of the associated EXECUTE statement.

AS correlation-name
Specifies a correlation name for the source-table.

column-name
Specifies a column name to associate the input data to the SET
assignment-clause for an update operation or the VALUES clause for an insert
operation.

ON search-condition
Specifies join conditions between the source-table and the target table or view.

Each column-name in the search condition must name a column of the target
table, view, or source-table. A subquery is not allowed in the search-condition. If a
column-name exists in both the target and the source-table, the column name
must be qualified.

For each row of the source-table, the search-condition is applied to each row of
the target. If the search-condition is evaluated as true and the target is not
empty, the specified WHEN MATCHED clause is used. Otherwise, the
specified WHEN NOT MATCHED clause is used.

WHEN MATCHED or WHEN NOT MATCHED
Specifies the condition under which the modification-operation is run.

WHEN MATCHED
Specifies the operation to perform on the rows where the ON
search-condition is true and the target is not empty. Only UPDATE can be
specified after the THEN clause. WHEN MATCHED must not be specified
more than one time.

WHEN NOT MATCHED
Specifies the operation to perform on the rows where the ON

1766 SQL Reference

search-condition is false or unknown, or the target is empty. Only INSERT
can be specified after the THEN clause. WHEN NOT MATCHED must not
be specified more than one time.

THEN update-operation or THEN insert-operation
Specifies the operation to run when the matching-condition evaluates to true.

UPDATE SET
Specifies the update operation to run when the matching-condition evaluates
to true.

When extended indicator variables are enabled, a column of the source
table must not be referenced multiple times in a single
modification-operation. Extended indicator variables are enabled when
EXTENDEDINDICATOR(YES) is used, or when the WITH EXTENDED
INDICATORS prepare attribute has been specified for the MERGE
statement.

The rows that are updated from a source-row are subject to more updates
by subsequent source-rows in the same statement. The update is cumulative.

An update-operation in a MERGE statement will not rest the AREO* status
on a table.

assignment-clause
Specifies a list of column updates.

column-name
Identifies a column to update. column-name must identify a column of
the specified table or view, and that column must be updatable. The
column must not be a generated column, or a column of a view that is
derived from a scalar function, a constant, or a expression. column-name
can also identify an included column. The same column-name must not
be specified more than one time.

Assignments to included columns are only processed when the
MERGE statement is nested in the FROM clause of a SELECT
statement or a SELECT INTO statement. There must be at least one
assignment clause that specifies a column-name that is not an included
column. A view column that is derived from the same column as
another column of the view can be updated, but both columns cannot
be updated in the same MERGE statement.

expression
Specifies the new value of the column. The expression is any
expression of the type that is described in “Expressions” on page 240.
The expression must not include an aggregate function.

An expression can contain references to columns of source-table or
target. A column name is first checked as a column of the target, and
then checked as a column of the source table. For each row that is
updated, the value of a target column in an expression is the value of
the column in the row before the row is updated. expression cannot
contain references to an included column.

If expression is a reference to a single column of the source-table, the
source-table column value might have been specified with an extended
indicator variable value. The effects of such indicator variables apply to
the corresponding target columns of the assignment-clause.

When extended indicator variables are enabled, an expression must not
be more complex than a reference to a single column of the source

Chapter 5. Statements 1767

table, or a single host variable if the indicator is set to an extended
indicator value of default (-5) or unassigned (-7). In addition, a CAST
specification can be used if either:
v The target column is defined as nullable.
v the target column is defined as NOT NULL with a non-null default,

the source of the CAST specification is a single host variable, and the
data attributes (data type, length, precision, and scale) of the host
variable are the same as the result of the cast specification.

DEFAULT
Specifies the default value for the column. The value that is assigned
depends on how the column is defined.

A ROWID column must not be set to the DEFAULT keyword.

An identity column or a row change timestamp column that is defined
as GENERATED ALWAYS can be set only to the DEFAULT keyword.

If the column is defined using the NOT NULL clause and the
GENERATED clause is not used, or the WITH DEFAULT clause is not
used, the DEFAULT keyword cannot be specified for that column.

NULL
Specifies the null value as the new value of the column. Specify NULL
only for nullable columns.

insert-operation
Specifies the insert operation to run for the rows where the
matching-condition evaluates to true.

The rows that are inserted from a source-row are immediately subject for
update by subsequent source-rows in the same statement.

INSERT
Specifies a list of column names and row value expressions to use of
the insert operation.

The number of values for the row in the row-value expression must be
equal to the number of names in the insert column list. The first value
is inserted into the first column in the list, the second value into the
second column, and so on.

column-name

Specifies the columns for which the insert values are provided.
Each name must identify a column of the table or view

If an included column is not specified in the list of column names,
the value of the included column is set to null. The column list
cannot contain only included columns.

The same column must not be specified more than one time. A
view column that cannot accept insert values must not be
specified. A value cannot be inserted into a view column that is
derived from one of the following:
v a constant, an expression, or a scalar function
v the same column of the base table as another column of the view

If the object of the operation is a view that contains columns that
cannot accept insert values, a list of column names must be
specified and the list must not specify these columns.

1768 SQL Reference

Omission of the column list is an implicit specification of a list in
which every column of the table (that is not defined as implicitly
hidden) or view is identified in left-to-right order. This list is
established when the statement is prepared and therefore does not
include columns that were added to the table after the statement
was prepared.

VALUES
Introduces one or more rows of values to insert.

expression
Specifies an expression of the type that does not include a column
name of the target. If expression is a host variable, the host variable
can include an indicator variable, or in the case of a host structure,
an indicator array. When extended indicator variables are enabled,
an expression must not be more complex than a reference to a
single host variable if the indicator is set to an extended indicator
value of default (-5) or unassigned (-7).

In addition, a CAST specification can be used if either:
v The target column is defined as nullable.
v the target column is defined as NOT NULL with a non-null

default, the source of the CAST specification is a single host
variable, and the data attributes (data type, length, precision,
and scale) of the host variable are the same as the result of the
cast specification.

DEFAULT
Specifies to assign the default value to the column. DEFAULT must
only be specified for columns that have a default value. If the
column is specified in the INCLUDE column list, the column value
is set to null.

DEFAULT must be specified for a column that is defined as
GENERATED ALWAYS. A valid value can be specified for a
column that is defined as GENERATED BY DEFAULT.

NULL
Specifies the null value as the value of the column. Specify NULL
only for nullable columns.

NOT ATOMIC CONTINUE ON SQLEXCEPTION

The rows of input data are processed separately. Any statement level triggers
are processed for each row of source data that is processed, and the transition
table includes the individual row that was processed. When errors are
encountered and this option is in effect, processing continues, and some of the
specified rows will not be processed. In this case, if an appropriate trigger is
defined on the underlying base table, the statement level trigger will only be
activated for rows that were successfully processed.

Regardless of the failure of any particular source row, the MERGE statement
will not undo any changes that are made to the database by the statement.
Merge will be attempted for rows that follow the failed row. However, the
minimum level of atomicity is at least that of a single source row (that is, it is
not possible for a partial merge to complete), including any triggers that might
have been activated as a result of the MERGE statement.

QUERYNO integer
Specifies the number for this SQL statement that is used in EXPLAIN output

Chapter 5. Statements 1769

and trace records. The number is used for the QUERYNO column of the plan
table for the rows that contain information about this SQL statement. This
number is also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If QUERYNO is not specified, the number that is associated with the SQL
statement is the statement number that is assigned during precompilation.
Thus, if the application program is changed and then precompiled, the
statement number might change.

Notes

SQLCA and GET DIAGNOSTICS considerations:
The GET DIAGNOSTICS statement can be used immediately after the
MERGE statement to check which input rows fail during the merge
operation. The GET DIAGNOSTICS statement information item, NUMBER,
indicates the number of conditions that are raised. The GET
DIAGNOSTICS condition information item, DB2_ROW_NUMBER,
indicates the input source rows that cause an error.

Trigger considerations:
A MERGE statement might cause triggers to be activated. A trigger might
cause other statements to be executed or raise error conditions depending
on the source data values. A before-update or before-insert trigger
processes immediately before the update or insert operation.

If a source row results in an insert, any after-insert triggers are activated
after the insert operation completes.

If a source row results in updates, any after-update triggers are activated
after all of the update operations complete.

Indexes with VARBINARY columns:
Suppose that the identified table has an index on a VARBINARY column
or a column that is a distinct type that is based on VARBINARY data type.
In that case, that index column cannot specify the DESC attribute. To use
the SQL data change operation on the identified table, either drop the
index or alter the data type of the column to BINARY and then rebuild the
index.

Considerations for a MERGE without a column list in insert-operation:
A MERGE statement without a specified column list as part of
insert-operation does not include implicitly hidden columns. Therefore, such
columns must have a defined default value.

Considerations for non-atomic processing of a MERGE statement:
When NOT ATOMIC is specified, the rows of source data are processed
separately. Any references to special registers, sequence expressions, and
functions in the MERGE statement are evaluated as each row of source
data is processed. Statement level triggers are activated as each row of
source data is processed.

If one or more errors occur during the operation for a row of source data,
processing continues. The row that was being processed at the time of the
error is not inserted or updated. Execution continues with the next row to
be processed, and any other changes that are made during the execution of
the multiple-row MERGE statement are not backed out. However, the
processing of an individual row is an atomic action.

1770 SQL Reference

DRDA considerations:
DB2 Connect™ Version 9.1 and subsequent releases support the MERGE
statement. The support is for CLI only, with no embedded static SQL
support.

When you run a MERGE statement at a DB2 for z/OS requester, cases
might exist where the requestor does not know the number of rows in the
source table. This situation includes the following cases:
v For static or dynamic MERGE statements, of the FOR n ROWS clause

contains a constant value for n.
v For dynamic MERGE statements, of host variables are specified on the

USING clause of an EXECUTE statement.

For both of these cases, if the number of rows in the source table is not
known, the requester might send more data than is required to the server.
The number of rows that are processed is correct because the server knows
the correct numbers of rows to process. However, performance might be
adversely affected. Consider the following example:
...long serial num [10];
struct { short len;
char data [18];

}
name[20]...
EXEC SQL
MERGE INTO T1

USING (VALUES (:serial_num, :name))
FOR 5 ROWS...

When this statement is run at the requester, the number of rows to merge
(five) is not known. As a result, the requester sends 10 values for
serial-name and name to the server because 10 is the size of the smallest
host variable array and is, therefore, the maximum number of rows that
can merge without causing an error.

Do the following to help minimize performance problems:
v Avoid using numeric constants in the FOR n ROWS clause of the

MERGE statement. For static MERGE statements, avoiding numeric
constants ensures that the values for n are known at the requester.

v For dynamic MERGE statements, use the USING DESCRIPTOR clause
instead of the USING host-variable clause on the EXECUTE statement. If
a USING DESCRIPTOR clause is used on the EXECUTE statement, the
value for n must be indicated in the descriptor.

v If either of the previous methods cannot be used, perform the following
actions:
– Make your host variable arrays as small as possible, or declare that

the size of your host variable arrays are the size of n in the descriptor.
This action avoids sending many unused host variable array entries to
the server.

– Ensure that varying length string arrays are initialized to a length of 0
(zero). Doing so minimizes the amount of data that is sent to the
server.

– Ensure that decimal host variable arrays are initialized to valid
values. Doing so causes the requester to avoid sending a negative
SQLCODE if the requester encounters invalid decimal data.

Extended indicator variable usage:
When extended indicator variables are enabled, negative indicator values

Chapter 5. Statements 1771

outside the range of -1 through -7 must not be specified. Also, the default
and unassigned extended indicator values must not be used in contexts in
which they are not supported.

Extended indicator variables in the assignment-clause:
Assigning the extended indicator a value of unassigned leaves the target
column set to its current value, as if it had not been specified in the
statement. Assigning the extended indicator a value of default assigns the
default value to the column.

If a target column is not updatable, for example an identity column that is
defined as GENERATED ALWAYS, it must be assigned the extended
indicator value of unassigned.

The assignment-clause must not assign all target columns to an extended
indicator value of unassigned.

Extended indicator variables in the insert-operation:
In insert-operation, a value of unassigned sets the column to its default
value.

If a target column is not updatable, it must be assigned the extended
indicator value of unassigned. The exception is an identity column that is
defined as GENERATED ALWAYS. If the target column is an identity
column that is defined as GENERATED ALWAYS, it must be assigned the
DEFAULT keyword or the extended indicator value of default or
unassigned.

Extended indicator variables and update triggers:
If a target column is assigned an extended indicator value of unassigned,
that column is not considered to have been updated. That column is
treated as if it had not been specified in the OF column-name list of any
update trigger that is defined on the target table.

Extended indicator variables and insert triggers:
The activation of insert triggers is not affected by the use of extended
indicator variables. Suppose that all columns in the implicit or explicit
column list are assigned an extended indicator value of unassigned or
default. Then, assume that an insert operation where all columns are
assigned to the respective default values is attempted. If that operation is
successful, the insert trigger is activated.

Extended indicator variables and deferred error checks:
When extended indicator variables are enabled, validation that would
otherwise be done in statement preparation (to recognize an insert into or
an update of a non-updatable column) is deferred until statement
execution. If validation fails, an error is returned at execution instead of
statement preparation.

Table space data compression during an insert operation:
If the table space is defined with the COMPRESS YES option, and data is
inserted into a table in the table space, the first rows are stored
uncompressed. When a amount of data that is determined by DB2 is
inserted into the table, a compression dictionary is created and stored in
the table space. The rows that are inserted into the table after the
dictionary is created are stored compressed by using the compression
dictionary.

1772 SQL Reference

System-period temporal tables:
When a MERGE statement is processed for a system-period temporal table,
the rows are affected in the same way as if the specific data change
operation was invoked.

Archive-enabled tables:
Consider the case when the target of a MERGE statement is an
archive-enabled table, and the merge operation includes an insert or
update operation. In this case, the involved rows are affected in the same
way as if the insert or update operation was directly invoked on the table.

Related information:

“INSERT” on page 1734
“UPDATE” on page 1933

Tables with enforced row and column access controls:
For information about how enabled row permissions and column masks
affect the update and insert operations in the MERGE statement, see the
INSERT and UPDATE statement information.

Related information:

“INSERT” on page 1734
“UPDATE” on page 1933

Examples

Example 1: Update the descriptions for activities that exist in the RECORDS table.
Otherwise, insert the activity and its description into the RECORDS table.
MERGE INTO RECORDS AR

USING (VALUES (:hv_activity, :hv_description)
FOR :hv_nrows ROWS)
AS AC (ACTIVITY, DESCRIPTION)

ON (AR.ACTIVITY = AC.ACTIVITY)
WHEN MATCHED THEN UPDATE SET DESCRIPTION = AC.DESCRIPTION
WHEN NOT MATCHED THEN INSERT (ACTIVITY, DESCRIPTION)

VALUES (AC.ACTIVITY, AC.DESCRIPTION)
NOT ATOMIC CONTINUE ON SQLEXCEPTION;

Example 2: Use the transaction data to merge rows into the account table. Update
the balance from the transaction data against an account ID and insert new
accounts from the transaction data where the accounts do not already exist.
MERGE INTO ACCOUNT AS A

USING (VALUES (:hv_id, :hv_amount)
FOR 3 ROWS)
AS T (ID, AMOUNT)

ON (A.ID = T.ID)
WHEN MATCHED THEN UPDATE SET BALANCE = A.BALANCE + T.AMOUNT
WHEN NOT MATCHED THEN INSERT (ID, BALANCE)

VALUES (T.ID, T.AMOUNT)
NOT ATOMIC CONTINUE ON SQLEXCEPTION;

Example 3: Update the list of activities that are organized by group A in the
RECORDS table. Update the activities information (description and date when last
modified) in the RECORDS table if the activities exist in the RECORDS table and
are also organized by group A. Insert new activities into the RECORDS table.
-- hv_nrows = 3
-- hv_activity(1) = ’D’; hv_description(1) = ’Dance’; hv_date(1) = ’03/01/07’
-- hv_activity(2) = ’S’; hv_description(2) = ’Singing’; hv_date(2) = ’03/17/07’
-- hv_activity(3) = ’T’; hv_description(3) = ’Tai-chi’; hv_date(3) = ’05/01/07’

Chapter 5. Statements 1773

|
|
|
|
|

|

|

|

|

-- hv_group = ’A’;
-- note that hv_group is not an array. All 3 values contain the same values
MERGE INTO RECORDS AR

USING (VALUES (:hv_activity, :hv_description, :hv_date, :hv_group)
FOR :hv_nrows ROWS)
AS AC (ACTIVITY, DESCRIPTION, DATE, GROUP)

ON AR.ACTIVITY = AC.ACTIVITY AND AR.GROUP = AC.GROUP
WHEN MATCHED
THEN UPDATE SET (DESCRIPTION, DATE, LAST_MODIFIED)

= (AC.DESCRIPTION, AC.DATE, CURRENT TIMESTAMP)
WHEN NOT MATCHED
THEN INSERT (GROUP, ACTIVITY, DESCRIPTION, DATE, LAST_MODIFIED)

VALUES (AC.GROUP, AC.ACTIVITY, AC.DESCRIPTION, AC.DATE, CURRENT TIMESTAMP)
NOT ATOMIC CONTINUE ON SQLEXCEPTION;

Example 4: Use two arrays, CHARA and INTA, as input to a MERGE statement.
Column COL2 is set to the cardinality of CHARA for matching rows, and COL2 is
set to the cardinality of INTA for non-matching rows.
CREATE TYPE INTARRAY AS INTEGER ARRAY[6];
CREATE TYPE CHARARRAY AS CHAR(20) ARRAY[7];
DECLARE INTA AS INTARRAY;
DECLARE CHARA AS CHARARRAY;
CREATE VARIABLE SI INT;
SET CHARA = ARRAY[’a’, ’b’, ’c’];
SET INTA = ARRAY [1, 2, 3, 4, 5];
CREATE TABLE T1 (COL1 CHAR(7), COL2 INT);
INSERT INTO T1 VALUES (’abc’, 10);
MERGE INTO T1 AS A
USING TABLE (VALUES (’rsk’, 3)) AS T (ID, AMOUNT)
ON A.COL1 = T.ID
WHEN MATCHED
THEN UPDATE SET COL2 = CARDINALITY(CHARA)
WHEN NOT MATCHED
THEN INSERT (COL1, COL2) VALUES (T.ID, CARDINALITY(INTA));

1774 SQL Reference

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

OPEN
The OPEN statement opens a cursor so that it can be used to process rows from its
result table.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization

See “DECLARE CURSOR” on page 1535 for the authorization required to use a
cursor.

Syntax

�� OPEN cursor-name

�

,

USING variable
USING DESCRIPTOR descriptor-name

��

Description

cursor-name
Identifies the cursor to be opened. The cursor-name must identify a declared
cursor as explained in “DECLARE CURSOR” on page 1535. When the OPEN
statement is executed, the cursor must be in the closed state.

The SELECT statement of the cursor is either one of the following types of
SELECT statements:
v The select-statement that is specified in the DECLARE CURSOR statement
v The prepared select-statement that is identified by the statement-name that is

specified in the DECLARE CURSOR statement.

If the statement has not been successfully prepared, or is not a select-statement,
the cursor cannot be successfully opened.

The result table of the cursor is derived by evaluating the SELECT statement.
The evaluation uses the current values of any special registers or PREVIOUS
VALUE expressions that are specified in the SELECT statement, and the
current values of any host variables that are specified in the SELECT statement
or the USING clause of the OPEN statement. The rows of the result table can
be derived during the execution of the OPEN statement, and a temporary copy
of a result table can be created to hold those rows. They can be derived during
the execution of later FETCH statements. In either case, the cursor is placed in
the open state and positioned before the first row of its result table.

If the table is empty, the position of the cursor is effectively “after the last
row.” The DB2 system does not indicate an empty table when the OPEN
statement is executed. A subsequent fetch for the cursor might return the
SQLSTATE warning of '02000'.

Chapter 5. Statements 1775

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks) or host variables in the statement of the
cursor, depending on the declaration of the cursor:
v If the DECLARE CURSOR statement included statement-name, the statement

was prepared with a PREPARE statement. The host variables specified in the
USING clause of the OPEN statement replace any parameter markers in the
prepared statement. This reflects the typical use of the USING clause of the
OPEN statement For an explanation of parameter marker replacement, see
“PREPARE” on page 1781.
If the prepared statement includes parameter markers, you must use USING.
If the prepared statement does not include parameter markers, USING is
ignored.

v If the DECLARE CURSOR statement included select-statement and the
SELECT statement included host variables, the USING clause of the OPEN
statement can be used to specify host variables that are to override the
values that were specified when the cursor was defined. In this case, the
OPEN statement is executed as if each host variable in the SELECT
statement were a parameter marker except that the attributes of the target
variable are the same as the host variables in the SELECT statement. The
effect is to override the values of the host variables in the SELECT statement
of the cursor with the values of the host variables specified in the USING
clause. The overriding value is always the value of the main variable
because indicator variables are ignored in this context without warning.

variable
Identifies a variable or a host structure that is declared in the application
program in accordance with the rules for declaring variables and host
structures. When the statement is executed, a reference to a structure is
replaced by a reference to each of its variables. The number of variables
must be the same as the number of parameter markers in the prepared
statement. The nth variable corresponds to the nth parameter marker in the
prepared statement. Where appropriate, locator variables and file reference
variables can be provided as the source of values for parameter markers.

DESCRIPTOR descriptor-name
Identifies an SQLDA that contains a valid description of the input host
variables.

Before the OPEN statement is processed, the user must set the following
fields in the SQLDA:
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA
A REXX SQLDA does not contain this field.

v SQLABC to indicate the number of bytes of storage allocated for the
SQLDA

v SQLD to indicate the number of variables used in the SQLDA when
processing the statement

v SQLVAR occurrences to indicate the attributes of the variables

The SQLDA must have enough storage to contain all SQLVAR occurrences.
If LOBs or distinct types are present in the result table, there must be
additional SQLVAR entries for each input host variable. For more
information on the SQLDA, which includes a description of the SQLVAR
and an explanation on how to determine the number of SQLVAR
occurrences, see “SQL descriptor area (SQLDA)” on page 2079.

1776 SQL Reference

|
|
|
|
|
|
|
|
|

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. It must be the same as the number of parameter markers
in the prepared statement.

See “Identifying an SQLDA in C or C++” on page 2099 for how to
represent descriptor-name in C.

Notes

Errors occurring on OPEN: In local and remote processing, the DEFER(PREPARE)
and REOPT(ALWAYS)/REOPT(ONCE) bind options can cause some SQL
statements to receive “delayed” errors. For example, an OPEN statement might
receive an SQLCODE that normally occurs during PREPARE processing. Or a
FETCH statement might receive an SQLCODE that normally occurs at OPEN time.

Closed state of cursors: All cursors in an application process are in the closed state
when:
v The application process is started.
v A new unit of work is started for the application process unless the WITH

HOLD option has been used in the DECLARE CURSOR statement.
v The application was precompiled with the CONNECT(1) option (which

implicitly closes any open cursors).

A cursor can also be in the closed state because:
v A CLOSE statement was executed.
v An error was detected that made the position of the cursor unpredictable.

To retrieve rows from the result table of a cursor, you must execute a FETCH
statement when the cursor is open. The only way to change the state of a cursor
from closed to open is to execute an OPEN statement.

Effect of a temporary copy of a result table: DB2 can process a cursor in two
different ways:
v It can create a temporary copy of the result table during the execution of the

OPEN statement. You can specify INSENSITIVE SCROLL on the cursor to force
the use of a temporary copy of the result table.

v It can derive the result table rows as they are needed during the execution of
later FETCH statements.

If the result table is not read-only, DB2 uses the latter method. If the result table is
read-only, either method could be used. The results produced by these two
methods could differ in the following respects:

When a temporary copy of the result table is used: An error can occur that would
otherwise not occur until some later FETCH statement. insert operations that are
executed while the cursor is open cannot affect the result table once all the rows
have been materialized in the temporary copy of the result table. For a scrollable
insensitive cursor, update and delete operations that are executed while the cursor
is open cannot affect the result table. For a scrollable sensitive static cursor, update
and delete operations can affect the result table if the rows are subsequently
fetched with sensitive FETCH statements.

When a temporary copy of the result table is not used: Insert, update, and delete
operations that are executed while the cursor is open can affect the result table.
The effect of such operations is not always predictable.

Chapter 5. Statements 1777

For example, if cursor C is positioned on a row of its result table defined as
SELECT * FROM T, and you insert a row into T, the effect of that insert on the
result table is not predictable because its rows are not ordered. A later FETCH C
might or might not retrieve the new row of T. To avoid these changes, you can
specify INSENSITIVE SCROLL for the cursor to force the use of a temporary copy
of the result table.

Parameter marker replacement: Before the OPEN statement is executed, each
parameter marker in the query is effectively replaced by its corresponding host
variable. The replacement is an assignment operation in which the source is the
value of the host variable and the target is a variable within DB2. The assignment
rules are those described for assignment to a column in “Assignment and
comparison” on page 121. For a typed parameter marker, the attributes of the
target variable are those specified by the CAST specification. For an untyped
parameter marker, the attributes of the target variable are determined according to
the context of the parameter marker. For the rules that affect parameter markers,
see Parameter markers.

Let V denote a host variable that corresponds to parameter marker P. The value of
V is assigned to the target variable for P in accordance with the rules for assigning
a value to a column:
v V must be compatible with the target.
v If V is a string, its length (excluding trailing blanks) must not be greater than the

length attribute of the target.
v If V is a number, the absolute value of its integral part must not be greater than

the maximum absolute value of the integral part of the target.
v If the attributes of V are not identical to the attributes of the target, the value is

converted to conform to the attributes of the target.
v If the target cannot contain nulls, V must not be null.

When the SELECT statement of the cursor is evaluated, each parameter marker in
the statement is effectively replaced by the value of its corresponding host variable.
For example, if V is CHAR(6) and the target is CHAR(8), the value used in place
of P is the value of V padded on the right with two blanks. For more on the
process of replacement, see Parameter marker replacement.

Considerations for scrollable cursors: Following an OPEN cursor statement, a GET
DIAGNOSTICS statement can be used to get the attributes of the cursor such as
the following information (for more information, see “GET DIAGNOSTICS” on
page 1679):
v DB2_SQL_ATTR_CURSOR _HOLD. Whether the cursor was defined with the

WITH HOLD attribute.
v DB2_SQL_ATTR_CURSOR_SCROLLABLE. Scrollability of the cursor.
v DB2_SQL_ATTR_CURSOR_SENSITIVITY. Effective sensitivity of the cursor.

The sensitivity information can be used by applications (such as an ODBC
driver) to determine what type of FETCH (INSENSITIVE or SENSITIVE) to issue
for a cursor defined as ASENSITIVE.

v DB2_SQL_ATTR_CURSOR_ROWSET. Whether the cursor can be used to access
rowsets.

v DB2_SQL_ATTR_CURSOR_TYPE. Whether a cursor type is forward-only, static,
or dynamic.

v The scrollability of the cursor is in SQLWARN1.
v The sensitivity of the cursor is in SQLWARN4.

1778 SQL Reference

v The effective capability of the cursor is in SQLWARN5.

Number of rows inserted: SQL data change statements and routines that modify
SQL data embedded in the cursor definition are completely executed, and the
result table is stored in a temporary table when the cursor opens. If statement
execution is successful, the SQLERRD(3) field contains the sum of the number of
rows that qualified for insert, update, and delete operations. If an error occurs
during execution of an OPEN statement that involves a cursor that contains a data
change statement within a fullselect, the results of that data change statement are
rolled back.

Materialization of the rows of the result table and NEXT VALUE expressions: If
the rows of the result table of a cursor are materialized when the cursor is opened
and the SELECT statement of the cursor contains NEXT VALUE expressions, the
expressions are processed when the cursor is opened. Otherwise, the NEXT
VALUE expressions are evaluated as the rows of the result table are retrieved.

Opening the same cursor multiple times: A cursor in an SQL procedure that is
declared as WITH RETURN TO CLIENT can be opened even when a cursor with
the same name is already in the open state. In this case, the existing open cursor
becomes a result set cursor and is no longer accessible by its cursor name. A new
cursor is opened and becomes accessible by the cursor name. Closing the new
cursor does not make the cursor that was previously accessible by that name
accessible by the cursor name again. Cursors that become result set cursors in this
way cannot be accessed at the server and can be processed only at the client.

Examples

Example 1: Execute an OPEN statement, which places the cursor at the beginning of
the rows to be fetched.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM DSN8B10.DEPT
WHERE ADMRDEPT = ’A00’;

EXEC SQL OPEN C1;
DO WHILE (SQLCODE = 0);
EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM;

END;
EXEC SQL CLOSE C1;

Example 2: Suppose that the following array type, array variable, and table have
been defined.
CREATE TYPE INTARRAY AS INTEGER ARRAY[100];
CREATE TYPE STRINGARRAY AS VARCHAR(10) ARRAY[100];
CREATE TABLE T1 (COL1 CHAR(10), COL2 INT);

Use an array variable as input for a dynamic SQL statement. The dynamic
statement references an array element in the array variable. The dynamic statement
contains two parameter markers, one for the array variable and one for the index
of the array element. The OPEN statement provides two input values in the
USING clause: the array variable, and a variable that contains the index for the
array element.
CREATE PROCEDURE PROCESSPERSONS (OUT WITHO STRINGARRAY, INOUT INT0 INT)
BEGIN
DECLARE INTA INTARRAY;
DECLARE INTB INTARRAY;
DECLARE INTV INTEGER;
DECLARE STMT CHAR(100);
DECLARE C2 CURSOR FOR S1;

Chapter 5. Statements 1779

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

--
-- Initialize the array
--
SET INTA = ARRAY[1,INTEGER(2),3+0,4,5,6] ;
--
-- Use dynamic SQL with an array parameter marker and a parameter marker
-- containing the index to retrieve the value from the array parameter.
-- The array is referenced in a predicate.
--
SET STMT = ’SELECT COL1 FROM T1 WHERE COL2 = CAST(? AS INTARRAY)[?]’;
PREPARE S1 FROM STMT;
OPEN C2 USING INTA, INTV; -- Input: INTA is an array, and INTV is the

-- index for the array element
FETCH C2 INTO INTB ; -- Output: INTB is an array variable
...
CLOSE C2;
...
END

1780 SQL Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

PREPARE
The PREPARE statement creates an executable SQL statement from a string form of
the statement. The character-string form is called a statement string. The executable
form is called a prepared statement.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization

The authorization rules are those defined for the dynamic preparation of the SQL
statement specified by the PREPARE statement. For example, see Chapter 4,
“Queries,” on page 761 for the authorization rules that apply when a SELECT
statement is prepared.

The statement that is prepared using only the EXPLAIN privilege cannot be
executed, and only the descriptive information can be obtained for that statement.

Syntax

�� PREPARE statement-name
INTO descriptor-name

NAMES
USING LABELS

ANY
BOTH

�

� FROM host-variable
(1)

ATTRIBUTES attr-host-variable
(2)

FROM string-expression

��

Notes:

1 attr-host-variable must be a string host variable and the content must conform to the rules for
attribute-string. The ATTRIBUTES clause can only be specified before host-variable.

2 string-expression is only supported for PLI.

attribute-string

Chapter 5. Statements 1781

�� �
(1)

ASENSITIVE
INSENSITIVE

DYNAMIC
SENSITIVE

STATIC
NO SCROLL
SCROLL
holdability
returnability
rowset-positioning

fetch-first-clause
read-only-clause
update-clause

optimize-clause
isolation-clause

(2)
FOR MULTIPLE ROWS
FOR SINGLE ROW

(3)
ATOMIC
NOT ATOMIC CONTINUE ON SQLEXCEPTION
concurrent-access-resolution
WITHOUT EXTENDED INDICATORS
WITH EXTENDED INDICATORS
CONCENTRATE STATEMENTS OFF

CONCENTRATE STATEMENTS WITH LITERALS

��

Notes:

1 The same clause must not be specified more than one time. If the options are not specified, their
defaults are whatever was specified for the corresponding option in an associated statement.

2 The FOR SINGLE ROW or FOR MULTIPLE ROWS clause must only be specified for an INSERT
or a MERGE statement.

3 The ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION clause must only be specified
for an INSERT statement.

�� WITHOUT HOLD
WITH HOLD

��

holdability:

returnability:

1782 SQL Reference

�� WITHOUT RETURN
TO CALLER

WITH RETURN
TO CLIENT

��

�� WITHOUT ROWSET POSITIONING
WITH ROWSET POSITIONING

��

�� SKIP LOCKED DATA
USE CURRENTLY COMMITTED
WAIT FOR OUTCOME

��

Description

statement-name
Names the prepared statement. If the name identifies an existing prepared
statement, that prepared statement is destroyed. The name must not identify a
prepared statement that is the SELECT statement of an open cursor.

INTO
If you use INTO, and the PREPARE statement is successfully executed,
information about the prepared statement is placed in the SQLDA specified by
the descriptor name. Thus, the PREPARE statement:

EXEC SQL PREPARE S1 INTO :SQLDA FROM :V1;

is equivalent to:
EXEC SQL PREPARE S1 FROM :V1;
EXEC SQL DESCRIBE S1 INTO :SQLDA;

descriptor-name
Identifies the SQLDA. For languages other than REXX, SQLN must be set
to indicate the number of SQLVAR occurrences. See “DESCRIBE” on page
1590 and “SQL descriptor area (SQLDA)” on page 2079 for information
about how to determine the number of SQLVAR occurrences to use and for
an explanation of the information that is placed in the SQLDA.

See “Identifying an SQLDA in C or C++” on page 2099 for how to
represent descriptor-name in C.

USING
Indicates what value to assign to each SQLNAME variable in the SQLDA
when INTO is used. If the requested value does not exist, SQLNAME is set
to length 0.

NAMES
Assigns the name of the column. This is the default.

rowset-positioning:

concurrent-access-resolution

Chapter 5. Statements 1783

LABELS
Assigns the label of the column. (Column labels are defined by the
LABEL statement.)

ANY
Assigns the column label, and, if the column has no label, the column
name.

BOTH
Assigns both the label and name of the column. In this case, two or
three occurrences of SQLVAR per column, depending on whether the
result table contains distinct types, are needed to accommodate the
additional information. To specify this expansion of the SQLVAR array,
set SQLN to 2×n or 3×n, where n is the number of columns in the
object being described. For each of the columns, the first n occurrences
of SQLVAR, which are the base SQLVAR entries, contain the column
names. Either the second or third n occurrences of SQLVAR, which are
the extended SQLVAR entries, contain the column labels. If there are
no distinct types, the labels are returned in the second set of SQLVAR
entries. Otherwise, the labels are returned in the third set of SQLVAR
entries.

A REXX SQLDA does not include the SQLN field, so you do not need
to set SQLN for REXX programs.

ATTRIBUTES attr-host-variable
Specifies the attributes that are in effect if a corresponding attribute has not
been specified as part of the associated statement. If attributes are specified as
part of the associated statement, they are used instead of the corresponding
attributes specified on the PREPARE statement. In turn, if attributes are
specified in the PREPARE of a SELECT statement, they are used instead of the
corresponding attributes specified on a DECLARE CURSOR statement.

attr-host-variable must identify a host variable that is described in the program
in accordance with the rules for declaring string variables. attr-host-variable
must be a string variable (either fixed-length or varying-length) that has a
length attribute that does not exceed 32758 bytes. Leading and trailing blanks
are removed from the value of the host variable. The host variable must
contain a valid attribute-string.

An indicator variable can be used to indicate whether or not attributes are
actually provided on the PREPARE statement. Thus, applications can use the
same PREPARE statement regardless of whether attributes need to be specified
or not.

The options that can be specified as part of the attribute-string are as follows:

ASENSITIVE, INSENSITIVE, SENSITIVE STATIC, or SENSITIVE DYNAMIC
Specifies the sensitivity of the cursor to inserts, updates, or deletes that
made to the rows underlying the result table. The sensitivity of the cursor
determines whether DB2 can materialize the rows of the result into a
temporary table. The default is ASENSITIVE.

ASENSITIVE
Specifies that the cursor should be as sensitive as possible. A cursor
that defined as ASENSITIVE will be either insensitive or sensitive

36. The scrollability and sensitivity of the cursor are independent and do not have to be specified together. Thus, the cursor might
be defined as SCROLL INSENSITIVE, but the PREPARE statement might specify SENSITIVE STATIC as an override for the
sensitivity.

1784 SQL Reference

dynamic; it will not be sensitive static. For information about how the
effective sensitivity of the cursor is returned to the application with the
GET DIAGNOSTICS statement or in the SQLCA, see “OPEN” on page
1775.

INSENSITIVE
Specifies that the cursor does not have sensitivity to inserts, updates,
or deletes that are made to the rows underlying the result table. As a
result, the size of the result table, the order of the rows, and the values
for each row do not change after the cursor is opened. In addition, the
cursor is read-only. The SELECT statement or attribute-string of the
PREPARE statement cannot contain a FOR UPDATE clause, and the
cursor cannot be used for positioned updates or deletes.

SENSITIVE
Specifies that the cursor has sensitivity to changes made to the
database after the result table is materialized. The cursor is always
sensitive to positioned updates and deletes that are made using the
same cursor. However, the select-statement of the cursor must not
contain an SQL data change statement if the cursor is defined as either
SENSITIVE DYNAMIC or SENSITIVE STATIC. When the current value
of a row no longer satisfies the select-statement or statement-name, that
row is no longer visible through the cursor. When a row of the result
table is deleted from the underlying base table, the row is no longer
visible through the cursor.

In addition, the cursor has sensitivity to changes made to values
outside the cursor (that is, by other cursors or committed changes by
other application processes). If DB2 can not make changes made
outside the cursor visible to the cursor, an error is issued at OPEN
CURSOR. Whether the cursor is sensitive to changes made outside this
cursor depends on whether DYNAMIC or STATIC is in effect for the
cursor and whether SENSITIVE or INSENSITIVE FETCH statements
are used.

Whether the cursor is sensitive to newly inserted rows depends on
whether DYNAMIC or STATIC is in effect for the cursor. The default is
DYNAMIC.

DYNAMIC
Specifies that the result table of the cursor is dynamic in that the
size of the result table can change after the cursor is opened as
rows are inserted into or deleted from the underlying table, and
the order of the rows can change. Inserts, deletes, and updates that
are made by the same application process are immediately visible.
Inserts, deletes, and updates that are made by other application
processes are visible after they are committed.

All FETCH statements for sensitive dynamic cursors are sensitive
to changes made by this cursor, changes made by other cursors in
the same application process, and committed changes made by
other application processes.

If a SENSITIVE DYNAMIC cursor is not possible, an error is
returned, an error is returned. The FETCH FIRST n ROWS ONLY
clause must not be specified for the outermost fullselect for a
sensitive dynamic cursor.

STATIC
Specifies that the order of the rows and size of the result table is

Chapter 5. Statements 1785

static. The size of the result table does not grow after the cursor is
opened and the rows are materialized. The order of the rows is
established as the result table is materialized. Rows that are
inserted into the underlying table are not added to the result table
of the cursor regardless of how the rows were inserted. Rows in
the result table do not move if columns in the ORDER BY clause
are updated in rows that have already been materialized.

Whether the changes that are made outside the cursor are visible
to the cursor depends on the type of FETCH that is used with a
SENSITIVE STATIC cursor. For more information, see
Considerations for FETCH statements used with a sensitive static
cursor.

Using a function that is not deterministic (built-in or user-defined)
in the WHERE clause of select-statement or statement-name of a
SENSITIVE STATIC cursor can cause misleading results. This
occurs because DB2 constructs a temporary result table and
retrieves rows from this table for INSENSITIVE FETCH statements.
When DB2 processes a SENSITIVE FETCH statement, rows are
fetched from the underlying table and predicates are re-evaluated
if they contain non-correlated subqueries. Using a function that is
not deterministic can yield a different result for the re-evaluated
query causing the row to no longer be considered a match.

If SENSITIVE STATIC is specified and a sensitive static cursor is
not possible, then an error is returned.

If ASENSITIVE, INSENSITIVE, SENSITIVE DYNAMIC, or SENSITIVE
STATIC is specified as part of the ATTRIBUTES clause, SCROLL must be
specified.

SCROLL or NO SCROLL
Specifies whether the cursor is scrollable.

SCROLL
Specifies that the cursor is scrollable.

NO SCROLL
Specifies that the cursor is not scrollable.

WITHOUT RETURN or WITH RETURN
Specifies whether the result table of the cursor is intended to be used as a
result set that will be returned from a procedure. If statement-name is
specified, the default is the corresponding prepare attribute of the
statement. Otherwise, the default is WITHOUT RETURN.

WITHOUT RETURN
Specifies that the result table of the cursor is not intended to be used
as a result set that will be returned from a procedure.

WITH RETURN
Specifies that the result table of the cursor is intended to be used as a
result set that will be returned from a procedure. WITH RETURN is
relevant only if the PREPARE statement is contained within the source
code for a procedure. In other cases, the precompiler might accept the
clause, but it has not effect.

When a cursor that is declared using the WITH RETURN TO CALLER
clause remains open at the end of a program or routine, that cursor
defines a result set from the program or routine. Use the CLOSE

1786 SQL Reference

statement to close a cursor that is not intended to be a result set from
the program or routine. Although DB2 will automatically close any
cursors that are not declared using with a WITH RETURN clause, the
use of the CLOSE statement is recommended to increase the portability
of applications.

For non-scrollable cursors, the result set consists of all rows from the
current cursor position to the end of the result table. For scrollable
cursors, the result set consists of all rows of the result table.

TO CALLER
Specifies that the cursor can return a result set to the caller of the
procedure. The caller is the program or routine that executed the
SQL CALL statement that invokes the procedure that contains the
PREPARE statement. For example, if the caller is a procedure, the
result set, is returned to the procedure. If the caller is a client
application, the result set is returned to the client application.

If the statement is contained within the source code for a
procedure, WITH RETURN TO CALLER specifies that the cursor
can be used as a result set cursor. A result set cursor is used when
the result table of a cursor is to be returned from a procedure.
Specifying TO CALLER is optional.

In other cases, the clause is ignored and the cursor cannot be used
as a result set cursor.

TO CLIENT
Specifies that the cursor can return a result set to the client
application. This cursor is invisible to any intermediate nested
procedures. If a function or trigger calls the procedure (either
directly or indirectly), the result set cannot be returned to the client
and the cursor will be closed after the procedure finishes.

rowset-positioning
Specifies whether rows of data can be accessed as a rowset on a single
FETCH statement for this cursor.

WITHOUT ROWSET POSITIONING
Specifies that the cursor can only be used with row positioned FETCH
statements.

WITH ROWSET POSITIONING
Specifies that this cursor can be used with rowset positioned or row
positioned FETCH statements

fetch-first-clause
Limits the number of rows that can be fetched. It improves the
performance of queries with potentially large result sets when only a
limited number of rows are needed. If the clause is specified, the number
of rows retrieved will not exceed n, where n is the value of the integer. An
attempt to fetch n+1 rows is handled the same way as normal end of date.
The value of integer must be positive and non-zero. The default is 1.

If the OPTIMIZE FOR clause is not specified, a default of OPTIMIZE FOR
integer ROWS is assumed. If both the FETCH FIRST and OPTIMIZE FOR
clauses are specified, the lower of the integer values from these clauses is
used to influence optimization and the communications buffer size.

The FETCH FIRST clause must not be specified for the outermost fullselect
for a sensitive dynamic cursor.

Chapter 5. Statements 1787

read-only-clause
Declares that the result table is read-only and therefore the cursor cannot
be referred to in positioned UPDATE and DELETE statements.

update-clause
Identifies the columns that can updated in a later positioned UPDATE
statement. Each column must be unqualified and must identify a column
of the table or view identified in the first FROM clause of the fullselect.
The clause must not be specified if the result table of the fullselect is
read-only. The clause must also not be specified if a created temporary
table is referenced in the first FROM clause of the select-statement.

If the clause is specified without a list of columns, the columns that can be
updated include all the updatable columns of the table or view that is
identified in the first FROM clause of the fullselect.

optimize-clause
Requests special optimization of the select-statement. If the clause is omitted,
optimization is based on the assumption that all rows of the result table
will be retrieved. If the clause is specified, optimization is based on the
assumption that the number of rows retrieved will not exceed n, where n is
the value of the integer. The clause does not limit the number of rows that
can be fetched or affect the result in any way other than performance.

isolation-clause
Specifies the isolation level at which the select statement is executed. See
“isolation-clause” on page 827.

concurrent-access-resolution
Specifies the type concurrent access resolution to use for the select
statement. Each clause in concurrent-access-resolution can only be specified
one time. Only one of the clauses can be specified for each PREPARE
statement. If none of the clauses is specified, the locking semantic depends
on other attributes of the statement.

SKIP LOCKED DATA
Specifies to skip data on which incompatible locks are held by other
transactions. See “SKIP LOCKED DATA” on page 830.

USE CURRENTLY COMMITTED
Specifies that DB2 can use the currently committed version of the data
when the data is in the process of being updated. USE CURRENTLY
COMMITTED only applies in the following cases:
v The table that is being accessed is defined in a universal table space
v The access is for a select-statement with an isolation level of cursor

stability (CS) or read stability (RS) specified in the isolation-clause:
– When a read transaction accesses a record that is locked by an

insert transaction, both ISOLATION(CS) and ISOLATION(RS) are
applicable.

– When a read transaction accesses a record that is locked by a
delete transaction only ISOLATION(CS) is applicable and only
when CURRENTDATA(NO) is in effect.

USE CURRENTLY COMMITTED is ignored if used in any other
context.

When this clause is specified, the setting of the subsystem parameter
EVALUNC applies. If the row qualifies, this clause determines if the
row is accessed or skipped.

1788 SQL Reference

When this clause is specified and the subsystem parameter SKIPUNCI
is in effect, PREPARE uses the specification of this clause. See the
Notes section for more information.

When this clause is specified and XML data that does not support
multiple XML versions is being selected, DB2 cannot determine
whether the data has been committed. In this case, DB2 uses WAIT
FOR OUTCOME behavior when accessing the data.

WAIT FOR OUTCOME
Specifies that DB2 waits for the commit or rollback when encountering
data that is in the process of being updated or deleted. Rows that are
in the process of being inserted are not skipped.

FOR MULTIPLE ROWS or FOR SINGLE ROW
Specifies if a variable number of rows will be provided for a dynamic
INSERT or MERGE statement.

FOR MULTIPLE ROWS
Specifies that multiple rows can be provided with host variable arrays
on an EXECUTE statement for the statement that is being prepared.
FOR MULTIPLE ROWS must only be specified for an INSERT or a
MERGE statement.

FOR SINGLE ROW
Specifies that multiple rows must not be provided with host variable
arrays on an EXECUTE statement for the statement that is being
prepared. FOR SINGLE ROW must only be specified for an INSERT or
a MERGE statement.

ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION
Specifies if all rows are inserted as an atomic operation. This clause can
only be specified for dynamic INSERT statements.

ATOMIC
Specifies that if the insert for any row fails, all changes that are made
to the database by any of the inserts, including changes that are made
by successful inserts, are undone. This is the default.

NOT ATOMIC CONTINUE ON SQLEXCEPTION
Specifies that, regardless of the failure of any particular insert of a row,
the INSERT statement will not undo any changes that are made to the
database by the successful inserts of other rows, and inserting will be
attempted for subsequent rows. However, the minimum level of
atomicity is at least that of a single insert (that is, it is not possible for
a partial insert operation to complete), including any triggers that
might have been activated as a result of the INSERT statement.

This clause must not be specified if the INSERT statement is contained
within a SELECT statement.

For preparing the MERGE statement, atomicity is specified only on the
MERGE statement itself.

WITHOUT EXTENDED INDICATORS or WITH EXTENDED INDICATORS
Specifies whether the values that are provided for indicator variables
during the execution of the statement follow standard SQL semantics for
indicating NULL values, or if the values can use extended indicator
variables to indicate a DEFAULT or UNASSIGNED value. WITHOUT
EXTENDED INDICATORS is the default.

Chapter 5. Statements 1789

CONCENTRATE STATEMENTS OFF or CONCENTRATE STATEMENTS WITH LITERALS
Specifies whether a dynamic SQL statement that specifies literal constants
will be cached as a separate unique statement entry in the dynamic
statement cache instead of sharing an existing statement in the cache.
Dynamic SQL statements are eligible to share an existing statement in the
cache if the new statement meets all of the conditions for sharing a cached
version of the same dynamic statement except that the new statement
specifies one or more literal constants that are different than the cached
statement.

CONCENTRATE STATEMENTS OFF
Specifies that the dynamic SQL statement that specifies literal constants
will be cached as a unique statement entry if it specifies one or more
constants that are different than the cached version of the same
dynamic statement. CONCENTRATE STATEMENTS OFF is the
default dynamic statement caching behavior.

CONCENTRATE STATEMENTS WITH LITERALS
Specifies that the dynamic SQL statement that specifies literal constants
will share a cached version of the same dynamic statement that is also
prepared using the CONCENTRATE STATEMENTS WITH
LITERALS option if the new dynamic statement meets all of the
conditions for sharing the cached statement and the constants that are
specified can be reused in place of the constants in the cached
statement.

FROM
Specifies the statement string. The statement string is the value of the specified
string-expression or the identified host-variable.

host-variable
Must identify a host variable that is described in the application program
in accordance with the rules for declaring string variables. If the source
string is over 32KB in length, the host-variable must be a CLOB or DBCLOB
variable. The maximum source string length is 2MB although the host
variable can be declared larger than 2MB. An indicator variable must not
be specified. In PL/I, COBOL and Assembler language, the host variable
must be a varying-length string variable. In C, the host variable must not
be a NUL-terminated string. In SQL PL, an SQL variable is used in place of
a host variable and the value must not be null.

string-expression
string-expression is any PL/I expression that yields a string. string-expression
cannot be preceded by a colon. Variables that are within string-expression
that include operators or functions should not be preceded by a colon.
When string-expression is specified, the precompiler-generated structures for
string-expression use an EBCDIC CCSID and an informational message is
returned.

Notes

Rules for statement strings: The value of the specified statement-name is called the
statement string. The statement string must be one of the following SQL statements:

1790 SQL Reference

ALLOCATE CURSOR
ALTER
ASSOCIATE LOCATORS
COMMENT
COMMIT
CREATE
DECLARE GLOBAL

TEMPORARY TABLE
DELETE
DROP
EXPLAIN
FREE LOCATOR
GRANT
HOLD LOCATOR
INSERT
LABEL
LOCK TABLE
MERGE
REFRESH TABLE

RELEASE SAVEPOINT
RENAME
REVOKE
ROLLBACK
SAVEPOINT
select-statement
SET CURRENT DEGREE
SET CURRENT DEBUG MODE
SET CURRENT DECFLOAT ROUNDING MODE
SET CURRENT LOCALE LC_CTYPE
SET CURRENT MAINTAINED TABLE

TYPES FOR OPTIMIZATION
SET CURRENT OPTIMIZATION HINT
SET CURRENT PRECISION
SET CURRENT QUERY ACCELERATION
SET CURRENT REFRESH AGE
SET CURRENT ROUTINE VERSION
SET CURRENT RULES
SET CURRENT SQLID
SET ENCRYPTION PASSWORD
SET PATH
SET SCHEMA
SET SESSION TIME ZONE
SIGNAL
TRUNCATE
UPDATE

The statement string must not:
v Begin with EXEC SQL
v End with END-EXEC or a semicolon
v Include references to variables

Parameter markers: Although a statement string cannot include references to host
variables, it can include parameter markers. The parameter markers are replaced by
the values of host variables when the prepared statement is executed. A parameter
marker is a question mark (?) that appears where a host variable could appear if
the statement string were a static SQL statement. For an explanation of how
parameter markers are replaced by values, see the EXECUTE statement, “OPEN”
on page 1775, and DB2 Application Programming and SQL Guide.

The two types of parameter markers are typed and untyped:

Typed parameter marker
A parameter marker that is specified with its target data type. A typed
parameter marker has the general form:

CAST(? AS data-type)

This invocation of a CAST specification is a “promise” that the data type of
the parameter at run time will be of the data type that is specified or some
data type that is assignable to the specified data type. For example, in the
following UPDATE statement, the value of the argument of the
TRANSLATE function will be provided at run time:

UPDATE EMPLOYEE
SET LASTNAME = TRANSLATE(CAST(? AS VARCHAR(12)))
WHERE EMPNO = ?

Chapter 5. Statements 1791

The data type of the value that is provided for the TRANSLATE function
will either be VARCHAR(12), or some data type that can be converted to
VARCHAR(12). For more information, refer to “Assignment and
comparison” on page 121.

Untyped parameter marker
A parameter marker that is specified without its target data type. An
untyped parameter marker has the form of a single question mark. The
context in which the parameter marker appears determines its data type.
For example, in the above UPDATE statement, the data type of the
untyped parameter marker in the predicate is the same as the data type of
the EMPNO column.

Typed parameter markers can be used in dynamic SQL statements wherever a host
variable is supported and the data type is based on the promise made in the CAST
specification.

Untyped parameters markers can be used in dynamic SQL statements in selected
locations where host variables are supported. Table 147, Table 148 on page 1794,
Table 149 on page 1795, and Table 150 on page 1796 show these locations and the
resulting data type of the parameter. The tables group the locations into
expressions, predicates, functions, and other statements to help show where
untyped parameter markers are allowed.

Table 147. Untyped parameter marker usage in expressions (including select list, CASE, and
VALUES)

Location of untyped parameter marker Data type (or error if not supported)

Alone in a select list. For example:

SELECT ?

Error

Both operands of a single arithmetic
operator, after considering operator
precedence and the order of operation rules.
Includes cases such as:

? + ? + 10

DECFLOAT(34)

One operand of a single operator in an
arithmetic expression (except datetime
arithmetic expressions). Includes cases such
as:

? + ? * 10

The data type of the other operand

Any operand of a datetime expression. For
example:

’timecol + ?’ or ’? - datecol’

Error

A labeled duration in a datetime expression
with a type unit other than SECONDS (the
portion of a labeled duration that indicates
the type of units cannot be a parameter
marker).

DECIMAL(15,0)

A labeled duration in a datetime expression
with a type unit of SECONDS (the portion of
a labeled duration that indicates the type of
units cannot be a parameter marker).

DECIMAL(27,12)

Both operands of a CONCAT operator Error

1792 SQL Reference

Table 147. Untyped parameter marker usage in expressions (including select list, CASE, and
VALUES) (continued)

Location of untyped parameter marker Data type (or error if not supported)

One operand of a CONCAT operator when
the other operand is any character data type
except CLOB

If the other operand is CHAR(n) or
VARCHAR(n), where n is less than 128, the
data type is VARCHAR(254 - n). In all other
cases, the data type is VARCHAR(254).

One operand of a CONCAT operator when
the other operand is any graphic data type
except DBCLOB

If the other operand is GRAPHIC(n) or
VARGRAPHIC(n), where n is less than 64,
the data type is VARGRAPHIC(127 - n). In
all other cases, the data type is
VARGRAPHIC(127).

One operand of a CONCAT operator when
the other operand is any binary type except
BLOB

If the other operand is BINARY(n) or
VARBINARY(n) where n is less than 128, the
data type is VARBINARY(255-n). In all other
cases, the data type is VARBINARY(255)

One operand of a CONCAT operator when
the other operand is a LOB string

The data type of the other operand (the LOB
string)

The expression following the CASE keyword
in a simple CASE expression

Error

Any or all expressions following the WHEN
keyword in a simple CASE expression

The result of applying the “Rules for result
data types” on page 144 to the expression
following CASE and the expressions
following WHEN that are not untyped
parameter markers

A result-expression in any CASE expression
when all the other result-expressions are either
NULL or untyped parameter markers.

Error

A result-expression in any CASE expression
when at least one other result-expression is
neither NULL nor an untyped parameter
marker.

The result of applying the “Rules for result
data types” on page 144 to all the
result-expressions that are not NULL or
untyped parameter markers

Alone as a column-expression in a single-row
VALUES clause that is not within an INSERT
statement or the VALUES clause of in insert
operation of a MERGE statement

Error

Alone as a column-expression in a single-row
VALUES clause within an INSERT statement

The data type of the column or, if the column
is defined as a distinct type, the source data
type of the distinct type

Alone as a column-expression in a
values-single-row or values-multiple-row clause
of source-table for a MERGE statement

The data type of the column of the
source-table, or if the data type is a distinct
type, the source data type of the distinct
type. The column of the source-table must be
referenced elsewhere in the MERGE
statement such that its data type can be
determined from the context in which it is
used, and all such references must resolve to
the same data type.

Alone as a column-expression in the VALUES
clause of an insert operation of a MERGE
statement

The data type of the column or, if the column
is defined as a distinct type, the source data
type of the distinct type

Alone as a column-expression on the right side
of assignment-clause for an update operation
of a MERGE statement

The data type of the column or, if the column
is defined as a distinct type, the source data
type of the distinct type

Chapter 5. Statements 1793

Table 147. Untyped parameter marker usage in expressions (including select list, CASE, and
VALUES) (continued)

Location of untyped parameter marker Data type (or error if not supported)

Alone as a column-expression on the right side
of a SET clause in an UPDATE statement

The data type of the column or, if the column
is defined as a distinct type, the source data
type of the distinct type

Table 148. Untyped parameter marker usage in predicates

Location of untyped parameter marker Data type (or error if not supported)

Both operands of a comparison operator Error

One operand of a comparison operator when
the other operand is not an untyped
parameter marker

The data type of the other operand. If the
operand has a datetime data type, the result
of DESCRIBE INPUT will show the data type
as CHAR(255) although DB2 uses the
datetime data type in any comparisons.

All the operands of a BETWEEN predicate Error

Two operands of a BETWEEN predicate
(either the first and second, or the first and
third)

The data type of the operand that is not a
parameter marker

Only one operand of a BETWEEN predicate The result of applying the “Rules for result
data types” on page 144 on the other
operands that are not parameter markers

All the operands of an IN predicate, for
example, ? IN (?,?,?)

Error

The first and second operands of an IN
predicate, for example, ? IN (?,A,B)

The result of applying the “Rules for result
data types” on page 144 on the operands in
the IN list that are not parameter markers

The first operand of an IN predicate and zero
or more operands of the IN list except for the
first operand of the IN list, for example, ? IN
(A,?,B,?)

The result of applying the “Rules for result
data types” on page 144 on the operands in
the IN list that are not parameter markers

The first operand of an IN predicate when
the right side is a fullselect of fullselect, for
example, ? IN (fullselect)

The data type of the selected column

Any or all operands of the IN list of the IN
predicate and the first operand of the IN
predicate is not an untyped parameter
marker, for example, A IN (?,A,?)

The data type of the first operand (the
operand on the left side of the IN list)

All the operands of a LIKE predicate The first and second operands
(match-expression and pattern-expression) are
VARCHAR(4000). The third operand
(escape-expression) is VARCHAR(1).

The first operand of a LIKE predicate (the
match-expression) when at least one other
operand (the pattern-expression or
escape-expression) is not an untyped parameter
marker.

VARCHAR(4000), VARGRAPHIC(2000), or
VARBINARY(4000), depending on the data
type of the first operand that is not an
untyped parameter marker

1794 SQL Reference

Table 148. Untyped parameter marker usage in predicates (continued)

Location of untyped parameter marker Data type (or error if not supported)

The second operand of a LIKE predicate (the
pattern-expression) when at least one other
operand (the match-expression or
escape-expression) is not an untyped parameter
marker. When the pattern specified in a LIKE
predicate is a parameter marker and a
fixed-length character host variable is used to
replace the parameter marker, specify a value
for the host variable that is the correct
length. If you do not specify the correct
length, the select does not return the
intended results.

VARCHAR(4000), VARGRAPHIC(2000), or
VARBINARY(4000), depending on the data
type of the first operand that in not an
untyped parameter marker.

The third operand of a LIKE predicate (the
escape-expression) when at least one other
operand (the match-expression or
pattern-expression) is not an untyped
parameter marker

CHAR(1), GRAPHIC(1), or BINARY(1),
depending on the data type of the first
operand that in not an untyped parameter
marker

Operand of a NULL predicate Error

Table 149. Untyped parameter marker usage in functions

Location of untyped parameter marker Data type (or error if not supported)

All arguments of COALESCE or NULLIF Error

Any argument of COALESCE or NULLIF
when at least one other argument is not an
untyped parameter marker

The result of applying the “Rules for result
data types” on page 144 on the arguments
that are not untyped parameter markers, the
data type of the other argument

First argument of COLLATION_KEY VARGRAPHIC(2000)

Second argument of COLLATION_KEY VARCHAR(255)

First argument of LOWER VARCHAR(4000)

Second argument of LOWER VARCHAR(255)

Any argument other than the first argument
of MAX

The data type of the corresponding
parameter in the function instance

Any argument other than the first argument
of MIN

The data type of the corresponding
parameter in the function instance

Both arguments of POSSTR or POSITION VARCHAR(4000) for both arguments

One argument of POSSTR or POSITION
when the other argument is a character data
type

VARCHAR(4000)

One argument of POSSTR or POSITION
when the other argument is a graphic data
type

VARGRAPHIC(2000)

One argument of POSSTR or POSITION
when the other argument is a BINARY or
VARBINARY data type

VARBINARY(4000)

One argument of POSSTR or POSITION
when the other argument is a BLOB

BLOB(4000)

First argument of SUBSTR or SUBSTRING VARCHAR(4000)

Second or third argument of SUBSTR or
SUBSTRING

INTEGER

Chapter 5. Statements 1795

Table 149. Untyped parameter marker usage in functions (continued)

Location of untyped parameter marker Data type (or error if not supported)

One argument of TIMESTAMP TIME

First argument of TIMESTAMP_FORMAT VARCHAR(255)

First argument of TRANSLATE Error

Second or third argument of TRANSLATE VARCHAR(4000), VARGRAPHIC(2000),
depending on whether the data type of the
first argument is character or graphic

Fourth argument of TRANSLATE VARCHAR(1) or VARGRAPHIC(1),
depending on whether the data type of the
first argument is character or graphic

Second argument of TRIM_ARRAY BIGINT

array-index for array-element-specification BIGINT

First argument of UPPER VARCHAR(4000)

Second argument of UPPER VARCHAR(255)

First argument of VARCHAR_FORMAT TIMESTAMP WITHOUT TIME ZONE

Unary minus DECFLOAT(34)

Unary plus Error

The argument of any built-in scalar function
(except those that are described in this table)

Error

The argument of a built-in aggregate function Error

The argument of a user-defined scalar
function, user-defined aggregate function, or
user-defined table function

The data type of the corresponding
parameter in the function instance

Table 150. Untyped parameter marker usage in statements

Location of untyped parameter marker Data type (or error if not supported)

FOR n ROWS clause of an INSERT or
MERGE statement

Integer

The value on the right side of a SET clause in
an UPDATE statement or the UPDATE clause
of the MERGE statement

The data type of the column of the
source-table, or if the column is defined as a
distinct type, the source data type of the
distinct type. The column of the source-table
must be referenced elsewhere in the MERGE
statement such that its data type can be
determined from the context in which it is
used, and all such references must resolve to
the same data type.

value, value1, or value2 in a period
specification for a table, or period clause for
a data change statement if the target of the
statement is a table

The data type of the columns of the period
referenced in the period specification or
period clause

value, value1, or value2 in a period
specification for a view

Error

value1 or value2 in a period clause in a data
change statement if the target of the
statement is a view

Error

1796 SQL Reference

||

||

|
|
|
|

|
|
|

|
|
|

|
|
|

|

Considerations for FETCH statements used with a sensitive static cursor: Whether
changes made outside the cursor are visible to the cursor depends on the type of
FETCH that is used with a SENSITIVE STATIC cursor:
v A SENSITIVE FETCH is sensitive to all updates and deletes that are made by

this cursor (including changes made by triggers) and committed updates and
deletes by all other application processes because every fetched row is retrieved
from the underlying base table and not a temporary table. This is the default
type of FETCH statement for a SENSITIVE cursor.
Changes that are made to the underlying data using this cursor result in an
automatic refresh of the row. The changes that are made using this type of
cursor can result in holes in the result table of the cursor. In addition, re-fetching
rows (fetching rows that have already been retrieved) can result in holes in the
result table. If a sensitive FETCH is issued to re-fetch a row and the row no
longer qualifies for the search condition of the query, it results in a "delete hole"
or an "update hole". In this case, no data is returned, and the cursor is left
positioned on the hole.

v An INSENSITIVE FETCH is not sensitive to updates and deletes that are made
outside this cursor; however, it is sensitive to all updates and deletes that are
made by this cursor. Changes that made with triggers are not visible with an
INSENSITIVE FETCH until the content of the rows are updated in the result
table with a SENSITIVE FETCH statement. If an application does not want to be
sensitive to changes that are made outside this cursor (that is, the application
does not want to see changes made either with another cursor or by another
application process), INSENSITIVE can be explicitly specified as part of the
FETCH statement for a SENSITIVE STATIC cursor. This type of FETCH is useful
for refreshing data in user data buffers. For more information, see INSENSITIVE.

Error checking: When a PREPARE statement is executed, the statement string is
parsed and checked for errors. If the statement string is invalid, a prepared
statement is not created and the error condition that prevents its creation is
reported in the SQLCA.

In local and remote processing, the DEFER(PREPARE) and REOPT(ALWAYS)/
REOPT(ONCE) bind options can cause some SQL statements to receive “delayed”
errors. For example, DESCRIBE, EXECUTE, and OPEN might receive an SQLCODE
that normally occurs during PREPARE processing.

Reference and execution rules: Prepared statements can be referred to in the
following kinds of statements, with the following restrictions shown:

In... The prepared statement...

DESCRIBE
has no restrictions

DECLARE CURSOR
must be SELECT when the cursor is opened

EXECUTE
must not be SELECT

A prepared statement can be executed many times. Indeed, if a prepared statement
is not executed more than once and does not contain parameter markers, it is more
efficient to use the EXECUTE IMMEDIATE statement rather than the PREPARE
and EXECUTE statements.

Chapter 5. Statements 1797

Prepared statement persistence: All prepared statements created by a unit of work
are destroyed when the unit of work is terminated, with the following exceptions:
v A SELECT statement whose cursor is declared with the option WITH HOLD

persists over the execution of a commit operation if the cursor is open when the
commit operation is executed.

v SELECT, INSERT, UPDATE, MERGE, and DELETE statements that are bound
with KEEPDYNAMIC(YES) are kept past the commit operation if your system is
enabled for dynamic statement caching, and none of the following are true:
– SQL RELEASE has been issued for the site
– Bind option DISCONNECT(AUTOMATIC) was used
– Bind option DISCONNECT(CONDITIONAL) was used and there are no hold

cursors for the site
v INSERT, UPDATE, MERGE, and DELETE statements that are bound with or use

the RELEASE(DEALLOCATE) option and that reference a declared global
temporary table are kept past commit operations unless one of the following
statements is true:
– The declared global temporary table is defined with the ON COMMIT DROP

TABLE option.
– The statement also references a DB2 base object (for example, a table or view),

and one of the following statements is true:
- The base object reference is for a DB2 catalog table.
- At the commit point, DB2 determines that another DB2 thread is waiting

for an X-lock on the base object's database descriptor (DBD).
- The statement references an XML function or operation, and at the commit

point DB2 determines that the base object DBD S-lock for the XML
operation must be released.

- At the commit point, DB2 determines that a base object DBD S-lock that is
used by the statement must be released and cannot be maintained across
the commit point.

– DB2 determines that another DB2 thread is waiting for an X-lock on the DB2
package that contains the statement.

Scope of a statement name: The scope of a statement-name is the same as the scope
of a cursor-name. See “DECLARE CURSOR” on page 1535 for more information
about the scope of a cursor-name.

Preparation with PREPARE INTO and REOPT bind option: If bind option
REOPT(ALWAYS) or REOPT(ONCE) is in effect, PREPARE INTO is equivalent to a
PREPARE and a DESCRIBE being performed. If a statement has input variables,
the DESCRIBE causes the statement to be prepared with default values, and the
statement must be prepared again when it is opened or executed. When
REOPT(ONCE) is in effect, the statement is always prepared twice even if there are
no input variables. Therefore, to avoid having a statement prepared twice, avoid
using PREPARE INTO when REOPT(ALWAYS) or REOPT(ONCE) is in effect.

Relationship of cursor attributes on PREPARE statements and SELECT or
DECLARE CURSOR statements: Cursor attributes that are specified as part of the
select-statement are used instead of any corresponding options that specified with
the ATTRIBUTES clause on PREPARE. Attributes that are specified as part of the
ATTRIBUTES clause of PREPARE take precedence over any corresponding option
that is specified with the DECLARE CURSOR statement. The order for using
cursor attributes is as follows:

1798 SQL Reference

|
|
|
|

|
|

|
|

|

|
|

|
|
|

|
|
|

|
|

v SELECT (highest priority)
v PREPARE statement ATTRIBUTES clause
v DECLARE CURSOR (lowest priority)

For example, assume that host variable MYQ has been set to the following SELECT
statement:

SELECT WORKDEPT, EMPNO, SALARY, BONUS, COMM
FROM EMP
WHERE WORKDEPT IN (’D11’, ’D21’)
FOR UPDATE OF SALARY, BONUS, COMM

If the following PREPARE statement were issued, then the FOR UPDATE clause
specified as part of the SELECT statement would be used instead of the FOR
READ ONLY clause specified with the ATTRIBUTES clause as part of the
PREPARE statement. Thus, the cursor would be updatable.

attrstring = ’FOR READ ONLY’;
EXEC SQL PREPARE stmt1 ATTRIBUTES :attrstring FROM :MYQ;

Effect of the CURRENT EXPLAIN MODE special register:
If the CURRENT EXPLAIN MODE special register is set to EXPLAIN, the
statement is prepared for explain only and is not executable, unless the
statement is a SET statement. Attempting to execute the prepared
statement will return an error. See the “CURRENT EXPLAIN MODE” on
page 175 special register for more information.

Precedence of attributes for SELECT and UPDATE WHERE CURRENT OF for
positioned updates:

If an UPDATE WHERE CURRENT OF statement and the associated
SELECT statement are both prepared and both statements have the same
PREPARE attributes, the values of the PREPARE attributes for the UPDATE
WHERE CURRENT OF statement override the values of the PREPARE
attributes for the SELECT statement.

Effect of extended indicator PREPARE attributes on dynamically executed
positioned updates:

If an UPDATE statement with the WHERE CURRENT OF clause and the
associated SELECT statement are both prepared, if extended indicator
variables are used depends on the WITH EXTENDED INDICATORS or
WITHOUT EXTENDED INDICATORS attributes in each of the PREPARE
statements.

Table 151. Interaction between EXTENDED INDICATOR attributes of PREPARE statements
for SELECT and UPDATE statements

Extended indicator attribute
of PREPARE for SELECT
statement

Extended indicator attribute
of PREPARE for UPDATE
statement with WHERE
CURRENT OF clause Result

WITH EXTENDED
INDICATORS

WITH EXTENDED
INDICATORS

The PREPARE attributes of
the UPDATE statement
override the PREPARE
attributes of the SELECT
statement. Non-updatable
columns can be in the
select-list.

WITH EXTENDED
INDICATORS

WITHOUT EXTENDED
INDICATORS

The UPDATE statement is
executed without extended
indicator parameters.

Chapter 5. Statements 1799

Table 151. Interaction between EXTENDED INDICATOR attributes of PREPARE statements
for SELECT and UPDATE statements (continued)

Extended indicator attribute
of PREPARE for SELECT
statement

Extended indicator attribute
of PREPARE for UPDATE
statement with WHERE
CURRENT OF clause Result

WITH EXTENDED
INDICATORS

Default (without attribute
specified)

The PREPARE attributes of
the SELECT statement
override the default
PREPARE attributes for the
UPDATE statement.
Non-updatable columns can
be in the select-list.

WITHOUT EXTENDED
INDICATORS

WITH EXTENDED
INDICATORS

The PREPARE attributes of
the UPDATE statement
override the PREPARE
attributes of the SELECT
statement. Non-updatable
columns are not in the
implicit or explicit select-list.

WITHOUT EXTENDED
INDICATORS

WITHOUT EXTENDED
INDICATORS

The UPDATE statement is
executed without extended
indicator parameters.

WITHOUT EXTENDED
INDICATORS

Default (without attribute
specified)

The PREPARE attributes of
the SELECT statement
override the default
PREPARE attributes for the
UPDATE statement. The
UPDATE statement is
executed without extended
indicator parameters.

Default (without attribute
specified)

WITH EXTENDED
INDICATORS

The PREPARE attributes of
the UPDATE statement
override the PREPARE
attributes of the SELECT
statement. Non-updatable
columns are not in the
implicit or explicit select-list.

Default (without attribute
specified)

WITHOUT EXTENDED
INDICATORS

The PREPARE attributes of
the UPDATE statement
override the PREPARE
attributes of the SELECT
statement. The UPDATE
statement is executed without
extended indicator
parameters.

Default (without attribute
specified)

Default (without attribute
specified)

The UPDATE statement is
executed without extended
indicator parameters.

Interactions between the SKIPUNCI subsystem parameter and the PREPARE
statement: When the PREPARE statement is specified with either the CURRENTLY
COMMITTED or WAIT FOR OUTCOME clauses and the subsystem parameter
SKIPUNCI is in effect, the following table describes whether uncommitted inserts
are skipped, or if the transaction will wait until a commit or rollback before
completing:

1800 SQL Reference

Table 152. Interaction between SKIPUNCI subsystem parameter and PREPARE statement

Value of SKIPUNCI
subsystem parameter

PREPARE statement
attributeworking

Skip uncommitted inserts,
or wait for commit
or rollback

YES CURRENTLY COMMITTED Skip

YES WAIT FOR OUTCOME Wait

YES Not specified Skip

NO CURRENTLY COMMITTED Skip

NO WAIT FOR OUTCOME Wait

NO Not specified Wait

Extended indicator variables and deferred error checks:
When extended indicator variables are enabled, the indicator value of
unassigned causes the associated target column to be omitted from the
statement. Because of that, validation that is normally done in statement
preparation (to recognize an INSERT into, or UPDATE of, a non-updatable
column) is deferred until statement execution. If statement validation fails,
an error is returned when the statement is run, not when the statement is
prepared.

Reuse of prepared statements in the dynamic statement cache with
CONCENTRATE STATEMENTS WITH LITERALS

: To be eligible for reuse of constants, the constants in both the new
statement and the cached statement must have the same:
1. immediate usage context
2. data type
3. data type length and size

If DB2 determines that both instances of the constant meet the criteria for
reuse, a cached statement that is prepared using the CONCENTRATE
STATEMENTS WITH LITERALS option can be shared by the same SQL
statement with different constants. Even though the new dynamic SQL
statement will share the cached statement, the new statement will use its
own literal constants when the statement is run, not the constants of the
cached statement.

There are some exceptions. For example, the built-in function SUBSTR, for
which, because of the immediate usage context, constant reuse in the
cached statement that uses a different constant value can not be done
without the risk of returning incorrect output or results. In such cases, only
an SQL statement instance with the exact same constant value as the
cached version of the statement is eligible for reuse. DB2 determines when
and where this immediate usage context restriction applies.

When the CONCENTRATE STATEMENTS WITH LITERALS option is
specified, DB2 considers the values of the literal constants for access path
selection only for statements that are bound with the REOPT(ONCE) or
REOPT(AUTO) bind options.

The DECFLOAT defined constants NAN, SNAN, and INFINITY can
qualify for literal constant reuse.

The following examples show how PREPARE is used with
CONCENTRATE STATEMENTS WITH LITERALS. X, Y, and Z are
columns of defined as DECIMAL data type:

Chapter 5. Statements 1801

DECLARE C1 CURSOR
FOR DYNSQL_WITH_LITERAL;

DYNSQL_SELECT = 'SELECT X, Y, Z
FROM TABLE1
WHERE X < 9’;

attrstring = 'CONCENTRATE STATEMENTS WITH LITERALS’;

EXEC SQL PREPARE DYNSQL_WITH_LITERAL
ATTRIBUTES :attrstring
FROM :DYNSQL_SELECT;

EXEC SQL OPEN C1;

DYNSQL_INSERT = 'INSERT INTO
TABLE1 (X, Y, Z)
VALUES (8,109,29)’;

attrstring = 'CONCENTRATE STATEMENTS WITH LITERALS’;

EXEC SQL PREPARE DYNSQL_INSERT_WITH_LITERAL
ATTRIBUTES :attrstring
FROM :DYNSQL_INSERT;

EXEC SQL EXECUTE DYNSQL_INSERT_WITH_LITERAL;

Examples

Example 1: In this PL/I example, an INSERT statement with parameter markers is
prepared and executed. Before execution, values for the parameter markers are
read into the host variables S1, S2, S3, S4, and S5.

EXEC SQL PREPARE DEPT_INSERT FROM
’INSERT INTO DSN8B10.DEPT VALUES(?,?,?,?,?)’;

-- Check for successful execution and read values into host variables
EXEC SQL EXECUTE DEPT_INSERT USING :S1, :S2, :S3, :S4, :S5;

Example 2: Prepare a dynamic SELECT statement specifying the attributes of the
cursor with a host variable on the PREPARE statement. Assume that the text of the
SELECT statement is in a variable named stmttxt, and that the attributes of the
cursor are in a variable named attrvar.

EXEC SQL DECLARE mycursor CURSOR FOR mystmt;
EXEC SQL PREPARE mystmt ATTRIBUTES :attrvar

FROM :stmttxt;
EXEC SQL DESCRIBE mystmt INTO :mysqlda;
EXEC SQL OPEN mycursor;
EXEC SQL FETCH FROM mycursor USING DESCRIPTOR :mysqlda;

1802 SQL Reference

REFRESH TABLE
The REFRESH TABLE statement refreshes the data in a materialized query table.
The statement deletes all rows in the materialized query table, executes the
fullselect in the table definition to recalculate the data from the tables specified in
the fullselect, inserts the calculated result into the materialized query table, and
updates the catalog for the refresh timestamp and cardinality of the table. The table
can exist at the current server or at any DB2 subsystem with which the current
server can establish a connection.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privilege set for REFRESH TABLE must include at least one of the following
authorities:
v Ownership of the materialized query table
v DBADM or DBCTRL authority on the database that contains the materialized

query table
v SYSADM or SYSCTRL authority
v DATAACCESS authority

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the statements dynamically prepared, the privilege set is determined by the
DYNAMICRULES behavior in effect (run, bind, define, or invoke). For more
information on these behaviors, including a list of the DYNAMICRULES bind
option values, see “Authorization IDs and dynamic SQL” on page 75.

Syntax

�� REFRESH TABLE table-name
QUERYNO integer

��

Description

table-name
Identifies the table to be refreshed. The name must identify a materialized
query table. REFRESH TABLE evaluates the fullselect in the
materialized-query-definition clause to refresh the table. The isolation level for the
fullselect is the isolation level of the materialized query table recorded when
CREATE TABLE or ALTER TABLE was issued.

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output

Chapter 5. Statements 1803

and trace records. The number is used for the QUERYNO column of the plan
table for the rows that contain information about this SQL statement. This
number is also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is the
statement number assigned during precompilation. Thus, if the application
program is changed and then precompiled, that statement number might
change.

Notes

Automatic query rewrite using materialized query tables is not attempted for the
fullselect in the materialized query table definition during the processing of
REFRESH TABLE statement.

After successful execution of a REFRESH TABLE statement, the SQLCA field
SQLERRD(3) will contain the number of rows inserted into the materialized query
table.

The EXPLAIN output for REFRESH TABLE table-name is the same as the EXPLAIN
output for INSERT INTO table-name fullselect where fullselect is from the
materialized query table definition.

If the materialized query table has a security label column, the REFRESH TABLE
statement does not do any checking for multilevel security with row-level
granularity when it deletes and repopulates the data in the table by executing the
fullselect. Instead, DB2 performs the checking for multilevel security with
row-level granularity when the materialized query table is exploited in automatic
query rewrite or is used directly.

The REFRESH TABLE statement can be used to remove a table space from the
logical page list and reset recover-pending status. This can only be done by using
REFRESH TABLE to repopulate a materialized query table where the materialized
query table is the only table in the table space.

Example

Issue a statement to refresh the content of a materialized query table that is named
SALESCOUNT. The statement recalculates the data from the fullselect that was
used to define SALESCOUNT and refreshes the content of SALESCOUNT with the
recalculated results.
REFRESH TABLE SALESCOUNT;

1804 SQL Reference

RELEASE (connection)
The RELEASE (connection) statement places one or more connections in the release
pending state.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization

None required.

Syntax

�� RELEASE location-name
host-variable
CURRENT

SQL
ALL

��

Description

location-name or host-variable
Identifies an SQL connection by the specified location name or the location
name contained in the host variable. If a host variable is specified:
v It must be a character string variable with a length attribute that is not

greater than 16. (A C NUL-terminated character string can be up to 17
bytes.)

v It must not be followed by an indicator variable.
v The location name must be left-justified within the host variable and must

conform to the rules for forming an ordinary location identifier.
v If the length of the location name is less than the length of the host variable,

it must be padded on the right with blanks.

The specified location name or the location name contained in the host variable
must identify an existing SQL connection of the application process.

CURRENT
Identifies the current SQL connection of the application process. The
application process must be in the connected state.

ALL or ALL SQL
Identifies all existing connections (including local, and SQL) of the application
process. An error or warning does not occur if no connections exist when the
statement is executed.

If the RELEASE (connection) statement is successful, each identified connection is
placed in the release-pending state and, therefore, will be ended during the next
commit operation. If the RELEASE (connection) statement is unsuccessful, the

Chapter 5. Statements 1805

connection state of the application process and the states of its connections are
unchanged.

Notes

RELEASE and CONNECT (Type 1): Using CONNECT (Type 1) semantics does not
prevent using RELEASE (connection).

Scope of RELEASE: RELEASE (connection) does not close cursors, does not release
any resources, and does not prevent further use of the connection.

Resource considerations for remote connections: Resources are required to create
and maintain remote connections. Thus, a remote connection that is not going to be
reused should be in the release pending status and one that is going to be reused
should not be in the release pending status. Remote connections can also be ended
during a commit operation as a result of the DISCONNECT(AUTOMATIC) or
DISCONNECT(CONDITIONAL) bind option.

If the current SQL connection is in the release pending status when a commit
operation is performed, the connection is ended and the application process is in
the unconnected state. In this case, the next executed SQL statement should be
CONNECT or SET CONNECTION.

Connection states: ROLLBACK does not reset the state of a connection from
release pending to held.

If the current SQL connection is in the release pending state when a commit
operation is performed, the connection is ended and the application process is in
the unconnected state. In this case, the next executed SQL statement must be
CONNECT or SET CONNECTION.

For further information, see “Application process connection states” on page 39.

Location names CURRENT and ALL: A database server named CURRENT or ALL
can only be identified by a host variable or a delimited identifier. A connection in
the release pending state is ended during a commit operation even though it has
an open cursor defined with WITH HOLD.

Encoding scheme of a host variable: If the RELEASE statement contains host
variables, the contents of the host variables are assumed to be in the encoding
scheme that was specified in the ENCODING parameter when the package or plan
that contains the statement was bound.

Examples

Example 1: The SQL connection to TOROLAB1 is not needed in the next unit of
work. The following statement causes it to be ended during the next commit
operation:

EXEC SQL RELEASE TOROLAB1;

Example 2: The current SQL connection is not needed in the next unit of work. The
following statement causes it to be ended during the next commit operation:

EXEC SQL RELEASE CURRENT;

1806 SQL Reference

RELEASE SAVEPOINT
The RELEASE SAVEPOINT statement releases the identified savepoint and any
subsequently established savepoints within a unit of recovery.

Invocation

This statement can be imbedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
TO

RELEASE SAVEPOINT savepoint-name ��

Description

savepoint-name
Identifies the savepoint to release. If the named savepoint does not exist, an
error occurs. The name must identify a savepoint that exists at the current
server. After a savepoint is released, it is no longer maintained and rollback to
the savepoint is no longer possible.

Notes

Savepoint names: The name of the savepoint that was released can be reused in
another SAVEPOINT statement, regardless of whether the UNIQUE keyword was
specified on an earlier SAVEPOINT statement that specified this same savepoint
name.

Example

Assume that a main routine sets savepoint A and then invokes a subroutine that
sets savepoints B and C. When control returns to the main routine, release
savepoint A and any subsequently set savepoints. Savepoints B and C, which were
set by the subroutine, are released in addition to A.

...
RELEASE SAVEPOINT A;

Chapter 5. Statements 1807

RENAME
The RENAME statement renames an existing table or index.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

To rename a table, the privilege set that is defined below must include at least one
of the following privileges:
v Ownership of the table
v DBADM, DBCTRL, or DBMAINT authority for the database that contains the

table
v SYSADM or SYSCTRL authority
v System DBADM

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

To rename an index, the privilege set that is defined below must include at least
one of the following privileges:
v Ownership of the table for which the index is defined
v Ownership of the index that is being renamed
v DBADM, DBCTRL, or DBMAINT authority for the database that contains the

index
v SYSADM or SYSCTRL authority
v System DBADM

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the statement is dynamically prepared, the privilege set is the union of the
privilege sets that are held by each authorization ID of the process.

Syntax

��
TABLE

RENAME source-table-name TO new-table-identifier
INDEX source-index-name TO new-index-identifier

��

Description

source-table-name
Identifies the existing table that is to be renamed. The name, including the

1808 SQL Reference

implicit or explicit qualifier, must identify a table that exists at the current
server. The name must not identify any of the following types of tables:
v A declared temporary table
v A catalog table
v An active resource limit specification table
v A materialized query table
v A clone table
v A system-period temporal table
v A history table for a system-period temporal table
v A table with a trigger defined on it
v A table that is referenced in the definition of a row permission
v A table that is referenced in the definition of a column mask
v A view
v A synonym
v An archive-enabled table
v An archive table

If you specify a three-part name or alias for the source table, the source table
must exist at the current server. If any view definitions or materialized query
table definitions currently reference the source table, an error occurs.

new-table-identifier
Specifies the new name for the table without a qualifier. The qualifier of the
source-table-name is used to qualify the new name for the table. The qualified
name must not identify a table, view, alias, or synonym that exists at the
current server, or a table that exists in the SYSIBM.SYSPENDINGOBJECTS
catalog table.

source-index-name
Identifies the existing index that is to be renamed. The name, including an
implicit or explicit qualifier, must identify an index that exists at the current
server. The name must not identify a system defined catalog index, an index
for a declared temporary table, or an index for an active resource limit
specification table.

new-index-identifier
Specifies that new name for the index without a qualifier. The qualifier of the
source-index-name is used to qualify the new name for the index. The qualified
name must not identify an index that exists at the current server or an index
that exists in the SYSIBM.SYSPENDINGOBJECTS catalog table.

Notes

Effects of the statement: The specified table or index is renamed to the new name.
For a renamed table, all privileges and indexes on the table are preserved. For a
renamed index, all privileges are preserved.

Invalidation of packages: When any table except an auxiliary table is renamed,
packages that refer to that table are invalidated. When an auxiliary table is
renamed, packages that refer to the auxiliary table are not invalidated.

Restriction when there are pending changes to the definition: A RENAME INDEX
statement is not allowed if there are pending changes to the definition of the index.

Chapter 5. Statements 1809

|

|

Considerations for aliases: If an alias name is specified for table-name, the table
must exist at the current server, and the table that is identified by the alias is
renamed. The name of the alias is not changed and continues to refer to the old
table name after the rename.

Changing the name of an alias with the RENAME statement is not supported. To
change the name to which an alias refers, you must drop the alias and then
re-create it.

Considerations for plan tables: The RENAME INDEX statement does not update
the contents of a plan table. Rows that exist in a plan table that are generated from
a EXPLAIN statement can contain the name of an index in the access path
selections. When an index is renamed, any entries in existing plan tables that refer
to the old index name are not updated.

Transfer of authorization, referential integrity constraints, and indexes: All
authorizations associated with the source table name are transferred to the new
(target) table name. The authorization catalog tables are updated appropriately.

Referential integrity constraints involving the source table are updated to refer to
the new table. The catalog tables are updated appropriately.

Indexes that are defined for the source table are transferred to the new table. The
index catalog tables are updated appropriately.

Object identifier: Renamed tables and indexes keep the same object identifier as
the original table or index.

Renaming registration tables: If an application registration table (ART) or object
registration table (ORT) or an index of an ART or ORT is specified as the source
table for RENAME, when RENAME completes, it is as if that table had been
dropped. There is no ART or ORT once the ART or ORT table has been renamed.

Catalog table updates: Entries in the following catalog tables are updated to reflect
the new table:
v SYSAUXRELS
v SYSCHECKS
v SYSCHECKS2
v SYSCHECKDEP
v SYSCOLAUTH
v SYSCOLDIST
v SYSCOLDIST_HIST
v SYSCOLDISTSTATS
v SYSCOLSTATS
v SYSCOLUMNS
v SYSCOLUMNS_HIST
v SYSCONSTDEP
v SYSFIELDS
v SYSFOREIGNKEYS
v SYSINDEXES
v SYSINDEXES_HIST
v SYSKEYCOLUSE

1810 SQL Reference

v SYSPLANDEP
v SYSPACKDEP
v SYSRELS
v SYSSEQUENCESDEP
v SYSSYNONYMS
v SYSTABAUTH
v SYSTABCONST
v SYSTABLES
v SYSTABLES_HIST
v SYSTABSTATS
v SYSTABSTATS_HIST

Entries in SYSSTMT and SYSPACKSTMT are not updated.

Entries in the following catalog tables are updated to reflect the new index:
v SYSDEPENDENCIES
v SYSINDEXES
v SYSINDEXES_HIST
v SYSINDEXESPART
v SYSINDEXESPART_HIST
v SYSINDEXSPACESTATS
v SYSINDEXSTATS
v SYSINDEXSTATS_HIST
v SYSKEYS
v SYSKEYTARGETS
v SYSKEYTARGETS_HIST
v SYSKEYTARGETSTATS
v SYSKEYTGTDIST
v SYSKEYTGTDIST_HIST
v SYSKEYTGTDISTSTATS
v SYSOBJROLEDEP
v SYSPACKDEP
v SYSPLANDEP
v SYSRELS
v SYSTABCONST
v SYSTABLEPART

Examples

Example 1: Change the name of the EMP table to EMPLOYEE:
RENAME TABLE EMP TO EMPLOYEE;

Example 2: Change the name of the EMP_USA_HIS2002:
RENAME TABLE EMP_USA_HIS2002 TO EMPLOYEE_UNITEDSTATES_HISTORY2002;

Example 3: Change the name of the EMPINDX1 to EMPLOYEE_INDEX:
RENAME INDEX COMPANY.EMPINDX1 TO EMPLOYEE_INDEX;

Chapter 5. Statements 1811

REVOKE
The REVOKE statement revokes privileges from authorization IDs. There is a
separate form of the statement for each of these classes of privilege:
v Collection
v Database
v Distinct type
v Function or stored procedure
v Package
v Plan
v Schema
v Sequence
v System
v Table or view
v Use

The applicable objects are always at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

If the authorization mechanism was not activated when the DB2 subsystem was
installed, an error condition occurs.

Authorization

If the BY clause is not specified, the authorization ID of the statement must have
granted at least one of the specified privileges to every authorization-name specified
in the FROM clause (including PUBLIC, if specified). If the BY clause is specified,
the authorization ID of the statement must have SECADM or ACCESSCTRL
authority.

Note: If installation parameter SEPARATE SECURITY is NO, SYSADM authority
has implicit SECADM authority and SYSCTRL authority has implicit
ACCESSCTRL authority.

If the BY clause is specified and the privilege set includes ACCESSCTRL, all
privileges and authorities can be revoked except for the following:
v System DBADM
v ACCESSCTRL
v DATAACCESS
v CREATE_SECURE_OBJECT privilege

If the statement is embedded in an application program, the privilege set is the
privileges that are held by the owner of the plan or package. The owner can be a
role. If the statement is dynamically prepared, the privilege set is the privileges
that are held by the SQL authorization ID of the process. However, if the process is
running in a trusted context that is defined with the ROLE AS OBJECT OWNER

1812 SQL Reference

AND QUALIFIER CLAUSE, the privilege set is the privileges that are held by the
role that is in effect.

Syntax

�� REVOKE authorization-specification �

,

FROM authorization-name
ROLE role-name
PUBLIC

�

�

�

,

BY authorization-name
ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES
NOT INCLUDING DEPENDENT PRIVILEGES

�

�

(1)
RESTRICT

��

Notes:

1 The RESTRICT clause is the default only for the forms of the REVOKE statement that allow it.

Description

authorization-specification
Specifies one or more privileges for the class of privilege. The same privilege
must not be specified more than once.

FROM
Specifies from what authorization IDs the privileges are revoked.

authorization-name,...
Lists one or more authorization IDs. Do not use the same authorization ID
more than one time. If the authorization-name is specified in lowercase, it
must be delimited using double quotes.

The value of CURRENT RULES determines if you can use the ID of the
REVOKE statement itself (to revoke privileges from yourself). When
CURRENT RULES is:

DB2 You cannot use the ID of the REVOKE statement.
STD

You can use the ID of the REVOKE statement.

ROLE role-name
Lists one or more roles. Do not specify the same role more than one time.

PUBLIC
Revokes a grant of privileges to PUBLIC.

BY Lists grantors who have granted privileges and revokes each named privilege
that was explicitly granted to some named user by one of the named grantors.

Chapter 5. Statements 1813

Only an authorization ID or role with SYSADM or SYSCTRL authority can use
BY, even if the authorization ID or role names only itself in the BY clause.

authorization-name,...
Lists one or more authorization IDs of users who were the grantors of the
privileges named. Do not use the same authorization ID more than once.
Each grantor that is listed must have explicitly granted some named
privilege to all of the named users or roles.

ROLE role-name
Lists one or more roles that were the grantors of the privileges named. Do
not specify the same role more than one time. Each grantor that is listed
must have explicitly granted some named privilege to all of the named
users or roles.

ALL
Revokes each named privilege from all named users who were explicitly
granted the privilege, regardless of who granted it.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization
ID or a role also results in revoking the grants that were made by that user.
The default value is based on the authority that is being revoked and the
REVOKE_DEP_PRIVILEGES system parameter:
v When ACCESSCTRL, DATAACCESS, or system DBADM authority is

revoked, NOT INCLUDING DEPENDENT PRIVILEGES is assumed and
the clause must be specified on the REVOKE statement.

v When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT
INCLUDING DEPENDENT PRIVILEGES is assumed and an error is
returned if the statement includes INCLUDING DEPENDENT
PRIVILEGES.

v Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the
clause must be specified on the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role also results in revoking dependent privileges. This means that any
grants that were made by the user will continue to be revoked, until all
grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set to NO, which
enforces the behavior to not include the dependent privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role does not cause the grants that were made by the user to be
revoked. However, for the revoked privileges, all implications of the
privilege being revoked are applied. For example, if the revoked privileges
were required to bind a package successfully, that package would continue
to be invalidated as a result of the package owner losing these privileges.
An object might be dropped if a privilege is revoked that was used to
create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when
ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set toYES, which enforces
the behavior to include dependent privileges in the revoke.

1814 SQL Reference

RESTRICT
Prevents the named privilege from being revoked when certain conditions
apply. RESTRICT is the default only for the forms of the REVOKE statement
that allow it. These forms are revoking the USAGE privilege on distinct types,
the EXECUTE privilege on user-defined functions and stored procedures, and
the USAGE privilege on sequences.

Notes

Revoked privileges: The privileges revoked from an authorization ID or a role are
those that are identified in the statement and which were granted to the user by
the grantor. Other privileges can be revoked as the result of revoking dependent
privileges. For more on DB2 privileges, see DB2 Administration Guide.

Revoke dependent privileges: Revoking a privilege from a user can also cause that
privilege to be revoked from other users. This was previously known as cascade
revoke. When revoking a privilege from an authorization ID or a role, DB2 looks for
and revokes any grants of the privilege where the grantor is the same as the
authorization ID or role of the original revoke. The following rules must be true
for privilege P' to be revoked from U3 when U1 revokes privilege P from U2:
v P and P' are the same privilege.
v U2 granted privilege P' to U3.
v No one granted privilege P to U2 prior to the grant by U1.
v U2 does not have installation SYSADM authority.

The rules also apply to the implicit grants that are made as a result of a CREATE
VIEW statement.

Revoking dependent privileges does not occur under any of the following
conditions:
v The privilege was granted by a current installation SYSADM user.
v The privilege is the USAGE privilege on a distinct type and the revokee owns

any of these items:
– A user-defined function or stored procedure that uses the distinct type
– A table that has a column that uses the distinct type
– A sequence whose data type is the distinct type

v The privilege is the USAGE privilege on a sequence and the revokee owns any
of these items:
– A trigger that has a NEXT VALUE or PREVIOUS VALUE expression that

specifies the sequence
– An inline SQL function that has a NEXT VALUE or PREVIOUS VALUE

expression in the function body that specifies the sequence
v The privilege is the EXECUTE privilege on a user-defined function and the

revokee owns any of these items:
– A user-defined function that is sourced on the function
– A view that uses the function
– A trigger package that uses the function
– A table that uses the function in a check constraint or a user-defined default

type
v The privilege is the EXECUTE privilege on a stored procedure and the revokee

owns any of these items:

Chapter 5. Statements 1815

– A trigger package that refers to the stored procedure in a CALL statement.
v If the ACCESSCTRL administrative authority is revoked from a user, grants that

are made by this ACCESSCTRL user are not revoked.
If this user revoked grants made by it, those revokes will continue to revoke the
dependent privileges, unless the behavior to not include the dependent
privileges was specified either by using the system parameter
REVOKE_DEP_PRIVILEGES or by using the REVOKE statement if
REVOKE_DEP_PRIVILEGES is set to SQLSTMT.

v If SECADM is removed from a user, grants that are made by this SECADM user
are not revoked.
If this user revoked grants made by it, those revokes will continue to revoke the
dependent privileges, unless the behavior to not include the dependent
privileges was specified either by using the system parameter
REVOKE_DEP_PRIVILEGES or by using the REVOKE statement if
REVOKE_DEP_PRIVILEGES is set to SQLSTMT.

v If NOT INCLUDING DEPENDENT PRIVILEGES option is specified, the
grants made by this user are not revoked.

Refer to the diagrams for the following example:
1. Suppose BOB grants SYSADM authority to WADE. Later, CLAIRE grants the

SELECT privilege on a table with the WITH GRANT OPTION to WADE.

2. WADE grants the SELECT privilege to JOHN on the same table.

3. When CLAIRE revokes the SELECT privilege on the table from WADE, the
SELECT privilege on that table is also revoked from JOHN.

1816 SQL Reference

The grant from WADE to JOHN is removed because WADE had not been granted
the SELECT privilege from any other source before CLAIRE made the grant. The
SYSADM authority granted to WADE from BOB does not affect the cascade
revoke. For more on SYSADM and installation SYSADM authority, see DB2
Administration Guide. For another example of cascading revokes, see DB2
Administration Guide.

Revoking a SELECT privilege that was exercised to create a view or materialized
query table causes the view to be dropped, unless the owner of the view was
directly granted the SELECT privilege from another source before the view was
created. Revoking a SYSADM privilege that was required to create a view causes
the view to be dropped. For details on when SYSADM authority is required to
create a view, see Authorization in “CREATE VIEW” on page 1527.

Invalidation of packages: A revoke or cascaded revoke of any privilege or role that
was exercised to create a package makes the package invalid when the revokee no
longer holds the privilege from any other source. Corresponding authorization
caches are cleared even if the revokee has the privilege from any other source. 37

Inoperative packages: A revoke or cascaded revoke of the EXECUTE privilege on a
user-defined function that was exercised to create a package makes the package
inoperative and causes the corresponding authorization caches to be cleared when
the revokee no longer holds the privilege from any other source.37

Privileges belonging to an authority: You can revoke an administrative authority,
but you cannot separately revoke the specific privileges inherent in that
administrative authority.

Let P be a privilege inherent in authority X. A user with authority X can also have
privilege P as a result of an explicit grant of P. In this case:
v If X is revoked, the user still has privilege P.
v If P is revoked, the user still has the privilege because it is inherent in X.

Revoking of privileges in a trusted context: Revokes that are made in a trusted
context that is defined with the ROLE AS OBJECT OWNER clause result in the
revoker being the role in effect. If the statement is prepared dynamically, the
revoker is the role that is associated with the user that is running the statement. If
the statement is embedded in a program, the revoker is the owner of the plan or

37. Dependencies on stored procedures can be checked only if the procedure name is specified as a constant and not via a host
variable in the CALL statement.

Chapter 5. Statements 1817

package. If the ROLE AS OBJECT OWNER clause is not specified for the trusted
context, the revoker is the authorization ID of the process.

Ownership privileges: The privileges inherent in the ownership of an object cannot
be revoked.

Revoke not including dependent privileges: When a privilege is revoked from a
user by specifying NOT INCLUDING DEPENDENT PRIVILEGES, the grants
that were made by this user are not revoked and the grantor remains unchanged.
If that user is later granted the same privilege and then this privilege is revoked by
specifying INCLUDING DEPENDENT PRIVILEGES, that would also revoke all
the grants that were previously made by this user. Refer to the following examples:

User U1 is granted SELECT on table T1 with GRANT OPTION:
1. U1 grants this privilege to U2.
2. SELECT privilege is revoked from U1 without including dependent privileges.

As a result, the grant from U1 to U2 is not revoked.
3. U1 is again granted SELECT on T1.
4. SELECT is now revoked from U1 with including dependent privileges and the

grant from U1 to U2 is now revoked.
1.

User U1 is granted SYSADM authority:
1. U1 grants privilege P1 to U2 and privilege P2 to U3.
2. SYSADM is revoked from U1 without including dependent privileges. The

grants of privileges P1 and P2 to U2 and U3 are not revoked.
3. U1 is again granted SYSADM. U1 grants privilege P3 to U3.
4. SYSADM is now revoked from U1 including dependent privileges. Now, P1

granted to U2 and P2 and P3 granted to U3 are also revoked.
1.

1818 SQL Reference

REVOKE (collection privileges)
This form of the REVOKE statement revokes privileges on collections.

Syntax

�� REVOKE CREATE
PACKADM

IN
ON

�

,

COLLECTION collection-id
*

FROM �

� �

,

authorization-name
ROLE role-name
PUBLIC

�

,

BY authorization-name
ROLE role-name

ALL

�

�
INCLUDING DEPENDENT PRIVILEGES
NOT INCLUDING DEPENDENT PRIVILEGES

��

Description

CREATE IN
Revokes the privilege to use the BIND subcommand to create packages in the
designated collections.

The word ON can be used instead of IN.

PACKADM ON
Revokes the package administrator authority for the designated collections.

The word IN can be used instead of ON.

COLLECTION collection-id,...
Identifies the collections on which the specified privilege is revoked. For each
identified collection, you (or the indicated grantors) must have granted the
specified privilege on that collection to all identified users (including PUBLIC
if specified). The same collection must not be identified more than once.

COLLECTION *
Indicates that the specified privilege on COLLECTION * is revoked. You (or
the indicated grantors) must have granted the specified privilege on
COLLECTION * to all identified users (including PUBLIC if specified).
Privileges granted on specific collections are not affected.

FROM
Refer to “REVOKE” on page 1812 for a description of the FROM clause.

BY Refer to “REVOKE” on page 1812 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization

Chapter 5. Statements 1819

ID or a role also results in revoking the grants that were made by that user.
The default value is based on the authority that is being revoked and the
REVOKE_DEP_PRIVILEGES system parameter:
v When ACCESSCTRL, DATAACCESS, or system DBADM authority is

revoked, NOT INCLUDING DEPENDENT PRIVILEGES is assumed and
the clause must be specified on the REVOKE statement.

v When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT
INCLUDING DEPENDENT PRIVILEGES is assumed and an error is
returned if the statement includes INCLUDING DEPENDENT
PRIVILEGES.

v Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the
clause must be specified on the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role also results in revoking dependent privileges. This means that any
grants that were made by the user will continue to be revoked, until all
grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set to NO, which
enforces the behavior to not include the dependent privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role does not cause the grants that were made by the user to be
revoked. However, for the revoked privileges, all implications of the
privilege being revoked are applied. For example, if the revoked privileges
were required to bind a package successfully, that package would continue
to be invalidated as a result of the package owner losing these privileges.
An object might be dropped if a privilege is revoked that was used to
create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when
ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set toYES, which enforces
the behavior to include dependent privileges in the revoke.

Examples

Example 1: Revoke the privilege to create new packages in collections QAACLONE
and DSN8CC61 from CLARK.

REVOKE CREATE IN COLLECTION QAACLONE, DSN8CC61 FROM CLARK;

Example 2: Revoke the privilege to create new packages in collections DSN8CC91
from role ROLE1:

REVOKE CREATE IN COLLECTION DSN8CC91 FROM ROLE ROLE1;

1820 SQL Reference

REVOKE (database privileges)
This form of the REVOKE statement revokes database privileges.

Syntax

�� REVOKE �

,

DBADM
DBCTRL
DBMAINT
CREATETAB
CREATETS
DISPLAYDB
DROP
IMAGCOPY
LOAD
RECOVERDB
REORG
REPAIR
STARTDB
STATS
STOPDB

ON DATABASE �

,

database-name FROM �

,

authorization-name
ROLE role-name
PUBLIC

�

�

�

,

BY authorization-name
ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES
NOT INCLUDING DEPENDENT PRIVILEGES

��

Description

Each keyword listed revokes the privilege described, but only as it applies to or
within the databases named in the statement.

DBADM
Revokes the database administrator authority.

DBCTRL
Revokes the database control authority.

DBMAINT
Revokes the database maintenance authority.

CREATETAB
Revokes the privilege to create new tables. If CREATETAB privilege is revoked
from DSNDB04, tables cannot be created in implicitly created databases. For a
work file database, you cannot revoke the privilege from PUBLIC. When a
work file database is created, PUBLIC implicitly receives the CREATETAB
privilege (without GRANT authority); this privilege is not recorded in the DB2
catalog, and it cannot be revoked.

CREATETS
Revokes the privilege to create new table spaces.

Chapter 5. Statements 1821

DISPLAYDB
Revokes the privilege to issue the DISPLAY DATABASE command.

DROP
Revokes the privilege to issue the DROP or ALTER statements in the specified
databases.

IMAGCOPY
Revokes the privilege to run the COPY, MERGECOPY, and QUIESCE utilities
against table spaces of the specified databases, and to run the MODIFY
RECOVERY utility.

LOAD
Revokes the privilege to use the LOAD utility to load tables.

RECOVERDB
Revokes the privilege to use the RECOVER and REPORT utilities to recover
table spaces and indexes.

REORG
Revokes the privilege to use the REORG utility to reorganize table spaces and
indexes.

REPAIR
Revokes the privilege to use the REPAIR and DIAGNOSE utilities.

STARTDB
Revokes the privilege to issue the START DATABASE command.

STATS
Revokes the privilege to use the RUNSTATS utility to update statistics, and the
CHECK utility to test whether indexes are consistent with the data they index,
and the MODIFY STATISTICS utility to delete unwanted statistics history
records from the corresponding catalog tables.

STOPDB
Revokes the privilege to issue the STOP DATABASE command.

ON DATABASE database-name,...
Identifies databases on which you are revoking the privileges. For each
database you identify, you (or the indicated grantors) must have granted at
least one of the specified privileges on that database to all identified users
(including PUBLIC, if specified). The same database must not be identified
more than once.

FROM
Refer to “REVOKE” on page 1812 for a description of the FROM clause.

BY Refer to “REVOKE” on page 1812 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization
ID or a role also results in revoking the grants that were made by that user.
The default value is based on the authority that is being revoked and the
REVOKE_DEP_PRIVILEGES system parameter:
v When ACCESSCTRL, DATAACCESS, or system DBADM authority is

revoked, NOT INCLUDING DEPENDENT PRIVILEGES is assumed and
the clause must be specified on the REVOKE statement.

v When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT
INCLUDING DEPENDENT PRIVILEGES is assumed and an error is
returned if the statement includes INCLUDING DEPENDENT
PRIVILEGES.

1822 SQL Reference

v Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the
clause must be specified on the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role also results in revoking dependent privileges. This means that any
grants that were made by the user will continue to be revoked, until all
grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set to NO, which
enforces the behavior to not include the dependent privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role does not cause the grants that were made by the user to be
revoked. However, for the revoked privileges, all implications of the
privilege being revoked are applied. For example, if the revoked privileges
were required to bind a package successfully, that package would continue
to be invalidated as a result of the package owner losing these privileges.
An object might be dropped if a privilege is revoked that was used to
create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when
ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set toYES, which enforces
the behavior to include dependent privileges in the revoke.

Examples

Example 1: Revoke drop privileges on database DSN8D11A from user PEREZ.
REVOKE DROP

ON DATABASE DSN8D11A
FROM PEREZ;

Example 2: Revoke repair privileges on database DSN8D11A from all local users.
(Grants to specific users will not be affected.)

REVOKE REPAIR
ON DATABASE DSN8D11A
FROM PUBLIC;

Example 3: Revoke authority to create new tables and load tables in database
DSN8D11A from users WALKER, PIANKA, and FUJIMOTO.

REVOKE CREATETAB,LOAD
ON DATABASE DSN8D11A
FROM WALKER,PIANKA,FUJIMOTO;

Example 4: Revoke load privileges on database DSN8D11A from role ROLE1:
REVOKE LOAD

ON DATABASE DSN8D11A
FROM ROLE ROLE1;

Chapter 5. Statements 1823

REVOKE (function or procedure privileges)
This form of the REVOKE statement revokes privileges on user-defined functions,
cast functions that were generated for distinct types, and stored procedures.

Syntax

�� REVOKE EXECUTE ON �

� �

�

�

�

,

FUNCTION function-name
,

()
parameter-type

*
,

SPECIFIC FUNCTION specific-name
,

PROCEDURE procedure-name
*

�

� �

,

FROM authorization-name
ROLE role-name
PUBLIC

�

,

BY authorization-name
ROLE role-name

ALL

�

�
INCLUDING DEPENDENT PRIVILEGES
NOT INCLUDING DEPENDENT PRIVILEGES

RESTRICT
��

parameter-type:

1824 SQL Reference

�� data-type
(1)

AS LOCATOR

��

Notes:

1 AS LOCATOR can be specified only for a LOB data type or a distinct type that is based on a
LOB data type.

�� built-in-type
distinct-type-name
array-type-name

��

data-type:

built-in-type:

Chapter 5. Statements 1825

|

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC (integer)
NUMERIC , integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) CCSID ASCII FOR SBCS DATA
CHARACTER VARYING (integer) EBCDIC MIXED
CHAR UNICODE BIT

VARCHAR
(1M)

CHARACTER LARGE OBJECT
CHAR (integer) CCSID ASCII FOR SBCS DATA

CLOB K EBCDIC MIXED
M UNICODE
G

(1)
GRAPHIC

(integer) CCSID ASCII
VARGRAPHIC (integer) EBCDIC

(1M) UNICODE
DBCLOB

(integer)
K
M
G

(1)
BINARY

(integer)
BINARY VARYING (integer)
VARBINARY

(1M)
BINARY LARGE OBJECT
BLOB (integer)

K
M
G

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE
ROWID
XML

��

Description

EXECUTE
Revokes the privilege to run the identified user-defined function, cast function
that was generated for a distinct type, or stored procedure.

FUNCTION or SPECIFIC FUNCTION
Identifies the function from which the privilege is revoked. The function must
exist at the current server, and it must be a function that was defined with the
CREATE FUNCTION statement or a cast function that was generated by a
CREATE TYPE statement. The function can be identified by name, function
signature, or specific name.

If the function was defined with a table parameter (the LIKE TABLE was
specified in the CREATE FUNCTION statement to indicate that one of the

1826 SQL Reference

input parameters is a transition table), the function signature cannot be used to
identify the function. Instead, identify the function with its function name, if
unique, or with its specific name.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly
one function. The function can have any number of parameters defined for
it. If there is more than one function of the specified name in the specified
or implicit schema, an error is returned.

An * can be specified for a qualified or unqualified function-name. An * (or
schema-name.*) indicates that the privilege is revoked for all the functions in
the schema. You (or the indicated grantors) must have granted the
privilege on FUNCTION * to all identified users (including PUBLIC if
specified). Privileges granted on specific functions are not affected.

FUNCTION function-name (parameter-type,...)
Identifies the function by its function signature, which uniquely identifies
the function. The function-name (parameter-type, ...) must identify a function
with the specified function signature. The specified parameters must match
the data types in the corresponding position that were specified when the
function was created. The number of data types, and the logical
concatenation of the data types is used to identify the specific function
instance on which the privilege is to be granted. Synonyms for data types
are considered a match.

If the function was defined with a table parameter (the LIKE TABLE name
AS LOCATOR clause was specified in the CREATE FUNCTION statement
to indicate that one of the input parameters is a transition table), the
function signature cannot be used to uniquely identify the function.
Instead, use one of the other syntax variations to identify the function with
its function name, if unique, or its specific name.

If function-name () is specified, the function identified must have zero
parameters.

function-name
Identifies the name of the function. If you do not explicitly qualify the
function name with a schema name, the function name is implicitly
qualified with a schema name as described in the preceding
description for FUNCTION function-name.

(parameter-type,...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, DB2 searches the SQL
path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one
of the following:
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match. For
example, DEC() will be considered a match for a parameter of a
function defined with a data type of DEC(7,2). Similarly
DECFLOAT() will be considered a match for DECFLOAT(16) or
DECFLOAT(34). However, FLOAT cannot be specified with empty
parenthesis because its parameter value indicates a specific data type
(REAL or DOUBLE).

v If a specific value for a length, precision, or scale attribute is
specified, the value must exactly match the value that was specified

Chapter 5. Statements 1827

(implicitly or explicitly) in the CREATE FUNCTION statement. If the
data type is FLOAT, the precision does not have to exactly match the
value that was specified because matching is based on the data type
(REAL or DOUBLE).

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. The implicit length must exactly match the value that
was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

For data types with a subtype or encoding scheme attribute, specifying
the FOR subtype DATA clause or the CCSID clause is optional.
Omission of either clause indicates that DB2 ignores the attribute when
determining whether the data types match. If you specify either clause,
it must match the value that was implicitly or explicitly specified in the
CREATE FUNCTION statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this
parameter. If AS LOCATOR is specified, the data type must be a LOB
or a distinct type based on a LOB.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify
a specific function that exists at the current server.

PROCEDURE procedure-name
Identifies a stored procedure that is defined at the current server.

An * can be specified for a qualified or unqualified procedure-name. An * (or
schema-name.*) indicates that the privilege is revoked for all the procedures in
the schema. You (or the indicated grantors) must have granted the privilege on
PROCEDURE * to all identified users (including PUBLIC if specified).
Privileges granted on specific procedures are not affected.

FROM
Refer to “REVOKE” on page 1812 for a description of the FROM clause.

BY Refer to “REVOKE” on page 1812 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization
ID or a role also results in revoking the grants that were made by that user.
The default value is based on the authority that is being revoked and the
REVOKE_DEP_PRIVILEGES system parameter:
v When ACCESSCTRL, DATAACCESS, or system DBADM authority is

revoked, NOT INCLUDING DEPENDENT PRIVILEGES is assumed and
the clause must be specified on the REVOKE statement.

v When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT
INCLUDING DEPENDENT PRIVILEGES is assumed and an error is
returned if the statement includes INCLUDING DEPENDENT
PRIVILEGES.

v Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the
clause must be specified on the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role also results in revoking dependent privileges. This means that any

1828 SQL Reference

grants that were made by the user will continue to be revoked, until all
grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set to NO, which
enforces the behavior to not include the dependent privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role does not cause the grants that were made by the user to be
revoked. However, for the revoked privileges, all implications of the
privilege being revoked are applied. For example, if the revoked privileges
were required to bind a package successfully, that package would continue
to be invalidated as a result of the package owner losing these privileges.
An object might be dropped if a privilege is revoked that was used to
create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when
ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set toYES, which enforces
the behavior to include dependent privileges in the revoke.

RESTRICT
Prevents the EXECUTE privilege from being revoked on a user-defined
function or stored procedure if the revokee owns any of the following objects
and does not have the EXECUTE privilege from another source:
v A function that is sourced on the function
v A view that uses the function
v A trigger package that uses the function or stored procedure
v A table that uses the function in a check constraint or user-defined default

clause
v A materialized query table whose fullselect uses the function
v An extended index that uses the function

Examples

Example 1: Revoke the EXECUTE privilege on function CALC_SALARY for user
JONES. Assume that there is only one function in the schema with function
CALC_SALARY.

REVOKE EXECUTE ON FUNCTION CALC_SALARY FROM JONES;

Example 2: Revoke the EXECUTE privilege on procedure VACATION_ACCR from
all users at the current server.

REVOKE EXECUTE ON PROCEDURE VACATION_ACCR FROM PUBLIC;

Example 3: Revoke the privilege of the administrative assistant to grant EXECUTE
privileges on function DEPT_TOTAL to other users. The administrative assistant
will still have the EXECUTE privilege on function DEPT_TOTALS.

REVOKE EXECUTE ON FUNCTION DEPT_TOTALS
FROM ADMIN_A;

Example 4: Revoke the EXECUTE privilege on function NEW_DEPT_HIRES for HR
(Human Resources). The function has two input parameters with data types of
INTEGER and CHAR(10), respectively. Assume that the schema has more than one
function that is named NEW_DEPT_HIRES.

Chapter 5. Statements 1829

REVOKE EXECUTE ON FUNCTION NEW_DEPT_HIRES (INTEGER, CHAR(10))
FROM HR;

You can also code the CHAR(10) data type as CHAR().

Example 5: Revoke the EXECUTE privilege on function FIND_EMPDEPT from role
ROLE1:

REVOKE EXECUTE ON FUNCTION FIND_EMPDEPT
FROM ROLE ROLE1;

1830 SQL Reference

REVOKE (package privileges)
This form of the REVOKE statement revokes privileges on packages.

Syntax

�� REVOKE

�

ALL
,

BIND
COPY

EXECUTE
RUN

ON PACKAGE �

,

collection-id. package-name
*

FROM �

� �

,

authorization-name
ROLE role-name
PUBLIC

�

BY
,

authorization-name
ROLE role-name
ALL

�

�
INCLUDING DEPENDENT PRIVILEGES
NOT INCLUDING DEPENDENT PRIVILEGES

��

Description

BIND
Revokes the privilege to use the BIND and REBIND subcommands for the
designated packages. In addition, if the value of field BIND NEW PACKAGE
on installation panel DSNTIPP is BIND, the additional BIND privilege of
adding new versions of packages is revoked. (For details, see “Notes” on page
1709 for “GRANT (package privileges)” on page 1708.)

COPY
Revokes the privilege to use the COPY option of the BIND subcommand for
the designated packages.

EXECUTE
Revokes the privilege to run application programs that use the designated
packages and to specify the packages following PKLIST for the BIND PLAN
and REBIND PLAN commands. RUN is an alternate name for the same
privilege.

ALL
Revokes all package privileges for which you have authority for the packages
named in the ON clause.

Chapter 5. Statements 1831

ON PACKAGE collection-id.package-name,...
Identifies packages for which you are revoking privileges. The revoking of a
package privilege applies to all versions of that package. For each package that
you identify, you (or the indicated grantors) must have granted at least one of
the specified privileges on that package to all identified users (including
PUBLIC, if specified). An authorization ID with PACKADM authority over the
collection or all collections, SYSADM, or SYSCTRL authority can specify all
packages in the collection by using * for package-name. The same package must
not be specified more than once.

FROM
Refer to “REVOKE” on page 1812 for a description of the FROM clause.

BY Refer to “REVOKE” on page 1812 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization
ID or a role also results in revoking the grants that were made by that user.
The default value is based on the authority that is being revoked and the
REVOKE_DEP_PRIVILEGES system parameter:
v When ACCESSCTRL, DATAACCESS, or system DBADM authority is

revoked, NOT INCLUDING DEPENDENT PRIVILEGES is assumed and
the clause must be specified on the REVOKE statement.

v When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT
INCLUDING DEPENDENT PRIVILEGES is assumed and an error is
returned if the statement includes INCLUDING DEPENDENT
PRIVILEGES.

v Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the
clause must be specified on the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role also results in revoking dependent privileges. This means that any
grants that were made by the user will continue to be revoked, until all
grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set to NO, which
enforces the behavior to not include the dependent privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role does not cause the grants that were made by the user to be
revoked. However, for the revoked privileges, all implications of the
privilege being revoked are applied. For example, if the revoked privileges
were required to bind a package successfully, that package would continue
to be invalidated as a result of the package owner losing these privileges.
An object might be dropped if a privilege is revoked that was used to
create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when
ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set toYES, which enforces
the behavior to include dependent privileges in the revoke.

1832 SQL Reference

Notes

Alternative syntax and synonyms: To provide compatibility with previous releases
of DB2 or other products in the DB2 family, DB2 supports specifying PROGRAM
as a synonym for PACKAGE.

Examples

Example 1: Revoke the privilege to copy all packages in collection DSN8CC61 from
LEWIS.

REVOKE COPY ON PACKAGE DSN8CC61.* FROM LEWIS;

Example 2: Revoke the privilege to run all packages in collection DSN9CC13 from
role ROLE1:

REVOKE EXECUTE ON PACKAGE DSN9CC13.* FROM ROLE ROLE1;

Chapter 5. Statements 1833

REVOKE (plan privileges)
This form of the REVOKE statement revokes privileges on application plans.

Syntax

�� �

,

REVOKE BIND
EXECUTE

ON PLAN �

,

plan-name FROM �

,

authorization-name
ROLE role-name
PUBLIC

�

�

�

BY
,

authorization-name
ROLE role-name
ALL

INCLUDING DEPENDENT PRIVILEGES
NOT INCLUDING DEPENDENT PRIVILEGES

��

Description

BIND
Revokes the privilege to use the BIND, REBIND, and FREE subcommands for
the identified plans.

EXECUTE
Revokes the privilege to run application programs that use the identified plans.

ON PLAN plan-name,...
Identifies application plans for which you are revoking privileges. For each
plan that you identify, you (or the indicated grantors) must have granted at
least one of the specified privileges on that plan to all identified users
(including PUBLIC, if specified). The same plan must not be specified more
than once.

FROM
Refer to “REVOKE” on page 1812 for a description of the FROM clause.

BY Refer to “REVOKE” on page 1812 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization
ID or a role also results in revoking the grants that were made by that user.
The default value is based on the authority that is being revoked and the
REVOKE_DEP_PRIVILEGES system parameter:
v When ACCESSCTRL, DATAACCESS, or system DBADM authority is

revoked, NOT INCLUDING DEPENDENT PRIVILEGES is assumed and
the clause must be specified on the REVOKE statement.

v When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT
INCLUDING DEPENDENT PRIVILEGES is assumed and an error is
returned if the statement includes INCLUDING DEPENDENT
PRIVILEGES.

1834 SQL Reference

v Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the
clause must be specified on the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role also results in revoking dependent privileges. This means that any
grants that were made by the user will continue to be revoked, until all
grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set to NO, which
enforces the behavior to not include the dependent privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role does not cause the grants that were made by the user to be
revoked. However, for the revoked privileges, all implications of the
privilege being revoked are applied. For example, if the revoked privileges
were required to bind a package successfully, that package would continue
to be invalidated as a result of the package owner losing these privileges.
An object might be dropped if a privilege is revoked that was used to
create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when
ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set toYES, which enforces
the behavior to include dependent privileges in the revoke.

Examples

Example 1: Revoke authority to bind plan DSN8IP11 from user JONES.
REVOKE BIND ON PLAN DSN8IP11 FROM JONES;

Example 2: Revoke authority previously granted to all users at the current server to
bind and execute plan DSN8CP11. (Grants to specific users will not be affected.)

REVOKE BIND,EXECUTE ON PLAN DSN8CP11 FROM PUBLIC;

Example 3: Revoke authority to execute plan DSN8CP11 from users ADAMSON
and BROWN.

REVOKE EXECUTE ON PLAN DSN8CP11 FROM ADAMSON,BROWN;

Example 4: Revoke authority to bind plan DSN91PLN from role ROLE1:
REVOKE BIND ON PLAN DSN91PLN FROM ROLE ROLE1;

Chapter 5. Statements 1835

REVOKE (schema privileges)
This form of the REVOKE statement revokes privileges on schemas.

Syntax

�� REVOKE �

,

ALTERIN
CREATEIN
DROPIN

ON SCHEMA �

,

schema-name
*

FROM �

,

authorization-name
ROLE role-name
PUBLIC

�

�

�

,

BY authorization-name
ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES
NOT INCLUDING DEPENDENT PRIVILEGES

��

Description

ALTERIN
Revokes the privilege to alter sequences, stored procedures, and user-defined
functions, or specify a comment for distinct types, cast functions that are
generated for distinct types, sequences, stored procedures, triggers, and
user-defined functions in the designated schemas.

CREATEIN
Revokes the privilege to create distinct types, sequences, stored procedures,
triggers, and user-defined functions in the designated schemas.

DROPIN
Revokes the privilege to drop distinct types, sequences, stored procedures,
triggers, and user-defined functions in the designated schemas.

SCHEMA schema-name
Identifies the schema on which the privilege is revoked.

SCHEMA *
Indicates that the specified privilege on all schemas is revoked. You (or the
indicated grantors) must have previously granted the specified privilege on
SCHEMA * to all identified users (including PUBLIC if specified). Privileges
granted on specific schemas are not affected.

FROM
Refer to “REVOKE” on page 1812 for a description of the FROM clause.

BY Refer to “REVOKE” on page 1812 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization
ID or a role also results in revoking the grants that were made by that user.
The default value is based on the authority that is being revoked and the
REVOKE_DEP_PRIVILEGES system parameter:

1836 SQL Reference

v When ACCESSCTRL, DATAACCESS, or system DBADM authority is
revoked, NOT INCLUDING DEPENDENT PRIVILEGES is assumed and
the clause must be specified on the REVOKE statement.

v When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT
INCLUDING DEPENDENT PRIVILEGES is assumed and an error is
returned if the statement includes INCLUDING DEPENDENT
PRIVILEGES.

v Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the
clause must be specified on the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role also results in revoking dependent privileges. This means that any
grants that were made by the user will continue to be revoked, until all
grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set to NO, which
enforces the behavior to not include the dependent privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role does not cause the grants that were made by the user to be
revoked. However, for the revoked privileges, all implications of the
privilege being revoked are applied. For example, if the revoked privileges
were required to bind a package successfully, that package would continue
to be invalidated as a result of the package owner losing these privileges.
An object might be dropped if a privilege is revoked that was used to
create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when
ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set toYES, which enforces
the behavior to include dependent privileges in the revoke.

Examples

Example 1: Revoke the CREATEIN privilege on schema T_SCORES from user
JONES.

REVOKE CREATEIN ON SCHEMA T_SCORES FROM JONES;

Example 2: Revoke the CREATEIN privilege on schema VAC from all users at the
current server.

REVOKE CREATEIN ON SCHEMA VAC FROM PUBLIC;

Example 3: Revoke the ALTERIN privilege on schema DEPT from the
administrative assistant.

REVOKE ALTERIN ON SCHEMA DEPT FROM ADMIN_A;

Example 4: Revoke the ALTERIN and DROPIN privileges on schemas NEW_HIRE,
PROMO, and RESIGN from HR (Human Resources).

REVOKE ALTERIN, DROPIN ON SCHEMA NEW_HIRE, PROMO, RESIGN FROM HR;

Example 5: Revoke the ALTERIN privilege on schemas EMPLOYEE from role
ROLE1:

Chapter 5. Statements 1837

REVOKE ALTERIN ON SCHEMA EMPLOYEE FROM ROLE ROLE1;

1838 SQL Reference

REVOKE (sequence privileges)
This form of the REVOKE statement revokes the privileges on a user-defined
sequence.

Syntax

�� REVOKE �

,

ALTER
(1)

USAGE

ON SEQUENCE �

,

sequence-name �

,

FROM authorization-name
ROLE role-name
PUBLIC

�

�

�

,

BY authorization-name
ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES
NOT INCLUDING DEPENDENT PRIVILEGES

RESTRICT
��

Notes:

1 The keyword SELECT is an alternative keyword for USAGE.

Description

ALTER
Revokes the privilege to alter a sequence or record a comment on a sequence.

USAGE
Revokes the USAGE privilege to use a sequence. This privilege is needed when
the NEXT VALUE or PREVIOUS VALUE expression is invoked for a sequence
name.

SEQUENCE sequence-name
Identifies the sequence. The name, including the implicit or explicit schema
qualifier, must uniquely identify an existing sequence at the current server. If
no sequence by this name exists in the explicitly or implicitly specified schema,
an error occurs. sequence-name must not be the name of an internal sequence
object that is generated by the system for an identity column.

FROM
Refer to “REVOKE” on page 1812 for a description of the FROM clause.

BY Refer to “REVOKE” on page 1812 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization
ID or a role also results in revoking the grants that were made by that user.
The default value is based on the authority that is being revoked and the
REVOKE_DEP_PRIVILEGES system parameter:
v When ACCESSCTRL, DATAACCESS, or system DBADM authority is

revoked, NOT INCLUDING DEPENDENT PRIVILEGES is assumed and
the clause must be specified on the REVOKE statement.

Chapter 5. Statements 1839

v When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT
INCLUDING DEPENDENT PRIVILEGES is assumed and an error is
returned if the statement includes INCLUDING DEPENDENT
PRIVILEGES.

v Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the
clause must be specified on the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role also results in revoking dependent privileges. This means that any
grants that were made by the user will continue to be revoked, until all
grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set to NO, which
enforces the behavior to not include the dependent privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role does not cause the grants that were made by the user to be
revoked. However, for the revoked privileges, all implications of the
privilege being revoked are applied. For example, if the revoked privileges
were required to bind a package successfully, that package would continue
to be invalidated as a result of the package owner losing these privileges.
An object might be dropped if a privilege is revoked that was used to
create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when
ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set toYES, which enforces
the behavior to include dependent privileges in the revoke.

RESTRICT
Prevents the USAGE privilege from being revoked on a sequence if the revokee
owns one of the following objects and does not have the USAGE privilege
from another source:
v A trigger that specifies the sequence in a NEXT VALUE or PREVIOUS

VALUE expression
v An inline SQL function that specifies the sequence in a NEXT VALUE or

PREVIOUS VALUE expression

Examples

Example 1: Revoke USAGE privilege on sequence MYNUM to user JONES.
REVOKE USAGE

ON SEQUENCE MYNUM
FROM JONES;

Example 2: Revoke the USAGE privilege on sequence ORDER_SEQ from role
ROLE1:

REVOKE USAGE
ON SEQUENCE ORDER_SEQ
FROM ROLE ROLE1;

1840 SQL Reference

REVOKE (system privileges)
This form of the REVOKE statement revokes system privileges.

Authorization

To revoke the CREATE_SECURE_OBJECT privilege with or without the BY clause,
the privilege set must include SECADM authority.

Syntax

�� �

,

REVOKE ACCESSCTRL
ARCHIVE
BINDADD
BINDAGENT
BSDS
CREATEALIAS
CREATEDBA
CREATEDBC
CREATESG
CREATETMTAB
CREATE_SECURE_OBJECT
DATAACCESS
DBADM
DEBUGSESSION
DISPLAY
EXPLAIN
MONITOR1
MONITOR2
RECOVER
SQLADM
STOPALL
STOSPACE
SYSADM
SYSCTRL
SYSOPR
TRACE

FROM �

,

authorization-name
ROLE role-name
PUBLIC

�

�

�

,

BY authorization-name
ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES
(1) (2)

NOT INCLUDING DEPENDENT PRIVILEGES

��

Notes:

1 INCLUDING DEPENDENT PRIVILEGES must not be specified when ACCESSCTRL,
DATAACCESS, or DBADM is specified.

2 NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL,
DATAACCESS, or DBADM is specified

Chapter 5. Statements 1841

Description

ACCESSCTRL
Revokes the ACCESSCTRL authority, but does not revoke any privileges that
are dependent on it.

ARCHIVE
Revokes the privilege to use the ARCHIVE LOG command.

BINDADD
Revokes the privilege to create plans and packages using the BIND
subcommand with the ADD option.

BINDAGENT
Revokes the privilege to issue the BIND, FREE PACKAGE, or REBIND
subcommands for plans and packages and the DROP PACKAGE statement on
behalf of the grantor. The privilege also allows the holder to copy and replace
plans and packages on behalf of the grantor.

A revoke of this privilege does not cascade.

BSDS
Revokes the privilege to issue the RECOVER BSDS command.

CREATEALIAS
Revokes the privilege to use the CREATE ALIAS statement.

CREATEDBA
Revokes the privilege to issue the CREATE DATABASE statement and acquire
DBADM authority over those databases.

CREATEDBC
Revokes the privilege to issue the CREATE DATABASE statement and acquire
DBCTRL authority over those databases.

CREATESG
Revokes the privilege to create new storage groups.

CREATETMTAB
Revokes the privilege to use the CREATE GLOBAL TEMPORARY TABLE
statement.

CREATE_SECURE_OBJECT
Revokes the privilege to create a secure object.

DATAACCESS
Revokes the DATAACCESS authority, but does not revoke any privileges that
are dependent on it. Revoking DATAACCESS can result in authorization cache
entries (plan, package, routine, and dynamic statement) being updated if they
were dependent on it. The RESTRICT semantics on objects prevents the
DATAACCESS authority from being revoked if the revokee owns an object that
was created with dependencies on the authority to be revoked.

Revoking DATAACCESS is similar to revoking the individual privileges that
DATAACCESS includes. For example, if a view was created based on the view
owner having the SELECT privilege as acquired through the DATAACCESS
authority, revoking DATAACCESS would be the equivalent of revoking the
SELECT privilege and the view would be dropped.

DBADM
Revokes the DBADM authority from the user. If this user was also granted
DATACCESS or ACCESSCTRL authority along with DBADM authority,
DATACCESS or ACCESSCTRL would not be revoked.

1842 SQL Reference

DISPLAY
Revokes the privilege to use the following commands:
v The DISPLAY ARCHIVE command for archive log information
v The DISPLAY BUFFERPOOL command for the status of buffer pools
v The DISPLAY DATABASE command for the status of all databases
v The DISPLAY FUNCTION SPECIFIC command for statistics about accessed

external user-defined functions
v The DISPLAY LOCATION command for statistics about threads with a

distributed relationship
v The DISPLAY PROCEDURE command for statistics about accessed stored

procedures
v The DISPLAY THREAD command for information on active threads with in

DB2
v The DISPLAY TRACE command for a list of active traces

DEBUGSESSION
Revokes the privilege to create a debug session, which prevents client
application debugging of native SQL or Java procedures that are executed
within the session.

EXPLAIN
Revokes the privilege to issue the following:
v The EXPLAIN statement with the following options:

– PLAN
– ALL

v The PREPARE statement
v The DESCRIBE TABLE statement
v The ability to explain dynamic SQL statements that are executing with the

special register CURRENT EXPLAIN MODE = EXPLAIN
v The BIND options EXPLAIN(ONLY) and SQLERROR(CHECK)

EXPLAIN(ONLY) allows to explain the statements. SQLERROR(CHECK)
performs all syntax and semantic checks on the SQL statements being
bound.

MONITOR1
Revokes the privilege to obtain IFC data classified as serviceability data,
statistics, accounting, and other performance data that does not contain
potentially secure data.

MONITOR2
Revokes the privilege to obtain IFC data classified as containing potentially
sensitive data such as SQL statement text and audit data. (Having the
MONITOR2 privilege also implies having MONITOR1 privileges, however,
revoking the MONITOR2 privilege does not cause the revoke of an explicitly
granted MONITOR1 privilege.)

RECOVER
Revokes the privilege to issue the RECOVER INDOUBT command.

SQLADM
Revokes the privilege to issue the following:
v The DESCRIBE TABLE statement
v The EXPLAIN statement with the following options:

– PLAN

Chapter 5. Statements 1843

– ALL
– STMTCACHE ALL
– STMTID
– STMTTOKEN
– MONITORED STMTS

v The PREPARE statement
v The ability to explain dynamic SQL statements that are executing with the

special register CURRENT EXPLAIN MODE = EXPLAIN
v The BIND options EXPLAIN(ONLY) and SQLERROR(CHECK)

EXPLAIN(ONLY) allows to explain the statements. SQLERROR(CHECK)
performs all syntax and semantic checks on the SQL statements being
bound.

v The START command
v The STOP command
v The DISPLAY PROFILE command
v The ability to execute the RUNSTATS utility and the MODIFY STATISTICS

utility in any database
v MONITOR2 privilege, which allows users to obtain IFC data that is

classified as containing potentially sensitive data, such as SQL statement text
and audit data, as well as IFC data that is classified as serviceability data,
statistics, accounting, and other performance data.

STOPALL
Revokes the privilege to use the STOP DB2 command.

STOSPACE
Revokes the privilege to use the STOSPACE utility.

SYSADM
Revokes the system administrator authority.

SYSCTRL
Revokes the system control authority.

SYSOPR
Revokes the system operator authority.

TRACE
Revokes the privilege to use the MODIFY TRACE, START TRACE, and STOP
TRACE commands.

FROM
Refer to “REVOKE” on page 1812 for a description of the FROM clause.

BY Refer to “REVOKE” on page 1812 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization
ID or a role also results in revoking the grants that were made by that user.
The default value is based on the authority that is being revoked and the
REVOKE_DEP_PRIVILEGES system parameter:
v When ACCESSCTRL, DATAACCESS, or system DBADM authority is

revoked, NOT INCLUDING DEPENDENT PRIVILEGES is assumed and
the clause must be specified on the REVOKE statement.

1844 SQL Reference

v When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT
INCLUDING DEPENDENT PRIVILEGES is assumed and an error is
returned if the statement includes INCLUDING DEPENDENT
PRIVILEGES.

v Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the
clause must be specified on the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role also results in revoking dependent privileges. This means that any
grants that were made by the user will continue to be revoked, until all
grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set to NO, which
enforces the behavior to not include the dependent privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role does not cause the grants that were made by the user to be
revoked. However, for the revoked privileges, all implications of the
privilege being revoked are applied. For example, if the revoked privileges
were required to bind a package successfully, that package would continue
to be invalidated as a result of the package owner losing these privileges.
An object might be dropped if a privilege is revoked that was used to
create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when
ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set toYES, which enforces
the behavior to include dependent privileges in the revoke.

Examples

Example 1: Revoke DISPLAY privileges from user LUTZ.
REVOKE DISPLAY

FROM LUTZ;

Example 2: Revoke BSDS and RECOVER privileges from users PARKER and
SETRIGHT.

REVOKE BSDS,RECOVER
FROM PARKER,SETRIGHT;

Example 3: Revoke TRACE privileges previously granted to all local users. (Grants
to specific users will not be affected.)

REVOKE TRACE
FROM PUBLIC;

Example 4: Revoke ARCHIVE privileges from role ROLE1:
REVOKE ARCHIVE

FROM ROLE ROLE1;

Example 5: SECADM Mary revokes the privilege to create a secure object from
Steve that was granted by another SECADM.

REVOKE CREATE_SECURE_OBJECT
FROM STEVE BY MARY;

Chapter 5. Statements 1845

Example 6: Revoke system DBADM from the role, ADMINROLE. This only revokes
system DBADM authority from the role. If DATAACCESS and ACCESSCTRL
authorities were granted during GRANT DBADM, those authorities are not
revoked.

REVOKE DBADM ON SYSTEM
FROM ROLE ADMINROLE
NOT INCLUDING DEPENDENT PRIVILEGES;

Example 7: Revoke system DBADM, DATAACCESS, and ACCESSCTRL authorities
from the role, ADMINROLE.

REVOKE DBADM, DATAACCESS, ACCESSCTRL ON SYSTEM
FROM ROLE ADMINROLE
NOT INCLUDING DEPENDENT PRIVILEGES;

1846 SQL Reference

REVOKE (table or view privileges)
This form of the REVOKE statement revokes privileges on one or more tables or
views.

Syntax

�� REVOKE

�

PRIVILEGES
ALL

,

ALTER
DELETE
INDEX
INSERT
REFERENCES
SELECT
TRIGGER
UPDATE

TABLE
ON �

,

table-name
view-name

FROM �

� �

,

authorization-name
ROLE role-name
PUBLIC

�

,

BY authorization-name
ROLE role-name

ALL

�

�
INCLUDING DEPENDENT PRIVILEGES
NOT INCLUDING DEPENDENT PRIVILEGES

��

Description

ALL or ALL PRIVILEGES
If you specify ALL, the authorization ID of the statement must have granted a
least one privilege on each identified table or view to each authorization-name.
The privilege revoked from an authorization ID are those privileges on the
table or view that the authorization ID of the statement granted to the
authorization ID.

If you do not use ALL, you must use one or more of the keywords listed
below. Each keyword revokes the privilege described, but only as it applies to
the tables or views named in the ON clause.

ALTER
Revokes the privilege to alter the specified table or create a trigger on the
specified table.

DELETE
Revokes the privilege to delete rows in the specified table or view.

Chapter 5. Statements 1847

INDEX
Revokes he privilege to create an index on the specified table.

INSERT
Revokes the privilege to insert rows into the specified table or view.

REFERENCES
Revokes the privilege to define and drop referential constraints. Although you
can use a list of column names with the GRANT statement, you cannot use a
list of column names with REVOKE; the privilege is revoked for all columns.

SELECT
Revokes the privilege to create a view or read data from the specified table or
view. A view or a materialized query table is dropped when the SELECT
privilege that was used to create it is revoked, unless the owner of the view or
materialized query table was directly granted the SELECT privilege from
another source before the view or materialized query table was created.

TRIGGER
Revokes the privilege to create a trigger on the specified table.

UPDATE
Revokes the privilege to update rows in the specified table or view. A list of
column names can be used only with GRANT, not with REVOKE.

ON table-name or view-name
Names one or more tables or views on which you are revoking the privileges.
The list can consist of table names, view names, or a combination of the two. A
table or view must not be identified more than one time, and a declared
temporary table and a table that is implicitly created for an XML column must
not be identified.

FROM
Refer to “REVOKE” on page 1812 for a description of the FROM clause.

BY If you omit BY, you must have granted each named privilege to each of the
named users. More precisely, each privilege must have been granted to each
user by a GRANT statement whose authorization ID is also the authorization
ID of your REVOKE statement. Each of these grants is then revoked. (No
single privilege need be granted on all tables and views.)

If BY is specified, each named grantor must satisfy the above requirement. In
that case, the authorization ID of the statement need not satisfy the
requirement unless it is one of the named grantors.

Refer to “REVOKE” on page 1812 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization
ID or a role also results in revoking the grants that were made by that user.
The default value is based on the authority that is being revoked and the
REVOKE_DEP_PRIVILEGES system parameter:
v When ACCESSCTRL, DATAACCESS, or system DBADM authority is

revoked, NOT INCLUDING DEPENDENT PRIVILEGES is assumed and
the clause must be specified on the REVOKE statement.

v When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT
INCLUDING DEPENDENT PRIVILEGES is assumed and an error is
returned if the statement includes INCLUDING DEPENDENT
PRIVILEGES.

v Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the
clause must be specified on the REVOKE statement.

1848 SQL Reference

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role also results in revoking dependent privileges. This means that any
grants that were made by the user will continue to be revoked, until all
grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set to NO, which
enforces the behavior to not include the dependent privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role does not cause the grants that were made by the user to be
revoked. However, for the revoked privileges, all implications of the
privilege being revoked are applied. For example, if the revoked privileges
were required to bind a package successfully, that package would continue
to be invalidated as a result of the package owner losing these privileges.
An object might be dropped if a privilege is revoked that was used to
create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when
ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set toYES, which enforces
the behavior to include dependent privileges in the revoke.

Notes

For a created temporary table, only ALL or ALL PRIVILEGES can be revoked.
Specific table privileges cannot be revoked.

For a view of a created temporary table, either ALL or the specific UPDATE,
DELETE, INSERT and SELECT privileges can be revoked.

For a declared temporary table, no privileges can be revoked because none can be
granted. When a declared temporary table is defined, PUBLIC implicitly receives
all table privileges (without GRANT authority) for the table. These privileges are
not recorded in the DB2 catalog.

Examples

Example 1: Revoke SELECT privileges on table DSN8B10.EMP from user PULASKI.
REVOKE SELECT ON TABLE DSN8B10.EMP FROM PULASKI;

Example 2: Revoke update privileges on table DSN8B10.EMP previously granted to
all local DB2 users. (Grants to specific users are not affected.)

REVOKE UPDATE ON TABLE DSN8B10.EMP FROM PUBLIC;

Example 3: Revoke all privileges on table DSN8B10.EMP from users KWAN and
THOMPSON.

REVOKE ALL ON TABLE DSN8B10.EMP FROM KWAN,THOMPSON;

Example 4: Revoke the grant of SELECT and UPDATE privileges on the table
DSN8B10.DEPT to every user in the network. Doing so does not affect users who
obtained these privileges from some other grant.

Chapter 5. Statements 1849

REVOKE SELECT, UPDATE ON TABLE DSN8B10.DEPT
FROM PUBLIC;

Example 5: Revoke the ALTER privileges on the table DSN8B10.EMP that were
previously granted to role ROLE1:

REVOKE ALTER ON TABLE DSN8B10.EMP
FROM ROLE ROLE1;

1850 SQL Reference

REVOKE (type or JAR file privileges)
This form of the REVOKE statement revokes the privilege to use distinct types,
array types, or JAR files.

Syntax

�� REVOKE USAGE ON �

�

,

TYPE type-name
,

JAR jar-name

FROM �

,

authorization-name
ROLE role-name
PUBLIC

�

�

�

,

BY authorization-name
ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES
NOT INCLUDING DEPENDENT PRIVILEGES

RESTRICT
��

Description

USAGE
Revokes the privilege to use the distinct type in tables, functions procedures,
or the privilege to use the JAR file.

TYPE type-name
Identifies the user-defined type. The name, including the implicit or explicit
schema name, must identify a unique user-defined type that exists at the
current server.

JAR jar-name
Identifies the JAR file. The name, including the implicit or explicit schema
name, must identify a unique JAR file that exists at the current server.

FROM
Refer to “REVOKE” on page 1812 for a description of the FROM clause.

BY Refer to “REVOKE” on page 1812 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization
ID or a role also results in revoking the grants that were made by that user.
The default value is based on the authority that is being revoked and the
REVOKE_DEP_PRIVILEGES system parameter:
v When ACCESSCTRL, DATAACCESS, or system DBADM authority is

revoked, NOT INCLUDING DEPENDENT PRIVILEGES is assumed and
the clause must be specified on the REVOKE statement.

v When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT
INCLUDING DEPENDENT PRIVILEGES is assumed and an error is
returned if the statement includes INCLUDING DEPENDENT
PRIVILEGES.

Chapter 5. Statements 1851

|
|

|

|
|
|
|

v Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the
clause must be specified on the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role also results in revoking dependent privileges. This means that any
grants that were made by the user will continue to be revoked, until all
grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set to NO, which
enforces the behavior to not include the dependent privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role does not cause the grants that were made by the user to be
revoked. However, for the revoked privileges, all implications of the
privilege being revoked are applied. For example, if the revoked privileges
were required to bind a package successfully, that package would continue
to be invalidated as a result of the package owner losing these privileges.
An object might be dropped if a privilege is revoked that was used to
create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when
ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set toYES, which enforces
the behavior to include dependent privileges in the revoke.

RESTRICT
Prevents the USAGE privilege from being revoked on a user-defined type or
JAR file if any of the following conditions exist and the revokee does not have
the USAGE privilege from another source:
v The revokee owns a function or stored procedure that uses the user-defined

type or references the JAR file.
v The revokee owns a JAR file whose path references the JAR file for which

USAGE is being revoked.
v The revokee owns a table that has a column that uses the user-defined type.
v A sequence exists for which the data type of the sequence is the user-defined

type.

Notes

Alternative syntax and synonyms: To provide compatibility with previous releases
of DB2 or other products in the DB2 family, DB2 supports DATA TYPE or
DISTINCT TYPE as a synonym for TYPE.

Examples

Example 1: Revoke the USAGE privilege on distinct type SHOESIZE from user
JONES.

REVOKE USAGE ON TYPE SHOESIZE FROM JONES;

Example 2: Revoke the USAGE privilege on distinct type US_DOLLAR from all
users at the current server except for those who have been specifically granted
USAGE and not through PUBLIC.

REVOKE USAGE ON TYPE US_DOLLAR FROM PUBLIC;

1852 SQL Reference

|
|
|
|

|
|

|
|

|

|
|

Example 3: Revoke the USAGE privilege on distinct type CANADIAN_DOLLARS
from the administrative assistant (ADMIN_A).

REVOKE USAGE ON TYPE CANADIAN_DOLLARS
FROM ADMIN_A;

Example 4: Revoke the USAGE privilege on distinct type MILES from the role
ROLE1:

REVOKE USAGE ON TYPE MILES
FROM ROLE ROLE1;

Chapter 5. Statements 1853

REVOKE (variable privileges)
This form of the REVOKE statement revokes privileges on global variables.

Syntax

�� REVOKE

�

PRIVILEGES
ALL

,

READ
WRITE

ON VARIABLE variable-name FROM �

� �

,

authorization-name
ROLE role-name
PUBLIC

�

BY
,

authorization-name
ROLE role-name
ALL

RESTRICT
��

Description

ALL PRIVILEGES
Revokes both READ and WRITE privileges on the specified global variable.

READ
Revokes the privilege to read the value of the specified global variable.

WRITE
Revokes the privilege to assign a value to the specified global variable.

ON VARIABLE variable-name
Identifies the global variable from which privileges are revoked. variable-name
must identify a global variable that exists at the current server.

FROM
Refer to “REVOKE” on page 1812 for a description of the FROM clause.

BY Refer to “REVOKE” on page 1812 for a description of the BY clause.

RESTRICT
Prevents the specified privileges from being revoked on a global variable if the
following conditions exist:
v A function that is owned by the revokee references (READ or WRITE

privilege) the specified global variable
v A view that is owned by the revokee references (READ or WRITE privilege)

the specified global variable
v A trigger that is owned by the revokee references (READ or WRITE

privilege) the specified global variable

1854 SQL Reference

|

|

|
|

||||||||||||||||||||||||||||||||||||||
|

|
||

|
||

|

|
|

|
|

|
|

|
|
|

|
|

||

|
|
|

|
|

|
|

|
|

Notes

Global variables and statements in the dynamic statement cache: If a cached
dynamic statement depends on the revoked authorization for the specified global
variable and the cache statement is not in use, the cached dynamic statement will
be invalidated.

Examples

Chapter 5. Statements 1855

|

|
|
|
|

|

REVOKE (use privileges)
This form of the REVOKE statement revokes authority to use particular buffer
pools, storage groups, or table spaces.

Syntax

�� REVOKE USE OF �

�

�

,

BUFFERPOOL bpname
ALL BUFFERPOOLS

,

STOGROUP stogroup-name
,

TABLESPACE table-space-name
database-name.

FROM �

� �

,

authorization-name
ROLE role-name
PUBLIC

�

,

BY authorization-name
ROLE role-name

ALL

�

�
INCLUDING DEPENDENT PRIVILEGES
NOT INCLUDING DEPENDENT PRIVILEGES

��

Description

BUFFERPOOL bpname,...
Revokes the privilege to refer to any of the identified buffer pools in a
CREATE INDEX, CREATE TABLESPACE, ALTER INDEX, or ALTER
TABLESPACE statement. See “Naming conventions” on page 57 for more
details about bpname.

ALL BUFFERPOOLS
Revokes the privilege to refer to any buffer pool in a CREATE INDEX,
CREATE TABLESPACE, ALTER INDEX, or ALTER TABLESPACE statement.

STOGROUP stogroup-name,...
Revokes the privilege to refer to any of the identified storage groups in a
CREATE INDEX, CREATE TABLESPACE, ALTER INDEX, or ALTER
TABLESPACE statement.

TABLESPACE database-name.table-space-name,...
Revokes the privilege to refer to any of the specified table spaces in a CREATE
TABLE statement. The default database-name is DSNDB04.

For table spaces in a work file database you cannot revoke the privilege from
PUBLIC. When a table space is created in a work file database, PUBLIC

1856 SQL Reference

implicitly receives the TABLESPACE privilege (without GRANT authority); this
privilege is not recorded in the DB2 catalog, and it cannot be revoked.

FROM
Refer to “REVOKE” on page 1812 for a description of the FROM clause.

BY Refer to “REVOKE” on page 1812 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization
ID or a role also results in revoking the grants that were made by that user.
The default value is based on the authority that is being revoked and the
REVOKE_DEP_PRIVILEGES system parameter:
v When ACCESSCTRL, DATAACCESS, or system DBADM authority is

revoked, NOT INCLUDING DEPENDENT PRIVILEGES is assumed and
the clause must be specified on the REVOKE statement.

v When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT
INCLUDING DEPENDENT PRIVILEGES is assumed and an error is
returned if the statement includes INCLUDING DEPENDENT
PRIVILEGES.

v Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the
clause must be specified on the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role also results in revoking dependent privileges. This means that any
grants that were made by the user will continue to be revoked, until all
grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set to NO, which
enforces the behavior to not include the dependent privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID
or a role does not cause the grants that were made by the user to be
revoked. However, for the revoked privileges, all implications of the
privilege being revoked are applied. For example, if the revoked privileges
were required to bind a package successfully, that package would continue
to be invalidated as a result of the package owner losing these privileges.
An object might be dropped if a privilege is revoked that was used to
create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when
ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the
system parameter REVOKE_DEP_PRIVILEGES is set toYES, which enforces
the behavior to include dependent privileges in the revoke.

Notes

You can revoke privileges for only one type of object with each statement. Thus
you can revoke the use of several table spaces with one statement, but not the use
of a table space and a storage group.

For each object you name, you (or the indicated grantors) must have granted the
USE privilege on that object to all identified users (including PUBLIC, if specified).
The same object must not be identified more than once.

Chapter 5. Statements 1857

Revoking the privilege USE OF ALL BUFFERPOOLS does not cascade to all other
privileges that can be granted under that privilege. A user with the privilege USE
OF ALL BUFFERPOOLS WITH GRANT OPTION can make two types of grants:
v GRANT USE OF ALL BUFFERPOOLS TO userid. This privilege is revoked when

the original user's privilege is revoked.
v GRANT USE OF BUFFERPOOL BPn TO userid. This privilege is not revoked

when the original user's privilege is revoked.

Examples

Example 1: Revoke authority to use buffer pool BP2 from user MARINO.
REVOKE USE OF BUFFERPOOL BP2

FROM MARINO;

Example 2: Revoke a grant of the USE privilege on the table space DSN8S11D in the
database DSN8D11A. The grant is to PUBLIC, that is, to everyone at the local DB2
subsystem. (Grants to specific users are not affected.)

REVOKE USE OF TABLESPACE DSN8D11A.DSN8S11D
FROM PUBLIC;

Example 3: Revoke the authority to use storage group SG1 from role ROLE1:
REVOKE USE OF STOGROUP SG1

FROM ROLE ROLE1;

1858 SQL Reference

ROLLBACK
The ROLLBACK statement can be used to end a unit of recovery and back out all
the relational database changes that were made by that unit of recovery. If
relational databases are the only recoverable resources used by the application
process, ROLLBACK also ends the unit of work. ROLLBACK can also be used to
back out only the changes made after a savepoint was set within the unit of
recovery without ending the unit of recovery. Rolling back to a savepoint enables
selected changes to be undone.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. It can be used in
the IMS or CICS environment only if the TO SAVEPOINT clause is specified.

Authorization

None required.

Syntax

�� ROLLBACK
WORK

TO SAVEPOINT
savepoint-name

��

Description

When ROLLBACK is used without the SAVEPOINT clause, the unit of recovery in
which the ROLLBACK statement is executed is ended and a new unit of recovery
is started.

All changes that are made by the following statements during the unit of recovery
are backed out:
v ALTER
v COMMENT
v CREATE
v DELETE
v DROP
v EXPLAIN
v GRANT
v INSERT
v LABEL
v MERGE
v REFRESH TABLE
v RENAME
v REVOKE
v SELECT INTO with an SQL data change statement

Chapter 5. Statements 1859

v select-statement with an SQL data change statement
v TRUNCATE when the IMMEDIATE clause is not specified
v UPDATE

ROLLBACK without the TO SAVEPOINT clause also causes the following actions
to occur:
v All locks that are implicitly acquired during the unit of recovery are released.

See “LOCK TABLE” on page 1757 for an explanation of the duration of explicitly
acquired locks.

v All cursors are closed, all prepared statements are destroyed, and any cursors
that are associated with the prepared statements are invalidated.

v All rows and all logical work files of every created temporary table of the
application process are deleted. (All the rows of a declared temporary table are
not implicitly deleted. As with base tables, any changes that are made to a
declared temporary table during the unit of recovery are undone to restore the
table to its state at the last commit point.)

v All LOB locators, including those that are held, are freed.

TO SAVEPOINT
Specifies that the unit of recovery is not to be ended and that only a partial
rollback (to a savepoint) is to be performed. If a savepoint name is not
specified, rollback is to the last active savepoint. For example, if in a unit of
recovery, savepoints A, B, and C are set in that order and then C is released,
ROLLBACK TO SAVEPOINT causes a rollback to savepoint B.

savepoint-name
Identifies the savepoint to which to roll back. The name must identify a
savepoint that exists at the current server.

All database changes (including changes made to a declared temporary tables
but excluding changes made to created temporary tables) that were made after
the savepoint was set are backed out. Changes that are made to created
temporary tables are not logged and are not backed out; a warning is issued
instead. (A warning is also issued when a created temporary table is changed
and there is an active savepoint.)

In addition, none of the following items are backed out:
v The opening or closing of cursors
v Changes in cursor positioning
v The acquisition and release of locks
v The caching of the rolled back statements

Any savepoints that are set after the one to which rollback is performed are
released. The savepoint to which rollback is performed is not released.

ROLLBACK with or without the TO SAVEPOINT clause has no effect on
connections.

Notes

The following information applies only to rolling back all changes in the unit of
recovery (the ROLLBACK statement without the TO SAVEPOINT clause):
v Stored procedures. The ROLLBACK statement cannot be used if the procedure is

in the calling chain of a user-defined function or a trigger or if DB2 is not the
commit coordinator.

1860 SQL Reference

v IMS or CICS. Using a ROLLBACK to SAVEPOINT statement in an IMS or CICS
environment only rolls back DB2 resources. Any other recoverable resources
updated in the environment are not rolled back. To do a rollback operation in
these environments, SQL programs must use the call prescribed by their
transaction manager. The effect of these rollback operations on DB2 data is the
same as that of the SQL ROLLBACK statement.
A rollback operation in an IMS or CICS environment might handle the closing of
cursors that were declared with the WITH hold option differently than the SQL
ROLLBACK statement does. If an application requests a rollback operation from
CICS or IMS, but no work has been performed in DB2 since the last commit
point, the rollback request will not be broadcast to DB2. If the application had
opened cursors using the WITH HOLD option in a previous unit of work, the
cursors will not be closed, and any prepared statements associated with those
cursors will not be destroyed.

v Implicit rollback operations: In all DB2 environments, the abend of a process is an
implicit rollback operation.

ROLLBACK and non-LOB table spaces that are not logged: If ROLLBACK is
executed for a unit of work that includes changes to a non-LOB table space that is
not logged (specifies the NOT LOGGED attribute), that table space is marked
RECOVER-pending and the table space is placed in the logical page list. The table
space is therefore not available after the rollback operation completes. See DB2
Utility Guide and Reference for more information about the RECOVER utility.

ROLLBACK and declared global temporary tables that are not logged: When NOT
LOGGED is specified on a declared global temporary table and DB2 must roll back
because of an error such as a duplicate key error, rows are deleted or preserved
depending on the option that was specified for ON ROLLBACK.

If the ON ROLLBACK DELETE ROWS option was specified for the table, insert,
update, and delete activity is not logged. During a ROLLBACK or ROLLBACK TO
SAVEPOINT operation, if the table was updated since the last COMMIT statement,
all rows are deleted from the table. Any open cursors for the table do not have
positions. If the declaration of the declared global temporary table was not
committed, the declaration of the table is rolled back.

If the ON ROLLBACK PRESERVE ROWS option was specified for the table, insert,
update, and delete activity is not logged. During a ROLLBACK or ROLLBACK TO
SAVEPOINT operation, all rows in the table are preserved regardless of any
updates to the table since the last COMMIT statement. Any open cursors for the
table do not have positions. If the declaration of the declared global temporary
table was not committed, the declaration of the table is rolled back.

Effect of rollback operations on global variables: Global variables are not
controlled at the transaction level. Issuing a ROLLBACK statement does not effect
the contents of a global variable.

Examples

Example 1: Roll back all DB2 database changes made since the unit of recovery was
started.

ROLLBACK WORK;

Example 2: After a unit of recovery started, assume that three savepoints A, B, and
C were set and that C was released:

Chapter 5. Statements 1861

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

...
SAVEPOINT A ON ROLLBACK RETAIN CURSORS;
...
SAVEPOINT B ON ROLLBACK RETAIN CURSORS;
...
SAVEPOINT C ON ROLLBACK RETAIN CURSORS;
...
RELEASE SAVEPOINT C;
...

Roll back all DB2 database changes only to savepoint A:
ROLLBACK WORK TO SAVEPOINT A;

If a savepoint name was not specified (that is, ROLLBACK WORK TO SAVEPOINT), the
rollback would be to the last active savepoint that was set, which is B.

1862 SQL Reference

SAVEPOINT
The SAVEPOINT statement sets a savepoint within a unit of recovery to identify a
point in time within the unit of recovery to which relational database changes can
be rolled back.

Invocation

This statement can be imbedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SAVEPOINT savepoint-name
UNIQUE

(1)
ON ROLLBACK RETAIN CURSORS �

�

(1)
ON ROLLBACK RETAIN LOCKS

��

Notes:

1 These clauses can be specified in either order.

Description

savepoint-name
Names the savepoint. savepoint-name must not begin with 'SYS'.

UNIQUE
Specifies that the application program cannot reuse the savepoint name within
the unit of recovery. An error occurs if a savepoint with the same name as
savepoint-name already exists within the unit of recovery.

Omitting UNIQUE indicates that the application can reuse the savepoint name
within the unit of recovery. If svpt-name identifies a savepoint that already
exists within the unit of recovery and the savepoint was not created with the
UNIQUE option, the existing savepoint is destroyed and a new savepoint is
created. Destroying a savepoint to reuse its name for another savepoint is not
the same as releasing the savepoint. Reusing a savepoint name destroys only
one savepoint. Releasing a savepoint with the RELEASE SAVEPOINT
statement releases the savepoint and all savepoints that have been
subsequently set.

ON ROLLBACK RETAIN CURSORS
Specifies that any cursors that are opened after the savepoint is set are not
tracked, and thus, are not closed upon rollback to the savepoint. Although
these cursors remain open after rollback to the savepoint, they might not be
usable. For example, if rolling back to the savepoint causes the insertion of a

Chapter 5. Statements 1863

row on which the cursor is positioned to be rolled back, using the cursor to
update or delete the row results in an error.

ON ROLLBACK RETAIN LOCKS
Specifies that any locks that are acquired after the savepoint is set are not
tracked, and thus, are not released on rollback to the savepoint. ON
ROLLBACK RETAIN LOCKS is the default behavior.

Example

Assume that you want to set three savepoints at various points in a unit of
recovery. Name the first savepoint A and allow the savepoint name to be reused.
Name the second savepoint B and do not allow the name to be reused. Because
you no longer need savepoint A when you are ready to set the third savepoint,
reuse A as the name of the savepoint.

SAVEPOINT A ON ROLLBACK RETAIN CURSORS;

...
SAVEPOINT B UNIQUE ON ROLLBACK RETAIN CURSORS;

...
SAVEPOINT A ON ROLLBACK RETAIN CURSORS;

1864 SQL Reference

SELECT
The select-statement is the form of a query that can be directly specified in a
DECLARE CURSOR statement, or prepared and then referenced in a DECLARE
CURSOR statement. It can also be issued interactively using SPUFI or the
command line processor which causes a result table to be displayed at your
terminal. In any case, the table specified by select-statement is the result of the
fullselect.

For a description of the SELECT statement, see “select-statement” on page 819.

Chapter 5. Statements 1865

SELECT INTO
The SELECT INTO statement produces a result table that contains at most one row.
The statement assigns the values in that row to variables. If the table is empty, the
statement does not assign values to the host variables or global variables.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

The privilege set that is defined below must include at least one of the following:
v The SELECT privilege on every table and view identified in the statement
v Ownership of every table and view identified in the statement
v READ and WRITE privileges on any global variables that are identified in the

statement
v Ownership of any global variables that are identified in the statement
v DBADM authority for the database (tables only)
v DATAACCESS authority
v SYSADM authority
v SYSCTRL authority (catalog tables only)

If the SELECT INTO statement includes an SQL data change statement, the
privilege set must also include at least the privileges (INSERT, UPDATE, or
DELETE) that are associated with that SQL data change statement on the table or
view.

Privilege set: If the statement is embedded in an application program, the
privilege set is the set of privileges that are held by the owner of the package.

1866 SQL Reference

|
|
|

|

|

|

|
|

|

|

|

|

|

|
|

Syntax

��

�

,

WITH common-table-expression

(1)
select-clause INTO �

� �

,

target-variable
array-variable[array-index]

from-clause
where-clause group-by-clause

�

�
having-clause order-by-clause

�
(2)

isolation-clause
SKIP LOCKED DATA

QUERYNO integer
�

�
1

FETCH FIRST ROW ONLY
ROWS

��

target-variable:

global-variable-name
host-variable-name
SQL-parameter-name
SQL-variable-name

Notes:

1 The select-clause cannot reference both a system-period temporal table and an archive-enabled
table.

2 The same clause must not be specified more than once.

Description

The table is derived by evaluating the isolation-clause, from-clause, where-clause,
group-by-clause, having-clause, order-by-clause, and the select-clause, in this order. See
Chapter 4, “Queries,” on page 761 for a description of these clauses.

The tables or views identified in the statement can exist at the current server or at
any DB2 subsystem with which the current server can establish a connection.

WITH common-table-expression
Refer to “common-table-expression” on page 820 for information about
specifying a common-table-expression.

INTO target-variable or array-variable[array-index]
Identifies one or more targets for the assignment of output values. The number

Chapter 5. Statements 1867

|

||||

|
|

|
|

of targets in the INTO clause must equal the number of values that are to be
assigned. The first value in the result row is assigned to the first target in the
list, the second value to the second target, and so on. A target variable must
not be specified more than once in the INTO clause. Each assignment to a
target is made in sequence through the list, according to the rules described in
“Assignment and comparison” on page 121.

The value 'W' is assigned to the SQLWARN3 field of the SQLCA if the number
of targets is less than the number of result column values.

If an error occurs on any assignment, the value is not assigned to the target,
and no more values are assigned to the specified targets. Any values that have
already been assigned remain assigned.

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB
output values, the target can be a regular host variable (if it is large
enough), a LOB locator variable, or a LOB file reference variable.

SQL-parameter-name
Identifies the parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables
must be declared before they are used.

array-variable [array-index]
Specifies an array element that is the target of the assignment.

An array element must not be specified as the target for an assignment
if common-table-expression is also specified in the statement.

[array-index]
An expression that specifies which element in the array is the
target of the assignment.

For an ordinary array, the array index expression must be
castable to INTEGER, and must not be the null value. The
index value must be between 1 and the maximum cardinality
that is defined for the array.

For an associative array, the array index expression must be
castable to the index data type of the associative array, and
must not be the null value.

array-index must not be:
v An expression that references the CURRENT DATE,

CURRENT TIME, or CURRENT TIMESTAMP special register
v A nondeterministic function
v A function that is defined with EXTERNAL ACTION
v A function that is defined with MODIFIES SQL DATA
v A sequence expression

The data type of a variable must be compatible with the value assigned to it. If
the value is numeric, the variable must have the capacity to represent the
integral part of the value. For a date or time value, the variable must be a
character string variable of a minimum length as defined in “Assignment and
comparison” on page 121.

1868 SQL Reference

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|

|

|
|

|

|

|

|

|
|
|
|
|

Each assignment to a variable is made according to the rules described in
“Assignment and comparison” on page 121. Assignments are made in
sequence through the list.

If an error occurs as the result of an arithmetic expression in the SELECT list of
a SELECT INTO statement (division by zero or overflow) or a numeric
conversion error occurs, the result is the null value. As in any other case of a
null value, an indicator variable must be provided and the main variable is
unchanged. In this case, however, the indicator variable is set to -2. Processing
of the statement continues as if the error had not occurred. (However, this
error causes a positive SQLCODE.) If you do not provide an indicator variable,
a negative value is returned in the SQLCODE field of the SQLCA. Processing
of the statement terminates when the error is encountered.

If an error occurs, no value is assigned to the variable or to later variables,
though any values that have already been assigned to variables remain
assigned.

If an error occurs because the result table has more than one row, values might
be assigned to the variables. If values are assigned to the variables, the row
that is the source of the values is undefined and not predictable.

isolation-clause
Specifies the isolation level at which the statement is executed and, optionally,
the type of locks that are acquired.

SKIP LOCKED DATA
Specifies that rows are skipped when incompatible locks are held on the row
by other transactions. These rows can belong to any accessed table that is
specified in the statement. SKIP LOCKED DATA can be used only when
isolation CS or RS is in effect and applies only to row level or page level locks.

SKIP LOCKED DATA is ignored if it is specified when the isolation level that
is in effect is repeatable read (WITH RR) or uncommitted read (WITH UR).

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output
and trace records. The number is used for the QUERYNO columns of the plan
tables for the rows that contain information about this SQL statement. This
number is also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is the
statement number assigned during precompilation. Thus, if the application
program is changed and then precompiled, that statement number might
change.

Using the QUERYNO clause to assign unique numbers to the SQL statements
in a program is helpful:
v For simplifying the use of optimization hints for access path selection
v For correlating SQL statement text with EXPLAIN output in the plan table

For information on using optimization hints, such as enabling the system for
optimization hints and setting valid hint values, and for information on
accessing the plan table, see DB2 Performance Monitoring and Tuning Guide.

FETCH FIRST ROW ONLY integer
The FETCH FIRST ROW ONLY clause can be used in the SELECT INTO
statement when the query can result in more than a single row. The clause

Chapter 5. Statements 1869

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

indicates that only one row should be retrieved regardless of how many rows
might be in the result table. When a number is explicitly specified, it must be
1.

Using the FETCH FIRST ROW ONLY clause to explicitly limit the result table
to a single row provides a way for the SELECT INTO statement to be used
with a query that returns more than a single row. Using the clause helps you
to avoid using a cursor when you know that you want to retrieve only one
row. To influence which row is returned, you can use the order-by-clause. When
you specify order-by-clause, the rows of the result are ordered and then the first
row is returned. If the FETCH FIRST ROW ONLY clause is not specified and
the result table contains more than a single row, an error occurs.

Notes

Assignment to targets:
The nth target identified by the INTO clause or described in the SQLDA
corresponds to the nth column of the result table of the cursor. The data
type of target must be compatible with its corresponding value. If the
value is numeric, the target must have the capacity to represent the whole
part of the value. For a datetime value, the target must be a character
string variable of a minimum length as defined in “String representations
of datetime values” on page 101. When the target is a host variable, if the
value is null, an indicator variable must be specified.

Assignments are made in sequence through the list. Each assignment to a
target is made according to the rules described in Chapter 2, “Language
elements,” on page 53. If the number of targets is less than the number of
values in the row, the SQLWARN3 field of the SQLCA is set to 'W'. There
is no warning if there are more targets than the number of result columns.
If the target is a host variable and the value is null, an indicator variable
must be provided. If an assignment error occurs, the value is not assigned
to the target and no more values are assigned to targets. Any values that
have already been assigned to targets remain assigned.

If more than one assignment is included in the same assignment statement,
all expressions are evaluated before the assignments are performed. For
example, a reference to a variable in an expression always uses the value
of the variable prior to any assignment in the assignment statement.

Normally, you use LOB locators to assign and retrieve data from LOB
columns. However, because of compatibility rules, you can also use LOB
locators to assign data to targets with other data types. For more
information on using locators, see Saving storage when manipulating LOBs
by using LOB locators (DB2 Application programming and SQL).

A timestamp without time zone value must not be assigned to a timestamp
with time zone target.

Default encoding scheme:
The default encoding scheme for the data is the value in the bind option
ENCODING, which is the option for application encoding. If this statement
is used with functions such as LENGTH or SUBSTRING that are operating
on LOB locators, and the LOB data that is specifies by the locator is in a
different encoding scheme from the ENCODING bind option, LOB
materialization and character conversion occur. To avoid LOB
materialization and character conversion, select the LOB data from the
SYSIBM.SYSDUMMYA, SYSIBM.SYSDUMMYE, or SYSIBM.SYSDUMMYU
sample table.

1870 SQL Reference

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_savestoragelob.htm#db2z_savestoragelob
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_savestoragelob.htm#db2z_savestoragelob

If the result table is empty:
If the table is empty, the statement assigns +100 to SQLCODE, '02000' to
SQLSTATE, and does not assign values to the host variables or global
variables.

Number of rows inserted:
If the SELECT INTO statement of the cursor contains an SQL data change
statement, the SELECT INTO operation sets SQLERRD(3) to the number of
rows inserted.

Examples

Example 1: Put the maximum salary in DSN8B10.EMP into the host variable
MAXSALRY.

EXEC SQL SELECT MAX(SALARY)
INTO :MAXSALRY
FROM DSN8B10.EMP;

Example 2: Put the row for employee 528671, from DSN8B10.EMP, into the host
structure EMPREC.

EXEC SQL SELECT * INTO :EMPREC
FROM DSN8B10.EMP
WHERE EMPNO = ’528671’

END-EXEC.

Example 3: Put the row for employee 528671, from DSN8B10.EMP, into the host
structure EMPREC. Assume that the row will be updated later and should be
locked when the query executes.

EXEC SQL SELECT * INTO :EMPREC
FROM DSN8B10.EMP
WHERE EMPNO = ’528671’
WITH RS USE AND KEEP EXCLUSIVE LOCKS

END-EXEC.

Example 4: Using a SELECT INTO statement, retrieve the value of INTCOL1 from
table T1 into an element in array MYINTARRAY1, which is indexed by the value
of the expression INTCOL2+MYINTVAR+1.
SELECT INTCOL1 INTO MYINTARRAY1[INTCOL2+MYINTVAR+1]
FROM T1
WHERE INTCOL1 = MYINTARRAY1[INTCOL2] ;

Chapter 5. Statements 1871

|
|
|

|
|
|

|
|
|

|

SET CONNECTION
The SET CONNECTION statement establishes the database server of the process
by identifying one of its existing connections.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in Java.

Authorization

None required.

Syntax

�� SET CONNECTION location-name
host-variable

��

Description

location-name or host-variable
Identifies the SQL connection by the specified location name or the location
name contained in the host variable. If a host variable is specified:
v It must be a character string variable with a length attribute that is not

greater than 16. (A C NUL-terminated character string can be up to 17
bytes.)

v It must not be followed by an indicator variable.
v The location name must be left-justified within the host variable and must

conform to the rules for forming an ordinary location identifier.
v If the length of the location name is less than the length of the host variable,

it must be padded on the right with blanks.

Let S denote the specified location name or the location name contained in the
host variable. S must identify an existing SQL connection of the application
process. If S identifies the current SQL connection, the state of S and all other
connections of the application process are unchanged. The following rules
apply when S identifies a dormant SQL connection.

If the SET CONNECTION statement is successful:
v SQL connection S is placed in the current state.
v S is placed in the CURRENT SERVER special register.
v Information about server S is placed in the SQLERRP field of the SQLCA. If the

server is an IBM product, the information has the form pppvvrrm, where:
– ppp is:

ARI for DB2 Server for VSE & VM
DSN for DB2 for z/OS
QSQ for DB2 for i
SQL for all other DB2 products

– vv is a two-digit version identifier such as '11'.

1872 SQL Reference

– rr is a two-digit release identifier such as '01'.
– m is a one-digit modification level.

- Values 0, 1, 2, 3, and 4 are reserved for modification levels in conversion
and enabling-new-function mode from Version 10 (CM10, CM10*, ENFM10,
and ENFM10*)

- Values 5, 6, 7, 8, and 9 are for modification levels in new-function mode.
For example, if the server is Version 9 of DB2 for z/OS in new-function mode
with the latest maintenance, the value of SQLERRP is 'DSN09015'.

v Any previously current SQL connection is placed in the dormant state.

If the SET CONNECTION statement is unsuccessful, the connection state of the
application process and the states of its SQL connections are unchanged.

Notes

SET CONNECTION after CONNECT (Type 1): The use of CONNECT (Type 1)
statements does not prevent the use of SET CONNECTION, but the statement
either fails or does nothing because dormant SQL connections do not exist. The
SQLRULES(DB2) bind option does not prevent the use of SET CONNECTION, but
the statement is unnecessary because CONNECT (Type 2) statements can be used
instead. Use the SET CONNECTION statement to conform to the SQL standard.

Status of locks, cursors, and prepared statements: When an SQL connection is
used, made dormant, and then restored to the current state in the same unit of
work, the status of locks, cursors, and prepared statements for that SQL connection
reflects its last use by the application process.

Host variables: If the SET CONNECTION statement contains host variables, the
contents of the host variables are assumed to be in the encoding scheme that was
specified in the ENCODING parameter when the package or plan that contains the
statement was bound.

Restrictions on array types and array variables: In any SQL statement other than
a CALL statement, array types and array variables must not be referenced after a
connection at a remote server has been established. This restriction includes an
SQL statement that executes at a remote server as a result of a three-part name or
alias that resolves to an object at a remote server. An exception is that an array
element can be the target of a FETCH, SELECT INTO, SET assignment-statement, or
VALUES INTO statement in an SQL routine even when the statement is executed
at a remote server.

Example

Execute SQL statements at TOROLAB1, execute SQL statements at TOROLAB2,
and then execute more SQL statements at TOROLAB1.

EXEC SQL CONNECT TO TOROLAB1;

-- execute statements referencing objects at TOROLAB1

EXEC SQL CONNECT TO TOROLAB2;

-- execute statements referencing objects at TOROLAB2

EXEC SQL SET CONNECTION TOROLAB1;

-- execute statements referencing objects at TOROLAB1

Chapter 5. Statements 1873

|
|
|

|
|
|
|
|
|
|
|

The first CONNECT statement creates the TOROLAB1 connection, the second
CONNECT statement places it in the dormant state, and the SET CONNECTION
statement returns it to the current state.

1874 SQL Reference

SET assignment-statement
The SET assignment-statement statement assigns values to variables and array
elements.

Invocation

If all targets for the assignment statement are global variables, this statement can
be embedded in an application program or issued interactively. It is an executable
statement that can by dynamically prepared.

Otherwise, this statement can be embedded only in an application program. It is
an executable statement that cannot by dynamically prepared.

Authorization

The privileges that are held by the current authorization ID must include those
required to execute any of the expressions.

Chapter 5. Statements 1875

|

|
|

|

|
|
|

|
|

|

|
|

Syntax

�� SET assignment-clause ��

assignment-clause:

�

� �

�

(1) (2)
target-variable = CURRENT PACKAGESET

CURRENT PACKAGE PATH
CURRENT SERVER

array-variable-name [array-index] = expression
NULL

,

target-variable = expression
NULL

(3)
DEFAULT

, ,
(4)

(target-variable) = (expression)
NULL

(3)
DEFAULT

(5)
row-subselect
VALUES expression

NULL
(3)

DEFAULT
,

(expression)
NULL

(3)
DEFAULT

target-variable:

global-variable-name
host-variable-name
SQL-parameter-name
SQL-variable-name
transition-variable-name

Notes:

1 target-variable must not be an array type in this context.

2 When the target is not a transition variable, these special registers can be referenced only as a
source value in this form of the syntax for this statement.

3 DEFAULT must only be specified when the corresponding target is a transition variable.

4 The number of source value specifications (expression, NULL, or DEFAULT) on the right side of
the equal sign must match the number of target specifications on the left side of the statement.

5 row-subselect can be specified only in the outermost subselect within SQL PL. target-variable cannot
be a global-variable-name or transition-variable-name.

1876 SQL Reference

|
|

||||||||||||
|

|

||

|

|

|||||||||||||||||||||||||

|

|

||

||
|

||

||
|

||
|
||

Description

target-variable
Identifies one or more targets for the assignment of values. The number of
targets must equal the number of values that are to be assigned.

The value that is to be assigned to each target variable can be specified
immediately following the variable. For example:
variable=expression, variable=expression

Alternatively, sets of parentheses can be used to specify all of the target
variables, and then all of the values. For example:
(variable,variable)=(expression,expression)

The value that is to be assigned to an array element must be specified
immediately following the array element. For example:
array-variable[array-index]=expression

The data type of each variable in the variable list must be compatible with its
corresponding result column. Each assignment to a target-variable is made in
sequence through the list, according to the rules described in “Assignment and
comparison” on page 121.

The value 'W' is assigned to the SQLWARN3 field of the SQLCA if the number
of targets is less than the number of result column values.

If an error occurs on any assignment, the value is not assigned to the target,
and no more values are assigned to the specified targets. Any values that have
already been assigned remain assigned.

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB
output values, the target can be a regular host variable (if it is large
enough), a LOB locator variable, or a LOB file reference variable.

SQL-parameter-name
Identifies the parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables
must be declared before they are used.

transition-variable-name
Identifies the column that is to be updated in the transition row. A
transition variable name must identify a column in the subject table of
a trigger, and is optionally qualified by a correlation name that
identifies the new value.

transition-variable-name must not correspond to a begin column or end
column of a BUSINESS_TIME period, and must not be specified if the
statement contains a period-clause.

array-variable [array-index]
Specifies an array element that is the target of the assignment.

An array element must not be specified as the target for an assignment
if common-table-expression is also specified in the statement.

Chapter 5. Statements 1877

|

|
|
|

|
|

|

|
|

|

|
|

|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

[array-index]
An expression that specifies which element in the array is the
target of the assignment.

For an ordinary array, the array index expression must be
castable to INTEGER, and must not be the null value. The
index value must be between 1 and the maximum cardinality
that is defined for the array.

For an associative array, the array index expression must be
castable to the index data type of the associative array, and
must not be the null value.

array-index must not be:
v An expression that references the CURRENT DATE,

CURRENT TIME, or CURRENT TIMESTAMP special register
v A nondeterministic function
v A function that is defined with EXTERNAL ACTION
v A function that is defined with MODIFIES SQL DATA
v A sequence expression

expression
Specifies the value that is to be assigned to the corresponding
assignment target. The expression is any expression of the type
described in “Expressions” on page 240, except that it cannot
contain a reference to the CURRENT PACKAGESET,
CURRENT PACKAGE PATH, or CURRENT SERVER special
register. All expressions are evaluated before any result is
assigned to a target. If an expression refers to a variable or
array element that is used in the list of assignment targets, the
value of the variable or array element in the expression is the
value of the variable or array element prior to any
assignments.

Each assignment to a target is made according to the
assignment rules described in “Assignment and comparison”
on page 121. When the target variables and expressions are in
the following form, the first value is assigned to the first target
variable in the list, the second value is assigned to the second
target variable in the list, and so on.
(target-variable,target-variable,...)=(expression,expression,...)

NULL Specifies the null value and can only be specified for host
variables that have an associated indicator variable.

VALUES
Specifies the values that are to be assigned to the
corresponding assignment targets. When more than one value
is specified, the values must be enclosed in parentheses. Each
value can be an expression or NULL, as previously described.
The following syntaxes are equivalent:
v (target-variable, target-variable) = (VALUES(expression, NULL))
v (target-variable, target-variable) = (expression, NULL)

The CURRENT APPLICATION ENCODING SCHEME,
CURRENT PACKAGESET, CURRENT PACKAGE PATH, or
CURRENT SERVER special registers can be referenced only in

1878 SQL Reference

|
|
|

|
|
|
|

|
|
|

|

|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

||
|

|
|
|
|
|
|

|

|

|
|
|

a SET assignment-statement statement or SQL PL
assignment-statement statement that results in the assignment of
a single target.

A parameter marker must not be specified.

row-subselect
A subselect that returns a single row. The number of columns
corresponds to the number of target variables that are specified
for assignment. Each result column value is assigned to the
corresponding variable. If the result of the row subselect is no
rows, then null values are assigned. An error is returned if
there is more than one row in the result. row-subselect can be
specified only in the outermost subselect within SQL PL. The
target variable must not be a global variable or transition
variable.

Notes

Assignment to targets:
If more than one assignment is included in the same assignment statement,
all expressions are evaluated before the assignments are performed. For
example, a reference to a variable in an expression always uses the value
of the variable prior to any assignment in the assignment statement.

Normally, you use LOB locators to assign and retrieve data from LOB
columns. However, because of compatibility rules, you can also use LOB
locators to assign data to targets with other data types. For more
information on using locators, see Saving storage when manipulating LOBs
by using LOB locators (DB2 Application programming and SQL).

Default encoding scheme:
The default encoding scheme for the data is the value in the bind option
ENCODING, which is the option for application encoding. If this statement
is used with functions such as LENGTH or SUBSTRING that are operating
on LOB locators, and the LOB data that is specifies by the locator is in a
different encoding scheme from the ENCODING bind option, LOB
materialization and character conversion occur. To avoid LOB
materialization and character conversion, select the LOB data from the
SYSIBM.SYSDUMMYA, SYSIBM.SYSDUMMYE, or SYSIBM.SYSDUMMYU
sample table.

Examples

Example 1: Set the host variable HVL to the value of the CURRENT PATH special
register.

SET :HVL = CURRENT PATH;

Example 2: Set the host variable PATH to the contents of the SQL PATH special
register, the host variable XTIME to the local time at the current server, and the
host variable MEM to the current member of the data sharing environment.

SET :SERVER = CURRENT PATH,
:XTIME = CURRENT TIME,
:MEM = CURRENT MEMBER;

Example 3: Set the host variable DETAILS to a portion of a LOB value, using a LOB
expression with a LOB locator to refer the extracted portion of the value.

SET :DETAILS = SUBSTR(:LOCATOR,1,35);

Chapter 5. Statements 1879

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|
|

|
|
|

|
|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_savestoragelob.htm#db2z_savestoragelob
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_savestoragelob.htm#db2z_savestoragelob

If the LOB data that is specified by the LOB locator LOCATOR is in a different
encoding scheme from the value of the ENCODING bind option, and you want to
avoid LOB materialization and character conversion, use the following statement
instead of the SET statement:

SELECT SUBSTR(:LOCATOR,1,35)
INTO :DETAILS
FROM SYSIBM.SYSDUMMYU;

Example 4: Set host variable HV1 to the results of external function CALC_SALARY
and host variable HV2 to the value of special register CURRENT PATH. Use an
indicator value with HV1 in case CALC_SALARY returns a null value.

SET (:HV1:IND1, :HV2) =
(CALC_SALARY(:HV3, :HF4), CURRENT PATH);

Example 5: Assume that you want to create a before trigger that sets the salary and
commission columns to default values for newly inserted rows in the EMPLOYEE
table and that you will define the trigger only with NEW in the REFERENCING
clause. Assign the default values to the SALARY and COMMISSION columns.

SET (SALARY, COMMISSION) = (50000, 8000);

Example 6: Assume that you want to create a before trigger that detects any
commission increases greater than 10% for updated rows in the EMPLOYEE table
and limits the commission increase to 10%. You will define the trigger with both
OLD and NEW in the REFERENCING clause. Limit an increase to the
COMMISSION column to 10%.

SET NEWROW.COMMISSION = 1.1 * OLDROW.COMMISSION;

Example 7: Suppose that the associative array variable CANADACAPITALS has
array type CAPITALSARRAY. Use SET assignment-statement statements to assign
values to CANADACAPITALS.
SET CANADACAPITALS[’British Columbia’] = ’Victoria’;
SET CANADACAPITALS[’Alberta’] = ’Edmonton’;
SET CANADACAPITALS[’Manitoba’] = ’Winnipeg’;
SET CANADACAPITALS[’Ontario’] = ’Toronto’;
SET CANADACAPITALS[’Nova Scotia’] = ’Halifax’;

In the CANADACAPITALS array, the array index values are province names, and
the associated array element values are the names of the corresponding capital
cities. The order in which values are assigned to associative array elements does
not matter. The elements of an associative array are stored in the array in
ascending order of the associated array index values.

Example 8: Suppose that the associative array variables CANADACAPITALSA and
CANADACAPITALSB have array type CAPITALSARRAY. The following SET
assignment-statement statements have been used to assign values to
CANADACAPITALSA.
SET CANADACAPITALSA[’British Columbia’] = ’Victoria’;
SET CANADACAPITALSA[’Alberta’] = ’Edmonton’;
SET CANADACAPITALSA[’Manitoba’] = ’Winnipeg’;
SET CANADACAPITALSA[’Ontario’] = ’Toronto’;
SET CANADACAPITALSA[’Nova Scotia’] = ’Halifax’;

Use a single SET assignment-statement statement to assign all of the values that are
in CANADACAPITALSA to CANADACAPITALSB.
SET CANADACAPITALSB = CANADACAPITALSA;

1880 SQL Reference

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|

Example 9: Suppose that P_PHONENUMBERS SQL array variable is defined as an
ordinary array. Set P_PHONENUMBERS to an array of fixed numbers.
SET P_PHONENUMBERS = ARRAY[9055553907, 4165554213, 4085553678];

Example 10: Set the SQL array variable P_PHONENUMBERS to an array of
numbers that are retrieved from the PHONENUMBER table.
SET P_PHONENUMBERS =
ARRAY [SELECT NUMBER
FROM PHONENUMBERS
WHERE EMPID = 624];

Example 11: Suppose that no values have been assigned to SQL array variable
P_PHONENUMBERS. Assign the value of SQL variable P_MYNUMBER to the first
and tenth elements of P_PHONENUMBERS. After the first assignment, the
cardinality of P_PHONENUMBERS is 1. After the second assignment, the
cardinality is 10, and elements 2 to 9 have been implicitly assigned the null value.
SET P_PHONENUMBERS[1] = P_MYNUMBER;
SET P_PHONENUMBERS[10] = P_MYNUMBER;

Chapter 5. Statements 1881

|
|

|

|
|

|
|
|
|

|
|
|
|
|

|
|

|

SET CURRENT APPLICATION COMPATIBILITY
The SET CURRENT APPLICATION COMPATIBILITY statement assigns a value to
the CURRENT APPLICATION COMPATIBILITY special register. This special
register allows users to control the package compatibility level behavior for
dynamic SQL.

Invocation

This statement can be embedded only in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT APPLICATION COMPATIBILITY
=

string-constant
host-variable

��

Description

string-constant
The following values are supported:

V10R1 The dynamic SQL statements in the package have V10R1 compatibility
behavior.

V11R1 The dynamic SQL statements in the package will V11R1 compatibility
behavior. This value is only allowed in new-function mode.

host-variable
A variable with a data type of CHAR or VARCHAR. The value of host-variable
must not be null and must represent a valid release compatibility level.

The value must:
v Be left-aligned within the host-variable
v Be padded on the right with blanks if its length is less than the host-variable

Examples

The following examples set the CURRENT APPLICATION COMPATIBILITY
special register to 'V10R1' (in the second example, Host variable HV1 = 'V10R1').

EXEC SQL SET CURRENT APPLICATION COMPATIBILITY = ’V10R1’;
EXEC SQL SET CURRENT APPLICATION COMPATIBILITY = :HV1;

Related reference:
“CURRENT APPLICATION COMPATIBILITY” on page 161

1882 SQL Reference

|

|
|
|
|

|

|
|

|

|

|
|

|||||||||||||||||||||||

|
||

|

|
|

||
|

||
|

|
|
|

|
|
|

|

|
|

|
|

|

|

SET CURRENT APPLICATION ENCODING SCHEME
The SET CURRENT APPLICATION ENCODING SCHEME statement assigns a
value to the CURRENT APPLICATION ENCODING SCHEME special register. This
special register allows users to control which encoding scheme will be used for
dynamic SQL statements after the SET statement has been executed.

Invocation

This statement can be embedded only in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT
APPLICATION

ENCODING SCHEME
=

�

� string-constant
host-variable

��

Description

string-constant
A character string constant that represents a valid encoding scheme (ASCII,
EBCDIC, UNICODE, or a character representation of a number between 1 and
65533).

host variable
A variable with a data type of CHAR or VARCHAR. The value of host-variable
must not be null and must represent a valid encoding scheme or a character
representation of a number between 1 and 65533). An associated indicator
variable must not be provided.

The value must:
v Be left justified within the host variable
v Be padded on the right with blanks if its length is less than that of the host

variable

Examples

The following examples set the CURRENT APPLICATION ENCODING SCHEME
special register to 'EBCDIC' (in the second example, Host variable HV1 =
'EBCDIC').

EXEC SQL SET CURRENT APPLICATION ENCODING SCHEME = ’EBCDIC’;
EXEC SQL SET CURRENT ENCODING SCHEME = :HV1;

Related reference:
“CURRENT APPLICATION ENCODING SCHEME” on page 162

Chapter 5. Statements 1883

SET CURRENT DEBUG MODE
The SET CURRENT DEBUG MODE statement assigns a value to the CURRENT
DEBUG MODE special register.

The special register sets the default value for the DEBUG MODE option for the
following statements:
v CREATE FUNCTION statements that define an SQL scalar function
v ALTER FUNCTION statements that create or replace a version of an SQL scalar

function
v CREATE PROCEDURE statements that define a native SQL or Java procedure
v ALTER PROCEDURE statements that create or replace a version of a native SQL

procedure

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT DEBUG MODE
=

host-variable
DISALLOW
ALLOW
DISABLE

��

Description

host-variable
Specifies a host variable that contains the debugging option. The host variable
must conform to the following rules:
v Be a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC variable. The actual

length of the contents of the host variable must not exceed the length of the
special register.

v Include a keyword value of DISALLOW, ALLOW, or DISABLE that is left
justified

v Be padded on the right with blanks if the host variable is a fixed length
character

v Not contain lowercase letters or characters that cannot be specified in an
ordinary identifier

v Not be empty or contain only blanks
v Not be the null value

DISALLOW
Specifies that DISALLOW DEBUG MODE is the default option for CREATE
statements when defining an SQL scalar function, a native SQL procedure, or a

1884 SQL Reference

Java procedure, or ALTER statements that create or replace a version of an SQL
scalar function or a native SQL procedure.

ALLOW
Specifies that ALLOW DEBUG MODE is the default option for CREATE
statements when defining an SQL scalar function, a native SQL procedure, a
Java procedure, or ALTER statements that create or replace a version of an SQL
scalar function or a native SQL procedure.

DISABLE
Specifies that DISABLE DEBUG MODE is the default option for CREATE
statements when defining an SQL scalar function, a native SQL procedure, a
Java procedure, or ALTER statements that create or replace a version of an SQL
scalar function or a native SQL procedure.

Examples

Example: The following statement sets the CURRENT DEBUG MODE special
register so that the default option for CREATE PROCEDURE statements will be
ALLOW DEBUG MODE:

SET CURRENT DEBUG MODE = ALLOW;

Related reference:
“CURRENT DEBUG MODE” on page 171

Chapter 5. Statements 1885

SET CURRENT DECFLOAT ROUNDING MODE
The SET CURRENT DECFLOAT ROUNDING MODE statement assigns a value to
the CURRENT DECFLOAT ROUNDING MODE special register. The special
register sets the default rounding mode that is used with decimal floating point
values (DECFLOAT).

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT DECFLOAT ROUNDING MODE ROUND_CEILING
ROUND_DOWN
ROUND_FLOOR
ROUND_HALF_DOWN
ROUND_HALF_EVEN
ROUND_HALF_UP
ROUND_UP
string-constant
host-variable

��

Description

ROUND_CEILING
Round towards positive infinity. If all of the discarded digits are zero or if the
sign is negative, the result is unchanged other than the removal of discarded
digits. Otherwise, the result coefficient is incremented by 1 (round up).

ROUND_DOWN
Round towards 0 (truncation). The discarded digits are ignored.

ROUND_FLOOR
Round towards negative infinity. If all of the discarded digits are zero or if the
sign is positive, the result is unchanged other than the removal of discarded
digits. Otherwise, the sign is negative and the result coefficient is incremented
by 1 (round down).

ROUND_HALF_DOWN
Round to nearest value; if values are equidistant, rounds down. If the
discarded digits represent greater than half (0.5) of the value of a number in
the next left position, the result coefficient is incremented by 1 (round up).
Otherwise, the discarded digits are ignored. This rounding mode is not
recommended when creating a portable application because it is not supported
by the IEEE draft standard for floating-point arithmetic.

ROUND_HALF_EVEN
Round to nearest value; if values are equidistant, round so that the final digit

1886 SQL Reference

is even. If the discarded digits represent greater than half (0.5) of the value of a
number in the next left position, the result coefficient is incremented by 1
(round up). If the discarded digits represent less than half of the value, the
result coefficient is not adjusted (that is, the discarded digits are ignored).
Otherwise, the result coefficient is unaltered if its rightmost digit is even, or is
incremented by 1 (round up) if its rightmost digit is odd (to make an even
digit).

ROUND_HALF_UP
Round to nearest value; if values are equidistant, round up. If the discarded
digits represent greater than or equal to half (0.5) of the value of a number in
the next left position, the result coefficient is incremented by 1 (round up).
Otherwise the discarded digits are ignored.

ROUND_UP
Round away from 0. If all of the discarded digits are zero, the result is
unchanged other than the removal of discarded digits. Otherwise, the result
coefficient is incremented by 1 (round up). This rounding mode is not
recommended when creating a portable application because it is not supported
by the IEEE draft standard for floating-point arithmetic.

string-constant
Specifies a string constant that contains a specification of the rounding mode.
The string-constant must have the following characteristics:
v Must be a string constant. The actual length of the contents of the string

constant, after trailing blanks have been removed, must not exceed 19
characters.

v Must not be the null value.
v Must not contain lower case letters or characters that cannot be specified in

an ordinary identifier.
v Must specify one of the seven rounding mode keywords as a string constant.

host-variable
Specifies a variable that contains a specification of the rounding mode. The
variable must have the following characteristics:
v Must have a length, after trailing blanks have been removed, that does not

exceed 19 bytes.
v Must not be followed by an indicator variable.
v Must not be a CLOB or DBCLOB.
v Must include a rounding mode that is left justified and conforms to the rules

for forming an ordinary identifier.
v Must not contain lower case letters or characters that cannot be specified in

an ordinary identifier.
v Must be padded on the right with blanks if the variable is a fixed length

string.
v Must contain one of the seven rounding mode keywords.

Examples

Example: The following statement sets the CURRENT DECFLOAT ROUNDING
MODE to ROUND_CEILING, using a string constant and a keyword.

SET CURRENT DECFLOAT ROUNDING MODE = ROUND_CEILING;

Chapter 5. Statements 1887

Related reference:
“CURRENT DECFLOAT ROUNDING MODE” on page 172

1888 SQL Reference

SET CURRENT DEGREE
The SET CURRENT DEGREE statement assigns a value to the CURRENT DEGREE
special register.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT DEGREE = string-constant
host-variable

��

Description

The value of CURRENT DEGREE is replaced by the value of the string constant or
host variable. The value must be a character string that is not longer than 3 bytes
and the value must be 'ANY', '1', or '1 '.

Notes

If the value of CURRENT DEGREE is '1' when a query is dynamically prepared,
the execution of that query will not use parallel operations. If the value of
CURRENT DEGREE is 'ANY' when a query is dynamically prepared, the execution
of that query can involve parallel operations.

For distributed applications, the default value at the server is used unless the
requesting application issues the SQL statement SET CURRENT DEGREE. For
requests using DRDA, the SET CURRENT DEGREE statement must be within the
scope of the CONNECT statement.

The value specified in the SET CURRENT DEGREE statement remains in effect
until it is changed by the execution of another SET CURRENT DEGREE statement
or until deallocation of the application process. For applications that connect to
DB2 using the call attachment facility, the value of register CURRENT DEGREE
can be requested to remain in effect for a longer duration. For more information,
see the description of the call attachment facility CONNECT statement in DB2
Application Programming and SQL Guide.

Examples

Example 1: The following statement inhibits parallel operations:
SET CURRENT DEGREE = ’1’;

Example 2: The following statement allows parallel operations:
SET CURRENT DEGREE = ’ANY’;

Chapter 5. Statements 1889

Related concepts:

Parallel processing (DB2 Performance)

Call attachment facility (DB2 Application programming and SQL)
Related tasks:

Enabling parallel processing (DB2 Performance)

Disabling query parallelism (DB2 Performance)
Related reference:
“CURRENT DEGREE” on page 174

CURRENT DEGREE field (CDSSRDEF subsystem parameter) (DB2 Installation
and Migration)
“CONNECT” on page 1147

1890 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_parallelprocessing.htm#db2z_parallelprocessing
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_caf.htm#db2z_caf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_enableparallelprocess.htm#db2z_enableparallelprocess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_disablequeryparallel.htm#db2z_disablequeryparallel
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_cdssrdef.htm#db2z_dsntip801
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_cdssrdef.htm#db2z_dsntip801

SET CURRENT EXPLAIN MODE
The SET CURRENT EXPLAIN MODE statement assigns a value to the CURRENT
EXPLAIN MODE special register.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
=

SET CURRENT EXPLAIN MODE NO
YES
EXPLAIN
host-variable

��

Description

This statement replaces the value of the CURRENT EXPLAIN MODE special
register with the value of the specified keyword or host variable.

NO Specifies that no EXPLAIN information is captured. NO is the initial value of
the EXPLAIN MODE special register.

YES
Enables the EXPLAIN facility and causes EXPLAIN information to be inserted
into the EXPLAIN tables for eligible dynamic SQL statements after the
statement is prepared and executed. All dynamic SQL statements are compiled
and executed normally.

EXPLAIN
Enables the EXPLAIN facility and causes EXPLAIN information to be captured
for any eligible dynamic SQL statement after the statement is prepared. This
setting behaves similarly to YES, however, dynamic statements, except for SET
statements, are not executed.

host-variable
host-variable must be a CHAR or VARCHAR value and must be NO, YES, or
EXPLAIN. Leading blanks are not allowed. All input values must be
uppercase, must be left justified within the host variable, and must be padded
on the right with blanks if the length of the value is less than the length of the
host variable.

For values YES and EXPLAIN, prepared statements are not saved into the dynamic
statement cache.

Chapter 5. Statements 1891

Examples

Example 1: The following statement sets the CURRENT EXPLAIN MODE special
register, so that EXPLAIN information will be captured for any subsequent eligible
dynamic SQL statements during execution.

SET CURRENT EXPLAIN MODE = YES;

Related reference:
“CURRENT EXPLAIN MODE” on page 175

1892 SQL Reference

SET CURRENT GET_ACCEL_ARCHIVE
The SET CURRENT GET_ACCEL_ARCHIVE statement changes the value of the
CURRENT GET_ACCEL_ARCHIVE special register.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT GET_ACCEL_ARCHIVE
=

NO
YES
host-variable

��

Description

NO Specifies that if a table is archived in an accelerator server, and a query
references that table, the query does not use the data that is archived.

YES
Specifies that if a table is archived in an accelerator server, and a query
references that table, the query uses the data that is archived.

host-variable
A variable with a data type of CHAR or VARCHAR. The length must not
exceed 255 bytes. Valid values are YES or NO. If host-variable has an associated
indicator variable, the value of that indicator variable must not indicate a null
value. The value of host-variable must be left justified and must be padded on
the right with blanks.

Examples

The following statement sets the CURRENT GET_ACCEL_ARCHIVE special
register to NO to indicate that when a table is archived in an accelerator server, the
table reference does not include the archived data.

SET CURRENT GET_ACCEL_ARCHIVE=NO;

Related reference:
“CURRENT GET_ACCEL_ARCHIVE” on page 176

Chapter 5. Statements 1893

SET CURRENT LOCALE LC_CTYPE
The SET CURRENT LOCALE LC_CTYPE statement assigns a value to the
CURRENT LOCALE LC_CTYPE special register. The special register allows control
over the LC_CTYPE locale for statements that use a built-in function that refers to
a locale, such as LCASE, UCASE, and TRANSLATE (with a single argument).

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET
LOCALE

CURRENT LC_CTYPE
CURRENT_LC_CTYPE

=
string-constant
host-variable

��

Description

The value of CURRENT LOCALE LC_CTYPE is replaced by the value specified.

string-constant
A character string constant that must not be longer than 50 bytes and must
represent a valid locale.

host-variable
A variable with a data type of CHAR or VARCHAR and a length that is not
longer than 50 bytes. The value of host-variable must not be null and must
represent a valid locale. If the host variable has an associated indicator
variable, the value of the indicator variable must not indicate a null value.

The locale must:
v Be left justified within the host variable
v Be padded on the right with blanks if its length is less than that of the host

variable

A locale can be specified in uppercase characters, lowercase characters, or a
combination of the two. For more information, see CURRENT LOCALE
LC_CTYPE.

Note: The existence of a locale is not validated when the CURRENT LOCALE
LC_CTYPE special register is set. For example, a locale name that is misspelled is
not detected, which could affect the way subsequent SQL operates. When the
special register value is used at execution time, an error is returned if the locale
does not exist. For example, if the LOWER function is invoked without specifying
a locale name, the special register determines the locale that is used.

1894 SQL Reference

Examples

Example 1: Set the CURRENT LOCALE LC_CTYPE special register to the locale
'En_US'.

EXEC SQL SET CURRENT LOCALE LC_CTYPE = ’En_US’;

Example 2: Set the CURRENT LOCALE LC_CTYPE special register to the value of
host variable HV1, which contains 'Fr_FR@EURO'.

EXEC SQL SET CURRENT LOCALE LC_CTYPE = :HV1;

Related concepts:

z/OS: Unicode Services User’s Guide and Reference
Related reference:
“CURRENT LOCALE LC_CTYPE” on page 177

Chapter 5. Statements 1895

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/CONTENTS?DN=SA22-7649-14&DT=20110614141050&SHELF=&CASE=&FS=TRUE&PATH=/bookmgr/

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
The SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION statement
changes the value of the CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION special register.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT MAINTAINED
TABLE

TYPES
FOR OPTIMIZATION =

ALL
NONE
SYSTEM
USER
host-variable

��

Description

The value indicates which materialized query tables that are enabled for
optimization are considered when optimizing the processing of dynamic SQL
queries.

ALL
Indicates that all materialized query tables will be considered.

NONE
Indicates that no materialized query tables will be considered.

SYSTEM
Indicates that only system-maintained materialized query tables that are
refresh deferred will be considered.

USER
Indicates that only user-maintained materialized query tables that are refresh
deferred will be considered.

host-variable
A variable of type CHAR or VARCHAR. The length of the contents of
host-variable must not exceed 255 bytes. It cannot be set to null. If host-variable
has an associated indicator variable, the value of that indicator variable must
not indicate a null value.

The characters of host-variable must be left justified. The content of the host
variable must be a string that would match what can be specified as keywords
for the special register in the exact case intended as there is no conversion to
uppercase characters.

1896 SQL Reference

Notes

The CURRENT REFRESH AGE special register needs to be set to a value other
than zero in order for the specified types of objects to be considered for optimizing
the processing of dynamic SQL queries.

The CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special
register affects dynamic statement cache matching.

Examples

Example 1: The following statement sets the CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION special register:

SET CURRENT MAINTAINED TABLE TYPES ALL;

Example 2: The following example retrieves the current value of the CURRENT
MAINTAINED TABLE TYPES FOR OPTIMIZATION special register into the host
variable called CURMAINTYPES.

EXEC SQL VALUES (CURRENT MAINTAINED TABLE TYPES) INTO :CURMAINTYPES;

The value would be ALL if set by the previous example.

Example 3: The following example resets the CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION special register so that no materialized query tables
can be considered to optimize the processing of dynamic SQL queries.

SET CURRENT MAINTAINED TABLE TYPES NONE;

Related reference:
“CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION” on page 179

Chapter 5. Statements 1897

SET CURRENT OPTIMIZATION HINT
The SET CURRENT OPTIMIZATION HINT statement assigns a value to the
CURRENT OPTIMIZATION HINT special register.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT OPTIMIZATION HINT = string-constant
host-variable

��

Description

The value of special register CURRENT OPTIMIZATION HINT is replaced by the
value of the string constant or host variable. The value must be a character string
that is not longer than 128 bytes.

Notes

Using the OPTIMIZATION HINT special register: The CURRENT OPTIMIZATION
HINT special register specifies whether optimization hints are used in determining
the access path of dynamic statements. An empty string or all blanks indicates that
DB2 uses normal optimization techniques and ignores optimization hints.

Example

Example 1: Assume that string constant 'NOHYB' identifies a user-defined
optimization hint in owner.PLAN_TABLE. Set the CURRENT OPTIMIZATION
HINT special register so that DB2 uses this optimization hint to generate the access
path for dynamic statements.

SET CURRENT OPTIMIZATION HINT = ’NOHYB’;

If you set the register this way, DB2 validates and considers information in the
rows in owner.PLAN_TABLE where the value in the OPTHINT column matches
'NOHYB' for dynamic SQL statements.

Example 2: Clear the CURRENT OPTIMIZATION HINT special register by
specifying an empty string.

SET CURRENT OPTIMIZATION HINT = ’’;

Related reference:
“CURRENT OPTIMIZATION HINT” on page 181

1898 SQL Reference

SET CURRENT PACKAGE PATH
The SET CURRENT PACKAGE PATH statement assigns a value to the CURRENT
PACKAGE PATH special register.

Invocation

This statement can be embedded only in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

�� �

,
= (1)

SET CURRENT PACKAGE PATH collection-id
SESSION_USER
USER

CURRENT PACKAGE PATH
CURRENT PATH
host-variable
string-constant

��

Notes:

1 SESSION_USER (or USER), CURRENT PACKAGE PATH, and CURRENT PATH can each be
specified only once on the right side of the statement.

Description

The value of CURRENT PACKAGE PATH is replaced by the values specified.

collection-id
Identifies a collection. collection-id must not be a delimited identifier that is
empty or contains only blanks.

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register.

CURRENT PACKAGE PATH
Specifies the value of the CURRENT PACKAGE PATH special register before
the execution of the SET CURRENT PACKAGE PATH statement.

CURRENT PATH
Specifies the value of the CURRENT PATH special register.

host-variable
Specifies a host variable that contains one or more collection IDs, separated by
commas. The host variable must:
v Have a data type of CHAR or VARCHAR. The actual length of the contents

of the host variable must not exceed the maximum length of the CURRENT
PACKAGE PATH special register.

v Not be the null value if an indicator variable is provided.

Chapter 5. Statements 1899

v Contain an empty or blank string, or one or more collection IDs that are
separated by commas.

v Be padded on the right with blanks if the host variable is fixed-length, or if
the actual length of the host variable is longer than the content.

v Not contain a delimited identifier that is empty or contains only blanks.

string-constant
Specifies a string constant that contains one or more collection IDs, separated
by commas. The string constant must:
v Have a length that does not exceed the maximum length of the CURRENT

PACKAGE PATH special register.
v Contain an empty or blank string, or one or more collection IDs separated

by commas.
v Not contain a delimited identifier that is empty or contains only blanks.

Notes

Contents of host variable or string constant: The contents of a host variable or
string constant are interpreted as a list of collection IDs if the value contains at
least one comma. If multiple collection IDs are specified, they must be separated
by commas. Each collection ID in the list must conform to the rules for forming an
ordinary identifier or be specified as a delimited identifier.

Checking for the existence of collections: No validation that the collections exist is
made at the time that the CURRENT PACKAGE PATH special register is set. For
example, a collection ID that is misspelled is not detected, which could affect the
way subsequent SQL operates. At package execution time, authorization to the
specific package is checked, and if this authorization check fails, an error is issued.

Resulting contents of the special register: The special register string is built by
taking each collection ID specified and removing trailing blanks, delimiting with
double quotation marks, doubling any double quotation marks within the
collection ID as necessary, and then separating each collection ID by a comma. If
the same collection ID appears more than once in the list, the first occurrence of
the collection is used, and a warning is issued. The length of the resulting list
cannot exceed the length of the special register. For example, assume that the
following statements are issued:
SET CURRENT PACKAGE PATH = MYPKGS, "ABC E", SYSIBM
SET :HVPKLIST = CURRENT PACKAGE PATH

These statements result in the value of the host variable being set to: "MYPKGS",
"ABC E", "SYSIBM".

A collection ID that does not conform to the rules for an ordinary identifier must
be specified as a delimited collection ID and must not be specified within a host
variable or string constant.

Considerations for keywords: A difference exists between specifying a single
keyword, such as SESSION_USER, as a single keyword or as a delimited identifier.
To indicate that the current value of a special register that is specified as a single
keyword should be used in the package path, specify the name of the special
register as a keyword. If you specify the name of the special register as a delimited
identifier, it is interpreted as a collection ID of that value. For example, assume
that the current value of the SESSION_USER special register is SMITH and that the
following statement is issued:

1900 SQL Reference

SET CURRENT PACKAGE PATH = SYSIBM, SESSION_USER, "USER"

The result is that the value of the CURRENT PACKAGE PATH special register is
set to: "SYSIBM, "SMITH", "USER".

Specifying a collection ID in an SQL procedure: Because a host variable (SQL
variable) in an SQL procedure does not begin with a colon, DB2 uses the following
rules to determine whether a value that is specified in a SET PACKAGE PATH =
name statement is a variable or a collection ID:
v If name is the same as a parameter or SQL variable in the SQL procedure, DB2

uses name as a parameter or SQL variable and assigns the value in name to the
package path.

v If name is not the same as a parameter or SQL variable in the SQL procedure,
DB2 uses name as a collection ID and assigns and the value in name is the
package path.

DRDA classification: The SET CURRENT PACKAGE PATH statement is executed
by the database server and, therefore, is classified as a non-local SET statement in
DRDA. The SET CURRENT PACKAGE PATH statement requires a new level of
DRDA support. If SET CURRENT PACKAGE PATH is issued when connected to
the local server, the SET CURRENT PACKAGE PATH special register at the local
server is set. Otherwise, when SET CURRENT PACKAGE PATH is issued when
connected to a remote server, the SET CURRENT PACKAGE PATH special register
at the remote server is set.

Examples

Example 1: Set the CURRENT PACKAGE PATH special register to the list of
collections COLL4 and COLL5, where :hvar1 contains the value COLL4,COLL5:

SET CURRENT PACKAGE PATH :hvar1;

The value of CURRENT PACKAGE PATH is set to the following two collection
IDs: "COLL4","COLL5".

Example 2: Set the CURRENT PACKAGE PATH special register to the list of
collections: COLL1, COLL#2, COLL3, COLL4, and COLL5, where :hvar1 contains
the value COLL4,COLL5:

SET CURRENT PACKAGE PATH = "COLL1","COLL#2","COLL3", :hvar1;

The value of CURRENT PACKAGE PATH is set to the following five collection
IDs: "COLL1,"COLL#2","COLL3","COLL4","COLL5".

Example 3: Clear the CURRENT PACKAGE PATH special register.
SET CURRENT PACKAGE PATH = ’ ’;

Example 4: In preparation of calling a stored procedure that is named SUMARIZE,
temporarily add two collections, COLL_PROD1" and "COLL_PROD2, to the end of
the CURRENT PACKAGE PATH special register (the values of the collections are
in host variables :prodcoll1 and prodcoll2, respectively). Because the stored
procedure SUMARIZE is not defined with a COLLID value and is defined with
INHERIT SPECIAL REGISTERS, the stored procedure will inherit the value of
CURRENT PACKAGE PATH. When the stored procedure returns, set the value of
the CURRENT PACKAGE PATH special register back to its original value.

Chapter 5. Statements 1901

SET :oldCPP = CURRENT PACKAGE PATH;
SET CURRENT PACKAGE PATH = CURRENT PACKAGE PATH, :prodcoll1, :prodcoll2;
CALL SUMARIZE(:V1,:V2);
SET CURRENT PACKAGE PATH = :oldCPP;

Related reference:
“CURRENT PACKAGE PATH” on page 182

1902 SQL Reference

SET CURRENT PACKAGESET
The SET CURRENT PACKAGESET statement assigns a value to the CURRENT
PACKAGESET special register.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT PACKAGESET = SESSION_USER
USER

string-constant
host-variable

��

Description

The value of CURRENT PACKAGESET is replaced by the value of the
SESSION_USER special register, string-constant, or host-variable. The value specified
by string-constant or host-variable must be a character string that is not longer than
128 bytes.

Notes

Selection of plan elements: A plan element is a DBRM that has been bound into the
plan or a package that is implicitly or explicitly identified in the package list of the
plan. Plan elements contain the control structures used to execute certain SQL
statements.

Since a plan can have many elements, one of the first steps involved in the
execution of an SQL statement that requires a control structure is the selection of
the plan element that contains its control structure. The information used by DB2
to select plan elements includes the value of CURRENT PACKAGESET.

SET CURRENT PACKAGESET is used to specify the collection ID of a package
that exists at the current server. SET CURRENT PACKAGESET is optional and
should not be used without an understanding of the following rules for selecting a
plan element.

If the CURRENT PACKAGESET special register is an empty string, DB2 searches
for a DBRM or a package in one of these sequences:

At the local location (if CURRENT SERVER is blank or explicitly names that
location), the order is:
1. All DBRMs bound directly to the plan
2. All packages that have already been allocated for the application process

Chapter 5. Statements 1903

3. All unallocated packages explicitly named in, and all collections completely
included in, the package list of the plan. The order of search is the order those
packages are named in the package list.

At a remote location, the order is:
1. All packages that have already been allocated for the application process at that

location
2. All unallocated packages explicitly named in, and all collections completely

included in, the package list of the plan, whose locations match the value of
CURRENT SERVER. The order of search is the order those packages are named
in the package list.

If the special register CURRENT PACKAGESET is set, DB2 skips the check for
programs that are part of the plan and uses the value of CURRENT PACKAGESET
as the collection. For example, if CURRENT PACKAGESET contains COL5, then
DB2 uses COL5.PROG1.timestamp for the search. For additional information, see
DB2 Application Programming and SQL Guide.

DRDA classification: SET CURRENT PACKAGESET is executed by the requester
and is therefore classified as a local SET statement in DRDA.

CURRENT PACKAGESET special register with stored procedures and user-defined
functions: The initial value of the CURRENT PACKAGESET special register in a
stored procedure or user-defined function is the value of the COLLID parameter
with which the stored procedure or user-defined function was defined. If the
routine was defined without a value for the COLLID parameter, the value of the
special register is inherited from the calling program. A stored procedure or
user-defined function can use the SET CURRENT PACKAGESET statement to
change the value of the special register. This allows the routine to select the version
of the DB2 package that is used to process the SQL statements in a called routine
that is not defined with a COLLID value.

When control returns from the stored procedure to the calling program, the special
register CURRENT PACKAGESET is restored to the value it contained before the
stored procedure was called.

Examples

Example 1: Limit the plan element selection to packages in the PERSONNEL
collection at the current server.

EXEC SQL SET CURRENT PACKAGESET = ’PERSONNEL’;

Example 2: Eliminate collections as a factor in plan element selection.
EXEC SQL SET CURRENT PACKAGESET = ’’;

Related reference:
“CURRENT PACKAGESET” on page 183

1904 SQL Reference

SET CURRENT PRECISION
The SET CURRENT PRECISION statement assigns a value to the CURRENT
PRECISION special register.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT PRECISION = string-constant
host-variable

��

Description

This statement replaces the value of the CURRENT PRECISION special register
with the value of the string constant or host variable. The value must be a
character string 5 bytes in length. The value must be 'DEC15,' 'DEC31,' or 'Dpp.s',
where 'pp' is either 15 or 31 and 's' is a number between 1 and 9. If the form
'Dpp.s' is used, 'pp' represents the precision that will be used with the rules that
are used for DEC15 or DEC31, and 's' represents the minimum divide scale to use
for division operations. The separator used in the form 'Dpp.s' can be either the
'.'or the ',' character, regardless of the setting of the default decimal point.

Example

Set the CURRENT PRECISION special register so that subsequent statements that
are prepared use DEC15 rules for decimal arithmetic.

EXEC SQL SET CURRENT PRECISION = ’DEC15’;

Related reference:
“CURRENT PRECISION” on page 185

Chapter 5. Statements 1905

SET CURRENT QUERY ACCELERATION
The SET CURRENT QUERY ACCELERATION statement changes the value of the
CURRENT QUERY ACCELERATION special register.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT QUERY ACCELERATION
=

NONE
ENABLE
ENABLE WITH FAILBACK
ELIGIBLE
ALL
host-variable

��

Description

NONE
Specifies that no query acceleration is done.

ENABLE
Specifies that queries are accelerated only if DB2 determines that it is
advantageous to do so. If an accelerator failure occurs while a query is running
or if the accelerator returns an error, DB2 returns a negative SQLCODE to the
application.

ENABLE WITH FAILBACK
Specifies that queries are accelerated only if DB2 determines that it is
advantageous to do so. If the accelerator returns an error during the PREPARE
or first OPEN for the query, DB2 executes the query without the accelerator. If
the accelerator returns an error during the PREPARE or first OPEN for the
query, DB2 executes the query without the accelerator. If the accelerator returns
an error during a FETCH or a subsequent OPEN, DB2 returns the error to the
user and does not execute the query.

ELIGIBLE
Specifies that queries are accelerated if they are eligible for acceleration. DB2
does not use cost information to determine whether to accelerate the queries.
Queries that are not eligible for acceleration are executed by DB2. If an
accelerator failure occurs while a query is running or if the accelerator returns
an error, DB2 returns a negative SQLCODE to the application.

ALL
Specifies that queries are accelerated if they are eligible for acceleration. DB2
does not use cost information to determine whether to accelerate the queries.
Queries that are not eligible for acceleration are not executed by DB2, and an

1906 SQL Reference

SQL error is returned. If an accelerator failure occurs while a query is running
or if the accelerator returns an error, DB2 returns a negative SQLCODE to the
application.

host-variable
A variable with a data type of CHAR or VARCHAR. The length must not
exceed 255 bytes. Valid values are NONE, ENABLE, or ENABLE WITH
FAILBACK. If host-variable has an associated indicator variable, the value of
that indicator variable must not indicate a null value. The value of host-variable
must be left justified and must be padded on the right with blanks.

Examples

The following statement sets the CURRENT QUERY ACCELERATION special
register to NONE to indicate that no acceleration is done.

SET CURRENT QUERY ACCELERATION NONE;

Related reference:
“CURRENT QUERY ACCELERATION” on page 186

Chapter 5. Statements 1907

SET CURRENT REFRESH AGE
The SET CURRENT REFRESH AGE statement changes the value of the CURRENT
REFRESH AGE special register.

The CURRENT REFRESH AGE value corresponding to ANY (99 999 999 999 999)
cannot be used in timestamp arithmetic operations because the result would be
outside the valid range of dates.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT REFRESH AGE
=

numeric-constant
ANY
host-variable

��

Description

numeric-constant
A DECIMAL(20,6) value representing a timestamp duration. The value must be
0 or 99 999 999 999 999, the partial seconds of which is ignored and thus can
be any value.

0 Indicates that query optimization using materialized query tables will
not be attempted.

99999999999999
Indicates that any materialized query tables identified by the
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
special register may be used to optimize the processing of a query. This
value represents 9999 years, 99 months, 99 days, 99 hours, 99 minutes,
and 99 seconds.

ANY
Shorthand for 99999999999999.

host-variable
A variable of type DECIMAL(20,6) or other type that is assignable to
DECIMAL(20,6). It cannot be set to null. If host-variable has an associated
indicator variable, the value of that indicator variable must not indicate a null
value. The value of host-variable must be 0 or 99 999 999 999 999, the partial
seconds of which is ignored and thus can be any value.

1908 SQL Reference

Notes

Materialized query tables created or altered with DISABLE QUERY
OPTIMIZATION specified are not eligible for automatic query rewrite. Thus, they
are not affected by the setting of this special register.

Setting the CURRENT REFRESH AGE special register to a value other than zero
should be done with caution. Allowing a materialized query table that may not
represent the values of the underlying base table to be used to optimize the
processing of a query may produce results that do not accurately represent the
data in the underlying table. This situation may be acceptable when you know the
underlying data has not changed or you are willing to accept the degree of error in
the results based on your knowledge of the data.

Examples

Example: Set the CURRENT REFRESH AGE special register to 99 999 999 999 999 to
indicate that any materialized query tables identified by the CURRENT
MAINTAINED TABLE TYPES FOR OPTIMIZATION special register can be used to
optimize the processing of a query.

SET CURRENT REFRESH AGE ANY;

Related reference:
“CURRENT REFRESH AGE” on page 187

Chapter 5. Statements 1909

SET CURRENT ROUTINE VERSION
The SET CURRENT ROUTINE VERSION statement assigns a value to the
CURRENT ROUTINE VERSION special register. The special register sets the
override value for the version identifier of native SQL procedures when they are
invoked.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT ROUTINE VERSION
=

routine-version-id
host-variable
string-constant

��

Description

routine-version-id
Specifies a routine version identifier.

host-variable
Specifies a host variable that contains a version identifier. The host variable
must conform to the following rules:
v Be a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC variable. The actual

length of the contents of the host variable must not exceed the length of a
version identifier.

v Include a routine version identifier that is left justified and conforms to the
rules for forming an ordinary identifier or a delimited identifier, or must be
blank or empty.

v Be padded on the right with blanks if the host variable is a fixed length
character.

v Not be empty or contain only blanks if the identifier is delimited.
v Not be the null value.

string-constant
Specifies a string constant that contains a version identifier. The string constant
must conform to the following rules:
v Have a length that does not exceed the length of a routine-version-id.
v Include a routine version identifier that is left justified and conforms to the

rules for forming an ordinary identifier or a delimited identifier, or must be
blank or an empty string

v Not be empty or contain only blanks if the identifier is delimited

1910 SQL Reference

Notes

Resetting the special register: To reset the special register, specify an empty string
constant, a string of blanks, or a host variable that is empty or contains only
blanks. A routine version override is not in effect when the special register is reset.

Implications of using the special register: Setting the CURRENT ROUTINE
VERSION special register to a version identifier will affect all SQL procedures that
are subsequently invoked using CALL statements that specify the name of the
procedure using a host variable, until the value of CURRENT ROUTINE VERSION
is changed. If a version of the procedure that is identified by the version identifier
in the special register exists for an SQL procedure that is being invoked, that
version of the procedure is used. Otherwise, the currently active version of the
procedure (as noted in the catalog) is used.

When you use the CURRENT ROUTINE VERSION special register to test a version
of one or more native SQL procedures, you should use a routine version identifier
that is a value other than the default value (V1) on the CREATE PROCEDURE
statement. This will avoid having the special register affect more procedures that
you intend when testing a new version of a procedure. For example, assume that
you want to run version VER2 of procedure P1, and procedure P1 invokes another
procedure, P2. If a version exists for both procedures P1 and P2 with the routine
version identifier VER2, that version will be used for both procedures.

Examples

Example: The following statement sets the CURRENT ROUTINE VERSION special
register so that the override value for the version identifier of native SQL
procedures will be the value that is specified in the host variable rvid:

SET CURRENT ROUTINE VERSION = :rvid;

Related reference:
“CURRENT ROUTINE VERSION” on page 188

Chapter 5. Statements 1911

SET CURRENT RULES
The SET CURRENT RULES statement assigns a value to the CURRENT RULES
special register.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT RULES = string-constant
host-variable

��

Description

This statement replaces the value of the CURRENT RULES special register with the
value of the string constant or host variable. The value must be a character string
that is 3 bytes in length, and the value must be 'DB2' or 'STD'.

Notes

For the effect of the values 'DB2' and 'STD' on the execution of certain SQL
statements, see “CURRENT RULES” on page 189.

Example

Set the SQL rules to be followed to DB2.
EXEC SQL SET CURRENT RULES = ’DB2’;

Related reference:
“CURRENT RULES” on page 189

1912 SQL Reference

SET CURRENT SQLID
The SET CURRENT SQLID statement assigns a value to the CURRENT SQLID
special register.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. The value to which
special register CURRENT SQLID is set is used as the SQL authorization ID for
dynamic SQL statements only if DYNAMICRULES run behavior is in effect. The
CURRENT SQLID value is ignored for the other DYNAMICRULES behaviors.

Authorization

If any of the authorization IDs of the process has SYSADM authority, CURRENT
SQLID can be set to any value when the system parameter, SEPARATE SECURITY,
is set to NO. Otherwise, the specified value must be equal to one of the
authorization IDs of the application process. This rule always applies, even when
SET CURRENT SQLID is a static statement.CURRENT SQLID cannot be set to the
name of a role.

Syntax

�� SET CURRENT SQLID = SESSION_USER
USER

string-constant
host-variable

��

Description

The value of CURRENT SQLID is replaced by the value of SESSION_USER,
string-constant, or host-variable. The value specified by a string-constant or
host-variable must be a character string that contains 8 characters or less. Unless
some authorization ID of the process has SYSADM authority, the value must be
equal to one of the authorization IDs of the process.

Notes

Effect on authorization IDs: SET CURRENT SQLID does not change the primary
authorization ID of the process.

If the SET CURRENT SQLID statement is executed in a stored procedure or
user-defined function package that has a dynamic SQL behavior other than run
behavior, the SET CURRENT SQLID statement does not affect the authorization ID
that is used for dynamic SQL statements in the package. The dynamic SQL
behavior determines the authorization ID. For more information, see the discussion
of DYNAMICRULES in DB2 Command Reference.

Effect on special register CURRENT PATH: When the value of the PATH special
register depends on the value of the CURRENT SQLID special register, any
changes to the CURRENT SQLID special register are not reflected in the value of

Chapter 5. Statements 1913

the PATH special register until a commit operation is performed or a SET PATH
statement is issued to change the SQL path to use the new value of the CURRENT
SQLID.

DRDA classification: SET CURRENT SQLID is executed by the database server
and is therefore classified as a non-local SET statement in DRDA.

Examples

Example 1: Set the CURRENT SQLID to the primary authorization ID.
SET CURRENT SQLID = SESSION_USER;

1914 SQL Reference

SET CURRENT TEMPORAL BUSINESS_TIME
The SET CURRENT TEMPORAL BUSINESS_TIME statement changes the value of
the CURRENT TEMPORAL BUSINESS_TIME special register.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT TEMPORAL BUSINESS_TIME
=

NULL
expression

��

Description

NULL
Specifies the null value.

expression
Specifies an expression that returns the null value or the value of one of the
following built-in data types:
v Timestamp
v Character string
v Graphic string

If the expression is a character or graphic string, it must meet the following
requirements:
v It must not be a CLOB or DBCLOB.
v The value of the expression must be a valid character-string or

graphic-string representation of a timestamp.
v The result of the expression must be castable to TIMESTAMP(12).

expression can contain any of the following supported operands:
v Constant
v Special register
v Variable (host variable, SQL parameter, SQL variable, or global variable)
v Scalar function whose arguments are supported operands
v CAST specification where the cast operand is a supported operand
v Expression that uses arithmetic operators and operands

Related information:

“String representations of datetime values” on page 101
“Casting between data types” on page 111

Chapter 5. Statements 1915

|

|
|

|

|
|

|

|

|
|

|||||||||||||||||||||||||

|
||

|

|
|

|
|
|
|
|
|

|
|

|

|
|

|

|
|
|
|
|
|
|

|

|

|

Notes

Transactions
The SET CURRENT TEMPORAL BUSINESS_TIME statement is not a
committable operation. The ROLLBACK statement has no effect on
CURRENT TEMPORAL BUSINESS_TIME.

Effects on other special registers
The setting of the CURRENT TEMPORAL BUSINESS_TIME special register
does not affect other special registers, such as the CURRENT DATE and
CURRENT TIMESTAMP special registers.

Examples

Example of setting the special register to a valid value
Both of the following statements set the CURRENT TEMPORAL
BUSINESS_TIME special register to '2008-01-06-00.00.00.000000000000'.
SET CURRENT TEMPORAL BUSINESS_TIME = TIMESTAMP(’2008-01-01’) + 5 DAYS ;
SET CURRENT TEMPORAL BUSINESS_TIME = ’2008-01-06-00.00.00.000000000000’;

Example of how setting the special register affects subsequent SQL statements
In the following example, the first statement sets the CURRENT
TEMPORAL BUSINESS_TIME special register to last month. Assume that
table att1 is an application-period temporal table. The setting of the
CURRENT TEMPORAL BUSINESS_TIME special register affects the
update of att1.
SET CURRENT TEMPORAL BUSINESS_TIME = CURRENT TIMESTAMP - 1 MONTH
UPDATE att1 SET c1 = 5 WHERE pk = 100

Assume that the att1 table has columns bt_begin and bt_end to indicate the
beginning and end of the BUSINESS_TIME period. In this example, DB2
interprets the UPDATE statement as follows:
UPDATE att1 SET c1 = 5 WHERE pk = 100
AND bt_begin <= CURRENT TEMPORAL BUSINESS_TIME
AND bt_end > CURRENT TEMPORAL BUSINESS_TIME

Example of setting the special register so that it does not affect subsequent SQL
statements

The following statement sets the CURRENT TEMPORAL BUSINESS_TIME
special register to the null value. Subsequent SQL statements that reference
application-period temporal tables are not affected by the CURRENT
TEMPORAL BUSINESS_TIME special register.
SET CURRENT TEMPORAL BUSINESS_TIME = NULL

Related concepts:
“Data types” on page 80
Related reference:
“CURRENT TEMPORAL BUSINESS_TIME” on page 194

1916 SQL Reference

|

|
|
|
|

|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|

|

|

|

SET CURRENT TEMPORAL SYSTEM_TIME
The SET CURRENT TEMPORAL SYSTEM_TIME statement changes the value of
the CURRENT TEMPORAL SYSTEM_TIME special register.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT TEMPORAL SYSTEM_TIME
=

NULL
expression

��

Description

NULL
Specifies the null value.

expression
Specifies an expression that returns the null value or the value of one of the
following built-in data types:
v Timestamp
v Character string
v Graphic string

If the expression is a character or graphic string, it must meet the following
requirements:
v It must not be a CLOB or DBCLOB.
v The value of the expression must be a valid character-string or

graphic-string representation of a timestamp.
v The result of the expression must be castable to TIMESTAMP(12).

expression can contain any of the following supported operands:
v Constant
v Special register
v Variable (host variable, SQL parameter, SQL variable, or global variable)
v Scalar function whose arguments are supported operands
v CAST specification where the cast operand is a supported operand
v Expression that uses arithmetic operators and operands

Related information:

“String representations of datetime values” on page 101
“Casting between data types” on page 111

Chapter 5. Statements 1917

|

|
|

|

|
|

|

|

|
|

|||||||||||||||||||||||||

|
||

|

|
|

|
|
|
|
|
|

|
|

|

|
|

|

|
|
|
|
|
|
|

|

|

|

Notes

Transactions
The SET CURRENT TEMPORAL SYSTEM_TIME statement is not a
committable operation. The ROLLBACK statement has no effect on
CURRENT TEMPORAL SYSTEM_TIME.

Effects on other special registers
The setting of the CURRENT TEMPORAL SYSTEM_TIME special register
does not affect other special registers, such as the CURRENT DATE and
CURRENT TIMESTAMP special registers.

Examples

Example of setting the special register to a valid value
Both of the following statements set the CURRENT TEMPORAL
SYSTEM_TIME special register to '2008-01-06-00.00.00.000000000000'.
SET CURRENT TEMPORAL SYSTEM_TIME = TIMESTAMP(’2008-01-01’) + 5 DAYS;
SET CURRENT TEMPORAL SYSTEM_TIME = ’2008-01-06-00.00.00.000000000000’;

Example of setting the special register so that it does not affect subsequent SQL
statements

The following statement sets the CURRENT TEMPORAL SYSTEM_TIME
special register to the null value. Subsequent SQL statements that reference
system-period temporal tables are not affected by the CURRENT
TEMPORAL SYSTEM_TIME special register.
SET CURRENT TEMPORAL SYSTEM_TIME = NULL

Related concepts:
“Data types” on page 80
Related reference:
“CURRENT TEMPORAL SYSTEM_TIME” on page 196

1918 SQL Reference

|

|
|
|
|

|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|

|

|

|

|

|

SET ENCRYPTION PASSWORD
The SET ENCRYPTION PASSWORD statement sets the value of the encryption
password and, optionally, the password hint. The encryption and decryption
built-in functions use this password and password hint for data encryption unless
the functions are invoked with an explicitly specified password and hint. The
password is not tied to DB2 authentication and is used only for data encryption.

Invocation

The statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET ENCRYPTION PASSWORD
=

password-variable
password-string-constant

�

�
=

WITH HINT hint-variable
hint-string-constant

��

Description

password-variable
Specifies a variable that contains an encryption password. The variable:
v Must be a CHAR or VARCHAR variable. The actual length of the contents

of the variable must be between 6 and 127 inclusive or must be an empty
string. If an empty string is specified, the default encryption password is set
to no value.

v Must not be the null value.
v All characters are case-sensitive and are not converted to uppercase

characters.

password-string-constant
A character constant that contains an encryption password. The length of the
constant must be between 6 and 127 inclusive or must be an empty string. If
an empty string is specified, the default encryption password is set to no
value. All characters are case-sensitive and are not converted to uppercase
characters.

WITH HINT
Indicates that a value is specified that will help you remember passwords (for
example, 'Ocean' as a hint to remember 'Pacific'). If a hint value is specified,
the hint is used as the default for encryption functions. The hint can
subsequently be retrieved for an encrypted value using the GETHINT function.

Chapter 5. Statements 1919

If this clause is not specified and a hint is not explicitly specified on the
encryption function, no hint will be embedded in encrypted data result.

hint-variable
Specifies a variable that contains an encryption password hint. The variable:
v Must be a CHAR or VARCHAR variable. The actual length of the contents

of the variable must not be greater than 32. If an empty string is specified,
the default encryption password hint is set to an empty string.

v Must not be the null value.
v All characters are case-sensitive and are not converted to uppercase

characters.

hint-string-constant
A character string constant that contains an encryption password hint. The
length of the constant must not be greater than 32. If the value is an empty
string, the default encryption password hint is set to an empty string.

Notes

Normal DB2 mechanisms are used to transmit the host variable or constant to the
database server.

Examples

Example 1: Set the ENCRYPTION PASSWORD to the value in :hv1. Do not specify
a hint for the password.

SET ENCRYPTION PASSWORD = :hv1

Example 2: Set the ENCRYPTION PASSWORD to the value in :hv1. Specify the
value in :hv2 as the hint for the password.

SET ENCRYPTION PASSWORD = :hv1 WITH HINT :hv2

Related reference:
“ENCRYPTION PASSWORD” on page 201
“ENCRYPT_TDES” on page 464
“DECRYPT_BINARY, DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB” on
page 451

1920 SQL Reference

SET PATH
The SET PATH statement assigns a value to the CURRENT PATH special register.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET
CURRENT

PATH
=

�

,
(1)

schema-name
SYSTEM PATH

SESSION_USER
USER
CURRENT

PATH
CURRENT PACKAGE PATH
host-variable
string-constant

��

Notes:

1 SYSTEM PATH, SESSION_USER or USER, and CURRENT PATH can be specified only once each.

Description

The value of PATH is replaced by the values specified.

schema-name
Identifies a schema. DB2 does not verify that the schema exists. For example, a
schema name that is misspelled is not detected, which could affect the way
subsequent SQL operates.

SYSTEM PATH
Specifies the schema names "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM".

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register.

PATH
Specifies the value of the CURRENT PATH special register before the execution
of this statement.

CURRENT PACKAGE PATH
Specifies the value of the CURRENT PACKAGE PATH special register.

host-variable
A variable with a data type of CHAR or VARCHAR. The value of host-variable
must not be null and must represent a valid schema name.

Chapter 5. Statements 1921

The schema name must:
v Be left justified within the host variable
v Be padded on the right with blanks if its length is less than that of the host

variable

string-constant
A character string constant that represents a valid schema name.

If the schema name specified in string-constant will also be specified in other
SQL statements and the schema name does not conform to the rules for
ordinary identifiers, the schema name must be specified as a delimited
identifier in the other SQL statements.

Notes

Restrictions on SET PATH:
These restrictions apply to the SET PATH statement:
v If the same schema name appears more than one time in the path, the

first occurrence of the name is used and a warning is issued.
v The length of the CURRENT PATH special register limits the number of

schema names that can be specified. The special register string is built
by taking each schema name that is specified and removing trailing
blanks, delimiting with double quotes, changing each double quote
character to two double quote characters within the schema name as
necessary, and then separating each schema name with a comma. The
length of the resulting string cannot exceed 2048 bytes.

v The schema name SYSPUBLIC cannot be specified in the SQL path, even
if you specify the value as a delimited identifier.

Specifying "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM":
Schemas "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM" do not need to
be specified in the special register. If these schemas are not explicitly
specified in the CURRENT PATH special register, each schema is implicitly
assumed at the front of the SQL path; if any of these schemas are not
specified, they are assumed in the order of "SYSIBM", "SYSFUN",
"SYSPROC", "SYSIBMADM" (see “SQL path” on page 64 for an example).
Only the schemas that are explicitly specified in the CURRENT PATH
register are included in the 2048 byte limit.

To avoid having "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM"
implicitly added to the front of the SQL path, explicitly specify them in the
path when setting the value of the register. If you specify them at the end
of the path, DB2 will check all the other schemas in the path first.

Specifying keywords versus delimited identifiers:
There is a difference between specifying a keyword and specifying a
delimited identifier. For example, specifying SESSION_USER with and
without escape characters. To indicate that the value of the SESSION_USER
special register should be used in the SQL path, specify the keyword
SESSION_USER. If you specify SESSION_USER is as a delimited identifier
instead (for example, "SESSION_USER"), it is interpreted as a schema name
of 'SESSION_USER'. For example, assume that the current value of the
SESSION_USER special register is SMITH and that the following statement
is issued:
SET PATH = SYSIBM, SYSPROC, SESSION_USER, "SESSION_USER"

The result is that the value of the SQL path is set to:
"SYSIBM","SYSPROC","SMITH","SESSION_USER".

1922 SQL Reference

|
|

Specifying a schema name in an SQL procedure:
Because a host variable (SQL variable) in an SQL procedure does not begin
with a colon, DB2 uses the following rules to determine whether a value
that is specified in a SET PATH=name statement is a variable or a
schema-name:
v If name is the same as a parameter or SQL variable in the SQL

procedure, DB2 uses name as a parameter or SQL variable and assigns
the value in name to PATH.

v If name is not the same as a parameter or SQL variable in the SQL
procedure, DB2 uses name as a schema-name and assigns the value name
to PATH.

The use of the path to resolve object names:
For information on when the SQL path is used to resolve unqualified data
type, function, and procedure names and when the CURRENT PATH
special register provides the SQL path, see “SQL path” on page 64.

DRDA classification:
The SET PATH statement is executed by the database server and, therefore,
is classified as a non-local SET statement in DRDA.

Alternative syntax and synonyms:
For compatibility with previous releases of DB2 or other products in the
DB2 family, DB2 supports CURRENT FUNCTION PATH or
CURRENT_PATH as a synonym for CURRENT PATH. CURRENT_PATH is
consistent with the SQL standard name of the special register.

Examples

Example 1: Set the CURRENT PATH special register to the list of schemas:
"SCHEMA1", "SCHEMA#2", "SYSIBM".

SET PATH = SCHEMA1,"SCHEMA#2", SYSIBM;

When the SQL path specified in the special register is used for name resolution the
system schemas which were not explicitly specified in the special register are
implicitly assumed at the front of the SQL path, making the effective value of the
path:

SYSFUN, SYSPROC, SYSIBMADM, SCHEMA1, SCHEMA#2, SYSIBM

Example 2: Add schema SMITH and SYSPROC to the value of the CURRENT
PATH special register that was set in Example 1.

SET PATH = CURRENT PATH, SMITH, SYSPROC;

The effective value of the SQL path specified by the special register becomes:
SYSFUN, SYSIBMADM, SCHEMA1, SCHEMA#2, SYSIBM, SMITH, SYSPROC

Related reference:
“CURRENT PATH” on page 184

Chapter 5. Statements 1923

SET SCHEMA
The SET SCHEMA statement assigns a value to the CURRENT SCHEMA special
register. If the package is bound with the DYNAMICRULES BIND option, this
statement does not affect the qualifier that is used for unqualified database object
references.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

�� SET
CURRENT

SCHEMA
CURRENT_SCHEMA

=
schema-name

SESSION_USER
USER

host-variable
string-constant
DEFAULT

��

Description

schema-name
Identifies a schema. No validation that the schema exists is made at the time
the CURRENT SCHEMA is set. For example, if a schema name is misspelled, it
could affect the way subsequent SQL operates.

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register.

host-variable
Specifies a host variable that contains a schema name. The content is not
folded to uppercase.

The host variable must:
v Be a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC variable. The actual

length of the contents of the host-variable must not exceed the length of a
schema name.

v Not be set to null. If host-variable has an associated indicator variable, the
value of that indicator variable must not indicate a null value.

v Include a schema name that is left justified and conforms to the rules for
forming an ordinary identifier or delimited identifier. If the identifier is
delimited, it must not be empty or contain only blanks.

v Be padded on the right with blanks if the host variable is fixed length.
v Not contain SESSION_USER, USER, or DEFAULT.

1924 SQL Reference

string-constant
Specifies a string constant that contains a schema name. The content is not
folded to uppercase.

The string constant must:
v Have a length that does not exceed the maximum length of a schema name.
v Include a schema name that is left justified and conforms to the rules for

forming an ordinary identifier or delimited identifier. If the identifier is
delimited, it must not be empty or contain only blanks.

v Not contain SESSION_USER, USER, or DEFAULT.

DEFAULT
Specifies that CURRENT SCHEMA is to be set to its initial value, as if it had
never been explicitly set during the application process. For information about
the initial value of CURRENT SCHEMA, see “CURRENT SCHEMA” on page
191.

Notes

Considerations for keywords:
There is a difference between specifying a single keyword (such as
SESSION_USER or DEFAULT) as a single keyword or as a delimited
identifier. To indicate that the current value of the SESSION_USER special
register should be used for setting the current schema, specify
SESSION_USER as a keyword. To indicate that the special register should
be set to its default value, specify DEFAULT as a keyword. If
SESSION_USER or DEFAULT is specified as a delimited identifier instead
(for example, "SESSION_USER"), it is interpreted as a schema name of that
value ("SESSION_USER").

Transaction considerations:
The SET SCHEMA statement is not a committable operation. ROLLBACK
has no effect on CURRENT SCHEMA.

Usage of the assigned value:
The value of the CURRENT SCHEMA special register, as set by this
statement, is used as the schema name in all dynamic SQL statements. The
QUALIFIER bind option specifies the schema name for use as the qualifier
for unqualified database object names in static SQL statements.

Impact on other special registers:
Setting the CURRENT SCHEMA special register does not affect any other
special register. Therefore, the CURRENT SCHEMA is not be included in
the SQL path that is used to resolve the schema name for unqualified
references to function, procedures and user-defined types in dynamic SQL
statements. To include the current schema value in the SQL path, whenever
the SET SCHEMA statement is issued, also issue the SET PATH statement
including the schema name from the SET SCHEMA statement.

Examples

Example 1: The following statement sets the CURRENT SCHEMA special register.
EXEC SQL SET SCHEMA RICK;

Example 2: The following example retrieves the current value of the CURRENT
SCHEMA special register into the host variable called CURSCHEMA.

EXEC SQL SELECT CURRENT SCHEMA INTO :CURSCHEMA
FROM SYSIBM.SYSDUMMY1;

Chapter 5. Statements 1925

The value of the host variable is RICK.

Example 3: Assume that the following statements are issued:
SET CURRENT SQLID = ’USRT001’;
SET CURRENT SCHEMA = ’USRT002’;

At this point, the two special registers contain different values. Any subsequent
CREATE statements will use USRT002 as the implicit qualifier, but the owner of
the newly created objects is USRT001.

Example 4: Assume that the value of CURRENT SCHEMA is 'Jane' and that the
default value of the PATH special register was established using that value (that is,
the value of PATH is "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", "JANE").
Change the value of the CURRENT SCHEMA special register to 'John'.

SET CURRENT SCHEMA = ’JOHN’;

To change the SQL path to use the updated CURRENT SCHEMA value of "JOHN",
issue a SET PATH statement to change the value of the PATH special register to
specify "JOHN" as the first schema to check:
SET PATH = ’JOHN’, CURRENT PATH;

Alternatively, a commit would cause PATH to be re-initialized. Otherwise, the path
remains "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", "JANE"), which might
cause unqualified object names to resolve to "JANE" when you want them to
resolve to "JOHN".

1926 SQL Reference

SET SESSION TIME ZONE
The SET SESSION TIME ZONE statement assigns a value to the SESSION TIME
ZONE special register.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
SESSION =

SET TIME ZONE string-constant
variable

��

Description

string-constant
Identifies a time zone with a value of the form '±th:tm', where th represents the
time zone hour between -12 and +14, and tm represents the time zone minutes
between 0 and 59, with values ranging from -12:59 to +14:00.

variable
Specifies a variable that contains a time zone. The variable must be a CHAR or
VARCHAR variable that is not followed by an indicator variable. The variable
must not be the null value. The value must be left justified and be of the form
'±th:tm', where th represents the time zone hour between -12 and +14, and tm
represents the time zone minutes between 0 and 59, with values ranging from
-12:59 to +14:00.

Notes

Impact on other special registers:
Setting the SESSION TIME ZONE special register does not affect the
CURRENT TIMEZONE special register.

Syntax alternatives:
SESSIONTIMEZONE, SESSION TIMEZONE, and TIMEZONE can be
specified as an alternative to SESSION TIME ZONE or TIME ZONE.

Example

Set the SESSION TIME ZONE as -8:00:
SET SESSION TIME ZONE = ’-8:00’;

Related reference:
“SESSION TIME ZONE” on page 203

Chapter 5. Statements 1927

SIGNAL
The SIGNAL statement is used to signal an error. It causes an error to be returned
with the specified SQLSTATE and error description.

For a description of the statement, see “SIGNAL statement” on page 2006.

1928 SQL Reference

TRUNCATE
The DB2 TRUNCATE statement deletes all rows for either base tables or declared
global temporary tables. The base table can be in a simple table space, a segmented
table space, a partitioned table space, or a universal table space. If the table
contains LOB or XML columns, the corresponding table spaces and indexes are
also truncated.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization

The privilege set that is defined below must include at least one of the following
privileges:
v The DELETE privilege for the table
v Ownership of the table
v DBADM authority for the database
v DATAACCESS authority
v SYSADM authority

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

If the IGNORE DELETE TRIGGERS option is specified, the privilege set must
include at least one of the following privileges:
v The ALTER privilege for the table
v Ownership of the table
v DBADM authority for the database
v System DBADM authority
v SYSADM authority

If row access control is activated for the table, the privilege set must include at
least one of the following privileges or authorities:
v Ownership of the table
v DBADM authority
v SYSADM authority
v SYSCTRL authority
v System DBADM authority

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the statement is dynamically prepared, the privilege set is determined by the
DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is
summarized in Table 94 on page 841. (For more details on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them,
see “Authorization IDs and dynamic SQL” on page 75.)

Chapter 5. Statements 1929

Syntax

�� TRUNCATE
TABLE

table name
DROP STORAGE

REUSE STORAGE

IGNORE DELETE TRIGGERS
RESTRICT WHEN DELETE TRIGGERS �

�
IMMEDIATE

��

Description

table-name
Identifies the table that is to be truncated. The name must identify a table that
exists at the current server. The name must not identify the following objects:
v a view
v an auxiliary table
v an XML table
v a catalog table
v a system-period temporal table

If table-name is a base table of a table space, all tables that are defined under
the table will also be truncated (for example: auxiliary LOB table spaces and
XML table spaces), and all of its associated indexes will also be truncated.

DROP STORAGE or REUSE STORAGE
Specifies whether to drop or reuse the existing storage that is allocated for the
table.

DROP STORAGE
Specifies that all storage that is allocated for the table is released and made
available for use for the same table or any other table that resides in the
table space. The scope of DROP STORAGE is always at the table space
level and the deallocated space is always available for reuse by all tables in
the table space.

DROP STORAGE is the default.

REUSE STORAGE
Specifies that all storage that is allocated for the table will be emptied, but
will continue to be allocated for the table. REUSE STORAGE is ignored
for a table in a simple table space and the statement is processed as if
DROP STORAGE is specified.

RESTRICT WHEN DELETE TRIGGERS or IGNORE DELETE TRIGGERS
Specifies what to do when delete triggers are defined on the table.

RESTRICT WHEN DELETE TRIGGERS
Specifies that an error is returned if delete triggers are defined on the table.

IGNORE DELETE TRIGGERS
Specifies that any delete triggers that are defined for the table are not
activated by the truncate operation.

IGNORE DELETE TRIGGERS is the default.

1930 SQL Reference

IMMEDIATE
Specifies that the truncate operation is processed immediately and cannot be
undone. If the IMMEDIATE option is specified, the table must not contain any
uncommitted updates. In the case of a table in a multi-table table space, if
there are any uncommitted updates to any table in the table space, the truncate
operation will fail. Also, if there are any uncommitted CREATE, ALTER or
DROP statements for any table in the table space, the truncate operation will
fail.

The truncated table is immediately available for use in the same unit of work.
Although a ROLLBACK statement is allowed to execute after a TRUNCATE
statement, the truncate operation is not undone, and the table remains in a
truncated state. For example, if another data change operation is done on the
table after the TRUNCATE IMMEDIATE statement and then the ROLLBACK
statement is executed, the truncate operation will not be undone, but all other
data change operations are undone.

If IMMEDIATE is not specified, a ROLLBACK statement can undo the
truncate operation.

The IMMEDIATE option can be specified for a table in a segmented table
space or a universal table space which allows deallocated spaces to be
reclaimed immediately for subsequent insert operations in the same unit of
work without committing the truncate operation.

Notes

Rules and restrictions:
The truncate operation cannot be executed if the table is a parent table in
an enforced referential constraint. The DB2 subsystem issues an error when
it detects the existence of rule violations. Therefore, if the referential
integrity constraint exists, the TRUNCATE statement will be restricted
regardless of whether the child table contains rows.

The TRUNCATE statement cannot be used if the table is a
system-maintained temporal table.

If the TRUNCATE statement is used on a tables where any of the following
conditions is true, the truncate operation will perform in a similar way to a
mass delete operation:
v Tables with Change Data Capture (CDC) attribute

The DB2 subsystem allows a table with the CDC-enabled attribute to be
truncated without imposing any new restrictions.

v Tables with multi-level security
If the table contains a column that is defined as a security label, the
truncate operation needs to examine each row to determine if the
security label of the authorization ID or role has the authority to delete
that row. However, if the primary authorization ID or role has
write-down privilege, verification of each row in the table is not
necessary.

v Tables with a VALIDPROC attribute
If a VALIDPROC is defined for the table, the truncate operation needs to
verify the validity of each row in the table.

TRUNCATE and table spaces that are not logged:
The TRUNCATE TABLE statement can be used to remove a table space
from the logical page list and to reset recover-pending status. When the
table space is segmented or universal, the table is the only table in the

Chapter 5. Statements 1931

table space, and the table does not have a VALIDPROC, referential
constraints, delete triggers, or a SECURITY LABEL column, use the
TRUNCATE TABLE statement to empty the table and the table space will
be removed from the LPL and recover-pending status will be reset.

Truncating rows from a table with activated row permissions or column access
control:

Row permissions and column access control is not enforced for the
TRUNCATE statement.

Examples

Example 1: Empty an unused inventory table regardless of any existing triggers and
return its allocated space.

TRUNCATE TABLE INVENTORY
DROP STORAGE

IGNORE DELETE TRIGGERS;

Example 2: Empty an unused inventory table regardless of any existing delete
triggers but preserve its allocated space for later reuse.

TRUNCATE TABLE INVENTORY
REUSE STORAGE
IGNORE DELETE TRIGGERS;

Example 3: Empty an unused inventory table permanently (a ROLLBACK statement
cannot undo the truncate operation when the IMMEDIATE option is specified)
regardless of any existing delete triggers and preserve its allocated space for
immediate use.

TRUNCATE TABLE INVENTORY
REUSE STORAGE
IGNORE DELETE TRIGGERS
IMMEDIATE;

1932 SQL Reference

UPDATE
The UPDATE statement updates the values of specified columns in rows of a table
or view or activates an instead of update trigger. Updating a row of a view
updates a row of the table on which the view is based if no instead of update
trigger is defined for the update operation on the view. If such a trigger is defined,
the trigger is activated instead of the UPDATE statement. The table or view can
exist at the current server or at any DB2 subsystem with which the current server
can establish a connection.

There are two forms of this statement:
v The searched UPDATE form is used to update one or more rows optionally

determined by a search condition.
v The positioned UPDATE form specifies that one or more rows corresponding to

the current cursor position are to be updated.

Invocation

This statement can be embedded in an application program or issued interactively.
A positioned UPDATE can be embedded in an application program. Both forms are
executable statements that can be dynamically prepared.

Authorization

Authority requirements depend on whether the object identified in the statement is
a user-defined table, a catalog table for which updates are allowed, or a view, and
whether SQL standard rules are in effect:

When a user-defined table is identified: The privilege set must include at least one
of the following:
v The UPDATE privilege on the table
v The UPDATE privilege on each column to be updated
v Ownership of the table
v DBADM authority on the database that contains the table
v SYSADM authority

If the database is implicitly created, the database privileges must be on the implicit
database or on DSNDB04.

When a catalog table is identified: The privilege set must include at least one of
the following:
v The UPDATE privilege on each column to be updated
v DBADM authority on the catalog database
v SYSCTRL authority
v SYSADM authority

When a view is identified: The privilege set must include at least one of the
following:
v The UPDATE privilege on the view
v The UPDATE privilege on each column to be updated
v SYSADM authority

Chapter 5. Statements 1933

If the expression in the assignment-clause contains a reference to a column of the
table or view, or if the search-condition in a searched UPDATE contains a reference
to a column of the table or view, the privilege set must include at least one of the
following:
v The SELECT privilege on the table or view
v Ownership of the table or view
v DBADM authority on the database that contains the table, if the target is a table

and that table that is not a catalog table
v DATAACCESS
v SYSADM authority

When FOR PORTION OF BUSINESS_TIME is specified: The privilege set must
include at least one of the following:
v The UPDATE privilege on the columns of the BUSINESS_TIME period
v The UPDATE privilege on the table
v Ownership of the table or view
v DBADM authority on the database that contains the table, if the target is a table

and that table that is not a catalog table
v DATAACCESS
v SYSADM authority

If the search-condition in a searched UPDATE includes a subquery, or if the
assignment-clause includes a scalar-fullselect or a row-fullselect, see “Authorization” on
page 762 for an explanation of the authorization required.

The owner of a view, unlike the owner of a table, might not have UPDATE
authority on the view (or might have UPDATE authority without being able to
grant it to others). The nature of the view itself can preclude its use for UPDATE.
For more information, see the discussion of authority in “CREATE VIEW” on page
1527.

Privilege set: If the statement is embedded in an application program, the
privilege set is the privileges that are held by the owner of the plan or package. If
the statement is dynamically prepared, the privilege set is determined by the
DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is
summarized in Table 94 on page 841. (For more information on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them,
see “Authorization IDs and dynamic SQL” on page 75).

searched update:

1934 SQL Reference

�� UPDATE table-name
view-name period-clause correlation-name include-column

�

� SET assignment-clause
WHERE search-condition

�
(1)

isolation-clause
SKIP LOCKED DATA

�

�
QUERYNO integer

��

Notes:

1 The same clause must not be specified more than one time.

�� UPDATE table-name
view-name correlation-name

SET assignment-clause �

� WHERE CURRENT OF cursor-name
FOR ROW host-variable OF ROWSET

integer-constant

��

�� FOR PORTION OF BUSINESS_TIME FROM value1 TO value2 ��

�� �

,

INCLUDE (column-name data-type) ��

�� built-in-type
distinct-type

��

positioned update:

period-clause:

include-column:

data-type:

Chapter 5. Statements 1935

�� SMALLINT
INTEGER
INT

BIGINT
(5,0)

DECIMAL
DEC ,0

NUMERIC (integer)
,integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(34)
DECFLOAT

(16)
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer)
CHAR

VARCHAR
(1)

GRAPHIC
(integer)

VARGRAPHIC (integer)
(1)

BINARY
(integer)

BINARY VARYING (integer)
VARBINARY

DATE
TIME

(6) WITHOUT TIME ZONE
TIMESTAMP

(integer) WITH TIME ZONE

��

built-in-type:

assignment clause:

1936 SQL Reference

�� �

� �

,

column-name= expression
DEFAULT
NULL

, ,
(1)

(column-name) = (expression)
DEFAULT
NULL

(2)
row-fullselect

(3)
UNPACK-function-invocation

��

Notes:

1 The number of expressions, DEFAULT, and NULL keywords must match the number of
column-names. Expressions must not refer to UNPACK-function-invocation..

2 The number of columns in the select list must match the number of column-names.

3 The number of items returned from UNPACK-function-invocation must match the number of
column names.

�� WITH RR
RS
CS

��

Description

table-name or view-name
Identifies the object of the UPDATE statement. The name must identify a table
or view that exists at the DB2 subsystem that is identified by the implicitly or
explicitly specified location name. The name must not identify one of the
following tables:
v An auxiliary table
v A created temporary table or a view of a created temporary table
v A catalog table with no updatable columns or a view of a catalog table with

no updatable columns
v A read-only view that has no INSTEAD OF trigger defined for its update

operations. (For a description of a read-only view, see “CREATE VIEW” on
page 1527.)

v A system-maintained materialized query table
v A table that is implicitly created for an XML column
v An archive-enabled table if any of the following conditions are true:

– The SYSIBMADM.MOVE_TO_ARCHIVE global variable is set to Y.
– The SYSIBMADM.GET_ARCHIVE global variable is set to Y, the

ARCHIVESENSITIVE bind option is set to YES, and the operation is a
positioned update.

isolation-clause:

Chapter 5. Statements 1937

|

|
|

|

|

|
|
|

In an IMS or CICS application, the DB2 subsystem that contains the identified
table or view must be a remote server that supports two-phase commit.

A catalog table or a view of a catalog table can be identified if every column
identified in the SET clause is an updatable column. If a column of a catalog
table is updatable, its description in “DB2 catalog tables” on page 2102
indicates that the column can be updated. If the object table is
SYSIBM.SYSSTRINGS, any column other than IBMREQD can be updated, but
the rows that are selected for update must be rows that are provided by the
user (the value of the IBMREQD column is N) and only certain values can be
specified as explained in DB2 Administration Guide.

period-clause
Specifies that a period clause applies to the target of the update operation. The
same period name must not be specified more than one time. If the target of
the update operation is a view:
v The FROM clause of the outer fullselect of the view definition must include

a reference, directly or indirectly, to an application-period temporal table.
v The result table of the outer fullselect of the view definition must include,

explicitly or implicitly, the start and end columns of the BUSINESS_TIME
period.

v An INSTEAD OF trigger must not be defined for the view.

FOR PORTION OF BUSINESS_TIME
Specifies that the update only applies to row values for the portion of the
BUSINESS_TIME period in the row that is specified by the period clause.
BUSINESS_TIME must be a period that is defined on the table.

FROM value1 TO value2
Specifies that the update applies to rows for the period that is specified
from value1 to value2. No rows are updated if value1 is greater than or
equal to value2 or if value1 or value2 is the null value.

For the period condition that is specified with FROM value1 TO value2, the
period that is specified with period-name in a row of the target update
covers one of the following ranges:
v If the value of the begin column is less than value1 and the value of the

end column is greater than value1, the range overlaps the beginning of
the specified period.

v If the value of the end column is greater than or equal to value2 and the
value of the begin column is less than value2, the range overlaps the end
of the specified period.

v If the value for the begin column is greater than or equal to value1 and
the value for the end column is less than or equal to value2, the range is
fully contained within the specified period.

v If both columns of period-name are less than or equal to value1 or greater
than or equal to value2, the range is not contained in the period

v If the period in the row overlaps the beginning of the specified period or
the end of the specified period, but not both, the range is partially
contained in the specified period.

v If the period in the row overlaps both the beginning and the end of the
specified period, the range fully overlaps the specified period.

If the period, period-name in a row is not contained in the specified period,
the row is not updated. Otherwise, the update is applied based on the
specification of PORTION OF and how the values in the columns of
period-name overlap the specified period as follows:

1938 SQL Reference

|
|

|
|

|
|
|

|

v If the period, period-name in a row is fully contained within the specified
period, the row is updated and the values of the begin column and end
column of period-name are unchanged.

v If the period, period-name in a row is partially contained in the specified
period and overlaps the beginning of the specified period:
– The row is updated. In the updated row, the value of the begin

column is set to value1 and the value of the end column is the original
value of the end column.

– An additional row is inserted using the original values from the row,
except that the end column is set to value1.

v If the period, period-name in a row is partially contained in the specified
period and overlaps the end of the specified period:
– The row is updated. In the updated row, the value of the begin

column is the original value of the begin column and the end column
is set to value2.

– An additional row is inserted using the original values from the row,
except that the begin column is set to value2.

v If the period, period-name in a row fully overlaps the specified period:
– The row is updated. In the updated row, the value of the begin

column is set to value1 and the value of the end column is set to
value2.

– An additional row is inserted using the original values from the row,
except that the end column is set to value1 and the begin column is
set to value2.

Any existing update triggers are activated for the updated rows and any
existing insert triggers are activated for rows that are implicitly inserted.

value1, value2
Specifies expressions that return a value of a built-in data type. The result
of each expression must be comparable to the data type of the columns of
the specified period. See the comparison rules described in “Assignment
and comparison” on page 121. Each expression can contain any of the
following supported operands:
v A constant
v A special register
v A variable (host variable, SQL variable, SQL parameter, or transition

variable)
v An array element specification
v A built-in scalar function whose arguments are supported operands
v A CAST specification where the cast operand is a supported operand
v An expression that uses arithmetic operators and operands

Each expression must not have a timestamp precision that is greater than
the precision of the columns for the period.

If the begin and end columns of the period are defined as TIMESTAMP
WITHOUT TIME ZONE, each expression must not return a value of a
timestamp with a time zone.

A period clause for a view must not contain a global variable or an
untyped parameter marker.

Chapter 5. Statements 1939

|

|
|

correlation-name
Can be used within search-condition or assignment-clause to designate the table
or view. (For an explanation of correlation-name, see “Correlation names” on
page 209.)

include-column
Specifies a set of columns that are included, along with the columns of
table-name or view-name, in the result table of the UPDATE statement when it is
nested in the FROM clause of the outer fullselect that is used in a subselect,
SELECT statement, or in a SELECT INTO statement. The included columns are
appended to the end of the list of columns that is identified by table-name or
view-name. If no value is assigned to a column that is specified by an
include-column, a NULL value is returned for that column.

INCLUDE
Introduces a list of columns that are to be included in the result table of
the UPDATE statement. The included columns are only available if the
UPDATE statement is nested in the FROM clause of a SELECT statement
or a SELECT INTO statement.

column-name
Specifies the name for a column of the result table of the UPDATE
statement that is not the same name as another included column nor a
column in the table or view that is specified in table-name or view-name.

data-type
Specifies the data type of the included column. The included columns are
nullable.

built-in-type
Specifies a built-in data type. See “CREATE TABLE” on page 1388 for a
description of each built-in type.

The CCSID 1208 and CCSID 1200 clauses must not be specified for an
include column.

distinct-type
Specifies a distinct type. Any length, precision, or scale attributes for
the column are those of the source type of the distinct type as specified
by using the CREATE TYPE statement.

SET
Introduces the assignment of values to column names.

assignment-clause
If row-fullselect is specified, the number of columns in the result of
row-fullselect must match the number of column-names that are specified. If
row-fullselect is not specified, the number of expressions, and NULL and
DEFAULT keywords must match the number of column-names that are
specified.

column-name
Identifies a column that is to be updated. column-name must identify a
column of the specified table or view, and that column must be updatableif
extended indicator variables are not enabled. The column must not identify
a generated column or a view column where the column is derived from a
scalar function, constant, or expression. column-name can also identify an
INCLUDE column that must not be qualified. The same column must not
be specified more than one time.

1940 SQL Reference

|
|

A column that is defined as part of a BUSINESS_TIME period must not be
specified if the UPDATE statement contains a period-clause.

Assignments to included columns are only processed when the UPDATE
statement is nested in the FROM clause of a SELECT statement or a
SELECT INTO statement. There must be at least one assignment clause
that specifies a column-name that is not an INCLUDE column. The null
value is returned for an included column that is not set by using an
explicit SET clause.

For a positioned update, allowable column names can be further restricted
to those in a certain list. This list appears in the FOR UPDATE clause of
the SELECT statement for the associated cursor. The clause can be omitted
by using the conditions that are described in “Positioned updates of
columns” on page 333.

A view column that is derived from the same column as another column of
the view can be updated, but both columns cannot be updated in the same
UPDATE statement.

expression
Indicates the new value of the column. The expression is any expression of
the type described in “Expressions” on page 240. It must not include an
aggregate function.

If expression is a host variable, the host variable can include an indicator
variable. When extended indicator variables are enabled, an expression
must not be more complex than a reference to a single host variable if the
indicator is set to an extended indicator value of default (-5) or unassigned
(-7). In addition, a CAST specification can be used if either of the following
is true:
v The target column is defined as nullable.
v the target column is defined as NOT NULL with a non-null default, the

source of the CAST specification is a single host variable, and the data
attributes (data type, length, precision, and scale) of the host variable are
the same as the result of the cast specification.

A column-name in an expression must identify a column of the table or
view. For each row that is updated, the value of the column in the
expression is the value of the column in the row before the row is updated.

DEFAULT
Specifies that the default value is used based on how the corresponding
column is defined in the table. The value that is assigned depends on how
the column is defined.
v If the column is defined using the IDENTITY clause, the column is

generated by the DB2 system.
v If the column is defined as a row change timestamp column, the column

value is generated by the DB2 system.
v If the column is defined using the WITH DEFAULT clause, the value is

set to the default that is defined for the column.
v If the column is defined without specifying the WITH DEFAULT clause,

the GENERATED clause, or the NOT NULL clause, the value is NULL.
v If the column is specified in the INCLUDE column list, the column

value is set to null.

A ROWID column must not be set to the DEFAULT keyword.

Chapter 5. Statements 1941

An identity column or a row change timestamp column that is defined as
GENERATED ALWAYS can be set only to the DEFAULT keyword.

If the column is defined using the NOT NULL clause and the
GENERATED clause is not used, or the WITH DEFAULT clause is not
used, the DEFAULT keyword cannot be specified for that column.

NULL
Specifies the null value as the new value of the column. Specify NULL
only for nullable columns.

row-fullselect
Specifies a fullselect that returns a single row. The column values are
assigned to each of the corresponding column-names. If the fullselect returns
no rows, the null value is assigned to each column; an error occurs if any
column to be updated is not nullable. An error also occurs if there is more
than one row in the result.

For a positioned update, if the table or view that is the object of the
UPDATE statement is used in the fullselect, a column from the instance of
the table or view in the fullselect cannot be the same as column-name, a
column being updated.

If the fullselect refers to columns to be updated, the value of such a
column in the fullselect is the value of the column in the row before the
row is updated.

UNPACK-function-invocation
Specifies an invocation of the UNPACK built-in function. The number of
fields that are returned by the UNPACK function invocation must be the
same as the number of column-names.

WHERE
Specifies the rows to be updated. You can omit the clause, give a search
condition, or specify a cursor. If you omit the clause, all rows of the table or
view are updated.

search-condition
Specifies any search condition described in Chapter 2, “Language
elements,” on page 53. Each column-name in the search condition, other
than in a subquery, must identify a column of the table or view.

The search-condition is applied to each row of the table or view and the
updated rows are those for which the result of the search-condition is true. If
the unique key or primary key is a parent key, the constraints are
effectively checked at the end of the operation.

If the search condition contains a subquery, the subquery can be thought of
as being executed each time the search condition is applied to a row, and
the results used in applying the search condition. In actuality, a subquery
with no correlated references is executed just once, whereas it is possible
that a subquery with a correlated reference must be executed once for each
row.

WHERE CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. cursor-name must
identify a declared cursor as explained in the description of the DECLARE
CURSOR statement in “DECLARE CURSOR” on page 1535. If the UPDATE
statement is embedded in a program, the DECLARE CURSOR statement must
include select-statement rather than statement-name.

1942 SQL Reference

|
|
|
|

The object of the UPDATE statement must also be identified in the FROM
clause of the SELECT statement of the cursor. The columns to be updated can
be identified in the FOR UPDATE clause of that SELECT statement though
they do not have to be identified. If the columns are not specified, the columns
that can be updated include all the updatable columns of the table or view that
is identified in the first FROM clause of the fullselect.

The result table of the cursor must not be read-only. For an explanation of
read-only result tables, see Read-only cursors. Note that the object of the
UPDATE statement must not be identified as the object of the subquery in the
WHERE clause of the SELECT statement of the cursor.

When the UPDATE statement is executed, the cursor must be open and
positioned on a row or rowset of the result table.
v If the cursor is positioned on a single row, that row is the one updated.
v If the cursor is positioned on a rowset, all rows corresponding to the rows of

the current rowset are updated.

A positioned UPDATE must not be specified for a cursor that references a view
on which an instead of update trigger is defined, even if the view is an
updatable view.

FOR ROW n OF ROWSET
Specifies which row of the current rowset is to be updated. The corresponding
row of the rowset is updated, and the cursor remains positioned on the current
rowset.

host-variable or integer-constant is assigned to an integral value k. If host-variable
is specified, it must be an exact numeric type with scale zero, must not include
an indicator variable, and k must be in the range of 1 to 32767.

The cursor must be positioned on a rowset, and the specified value must be a
valid value for the set of rows most recently retrieved for the cursor. If the
specified row cannot be updated, an error is returned. It is possible that the
specified row is within the bounds of the rowset most recently requested, but
the current rowset contains less than the number of rows that were implicitly
or explicitly requested when that rowset was established.

If this clause is not specified, the cursor position determines the rows that will
be affected. If the cursor is positioned on a single row, that row is the one
updated. In the case where the most recent FETCH statement returned
multiple rows of data (but not as a rowset), this position would be on the last
row of data that was returned. If the cursor is positioned on a rowset, all rows
corresponding to the current rowset are updated. The cursor position remains
unchanged.

It is possible for another application process to update a row in the base table
of the SELECT statement so that the specified row of the cursor no longer has
a corresponding row in the base table. An attempt to update such a row results
in an error.

isolation-clause
Specifies the isolation level used when locating the rows to be updated by the
statement.

WITH
Introduces the isolation level, which may be one of the following:
RR Repeatable read
RS Read stability
CS Cursor stability

Chapter 5. Statements 1943

The default isolation level of the statement is the isolation level of the package
or plan in which the statement is bound, with the package isolation taking
precedence over the plan isolation. When a package isolation is not specified,
the plan isolation is the default.

SKIP LOCKED DATA
Specifies that rows are skipped when incompatible locks are held on the row
by other transactions. These rows can belong to any accessed table that is
specified in the statement. SKIP LOCKED DATA can be used only when
isolation CS or RS is in effect and applies only to row level or page level locks.

SKIP LOCKED DATA can be specified only in the searched UPDATE
statement (or the searched update operation of a MERGE statement). SKIP
LOCKED DATA is ignored if it is specified when the isolation level that is in
effect is repeatable read (WITH RR) or uncommitted read (WITH UR). The
default isolation level of the statement depends on the isolation level of the
package or plan with which the statement is bound, with the package isolation
taking precedence over the plan isolation. When a package isolation is not
specified, the plan isolation is the default.

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output
and trace records. The number is used for the QUERYNO column of the plan
table for the rows that contain information about this SQL statement. This
number is also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is the
statement number assigned during precompilation. Thus, if the application
program is changed and then precompiled, that statement number might
change.

Using the QUERYNO clause to assign unique numbers to the SQL statements
in a program is helpful:
v For simplifying the use of optimization hints for access path selection
v For correlating SQL statement text with EXPLAIN output in the plan table

For information on using optimization hints, such as enabling the system for
optimization hints and setting valid hint values, and for information on
accessing the plan table, see DB2 Performance Monitoring and Tuning Guide.

Notes

Update rules:
Update values must satisfy the following rules. If they do not, or if other
errors occur during the execution of the UPDATE statement, no rows are
updated and the position of the cursors are not changed.
v Assignment. Update values are assigned to columns using the assignment

rules described in Chapter 2, “Language elements,” on page 53.
v Validity. Updates must obey the following rules. If they do not, or if any

other errors occur during the execution of the UPDATE statement, no
rows are updated.
– Fullselects: The row-fullselect and expressions that contain a

scalar-fullselect must return no more than one row.
– Unique constraints and unique indexes: If the identified table (or base

table of the identified view) has any unique indexes or unique
constraints, each row that is updated in the table must conform to the
limitations that are imposed by those indexes and constraints.

1944 SQL Reference

All uniqueness checks are effectively made at the end of the
statement. In the case of a multi-row update, this validation occurs
after all the rows are updated.

– Check constraints: If the identified table (or base table of the identified
view) has any check constraints, each check constraint must be true or
unknown for each row that is updated in the table.
All checks constraints are effectively validated at the end of the
statement. In the case of a multi-row update, this validation occurs
after all the rows are updated.

– Views and the WITH CHECK OPTION. For views defined with WITH
CHECK OPTION, an updated row must conform to the definition of
the view. If the view you name is dependent on other views whose
definitions include WITH CHECK OPTION, the updated rows must
also conform to the definitions of those views. For an explanation of
the rules governing this situation, see “CREATE VIEW” on page 1527.
For views that are not defined with WITH CHECK OPTION, you can
change the rows so that they no longer conform to the definition of
the view. Such rows are updated in the base table of the view and no
longer appear in the view.

– Field and validation procedures. The updated rows must conform to any
constraints imposed by any field or validation procedures on the
identified table (or on the base table of the identified view).

v Referential constraints. The value of the parent key in a parent row must
not be changed. If the update value produces a foreign key that is
nonnull, the foreign key must be equal to some value of the parent key
of the parent table of the relationship.
All referential constraints are effectively checked at the end of the
statement. In the case of a multi-row update, this validation occurs after
all the rows are updated.

v Indexes with VARBINARY columns. If the identified table has an index on
a VARBINARY column or a column that is a distinct type that is based
on VARBINARY data type, that index column cannot specify the DESC
attribute. To use the SQL data change operation on the identified table,
either drop the index or alter the data type of the column to BINARY
and then rebuild the index.

v Triggers. An UPDATE statement might cause triggers to activate. A
trigger might cause other statements to be executed or raise error
conditions based on the update values.If an UPDATE statement for a
view causes an instead of trigger to activate, validity, referential integrity,
and check constraints are checked against the data changes that are
performed in the trigger and not against the view that causes the trigger
to activate or its underlying base tables.

Number of rows updated:
Normally, after an UPDATE statement completes execution, the value of
SQLERRD(3) in the SQLCA is the number of rows updated. (For a
complete description of the SQLCA, including exceptions to the preceding
sentence, see “SQL communication area (SQLCA)” on page 2069.)

Nesting user-defined functions or stored procedures:
An UPDATE statement can implicitly or explicitly refer to user-defined
functions or stored procedures. This is known as nesting of SQL statements.
A user-defined function or stored procedure that is nested within the
UPDATE must not access the table being updated.

Chapter 5. Statements 1945

Locking:
Unless appropriate locks already exist, one or more exclusive locks are
acquired by the execution of a successful update operation. Until a commit
or rollback operation releases the locks, only the application process that
performed the insert can access the updated row. If LOBs are not updated,
application processes that are running with uncommitted read can also
access the updated row. The locks can also prevent other application
processes from performing operations on the table. However, application
processes that are running with uncommitted read can access locked pages
and rows.

Locks are not acquired on declared temporary tables.

Datetime representation when using datetime registers:
As explained under Datetime special registers, when two or more datetime
registers are implicitly or explicitly specified in a single SQL statement,
they represent the same point in time. This is also true when multiple rows
are updated.

Rules for positioned UPDATE with a SENSITIVE STATIC scrollable cursor:
When a SENSITIVE STATIC scrollable cursor has been declared, the
following rules apply:
v Update attempt of delete holes. If, with a positioned update against a

SENSITIVE STATIC scrollable cursor, an attempt is made to update a
row that has been identified as a delete hole, an error occurs.

v Update operations. Positioned update operations with SENSITIVE STATIC
scrollable cursors perform as follows:
1. The SELECT list items in the target row of the base table of the

cursor are compared with the values in the corresponding row of the
result table (that is, the result table must still agree with the base
table). If the values are not identical, then the update operation is
rejected, and an error occurs. The operation may be attempted again
after a successful FETCH SENSITIVE has occurred for the target row.

2. The WHERE clause of the SELECT statement is re-evaluated to
determine whether the current values in the base table still satisfy
the search criteria. The values in the SELECT list are compared to
determine that these values have not changed. If the WHERE clause
evaluates as true, and the values in the SELECT have not changed,
the update operation is allowed to proceed. Otherwise, the update
operation is rejected, an error occurs, and an update hole appears in
the cursor.

v Update of update holes. Update holes are not permanent. It is possible for
another process, or a searched update in the same process, to update an
update hole row so that it is no longer an update hole. Update holes
become visible with a FETCH SENSITIVE for positioned updates and
positioned deletes.

v Result table. After the base table is updated, the row is re-evaluated and
updated in the temporary result table. At this time, it is possible that the
positioned update changed the data such that the row does not qualify
the search condition, in which case the row is marked as an update hole
for subsequent FETCH operations.

Updating rows in a table with multilevel security:
When you update rows in a table with multilevel security, DB2 compares
the security label of the user (the primary authorization ID) to the security
label of the row. The update proceeds according to the following rules:

1946 SQL Reference

v If the security label of the user and the security label of the row are
equivalent, the row is updated and the value of the security label is
determined by whether the user has write-down privilege:
– If the user has write-down privilege or write-down control is not

enabled, the user can set the security label of the row to any valid
security label. The value that is specified for the security label column
must be assignable to a column that is defined as CHAR(8) FOR
SBCS DATA NOT NULL.

– If the user does not have write-down privilege and write-down
control is enabled, the security label of the row is set to the value of
the security label of the user.

v If the security label of the user dominates the security label of the row,
the result of the UPDATE statement is determined by whether the user
has write-down privilege:
– If the user has write-down privilege or write-down control is not

enabled, the row is updated and the user can set the security label of
the row to any valid security label.

– If the user does not have write-down privilege and write-down
control is enabled, the row is not updated.

v If the security label of the row dominates the security label of the user,
the row is not updated.

Updating rows in a table for which row or column access control is enforced:
When an UPDATE statement is issued for a table for which row or column
access control is enforced, the rules specified in the enabled row
permissions or column masks determine whether the row can be updated.
Typically those rules are based on the authorization ID or role of the
process. The following describes how enabled row permissions and column
masks are used during UPDATE:
v Row permissions are used to identify the set of rows to be updated.

When multiple enabled row permissions are defined for a table, a row
access control search condition is derived by application of the logical
OR operator to the search condition in each enabled permission. This
row access control search condition is applied to the table to determine
which rows are accessible to the authorization ID or role of the UPDATE
statement. If the WHERE clause is specified in the UPDATE statement,
the user-specified predicates are applied on the accessible rows to
determine the rows to be updated. If there is no WHERE clause, the
accessible rows are the rows to be updated.
Column masks are not applicable in this step.
If the table is not enforced by row access control, the WHERE clause
determines the rows to be updated, otherwise all rows in the table are to
be updated.

v If there are rows to be updated, the following rules determine whether
those rows can be updated:
– For every column to be updated, the new value of the column must

not be affected by enabled column masks whose columns are
referenced when deriving the new value.
When a column is referenced while deriving the values of a new row,
if the column has an enabled column mask, the masked value is used
to derive the new values. If the object table is also column access
control activated, the column mask applied to derive the new values
must ensure the evaluation of the access control rules defined in the

Chapter 5. Statements 1947

column mask resolves the column to itself, not to a constant or an
expression. If the column mask does not mask the column to itself,
the new value cannot be used for update and an error is returned at
run time.

– If the rows are updatable, and there is a BEFORE UPDATE trigger for
the table, the trigger is activated.
Within the trigger actions, the new values for update might be
modified in transition variables. When the final values are returned
from the trigger, the new values are used for the update.

– The rows that are to be updated must conform to the enabled row
permissions:
For each row that is to be updated, the old values are replaced with
the new values that were specified in the UPDATE statement. A row
that conforms to the enabled row permissions is a row that, if
updated, can be retrieved using the derived row access control search
condition.

– If the rows are updatable, and there is an AFTER UPDATE trigger for
the table, the trigger is activated.

The above rules are not applicable to the included columns. The included
columns are subject to the rules for the select list because they are not the
columns of the object table of the UPDATE statement.

Extended indicator variable usage:
When extended indicator variables are enabled, negative indicator values
that are outside the range of -1 through -7 must not be specified, and the
default and unassigned extended indicator values must not appear in
contexts in which they are not supported.

Extended indicator variables:
Assigning an extended indicator value of unassigned has the effect of
leaving the target column set to its current value, as if it had not been
specified in the statement. Assigning an extended indicator value of default
assigns the default value to the column.

If a target column is not updatable (for example, an identity column that is
defined as GENERATED ALWAYS), it must be assigned the extended
indicator value of unassigned unless the OVERRIDING USER VALUE
clause is specified.

The UPDATE statement must not assign all target columns to the extended
indicator value of unassigned.

Extended indicator variables and update triggers:
If a target column has been assigned an extended indicator value of
unassigned, the column is not considered to have been updated. The
column is treated as if it had not been specified in the OF column-name list
of any update trigger that is defined on the target table.

Extended indicator variables and deferred error checks:
When extended indicator variables are enabled, validation that would
otherwise be done in statement preparation (to recognize an update of a
non-updatable column) is deferred until statement execution. If statement
validation fails, an error is returned when the statement is run, not when
the statement is prepared.

Considerations for a generated column:
A generated column that is defined as GENERATED ALWAYS should not
be specified as the target of an assignment clause unless the value that is

1948 SQL Reference

to be assigned is specified with the DEFAULT keyword or an extended
indicator that specifies that a default value is to be assigned. The user can
specify the OVERRIDING USER VALUE clause to indicate that any
user-specified value should be ignored and that DB2 should assign the
default value.

Considerations for a system-period temporal table:
When a row of a system-period temporal table is updated, DB2 updates
the values of the row-begin and transaction-start-ID columns as follows:
v A row-begin column is assigned a value that is generated by using the

time-of-day clock during the execution of the first data change statement
in the transaction that requires a value to be assigned to a row-begin
column or transaction-start-ID column in a table. This also occurs when
a row in a system-period temporal table is deleted. DB2 ensures the
uniqueness of the generated values for a row-begin column across
transactions. If multiple rows are updated within a single SQL
transaction, the values for the row-begin column are the same for all the
rows and are unique from the values that are generated for the column
for another transaction.

v A transaction-start-ID column is assigned a unique timestamp value per
transaction or the null value. The null value is assigned to the
transaction-start-ID column if the column is nullable. Otherwise, the
value is generated by using the time-of-day clock during execution of
the first data change statement in the transaction that requires a value to
be assigned to a row-begin column or transaction-start-ID column in a
table. This also occurs when a row in a system-period temporal table is
deleted. If multiple rows are updated within a single SQL transaction,
the values for the transaction-start-ID column are the same for all the
rows and are unique from the values that are generated for the column
for another transaction.

If the UPDATE statement has a search condition that contains a correlated
subquery that references historical rows (explicitly referencing the name of
the history table or implicitly referenced through the use of a period
specification in the FROM clause), the old version of the updated rows that
are inserted as historical rows (into the history table) are potentially visible
to update operations for the rows that are subsequently processed for the
statement.

Considerations for a history table:
When a row of a system-period temporal table is updated, a historical
copy of the row is inserted into the corresponding history table and the
end timestamp of the historical row is captured in the form of a system
determined value that corresponds to the time of the data change
operation. DB2 generates the value by using the time-of-day clock during
the execution of the first data change statement in the transaction that
requires a value to be assigned to a row-begin or transaction-start-ID
column in a table. This also occurs when a row in a system-period
temporal table is deleted. DB2 ensures uniqueness of the generated values
for an end column in a history table across transactions. If a conflicting
transaction is updating the same row in the system-period temporal table
and the row that is to be inserted into the associated history table would
have an end timestamp value that is greater than the begin timestamp
value, an error is returned.

Considerations for an application-period temporal table:
An UPDATE statement for an application-period temporal table that

Chapter 5. Statements 1949

contains a FOR PORTION OF BUSINESS_TIME clause indicates between
which two points in time that the specified updates are effective. When
FOR PORTION OF BUSINESS_TIME is specified, and the period value
for a row that is specified by the values of the begin column and end
column for the BUSINESS_TIME period is only partially contained in the
period that is specified from value1 up to value2, the row is updated and
one or two rows are automatically inserted to represent the portion of the
row that is not changed. New values are generated for each generated
column in an application-period temporal table for each row that is
automatically inserted as a result of an update operation on the table. If a
generated column is defined as part of a unique or primary key, parent key
in a referential constraint, or unique index, it is possible that an automatic
insert can violate a constraint or index in which case an error is returned.

Effect of the CURRENT TEMPORAL SYSTEM_TIME and CURRENT
TEMPORAL BUSINESS_TIME special registers

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a
non-null value, the underlying target of the UPDATE statement cannot be
a system-period temporal table. This restriction applies regardless of
whether the system-period temporal table is directly or indirectly
referenced.

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a
non-null value, the UPDATE statement is affected if the following
conditions are also true:
v An application-period temporal table is the target of the UPDATE

statement.
v The BUSTIMESENSITIVE bind option is set to YES.

In this situation, DB2 implicitly adds the following additional predicates to
the statement:

bt_begin <= CURRENT TEMPORAL BUSINESS_TIME
AND bt_end > CURRENT TEMPORAL BUSINESS_TIME

In the preceding code, bt_begin and bt_end are the begin and end columns
of the BUSINESS_TIME period of the target table of the UPDATE
statement.

Archive-enabled tables:
A reference to an archive-enabled table as the target of the UPDATE
statement does not affect rows in the associated archive table.

A data change statement must not reference an archive-enabled table when
a system-period temporal table or application-period temporal table is also
referenced.

Other SQL statements in the same unit of work:
The following statements cannot follow an UPDATE statement in the same
unit of work:
v An ALTER TABLE statement that changes the data type of a column

(ALTER COLUMN SET DATA TYPE)
v An ALTER INDEX statement that changes the padding attribute of an

index with varying-length columns (PADDED to NOT PADDED or vice
versa)

Using UPDATE to reset AREO* status on a table:
An UPDATE statement will reset the AREO* state of a table if all
conditions are true:

1950 SQL Reference

|
|
|
|
|
|
|

|
|
|

|
|

|

|
|

|
|

|
|
|

|
|
|

|
|
|

v The statement is a searched UPDATE statement. An UPDATE statement
within a SELECT statement will not reset the AREO* state.

v The expression in the SET clause is not a scalar-fullselect or row-fullselect

v The update operation is against a table in a universal table space
v The table does not have row access control activated
v The SKIP LOCKED DATA clause is not specified
v The WHERE clause is not specified
v A resource unavailable condition is not encountered.

No error or warning SQLCODE is returned if a resource unavailable
condition is encountered. Only a resource unavailable console message
will be displayed.

A DISPLAY DATABASE command can be used to determine if AREO* is
reset.

Examples

Example 1: Change employee 000190's telephone number to 3565 in DSN8B10.EMP.
UPDATE DSN8B10.EMP

SET PHONENO=’3565’
WHERE EMPNO=’000190’;

Example 2: Give each member of department D11 a 100-dollar raise.
UPDATE DSN8B10.EMP

SET SALARY = SALARY + 100
WHERE WORKDEPT = ’D11’;

Example 3: Employee 000250 is going on a leave of absence. Set the employee's pay
values (SALARY, BONUS, and COMMISSION) to null.

UPDATE DSN8B10.EMP
SET SALARY = NULL, BONUS = NULL, COMM = NULL
WHERE EMPNO=’000250’;

Alternatively, the statement could also be written as follows:
UPDATE DSN8B10.EMP

SET (SALARY, BONUS, COMM) = (NULL, NULL, NULL)
WHERE EMPNO=’000250’;

Example 4: Assume that a column named PROJSIZE has been added to
DSN8B10.EMP. The column records the number of projects for which the
employee's department has responsibility. For each employee in department E21,
update PROJSIZE with the number of projects for which the department is
responsible.

UPDATE DSN8B10.EMP
SET PROJSIZE = (SELECT COUNT(*)

FROM DSN8B10.PROJ
WHERE DEPTNO = ’E21’)

WHERE WORKDEPT = ’E21’;

Example 5: Double the salary of the employee represented by the row on which the
cursor C1 is positioned.

EXEC SQL UPDATE DSN8B10.EMP
SET SALARY = 2 * SALARY
WHERE CURRENT OF C1;

Chapter 5. Statements 1951

Example 6: Assume that employee table EMP1 was created with the following
statement:

CREATE TABLE EMP1
(EMP_ROWID ROWID GENERATED ALWAYS,
EMPNO CHAR(6),
NAME CHAR(30),
SALARY DECIMAL(9,2),
PICTURE BLOB(250K),
RESUME CLOB(32K));

Assume that host variable HV_EMP_ROWID contains the value of the ROWID
column for employee with employee number '350000'. Using that ROWID value to
identify the employee and user-defined function UPDATE_RESUME, increase the
employee's salary by $1000 and update that employee's resume.

EXEC SQL UPDATE EMP1
SET SALARY = SALARY + 1000,

RESUME = UPDATE_RESUME(:HV_RESUME)
WHERE EMP_ROWID = :HV_EMP_ROWID;

Example 7: In employee table X, give each employee whose salary is below average
a salary increase of 10%.

EXEC SQL UPDATE EMP X
SET SALARY = 1.10 * SALARY
WHERE SALARY < (SELECT AVG(SALARY) FROM EMP Y
WHERE X.JOBCODE = Y.JOBCODE);

Example 8: Raise the salary of the employees in department 'E11' whose salary is
below average to the average salary.

EXEC SQL UPDATE EMP T1
SET SALARY = (SELECT AVG(T2.SALARY) FROM EMP T2)
WHERE WORKDEPT = ’E11’ AND

SALARY < (SELECT AVG(T3.SALARY) FROM EMP T3);

Example 9: Give the employees in department 'E11' a bonus equal to 10% of their
salary.

EXEC SQL
DECLARE C1 CURSOR FOR

SELECT BONUS
FROM DSN8710.EMP
WHERE WORKDEPT = ’E12’
FOR UPDATE OF BONUS;

EXEC SQL
UPDATE DSN8710.EMP

SET BONUS = (SELECT .10 * SALARY FROM DSN8710.EMP Y
WHERE EMPNO = Y.EMPNO)

WHERE CURRENT OF C1;

Example 10: Assuming that cursor CS1 is positioned on a rowset consisting of 10
rows in table T1, update all 10 rows in the rowset.
EXEC SQL UPDATE T1 SET C1 = 5 WHERE CURRENT OF CS1;

Example 11: Assuming that cursor CS1 is positioned on a rowset consisting of 10
rows in table T1, update the fourth row of the rowset.
short ind1, ind2;

int n, updt_value;

stmt = ’UPDATE T1 SET C1 = ? WHERE CURRENT OF CS1 FOR ROW ? OF ROWSET’

ind1 = 0;

1952 SQL Reference

ind2 = 0;

n = 4;

updt_value = 5;

...

strcpy(my_sqlda.sqldaid,"SQLDA");

my_sqlda.sqln = 2;

my_sqlda.sqld = 2;

my_sqlda.sqlvar[0].sqltype = 497;
my_sqlda.sqlvar[0].sqllen = 4;
my_sqlda.sqlvar[0].sqldata = (int *) &updt_value;
my_sqlda.sqlvar[0].sqlind = (short *) &ind1;

my_sqlda.sqlvar[1].sqltype = 497;
my_sqlda.sqlvar[1].sqllen = 4;
my_sqlda.sqlvar[1].sqldata = (int *) &n;
my_sqlda.sqlvar[1].sqlind = (short *) &ind2;

EXEC SQL PREPARE S1 FROM :stmt;

EXEC SQL EXECUTE S1 USING DESCRIPTOR :my_sqlda;

Example 12: Assume that table POLICY exists and that it is defined with a single
period, BUSINESS_TIME. The table contains a row where column BK has a value
of 'P138' and column CLIENT has a value of 'C882', and column TYPE has a value
of 'PPO'. Update the portion of the row beginning from the current date to set the
TYPE column to 'HMO':
UPDATE POLICY
FOR PORTION OF BUSINESS_TIME
FROM CURRENT DATE TO DATE ’9999-12-31’
SET TYPE=’HMO’
WHERE BK=’P138’, CLIENT=’C882’;

After the UPDATE statement is processed, the table contains 2 rows in place of the
original row. One row represents a value of 'PPO' for the TYPE column (the value
before the update) and the other row represents a value of 'HMO' for the TYPE
column (that began with the UPDATE statement).

Example 13: Suppose that the INTARRAY and CHARARRAY array types, the INTA,
CHARA, and SI variables, and the T1 table are defined as follows:
CREATE TYPE INTARRAY AS INTEGER ARRAY [6];
CREATE TYPE CHARARRAY AS CHAR(20) ARRAY [7];
DECLARE INTA AS INTARRAY;
DECLARE CHARA AS CHARARRAY;
CREATE VARIABLE SI INT;
CREATE TABLE T1 (COL1 CHAR(7), COL2 INT);

Assign values to CHARA, INTA, and SI.
SET CHARA = ARRAY [’a’, ’b’, ’c’];
SET INTA = ARRAY [1, 2, 3, 4, 5];
SET SI = 1;

Insert a row into table T1, and then update the row values using values from the
CHARA and INTA arrays, which are indexed by the value of variable SI.

Chapter 5. Statements 1953

|
|

|
|
|
|
|
|

|

|
|
|

|
|

INSERT INTO T1 VALUES (’abc’, 10);
UPDATE T1
SET COL1 = CHARA[SI],
COL2 = INTA[SI];

In the table row, COL1 now contains 'a', and COL2 contains 1.

Set the value of column COL2 for all rows to the cardinality of array INTA.
UPDATE T1
SET COL2 = CARDINALITY(INTA);

In the table row, COL2 now contains 5.

1954 SQL Reference

|
|
|
|

|

|

|
|

|

VALUES
The VALUES statement provides a method for invoking a user-defined function
from a trigger. Transition variables and transition tables can be passed to the
user-defined function.

Invocation

This statement can only be used in the triggered action of a trigger.

Authorization

Authorization is required for any expressions that are used in the statement. For
more information, see “Expressions” on page 240.

Syntax

�� VALUES

�

expression
,

(expression)

��

Description

VALUES
Specifies one or more expressions. If more than one expression is specified, the
expressions must be enclosed within parentheses.

expression
Any expression of the type described in “Expressions” on page 240. The
expression must not contain a host variable.

The expressions are evaluated, but the resulting values are discarded and are
not assigned to any output variables.

If a user-defined function is specified as part of an expression, the user-defined
function is invoked. If a negative SQLCODE is returned when the function is
invoked, DB2 stops executing the trigger and rolls back any triggered actions
that were performed.

Example

Example: Create an after trigger EMPISRT1 that invokes user-defined function
NEWEMP when the trigger is activated. An insert operation on table EMP
activates the trigger. Pass transition variables for the new employee number, last
name, and first name to the user-defined function.

CREATE TRIGGER EMPISRT1
AFTER INSERT ON EMP
REFERENCING NEW AS N
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC

VALUES(NEWEMP(N.EMPNO, N.LASTNAME, N.FIRSTNAME));
END

Chapter 5. Statements 1955

VALUES INTO
The VALUES INTO statement assigns one or more values to variables.

Invocation

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization

The privileges that are held by the authorization ID of the statement must include
at least one of the following privileges or authorities:
v The SELECT privilege on every table and view identified in the statement
v Ownership of every table and view identified in the statement
v READ and WRITE privileges on any global variables that are identified in the

statement
v Ownership of any global variables that are identified in the statement
v DBADM authority for the database (tables only)
v DATAACCESS authority
v SYSADM authority
v SYSCTRL authority (catalog tables only)

Authorization is required for any expressions that are used in the statement. For
more information, see “Expressions” on page 240.

1956 SQL Reference

|

|
|

|

|

|
|

|

|

|

|

|

Syntax

�� VALUES

� �

(1) (2)
CURRENT PACKAGESET INTO target-variable
CURRENT PACKAGE PATH
CURRENT SERVER

, ,
(3)

(expression) INTO target-variable
NULL array-variable [array-index]

��

target-variable:

global-variable-name
host-variable-name
SQL-parameter-name
SQL-variable-name

Notes:

1 These special registers can be referenced only as a source value in this form of the syntax for this
statement.

2 target-variable must not be an array type in this context.

3 The number of source value specifications (expression, NULL, or DEFAULT) on the right side of
the equal sign must match the number of target specifications on the left side of the statement.

Description

VALUES
Introduces a single row that consists of one or more columns. If more than one
value is specified, the list of values must be enclosed within parentheses.

expression
The expression is any expression of the type described in “Expressions” on
page 240, except that it cannot contain a reference to the CURRENT
PACKAGESET, CURRENT PACKAGE PATH, or CURRENT SERVER
special registers. The expression must not include a column name.

NULL
The null value. NULL can only be specified for host variables that have an
associated indicator variable.

INTO target-variable or array-variable[array-index]
Identifies one or more targets for the assignment of output values. The number
of targets in the INTO clause must equal the number of values that are to be
assigned. The first value in the result row is assigned to the first target in the
list, the second value to the second target, and so on. A target variable must
not be specified more than once in the INTO clause. Each assignment to a
target is made in sequence through the list, according to the rules described in
“Assignment and comparison” on page 121.

The value 'W' is assigned to the SQLWARN3 field of the SQLCA if the number
of targets is less than the number of result column values.

Chapter 5. Statements 1957

|
|
|
|
|
|
|
|

|
|

If an error occurs on any assignment, the value is not assigned to the target,
and no more values are assigned to the specified targets. Any values that have
already been assigned remain assigned.

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB
output values, the target can be a regular host variable (if it is large
enough), a LOB locator variable, or a LOB file reference variable.

SQL-parameter-name
Identifies the parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables
must be declared before they are used.

array-variable [array-index]
Specifies an array element that is the target of the assignment.

An array element must not be specified as the target for an assignment
if common-table-expression is also specified in the statement.

[array-index]
An expression that specifies which element in the array is the
target of the assignment.

For an ordinary array, the array index expression must be
castable to INTEGER, and must not be the null value. The
index value must be between 1 and the maximum cardinality
that is defined for the array.

For an associative array, the array index expression must be
castable to the index data type of the associative array, and
must not be the null value.

array-index must not be:
v An expression that references the CURRENT DATE,

CURRENT TIME, or CURRENT TIMESTAMP special register
v A nondeterministic function
v A function that is defined with EXTERNAL ACTION
v A function that is defined with MODIFIES SQL DATA
v A sequence expression

Notes

Assignment to targets:
The nth target identified by the INTO clause or described in the SQLDA
corresponds to the nth column of the result table of the cursor. The data
type of target must be compatible with its corresponding value. If the
value is numeric, the target must have the capacity to represent the whole
part of the value. For a datetime value, the target must be a character
string variable of a minimum length as defined in “String representations
of datetime values” on page 101. When the target is a host variable, if the
value is null, an indicator variable must be specified.

Assignments are made in sequence through the list. Each assignment to a
target is made according to the rules described in Chapter 2, “Language
elements,” on page 53. If the number of targets is less than the number of

1958 SQL Reference

|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|

|

|
|

|

|

|

|

|
|
|
|
|
|
|
|
|

|
|
|

values in the row, the SQLWARN3 field of the SQLCA is set to 'W'. There
is no warning if there are more targets than the number of result columns.
If the target is a host variable and the value is null, an indicator variable
must be provided. If an assignment error occurs, the value is not assigned
to the target and no more values are assigned to targets. Any values that
have already been assigned to targets remain assigned. However, if LOB
values are involved, there is a possibility that the corresponding target was
modified, but the variable's contents are unpredictable.

If more than one assignment is included in the same assignment statement,
all expressions are evaluated before the assignments are performed. For
example, a reference to a variable in an expression always uses the value
of the variable prior to any assignment in the assignment statement.

Normally, you use LOB locators to assign and retrieve data from LOB
columns. However, because of compatibility rules, you can also use LOB
locators to assign data to targets with other data types. For more
information on using locators, see Saving storage when manipulating LOBs
by using LOB locators (DB2 Application programming and SQL).

Default encoding scheme:
The default encoding scheme for the data is the value in the bind option
ENCODING, which is the option for application encoding. If this statement
is used with functions such as LENGTH or SUBSTRING that are operating
on LOB locators, and the LOB data that is specifies by the locator is in a
different encoding scheme from the ENCODING bind option, LOB
materialization and character conversion occur. To avoid LOB
materialization and character conversion, select the LOB data from the
SYSIBM.SYSDUMMYA, SYSIBM.SYSDUMMYE, or SYSIBM.SYSDUMMYU
sample table.

Examples

Example 1: Assign the value of the CURRENT PATH special register to host
variable HV1.

EXEC SQL VALUES(CURRENT PATH)
INTO :HV1;

Example 2: Assign the value of the CURRENT MEMBER special register to host
variable MEM.

EXEC SQL VALUES(CURRENT MEMBER)
INTO :MEM;

Example 3: Assume that LOB locator LOB1 is associated with a CLOB value. Assign
a portion of the CLOB value to host variable DETAILS using the LOB locator.

EXEC SQL VALUES (SUBSTR(:LOB1,1,35))
INTO :DETAILS;

If the LOB data that is specified by the LOB locator LOB1 is in a different encoding
scheme from the value of the ENCODING bind option, and you want to avoid
LOB materialization and character conversion, use the following statement instead
of the VALUES INTO statement:

EXEC SQL SELECT SUBSTR(:LOB1,1,35)
INTO :DETAILS
FROM SYSIBM.SYSDUMMYU;

Chapter 5. Statements 1959

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_savestoragelob.htm#db2z_savestoragelob
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_savestoragelob.htm#db2z_savestoragelob

Example 4: Using a VALUES INTO statement, retrieve the value of INTVAR1 into
an element in array MYINTARRAY1, which is indexed by the value of the
expression INTCOL2+MYINTVAR+1.
VALUES INTVAR1 INTO MYINTARRAY1[INTCOL2+MYINTVAR+1];

1960 SQL Reference

|
|
|

|

|

WHENEVER
The WHENEVER statement specifies the host language statement to be executed
when a specified exception condition occurs.

Invocation

This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java or REXX.

Authorization

None required.

Syntax

�� WHENEVER NOT FOUND CONTINUE
SQLERROR GOTO host-label
SQLWARNING GO TO :

��

Description

The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the
type of exception condition.

NOT FOUND
Identifies any condition that results in an SQLCODE of +100 (equivalently, an
SQLSTATE code of '02000').

SQLERROR
Identifies any condition that results in a negative SQLCODE.

SQLWARNING
Identifies any condition that results in a warning condition (SQLWARN0 is W),
or that results in a positive SQLCODE other than +100.

The CONTINUE or GO TO clause specifies the next statement to be executed
when the identified type of exception condition exists.

CONTINUE
Specifies the next sequential statement of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a single
token, optionally preceded by a colon. The form of the token depends on the
host language. In COBOL, for example, it can be section-name or an unqualified
paragraph-name.

Notes

There are three types of WHENEVER statements:
v WHENEVER NOT FOUND
v WHENEVER SQLERROR
v WHENEVER SQLWARNING

Chapter 5. Statements 1961

Every executable SQL statement in an application program is within the scope of
one implicit or explicit WHENEVER statement of each type. The scope of a
WHENEVER statement is related to the listing sequence of the statements in the
application program, not their execution sequence.

An SQL statement is within the scope of the last WHENEVER statement of each
type that is specified before that SQL statement in the source program. If a
WHENEVER statement of some type is not specified before an SQL statement, that
SQL statement is within the scope of an implicit WHENEVER statement of that
type in which CONTINUE is specified. If a WHENEVER statement is specified in
a Fortran subprogram, its scope is that subprogram, not the source program.

The GET DIAGNOSTICS statement can be used to provide additional information.

Examples

The following statements can be embedded in a COBOL program.

Example 1: Go to the label HANDLER for any statement that produces an error.
EXEC SQL WHENEVER SQLERROR GOTO HANDLER END-EXEC.

Example 2: Continue processing for any statement that produces a warning.
EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.

Example 3: Go to the label ENDDATA for any statement that does not return.
EXEC SQL WHENEVER NOT FOUND GO TO ENDDATA END-EXEC.

1962 SQL Reference

Chapter 6. SQL control statements for SQL routines

SQL control statements for SQL routines can be used in SQL functions and native
SQL procedures. SQL control statements provide the capability to control the logic
flow, declare and set variables, and handle warnings and exceptions. Some SQL
control statements include other nested SQL statements.

SQL-control-statement:

�� assignment-statement
CALL statement
CASE statement
compound-statement
FOR statement
GET DIAGNOSTICS statement
GOTO statement
IF statement
ITERATE statement
LEAVE statement
LOOP statement
REPEAT statement
RESIGNAL statement
RETURN statement
SIGNAL statement
WHILE statement

��

Control statements are supported in SQL functions and SQL procedures.
v SQL functions are created by specifying LANGUAGE SQL and an SQL routine

body in a CREATE FUNCTION statement. An SQL function can be changed. A
new SQL routine body can be specified in an ALTER FUNCTION statement.

v SQL procedures are created by specifying LANGUAGE SQL and an SQL routine
body in a CREATE PROCEDURE statement. An SQL procedure can be changed.
A new SQL routine body can be specified in an ALTER PROCEDURE statement.

The SQL routine body must be a single SQL statement, which might be an SQL
control statement.

The SQL routine body is the executable part of the function or procedure and is
transformed by DB2 into a program.

The remainder of the topics about SQL control statements for SQL routines contain
information about references to SQL parameters and variables, SQL condition
names, SQL cursor names, labels, and reference information for the use of the
statements that constitute the SQL routine body.

The two common elements that are used in describing specific SQL control
statements are:
v SQL control statements as described above
v “SQL-procedure-statement” on page 1968

© Copyright IBM Corp. 1982, 2013 1963

References to SQL parameters and SQL variables
SQL parameters and SQL variables can be referenced anywhere in the statement
where an expression or a variable can be specified. Host variables cannot be
specified in SQL routines. SQL parameters can be referenced anywhere in the
routine and can be qualified with the routine name. SQL variables can be
referenced anywhere in the compound statement in which they are declared,
including any statement that is directly or indirectly nested within that compound
statement.

If the compound statement where the variable is declared has a label, references to
the variable name can be qualified with that label.

All SQL parameters and SQL variables are considered nullable. The name of an
SQL parameter or an SQL variable in an SQL routine can be the same as the name
of a column in a table or view that is referenced in the routine. The name of an
SQL variable can also be the same as the name of another SQL variable that is
declared in the same routine. This can occur when the two SQL variables are
declared in different compound-statements. The compound-statement that contains the
declaration of an SQL variable determines the scope of that variable. See
“compound-statement” on page 1977 for additional information.

Names that are the same should be explicitly qualified. Qualifying a name clearly
indicates whether the name refers to a column, an SQL variable, or an SQL
parameter. If the name is not qualified or is qualified but is still ambiguous, the
following rules describe whether the name refers to a column or to an SQL
variable or an SQL parameter in an SQL routine:
v The name is checked to see if it is the name of a column of any existing table or

a view that is specified in the SQL routine body at the current server. If the
name is found as a column name, but the privilege set that is used to issue the
CREATE PROCEDURE or ALTER PROCEDURE statement does not have the
proper authority to access the table or view, the VALIDATE option that is in
effect for the procedure determines what happens:
– If VALIDATE BIND is in effect, an error is returned.
– If VALIDATE RUN is in effect, the name is assumed to be a column name. If

the privilege set that is used to issue the CREATE statement does not have
the proper authority to access the table or view at run time, an error is
returned.

v If the referenced tables or views do not exist at the current server, the name will
be checked first as an SQL variable name in the compound statement and then
as an SQL parameter name. The variable can be declared within the
compound-statement that contains the reference, or within a compound statement
in which that compound statement is nested. If two SQL variables are within the
same scope and have the same name, the SQL variable that is declared in the
innermost compound statement is used.
If the name is not found as an SQL parameter or SQL variable, the VALIDATE
option that is in effect for the procedure determines what happens:
– If VALIDATE BIND is in effect, an error is returned.
– If VALIDATE RUN is in effect, the name is assumed to a be column name. If

a column does not exist with that name at run time, an error is returned.

1964 SQL Reference

The name of an SQL variable or an SQL parameter in an SQL routine can be the
name of an identifier that is used in certain SQL statements. If the name is not
qualified, the following rules describe whether the name refers to an identifier, an
SQL variable, or and SQL parameter:
v In the SET CURRENT PACKAGE PATH, SET PATH and SET SCHEMA

statements, the name is checked as an SQL variable name or an SQL parameter
name. If an SQL variable or SQL parameter with that name is not found, the
name is assumed to be an identifier.

v In the ASSOCIATE LOCATORS, CONNECT, RELEASE (connection), and SET
CONNECTION statements, the name is used as an identifier.

References to SQL condition names
A condition name can only be referenced within the compound statement in which
it is declared, including any compound statements that are nested within that
compound statement. When there is a reference to a condition name, the condition
that is declared in the innermost compound statement is the condition that is used.

The name of an SQL condition can be the same as the name of another SQL
condition that is declared in the same routine. This can occur when the two SQL
conditions are declared in different compound-statements. The compound-statement
that contains the declaration of an SQL condition name determines the scope of
that condition name. A condition name must be unique within the compound
statement in which it is declared, excluding any declarations in compound
statements that are nested within that compound statement. A condition name can
only be referenced within the compound statement in which it is declared,
including any compound statements that are nested within that compound
statement. When there is a reference to a condition name, the condition that is
declared in the innermost compound statement is the condition that is used. See
“compound-statement” on page 1977 for additional information.

References to SQL cursor names
A cursor name can only be referenced within the compound statement in which it
is declared, including any compound statements that are nested within that
compound statement.

The name of an SQL cursor can not be the same as the name of another SQL
cursor that is declared on the same routine. The compound-statement that contains
the declaration of an SQL cursor name determines the scope of that cursor name. A
cursor name can only be referenced within the compound statement in which it is
declared, including any compound statements that are nested within that
compound statement. See “compound-statement” on page 1977 for additional
information.

References to labels
Specifying a label for an SQL procedure statement defines that label and
determines the scope of that label. A label name can only be referenced within the
compound statement in which it is defined, including a reference from any
statement that is directly or indirectly nested within that compound statement. The
FOR statement is considered the same as a compound statement with respect to
defining and referencing labels. A label can be specified as the target of a GOTO,
LEAVE, or ITERATE statement, subject to the rules for the statement that
references the label as a target.

Chapter 6. SQL control statements for SQL routines 1965

Labels can be specified on most SQL procedure statements. If a label is specified
on an SQL procedure statement, it must be unique from other labels within the
same scope. A label must not be the same as any other label within the same
compound statement, must not be the same as a label specified on the compound
statement itself, and if the compound statement is nested within another
compound statement, the label must not be the same as the label specified on any
higher level compound statement. The label must not be the same as the name of
the SQL procedure.

Nested compound statements and scope of names
Nested compound statements can be used within an SQL routine to define the
scope of SQL variable declarations, cursors, condition names, and condition
handlers.

In addition, labels have a defined scope in the context of nested compound
statements. However, the rules for name spaces and how non-unique names can be
referenced, differs depending on the type of name. The following table summarizes
these differences:

Table 153. Scope and qualification of names within nested compound statements

Type of name Name can be qualified Name must be unique within Name can be referenced within

SQL variable Yes. The name can be qualified
with the label of the compound
statement in which the variable
is declared

the compound statement in
which it is declared, excluding
any declarations in compound
statements that are nested
within that compound statement

The compound statement in
which it is declared, including
any compound statements that
are nested within that
compound statement.

When multiple SQL variables
are defined with the same
name, a label can be used to
explicitly refer to a specific
variable that is not the most
local in scope

condition
name

No the compound statement in
which it is declared, excluding
any declarations in compound
statements that are nested
within that compound statement

The compound statement in
which it is declared, including
any compound statements that
are nested within that
compound statement.

Condition names can be used in
the declaration of a condition
handler, or in a SIGNAL or
RESIGNAL statement.

If multiple conditions are
defined with the same name,
there is no way to explicitly
refer to the condition that is not
the most local in scope.

1966 SQL Reference

Table 153. Scope and qualification of names within nested compound statements (continued)

Type of name Name can be qualified Name must be unique within Name can be referenced within

cursor name No the routine The compound statement in
which it is declared, including
any compound statements that
are nested within that
compound statement.

If the cursor is defined as a
result set cursor, the invoking
application can access the result
set.

label No the compound statement that
defined the label, including any
definitions in compound
statements that are nested
within that compound statement

The compound statement in
which it is defined, including
any compound statements that
are nested within that
compound statement.

Use a label to qualify the name
of an SQL variable or as the
target of a GOTO, LEAVE, or
ITERATE statement, subject to
the rules for these statements.

Chapter 6. SQL control statements for SQL routines 1967

SQL-procedure-statement
An SQL control statement can allow multiple SQL statements to be specified
within the SQL control statement. These statements are defined as SQL procedure
statements.

Syntax

�� SQL-control-statement

ALLOCATE CURSOR statement

(1)

ALTER DATABASE statement

(1) (2)

ALTER FUNCTION statement (external scalar, external table, sourced, SQL scalar, or SQL table)

(1)

ALTER INDEX statement

(1) (2)

ALTER PROCEDURE statement (external, SQL - external, or SQL - native)

(1)

ALTER SEQUENCE statement

(1)

ALTER STOGROUP statement

(1)

ALTER TABLE statement

(1)

ALTER TABLESPACE statement

(1)

ALTER TRUSTED CONTEXT statement

(1)

ALTER VIEW statement

ASSOCIATE LOCATORS statement

CALL statement

CLOSE statement

(1)

COMMENT statement

(3)

COMMIT statement

(3)

CONNECT statement

(1)

CREATE ALIAS statement

(1)

CREATE DATABASE statement

(1)

CREATE FUNCTION statement (external scalar, external table, or sourced)

(1)

CREATE GLOBAL TEMPORARY TABLE statement

(1)

CREATE INDEX statement

(1)

CREATE PROCEDURE statement (external)

(1)

CREATE ROLE statement

(1)

CREATE SEQUENCE statement

(1)

CREATE STOGROUP statement

(1)

CREATE SYNONYM statement

(1)

CREATE TABLE statement

(1)

CREATE TABLESPACE statement

(1)

CREATE TRUSTED CONTEXT statement

(1)

CREATE TYPE (distinct) statement

(1)

CREATE VIEW statement

��

Notes:

1 The statement is not allowed in an SQL-routine-body for an SQL function

2 An ALTER FUNCTION statement (SQL scalar) or an ALTER PROCEDURE statement (SQL - native)
with an ADD VERSION or REPLACE clause is not allowed in an SQL-routine-body.

3 The COMMIT, ROLLBACK, CONNECT, and SET CONNECTION statements must only be specified
within the body of an SQL procedure. The COMMIT statement and the ROLLBACK statement
(without the TO SAVEPOINT clause) must not be issued in a routine body if the routine is in the
calling chain of an SQL routine, or an external routine.

1968 SQL Reference

|

|||

|

��

(1)

DECLARE CURSOR statement

(1)

DECLARE GLOBAL TEMPORARY TABLE statement

DELETE statement

(1)

DROP statement

(1)

EXCHANGE statement

(1)

EXECUTE statement

(1)

EXECUTE IMMEDIATE statement

(2)

FETCH statement

GET DIAGNOSTICS statement

(1)

GRANT statement

INSERT statement

(1)

LABEL statement

(1)

LOCK TABLE statement

MERGE statement

OPEN statement

(1)

PREPARE statement

REFRESH TABLE statement

RELEASE statement

RELEASE SAVEPOINT statement

(1)

RENAME statement

(1)

REVOKE statement

(3)

ROLLBACK statement

SAVEPOINT statement

SELECT INTO statement

SET assignment-statement statement

(3)

SET CONNECTION statement

SET special-register statement

TRUNCATE statement

UPDATE statement

VALUES INTO statement

��

Notes:

1 The statement is not allowed in an SQL-routine-body for an SQL function

2 A FETCH statement must not specify a fetch-orientation clause, multiple-row-fetch clause, the WITH
CONTINUE or the CURRENT CONTINUE clauses.

3 The COMMIT, ROLLBACK, CONNECT, and SET CONNECTION statements must only be specified
within the body of an SQL procedure. The COMMIT statement and the ROLLBACK statement
(without the TO SAVEPOINT clause) must not be issued in a routine body if the routine is in the
calling chain of an SQL routine, or an external routine.

Description

SQL-control-statement
Specifies an SQL statement that provides the capability to control logic flow,
declare and set variables, and handle warnings and exceptions, as defined in
this section. Control statements are supported in SQL routines.

SQL-statement
Specifies an SQL statement. These statements are described in Chapter 5,
“Statements,” on page 833.

Notes

Comments: Comments can be included within the body of an SQL routine. In
addition to the double-dash form of comments (--), a comment can begin with /*
and end with */. The following rules apply to this form of comment:
v The beginning characters /* must be adjacent and on the same line.
v The ending characters */ must be adjacent and on the same line.
v Comments can be started wherever a space is valid.

Chapter 6. SQL control statements for SQL routines 1969

|

v Comments can be continued to the next line.

Detecting and processing error and warning conditions: As an SQL statement is
executed, DB2 stores information about the processing of the statement in a
diagnostics area (including the SQLSTATE and SQLCODE), unless otherwise noted
in the description of the SQL statement. A completion condition can indicate that
the SQL statement completed successfully, completed with a warning condition, or
completed with a not found condition. An exception condition indicates that the
SQL statement was not successful.

A condition handler can be defined to execute when an exception condition, a
warning condition, or a not found condition occurs in a compound statement. The
declaration of a condition handler includes the code that is executed when the
condition handler is activated. When a condition other than a successful
completion occurs in the processing of SQL-procedure-statement and a condition
handler that can handle the condition is within scope, one such condition handler
will be activated to process the condition. See “compound-statement” on page 1977
for information about defining condition handlers. The code in the condition
handler can check for a warning condition, a not found condition, or an exception
condition and can take the appropriate action. Use one of the following methods at
the beginning of the body of a condition handler to check the condition in the
diagnostics area that caused the handler to be activated.
v Issue a GET DIAGNOSTICS statement to request the information from the

diagnostics area. See “GET DIAGNOSTICS” on page 1679.
v Test the SQLSTATE and SQLCODE SQL variables.

If the condition is a warning and no handler exists for the condition, the previous
two methods can be used outside of the body of a condition handler, if they are
used immediately following the statement for which the condition is wanted. If the
condition is an error and no handler exists for the condition, the routine terminates
with the error condition.

1970 SQL Reference

assignment-statement
The assignment statement assigns a value to variables or array elements. The target
value can be an SQL parameter or an SQL variable.

Syntax

�� SET assignment-clause
label:

��

Description

label
Specifies the label for assignment-statement. The label name cannot be the same
as the name of the SQL routine, or another label within the same scope. For
additional information, see “References to labels” on page 1965.

See “SET assignment-statement” on page 1875 for details.

Notes

Assignment rules: Assignment statements in SQL routines must conform to the
SQL assignment rules. For example, the data type of the target and source must be
compatible. See “Assignment and comparison” on page 121 for assignment rules.

When a string is assigned to a fixed-length variable and the length of the string is
less than the length attribute of the target, the string is padded on the right with
the necessary number of single-byte or double-byte blanks. When a string is
assigned to a variable and the string is longer than the length attribute of the
variable, the value is truncated and a warning is returned.

If truncation of the whole part of a number occurs on assignment to a numeric
variable, the value is truncated and a warning is returned.

Assignments involving SQL parameters for SQL procedures: An IN parameter can
appear on the left or right side in an assignment statement. When control returns
to the caller, the original value of the IN parameter is retained. An OUT parameter
can also appear on the left or right side in an assignment statement. If used
without first being assigned a value, the value is undefined. When control returns
to the caller, the last value that is assigned to an OUT parameter is returned to the
caller. For an INOUT parameter, the first value of the parameter is determined by
the caller, and the last value that is assigned to the parameter is returned to the
caller.

Multiple assignments: If more than one assignment is included in the same
assignment statement, all expressions are evaluated before the assignments are
performed. Thus, references to an SQL variable or SQL parameter in an expression
always use the value of the SQL variable or SQL parameter prior to any
assignment in the assignment statement.

Considerations for SQLSTATE and SQLCODE SQL variables: Assignment to these
variables is not prohibited. However, it is not recommended as assignment does
not affect the diagnostic area or result in the activation of condition handlers.

Chapter 6. SQL control statements for SQL routines 1971

Furthermore, processing an assignment to these SQL variables causes the specified
values for the assignment to be overlayed with the SQL return codes returned from
executing the statement that does the assignment.

1972 SQL Reference

CALL statement
The CALL statement invokes a stored procedure.

Syntax

�� CALL
label:

procedure-name argument-list ��

argument-list:

��

�

,

(SQL-variable-name)
SQL-parameter-name
expression
NULL

��

Description

label
Specifies the label for the CALL statement. The label name cannot be the same
as the name of the SQL routine or another label within the same scope. For
additional information, see “References to labels” on page 1965.

procedure-name
Identifies the stored procedure to call. The procedure name must identify a
stored procedure that exists at the current server.

argument-list
Identifies a list of values to be passed as parameters to the stored procedure.
The nth value corresponds to the nth parameter in the procedure. The number
of parameters must be the same as the number of parameters defined for the
stored procedure. See “CALL” on page 1117 for more information.

Control is passed to the stored procedure according to the calling conventions
for SQL routines. When execution of the stored procedure is complete, the
value of each parameter of the stored procedure is assigned to the
corresponding parameter of the CALL statement defined as OUT or INOUT.

SQL-variable-name
Specifies an SQL variable as an argument to the stored procedure. For an
explanation of references to SQL variables, see “References to SQL
parameters and SQL variables” on page 1964.

SQL-parameter-name
Specifies an SQL parameter as an argument to the stored procedure. For an
explanation of references to SQL parameters, see “References to SQL
parameters and SQL variables” on page 1964.

expression
The parameter is the result of the specified expression, which is evaluated

Chapter 6. SQL control statements for SQL routines 1973

before the stored procedure is invoked. If expression is a single
SQL-parameter-name or SQL-variable-name, the corresponding parameter of
the procedure can be defined as IN, INOUT, or OUT. Otherwise, the
corresponding parameter of the procedure must be defined as IN. If the
result of the expression can be the null value, either the description of the
procedure must allow for null parameters or the corresponding parameter
of the stored procedure must be defined as OUT.

The following additional rules apply depending on how the corresponding
parameter was defined in the CREATE PROCEDURE statement for the
procedure:
v IN expression can contain references to multiple SQL parameters or

variables. In addition to the rules stated in “Expressions” on page 240
for expression, expression cannot include a column name, an aggregate
function, or a user-defined function that is sourced on an aggregate
function.

v INOUT or OUT expression can only be a single SQL parameter or
variable.

NULL
The parameter is a null value. The corresponding parameter of the
procedure must be defined as IN and the description of the procedure
must allow for null parameters.

Notes

See “CALL” on page 1117 for more information on the SQL CALL statement.

Examples

Call stored procedure proc1 and pass SQL variables as parameters.
CALL proc1(v_empno, v_salary)

1974 SQL Reference

CASE statement
The CASE statement selects an execution path based on multiple conditions. A
CASE statement operates in the same way as a CASE expression.

Syntax

�� CASE
label:

simple-when-clause
searched-when-clause else-clause

END CASE ��

simple-when-clause:

�� expression � �WHEN expression THEN SQL-procedure-statement ; ��

searched-when-clause:

�� � �WHEN search-condition THEN SQL-procedure-statement ; ��

else-clause:

�� �ELSE SQL-procedure-statement ; ��

Description

label
Specifies the label for the CASE statement. The label name cannot be the same
as the name of the SQL routine or another label within the same scope. For
additional information, see “References to labels” on page 1965.

CASE
Begins a case-expression.

simple-when-clause
The value of the expression prior to the first WHEN keyword is tested for
equality with the value of the expression that follows each WHEN keyword. If
the comparison is true, the statements in the associated THEN clause are

Chapter 6. SQL control statements for SQL routines 1975

executed and processing of the CASE statement ends. If the result is unknown
or false, processing continues to the next comparison. If the result does not
match any of the comparisons, and an ELSE clause is present, the statements in
the ELSE clause are executed.

searched-when-clause
The search-condition following the WHEN keyword is evaluated. If it evaluates
to true, the statements in the associated THEN clause are executed and
processing of the CASE statement ends. If it evaluates to false, or unknown,
the next search-condition is evaluated. If no search-condition evaluates to true and
an ELSE clause is present, the statements in the ELSE clause are executed.

When searched-when-clause is used, search-condition cannot contain a fullselect.

SQL-procedure-statement
Specifies a statement to execute. See“SQL-procedure-statement” on page 1968.

search-condition
Specifies a condition that is true, false, or unknown about a row or group of
table data.

ELSE SQL-procedure-statement
If none of the conditions specified in the simple-when-clause or
searched-when-clause are true, the statements specified in SQL-procedure-statement
are executed.

If none of the conditions specified in the WHEN clauses are true and an ELSE
is not specified, an error is issued when the statement executes, and the
execution of the CASE statement is terminated.

END CASE
Ends a case-statement.

Examples

Example 1: Use a simple case statement WHEN clause to update column
DEPTNAME in table DEPT, depending on the value of SQL variable v_workdept.
CASE v_workdept
WHEN ’A00’
THEN UPDATE DEPT SET
DEPTNAME = ’DATA ACCESS 1’;

WHEN ’B01’
THEN UPDATE DEPT SET
DEPTNAME = ’DATA ACCESS 2’;

ELSE UPDATE DEPT SET
DEPTNAME = ’DATA ACCESS 3’;

END CASE

Example 2: Use a searched case statement WHEN clause to update column
DEPTNAME in table DEPT, depending on the value of SQL variable v_workdept.
CASE
WHEN v_workdept < ’B01’
THEN UPDATE DEPT SET
DEPTNAME = ’DATA ACCESS 1’;

WHEN v_workdept < ’C01’
THEN UPDATE DEPT SET
DEPTNAME = ’DATA ACCESS 2’;

ELSE UPDATE DEPT SET
DEPTNAME = ’DATA ACCESS 3’;

END CASE

1976 SQL Reference

compound-statement
A compound statement groups other statements together in an SQL routine. A
compound statement allows the declaration of SQL variables, cursors, and
condition handlers.

Syntax

��
label:

BEGIN
NOT ATOMIC

� SQL-variable-declaration ;
SQL-condition-declaration
return-codes-declaration

�

� �

statement-declaration ;

� DECLARE-CURSOR-statement ;

�

�

� handler-declaration ;

�

SQL-procedure-statement ;
END

label
��

�� DECLARE �

,
DEFAULT NULL

SQL-variable-name data-type
DEFAULT constant

RESULT_SET_LOCATOR VARYING

��

�� DECLARE SQL-condition-name CONDITION FOR

VALUE
SQLSTATE

string-constant ��

SQL-variable-declaration:

SQL-condition-declaration:

return-codes-declaration:

Chapter 6. SQL control statements for SQL routines 1977

��
DEFAULT '00000'

DECLARE SQLSTATE CHAR(5)
CHARACTER(5) DEFAULT string-constant

DEFAULT 0
SQLCODE INTEGER

INT DEFAULT integer-constant

��

�� DECLARE �

,

statement-name STATEMENT ��

�� DECLARE CONTINUE
EXIT

HANDLER FOR specific-condition-value
general-condition-value

SQL-procedure-statement ��

�� �

,
VALUE

SQLSTATE string-constant
condition-name

��

�� �

,

SQLEXCEPTION
SQLWARNING
NOT FOUND

��

Description

label
Specifies the label for the compound-statement. If the beginning label is specified,
it can be used to qualify SQL variables declared in the compound statement
and can also be specified as the target on a LEAVE statement. If the ending
label is specified, it must be the same as beginning label. The label name
cannot be the same as the routine name or another label within the same
scope.

statement-declaration:

handler-declaration:

specific-condition-value:

general-condition-value:

1978 SQL Reference

NOT ATOMIC
NOT ATOMIC indicates that an unhandled exception condition within the
compound-statement does not cause the compound-statement to be rolled back.

SQL-variable-declaration
Declares a variable that is local to the compound statement.

SQL-variable-name
Defines the name of a variable. DB2 converts all SBCS SQL variable names
that are not delimited to uppercase. SQL-variable-name must be unique
within the compound statement in which is it declared, excluding any
declarations in compound statements that are nested within that
compound statement. SQL-variable-name must not be the same as a
parameter name. See “References to SQL parameters and SQL variables”
on page 1964 for information about how SQL variable names are resolved
when there are columns with the same name as an SQL variable involved
in a statement, or when multiple SQL variables exist with the same name
in the routine body.

SQL-variable-name can only be referenced within the compound statement
in which it is declared, including any compound statement that is nested
within that compound statement. If the compound statement where the
variable is declared has a label, references to the variable name can be
qualified with that label. For example, an SQL variable V that is declared
in a compound statement that is labeled C can be referenced as C.V.

data-type
Specifies the data type and length of the variable. SQL variables follow the
same rules for default lengths and maximum lengths as SQL routine
parameters. See “CREATE FUNCTION (SQL scalar)” on page 1224 and
“CREATE PROCEDURE (SQL - native)” on page 1350 for descriptions of
SQL data types and lengths.

DEFAULT constant or NULL
Defines the default for the SQL variable. The specified constant must
represent a value that could be assigned to the variable in accordance with
the rules of assignment as described in “Assignment and comparison” on
page 121. The variable is initialized when the compound statement begins
processing. If a default value is not specified, the SQL variable is initialized
to NULL. Only DEFAULT NULL can be explicitly specified if
array-type-name is specified.

RESULT_SET_LOCATOR VARYING
Specifies the data type for a result set locator variable.

SQL-condition-declaration
Declares a condition name and corresponding SQLSTATE value.

SQL-condition-name
Specifies the name of the condition. The condition name must be unique
within the compound statement in which it is declared, excluding any
declarations that are in compound statements that are nested within that
compound statement. A condition name can only be referenced within the
compound statement in which it is declared, including any compound
statements that are nested within that compound statement.

FOR SQLSTATE string-constant
Specifies the SQLSTATE that is associated with the condition. The string
must be specified as five characters enclosed in single quotes, and the
SQLSTATE class (the first two characters) must not be '00'.

Chapter 6. SQL control statements for SQL routines 1979

|
|
|
|
|
|
|

return-codes-declaration
Declares special variables named SQLSTATE and SQLCODE. These variables
are automatically set to the SQLSTATE and SQLCODE values for the first
condition in the diagnostics area after executing an SQL statement other than
GET DIAGNOSTICS or an empty compound statement.

The SQLSTATE and SQLCODE SQL variables are only intended to be used as
a means of obtaining the SQL return codes that resulted from processing the
previous SQL statement other than GET DIAGNOSTICS. If there is any
intention to use the SQLSTATE and SQLCODE values, save the values
immediately to other SQL variables to avoid having the values replaced by the
SQL return codes returned after executing the next SQL statement. If a handler
is defined that handles an SQLSTATE, you can use an assignment statement to
save that SQLSTATE (or the associated SQLCODE) value in another SQL
variable, if the assignment is the first statement in the handler.

Assignment to these variables is not prohibited; however, it is not
recommended. Assignment to these variables is ignored by condition handlers,
and processing an assignment to these special variables causes the specified
values for the assignment to be overlayed with the SQL return codes returned
from executing the statement that does the assignment. The SQLSTATE and
SQLCODE SQL variables cannot be set to NULL.

statement-declaration
Declares a list of one or more names that are local to the compound statement.
A statement name cannot be the same as another statement name within the
same compound statement.

DECLARE-CURSOR-statement
Declares a cursor in the procedure body. Each cursor must have a unique name
within the routine. The cursor can only be referenced from within the
compound statement in which it is declared, including any compound
statements that are nested within that compound statement. Use an OPEN
statement to open the cursor, a FETCH statement to read a row using the
cursor, and a CLOSE statement to close the cursor. If the cursor is intended for
use as a result set cursor:
v Specify WITH RETURN when the cursor is declared
v Create the procedure using the DYNAMIC RESULT SETS clause with a

non-zero value
v Do not specify a CLOSE statement for the cursor in the compound statement

For additional information about declaring a cursor, see “DECLARE CURSOR”
on page 1535.

handler-declaration
Specifies a condition handler, an SQL-procedure-statement to execute when an
exception or completion condition occurs in the compound-statement. The
SQL-procedure-statement executes when a condition handler receives control.

A condition handler declaration cannot reference the same condition value or
SQLSTATE value more than one time. It cannot reference an SQLSTATE value
and a condition name that represent the same SQLSTATE value.

When two or more condition handlers are declared in a compound statement,
no two condition handler declarations can specify the same:
v general condition category
v specific condition, either as an SQLSTATE value or as a condition name that

represents the same value

1980 SQL Reference

A condition handler is active for the set of SQL-procedure-statements that follow
the condition handler declarations within the compound statement in which
the condition handler is declared, including any nested compound statements.

CONTINUE
Specifies that after the condition handler is activated and completes
successfully, control is returned to the SQL statement that follows the
statement that raised the condition. However, if the condition is an error
condition and it was encountered while evaluating a search condition, as in
a CASE, FOR, IF, REPEAT or WHILE statement, control returns to the
statement that follows the corresponding END CASE, END FOR, END IF,
END REPEAT, or END WHILE.

EXIT
Specifies that after the condition handler is activated and completes
successfully, control is returned to the end of the compound statement that
declared the condition handler.

The conditions that can cause the handler to gain control are:

SQLSTATE string-constant
Specifies that the handler is invoked when the specific SQLSTATE occurs.
The first two characters of the SQLSTATE value must not be '00'.

SQL-condition-name
Specifies that the handler is invoked when the specific SQLSTATE that is
associated with the condition name occurs. The SQL-condition-name must be
declared within the compound statement that contains the handler
declarations, or within a compound statement in which that compound
statement is nested.

SQLEXCEPTION
Specifies that the handler is invoked when an SQLEXCEPTION occurs. An
SQLEXCEPTION is an SQLSTATE in which the class code is a value other
than '00', '01', or '02'. For more information on SQLSTATE values, see DB2
Codes.

SQLWARNING
Specifies that the handler is invoked when an SQLWARNING occurs. An
SQLWARNING is an SQLSTATE value with a class code of '01'.

NOT FOUND
Specifies that the handler is invoked when a NOT FOUND condition
occurs. NOT FOUND corresponds to an SQLSTATE value with a class code
of '02'.

Notes

Unlike host variables, SQL variables are not preceded by colons when they are
used in SQL statements.

Nesting compound statements: Compound statements can be nested. Nested
compound statements can be used to scope variable definitions, condition names,
condition handlers, and cursors to a subset of the statements in a routine. This can
simplify the processing that is done for each SQL routine statement. Nested
compound statements enable the use of a compound statement within the
declaration of a condition handler.

Chapter 6. SQL control statements for SQL routines 1981

The scope of a cursor: The scope of a cursor name is the compound statement in
which it is declared, including any compound statements that are nested within
that compound statement. A cursor name can only be referenced within the
compound statement in which it is declared, including any compound statements
that are nested within that compound statement.

Considerations for statement-name: The scope of a statement-name that is declared
in a compound statement is the compound statement and any nested compound
statements (unless the same statement-name is declared in a nested compound
statement). If a statement-name is used in a DECLARE CURSOR statement or a
PREPARE statement and has not been declared in the compound statement where
it is used or any outer compound statements in which it is nested, the
statement-name is assumed to be declared globally for the routine.

Condition handlers: Condition handlers in SQL routines are similar to
WHENEVER statements that are used in external SQL application programs. A
condition handler can be defined to automatically get control when an exception,
warning, or not found condition occurs. The body of a condition handler contains
code that is executed when the condition handler is activated. A condition handler
can be activated as the result of an exception, a warning, or a not found condition
that is returned by DB2 for the processing of an SQL statement. Or the condition
that activates the handler can be the result of a SIGNAL or RESIGNAL statement
that is issued within the SQL routine body.

A condition handler is declared within a compound statement, and it is active for
the set of SQL-procedure-statements that follow all of the condition handler
declarations within the compound statement in which the condition handler is
declared. For example, the scope of a condition handler declaration H is the list of
SQL-procedure-statements that follow the condition handler declarations that are
contained within the compound statement in which H appears. This means that
the scope of H does not include the statements that are contained in the body of
the condition handler H, implying that a condition handler cannot handle
conditions that arise inside its own body. Similarly, for any two condition handlers
H1 and H2 that are declared in the same compound statement, H1 will not handle
conditions that arise in the body of H2, and H2 will not handle conditions that
arise in the body of H1.

The declaration of a condition handler specifies the condition that activates it, the
type of condition handler (CONTINUE or EXIT), and the handler action. The type
of condition handler determines to where control is returned after the handler
action successfully completes.

Condition handler activation: When a condition other than a successful completion
occurs in the processing of SQL-procedure-statement, if a condition handler that
could handle the condition is within scope, one such condition handler will be
activated to process the condition.

In a routine with nested compound statements, condition handlers that could
handle a specific condition might exist at several levels of the nested compound
statements. The condition handler that is activated is a condition handler that is
declared innermost to the scope in which the condition was encountered. If more
than one condition handler at the nesting level could handle the condition, the
condition handler that is activated is the most appropriate handler that is declared
in that compound statement.

1982 SQL Reference

The most appropriate handler is the condition handler that most closely matches
the SQLSTATE or the exception or completion condition. For a given compound
statement, when both a specific handler for a condition and a general handler are
declared that address the same condition, the specific handler takes precedence
over the general handler.

For example, if the innermost compound statement declares a specific handler for
SQLSTATE '22001', as well as a general handler for SQLEXCEPTION, the specific
handler for SQLSTATE '22001' is the most appropriate handler when SQLSTATE
'22001' is encountered. In this case, the specific handler is activated.

When a condition handler is activated, the condition handler action is executed. If
the handler action completes successfully or with an unhandled warning, the
diagnostics area is cleared, and the type of the condition handler (CONTINUE or
EXIT handler) determines to where control is returned. Additionally, the
SQLSTATE and SQLCODE SQL variables are cleared when a handler completes
successfully or with an unhandled warning.

If the handler action does not complete successfully and an appropriate handler
exists for the condition that is encountered in the handler action, that condition
handler is activated. Otherwise, the condition that is encountered within the
condition handler is unhandled.

Unhandled conditions: If a condition is encountered and an appropriate handler
does not exist for that condition, the condition is unhandled.
v If the unhandled condition is an exception, the SQL routine that contains the

failing statement is terminated with an unhandled exception condition.
v If the unhandled condition is a warning or is a not found condition, processing

continues with the next statement. Note that the processing of the next SQL
statement will cause information about the unhandled condition in the
diagnostics area to be overwritten, and evidence of the unhandled condition will
no longer exist.

Considerations for using SIGNAL and RESIGNAL statements with nested
compound statements: If an SQL-procedure-statement that is specified in the
condition handler is either a SIGNAL or RESIGNAL statement with an exception
SQLSTATE, the compound statement terminates with the specified exception. This
happens even when this condition handler or another condition handler in the
same compound statement specifies CONTINUE, since these condition handlers
are not in the scope of this exception. If a compound statement is nested in another
compound statement, condition handlers in the higher level compound statement
can handle the exception because those condition handlers are within the scope of
the exception.

SQLSTATE and SQLCODE variables in SQL routines: To help debug your SQL
routines, you might find it useful to check the SQLSTATE and SQLCODE value
after executing a statement. An SQLCODE or SQLSTATE variable can be declared
and subsequently referenced in an SQL routine. You could insert the value of the
SQLCODE and SQLSTATE into a table at various points in the SQL routine, or
return the SQLCODE and SQLSTATE values in a diagnostics string as an OUT
parameter. To use the SQLCODE and SQLSTATE values, you must declare the
following SQL variables in the SQL routine body:
DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE SQLSTATE CHAR(5) DEFAULT ’00000’;

Chapter 6. SQL control statements for SQL routines 1983

When you reference the SQLCODE or SQLSTATE variables in an SQL routine, DB2
sets the value of SQLCODE to 0 and SQLSTATE to '00000' for the subsequent
statement. You can also use CONTINUE condition handlers to assign the value of
the SQLSTATE and SQLCODE variables to variables in your SQL routine body.
You can then use these SQL variables to control your routine logic, or pass the
value back as an output parameter. In the following example, the SQL routine
returns control to the statement following each SQL statement with the SQLCODE
set in a SQL variable called RETCODE:
DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE retcode INTEGER DEFAULT 0;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION SET retcode = SQLCODE;
DECLARE CONTINUE HANDLER FOR SQLWARNING SET retcode = SQLCODE;
DECLARE CONTINUE HANDLER FOR NOT FOUND SET retcode = SQLCODE;

The compound statement itself does not affect the SQLSTATE and SQLCODE SQL
variables. However, SQL statements contained within the compound statement can
affect the SQLSTATE and SQLCODE SQL variables. At the end of the compound
statement, the SQLSTATE and SQLCODE SQL variables reflect the result of the last
SQL statement executed within the compound statement that caused a change to
the SQLSTATE and SQLCODE SQL variables. If the SQLSTATE and SQLCODE
SQL variables were not changed within the compound statement, they contain the
same values as when the compound statement was entered.

Null values in SQL parameters and SQL variables: If the value of an SQL
parameter or SQL variable is null and it is used in an SQL statement that does not
allow an indicator variable, an error is returned.

Effect on open cursors: At the end of the compound statement, all open cursors
that are declared in that compound statement, except cursors that are used to
return result sets, are closed.

Atomic processing of a compound statement: Atomic processing is not supported
for a compound statement. If atomic behavior is needed for a block of code in a
compound statement, set a savepoint before the nested compound statement is
entered. This will allow changes to be undone with a ROLLBACK TO SAVEPOINT
statement.

Examples

Example 1: Create a procedure body with a compound statement that performs the
following actions:
v Declares SQL variables.
v Declares a cursor to return the salary of employees in a department determined

by an IN parameter.
v Declares an EXIT handler for the condition NOT FOUND (end of file) which

assigns the value 6666 to the OUT parameter medianSalary.
v Select the number of employees in the given department into the SQL variable

v_numRecords.
v Fetch rows from the cursor in a WHILE loop until 50% + 1 of the employees

have been retrieved.
v Return the median salary.
CREATE PROCEDURE DEPT_MEDIAN

(IN deptNumber SMALLINT,
OUT medianSalary DOUBLE)
LANGUAGE SQL

1984 SQL Reference

BEGIN
DECLARE v_numRecords INTEGER DEFAULT 1;
DECLARE v_counter INTEGER DEFAULT 0;
DECLARE c1 CURSOR FOR

SELECT salary FROM staff
WHERE DEPT = deptNumber
ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND
SET medianSalary = 6666;
/* initialize OUT parameter */
SET medianSalary = 0;
SELECT COUNT(*) INTO v_numRecords FROM staff

WHERE DEPT = deptNumber;
OPEN c1;
WHILE v_counter < (v_numRecords / 2 + 1) DO

FETCH c1 INTO medianSalary;
SET v_counter = v_counter + 1;

END WHILE;
CLOSE c1;

END

Example 2: Define an exit handler for any error, warning, or case of end of data.
When this procedure is invoked and it returns to the caller, the value 45000 is
returned for the output parameter:
CREATE PROCEDURE JMBLIB.PROCL(OUT MEDIANSALARY INT)

LANGUAGE SQL
BEGIN
DECLARE CHAR1 CHAR;
DECLARE C1 CURSOR FOR SELECT *

FROM SYSIBM.SYSDUMMY1;
DECLARE EXIT HANDLER FOR NOT FOUND,

SQLEXCEPTION,
SQLWARNING;

OPEN C1;
FETCH C1 INTO CHAR1;
SET MEDIANSALARY = 45000;
FETCH C1 INTO CHAR1;
SET MEDIANSALARY = 50000;
END

Chapter 6. SQL control statements for SQL routines 1985

FOR statement
The FOR statement executes a statement for each row of a table. An implicit
compound statement is generated to implement the FOR statement.

Syntax

�� FOR
label: for-loop-name AS WITHOUT HOLD

cursor-name CURSOR FOR
WITH HOLD

�

� �select-statement DO SQL-procedure-statement ; END FOR
label

��

Description

label
Specifies the label for the FOR statement. If the ending label is specified, it
must be the same as the beginning label. The label name cannot be the same as
the routine name or another label within the same scope. For more
information, see “References to labels” on page 1965.

for-loop-name
Specifies the label for the implicit compound statement that is generated to
implement the FOR statement. for-loop-name follows the rules for the label of a
compound statement except that it cannot be used with an ITERATE, GOTO,
or LEAVE statement within the FOR statement. for-loop-name must not be the
same as any label within the same scope.

for-loop-name can be used to qualify generated SQL variables that correspond to
the columns that are returned by select-statement.

cursor-name
Names a cursor that is generated to select rows from the result table of
select-statement. If cursor-name is not specified, a unique cursor name is
generated.

cursor-name cannot be referenced outside of the FOR statement and cannot be
specified on an OPEN, FETCH, or CLOSE statement.

WITH HOLD or WITHOUT HOLD
Specifies whether the cursor should be prevented from being closed as a
consequence of a commit operation.

WITHOUT HOLD
Specifies that the cursor is not prevented from being closed as a
consequence of a commit operation. WITHOUT HOLD is the default.

WITH HOLD
Specifies that the cursor should not be closed as a consequence of a
commit operation. A cursor that is declared using the WITH HOLD clause
is implicitly closed at commit time only if the connection that is associated

1986 SQL Reference

with the cursor is ended during the commit operation. For more
information, see “DECLARE CURSOR” on page 1535.

select-statement
Specifies the select statement of the cursor.

Each expression in the SELECT list must have a name. If an expression is not a
simple column name, the AS clause must be used to name the expression. If
the AS clause is specified, that name is used for the generated SQL variable
that corresponds to the column returned by select-statement. The names for all
of the generated SQL variables must be unique.

The SELECT list must not include an untyped array value.

SQL-procedure-statement
Specifies the SQL statements to be executed for each row of the table. The SQL
statements must not include an OPEN, FETCH, or CLOSE statement that
specifies the cursor name of the FOR statement.

Notes

FOR statement rules: The FOR statement executes one or multiple statements for
each row in a table. The cursor is defined by specifying a SELECT list that
describes the columns and rows selected. The statements within the FOR statement
are executed for each row selected.

The SELECT list must consist of unique column names and the table that is
specified in the FROM clause of select-statement must exist when the routine is
created.

Handler warning: Handlers can be used to handle errors that might occur on the
open of the cursor or fetch of a row using the cursor in the FOR statement.
Handlers defined to handle these open or fetch conditions should not be
CONTINUE handlers as they might cause the FOR statement to loop indefinitely.

Examples

In the following example, the FOR statement is used to specify a cursor that selects
three columns from the employee table. For every row selected, SQL variable
fullname is set to the last name followed by a comma, the first name, a blank, and
the middle initial. Each value for fullname is inserted into table TNAMES.
BEGIN

DECLARE fullname CHAR(40);
FOR v1 AS

c1 CURSOR FOR
SELECT firstname, midinit, lastname FROM employee
DO

SET fullname =
lastname CONCAT ’, ’

CONCAT firstname
CONCAT ’ ’
CONCAT midinit;

INSERT INTO TNAMES VALUES (fullname);
END FOR;

END;

Chapter 6. SQL control statements for SQL routines 1987

|

GET DIAGNOSTICS statement
The GET DIAGNOSTICS statement obtains information about the previous SQL
statement that was executed.

See “GET DIAGNOSTICS” on page 1679.

When you need to specify a variable in a GET DIAGNOSTICS statement that is
used within an SQL routine, you would use either SQL-variable-name or
SQL-parameter-name. In an embedded GET DIAGNOSTICS statement, you would
use a host-variable. You can replace the instances of host-variable in the description of
“GET DIAGNOSTICS” on page 1679 with SQL-variable-name or SQL-parameter-name.

Effects of the statement: The GET DIAGNOSTICS statement does not change the
contents of the diagnostics area except for
DB2_GET_DIAGNOSTICS_DIAGNOSTICS.

Considerations for the SQLSTATE and SQLCODE SQL variables: The GET
DIAGNOSTICS statement does not change the value of the SQLSTATE and
SQLCODE SQL variables.

The stacked diagnostics area: The stacked diagnostics area is only available within
a handler in a native SQL procedure and non-inline SQL functions.

1988 SQL Reference

GOTO statement

Syntax

�� GOTO target-label
label:

��

Description

label
Specifies the label for the GOTO statement. The label name cannot be the same
as the name of the SQL routine in which the label is used or another label in
the same scope.

target-label
Specifies a label of the statement where processing is to continue. target-label
must be defined as a label for an SQL procedure statement. The target label
must be accessible to the GOTO statement as defined in “References to labels”
on page 1965, subject to the following restrictions:
v If the GOTO statement is in a condition handler, target-label must be defined

in that condition handler.
v If the GOTO statement is not defined in a condition handler, target-label must

not be defined in a condition handler.

Notes

Using a GOTO statement: It is recommended that the GOTO statement be used
sparingly. This statement interferes with the normal sequence of processing SQL
statements, thus making a routine more difficult to read and maintain. Before
using a GOTO statement, determine whether another statement, such as IF or
LEAVE, can be used in place, to eliminate the need for a GOTO statement.

Effect on open cursors: When a GOTO statement transfers control out of a
compound statement, all open cursors that are declared in the compound
statement that contains the GOTO statement are closed, except cursors that are
used to return result sets.

Examples

Example 1: In the following procedure, the GOTO statement branches outside of the
current compound statement to a higher level:
CREATE PROCEDURE TESTGOTO5 ()
P1: BEGIN

DECLARE I ,A INTEGER;
SET I = 1;

LAB1: SET A = 1;
BEGIN

LAB2: SET A = 2;
BEGIN

SET I = I+1;
IF I<3 THEN GOTO LAB1;

Chapter 6. SQL control statements for SQL routines 1989

END IF;
END;

END;
END P1

Example 2: In the following example, cursors are declared at multiple levels. The
GOTO statement that specified TargLabel as the target label, results in the closing
of cursors C1, C2, and C3. This is because cursors C1, C2, and C3 are all declared
directly or indirectly in the compound statement with the label L1. The GOTO
statement causes control to transfer out of the compound statement with label L1,
so the cursors that are defined within that compound statement (at any level) are
closed.
L0: BEGIN

DECLARE CURSOR C0 ...
...
TARGLABEL: ...
...
L1: BEGIN

DECLARE CURSOR C1 ...
...

L2: BEGIN
DECLARE CURSOR C2 ...
...
GOTO TARGLABEL;
...

L3: BEGIN
DECALUE CURSOR C3 ...

...
END L3;

END L2;
END L1;

END L0

1990 SQL Reference

IF statement
The IF statement executes different sets of SQL statements based on the result of
search conditions.

Syntax

�� IF search-condition THEN
label:

� SQL-procedure-statement ; �

� �

�ELSEIF search-condition THEN SQL-procedure-statement ;

�

�

�ELSE SQL-procedure-statement ;

END IF ��

Description

label
Specifies the label for the IF statement. The label name cannot be the same as
the name of the SQL routine or another label name within the same scope. For
additional information, see “References to labels” on page 1965.

search-condition
Specifies the search-condition for which an SQL statement should be executed. If
the condition is unknown or false, processing continues to the next search
condition, until either a condition is true or processing reaches the ELSE
clause.

SQL-procedure-statement
Specifies an SQL statement to be executed if the preceding search-condition is
true. See “SQL-procedure-statement” on page 1968.

Examples

Assign a value to the SQL variable new_salary based on the value of SQL variable
rating.
IF rating = 1
THEN SET new_salary =
new_salary + (new_salary * .10);
ELSEIF rating = 2
THEN SET new_salary =
new_salary + (new_salary * .05);

ELSE SET new_salary =
new_salary + (new_salary * .02);

END IF

Chapter 6. SQL control statements for SQL routines 1991

ITERATE statement
The ITERATE statement causes the flow of control to return to the beginning of a
labeled loop.

Syntax

�� ITERATE target-label
label:

��

Description

label
Specifies the label for the ITERATE statement. The label name cannot be the
same as the name of the SQL routine or another label within the same scope.
For additional information, see “References to labels” on page 1965.

target-label
Specifies the label of the FOR, LOOP, REPEAT, or WHILE statement to which
the flow of control is passed. target-label must be defined as a label for a FOR,
LOOP, REPEAT, or WHILE statement. The ITERATE statement must be in that
FOR, LOOP, REPEAT, or WHILE statement, or in the block of code that is
directly or indirectly nested within that statement, subject to the following
restrictions:
v If the ITERATE statement is in a condition handler, target-label must be

defined in that condition handler.
v If the ITERATE statement is not in a condition handler, target-label must not

be defined in a condition handler.

Examples

Example 1: This example uses a cursor to return information for a new department.
If the not_found condition handler is invoked, the flow of control passes out of the
loop. If the value of v_dept is 'D11', an ITERATE statement causes the flow of
control to be passed back to the top of the LOOP statement. Otherwise, a new row
is inserted into the table.
CREATE PROCEDURE ITERATOR ()

LANGUAGE SQL
MODIFIES SQL DATA
BEGIN

DECLARE v_dept CHAR(3);
DECLARE v_deptname VARCHAR(29);
DECLARE v_admdept CHAR(3);
DECLARE at_end INTEGER DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE c1 CURSOR FOR

SELECT deptno,deptname,admrdept
FROM department
ORDER BY deptno;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN c1;
ins_loop:
LOOP

FETCH c1 INTO v_dept, v_deptname, v_admdept;
IF at_end = 1 THEN

1992 SQL Reference

LEAVE ins_loop;
ELSEIF v_dept = ’D11’ THEN

ITERATE ins_loop;
END IF;
INSERT INTO department (deptno,deptname,admrdept)

VALUES(’NEW’, v_deptname, v_admdept);
END LOOP;
CLOSE c1;

END

Example 2: An ITERATE statement can be issued from a nested block to cause that
flow of control to return to the beginning of a loop at a higher level. In the
following example, the ITERATE statement within the LAB2 compound statement
causes the flow of control to return to the beginning of the LAB1 LOOP statement:
LAB1: LOOP

SET A = 0;
LAB2: BEGIN

...
LAB3: BEGIN

...
ITERATE LAB1; -- Multilevel ITERATE
...

END LAB3;
...
ITERATE LAB1; -- Multilevel ITERATE
...

END LAB2;
END LOOP;S

Chapter 6. SQL control statements for SQL routines 1993

LEAVE statement
The LEAVE statement transfers program control out of a FOR, LOOP, REPEAT,
WHILE, or compound statement.

Syntax

�� LEAVE target-label
label:

��

Description

label
Specifies the label for the LEAVE statement. The label name cannot be the
same as the name of the SQL routine or the same as another label that is
within the same scope. For additional information, see “References to labels”
on page 1965.

target-label
Specifies the label of the compound, FOR, LOOP, REPEAT, or WHILE
statement to exit. target-label must be defined as a label for a compound, FOR,
LOOP, REPEAT, or WHILE statement, or in a block of code that is directly or
indirectly nested within that statement, subject to the following rules:
v If the LEAVE statement is in a condition handler, target-label must be defined

in that condition handler.
v If the LEAVE statement is not in a condition handler, target-label must not be

defined in a condition handler.

Notes

Effect on open cursors: When a LEAVE statement transfers control out of a
compound statement, all open cursors in the compound statement, except cursors
that are used to return result sets, are closed.

Examples

Example 1: The example contains a loop that fetches data for cursor c1. If the value
of SQL variable at_end is not zero, the LEAVE statement transfers control out of the
loop.
CREATE PROCEDURE LEAVE_LOOP (OUT COUNTER INTEGER)

LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE at_end SMALLINT DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

SET v_counter = 0;
OPEN c1;

1994 SQL Reference

fetch_loop:
LOOP

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
IF at_end <> 0 THEN
LEAVE fetch_loop;
END IF;
SET v_counter = v_counter + 1;

END LOOP fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

Example 2: A LEAVE statement can be issued from a nested block to leave a
statement at a higher level. In the following example, the LEAVE statement within
the LAB2 compound statement causes the LAB1 LOOP statement to terminate:
LAB1: LOOP

...
LAB2: BEGIN
SET A = 0;
...
LAB3: BEGIN

...
LEAVE LAB1; -- Multilevel LEAVE
...

END LAB3;
...
LEAVE LAB1; -- Multilevel LEAVE
...

END LAB2;
END LOOP;S

Chapter 6. SQL control statements for SQL routines 1995

LOOP statement
The LOOP statement executes a statement or group of statements multiple times.

Syntax

��
label:

LOOP � SQL-procedure-statement ; END LOOP
label

��

Description

label
Specifies the label for the LOOP statement. If the ending label is specified, a
matching beginning label must be specified. A label name cannot be the same
as the name of the SQL routine or another label within the same scope. For
additional information, see “References to labels” on page 1965.

SQL-procedure-statement
Specifies an SQL statement to be executed in the loop. The statement must be
one of the statements listed under “SQL-procedure-statement” on page 1968.

Notes

Considerations for the diagnostics area: At the beginning of the first iteration of
the LOOP statement, and with every subsequent iteration, the diagnostics area is
cleared.

Considerations for the SQLSTATE and SQLCODE SQL variables: Prior to
executing the first SQL-procedure-statement within that LOOP statement, the
SQLSTATE and SQLCODE values reflect the last values that were set prior to the
LOOP statement. If the loop is terminated with a GOTO or a LEAVE statement, the
SQLSTATE and SQLCODE values reflect successful completion of that statement.
When the LOOP statement iterates, the SQLSTATE and SQLCODE values reflect
the result of the last SQL statement that is executed within the LOOP statement.

Examples

This procedure uses a LOOP statement to fetch values from the employee table.
Each time the loop iterates, the OUT parameter counter is incremented and the
value of v_midinit is checked to ensure that the value is not a single space (' '). If
v_midinit is a single space, the LEAVE statement passes the flow of control outside
of the loop.
CREATE PROCEDURE LOOP_UNTIL_SPACE(OUT counter INTEGER)

LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER DEFAULT 0;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE EXIT HANDLER FOR NOT FOUND

1996 SQL Reference

SET counter = -1;
OPEN c1;
fetch_loop:
LOOP

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
IF v_midinit = ’ ’ THEN

LEAVE fetch_loop;
END IF;
SET v_counter = v_counter + 1;

END LOOP fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

Chapter 6. SQL control statements for SQL routines 1997

REPEAT statement
The REPEAT statement executes a statement or group of statements until a search
condition is true.

Syntax

��
label:

REPEAT � SQL-procedure-statement ; UNTIL search-condition END REPEAT �

�
label

��

Description

label
Specifies the label for the REPEAT statement. If an ending label is specified, a
matching beginning label must be specified. A label name cannot be the same
as the name of the SQL routine or another label within the same scope. For
additional information, see “References to labels” on page 1965.

SQL-procedure-statement
Specifies an SQL statement to be executed within the REPEAT loop. The
statement must be one of the statements listed under
“SQL-procedure-statement” on page 1968.

search-condition
Specifies a condition that is evaluated after each execution of the REPEAT loop.
If the condition is true, the REPEAT loop will exit. If the condition is unknown
or false, the looping continues.

Notes

Considerations for the diagnostics area: At the beginning of the first iteration of
the REPEAT statement, and with every subsequent iteration, the diagnostics area is
cleared.

Considerations for the SQLSTATE and SQLCODE SQL variables: At the beginning
of the first iteration of the REPEAT statement, the SQLSTATE and SQLCODE
values reflect the values that were set prior to the REPEAT statement. At the
beginning of iterations 2 through n of the REPEAT statement, the SQLSTATE and
SQLCODE SQL values reflect the result of evaluating the search condition in the
UNTIL clause of that REPEAT. If the loop is terminated with a GOTO, ITERATE,
or LEAVE statement, the SQLSTATE and SQLCODE values reflect the successful
completion of that statement. Otherwise, after the END REPEAT of the REPEAT
statement completes, the SQLSTATE and SQLCODE reflect the result of evaluating
the search condition in the UNTIL clause of that REPEAT statement.

1998 SQL Reference

Examples

Use a REPEAT statement to fetch rows from a table.
fetch_loop:
REPEAT
FETCH c1 INTO
v_firstnme, v_midinit, v_lastname;

UNTIL
SQLCODE <> 0

END REPEAT fetch_loop

Chapter 6. SQL control statements for SQL routines 1999

RESIGNAL statement
The RESIGNAL statement is used within a condition handler to resignal the
condition that activated the handler, or to raise an alternate condition so that it can
be processed at a higher level. It causes an exception, warning, or not found
condition to be returned along with optional message text.

Syntax

��
label:

RESIGNAL �

�
VALUE

SQLSTATE sqlstate-string-constant
SQL-variable-name signal-information
SQL-parameter-name

SQL-condition-name

��

�� SET MESSAGE_TEXT = diagnostic-string-expression ��

Description

label
Specifies the label for the RESIGNAL statement. A label name cannot be the
same as the name of the SQL routine or another label within the same scope.
For additional information, see “References to labels” on page 1965.

SQLSTATE VALUE
Specifies the SQLSTATE that will be returned. Any valid SQLSTATE value can
be used. It must be a character string constant with exactly five characters that
follow the rules for SQLSTATE values:
v Each character must be from the set of digits ('0' through '9') or non-accented

upper case letter ('A' through 'Z').
v The SQLSTATE class (the first two characters) cannot be '00' because it

represents successful completion.

If the SQLSTATE does not conform to these rules, an error occurs.

sqlstate-string-constant
A character string constant with an actual length of five bytes that is a
valid SQLSTATE value.

SQL-variable-name or SQL-parameter-name
Specifies an SQL variable or SQL parameter that is defined for the routine.

SQL-variable-name
Specifies an SQL variable that is declared within the compound-statement
that contains the RESIGNAL statement or within a compound
statement in which that compound statement is nested.

signal-information:

2000 SQL Reference

SQL-variable-name must be defined as CHAR or VARCHAR data type
with an actual length of five bytes, must not be null, and must contain
a valid SQLSTATE value.

SQL_parameter-name
Specifies an SQL parameter that is defined for the routine that contains
the SQLSTATE value. The SQL parameter must be defined as CHAR or
VARCHAR data type with an actual length of five bytes, must not be
null, and must contain a valid SQLSTATE value.

SQL-condition-name
Specifies the name of the condition that will be returned. SQL-condition-name
must be declared within the compound-statement that contains the RESIGNAL
statement, or within a compound statement in which that compound statement
is nested.

SET MESSAGE_TEXT
Specifies a string that describes the error or warning. The string is returned in
the SQLERRMC field of the SQLCA or with the GET DIAGNOSTICS
statement.

diagnostic-string-expression
An expression with a data type of CHAR or VARCHAR that returns a
character string of up to 1000 bytes that describes the error or warning
condition. For information on how to obtain the complete message text, see
“GET DIAGNOSTICS” on page 1679.

Notes

While any valid SQLSTATE value can be used in the RESIGNAL statement,
programmers should define new SQLSTATEs based on ranges reserved for
applications. This practice prevents the unintentional use of an SQLSTATE value
that might be defined by the database manager in a future release.

If the SQLSTATE or condition indicates that an exception is signaled (SQLSTATE
class other than '01' or '02'):
v If a condition handler exists in the same compound statement as the RESIGNAL

statement, and the compound statement contains a condition handler for
SQLEXCEPTION or the specified SQLSTATE or condition, the exception is
handled and control is transferred to that condition handler.

v If the compound statement is nested and an outer level compound statement has
a condition handler for SQLEXCEPTION or the specified SQLSTATE or
condition, the exception is handled and control is transferred to that condition
handler.

v Otherwise, the exception is not handled and control is immediately returned to
the end of the compound statement.

If an SQLSTATE or a condition indicates that a warning or a not found condition is
signaled:
v If a condition handler exists in the same compound statement as the RESIGNAL

statement, and the compound statement contains a condition handler for
SQLWARNING, NOT FOUND, or the specified SQLSTATE or condition, the
warning or not found condition is handled and control is transferred to that
condition handler.

v If the compound statement is nested and an outer level compound statement
contains a condition handler for SQLWARNING, NOT FOUND, or the specified

Chapter 6. SQL control statements for SQL routines 2001

SQLSTATE or condition, the warning or not found condition is handled and
control is returned to that condition handler.

v Otherwise, the warning is not handled and processing continues with the next
statement.

Considerations for the diagnostics area: The RESIGNAL statement might modify
the contents of the current diagnostics area. If an SQLSTATE or condition-name is
specified as part of the RESIGNAL statement, the RESIGNAL statement starts with
a clear diagnostics area and sets the RETURNED_SQLSTATE to reflect the specified
SQLSTATE or condition-name. If message text is specified, the MESSAGE_TEXT
item of the condition area is assigned the specified value.
DB2_RETURNED_SQLCODE is set to +438 or -438 corresponding to the specified
SQLSTATE or condition-name.

Processing a RESIGNAL statement: If the RESIGNAL statement is specified
without an SQLSTATE clause or a condition-name, the SQL routine resignals the
identical condition that invoked the handler and the SQLCODE is not changed.

When a RESIGNAL statement is issued and an SQLSTATE or condition-name is
specified, the SQLCODE is based on he SQLSTATE value as follows:
v If the specified SQLSTATE class is either '01' or ‘02', a warning or not found is

signaled and the SQLCODE is set to +438.
v Otherwise, an exception is returned and the SQLCODE is set to -438.

Examples

The following example detects a division by zero error. The IF statement uses a
SIGNAL statement to invoke the overflow condition handler. The condition
handler uses a RESIGNAL statement to return a different SQLSTATE to the client
application.
CREATE PROCEDURE divide (IN numerator INTEGER,

IN denominator INTEGER,
OUT divide_result INTEGER)

LANGUAGE SQL
CONTAINS SQL
BEGIN
DECLARE overflow CONDITION for SQLSTATE ’22003’;
DECLARE CONTINUE HANDLER FOR overflow

RESIGNAL SQLSTATE ’22375’;
IF denominator = 0 THEN

SIGNAL overflow;
ELSE

SET divide_result = numerator / denominator;
END IF;
END

2002 SQL Reference

RETURN statement
The RETURN statement is used to return from the routine.
v For an SQL scalar function, the scalar result of the function is returned. The

body of an SQL scalar function must contain at least one RETURN statement
and a RETURN statement must be executed when the function is invoked.

v For an SQL table function, the result table of the function is returned. A
RETURN statement must be specified in the body of an SQL table function.

v For an SQL procedure, the RETURNS statement optionally returns an integer
status value.

Syntax

��
label:

RETURN

�

expression
NULL

fullselect
,

WITH common-table-expression

��

Description

label
Specifies the label for the RETURN statement. A label name cannot be the
same as the name of the SQL routine or another label within the same scope.
For additional information, see “References to labels” on page 1965.

expression
Specifies a value that is returned from the routine.
v If the routine is a scalar function, the data type of the result must be

assignable to the data type that is defined for the function result, using the
storage assignment rules as described in “Assignment and comparison” on
page 121. The RETURN statement must not contain a period specification.

v If the routine is a table function, a scalar expression (other than a scalar
fullselect) cannot be specified. The data type of the result column of the
fullselect must be assignable to the data type that is defined for the function
result, using the storage assignment rules as described in “Assignment and
comparison” on page 121. The RETURN statement must not contain a
period specification.

v If the routine is a procedure, the data type of expression must be INTEGER.

NULL
The null value is returned from the SQL routine.
v If the routine is a scalar function, the null value is returned.
v If the routine is a table function, NULL must not be specified.
v If the routine is a procedure, NULL must not be specified.

WITH common-table-expression
Specifies one or more common table expressions that are to be used in the
fullselect.

Chapter 6. SQL control statements for SQL routines 2003

|

fullselect
Specifies the row or rows that are returned from the routine.
v If the routine is a scalar function, the fullselect must return one column and,

at most, one row. The data type of the result column must be assignable to
the data type that is defined for the function result, using the storage
assignment rules as described in “Assignment and comparison” on page 121.

v If the routine is a table function, the fullselect can return zero or more rows
with one or more columns. The number of columns in the fullselect must
match the number of columns in the function result. In addition, the data
types of the result table columns of the fullselect must be assignable to the
data types of the columns that are defined for the function result, using the
storage assignment rules as described in “Assignment and comparison” on
page 121.

v If the routine is a procedure, fullselect must not be specified.

Notes

Considerations for SQL functions: A RETURN statement in an SQL function must
specify expression, NULL, or fullselect. Only a single RETURN statement can be
specified in the routine body of an SQL table function. The execution of an SQL
function must end with a RETURN statement.

A data change table reference is not allowed in a RETURN statement in an SQL
function.

Considerations for SQL procedures:

v When a RETURN statement is used within an SQL procedure: If a RETURN
statement with a specified return value was used to return from a procedure, the
SQLCODE, SQLSTATE, and message length in the SQLCA are initialized to
zeros and the message text is set to blanks. An error is not returned to the caller.

v When a RETURN statement is not used within an SQL procedure or when no
value is specified: If a RETURN statement was not used to return from a
procedure or if a value is not specified on the RETURN statement, one of the
following values is set:
– If the procedure returns with an SQLCODE that is greater or equal to zero,

the specified target for DB2_RETURN_STATUS in a GET DIAGNOSTICS
statement will be set to a value of zero.

– If the procedure returns with an SQLCODE that is less than zero, the
specified target for DB2_RETURN_STATUS in a GET DIAGNOSTICS
statement will be set to a value of '-1'.

v When the value is returned from an SQL procedure: When a value is returned
from a procedure, the caller may access the value using one of the following
methods:
– The GET DIAGNOSTICS statement to retrieve the RETURN_STATUS when

the SQL procedure was called from another SQL procedure.
– The parameter bound for the return value parameter marker in the escape

clause CALL syntax (?=CALL...) in a CLI application.
– Directly from the SQLCA returned from processing the CALL of an SQL

procedure by retrieving the value of sqlerrd[0]. When the SQLCODE is less
than zero, the sqlerrd[0] value is not set. The application should assume a
return status value of '-1'.

2004 SQL Reference

Examples

Example 1: Use a RETURN statement to return from an SQL procedure with a
status value of zero if successful or '-200' if not successful.
BEGIN

. . .
GOTO FAIL;

. . .
SUCCESS: RETURN 0;

FAIL: RETURN -200;
END

Example 2: Define a scalar function that returns the tangent of a value using the
existing sine and cosine functions:
CREATE FUNCTION TAN (X DOUBLE)

RETURNS DOUBLE
LANGUAGE SQL CONTAINS SQL NO EXTERNAL ACTION
DETERMINISTIC
RETURN SIN(x)/COS(x)

Chapter 6. SQL control statements for SQL routines 2005

SIGNAL statement
The SIGNAL statement is used to return an exception or warning condition. It
causes an error or warning to be returned with the specified SQLSTATE, along
with optional message text. The SIGNAL statement places the specified condition
information in the cleared diagnostics area.

Syntax

��
label:

SIGNAL
VALUE

SQLSTATE sqlstate-string-constant
SQL-variable-name
SQL-parameter-name

SQL-condition-name

�

�
signal-information

��

signal-information:

�� SET MESSAGE_TEXT = diagnostic-string-expression
(1)

(diagnostic-string-expression)

��

Notes:

1 (diagnostic-string-expression) must only be specified within a trigger body.

Description

label
Specifies the label for the SIGNAL statement. A label name cannot be the same
as the name of the SQL routine or another label within the same scope. For
additional information, see “References to labels” on page 1965.

SQLSTATE VALUE
Specifies the SQLSTATE that will be returned. Any valid SQLSTATE value can
be used. It must be a character string constant with exactly five characters that
follow the rules for SQLSTATEs:
v Each character must be from the set of digits ('0' through '9') or non-accented

upper case letter ('A' through 'Z').
v The SQLSTATE class (the first two characters) cannot be '00' because it

represents successful completion.

If the SQLSTATE does not conform to these rules, an error occurs.

sqlstate-string-constant
A character string constant with an actual length of five bytes that is a
valid SQLSTATE value.

2006 SQL Reference

SQL-variable-name or SQL-parameter-name
Specifies an SQL variable or SQL parameter that contains a valid
SQLSTATE value.

SQL-variable-name
Specifies an SQL variable that is declared within the compound-statement
that contains the SIGNAL statement, or within a compound statement
in which that compound statement is nested. SQL-variable-name must
be defined as a CHAR or VARCHAR data type with an actual length
of five bytes, must not be null, and must contain a valid SQLSTATE
value.

SQL-parameter-name
Specifies an SQL parameter that is defined for the routine and contains
the SQLSTATE value. The SQL parameter must be defined as a CHAR
or VARCHAR data type with an actual length of five bytes, must not
be null, and must contain a valid SQLSTATE value.

SQL-condition-name
Specifies the name of the condition that will be returned. The
SQL-condition-name must be declared within the compound statement that
contains the SIGNAL statement, or within a compound statement in which that
compound statement is nested.

SET MESSAGE_TEXT
Specifies a string that describes the error or warning. The string is returned in
the SQLERRMC field of the SQLCA or with the GET DIAGNOSTICS
statement.

diagnostic-string-expression
An expression with a data type of CHAR or VARCHAR that returns a
character string of up to 1000 bytes that describes the error or warning
condition. For information on how to obtain the complete message text, see
“GET DIAGNOSTICS” on page 1679.

(diagnostic-string-expression)
An expression with a data type of CHAR or VARCHAR that returns a
character string of up to 1000 bytes that describes the error or warning
condition. For information on how to obtain the complete message text, see
“GET DIAGNOSTICS” on page 1679.

This syntax variation is only provided within the scope of a CREATE
TRIGGER statement for compatibility with previous versions of DB2. To
conform with the ANS and ISO standards, this form should not be used.

Notes

While any valid SQLSTATE value can be used in the SIGNAL statement,
programmers should define new SQLSTATEs based on ranges reserved for
applications. This practice prevents the unintentional use of an SQLSTATE value
that might be defined by the database manager in a future release.

If the SQLSTATE or condition indicates that an exception is signaled:
v If a condition handler exists in the same compound statement as the SIGNAL

statement, and the compound statement contains a condition handler for
SQLEXCEPTION or the specified SQLSTATE or condition, the exception is
handled and control is transferred to that condition handler.

Chapter 6. SQL control statements for SQL routines 2007

v If the compound statement is nested and the outer level compound statement
has a condition handler for SQLEXCEPTION or the specified SQLSTATE or
condition, the exception is handled and control is transferred to that condition
handler.

v Otherwise, the exception is not handled and control is immediately returned to
the end of the compound statement.

If the SQLSTATE or condition indicates that a warning or not found condition is
signaled:
v If a condition handler exists in the same compound statement as the SIGNAL

statement, and the compound statement contains a condition handler for
SQLWARNING, NOT FOUND, or the specified SQLSTATE or condition, the
warning or not found condition is handled and control is transferred to that
condition handler.

v If the compound statement is nested and an outer level compound statement
contains a condition handler for SQLWARNING, NOT FOUND, or the specified
SQLSTATE or condition, the warning or not found condition is handled and
control is transferred to that condition handler.

v Otherwise, the warning or not found condition is not handled and processing
continues with the next statement.

Considerations for the diagnostics area: The SIGNAL statement starts with a clear
diagnostics area and sets the RETURNED_SQLSTATE to reflect the specified
SQLSTATE or condition-name. If message text is specified, the MESSAGE_TEXT
item of the condition area is assigned the specified value.
DB2_RETURNED_SQLCODE is set to +438 or -438 corresponding to the specified
SQLSTATE or condition-name.

Examples

Example 1: The following example shows an SQL procedure for an order system
that signals an application error when a customer number is not known to the
application. The ORDERS table includes a foreign key to the CUSTOMER table,
requiring that the CUSTNO exist before an order can be inserted.
CREATE PROCEDURE SUBMIT_ORDER

(IN ONUM INTEGER, IN CNUM INTEGER,
IN PNUM INTEGER, IN QNUM INTEGER)

LANGUAGE SQL
SPECIFIC SUBMIT_ORDER
MODIFIES SQL DATA
BEGIN

DECLARE EXIT HANDLER FOR SQLSTATE VALUE ’23503’
SIGNAL SQLSTATE ’75002’

SET MESSAGE_TEXT = ’Customer number is not known’;
INSERT INTO ORDERS (ORDERNO, CUSTNO, PARTNO, QUANTITY)

VALUES (ONUM, CNUM, PNUM, QNUM);
END

Example 2: The following example shows a trigger for an order system that allows
orders to be recorded in an ORDERS table (ORDERNO, CUSTNO, PARTNO,
QUANTITY) only if there is sufficient stock in the PARTS tables. When there is
insufficient stock for an order, SQLSTATE '75001' is returned along with an
appropriate error description.

CREATE TRIGGER CK_AVAIL
NO CASCADE BEFORE INSERT ON ORDERS
REFERENCING NEW AS NEW_ORDER
FOR EACH ROW MODE DB2SQL

2008 SQL Reference

WHEN (NEW_ORDER.QUANTITY > (SELECT ON_HAND FROM PARTS
WHERE NEW_ORDER.PARTNO = PARTS.PARTNO))

BEGIN ATOMIC
SIGNAL SQLSTATE ’75001’ (’Insufficient stock for order’);

END

Chapter 6. SQL control statements for SQL routines 2009

WHILE statement
The WHILE statement repeats the execution of a statement or group of statements
while a specified condition is true.

Syntax

��
label:

WHILE search-condition DO � SQL-procedure-statement ; END WHILE
label

��

Description

label
Specifies the label for the WHILE statement. If the ending label is specified, it
must be the same as the beginning label. A label name cannot be the same as
the name of the SQL routine or another label within the same scope. For
additional information, see “References to labels” on page 1965.

search-condition
Specifies a condition that is evaluated before each execution of the loop. If the
condition is true, the SQL procedure statements in the loop are executed.

SQL-procedure-statement
Specifies a statement to be run within the WHILE loop. The statement must be
one of the statements listed under “SQL-procedure-statement” on page 1968.

Notes

Considerations for the diagnostics area: At the beginning of the first iteration of
the WHILE statement, and with every subsequent iteration, the diagnostics area is
cleared.

Considerations for the SQLSTATE and SQLCODE SQL variables: With each
iteration of the WHILE statement, when the first SQL-procedure-statement is
executed, the SQLSTATE and SQLCODE SQL variables reflect the result of
evaluating the search condition of that WHILE statement. If the loop is terminated
with a GOTO, ITERATE, or LEAVE statement, the SQLSTATE and SQLCODE
values reflect the successful completion of that statement. Otherwise, after the END
WHILE of the WHILE statement completes, the SQLSTATE and SQLCODE reflect
the result of evaluating that search condition of that WHILE statement.

Examples

Use a WHILE statement to fetch rows from a table while SQL variable at_end,
which indicates whether the end of the table has been reached, is 0.
WHILE at_end = 0 DO
FETCH c1 INTO
v_firstnme, v_midinit,
v_lastname, v_edlevel, v_salary;
IF SQLCODE=100 THEN SET at_end=1;
END IF;
END WHILE

2010 SQL Reference

Appendix. Additional information for DB2 SQL

These topics contain additional information for DB2 SQL.

© Copyright IBM Corp. 1982, 2013 2011

Limits in DB2 for z/OS
DB2 for z/OS has system limits, object and SQL limits, length limits for identifiers
and strings, and limits for certain data type values.

System storage limits might preclude the limits specified in this section. The limit
for items not that are not specified below is limited by system storage.

The following table shows the length limits for identifiers.

Table 154. Identifier length limits. The term byte(s) in this table means the number of bytes for the UTF-8
representation unless noted otherwise.

Item Limit

External-java-routine-name 1305 bytes

Name of an alias 1, auxiliary table, collection, clone table,
constraint, correlation, cursor (except for DECLARE
CURSOR WITH RETURN or the EXEC SQL utility),
distinct type (both parts of two-part name), function
(both parts of two-part name), host identifier, index,
JARs, parameter, procedure, role, schema, sequence,
specific, statement, storage group, savepoint, SQL
condition, SQL label, SQL parameter, SQL variable,
synonym, table, trigger, view, XML attribute name, XML
element name

128 bytes

Name of an authorization ID or name of a security label. 8 bytes

Routine version identifier 64 EBCDIC bytes, and the UTF-8 representation of the
name must not exceed 122 bytes.

Name of a column 30 bytes 1

Name of cursor that is created with DECLARE CURSOR
WITH RETURN

30 bytes

Name of cursor that is created with the EXEC SQL utility 8 bytes

Name of a location 16 bytes

Name of buffer pool name, catalog, database, plan,
program, table space

8 bytes

Name of package 8 bytes (Only 8 EBCDIC characters are used for packages
that are created with the BIND PACKAGE command. 128
bytes can be used for packages that are created as a result
of the CREATE FUNCTION (SQL scalar) statement, the
CREATE PROCEDURE (SQL - native) statement, the
CREATE TRIGGER statement, or a BIND command that
specifies a zFS file as DBRM library.)

Name of a profile that is created with CREATE
TRUSTED CONTEXT or ALTER TRUSTED CONTEXT

127 bytes

Notes:

1. If the column name length or the distinct type schema or name length is greater than 30 Unicode bytes,
truncation occurs in the sqlname field of the SQLDA when those objects are described in an application.

Table 155 shows the minimum and maximum limits for numeric values.

Table 155. Numeric limits

Item Limit

Smallest SMALLINT value -32768

2012 SQL Reference

|
|
|
|
|
|

Table 155. Numeric limits (continued)

Item Limit

Largest SMALLINT value 32767

Smallest INTEGER value -2147483648

Largest INTEGER value 2147483647

Smallest BIGINT value -9223372036854775808

Largest BIGINT value 9223372036854775807

Smallest REAL value About -7.2x1075

Largest REAL value About 7.2x1075

Smallest positive REAL value About 5.4x10-79

Largest negative REAL value About -5.4x10-79

Smallest FLOAT value About -7.2x1075

Largest FLOAT value About 7.2x1075

Smallest positive FLOAT value About 5.4x10-79

Largest negative FLOAT value About -5.4x10-79

Smallest DECIMAL value 1 - 1031

Largest DECIMAL value 1031 - 1

Largest decimal precision 31

Smallest DECFLOAT(16) value1 -9.999999999999999x10384

Largest DECFLOAT(16) value1 9.999999999999999x10384

Smallest positive DECFLOAT(16) value1 1.000000000000000x10-383

Largest negative DECFLOAT(16) value1 -1.000000000000000x10-383

Smallest DECFLOAT(34) value1 -9.999999999999999999999999999999999x106144.

Largest DECFLOAT(34) value1 9.999999999999999999999999999999999x106144.

Smallest positive DECFLOAT(34) value1 1.000000000000000000000000000000000x10-6143

Largest negative DECFLOAT(34) value1 -1.000000000000000000000000000000000x10-6143

Coefficient length for DECFLOAT values DECFLOAT(16) is 16 digits; DECFLOAT(34) is 34 digits

Maximum Exponent (Emax) for DECFLOAT values DECFLOAT(16) is 384; DECFLOAT(34) is 6144

Minimum Exponent (Emin) for DECFLOAT values DECFLOAT(16) is -383; DECFLOAT(34) is -6143

Bias for DECFLOAT values DECFLOAT(16) is 398; DECFLOAT(34) is 6176

Note:

1. These are the limits for normal numbers in DECFLOAT. DECFLOAT also contains special values such as NaN
and Infinity that are also valid. DECFLOAT also supports subnormal numbers that are outside of the documented
range.

The following table shows the length limits for strings.

Table 156. String length limits

Item Limit

Maximum length of CHAR 255 bytes

Maximum length of GRAPHIC 127 double-byte characters

Maximum length of BINARY 255 bytes

Appendix. Additional information for DB2 SQL 2013

Table 156. String length limits (continued)

Item Limit

Maximum length1 of VARCHAR 4046 bytes for 4 KB pages
8128 bytes for 8 KB pages
16320 bytes for 16 KB pages
32704 bytes for 32 KB pages

Maximum length of VARCHAR that can be indexed by
an XML index

1000 bytes after conversion to UTF-8

Maximum length1 of VARGRAPHIC 2023 double-byte characters for 4 KB pages
4064 double-byte characters for 8 KB pages
8160 double-byte characters for 16 KB pages
16352 double-byte characters for 32 KB pages

Maximum length of VARBINARY 32704 bytes

Maximum length of CLOB 2 147 483 647 bytes (2 GB - 1 byte)

Maximum length of DBCLOB 1 073 741 823 double-byte characters

Maximum length of BLOB 2 147 483 647 bytes (2 GB - 1 byte)

Maximum length of a character constant 32704 UTF-8 bytes

Maximum length of a hexadecimal character constant 32704 hexadecimal digits

Maximum length of a graphic string constant 16352 double-byte characters (32704 bytes when
expressed in UTF-8)

Maximum length of a hexadecimal graphic string
constant

32704 hexadecimal digits

Maximum length of a text string used for a scalar
expression

4000 UTF-8 bytes

Maximum length of a concatenated character string 2 147 483 647 bytes (2 GB - 1 byte)

Maximum length of a concatenated graphic string 1 073 741 824 double-byte characters

Maximum length of a concatenated binary string 2 147 483 647 bytes (2 GB - 1 byte)

Maximum length of XML pattern text 4000 bytes after conversion to UTF-8

Maximum length of an XML element or attribute name in
an XML document

1000 bytes

Maximum length of a namespace uri 1000 bytes

Maximum length of a namespace prefix 998 bytes

Largest depth of an internal XML tree 128 levels

Note:

1. The maximum length can be achieved only if the column is the only column in the table. Otherwise, the
maximum length depends on the amount of space remaining on a page.

The following table shows the minimum and maximum limits for datetime values.

Table 157. Datetime limits

Item Limit

Smallest DATE value (shown in ISO format) 0001-01-01

Largest DATE value (shown in ISO format) 9999-12-31

Smallest TIME value (shown in ISO format) 00.00.00

Largest TIME value (shown in ISO format) 24.00.00

Smallest TIMESTAMP WITHOUT TIME ZONE value 0001-01-01-00.00.00.000000000000

2014 SQL Reference

Table 157. Datetime limits (continued)

Item Limit

Largest TIMESTAMP WITHOUT TIME ZONE value 9999-12-31-24.00.00.000000000000 1

Smallest TIMESTAMP WITH TIME ZONE value 0001-01-01-00.00.00.000000000000 +00:00

Largest TIMESTAMP WITH TIME ZONE value 9999-12-31-24.00.00.000000000000 +00:00 1

TIMESTAMP precision range 0 to 12

TIME ZONE hour range -12 to 14

TIME ZONE minute range 0 to 59

Note:

1. The maximum value is stated as a UTC value. When a timestamp without a time zone is compared to a
timestamp with time zone, a necessary adjustment is made using the implicit time zone. During that adjustment,
the timestamp without time zone could be converted to a value that is greater than the maximum value for a
timestamp with time zone value (this could occur on operations such as comparison and assignment). This
situation can be avoided by using '9999-12-30-00.00.00.000000000000' as the maximum value for timestamp
without time zone and '9999-12-30-00.00.00.000000000000 +00:00' as the maximum value for timestamp with time
zone columns.

The following table shows the DB2 limits on SQL statements.

Table 158. DB2 limits on SQL statements

Item Limit

Maximum number of columns that are in a table or view
(the value depends on the complexity of the CREATE
VIEW statement) or columns returned by a table function.

750 or fewer (including hidden columns)
749 if the table is a dependent

Maximum number of base tables in a view, SELECT,
UPDATE, INSERT, MERGE, or DELETE

225

Maximum number of rows that can be inserted with a
single INSERT or MERGE statement

32767

Maximum row and record sizes for a table See the maximum record size table under CREATE
TABLE.

Maximum number of volume IDs in a storage group 133

Maximum number of partitions in a partitioned table
space or partitioned index

64 for table spaces that are not defined with LARGE or a
DSSIZE greater than 2 GB.

4096, depending on what is specified for DSSIZE or
LARGE and the page size.

Maximum sum of the lengths of limit key values of a
partition boundary

765 UTF-8 bytes

Appendix. Additional information for DB2 SQL 2015

Table 158. DB2 limits on SQL statements (continued)

Item Limit

Maximum size of a partition (table space or index) For table spaces that are not defined with LARGE or a
DSSIZE greater than 2 GB:

4 GB, for 1 to 16 partitions
2 GB, for 17 to 32 partitions
1 GB, for 33 to 64 partitions

For table spaces that are defined with LARGE or a
DSSIZE of 4 GB:

4 GB, for 1 to 4096 partitions

For table spaces that are defined with a DSSIZE greater
than 4 GB:

256 GB, depending on the page size (for 1 to 64
partitions for 4 KB pages, for 1 to 128 partitions for 8
KB pages, for 1 to 256 partitions for 16 KB pages, and
1 to 512 partitions for 32 KB pages)

Maximum size of a non-partitioned index for a
partitioned table space

For 5-byte EA table spaces:
16 TB for 4 KB pages
32 TB for 8 KB pages
64 TB for 16 KB pages
128 TB for 32 KB pages

For table spaces that are defined with LARGE:
16 TB

Maximum length of an index key Partitioning index: 255-n
Nonpartitioning index that is padded: 2000-n
Nonpartitioning index that is not padded: 2000-n-2m

Where n is the number of columns in the key that allow
nulls and m is the number of varying-length columns in
the key

Maximum number of bytes used in the partitioning of a
partitioned index

255 (This maximum limit is subject to additional
limitations, depending on the number of partitions in the
table space. The number of partitions * (106 + limit key
size) must be less than 65394.)

Maximum number of columns in an index key 64

Maximum number of expressions in an index key 64

Maximum number of tables in a FROM clause 225 or fewer, depending on the complexity of the
statement

Maximum number of subqueries in a statement 224

Maximum total length of host and indicator variables
pointed to in an SQLDA

32767 bytes

2 147 483 647 bytes (2 GB - 1 byte) for a LOB, subject to
the limitations that are imposed by the application
environment and host language

Maximum size of application SQLDA for any statement
that references host variables or parameter markers

99016 bytes

Maximum length of host variable used for insert or
update operation

32704 bytes for a non-LOB

2 147 483 647 bytes (2 GB - 1 byte) for a LOB, subject to
the limitations that are imposed by the application
environment and host language

Maximum length of an SQL statement 2 097 152 bytes

2016 SQL Reference

Table 158. DB2 limits on SQL statements (continued)

Item Limit

Maximum number of elements in a select list 750 or fewer, depending on whether the select list is for
the result table of static scrollable cursor1

Maximum number of predicates in a WHERE or
HAVING clause

Limited by storage

Maximum total length of columns of a query operation
requiring a sort key (SELECT DISTINCT, ORDER BY,
UNION, EXCEPT, and INTERSECT, without the ALL
keyword, and the DISTINCT keyword for aggregate
functions)

4032 bytes

Maximum total length of columns of a query operation
requiring sort and evaluating column functions
(MULTIPLE DISTINCT and GROUP BY)

65529 bytes

Maximum length of a sort key 16000 bytes

Maximum length of a check constraint 3800 bytes

Maximum number of bytes that can be passed in a single
parameter of an SQL CALL statement

32765 bytes for a non-LOB

2 147 483 647 bytes (2 GB - 1 byte) for a LOB, subject to
the limitations imposed by the application environment
and host language

Maximum number of stored procedures, triggers, and
user-defined functions that an SQL statement can
implicitly or explicitly reference

64 nesting levels

Maximum length of the SQL path 2048 bytes

Maximum length of a WLM environment name in a
CREATE PROCEDURE, CREATE FUNCTION, ALTER
PROCEDURE, or ALTER FUNCTION statement.

32 bytes

Maximum number of XPath level in the XMLPATTERN
clause of the CREATE INDEX statement.

50 nesting levels

Note:

1. If the scrollable cursor is read-only, the maximum number is 749 less the number of columns in the ORDER BY
that are not in the select list. If the scrollable cursor is not read-only, the maximum number is 747.

The following table shows the DB2 system limits.

Table 159. DB2 system limits

Item Limit

Maximum number of concurrent DB2 or application
agents

Limited by the EDM pool size, buffer pool size, and the
amount of storage that is used by each DB2 or
application agent

Maximum size of a non-LOB table or table space 128 terabytes (TB)

Maximum size of a simple or segmented table space 64 GB

Maximum size of a log space 6-byte format: 248 bytes

10-byte format: 280 bytes

Maximum size of an active log data set 4 GB -1 byte

Maximum size of an archive log data set 4 GB -1 byte

Maximum number of active log copies 2

Maximum number of archive log copies 2

Appendix. Additional information for DB2 SQL 2017

|

|

Table 159. DB2 system limits (continued)

Item Limit

Maximum number of active log data sets (each copy) 93

Maximum number of archive log volumes (each copy) 10000

Maximum number of databases accessible to an
application or user

Limited by system storage and EDM pool size

Maximum number of databases 65217

Maximum number of implicitly created databases Maximum value of the sequence
SYSIBM.DSNSEQ_IMPLICITDB, with a default of 10000

Maximum number of internal objects for each database 1 32767

Maximum number of indexes on declared global
temporary tables

10000

Maximum size of an EDM pool The installation parameter maximum depends on
available space

Maximum number of rows per page 255 for all table spaces except catalog and directory tables
spaces, which have a maximum of 127

Maximum simple or segmented data set size 2 GB

Maximum partitioned data set size See item “maximum size of a partition” in Table 158 on
page 2015

Maximum LOB data set size 64 GB

Maximum number of table spaces that can be defined in
a work file database

500

Maximum number of tables and triggers that can be
defined in a work file database

11767

Note:

1. The number of internal object descriptors (OBDs) for external objects are as follows:

v Table space: 2

v Table: 1

v Index: 2

v Check constraint: 1

v Referential integrity relationship: 2

v Auxiliary relationship for each LOB column: 1

v XML relationship for each XML column: 1

v Trigger: 1

v View that has an INSTEAD OF trigger: 1

2018 SQL Reference

Reserved schema names and reserved words
Restrictions exist on the use of certain names that are used by DB2. In some cases,
names are reserved and cannot be used by application programs. In other cases,
certain names are not recommended for use by application programs though not
prevented by the database manager.

Appendix. Additional information for DB2 SQL 2019

Reserved schema names
In general, for certain objects, schema names that begin with the prefix SYS are
reserved. The schema name for these objects cannot begin with SYS except for
certain exceptions.

The schema name for the objects listed in the following table must follow the
restrictions listed in the table.

Recommendations:

v Do not to use SESSION name as a schema name.
v Do not use SYSPUBLIC as a schema name for a table or view.

Table 160. Objects with schema name restrictions and exceptions.

Object Schema name restriction Schema name exceptions

Distinct types Cannot begin with SYS The schema name can be:

v SYSADM

v SYSTOOLS1

User-defined functions Cannot begin with SYS The schema name can be:

v SYSADM

v SYSTOOLS1

v SYSFUN2

Stored procedures Cannot begin with SYS The schema name can be:

v SYSADM

v SYSFUN2

v SYSIBM

v SYSIBMADM

v SYSPROC

v SYSTOOLS1

Sequences Cannot begin with SYS The schema name can be:

v SYSADM

Triggers Cannot begin with SYS The schema name can be:

v SYSADM

v SYSTOOLS1

Column masks Cannot begin with SYS The schema name can be:

v SYSADM

Row permissions Cannot begin with SYS The schema name can be:

v SYSADM

Notes:

1. If the user who executes the CREATE statement has the SYSADM or SYSCTRL
privilege.

2. For external user-defined scalar functions or external user-defined table functions if the
user who executes the CREATE statement has the SYSADM or SYSCTRL privilege.

2020 SQL Reference

|

|

|

Reserved words
Certain words cannot be used as ordinary identifiers in some contexts because
those words might be interpreted as SQL keywords. For example, ALL cannot be a
column name in a SELECT statement. Each word, however, can be used as a
delimited identifier in contexts where it otherwise cannot be used as an ordinary
identifier. For example, if the quotation mark (") is the escape character that begins
and ends delimited identifiers, “ALL” can appear as a column name in a SELECT
statement.

New reserved words for this version of DB2 for z/OS are identified with notes in
this topic. In addition, some topics in this information might indicate words that
cannot be used in the specific context that is being described.

IBM SQL has additional reserved words that DB2 for z/OS does not enforce.
Therefore, you should not use these additional reserved words as ordinary
identifiers in names that have a continuing use. See IBM DB2 SQL Reference for
Cross-Platform Development for a list of the words.

ADD
AFTER
ALL
ALLOCATE
ALLOW
ALTER

AND
ANY
AS
ARRAY1

ARRAY_EXISTS1

ASENSITIVE
ASSOCIATE

ASUTIME
AT
AUDIT
AUX
AUXILIARY

BEFORE
BEGIN
BETWEEN
BUFFERPOOL
BY

CALL
CAPTURE
CASCADED
CASE
CAST
CCSID
CHAR
CHARACTER
CHECK
CLONE
CLOSE

CLUSTER
COLLECTION
COLLID
COLUMN
COMMENT
COMMIT
CONCAT
CONDITION
CONNECT
CONNECTION
CONSTRAINT
CONTAINS

CONTENT
CONTINUE
CREATE
CURRENT
CURRENT_DATE
CURRENT_LC_CTYPE
CURRENT_PATH
CURRENT_SCHEMA
CURRENT_TIME
CURRENT_TIMESTAMP
CURRVAL
CURSOR

DATA
DATABASE
DAY
DAYS
DBINFO
DECLARE
DEFAULT

DELETE
DESCRIPTOR
DETERMINISTIC
DISABLE
DISALLOW
DISTINCT

DO
DOCUMENT
DOUBLE
DROP
DSSIZE
DYNAMIC

Appendix. Additional information for DB2 SQL 2021

|
|

EDITPROC
ELSE
ELSEIF
ENCODING
ENCRYPTION
END

ENDING
END-EXEC2

ERASE
ESCAPE
EXCEPT
EXCEPTION

EXECUTE
EXISTS
EXIT
EXPLAIN
EXTERNAL

FENCED
FETCH
FIELDPROC
FINAL
FIRST

FOR
FREE
FROM
FULL
FUNCTION

GENERATED
GET
GLOBAL
GO
GOTO

GRANT
GROUP

HANDLER
HAVING
HOLD
HOUR
HOURS

IF
IMMEDIATE
IN
INCLUSIVE
INDEX

INHERIT
INNER
INOUT
INSENSITIVE

INSERT
INTERSECT
INTO
IS
ISOBID
ITERATE

JAR
JOIN

KEEP
KEY

LABEL
LANGUAGE
LAST
LC_CTYPE
LEAVE
LEFT

LIKE
LOCAL
LOCALE
LOCATOR
LOCATORS

LOCK
LOCKMAX
LOCKSIZE
LONG
LOOP

MAINTAINED
MATERIALIZED
MICROSECOND
MICROSECONDS
MINUTE

MINUTES
MODIFIES
MONTH
MONTHS

2022 SQL Reference

NEXT
NEXTVAL
NO
NONE

NOT
NULL
NULLS
NUMPARTS

OBID
OF
OLD
ON
OPEN
OPTIMIZATION

OPTIMIZE
OR
ORDER
ORGANIZATION
OUT
OUTER

PACKAGE
PARAMETER
PART
PADDED
PARTITION
PARTITIONED
PARTITIONING

PATH
PIECESIZE
PERIOD
PLAN
PRECISION
PREPARE
PREVVAL

PRIOR
PRIQTY
PRIVILEGES
PROCEDURE
PROGRAM
PSID
PUBLIC

QUERY
QUERYNO

READS
REFERENCES
REFRESH
RESIGNAL
RELEASE
RENAME
REPEAT
RESTRICT
RESULT

RESULT_SET_LOCATOR
RETURN
RETURNS
REVOKE
RIGHT
ROLE
ROLLBACK
ROUND_CEILING

ROUND_DOWN
ROUND_FLOOR
ROUND_HALF_DOWN
ROUND_HALF_EVEN
ROUND_HALF_UP
ROUND_UP
ROW
ROWSET
RUN

SAVEPOINT
SCHEMA
SCRATCHPAD
SECOND
SECONDS
SECQTY
SECURITY
SEQUENCE
SELECT
SENSITIVE
SESSION_USER

SET
SIGNAL
SIMPLE

SOME
SOURCE
SPECIFIC
STANDARD
STATIC
STATEMENT
STAY

STOGROUP
STORES
STYLE
SUMMARY
SYNONYM
SYSDATESYSTEM
SYSTIMESTAMP

TABLE
TABLESPACE
THEN
TO
TRIGGER

TRUNCATE
TYPE

Appendix. Additional information for DB2 SQL 2023

UNDO
UNION
UNIQUE
UNTIL
UPDATE

USER
USING

VALIDPROC
VALUE
VALUES
VARIABLE
VARIANT

VCAT
VERSIONING1

VIEW
VOLATILE
VOLUMES

WHEN
WHENEVER
WHERE
WHILE
WITH
WLM

XMLEXISTS
XMLNAMESPACES
XMLCAST

YEAR
YEARS

ZONE

Note:

1. New reserved word for Version 11.

2. COBOL only

2024 SQL Reference

|

Characteristics of SQL statements in DB2 for z/OS
DB2 allows specific actions on each SQL statement, and only certain SQL
statements are allowed in external routines and SQL procedures.

Appendix. Additional information for DB2 SQL 2025

Actions allowed on SQL statements
Specific DB2 statements can be executed, prepared interactively or dynamically, or
processed by the requester, the server, or the precompiler or coprocessor.

The following table shows whether a specific DB2 statement can be executed,
prepared interactively or dynamically, or processed by the requester, the server, or
the precompiler or coprocessor. The letter Y means yes.

Table 161. Actions allowed on SQL statements in DB2 for z/OS

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server

Precompiler or
coprocessor

ALLOCATE CURSOR1 Y Y Y

ALTER2 Y Y Y

ASSOCIATE LOCATORS1 Y Y Y

BEGIN DECLARE SECTION Y

CALL1 Y Y

CLOSE Y Y

COMMENT Y Y Y

COMMIT8 Y Y Y

CONNECT Y Y

CREATE2 Y Y Y

DECLARE CURSOR Y

DECLARE GLOBAL
TEMPORARY TABLE

Y Y Y

DECLARE STATEMENT Y

DECLARE TABLE Y

DECLARE VARIABLE Y

DELETE Y Y Y

DESCRIBE prepared statement or
table

Y Y

DESCRIBE CURSOR Y Y

DESCRIBE INPUT Y Y

DESCRIBE PROCEDURE Y Y

DROP2 Y Y Y

END DECLARE SECTION Y

EXECUTE Y Y

EXECUTE IMMEDIATE Y Y

EXPLAIN Y Y Y

FETCH Y Y

FREE LOCATOR1 Y Y Y

GET DIAGNOSTICS Y Y

GRANT2 Y Y Y

HOLD LOCATOR1 Y Y Y

2026 SQL Reference

Table 161. Actions allowed on SQL statements in DB2 for z/OS (continued)

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server

Precompiler or
coprocessor

INCLUDE Y

INSERT Y Y Y

LABEL Y Y Y

LOCK TABLE Y Y Y

MERGE Y Y Y

OPEN Y Y

PREPARE Y Y4

REFRESH TABLE Y Y Y

RELEASE connection Y Y

RELEASE SAVEPOINT Y Y Y

RENAME2 Y Y Y

REVOKE2 Y Y Y

ROLLBACK8 Y Y Y

SAVEPOINT Y Y Y

SELECT INTO Y Y

SET CONNECTION Y Y

SET CURRENT APPLICATION
ENCODING SCHEME

Y Y

SET CURRENT DEBUG MODE Y Y Y

SET CURRENT DECFLOAT
ROUNDING MODE

Y Y Y

SET CURRENT DEGREE Y Y Y

SET CURRENT
GET_ACCEL_ARCHIVE

Y Y Y

SET CURRENT LC_CTYPE Y Y Y

SET CURRENT MAINTAINED
TABLE TYPES FOR
OPTIMIZATION

Y Y Y

SET CURRENT OPTIMIZATION
HINT

Y Y Y

SET CURRENT PACKAGE PATH Y Y

SET CURRENT PACKAGESET Y Y

SET CURRENT PRECISION Y Y Y

SET CURRENT QUERY
ACCELERATION

Y Y Y

SET CURRENT REFRESH AGE Y Y Y

SET CURRENT ROUTINE
VERSION

Y Y Y

SET CURRENT RULES Y Y Y

SET CURRENT SQLID5 Y Y Y

Appendix. Additional information for DB2 SQL 2027

Table 161. Actions allowed on SQL statements in DB2 for z/OS (continued)

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server

Precompiler or
coprocessor

SET host-variable = CURRENT
APPLICATION ENCODING
SCHEME

Y Y Y

SET host-variable = CURRENT
DATE

Y Y

SET host-variable = CURRENT
DEGREE

Y Y

SET host-variable = CURRENT
MEMBER

Y Y

SET host-variable = CURRENT
PACKAGESET

Y Y

SET host-variable = CURRENT
PATH

Y Y

SET host-variable = CURRENT
QUERY OPTIMIZATION LEVEL

Y Y

SET host-variable = CURRENT
SERVER

Y Y

SET host-variable = CURRENT
SQLID

Y Y

SET host-variable = CURRENT
TIME

Y Y

SET host-variable = CURRENT
TIMESTAMP

Y Y

SET host-variable = CURRENT
TIMEZONE

Y Y

SET PATH Y Y Y

SET SCHEMA Y Y Y

SET transition-variable =
CURRENT DATE

Y Y

SET transition-variable =
CURRENT DEGREE

Y Y

SET transition-variable =
CURRENT PATH

Y Y

SET transition-variable =
CURRENT QUERY
OPTIMIZATION LEVEL

Y Y

SET transition-variable =
CURRENT SQLID

Y Y

SET transition-variable =
CURRENT TIME

Y Y

SET transition-variable =
CURRENT TIMESTAMP

Y Y

SET transition-variable =
CURRENT TIMEZONE

Y Y

SIGNAL6 Y Y

2028 SQL Reference

Table 161. Actions allowed on SQL statements in DB2 for z/OS (continued)

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server

Precompiler or
coprocessor

TRUNCATE Y Y Y

UPDATE Y Y Y

VALUES6 Y Y

VALUES INTO7 Y Y

WHENEVER Y

Note:

1. The statement can be dynamically prepared. It cannot be issued dynamically.

2. The statement can be dynamically prepared only if DYNAMICRULES run behavior is implicitly or explicitly
specified.

3. The statement can be dynamically prepared, but only from an ODBC or CLI driver that supports dynamic CALL
statements.

4. The requesting system processes the PREPARE statement when the statement being prepared is ALLOCATE
CURSOR or ASSOCIATE LOCATORS.

5. The value to which special register CURRENT SQLID is set is used as the SQL authorization ID for dynamic SQL
statements only when DYNAMICRULES run behavior is in effect. The CURRENT SQLID value is ignored for the
other DYNAMICRULES behaviors.

6. This statement can be used only in the triggered action of a trigger.

7. Local special registers can be referenced in a VALUES INTO statement if it results in the assignment of a single
host-variable, not if it results in setting more than one value.

8. Some processing also occurs at the requester.

Appendix. Additional information for DB2 SQL 2029

SQL statements allowed in external functions and stored
procedures

Certain SQL statements can be executed in an external stored procedure or in an
external user-defined function. Whether the statements can be executed depends
on the level of SQL data access with which the stored procedure or external
function is defined.

The following table shows which SQL statements in an external stored procedure
or in an external user-defined function can execute. The letter Y means yes.

In general, if an executable SQL statement is encountered in a stored procedure or
function defined as NO SQL, SQLSTATE 38001 is returned. If the routine is defined
to allow some level of SQL access, SQL statements that are not supported in any
context return SQLSTATE 38003. SQL statements not allowed for routines defined
as CONTAINS SQL return SQLSTATE 38004, and SQL statements not allowed for
READS SQL DATA return SQLSTATE 38002.

Table 162. SQL statements in external user-defined functions and stored procedures

SQL statement

Level of SQL access

NO SQL
CONTAINS

SQL
READS SQL

DATA
MODIFIES
SQL DATA

ALLOCATE CURSOR Y Y

ALTER Y

ASSOCIATE LOCATORS Y Y

BEGIN DECLARE SECTION Y1 Y Y Y

CALL Y2 Y2 Y2

CLOSE Y Y

COMMENT Y

COMMIT3 Y Y Y

CONNECT Y Y Y

CREATE Y

DECLARE CURSOR Y1 Y Y Y

DECLARE GLOBAL
TEMPORARY TABLE

Y

DECLARE STATEMENT Y1 Y Y Y

DECLARE TABLE Y1 Y Y Y

DECLARE VARIABLE Y1 Y Y Y

DELETE Y

DESCRIBE Y Y

DESCRIBE CURSOR Y Y

DESCRIBE INPUT Y Y

DESCRIBE PROCEDURE Y Y

DROP Y

END DECLARE SECTION Y1 Y Y Y

EXECUTE Y4 Y4 Y

EXECUTE IMMEDIATE Y4 Y4 Y

2030 SQL Reference

Table 162. SQL statements in external user-defined functions and stored
procedures (continued)

SQL statement

Level of SQL access

NO SQL
CONTAINS

SQL
READS SQL

DATA
MODIFIES
SQL DATA

EXPLAIN Y

FETCH Y Y

FREE LOCATOR Y Y Y

GET DIAGNOSTICS Y Y Y

GRANT Y

HOLD LOCATOR Y Y Y

INCLUDE Y1 Y Y Y

INSERT Y

LABEL Y

LOCK TABLE Y Y Y

MERGE Y

OPEN Y Y

PREPARE Y Y Y

REFRESH TABLE Y

RELEASE connection Y Y Y

RELEASE SAVEPOINT6 Y

REVOKE Y

ROLLBACK6, 7, 8 Y Y Y

ROLLBACK TO SAVEPOINT6,

7, 8

Y

SAVEPOINT6 Y

SELECT INTO Y Y

SET CONNECTION Y Y Y

SET CURRENT DEBUG
MODE

Y Y Y

SET CURRENT ROUTINE
VERSION

Y Y Y

SET host-variable Assignment Y5 Y Y

SET special register Y Y Y

SET transition-variable
Assignment

Y5 Y Y

SIGNAL Y Y Y

TRUNCATE Y

UPDATE Y

VALUES Y Y

VALUES INTO Y5 Y Y

WHENEVER Y1 Y Y Y

Appendix. Additional information for DB2 SQL 2031

Table 162. SQL statements in external user-defined functions and stored
procedures (continued)

SQL statement

Level of SQL access

NO SQL
CONTAINS

SQL
READS SQL

DATA
MODIFIES
SQL DATA

Notes:

1. Although the SQL option implies that no SQL statements can be specified,
non-executable statements are not restricted.

2. The stored procedure that is called must have the same or more restrictive level of SQL
data access than the current level in effect. For example, a routine defined as MODIFIES
SQL DATA can call a stored procedure defined as MODIFIES SQL DATA, READS SQL
DATA, CONTAINS SQL, or NO SQL. A routine defined as CONTAINS SQL can call a
procedure defined as CONTAINS SQL or NO SQL.

3. The COMMIT statement cannot be executed in a user-defined function. The COMMIT
statement cannot be executed in a stored procedure if the procedure is in the calling
chain of a user-defined function or trigger.

4. The statement specified for the EXECUTE statement must be a statement that is allowed
for the particular level of SQL data access in effect. For example, if the level in effect is
READS SQL DATA, the statement must not be an INSERT, UPDATE, MERGE, or
DELETE statement.

5. The statement is supported only if it does not contain a subquery or query-expression.

6. RELEASE SAVEPOINT, SAVEPOINT, and ROLLBACK (with the TO SAVEPOINT clause)
cannot be executed from a user-defined function.

7. If the ROLLBACK statement (without the TO SAVEPOINT clause) is executed in a
user-defined function, an error is returned to the calling program, and the application is
placed in a must rollback state.

8. The ROLLBACK statement (without the TO SAVEPOINT clause) cannot be executed in a
stored procedure if the procedure is in the calling chain of a user-defined function or
trigger.

SQL control statements for external SQL procedures
SQL control statements for external SQL procedures can be used only with SQL
procedures that are created with the FENCED or EXTERNAL clause. SQL control
statements provide the capability to control the logic flow, declare and set variables,
and handle warnings and exceptions. Some SQL control statements include other
nested SQL statements.

SQL-control-statement:

2032 SQL Reference

�� assignment-statement
CALL statement
CASE statement
compound-statement
GET DIAGNOSTICS statement
GOTO statement
IF statement
ITERATE statement
LEAVE statement
LOOP statement
REPEAT statement
RESIGNAL statement
RETURN statement
SIGNAL statement
WHILE statement

��

Control statements are supported in SQL procedures. External SQL procedures are
created by specifying either FENCED or EXTERNAL, LANGUAGE SQL, and an
SQL routine body on the “CREATE PROCEDURE (SQL - external)” on page 1338
statement. The SQL routine body must be a single SQL statement which may be an
SQL control statement.

The remainder of this chapter contains a description of the control statements that
are supported for external SQL procedures, and includes syntax diagrams,
semantic descriptions, usage notes, and examples of the use of the statements that
constitute the SQL routine body. In addition, you can find information about
referencing SQL parameters and variables in “References to SQL parameters and
SQL variables.”

The two common elements that are used in describing specific SQL control
statements are:
v SQL control statements as described above
v “SQL-procedure-statement” on page 2035

References to SQL parameters and SQL variables
SQL parameters and SQL variables can be referenced anywhere in the statement
where an expression or a host variable can be specified. Host variables can be
specified in SQL routines. SQL parameters and SQL variables can be referenced
anywhere in the compound statement in which they are declared and can be
qualified with the label name that is specified at the beginning of the compound
statement.

All SQL parameters and SQL variables are considered nullable. The name of an
SQL parameter or SQL variable in an SQL routine can be the same as the name of
a column in a table or view that the SQL routine references. Names that are the
same should be explicitly qualified. Qualifying a name clearly indicates whether
the name refers to a column, SQL variable, or SQL parameter.

If the name is not qualified, the following rules describe whether the name refers
to the column, the SQL variable, or the SQL parameter:
v The name is checked first as an SQL variable name and then as an SQL

parameter name.
v If an SQL variable or SQL parameter by that name is not found, the name is

assumed to be a column name.

Appendix. Additional information for DB2 SQL 2033

The name of an SQL variable or SQL parameter in an SQL routine can be the name
of an identifier that is used in certain SQL statements. If the name is not qualified,
the following rules describe whether the name refers to the identifier, the SQL
variable, or the SQL parameter:
v In the SET PATH and SET SCHEMA statements, the name is checked as an SQL

variable name or an SQL parameter name. If an SQL variable or SQL parameter
by that name is not found, the name is assumed to be an identifier.

v In the ASSOCIATE LOCATORS, CONNECT statement, the SET CONNECTION
statement, and the RELEASE (connection) statement the name is used as an
identifier.

2034 SQL Reference

SQL-procedure-statement
An SQL control statement may allow multiple SQL statements to be specified
within the SQL control statement. These statements are defined as SQL procedure
statements.

Syntax

��
SQL-label:

SQL-control-statement
SQL-statement

��

Description

SQL-label
Specifies a label for the statement. SQL-label must not be a delimited identifier
that includes lowercase letters or special characters. The label must be unique
within the procedure.

SQL-control-statement
Specifies an SQL statement that provides the capability to control logic flow,
declare and set variables, and handle warnings and exceptions, as defined in
this section. Control statements are supported in SQL procedures.

SQL-statement
Specifies an SQL statement. These statements are described in Chapter 5,
“Statements,” on page 833.

Notes

Comments: Comments can be included within the body of an SQL procedure. In
addition to the double-dash form of comments (--), a comment can begin with /*
and end with */. The following rules apply to this form of comment:
v The beginning characters /* must be adjacent and on the same line.
v The ending characters */ must be adjacent and on the same line.
v Comments can be started wherever a space is valid.
v Comments can be continued to the next line.

Handling errors and warnings: Conditions can be detected within an SQL
procedure by using the following methods:
v Test the special SQL variables SQLSTATE and SQLCODE.
v Issue a GET DIAGNOSTICS statement to request the condition information. See

“GET DIAGNOSTICS” on page 1679.
v Define condition handlers to detect and process conditions. See

“compound-statement” on page 2043 for information about defining condition
handlers.

Appendix. Additional information for DB2 SQL 2035

assignment-statement (SQL control statements for external
routines)

The assignment statement assigns a value to an SQL parameter or to an SQL
variable.

Syntax

�� SET SQL-parameter-name = CURRENT SERVER
SQL-variable-name CURRENT PACKAGESET

CURRENT PACKAGE PATH
expression
NULL

��

Description

SQL-parameter-name
Identifies the parameter that is the assignment target. The parameter must be
specified in parameter-declaration in the CREATE PROCEDURE statement and
must be defined as OUT or INOUT.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables can be
declared in a compound-statement and must be declared before it is used. For
information on declaring SQL variables, see “compound-statement” on page
2043.

expression or NULL
Specifies the expression or value that is the assignment source. The expression
can be any expression of the type described in “Expressions” on page 240
except it cannot contain a reference to local special registers (CURRENT
SERVER, CURRENT PACKAGESET, or CURRENT PACKAGE PATH).

Notes

Assignment rules: Assignment statements in SQL procedures must conform to the
SQL assignment rules. For example, the data type of the target and source must be
compatible. See “Assignment and comparison” on page 121 for assignment rules.

When a string is assigned to a fixed-length variable and the length of the string is
less than the length attribute of the target, the string is padded on the right with
the necessary number of single-byte or double-byte blanks. When a string is
assigned to a variable and the string is longer than the length attribute of the
variable, the value is truncated and a warning is returned.

The ENCODING bind option is not used during processing of assignments to
string variables. For example, assume that the system does not use mixed or DBCS,
and the system EBCDIC SBCS CCSID is 37. Character conversion will not occur on
assignment even if CCSID 500 is specified for the ENCODING bind parameter for
the package for the procedure.

If truncation of the whole part of a number occurs on assignment to a numeric
variable, the value is truncated and a warning is returned.

2036 SQL Reference

Assignments involving SQL parameters:

v An IN parameter can appear on the left side of an assignment statement. When
control returns to the caller, the original value of an IN parameter is passed to
the caller.

v An OUT parameter can appear on the left or right side of an assignment
statement. When control returns to the caller, the last value that is assigned to an
OUT parameter is returned to the caller.

v An INOUT parameter can appear on the left or right side of an assignment
statement. The first value of the parameter is determined by the caller, and the
last value that is assigned to the parameter is returned to the caller.

v A LOB parameter can not be used as an output value in an SQL statement in an
SQL procedure when connected to a remote site. To circumvent the restriction,
use a LOB SQL variable instead of a LOB parameter.

Considerations for SQLSTATE and SQLCODE SQL variables: Assignment to these
variables is not prohibited. However, it is not recommended as assignment does
not affect the diagnostic area or result in the activation of condition handlers.
Furthermore, processing an assignment to these SQL variables causes the specified
values for the assignment to be overlayed with the SQL return codes returned from
executing the statement that does the assignment.

Examples

Increase the SQL variable p_salary by 10 percent.
SET p_salary = p_salary + (p_salary * .10)

Set SQL variable p_salary to the null value.
SET p_salary = NULL

Set SQL variable midinit to the first character of SQL variable midname.
SET midinit = SUBSTR(midname,1,1)

Appendix. Additional information for DB2 SQL 2037

CALL statement
The CALL statement invokes a stored procedure.

Syntax

�� CALL procedure-name argument-list ��

argument-list:

��

�

,

(SQL-variable-name)
SQL-parameter-name
expression
NULL

��

Description

procedure-name
Identifies the stored procedure to call. The procedure name must identify a
stored procedure that exists at the current server.

argument-list
Identifies a list of values to be passed as parameters to the stored procedure.
The number of parameters must be the same as the number of parameters
defined for the stored procedure. See “CALL” on page 1117 for more
information.

Control is passed to the stored procedure according to the calling conventions
for SQL procedures. When execution of the stored procedure is complete, the
value of each parameter of the stored procedure is assigned to the
corresponding parameter of the CALL statement defined as OUT or INOUT.

SQL-variable-name
Specifies an SQL variable as an argument to the stored procedure. For an
explanation of references to SQL variables, see “References to SQL
parameters and SQL variables” on page 2033.

SQL-parameter-name
Specifies an SQL parameter as an argument to the stored procedure. For an
explanation of references to SQL parameters, see “References to SQL
parameters and SQL variables” on page 2033.

expression
The parameter is the result of the specified expression, which is evaluated
before the stored procedure is invoked. If expression is a single
SQL-parameter-name or SQL-variable-name, the corresponding parameter of
the procedure can be defined as IN, INOUT, or OUT. Otherwise, the
corresponding parameter of the procedure must be defined as IN. If the
result of the expression can be the null value, either the description of the

2038 SQL Reference

procedure must allow for null parameters or the corresponding parameter
of the stored procedure must be defined as OUT.

The following additional rules apply depending on how the corresponding
parameter was defined in the CREATE PROCEDURE statement for the
procedure:
v IN expression can contain references to multiple SQL parameters or

variables. In addition to the rules stated in “Expressions” on page 240
for expression, expression cannot include a column name, an aggregate
function, or a user-defined function that is sourced on an aggregate
function.

v INOUT or OUT expression can only be a single SQL parameter or
variable.

NULL
The parameter is a null value. The corresponding parameter of the
procedure must be defined as IN and the description of the procedure
must allow for null parameters.

Notes

See “CALL” on page 1117 for more information on the SQL CALL statement.

Examples

Call stored procedure proc1 and pass SQL variables as parameters.
CALL proc1(v_empno, v_salary)

Appendix. Additional information for DB2 SQL 2039

CASE statement
The CASE statement selects an execution path based on the evaluation of one or
more conditions. A CASE statement operates in the same way as a CASE
expression.

Syntax

�� CASE simple-when-clause
searched-when-clause

�ELSE SQL-procedure-statement ;

END CASE ��

simple-when-clause:

�� expression � �WHEN expression THEN SQL-procedure-statement ; ��

searched-when-clause:

�� � �WHEN search-condition THEN SQL-procedure-statement ; ��

Description

CASE
Begins a case-expression.

simple-when-clause
Specifies the expression prior to the first WHEN keyword that is tested for
equality with the value of each expression that follows the WHEN keyword,
and the result to be executed when those expressions are equal. If the
comparison is true, the THEN statement is executed. If the result is unknown
or false, processing continues to the next expression or the ELSE statement.

The data type of the expression prior to the first WHEN keyword must be
comparable to the data types of each expression that follows the WHEN
keywords.

searched-when-clause
Specifies the search-condition that is applied to each row or group of table data
presented for evaluation, and the result when that condition is true.
search-condition cannot contain a fullselect. If the search condition is true, the

2040 SQL Reference

THEN statement is executed. If the condition is unknown or false, processing
continues to the next search condition or the ELSE statement.

SQL-procedure-statement
Specifies a statement that follows the THEN and ELSE keyword. The statement
specifies the result of a searched-when-clause or a simple-when-clause that is true,
or the result if no case is true. The statement must be one of the statements
listed under “SQL-procedure-statement” on page 2035.

search-condition
Specifies a condition that is true, false, or unknown about a row or group of
table data.

ELSE SQL-procedure-statement
If none of the conditions specified in the simple-when-clause or
searched-when-clause are true, the statements in the else-clause are executed.

If none of the conditions specified in the WHEN clause are true and an ELSE
clause is not specified, an error is returned at run time, and the execution of
the CASE statement is terminated.

END CASE
Ends a case-statement.

Notes

If none of the conditions specified in the WHEN clause are true and an ELSE
clause is not specified, an error is returned at run time, and the execution of the
CASE statement is terminated.

CASE statements that use a simple case statement WHEN clause can be nested up
to three levels. CASE statements that use a searched statement WHEN clause have
no limit to the number of nesting levels.

Considerations for the SQLSTATE and SQLCODE SQL variables: When the first
SQL-procedure-statement in the CASE statement is executed, the SQLSTATE and
SQLCODE SQL variables reflect the result of evaluating the expression or search
conditions of that CASE statement. If a CASE statement does not include an ELSE
clause and none of the search conditions evaluate to true, an error is returned.

Examples

Example 1: Use a simple case statement WHEN clause to update column
DEPTNAME in table DEPT, depending on the value of SQL variable v_workdept.
CASE v_workdept
WHEN ’A00’
THEN UPDATE DEPT SET
DEPTNAME = ’DATA ACCESS 1’;

WHEN ’B01’
THEN UPDATE DEPT SET
DEPTNAME = ’DATA ACCESS 2’;

ELSE UPDATE DEPT SET
DEPTNAME = ’DATA ACCESS 3’;

END CASE

Example 2: Use a searched case statement WHEN clause to update column
DEPTNAME in table DEPT, depending on the value of SQL variable v_workdept.
CASE
WHEN v_workdept < ’B01’
THEN UPDATE DEPT SET

Appendix. Additional information for DB2 SQL 2041

DEPTNAME = ’DATA ACCESS 1’;
WHEN v_workdept < ’C01’
THEN UPDATE DEPT SET
DEPTNAME = ’DATA ACCESS 2’;

ELSE UPDATE DEPT SET
DEPTNAME = ’DATA ACCESS 3’;

END CASE

2042 SQL Reference

compound-statement
A compound statement contains a group of statements and declarations for SQL
variables, cursors, and condition handlers.

Syntax

��
(1)

label:

BEGIN
NOT ATOMIC

� SQL-variable-declaration ;
SQL-condition-declaration
return-codes-declaration

�

�

� DECLARE-CURSOR-statement ; � handler-declaration ;

�

� � SQL-procedure-statement ; END
label

��

Notes:

1 Only one label: can be specified for each SQL-procedure-statement. If an ending label is specified for
this beginning label, the labels must be the same.

�� DECLARE �

,
DEFAULT NULL

SQL-variable-name data-type
DEFAULT constant

RESULT_SET_LOCATOR VARYING

��

�� DECLARE SQL-condition-name CONDITION FOR

VALUE
SQLSTATE

string-constant ��

SQL-variable-declaration:

SQL-condition-declaration:

return-codes-declaration:

Appendix. Additional information for DB2 SQL 2043

��
DEFAULT '00000'

DECLARE SQLSTATE CHAR(5)
CHARACTER(5) DEFAULT string-constant

DEFAULT 0
SQLCODE INTEGER

INT DEFAULT integer-constant

��

�� DECLARE CONTINUE
EXIT

HANDLER FOR specific-condition-value
general-condition-value

SQL-procedure-statement ��

�� �

,
VALUE

SQLSTATE string-constant
SQL-condition-name

��

�� SQLEXCEPTION
SQLWARNING
NOT FOUND

��

Description

label
Defines the label for the code block. If the beginning label is specified, it can be
used to qualify SQL variables declared in the compound statement and can
also be specified on a LEAVE statement. If the ending label is specified, it must
be the same as the beginning label.

NOT ATOMIC
NOT ATOMIC indicates that an error within the compound statement does not
cause the compound statement to be rolled back.

SQL-variable-declaration
Declares a variable that is local to the compound statement.

SQL-variable-name
A qualified or unqualified name that designates a variable in an SQL
procedure body. The unqualified form of SQL-variable-name is an SQL
identifier and must not be a delimited identifier that contains lowercase
letters or special characters. The qualified form is an SQL procedure
statement label followed by a period (.) and an SQL identifier.

handler-declaration:

specific-condition-value:

general-condition-value:

2044 SQL Reference

DB2 folds all SBCS SQL variable names to uppercase. SQL variable names
should not be the same as column names. If an SQL statement contains an
SQL variable or parameter and a column reference with the same name,
DB2 interprets the name as an SQL variable or parameter name. To refer to
the column, qualify the column name with the table name. Further, to
avoid ambiguous variable references and to ensure compatibility with
other DB2 platforms, qualify the SQL variable or parameter name with the
label of the SQL procedure statement.

data-type
Specifies the data type and length of the variable. SQL variables follow the
same rules for default lengths and maximum lengths as SQL procedure
parameters. See “CREATE PROCEDURE (SQL - external)” on page 1338 for
a description of SQL data types and lengths.

DEFAULT constant or NULL
Defines the default for the SQL variable. The variable is initialized when
the SQL procedure is called. If a default value is not specified, the variable
is initialized to NULL.

RESULT_SET_LOCATOR VARYING
Specifies the data type for a result set locator variable.

SQL-condition-declaration
Declares a condition name and corresponding SQLSTATE value.

SQL-condition-name
Specifies the name of the condition. The condition name is an SQL
identifier and must not be a delimited identifier that includes lowercase
letters or special characters. SQL-condition-name must be unique within the
procedure body and can be referenced only within the compound
statement in which it is declared.

FOR SQLSTATE string-constant
Specifies the SQLSTATE that is associated with the condition. The string
must be specified as five characters enclosed in single quotes, and cannot
be '00000'.

return-codes-declaration
Declares special variables called SQLSTATE and SQLCODE that are set
automatically to the value returned after processing an SQL statement. Both
the SQLSTATE and SQLCODE variables can be declared only in the outermost
compound statement of the SQL procedure. Assignment to these variables is
not prohibited; however, assignment is ignored by exception handlers, and
processing the next SQL statement replaces the assigned value.

DECLARE-CURSOR-statement
Declares a cursor. Each cursor in the procedure body must have a unique
name. An OPEN statement must be specified to open the cursor, and a FETCH
statement can be specified to read rows. The cursor can be referenced only
from within the compound statement. For more information on declaring a
cursor, see “DECLARE CURSOR” on page 1535.

handler-declaration
Specifies a set of statements to execute when an exception or completion
condition occurs in the compound statement. SQL-procedure-statement is the set
of statements that execute when the handler receives control. See
“SQL-procedure-statement” on page 2035 for information on
SQL-procedure-statement.

Appendix. Additional information for DB2 SQL 2045

A handler is active only within the compound statement in which it is
declared.

The actions that a handler can perform are:

CONTINUE
Specifies that after the condition handler is activated and completes
successfully, control is returned to the SQL statement that follows the
statement that raised the condition. However, if the condition is an error
condition and it was encountered while evaluating a search condition, as in
a CASE, IF, REPEAT or WHILE statement, control returns to the statement
that follows the corresponding END CASE, END IF, END REPEAT, or END
WHILE.

EXIT
After the handler is invoked successfully, control is returned to the end of
the compound statement.

The conditions that can cause the handler to gain control are:

SQLSTATE string-constant
Specifies an SQLSTATE for which the handler is invoked. The SQLSTATE
cannot be '00000'.

SQL-condition-name
Specifies a condition name for which the handler is invoked. The condition
name must be previously defined in a condition declaration.

SQLEXCEPTION
Specifies that the handler is invoked when an SQLEXCEPTION occurs. An
SQLEXCEPTION is an SQLSTATE in which the class code is a value other
than '00', '01', or '02'. For more information on SQLSTATE values, see DB2
Codes.

SQLWARNING
Specifies that the handler is invoked when an SQLWARNING occurs. An
SQLWARNING is an SQLSTATE value with a class code of '01'.

NOT FOUND
Specifies that the handler is invoked when a NOT FOUND condition
occurs. NOT FOUND corresponds to an SQLSTATE value with a class code
of '02'.

Notes

The order of statements in a compound statement must be:
1. SQL variable, condition declarations, and return codes declarations
2. Cursor declarations
3. Handler declarations
4. SQL procedure statements

Compound statements cannot be nested.

Unlike host variables, SQL variables are not preceded by colons when they are
used in SQL statements.

The following rules apply to handlers:
v A handler declaration that contains SQLEXCEPTION, SQLWARNING, or NOT

FOUND cannot contain additional SQLSTATE or condition names.

2046 SQL Reference

v Handler declarations within the same compound statement cannot contain
duplicate conditions.

v A handler declaration cannot contain the same condition code or SQLSTATE
value more than once, and cannot contain an SQLSTATE value and a condition
name that represent the same SQLSTATE value.

v A handler is activated when it is the most appropriate handler for an exception
or completion condition.

v If there is no handler for an SQL error, the error is passed to the caller in the
SQLCA.

v A handler cannot be activated by an assignment statement that assigns a value
to SQLSTATE.

The following rules and recommendations apply to the SQLCODE and SQLSTATE
SQL variables:
v A null value cannot be assigned to SQLSTATE or SQLCODE.
v The SQLSTATE and SQLCODE variable values should be saved immediately to

temporary variables if there is any intention to use the values. If a handler exists
for SQLSTATE, this assignment must be done as the first statement to be
processed in the handler to avoid having the value replaced by the next SQL
procedure statement. If the condition raised by the SQL statement is handled,
the value is changed by the first SQL statement contained in the handler.

Considerations for the SQLSTATE and SQLCODE SQL variables: The compound
statement itself does not affect the SQLSTATE and SQLCODE SQL variables.
However, SQL statements contained within the compound statement can affect the
SQLSTATE and SQLCODE SQL variables. At the end of the compound statement,
the SQLSTATE and SQLCODE SQL variables reflect the result of the last SQL
statement executed within the compound statement that caused a change to the
SQLSTATE and SQLCODE SQL variables. If the SQLSTATE and SQLCODE SQL
variables were not changed within the compound statement, they contain the same
values as when the compound statement was entered.

Examples

Create a procedure body with a compound statement that performs the following
actions:
v Declares SQL variables, a condition for SQLSTATE '02000', a handler for the

condition, and a cursor
v Opens the cursor, fetches a row, and closes the cursor
CREATE PROCEDURE PROC1(OUT NOROWS INT) LANGUAGE SQL
BEGIN
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE v_edlevel SMALLINT;
DECLARE v_salary DECIMAL(9,2);
DECLARE at_end INT DEFAULT 0;
DECLARE not_found
CONDITION FOR ’02000’;
DECLARE c1 CURSOR FOR
SELECT FIRSTNME, MIDINIT, LASTNAME,
EDLEVEL, SALARY
FROM EMP;
DECLARE CONTINUE HANDLER FOR not_found SET NOROWS=1;

Appendix. Additional information for DB2 SQL 2047

OPEN c1;
FETCH c1 INTO v_firstnme, v_midinit,
v_lastname, v_edlevel, v_salary;

END

2048 SQL Reference

GET DIAGNOSTICS statement
The GET DIAGNOSTICS statement obtains information about the previous SQL
statement that was executed.

See “GET DIAGNOSTICS” on page 1679.

When you need to specify a variable in a GET DIAGNOSTICS statement that is
used within an SQL procedure, you would use either SQL-variable-name or
SQL-parameter-name. In an embedded GET DIAGNOSTICS statement, you would
use a host-variable. You can replace the instances of host-variable in the description of
“GET DIAGNOSTICS” on page 1679 with SQL-variable-name or SQL-parameter-name.

Appendix. Additional information for DB2 SQL 2049

GOTO statement
The GOTO statement is used to branch to a user-defined label within an SQL
procedure.

Syntax

�� GOTO label ��

Description

label
Specifies a labeled statement at which processing is to continue.

The labeled statement and the GOTO statement must be in the same scope.
The following rules apply to the scope:
v If the GOTO statement is defined in a compound statement, label must be

defined inside the same compound statement.
v If the GOTO statement is defined in a handler, label must be defined in the

same handler and follow the other scope rules.
v If the GOTO statement is defined outside of a handler, label must not be

defined within a handler.

If label is not defined within a scope that the GOTO statement can reach, an
error is returned.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

Notes

Use the GOTO statement sparingly. Because the GOTO statement interferes with
the normal sequence of processing, it makes an SQL procedure more difficult to
read and maintain. Before using a GOTO statement, determine whether some other
statement, such as an IF statement or LEAVE statement, can be used instead.

Examples

Use a GOTO statement to transfer control to the end of a compound statement if
the value of an SQL variable is less than 600.
BEGIN
DECLARE new_salary DECIMAL(9,2);
DECLARE service DECIMAL(8,2);
SELECT SALARY, CURRENT_DATE - HIREDATE
INTO new_salary, service
FROM EMP
WHERE EMPNO = v_empno;
IF service < 600
THEN GOTO EXIT;
END IF;
IF rating = 1
THEN SET new_salary =
new_salary + (new_salary * .10);

ELSEIF rating = 2
THEN SET new_salary =
new_salary + (new_salary * .05);

2050 SQL Reference

END IF;
UPDATE EMP
SET SALARY = new_salary
WHERE EMPNO = v_empno;
EXIT: SET return_parm = service;
END

Appendix. Additional information for DB2 SQL 2051

IF statement
The IF statement selects an execution path based on the evaluation of a condition.

Syntax

�� IF search-condition THEN � SQL-procedure-statement ; �

� �

�ELSEIF search-condition THEN SQL-procedure-statement ;

�

�

�ELSE SQL-procedure-statement ;

END IF ��

Description

search-condition
Specifies the condition for which an SQL statement should be invoked. If the
condition is unknown or false, processing continues to the next search
condition until either a condition is true or processing reaches the ELSE clause.

SQL-procedure-statement
Specifies the statement to be invoked if the preceding search-condition is true. If
no search-condition evaluates to true, then the SQL-procedure-statement following
the ELSE keyword is invoked. The statement must be one of the statements
listed under “SQL-procedure-statement” on page 2035.

Notes

Considerations for the SQLSTATE and SQLCODE SQL variables: When the first
SQL-procedure-statement in the IF statement is executed, the SQLSTATE and
SQLCODE SQL variables reflect the result of evaluating the search conditions of
that IF statement. If an IF statement does not include an ELSE clause and none of
the search conditions evaluate to true, then when the statement that follows that IF
statement is executed, the SQLSTATE and SQLCODE SQL variables reflect the
result of evaluating the search conditions of that IF statement.

Examples

Assign a value to the SQL variable new_salary based on the value of SQL variable
rating.
IF rating = 1
THEN SET new_salary =
new_salary + (new_salary * .10);
ELSEIF rating = 2

2052 SQL Reference

THEN SET new_salary =
new_salary + (new_salary * .05);

ELSE SET new_salary =
new_salary + (new_salary * .02);

END IF

Appendix. Additional information for DB2 SQL 2053

ITERATE statement
The ITERATE statement causes the flow of control to return to the beginning of a
labeled loop.

Syntax

�� ITERATE label ��

Description

label
Specifies the label of the LOOP, REPEAT, or WHILE statement to which the
flow of control is passed.

Examples

This example uses a cursor to return information for a new department. If the
not_found condition handler is invoked, the flow of control passes out of the loop.
If the value of v_dept is 'D11', an ITERATE statement causes the flow of control to
be passed back to the top of the LOOP statement. Otherwise, a new row is inserted
into the table.
CREATE PROCEDURE ITERATOR ()

LANGUAGE SQL
MODIFIES SQL DATA
BEGIN

DECLARE v_dept CHAR(3);
DECLARE v_deptname VARCHAR(29);
DECLARE v_admdept CHAR(3);
DECLARE at_end INTEGER DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE c1 CURSOR FOR

SELECT deptno,deptname,admrdept
FROM department
ORDER BY deptno;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;
OPEN c1;
ins_loop:
LOOP

FETCH c1 INTO v_dept, v_deptname, v_admdept;
IF at_end = 1 THEN

LEAVE ins_loop;
ELSEIF v_dept = ’D11’ THEN

ITERATE ins_loop;
END IF;
INSERT INTO department (deptno,deptname,admrdept)

VALUES(’NEW’, v_deptname, v_admdept);
END LOOP;
CLOSE c1;

END

2054 SQL Reference

LEAVE statement
The LEAVE statement transfers program control out of a loop or a compound
statement.

Syntax

�� LEAVE label ��

Description

label
Specifies the label of the compound statement or loop to exit.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

Notes

When a LEAVE statement transfers control out of a compound statement, all open
cursors in the compound statement, except cursors that are used to return result
sets, are closed.

Examples

Use a LEAVE statement to transfer control out of a LOOP statement when a
negative SQLCODE occurs.
ftch_loop: LOOP
FETCH c1 INTO
v_firstnme, v_midinit,
v_lastname, v_edlevel, v_salary;
IF SQLCODE=100 THEN LEAVE ftch_loop;
END IF;
END LOOP

Appendix. Additional information for DB2 SQL 2055

LOOP statement
The LOOP statement executes a statement or group of statements multiple times.

Syntax

��
(1)

label:

LOOP � SQL-procedure-statement ; END LOOP
label

��

Notes:

1 Only one label: can be specified for each SQL-procedure-statement.

Description

label
Specifies the label for the LOOP statement. If the ending label is specified, the
beginning label must be specified, and the two must match.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

SQL-procedure-statement
Specifies the statements to be executed in the loop. The statement must be one
of the statements listed under “SQL-procedure-statement” on page 2035.

Examples

This procedure uses a LOOP statement to fetch values from the employee table.
Each time the loop iterates, the OUT parameter counter is incremented and the
value of v_midinit is checked to ensure that the value is not a single space (' '). If
v_midinit is a single space, the LEAVE statement passes the flow of control outside
of the loop.
CREATE PROCEDURE LOOP_UNTIL_SPACE(OUT counter INTEGER)

LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER DEFAULT 0;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE EXIT HANDLER FOR NOT FOUND
SET counter = -1;

OPEN c1;
fetch_loop:
LOOP

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
IF v_midinit = ’ ’ THEN

LEAVE fetch_loop;
END IF;
SET v_counter = v_counter + 1;

2056 SQL Reference

END LOOP fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

Appendix. Additional information for DB2 SQL 2057

REPEAT statement
The REPEAT statement executes a statement or group of statements until a search
condition is true.

Syntax

��
(1)

label:

REPEAT � SQL-procedure-statement ; UNTIL search-condition END REPEAT �

�
label

��

Notes:

1 Only one label: can be specified for each SQL-procedure-statement.

Description

label
Specifies the label for the REPEAT statement. If the ending label is specified,
the beginning label must be specified, and the two must match.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

SQL-procedure-statement
Specifies the statements to be executed. The statement must be one of the
statements listed under “SQL-procedure-statement” on page 2035.

search-condition
Specifies a condition that is evaluated after each execution of the REPEAT
statement. If the condition is true, the REPEAT loop will exit. If the condition
is unknown or false, the REPEAT loop continues.

Examples

Use a REPEAT statement to fetch rows from a table.
fetch_loop:
REPEAT
FETCH c1 INTO
v_firstnme, v_midinit, v_lastname;

UNTIL
SQLCODE <> 0

END REPEAT fetch_loop

2058 SQL Reference

RESIGNAL statement
The RESIGNAL statement is used within a condition handler to re-raise the current
condition, or to raise an alternate condition so that it can be processed at a higher
level. It causes an exception, warning, or not found condition to be returned along
with optional message text.

Issuing the RESIGNAL statement without an operand causes the current condition
to be passed upwards.

Syntax

�� RESIGNAL
VALUE

SQLSTATE sqlstate-string-constant
SQL-variable-name signal-information
SQL-parameter-name

SQL-condition-name

��

�� SET MESSAGE_TEXT = diagnostic-string-expression ��

Description

SQLSTATE VALUE
Specifies the SQLSTATE that will be returned. Any valid SQLSTATE value can
be used. It must be a character string constant with exactly five characters that
follow the rules for SQLSTATE values:
v Each character must be from the set of digits ('0' through '9') or non-accented

upper case letter ('A' through 'Z').
v The SQLSTATE class (the first two characters) cannot be '00' because it

represents successful completion.

If the SQLSTATE does not conform to these rules, an error occurs.

sqlstate-string-constant
A character string constant with a length of five bytes that is a valid
SQLSTATE value.

SQL-variable-name or SQL-parameter-name
Specifies an SQL variable or SQL parameter that is defined for the
procedure.

SQL-variable-name
Specifies an SQL variable that is declared within the compound-statement
that contains the RESIGNAL statement. SQL-variable-name must be
defined as CHAR or VARCHAR data type with a length of five bytes,
must not be null, and must contain a valid SQLSTATE value.

SQL_parameter-name
Specifies an SQL parameter that is defined for the procedure that
contains the SQLSTATE value. The SQL parameter must be defined as

signal-information:

Appendix. Additional information for DB2 SQL 2059

a CHAR or VARCHAR value and have a length of five bytes and must
not be null. The SQL parameter must contain a valid SQLSTATE value.

SQL-condition-name
Specifies the name of the condition that will be returned. condition-name must
be declared within the compound-statement.

SET MESSAGE_TEXT
Specifies a string that describes the error or warning. The string is returned in
the SQLERRMC field of the SQLCA or with the GET DIAGNOSTICS
statement.

diagnostic-string-expression
An expression with a data type of CHAR or VARCHAR that returns a
character string of up to 1000 bytes that describes the error or warning
condition. For information on how to obtain the complete message text, see
“GET DIAGNOSTICS” on page 1679.

Notes

While any valid SQLSTATE value can be used in the RESIGNAL statement,
programmers should define new SQLSTATE values based on ranges reserved for
applications. This practice prevents the unintentional use of an SQLSTATE value
that might be defined by the database manager in a future release.

If the RESIGNAL statement is issued without an SQLSTATE clause or a
condition-name, the RESIGNAL statement must be in a handler and the identical
condition that activated the handler is returned. The SQLSTATE, SQLCODE, and
the SQLCA associated with the condition are unchanged.

If an SQLSTATE clause or a condition-name was specified, the SQLCODE returned
is based on the SQLSTATE value as follows:
v If the specified SQLSTATE class is either '01' or '02', a warning or not-found

message is returned, and the SQLCODE is set to +438.
v Otherwise, an exception is returned and the SQLCODE is set to -438.

The other fields of the SQLCA are set as follows:
v SQLERRDx fields are set to zero.
v SQLWARNx fields are set to blank.
v SQLERRMC is set to the first 70 bytes of MESSAGE_TEXT.
v SQLERRML is set to the length of SQLERRMC.
v SQLERRP is set to ROUTINE.

When the SQLSTATE or condition indicates that an exception is returned (an
SQLSTATE class other than '01' or '02'), the exception is not handled, and control is
immediately returned to the end of the compound statement.

When the SQLSTATE or condition indicates that a warning (SQLSTATE class '02')
is returned, the warning is not handled, and processing continues with the next
statement.

When the SQLSTATE or condition indicates that a not-found condition (SQLSTATE
class '02') is returned, the not-found condition is not handled, and processing
continues with the next statement.

2060 SQL Reference

Examples

The following example detects a division by zero error. The IF statement uses a
SIGNAL statement to invoke the overflow condition handler. The condition
handler uses a RESIGNAL statement to return a different SQLSTATE to the client
application.
CREATE PROCEDURE divide (IN numerator INTEGER,

IN denominator INTEGER,
OUT divide_result INTEGER)

LANGUAGE SQL
CONTAINS SQL
BEGIN

DECLARE overflow CONDITION for SQLSTATE ’22003’ ;
DECLARE CONTINUE HANDLER FOR overflow
RESIGNAL SQLSTATE ’22375’;

IF denominator = 0 THEN
SIGNAL overflow;

ELSE
SET divide_result = numerator / denominator;

END IF;
END

Appendix. Additional information for DB2 SQL 2061

RETURN statement
The RETURN statement is used to return from the routine. For SQL functions, it
returns the result of the function. For an SQL procedure, it optionally returns an
integer status value.

Syntax

�� RETURN
expression
NULL

��

Description

expression
Specifies a value that is returned from the routine.
v If the routine is a function, expression must be specified and the value of

expression must conform to the SQL assignment rules as described in
“Assignment and comparison” on page 121. If the value is being assigned to
a string variable, storage assignment rules apply.

v If the routine is a procedure, the data type of expression must be INTEGER. If
expression evaluates to the null value, a value of 0 is returned.

The expression cannot include a column name or a host variable. See
“Expressions” on page 240 for information on expressions. The expression
cannot contain a scalar fullselect.

NULL
The null value is returned from the SQL function. NULL is not allowed in SQL
procedures.

Notes

When a RETURN statement is not used within an SQL procedure or when no
value is specified: If a RETURN statement was not used to return from a
procedure or if a value is not specified on the RETURN statement, one of the
following values is set:
v If the procedure returns with an SQLCODE that is greater or equal to zero, the

return status is set to a value of '0'.
v If the procedure returns with an SQLCODE that is less than zero, the return

status is set to a value of '-1'.

When a RETURN statement is used within an SQL procedure: If a RETURN
statement with a specified return value was used to return from a procedure, the
SQLCODE, SQLSTATE, and message length in the SQLCA are initialized to zeros
and the message text is set to blanks. An error is not returned to the caller.

When the value is returned: When a value is returned from a procedure, the caller
may access the value using one of the following methods:
v The GET DIAGNOSTICS statement to retrieve the RETURN_STATUS when the

SQL procedure was called from another SQL procedure.
v The parameter bound for the return value parameter marker in the escape clause

CALL syntax (?=CALL...) in a CLI application.

2062 SQL Reference

v Directly from the SQLCA returned from processing the CALL of an SQL
procedure by retrieving the value of sqlerrd[0]. When the SQLCODE is less than
zero, the sqlerrd[0] value is not set. The application should assume a return
status value of '-1'.

Examples

Use a RETURN statement to return from an SQL procedure with a status value of
zero if successful or '-200' if not successful.
BEGIN

. . .
GOTO FAIL;

. . .
SUCCESS: RETURN 0;

FAIL: RETURN -200;
END

Appendix. Additional information for DB2 SQL 2063

SIGNAL statement
The SIGNAL statement is used to return an error or warning condition. It causes
an error or warning to be returned with the specified SQLSTATE, along with
optional message text.

Syntax

�� SIGNAL
VALUE (1)

SQLSTATE sqlstate-string-constant
SQL-variable-name
SQL-parameter-name

(2)
SQL-condition-name

�

�
(3)

signal-information

��

Notes:

1 The SQLSTATE variation must be used within a trigger body.

2 SQL-condition-name must not be specified within a trigger body.

3 signal-information must be specified within a trigger body

signal-information:

�� SET MESSAGE_TEXT = diagnostic-string-expression
(1)

(diagnostic-string-expression)

��

Notes:

1 (diagnostic-string-expression) must only be specified within a trigger body.

Description

SQLSTATE VALUE
Specifies the SQLSTATE that will be returned. Any valid SQLSTATE value can
be used. It must be a character string constant with exactly five characters that
follow the rules for SQLSTATEs:
v Each character must be from the set of digits ('0' through '9') or non-accented

upper case letter ('A' through 'Z').
v The SQLSTATE class (the first two characters) cannot be '00' because it

represents successful completion.

If the SQLSTATE does not conform to these rules, an error occurs.

sqlstate-string-constant
A character string constant with a length of five bytes that is a valid
SQLSTATE value.

2064 SQL Reference

SQL-variable-name or SQL-parameter-name
Specifies an SQL variable or SQL parameter that contains a valid
SQLSTATE value.

SQL-variable-name
Specifies an SQL variable that is declared within the
compound-statement. SQL-variable-name must be defined as a CHAR or
VARCHAR data type, have a length of five bytes, must not be null,
and must contain a valid SQLSTATE value.

SQL-parameter-name
Specifies an SQL parameter that is defined for the procedure and
contains the SQLSTATE value. The SQL parameter must be defined as
a CHAR or VARCHAR value, have a length of five bytes, must not be
null, and must contain a valid SQLSTATE value.

SQL-condition-name
Specifies the name of the condition that will be returned. condition-name must
be declared within the compound-statement.

SET MESSAGE_TEXT
Specifies a string that describes the error or warning. The string is returned in
the SQLERRMC field of the SQLCA or with the GET DIAGNOSTICS
statement.

diagnostic-string-expression
An expression with a data type of CHAR or VARCHAR that returns a
character string of up to 1000 bytes that describes the error or warning
condition. For information on how to obtain the complete message text, see
“GET DIAGNOSTICS” on page 1679.

(diagnostic-string-expression)
An expression with a data type of CHAR or VARCHAR that returns a
character string of up to 1000 bytes that describes the error or warning
condition. For information on how to obtain the complete message text, see
“GET DIAGNOSTICS” on page 1679.

This syntax variation is only provided within the scope of a CREATE
TRIGGER statement for compatibility with previous versions of DB2. To
conform with the ANS and ISO standards, this form should not be used.

Notes

While any valid SQLSTATE value can be used in the SIGNAL statement,
programmers should define new SQLSTATEs based on ranges reserved for
applications. This practice prevents the unintentional use of an SQLSTATE value
that might be defined by the database manager in a future release.

If a SIGNAL statement is issued, the SQLCODE that is returned is based on the
SQLSTATE as follows:
v If the specified SQLSTATE class is either '01' or '02', a warning or not-found

message is returned, and the SQLCODE is set to +438.
v Otherwise, an exception is returned and the SQLCODE is set to -438.

The other fields of the SQLCA are set as follows:
v SQLERRDx fields are set to zero.
v SQLWARNx fields are set to blank.
v SQLERRMC is set to the first 70 bytes of MESSAGE_TEXT.

Appendix. Additional information for DB2 SQL 2065

v SQLERRML is set to the length of SQLERRMC.
v SQLERRP is set to ROUTINE.

When the SQLSTATE or condition indicates that an exception (an SQLSTATE class
other than '01' or '02') is returned, one of the following actions occurs:
v If a handler exists for the specified SQLSTATE, condition, or SQLEXCEPTION,

the exception is handled, and control is transferred to that handler.
v Otherwise, the exception is not handled, and control is immediately returned to

the end of the compound statement.

When the SQLSTATE or condition indicates that a warning (SQLSTATE class '01')
is returned, one of the following actions occurs:
v If an active handler exists for the specified SQLSTATE, condition, or

SQLWARNING, the warning is handled, and control is transferred to that
handler.

v Otherwise, the warning is not handled, and processing continues with the next
statement.

When the SQLSTATE or condition indicates that a not-found condition (SQLSTATE
class '02') is returned, one of the following actions occurs:
v If an active handler exists for the specified SQLSTATE, condition, or not-found

condition, the not-found condition is handled, and control is transferred to that
handler.

v Otherwise, the not-found condition is not handled, and processing continues
with the next statement.

When the SIGNAL statement is issued in a handler, no active handler exists.

Using a SIGNAL statement in the body of a trigger: Within the triggered action of
a CREATE TRIGGER statement, the message text can be specified using only these
variations:
SIGNAL SQLSTATE sqlstate-string-constant

SET MESSAGE_TEXT = diagnostic-string-expression
SIGNAL SQLSTATE sqlstate-string-constant

(diagnostic-string-expression)

Examples

Example 1: The following example shows an SQL procedure for an order system
that signals an application error when a customer number is not known to the
application. The ORDERS table includes a foreign key to the CUSTOMER table,
requiring that the CUSTNO exist before an order can be inserted.
CREATE PROCEDURE SUBMIT_ORDER

(IN ONUM INTEGER, IN CNUM INTEGER,
IN PNUM INTEGER, IN QNUM INTEGER)

LANGUAGE SQL
SPECIFIC SUBMIT_ORDER
MODIFIES SQL DATA
BEGIN

DECLARE EXIT HANDLER FOR SQLSTATE VALUE ’23503’
SIGNAL SQLSTATE ’75002’

SET MESSAGE_TEXT = ’Customer number is not known’;
INSERT INTO ORDERS (ORDERNO, CUSTNO, PARTNO, QUANTITY)

VALUES (ONUM, CNUM, PNUM, QNUM);
END

2066 SQL Reference

Example 2: The following example shows a trigger for an order system that allows
orders to be recorded in an ORDERS table (ORDERNO, CUSTNO, PARTNO,
QUANTITY) only if there is sufficient stock in the PARTS tables. When there is
insufficient stock for an order, SQLSTATE '75001' is returned along with an
appropriate error description.

CREATE TRIGGER CK_AVAIL
NO CASCADE BEFORE INSERT ON ORDERS
REFERENCING NEW AS NEW_ORDER
FOR EACH ROW MODE DB2SQL
WHEN (NEW_ORDER.QUANTITY > (SELECT ON_HAND FROM PARTS

WHERE NEW_ORDER.PARTNO = PARTS.PARTNO))
BEGIN ATOMIC

SIGNAL SQLSTATE ’75001’ (’Insufficient stock for order’);
END

Appendix. Additional information for DB2 SQL 2067

WHILE statement
The WHILE statement repeats the execution of a statement or group of statements
while a specified condition is true.

Syntax

��
(1)

label:

WHILE search-condition DO � SQL-procedure-statement ; END WHILE �

�
label

��

Notes:

1 Only one label: can be specified for each SQL-procedure-statement. If an ending label is specified for
this beginning label, the labels must be the same.

Description

label
Specifies the label for the WHILE statement. If the ending label is specified, it
must be the same as the beginning label.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

search-condition
Specifies a condition that is evaluated before each execution of the loop. If the
condition is true, the SQL procedure statement in the loop is executed.

SQL-procedure-statement
Specifies the statements to be executed in the loop. The statement must be one
of the statements listed under “SQL-procedure-statement” on page 2035.

Examples

Use a WHILE statement to fetch rows from a table while SQL variable at_end,
which indicates whether the end of the table has been reached, is 0.
WHILE at_end = 0 DO
FETCH c1 INTO
v_firstnme, v_midinit,
v_lastname, v_edlevel, v_salary;
IF SQLCODE=100 THEN SET at_end=1;
END IF;
END WHILE

2068 SQL Reference

SQL communication area (SQLCA)
An SQLCA is a structure or collection of variables that is updated after each SQL
statement executes. An application program that contains executable SQL
statements must provide exactly one SQLCA, with a few exceptions.

The following exceptions exist:
v A program that is precompiled with the STDSQL(YES) option must not provide

an SQLCA
v In some cases a Fortran program must provide more than one SQLCA.

In all host languages except REXX, the SQL INCLUDE statement can be used to
provide the declaration of the SQLCA.

In COBOL and assembler:
The name of the storage area must be SQLCA.

In PL/I, and C:
The name of the structure must be SQLCA. Every executable SQL
statement must be within the scope of its declaration.

Unless noted otherwise, C is used to represent C/370™ and C/C++
programming languages.

In Fortran:
The name of the COMMON area for the INTEGER variables of the SQLCA
must be SQLCA1; the name of the COMMON area for the CHARACTER
variables must be SQLCA2. An SQLCA definition is required for every
subprogram that contains SQL statements. One is also needed for the main
program if it contains SQL statements.

In Java:
The DB2Sqlca class, which is an encapsulation of the SQLCA, should be
used.

In REXX:
DB2 generates the SQLCA automatically. A REXX procedure cannot use the
INCLUDE statement. The REXX SQLCA has a somewhat different format
from SQLCAs for the other languages.

Related reference:

DB2Sqlca class (DB2 Application Programming for Java)
“The REXX SQLCA” on page 2077

Appendix. Additional information for DB2 SQL 2069

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_r0021836.htm#imjcc_r0021836

Description of SQLCA fields
For the most part, COBOL, C, PL/I, and assembler use the same names for the
SQLCA fields, and Fortran uses different names. However, there is one instance
where C, PL/I, and assembler names differ from COBOL.

The names in the following table are those provided by the SQL INCLUDE
statement.

Table 163. Fields of SQLCA

assembler,
COBOL, or
PL/I Name

C
Name

Fortran
Name

Data
type Purpose

SQLCAID sqlcaid Not used. CHAR(8) An “eye catcher” for storage dumps, containing
the text 'SQLCA'. The sixth byte is 'L' if line
number information is returned from parsing a
dynamic statement or a native SQL procedure.
The sixth byte is not set when processing an
external SQL procedure.

SQLCABC sqlcabc Not used. INTEGER Contains the length of the SQLCA: 136.

SQLCODE (See
note 1)

SQLCODE SQLCOD INTEGER Contains the SQL return code. (See note 2)

Code Means
0 Successful execution (though there

might have been warning messages).
positive

Successful execution, but with a
warning condition or other
information.

negative
Error condition.

SQLERRML
(See note 3)

sqlerrml
(See note 3)

SQLTXL SMALLINT Length indicator for SQLERRMC, in the range
0 through 70. 0 means that the value of
SQLERRMC is not pertinent.

SQLERRMC
(See note 3)

sqlerrmc
(See note 3)

SQLTXT VARCHAR(70) Contains one or more tokens, separated by
X'FF', that are substituted for variables in the
descriptions of error conditions. It may contain
truncated tokens. A message length of 70 bytes
indicates a possible truncation.

SQLERRP sqlerrp SQLERP CHAR(8) Provides a product signature and, in the case of
an error, diagnostic information such as the
name of the module that detected the error. In
all cases, the first three characters are 'DSN' for
DB2 for z/OS.

SQLERRD(1) sqlerrd[0] SQLERR(1) INTEGER For a sensitive static cursor, contains the
number of rows in a result table when the
cursor position is after the last row (that is,
when SQLCODE is equal to +100).

On successful return from an SQL procedure,
contains the return status value from the SQL
procedure.

SQLERRD(1) can also contain an internal error
code.

2070 SQL Reference

Table 163. Fields of SQLCA (continued)

assembler,
COBOL, or
PL/I Name

C
Name

Fortran
Name

Data
type Purpose

SQLERRD(2) sqlerrd[1] SQLERR(2) INTEGER For a sensitive static cursor, contains the
number of rows in a result table when the
cursor position is after the last row (that is,
when SQLCODE is equal to +100).

SQLERRD(2) can also contain an internal error
code.

Appendix. Additional information for DB2 SQL 2071

Table 163. Fields of SQLCA (continued)

assembler,
COBOL, or
PL/I Name

C
Name

Fortran
Name

Data
type Purpose

SQLERRD(3) sqlerrd[2] SQLERR(3) INTEGER Contains the number of rows that qualified to
be deleted, inserted, or updated after a
DELETE, INSERT, UPDATE, or MERGE
statement. The number excludes rows affected
by triggers, referential integrity constraints, or
inserted rows that are the result of processing a
FOR PORTION OF clause for a
BUSINESS_TIME period. For the OPEN of a
cursor for a SELECT with a data change
statement or for a SELECT INTO, SQLERRD(3)
contains the number of rows affected by the
embedded data change statement. The value is
0 if the SQL statement fails, indicating that all
changes made in executing the statement
canceled.

For a DELETE statement the value will be -1 if
the operation is a mass delete from a table in a
segmented table space and the DELETE
statement did not include selection criteria. If
the delete was against a view, neither the
DELETE statement nor the definition of the
view included selection criteria.

For a TRUNCATE statement, the value will be
-1.

For a PREPARE statement, contains the
estimated number of rows selected. If the
number of rows is greater than 2 147 483 647,
a value of 2 147 483 647 is returned.

For a REFRESH TABLE statement, SQLERRD(3)
contains the number of rows inserted into the
materialized query table.

For a rowset-oriented FETCH, contains the
number of rows fetched.

For SQLCODES -911 and -913, SQLERRD(3)
contains the reason code for the timeout or
deadlock.

When an error is encountered in parsing a
dynamic statement, or when parsing, binding,
or executing a native SQL procedure,
SQLERRD(3) will contain the line number
where the error was encountered. The sixth
byte of SQLCAID must be 'L' for this to be a
valid line number. This value will be
meaningful only if the statement source
contains new line control characters. This
information is not returned for an external SQL
procedure.

2072 SQL Reference

Table 163. Fields of SQLCA (continued)

assembler,
COBOL, or
PL/I Name

C
Name

Fortran
Name

Data
type Purpose

SQLERRD(4) sqlerrd[3] SQLERR(4) INTEGER Generally, contains timerons, a short
floating-point value that indicates a rough
relative estimate of resources required (See note
4). It does not reflect an estimate of the time
required. When preparing a dynamically
defined SQL statement, you can use this field
as an indicator of the relative cost of the
prepared SQL statement. For a particular
statement, this number can vary with changes
to the statistics in the catalog. It is also subject
to change between releases of DB2 for z/OS.

SQLERRD(5) sqlerrd[4] SQLERR(5) INTEGER Contains the position or column of a syntax
error for a PREPARE or EXECUTE
IMMEDIATE statement.

SQLERRD(6) sqlerrd[5] SQLERR(6) INTEGER Contains an internal error code.

SQLWARN0 SQLWARN0 SQLWRN(0) CHAR(1) Contains a blank if no other indicator is set to a
warning condition (that is, no other indicator
contains a W or Z). Contains a W if at least one
other indicator contains a W or Z.

SQLWARN1 SQLWARN1 SQLWRN(1) CHAR(1) Contains a W if the value of a string column
was truncated when assigned to a host
variable. Contains an N for non-scrollable
cursors and S for scrollable cursors after the
OPEN CURSOR or ALLOCATE CURSOR
statement.

SQLWARN2 SQLWARN2 SQLWRN(2) CHAR(1) Contains a W if null values were eliminated
from the argument of an aggregate function;
not necessarily set to W for the MIN function
because its results are not dependent on the
elimination of null values.

SQLWARN3 SQLWARN3 SQLWRN(3) CHAR(1) Contains a W if the number of result columns
is larger than the number of host variables.
Contains a Z if fewer locators were provided in
the ASSOCIATE LOCATORS statement than the
stored procedure returned.

SQLWARN4 SQLWARN4 SQLWRN(4) CHAR(1) Contains a W if a prepared UPDATE or
DELETE statement does not include a WHERE
clause. For a scrollable cursor, contains a D for
sensitive dynamic cursors, I for insensitive
cursors, and S for sensitive static cursors after
the OPEN CURSOR or ALLOCATE CURSOR
statement; blank if cursor is not scrollable.

SQLWARN5 SQLWARN5 SQLWRN(5) CHAR(1) Contains a W if the SQL statement was not
executed because it is not a valid SQL
statement in DB2 for z/OS. Contains a
character value of 1 (read only), 2 (read and
delete), or 4 (read, delete, and update) to reflect
capability of the cursor after the OPEN
CURSOR or ALLOCATE CURSOR statement.

Appendix. Additional information for DB2 SQL 2073

Table 163. Fields of SQLCA (continued)

assembler,
COBOL, or
PL/I Name

C
Name

Fortran
Name

Data
type Purpose

SQLWARN6 SQLWARN6 SQLWRN(6) CHAR(1) Contains a W if the addition of a month or
year duration to a DATE or TIMESTAMP value
results in an invalid day (for example, June 31).
Indicates that the value of the day was changed
to the last day of the month to make the result
valid.

SQLWARN7 SQLWARN7 SQLWRN(7) CHAR(1) Contains a W if one or more nonzero digits
were eliminated from the fractional part of a
number used as the operand of a decimal
multiply or divide operation.

SQLWARN8 SQLWARN8 SQLWRX(1) CHAR(1) Contains a W if a character that could not be
converted was replaced with a substitute
character. Contains a Y if there was an
unsuccessful attempt to establish a trusted
connection.

SQLWARN9 SQLWARN9 SQLWRX(2) CHAR(1) Contains a W if arithmetic exceptions were
ignored during COUNT or COUNT_BIG
processing. Contains a Z if the stored
procedure returned multiple result sets.

SQLWARNA SQLWARNA SQLWRX(3) CHAR(1) Contains a W if at least one character field of
the SQLCA or the SQLDA names or labels is
invalid due to a character conversion error.

SQLSTATE sqlstate SQLSTT CHAR(5) Contains a return code for the outcome of the
most recent execution of an SQL statement (See
note 5).

Notes:

1. With the precompiler option STDSQL(YES) in effect, SQLCODE is replaced by SQLCADE in SQLCA.

2. For the specific meanings of SQL return codes, see DB2 Codes.

3. In COBOL, SQLERRM includes SQLERRML and SQLERRMC. In PL/I and C, the varying-length string
SQLERRM is equivalent to SQLERRML prefixed to SQLERRMC. In assembler, the storage area SQLERRM is
equivalent to SQLERRML and SQLERRMC. See the examples for the various host languages in “The included
SQLCA” on page 2075.

4. The use of timerons may require special handling because they are floating-point values in an INTEGER array. In
PL/I, for example, you could first copy the value into a BIN FIXED(31) based variable that coincides with a BIN
FLOAT(24) variable.

5. For a description of SQLSTATE values, see DB2 Codes.

2074 SQL Reference

The included SQLCA
The description of the SQLCA that is given by INCLUDE SQLCA is shown for
each of the host languages.

assembler:
SQLCA DS 0F
SQLCAID DS CL8 ID
SQLCABC DS F BYTE COUNT
SQLCODE DS F RETURN CODE
SQLERRM DS H,CL70 ERR MSG PARMS
SQLERRP DS CL8 IMPL-DEPENDENT
SQLERRD DS 6F
SQLWARN DS 0C WARNING FLAGS
SQLWARN0 DS C’W’ IF ANY
SQLWARN1 DS C’W’ = WARNING
SQLWARN2 DS C’W’ = WARNING
SQLWARN3 DS C’W’ = WARNING
SQLWARN4 DS C’W’ = WARNING
SQLWARN5 DS C’W’ = WARNING
SQLWARN6 DS C’W’ = WARNING
SQLWARN7 DS C’W’ = WARNING
SQLEXT DS 0CL8
SQLWARN8 DS C
SQLWARN9 DS C
SQLWARNA DS C
SQLSTATE DS CL5

C:
#ifndef SQLCODE
struct sqlca
{

unsigned char sqlcaid[8];
long sqlcabc;
long sqlcode;
short sqlerrml;
unsigned char sqlerrmc[70];
unsigned char sqlerrp[8];
long sqlerrd[6];
unsigned char sqlwarn[11];
unsigned char sqlstate[5];

};
#define SQLCODE sqlca.sqlcode
#define SQLWARN0 sqlca.sqlwarn[0]
#define SQLWARN1 sqlca.sqlwarn[1]
#define SQLWARN2 sqlca.sqlwarn[2]
#define SQLWARN3 sqlca.sqlwarn[3]
#define SQLWARN4 sqlca.sqlwarn[4]
#define SQLWARN5 sqlca.sqlwarn[5]
#define SQLWARN6 sqlca.sqlwarn[6]
#define SQLWARN7 sqlca.sqlwarn[7]
#define SQLWARN8 sqlca.sqlwarn[8]
#define SQLWARN9 sqlca.sqlwarn[9]
#define SQLWARNA sqlca.sqlwarn[10]
#define SQLSTATE sqlca.sqlstate
#endif
struct sqlca sqlca;

COBOL:
01 SQLCA.

05 SQLCAID PIC X(8).
05 SQLCABC PIC S9(9) COMP-5.
05 SQLCODE PIC S9(9) COMP-5.
05 SQLERRM.

49 SQLERRML PIC S9(4) COMP-5.

Appendix. Additional information for DB2 SQL 2075

49 SQLERRMC PIC X(70).
05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES

PIC S9(9) COMP-5.
05 SQLWARN.

10 SQLWARN0 PIC X.
10 SQLWARN1 PIC X.
10 SQLWARN2 PIC X.
10 SQLWARN3 PIC X.
10 SQLWARN4 PIC X.
10 SQLWARN5 PIC X.
10 SQLWARN6 PIC X.
10 SQLWARN7 PIC X.

05 SQLEXT.
10 SQLWARN8 PIC X.
10 SQLWARN9 PIC X.
10 SQLWARNA PIC X.
10 SQLSTATE PIC X(5).

Fortran:
*
* THE SQL COMMUNICATIONS AREA
*

INTEGER SQLCOD,
C SQLERR(6),
C SQLTXL*2
COMMON /SQLCA1/SQLCOD, SQLERR,SQLTXL
CHARACTER SQLERP*8,
C SQLWRN(0:7)*1,
C SQLTXT*70,
C SQLEXT*8,
C SQLWRX(1:3)*1,
C SQLSTT*5
COMMON /SQLCA2/SQLERP,SQLWRN,SQLTXT,SQLWRX,
C SQLSTT
EQUIVALENCE (SQLWRX,SQLEXT)

*

PL/I:
DECLARE

1 SQLCA,
2 SQLCAID CHAR(8),
2 SQLCABC FIXED(31) BINARY,
2 SQLCODE FIXED(31) BINARY,
2 SQLERRM CHAR(70) VAR,
2 SQLERRP CHAR(8),
2 SQLERRD(6) FIXED(31) BINARY,
2 SQLWARN,

3 SQLWARN0 CHAR(1),
3 SQLWARN1 CHAR(1),
3 SQLWARN2 CHAR(1),
3 SQLWARN3 CHAR(1),
3 SQLWARN4 CHAR(1),
3 SQLWARN5 CHAR(1),
3 SQLWARN6 CHAR(1),
3 SQLWARN7 CHAR(1),

2 SQLEXT,
3 SQLWARN8 CHAR(1),
3 SQLWARN9 CHAR(1),
3 SQLWARNA CHAR(1),
3 SQLSTATE CHAR(5);

2076 SQL Reference

The REXX SQLCA
The REXX SQLCA consists of a set of variables, rather than a structure. DB2 makes
the SQLCA available to your application automatically.

The following table lists the variables in a REXX SQLCA.

Table 164. Variables in a REXX SQLCA

Variable Contents

SQLCODE Contains the SQL return code.

SQLERRMC Contains one or more tokens, separated by X'FF', that are substituted for variables in
the descriptions of error conditions. It might contain truncated tokens. A message
length of 70 bytes indicates a possible truncation.

SQLERRP Provides a product signature and, in the case of an error, diagnostic information such
as the name of the module that detected the error. For DB2 for z/OS, the product
signature is 'DSN'.

SQLERRD.1 For a sensitive static cursor, contains the number of rows in a result table when the
cursor position is after the last row (that is, when SQLCODE is equal to +100).

SQLERRD(1) can also contain an internal error code.

SQLERRD.2 For a sensitive static cursor, contains the number of rows in a result table when the
cursor position is after the last row (that is, when SQLCODE is equal to +100).

SQLERRD(2) can also contain an internal error code.

SQLERRD.3 Contains the number of rows that qualified for the operation after an SQL data change
statement (but not rows deleted as a result of CASCADE delete). For the OPEN of a
cursor for a SELECT with an SQL data change statement or for a SELECT INTO,
SQLERRD(3) contains the number of rows affected by the embedded data change
statement. Set to 0 if the SQL statement fails, indicating that all changes made in
executing the statement were canceled. Set to -1 for a mass delete from a table in a
segmented table space, for a truncate operation, or a delete from a view when neither
the DELETE statement nor the definition of the view included selection criteria.

For rowset-oriented FETCH statements, contains the number of rows returned in the
rowset.

For SQLCODES -911 and -913, SQLERRD(3) contains the reason code for the timeout
or deadlock.

After successful execution of the REFRESH TABLE statement, SQLERRD(3) contains
the number of rows inserted into the materialized query table.

When an error is encountered in parsing a dynamic statement, or when parsing,
binding, or executing a native SQL procedure, SQLERRD(3) will contain the line
number where the error was encountered. The sixth byte of SQLCAID must be 'L' for
this to be a valid line number. This value will be meaningful only if the statement
source contains new line control characters. This information is not returned for an
external SQL procedure.

SQLERRD.4 Generally, contains timerons, a short floating-point value that indicates a rough relative
estimate of resources required. This value does not reflect an estimate of the time
required to execute the SQL statement. After you prepare an SQL statement, you can
use this field as an indicator of the relative cost of the prepared SQL statement. For a
particular statement, this number can vary with changes to the statistics in the catalog.
This value is subject to change between releases of DB2 for z/OS.

SQLERRD.5 Contains the position or column of a syntax error for a PREPARE or EXECUTE
IMMEDIATE statement.

SQLERRD.6 Contains an internal error code.

Appendix. Additional information for DB2 SQL 2077

Table 164. Variables in a REXX SQLCA (continued)

Variable Contents

SQLWARN.0 Contains a blank if no other indicator is set to a warning condition (that is, no other
indicator contains a W or Z). Contains a W if at least one other indicator contains a W
or Z.

SQLWARN.1 Contains a W if the value of a string column was truncated when assigned to a host
variable. Contains an N for non-scrollable cursors and S for scrollable cursors after the
OPEN CURSOR or ALLOCATE CURSOR statement.

SQLWARN.2 Contains a W if null values were eliminated from the argument of an aggregate
function; not necessarily set to W for the MIN function because its results are not
dependent on the elimination of null values.

SQLWARN.3 Contains a W if the number of result columns is larger than the number of host
variables. Contains Z if the ASSOCIATE LOCATORS statement contains fewer locators
than the stored procedure returned.

SQLWARN.4 Contains a W if a prepared UPDATE or DELETE statement does not include a WHERE
clause. For a scrollable cursor, contains a D for sensitive dynamic cursors, I for
insensitive cursors, and S for sensitive static cursors after the OPEN CURSOR or
ALLOCATE CURSOR statement; otherwise, blank if cursor is not scrollable.

SQLWARN.5 Contains a W if the SQL statement was not executed because it is not a valid SQL
statement in DB2 for z/OS. Contains a character value of 1 (read only), 2 (read and
delete), or 4 (read, delete, and update) to reflect capability of the cursor after the
OPEN CURSOR or ALLOCATE CURSOR statement.

SQLWARN.6 Contains a W if the addition of a month or year duration to a DATE or TIMESTAMP
value results in an invalid day (for example, June 31). Indicates that the value of the
day was changed to the last day of the month to make the result valid.

SQLWARN.7 Contains a W if one or more nonzero digits were eliminated from the fractional part of
a number that was used as the operand of a decimal multiply or divide operation.

SQLWARN.8 Contains a W if a character that could not be converted was replaced with a substitute
character.

SQLWARN.9 Contains a W if arithmetic exceptions were ignored during COUNT or COUNT_BIG
processing. Contains a Z if the stored procedure returned multiple result sets.

SQLWARN.10 Contains a W if at least one character field of the SQLCA is invalid due to a character
conversion error.

SQLSTATE Contains a return code for the outcome of the most recent execution of an SQL
statement.

2078 SQL Reference

SQL descriptor area (SQLDA)
An SQLDA is a collection of variables that is required for execution of the SQL
DESCRIBE statement, and can be optionally used by the PREPARE, OPEN,
FETCH, EXECUTE, and CALL statements. An SQLDA can be used in a DESCRIBE
or PREPARE INTO statement, modified with the addresses of host variables, and
then reused in a FETCH statement.

The meaning of the information in an SQLDA depends on the context in which it
is used. For DESCRIBE and PREPARE INTO, DB2 sets the fields in the SQLDA to
provide information to the application program. For OPEN, EXECUTE, FETCH,
and CALL, the application program sets the fields in the SQLDA to provide DB2
with information:

DESCRIBE statement-name or PREPARE INTO
With the exception of SQLN, DB2 sets fields of the SQLDA to provide
information to an application program about a prepared statement. Each
SQLVAR occurrence describes a column of the result table.

DESCRIBE TABLE
With the exception of SQLN, DB2 sets fields of the SQLDA to provide
information to an application program about the columns of a table or
view. Each SQLVAR occurrence describes a column of the specified table or
view.

DESCRIBE CURSOR
With the exception of SQLN, DB2 sets fields of the SQLDA to provide
information to an application program about the result set that is
associated with the specified cursor. Each SQLVAR occurrence describes a
column of the result set.

DESCRIBE INPUT
With the exception of SQLN, DB2 sets fields of the SQLDA to provide
information to an application program about the input parameter markers
of a prepared statement. Each SQLVAR occurrence describes an input
parameter marker.

DESCRIBE PROCEDURE
With the exception of SQLN, DB2 sets fields of the SQLDA to provide
information to an application program about the result sets returned by the
specified stored procedure. Each SQLVAR occurrence describes a returned
result set.

OPEN, EXECUTE, FETCH, and CALL
The application program sets fields of the SQLDA to provide information
about host variables or output buffers in the application program to DB2.
Each SQLVAR occurrence describes a host variable or output buffer.
v For OPEN and EXECUTE, each SQLVAR occurrence describes an input

value that is substituted for a parameter marker in the associated SQL
statement that was previously prepared.

v For FETCH, each SQLVAR occurrence describes a host variable or buffer
in the application program that is to be used to contain an output value
from a row of the result.

v For CALL, each SQLVAR occurrence describes a host variable that
corresponds to a parameter in the parameter list for the stored
procedure.

Appendix. Additional information for DB2 SQL 2079

For information on the way to use the SQLDA, see DB2 Application Programming
and SQL Guide.

2080 SQL Reference

Description of SQLDA fields
An SQLDA consists of four variables, a header, and an arbitrary number of
occurrences of a sequence of variables collectively named SQLVAR.

In DESCRIBE and PREPARE INTO, each occurrence of the SQLVAR describes the
column of a table. In FETCH, OPEN, EXECUTE, and CALL, each occurrence
describes a host variable.

The order of the SQLVAR entries matches the order of the columns in the table or
the order of the parameter markers in the SQL statement.

The SQLDA Header
The fields in the SQLDA header have different usage depending on whether the
SQLDA is being used in a DESCRIBE or PREPARE INTO statement or the SQLDA
is being used in a FETCH, INSERT, OPEN, EXECUTE, or CALL statement.

The following table describes the fields in the SQLDA header.

Table 165. Fields of the SQLDA header

C name
assembler,
COBOL or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH,INSERT, OPEN,
EXECUTE, and CALL

sqldaid
SQLDAID

CHAR(8) An “eye catcher” for storage dumps,
containing the text 'SQLDA '.

The 7th byte of the field is a flag that
can be used to determine if more
than one SQLVAR entry is needed
for each column. For details, see
“Determining how many SQLVAR
occurrences are needed” on page
2084.

For DESCRIBE CURSOR, the field is
set to 'SQLRS'. If the cursor is
declared WITH HOLD in a stored
procedure, the high-order bit of the
8th byte is set to 1.

For DESCRIBE PROCEDURE, it is
set to 'SQLPR'.

A plus sign (+) in the 6th byte
indicates that SQLNAME contains an
overriding CCSID.

A '2' in the 7th byte indicates the two
SQLVAR entries were allocated for
each column or parameter.

A '3' in the 7th byte indicates that
three SQLVAR entries were allocated
for each column or parameter.
Although three entries are never
needed on input to DB2, an SQLDA
with three entries might be used
when the SQLDA was initialized by
a DESCRIBE or PREPARE INTO
with a USING BOTH clause.

Otherwise, SQLDAID is not used.

sqldabc
SQLDABC

INTEGER Length of the SQLDA, equal to SQLNx
* 44+16.

Length of the SQLDA, greater than
or equal to SQLNx * 44+16.

Appendix. Additional information for DB2 SQL 2081

Table 165. Fields of the SQLDA header (continued)

C name
assembler,
COBOL or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH,INSERT, OPEN,
EXECUTE, and CALL

sqln
SQLN

SMALLINT Unchanged by DB2. The field must
be set to a value greater than or
equal to zero before the statement is
executed. The field indicates the total
number of occurrences of SQLVAR.
At the very least, the number should
be:

v For DESCRIBE INPUT, the
number of parameter markers to
be described.

v For other DESCRIBEs or PREPARE
INTO: the number of columns of
the result, or a multiple of the
columns of the result when there
are multiple sets of SQLVAR
entries because column labels are
returned in addition to column
names.

Total number of occurrences of
SQLVAR provided in the SQLDA.
SQLN must be set to a value greater
than or equal to zero.

sqld
SQLD

SMALLINT The number of columns described by
occurrences of SQLVAR. Double that
number if USING BOTH appears in
the DESCRIBE or PREPARE INTO
statement. Contains a 0 if the
statement string is not a query.

For DESCRIBE PROCEDURE, the
number of result sets returned by the
stored procedure. Contains a 0 if no
result sets are returned.

The number of host variables
described by occurrences of
SQLVAR.

Note:

1. The third column of this table represents several forms of the DESCRIBE statement:

v For DESCRIBE output and PREPARE INTO, the column pertains to columns of the result table.

v For DESCRIBE CURSOR, the column pertains to a result set associated with a cursor.

v For DESCRIBE INPUT, the column pertains to parameter markers.

v For DESCRIBE PROCEDURE, the column pertains to the result sets returned by the stored procedure.

SQLVAR entries
For each column or host variable described by the SQLDA, there are both base
SQLVAR entries and extended SQLVAR entries.

Base SQLVAR entry
The base SQLVAR entry is always present. The fields of this entry contain
the base information about the column or host variable such as data type
code, length attribute (except for LOBs), column name (or label), host
variable address, and indicator variable address.

Extended SQLVAR entry
The extended SQLVAR entry is needed (for each column) if the result

2082 SQL Reference

includes any LOB or distinct type38 columns. For distinct types, the
extended SQLVAR contains the distinct type name. For LOBs, the extended
SQLVAR contains the length attribute of the host variable and a pointer to
the buffer that contains the actual length. If locators are used to represent
LOBs, an extended SQLVAR is not necessary.

The extended SQLVAR entry is also needed for each column when the
USING BOTH clause was specified, which indicates that both columns
names and labels are returned. (DESCRIBE output is the only statement
with the USING BOTH clause).

The fields in the extended SQLVAR that return LOB and distinct type
information do not overlap, and the fields that return LOB and label
information do not overlap. Depending on the combination of labels, LOBs
and distinct types, more than one extended SQLVAR entry per column
may be required to return the information. See “Determining how many
SQLVAR occurrences are needed” on page 2084.

The following table shows how to map the base and extended SQLVAR entries. For
an SQLDA that contains both base and extended SQLVAR entries, the base
SQLVAR entries are in the first block, followed by a block of extended SQLVAR
entries, which if necessary, are followed by a second block of extended SQLVAR
entries. In each block, the number of occurrences of the SQLVAR entry is equal to
the value in SQLD39 even though many of the extended SQLVAR entries might be
unused.

Table 166. Contents of SQLVAR arrays

LOBs
Distinct
types1

7th byte of
SQLDAID SQLD

Minimum
for SQLN2

Set of SQLVAR entries

First set
(Base)

Second set
(Extended)

Third set
(Extended)

USING BOTH clause not specified:

No No Space n n Column names,
labels

Not Used Not Used

Yes3 Yes3 2 n 2n Column names,
labels

LOBs,
distinct types,
or both

Not used

USING BOTH clause was specified:

No No Space 2n 2n Column names Labels Not used

Yes No 2 n 2n Column names LOBs and labels Not used

No Yes 3 n 3n Column names Distinct types Labels

Yes Yes 3 n 3n Column names LOBs and
distinct types

Labels

38. DESCRIBE INPUT does not return information about distinct types.

39. When an extended SQLVAR entry is present for each column for labels (and there are no LOB or distinct type columns in the
result),

Appendix. Additional information for DB2 SQL 2083

Table 166. Contents of SQLVAR arrays (continued)

LOBs
Distinct
types1

7th byte of
SQLDAID SQLD

Minimum
for SQLN2

Set of SQLVAR entries

First set
(Base)

Second set
(Extended)

Third set
(Extended)

Notes:

1. DESCRIBE INPUT does not return information about distinct types.

2. The number of columns or host variables that the SQLDA describes.

3. Either LOBs, distinct types, or both are present.

4. Here, the 7th byte is set to a space and SQLD is set to two times the number of columns in the result. For all
other values of the 7th byte for USING BOTH, SQLD is set to the number of columns in the result, and the 7th
byte can be used to determine how many SQLVAR entries are needed for each column of the result.

Determining how many SQLVAR occurrences are needed:

The number of SQLVAR occurrences needed depends on the statement that the
SQLDA was provided for and the data types of the columns or parameters being
described.

If the USING BOTH clause was not specified for the statement and neither LOBs
nor distinct types are present in the result, only one SQLVAR entry (a base entry)
is needed for each column. The 7th byte of SQLDAID is set to a space. The SQLD
is set to the number of columns in the result and represents the number of
SQLVAR occurrences needed. If an insufficient number of SQLVAR occurrences
were provided, DB2 returns a +236 warning in SQLCODE if the standards option
was set. Otherwise, SQLCODE is zero.

If USING BOTH is specified and neither LOBs nor distinct types are present in the
result, an extended SQLVAR entry per column is needed for the labels in addition
to the base SQLVAR entry. The 7th byte of the SQLDAID is set to space. SQLD is
set to the twice the number of columns in the result and represents the combined
number of base and extended SQLVAR occurrences needed.

If LOBs, distinct types, or both are present in the results, one extended SQLVAR
entry is needed per column in addition to the base SQLVAR entry with one
exception. The exception is that when the USING BOTH clause is specified and
distinct types are present in the results, two extended SQLVAR entries per column
are needed. When a sufficient number of SQLVAR entries are provided in the
SQLDA for both the base and extended SQLVARs, information for the LOBs and
distinct types is returned. The 7th byte of SQLDAID is set to the number of
SQLVAR entries that were used for each column:
2 Two SQLVAR entries per column (a base and an extended)
3 Three SQLVAR entries per column (a base and two extended)

SQLD is set to the number of columns in the result. Therefore, the value of the 7th
byte of SQLDAID multiplied by the value of SQLD is the total number SQLVAR
entries that were provided.

Otherwise, when an insufficient number of SQLVAR entries have been provided
when LOBs or distinct types are present, DB2 indicates that by returning one of the
following warnings in SQLCODE. DB2 also sets the 7th byte of SQLDAID to
indicate how many SQLVAR entries are needed for each column of the result.

+237 There are insufficient SQLVAR entries to describe the data, and the data

2084 SQL Reference

includes distinct types. In this case, there were enough base SQLVAR
entries to describe the data, so the base SQLVAR entries are set. However,
sufficient extended SQLVAR entries were not provided so the distinct type
names are not returned.

+238 There are insufficient SQLVAR entries to describe the data, and the data
includes LOBs. In this case no information is returned in the SQLVAR
entries.

+239 There are insufficient SQLVAR entries to describe the data, and the data
includes distinct types. There weren't even enough base SQLVAR entries.
In this case no information is returned in the SQLVAR entries.

Field descriptions of an occurrence of a base SQLVAR:

The fields of a base SQLVAR have different uses depending on the SQL statement.

The following table describes the contents of the fields of a base SQLVAR.

Table 167. Fields in an occurrence of a base SQLVAR

C name
assembler
COBOL, or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqltype
SQLTYPE

SMALLINT Indicates the data type of the column
or parameter and whether it can
contain null values. For a description
of the type codes, see Table 169 on
page 2090.

For a distinct type, the data type on
which the distinct type was based is
placed in this field. The base
SQLVAR provides no indication that
this is part of the description of a
distinct type.

For VARCHAR columns defined
with CCSID 1208 in an EBCDIC
table, SQLTYPE reflects VARCHAR,
even though the column is recorded
in the catalog as VARBINARY with
CCSID 1208.

For VARGRAPHIC columns defined
with CCSID 1200 in an EBCDIC
table, SQLTYPE reflects
VARGRAPHIC, even though the
column is recorded in the catalog as
VARBINARY with CCSID 1200.

Indicates the data type of the host
variable and whether an indicator
variable is provided. Host variables
for datetime values must be
character string variables. For
FETCH, a datetime type code means
a fixed-length character string. For a
description of the type codes, see
“SQLTYPE and SQLLEN” on page
2090.

Appendix. Additional information for DB2 SQL 2085

|
|
|
|
|
|

|
|
|
|
|
|

Table 167. Fields in an occurrence of a base SQLVAR (continued)

C name
assembler
COBOL, or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqllen
SQLLEN

SMALLINT The length attribute of the column or
parameter. For datetime data, the
length of the string representation of
the value. See “SQLTYPE and
SQLLEN” on page 2090 for a
description of allowable values.

For LOBs, the value is 0 regardless
of the length attribute of the LOB.
For XML, the value is 0. Field
SQLLONGLEN in the extended
SQLVAR contains the length
attribute.

The length attribute of the host
variable. See “SQLTYPE and
SQLLEN” on page 2090 for a
description of allowable values.

For LOBs, the value is 0 regardless
of the length attribute of the LOB.
Field SQLLONGLEN in the extended
SQLVAR contains the length
attribute.

For XML AS BLOB, CLOB, or
DBCLOB, sqllen is 0 as for LOB
types.

sqldata
SQLDATA

pointer For string columns or parameters,
SQLDATA contains X’0000zzzz’,
where zzzz is the associated CCSID.
For character strings, SQLDATA can
alternatively contain X'FFFF', which
indicates bit data. Not used for other
types of data.

For datetime columns, SQLDATA can
contain the CCSID of the string
representation of the datetime value.

For DESCRIBE PROCEDURE, the
result set locator value associated
with the result set.

For VARCHAR columns defined
with CCSID 1208 in an EBCDIC table
SQLDATA contains 1208, even
though the column might be
recorded in the catalog as
VARBINARY with CCSID 1208.

For VARGRAPHIC columns defined
with CCSID 1200 in an EBCDIC table
SQLTYPE contains 1200, even though
the column might be recorded in the
catalog as VARBINARY with CCSID
1200.

Contains the address of the host
variable.

sqlind
SQLIND

pointer Reserved

For DESCRIBE PROCEDURE, it is
set to -1.

Contains the address of an associated
indicator variable, if SQLTYPE is
odd. Otherwise, the field is not used.

2086 SQL Reference

|
|
|
|
|
|

|
|
|
|
|
|

Table 167. Fields in an occurrence of a base SQLVAR (continued)

C name
assembler
COBOL, or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqlname
SQLNAME

VARCHAR(30) Contains the unqualified name or
label of the column, or a string of
length zero if the name or label does
not exist. If the name is longer than
30 bytes, it is truncated at a byte
boundary. For more information
about column names, see Names of
result columns.

For DESCRIBE PROCEDURE,
SQLNAME contains the cursor name
used by the stored procedure to
return the result set. The values for
SQLNAME appear in the order the
cursors were opened by the stored
procedure.

For DESCRIBE INPUT, SQLNAME is
not used.

Can contain CCSID and/or
host-variable-array dimension
information. DB2 interprets the third
and fourth byte of the data portion
of SQLNAME as the CCSID of the
host variable if all of the following
are true and the third and fourth
byte are not X'0000':

v The 6th byte of SQLDAID is '+'
(x'4E')

v SQLTYPE indicates the host
variable is a string variable

v The length of SQLNAME is 8

v The first two bytes of the data
portion of SQLNAME are X'0000'.

If the third and fourth byte of the
data portion of SQLNAME are
X'0000', DB2 uses the appropriate
default CCSID.

For FETCH, OPEN, INSERT, and
EXECUTE, if the length of
SQLNAME is 8, and the first two
bytes of the data portion of
SQLNAME are X'0000', DB2
interprets the fifth through eighth
bytes of the data portion of the
SQLNAME field as follows:

Appendix. Additional information for DB2 SQL 2087

Table 167. Fields in an occurrence of a base SQLVAR (continued)

C name
assembler
COBOL, or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

(cont.)
sqlname
SQLNAME

v fifth and sixth bytes: a flag field
that indicates the type of host
variable that is being described by
the current SQLDA entry. The
values of this field are as follows:

– X'0000' - host variable

– X'0100' - XML host variable (
XML AS BLOB, XML AS CLOB,
XML AS DBCLOB)

– X'0001' - host variable array

– X'0101' - XML host variable
array

– X'0002' - special host variable
that represents the value for 'n'
in a multiple-row INSERT
statement.

v seventh and eighth bytes: if the
sixth byte is X'01', a binary small
integer (halfword) that represents
the dimension of the
host-variable-array, and the
corresponding indicator-array if
one is specified.

Notes:

1. The third column of this table represents several forms of the DESCRIBE statement.

v For DESCRIBE output and PREPARE INTO, the column pertains to columns of the result table.

v For DESCRIBE CURSOR, the column pertains to a result set associated with a cursor.

v For DESCRIBE INPUT, the column pertains to parameter markers.

v For DESCRIBE PROCEDURE, the column pertains to the result sets returned by the stored procedure.

Field descriptions of an occurrence of an extended SQLVAR:

The fields of an extended SQLVAR have different uses depending on the SQL
statement.

The following table describes the contents of the fields of an extended SQLVAR
entry.

2088 SQL Reference

Table 168. Fields in an occurrence of an extended SQLVAR

C name
assembler,
COBOL, or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

len.sqllonglen
SQLLONGL
SQLLONGLEN

INTEGER The length attribute of a LOB (BLOB,
CLOB, or DBCLOB) column.

The length attribute of a LOB (BLOB,
CLOB, or DBCLOB) host variable.
DB2 ignores the SQLLEN field in the
base SQLVAR for these data types.
The length attribute indicates the
number of bytes for a BLOB or
CLOB, and the number of characters
for a DBCLOB.

* INTEGER Reserved. Reserved.

sqldatalen
SQLDATAL
SQLDATALEN

pointer Not used. Used only for LOB (BLOB, CLOB,
and DBCLOB) host variables.

If the value of the field is null, the
actual length of the LOB is stored in
the 4 bytes immediately before the
start of the data, and SQLDATA
points to the first byte of the field
length. The actual length indicates
the number of bytes for a BLOB or
CLOB, and the number of characters
for a DBCLOB.

If the value of the field is not null,
the field contains a pointer to a
4-byte long buffer that contains the
actual length in bytes (even for
DBCLOBs) of the data in the buffer
pointed to from the SQLDATA field
in the matching base SQLVAR.

Regardless of whether this field is
used, field SQLLONGLEN must be
set.

Appendix. Additional information for DB2 SQL 2089

Table 168. Fields in an occurrence of an extended SQLVAR (continued)

C name
assembler,
COBOL, or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqldatatype_name
SQLTNAME
SQLDATATYPE-
NAME

VARCHAR(30) A SQLTNAME field of the extended
SQLVAR is set to one of the
following:

v For a distinct type column, the
database manager sets this field to
the fully qualified distinct type
name. If the qualified name is
longer than 30 bytes, it is
truncated.

v For a label, the database manager
sets this field to label.

In the case that both a distinct type
name and a label need to be
returned in extended SQLVAR
entries (USING BOTH has been
specified), the distinct type name is
returned in the first extended
SQLVAR entry and the label in the
second extended SQLVAR entry.

Not used.

Note:

1. The third column of this table represents several forms of the DESCRIBE statement.

v For DESCRIBE output and PREPARE INTO, the column pertains to columns of the result table.

v For DESCRIBE CURSOR, the column pertains to a result set associated with a cursor.

v For DESCRIBE INPUT, the column pertains to parameter markers.

v For DESCRIBE PROCEDURE, the column pertains to the result sets returned by the stored procedure.

SQLTYPE and SQLLEN:

The contents of the SQLTYPE and SQLLEN fields of the SQLDA depends on the
SQL statement that is returning the value.

The following table shows the values that can appear in the SQLTYPE and
SQLLEN fields of the SQLDA. In DESCRIBE and PREPARE INTO, an even value
of SQLTYPE means the column does not allow nulls, and an odd value means the
column does allow nulls. In DESCRIBE INPUT statements, only odd values are
returned for SQLTYPE. In FETCH, OPEN, EXECUTE, and CALL, an even value of
SQLTYPE means no indicator variable is provided, and an odd value means that
SQLIND contains the address of an indicator variable.

Table 169. SQLTYPE and SQLLEN values for DESCRIBE, PREPARE INTO, FETCH, OPEN, EXECUTE, and CALL

SQLTYPE

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and CALL

Column or parameter
data type SQLLEN Host variable data type SQLLEN

384/385 date 10 1 fixed-length character
string representation of a
date

length attribute of the
host variable

2090 SQL Reference

Table 169. SQLTYPE and SQLLEN values for DESCRIBE, PREPARE INTO, FETCH, OPEN, EXECUTE, and
CALL (continued)

SQLTYPE

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and CALL

Column or parameter
data type SQLLEN Host variable data type SQLLEN

388/389 time 8 2 fixed-length character
string representation of a
time

length attribute of the
host variable

392/393 timestamp without
time zone

19 for TIMESTAMP(0)
otherwise 20+p for
TIMESTAMP(p) 5

fixed-length character
string representation of a
timestamp

length attribute of the
host variable

400/401 N/A N/A NUL-terminated graphic
string

length attribute of the
host variable

404/405 BLOB 0 3 BLOB or XML AS BLOB Not used. 3

408/409 CLOB 0 3 CLOB or XML AS CLOB Not used. 3

412/413 DBCLOB 0 3 DBCLOB or XML AS
DBCLOB

Not used. 3

448/449 varying-length
character string

length attribute of the
column

varying-length character
string

length attribute of the
host variable

452/453 fixed-length character
string

length attribute of the
column

fixed-length character
string

length attribute of the
host variable

456/457 long varying-length
character string

SQLTYPE values
448/449 are returned
instead of 456/457 for
statements that are
bound in Version 9 or
later.

length attribute of the
column

long varying-length
character string

length attribute of the
host variable

460/461 N/A N/A NUL-terminated
character string

length attribute of the
host variable

464/465 varying-length graphic
string

length attribute of the
column

varying-length graphic
string

length attribute of the
host variable

468/469 fixed-length graphic
string

length attribute of the
column

fixed-length graphic
string

length attribute of the
host variable

472/473 long graphic string

SQLTYPE values
464/465 are returned
instead of 472/473 for
statements that are
bound in Version 9 or
later.

length attribute of the
column

long graphic string length attribute of the
host variable

480/481 floating point
4 for single precision,
8 for double precision

floating point
4 for single precision,
8 for double precision

484/485 packed decimal precision in byte 1;
scale in byte 2

packed decimal precision in byte 1;
scale in byte 2

492/493 big integer4 8 big integer 8

496/497 large integer 4 large integer 4

500/501 small integer 2 small integer 2

Appendix. Additional information for DB2 SQL 2091

Table 169. SQLTYPE and SQLLEN values for DESCRIBE, PREPARE INTO, FETCH, OPEN, EXECUTE, and
CALL (continued)

SQLTYPE

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and CALL

Column or parameter
data type SQLLEN Host variable data type SQLLEN

504/505 N/A N/A
DISPLAY SIGN

LEADING SEPARATE,
NATIONAL SIGN

LEADING SEPARATE

precision in byte 1;
scale in byte 2

904/905 ROWID 40 ROWID 40

908/909 varying-length binary
string

length attribute of the
column

varying-length binary
string

length attribute of the
host variable

912/913 fixed-length binary
string

length attribute of the
column

fixed-length binary string length attribute of the
host variable

916/917 BLOB_FILE 267

920/921 CLOB_FILE 267

924/925 DBCLOB_FILE 267

960/961 BLOB locator 4 BLOB_LOCATOR 4

964/965 CLOB locator 4 CLOB_LOCATOR 4

968/969 DBCLOB locator 4 DBCLOB_LOCATOR 4

988/989 XML 0 Invalid. Instead, use one
of the following: XML
AS BLOB, XML AS
CLOB, XML AS DBCLOB

Not used

996/997 DECFLOAT(16)
DECFLOAT(34)

8
16

DECFLOAT(16)
DECFLOAT(34)

8
16

2448/2449 timestamp with time
zone

147 for
TIMESTAMP(0) WITH
TIME ZONE otherwise
148+p for
TIMESTAMP(p) WITH
TIME ZONE 5

varying-length character
string representation of a
timestamp with time
zone

length attribute of the
host variable

Note:

1. SQLLEN might be different if a date installation exit is specified.

2. SQLLEN might be different if a time installation exit is specified.

3. Field SQLLONGLEN in the extended SQLVAR contains the length attribute of the column.

4. BIGINT is supported by other DB2 platforms.

5. p is the timestamp precision.

SQLDATA:

Depending on the data type of the string column that the SQLVAR is describing,
the SQLDATA field can contain different CCSID values.

The following table identifies the CCSID values that appear in the SQLDATA field
when the SQLVAR element describes a string column.

2092 SQL Reference

Table 170. CCSID values for SQLDATA

Data type Subtype Bytes 1 and 2 Bytes 3 and 4

Character SBCS data X'0000' CCSID

Character mixed data X'0000' CCSID

Character BIT data X'0000' X'FFFF'

Graphic N/A X'0000' CCSID

Any other data type N/A N/A N/A

Appendix. Additional information for DB2 SQL 2093

Unrecognized and unsupported SQLTYPES
The values that appear in the SQLTYPE field of the SQLDA are dependent on the
level of data type support available at the sender as well as at the receiver of the
data. This support is particularly important as new data types are added to the
product.

New data types might not be supported by the sender or receiver of the data and
might not be recognized by the sender or receiver of the data. Depending on the
situation, the new data type might be returned, a compatible data type that is
agreed to by both the sender and the receiver of the data might be returned, or an
error might occur.

When the sender and receiver agree to use a compatible data type, the following
table indicates the mapping that takes place. This mapping takes place when at
least one of the sender or receiver does not support the data type provided. The
unsupported data type can be provided by either the application or the database
manager.

Table 171. Compatible data types for unsupported data types

Data type Compatible data type

ROWID VARCHAR(40) FOR BIT DATA

No indication is given in the SQLDA that the data type is substituted.

2094 SQL Reference

The included SQLDA
Only assembler, C, C++, COBOL, and PL/I C are supported for the SQLDA that is
given by INCLUDE SQLDA.

assembler:
SQLTRIPL EQU C’3’
SQLDOUBL EQU C’2’
SQLSINGL EQU C’ ’
*

SQLSECT SAVE
*
SQLDA DSECT
SQLDAID DS CL8 ID
SQLDABC DS F BYTE COUNT
SQLN DS H COUNT SQLVAR/SQLVAR2 ENTRIES
SQLD DS H COUNT VARS (TWICE IF USING BOTH)
*
SQLVAR DS 0F BEGIN VARS
SQLVARN DSECT , NTH VARIABLE
SQLTYPE DS H DATA TYPE CODE
SQLLEN DS 0H LENGTH
SQLPRCSN DS X DEC PRECISION
SQLSCALE DS X DEC SCALE
SQLDATA DS A ADDR OF VAR
SQLIND DS A ADDR OF IND
SQLNAME DS H,CL30 DESCRIBE NAME
SQLVSIZ EQU *-SQLDATA
SQLSIZV EQU *-SQLVARN
*
SQLDA DSECT
SQLVAR2 DS 0F BEGIN EXTENDED FIELDS OF VARS
SQLVAR2N DSECT , EXTENDED FIELDS OF NTH VARIABLE
SQLLONGL DS F LENGTH
SQLRSVDL DS F RESERVED
SQLDATAL DS A ADDR OF LENGTH IN BYTES
SQLTNAME DS H,CL30 DESCRIBE NAME
*

SQLSECT RESTORE

In the above declaration, SQLSECT SAVE is a macro invocation that remembers the
current CSECT name. SQLSECT RESTORE is a macro invocation that continues
that CSECT.

C and C++:
#ifndef SQLDASIZE /* Permit duplicate Includes */
/**/
struct sqlvar

{ short sqltype;
short sqllen;
char *sqldata;
short *sqlind;
struct sqlname

{ short length;
char data[30];

} sqlname;
};

/**/
struct sqlvar2

{ struct
{ long sqllonglen;

unsigned long reserved;
} len;

char *sqldatalen;
struct sqldistinct_type

Appendix. Additional information for DB2 SQL 2095

{ short length;
char data[30];

} sqldatatype_name;
};

/**/
struct sqlda

{ char sqldaid[8];
long sqldabc;
short sqln;
short sqld;
struct sqlvar sqlvar[1];

};
/**/
/***/
/* Macros for using the sqlvar2 fields. */
/***/
/**/
/***/
/* ’2’ in the 7th byte of sqldaid indicates a doubled number of */
/* sqlvar entries. */
/* ’3’ in the 7th byte of sqldaid indicates a tripled number of */
/* sqlvar entries. */
/***/
#define SQLDOUBLED ’2’
#define SQLTRIPLED ’3’
#define SQLSINGLED ’ ’
/**/

/***/
/* GETSQLDOUBLED(daptr) returns 1 if the SQLDA pointed to by */
/* daptr has been doubled, or 0 if it has not been doubled. */
/***/
#define GETSQLDOUBLED(daptr) \

(((daptr)->sqldaid[6] == (char) SQLDOUBLED) ? \
(1) : \
(0))

/**/
/***/
/* GETSQLTRIPLED(daptr) returns 1 if the SQLDA pointed to by */
/* daptr has been tripled, or 0 if it has not been tripled. */
/***/
#define GETSQLTRIPLED(daptr) \

(((daptr)->sqldaid[6] == (char) SQLTRIPLED) ? \
(1) : \
(0))

/**/
/***/
/* SETSQLDOUBLED(daptr, SQLDOUBLED) sets the 7th byte of sqldaid */
/* to ’2’. */
/* SETSQLDOUBLED(daptr, SQLSINGLED) sets the 7th byte of sqldaid */
/* to be a ’ ’. */
/***/
#define SETSQLDOUBLED(daptr, newvalue) \

(((daptr)->sqldaid[6] = (newvalue)))
/**/
/***/
/* SETSQLTRIPLED(daptr) sets the 7th byte of sqldaid */
/* to ’3’. */
/***/
#define SETSQLTRIPLED(daptr) \

(((daptr)->sqldaid[6] = (SQLTRIPLED)))
/**/
/***/
/* GETSQLDALONGLEN(daptr,n) returns the data length of the nth */
/* entry in the sqlda pointed to by daptr. Use this only if the */
/* sqlda was doubled or tripled and the nth SQLVAR entry has a */
/* LOB datatype. */
/***/

2096 SQL Reference

#define GETSQLDALONGLEN(daptr,n) (\
(long) (((struct sqlvar2 *) &((daptr);->sqlvar[(n) + \

((daptr)->sqld)])) \
->len.sqllonglen))

/**/

/***/
/* SETSQLDALONGLEN(daptr,n,len) sets the sqllonglen field of the */
/* sqlda pointed to by daptr to len for the nth entry. Use this only */
/* if the sqlda was doubled or tripled and the nth SQLVAR entry has */
/* a LOB datatype. */
/***/
#define SETSQLDALONGLEN(daptr,n,length) { \

struct sqlvar2 *var2ptr; \
var2ptr = (struct sqlvar2 *) \

&((daptr);->sqlvar[(n) + ((daptr)->sqld)]); \
var2ptr->len.sqllonglen = (long) (length); \
}

/**/
/***/
/* GETSQLDALENPTR(daptr,n) returns a pointer to the data length for */
/* the nth entry in the sqlda pointed to by daptr. Unlike the inline */
/* value (union sql8bytelen len), which is 8 bytes, the sqldatalen */
/* pointer field returns a pointer to a long (4 byte) integer. */
/* If the SQLDATALEN pointer is zero, a NULL pointer is be returned. */
/* */
/* NOTE: Use this only if the sqlda has been doubled or tripled. */
/***/
#define GETSQLDALENPTR(daptr,n) (\

(((struct sqlvar2 *) &(daptr);->sqlvar[(n) + (daptr)->sqld]) \
->sqldatalen == NULL) ? \

((long *) NULL) : \
((long *) ((struct sqlvar2 *) \

&(daptr);->sqlvar[(n) + (daptr)->sqld]) \
->sqldatalen))

/**/
/***/
/* SETSQLDALENPTR(daptr,n,ptr) sets a pointer to the data length for */
/* the nth entry in the sqlda pointed to by daptr. */
/* Use this only if the sqlda has been doubled or tripled. */
/***/
#define SETSQLDALENPTR(daptr,n,ptr) { \

struct sqlvar2 *var2ptr; \
var2ptr = (struct sqlvar2 *) \

&((daptr);->sqlvar[(n) + ((daptr)->sqld)]); \
var2ptr->sqldatalen = (char *) ptr; \
}

/**/
#define SQLDASIZE(n) \

(sizeof(struct sqlda) + ((n)-1) * sizeof(struct sqlvar))
#endif /* SQLDASIZE */

COBOL (IBM COBOL only):
01 SQLDA.

05 SQLDAID PIC X(8).
05 SQLDABC PIC S9(9) BINARY.
05 SQLN PIC S9(4) BINARY.
05 SQLD PIC S9(4) BINARY.
05 SQLVAR OCCURS 0 TO 750 TIMES DEPENDING ON SQLN.

10 SQLVAR1.
15 SQLTYPE PIC S9(4) BINARY.
15 SQLLEN PIC S9(4) BINARY.
15 FILLER REDEFINES SQLLEN.

20 SQLPRECISION PIC X.
20 SQLSCALE PIC X.

15 SQLDATA POINTER.
15 SQLIND POINTER.

Appendix. Additional information for DB2 SQL 2097

15 SQLNAME.
49 SQLNAMEL PIC S9(4) BINARY.
49 SQLNAMEC PIC X(30).

10 SQLVAR2 REDEFINES SQLVAR1.
15 SQLVAR2-RESERVED-1 PIC S9(9) BINARY.
15 SQLLONGLEN REDEFINES SQLVAR2-RESERVED-1

PIC S9(9) BINARY.
15 SQLVAR2-RESERVED-2 PIC S9(9) BINARY.
15 SQLDATALEN POINTER.
15 SQLDATATYPE-NAME.

20 SQLDATATYPE-NAMEL PIC S9(4) BINARY.
20 SQLDATATYPE-NAMEC PIC X(30).

PL/I:
DECLARE

1 SQLDA BASED(SQLDAPTR),
2 SQLDAID CHAR(8),
2 SQLDABC FIXED(31) BINARY,
2 SQLN FIXED(15) BINARY,
2 SQLD FIXED(15) BINARY,
2 SQLVAR(SQLSIZE REFER(SQLN)),

3 SQLTYPE FIXED(15) BINARY,
3 SQLLEN FIXED(15) BINARY,
3 SQLDATA POINTER,
3 SQLIND POINTER,
3 SQLNAME CHAR(30) VAR;

/* */
DECLARE

1 SQLDA2 BASED(SQLDAPTR),
2 SQLDAID2 CHAR(8),
2 SQLDABC2 FIXED(31) BINARY,
2 SQLN2 FIXED(15) BINARY,
2 SQLD2 FIXED(15) BINARY,
2 SQLVAR2(SQLSIZE REFER(SQLN2)),

3 SQLBIGLEN,
4 SQLLONGL FIXED(31) BINARY,
4 SQLRSVDL FIXED(31) BINARY,

3 SQLDATAL POINTER,
3 SQLTNAME CHAR(30) VAR;

/* */
DECLARE SQLSIZE FIXED(15) BINARY;
DECLARE SQLDAPTR POINTER;
DECLARE SQLTRIPLED CHAR(1) INITIAL(’3’);
DECLARE SQLDOUBLED CHAR(1) INITIAL(’2’);
DECLARE SQLSINGLED CHAR(1) INITIAL(’ ’);

2098 SQL Reference

Identifying an SQLDA in C or C++
A descriptor-name can be specified in the CALL, DESCRIBE, EXECUTE, FETCH,
and OPEN statements. When the host application is written in C or C++,
descriptor-name can be a pointer variable with pointer notation.

For example, descriptor-name could be declared as
sqlda *outsqlda;

Afterwords, it could be used in a statement like the following:
EXEC SQL DESCRIBE STMT1 INTO DESCRIPTOR :*outsqlda;

Appendix. Additional information for DB2 SQL 2099

The REXX SQLDA
A REXX SQLDA consists of a set of REXX variables with a common stem. The
stem must be a REXX variable name that contains no periods and is the same as
the value of descriptor-name that you specify when you use the SQLDA in an SQL
statement. DB2 does not support the INCLUDE SQLDA statement in REXX.

The following table shows the variable names in a REXX SQLDA. The values in
the second column of the table are values that DB2 inserts into the SQLDA when
the statement executes. Except where noted otherwise, the values in the third
column of the table are values that the application must put in the SQLDA before
the statement executes.

Table 172. Fields of a REXX SQLDA

Variable name
Usage in DESCRIBE
and PREPARE INTO

Usage in FETCH, OPEN,
EXECUTE, and CALL

stem.SQLD
The number of columns that are
described in the SQLDA. Double that
number if USING BOTH appears in
the DESCRIBE or PREPARE INTO
statement. Contains a 0 if the
statement string is not a query.

For DESCRIBE PROCEDURE, the
number of result sets returned by the
stored procedure. Contains a 0 if no
result sets are returned.

The number of host variables that are
used by the SQL statement.

Each SQLDA contains stem.SQLD of the following variables. Therefore, 1<=n<=stem.SQLD. There is one occurrence of
each variable for each column of the result table or host variable that is described by the SQLDA. This set of
variables is equivalent to the SQLVAR structure in the SQLDA for other languages.

stem.n.SQLTYPE Indicates the data type of the column
or parameter and whether it can
contain null values. For a description
of the type codes, see “SQLTYPE and
SQLLEN” on page 2090.

For a distinct type, the data type on
which the distinct type was based is
placed in this field. The base SQLVAR
provides no indication that this is
part of the description of a distinct
type.

Indicates the data type of the host
variable and whether an indicator
variable is provided. Host variables
for datetime values must be character
string variables. For FETCH, a
datetime type code means a
fixed-length character string. For a
description of the type codes, see
“SQLTYPE and SQLLEN” on page
2090.

stem.n.SQLLEN For a column other than a DECIMAL
or NUMERIC column, the length
attribute of the column or parameter.
For datetime data, the length of the
string representation of the value. See
“SQLTYPE and SQLLEN” on page
2090 for a description of allowable
values.

For a host variable that does not have
a decimal data type, the length
attribute of the host variable. See
“SQLTYPE and SQLLEN” on page
2090 for a description of allowable
values.

stem.n.SQLLEN.SQLPRECISION For a DECIMAL or NUMERIC
column, the precision of the column
or parameter.

For a host variable with a decimal
data type, the precision of the host
variable.

stem.n.SQLLEN.SQLSCALE For a DECIMAL or NUMERIC
column, the scale of the column or
parameter.

For a host variable with a decimal
data type, the scale of the host
variable.

2100 SQL Reference

Table 172. Fields of a REXX SQLDA (continued)

Variable name
Usage in DESCRIBE
and PREPARE INTO

Usage in FETCH, OPEN,
EXECUTE, and CALL

stem.n.SQLCCSID For a string column or parameter, the
CCSID of the column or parameter.

For a string host variable, the CCSID
of the host variable.

stem.n.SQLUSECCSID Not used. Set to a new CCSID. If set, REXX will
change the CCSID of the SQLDATA.

stem.n.SQLLOCATOR For DESCRIBE PROCEDURE, the
value of a result set locator.

Not used.

stem.n.SQLDATA Not used. Before EXECUTE or OPEN, contains
the value of an input host variable.
The application must supply this
value.

After FETCH, contains the values of
an output host variable.

stem.n.SQLIND Not used. Before EXECUTE or OPEN, contains a
negative number to indicate that the
input host variable in
stem.n.SQLDATA is null. The
application must supply this value.

After FETCH, contains a negative
number if the value of the output
host variable in stem.n.SQLDATA is
null.

stem.n.SQLNAME The name of the nth column in the
result table. For DESCRIBE
PROCEDURE, contains the cursor
name that is used by the stored
procedure to return the result set. The
values for SQLNAME appear in the
order that the cursors were opened by
the stored procedure.

Not used.

Appendix. Additional information for DB2 SQL 2101

DB2 catalog tables
DB2 for z/OS maintains a set of tables (in database DSNDB06) called the DB2
catalog.

About these topics

These topics describe that catalog by describing the columns of each catalog table.

The catalog tables describe such things as table spaces, tables, columns, indexes,
privileges, application plans, and packages. Authorized users can query the
catalog; however, it is primarily intended for use by DB2 and is therefore subject to
change. All catalog tables are qualified by SYSIBM. Do not use this qualifier for
user-defined tables.

The catalog tables are updated by DB2 during normal operations in response to
certain SQL statements, commands, and utilities.

Additional information

Release dependency indicators: Some objects depend on functions in particular
releases of DB2. If you are running on a release of DB2 and fall back to a previous
release, an object that depends on the more recent release becomes frozen. The
object is marked with a release dependency indicator and is unavailable until
remigration.

The release dependency indicator, which is listed in the IBMREQD, RELCREATED,
and RELBOUND columns of the catalog tables, shows the release of DB2 upon
which the objects depend.

Important: The IBMREQD column is not a reliable indicator for indicating release
dependencies. Where possible, the RELCREATED and RELBOUND columns
should be used instead.

Release dependency indicators in IBMREQD, RELCREATED, and RELBOUND are
defined by the following values:

Value Meaning

B Version 1R3 dependency indicator, not from the machine-readable material
(MRM) tape

C Version 2R1 dependency indicator, not from MRM tape

D Version 2R2 dependency indicator, not from MRM tape

E Version 2R3 dependency indicator, not from MRM tape

F Version 3R1 dependency indicator, not from MRM tape

G Version 4 dependency indicator, not from MRM tape

H Version 5 dependency indicator, not from MRM tape

I Version 6 dependency indicator, not from MRM tape

J Version 6 dependency indicator, not from MRM tape

K Version 7 dependency indicator, not from MRM tape

L Version 8 dependency indicator, not from MRM tape

2102 SQL Reference

M Version 9 dependency indicator, not from MRM tape

O Version 10 dependency indicator, not from MRM tape

N Not from MRM tape, no dependency

Programming interface information

Not all catalog table columns are part of the general-use programming interface.
Whether a column is part of this interface is indicated in a column labeled “Use”
in the table that describes the column. The values that “Use” can assume are as
follows:

Value Meaning
G Column is part of the general-use programming interface
S Column is part of the product-sensitive interface
I Column is for internal use only
N Column is not used

For columns for which “Use” is N or I, the name of the column and its description
do not appear in the explanation of the column.

Appendix. Additional information for DB2 SQL 2103

Table spaces and indexes
DB2 catalog tables are contained in certain table spaces and have indexes.

The following tables list the table space and indexes for each catalog table and lists
the index fields for each index. The indexes are in ascending order, except where
noted.

Table 173. Table spaces and indexes for the catalog tables

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ...

INDEX
SYSIBM. ... INDEX FIELDS

SYSALTER SYSOBDS DSNDB01 CREATOR.NAME.ODBTYPE

DSNDB02 DBID.PSID

SYSTSOBX SYSOBD_AUX DSNOBD03 OBD_IMAGE

SYSTSATS SYSAUTOALERTS DSNALX01 ALERT_ID

DSNALX02 HISTORY_ENTRY_ID

DSNALX03 RETURN_CODE.ACTION

DSNALX04 TARGET_QUALIFIER.
TARGET_OBJECT.
TARGET_PARTITION

DSNALX05 CREATEDTS

DSNALX06 STARTTS.RETURN_CODE

SYSTSATX SYSAUTOALERTS_OUT DSNALX07 AUXID.AUXVER

SYSTSATW SYSAUTOTIMEWINDOWS DSNTWX01 WINDOW_ID

SYSTSPRH SYSAUTORUNS_HIST DSNPHX01 HISTORY_ENTRY_ID

DSNPHX02 PROC_NAME.STARTTS

DSNPHX03 STARTTS

SYSTSPHX SYSAUTORUNS_HISTOU DSNPHX04 AUXID.AUXVER

SYSTSCPY SYSCOPY DSNUCH01 DBNAME.TSNAME.START_RBA.1

TIMESTAMP1

DSNUCX01 DSNAME

SYSCONTX SYSCONTEXT DSNCTX01 NAME

DSNCTX02 SYSTEMAUTHID

DSNCTX03 CONTEXTID

DSNCTX04 DEFAULTROLE

SYSCONTEXTAUTHIDS DSNCDX01 CONTEXTID.AUTHID

DSNCDX02 ROLE

SYSCTXTTRUSTATTRS DSNCAX01 CONTEXTID.
NAME.VALUE

SYSTSFAU SYSCOLAUTH DSNACX01 CREATOR.TNAME.COLNAME

DSNACX02 CREATOR.TNAME.TIMESTAMP

DSNACX03 GRANTOR.GRANTORTYPE.CREATOR.
TNAME.TIMESTAMP

DSNACX04 GRANTEE.GRANTEETYPE.CREATOR.
TNAME.TIMESTAMP

SYSTSCOL SYSCOLUMNS DSNDCX01 TBCREATOR.TBNAME.NAME

2104 SQL Reference

||||

|

Table 173. Table spaces and indexes for the catalog tables (continued)

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ...

INDEX
SYSIBM. ... INDEX FIELDS

DSNDCX02 TYPESCHEMA.TYPENAME

DSNDCX05 TBCREATOR.TBNAME

SYSTSFLD SYSFIELDS DSNDBX02 TBCREATOR.TBNAME.NAME

SYSTSFOR SYSFOREIGNKEYS DSNDRH01 CREATOR.TBNAME.RELNAME

SYSTSIXC SYSINDEXCLEANUP DSNICX01 DBNAME.INDEXSPACE

SYSTSIXR SYSINDEXES_RTSECT DSNDXX06 RTSECTION

SYSTSIXS SYSINDEXES DSNDXX01 CREATOR.NAME

DSNDXX02 DBNAME.INDEXSPACE

DSNDXX03 TBCREATOR.TBNAME.CREATOR.
NAME

DSNDXX04 INDEXTYPE

DSNDXX07 TBCREATOR.TBNAME

SYSTSIXT SYSINDEXES_TREE DSNDXX05 PARSETREE

SYSTSIPT SYSINDEXPART DSNDRX01 IXCREATOR.IXNAME.PARTITION

DSNDRX02 STORNAME

DSNDRX03 IXCREATOR.IXNAME

SYSTSKEY SYSKEYS DSNDKX01 IXCREATOR.IXNAME.COLNAME

DSNDKX02 IXCREATOR.IXNAME

DSNDKX03 IXCREATOR.IXNAME.COLSEQ

SYSTSREL SYSRELS DSNDLX01 REFTBCREATOR.REFTBNAME

DSNDLX02 CREATOR.TBNAME

DSNDLX03 IXOWNER.IXNAME

DSNDLX04 CREATOR.TBNAME.RELNAME

SYSTSSYN SYSSYNONYMS DSNDYX01 CREATOR.NAME

DSNDYX02 TBCREATOR.TBNAME

SYSTSTAU SYSTABAUTH DSNATX01 GRANTOR.GRANTORTYPE

DSNATX02 GRANTEE.TCREATOR.TTNAME.
GRANTEETYPE.UPDATECOLS.
ALTERAUTH.DELETEAUTH.
INDEXAUTH.INSERTAUTH.
SELECTAUTH.UPDATEAUTH.
CAPTUREAUTH.REFERENCESAUTH.
REFCOLS.TRIGGERAUTH

DSNATX03 GRANTEE.GRANTEETYPE.COLLID
CONTOKEN

DSNATX04 TCREATOR.TTNAME

DSNATX05 TCREATOR.TTNAME.TIMESTAMP

SYSTSTPT SYSTABLEPART DSNDPX01 DBNAME.TSNAME.PARTITION

DSNDPX02 STORNAME

DSNDPX03 DBNAME.TSNAME.LOGICAL_PART

DSNDPX04 IXCREATOR.IXNAME

Appendix. Additional information for DB2 SQL 2105

||||

Table 173. Table spaces and indexes for the catalog tables (continued)

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ...

INDEX
SYSIBM. ... INDEX FIELDS

DSNDPX05 DBNAME.TSNAME

SYSTSTAB SYSTABLES DSNDTX01 CREATOR.NAME

DSNDTX02 DBID.OBID.CREATOR.NAME

DSNDTX03 TBCREATOR.TBNAME

DSNDTX05 TBNAME.TSNAME

SYSTSTPF SYSTABLES_PROFILES DSNPRX01 SCHEMA.TBNAME.PROFILE_TYPE

SYSTSPTX SYSPROFILES_TEXT DSNPRX02 PROFILE_TEXT

SYSTSTSP SYSTABLESPACE DSNDSX01 DBNAME.NAME

SYSTSXTM SYSXMLTYPMOD DSNTMX01 XML_TYPEMOD_ID

SYSTSXTS SYSXMLTYPMSCHEMA DSNMSX01 XML_TYPMOD_ID.
XSROBJECTID

DSNMSX02 XSROBJECTID

SYSTSDBA SYSDATABASE DSNDDH01 NAME

DSNDDX02 GROUP_MEMBER

SYSTSDBU SYSDBAUTH DSNADH01 GRANTEE.NAME.GRANTEETYPE

DSNADH02 NAME

DSNADX01 GRANTOR.NAME.GRANTORTYPE

SYSDDF IPLIST DSNDUX01 LINKNAME.IPADDR

IPNAMES DSNFPX01 LINKNAME

LOCATIONS DSNFCX01 LOCATION

LULIST DSNFLX01 LINKNAME.LUNAME

DSNFLX02 LUNAME

LUMODES DSNFMX01 LUNAME.MODENAME

LUNAMES DSNFNX01 LUNAME

MODESELECT DSNFDX01 LUNAME.AUTHID1.PLANNAME1

USERNAMES DSNFEX01 TYPE.AUTHID1.LINKNAME1

SYSEBCDC SYSDUMMY1

SYSDUMMYE

SYSTSASC SYSDUMMYA

SYSTSUNI SYSDUMMYU

SYSGPAUT SYSRESAUTH DSNAGH01 GRANTEE.QUALIFIER.
NAME.OBTYPE.
GRANTEETYPE

DSNAGX01 GRANTOR.QUALIFIER.
NAME.OBTYPE.
GRANTORTYPE

SYSTSSFB SYSSTATFEEDBACK DSNSFX01 TBCREATOR.TBNAME.
IXCREATOR.IXNAME.
COLNAME.COLGROUPCOLNO.
NUMCOLUMNS.TYPE

DSNSFX02 TBCREATOR.TBNAME.

2106 SQL Reference

||||
|
|
|

||||

Table 173. Table spaces and indexes for the catalog tables (continued)

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ...

INDEX
SYSIBM. ... INDEX FIELDS

DSNSFX03 IXCREATOR.IXNAME.

SYSTSSTG SYSSTOGROUP DSNSSH01 NAME

SYSTSVOL SYSVOLUMES DSNSSH02 SGNAME

SYSGRTNS SYSROUTINES_OPTS DSNROX01 SCHEMA.ROUTINENAME.
BUILDDATE.BUILDTIME

SYSROUTINES_SRC DSNRSX01 ROUTINENAME

DSNRSX02 SCHEMA.ROUTINENAME.
BUILDDATE.
SEQNO

SYSHIST SYSCOLDIST_HIST DSNHFX01 TBOWNER.TBNAME.
NAME.STATSTIME

SYSCOLUMNS_HIST DSNHEX01 TBCREATOR.TBNAME.
NAME.STATSTIME

SYSINDEXES_HIST DSNHHX01 TBCREATOR.TBNAME.
NAME.STATSTIME

DSNHHX02 CREATOR.NAME

SYSINDEXPART_HIST DSNHGX01 IXCREATOR.IXNAME.
PARTITION.STATSTIME

SYSINDEXSTATS_HIST DSNHIX01 OWNER.NAME.
PARTITION.STATSTIME

SYSLOBSTATS_HIST DSNHJX01 DBNAME.NAME.STATSTIME

SYSKEYTARGETS_HIST DSNHKX01 IXSCHEMA.IXNAME.
KEYSEQ.STATSTIME

SYSKEYTGTDIST_HIST DSNTDX02 IXSCHEMA.IXNAME
KEYSEQ.STATSTIME

SYSTABLEPART_HIST DSNHCX01 DBNAME.TSNAME.
PARTITION.STATSTIME

SYSTABLES_HIST DSNHDX01 CREATOR.NAME.STATSTIME

SYSTABSTATS_HIST DSNHBX01 OWNER.NAME.
PARTITION.STATSTIME

SYSJAVA SYSJARCONTENTS DSNJCX01 JARSCHEMA.JAR_ID

SYSJAROBJECTS DSNJOX01 JARSCHEMA.JAR_ID

SYSJAVAOPTS DSNJVX01 JARSCHEMA.JAR_ID

SYSJAVAPATHS DSNJPX01 JARSCHEMA.JAR_ID.ORDINAL

DSNJPX02 PE_JARSCHEMA.PE_JAR_ID

SYSJAUXA LOB SYSJARDATA DSNJDX01 JAR_DATA

SYSJAUXB LOB SYSJARCLASS_SOURCE DSNJSX01 CLASS_SOURCE

SYSTSAUX SYSAUXRELS DSNOXX01 TBOWNER.TBNAME

DSNOXX02 AUXTBOWNER.AUXTBNAME

SYSTSCON SYSCONSTDEP DSNCCX01 BSCHEMA.BNAME.BTYPE

DSNCCX02 DTBCREATOR.DTBNAME

SYSTSDAT SYSDATATYPES DSNODX01 SCHEMA.NAME

Appendix. Additional information for DB2 SQL 2107

||||

Table 173. Table spaces and indexes for the catalog tables (continued)

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ...

INDEX
SYSIBM. ... INDEX FIELDS

DSNODX02 DATATYPEID1

SYSTSDEP SYSDEPENDENCIES DSNONX01 BSCHEMA.BNAME.
BCOLNAME.BTYPE.
DSCHEMA.DNAME.
DCOLNAME.DTYPE

DSNONX02 DSCHEMA.DNAME.
DCOLNAME.DTYPE.
BSCHEMA.BNAME.
BCOLNAME.BTYPE

SYSTSENV SYSENVIRONMENT DSNOEX01 ENVID

SYSTSKYC SYSKEYCOLUSE DSNCUX01 TBCREATOR.TBNAME.
CONSTNAME.COLSEQ.

SYSTSPRM SYSPARMS DSNOPX01 SCHEMA.SPECIFICNAME.
ROUTINETYPE.ROWTYPE
ORDINAL.VERSION

DSNOPX02 TYPESCHEMA.TYPENAME.
ROUTINETYPE.CAST_FUNCTION.
OWNER.SCHEMA.SPECIFICNAME

DSNOPX03 TYPESCHEMA.TYPENAME

DSNOPX04 SCHEMA.SPECIFICNAME.
ROUTINETYPE.VERSION

SYSTSRAU SYSROUTINEAUTH DSNOAX01 GRANTOR.SCHEMA.
SPECIFICNAME.ROUTINETYPE.
GRANTEETYPE.EXECUTEAUTH.
GRANTORTYPE

DSNOAX02 GRANTEE.SCHEMA.SPECIFICNAME.
ROUTINETYPE.GRANTEETYPE.
EXECUTEAUTH.GRANTEDTS

DSNOAX03 SCHEMA.SPECIFICNAME
ROUTINETYPE

SYSTSROU SYSROUTINES DSNOFX01 NAME.PARM_COUNT.
PARM_SIGNATURE.ROUTINETYPE.
SCHEMA.PARM1.PARM2.PARM3.
PARM4.PARM5.PARM6.PARM7.
PARM8.PARM9.PARM10.PARM11.
PARM12.PARM13.PARM14.PARM15.
PARM16.PARM17.PARM18.PARM19.
PARM20.PARM21.PARM22.PARM23.
PARM24.PARM25.PARM26.PARM27.
PARM28.PARM29.PARM30.
VERSION

DSNOFX02 SCHEMA.SPECIFICNAME.
ROUTINETYPE.VERSION

DSNOFX03 NAME.SCHEMA.CAST_FUNCTION.
PARM_COUNT.PARM_SIGNATURE.
PARM1

DSNOFX04 ROUTINEID1

2108 SQL Reference

Table 173. Table spaces and indexes for the catalog tables (continued)

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ...

INDEX
SYSIBM. ... INDEX FIELDS

DSNOFX05 SOURCESCHEMA.SOURCESPECIFIC.
ROUTINETYPE

DSNOFX06 SCHEMA.NAME.ROUTINETYPE.
PARM_COUNT

DSNOFX07 NAME.PARM_COUNT.
ROUTINETYPE.SCHEMA.
PARM_SIGNATURE.
PARM1.PARM2.PARM3.
PARM4.PARM5.PARM6.PARM7.
PARM8.PARM9.PARM10.PARM11.
PARM12.PARM13.PARM14.PARM15.
PARM16.PARM17.PARM18.PARM19.
PARM20.PARM21.PARM22.PARM23.
PARM24.PARM25.PARM26.PARM27.
PARM28.PARM29.PARM30.
VERSION

DSNOFX08 JARSCHEMA.
JAR_ID

SYSTSSCM SYSSCHEMAAUTH DSNSKX01 GRANTEE.SCHEMANAME.
GRANTEETYPE

DSNSKX02 GRANTOR.GRANTORTYPE

SYSTSTBC SYSTABCONST DSNCNX01 TBCREATOR.TBNAME.CONSTNAME

DSNCNX02 IXOWNER
IXNAME

SYSTSTRG SYSTRIGGERS DSNOTX01 SCHEMA.NAME.SEQNO

DSNOTX02 TBOWNER.TBNAME

DSNOTX03 SCHEMA.TRIGNAME

SYSTSPKG SYSPACKAGE DSNKKX01 LOCATION.COLLID.NAME.
VERSION

DSNKKX02 LOCATION.COLLID.NAME.
CONTOKEN

SYSTSPKC SYSPACKCOPY DSNPCX01 LOCATION.COLLID.
NAME.CONTOKEN.
COPYID

SYSTSPKA SYSPACKAUTH DSNKAX01 GRANTOR.LOCATION.COLLID.NAME.
GRANTORTYPE

DSNKAX02 GRANTEE.LOCATION.COLLID.
NAME.BINDAUTH.COPYAUTH.
EXECUTEAUTH.GRANTEETYPE

DSNKAX03 LOCATION.COLLID.NAME

SYSTSPKD SYSPACKDEP DSNKDX01 DLOCATION.DCOLLID.DNAME.
DCONTOKEN

DSNKDX02 BQUALIFIER.BNAME.BTYPE

DSNKDX03 BQUALIFIER.BNAME.BTYPE.
DTYPE

SYSTSPKL SYSPACKLIST DSNKLX01 LOCATION.COLLID.NAME

Appendix. Additional information for DB2 SQL 2109

Table 173. Table spaces and indexes for the catalog tables (continued)

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ...

INDEX
SYSIBM. ... INDEX FIELDS

DSNKLX02 PLANNAME.SEQNO.LOCATION.
COLLID.NAME

SYSTSPKS SYSPACKSTMT DSNKSX01 LOCATION.COLLID.NAME.
CONTOKEN.STMTNOI.SECTNOI.
SEQNO

SYSTSPKY SYSPKSYSTEM DSNKYX01 LOCATION.COLLID.NAME.
CONTOKEN.SYSTEM.ENABLE

SYSTSPLY SYSPLSYSTEM DSNKPX01 NAME.SYSTEM.ENABLE

SYSTSDBR SYSDBRM DSNDBX01 PLNAME

DSNDFX01 PLNAME.NAME

SYSTSPLN SYSPLAN DSNPPH01 NAME

SYSTSPLA SYSPLANAUTH DSNAPH01 GRANTEE.NAME.EXECUTEAUTH.
GRANTEETYPE

DSNAPX01 GRANTOR.GRANTORTYPE

DSNAPX02 NAME

SYSTSPLD SYSPLANDEP DSNGGX01 BCREATOR.BNAME.BTYPE

DSNGGX05 DNAME

SYSTSQRA SYSQUERY_AUX DSNQSX01 STMTTEXT

SYSTSQRY SYSQUERY DSNQYX01 QUERY_HASH.
SCHEMA.SOURCE.
QUERY_SEC_HASH

DSNQYX02 QUERYID

DSNQYX03 LOCATION.
COLLECTION.
PACKAGE.
VERSION.SECTNO

SYSTSQRP SYSQUERYPLAN DSNQNX01 QUERYID.COPYID

SYSTSQRO SYSQUERYOPTS DSNQPX01 QUERYID.COPYID

SYSTSSTM SYSSTMT DSNPSX01 PLNAME.NAME

DSNPSX02 PLNAME.NAME.SEQNO

SYSPLUXA SYSROUTINESTEXT DSNPLX01 TEXT

SYSPLUXB SYSROUTINES_TREE DSNPLX02 PTREE

SYSROLES SYSOBJROLEDEP DSNRDX01 DSCHEMA.DNAME.DTYPE

DSNRDX02 ROLENAME

SYSROLES DSNRLX01 NAME

SYSTSTSS SYSTABLESPACESTATS DSNRTX01 DBID.PSID.PARTITION.INSTANCE

SYSTSISS SYSINDEXSPACESTATS DSNRTX02 DBID.ISOBID.PARTITION.INSTANCE

DSNRTX03 CREATOR.NAME

SYSSEQ SYSSEQUENCES DSNSQX01 SCHEMA.NAME

DSNSQX02 SEQUENCEID1

DSNSQX03 SEQSCHEMA.SEQNAME

2110 SQL Reference

|

|

||||

Table 173. Table spaces and indexes for the catalog tables (continued)

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ...

INDEX
SYSIBM. ... INDEX FIELDS

SYSSEQ2 SYSSEQUENCEAUTH DSNWCX01 SCHEMA.NAME

DSNWCX02 GRANTOR.SCHEMA.NAME.
GRANTORTYPE

DSNWCX03 GRANTEE.SCHEMA.NAME.
GRANTEETYPE

SYSSEQUENCESDEP DSNSRX01 DCREATOR.DNAME.DCOLNAME

DSNSRX02 BSCHEMA.BNAME.DTYPE

SYSSTATS SYSCOLDIST DSNTNX01 TBOWNER.TBNAME.NAME

SYSCOLDISTSTATS DSNTPX01 TBOWNER.TBNAME.NAME
PARTITION

SYSCOLSTATS DSNTCX01 TBOWNER.TBNAME.NAME
PARTITION

SYSINDEXSTATS DSNTXX01 OWNER.NAME.PARTITION

SYSKEYTARGETSTATS DSNTKX01 IXSCHEMA.IXNAME.KEYSEQ.
PARTITION

SYSKEYTGTDIST DSNTDX01 IXSCHEMA.IXNAME.KEYSEQ

SYSKEYTGTDISTSTATS DSNTSX01 IXSCHEMA.IXNAME.KEYSEQ.
PARTITION

SYSLOBSTATS DSNLNX01 DBNAME.NAME

SYSTABSTATS DSNTTX01 OWNER.NAME.PARTITION

DSNTTX02 (DBNAME, TSNAME, PARTITION)

SYSTSSRG SYSSTRINGS DSNSSX01 OUTCCSID.INCCSID.IBMREQD

SYSTSCKS SYSCHECKS DSNSCX01 TBOWNER.TBNAME.CHECKNAME

SYSTSCHX SYSCHECKS2 DSNCHX01 TBOWNER.TBNAME.CHECKNAME

SYSTSCKD SYSCHECKDEP DSNSDX01 TBOWNER.TBNAME.CHECKNAME
COLNAME

SYSTARG SYSKEYTARGETS DSNRKX01 IXSCHEMA.IXNAME.
KEYSEQ

DSNRKX02 DATATYPEID.
XMLPATTERN_INTERNAL

SYSTSADT SYSAUDITPOLICIES DSNAPX03 AUDITPOLICYNAME

SYSTSCTL SYSCONTROLS DSNCLX01 SCHEMA.NAME

DSNCLX02 CONTROL_ID

DSNCLX03 TBSCHEMA.TBNAME

DSNCLX04 TBSCHEMA.TBNAME.
ENABLE

DSNCLX05 TBSCHEMA.TBNAME.
ENABLE.
CONTROL_TYPE

SYSTSCTD SYSCONTROLS_DESC DSNTRX02 DESCRIPTOR

SYSTSCTR SYSCONTROLS_RTXT DSNTRX01 RULETEXT

Appendix. Additional information for DB2 SQL 2111

||||

|

|

|

|

Table 173. Table spaces and indexes for the catalog tables (continued)

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ...

INDEX
SYSIBM. ... INDEX FIELDS

SYSTSPEN SYSPENDINGDDL DSNPDX01 DBNAME.TSNAME.
CREATEDTS.
OPTION_SEQNO

DSNPDX02 OBJSCHEMA.OBJNAME.
OBJTYPE.TSNAME.
CREATEDTS.
OPTION_SEQNO

SYSTSPDT SYSPENDINGDDLTEXT DSNPDX03 STATEMENT_TEXT

SYSTSPDO SYSPENDINGOBJECTS DSNPOX01 DBNAME.TSNAME.
PARTITION.COLNAME

DSNPOX02 OBJSCHEMA.OBJNAME.
OBJTYPE

DSNPOX03 DNAME.INDEXSPACE

SYSTSPKX SYSPACKSTMT_STMT DSNPKX01 STATEMENT

SYSTSPVR SYSPACKSTMT_STMB DSNKSX02 STMTBLOB

SYSTSTRT SYSTRIGGERS_STMT DSNOTX04 STATEMENT

SYSTSVAD SYSVARIABLES_DESC DSNOVX03 DESCRIPTOR

SYSTSVAR SYSVARIABLES DSNOVX01 SCHEMA.NAME

SYSTSVAT SYSVARIABLES_TEXT DSNOVX02 DEFAULTTEXT

SYSTSVAU SYSVARIABLEAUTH DSNVAX01 GRANTEE.GRANTEETYPE.
SCHEMA.NAME

DSNVAX02 GRANTOR.GRANTORTYPE.
SCHEMA.NAME

DSNVAX03 SCHEMA.NAME

SYSTSVTR SYSVIEWS_TREE DSNVWX02 PARSETREE

SYSTSVWT SYSVIEWS_STMT DSNVWX01 STATEMENT

SYSUSER SYSUSERAUTH DSNAUH01 GRANTEE
GRANTEDTS.
GRANTEETYPE

DSNAUX02 GRANTOR.GRANTORTYPE

SYSTSVWD SYSVIEWDEP DSNGGX02 BCREATOR.BNAME.BTYPE

DSNGGX03 BSCHEMA.BNAME.BTYPE

DSNGGX04 BCREATOR.BNAME.BTYPE.DTYPE

DSNGGX06 DCREATOR.DNAME.DTYPE

SYSTSVEW SYSVIEWS DSNVVX01 CREATOR.NAME.SEQNO.TYPE

SYSXML SYSXMLRELS DSNXRX01 TBOWNER.TBNAME.COLNAME

DSNXRX02 XMLTBOWNER.XMLTBNAME

SYSXMLSTRINGS DSNXSX01 STRINGID

DSNXSX02 STRING

Note: 1. Index field is in descending order

2112 SQL Reference

||||

||||

||||

||||
|

||||
|

||||

SQL statements allowed on the catalog
Certain SQL statements can be used to change the value of certain options for
existing catalog indexes, sequences, and table spaces, or to add indexes to any of
the catalog tables.

Table 174. SQL statements that can be used to change existing catalog indexes, sequences,
and table spaces, or to add indexes to any of the catalog tables

SQL statement Index Allowable clauses and usage notes

ALTER INDEX IBM-defined Only these clauses are allowed:
CLOSE
COPY
FREEPAGE
GBPCACHE
NOT PADDED
PADDED
PCTFREE
PIECESIZE

You cannot alter the GBPCACHE value for
indexes DSNDXX01, DSNDXX02, and
DSNDXX03, which are on catalog table
SYSIBM.SYSINDEXES.

ALTER INDEX User-created All clauses are allowed, except for the
following:

BUFFERPOOL

REGENERATE

COMPRESS YES

Any partitioning clause

ALTER SEQUENCE The only clause allowed is MAXVALUE.

You can only change the MAXVALUE value of
the catalog sequence DSNSEQ_IMPLICITDB.
The only value specific must be an integer
between 1 and 60000, inclusive.

ALTER TABLE The only clause allowed is DATA CAPTURE
CHANGES.

Appendix. Additional information for DB2 SQL 2113

Table 174. SQL statements that can be used to change existing catalog indexes, sequences,
and table spaces, or to add indexes to any of the catalog tables (continued)

SQL statement Index Allowable clauses and usage notes

ALTER TABLESPACE Only these clauses are allowed:
CLOSE
FREEPAGE
GBPCACHE
LOCKMAX
MAXROWS
PCTFREE
TRACKMOD

You cannot alter the GBPCACHE or
MAXROWS value of some catalog table spaces.
Do not specify GBPCACHE for the following
table spaces:
v DSNDB06.SYSTSCOL
v DSNDB06.SYSTSDBA
v DSNDB06.SYSTSDBR
v DSNDB06.SYSTSDBU
v DSNDB06.SYSTSFAU
v DSNDB06.SYSTSFLD
v DSNDB06.SYSTSFOR
v DSNDB06.SYSTSIPT
v DSNDB06.SYSTSIXR
v DSNDB06.SYSTSIXS
v DSNDB06.SYSTSIXT
v DSNDB06.SYSTSKEY
v DSNDB06.SYSTSPKA
v DSNDB06.SYSTSPKD
v DSNDB06.SYSTSPKG
v DSNDB06.SYSTSPKL
v DSNDB06.SYSTSPKS
v DSNDB06.SYSTSPKX
v DSNDB06.SYSTSPKY
v DSNDB06.SYSTSPLA
v DSNDB06.SYSTSPLD
v DSNDB06.SYSTSPLN
v DSNDB06.SYSTSPLY
v DSNDB06.SYSTSPVR
v DSNDB06.SYSTSREL
v DSNDB06.SYSTSSTM
v DSNDB06.SYSTSSYN
v DSNDB06.SYSTSTAB
v DSNDB06.SYSTSTAU
v DSNDB06.SYSTSTPT
v DSNDB06.SYSTSTSP

For DSNDB06.SYSSEQ, MAXROW can be
specified only with a value of 1.

You can specify the LOCKSIZE keyword on the
ALTER TABLESPACE statement for any catalog
table spaces that are not LOB table spaces.

2114 SQL Reference

Table 174. SQL statements that can be used to change existing catalog indexes, sequences,
and table spaces, or to add indexes to any of the catalog tables (continued)

SQL statement Index Allowable clauses and usage notes

CREATE INDEX User-created All clauses are allowed, except for:
CLOSE YES
CLUSTER
UNIQUE
DEFER YES (only on tables SYSINDEXES,
SYSINDEXPART, and SYSKEYS)
COMPRESS YES
Any partitioning clause

Indexes that are created with key-expressions are
not allowed on the catalog.

The only value allowed for BUFFERPOOL is
BP0.

You can create up to 500 indexes on the
catalog.

DROP INDEX User-created The statement has no clauses.

Reorganizing the catalog
The REORG TABLESPACE utility can be run on all the table spaces in the catalog
database (DSNDB06) to reclaim unused or wasted space, which can affect
performance.

The utility observes the PCTFREE and FREEPAGE values specified in the ALTER
INDEX statement for all the catalog indexes and the following table spaces:
v DSNDB06.SYSDDF
v DSNDB06.SYSGPAUT
v DSNDB06.SYSGRTNS
v DSNDB06.SYSHIST
v DSNDB06.SYSJAVA
v DSNDB06.SYSJAUXA
v DSNDB06.SYSJAUXB
v DSNDB06.SYSSEQ
v DSNDB06.SYSSEQ2
v DSNDB06.SYSSTATS
v DSNDB06.SYSTSCHX
v DSNDB06.SYSTSCKD
v DSNDB06.SYSTSCKS
v DSNDB06.SYSTSCPY
v DSNDB06.SYSTSSRG
v DSNDB06.SYSTSUSR
v DSNDB01.SCT02
v DSNDB01.SPT01

For details on running REORG TABLESPACE, see DB2 Utility Guide and Reference.

Appendix. Additional information for DB2 SQL 2115

|

|

|

|

|

New and changed catalog tables
This release of DB2 for z/OS includes many new catalog tables as well as many
catalog tables that have new or changed content.

Descriptions of the following catalog tables have been added:

Table 175. New catalog tables

Catalog table name Description

“SYSIBM.SYSINDEXCLEANUP table” on
page 2210

The rows in the SYSIBM.SYSINDEXCLEANUP table specify time
windows to control index cleanup processing. Each row specifies a
time window to enable or disable the cleanup of pseudo-deleted index
entries for specific database objects.

“SYSIBM.SYSQUERYPREDICATE table” on
page 2332

The SYSIBM.SYSQUERYPREDICATE table contains information about
predicates for queries in the SYSIBM.SYSQUERY table that have been
identified for extended optimization. It correlates to the
SYSIBM.SYSQUERY table by the QUERYID column.

“SYSIBM.SYSQUERYSEL table” on page
2337

The SYSIBM.SYSQUERYSEL table contains information about the
selectivity of predicates for queries in the SYSIBM.SYSQUERY table
that have been identified for extended optimization. It correlates to the
SYSIBM.SYSQUERY table by the QUERYID column.

“SYSIBM.SYSSTATFEEDBACK table” on
page 2370

The SYSIBM.SYSTATFEEDBACK table contains information about
missing or conflicting catalog statistics for SQL statements.

“SYSIBM.SYSVARIABLEAUTH table” on
page 2432

The SYSIBM.SYSVARIABLEAUTH table contains one row for each
privilege of each authorization ID that has privileges on a global
variable.

“SYSIBM.SYSVARIABLES_DESC table” on
page 2434

The SYSIBM.SYSVARIABLES_DESC table is an auxiliary table for the
SYSIBM.SYSVARIABLES table.

“SYSIBM.SYSVARIABLES table” on page
2429

The SYSIBM.SYSVARIABLES table contains one row for each global
variable that is created.

“SYSIBM.SYSVARIABLES_TEXT table” on
page 2435

The SYSIBM.SYSVARIABLES_TEXT table is an auxiliary table for the
DEFAULTTEXT column of the SYSIBM.SYSVARIABLES table.

The catalog tables that are listed in the following table have new or revised
columns, column values, or column descriptions to support the new function in
this release of DB2 for z/OS.

Table 176. Summary of new and revised catalog table columns

Catalog table name New column Revised column

“SYSIBM.SYSCHECKS table” on
page 2143

RBA

“SYSIBM.SYSCOPY table” on page
2176

MODECREATED v PIT_RBA

v START_RBA

v ICTYPE

v STYPE

v TTYPE

“SYSIBM.SYSDATATYPES table”
on page 2191

v ARRAYLENGTH

v ARRAYINDEXTYPEID

v

ARRAYINDEXTYPELEN

v ARRAYINDEXSUBTYPE

v LENGTH

v METATYPE

v SCALE

v SUBTYPE

2116 SQL Reference

||

||

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

||

|||

|
|
||

|
|
||

|

|

|

|

|
|
|

|

|
|

|

|

|

|

|

Table 176. Summary of new and revised catalog table columns (continued)

Catalog table name New column Revised column

“SYSIBM.SYSDEPENDENCIES
table” on page 2198

DVERSION v BTYPE

v DTYPE

“SYSIBM.SYSINDEXES table” on
page 2211

v CLUSTERED

v CLUSTERRATIO

v COPYLRSN

v SPARSE

“SYSIBM.SYSINDEXES_HIST
table” on page 2217

v AVGKEYLEN

v CLUSTERRATIOF

v DATAREPEATFACTORF

“SYSIBM.SYSINDEXPART table”
on page 2221

RBA_FORMAT v AVGKEYLEN

v CARDF

v FAROFFPOSF

v NEAROFFPOSF

“SYSIBM.SYSINDEXPART_HIST
table” on page 2226

v AVGKEYLEN

v CARDF

v FAROFFPOSF

v NEAROFFPOSF

“SYSIBM.SYSINDEXSPACESTATS
table” on page 2229

COPYLRSN

“SYSIBM.SYSINDEXSTATS table”
on page 2235

v CLUSTERRATIO

v CLUSTERRATIOF

v DATAREPEATFACTORF

v KEYCOUNT

v KEYCOUNTF

“SYSIBM.SYSINDEXSTATS_HIST
table” on page 2237

v CLUSTERRATIOF

v DATAREPEATFACTORF

v KEYCOUNTF

“SYSIBM.SYSKEYTARGETS table”
on page 2247

DESCRIPTOR

“SYSIBM.SYSPACKAGE table” on
page 2265

v APPLCOMPAT

v ARCHIVESENSITIVE

v BUSTIMESENSITIVE

v DESCSTAT

v EXTSEQNO

v APREUSE

v DBPROTOCOL

v SYSTIMESENSITIVE

“SYSIBM.SYSPACKCOPY table”
on page 2275

v APPLCOMPAT

v ARCHIVESENSITIVE

v BUSTIMESENSITIVE

v DESCSTAT

v EXTSEQNO

v SYSTIMESENSITIVE

v DBPROTOCOL

v

RECORDTEMPORALHIST

v SYSTIMESENSITIVE

“SYSIBM.SYSPACKSTMT table”
on page 2290

EXPANSION_REASON

Appendix. Additional information for DB2 SQL 2117

|

|||

|
|
||

|

|
|
||

|

|

|

|
|
||

|

|

|
|
||

|

|

|

|
|
||

|

|

|

|
|
||

|
|
||

|

|

|

|

|
|
||

|

|

|
|
||

|
|
|

|

|

|

|

|

|

|

|
|
|

|

|

|

|

|

|

|
|

|

|
|
||

Table 176. Summary of new and revised catalog table columns (continued)

Catalog table name New column Revised column

“SYSIBM.SYSPARMS table” on
page 2297

v CCSID

v ENCODING_SCHEME

v LENGTH

v SUBTYPE

“SYSIBM.SYSPENDINGDDL
table” on page 2301

v COLNAME

v COLUMN_KEYWORD

v PARTITION

v

PARTITION_KEYWORD

v CREATEDTS

v OBJTYPE

v OPTION_KEYWORD

v OPTION_VALUE

v STATEMENT_TYPE

“SYSIBM.SYSPLAN table” on
page 2306

PROGAUTH

“SYSIBM.SYSQUERY table” on
page 2315

v ACCESS_PATH_HINT

v OPTION_OVERRIDE

v SELECTIVITY_VALID

v

SELECTVTY_OVERRIDE

“SYSIBM.SYSQUERYPLAN table”
on page 2321

EXPANSION_REASON

“SYSIBM.SYSRESAUTH table” on
page 2341

QUALIFIER

“SYSIBM.SYSROUTINES table” on
page 2346

COMMIT_ON_RETURN

“SYSIBM.SYSSEQUENCES table”
on page 2366

v SEQNAME

v SEQSCHEMA

“SYSIBM.SYSTABLEPART table”
on page 2387

v PCTFREE_UDP

v PCTRFREE_UPD_CALC

v RBA_FORMAT

“SYSIBM.SYSTABLES table” on
page 2396

v ARCHIVING_SCHEMA

v ARCHIVING_TABLE

v STATS_FEEDBACK

v RBA1

v RBA2

v VERSION

“SYSIBM.SYSTABLESPACESTATS
table” on page 2410

v UPDATESIZE

v LASTDATACHANGE

COPYUPDATELRSN

2118 SQL Reference

|

|||

|
|
||

|

|

|

|
|
|

|

|

|
|

|

|

|

|

|

|
|
||

|
|
|

|

|

|
|

|

|
|
||

|
|
||

|
|
||

|
|
|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|

|

|
|
|

|

|

|

SYSIBM.IPLIST table
The SYSIBM.IPLIST table allows multiple IP addresses to be specified for a given
LOCATION.

Insert rows into this table when you want to define a remote DB2 data sharing
group. The same value for the IPADDR column cannot appear in both the SYSIBM
IPNAMES table and the SYSIBM.IPLIST table. Rows in this table can be inserted,
updated, and deleted.

Column name Data type Description Use

LINKNAME VARCHAR(24)
NOT NULL

This column is associated with the value specified in the
LINKNAME column in the SYSIBM.LOCATIONS table
and the SYSIBM.IPNAMES table. The values of the other
columns in the SYSIBM.IPNAMES table apply to the
server identified by the LINKNAME column in this row.

G

IPADDR VARCHAR(254)
NOT NULL This column contains an IPv4 or IPv6 address, or domain

name of a remote TCP/IP host of the server. If WLM
Domain Name Server workload balancing is used, this
column must contain the member specific domain name.
If Dynamic VIPA workload balancing is used, this column
must contain the member specific Dynamic VIPA address.
The IPADDR column must be specified as follows:

v An IPv4 address must be left justified and is
represented as a dotted decimal address. For example,
'123.456.78.912' would be interpreted as an IPv4
address.

v An IPv6 address must be left justified and is
represented as a colon hexadecimal address. An
example of an IPv6 address is
'2001:0DB8:0000:0000:0008:0800:200C:417A', which can
also be expressed in compressed form as
'2001:DB8::8:800:200C:417A'.

v A domain name is converted to an IP address by the
domain name server where a resulting IPv4 or IPv6
address is determined. An example of a domain name
is 'stlmvs1.svl.ibm.com'.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2119

SYSIBM.IPNAMES table
The SYSIBM.IPNAMES table defines the remote DRDA servers DB2 can access
using TCP/IP.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

LINKNAME
VARCHAR(24)
NOT NULL

The value specified in this column must match the value
specified in the LINKNAME column of the associated
row in SYSIBM.LOCATIONS.

G

SECURITY_OUT CHAR(1)
NOT NULL
WITH DEFAULT 'A'

This column defines the DRDA security option that is
used when local DB2 SQL applications connect to any
remote server associated with this TCP/IP host:

A The option is “already verified”. Outbound
connection requests contain an authorization ID
and no password. The authorization ID used for
an outbound request is either the DB2 user's
authorization ID or a translated ID, depending
upon the value of the USERNAMES column.

The authorization ID is not encrypted when it is
sent to the partner. For encryption, refer to 'D'.

D The option is “userid and security-sensitive data
encryption”. Outbound connection requests
contain an authorization ID and no password.
The authorization ID used for an outbound
request is either the DB2 user's authorization ID
or a translated ID, depending upon the value of
the USERNAMES column.

This option indicates that the userid and
security-sensitive data are to be encrypted. For
non-encryption, refer to 'A'.

E The option is “userid, password, and
security-sensitive data encryption”. Outbound
connection requests contain an authorization ID
and a password. The password is obtained from
the SYSIBM.USERNAMES table. The
USERNAMES column must specify 'O'.

This option indicates that the userid, password,
and security-sensitive data are to be encrypted.
For non-security-sensitive data encryption, refer
to 'P'.

If the applications connect to any remote server
as trusted, the USERNAMES column must
specify 'O' or 'S'.

G

2120 SQL Reference

Column name Data type Description Use

SECURITY_OUT
(continued) P The option is “password”. Outbound connection

requests contain an authorization ID and a
password. The password is obtained from the
SYSIBM.USERNAMES table. The USERNAMES
column must specify 'O'.

This option indicates that the userid and the
password are to be encrypted if cryptographic
services are available at the requester and if the
server supports encryption. Otherwise, the userid
and the password are sent to the partner in clear
text. For security-sensitive data encryption, see
'E'.

If the applications connect to any remote server
as trusted, the USERNAMES column must
specify 'O' or 'S'.

R The option is “RACF PassTicket”. Outbound
connection requests contain a userid and a RACF
PassTicket. The value specified in the
LINKNAME column is used as the RACF
PassTicket application name for the remote
server.

The authorization ID used for an outbound
request is either the DB2 user's authorization ID
or a translated ID, depending upon the value of
the USERNAMES column.

The authorization ID is not encrypted when it is
sent to the partner.

USERNAMES
CHAR(1)
NOT NULL WITH
DEFAULT

This column controls outbound authorization ID
translation. Outbound translation is performed when an
authorization ID is sent by DB2 to a remote server.

O An outbound ID is subject to translation. Rows
in the SYSIBM.USERNAMES table are used to
perform ID translation.

No translation or “come from” checking is
performed on inbound IDs.

S Row in the SYSIBM.USERNAMES table is used
to obtain the system AUTHID used to establish a
trusted connection.

blank No translation occurs.

G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2121

Column name Data type Description Use

IPADDR
VARCHAR(254)
NOT NULL WITH
DEFAULT

This column contains an IPv4 or IPv6 address, or domain
name of a remote TCP/IP host. The IPADDR column
must be specified as follows:

v An IPv4 address must be left justified and is
represented as a dotted decimal address. For example,
'123.456.78.91' would be interpreted as an IPv4 address.

v An IPv6 address must be left justified and is
represented as a colon hexadecimal address. An
example of an IPv6 address is
'2001:0DB8:0000:0000:0008:0800:200C:417A', which can
also be expressed in compressed form as
'2001:DB8::8:800:200C:417A'.

v A domain name is converted to an IP address by the
domain name server where a resulting IPv4 or IPv6
address is determined. An example of a domain name
is 'stlmvs1.svl.ibm.com'.

G

2122 SQL Reference

SYSIBM.LOCATIONS table
The SYSIBM.LOCATIONS table contains a row for every accessible remote server.
The row associates a LOCATION name with the TCP/IP or SNA network
attributes for the remote server. Requesters are not defined in this table.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

LOCATION
VARCHAR(128)
NOT NULL

A unique location name for the accessible server. This is
the name by which the remote server is known to local
DB2 SQL applications.

G

LINKNAME
VARCHAR(24)
NOT NULL

Identifies the VTAM® or TCP/IP attributes associated
with this location. For any LINKNAME specified, one or
both of the following statements must be true:

v A row exists in SYSIBM.LUNAMES whose LUNAME
matches the value specified in the
SYSIBM.LOCATIONS LINKNAME column. This row
specifies the VTAM communication attributes for the
remote location.

v A row exists in SYSIBM.IPNAMES whose LINKNAME
matches the value specified in the
SYSIBM.LOCATIONS LINKNAME column. This row
specifies the TCP/IP communication attributes for the
remote location.

G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

PORT
VARCHAR(96)
NOT NULL WITH
DEFAULT

TCP/IP is used for outbound DRDA connections when
the following statement is true:

v A row exists in SYSIBM.IPNAMES, where the
LINKNAME column matches the value specified in the
SYSIBM.LOCATIONS LINKNAME column.

If the above mentioned row is found, the value of the
PORT column is interpreted as follows:

v If PORT is blank, the default DRDA port (446) is used.

v If PORT is nonblank, the value specified for PORT can
take one of two forms:

– If the value in PORT is left justified with 1-5
numeric characters, the value is assumed to be the
TCP/IP port number of the remote database server.

– Any other value is assumed to be a TCP/IP service
name, which can be converted to a TCP/IP port
number using the TCP/IP getservbyname socket call.
TCP/IP service names are not case sensitive.

G

Appendix. Additional information for DB2 SQL 2123

Column name Data type Description Use

TPN
VARCHAR(192)
NOT NULL WITH
DEFAULT

Used only when the local DB2 begins an SNA
conversation with another server. When used, TPN
indicates the SNA LU 6.2 transaction program name
(TPN) that will allocate the conversation. A length of zero
for the column indicates the default TPN. For DRDA
conversations, this is the DRDA default, which is
X'07F6C4C2'. For DB2 private protocol conversations, this
column is not used.

When the server is DB2 Server for VSE & VM, TPN
should contain the resource ID of that machine.

G

DBALIAS
VARCHAR(128)
NOT NULL

Database alias. The name associated with the server. This
name is used to access a remote database server. If
DBALIAS is blank, the location name is used to access the
remote database server. This column does not change the
name of any database objects sent to the remote site that
contains the location qualifier.

This column applies only to DRDA connections.

G

TRUSTED
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Indicates whether the connection to the remote server can
be trusted. This is restricted to TCP/IP only. This column
is ignored for connections using SNA.

Y Location is trusted. Access to the remote location
requires trusted context defined at the remote
location.

N Location is not trusted.

G

SECURE
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Indicates the use of the Secure Socket Layer (SSL)
protocol for outbound DRDA connections when local DB2
applications connects to the remote database server using
TCP/IP.

Y Indicates a secure connection using SSL is
required for the outbound DRDA connection.

N Indicates a secure connection is not required for
the outbound DRDA connection.

G

2124 SQL Reference

SYSIBM.LULIST table
The SYSIBM.LULIST table allows multiple LU names to be specified for a given
LOCATION.

Insert rows into this table when you want to define a remote DB2 data sharing
group. The same value for LUNAME column cannot appear in both the
SYSIBM.LUNAMES table and the SYSIBM.LULIST table. Rows in this table can be
inserted, updated, and deleted.

Column name Data type Description Use

LINKNAME
VARCHAR(24)
NOT NULL

The value of the LINKNAME column in the
SYSIBM.LOCATIONS table with which this row is
associated. This is also the value of the LUNAME column
in the SYSIBM.LUNAMES table. The values of the other
columns in the SYSIBM.LUNAMES row apply to the LU
identified by the LUNAME column in this row of
SYSIBM.LULIST.

G

LUNAME
VARCHAR(24)
NOT NULL

The VTAM logical unit name (LUNAME) of the remote
database system. This LUNAME must not exist in the
LUNAME column of SYSIBM.LUNAMES.

G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2125

SYSIBM.LUMODES table
Each row of the SYSIBM.LUMODES table provides VTAM with conversation limits
for a specific combination of LUNAME and MODENAME. The table is accessed
only during the initial conversation limit negotiation between DB2 and a remote
LU. This negotiation is called change-number-of-sessions (CNOS) processing.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

LUNAME
VARCHAR(24)
NOT NULL

LU name of the server involved in the CNOS processing. G

MODENAME
VARCHAR(24)
NOT NULL

Name of a logon mode description in the VTAM logon
mode table.

G

CONVLIMIT
SMALLINT
NOT NULL

Maximum number of active conversations between the
local DB2 and the other system for this mode. Used to
override the number in the DSESLIM parameter of the
VTAM APPL definition statement for this mode.

G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2126 SQL Reference

SYSIBM.LUNAMES table
The SYSIBM.LUNAMES table must contain a row for each remote SNA client or
server that communicates with DB2.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

LUNAME
VARCHAR(24)
NOT NULL

Name of the LU for one or more accessible systems. A
blank string indicates the row applies to clients whose LU
name is not specifically defined in this table.

All other column values for a given row in this table are
for clients and servers associated with the row's LU name.

G

SYSMODENAME
VARCHAR(24)
NOT NULL
WITH DEFAULT

Mode used to establish inter-system conversations. A
blank indicates the default mode IBMDB2LM (DB2
private protocol access and for collecting sysplex
balancing information from remote data sharing groups).

If private protocols are used to access a remote DB2 LU
or if the remote LU is a member of a DB2 data sharing
group, use a separate mode other than the default mode.

G

SECURITY_IN
CHAR(1)
NOT NULL WITH
DEFAULT 'A'

This column defines the security options that are accepted
by this DB2 when an SNA client connects to DB2:

V The option is “verify”. An incoming connection
request must include one of the following: a
userid and password, a userid and RACF
PassTicket, or a Kerberos security ticket.

A The option is “already verified”. A request does
not need a password, although a password is
checked if it is sent.

With this option, an incoming connection request
is accepted if it includes any of the following: a
userid, a userid and password, a userid and
RACF PassTicket, or a Kerberos security ticket.

If the USERNAMES column contains 'I' or 'B',
RACF is not invoked to validate incoming
connection requests that contain only a userid
unless one of the following situations is true:

v The RACF access control authorization exit
(DSNX@XAC) is enabled

v The IBM supplied RACF SECLABEL resource
class is active.

G

Appendix. Additional information for DB2 SQL 2127

Column name Data type Description Use

SECURITY_OUT
CHAR(1)
NOT NULL WITH
DEFAULT 'A'

This column defines the security option that is used when
local DB2 SQL applications connect to any remote server
associated with this LUNAME:

A The option is “already verified”. Outbound
connection requests contain an authorization ID
and no password.

The authorization ID used for an outbound
request is either the DB2 user's authorization ID
or a translated ID, depending upon the value of
the USERNAMES column.

R The option is “RACF PassTicket”. Outbound
connection requests contain a userid and a RACF
PassTicket. The server's LU name is used as the
RACF PassTicket application name.

The authorization ID used for an outbound
request is either the DB2 user's authorization ID
or a translated ID, depending upon the value of
the USERNAMES column.

P The option is “password”. Outbound connection
requests contain an authorization ID and a
password. The password is obtained from the
SYSIBM.USERNAMES table or RACF, depending
upon the value specified in the
ENCRYPTPSWDS column.

The USERNAMES column must specify 'B' or 'O'.

G

ENCRYPTPSWDS
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

This column only applies to DB2 for z/OS partners. It is
provided to support connectivity to prior releases of DB2
that are unable to support RACF PassTickets.

For connections between DB2 Version 5 and later, use the
SECURITY_OUT='R' option instead of the
ENCRYPTPSWDS='Y' option.

N No, passwords are not in internal RACF
encrypted format. This is the default.

Y Yes for outbound requests, the encrypted
password is extracted from RACF and sent to the
server. For inbound requests, the password is
treated as encrypted.

G

MODESELECT
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether to use the SYBIBM.MODESELECT table:

N Use default modes: IBMDB2LM (for DB2 private
protocol) and IBMRDB (for DRDA).

Y Searches SYSIBM.MODESELECT for appropriate
mode name.

G

2128 SQL Reference

Column name Data type Description Use

USERNAMES
CHAR(1)
NOT NULL WITH
DEFAULT

This column controls inbound and outbound
authorization ID translation, and “come from” checking.

Inbound translation and “come from” checking are
performed when an authorization ID is received from a
remote client.

Outbound translation is performed when an authorization
ID is sent by DB2 to a remote server.

When 'I', 'O', or 'B' is specified in this column, rows in the
SYSIBM.USERNAMES table are used to perform ID
translation.

I An inbound ID is subject to translation and
“come from” checking.

No translation is performed on outbound IDs.

O No translation or “come from” checking is
performed on inbound IDs.

An outbound ID is subject to translation.

B An inbound ID is subject to translation and
“come from” checking.

An outbound ID is subject to translation.

blank No translation occurs.

G

GENERIC
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Indicates whether DB2 should use its real LU name or
generic LU name to identify itself to the partner LU,
which is identified by this row.
N The real VTAM LU name of this DB2 subsystem
Y The VTAM generic LU name of this DB2

subsystem

G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2129

SYSIBM.MODESELECT table
The SYSIBM.MODESELECT table associates a mode name with any conversation
created to support an outgoing SQL request. Each row represents one or more
combinations of LUNAME, authorization ID, and application plan name.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

AUTHID
VARCHAR(128)
NOT NULL
WITH DEFAULT

Authorization ID of the SQL request. Blank (the default)
indicates that the MODENAME specified for the row is to
apply to all authorization IDs.

G

PLANNAME
VARCHAR(24)
NOT NULL
WITH DEFAULT

Plan name associated with the SQL request. Blank (the
default) indicates that the MODENAME specified for the
row is to apply to all plan names.

G

LUNAME
VARCHAR(24)
NOT NULL

LU name associated with the SQL request. G

MODENAME
VARCHAR(24)
NOT NULL

Name of the logon mode in the VTAM logon mode table
to be used in support of the outgoing SQL request. If
blank, IBMDB2LM is used for DB2 private protocol
connections and IBMRDB is used for DRDA connections.

G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2130 SQL Reference

SYSIBM.SYSAUDITPOLICIES table
The SYSIBM.SYSAUDITPOLICIES table contains one row for each audit policy.

A user with SECADM authority has the privilege to select from, insert, update, or
delete from this catalog table. A user with SQLADM, system DBADM,
DATAACCESS, ACCESSCTRL, SYSCTRL or SYSADM authority has the privilege
to select from this catalog table.

Column name Data type Description Use

AUDITPOLICYNAME VARCHAR(128)
NOT NULL

Name of the audit policy. The name must be an identifier
of 1 to 128 characters and must begin with a letter. Any
other values result in an error being returned when audit
policy is started.

G

OBJECTSCHEMA VARCHAR(128)
NOT NULL
WITH DEFAULT

Schema of the audited object. The object schema only
applies to categories, OBJMAINT and EXECUTE.

G

OBJECTNAME VARCHAR(128)
NOT NULL
WITH DEFAULT

Name of the object. The object name only applies to
categories, OBJMAINT and EXECUTE. Object name can
be specified using an SQL LIKE predicate. If the object
name is specified using an SQL LIKE predicate, it has to
be specified as a delimited identifier. The escape character
to be used for the SQL LIKE predicate is obtained from
RGFESCP subsystem parameter. If not specified, the
default escape character is '+'.

G

OBJECTTYPE CHAR(1)
NOT NULL
WITH DEFAULT

Type of the object.

C Clone table

P Implicit table created for XML columns

T Table

blank All of the above object types

All other values
Error when audit policy is started

The object type only applies to categories, OBJMAINT
and EXECUTE

G

CREATEDTS TIMESTAMP
NOT NULL
WITH DEFAULT

The time when the row was inserted. G

ALTEREDTS TIMESTAMP
NOT NULL
WITH DEFAULT

The time when the row was last updated. G

CHECKING CHAR(1)
NOT NULL
WITH DEFAULT

Indicates if authorization and authentication failures are
audited:

A Audit all failures (Authorization and
authentication failures)

blank Audit none

All other values
Error when audit policy is started

G

Appendix. Additional information for DB2 SQL 2131

Column name Data type Description Use

VALIDATE CHAR(1)
NOT NULL
WITH DEFAULT

Indicates if auditing is enabled for when a trusted
connection is established or used by a different user:

A Audit all

blank Audit none

All other values
Error when audit policy is started

G

OBJMAINT CHAR(1)
NOT NULL
WITH DEFAULT

Indicates if auditing is enabled for when the table that is
identified by OBJECTSCHEMA, OBJECTNAME, and
OBJECTTYPE columns is altered or dropped:

A Audit when the specified table is altered or
dropped

blank Audit none

All other values
Error when audit policy is started

G

EXECUTE CHAR(1)
NOT NULL
WITH DEFAULT

Indicates if auditing is enabled for when the table
identified that is by the OBJECTSCHEMA,
OBJECTNAME, and OBJECTTYPE columns is accessed
during the first operation performed by each unit of
work. Also, records bind time information about SQL
statements that involve tables that are identified by the
OBJECTSCHEMA, OBJECTNAME, and OBJECTTYPE.

A Audit when the specified table is accessed
during the first operation of any kind performed
by each unit of work of a utility or application
process.

C Audit when the specified table is accessed
during the first insert, update, or delete
operation performed by each unit of work.

blank Audit none

All other values
Error when audit policy is started

G

CONTEXT CHAR(1)
NOT NULL
WITH DEFAULT

Indicates if auditing is enabled for the start of a utility, a
change to a utility object or phase, and the end of utility:

A Audit all utilities

blank Audit none

All other values
Error when audit policy is started

G

SECMAINT CHAR(1)
NOT NULL
WITH DEFAULT

Indicates if auditing is enabled for when a grant or
revoke is made or a trusted context is created or altered:

A Audit all

blank Audit none

All other values
Error when audit policy is started

G

2132 SQL Reference

Column name Data type Description Use

SYSADMIN VARCHAR(128)
NOT NULL
WITH DEFAULT

Indicates if auditing is enabled for when an operation is
performed using an administrative authority to perform
system administration tasks:

blank Audit none

* Audit all the authorities

I Installation SYSADM

L SYSCTRL

O SYSOPR

R Installation SYSOPR

S SYSADM

All other values
Error when audit policy is started

The value of SYSADMIN can be a concatenated string of
all supported values. For example, 'LOS' would indicate
auditing of any operation that is performed using the
administrative authorities: SYSCTRL, SYSOPR, and
SYSADM. Multiple occurrences of a value are ignored.

G

DBADMIN VARCHAR(128)
NOT NULL
WITH DEFAULT

Indicates if auditing is enabled for when an operation is
performed using an administrative authority to perform
database administration tasks:

blank Audit none

* Audit all the authorities

B System DBADM

C DBCTRL

D DBADM

E SECADM

G ACCESSCTRL

K SQLADM

M DBMAINT

P PACKADM

T DATAACCESS

All other values
Error when audit policy is started

The value of DBADMIN can be a concatenated string of
all supported values. For example, 'BMP' would indicate
auditing of any operation that is performed using the
administrative authorities: System DBADM, DBMAINT,
and PACKADM. Multiple occurrences of a value are
ignored.

G

DBNAME VARCHAR(24)
NOT NULL
WITH DEFAULT

Database name. The database name can be used to specify
the database for auditing DBADM, DBCTRL, and
DBMAINT authorities. If the database name is not
specified, then all the databases, including implicit
databases are audited. If the database name is specified, it
only applies to DBADM, DBCTRL, and DBMAINT
authorities in category, DBADMIN.

G

Appendix. Additional information for DB2 SQL 2133

Column name Data type Description Use

COLLID VARCHAR(128)
NOT NULL
WITH DEFAULT

Name of the package collection. The package collection
can be used to specify the collection name for auditing
PACKADM authority. If specified, all packages in that
collection are audited. If the collection name is not
specified, packages in all collections are audited. If the
package collection is specified, it only applies to
PACKADM authority in category, DBADMIN.

G

DB2START CHAR(1)
NOT NULL
WITH DEFAULT

ndicates if audit policies are to be started automatically
during DB2 start up. Up to 8 audit policies can be
specified.

Y Audit policy will be started automatically during
DB2 startup.

S Audit policy will be started automatically during
DB2 startup. The audit policy can be stopped
only by a user with SECADM authority.

N Audit policy will not be started automatically
during DB2 startup.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2134 SQL Reference

SYSIBM.SYSAUTOALERTS table
The SYSIBM.SYSAUTOALERTS table contains one row for each recommendation
from autonomic procedures.

Column name Data type Description Use

ALERT_ID BIGINT
NOT NULL
GENERATED ALWAYS
AS IDENTITY

The ID of the alert described in this row. G

HISTORY_ENTRY_ID BIGINT
NOT NULL

The ID of the entry in the
ADMIN_UTLPROCEDURES_HIST procedure that
produced this alert.

G

ACTION VARCHAR(32)
NOT NULL

The type of action requested by this alert. G

TARGET_QUALIFIER VARCHAR(128)
NOT NULL

The qualifier name of the DB2 object (the database name)
to which this alert applies.

G

TARGET_OBJECT VARCHAR(128)
NOT NULL

The name of the DB2 object (the table space name) to
which this alert applies.

G

TARGET_PARTITION SMALLINT
NOT NULL

The partition number of the DB2 object to which this alert
applies. Zero, if this alert applies to all partitions or if the
object is not partitioned.

G

OPTIONS VARCHAR(4000) The options that should be specified when the
corresponding action is run:

USE PROFILE
Use the options specified in the profile

TABLE Options only apply for this table

COLUMNS
Options only apply for these columns

SAMPLE
The table space is too big and sampling is
allowed

G

CREATEDTS TIMESTAMP
NOT NULL
WITH DEFAULT

The timestamp when the alert was issued. G

DURATION INTEGER An estimate of the time, in seconds, that would be needed
to run the corresponding action.

If this column contains NULL, the execution plan might
overwrite the time window.

G

STATUS VARCHAR(32) The status of the actual planned task. Valid values are:

OPEN The alert is not yet resolved

INPROGRESS
The alert execution is in progress

COMPLETED
The alert execution is complete

G

STARTTS TIMESTAMP The timestamp for when the alert execution started. This
column contains NULL if the task execution has not yet
started.

G

ENDTS TIMESTAMP The timestamp for when the alert execution ended. This
column contains NULL if the task execution has not yet
ended.

G

Appendix. Additional information for DB2 SQL 2135

Column name Data type Description Use

RETURN_CODE INTEGER The return code that is written directly by the autonomic
stored procedure that resolved the alert. This column
contains NULL if the alert is not yet resolved, if the
autonomic stored procedure failed, or if the autonomic
stored procedure does not write any return code. A
RETURN_CODE of 0 is expected in case of a successful
execution.

G

ERROR_MESSAGE VARCHAR(1331) An error message that indicates why the alert was not
resolved successfully. This column contains NULL if the
alert is not yet resolved, or if the autonomic stored
procedure that executes the alert does not write any error
message. No ERROR_MESSAGE text is expected in case of
a successful execution.

G

OUTPUT CLOB(2M) The output that is written directly by the autonomic
stored procedure that executes the planned task. This
column contains NULL if the task is not yet executed, if
the execution failed, or if the autonomic stored procedure
does not write any output.

G

ROWID ROWID
NOT NULL
GENERATED ALWAYS

The ROWID value for the CLOB column of this table. G

2136 SQL Reference

SYSIBM.SYSAUTOALERTS_OUT table
The SYSIBM.SYSAUTOALERTS_OUT table is an auxiliary table for the OUTPUT
column of the SYSIBM.SYSAUTOALERTS table.

Column name Data type Description Use

OUTPUT CLOB(2M) The output of the autonomic stored procedure. G

Appendix. Additional information for DB2 SQL 2137

SYSIBM.SYSAUTORUNS_HIST table
The SYSIBM.SYSAUTORUNS_HIST table contains one row for each time an
autonomic procedures has been run.

Column name Data type Description Use

HISTORY_ENTRY_ID BIGINT
NOT NULL
GENERATED ALWAYS
AS IDENTITY

The ID of the entry in the history table. G

PROC_NAME VARCHAR(128)
NOT NULL

The name of the autonomic stored procedure that
produced this entry.

G

STARTTS TIMESTAMP The timestamp when the autonomic stored procedure
started.

G

ENDTS TIMESTAMP The timestamp when the autonomic stored procedure
ended.

G

OUTPUT CLOB(2M) The output of the autonomic stored procedure. G

ERROR_MESSAGE VARCHAR(1331) An error message that indicates why the autonomic stored
procedure was not successful. No ERROR_MESSAGE text
is expected in case of a successful execution.

G

RETURN_CODE INTEGER The return code written directly by the autonomic stored
procedure. This column contains NULL if the autonomic
stored procedure execution failed, or if the autonomic
stored procedure does not write any return code. A
RETURN_CODE of 0 is expected in case of a successful
execution.

G

ROWID ROWID
NOT NULL
GENERATED ALWAYS

The ROWID value for the OUTPUT column of this table. G

2138 SQL Reference

SYSIBM.SYSAUTORUNS_HISTOU table
The SYSIBM.SYSAUTORUNS_HISTOU table is an auxiliary table for the OUTPUT
column of the SYSIBM.SYSAUTORUNS_HIST table.

Column name Data type Description Use

OUTPUT CLOB(2M) The output of the autonomic stored procedure. G

Appendix. Additional information for DB2 SQL 2139

SYSIBM.SYSAUTOTIMEWINDOWS table
The SYSIBM.SYSAUTOTIMEWINDOWS table contains one row for each time
period during which autonomic procedures can be run.

Column name Data type Description Use

WINDOW_ID BIGINT
NOT NULL
GENERATED ALWAYS
AS IDENTITY

The ID of the time window described in this row. G

DB2_SSID CHAR(4) The DB2 member name on which the planned tasks have
to be run.

If this column contains NULL, the tasks in this time
window can be run on any DB2 member.

G

MONTH_WEEK CHAR(1)
NOT NULL

Indicates how the value of the DAY column is interpreted:

M The value of the DAY column is interpreted as a
day of the month

W The value of the DAY column is interpreted as a
day of the week

G

MONTH INTEGER Month in which the time window applies. The value will
be from 1 (January) to 12 (December).

If this column contains NULL, the time window applies to
all months. If MONTH_WEEK is 'W', this column must be
NULL.

G

DAY INTEGER Day of the month or day of the week for which the time
window applies. If this column contains NULL, the time
window applies to every day of the month or to every day
of the week (depending on the value of the
MONTH_WEEK column).

G

FROM_TIME TIME The time of day at which the time window begins.

If this column contains NULL, no limitation on the time
exists. This column will contain NULL if the TO_TIME
column contains NULL.

G

TO_TIME TIME The time of day at which the time window ends.

If this column contains NULL, no limitation on the time
exists. This column will contain NULL if the FROM_TIME
column contains NULL.

G

ACTION VARCHAR(256) The comma-separated list of actions that are allowed
during this time window.

If this column contains NULL, all actions are allowed.

G

MAX_TASKS INTEGER The number of concurrent actions that are allowed during
this time window.

If this column contains NULL, any number of actions are
allowed concurrently.

G

2140 SQL Reference

SYSIBM.SYSAUXRELS table
The SYSIBM.SYSAUXRELS table contains one row for each auxiliary table created
for a LOB column. A base table space that is partitioned must have one auxiliary
table for each partition of each LOB column.

Column name Data type Description Use

TBOWNER
VARCHAR(128)
NOT NULL

The schema of the base table. G

TBNAME
VARCHAR(128)
NOT NULL

Name of the base table. G

COLNAME
VARCHAR(128)
NOT NULL

Name of the LOB column in the base table. G

PARTITION
SMALLINT
NOT NULL

Partition number if the base table space is partitioned.
Otherwise, the value is 0.

G

AUXTBOWNER
VARCHAR(128)
NOT NULL

The schema of the auxiliary table. G

AUXTBNAME
VARCHAR(128)
NOT NULL

Name of the auxiliary table. G

AUXRELOBID
INTEGER
NOT NULL

Internal identifier of the relationship between the base
table and the auxiliary table.

S

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. Blank
if created prior to Version 9. See Release dependency
indicators for all other values.

G

Appendix. Additional information for DB2 SQL 2141

SYSIBM.SYSCHECKDEP table
The SYSIBM.SYSCHECKDEP table contains one row for each reference to a column
in a check constraint.

Column name Data type Description Use

TBOWNER
VARCHAR(128)
NOT NULL

The schema of the table on which the check constraint is
defined.

G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table on which the check constraint is
defined.

G

CHECKNAME
VARCHAR(128)
NOT NULL

Name of the check constraint. G

COLNAME
VARCHAR(128)
NOT NULL

Name of the column that the check constraint refers to. G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2142 SQL Reference

SYSIBM.SYSCHECKS table
The SYSIBM.SYSCHECKS table contains one row for each check constraint.

Column name Data type Description Use

TBOWNER
VARCHAR(128)
NOT NULL

The schema of the table on which the check constraint is
defined.

G

CREATOR
VARCHAR(128)
NOT NULL

Authorization ID of the creator of the check constraint. G

DBID
SMALLINT
NOT NULL

Internal identifier of the database for the check constraint. S

OBID
SMALLINT
NOT NULL

Internal identifier of the check constraint. S

TIMESTAMP
TIMESTAMP
NOT NULL

Time when the check constraint was created. G

RBA
CHAR(10)
NOT NULL
FOR BIT DATA

The log RBA when the check constraint was created. G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table on which the check constraint is
defined.

G

CHECKNAME
VARCHAR(128)
NOT NULL

Check constraint name. G

CHECKCONDITION
VARCHAR(7400)
NOT NULL

Text of the check constraint. G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. Blank
if created prior to Version 9. See Release dependency
indicators for all other values.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

ENVID INTEGER
NOT NULL
WITH DEFAULT

Internal environment identifier. G

PERIOD CHAR(1)
NOT NULL
WITH DEFAULT

The type of period associated with the check constraint:

B BUSINESS_TIME check constraint

S SYSTEM_TIME check constraint

blank Not applicable

G

Appendix. Additional information for DB2 SQL 2143

|
|
|

SYSIBM.SYSCHECKS2 table
The SYSIBM.SYSCHECKS2 table contains one row for each check constraint for
catalog tables created in or after Version 7. Check constraints for catalog tables
created before Version 7 are not included in this table.

Column name Data type Description Use

TBOWNER
VARCHAR(128)
NOT NULL

The schema of the table on which the check constraint is
defined.

G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table on which the check constraint is
defined.

G

CHECKNAME
VARCHAR(128)
NOT NULL

Check constraint name. G

PATHSCHEMAS
VARCHAR(2048)
NOT NULL

SQL path at the time the check constraint was created.
The path is used to resolve unqualified cast function
names that are used in the constraint definition.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. Blank
if created prior to Version 9. See Release dependency
indicators for all other values.

G

2144 SQL Reference

SYSIBM.SYSCOLAUTH table
The SYSIBM.SYSCOLAUTH table records the UPDATE or REFERENCES privileges
that are held by users on individual columns of a table or view.

Column name Data type Description Use

GRANTOR
VARCHAR(128)
NOT NULL

Authorization ID or role of the user who granted the
privileges. Could also be PUBLIC .

G

GRANTEE
VARCHAR(128)
NOT NULL

Authorization ID or role of the user who holds the
privilege or the name of an application plan or package
that uses the privilege. PUBLIC for a grant to PUBLIC.

G

GRANTEETYPE
CHAR(1)
NOT NULL

Type of grantee:
blank An authorization ID
L Role
P An application plan or a package. The grantee is

a package if COLLID is not blank.

G

CREATOR
VARCHAR(128)
NOT NULL

The schema of the table or view on which the update
privilege is held.

G

TNAME
VARCHAR(128)
NOT NULL

Name of the table or view. G

CHAR(12)
NOT NULL

Internal use only I

CHAR(6)
NOT NULL

Not used N

CHAR(8)
NOT NULL

Not used N

COLNAME
VARCHAR(128)
NOT NULL

Name of the column to which the UPDATE privilege
applies.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

VARCHAR(128)
NOT NULL WITH
DEFAULT

Not used N

COLLID
VARCHAR(128)
NOT NULL WITH
DEFAULT

If GRANTEE is a package, its collection name. Otherwise,
the value is blank.

G

CONTOKEN CHAR(8)
NOT NULL
WITH DEFAULT
FOR BIT DATA

If GRANTEE is a package, the consistency token of the
DBRM from which the package was derived. Otherwise,
the value is blank.

S

Appendix. Additional information for DB2 SQL 2145

Column name Data type Description Use

PRIVILEGE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates which privilege this row describes:
R Row pertains to the REFERENCES privilege.
blank Row pertains to the UPDATE privilege.

G

GRANTEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

GRANTORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
L Role
blank Authorization ID that is not a role

G

2146 SQL Reference

SYSIBM.SYSCOLDIST table
The SYSIBM.SYSCOLDIST table contains one or more rows for the cardinality,
frequency, and histogram statistics for a single column or a column group.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

SMALLINT
NOT NULL

Not used N

STATSTIME
TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

TBOWNER
VARCHAR(128)
NOT NULL

The schema of the table that contains the column.
G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table that contains the column. G

NAME
VARCHAR(128)
NOT NULL

Name of the column. If NUMCOLUMNS is greater than
1, this name identifies the first column name of the set of
columns associated with the statistics.

G

COLVALUE
VARCHAR(2000)
NOT NULL
OR BIT DATA

Contains the data of a frequently occurring value.
Statistics are not collected for an index on a ROWID
column. If the value has a non-character data type, the
data might not be printable.

S

TYPE
CHAR(1)
NOT NULL WITH
DEFAULT 'F'

The type of statistics gathered:
C Cardinality
F Frequent value
H Histogram Statistics
N Non-padded frequent value

G

CARDF
FLOAT
NOT NULL WITH
DEFAULT -1

For TYPE='C', the number of distinct values for the
column group. For TYPE='H', the number of distinct
values for the column group in a quantile indicated by
QUANTILENO.

S

COLGROUPCOLNO
VARCHAR(254)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Identifies the set of columns associated with the statistics.
If the statistics are only associated with a single column,
the field contains a zero length. Otherwise, the field is an
array of SMALLINT column numbers with a dimension
equal to the value in NUMCOLUMNS. This is an
updatable column.

S

NUMCOLUMNS
SMALLINT
NOT NULL WITH
DEFAULT 1

Identifies the number of columns associated with the
statistics.

G

Appendix. Additional information for DB2 SQL 2147

|
|

Column name Data type Description Use

FREQUENCYF
FLOAT
NOT NULL WITH
DEFAULT -1

Gives the percentage of rows in the table with the value
specified in COLVALUE when the number is multiplied
by 100. For example, a value of '1' indicates 100%. A value
of '.153' indicates 15.3%.

When TYPE='H', this is the percentage of rows in table
which falls at the quantile indicated by QUANTILENO
whose range is limited by [LOWVALUE, HIGHVALUE].

Statistics are not collected for an index on a ROWID
column.

G

QUANTILENO
SMALLINT
NOT NULL WITH
DEFAULT -1

Ordinary sequence number of a quantile in the whole
consecutive value range, from low to high. This column is
not updatable.

G

LOWVALUE
VARCHAR(2000)
NOT NULL WITH
DEFAULT FOR
BIT DATA

For TYPE='H', this is the lower bound for the quantile
indicated by QUANTILENO. Not used if TYPE is not 'H'.
This column is not updatable.

G

HIGHVALUE
VARCHAR(2000)
NOT NULL WITH
DEFAULT FOR
BIT DATA

For TYPE='H', this is the higher bound for the quantile
indicated by QUANTILENO. Not used if TYPE is not 'H'.
This column is not updatable.

G

2148 SQL Reference

SYSIBM.SYSCOLDISTSTATS table
The SYSIBM.SYSCOLDISTSTATS table contains zero or more rows per partition for
the cardinality, frequency, and histogram statistics for a single column or a column
group.

No row is inserted if the index is a non-partitioned index. Rows in this table can
be inserted, updated, and deleted.

Column name Data type Description Use

SMALLINT
NOT NULL

Not used N

STATSTIME
TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

PARTITION
SMALLINT
NOT NULL

Partition number for the table space that contains the
table in which the column is defined.

G

TBOWNER
VARCHAR(128)
NOT NULL

The schema of the table that contains the column.
G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table that contains the column. G

NAME
VARCHAR(128)
NOT NULL

Name of the column. If NUMCOLUMNS is greater than
1, this name identifies the first column name of the set of
columns associated with the statistics.

G

COLVALUE
VARCHAR(2000)
NOT NULL
FOR BIT DATA

Contains the data of a frequently occurring value.
Statistics are not collected for an index on a ROWID
column. If the value has a non-character data type, the
data might not be printable.

S

TYPE
CHAR(1)
NOT NULL WITH
DEFAULT 'F'

The type of statistics gathered:
C Cardinality
F Frequent value
H Histogram statistics
N Non-padded frequent value

G

CARDF
FLOAT
NOT NULL WITH
DEFAULT -1

If TYPE is C, the value is the number of distinct values
for the column group. If TYPE is N or TYPE is F, the
value is the number of rows or keys in the partition for
which the FREQUENCYF value applies. If TYPE is H, the
number of distinct values for the column group in a
quantile indicated by QUANTILENO.

S

Appendix. Additional information for DB2 SQL 2149

|
|
|

Column name Data type Description Use

COLGROUPCOLNO
VARCHAR(254)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Identifies the set of columns associated with the statistics.
If the statistics are only associated with a single column,
the field contains a zero length. Otherwise, the field is an
array of SMALLINT column numbers with a dimension
equal to the value in NUMCOLUMNS. This is an
updatable column.

S

NUMCOLUMNS
SMALLINT
NOT NULL WITH
DEFAULT 1

Identifies the number of columns associated with the
statistics.

G

FREQUENCYF
FLOAT
NOT NULL WITH
DEFAULT -1

Gives the percentage of rows in the table with the value
specified in COLVALUE when the number is multiplied
by 100. For example, a value of '1' indicates 100%. A value
of '.153' indicates 15.3%.

When TYPE='H', this is the percentage of rows in table
which falls in the quantile indicated by QUANTILENO
whose range is limited by [LOWVALUE, HIGHVALUE].

Statistics are not collected for an index on a ROWID
column.

G

VARCHAR(1000)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Internal use only I

QUANTILENO
SMALLINT
NOT NULL WITH
DEFAULT -1

Ordinary sequence number of a quantile in the whole
consecutive value range, from low to high. This column is
not updatable.

G

LOWVALUE
VARCHAR(2000)
NOT NULL WITH
DEFAULT FOR
BIT DATA

For TYPE='H', this is the lower bound for the quantile
indicated by QUANTILENO. Not used if TYPE is not 'H'.
This column is not updatable.

G

HIGHVALUE
VARCHAR(2000)
NOT NULL WITH
DEFAULT FOR
BIT DATA

For TYPE='H', this is the higher bound for the quantile
indicated by QUANTILENO. Not used if TYPE is not 'H'.
This column is not updatable.

G

2150 SQL Reference

SYSIBM.SYSCOLDIST_HIST table
The SYSIBM.SYSCOLDIST_HIST table contains rows from SYSCOLDIST.

Rows are added or changed in this table when RUNSTATS collects history
statistics. Rows in this table can also be inserted, updated, and deleted.

Column name Data type Description Use

STATSTIME
TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics.

G

TBOWNER
VARCHAR(128)
NOT NULL

The schema of the table that contains the column.
G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table that contains the column. G

NAME
VARCHAR(128)
NOT NULL

Name of the column. If NUMCOLUMNS is greater than
1, this name identifies the first column name of the set of
columns associated with the statistics.

G

COLVALUE
VARCHAR(2000)
NOT NULL
FOR BIT DATA

Contains the data of a frequently occurring value.
Statistics are not collected for an index on a ROWID
column. If the value has a non-character data type, the
data might not be printable.

S

TYPE
CHAR(1)
NOT NULL WITH
DEFAULT 'F'

The type of statistics gathered:
C Cardinality
F Frequent value
H Histogram Statistics
N Non-padded frequent value

G

CARDF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

When TYPE='C', this is the number of distinct values for
the column group. When TYPE='H', this is he number of
distinct values for the column group in a quantile
indicated by QUANTILENO. The value is -1 if statistics
have not been gathered.

S

COLGROUPCOLNO
VARCHAR(254)
NOT NULL
FOR BIT DATA

Identifies the set of columns associated with the statistics.
If the statistics are only associated with a single column,
the field contains a zero length. Otherwise, the field is an
array of SMALLINT column numbers with a dimension
equal to the value in NUMCOLUMNS.

S

NUMCOLUMNS
SMALLINT
NOT NULL WITH
DEFAULT 1

Identifies the number of columns associated with the
statistics.

G

Appendix. Additional information for DB2 SQL 2151

Column name Data type Description Use

FREQUENCYF
FLOAT(8)
NOT NULL
DEFAULT -1

Gives the percentage of rows in the table with the value
specified in COLVALUE when the number is multiplied
by 100. For example, a value of '1' indicates 100%. A value
of '.153' indicates 15.3%.

When TYPE='H', this is the percentage of rows in table
which falls in the quantile indicated by QUANTILENO
whose range is limited by [LOWVALUE, HIGHVALUE].

Statistics are not collected for an index on a ROWID
column. The value is -1 if statistics have not been
gathered.

G

IBMREQD
CHAR(1)
NOT NULL
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

QUANTILENO
SMALLINT
NOT NULL WITH
DEFAULT -1

Ordinary sequence number of a quantile in the whole
consecutive value range, from low to high. This column is
not updatable.

G

LOWVALUE
VARCHAR(2000)
NOT NULL WITH
DEFAULT FOR
BIT DATA

For TYPE='H', this is the lower bound for the quantile
indicated by QUANTILENO. Not used if TYPE is not 'H'.
This column is not updatable.

G

HIGHVALUE
VARCHAR(2000)
NOT NULL WITH
DEFAULT FOR
BIT DATA

For TYPE='H', this is the higher bound for the quantile
indicated by QUANTILENO. Not used if TYPE is not 'H'.
This column is not updatable.

G

2152 SQL Reference

SYSIBM.SYSCOLSTATS table
The SYSIBM.SYSCOLSTATS table contains partition statistics for selected columns.
For each column, a row exists for each partition in the table.

Rows are inserted when RUNSTATS collects either indexed column statistics or
non-indexed column statistics for a partitioned table space. No row is inserted if
the table space is nonpartitioned. Rows in this table can be inserted, updated, and
deleted.

Column name Data type Description Use

HIGHKEY
VARCHAR(2000)
NOT NULL
FOR BIT DATA

Highest value of the column within the partition. Blank if
statistics have not been gathered or the column is an
indicator column, a node ID column, or a column of an
XML table. If the column has a non-character data type,
the data might not be printable. If the partition is empty,
the value is a string of length 0.

S

HIGH2KEY
VARCHAR(2000)
NOT NULL
FOR BIT DATA

Second highest value of the column within the partition.
Blank if statistics have not been gathered or the column is
an indicator column, a node ID column, or a column of
an XML table. If the column has a non-character data
type, the data might not be printable. If the partition is
empty, the value is a string of length 0.

S

LOWKEY
VARCHAR(2000)
NOT NULL
FOR BIT DATA

Lowest value of the column within the partition. Blank if
statistics have not been gathered or the column is an
indicator column, a node ID column, or a column of an
XML table. If the column has a non-character data type,
the data might not be printable. If the partition is empty,
the value is a string of length 0.

S

LOW2KEY
VARCHAR(2000)
NOT NULL
FOR BIT DATA

Second lowest value of the column within the partition.
Blank if statistics have not been gathered or the column is
an indicator column, a node ID column, or a column of
an XML table. If the column has a non-character data
type, the data might not be printable. If the partition is
empty, the value is a string of length 0.

S

COLCARD
INTEGER
NOT NULL

Number of distinct column values in the partition. S

STATSTIME
TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics. If the value is '0001-01-02.00.00.00.000000', which
indicates that an ALTER TABLE statement was executed
to change the length of a VARCHAR column, RUNSTATS
should be run to update the statistics before they are
used.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

PARTITION
SMALLINT
NOT NULL

Partition number for the table space that contains the
table in which the column is defined.

G

Appendix. Additional information for DB2 SQL 2153

Column name Data type Description Use

TBOWNER
VARCHAR(128)
NOT NULL

Schema or qualifier of the table that contains the column. G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table that contains the column. G

NAME
VARCHAR(128)
NOT NULL

Name of the column. G

VARCHAR(1000)
NOT NULL
FOR BIT DATA

Internal use only I

STATS_FORMAT
CHAR(1)
NOT NULL WITH
DEFAULT

The type of statistics gathered:
blank Statistics have not been collected or varchar

column statistical values are padded.
N Varchar column statistical values are not padded.
This is an updatable column.

G

2154 SQL Reference

SYSIBM.SYSCOLUMNS table
The SYSIBM.SYSCOLUMNS table contains one row for every column of each table
and view.

Column name Data type Description Use

NAME
VARCHAR(128)
NOT NULL

Name of the column. G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table or view which contains the column. G

TBCREATOR
VARCHAR(128)
NOT NULL

The schema of the table or view that contains the column.
G

COLNO
SMALLINT
NOT NULL

Numeric place of the column in the table or view; for
example 4 (out of 10).

G

Appendix. Additional information for DB2 SQL 2155

Column name Data type Description Use

COLTYPE
CHAR(8)
NOT NULL

The type of the column specified in the definition of the
column:
INTEGER

Large integer
SMALLINT

Small integer
FLOAT Floating-point
CHAR Fixed-length character string
VARCHAR

Varying-length character string
LONGVAR

Varying-length character string (for columns that
were added before Version 9)

DECIMAL
Decimal

GRAPHIC
Fixed-length graphic string

VARG Varying-length graphic string
LONGVARG

Varying-length graphic string (for columns that
were added before Version 9)

DATE Date
TIME Time
TIMESTMP

Timestamp
TIMESTZ

Timestamp with time zone
BLOB Binary large object
CLOB Character large object
DBCLOB

Double-byte character large object
ROWID

Row ID data type
DISTINCT

Distinct type
XML XML data type
BIGINT

Big integer
BINARY

Fixed-length binary string
VARBIN

Varying-length binary string
DECFLOAT

Decimal floating point

G

2156 SQL Reference

Column name Data type Description Use

LENGTH
SMALLINT
NOT NULL

Length attribute of the column or, in the case of a decimal
column, its precision. The number does not include the
internal prefixes that are used to record the actual length
and null state, where applicable.
INTEGER

4
SMALLINT

2
BIGINT

8
FLOAT 4 or 8
CHAR Length of string
VARCHAR

Maximum length of string
LONGVAR

Maximum length of string (for columns that
were added before Version 9)

DECIMAL
Precision of number

DECFLOAT
8 or 16

GRAPHIC
Number of DBCS characters

VARGRAPHIC
Maximum number of DBCS characters

LONGVARG
Maximum number of DBCS characters (for
columns that were added before Version 9)

BINARY
Length of string

VARBINARY
Maximum length of string

DATE 4
TIME 3
TIMESTAMP WITHOUT TIME ZONE

The integral part of ((p+1)/2) + 7 where p is the
precision of the timestamp

TIMESTAMP WITH TIME ZONE
The integral part of ((p+1)/2) + 9 where p is the
precision of the timestamp

G

Appendix. Additional information for DB2 SQL 2157

Column name Data type Description Use

LENGTH (continued) SMALLINT
NOT NULL LOB 4 - For a table, a field of length of 4 is stored in

the base table. The maximum length of the LOB
column is found in LENGTH2.

INLINE LOB
Greater than 4 - For a table, a field of length 4
plus the inline length (in byte) is stored in the
base table. The maximum length of the LOB
column is found in LENGTH2.

BLOB 4 - For a table, a field of length of 4 is stored in
the base table. The maximum length of the LOB
column is found in LENGTH2.

CLOB 4 - For a table, a field of length of 4 is stored in
the base table. The maximum length of the CLOB
column is found in LENGTH2.

DBCLOB
4 - For a table, a field of length of 4 is stored in
the base table. The maximum length of the
DBCLOB column is found in LENGTH2.

ROWID
17 - The maximum length of the stored portion
of the identifier.

XML 6

DISTINCT
The length of the source data type.

G

SCALE
SMALLINT
NOT NULL

If the column type is DECIMAL, this value represents the
scale. If the column type is timestamp or timestamp with
time zone, this value represents the number of fractional
second digits. Otherwise the value is 0.

If the column is a timestamp type, the LENGTH is 10 and
the SCALE is 0, the number of fractional second digits is
6.

G

NULLS
CHAR(1)
NOT NULL

Whether the column can contain null values:
N No
Y Yes

The value can be N for a view column that is derived
from an expression that is not a simple column name or
constant, or from a function. Nevertheless, such a column
allows nulls when an outer select list refers to it.

G

COLCARD
INTEGER
NOT NULL

Not used N

HIGH2KEY VARCHAR(2000)
NOT NULL
FOR BIT DATA

Second highest value of the column. Blank if statistics
have not been gathered, or the column is an indicator
column or a column of an auxiliary table. If the column
has a non-character data type, the data might not be
printable. If the table is empty, the value is a string of
length 0. This is an updatable column.

S

2158 SQL Reference

Column name Data type Description Use

LOW2KEY VARCHAR(2000)
NOT NULL
FOR BIT DATA

Second lowest value of the column. Blank if statistics
have not been gathered, or the column is an indicator
column or a column of an auxiliary table. If the column
has a non-character data type, the data might not be
printable. If the table is empty, the value is a string of
length 0. This is an updatable column.

S

UPDATES
CHAR(1)
NOT NULL

Whether the column can be updated:
N No
Y Yes

The value is N if the column is:
v Derived from a function or expression
v A column with a row ID data type (or a distinct type

based on a row ID type)
v A read-only view

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

REMARKS
VARCHAR(762)
NOT NULL

A character string provided by the user with the
COMMENT statement.

G

Appendix. Additional information for DB2 SQL 2159

Column name Data type Description Use

DEFAULT
CHAR(1)
NOT NULL

The contents of this column are meaningful only if the
TYPE column for the associated SYSTABLES row
indicates that this is for a table (T) or a created temporary
table (G).

Default indicator:

A The column has a row ID data type
(COLTYPE='ROWID') and the GENERATED
ALWAYS attribute.

B The column has a default value that depends on
the data type of the column.

Data type
Default Value

Numeric
0

Fixed-length character or graphic string
Blanks

Fixed-length binary string
Hexadecimal zeros

Varying-length string
A string length of 0

Date The current date
Time The current time
Timestamp

The current timestamp
Timestamp with time zone

The current timestamp with time zone

D The column has a row ID data type
(COLTYPE='ROWID') and the GENERATED BY
DEFAULT attribute.

E The column is defined with the FOR EACH
ROW ON UPDATE and GENERATED ALWAYS
attributes.

F The column is defined with the FOR EACH
ROW ON UPDATE and GENERATED BY
DEFAULT attributes.

I The column is defined with the AS IDENTITY
and GENERATED ALWAYS attributes.

J The column is defined with the AS IDENTITY
and GENERATED BY DEFAULT attributes.

K The column is defined for the implicit DOCID
column for a base table that contains XML data.

L The column is defined with the AS SECURITY
LABEL attribute.

N The column has no default value.

Q The column is defined with the AS ROW BEGIN
attribute.

R The column is defined with the AS ROW END
attribute.

G

2160 SQL Reference

Column name Data type Description Use

DEFAULT (continued)
CHAR(1)
NOT NULL

Default indicator:

S The column has a default value that is the value
of the SQL authorization ID of the process at the
time a default value is used.

U The column has a default value that is the value
of the SESSION_USER special register at the time
a default value is used.

Y If the NULLS column is Y, the column has a
default value of null.

If the NULLS column is N, the default value
depends on the data type of the column.

Data type
Default Value

Numeric
0

Fixed-length character string
Blanks

Fixed-length graphic string
Blanks

Fixed-length binary string
Hexadecimal blanks

Varying-length string
A string length of 0

Date The current date
Time The current time
Timestamp

The current timestamp
Timestamp with time zone

The current timestamp with time zone

X The column is defined with the AS
TRANSACTION START ID attribute.

1 The column has a default value that is the string
constant found in the DEFAULTVALUE column
of this table row.

The column has a graphic data type and has a
default value that is the graphic string found in
the DEFAULTVALUE column of this table row.

2 The column has a default value that is the
floating-point constant found in the
DEFAULTVALUE column of this table row.

3 The column has a default value that is the
decimal constant found in the DEFAULTVALUE
column of this table row.

4 The column has a default value that is the
integer constant found in the DEFAULTVALUE
column of this table row.

5 The column has a default value that is the
hexadecimal character string found in the
DEFAULTVALUE column of this table row.

G

Appendix. Additional information for DB2 SQL 2161

Column name Data type Description Use

DEFAULT (continued)
CHAR(1)
NOT NULL

Default indicator:

6 The column has a default value that is the UX
string found in the DEFAULTVALUE column of
this table row.

7 The column has a graphic data type and has a
default value that is the character string constant
found in the DEFAULTVALUE column of this
table row.

8 The column has a character data type and has a
default value that is the graphic string constant
found in the DEFAULTVALUE column of this
table row.

9 The column has a default value that is the
DECFLOAT constant found in the
DEFAULTVALUE column of this table row.

G

KEYSEQ
SMALLINT
NOT NULL

The numeric position of the column within the primary
key of the table. The value is 0 if it is not part of a
primary key.

G

FOREIGNKEY
CHAR(1)
NOT NULL

Applies to character or CLOB columns, where it indicates
the subtype of the data:

B BIT data

M MIXED data

S SBCS data

blank Indicates one of the following subtypes:

v MIXED data if the encoding scheme is
UNICODE, or if the encoding scheme is not
UNICODE and the value of MIXED DATA on
installation panel DSNTIPS is YES

v SBCS data if the encoding scheme is not
UNICODE and the value of MIXED DATA on
the installation panel DSNTIPS is NO.

For views defined prior to Version 7, subtype information
is not available and the default (MIXED or SBCS) is used.

G

FLDPROC
CHAR(1)
NOT NULL

Whether the column has a field procedure:
N No
Y Yes
blank The column is for a view defined prior to

Version 7. Views defined after Version 7 contain
Y or N.

G

LABEL
VARCHAR(90)
NOT NULL

The column label provided by the user with a LABEL
statement; otherwise, the value is an empty string.

G

STATSTIME
TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics. The default value is '0001-01-01.00.00.00.000000'.
If the value is '0001-01-02.00.00.00.000000', which indicates
that an ALTER TABLE statement was executed to change
the length of a VARCHAR column, RUNSTATS should be
run to update the statistics before they are used. This is
an updatable column.

G

2162 SQL Reference

Column name Data type Description Use

DEFAULTVALUE
VARCHAR(1536)
NOT NULL WITH
DEFAULT

This field is meaningful only if the column being
described is for a table (the TYPE column of the
associated SYSTABLES row is T for table or G for created
temporary table).

When the DEFAULT column is 1, 2, 3, 4, 5, 6, 7, 8, or 9,
this field contains the default value of the column.

If the default value is a string constant or a hexadecimal
constant (DEFAULT is 1, 5, 6, 7, or 8 respectively), the
value is stored without delimiters.

If the default value is a numeric constant (DEFAULT is 2,
3, 4, or 9), the value is stored as specified by the user,
including sign and decimal point representation, or
special constant values, as appropriate for the constant.

When the DEFAULT column is S or U and the default
value was specified when a new column was defined
with the ALTER TABLE statement, this field contains the
value of the CURRENT SQLID or SESSION_USER special
register at the time the ALTER TABLE statement was
executed. Remember that this default value applies only
to rows that existed before the ALTER TABLE statement
was executed.

When the DEFAULT column is L and the column was
added as a new column with the ALTER TABLE
statement, this field contains the security label of the user
at the time the ALTER TABLE statement was executed.
Remember that this default value applies only to rows
that existed before the ALTER TABLE statement was
executed.

G

COLCARDF
FLOAT
NOT NULL WITH
DEFAULT

Estimated number of distinct values in the column. For an
indicator column, this is the number of LOBs that are not
null and have a length greater than zero. The value is -1 if
statistics have not been gathered. The value is -2 if the
column is a LOB column. This is an updatable column.

S

COLSTATUS
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the status of the definition of a column:
I The definition is incomplete because a LOB table

space, auxiliary table, or index on an auxiliary
table has not been created for the column.

blank The definition is complete.

G

LENGTH2
INTEGER
NOT NULL WITH
DEFAULT

Maximum length of the data retrieved from the column.
Possible values are:
0 Column is not a LOB or ROWID column
40 For a ROWID column, the length of the returned

value
1 to 2,147,483,647 bytes

For a LOB column, the maximum length

G

DATATYPEID
INTEGER
NOT NULL WITH
DEFAULT

For a built-in data type, the internal ID of the built-in
type. For a distinct type, the internal ID of the distinct
type.

If the column was created prior to Version 6, the value is
0.

S

Appendix. Additional information for DB2 SQL 2163

|
|
|
|
|

Column name Data type Description Use

SOURCETYPEID
INTEGER
NOT NULL WITH
DEFAULT

For a built-in data type, 0. For a distinct type, the internal
ID of the built-in data type upon which the distinct type
is based.

If the column was created prior to Version 6, the value is
0.

S

TYPESCHEMA
VARCHAR(128)
NOT NULL WITH
DEFAULT 'SYSIBM'

If COLTYPE is 'DISTINCT', the schema of the distinct
type. Otherwise, the value is 'SYSIBM'.

G

TYPENAME
VARCHAR(128)
NOT NULL WITH
DEFAULT

If COLTYPE is 'DISTINCT', the name of the distinct type.
Otherwise, the value is the same as the value of the
COLTYPE column. TYPENAME is set only for columns
created in Version 6 or later. The value for columns
created earlier is not filled in.

G

CREATEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Timestamp when the column was created. The value is
'0001-01-01.00.00.00.000000' if the column was created
prior to migration to Version 6 or if the column is in a
catalog table.

G

STATS_FORMAT
CHAR(1)
NOT NULL WITH
DEFAULT

The type of statistics gathered:
blank Statistics have not been collected or varchar

column statistical values are padded.
N Varchar column statistical values are not padded.
This is an updatable column.

G

PARTKEY_COLSEQ
SMALLINT
NOT NULL WITH
DEFAULT

The numeric position of the column within the
partitioning key of the table. The value is 0 if it is not part
of the partitioning key.

This column is applicable only if the table uses
table-controlled partitioning.

G

PARTKEY_ORDERING
CHAR(1)
NOT NULL WITH
DEFAULT

Order of the column in the partitioning key:
A Ascending
D Descending
blank Column is not used as part of a partitioning key

This column is applicable only if the table uses
table-controlled partitioning.

G

ALTEREDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Timestamp when alter occurred. G

CCSID
INTEGER
NOT NULL WITH
DEFAULT

CCSID of the column. 0 if the object was created prior to
Version 8 or is not a string column.

The value is also 0 if the object is not a VARBINARY
column defined as a Unicode column.

G

HIDDEN
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Indicates whether the column is implicitly hidden:
P Partially hidden. The column is implicitly hidden

from SELECT *.
N Not hidden. The column is visible to all SQL

statements.

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for the values.

G

2164 SQL Reference

|
|

Column name Data type Description Use

HASHKEY_COLSEQ
SMALLINT
NOT NULL
WITH DEFAULT

The column's numeric position within the table's hash
key. The value is 0 if the column is not part of the hash
key. This column is applicable only if the table that use
hash organization.

G

CONTROL_ID INTEGER
NOT NULL
WITH DEFAULT

Internal identifier of the column access control mask
defined for this column. 0 if no column access control
mask is defined for the column.

S

XML_TYPEMOD_ID INTEGER
NOT NULL
WITH DEFAULT

The ID of the XML type modifier. It is set to 0 if the
column is not an XML column or has no XML type
modifier.

G

PERIOD
CHAR(1)
NOT NULL
WITH DEFAULT

Indicates whether the column is the start or the end of the
period for a SYSTEM_TIME or BUSINESS_TIME period:

B Column is the start of period BUSINESS_TIME.

C Column is the end of period BUSINESS_TIME.

S Column is the start of period SYSTEM_TIME.

T Column is the end of period SYSTEM_TIME.

blank Column is not used as either the start or the end
of a period.

G

GENERATED_
ATTRIBUTE CHAR(1)

NOT NULL
WITH DEFAULT

Indicates the columns generated attribute:

A Column is defined as GENERATED_ALWAYS.

D Column is defined as GENERATED BY
DEFAULT.

blank Not applicable or the value of the DEFAULT
column is A, D, E, F, I, or J or defined from a
prior release of DB2.

G

Appendix. Additional information for DB2 SQL 2165

SYSIBM.SYSCOLUMNS_HIST table
The SYSIBM.SYSCOLUMNS_HIST table contains rows from SYSCOLUMNS.

Rows are added or changed in this table when RUNSTATS collects history
statistics. Rows in this table can also be inserted, updated, and deleted.

Column name Data type Description Use

NAME
VARCHAR(128)
NOT NULL

Name of the column. G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table or view that contains the column. G

TBCREATOR
VARCHAR(128)
NOT NULL

Schema or qualifier of the table or view that contains the
column.

G

COLNO
SMALLINT
NOT NULL

Numeric place of the column in the table or view. For
example 4 (out of 10).

G

2166 SQL Reference

Column name Data type Description Use

COLTYPE
CHAR(8)
NOT NULL

The type of the column specified in the definition of the
column:
INTEGER

Large integer
SMALLINT

Small integer
FLOAT Floating-point
CHAR Fixed-length character string
VARCHAR

Varying-length character string
LONGVAR

Varying-length character string (for columns that
were added before Version 9)

DECIMAL
Decimal

GRAPHIC
Fixed-length graphic string

VARG Varying-length graphic string
LONGVARG

Varying-length graphic string (for columns that
were added before Version 9)

DATE Date
TIME Time
TIMESTAMP

Timestamp
TIMESTZ

Timestamp with time zone
BLOB Binary large object
CLOB Character large object
DBCLOB

Double-byte character large object
ROWID

Row ID data type
DISTINCT

Distinct type
XML XML data type
BIGINT

Big integer
BINARY

Fixed-length binary string
VARBIN

Varying-length binary string
DECFLOAT

Decimal floating point

G

Appendix. Additional information for DB2 SQL 2167

Column name Data type Description Use

LENGTH
SMALLINT
NOT NULL

Length attribute of the column or, in the case of a decimal
column, its precision. The number does not include the
internal prefixes that are used to record the actual length
and null state, where applicable.
INTEGER

4
SMALLINT

2
FLOAT 4 or 8
CHAR Length of string
VARCHAR

Maximum length of string
LONGVAR

Maximum length of string (for columns that
were added before Version 9)

DECIMAL
Precision of number

GRAPHIC
Number of DBCS characters

VARGRAPHIC
Maximum number of DBCS characters

LONGVARG
Maximum number of DBCS characters (for
columns that were added before Version 9)

DATE 4
TIME 3
TIMESTAMP WITHOUT TIME ZONE

The integral part of ((p+1)/2) + 7 where p is the
precision of the timestamp

TIMESTAMP WITH TIME ZONE
The integral part of ((p+1)/2) + 9 where p is the
precision of the timestamp

BLOB 4 - The length of the field that is stored in the
base table. The maximum length of the LOB
column is found in LENGTH2.

CLOB 4 - The length of the field that is stored in the
base table. The maximum length of the CLOB

DBCLOB
4 - The length of the field that is stored in the
base table. The maximum length of the DBCLOB
column is found in LENGTH2.

ROWID
17 - The maximum length of the stored portion
of the identifier.

DISTINCT
The length of the source data type.

XML 6
BIGINT

8
BINARY

The length of the string
VARBINARY

The maximum length of string
DECFLOAT

8 or 16

G

2168 SQL Reference

Column name Data type Description Use

LENGTH2
INTEGER
NOT NULL

Maximum length of the data retrieved from the column.
Possible values are:
0 Column is not a LOB or ROWID column
40 For a ROWID column, the length of the returned

value
1 to 2 147 483 647 bytes

For a LOB column, the maximum length

G

NULLS
CHAR(1)
NOT NULL

Whether the column can contain null values:
N No
Y Yes

G

HIGH2KEY VARCHAR(2000)
NOT NULL
FOR BIT DATA

Second highest value of the column. Blank if statistics
have not been gathered, or the column is an indicator
column or a column of an auxiliary table. If the column
has a non-character data type, the data might not be
printable.

S

LOW2KEY VARCHAR(2000)
NOT NULL
FOR BIT DATA

Second lowest value of the column. Blank if statistics
have not been gathered, or the column is an indicator
column or a column of an auxiliary table. If the column
has a non-character data type, the data might not be
printable.

S

STATSTIME
TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics. The default value is '0001-01-01.00.00.00.000000'.
If the value is '0001-01-02.00.00.00.000000', which indicates
that an ALTER TABLE statement was executed to change
the length of a VARCHAR column, RUNSTATS should be
run to update the statistics before they are used.

G

COLCARDF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Estimated number of distinct values in the column. For an
indicator column, this is the number of LOBs that are not
null and have a length greater than zero. The value is -1 if
statistics have not been gathered. The value is -2 if the
column is a LOB column.

S

IBMREQD
CHAR(1)
NOT NULL
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

STATS_FORMAT
CHAR(1)
NOT NULL WITH
DEFAULT

The type of statistics gathered:
blank Statistics have not been collected or varchar

column statistical values are padded.
N Varchar column statistical values are not padded.
This is an updatable column.

G

Appendix. Additional information for DB2 SQL 2169

|
|
|
|
|

SYSIBM.SYSCONSTDEP table
The SYSIBM.SYSCONSTDEP table records dependencies on check constraints or
user-defined defaults for a column.

Column name Data type Description Use

BNAME
VARCHAR(128)
NOT NULL

Name of the object on which the dependency exists. G

BSCHEMA
VARCHAR(128)
NOT NULL

Schema of the object on which the dependency exists. G

BTYPE
CHAR(1)
NOT NULL

Type of object on which the dependency exists:
F Function instance

G

DTBNAME
VARCHAR(128)
NOT NULL

Name of the table to which the dependency applies. G

DTBCREATOR
VARCHAR(128)
NOT NULL

The schema of the table to which the dependency applies.
G

DCONSTNAME
VARCHAR(128)
NOT NULL

If DTYPE = 'C', the unqualified name of the check
constraint. If DTYPE = 'D', a column name.

G

DTYPE
CHAR(1)
NOT NULL

Type of object:
C Check constraint
D User-defined default constant

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

DTBOWNER
VARCHAR(128)
NOT NULL WITH
DEFAULT

Authorization ID of the owner of the table or a zero
length string for tables that were created in a DB2 release
prior to Version 9.

G

OWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank Authorization ID
R Role

G

2170 SQL Reference

SYSIBM.SYSCONTEXT table
The SYSIBM.SYSCONTEXT table contains one row for each trusted context.

Column name Data type Description Use

NAME
VARCHAR(128)
NOT NULL

Name of the trusted context. G

CONTEXTID
INTEGER
NOT NULL
GENERATED
ALWAYS AS

IDENTITY

Internal context ID. G

DEFINER
VARCHAR(128)
NOT NULL

Authorization ID or role that defined the trusted context. G

DEFINERTYPE
CHAR(1)
NOT NULL

The type of the definer:

L Role

blank Authorization ID

G

SYSTEMAUTHID
VARCHAR(128)
NOT NULL

The DB2 primary authorization ID that is used to
establish the connection. For remote requests,
SYSTEMAUTHID is derived from the system user ID that
is provided by an external entity, such as a middleware
server.

For local requests, SYSTEMAUTHID depends on one of
the following sources of the address space:

BATCH
USER parameter on JOB statement

RRSAF USER parameter on JOB statement or RACF user

TSO TSO logon ID

G

DEFAULTROLE
VARCHAR(128)
NOT NULL

Name of the trusted context default role. G

OBJECTOWNERTYPE
CHAR(1)
NOT NULL

Whether the ROLE AS OBJECT OWNER AND
QUALIFIER clause is specified in the definition of this
trusted context:

L ROLE AS OBJECT OWNER AND QUALIFIER is
specified. A role owns any object created in the
trusted context. The role is used as the default
for the CURRENT SCHEMA special register. The
role is included in the SQL PATH.

blank ROLE AS OBJECT OWNER is not specified. An
authorization ID owns any object created in the
trusted context.

G

CREATEDTS
TIMESTAMP
NOT NULL

The time when the trusted context is created. G

ALTEREDTS
TIMESTAMP
NOT NULL

The time when the trusted context is last altered. G

Appendix. Additional information for DB2 SQL 2171

Column name Data type Description Use

ENABLED
CHAR(1)
NOT NULL

The status of the trusted context:

Y Enabled

N Disabled

G

ALLOWPUBLIC
CHAR(1)
NOT NULL

Whether the connection is allowed to be reused for
PUBLIC:

Y Connection reuse is allowed

N Connection reuse is not allowed

G

AUTHENTICATE-
PUBLIC CHAR(1)

NOT NULL

Whether authentication is required for PUBLIC when
ALLOWPUBLIC is Y:

Y Authentication token is required for PUBLIC. For
local requests, the token is the password. For
remote requests, the token can be a password, a
RACF passticket, or a KERBEROS token

N Authentication is not required

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for the values.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

REMARKS
VARCHAR(762)
NOT NULL

A character string that is provided using the COMMENT
statement.

G

DEFAULT-
SECURITYLABEL VARCHAR(24)

NOT NULL

Name of the context default RACF security label. G

2172 SQL Reference

SYSIBM.SYSCONTEXTAUTHIDS table
The SYSIBM.SYSCONTEXTAUTHIDS table contains one row for each authorization
ID with which the trusted context can be used.

Column name Data type Description Use

CONTEXTID
INTEGER
NOT NULL

The internal trusted context ID. G

AUTHID
VARCHAR(128)
NOT NULL

The primary authorization ID that can reuse a connection.
When using RACF, this is a RACF profile name that
contains the primary authorization IDs that are permitted
to use the connection in the identified trusted context.

G

AUTHENTICATE
CHAR(1)
NOT NULL

Whether authentication is required for the authorization
ID in the AUTHID column:

Y Authentication token is required for the
authorization ID. For local requests, the token is
the password. For remote requests, the token can
be a password, a RACF passticket, or a Kerberos
token

N Authentication is not required

G

ROLE
VARCHAR(128)
NOT NULL

The role for the authorization ID in the AUTHID column.
The role supersedes the default role that is defined for the
trusted context.

G

CREATEDTS
TIMESTAMP
NOT NULL

The time when the authorization ID is added to the
trusted context.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

SECURITYLABEL
VARCHAR(24)
NOT NULL

RACF security label for AUTHID. The security label
supersedes the default security label, if any, that is
defined for the context.

G

Appendix. Additional information for DB2 SQL 2173

SYSIBM.SYSCONTROLS table
The SYSIBM.SYSCONTROLS table contains one row for each row permission and
column mask.

Column name Data type Description Use

SCHEMA
VARCHAR(128)
NOT NULL

Schema of the row permission or column mask. G

NAME
VARCHAR(128)
NOT NULL

Name of the row permission or column mask. G

OWNER
VARCHAR(128)
NOT NULL

Owner of the row permission or column mask. G

OWNERTYPE
CHAR(1)
NOT NULL

Indicates the type of the owner:

blank An authorization ID

L Role

G

TBSCHEMA
VARCHAR(128)
NOT NULL

Schema of the table for which the row permission or
column mask is defined.

G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table for which the row permission or
column mask is defined.

G

TBCORRELATION VARCHAR(128)
NOT NULL
WITH DEFAILT

If specified, the correlation name of the table for which
the row permission or column mask is defined.
Otherwise, the value is an empty string.

G

COLNAME VARCHAR(128)
NOT NULL

Column name for which the column mask is defined.
Blank if this is a row permission.

G

COLNO SMALLINT
NOT NULL

Column number for which the column mask is defined. 0
if this is a row permission.

G

CONTROL_ID INTEGER
NOT NULL
GENERATED
ALWAYS
AS IDENTITY

Internal access control ID. S

CONTROL_TYPE CHAR(1)
NUT NULL

Indicates the type of the access control object:

R Row permission

M Column mask

G

ENFORCED CHAR(1)
NUT NULL

Indicates the type of the access enforced by the row
permission. Column mask always has a value of 'A'.

A All access

G

IMPLICIT CHAR(1)
NUT NULL

Indicates whether the row permission was implicitly
created:

N The row permission was explicitly created or this
is a column mask

Y The row permission was implicitly created

G

2174 SQL Reference

Column name Data type Description Use

ENABLE CHAR(1)
NUT NULL

Indicates whether the row permission or the column mask
is enabled for access control:

N Not enabled

Y Enabled

G

STATUS CHAR(1)
NUT NULL

Indicates the status of the row permission or column
mask definition:

blank The definition of the row permission or column
mask is complete.

R An error occurred when an attempt was made to
regenerate the row permission or column mask.

G

CREATEDTS TIMESTAMP
NOT NULL

The timestamp when the row permission or column mask
was created.

G

RELCREATED CHAR(1)
NUT NULL

The release of DB2 in which the row permission or
column mask was created. See Release dependency
indicators for values.

G

ALTEREDTS TIMESTAMP
NOT NULL

The timestamp when the row permission or column mask
was last changed.

G

REMARKS VARCHAR(762)
NOT NULL

A character string provided by using the COMMENT ON
statement.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

ENVID INTEGER
NOT NULL

Internal identifier of the environment. G

ROWID ROWID Row identifier to support LOB columns in the table. G

RULETEXT CLOB(2MB)
NOT NULL

The source text of the search condition or expression
portion of the CREATE PERMISSION or CREATE MASK
statement.
Note: The lowercase letters in ordinary tokens are folded
to uppercase in the text. However, lowercase letters in
ordinary tokens are folded to uppercase in a C or Java
program only if the appropriate precompiler option is
specified.

G

DESCRIPTOR BLOB(2MB)
NOT NULL

Internal description of the row permission or column
mask

S

Appendix. Additional information for DB2 SQL 2175

SYSIBM.SYSCOPY table
The SYSIBM.SYSCOPY table contains information needed for recovery.

Column name Data type Description Use

DBNAME
CHAR(8)
NOT NULL

Name of the database. G

TSNAME
CHAR(8)
NOT NULL

Name of the target table space or index space. G

DSNUM
INTEGER
NOT NULL

Data set number within the table space. For partitioned
table spaces, this value corresponds to the partition
number for a single partition copy, or 0 for a copy of an
entire partitioned table space or index space.

G

ICTYPE
CHAR(1)
NOT NULL

Type of operation:
A ALTER
B REBUILD INDEX
C CREATE
D CHECK DATA LOG(NO) (no log records for the

range are available for RECOVER utility)
E RECOVER (to current point)
F COPY FULL YES
I COPY FULL NO
J REORG TABLESPACE or LOAD REPLACE

compression dictionary write to log
L SQL (type of operation)
M MODIFY RECOVERY utility
P RECOVER TOCOPY or RECOVER TORBA

(partial recovery point)
Q QUIESCE
R LOAD REPLACE LOG(YES)
S LOAD REPLACE LOG(NO)
T TERM UTILITY command
V REPAIR VERSIONS utility
W REORG LOG(NO)
X REORG LOG(YES)
Y LOAD LOG(NO)
Z LOAD LOG(YES)

G

CHAR(6)
NOT NULL

Not used N

2176 SQL Reference

||
|

Column name Data type Description Use

START_RBA CHAR(10)
NOT NULL
FOR BIT DATA

An 80-bit positive integer that contains the RBA/LRSN of
a point in the DB2 recovery log. (The LRSN is the RBA in
a data-sharing environment.)

v For ICTYPE I or F, the starting point for all updates
since the image copy was taken

v For ICTYPE J, the RBA/LRSN of the compression
dictionary

v For ICTYPE M, the RBA of the highest deleted
SYSCOPY or SYSLGRNX record

v For ICTYPE P, the point after the log-apply phase of
point-in-time recovery

v For ICTYPE Q, the point after all data sets have been
successfully quiesced

v For ICTYPE R or S, the end of the log before the start
of the LOAD utility and before any data is changed

v For ICTYPE T, the end of the log when the utility is
terminated

v For other values of ICTYPE, the end of the log before
the start of the RELOAD phase of the LOAD or
REORG utility.

A SELECT from SYSIBM.SYSCOPY displays the
START_RBA and PIT_RBA columns in either 6-byte or
10-byte format. Before CATENFM of SYSCOPY, the data
and the display are in 6-byte format but in all migration
modes in utility-output, SYSCOPY columns are displayed
in 10-byte format. After CATENFM of SYSCOPY the data
and the display are in 10-byte format with non-zero digits
in low order 3 bytes. Digits in the low order 3 bytes are
unrelated to the conversion of the BSDS or conversion of
individual objects to EXTENDED format.

G

FILESEQNO
INTEGER
NOT NULL

Tape file sequence number of the copy. G

DEVTYPE
CHAR(8)
NOT NULL

Device type the copy is on. G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

DSNAME
CHAR(44)
NOT NULL

For ICTYPE='P' (RECOVER TOCOPY only), ''I'', or 'F',
DSNAME contains the data set name. Otherwise,
DSNAME contains the name of the database and table
space or index space in the form, database-name.space-
name, or DSNAME is blank for any row migrated from a
DB2 release prior to Version 4.

G

CHAR(6)
NOT NULL

Not used N

Appendix. Additional information for DB2 SQL 2177

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

Column name Data type Description Use

SHRLEVEL
CHAR(1)
NOT NULL

SHRLEVEL parameter on COPY (for ICTYPE F or I only):
C Change
R Reference
blank Does not describe an image copy or was

migrated from Version 1 Release 1 of DB2.

G

DSVOLSER
VARCHAR(1784)
NOT NULL

One of the following values:

v If the operation is not an image copy operation that
creates a FlashCopy® image copy with consistency (an
image copy operation with the FLASHCOPY
CONSISTENT option), this value is:

– A comma-separated list of 6-byte volume serial
numbers of the data set, if the data set is not
catalogued.

– Blank if the data set is cataloged.

v If the operation is an image copy operation that creates
a FlashCopy image copy with consistency (an image
copy operation with the FLASHCOPY CONSISTENT
option), this value is a comma-separated list of values
of the following form:

memberID-ckptrba

memberID is a 3-digit ID for a member of a data
sharing group.

ckptrba is the 12-byte hexadecimal checkpoint RBA for
the member.

G

TIMESTAMP
TIMESTAMP
NOT NULL WITH
DEFAULT

The date and time when the row was inserted. For the
COPYTOCOPY utility, this value is the date and time
when the row was inserted for the primary local site or
primary recovery site copy. For an EXCHANGE DATA
statement, this is the time that the statement is run.

G

ICBACKUP
CHAR(2)
NOT NULL WITH
DEFAULT

Specifies the type of image copy contained in the data set:
blank LOCALSITE primary copy (first data set named

with COPYDDN)
FC FlashCopy copy
LB LOCALSITE backup copy (second data set

named with COPYDDN)
RP RECOVERYSITE primary copy (first data set

named with RECOVERYDDN)
RB RECOVERYSITE backup copy (second data set

named with RECOVERYDDN)

G

ICUNIT
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the media that the image copy data set is stored
on:
D DASD
T Tape
blank Medium is neither tape nor DASD, the image

copy is from a DB2 release prior to Version 2
Release 3, or ICTYPE is not 'I' or 'F'.

G

2178 SQL Reference

Column name Data type Description Use

STYPE
CHAR(1)
NOT NULL WITH
DEFAULT

When ICTYPE=A, the values are:
A A partition was added to a table.
B The MEMBER CLUSTER value was changed.
C A column was added to a table and an index in

different commit scopes, or a column was
dropped from a table.

D Either the DSSIZE attribute of the table space
was altered or the default value of a column of a
table was altered.

E The data set numbers of a base table and its
associated clone table are exchanged.

F The page size attribute of the table space or
index was altered.

G An index was regenerated
H The table was altered to hash organization, the

size of the hash space was changed, or the hash
organization was dropped. The value of the
TTYPE column indicates the action taken.

I The inline length attribute of the LOB column
was altered by REORG.

L The logging attribute of the table space was
altered to LOGGED.

M The MAXPARTITIONS attribute of the table
space was altered.

N An index was altered to not padded
O The logging attribute of the table space was

altered to NOT LOGGED.
P An index was altered to padded
R A table was altered to rotate partitions.
S The SEGSIZE attribute of the table space was

altered.
V A column in a table was altered for a numeric

data type change and the column is in an index.
X A REORG dropped one or more empty

partitions from the related table space.
Y An index was altered to COPY YES
Z A column that is in the key of an index that was

versioned prior to DB2 Version 8 was altered.

When ICTYPE=C, the values are:
L The logging attribute of the table space was

LOGGED.
O The logging attribute of the table space was

NOT LOGGED.

When ICTYPE=E, the values are:
B RECOVER utility with the BACKOUT keyword.
blank RECOVER utility without the BACKOUT

keyword.

When ICTYPE=F, the values are:
C DFSMS concurrent copy ("I" instance of the table

space)
J DFSMS concurrent copy ("J" instance of the table

space)
N A FlashCopy copy is not consistent.
Q Sequential copy is consistent
R LOAD REPLACE(YES)
Values for STYPE continue on next page.

G

Appendix. Additional information for DB2 SQL 2179

|
|
|

||
|

Column name Data type Description Use

STYPE (continued) When ICTYPE=F, the values are (continued):
S LOAD REPLACE(NO)
T FlashCopy copy is consistent.
U Sequential copy is not consistent
V ALTER INDEX NOT PADDED
W REORG LOG(NO)
X REORG LOG(YES)
blank DB2 image copy

When ICTYPE=L, the value is:
M Mass DELETE, TRUNCATE TABLE, DROP

TABLE, or ALTER TABLE ROTATE PARTITION.
The LOWDSNUM column contains the table
OBID of the affected table.

The MERGECOPY utility, when used to merge an
embedded copy with subsequent incremental copies, also
produces a record that contains ICTYPE=F and the STYPE
of the original image copy (R, S, W, or X).

When ICTYPE = M and the MODIFY RECOVERY utility
was executed to delete SYSCOPY and/or SYSLGRNX
records, the value is R.

When ICTYPE=O, the values are:
B A table space or partition that was in reordered

row format was recovered to a point in time
when it was in basic row format.

R A table space or partition was converted to
reordered row format as a result of REORG or
LOAD REPLACE.

When ICTYPE=P, the values are:
B Recover to a point in time with the BACKOUT

YES option was run.
C Recover to a point in time without using logonly

with consistency.
L Recover to a point in time using logonly without

consistency.
M Recover to a point in time using logonly with

consistency.
blank Recover to a point in time without using logonly

without consistency.

When ICTYPE=Q and option WRITE(YES) is in effect
when the quiesce point is taken, the value is W.

When ICTYPE=R or S, the values are:
A Resetting REORG pending status
T First materializing the default value for a row

change timestamp column

When ICTYPE=T, this field indicates which COPY utility
was terminated by the TERM UTILITY command or the
START DATABASE command with the ACCESS(FORCE)
option. The values are:
F COPY FULL YES
I COPY FULL NO

2180 SQL Reference

Column name Data type Description Use

STYPE (continued) When ICTYPE=W or X, the values are:
A Resetting REORG pending status or

REBALANCE
T First materializing the default value for a row

change timestamp column

For other values of ICTYPE, the value is blank.

PIT_RBA
CHAR(10)
NOT NULL WITH
DEFAULT
FOR BIT DATA

The meaning of the value depends on the value of the
ICTYPE column:

ICTYPE='P'
The LRSN for the point in the DB2 log. (The
LRSN is the RBA in a non-data-sharing
environment) The value indicates the stop
location of a point-in-time recovery.

If a record contains ICTYPE='P' and
PIT_RBA=X'000000000000', the copy pending
status is active and a full image copy is required.
If such a record is encountered during fallback
processing of RECOVER, the recover job fails,
and a point-in-time recovery is required.
PIT_RBA can be zero if the point-in-time
recovery is completed by the fall-back processing
of RECOVER, or if ICTYPE=P from a prior
release of DB2.

ICTYPE='F' or 'I' and SHRLEVEL='C'
The current RBA or LRSN that corresponds to
the point in the DB2 log when the SHRLEVEL
CHANGE copy completes.

ICTYPE=J
The RBA where the compression dictionary is
written to the log. In data sharing environments,
it is the RBA of the of the member writing to the
log.

ICTYPE='M'
The RBA/LRSN for the end of the log when the
utility completes.

For other all other ICTYPE values, this field contains
X'00000000000000000000'.

A SELECT from SYSIBM.SYSCOPY displays the
START_RBA and PIT_RBA columns in either 6-byte or
10-byte format. Before CATENFM of SYSCOPY, the data
and the display are in 6-byte format but in all migration
modes in utility-output, SYSCOPY columns are displayed
in 10-byte format. After CATENFM of SYSCOPY the data
and the display are in 10-byte format with non-zero digits
in low order 3 bytes. Digits in the low order 3 bytes are
unrelated to the conversion of the BSDS or conversion of
individual objects to EXTENDED format.

G

GROUP_MEMBER
CHAR(8)
NOT NULL WITH
DEFAULT

The DB2 data sharing member name of the DB2
subsystem that performed the operation. This column is
blank if the DB2 subsystem was not in a DB2 data
sharing environment at the time the operation was
performed.

G

Appendix. Additional information for DB2 SQL 2181

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Column name Data type Description Use

OTYPE
CHAR(1)
NOT NULL WITH
DEFAULT 'T'

Type of object that the recovery information is for:
I Index space
T Table space

G

LOWDSNUM
INTEGER
NOT NULL WITH
DEFAULT

Partition number of the lowest partition in the range for
SYSCOPY records created for REORG and LOAD
REPLACE for resetting a REORG pending status. Version
number of an index for SYSCOPY records created for a
COPY (ICTYPE=F) of an index space (OTYPE=I). (An
index is versioned when a VARCHAR column in the
index key is lengthened.) When ICTYPE = F or I,
DSNUM = 0 and OTYPE is not equal to I, LOWDSNUM
= 1.

G

HIGHDSNUM
INTEGER
NOT NULL WITH
DEFAULT

Partition number of the highest partition in the range.
This column is valid only for SYSCOPY records created
for REORG and LOAD REPLACE for resetting REORG
pending status.When ICTYPE = F or I, DSNUM = 0 and
OTYPE is not equal to I, HIGHDSNUM is the number of
the highest partition that is copied.

G

COPYPAGESF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of pages written to the copy data set. For inline
copies, this number might include pages appearing more
than once in the copy data set.

G

NPAGESF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

The number of pages in the table space or index at the
time of COPY. This number might include pre-formatted
pages that are not actually copied.

When ICTYPE=A, SYTPE=H, and TTYPE=S or D, this
column contains the previous HASHDATAPAGES value.
When ICTYPE=A, SYTPE=H, and TTYPE=A this column
contains zero.

G

CPAGESF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of changed pages. G

JOBNAME
CHAR(8)
NOT NULL WITH
DEFAULT

Job name of the utility. For changes that cause pending
definition changes to object, this column might not be
accurate.

G

AUTHID
CHAR(8)
NOT NULL WITH
DEFAULT

Authorization ID of the utility.For changes that cause
pending definition changes to object, this column might
not be accurate.

G

OLDEST_VERSION
SMALLINT
NOT NULL WITH
DEFAULT

When ICTYPE= B, F, I, S, W, or X, the version number of
the oldest format of data for an object. For other values of
ICTYPE, the value is 0.

G

LOGICAL_PART
INTEGER
NOT NULL WITH
DEFAULT

Logical partition number. G

2182 SQL Reference

|
|
|

|
|
|

Column name Data type Description Use

LOGGED
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the logging attribute of the table space at the
time the SYSCOPY record is written:

v Y — indicates that the logging attribute of the table
space is LOGGED

v N — indicates that the logging attribute of the table
spaces is NOT LOGGED

v blank — indicates that the row was inserted prior to
Version 9 or is not specified. For non-LOB table spaces
or an index space, blank indicates that the logging
attribute is LOGGED.

G

Appendix. Additional information for DB2 SQL 2183

Column name Data type Description Use

TTYPE CHAR(8)
NOT NULL WITH
DEFAULT

When ICTYPE=A and STYPE=B, this column indicates if
the previous value for the MEMBER CLUSTER attribute
is being used:
Y The previous member cluster attribute of the

table space is being used.
N The previous member cluster attribute of the

table space is not being used.

When ICTYPE=A and STYPE=C, this column indicates if
a column is added or dropped from a table:

blank A column was added to a table.

D A column was dropped from a table.

When ICTYPE=A and STYPE=D, this column contains
the previous DSSIZE attribute value for the table space in
units of G, M, or K when the DSSIZE attribute is altered.
This column is blank if the default value of a column of a
table was altered.

When ICTYPE=A and STYPE=F, this column indicates
the previous page size attribute value for the table space
in units of K.

When ICTYPE=A and STYPE=H this column indicates a
change that was applied to the hash organization of the
table:
A Hash organization was added. The record is

written when the hash space is materialized at
REORG.

D Hash organization was dropped. The record is
written immediately when the ALTER statement
is issued.

S The size of the hash space was changed. The
value of the NAPGESF column contains the
previous HASHDATAPAGES value. The record
is written when the hash space is materialized at
REORG.

When ICTYPE=A and STYPE=I, this column indicates
that the inline length of a LOB column was altered:
D Indicates that REORG decremented the inline

length of the LOB column
I Indicates that REORG incremented the inline

length of the LOB column

When ICTYPE=A and STYPE=M, this column indicates
either the previous value of the MAXPARTITIONS
attribute for the table space or the type of table space
conversion that was performed on the table space.
I The table space was converted from a

single-table simple table space to a
partition-by-growth universal table space.

n The previous value of the MAXPARTITIONS
attribute for the table space.

S The table space was converted from single-table
segmented table space to a partition-by-growth
universal table space.

G

2184 SQL Reference

|
|

||

||

|

Column name Data type Description Use

TTYPE (cont) When ICTYPE=A and STYPE=S, this column indicates
either the previous value of the SEGSIZE attribute for the
table space or the type of table space conversion that was
performed on the table space.
n The previous value of the SEGSIZE attribute for

the table space.
P The table space was converted from a

partitioned table space to a range-partitioned
universal table space.

When ICTYPE=E, this column indicates if the full
recovery reset the object:
blank The full recovery reset the object
N The full recovery did not reset the object

When ICTYPE=F and STYPE=N, Q, T, or U, this column
indicates the utility that made the FlashCopy:
A LOAD RESUME LOG NO
B REBUILD
C COPY
D LOAD RESUME LOG YES
E LOAD SHRLEVEL CHANGE
L LOAD
P REPAIR
R LOAD REPLACE LOG YES
S LOAD REPLACE LOG NO
T COPYTOCOPY
W REORG TABLESPACE LOG NO
X REORG TABLESPACE LOG YES

When ICTYPE=I, TTYPE of S indicates that the directory
pages for the index image copy are at the front of each
partition and are indicated with a 'V' or '8'.

When ICTYPE=P, R, S, W, X, this column provides
additional diagnostic information:
B Indicates that the RBA or LRSN format changed

to basic 6-byte format.
BRF Indicates that the row format is the basic row

format.
BRF I Indicates that the row format is the basic row

format, and the FORMAT INTERNAL option
was specified.

E Indicates that the RBA or LRSN format changed
to extended 10-byte format.

F Indicates that the REORG utility was run with
the FASTSWITCH YES option.

RRF Indicates that the row format is the reordered
row format.

RRF I Indicates that the row format is the reordered
row format, and the FORMAT INTERNAL
option was specified.

S Indicates that the REORG utility was run with
the FASTSWITCH NO option.

Appendix. Additional information for DB2 SQL 2185

||
||

|
||

|
|

||
||

||
|

||
|

Column name Data type Description Use

TTYPE (cont) When ICTYPE=M and STYPE=R, this column indicates
whether the MODIFY RECOVERY utility deleted rows
from SYSIBM.SYSLGRNX.
blank MODIFY RECOVERY deleted rows from

SYSIBM.SYSLGRNX.
N MODIFY RECOVERY did not delete rows from

SYSIBM.SYSLGRNX.

When ICTYPE=T, TTYPE of B indicates that a broken
page was detected during copy.

When ICTYPE=W or X and STYPE=H, this column
indicates the prior value of HASHDATAPAGES.

When ICTYPE=Y or Z, this column indicates whether the
object was loaded when the FORMAT INTERNAL option
was specified.
blank Indicates that the FORMAT INTERNAL option

was not specified during LOAD.
I Indicates that the FORMAT INTERNAL option

was specified during LOAD.

When ICTYPE=A-A, A-R, B, C, P, R, S, W, or X and the
page format was changed by the ALTER ADD
PARTITION, ALTER ROTATE PARTITION, CREATE,
LOAD REPLACE, REBUILD, REORG, or RECOVER
utilities:

B Indicates that the page format was converted to
basic page format with 6-byte RBA or LRSN
values.

E Indicates that the page format was converted to
extended page format with 10-byte RBA or
LRSN values.

When ICTYPE=A and STYPE=A or R:

B Indicates that the page format was converted to
basic page format with 6-byte RBA or LRSN
values.

E Indicates that the page format was converted to
extended page format with 10-byte RBA or
LRSN values.

INSTANCE
SMALLINT
NOT NULL WITH
DEFAULT 1

When STYPE = E and ICTYPE = A, INSTANCE indicates
the data set instance number of a base object after an
EXCHANGE statement completes. The value of the
INSTANCE column for the last data exchange will match
the value of the INSTANCE column for the
SYSIBM.SYSTABLESPACE table.

For an image copy, INSTANCE indicates the instance
number of the current base objects (table and index).

G

RELCREATED CHAR(1)
NOT NULL WITH
DEFAULT

The release of DB2 that is used to create the object. Blank
if created prior to Version 9. See Release dependency
indicators for all other values.

G

2186 SQL Reference

|
|
|
|
|

||
|
|

||
|
|

|

||
|
|

||
|
|

Column name Data type Description Use

MODECREATED CHAR(2)
NOT NULL WITH
DEFAULT

The latest mode to which the DB2 subsystem had been
migrated when the SYSCOPY record was written:
C Conversion mode
E Enabling-new-function mode
N New-function mode

Appendix. Additional information for DB2 SQL 2187

||
|
|

|
|
||
||
||

|

SYSIBM.SYSCTXTTRUSTATTRS table
The SYSIBM.SYSCTXTTRUSTATTRS table contains one row for each list of
attributes for a given trusted context.

Column name Data type Description Use

CONTEXTID
INTEGER
NOT NULL

The internal trusted context ID. G

NAME
VARCHAR(128)
NOT NULL

Name of the trust attribute. Possible values including the
following attributes:

v An IPv4 address is represented as a dotted decimal IP
address. An example of an IPv4 address is '9.112.46.111'.

v An IPv6 address is represented as a colon hexadecimal
address. An example of an IPv6 address is
'2001:0DB8:0000:0000:0008:0800:200C:417A', which can
also be expressed in a compressed form as
'2001:DB8::8:800:200C:417A'.

v A domain name which is converted to an IP address by
the domain name server where a resulting IPv4 or IPv6
address is determined.

v A job or started task name for local applications. If the
job name ends with *, any job name that matches the
characters prior to * in the specified job name are
considered for establishing the trusted connection.

v A network access security zone name in the RACF
SERVAUTH class.

G

VALUE
VARCHAR(254)
NOT NULL

The value of the trust attribute. G

CREATEDTS
TIMESTAMP
NOT NULL

The time when the attribute is created. G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2188 SQL Reference

SYSIBM.SYSDATABASE table
The SYSIBM.SYSDATABASE table contains one row for each database, except for
database DSNDB01.

Column name Data type Description Use

NAME
VARCHAR(24)
NOT NULL

Database name. G

CREATOR
VARCHAR(128)
NOT NULL

Authorization ID of the owner of the database. G

STGROUP
VARCHAR(128)
NOT NULL

Name of the default storage group of the database; blank
for a system database.

G

BPOOL
CHAR(8)
NOT NULL

Name of the default buffer pool of the table space; blank
for a system table space.

G

DBID
SMALLINT
NOT NULL

Internal identifier of the database. If there were 32511
databases or more when this database was created, the
DBID is a negative number.

S

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

CREATEDBY
VARCHAR(128)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the
database.

G

CHAR(1)
NOT NULL WITH
DEFAULT

Not used N

TIMESTAMP
NOT NULL WITH
DEFAULT

Not used N

TYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Type of database:
blank Not a work file database or a TEMP database.
T A TEMP file database.
W A work file database. The database is DSNDB07,

or it was created with the WORKFILE clause and
used as a work file database by a member of a
DB2 data sharing group.

G

GROUP_MEMBER
VARCHAR(24)
NOT NULL WITH
DEFAULT

The DB2 data sharing member name of the DB2
subsystem that uses this work file database. This column
is blank if the work file database was not created in a
DB2 data sharing environment, or if the database is not a
work file database as indicated by the TYPE column.

G

CREATEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the
database. For DSNDB04 and DSNDB06, the value is
'1985-04-01.00.00.00.000000'.

G

Appendix. Additional information for DB2 SQL 2189

Column name Data type Description Use

ALTEREDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER DATABASE statement
was applied. If no ALTER DATABASE statement has been
applied, ALTEREDTS has the value of CREATEDTS.

G

ENCODING_SCHEME
CHAR(1)
NOT NULL WITH
DEFAULT 'E'

Default encoding scheme for the database:
E EBCDIC
A ASCII
U UNICODE
blank For DSNDB04, a work file database, and a TEMP

database.

G

SBCS_CCSID
INTEGER
NOT NULL WITH
DEFAULT

Default SBCS CCSID for the database. For a TEMP
database, a work file database, or a database created in a
DB2 release prior to Version 5, the value is 0.

G

DBCS_CCSID
INTEGER
NOT NULL WITH
DEFAULT

Default DBCS CCSID for the database. If mixed data is
not used and the CCSID for the database is defined as
EBCDIC or ASCII, the default value is 0.

For a TEMP database, a work file database, or a database
created in a DB2 release prior to Version 5, the value is 0.

G

MIXED_CCSID
INTEGER
NOT NULL WITH
DEFAULT

Default mixed CCSID for the database. If mixed data is
not used and the CCSID for the database is defined as
EBCDIC or ASCII, the default value is 0.

For a TEMP database, a work file database, or a database
created in a DB2 release prior to Version 5, the value is 0.

G

INDEXBP
CHAR(8)
NOT NULL WITH
DEFAULT 'BP0'

Name of the default buffer pool for indexes. G

IMPLICIT
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Indicates whether the database was implicitly created:
Y The database was implicitly created
N The database was explicitly created

G

CREATORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank Authorization ID
L Role

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for the values.

G

2190 SQL Reference

SYSIBM.SYSDATATYPES table
The SYSIBM.SYSDATATYPES table contains one row for each user-defined type
defined to the system.

Column name Data type Description Use

SCHEMA
VARCHAR(128)
NOT NULL

Schema of the data type. G

OWNER
VARCHAR(128)
NOT NULL

Owner of the data type. G

NAME
VARCHAR(128)
NOT NULL

Name of the data type. G

CREATEDBY
VARCHAR(128)
NOT NULL

Primary authorization ID of the user who created the data
type.

G

SOURCESCHEMA
VARCHAR(128)
NOT NULL

Schema of the source data type. G

SOURCETYPE
VARCHAR(128)
NOT NULL

Name of the source type. G

METATYPE
CHAR(1)
NOT NULL

The class of data type:
A User-defined ordinary array type
L User-defined associative array type
T Distinct type

G

DATATYPEID
INTEGER
NOT NULL

Internal identifier of the data type. S

SOURCETYPEID
INTEGER
NOT NULL

Internal ID of the built-in data type on which the distinct
type or array elements are based.

S

LENGTH
INTEGER
NOT NULL

Maximum length or precision for a data type that is based
on the IBM-defined DECIMAL data type. The data type
can be a distinct type or an array type.

G

SCALE
SMALLINT
NOT NULL

One of the following values:

v For a data type that is based on the IBM-defined
DECIMAL data type, the scale. The data type can be a
distinct type or an array type. Number of fractional
second digits for a data type that is based on the
IBM-defined timestamp or timestamp with time zone
type.

v For a data type that is based on the IBM-defined
TIMESTAMP or TIMESTAMP WITH TIME ZONE type,
the number of fractional-second digits.

v For any other data type, the value is 0.

If the value is a timestamp, the LENGTH is 10 and the
SCALE is 0, the number of fractional second digits is 6.

G

Appendix. Additional information for DB2 SQL 2191

|
|

|

|

|

|
|

||
||

|

|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

|

Column name Data type Description Use

SUBTYPE
CHAR(1)
NOT NULL

Subtype of the data type, if the source type is one of the
character types. The data type can be a distinct type or an
array type. Possible values are:
B The subtype is FOR BIT DATA.
S The subtype is FOR SBCS DATA.
M The subtype is FOR MIXED DATA.
blank The source type is not a character type.

G

CREATEDTS
TIMESTAMP
NOT NULL

Time when the data type was created. G

ENCODING_SCHEME
CHAR(1)
NOT NULL

Encoding scheme of the data type:
A ASCII
E EBCDIC
U UNICODE

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

REMARKS
VARCHAR(762)
NOT NULL

A character string provided by the user with the
COMMENT statement.

G

OWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank Authorization ID
L Role

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for the values.

G

INLINE_LENGTH
INTEGER
NOT NULL
WITH DEFAULT -1

The inline length attribute of the type if it is based on a
LOB source type:

-1 This type does not specify INLINE LENGTH

greater than or equal to 0
The inline length attribute (in byte) of the type if
it is based on a LOB source type

G

ARRAYLENGTH BIGINT
NOT NULL
WITH DEFAULT

Maximum cardinality, if the data type is an array type.
For all other data types, the value is 0.

G

ARRAYINDEXTYPEID INTEGER
NOT NULL
WITH DEFAULT

Data type of the index, if the data types is an associative
array type. For all other data types, the value is 0.

G

ARRAYINDEX-
TYPELEN

BIGINT
NOT NULL
WITH DEFAULT

Maximum length of the array index, if the data types is
an associative array type. For all other data types, the
value is 0.

G

ARRAYINDEX-
SUBTYPE

CHAR(1)
NOT NULL
WITH DEFAULT

Subtype of the array index:

B The subtype is FOR BIT DATA.

S The subtype is FOR SBCS DATA.

M The subtype is FOR MIXED DATA.

blank The array index is not a character type.

G

2192 SQL Reference

|
|
|

|

||
|
|

|
|
|

||
|
|

|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|
|

|

||

||

||

||

|

SYSIBM.SYSDBAUTH table
The SYSIBM.SYSDBAUTH table records the privileges that are held by users over
databases.

Column name Data type Description Use

GRANTOR
VARCHAR(128)
NOT NULL

Authorization ID or role of the user who granted the
privileges. Could also be PUBLIC.

G

GRANTEE
VARCHAR(128)
NOT NULL

Application ID of the user who holds the privilege. Could
also be PUBLIC for a grant to PUBLIC.

G

NAME
VARCHAR(24)
NOT NULL

Database name. G

CHAR(12)
NOT NULL

Internal use only I

CHAR(6)
NOT NULL

Not used N

CHAR(8)
NOT NULL

Not used N

GRANTEETYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantee:
blank Authorization ID
L Role

G

CHAR(1)
NOT NULL

Not used N

AUTHHOWGOT
CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges
were received. This authorization level is not necessarily
the highest authorization level of the grantor.
blank Not applicable
C DBCTRL
D DBADM
E SECADM
G ACCESSCTRL
L SYSCTRL
M DBMAINT
S SYSADM

G

CREATETABAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can create tables within the
database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

CREATETSAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can create table spaces within the
database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

Appendix. Additional information for DB2 SQL 2193

Column name Data type Description Use

DBADMAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE has DBADM authority over the
database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

DBCTRLAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE has DBCTRL authority over the
database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

DBMAINTAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE has DBMAINT authority over the
database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

DISPLAYDBAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can issue the DISPLAY command
for the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

DROPAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can issue the ALTER DATABASE
and DROP DATABASE statement:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

IMAGCOPYAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can use the COPY, MERGECOPY,
MODIFY, and QUIESCE utilities on the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

LOADAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can use the LOAD utility to load
tables in the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

REORGAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can use the REORG utility to
reorganize table spaces and indexes in the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

RECOVERDBAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can use the RECOVER and
REPORT utilities on table spaces in the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

REPAIRAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can use the DIAGNOSE and
REPAIR utilities on table spaces and indexes in the
database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

2194 SQL Reference

Column name Data type Description Use

STARTDBAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can use the START command
against the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

STATSAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can use the CHECK and
RUNSTATS utilities against the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

STOPAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can issue the STOP command
against the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

GRANTEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

GRANTORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank Authorization ID
L Role

G

Appendix. Additional information for DB2 SQL 2195

SYSIBM.SYSDBRM table
The SYSIBM.SYSDBRM table contains one row for each DBRM of each application
plan.

Column name Data type Description Use

NAME
VARCHAR(24)
NOT NULL

Name of the DBRM. G

TIMESTAMP
CHAR(8)
NOT NULL
FOR BIT DATA

Consistency token. S

PDSNAME VARCHAR(132)
NOT NULL

Name of the partitioned data set of which the DBRM is a
member.

G

PLNAME
VARCHAR(24)
NOT NULL

Name of the application plan of which this DBRM is a
part.

G

PLCREATOR
VARCHAR(128)
NOT NULL

Authorization ID of the owner of the application plan. G

CHAR(8)
NOT NULL

Not used N

CHAR(6)
NOT NULL

Not used N

QUOTE
CHAR(1)
NOT NULL

SQL string delimiter for the SQL statements in the DBRM:
N Apostrophe
Y Quotation mark

G

COMMA
CHAR(1)
NOT NULL

Decimal point representation for SQL statements in the
DBRM:
N Period
Y Comma

G

HOSTLANG
CHAR(1)
NOT NULL

The host language used:
B Assembler language
C OS/VS COBOL
D C
F Fortran
P PL/I
2 VS COBOL II or IBM COBOL Release 1 (formerly

called COBOL/370)
3 IBM COBOL (Release 2 or subsequent releases)
4 C++

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

CHARSET
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether the system CCSID for SBCS data was
290 (Katakana) when the program was precompiled:
A No
K Yes

G

2196 SQL Reference

Column name Data type Description Use

MIXED
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates if mixed data was in effect when the application
program was precompiled (for more on when mixed data
is in effect, see “Character strings” on page 84):
N No
Y Yes

G

DEC31
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether DEC31 was in effect when the program
was precompiled (for more on when DEC31 is in effect,
see “Arithmetic with two decimal operands” on page
244):
blank No
Y Yes

G

VERSION
VARCHAR(122)
NOT NULL WITH
DEFAULT

Version identifier for the DBRM. G

PRECOMPTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the DBRM was precompiled. G

PLCREATORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank Authorization ID
L Role

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for the values.

G

Appendix. Additional information for DB2 SQL 2197

SYSIBM.SYSDEPENDENCIES table
The SYSIBM.SYSDEPENDENCIES table records the dependencies between objects.

Column name Data type Description Use

BNAME
VARCHAR(128)
NOT NULL

Name of the object on which another object is dependent.

If BTYPE is F, the name is the specific name of the
function.

If BTYPE is W or Z, the name is the name of the table for
which the period is defined.

G

BSCHEMA
VARCHAR(128)
NOT NULL

Schema or qualifier of the object on which another object
is dependent.

G

BCOLNAME
VARCHAR(128)
NOT NULL
WITH DEFAULT

Column name of the object on which another object is
dependent.

G

BCOLNO
SMALLINT
NOT NULL
WITH DEFAULT

Column number of the object on which another object is
dependent.

G

BTYPE
CHAR(1)
NOT NULL

The type of object that is identified by BNAME,
BSCHEMA, and BCOLNAME:

C Column

E INSTEAD OF trigger

F Function

G Global temporary table

I Index

M Materialized query table

O Procedure

P Partitioned table space

Q Sequence

R Table space

S Synonym

T Table

U Distinct type

V View

W SYSTEM_TIME period

Z BUSINESS_TIME period

0 (zero)
Alias

G

BOWNER
VARCHAR(128)
NOT NULL
WITH DEFAULT

Authorization ID of the owner of the object on which
another object is dependent.

G

2198 SQL Reference

||

||

||

||

||

||

|
|

Column name Data type Description Use

BOWNERTYPE
CHAR(1)
NOT NULL

Type of creator of the object on which another object is
dependent:
L Role
blank Authorization ID that is not a role

G

DNAME
VARCHAR(128)
NOT NULL

Name of the object that has dependencies on another
object.

G

DSCHEMA
VARCHAR(128)
NOT NULL

Schema or qualifier of the object that has dependencies on
another object.

G

DVERSION VARCHAR(122)
NOT NULL
WITH DEFAULT

The version identifier of the object that is identified by
DSCHEMA and DNAME if the object has a version.

This column contains a zero length string for the objects
that are created prior to Version 10 and for the rows that
correspond to objects without versions.

G

DCOLNAME
VARCHAR(128)
NOT NULL

Column name of the object that has dependencies on
another object.

G

DCOLNO
SMALLINT
NOT NULL
WITH DEFAULT

Column number of the object that has dependencies on
another object.

G

DTYPE
CHAR(1)
NOT NULL

The type of the object that is identified by DSCHEMA,
DNAME, DCOLNAME, and DVERSION:

B Trigger

C Generated column

F Function

I Index

M Materialized query table

O Procedure

V View

X Row permission

Y Column mask

G

DOWNER
VARCHAR(128)
NOT NULL

Authorization ID of the owner of the object that has
dependencies on another object.

G

DOWNERTYPE
CHAR(1)
NOT NULL

Type of creator of the object that has dependencies on
another object:
L Role
blank Authorization ID if not a role

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2199

||
|
|

|
|

|
|
|

|

|
|

||

||

||

||

Column name Data type Description Use

BAUTH SMALLINT
NOT NULL
WITH DEFAULT

The privilege that is held on the object on which another
object is dependent.

G

2200 SQL Reference

||
|
|

|
|
|

SYSIBM.SYSDUMMY1 table
The SYSIBM.SYSDUMMY1 table contains one row. The table is used for SQL
statements in which a table reference is required, but the contents of the table are
not important.

Unlike the other catalog tables, which reside in Unicode table spaces,
SYSIBM.SYSDUMMY1 resides in table space SYSEBCDC, which is an EBCDIC
table space.

Column name Data type Description Use

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2201

SYSIBM.SYSDUMMYA table
The SYSIBM.SYSDUMMYA table contains one row. The table is used for SQL
statements in which a table reference is required, but the contents of the table are
not important.

SYSIBM.SYSDUMMYA resides in table space SYSTSASC, which is a ASCII table
space.

Column name Data type Description Use

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2202 SQL Reference

SYSIBM.SYSDUMMYE table
The SYSIBM.SYSDUMMYE table contains one row. The table is used for SQL
statements in which a table reference is required, but the contents of the table are
not important.

SYSIBM.SYSDUMMYE resides in table space SYSEBCDC, which is a EBCDIC table
space.

Column name Data type Description Use

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2203

SYSIBM.SYSDUMMYU table
The SYSIBM.SYSDUMMYU table contains one row. The table is used for SQL
statements in which a table reference is required, but the contents of the table are
not important.

SYSIBM.SYSDUMMYU resides in table space SYSTSUNI, which is a UNICODE
table space.

Column name Data type Description Use

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2204 SQL Reference

SYSIBM.SYSENVIRONMENT table
The SYSIBM.SYSENVIRONMENT table records the environment variables when an
object is created.

Column name Data type Description Use

ENVID
INTEGER
NOT NULL

Internal identifier of the environment. G

CURRENT_SCHEMA
VARCHAR(128)
NOT NULL

The current schema. G

RELCREATED
CHAR(1)
NOT NULL

The release when the environment information is created.
SeeRelease dependency indicators for values.

G

PATHSCHEMAS
VARCHAR(2048)
NOT NULL

The schema path. G

APPLICATION_
ENCODING_CCSID

INTEGER
NOT NULL

The CCSID of the application environment. G

ORIGINAL_
ENCODING_CCSID

INTEGER
NOT NULL

The original CCSID of the statement text string. G

DECIMAL_POINT
CHAR(1)
NOT NULL

The decimal point indicator:
C Comma
P Period

G

MIN_DIVIDE_SCALE
CHAR(1)
NOT NULL

The minimum divide scale:
N The usual rules apply for decimal division in

SQL
Y Retain at lease three digits to the right of the

decimal point after any decimal division.

G

STRING_DELIMITER
CHAR(1)
NOT NULL

The string delimiter that is used in COBOL string
constants:
A Apostrophe (')
Q Quote (")

G

SQL_STRING_
DELIMITER

CHAR(1)
NOT NULL

The SQL string delimiter that is used in string constants:
A Apostrophe (')
Q Quote (")

G

MIXED_DATA
CHAR(1)
NOT NULL

Uses mixed DBCS data:
N No mixed data
Y Mixed data

G

DECIMAL_
ARITHMETIC

CHAR(1)
NOT NULL

The rules that are to be used for CURRENT PRECISION
and when both operands in a decimal operation have a
precision of 15 or less:
1 DEC15 specifies that the rules do not allow a

precision greater than 15 digits
2 DEC31 specifies that the rules allow a precision

of up to 31 digits

G

Appendix. Additional information for DB2 SQL 2205

Column name Data type Description Use

DATE_FORMAT
CHAR(1)
NOT NULL

The date format:
I ISO - yyyy-mm-dd
J JIS - yyyy-mm-dd
U USA - mm/dd/yyyy
E EUR - dd.mm.yyyy
L Locally defined by an installation exit routine

G

TIME_FORMAT
CHAR(1)
NOT NULL

The time format:
I ISO - hh.mm.ss
J JIS - hh.mm.ss
U USA - hh:mm AM or hh:mm PM
E EUR - hh.mm.ss
L Locally defined by an installation exit routine

G

FLOAT_FORMAT
CHAR(1)
NOT NULL

The floating point format:
I IEEE floating point format
S System/390 floating point format

G

HOST_LANGUAGE
CHAR(8)
NOT NULL

The host language:

v ASM

v C

v CPP

v IBMCOB

v PLI

v FORTRAN

G

CHARSET
CHAR(1)
NOT NULL

The character set:
A Alphanumeric

G

FOLD
CHAR(1)
NOT NULL

FOLD is only applicable when HOST_LANGUAGE is C
or CPP. Otherwise FOLD is blank.
N Lower case letters in SBCS ordinary identifiers

are not folded to uppercase
Y Lower case letters in SBCS ordinary identifiers

are folded to uppercase
blank Not applicable

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

ROUNDING
CHAR(1)
NOT NULL
WITH DEFAULT

The rounding mode that is used when arithmetic and
casting operations are performed on DECFLOAT data:
C ROUND_CEILING
D ROUND_DOWN
F ROUND_FLOOR
G ROUND_HALF_DOWN
E ROUND_HALF_EVEN
H ROUND_HALF_UP
U ROUND_UP

G

2206 SQL Reference

SYSIBM.SYSFIELDS table
The SYSIBM.SYSFIELDS table contains one row for every column that has a field
procedure.

Column name Data type Description Use

TBCREATOR
VARCHAR(128)

NOT NULL

Schema or qualifier of the table that contains the column. G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table that contains the column. G

COLNO
SMALLINT
NOT NULL

Numeric place of this column in the table. G

NAME
VARCHAR(128)
NOT NULL

Name of the column. G

FLDTYPE
VARCHAR(24)
NOT NULL

Data type of the encoded values in the field (This
columns might contain statistical values from a prior
release.):
INTEGER

Large integer
SMALLINT

Small integer
FLOAT Floating-point
CHAR Fixed-length character string
VARCHAR

Varying-length character string
DECIMAL

Decimal
GRAPHIC

Fixed-length graphic string
VARG Varying-length graphic string

G

LENGTH
SMALLINT
NOT NULL

The length attribute of the field; or, for a decimal field, its
precision.(This columns might contain statistical values
from a prior release.) The number does not include the
internal prefixes that can be used to record actual length
and null state.
INTEGER

4
SMALLINT

2
FLOAT 8
CHAR Length of string
VARCHAR

Maximum length of string
DECIMAL

Precision of number
GRAPHIC

Number of DBCS characters
VARG Maximum number of DBCS characters

G

SCALE
SMALLINT
NOT NULL

Scale if FLDTYPE is DECIMAL; otherwise, the value is 0. G

Appendix. Additional information for DB2 SQL 2207

Column name Data type Description Use

FLDPROC
VARCHAR(24)
NOT NULL

For a row describing a field procedure, the name of the
procedure. (This columns might contain statistical values
from a prior release.)

G

WORKAREA
SMALLINT
NOT NULL

For a row describing a field procedure, the size, in bytes,
of the work area required for the encoding and decoding
of the procedure. (This columns might contain statistical
values from a prior release.)

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

EXITPARML
SMALLINT
NOT NULL

For a row describing a field procedure, the length of the
field procedure parameter value block. (This columns
might contain statistical values from a prior release.)

G

PARMLIST
VARCHAR(735)
NOT NULL

For a row describing a field procedure, the parameter list
following FIELDPROC in the statement that created the
column, with insignificant blanks removed. (This columns
might contain statistical values from a prior release.)

G

EXITPARM VARCHAR(1530)
NOT NULL
FOR BIT DATA

For a row describing a field procedure, the parameter
value block of the field procedure (the control block
passed to the field procedure when it is invoked). (This
columns might contain statistical values from a prior
release.)

G

2208 SQL Reference

SYSIBM.SYSFOREIGNKEYS table
The SYSIBM.SYSFOREIGNKEYS table contains one row for every column of every
foreign key.

Column name Data type Description Use

CREATOR
VARCHAR(128)
NOT NULL

Schema or qualifier of the table that contains the column. G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table that contains the column. G

RELNAME
VARCHAR(128)
NOT NULL

Constraint name for the constraint for which the column
is part of the foreign key.

G

COLNAME
VARCHAR(128)
NOT NULL

Name of the column. G

COLNO
SMALLINT
NOT NULL

Numeric place of the column in its table. G

COLSEQ
SMALLINT
NOT NULL

Numeric place of the column in the foreign key. G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2209

SYSIBM.SYSINDEXCLEANUP table
The rows in the SYSIBM.SYSINDEXCLEANUP table specify time windows to
control index cleanup processing. Each row specifies a time window to enable or
disable the cleanup of pseudo-deleted index entries for specific database objects.

Column name Data type Description Use

DBNAME VARCHAR(24) The name of the database that contains the index space. G

INDEXSPACE VARCHAR(24) The name of the index space. G

ENABLE_DISABLE CHAR(1) NOT NULL Specifies whether the row enables or disables cleanup for
the specified index space.

'E' Enabled

'D' Disabled

G

MONTH_WEEK CHAR(1) NOT NULL Indicates the meaning of the value of the DAY column:

'M' The value indicates the day of the month.

'W' The value indicates a day of the week.

G

MONTH SMALLINT The month in which the time window applies. For
example a 1 value indicates January and a 12 value
indicates December. If this column contains NULL, the
time window applies to all months. If the value of the
MONTH_WEEK column is 'W', this value must be NULL.

G

DAY SMALLINT The day of the month or the day of the week for which
the time window applies, as specified by the value of the
MONTH_WEEK column.

For example, if MONTH_WEEK='W', a 1 value indicates
Monday and 7 indicates Sunday.

If the value of this column is NULL, the time window
applies to every day of the month or every day of the
week.

G

START_TIME TIME The local time at the beginning of the time window
specified by the row. When this column contains a null
value, the row applies at all times on the specified days.
This column must contain NULL if the END_TIME
column contains NULL.

G

END_TIME TIME The local time at the end of the time window specified by
the row. When this column contains a null value, the row
applies at all times on the specified days. This column
must contain NULL if the START_TIME column contains
NULL.

G

Related tasks:

Controlling index cleanup processing (DB2 Performance)
Related reference:

INDEX CLEANUP THREADS field (INDEX_CLEANUP_THREADS subsystem
parameter) (DB2 Installation and Migration)

2210 SQL Reference

|

|
|
|

|||||

||||

||||

|||
|

||

||

|

|||

||

||

|

|||
|
|
|
|

|

|||
|
|

|
|

|
|
|

|

|||
|
|
|
|

|

|||
|
|
|
|

|

|

|

|

|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_controlindexcleanup.htm#db2z_controlindexcleanup
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_indexcleanupthreads.htm#db2z_ipf_indexcleanupthreads
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_indexcleanupthreads.htm#db2z_ipf_indexcleanupthreads

SYSIBM.SYSINDEXES table
The SYSIBM.SYSINDEXES table contains one row for every index.

Column name Data type Description Use

NAME
VARCHAR(128)
NOT NULL

Name of the index. G

CREATOR
VARCHAR(128)
NOT NULL

The schema of the index.
G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table on which the index is defined. G

TBCREATOR
VARCHAR(128)
NOT NULL

The schema of the table.
G

UNIQUERULE
CHAR(1)
NOT NULL

Whether the index is unique:
C Yes, and it is used to enforce the uniqueness of a

UNIQUE constraint or hash key columns.
D No (duplicates are allowed)
U Yes
P Yes, and it is a primary index (As in prior

releases of DB2, a value of P is used for primary
keys that are used to enforce a referential
constraint.)

N Yes, and it is defined with UNIQUE WHERE
NOT NULL

R Yes, and it is an index used to enforce the
uniqueness of a non-primary parent key

G Yes, and it is an index used to enforce the
uniqueness of values in a column defined as
ROWID GENERATED BY DEFAULT

X Yes, and it is an index used to enforce the
uniqueness of values in a column that is used to
identify or find XML values associated with a
specific row.

G

COLCOUNT
SMALLINT
NOT NULL

The number of columns in the key. G

CLUSTERING
CHAR(1)
NOT NULL

Whether CLUSTER was specified for the index:
N No
Y Yes

G

CLUSTERED
CHAR(1)
NOT NULL

Whether the table is actually clustered by the index:
N A significant number of rows are not in

clustering order, or statistics have not been
gathered.

Y Most of the rows are in clustering order.
blank Not applicable.
This is an updatable column that can also be changed by
the RUNSTATS utility.

For a sparse index, the statistic is based on the actual
contents of the index.

G

Appendix. Additional information for DB2 SQL 2211

|
|

Column name Data type Description Use

DBID
SMALLINT
NOT NULL

Internal identifier of the database. S

OBID
SMALLINT
NOT NULL

Internal identifier of the index fan set descriptor. S

ISOBID
SMALLINT
NOT NULL

Internal identifier of the index page set descriptor. S

DBNAME
VARCHAR(24)
NOT NULL

Name of the database that contains the index. G

INDEXSPACE
VARCHAR(24)
NOT NULL

Name of the index space. G

FIRSTKEYCARD
INTEGER
NOT NULL

Not used N

FULLKEYCARD
INTEGER
NOT NULL

Not used N

NLEAF
INTEGER
NOT NULL

Number of active leaf pages in the index. The value is -1
if statistics have not been gathered. This is an updatable
column.

S

NLEVELS
SMALLINT
NOT NULL

Number of levels in the index tree. If the index is
partitioned, it is the maximum of the number of levels in
the index tree for all the partitions. The value is -1 if
statistics have not been gathered. This is an updatable
column.

S

BPOOL
CHAR(8)
NOT NULL

Name of the buffer pool used for the index. G

PGSIZE
SMALLINT
NOT NULL

Contains the value 4, 8, 16, or 32 which indicates the size,
in KB, of the leaf pages in the index.

If the index was created prior to Version 9, the value will
be 4096 for a 4 KB page size.

G

ERASERULE
CHAR(1)
NOT NULL

Whether the data sets are erased when dropped. The
value is meaningless if the index is partitioned:
N No
Y Yes

G

VARCHAR(24)
NOT NULL

Not used N

CLOSERULE
CHAR(1)
NOT NULL

Whether the data sets are candidates for closure when the
limit on the number of open data sets is reached:
N No
Y Yes

G

2212 SQL Reference

Column name Data type Description Use

SPACE
INTEGER
NOT NULL

Number of kilobytes of DASD storage allocated to the
index, as determined by the last execution of the
STOSPACE utility. The value is 0 if the index is not
related to a storage group, or if STOSPACE has not been
run. If the index space is partitioned, the value is the total
kilobytes of DASD storage allocated to all partitions that
are defined in a storage group.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

CLUSTERRATIO
SMALLINT
NOT NULL WITH
DEFAULT

Percentage of rows that are in clustering order. For a
partitioning index, it is the weighted average of all index
partitions in terms of the number of rows in the partition.
The value is 0 if statistics have not been gathered. The
value is -2 if the index is for an auxiliary table. This is an
updatable column.

For a sparse index, the statistic is based on the actual
contents of the index.

S

CREATEDBY
VARCHAR(128)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the
index.

G

SMALLINT
NOT NULL

Internal use only I

SMALLINT
NOT NULL

Not used N

STATSTIME
TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics. The default value is '0001-01-01.00.00.00.000000'.
This is an updatable column.

G

INDEXTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

The index type:
2 Type 2 index or a hash overflow index on

non-partitioned tables.
blank Type 1 index
D Data-partitioned secondary index
P An index that is both partitioned and is a

partitioning index (index that is on a table that
uses table-controlled partitioning).

G

FIRSTKEYCARDF
FLOAT
NOT NULL WITH
DEFAULT -1

Number of distinct values of the first key column. This
number is an estimate if updated while collecting
statistics on a single partition. The value is -1 if statistics
have not been gathered. This is an updatable column.

For a sparse index, the statistic is based on the actual
contents of the index.

S

Appendix. Additional information for DB2 SQL 2213

|
|

|
|

Column name Data type Description Use

FULLKEYCARDF
FLOAT
NOT NULL WITH
DEFAULT -1

Number of distinct values of the key. The value is -1 if
statistics have not been gathered. This is an updatable
column.

For a sparse index, the statistic is based on the actual
contents of the index.

S

CREATEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the
index. If the index was created in a DB2 release prior to
Version 5, the value is '0001-01-01.00.00.00.000000'.

G

ALTEREDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER INDEX statement was
executed for the index. If no ALTER INDEX statement has
been applied, ALTEREDTS has the value of CREATEDTS.
If the index was created in a DB2 release prior to Version
5, the value is '0001-01-01.00.00.00.000000'.

G

PIECESIZE
INTEGER
NOT NULL
WITH DEFAULT

Maximum size of a data set in kilobytes for secondary
indexes.

A value of zero (0) indicates that the index is a
partitioning index or that the index was created in a DB2
release prior to Version 5.

G

COPY
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether COPY YES was specified for the index, which
indicates if the index can be copied and if
SYSIBM.SYSLGRNX recording is enabled for the index.
N No
Y Yes

G

COPYLRSN
CHAR(10)
NOT NULL WITH
DEFAULT
X'000000000000

00000000'
FOR BIT DATA

The value can be either an RBA or LRSN. (LRSN is only
for data sharing.) If the index is currently defined as
COPY YES, the value is the RBA or LRSN when the index
was created with COPY YES or altered to COPY YES, not
the current RBA or LRSN. If the index is currently defined
as COPY NO, the value is set to X'000000000000' if the
index was created with COPY NO; otherwise, if the index
was altered to COPY NO, the value in COPYLRSN is not
changed when the index is altered to COPY NO.

G

CLUSTERRATIOF
FLOAT
NOT NULL WITH
DEFAULT

When multiplied by 100, the value of the column is the
percentage of rows that are in clustering order. For
example, a value of '.9125' indicates 91.25%. For a
partitioning index, it is the weighted average of all index
partitions in terms of the number of rows in the partition.
The value is 0 if statistics have not been gathered. The
value is -2 if the index is for an auxiliary table, a node ID
index or an XML index. This is an updatable column.

For a sparse index, the statistic is based on the actual
contents of the index.

G

SPACEF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Kilobytes of DASD storage. The value is -1 if statistics
have not been gathered. This is an updatable column.

G

REMARKS
VARCHAR(762)
NOT NULL WITH
DEFAULT

A character field string provided by the user with the
COMMENT statement.

G

2214 SQL Reference

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

Column name Data type Description Use

PADDED
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether keys within the index are padded for
varying-length column data:
Y The index contains varying-length character or

graphic data and is PADDED (the varying-length
columns are padded to their maximum length).

N The index contains varying-length character or
graphic data and is NOT PADDED (the
varying-length columns are not padded to their
maximum length). Index-only access to all
column data is possible.

blank The index does not contain varying-length
character or graphic data. The value is blank for
indexes that have been created or altered prior to
Version 8.

G

VERSION
SMALLINT
NOT NULL WITH
DEFAULT

The version of the data row format for this index. A value
of zero indicates that a version-creating alter has never
occurred against this index.

G

OLDEST_VERSION
SMALLINT
NOT NULL WITH
DEFAULT

The version number describing the oldest format of data
in the index space and any image copies of the index.

G

CURRENT_VERSION
SMALLINT
NOT NULL WITH
DEFAULT

The version number describing the newest format of data
in the index space. A zero indicates that the index space
has never had been versioned. After the version number
reaches the maximum value, the number will wrap back
to one.

G

RELCREATED
CHAR(1)
NOT NULL WITH
DEFAULT

Release of DB2 that was used to create the object, blank
for indexes created before Version 8. For all other values,
see Release dependency indicators.

G

AVGKEYLEN
INTEGER
NOT NULL WITH
DEFAULT -1

Average length of keys within the index. The value is -1 if
statistics have not been gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

G

CHAR(1)
NOT NULL

Not used N

KEYTARGET_COUNT
SMALLINT
NOT NULL WITH
DEFAULT

The number of key-targets for an extended index. The
value is 0 for a simple index.

G

UNIQUE_COUNT
SMALLINT
NOT NULL WITH
DEFAULT

The number of columns or key-targets that make up the
unique constraint of an index, when other non-constraint
enforcing columns or key-targets exist. Otherwise the
value is 0.

G

IX_EXTENSION_TYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Identifies the type of extended index:
N Node ID index
S Index on a scalar expression
T Spatial index
V XML index
blank Simple index

G

Appendix. Additional information for DB2 SQL 2215

|
|

Column name Data type Description Use

COMPRESS
CHAR(1)
NOT NULL WITH
DEFAULT ' N'

Indicates whether index compression is active:
N Index compression is not active
Y Index compression is active

G

OWNER
VARCHAR(128)
NOT NULL WITH
DEFAULT

Authorization ID of the owner of the index, empty string
for indexes created in a DB2 release prior to Version 9.

G

OWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank Authorization ID
L Role

G

DATAREPEAT-
FACTORF FLOAT

NOT NULL WITH
DEFAULT -1

The anticipated number of data pages that will be
touched following an index key order. This number is -1
if statistics have not been collected. This is an updatable
column.

For a sparse index, the statistic is based on the actual
contents of the index.

G

ENVID
INTEGER
NOT NULL WITH
DEFAULT

Internal environment identifier. G

HASH
CHAR(1)
NOT NULL
WITH DEFAULT N

Whether the index is the hash overflow index for a hash
table.

N No. N is the default.

Y Yes

G

SPARSE
CHAR(1)
NOT NULL
WITH DEFAULT N

Whether the index is sparse or not.

N No. N is the default. Every data row has an
index entry.

Y Yes. This index might not have an entry for each
data row in the table.

X Excluded. This index will not have an index
entry when every data row for a key column
contains the NULL value.

G

ROWID ROWID
NOT NULL
GENERATED
ALWAYS

ROWID column, created for the lob columns in this table. G

BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only I

BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only I

2216 SQL Reference

|
|

||
|
|

SYSIBM.SYSINDEXES_HIST table
The SYSIBM.SYSINDEXES_HIST table contains rows from SYSINDEXES.

Rows are added or changed in this table when RUNSTATS collects history
statistics. Rows in this table can also be inserted, updated, and deleted.

Column name Data type Description Use

NAME
VARCHAR(128)
NOT NULL

Name of the index. G

CREATOR
VARCHAR(128)
NOT NULL

The schema of the index.
G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table on which the index is defined. G

TBCREATOR
VARCHAR(128)
NOT NULL

The schema of the table.
G

CLUSTERING
CHAR(1)
NOT NULL

Whether CLUSTER was specified when the index was
created:
N No
Y Yes

G

NLEAF
INTEGER
NOT NULL WITH
DEFAULT -1

Number of active leaf pages in the index. The value is -1
if statistics have not been gathered.

S

NLEVELS
SMALLINT
NOT NULL WITH
DEFAULT -1

Number of levels in the index tree. If the index is
partitioned, it is the maximum of the number of levels in
the index tree for all the partitions. The value is -1 if
statistics have not been gathered.

S

STATSTIME
TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics. The default value is '0001-01-01.00.00.00.000000'.

G

FIRSTKEYCARDF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of distinct values of the first key column. This
number is an estimate if updated while collecting
statistics on a single partition. The value is -1 if statistics
have not been gathered.

S

FULLKEYCARDF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of distinct values of the key. The value is -1 if
statistics have not been gathered.

S

CLUSTERRATIOF
FLOAT(8)
NOT NULL

Percentage of rows that are in clustering order. For a
partitioning index, it is the weighted average of all index
partitions in terms of the number of rows in the partition.
The value is 0 if statistics have not been gathered. The
value is -2 if the index is for an auxiliary table.

For a sparse index, the statistic is based on the actual
contents of the index.

G

SPACEF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of kilobytes of DASD storage allocated to the
index space partition. The value is -1 if statistics have not
been gathered.

G

Appendix. Additional information for DB2 SQL 2217

|
|

Column name Data type Description Use

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

AVGKEYLEN
INTEGER
NOT NULL WITH
DEFAULT -1

Average length of keys within the index. The value is -1 if
statistics have not been gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

G

DATAREPEAT-
FACTORF FLOAT

NOT NULL WITH
DEFAULT -1

The anticipated number of data pages that will be
touched following an index key order. This number is -1
if statistics have not been collected. This is an updatable
column.

For a sparse index, the statistic is based on the actual
contents of the index.

G

2218 SQL Reference

|
|

|
|

SYSIBM.SYSINDEXES_RTSECT table
The SYSIBM.SYSINDEXES_RTSECT table is an auxiliary table for the RTSECTION
column of the SYSIBM.SYSINDEXES table and is required to hold LOB data.

Column name Data type Description Use

BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only. I

Appendix. Additional information for DB2 SQL 2219

SYSIBM.SYSINDEXES_TREE table
The SYSIBM.SYSINDEXES_TREE table is an auxiliary table for the PARSETREE
column of the SYSIBM.SYSINDEXES table and is required to hold LOB data.

Column name Data type Description Use

BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only. I

2220 SQL Reference

SYSIBM.SYSINDEXPART table
The SYSIBM.SYSINDEXPART table contains one row for each nonpartitioned
secondary index (NPSI) and one row for each partition of a partitioning index or a
data-partitioned secondary index.

Column name Data type Description Use

PARTITION
SMALLINT
NOT NULL

Partition number; Zero if index is not partitioned. G

IXNAME
VARCHAR(128)
NOT NULL

Name of the index. G

IXCREATOR
VARCHAR(128)
NOT NULL

The schema of the index.
G

PQTY
INTEGER
NOT NULL

For user-managed data sets, the value is the primary
space allocation in units of 4KB storage blocks or -1.

PQTY is based on a value of PRIQTY in the appropriate
CREATE or ALTER INDEX statement. Unlike PQTY,
however, PRIQTY asks for space in 1KB units.

A value of -1 indicates that either of the following cases is
true:

v PRIQTY was not specified for a CREATE INDEX
statement or for any subsequent ALTER INDEX
statements.

v -1 was the most recently specified value for PRIQTY,
either on the CREATE INDEX statement or a
subsequent ALTER INDEX statement.

G

SQTY
SMALLINT
NOT NULL

For user-managed data sets, the value is the secondary
space allocation in units of 4KB storage blocks or -1.

SQTY is based on a value of SECQTY in the appropriate
CREATE or ALTER INDEX statement. Unlike SQTY,
however, SECQTY asks for space in 1KB units.

A value of -1 indicates that either of the following cases is
true:

v SECQTY was not specified for a CREATE INDEX
statement or for any subsequent ALTER INDEX
statements.

v -1 was the most recently specified value for SECQTY,
either on the CREATE INDEX statement or a
subsequent ALTER INDEX statement.

If the value does not fit into the column, the value of the
column is 32767. See the description of column SECQTYI.

G

STORTYPE
CHAR(1)
NOT NULL

Type of storage allocation:
E Explicit, and STORNAME names an integrated

catalog facility catalog
I Implicit, and STORNAME names a storage group

G

STORNAME
VARCHAR(128)
NOT NULL

Name of storage group or integrated catalog facility
catalog used for space allocation.Blank for the catalog
indexes.

G

Appendix. Additional information for DB2 SQL 2221

Column name Data type Description Use

VCATNAME
VARCHAR(24)
NOT NULL

Name of integrated catalog facility catalog used for space
allocation.

G

CARD
INTEGER
NOT NULL

Not used N

FAROFFPOS
INTEGER
NOT NULL

Not used N

LEAFDIST
INTEGER
NOT NULL

100 times the average number of leaf pages between
successive active leaf pages of the index. The value is -1 if
statistics have not been gathered. The value is -2 if the
index is an auxiliary index, a node ID index, or an XML
index.

S

NEAROFFPOS
INTEGER
NOT NULL

Not used S

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

LIMITKEY VARCHAR(512)
NOT NULL
FOR BIT DATA

The high value of the limit key of the partition in an
internal format. An empty string if the index is not
partitioned or for a data-partitioned secondary index
(DPSI).

If any column of the key has a field procedure, the
internal format is the encoded form of the value.

S

FREEPAGE
SMALLINT
NOT NULL

Number of pages that are loaded before a page is left as
free space.

G

PCTFREE
SMALLINT
NOT NULL

Percentage of each leaf or nonleaf page that is left as free
space.

G

2222 SQL Reference

Column name Data type Description Use

SPACE
INTEGER
NOT NULL WITH
DEFAULT

Number of kilobytes of DASD storage allocated to the
index space partition, as determined by the last execution
of the STOSPACE utility.

0 The STOSPACE or RUNSTATS utility has not
been run or the data set for the index has been
created during the first insert operation or when
the LOAD utility was run.

-1 The index was defined with the DEFINE NO
clause, which defers the physical creation of the
data sets until data is first inserted into the
index, and data has yet to be inserted into the
index.

A non-negative value
Indicates that the data sets for the index space
are defined with the underlying data sets
allocated.

The value is updated by STOSPACE if the index is related
to a storage group. The value is updated by RUNSTATS if
the utility is executed as RUNSTATS INDEX with
UPDATE(ALL) or UPDATE(SPACE).

G

STATSTIME
TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics. The default value is '0001-01-01.00.00.00.000000'.

G

CHAR(1)
NOT NULL

Not used N

GBPCACHE
CHAR(1)
NOT NULL WITH
DEFAULT

Group buffer pool cache option specified for this index or
index partition.
blank Only changed pages are cached in the group

buffer pool.
A Changed and unchanged pages are cached in the

group buffer pool.
N No data is cached in the group buffer pool.

G

FAROFFPOSF
FLOAT
NOT NULL WITH
DEFAULT -1

Number of referred to rows far from optimal position
because of an insert into a full page. The value is -1 if
statistics have not been gathered. The value is -2 if the
index is an auxiliary index, a node ID index, or an XML
index. The column is not applicable for an index on an
auxiliary table.

For a sparse index, the statistic is based on the actual
contents of the index.

S

NEAROFFPOSF
FLOAT
NOT NULL WITH
DEFAULT -1

Number of referred to rows near, but not at optimal
position, because of an insert into a full page. The value is
-2 if the index is an auxiliary index, a node ID index, or
an XML index. Not applicable for an index on an
auxiliary table.

For a sparse index, the statistic is based on the actual
contents of the index.

S

Appendix. Additional information for DB2 SQL 2223

|
|

|
|

Column name Data type Description Use

CARDF
FLOAT
NOT NULL WITH
DEFAULT -1

Number of RIDs in the index that refer to data rows or
LOBs. The value is -1 if statistics have not been gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

S

SECQTYI
INTEGER
NOT NULL WITH
DEFAULT

Secondary space allocation in units of 4KB storage. For
user-managed data sets, the value is the secondary space
allocation in units of 4KB blocks.

G

IPREFIX
CHAR(1)
NOT NULL WITH
DEFAULT 'I'

The first character of the instance qualifier for this index's
data set name. 'I' or 'J' are the only valid characters for
this field. The default is 'I'.

G

ALTEREDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER INDEX statement was
executed for the index. If no ALTER INDEX statement has
been applied, the value is '0001-01-01.00.00.00.000000'.

G

SPACEF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Kilobytes of DASD storage. The value is -1 if statistics
have not been gathered. This is an updatable column.

G

DSNUM
INTEGER
NOT NULL WITH
DEFAULT -1

Number of data sets. The value is -1 if statistics have not
been gathered. This is an updatable column.

G

EXTENTS
INTEGER
NOT NULL WITH
DEFAULT -1

Number of data set extents. The value is -1 if statistics
have not been gathered. This is an updatable column.
This value is only for the last DSNUM for the object.

G

PSEUDO_DEL_
ENTRIES INTEGER

NOT NULL WITH
DEFAULT -1

Number of pseudo deleted entries (entries that are
logically deleted but still physically present in the index).
For a non-unique index, value is the number of RIDs that
are pseudo deleted. For a unique index, the value is the
number of keys and RIDs that are pseudo deleted. The
value is -1 if statistics have not been gathered. This is an
updatable column.

G

LEAFNEAR
INTEGER
NOT NULL WITH
DEFAULT -1

Number of leaf pages physically near previous leaf page
for successive active leaf pages. The value is -1 if statistics
have not been gathered. This is an updatable column.

S

LEAFFAR
INTEGER
NOT NULL WITH
DEFAULT -1

Number of leaf pages located physically far away from
previous leaf pages for successive (active leaf) pages
accessed in an index scan. The value is -1 if statistics have
not been gathered. This is an updatable column.

S

OLDEST_VERSION
SMALLINT
NOT NULL WITH
DEFAULT

The version number describing the oldest format of data
in the index part and any image copies of the index part.

G

CREATEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT -1

Time when the partition was created. G

2224 SQL Reference

|
|

Column name Data type Description Use

AVGKEYLEN
INTEGER
NOT NULL WITH
DEFAULT -1

Average length of keys within the index. The value is -1 if
statistics have not been gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

G

RBA_FORMAT CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the format of the RBA/LRSN.

B Basic, 6-byte RBA/LRSN format.

E Extended, 10-byte RBA/LRSN format.

U Undefined. DEFINE NO was specified when
creating the table space.

blank For migrated objects.

G

Appendix. Additional information for DB2 SQL 2225

|
|

||
|
|

|

||

||

||
|

||

|

SYSIBM.SYSINDEXPART_HIST table
The SYSIBM.SYSINDEXPART_HIST table contains rows from SYSINDEXPART.

Rows are added or changed in this table when RUNSTATS collects history
statistics. Rows in this table can also be inserted, updated, and deleted.

Column name Data type Description Use

PARTITION SMALLINT
NOT NULL

Partition number. Zero if index is not partitioned. G

IXNAME
VARCHAR(128)
NOT NULL

Name of the index. G

IXCREATOR
VARCHAR(128)
NOT NULL

The schema of the index.
G

PQTY
INTEGER NOT NULL

For user-managed data sets, the value is the primary
space allocation in units of 4KB storage blocks or -1.

For user-specified values of PRIQTY other than -1, the
value is set to the primary space allocation only if
RUNSTATS INDEX with UPDATE(ALL) or
UPDATE(SPACE) is executed; otherwise, the value is zero.
PQTY is based on a value of PRIQTY in the appropriate
CREATE or ALTER INDEX statement. Unlike PQTY,
however, PRIQTY asks for space in 1KB units.

A value of -1 indicates that either of the following cases is
true:

v PRIQTY was not specified for a CREATE INDEX
statement or for any subsequent ALTER INDEX
statements.

v -1 was the most recently specified value for PRIQTY,
either on the CREATE INDEX statement or a
subsequent ALTER INDEX statement.

If a storage group is not used, the value is 0.

G

SECQTYI
INTEGER
NOT NULL

For user-managed data sets, the value is the secondary
space allocation in units of 4KB storage blocks or -1.

For user-specified values of SECQTY other than -1, the
value is set to the secondary space allocation only if
RUNSTATS INDEX with UPDATE(ALL) or
UPDATE(SPACE) is executed; otherwise, the value is zero.
SQTY is based on a value of SECQTY in the appropriate
CREATE or ALTER INDEX statement. Unlike SQTY,
however, SECQTY asks for space in 1KB units.

A value of -1 indicates that either of the following cases is
true:

v SECQTY was not specified for a CREATE INDEX
statement or for any subsequent ALTER INDEX
statements.

v -1 was the most recently specified value for SECQTY,
either on the CREATE INDEX statement or a
subsequent ALTER INDEX statement.

If a storage group is not used, the value is 0.

G

2226 SQL Reference

Column name Data type Description Use

LEAFDIST
INTEGER
NOT NULL WITH
DEFAULT -1

100 times the average number of leaf pages between
successive active leaf pages of the index. The value is -1 if
statistics have not been gathered.

S

SPACEF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of kilobytes of DASD storage allocated to the
index space partition. The value is -1 if statistics have not
been gathered.

G

STATSTIME
TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics. The default value is '0001-01-01.00.00.00.000000'.

G

FAROFFPOSF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of referred to rows far from optimal position
because of an insert into a full page. The value is -1 if
statistics have not been gathered. The column is not
applicable for an index on an auxiliary table.

For a sparse index, the statistic is based on the actual
contents of the index.

S

NEAROFFPOSF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of referred to rows near, but not at optimal
position, because of an insert into a full page. Not
applicable for an index on an auxiliary table. The value is
-1 if statistics have not been gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

S

CARDF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of RIDs in the index that refer to data rows or
LOBs. The value is -1 if statistics have not been gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

S

EXTENTS
INTEGER
NOT NULL WITH
DEFAULT -1

Number of data set extents. The value is -1 if statistics
have not been gathered. This value is only for the last
DSNUM for the object.

G

PSEUDO_DEL_
ENTRIES INTEGER

NOT NULL WITH
DEFAULT -1

Number of pseudo deleted entries. The value is -1 if
statistics have not been gathered.

G

DSNUM
INTEGER
NOT NULL WITH
DEFAULT -1

Data set number within the table space. For partitioned
index spaces, this value corresponds to the partition
number for a single partition copy, or 0 for a copy of an
entire partitioned index space. The value is -1 if statistics
have not been gathered.

G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

LEAFNEAR
INTEGER
NOT NULL WITH
DEFAULT -1

Number of leaf pages physically near previous leaf page
for successive active leaf pages. The value is -1 if statistics
have not been gathered. This is an updatable column.

S

Appendix. Additional information for DB2 SQL 2227

|
|

|
|

|
|

Column name Data type Description Use

LEAFFAR
INTEGER
NOT NULL WITH
DEFAULT -1

Number of leaf pages located physically far away from
previous leaf pages for successive (active leaf) pages
accessed in an index scan. The value is -1 if statistics have
not been gathered. This is an updatable column.

S

AVGKEYLEN
INTEGER
NOT NULL WITH
DEFAULT -1

Average length of keys within the index. The value is -1 if
statistics have not been gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

G

2228 SQL Reference

|
|

SYSIBM.SYSINDEXSPACESTATS table
The SYSIBM.SYSINDEXSPACESTATS table contains real time statistics for index
spaces.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

UPDATESTATSTIME
TIMESTAMP
NOT NULL
WITH DEFAULT

The timestamp that the row in the
SYSINDEXSPACESTATS table is inserted or last updated.

G

NLEVELS
SMALLINT

The number of levels in the index tree.

A null value indicates that the number of levels is
unknown.

G

NPAGES
INTEGER

The number of pages in the index tree that contain only
pseudo-deleted index entries. This is an updatable
column.

G

NLEAF
INTEGER

The number of leaf pages in the index. This is an
updatable column.

G

NACTIVE
INTEGER

The number of active pages in the index space or
partition. This value is equivalent to the number of
pre-formatted pages.

A null value indicates that the number of active pages is
unknown.

G

SPACE
INTEGER

The amount of space, in KB, that is allocated to the index
space or partition. For multi-piece, linear page sets, this
value is the amount of space in all data sets. A null value
indicates the amount of space is unknown.

G

EXTENTS
SMALLINT

The number of extents in the index space or partition. For
multi-piece index spaces, this value is the number of
extents for the last data sets. For a data set that is
stripped across multiple volumes, the value is the number
of logical extents. A null value indicates the number of
extents is unknown.

G

LOADRLASTTIME
TIMESTAMP

The timestamp that the LOAD REPLACE utility was last
run on the index space or partition.

A null value indicates that the LOAD REPLACE utility
has never been run on the index space or partition or that
the timestamp is unknown.

G

REBUILDLASTTIME
TIMESTAMP

The timestamp that the REBUILD INDEX utility was last
run on the index space or partition.

A null value indicates that the timestamp that the
REBUILD INDEX was last run is unknown.

G

REORGLASTTIME
TIMESTAMP

The timestamp when the REORG INDEX utility was last
run on the index space or partition, or if the REORG
INDEX utility has not been run, the time when the index
space or partition was created. A null value indicates that
the timestamp is unknown.

G

Appendix. Additional information for DB2 SQL 2229

Column name Data type Description Use

REORGINSERTS
INTEGER

The number of index entries that have been inserted into
the index space or partition since the last time the
REORG, REBUILD INDEX, or LOAD REPLACE utilities
were run, or since the object was created.

A null value indicates that the number of inserted index
entries is unknown.

G

REORGDELETES
INTEGER

The number of index entries that have been deleted from
the index space or partition since the last time the
REORG, REBUILD INDEX, or LOAD REPLACE utilities
were run, or since the object was created.

A null value indicates that the number of deleted index
entries is unknown.

G

REORGAPPEND-
INSERT INTEGER

The number of index entries that have a key value that is
greater than the maximum key value in the index or
partition that have been inserted into the index space or
partition since the last time the REORG, REBUILD
INDEX, or LOAD REPLACE utilities were run, or since
the object was created.

A null value indicates that the number of inserted index
entries is unknown.

G

REORGPSEUDO-
DELETES INTEGER

The number of pseudo-deleted index entries stored in the
index space or partition. A pseudo-delete is a RID entry
that has been marked as deleted.

A null value indicates that the number of pseudo-deleted
index entries is unknown.

G

REORGMASSDELETE
INTEGER

The number of mass deletes from a segmented or LOB
table space, or the number of dropped tables from a
segmented table space since the last time the REORG or
LOAD REPLACE utilities were run, or since the object
was created.

A null value indicates that the number of mass deletes is
unknown.

G

2230 SQL Reference

Column name Data type Description Use

REORGLEAFNEAR
INTEGER

The net number of leaf pages located physically near
previous pages for successive active leaf pages that
occurred since the last REORG, REBUILD INDEX, or
LOAD REPLACE, or since the object was created.

The distance between leaf pages is optimal if the
difference is 1 and considered near if the distance is 2-16.

An index page is added during a page split and the
distance between the predecessor and successor pages can
lower this count if the distance between the two was near.
The distance between the predecessor and new page
increase the count if they are near. The distance between
the new page and successor increment the count if they
are near.

If a leaf page is deleted the distance between the new
predecessor and successor pages can increment this count
if the distance between the two is near. The distance
between the predecessor and the deleted page decrement
the count if it was near. The distance between the
successor and the deleted page decrement the count if it
was near.

A null value means that the value is unknown. A negative
value is possible in some cases.

G

REORGLEAFFAR
INTEGER

The net number of leaf pages located physically far away
from previous leaf pages for successive active leaf pages
that occurred since the last REORG, REBUILD INDEX, or
LOAD REPLACE, or since the object was created.

The distance between leaf pages is optimal if the
difference is 1 and considered far if the distance is greater
than 16.

An index page is added during a page split and the
distance between the predecessor and successor pages can
decrement this count if the distance between the two was
far. The distance between the predecessor and new page
increment the count if they are far. The distance between
the new page and successor increment the count if they
are far.

If a leaf page is deleted the distance between the new
predecessor and successor pages can increment this count
if the distance between the two is far. The distance
between the predecessor and the deleted page decrement
the count if it was far. The distance between the successor
and the deleted page decrement the count if it was far.

A null value means that the value is unknown.

G

REORGNUMLEVELS
INTEGER

The number of levels in the index tree that were added or
removed since the last REORG, REBUILD INDEX, or
LOAD REPLACE, or the object was created.

A null value means that the number of added or deleted
levels is unknown.

G

Appendix. Additional information for DB2 SQL 2231

Column name Data type Description Use

STATSLASTTIME
TIMESTAMP

The timestamp of the last time that the RUNSTATS utility
is run on the table space or partition.

A null value means that RUNSTATS has never been run
on the index space or partition, or that the timestamp of
the last RUNSTATS is unknown.

G

STATSINSERTS
INTEGER

The number of index entries that have been inserted into
the index space or partition since the last time that the
RUNSTATS utility was run, or since the object was
created.

A null value indicates that the number of inserted records
or LOBs is unknown.

G

STATSDELETES
INTEGER

The number of index entries that have been deleted since
the last RUNSTATS on the index space or partition, or
since the object was created.

A null value means that the number of deleted index
entries is unknown.

G

STATSMASSDELETE
INTEGER

The number of times that the index or index space
partition was mass deleted since the last RUNSTATS, or
the object was created.

A null value indicates that the number of mass deletes is
unknown.

G

COPYLASTTIME
TIMESTAMP

The timestamp of the last full image copy on the index
space or partition.

A null value means that COPY has never been run on the
index space or partition, or that the timestamp of the last
full image copy is unknown.

G

COPYUPDATED-
PAGES INTEGER

The number of distinct pages that have been updated
since the last time that the COPY utility was run, or since
the object was created.

A null value indicates that the number of updated pages
is unknown.

G

COPYCHANGES
INTEGER

The number of insert, update, and delete operations since
the last time that the COPY utility was run, or since the
object was created.

A null value indicates that the number of insert, update,
and delete operations is unknown.

G

COPYUPDATELRSN
CHAR(10)
FOR BIT DATA

The LRSN or RBA of the first update that occurs after the
last time the COPY utility was run.

A null value indicates that the LRSN or RBA is unknown.

G

COPYUPDATETIME
TIMESTAMP

The timestamp of the first update that occurs after the last
time that the COPY utility was run.

A null value indicates that the timestamp is unknown.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2232 SQL Reference

|
|

Column name Data type Description Use

DBID
SMALLINT
NOT NULL

The internal identifier of the database. G

ISOBID
SMALLINT
NOT NULL

The internal identifier of the index space page set
descriptor.

I

PSID
SMALLINT
NOT NULL

The internal identifier of the table space page set
descriptor for the table space that is associated with the
index.

G

PARTITION
SMALLINT
NOT NULL

The data set number within the index space. For
partitioned index spaces, this value corresponds to the
partition number for a single partition. For
non-partitioned table spaces, this value is 0.

G

INSTANCE
SMALLINT
NOT NULL
WITH DEFAULT 1

Indicates if the object is associated with data set 1 or 2.
This is an updatable column.

G

TOTALENTRIES
BIGINT

The number of entries, including duplicate entries, in the
index space or partition.

A null value indicates that the number of entries is
unknown.

G

DBNAME
VARCHAR(24)
NOT NULL

The name of the database. G

NAME
VARCHAR(128)
NOT NULL

The name of the index. G

CREATOR
VARCHAR(128)
NOT NULL

The schema of the index. G

INDEXSPACE
VARCHAR(24)
NOT NULL

The name of the index space. G

LASTUSED
DATE

The date when the index is used for SELECT, FETCH,
searched UPDATE, searched DELETE, or used to enforce
referential integrity constraints. For a data-partitioned
secondary index, this column is only updated for one
partition, even though more than one partition is
accessed.

The default value is NULL.

G

REORGINDEXACCESS
BIGINT

The number of times the index was used for SELECT,
FETCH, searched UPDATE, searched DELETE, or used to
enforce referential integrity constraints, or since the object
was created. For hash overflow indexes, this is the
number of times DB2 has used the hash overflow index.
A null value indicates that the number of times the index
has been used is unknown.

G

Appendix. Additional information for DB2 SQL 2233

Column name Data type Description Use

DRIVETYPE CHAR(3)
NOT NULL

WITH DEFAULT

The drive type on which the index or index partition data
set is defined.

HDD Hard Disk Drive

SSD Solid State Drive
For multi-volume data sets, the drive type is set to SSD if
any volume is SSD. For multi-piece linear page sets, the
drive type of the first data set is used.

G

BIGINT Reserved for future IBM use. R

In data sharing environments, the values in SYSIBM.SYSINDEXSPACESTATS can
be negative for short periods of time for certain situations.
Related concepts:

How DB2 maintains in-memory statistics in data sharing (DB2 Data Sharing
Planning and Administration)

2234 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_howdb2maintainsstats.htm#db2z_howdb2maintainsstats
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_howdb2maintainsstats.htm#db2z_howdb2maintainsstats

SYSIBM.SYSINDEXSTATS table
The SYSIBM.SYSINDEXSTATS table contains one row for each partition of a
partitioning index or a data-partitioned secondary index.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

FIRSTKEYCARD
INTEGER
NOT NULL

For the index partition, number of distinct values of the
first key column.

For a sparse index, the statistic is based on the actual
contents of the index.

S

FULLKEYCARD
INTEGER
NOT NULL

For the index partition, number of distinct values of the
key.

For a sparse index, the statistic is based on the actual
contents of the index.

S

NLEAF
INTEGER
NOT NULL

Number of active leaf pages in the index partition. S

NLEVELS
SMALLINT
NOT NULL

Number of levels in the index tree. S

SMALLINT
NOT NULL

Not used N

SMALLINT
NOT NULL

Not used N

CLUSTERRATIO
SMALLINT
NOT NULL

For the index partition, the percentage of rows that are in
clustering order. The value is 0 if statistics have not been
gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

N

STATSTIME
TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics. The default value is '0001-01-01.00.00.00.000000'.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

PARTITION
SMALLINT
NOT NULL

Partition number of the index. G

OWNER
VARCHAR(128)
NOT NULL

The schema of the index.
G

NAME
VARCHAR(128)
NOT NULL

Name of the index. G

Appendix. Additional information for DB2 SQL 2235

|
|

|
|

|
|

Column name Data type Description Use

KEYCOUNT
INTEGER
NOT NULL

Total number of RIDs in the index partition. The value is
-1 if statistics have not been gathered.Total number of
rows in the partition.

For a sparse index, the statistic is based on the actual
contents of the index.

S

FIRSTKEYCARDF
FLOAT
NOT NULL WITH
DEFAULT -1

For the index partition, number of distinct values of the
first key column.

For a sparse index, the statistic is based on the actual
contents of the index.

S

FULLKEYCARDF
FLOAT
NOT NULL WITH
DEFAULT -1

For the index partition, number of distinct values of the
key.

For a sparse index, the statistic is based on the actual
contents of the index.

S

KEYCOUNTF
FLOAT
WITH
DEFAULT -1

Total number of RIDs in the index partition. The value is
-1 if statistics have not been gathered.Total number of
rows in the partition.

For a sparse index, the statistic is based on the actual
contents of the index.

S

CLUSTERRATIOF
FLOAT
NOT NULL WITH
DEFAULT

For the index partition, the value, when multiplied by
100, is the percentage of rows that are in clustering order.
For example, a value of '.9125' indicates 91.25%. The value
is 0 if statistics have not been gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

G

VARCHAR(1000)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Internal use only I

DATAREPEAT-
FACTORF FLOAT

NOT NULL WITH
DEFAULT -1

The anticipated number of data pages that will be
touched following an index key order. This number is -1
if statistics have not been collected. This is an updatable
column.

For a sparse index, the statistic is based on the actual
contents of the index.

G

2236 SQL Reference

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

SYSIBM.SYSINDEXSTATS_HIST table
The SYSIBM.SYSINDEXSTATS_HIST table contains rows from SYSINDEXSTATS.

Rows are added or changed in this table when RUNSTATS collects history
statistics. Rows in this table can also be inserted, updated, and deleted.

Column name Data type Description Use

NLEAF
INTEGER
NOT NULL WITH
DEFAULT -1

Number of active leaf pages in the index partition. The
value is -1 if statistics have not been gathered.

S

NLEVELS
SMALLINT
NOT NULL WITH
DEFAULT -1

Number of levels in the index tree. The value is -1 if
statistics have not been gathered.

S

STATSTIME
TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics. The default value is '0001-01-01.00.00.00.000000'.

G

PARTITION
SMALLINT
NOT NULL

Partition number of the index. G

OWNER
VARCHAR(128)
NOT NULL

The schema of the index.
G

NAME
VARCHAR(128)
NOT NULL

Name of the index. G

FIRSTKEYCARDF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

For the index partition, number of distinct values of the
first key column. The value is -1 if statistics have not been
gathered.

S

FULLKEYCARDF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

For the index partition, number of distinct values of the
key. The value is -1 if statistics have not been gathered.

S

KEYCOUNTF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of RIDs in the index partition. The value is
-1 if statistics have not been gathered.Total number of
rows in the partition. The value is -1 if statistics have not
been gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

S

CLUSTERRATIOF
FLOAT(8)
NOT NULL

For the index partition, the value, when multiplied by
100, is the percentage of rows that are in clustering order.
For example, a value of '0.9125' indicates 91.25%. The
value is 0 if statistics have not been gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2237

|
|

|
|

|
|

Column name Data type Description Use

DATAREPEAT-
FACTORF FLOAT

NOT NULL WITH
DEFAULT -1

The anticipated number of data pages that will be
touched following an index key order. This number is -1
if statistics have not been collected. This is an updatable
column.

For a sparse index, the statistic is based on the actual
contents of the index.

G

2238 SQL Reference

|
|

SYSIBM.SYSJARCLASS_SOURCE table
The SYSIBM.SYSJARCLASS_SOURCE table is an auxiliary table for
SYSIBM.SYSJARCONTENTS.

Column name Data type Description Use

CLASS_SOURCE CLOB(10M)
NOT NULL

The contents of the class in the JAR file. G

Appendix. Additional information for DB2 SQL 2239

SYSIBM.SYSJARCONTENTS table
The SYSIBM.SYSJARCONTENTS table contains Java class source for an installed
JAR file.

Column name Data type Description Use

JARSCHEMA
VARCHAR(128)
NOT NULL

The schema of the JAR file. G

JAR_ID
VARCHAR(128)
NOT NULL

The name of the JAR file. G

CLASS
VARCHAR(384)
NOT NULL

The class name contained in the JAR file. G

CLASS_SOURCE_ROWID
ROWID
NOT NULL
GENERATED
ALWAYS

ID used to support CLOB data type. G

CLASS_SOURCE
CLOB(10M)
NOT NULL

The contents of the class in the JAR file. G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the
basic machine-readable material (MRM) tape. For all
other values, see Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

2240 SQL Reference

SYSIBM.SYSJARDATA table
The SYSIBM.SYSJARDATA table is an auxiliary table for SYSIBM.SYSJAROBJECTS.

Column name Data type Description Use

JAR_DATA BLOB(100M)
NOT NULL

The contents of the JAR file. G

Appendix. Additional information for DB2 SQL 2241

SYSIBM.SYSJAROBJECTS table
The SYSIBM.SYSJAROBJECTS table contains binary large object representing the
installed JAR file.

Column name Data type Description Use

JARSCHEMA
VARCHAR(128)
NOT NULL

The schema of the JAR file. G

JAR_ID
VARCHAR(128)
NOT NULL

The name of the JAR file. G

OWNER
VARCHAR(128)
NOT NULL

Authorization ID of the owner of the JAR object. G

JAR_DATA_ROWID
ROWID
NOT NULL
GENERATED
ALWAYS

ID used to support BLOB data type. G

JAR_DATA
BLOB(100M)
NOT NULL

The contents of the JAR file. This is an updatable column. G

PATH
VARCHAR(2048)
NOT NULL

The class resolution path of the JAR file. This is an
updatable column.

G

CREATEDTS
TIMESTAMP
NOT NULL

Time when the JAR object was created. G

ALTEREDTS
TIMESTAMP
NOT NULL

Time when the JAR object was altered. G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

OWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank Authorization ID
L Role

G

2242 SQL Reference

SYSIBM.SYSJAVAOPTS table
The SYSIBM.SYSJAVAOPTS table contains build options used during
INSTALL_JAR.

Column name Data type Description Use

JARSCHEMA
VARCHAR(128)
NOT NULL

The schema of the JAR file. G

JAR_ID
VARCHAR(128)
NOT NULL

The name of the JAR file. G

BUILDSCHEMA
VARCHAR(128)
NOT NULL

Schema name for BUILDNAME. G

BUILDNAME
VARCHAR(128)
NOT NULL

Procedure used to create the routine. G

BUILDOWNER
VARCHAR(128)
NOT NULL

Authorization ID used to create the routine. G

DBRMLIB
VARCHAR(256)
NOT NULL

PDS name where DBRM is located. G

HPJCOMPILE_OPTS
VARCHAR(512)
NOT NULL

HPJ compile options used to install the routine. G

BIND_OPTS
VARCHAR(2048)
NOT NULL

Bind options used to install the routine. G

POBJECT_LIB
VARCHAR(256)
NOT NULL

PDSE name where program object is located. G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2243

SYSIBM.SYSJAVAPATHS table
The SYSIBM.SYSJAVAPATHS table contains the complete class resolution path of a
JAR file, and records the dependencies that one JAR file has on the JAR files in its
Java path.

Column name Data type Description Use

JARSCHEMA
VARCHAR(128)
NOT NULL

The schema of the JAR file. G

JAR_ID
VARCHAR(128)
NOT NULL

The name of the JAR file. G

OWNER
VARCHAR(128)
NOT NULL

Authorization ID of the owner of the JAR object. G

ORDINAL
SMALLINT
NOT NULL

The ordinal number of the path element within the JAR
file's Java path.

G

PE_CLASS_PATTERN
VARCHAR(2048)
NOT NULL

The pattern for the names of the classes that are to be
searched for in this path element's JAR file.

G

PE_JARSCHEMA
VARCHAR(128)
NOT NULL

The schema of this path element's JAR file. G

PE_JAR_ID
VARCHAR(128)
NOT NULL

The name of this path element's JAR file. G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2244 SQL Reference

SYSIBM.SYSKEYCOLUSE table
The SYSIBM.SYSKEYCOLUSE table contains a row for every column in a unique
constraint (primary key or unique key) from the SYSIBM.SYSTABCONST table.

Column name Data type Description Use

CONSTNAME
VARCHAR(128)
NOT NULL

Name of the constraint. G

TBCREATOR
VARCHAR(128)
NOT NULL

Schema or qualifier of the table on which the constraint is
defined.

G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table on which the constraint is defined. G

COLNAME
VARCHAR(128)
NOT NULL

Name of the column G

COLSEQ
SMALLINT
NOT NULL

Numeric position of the column in the key (the first
position in the key is 1).

G

COLNO
SMALLINT
NOT NULL

Numeric position of the column in the table on which the
constraint is defined.

G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

PERIOD CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether the column is the start or end column
for the BUSINESS_TIME period:

B The column is the start of the period
BUSINESS_TIME.

C The column is the end of the period
BUSINESS_TIME.

blank Column is not used as either the start or the end
of a BUSINESS_TIME period.

G

Appendix. Additional information for DB2 SQL 2245

SYSIBM.SYSKEYS table
The SYSIBM.SYSKEYS table contains one row for each column of an index key.

Column name Data type Description Use

IXNAME
VARCHAR(128)
NOT NULL

Name of the index. G

IXCREATOR
VARCHAR(128)
NOT NULL

Schema or qualifier of the index. G

COLNAME
VARCHAR(128)
NOT NULL

Name of the column of the key. G

COLNO
SMALLINT
NOT NULL

Numeric position of the column in the table. For example,
4 (out of 10).

G

COLSEQ
SMALLINT
NOT NULL

Numeric position of the column in the key for an index
on columns. For example, 4 (out of 4). The value is
meaningless for an expression-based indexes.

G

ORDERING
CHAR(1)
NOT NULL

Order of the column in the key:
blank Index is an expression-based index or the column

is specified for the index using the INCLUDE
clause

A Ascending order
D Descending order
R Random order

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

PERIOD
CHAR(1)
NOT NULL
WITH DEFAULT

Indicates whether the column is the start or end column
for the BUSINESS_TIME period:

B The column is the start of the period
BUSINESS_TIME.

C The column is the end of the period
BUSINESS_TIME.

blank Column is not used as either the start or the end
of a BUSINESS_TIME period.

G

Related concepts:

Index keys (Introduction to DB2 for z/OS)

2246 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_indexkeys.htm#db2z_indexkeys

SYSIBM.SYSKEYTARGETS table
The SYSIBM.SYSKEYTARGETS table contains one row for each key-target that is
participating in an extended index definition.

Column name Data type Description Use

IXNAME
VARCHAR(128)
NOT NULL

Name of the index. G

IXSCHEMA
VARCHAR(128)
NOT NULL

Qualifier of the index. G

KEYSEQ
SMALLINT
NOT NULL

Numeric position of the key-target in the index. G

COLNO
SMALLINT
NOT NULL

Numeric position of the column in the table if the
expression is a single column. Otherwise the value is 0.
For XML indexes, this field is also 0.

G

ORDERING
CHAR(1)
NOT NULL

Order of the key:

A Ascending

G

TYPESCHEMA
VARCHAR(128)
NOT NULL

Schema of the data type. G

TYPENAME
VARCHAR(128)
NOT NULL

Name of the data type. G

DATATYPEID
INTEGER
NOT NULL

The internal ID of the data type. G

SOURCETYPEID
INTEGER
NOT NULL

For a built-in data type, this column contains 0. For a
distinct type, this column contains the internal ID of the
built-in type on which the distinct type is based.

G

Appendix. Additional information for DB2 SQL 2247

Column name Data type Description Use

LENGTH
SMALLINT
NOT NULL

The length attribute of the key-target or its precision for a
decimal key-target. The number does not include the
internal prefixes that are used to record the actual length
and null states, when applicable.

data type
value of the LENGTH column

INTEGER
4

SMALLINT
2

FLOAT 4 or 8
CHAR The length of the string
VARCHAR

The maximum length of the string
DECIMAL

The precision of the number
GRAPHIC

The number of DBCS characters
VARGRAPHIC

The maximum number of DBCS characters
DATE 4
TIME 3
TIMESTAMP WITHOUT TIME ZONE

The integral part of ((p+1)/2) + 7 where p is the
precision of the timestamp

TIMESTAMP WITH TIME ZONE
The integral part of ((p+1)/2) + 9 where p is the
precision of the timestamp

BIGINT
8

BINARY
The length of the string

VARBINARY
The maximum length of the string

DECFLOAT
8 or 16

G

LENGTH2
INTEGER
NOT NULL

The maximum length of the data that is retrieved from
the column. Possible values include the following values:
0 Not a ROWID column
40 For a ROWID column, the length of the value

that is returned

G

SCALE
SMALLINT
NOT NULL

The scale of decimal data or number of fractional second
digits of timestamp or timestamp with time zone data.
Otherwise the value is 0.

If the column is a timestamp type, the LENGTH is 10 and
the SCALE is 0, the number of fractional second digits is
6.

G

NULLS
CHAR(1)
NOT NULL

Whether the key can contain null values:
N No
Y Yes. Y also indicates that the index is an XML

index.

G

CCSID
INTEGER
NOT NULL

The CCSID of the key. CCSID contains 0 if the key is a
non-character type key.

G

2248 SQL Reference

Column name Data type Description Use

SUBTYPE
CHAR(1)
NOT NULL

SUBTYPE applies to character keys only and indicated the
subtype of the data:

B BIT data

M MIXED data

S SBCS data

blank non-character data

G

VARCHAR(512)
NOT NULL
FOR BIT DATA

Internal use. I

CREATEDTS
TIMESTAMP
NOT NULL

The timestamp for when the key-target is created. G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 in which the key-target is created.
SeeRelease dependency indicators for values.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

DERIVED_FROM
VARCHAR(4000)
NOT NULL

For an index on a scalar expression, DERIVED_FROM
contains the text of the scalar expression that is used to
generated the key-target value. For an XML index, this is
the XML pattern that is used to generate the key-target
value. Otherwise DERIVED_FROM contains an empty
string.

G

STATSTIME
TIMESTAMP
NOT NULL
WITH DEFAULT

The timestamp of the most recent RUNSTATS. The default
value is '0001-01-01.00.00.00.000000'. STATSTIME is an
updatable column.

G

CARDF
FLOAT
NOT NULL
WITH DEFAULT -1

The estimated number of distinct values for the
key-target. The value is -2 if the index is a node ID index.
For an XML value index, the statistic is collected for the
second key target (the DOCID column). For all other key
targets of the XML value index, a value of -2 is set.

G

HIGH2KEY
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The second highest key-value. HIGH2KEY is an
updatable column.

G

LOW2KEY
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The second lowest key-value. LOW2KEY is an updatable
column.

G

Appendix. Additional information for DB2 SQL 2249

Column name Data type Description Use

STATS_FORMAT
CHAR(1)
NOT NULL
WITH DEFAULT

The type of statistics that are gathered:
N VARCHAR column statistical values are not

padded
blank Statistics have not been collects or VARCHAR

column statistical values are padded
STATS_FORMAT is an updatable column.

G

2250 SQL Reference

SYSIBM.SYSKEYTARGETSTATS table
The SYSIBM.SYSKEYTARGETSTATS table contains partition statistics for selected
key-targets. For each key-target, a row exists for each partition in the table.

Rows are inserted when RUNSTATS collects indexed key statistics or non-indexed
key statistics for a partitioned table space. No row is inserted if the table space is
nonpartitioned. Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

IXSCHEMA
VARCHAR(128)
NOT NULL

The qualifier of the index. G

IXNAME
VARCHAR(128)
NOT NULL

The name of the index. G

KEYSEQ
SMALLINT
NOT NULL

Numeric position of the key-target in the index. G

HIGHKEY
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The highest key value. S

HIGH2KEY
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The second highest key-value. S

LOWKEY
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The lowest key value. S

LOW2KEY
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The second lowest key-value. S

PARTITION
SMALLINT
NOT NULL

The partition number of the table space. G

VARCHAR(1000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

Internal use only. I

STATSTIME
TIMESTAMP
NOT NULL
WITH DEFAULT

The timestamp of the most recent RUNSTATS. The default
value is '0001-01-01.00.00.00.000000'.

G

Appendix. Additional information for DB2 SQL 2251

Column name Data type Description Use

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

STATS_FORMAT
CHAR(1)
NOT NULL
WITH DEFAULT

The type of statistics that are gathered:
N VARCHAR column statistical values are not

padded
blank Statistics have not been collects or VARCHAR

column statistical values are padded

G

CARDF
FLOAT
NOT NULL
WITH DEFAULT -1

Number of distinct values for the key target. G

2252 SQL Reference

SYSIBM.SYSKEYTARGETS_HIST table
The SYSIBM.SYSKEYTARGETS_HIST table contains rows from the
SYSKEYTARGETS table.

Whenever rows are added or changed in SYSKEYTARGETS, the rows are also
written to this table. Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

IXNAME
VARCHAR(128)
NOT NULL

Name of the index. G

IXSCHEMA
VARCHAR(128)
NOT NULL

Qualifier of the index. G

KEYSEQ
SMALLINT
NOT NULL

Numeric position of the key-target in the index. G

TYPESCHEMA
VARCHAR(128)
NOT NULL

Schema of the data type. G

TYPENAME
VARCHAR(128)
NOT NULL

Name of the data type. G

DATATYPEID
INTEGER
NOT NULL

The internal ID of the data type. G

SOURCETYPEID
INTEGER
NOT NULL

For a built-in data type, this field contains 0. For a
distinct type, this field contains the internal ID of the
built-in type on which the distinct type is based.

G

Appendix. Additional information for DB2 SQL 2253

Column name Data type Description Use

LENGTH
SMALLINT
NOT NULL

The length attribute of the key-target or its precision for a
decimal key-target. The number does not include the
internal prefixes that are used to record the actual length
and null states, when applicable.

data type
value of the LENGTH column

INTEGER
4

SMALLINT
2

FLOAT 4 or 8
CHAR The length of the string
VARCHAR

The maximum length of the string
DECIMAL

The precision of the number
GRAPHIC

The number of DBCS characters
VARGRAPHIC

The maximum number of DBCS characters
DATE 4
TIME 3
TIMESTAMP WITHOUT TIME ZONE

The integral part of ((p+1)/2) + 7 where p is the
precision of the timestamp

TIMESTAMP WITH TIME ZONE
The integral part of ((p+1)/2) + 9 where p is the
precision of the timestamp

BIGINT
8

BINARY
The length of the string

VARBINARY
The maximum length of the string

DECFLOAT
8 or 16

G

LENGTH2
INTEGER
NOT NULL

The maximum length of the data that is retrieved from
the column. Possible values include the following values:
0 Not a ROWID column
40 For a ROWID column, the length of the value

that is returned

G

SCALE
SMALLINT
NOT NULL

The scale of decimal data or number of fractional second
digits of timestamp or timestamp with time zone data.
Otherwise the value is 0.

If the column is a timestamp type, the LENGTH is 10 and
the SCALE is 0, the number of fractional second digits is
6.

G

NULLS
CHAR(1)
NOT NULL

Whether the key can contain null values:
N No
Y Yes

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2254 SQL Reference

Column name Data type Description Use

STATSTIME
TIMESTAMP
NOT NULL
WITH DEFAULT

The timestamp of the most recent RUNSTATS. The default
value is '0001-01-01.00.00.00.000000'. STATSTIME is an
updatable column.

G

CARDF
FLOAT
NOT NULL
WITH DEFAULT -1

The estimated number of distinct values for the
key-target. The value is -2 if the index is a node ID index.
For an XML value index, the statistic is collected for the
second key target (the DOCID column). For all other key
targets of the XML value index, a value of -2 is set.

G

HIGH2KEY
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The second highest key-value. G

LOW2KEY
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The second lowest key-value. G

STATS_FORMAT
CHAR(1)
NOT NULL
WITH DEFAULT

The type of statistics that are gathered:

N VARCHAR column statistical values are not
padded

blank Statistics have not been collects or VARCHAR
column statistical values are padded

G

Appendix. Additional information for DB2 SQL 2255

SYSIBM.SYSKEYTGTDIST table
The SYSIBM.SYSKEYTGTDIST table contains one or more rows for the first
key-target of an extended index key.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

STATSTIME
TIMESTAMP
NOT NULL
WITH DEFAULT

If the RUNSTATS utility updated the statistics, this
column contains the date and time when the last
invocation of RUNSTATS updated the statistics. The
default value is '0001-01-01.00.00.00.000000'.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

IXSCHEMA
VARCHAR(128)
NOT NULL

The qualifier of the index. G

IXNAME
VARCHAR(128)
NOT NULL

The name of the index. G

KEYSEQ
SMALLINT
NOT NULL

The numeric position of the key-target in the index. G

KEYVALUE
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

KEYVALUE contains the data of a frequently occurring
value. If the value has a non-character data type, the data
might not be printable.

G

TYPE
CHAR(1)
NOT NULL
WITH DEFAULT 'F'

The type of statistics that are gathered:
C Cardinality
F Frequent value
N Non-padded frequent value
H Histogram statistics

G

CARDF
FLOAT
NOT NULL
WITH DEFAULT -1

When TYPE='C', CARDF contains the number of distinct
values for the key group.

When TYPE='H', CARDF contains the number of distinct
values for the key group in a quantile indicated by
QUANTILENO.

G

KEYGROUPKEYNO
VARCHAR(254)
NOT NULL
WITH DEFAULT
FOR BIT DATA

KEYGROUPKEYNO contains a value that identifies the
set of keys that are associated with the statistics.

KEYGROUPKEYNO contains 0 if the statistics are only
associated with a single key.

If the statistics are associated with more than a single key,
KEYGROUPKEYNO contains an array of SMALLINT key
numbers with a dimension that is equal to the value in
NUMKEYS.

G

2256 SQL Reference

Column name Data type Description Use

NUMKEYS
SMALLINT
NOT NULL
WITH DEFAULT -1

The number of keys that are associated with the statistics. G

FREQUENCYF
FLOAT
NOT NULL
WITH DEFAULT -1

When TYPE='F' or 'N', FREQUENCYF contains a value
that indicates the percentage of entries in the index that
have the value that is contained in the KEYVALUE
column.

When TYPE='H', FREQUENCYF contains a value that
indicates the percentage of entries in the index that have
a value that is in the range of the quantile that is
indicated in the QUALTILENO column.

To determine the percentage from the value of
FREQUENCYF, multiply the value by 100. For example, a
value of '1' indicates 100 percent. A value of '.153'
indicates '15.3' percent.

G

QUANTILENO
SMALLINT
NOT NULL
WITH DEFAULT -1

QUANTILENO contains an ordinary sequence number of
a quantile in the whole consecutive value range, from low
to high.

G

LOWVALUE
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

When TYPE='H', LOWVALUE contains the lower bound
for the quantile that is in QUANTILENO. LOWVALUE is
not used if TYPE does not equal 'H'.

G

HIGHVALUE
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

When TYPE='H', HIGHVALUE contains the upper bound
for the quantile that is in QUANTILENO. HIGHVALUE is
not used if TYPE does not equal 'H'.

G

Appendix. Additional information for DB2 SQL 2257

SYSIBM.SYSKEYTGTDISTSTATS table
The SYSIBM.SYSKEYTGTDISTSTATS table contains zero or more rows per
partition for the first key-target of a data-partitioned secondary index.

Rows are inserted when RUNSTATS scans a data-partitioned secondary index. No
row is inserted if the index is a secondary index. Rows in this table can be
inserted, updated, and deleted.

Column name Data type Description Use

STATSTIME
TIMESTAMP
NOT NULL
WITH DEFAULT

If RUNSTATS updated the statistics, STATSTIME contains
the timestamp of the most recent RUNSTATS. The default
value is '0001-01-01.00.00.00.000000'.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

PARTITION
SMALLINT
NOT NULL

The partition number of the table space that contains the
index in which the key is defined.

G

IXSCHEMA
VARCHAR(128)
NOT NULL

The qualifier of the index. G

IXNAME
VARCHAR(128)
NOT NULL

The name of the index. G

KEYSEQ
SMALLINT
NOT NULL

Numeric position of the key-target in the index. G

KEYVALUE
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

KEYVALUE contains the data of a frequently occurring
value. If the value has a non-character data type, the data
might not be printable.

G

TYPE
CHAR(1)
NOT NULL
WITH DEFAULT 'F'

The type of statistics that are gathered:
C Cardinality
F Frequent value
N Non-padded frequent value
H Histogram statistics

G

CARDF
FLOAT
NOT NULL
WITH DEFAULT -1

When TYPE='C', CARDF contains the number of distinct
values for the key group.

When TYPE='H', CARDF contains the number of distinct
values for the key group in the quantile that is in
QUANTILENO.

G

KEYGROUPKEYNO
VARCHAR(254)
NOT NULL
WITH DEFAULT

Identifies the set of keys that are associated with the
statistics. If the statistics are only associated with a single
key, KEYGROUPKEYNO contains a zero length value.
Otherwise, KEYGROUPKEYNO contains an array of
SMALLINT key numbers that have a dimension that is
equal to the value in NUMKEYS.

G

2258 SQL Reference

Column name Data type Description Use

NUMKEYS
SMALLINT
NOT NULL
WITH DEFAULT

Identifies the number of keys that are associated with the
statistics.

G

FREQUENCYF
FLOAT
NOT NULL
WITH DEFAULT -1

When TYPE='F' or 'N', FREQUENCYF contains the
percentage of entries in the index that have the value that
is specified in KEYVALUE when the number of entries is
multiplied by 100. For example, a value of '1' indicates
100 percent. A value of '.153' indicates 15.3 percent.

When TYPE='H', FREQUENCYF contains the percentage
of entries in the index that have a value that is in the
range of the quantile that is indicated in QUALTILENO.

G

QUANTILENO
SMALLINT
NOT NULL
WITH DEFAULT -1

QUANTILENO contains an ordinary sequence number of
a quantile in the whole consecutive value range, from low
to high.

G

LOWVALUE
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

When TYPE='H', LOWVALUE is the lower bound for the
quantile that is indicated in QUANTILENO. LOWVALUE
is not used if TYPE does not equal 'H'.

G

HIGHVALUE
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

When TYPE='H', HIGHVALUE is the upper bound for the
quantile that is indicated in QUANTILENO.
HIGHVALUE is not used if TYPE does not equal 'H'.

G

VARCHAR(1000)
Internal use only I

Appendix. Additional information for DB2 SQL 2259

SYSIBM.SYSKEYTGTDIST_HIST table
The SYSIBM.SYSKEYTGTDIST_HIST table contains rows from the
SYSKEYTGTDIST table. Whenever rows are added or changed in
SYSKEYTGTDIST, the rows are also written to this table.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

STATSTIME
TIMESTAMP
NOT NULL
WITH DEFAULT

If the RUNSTATS utility updated the statistics, this
column contains the date and time when the last
invocation of RUNSTATS updated the statistics. The
default value is '0001-01-01.00.00.00.000000'.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

IXSCHEMA
VARCHAR(128)
NOT NULL

The qualifier of the index. G

IXNAME
VARCHAR(128)
NOT NULL

The name of the index. G

KEYSEQ
SMALLINT
NOT NULL

The numeric position of the key-target in the index. G

KEYVALUE
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

KEYVALUE contains the data of a frequently occurring
value. If the value has a non-character data type, the data
might not be printable.

G

TYPE
CHAR(1)
NOT NULL
WITH DEFAULT 'F'

The type of statistics that are gathered:
C Cardinality
F Frequent value
N Non-padded frequent value
H Histogram statistics

G

CARDF
FLOAT
NOT NULL
WITH DEFAULT -1

When TYPE='C', CARDF contains the number of distinct
values for the key group.

When TYPE='H', CARDF contains the number of distinct
values for the key group in a quantile indicated by
QUANTILENO.

G

KEYGROUPKEYNO
VARCHAR(254)
NOT NULL
WITH DEFAULT
FOR BIT DATA

KEYGROUPKEYNO contains a value that identifies the
set of keys that are associated with the statistics.

KEYGROUPKEYNO contains 0 if the statistics are only
associated with a single key.

If the statistics are associated with more than a single key,
KEYGROUPKEYNO contains an array of SMALLINT key
numbers with a dimension that is equal to the value in
NUMKEYS.

G

2260 SQL Reference

Column name Data type Description Use

NUMKEYS
SMALLINT
NOT NULL
WITH DEFAULT -1

The number of keys that are associated with the statistics. G

FREQUENCYF
FLOAT
NOT NULL
WITH DEFAULT -1

When TYPE='F' or 'N', FREQUENCYF contains the
percentage of entries in the index that have the value that
is specified in KEYVALUE when the number of entries is
multiplied by 100. For example, a value of '1' indicates
100 percent. A value of '.153' indicates 15.3 percent.

When TYPE='H', FREQUENCYF contains the percentage
of entries in the index that have a value that is in the
range of the quantile that is indicated in QUALTILENO.

G

QUANTILENO
SMALLINT
NOT NULL
WITH DEFAULT -1

QUANTILENO contains an ordinary sequence number of
a quantile in the whole consecutive value range, from low
to high.

G

LOWVALUE
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

When TYPE='H', LOWVALUE contains the lower bound
for the quantile that is in QUANTILENO. LOWVALUE is
not used if TYPE does not equal 'H'.

G

HIGHVALUE
VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

When TYPE='H', HIGHVALUE contains the upper bound
for the quantile that is in QUANTILENO. HIGHVALUE is
not used if TYPE does not equal 'H'.

G

Appendix. Additional information for DB2 SQL 2261

SYSIBM.SYSLOBSTATS table
The SYSIBM.SYSLOBSTATS table contains one row for each LOB table space.

Column name Data type Description Use

STATSTIME
TIMESTAMP
NOT NULL

Timestamp of RUNSTATS statistics update. G

AVGSIZE
INTEGER
NOT NULL

Average size of a LOB, measured in bytes, in the LOB
table space.

S

FREESPACE
INTEGER
NOT NULL

Number of kilobytes of available space in the LOB table
space.

S

ORGRATIO
DECIMAL(5,2)
NOT NULL

The percentage of organization in the LOB table space. A
value of '100' indicates perfect organization of the LOB
table space. A value of '1' indicates that the LOB table
space is disorganized.

A value of '0' indicates that the LOB table space is totally
disorganized.

S

DBNAME
VARCHAR(24)
NOT NULL

Name of the database that contains the LOB table space
named in NAME.

G

NAME
VARCHAR(24)
NOT NULL

Name of the LOB table space. G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2262 SQL Reference

SYSIBM.SYSLOBSTATS_HIST table
The SYSIBM.SYSLOBSTATS_HIST table contains rows from
SYSIBM.SYSLOBSTATS.

Rows are added or changed in this table when RUNSTATS collects history
statistics. Rows in this table can also be inserted, updated, and deleted.

Column name Data type Description Use

STATSTIME
TIMESTAMP
NOT NULL

Timestamp of RUNSTATS statistics update. G

FREESPACE
INTEGER
NOT NULL

Number of pages of free space in the LOB table space. S

ORGRATIO
DECIMAL(5,2)
NOT NULL

The percentage of organization in the LOB table space. A
value of '100' indicates perfect organization of the LOB
table space. A value of '1' indicates that the LOB table
space is disorganized.

A value of '0' indicates that the LOB table space is totally
disorganized.

S

DBNAME
VARCHAR(24)
NOT NULL

Name of the database that contains the LOB table space
named in NAME.

G

NAME
VARCHAR(24)
NOT NULL

Name of the LOB table space. G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2263

SYSIBM.SYSOBJROLEDEP table
The SYSIBM.SYSOBJROLEDEP table lists the dependent objects for each role.

Column name Data type Description Use

DEFINER
VARCHAR(128)
NOT NULL

The authorization ID or role that created the object. G

DEFINERTYPE
CHAR(1)
NOT NULL

The type of definer:

L Role

blank Authorization ID

G

ROLENAME
VARCHAR(128)
NOT NULL

Name of the role on which there is a dependency. G

DSCHEMA
VARCHAR(128)
NOT NULL

Name of the schema of the dependent object. G

DNAME
VARCHAR(762)
NOT NULL

Name of the dependent object. G

DTYPE
CHAR(1)
NOT NULL

The type of the dependent object in DNAME:

B Trigger

D Database

E Distinct type

F User-defined function

I Index

J JAR file

L Role

M Materialized query table

N Trusted context

O Stored procedure

Q Sequence

R Table space

S Storage group

T Table

V View

X Row permission

Y Column mask

0 (zero)
Alias

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2264 SQL Reference

|
|

SYSIBM.SYSPACKAGE table
The SYSIBM.SYSPACKAGE table contains a row for every package.

Column name Data type Description Use

LOCATION
VARCHAR(128)
NOT NULL

Always contains blanks S

COLLID
VARCHAR(128)
NOT NULL

Name of the package collection. For a trigger package, it is
the schema name of the trigger.

G

NAME
VARCHAR(128)
NOT NULL

Name of the package. G

CONTOKEN CHAR(8)
NOT NULL
FOR BIT DATA

Consistency token for the package. For a package derived
from a DB2 DBRM, this is either:
v The “level” as specified by the LEVEL option when the

package's program was precompiled
v The timestamp indicating when the package's program

was precompiled, in an internal format.

S

OWNER
VARCHAR(128)
NOT NULL

Authorization ID of the package owner. For a trigger
package, the value is the authorization ID of the owner of
the trigger, which is set to the current authorization ID (the
plan or package owner for static CREATE TRIGGER
statement; the CURRENT SQLID for a dynamic CREATE
TRIGGER statement).

G

CREATOR
VARCHAR(128)
NOT NULL

Authorization ID of the owner of the creator of the package
version. For a trigger package, the value is determined
differently. For dynamic SQL, it is the primary
authorization ID of the user who issued the CREATE
TRIGGER statement. For static SQL, it is the authorization
ID of the plan or package owner.

G

TIMESTAMP
TIMESTAMP
NOT NULL

Timestamp indicating when the package was created. G

BINDTIME
TIMESTAMP
NOT NULL

Timestamp indicating when the package was last bound. G

QUALIFIER
VARCHAR(128)
NOT NULL

Implicit qualifier for the unqualified table, view, index, and
alias names in the static SQL statements of the package.

G

PKSIZE
INTEGER
NOT NULL

Size of the base section40 of the package, in bytes. G

AVGSIZE
INTEGER
NOT NULL

Average size, in bytes, of those sections40 of the plan that
contain SQL statements processed at bind time.

G

SYSENTRIES
SMALLINT
NOT NULL

Number of enabled or disabled entries for this package in
SYSIBM.SYSPKSYSTEM. A value of 0 if all types of
connections are enabled.

G

40. Packages are divided into sections. The base section of the package must be in the EDM pool during the entire time the package
is executing. Other sections of the package, corresponding roughly to sets of related SQL statements, are brought into the pool as
needed.

Appendix. Additional information for DB2 SQL 2265

Column name Data type Description Use

VALID
CHAR(1)
NOT NULL

Whether the package is valid:
A An ALTER statement changed the description of

the table or base table of a view referred to by the
package. For a CREATE INDEX statement
involving data sharing, VALID is also marked as
"A". The changes do not invalidate the package.

H An ALTER TABLE statement changed the
description of the table or base table of a view
referred to by the package. For releases of DB2
prior to Version 5, the change invalidates the
package.

N No
Y Yes

G

OPERATIVE
CHAR(1)
NOT NULL

Whether the package can be allocated:
N No; an explicit BIND or REBIND is required before

the package can be allocated.
Y Yes

G

VALIDATE
CHAR(1)
NOT NULL

Whether validity checking can be deferred until run time:
B All checking must be performed at bind time.
R Validation is done at run time for tables, views,

and privileges that do not exist at bind time.

G

ISOLATION
CHAR(1)
NOT NULL

Isolation level when the package was last bound or
rebound
R RR (repeatable read)
S CS (cursor stability)
T RS (read stability)
U UR (uncommitted read)
blank Not specified, and therefore at the level specified

for the plan executing the package

G

RELEASE
CHAR(1)
NOT NULL

The value used for RELEASE when the package was last
bound or rebound:
C Value used was COMMIT.
D Value used was DEALLOCATE.
I The local package is inheriting the value from the

plan
blank Not specified, and therefore the value specified for

the plan executing the package.

G

EXPLAIN
CHAR(1)
NOT NULL

EXPLAIN option specified for the package; that is, whether
information on the package's statements was added to the
owner of the PLAN_TABLE table:
N No
Y Yes

G

QUOTE
CHAR(1)
NOT NULL

SQL string delimiter for SQL statements in the package:
N Apostrophe
Y Quotation mark

G

COMMA
CHAR(1)
NOT NULL

Decimal point representation for SQL statements in
package:
N Period
Y Comma

G

2266 SQL Reference

Column name Data type Description Use

HOSTLANG
CHAR(1)
NOT NULL

Host language for the package's DBRM:
B Assembler language
C OS/VS COBOL
D C
F Fortran
P PL/I
2 VS COBOL II or IBM COBOL Release 1 (formerly

called COBOL/370)
3 IBM COBOL (Release 2 or subsequent releases)
4 C++
blank For remotely bound packages, trigger packages

(TYPE='T'), SQL procedure packages (TYPE='N'),
or non-inline SQL scalar function packages
(TYPE='F').

G

CHARSET
CHAR(1)
NOT NULL

Indicates whether the system CCSID for SBCS data was 290
(Katakana) when the program was precompiled:
K Yes
A No

G

MIXED
CHAR(1)
NOT NULL

Indicates if mixed data was in effect when the package's
program was precompiled (for more on when mixed data is
in effect, see “Character strings” on page 84):
N No
Y Yes

G

DEC31
CHAR(1)
NOT NULL

Indicates whether DEC31 was in effect when the package's
program was precompiled (for more on when DEC31 is in
effect, see “Arithmetic with two decimal operands” on page
244):
N No
Y Yes

G

DEFERPREP
CHAR(1)
NOT NULL

Indicates the CURRENTDATA option when the package
was bound or rebound:
A Data currency is required for all cursors. Inhibit

blocking for all cursors.
B Data currency is not required for ambiguous

cursors.
C Data currency is required for ambiguous cursors.
blank The package was created before the

CURRENTDATA option was available.

G

SQLERROR
CHAR(1)
NOT NULL

Indicates the SQLERROR option on the most recent
subcommand that bound or rebound the package:
C CONTINUE
N NOPACKAGE

G

REMOTE
CHAR(1)
NOT NULL

Source of the package:
C Package was created by BIND COPY.
D Package was created by BIND COPY with the

OPTIONS(COMMAND) option.
K The package was copied from a package that was

originally bound on behalf of a remote requester.
L The package was copied with the

OPTIONS(COMMAND) option from a package
that was originally bound on behalf of a remote
requester.

N Package was locally bound from a DBRM.
Y Package was bound on behalf of a remote

requester.

G

Appendix. Additional information for DB2 SQL 2267

Column name Data type Description Use

PCTIMESTAMP
TIMESTAMP
NOT NULL

Date and time the application program was precompiled, or
'0001-01-01-00.00.00.000000' if the LEVEL precompiler
option was used, or if the package came from a non-DB2
location.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELBOUND should be used instead.

G

VERSION
VARCHAR(122)
NOT NULL

Version identifier for the package. The value is blank for a
trigger package (TYPE='T') and when the package is created
using the BIND PACKAGE command (the initial version of
the package)(TYPE='blank').

G

PDSNAME
VARCHAR(132)
NOT NULL

For a locally bound package, the name of the PDS (library)
in which the package's DBRM is a member. For a locally
copied package, the value in SYSPACKAGE.PDSNAME for
the source package. Otherwise, the product signature of the
bind requester followed by one of the following:
v For DB2 for z/OS remote requesters, the requester's

location name, or IP address, or LU name enclosed in
angle brackets (for example, “<LUSQLDS>”).

v For non-DB2 for z/OS remote requesters, the requester's
IP address or LU name enclosed in angle brackets.

G

DEGREE
CHAR(3)
NOT NULL WITH
DEFAULT

The DEGREE option used when the package was last
bound:
ANY DEGREE(ANY)
1 or blank

DEGREE(1). Blank if the package was migrated.

G

GROUP_MEMBER
VARCHAR(24)
NOT NULL WITH
DEFAULT

The DB2 data sharing member name of the DB2 subsystem
that performed the most recent bind. This column is blank
if the DB2 subsystem was not in a DB2 data sharing
environment when the bind was performed.

G

2268 SQL Reference

Column name Data type Description Use

DYNAMICRULES
CHAR(1)
NOT NULL WITH
DEFAULT

The DYNAMICRULES option used when the package was
last bound:

B BIND. Dynamic SQL statements are executed with
DYNAMICRULES bind behavior.

D DEFINEBIND. When the package is run under an
active stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES define behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES bind behavior.

E DEFINERUN. When the package is run under an
active stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES define behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES run behavior.

H INVOKEBIND. When the package is run under an
active stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES invoke behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES bind behavior.

I INVOKERUN. When the package is run under an
active stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES invoke behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES run behavior.

R RUN. Dynamic SQL statements are executed with
DYNAMICRULES run behavior.

blank DYNAMICRULES is not specified for the package.
The package uses the DYNAMICRULES value of
the plan to which the package is appended at
execution time.

For a description of the DYNAMICRULES behaviors, see
“Authorization IDs and dynamic SQL” on page 75.

G

Appendix. Additional information for DB2 SQL 2269

Column name Data type Description Use

REOPTVAR
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether the access path is determined again at execution
time using input variable values:
A Bind option REOPT(AUTO) indicates that the

access path is determined multiple times at
execution time depending on the parameter value.

N Bind option REOPT(NONE) indicates that the
access path is determined at bind time.

Y Bind option REOPT(ALWAYS) indicates that the
access path is determined at execution time for
SQL statements with variable values.

1 Bind option REOPT(ONCE) indicates that the
access path is determined only once at execution
time, using the first set of input variable values,
regardless of how many times the same statement
is executed.

G

DEFERPREPARE
CHAR(1)
NOT NULL WITH
DEFAULT

Whether PREPARE processing is deferred until OPEN is
executed:
N Bind option NODEFER(PREPARE) indicates that

PREPARE processing is not deferred until OPEN is
executed.

Y Bind option DEFER(PREPARE) indicates that
PREPARE processing is deferred until OPEN is
executed.

I The local package is inheriting the value from the
plan

blank Bind option not specified for the package. It is
inherited from the plan.

G

KEEPDYNAMIC
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether prepared dynamic statements are to be purged at
each commit point:
N The bind option is KEEPDYNAMIC(NO). Prepared

dynamic SQL statements are destroyed at commit.
Y The bind option is KEEPDYNAMIC(YES).

Prepared dynamic SQL statements are kept past
commit.

G

PATHSCHEMAS
VARCHAR(2048)
NOT NULL WITH
DEFAULT

SQL path specified on the BIND or REBIND command that
bound the package. The path is used to resolve unqualified
data type, function, and stored procedure names used in
certain contexts. If the PATH bind option was not specified,
the value in the column is a zero length string; however,
DB2 uses the default SQL path.

G

2270 SQL Reference

Column name Data type Description Use

TYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Type of package. Identifies how the package is created:
F CREATE FUNCTION or ALTER FUNCTION

statement, or a BIND PACKAGE DEPLOY
command created the package, and this package is
a non-inline SQL scalar function package.

N CREATE PROCEDURE or ALTER PROCEDURE
statement, or BIND PACKAGE DEPLOY command
created the package, and this package is a native
SQL routine package.

R CREATE TRIGGER or ALTER TRIGGER statement
created the package, and the package is a trigger
package that has been created or regenerated in
Version 11 New Function Mode or later.

T CREATE TRIGGER statement prior to Version 11
New Function Mode has created the package, and
the package is a trigger package.

CREATE TRIGGER statement created the package,
and the package is a trigger package.

blank BIND PACKAGE command created the package.

G

DBPROTOCOL
CHAR(1)
NOT NULL WITH
DEFAULT 'D'

Whether remote access for SQL is implemented with DRDA
access or DRDA access with the capability for
package-based continuous block fetch:
D DRDA
C DRDA access with package-based continuous block

fetch enabled.

G

FUNCTIONTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Timestamp when the function was resolved. Set by the
BIND and REBIND commands, but not by AUTOBIND.

G

OPTHINT
VARCHAR(128)
NOT NULL WITH
DEFAULT

Value of the OPTHINT bind option. Identifies rows in
owner.PLAN_TABLE that are to be used as input to DB2.
Refer to the ACCESSPATH column in the
“SYSIBM.SYSPACKSTMT table” on page 2290 for
information about which statements are using the specified
hints.

G

ENCODING_CCSID
INTEGER
NOT NULL WITH
DEFAULT

The CCSID corresponding to the encoding scheme or
CCSID as specified for the bind option ENCODING. The
Encoding Scheme specified on the bind command:
ccsid The specified or derived CCSID.
0 The default CCSID as specified on panel DSNTIPF

at installation time. Used when the package was
bound prior to Version 7.

G

IMMEDWRITE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates when writes of updated group buffer pool
dependent pages are to be done. This option is only
applicable for data sharing environments.
I The local package is inheriting the value from the

plan
N Bind option IMMEDWRITE(NO) indicates normal

write activity is done.
Y Bind option IMMEDWRITE(YES) indicates that

immediate writes are done for updated group
buffer pool dependent pages.

1 Bind option IMMEDWRITE(PH1) indicates that
updated group buffer pool dependent pages are
written at or before phase 1 commit.

blank A migrated package.

G

Appendix. Additional information for DB2 SQL 2271

|
|
|

Column name Data type Description Use

RELBOUND
CHAR(1)
NOT NULL WITH
DEFAULT

The release when the package was bound or rebound.
blank Bound prior to Version 7
For all other values, see Release dependency indicators

G

CHAR(1)
Not used. N

REMARKS
VARCHAR(550)
NOT NULL WITH
DEFAULT

A character string provided by the user with the
COMMENT statement.

G

OWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner
blank Authorization ID
L Role

G

ROUNDING
CHAR(1)
NOT NULL WITH
DEFAULT

The ROUNDING option used when the package was last
bound:
C ROUND_CEILING
D ROUND_DOWN
F ROUND_FLOOR
G ROUND_HALF_DOWN
E ROUND_HALF_EVEN
H ROUND_HALF_UP
U ROUND_UP
blank The package created in a DB2 release prior to

Version 9.

G

DISTRIBUTE
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Determines if DB2 should gather location names from SQL
statements, and create remote packages for the user (This
only has effect during local bind):

A DB2 will collect remote location names from SQL
statements during local bind, and automatically
create remote packages at those sites. The site
names are gathered from object names in static
SQL statements and literals on CONNECT
statements. The sites at which the package is
remotely bound can be determined by the location
(BTYPE='X') records in SYSIBM.SYSPACKDEP for
this package.

L DB2 will automatically create remote packages at
the sites specified in the list of location-names. The
sites at which the package is remotely bound can
be determined by the location (BTYPE='X') records
in SYSIBM.SYSPACKDEP for this package.

G

LASTUSED DATE
NOT NULL
WITH DEFAULT

The last date that the corresponding objects are used.
G

CONCUR_ACC_RES CHAR(1)
NOT NULL

Indicates the CONCURRENTACCESSRESOLUTION option
when the package was bound or rebound:

blank Not specified

U USECURRENTLYCOMMITTED

W WAITFOROUTCOME

G

2272 SQL Reference

Column name Data type Description Use

EXTENDED-
INDICATOR

CHAR(1)
NOT NULL
WITH DEFAULT

The value of the EXTENDEDINDICATOR bind option:

blank Not specified

N EXTENDEDINDICATOR NO

Y EXTENDEDINDICATOR YES

G

INTEGER
NOT NULL

Not used. N

PLANMGMT CHAR(1)
NOT NULL
WITH DEFAULT

The value of the PLANMGMT bind option:

B PLANMGMT BASIC

E PLANMGMT EXTENDED

blank PLANMGMT OFF

G

PLANMGMTSCOPE CHAR(1)
NOT NULL
WITH DEFAULT

The value of the PLANMGMTSCOPE bind option:

S PLANMGMTSCOPE STATIC

G

APREUSE CHAR(1)
NOT NULL
WITH DEFAULT

The value of the APREUSE bind option:

N NO or NONE: Access paths are not reused.

W WARN: DB2 tries to reuse access paths. Processing
continues when an access path cannot be reused.

E ERROR: DB2 tries to reuse access paths. Processing
ends when an access path cannot be reused.

G

APRETAINDUP CHAR(1)
NOT NULL
WITH DEFAULT

The value of the APRETAINDUP bind option:

Y APRETAINDUP YES specified. All copies were
retained.

0 APRETAINDUP NO specified; however, the
previous or original package copy is still retained
due to access path differences.

1 APRETAINDUP NO specified, and the previous
package copy is not retained as the access paths
are identical to the current copy.

2 APRETAINDUP NO specified, and the previous
and original package copies are not retained as the
access paths are identical to the current copy.

G

SYSTIMESENSITIVE CHAR(1)
NOT NULL
WITH DEFAULT 'N'

The value of the SYSTIMESENSITIVE bind option:

Y References to system-period temporal tables are
affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

N References to system-period temporal tables are
not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

G

CHAR(1)
NOT NULL
WITH DEFAULT 'Y'

Not used. N

Appendix. Additional information for DB2 SQL 2273

||
|

||
|
|

|

||
|
|

||
|
|

|

Column name Data type Description Use

BUSTIMESENSITIVE CHAR(1)
NOT NULL
WITH DEFAULT 'N'

The value of the BUSTIMESENSITIVE bind option:

Y References to application-period temporal tables
are affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

N References to application-period temporal tables
are not affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

G

APPLCOMPAT VARCHAR(10)
NOT NULL
WITH DEFAULT

The value of the APPLCOMPAT bind option:

V10R1 SQL statements in the package have V10R1
compatibility behavior.

V11R1 SQL statements in the package have V11R1
compatibility behavior.

G

ARCHIVESENSITIVE CHAR(1)
NOT NULL
WITH DEFAULT 'N'

The value of the ARCHIVESENSITIVE bind option.

Y References to archive-enabled tables are affected by
the value of the SYSIBMADM.GET_ARCHIVE
built-in global variable. Y is the default value.

N References to archive-enabled tables are not
affected by the value of the
SYSIBMADM.GET_ARCHIVE built-in global
variable.

G

EXTSEQNO INTEGER
NOT NULL
WITH DEFAULT 0

For internal use. I

DESCSTAT CHAR(1)
NOT NULL
WITH DEFAULT

The value of the DESCSTAT bind option.

Y The DB2 database manager generates a DESCRIBE
SQLDA at bind time so that DESCRIBE requests
for static SQL can be satisfied during execution.

N The DB2 database manager does not generate a
DESCRIBE SQLDA at bind time for static SQL
statements.

G

2274 SQL Reference

||
|
|

|

||
|
|

||
|
|

|

||
|
|

|

||
|

||
|

|

||
|
|

|

||
|
|

||
|
|
|

|

||
|
|

||

||
|
|

|

||
|
|

||
|
|

|

SYSIBM.SYSPACKCOPY table
The SYSIBM.SYSPACKCOPY table contains one row for the previous version of
each package and one row for the original version of each package.

Column name Data type Description Use

LOCATION
VARCHAR(128)
NOT NULL

Always contains blanks S

COLLID
VARCHAR(128)
NOT NULL

Name of the package collection. For a trigger package, it
is the schema name of the trigger.

G

NAME
VARCHAR(128)
NOT NULL

Name of the package. G

CONTOKEN
CHAR(8)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Consistency token for the package. For a package derived
from a DB2 DBRM, this is either:
v The “level” as specified by the LEVEL option when the

package's program was precompiled
v The timestamp indicating when the package's program

was precompiled, in an internal format.

S

OWNER
VARCHAR(128)
NOT NULL

Authorization ID of the package owner. For a trigger
package, the value is the authorization ID of the owner of
the trigger, which is set to the current authorization ID
(the plan or package owner for static CREATE TRIGGER
statement; the CURRENT SQLID for a dynamic CREATE
TRIGGER statement).

G

CREATOR
VARCHAR(128)
NOT NULL

Authorization ID of the owner of the creator of the
package version. For a trigger package, the value is
determined differently. For dynamic SQL, it is the
primary authorization ID of the user who issued the
CREATE TRIGGER statement. For static SQL, it is the
authorization ID of the plan or package owner.

G

TIMESTAMP
TIMESTAMP
NOT NULL

Timestamp indicating when the package was created. G

BINDTIME
TIMESTAMP
NOT NULL

Timestamp indicating when the package was last bound. G

QUALIFIER
VARCHAR(128)
NOT NULL

Implicit qualifier for the unqualified table, view, index,
and alias names in the static SQL statements of the
package.

G

PKSIZE
INTEGER
NOT NULL

Size of the base section41 of the package, in bytes. G

AVGSIZE
INTEGER
NOT NULL

Average size, in bytes, of those sections41 of the plan that
contain SQL statements processed at bind time.

G

41. Packages are divided into sections. The base section of the package must be in the EDM pool during the entire time the package
is executing. Other sections of the package, corresponding roughly to sets of related SQL statements, are brought into the pool as
needed.

Appendix. Additional information for DB2 SQL 2275

Column name Data type Description Use

SYSENTRIES
SMALLINT
NOT NULL

Number of enabled or disabled entries for this package in
SYSIBM.SYSPKSYSTEM. A value of 0 if all types of
connections are enabled.

G

VALID
CHAR(1)
NOT NULL

Whether the package is valid:
A An ALTER statement changed the description of

the table or base table of a view referred to by
the package. For a CREATE INDEX statement
involving data sharing, VALID is also marked as
"A". The changes do not invalidate the package.

H An ALTER TABLE statement changed the
description of the table or base table of a view
referred to by the package. For releases of DB2
prior to Version 5, the change invalidates the
package.

N No
Y Yes

G

OPERATIVE
CHAR(1)
NOT NULL

Whether the package can be allocated:
N No; an explicit BIND or REBIND is required

before the package can be allocated.
Y Yes

G

VALIDATE
CHAR(1)
NOT NULL

Whether validity checking can be deferred until run time:
B All checking must be performed at bind time.
R Validation is done at run time for tables, views,

and privileges that do not exist at bind time.

G

ISOLATION
CHAR(1)
NOT NULL

Isolation level when the package was last bound or
rebound
R RR (repeatable read)
S CS (cursor stability)
T RS (read stability)
U UR (uncommitted read)
blank Not specified, and therefore at the level specified

for the plan executing the package

G

RELEASE
CHAR(1)
NOT NULL

The value used for RELEASE when the package was last
bound or rebound:
C Value used was COMMIT.
D Value used was DEALLOCATE.
blank Not specified, and therefore the value specified

for the plan executing the package.

G

EXPLAIN
CHAR(1)
NOT NULL

EXPLAIN option specified for the package; that is,
whether information on the package's statements was
added to the owner of the PLAN_TABLE table:
N No
Y Yes

G

QUOTE
CHAR(1)
NOT NULL

SQL string delimiter for SQL statements in the package:
N Apostrophe
Y Quotation mark

G

COMMA
CHAR(1)
NOT NULL

Decimal point representation for SQL statements in
package:
N Period
Y Comma

G

2276 SQL Reference

Column name Data type Description Use

HOSTLANG
CHAR(1)
NOT NULL

Host language for the package's DBRM:
B Assembler language
C OS/VS COBOL
D C
F Fortran
P PL/I
2 VS COBOL II or IBM COBOL Release 1 (formerly

called COBOL/370)
3 IBM COBOL (Release 2 or subsequent releases)
4 C++
blank For remotely bound packages, trigger packages

(TYPE='T'), SQL procedure packages (TYPE='N'),
or non-inline SQL scalar function packages
(TYPE='F').

G

CHARSET
CHAR(1)
NOT NULL

Indicates whether the system CCSID for SBCS data was
290 (Katakana) when the program was precompiled:
K Yes
A No

G

MIXED
CHAR(1)
NOT NULL

Indicates if mixed data was in effect when the package's
program was precompiled (for more on when mixed data
is in effect, see “Character strings” on page 84):
N No
Y Yes

G

DEC31
CHAR(1)
NOT NULL

Indicates whether DEC31 was in effect when the
package's program was precompiled (for more on when
DEC31 is in effect, see “Arithmetic with two decimal
operands” on page 244):
N No
Y Yes

G

DEFERPREP
CHAR(1)
NOT NULL

Indicates the CURRENTDATA option when the package
was bound or rebound:
A Data currency is required for all cursors. Inhibit

blocking for all cursors.
B Data currency is not required for ambiguous

cursors.
C Data currency is required for ambiguous cursors.
blank The package was created before the

CURRENTDATA option was available.

G

SQLERROR
CHAR(1)
NOT NULL

Indicates the SQLERROR option on the most recent
subcommand that bound or rebound the package:
C CONTINUE
N NOPACKAGE

G

REMOTE
CHAR(1)
NOT NULL

Source of the package:
C Package was created by BIND COPY.
D Package was created by BIND COPY with the

OPTIONS(COMMAND) option.
K The package was copied from a package that

was originally bound on behalf of a remote
requester.

L The package was copied with the
OPTIONS(COMMAND) option from a package
that was originally bound on behalf of a remote
requester.

N Package was locally bound from a DBRM.
Y Package was bound on behalf of a remote

requester.

G

Appendix. Additional information for DB2 SQL 2277

Column name Data type Description Use

PCTIMESTAMP
TIMESTAMP
NOT NULL

Date and time the application program was precompiled,
or '0001-01-01-00.00.00.000000' if the LEVEL precompiler
option was used, or if the package came from a non-DB2
location.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELBOUND should be used instead.

G

VERSION
VARCHAR(122)
NOT NULL

Version identifier for the package. The value is blank for a
trigger package (TYPE='T').

G

PDSNAME
VARCHAR(132)
NOT NULL

For a locally bound package, the name of the PDS
(library) in which the package's DBRM is a member. For a
locally copied package, the value in
SYSPACKAGE.PDSNAME for the source package.
Otherwise, the product signature of the bind requester
followed by one of the following:
v For DB2 for z/OS remote requesters, the requester's

location name, or IP address, or LU name enclosed in
angle brackets (for example, “<LUSQLDS>”).

v For non-DB2 for z/OS remote requesters, the
requester's IP address or LU name enclosed in angle
brackets.

G

DEGREE
CHAR(3)
NOT NULL WITH
DEFAULT

The DEGREE option used when the package was last
bound:
ANY DEGREE(ANY)
1 or blank

DEGREE(1). Blank if the package was migrated.

G

GROUP_MEMBER
VARCHAR(24)
NOT NULL WITH
DEFAULT

The DB2 data sharing member name of the DB2
subsystem that performed the most recent bind. This
column is blank if the DB2 subsystem was not in a DB2
data sharing environment when the bind was performed.

G

2278 SQL Reference

Column name Data type Description Use

DYNAMICRULES
CHAR(1)
NOT NULL WITH
DEFAULT

The DYNAMICRULES option used when the package
was last bound:

B BIND. Dynamic SQL statements are executed
with DYNAMICRULES bind behavior.

D DEFINEBIND. When the package is run under
an active stored procedure or user-defined
function, dynamic SQL statements in the package
are executed with DYNAMICRULES define
behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES bind behavior.

E DEFINERUN. When the package is run under an
active stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES define behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES run behavior.

H INVOKEBIND. When the package is run under
an active stored procedure or user-defined
function, dynamic SQL statements in the package
are executed with DYNAMICRULES invoke
behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES bind behavior.

I INVOKERUN. When the package is run under
an active stored procedure or user-defined
function, dynamic SQL statements in the package
are executed with DYNAMICRULES invoke
behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES run behavior.

R RUN. Dynamic SQL statements are executed
with DYNAMICRULES run behavior.

blank DYNAMICRULES is not specified for the
package. The package uses the DYNAMICRULES
value of the plan to which the package is
appended at execution time.

For a description of the DYNAMICRULES behaviors, see
“Authorization IDs and dynamic SQL” on page 75.

G

Appendix. Additional information for DB2 SQL 2279

Column name Data type Description Use

REOPTVAR
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether the access path is determined again at execution
time using input variable values:
A Bind option REOPT(AUTO) indicates that the

access path is determined multiple times at
execution time depending on the parameter
value.

N Bind option REOPT(NONE) indicates that the
access path is determined at bind time.

Y Bind option REOPT(ALWAYS) indicates that the
access path is determined at execution time for
SQL statements with variable values.

1 Bind option REOPT(ONCE) indicates that the
access path is determined only once at execution
time, using the first set of input variable values,
regardless of how many times the same
statement is executed.

G

DEFERPREPARE
CHAR(1)
NOT NULL WITH
DEFAULT

Whether PREPARE processing is deferred until OPEN is
executed:
N Bind option NODEFER(PREPARE) indicates that

PREPARE processing is not deferred until OPEN
is executed.

Y Bind option DEFER(PREPARE) indicates that
PREPARE processing is deferred until OPEN is
executed.

blank Bind option not specified for the package. It is
inherited from the plan.

G

KEEPDYNAMIC
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether prepared dynamic statements are to be purged
at each commit point:
N The bind option is KEEPDYNAMIC(NO).

Prepared dynamic SQL statements are destroyed
at commit.

Y The bind option is KEEPDYNAMIC(YES).
Prepared dynamic SQL statements are kept past
commit.

G

PATHSCHEMAS
VARCHAR(2048)
NOT NULL WITH
DEFAULT

SQL path specified on the BIND or REBIND command
that bound the package. The path is used to resolve
unqualified data type, function, and stored procedure
names used in certain contexts. If the PATH bind option
was not specified, the value in the column is a zero
length string; however, DB2 uses the default SQL path.

G

2280 SQL Reference

Column name Data type Description Use

TYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Type of package. Identifies how the package is created:
F CREATE FUNCTION or ALTER FUNCTION

statement, or a BIND PACKAGE DEPLOY
command created the package, and this package
is a non-inline SQL scalar function package.

N CREATE PROCEDURE or ALTER PROCEDURE
statement, or BIND PACKAGE DEPLOY
command created the package, and this package
is a native SQL routine package.

R CREATE TRIGGER or ALTER TRIGGER
statement created the package, and the package
is a trigger package that has been created or
regenerated in Version 11 New Function Mode or
later.

T CREATE TRIGGER statement prior to Version 11
New Function Mode has created the package,
and the package is a trigger package.

CREATE TRIGGER statement created the
package, and the package is a trigger package.

blank BIND PACKAGE command created the package.

G

DBPROTOCOL
CHAR(1)
NOT NULL WITH
DEFAULT 'P'

Whether remote access for SQL is implemented with
DRDA access or DRDA access with the capability for
package-based continuous block fetch:
D DRDA
C DRDA access with the capability for

package-based continuous block fetch.

G

FUNCTIONTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Timestamp when the function was resolved. Set by the
BIND and REBIND commands, but not by AUTOBIND.

G

OPTHINT
VARCHAR(128)
NOT NULL WITH
DEFAULT

Value of the OPTHINT bind option. Identifies rows in
owner.PLAN_TABLE that are to be used as input to DB2.
Refer to the ACCESSPATH column in the
“SYSIBM.SYSPACKSTMT table” on page 2290 for
information about which statements are using the
specified hints.

G

ENCODING_CCSID
INTEGER
NOT NULL WITH
DEFAULT

The CCSID corresponding to the encoding scheme or
CCSID as specified for the bind option ENCODING. The
Encoding Scheme specified on the bind command:
ccsid The specified or derived CCSID.
0 The default CCSID as specified on panel

DSNTIPF at installation time. Used when the
package was bound prior to Version 7.

G

IMMEDWRITE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates when writes of updated group buffer pool
dependent pages are to be done. This option is only
applicable for data sharing environments.
N Bind option IMMEDWRITE(NO) indicates

normal write activity is done.
Y Bind option IMMEDWRITE(YES) indicates that

immediate writes are done for updated group
buffer pool dependent pages.

1 Bind option IMMEDWRITE(PH1) indicates that
updated group buffer pool dependent pages are
written at or before phase 1 commit.

blank A migrated package.

G

Appendix. Additional information for DB2 SQL 2281

|
|
|

Column name Data type Description Use

RELBOUND
CHAR(1)
NOT NULL WITH
DEFAULT

The release when the package was bound or rebound.
blank Bound prior to Version 7
For all other values, see Release dependency indicators

G

CHAR(1)
Not used. N

REMARKS
VARCHAR(550)
NOT NULL WITH
DEFAULT

A character string provided by the user with the
COMMENT statement.

G

OWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner
blank Authorization ID
L Role

G

ROUNDING
CHAR(1)
NOT NULL WITH
DEFAULT

The ROUNDING option used when the package was last
bound:
C ROUND_CEILING
D ROUND_DOWN
F ROUND_FLOOR
G ROUND_HALF_DOWN
E ROUND_HALF_EVEN
H ROUND_HALF_UP
U ROUND_UP
blank The package created in a DB2 release prior to

Version 9.

G

DISTRIBUTE
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Determines if DB2 should gather location names from
SQL statements, and create remote packages for the user
(This only has effect during local bind):

A DB2 will collect remote location names from SQL
statements during local bind, and automatically
create remote packages at those sites. The site
names are gathered from object names in static
SQL statements and literals on CONNECT
statements. The sites at which the package is
remotely bound can be determined by the
location (BTYPE='X') records in
SYSIBM.SYSPACKDEP for this package.

L DB2 will automatically create remote packages at
the sites specified in the list of location-names.
The sites at which the package is remotely bound
can be determined by the location (BTYPE='X')
records in SYSIBM.SYSPACKDEP for this
package.

G

LASTUSED DATE
NOT NULL WITH
DEFAULT

The last date that the corresponding objects are used. G

CONCUR_ACC_RES CHAR(1)
NOT NULL'

Indicates the CONCURRENTACCESSRESOLUTION
option when the package was bound or rebound:

blank Not specified

U USECURRENTLYCOMMITTED

W WAITFOROUTCOME

G

2282 SQL Reference

Column name Data type Description Use

EXTENDED-
INDICATOR

CHAR(1)
NOT NULL
WITH DEFAULT

The value of the EXTENDEDINDICATOR bind option:

N EXTENDEDINDICATOR NO

Y EXTENDEDINDICATOR YES

G

COPYID INTEGER
NOT NULL

The version of the copy of the package that this row
explains:

1 The previous copy of the package

2 The original copy of the package

G

PLANMGMT CHAR(1)
NOT NULL
WITH DEFAULT

The value of the PLANMGMT bind option:

B PLANMGMT BASIC

E PLANMGMT EXTENDED

F PLANMGMT OFF

O PLANMGMT ON

G

PLANMGMTSCOPE CHAR(1)
NOT NULL
WITH DEFAULT

The value of the PLANMGMTSCOPE bind option:

S PLANMGMTSCOPE STATIC

G

APREUSE CHAR(1)
NOT NULL WITH
DEFAULT

The value of the APREUSE bind option:

N NO or NONE: Access paths are not reused.

E ERROR: DB2 tries to reuse access paths.
Processing ends when an access path cannot be
reused.

I

APRETAINDUP CHAR(1)
NOT NULL WITH
DEFAULT

The value of the APRETAINDUP bind option:

Y APRETAINDUP YES specified. All copies were
retained.

0 APRETAINDUP NO specified; however, the
previous or original package copy is still retained
due to access path differences.

1 APRETAINDUP NO specified, and the previous
package copy is not retained as the access paths
are identical to the current copy.

2 APRETAINDUP NO specified, and the previous
and original package copies are not retained as
the access paths are identical to the current copy.

G

SYSTIMESENSITIVE CHAR(1)
NOT NULL
WITH DEFAULT 'N'

The value of the SYSTIMESENSITIVE bind option:

Y References to system-period temporal tables are
affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

N References to system-period temporal tables are
not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

G

CHAR(1)
NOT NULL
WITH DEFAULT 'Y'

Not used. N

Appendix. Additional information for DB2 SQL 2283

||
|
|

|

||
|
|

||
|
|

|

Column name Data type Description Use

BUSTIMESENSITIVE CHAR(1)
NOT NULL
WITH DEFAULT 'N'

The value of the BUSTIMESENSITIVE bind option:

Y References to application-period temporal tables
are affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

N References to application-period temporal tables
are not affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

G

APPLCOMPAT VARCHAR(10)
NOT NULL
WITH DEFAULT 'Y'

The value of the APPLCOMPAT bind option:

V10R1 SQL statements in the package have V10R1
compatibility behavior.

V11R1 SQL statements in the package have V11R1
compatibility behavior.

G

ARCHIVESENSITIVE CHAR(1)
NOT NULL
WITH DEFAULT 'N

The value of the ARCHIVESENSITIVE bind option.

Y References to archive-enabled tables are affected
by the value of the SYSIBMADM.GET_ARCHIVE
built-in global variable. Y is the default value.

N References to archive-enabled tables are not
affected by the value of the
SYSIBMADM.GET_ARCHIVE built-in global
variable.

G

EXTSEQNO INTEGER
NOT NULL
WITH DEFAULT 0

For internal use. I

DESCSTAT CHAR(1)
NOT NULL
WITH DEFAULT

The value of the DESCSTAT bind option.

Y The DB2 database manager generates a
DESCRIBE SQLDA at bind time so that
DESCRIBE requests for static SQL can be
satisfied during execution.

N The DB2 database manager does not generate a
DESCRIBE SQLDA at bind time for static SQL
statements.

G

2284 SQL Reference

||
|
|

|

||
|
|

||
|
|

|

||
|
|

|

||
|

||
|

|

||
|
|

|

||
|
|

||
|
|
|

|

||
|
|

||

||
|
|

|

||
|
|
|

||
|
|

|

SYSIBM.SYSPACKAUTH table
The SYSIBM.SYSPACKAUTH table records the privileges that are held by users
over packages.

Column name Data type Description Use

GRANTOR
VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the privilege.
Could also be PUBLIC.

G

GRANTEE
VARCHAR(128)
NOT NULL

Authorization ID of the user who holds the privileges, the
name of a plan that uses the privileges or PUBLIC for a
grant to PUBLIC.

G

LOCATION
VARCHAR(128)
NOT NULL

Always contains blanks S

COLLID
VARCHAR(128)
NOT NULL

Collection name for the package or packages on which
the privilege was granted.

G

NAME
VARCHAR(128)
NOT NULL

Name of the package on which the privileges are held. An
asterisk (*) if the privileges are held on all packages in a
collection.

G

CHAR(8)
NOT NULL
FOR BIT DATA

Not used N

TIMESTAMP
TIMESTAMP
NOT NULL

Timestamp indicating when the privilege was granted. G

GRANTEETYPE
CHAR(1)
NOT NULL

Type of grantee:
blank An authorization ID
L Role
P An application plan

G

AUTHHOWGOT
CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges
were received. This authorization level is not necessarily
the highest authorization level of the grantor.
blank Not applicable
A PACKADM (on collection *)
C DBCTRL
D DBADM
E SECADM
G ACCESSCTRL
L SYSCTRL
M DBMAINT
P PACKADM (on a specific collection)
S SYSADM
T DATAACCESS

G

BINDAUTH
CHAR(1)
NOT NULL

Whether GRANTEE can use the BIND and REBIND
subcommands on the package:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

42. PUBLIC followed by an asterisk (PUBLIC*) denotes PUBLIC AT ALL LOCATIONS. For the conditions where GRANTOR can be
PUBLIC or PUBLIC*, see DB2 Administration Guide.

Appendix. Additional information for DB2 SQL 2285

Column name Data type Description Use

COPYAUTH
CHAR(1)
NOT NULL

Whether GRANTEE can COPY the package:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

EXECUTEAUTH
CHAR(1)
NOT NULL

Whether GRANTEE can execute the package:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

GRANTORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank Authorization ID
L Role

G

2286 SQL Reference

SYSIBM.SYSPACKDEP table
The SYSIBM.SYSPACKDEP table records the dependencies of packages on local
tables, views, synonyms, table spaces, indexes, aliases, functions, and stored
procedures.

Column name Data type Description Use

BNAME
VARCHAR(128)
NOT NULL

The name of an object that a package depends on.

If BTYPE is B or C, the value is the name of the table on
which the period is defined.

G

BQUALIFIER
VARCHAR(128)
NOT NULL

The value of the column depends on the type of object:

v If BNAME identifies a table space (BTYPE is R), the
value is the name of its database.

v If BNAME identifies a table on which a period is
defined (BTYPE is B or C), the value is the qualifier of
that table.

v If BNAME identifies user-defined function, a cast
function, a stored procedure, or a sequence (BTYPE is F,
O, or Q), the value is the schema name.

v If BNAME identifies a role, the value is blank.

v Otherwise, the value is the schema of BNAME.

G

BTYPE
CHAR(1)
NOT NULL

Type of object identified by BNAME and BQUALIFIER:
B BUSINESS_TIME
C SYSTEM_TIME
E INSTEAD OF trigger
F User-defined function or cast function
G Global temporary table
I Index
M Materialized query table
O Stored procedure
P Partitioned table space if it is defined as LARGE

or with the DSSIZE parm
Q Sequence object
R Table space
S Synonym
T Table
U Distinct type
V View
W SYSTEM_TIME period
Z BUSINESS_TIME period
0 (zero)

Alias

G

DLOCATION
VARCHAR(128)
NOT NULL

Always contains blanks S

DCOLLID
VARCHAR(128)
NOT NULL

Name of the package collection. G

DNAME
VARCHAR(128)
NOT NULL

Name of the package. G

Appendix. Additional information for DB2 SQL 2287

|
|

Column name Data type Description Use

DCONTOKEN
CHAR(8)
NOT NULL
FOR BIT DATA

Consistency token for the package. This is either:
v The “level” as specified by the LEVEL option when the

package's program was precompiled
v The timestamp indicating when the package's program

was precompiled, in an internal format.

S

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

DOWNER
VARCHAR(128)
NOT NULL WITH
DEFAULT

Owner of the package: G

DTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Type of package:
F Non-inline SQL scalar function
N Native SQL routine package
O Original copy of a package
P Previous copy of a package
R Reserved for IBM use
T Trigger package
blank Not a trigger package or a native SQL routine

package

G

DOWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner of the package:
blank Authorization ID
L Role

G

2288 SQL Reference

SYSIBM.SYSPACKLIST table
The SYSIBM.SYSPACKLIST table contains one or more rows for every local
application plan bound with a package list. Each row represents a unique entry in
the plan's package list.

Column name Data type Description Use

PLANNAME
VARCHAR(24)
NOT NULL

Name of the application plan. G

SEQNO
SMALLINT
NOT NULL

Sequence number of the entry in the package list. G

LOCATION
VARCHAR(128)
NOT NULL

Location of the package. Blank if this is local. An asterisk
(*) indicates location to be determined at run time.

G

COLLID
VARCHAR(128)
NOT NULL

Collection name for the package. An asterisk (*) indicates
that the collection name is determined at run time.

G

NAME
VARCHAR(128)
NOT NULL

Name of the package. An asterisk (*) indicates an entire
collection.

G

TIMESTAMP
TIMESTAMP
NOT NULL

Timestamp indicating when the row was created. G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2289

SYSIBM.SYSPACKSTMT table
The SYSIBM.SYSPACKSTMT table contains one or more rows for each statement in
a package.

Column name Data type Description Use

LOCATION
VARCHAR(128)
NOT NULL

Always contains blanks S

COLLID
VARCHAR(128)
NOT NULL

Name of the package collection. G

NAME
VARCHAR(128)
NOT NULL

Name of the package. G

CONTOKEN
CHAR(8)
NOT NULL
FOR BIT DATA

Consistency token for the package. This is either:
v The “level” as specified by the LEVEL option when the

package's program was precompiled
v The timestamp indicating when the package's program

was precompiled, in an internal format

S

SEQNO
INTEGER
NOT NULL

Not used. G

STMTNO
SMALLINT
NOT NULL

The statement number of the statement in the source
program. A statement number greater than 32767 is stored
as zero43 or as a negative number44. If the value is zero, see
STMTNOI for the statement number.

G

SECTNO
SMALLINT
NOT NULL

The section number of the statement.44 G

BINDERROR
CHAR(1)
NOT NULL

Whether an SQL error was detected at bind time:
N No
Y Yes

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

VERSION
VARCHAR(122)
NOT NULL

Version identifier for the package. G

VARCHAR(3500)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Internal use only. I

43. Rows in which the value of SEQNO, STMTNO, and SECTNO are zero are for internal use.

44. To convert a negative STMTNO to a meaningful statement number that corresponds to your precompile output, add 65536 to it.
For example, -26472 is equivalent to +39064 (-26472 + 65536).

2290 SQL Reference

Column name Data type Description Use

ISOLATION
CHAR(1)
NOT NULL WITH
DEFAULT

Isolation level for the SQL statement:
R RR (repeatable read)
T RS (read stability)
S CS (cursor stability)
U UR (uncommitted read)
L RS isolation, with a lock-clause
X RR isolation, with a lock-clause
blank The WITH clause was not specified on this

statement. The isolation level is recorded in
SYSPACKAGE.ISOLATION and in
SYSPLAN.ISOLATION.

G

STATUS CHAR(1)
NOT NULL WITH
DEFAULT

Status of binding the statement:
A Distributed - statement uses DB2 private protocol

access. The statement will be parsed and executed
at the server using defaults for input variables
during access path selection.

B Distributed - statement uses DB2 private protocol
access. The statement will be parsed and executed
at the server using values for input variables
during access path selection.

C Compiled - statement was bound successfully
using defaults for input variables during access
path selection.

D Distributed - statement references a remote object
using a three-part name. DB2 will implicitly use
DRDA access either because the DBPROTOCOL
bind option was not specified (defaults to DRDA),
or the bind option DBPROTOCOL(DRDA) was
explicitly specified. This option allows the use of
three-part names with DRDA access but it requires
that the package be bound at the target remote
site.

E Explain - statement is an SQL EXPLAIN
statement. The explain is done at bind time using
defaults for input variables during access path
selection.

F Parsed - statement did not bind successfully and
VALIDATE(RUN) was used. The statement will be
rebound at execution time using values for input
variables during access path selection.

G Compiled - statement bound successfully, but
REOPT is specified. The statement will be
rebound at execution time using values for input
variables during access path selection.

H Parsed - statement is either a data definition
statement or a statement that did not bind
successfully and VALIDATE(RUN) was used. The
statement will be rebound at execution time using
defaults for input variables during access path
selection. Data manipulation statements use
defaults for input variables during access path
selection.

I Indefinite - statement is dynamic. The statement
will be bound at execution time using defaults for
input variables during access path selection.

S

Appendix. Additional information for DB2 SQL 2291

Column name Data type Description Use

STATUS (cont.)
J Indefinite - statement is dynamic. The statement

will be bound at execution time using values for
input variables during access path selection.

K Control - CALL statement.

L Bad - the statement has some allowable error. The
bind continues but the statement cannot be
executed.

M Parsed - statement references a table that is
qualified with SESSION and was not bound
because the table reference could be for a declared
temporary table that will not be defined until the
package or plan is run. The SQL statement will be
rebound at execution time using values for input
variables during access path selection.

blank The statement is non-executable, or was bound in
a DB2 release prior to Version 5.

ACCESSPATH
CHAR(1)
NOT NULL WITH
DEFAULT

For static statements, indicates if the access path for the
statement is based on user-specified optimization hints:

H Optimization hints were used.

A The access path was reused because of the
APREUSE bind option.

blank One of the following situations:
v The access path was determined without the

use of hints, and a previous access path was not
reused.

v No access path is associated with the statement.
v The statement is a dynamic SQL statement

G

STMTNOI
INTEGER
NOT NULL WITH
DEFAULT

If the value of STMTNO is zero, the column contains the
statement number of the statement in the source program.
If both STMTNO and STMTNOI are zero, the statement
number is greater than 32767.

G

SECTNOI
INTEGER
NOT NULL WITH
DEFAULT

The section number of the statement. G

EXPLAINABLE
CHAR(1)
NOT NULL WITH
DEFAULT

Contains one of the following values:
Y Indicates that the SQL statement can be used with

the EXPLAIN function and might have rows
describing its access path in the
owner.PLAN_TABLE.

N Indicates that the SQL statement does not have
any rows describing its access path in the
owner.PLAN_TABLE.

blank Indicates that the SQL statement was bound prior
to Version 7.

G

2292 SQL Reference

Column name Data type Description Use

QUERYNO
INTEGER
NOT NULL WITH
DEFAULT –1

The query number of the SQL statement in the source
program. SQL statements bound prior to Version 7 have a
default value of –1. Statements bound in Version 7 or later
use the value specified on the QUERYNO clause on
SELECT, UPDATE, INSERT, DELETE, EXPLAIN,
DECLARE CURSOR, or REFRESH TABLE statements. If
the QUERYNO clause is not specified, the query number is
set to the statement number.

G

ROWID ROWID
NULL GENERATED
ALWAYS

ROWID column, created for the lob columns in this table. G

STMT_ID BIGINT
NOT NULL

A unique statement identifier. G

STATEMENT CLOB(2M)
NOT NULL
WITH DEFAULT

The complete text for the SQL statement that the row
represents.

G

BLOB(2M)
NOT NULL
WITH DEFAULT

Internal use only. I

Appendix. Additional information for DB2 SQL 2293

Column name Data type Description Use

EXPANSION_REASON CHAR(2)
NOT NULL

This column applies to only static statements that reference
archive tables or temporal tables. For other statements, this
column is blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT
TEMPORAL SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable.
These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind
options.

If one of these special registers or the global variable is set
to Y and the corresponding bind option is set to YES, DB2
implicitly adds certain syntax to the statement. This
column indicates whether this implicit query
transformation occurred when the package was bound and
why.

For dynamic statements, this column is blank. For static
statements, this column can have one of the following
values:

A The statement was bound with implicit query
transformation as a result of the
SYSIBMADM.GET_ARCHIVE built-in global
variable.

B The statement was bound with implicit query
transformation as a result of the CURRENT
TEMPORAL BUSINESS_TIME special register.

S The statement was bound with implicit query
transformation as a result of the CURRENT
TEMPORAL SYSTEM_TIME special register.

SB The statement was bound with implicit query
transformation as a result of the CURRENT
TEMPORAL SYSTEM_TIME special register and
the CURRENT TEMPORAL BUSINESS_TIME
special register.

blank One of the following events occurred:

v The statement did not bind successfully and the
VALIDATE(RUN) bind option was used.

v The statement was bound without implicit
query transformation.

If this column is not blank, you can see the resulting access
path for the transformed statement by using EXPLAIN.
Related information:

“References to built-in global variables” on page 223

“CURRENT TEMPORAL BUSINESS_TIME” on page
194

“CURRENT TEMPORAL SYSTEM_TIME” on page 196

BIND and REBIND options (DB2 Commands)

G

2294 SQL Reference

||
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

||
|
|
|

||
|
|

||
|
|

||
|
|
|
|

||

|
|

|
|

|
|
|

|

|
|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

SYSIBM.SYSPACKSTMT_STMB table
The SYSIBM.SYSPACKSTMT_STMB table is an auxiliary table for the STMTBLOB
column of the SYSIBM.SYSPACKSTMT table and is required to hold LOB data.

Column name Data type Description Use

BLOB(2M)
NOT NULL
WITH DEFAULT

Internal use only. I

Appendix. Additional information for DB2 SQL 2295

SYSIBM.SYSPACKSTMT_STMT table
The SYSIBM.SYSPACKSTMT_STMT table is an auxiliary table for the STATEMENT
column of the SYSIBM.SYSPACKSTMT table and is required to hold LOB data.

Column name Data type Description Use

STATEMENT CLOB(2M)
NOT NULL
WITH DEFAULT

The complete text for the SQL statement that the row
represents.

G

2296 SQL Reference

SYSIBM.SYSPARMS table
The SYSIBM.SYSPARMS table contains a row for each parameter of a routine or
multiple rows for table parameters (one for each column of the table).

Column name Data type Description Use

SCHEMA
VARCHAR(128)
NOT NULL

Schema of the routine. G

OWNER
VARCHAR(128)
NOT NULL

Owner of the routine. G

NAME
VARCHAR(128)
NOT NULL

Name of the routine. G

SPECIFICNAME
VARCHAR(128)
NOT NULL

Specific name of the routine. G

ROUTINETYPE
CHAR(1)
NOT NULL

Type of routine:
F User-defined function or cast function
P Stored procedure

G

CAST_FUNCTION
CHAR(1)
NOT NULL

Whether the routine is a cast function:
N Not a cast function
Y A cast function

The only way to get a value of Y is if a user creates a
distinct type when DB2 implicitly generates cast functions
for the distinct type.

G

PARMNAME
VARCHAR(128)
NOT NULL

Name of the parameter. For a table parameter, the
parameter name in the row corresponding to the first
column of the table is the parameter name specified on
CREATE; an empty string or blanks are stored for the
parameter name for the rows corresponding to the
remaining columns.

G

ROUTINEID
INTEGER
NOT NULL

Internal identifier of the routine. S

Appendix. Additional information for DB2 SQL 2297

Column name Data type Description Use

ROWTYPE
CHAR(1)
NOT NULL

The following values indicate the type of parameter
described by this row:

P Input parameter.

O Output parameter; not applicable for functions

B Both an input and an output parameter; not
applicable for functions

R Result before casting; not applicable for stored
procedures

C Result after casting; not applicable for stored
procedures

S Input parameter of the underlying built-in source
function. For a sourced function and a given
ORDINAL value:

v The row with ROWTYPE = P describes the
input parameter of the user-defined function
(identified by ROUTINEID).

v The row with ROWTYPE = S describes the
corresponding input parameter of the built-in
function that is the underlying source function
(identified by the SOURCESCHEMA and
SOURCESPECIFIC values).

A value of 'X' indicates that the row is not used to
describe a particular parameter of the routine. Instead, for
a routine that was created prior to Version 9, the row is
used to record a CCSID for the encoding scheme specified
in a PARAMETER CCSID clause, or a DATATYPEID for
the representation of the variable length character string
parameters of a LANGUAGE C routine, as specified in a
PARAMETER VARCHAR clause. For routines created
with Version 8 (new function mode) or later releases, the
CCSID is recorded in the PARAMETER_CCSID column of
SYSROUTINES. For routines created with Version 9 or
later releases, the DATATYPEID information to support
PARAMETER VARCHAR is recorded in the
PARAMETER_VARCHARFORM column of
SYSIBM.SYSROUTINES.

G

ORDINAL
SMALLINT
NOT NULL

If ROWTYPE is B, O, P, or S, the value is the ordinal
number of the parameter within the routine signature.

If ROWTYPE is C or R, the value depends on the type of
function:

v For a scalar function, the value is 0.

v For a table function, the value is the ordinal number of
the column of the output table.

If ROWTYPE is X, the value is 0.

G

TYPESCHEMA
VARCHAR(128)
NOT NULL

Schema of the data type of the parameter. G

TYPENAME
VARCHAR(128)
NOT NULL

Name of the data type of the parameter. G

2298 SQL Reference

Column name Data type Description Use

DATATYPEID
INTEGER
NOT NULL

For a built-in data type, the internal ID of the built-in
type. For a distinct type, the internal ID of the distinct
type.

When ROWTYPE is X and ORDINAL is 0, a non-zero
DATATYPEID indicates that actual representation, for a
LANGUAGE C routine, of any varying length string
parameters that appear in the routine's parameter list ot
in the RETURNS clause.

S

SOURCETYPEID
INTEGER
NOT NULL

For a built-in data type, 0. For a distinct type, the internal
ID of the built-in data type upon which the distinct type
is based.

S

LOCATOR
CHAR(1)
NOT NULL

Indicates whether a locator to a value, instead of the
actual value, is to be passed or returned when the routine
is called:
N The actual value is to be passed.
Y A locator to a value is to be passed

G

TABLE
CHAR(1)
NOT NULL

The data type of a column for a table parameter:
N This is not a table parameter.
Y This is a table parameter.

G

TABLE_COLNO
SMALLINT
NOT NULL

For table parameters, the column number of the table.
Otherwise, the value is 0.

G

LENGTH
INTEGER
NOT NULL

Length attribute of the parameter or result; If the
parameter or result length is determined during function
resolution, the length attribute can also be 0. In the case
of a decimal parameter or result this is the precision.

If the parameter is an array, the value is 0.

G

SCALE
SMALLINT
NOT NULL

Scale of the data type of the parameter or number of
fractional second digits of timestamp or timestamp with
time zone parameter. If it is TIMESTAMP parameter
where LENGTH is 10 and SCALE is 0, the number of
fractional second digits is 6.

G

SUBTYPE
CHAR(1)
NOT NULL

If the data type is a distinct type, the subtype of the
distinct type, which is based on the subtype of its source
type:
B The subtype is FOR BIT DATA.
S The subtype is FOR SBCS DATA.
M The subtype is FOR MIXED DATA.
blank The source type is not a character type.

If the parameter is an array type, the value is blank.

G

CCSID
INTEGER
NOT NULL

CCSID of the data type for a character, date, time,
timestamp or graphic data type. If the parameter is a
datetime array, the value is 0. (not null)

When ROWTYPE is X and ORDINAL is 0, the CCSID
column is the CCSID for all character and graphic string
parameters.

G

CAST_FUNCTION_ID
INTEGER
NOT NULL

Internal function ID of the function used to cast the
argument, if this function is sourced on another function,
or result. Otherwise, the value is 0. Not applicable for
stored procedures.

S

Appendix. Additional information for DB2 SQL 2299

|

|
|
|

Column name Data type Description Use

ENCODING_SCHEME
CHAR(1)
NOT NULL

Encoding scheme of the parameter:
A ASCII
E EBCDIC
U UNICODE
blank The source type is not a character, graphic, or

datetime type.

If the parameter is an array type, the value is blank.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

VERSION
VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the routine. The column is a
zero-length string if the value of ORIGIN is not 'I' or if
the rows were created prior to Version 9.

G

OWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank Authorization ID
L Role

G

2300 SQL Reference

|

SYSIBM.SYSPENDINGDDL table
The SYSIBM.SYSPENDINGDDL table contains information about which objects
have pending definition changes. The entries only exist during the window
between when the pending option is executed and when the utility applies these
pending changes to the object.

Column name Data type Description Use

DBNAME VARCHAR(24)
NOT NULL

Name of the database for the pending option. G

TSNAME VARCHAR(24)
NOT NULL

Name of the table space for the pending option. G

DBID SMALLINT
NOT NULL

Internal identifier of the database. S

PSID SMALLINT
NOT NULL

Internal identifier of the table space page set descriptor. S

OBJSCHEMA VARCHAR(128)
NOT NULL

The qualifier of the object that contains the pending
option.

G

OBJNAME VARCHAR(128)
NOT NULL

Name of the object that contains the pending option. G

OBJOBID SMALLINT
NOT NULL

Internal identifier of the object. S

OBJTYPE CHAR(1)
NOT NULL

Type of object that is identified by OBJSCHEMA and
OBJNAME.

I The object is an index

S The object is a table space

T The object is a table

G

STATEMENT_TYPE CHAR(1)
NOT NULL

The type of the statement for the pending option.

A An ALTER statement

R A RECOVER statement

G

OPTION_ENVID INTEGER
NOT NULL

Internal identifier of the environment for the pending
option.

G

OPTION_KEYWORD VARCHAR(128)
NOT NULL

If the row is inserted into this table during execution of a
data definition statement, this value is the name of the
pending option. If the row is inserted into this table
during recovery to a prior point in time, this value is the
name of the RECOVER option.

G

OPTION_VALUE VARCHAR(4000)
NOT NULL

If the row is inserted into this table during execution of a
data definition statement, this value is the value of the
pending option. If the row is inserted into this table
during recovery to a prior point in time, this value is the
value of the RECOVER option.

G

OPTION_SEQNO SMALLINT
NOT NULL

The sequence of the pending option within the statement. G

CREATEDTS TIMESTAMP(12)
NOT NULL

Timestamp when the pending option was created. G

RELCREATED CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for the values.

G

Appendix. Additional information for DB2 SQL 2301

||

||

|
|
|
|
|

|
|
|
|
|

|
|

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine- readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

ROWID ROWID ID to support LOB columns for source text G

STATEMENT_TEXT CLOB(2M)
NOT NULL

The source text of the original statement for the pending
option.

G

COLNAME VARCHAR(128)
NOT NULL
WITH DEFAULT

The name of the column with a pending definition
change.

G

PARTITION SMALLINT
NOT NULL

The partition number for the partition with a pending
definition change. The value is 0 if the pending definition
change is for the entire table space or index space.

G

PARTITION_
KEYWORD

VARCHAR(18)
NOT NULL
WITH DEFAULT

This column is populated if the PARTITION column has a
non-zero value.

The keyword that is associated with the PARTITION
clause of the ALTER TABLE statement.

For example, suppose that you issued the following
statement:

ALTER TABLE ALTER PARTITION

In that case, this column contains ALTER.

G

COLUMN_
KEYWORD

VARCHAR(18)
NOT NULL
WITH DEFAULT

This column contains the keyword that corresponds to the
column that is listed in COLNAME.

G

2302 SQL Reference

||
|
|

|
|
|

||
|
|
|
|

|

|
|
|
|
|

|
|

|
|

|
|

|

|

|

|
|
|
|
|

|
|
|

SYSIBM.SYSPENDINGOBJECTS table
The SYSIBM.SYSPENDINGOBJECTS table contains the name of and OBID
information about objects that are the pending creation. The data sets for these
objects are created but the object definition have not been materialized to the
catalog. The entries in this table only exist during the time between when the
names of the new objects are generated and when the catalog definition of the new
objects are materialized.

Column name Data type Description Use

DBNAME VARCHAR(24)
NOT NULL

Name of the database. G

TSNAME VARCHAR(24)
NOT NULL

Name of the base table space. G

DBID SMALLINT
NOT NULL

Internal identifier of the database. S

PSID SMALLINT
NOT NULL

Internal identifier of the base table space page set
descriptor.

S

PARTITION SMALLINT
NOT NULL

Partition number with which the object is associated. G

COLNAME VARCHAR(128)
NOT NULL

Name of the column contained in the base table space
with which the object is associated.

G

OBJSCHEMA VARCHAR(128)
NOT NULL

The qualifier of the object. G

OBJNAME VARCHAR(128)
NOT NULL

Name of the object. G

OBJTYPE CHAR(1)
NOT NULL

Type of object identified by OBJSCHEMA and OBJNAME.

I The object is an index

S The object is a table space

T The object is a table

G

INDEXSPACE VARCHAR(24)
NOT NULL

Name of the index space. An empty string if the object is
not an index.

G

OBJOBD SMALLINT
NOT NULL

Internal identifier of the object. S

OBJPSID SMALLINT
NOT NULL

Internal identifier of the object page set descriptor, or 0 if
the object does not have a page set descriptor.

S

Appendix. Additional information for DB2 SQL 2303

SYSIBM.SYSPKSYSTEM table
The SYSIBM.SYSPKSYSTEM table contains zero or more rows for every package.
Each row for a given package represents one or more connections to an
environment in which the package could be executed.

Column name Data type Description Use

LOCATION
VARCHAR(128)
NOT NULL

Always contains blanks S

COLLID
VARCHAR(128)
NOT NULL

Name of the package collection. G

NAME
VARCHAR(128)
NOT NULL

Name of the package. G

CONTOKEN
CHAR(8)
NOT NULL
FOR BIT DATA

Consistency token for the package. This is either:
v The “level” as specified by the LEVEL option when the

package's program was precompiled
v The timestamp indicating when the package's program

was precompiled, in an internal format.

S

SYSTEM
VARCHAR(24)
NOT NULL

Environment. Values can be:
BATCH

TSO batch
CICS Customer Information Control System
DB2CALL

DB2 call attachment facility
DLIBATCH

DLI batch support facility
IMSBMP

IMS BMP region
IMSMPP

IMS MPP and IFP region
REMOTE

remote server

G

ENABLE
CHAR(1)
NOT NULL

Indicates whether the connections represented by the row
are enabled or disabled:
N Disabled
Y Enabled

G

CNAME
VARCHAR(60)
NOT NULL

Identifies the connection or connections to which the row
applies. Interpretation depends on the environment
specified by SYSTEM. Values can be:

v Blank if SYSTEM=BATCH or SYSTEM=DB2CALL

v The LU name for a database server if
SYSTEM=REMOTE

v Either the requester's location (if the product is DB2) or
the requester's LU name enclosed in angle brackets if
SYSTEM=REMOTE.

v The name of a single connection if SYSTEM has any
other value.

CNAME can also be blank when SYSTEM is not equal to
BATCH or DB2CALL. When this is so, the row applies to
all servers or connections for the indicated environment.

G

2304 SQL Reference

Column name Data type Description Use

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2305

SYSIBM.SYSPLAN table
The SYSIBM.SYSPLAN table contains one row for each application plan.

Column name Data type Description Use

NAME
VARCHAR(24)
NOT NULL

Name of the application plan. G

CREATOR
VARCHAR(128)
NOT NULL

Authorization ID of the owner of the application plan. G

CHAR(6)
NOT NULL

Not used N

VALIDATE
CHAR(1)
NOT NULL

Whether validity checking can be deferred until run time:
B All checking must be performed during BIND.
R Validation is done at run time for tables, views,

and privileges that do not exist at bind time.

G

ISOLATION
CHAR(1)
NOT NULL

Isolation level for the plan:
R RR (repeatable read)
T RS (read stability)
S CS (cursor stability)
U UR (uncommitted read)

G

VALID
CHAR(1)
NOT NULL

Whether the application plan is valid:
A An ALTER TABLE statement changed the

description of the table or base table of a view
that is referred to by the application plan. For a
CREATE INDEX statement involving data
sharing, VALID is also marked as "A".

H An ALTER TABLE statement changed the
description of the table or base table of a view
that is referred to by the application plan.

N No
Y Yes

G

OPERATIVE
CHAR(1)
NOT NULL

Whether the application plan can be allocated:
N No; an explicit BIND or REBIND is required

before the plan can be allocated
Y Yes

G

CHAR(8)
NOT NULL

Not used N

PLSIZE
INTEGER
NOT NULL

Size of the base section 45 of the plan, in bytes. G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELBOUND should be used instead.

G

45. Plans are divided into sections. The base section of the plan must be in the EDM pool during the entire time the application
program is executing. Other sections of the plan, corresponding roughly to sets of related SQL statements, are brought into the
pool as needed.

2306 SQL Reference

Column name Data type Description Use

AVGSIZE
INTEGER
NOT NULL

Average size, in bytes, of those sections45 of the plan that
contain SQL statements processed at bind time.

G

ACQUIRE
CHAR(1)
NOT NULL

When resources are acquired:
A At allocation
U At first use

G

RELEASE
CHAR(1)
NOT NULL

When resources are released:
C At commit
D At deallocation

G

CHAR(1)
NOT NULL

Not used N

CHAR(1)
NOT NULL

Not used N

CHAR(1)
NOT NULL

Not used N

EXPLAN
CHAR(1)
NOT NULL

EXPLAIN option specified for the plan; that is, whether
information on the plan's statements was added to the
owner's PLAN_TABLE table:
N No
Y Yes

G

EXPREDICATE
CHAR(1)
NOT NULL

Indicates the CURRENTDATA option when the plan was
bound or rebound:
B Data currency is not required for ambiguous

cursors. Allow blocking for ambiguous cursors.
C Data currency is required for ambiguous cursors.

Inhibit blocking for ambiguous cursors.
N Blocking is inhibited for ambiguous cursors, but

the plan was created before the CURRENTDATA
option was available.

G

BOUNDBY
VARCHAR(128)
NOT NULL WITH
DEFAULT

Primary authorization ID of the binder of the plan. G

QUALIFIER
VARCHAR(128)
NOT NULL WITH
DEFAULT

Implicit qualifier for the unqualified table, view, index,
and alias names in the static SQL statements of the plan.

G

CACHESIZE
SMALLINT
NOT NULL WITH
DEFAULT

Size, in bytes, of the cache to be acquired for the plan. A
value of zero indicates that no cache is used.

G

PLENTRIES
SMALLINT
NOT NULL WITH
DEFAULT

Number of package list entries for the plan. The negative
of that number if there are rows for the plan in
SYSIBM.SYSPACKLIST but the plan was bound in a prior
release after fall back.

G

DEFERPREP
CHAR(1)
NOT NULL WITH
DEFAULT

Whether the package was last bound with the
DEFER(PREPARE) option:
N No
Y Yes

G

Appendix. Additional information for DB2 SQL 2307

Column name Data type Description Use

CURRENTSERVER
VARCHAR(128)
NOT NULL WITH
DEFAULT

Location name specified with the CURRENTSERVER
option when the plan was last bound. Blank if none was
specified, implying that the first server is the local DB2
subsystem.

G

SYSENTRIES
SMALLINT
NOT NULL WITH
DEFAULT

Number of rows associated with the plan in
SYSIBM.SYSPLSYSTEM. The negative of that number if
such rows exist but the plan was bound in a prior release
after fall back. A negative value or zero means that all
connections are enabled.

G

DEGREE
CHAR(3)
NOT NULL WITH
DEFAULT

The DEGREE option used when the plan was last bound:
ANY DEGREE(ANY)
1 or blank

DEGREE(1). Blank if the plan was migrated.

G

SQLRULES
CHAR(1)
NOT NULL WITH
DEFAULT

The SQLRULES option used when the plan was last
bound:
D or blank

SQLRULES(DB2)
S SQLRULES(STD)
blank A migrated plan

G

DISCONNECT
CHAR(1)
NOT NULL WITH
DEFAULT

The DISCONNECT option used when the plan was last
bound:
E or blank

DISCONNECT(EXPLICIT)
A DISCONNECT(AUTOMATIC)
C DISCONNECT(CONDITIONAL)
blank A migrated plan

G

GROUP_MEMBER
VARCHAR(24)
NOT NULL WITH
DEFAULT

The DB2 data sharing member name of the DB2
subsystem that performed the most recent bind. This
column is blank if the DB2 subsystem was not in a DB2
data sharing environment when the bind was performed.

G

DYNAMICRULES
CHAR(1)
NOT NULL WITH
DEFAULT

The DYNAMICRULES option used when the plan was
last bound:
B BIND. Dynamic SQL statements are executed

with DYNAMICRULES bind behavior.
blank RUN. Dynamic SQL statements in the plan are

executed with DYNAMICRULES run behavior.

G

BOUNDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the plan was bound. G

2308 SQL Reference

Column name Data type Description Use

REOPTVAR
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether the access path is determined again at execution
time using input variable values:
A Bind option REOPT(AUTO) indicates that the

access path is determined multiple times at
execution time depending on the parameter
value.

N Bind option REOPT(NONE) indicates that the
access path is determined at bind time.

Y Bind option REOPT(ALWAYS) indicates that the
access path is determined at execution time for
SQL statements with variable values.

1 Bind option REOPT(ONCE) indicates that the
access path is determined only once at execution
time, using the first set of input variable values,
regardless of how many times the same
statement is executed.

G

KEEPDYNAMIC
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether prepared dynamic statements are to be purged
at each commit point:
N The bind option is KEEPDYNAMIC(NO).

Prepared dynamic SQL statements are destroyed
at commit or rollback.

Y The bind option is KEEPDYNAMIC(YES).
Prepared dynamic SQL statements are kept past
commit or rollback.

G

PATHSCHEMAS
VARCHAR(2048)
NOT NULL WITH
DEFAULT

SQL path specified on the BIND or REBIND command
that bound the plan. The path is used to resolve
unqualified data type, function, and stored procedure
names used in certain contexts. If the PATH bind option
was not specified, the value in the column is a zero
length string; however, DB2 uses a default SQL path of:
SYSIBM, SYSFUN, SYSPROC, plan qualifier.

G

DBPROTOCOL
CHAR(1)
NOT NULL WITH
DEFAULT 'P'

Whether remote access for SQL with three-part names is
implemented with DRDA or DB2 private protocol access:
D DRDA
P DB2 private protocol

G

FUNCTIONTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Timestamp when the function was resolved. Set by the
BIND and REBIND commands, but not by AUTOBIND.

G

OPTHINT
VARCHAR(128)
NOT NULL WITH
DEFAULT

Value of the OPTHINT bind option. Identifies rows in the
owner.PLAN_TABLE to be used as input to DB2.
Contains blanks if no rows in the owner.PLAN_TABLE
are to be used as input.

G

ENCODING_CCSID
INTEGER
NOT NULL WITH
DEFAULT

The CCSID corresponding to the encoding scheme or
CCSID as specified for the bind option ENCODING. The
Encoding Scheme specified on the bind command:
ccsid The specified or derived CCSID.
0 The default CCSID as specified on panel

DSNTIPF at installation time. Used when the
plan was bound prior to Version 7

G

Appendix. Additional information for DB2 SQL 2309

Column name Data type Description Use

IMMEDWRITE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates when writes of updated group buffer pool
dependent pages are to be done. This option is only
applicable for data sharing environments.
N Bind option IMMEDWRITE(NO) indicates

normal write activity is done.
Y Bind option IMMEDWRITE(YES) indicates that

immediate writes are done for updated group
buffer pool dependent pages.

1 Bind option IMMEDWRITE(PH1) indicates that
updated group buffer pool dependent pages are
written at or before phase 1 commit.

blank A migrated package.

G

RELBOUND
CHAR(1)
NOT NULL WITH
DEFAULT

The release when the package was bound or rebound.
blank Bound prior to Version 7
K Bound on Version 7
L Bound on Version 8

G

CHAR(1)
Not used. N

REMARKS
VARCHAR(762)
NOT NULL WITH
DEFAULT

A character string provided by the user with the
COMMENT statement.

G

CREATORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank Authorization ID
L Role

G

ROUNDING
CHAR(1)
NOT NULL WITH
DEFAULT

The ROUNDING option used when the plan was last
bound:
C ROUND_CEILING
D ROUND_DOWN
F ROUND_FLOOR
G ROUND_HALF_DOWN
E ROUND_HALF_EVEN
H ROUND_HALF_UP
U ROUND_UP
blank The plan was created in a DB2 release prior to

Version 9.

G

DATE
NOT NULL WITH
DEFAULT

N

CONCUR_ACC_RES CHAR(1)
NOT NULL

Indicates the CONCURRENTACCESSRESOLUTION
option when the package was bound or rebound:

blank Not specified

U USECURRENTLYCOMMITTED

W WAITFOROUTCOME

G

PROGAUTH CHAR(1)
NOT NULL WITH
DEFAULT 'D'

Indicates whether DB2 checks if a program is authorized
to run a plan:

D DISABLE

E ENABLE

G

2310 SQL Reference

||
|
|

|
|

||

||

|

SYSIBM.SYSPLANAUTH table
The SYSIBM.SYSPLANAUTH table records the privileges that are held by users
over application plans.

Column name Data type Description Use

GRANTOR
VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the privileges. G

GRANTEE
VARCHAR(128)
NOT NULL

Authorization ID of the user who holds the privileges.
Could also be PUBLIC for a grant to PUBLIC.

G

NAME
VARCHAR(24)
NOT NULL

Name of the application plan on which the privileges are
held.

G

CHAR(12)
NOT NULL

Internal use only I

CHAR(6)
NOT NULL

Not used N

CHAR(8)
NOT NULL

Not used N

CHAR(1)
NOT NULL

Not used N

AUTHHOWGOT
CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges
were received. This authorization level is not necessarily
the highest authorization level of the grantor.
blank Not applicable
C DBCTRL
D DBADM
E SECADM
G ACCESSCTRL
L SYSCTRL
M DBMAINT
S SYSADM

G

BINDAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can use the BIND, REBIND, or
FREE subcommands against the plan:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

EXECUTEAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can run application programs
that use the application plan:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2311

Column name Data type Description Use

GRANTEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

GRANTEETYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantee:
blank Authorization ID
L Role

G

GRANTORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank Authorization ID
L Role

G

2312 SQL Reference

SYSIBM.SYSPLANDEP table
The SYSIBM.SYSPLANDEP table records the dependencies of plans on tables,
views, aliases, synonyms, table spaces, indexes, functions, and stored procedures.

Column name Data type Description Use

BNAME
VARCHAR(128)
NOT NULL

The name of an object the plan depends on. G

BCREATOR
VARCHAR(128)
NOT NULL

If BNAME is a table space, its database. Otherwise, the
schema of BNAME. If BNAME is a role, the value is
blank.

G

BTYPE
CHAR(1)
NOT NULL

Type of object identified by BNAME:
A Alias
E INSTEAD OF trigger
F User-defined function or cast function
G Global temporary table
I Index
M Materialized query table
O Stored procedure
P Partitioned table space if it is defined as LARGE

or with the DSSIZE parm
Q Sequence object
R Table space
S Synonym
T Table
V View

G

DNAME
VARCHAR(24)
NOT NULL

Name of the plan. G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2313

SYSIBM.SYSPLSYSTEM table
The SYSIBM.SYSPLSYSTEM table contains zero or more rows for every plan. Each
row for a given plan represents one or more connections to an environment in
which the plan could be used.

Column name Data type Description Use

NAME
VARCHAR(24)
NOT NULL

Name of the plan. G

SYSTEM
VARCHAR(24)
NOT NULL

Environment. Values can be:
BATCH

TSO batch
DB2CALL

DB2 call attachment facility
CICS Customer Information Control System
DLIBATCH

DLI batch support facility
IMSBMP

IMS BMP region
IMSMPP

IMS MPP or IFP region

G

ENABLE
CHAR(1)
NOT NULL

Indicates whether the connections represented by the row
are enabled or disabled:
N Disabled
Y Enabled

G

CNAME
VARCHAR(60)
NOT NULL

Identifies the connection or connections to which the row
applies. Interpretation depends on the environment
specified by SYSTEM. Values can be:

v Blank if SYSTEM=BATCH or SYSTEM=DB2CALL

v The name of a single connection if SYSTEM has any
other value

CNAME can also be blank when SYSTEM is not equal to
BATCH or DB2CALL. When this is so, the row applies to
all connections for the indicated environment.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2314 SQL Reference

SYSIBM.SYSQUERY table
Each SYSIBM.SYSQUERY table row identifies a SQL statement. The information is
used to influence access path selection when matching statements are optimized.

Column name Data type Description Use

QUERYID
BIGINT
NOT NULL
GENERATED
BY DEFAULT
AS IDENTITY

Unique identifier for the query. G

QUERY_HASH CHAR(16)
NOT NULL
FOR BIT DATA

The hash key generated by statement text. G

SCHEMA VARCHAR(128)
NOT NULL

The default schema name for unqualified objects in the
query or blank.

If the query contains unqualified objects and access path
hints exist for the query, the access path hints are applied
only if the default schema matches the schema in the
access path hint.

G

QUERY_SEC_HASH CHAR(16)
NOT NULL
FOR BIT DATA

The hash key generated by the modified statement text. G

QUERY_HASH_
VERSION

INTEGER
NOT NULL

The version of the query hash. G

SOURCE SMALLINT
NOT NULL

The source of the row:

0 Statement-level optimization hints.

G

USERFILTER CHAR(8)
NOT NULL

Filter name that is used to group a set of queries or blank. G

CHAR(128)
NOT NULL

Internal use only. I

PLAN_VALID CHAR(1)
NOT NULL

Whether plan hints are valid:

blank No access path i specified for the statement, but
optimization parameters exist in
SYSQUERYOPTS

Y An access path is specified in SYSQUERYPLAN
for the statement. The access path is also valid if
the statement has already been executed and the
access path was used.

N A an access path is specified in
SYSQUERYPLAN, but the access path is invalid
and not used.

G

INVALID_REASON INTEGER
NOT NULL

When PLAN_VALID is N, this column contains the
reason that the access path is invalid. If PLAN_VALID is
Y or blank, this column contains -1. For descriptions of
the reason code values, see: +395 (DB2 Codes).

S

VARCHAR(128)
NOT NULL

Not used N

COLLECTION VARCHAR(128)
NOT NULL

Name of the collection of the originating query or blank. G

Appendix. Additional information for DB2 SQL 2315

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/p395.htm#p395

Column name Data type Description Use

PACKAGE VARCHAR(128)
NOT NULL

Name of the package of the originating query or blank. G

VERSION VARCHAR(128)
NOT NULL

Version of the package or blank. G

AUTHID VARCHAR(128)
NOT NULL

Authorization ID this was in effect when the query was
captured or blank.

G

BINDTIME TIMESTAMP
NOT NULL

Timestamp when the package was bound or when BIND
QUERY was run

G

RELBOUND VARCHAR(128)
NOT NULL

The release of DB2 in which the package was bound, or
blank. See Release dependency indicators for values.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELBOUND should be used instead.

G

STMTNO INTEGER
NOT NULL

The statement number in the package. -1 when not
applicable.

G

SECTNO INTEGER
NOT NULL

The section number in the package. -1 when not
applicable.

G

STMTTEXT CLOB(2M)
INLINE
LENGTH 2048

The text of the matching SQL statement. The value is
populated from the value of the QUERY_TEXT column of
the DSN_USERQUERY_TABLE table, with the following
items removed:

v Blanks including leading and trailing blanks, and
embedded blanks that are not within literal strings
between pairs of quotation mark symbols

v White space, including leading and trailing white
space, and white space that is not within a literal string
between a pair of quotation mark symbols

v SQL comments

v EXPLAIN clauses

G

QUERYNO INTEGER
NOT NULL
WITH DEFAULT '-1'

The query number. G

CLIENT_USERID VARCHAR(255) User ID of the client. G

CLIENT_
WRKSTNNAME

VARCHAR(255) Name of the client workstation. G

CLIENT_APPLNAME VARCHAR(255) Name of the client application. G

SELECTVTY_
OVERRIDE

CHAR(1) NOT NULL Whether selectivity overrides are in effect for the query:

'Y' Selectivtiy overrides are in effect

'N' Selectivity overrides are not in effect.

G

2316 SQL Reference

|
|
||

||

||

|

Column name Data type Description Use

ACCESSPATH_
HINT

CHAR(1) NOT NULL Whether access paths are specified for the matching
statements:

'Y' An access paths is specified and in effect

'N' An access path hints is specified and in effect

blank An access path might be specified. When the
value is blank you must query the
SYSIBM.SYSQUERYPLAN catalog table to
determine whether an access path is specified

G

OPTION_OVERRIDE CHAR(1) NOT NULL Whether optimization parameters are in effect for
matching statements:

'Y' Optimization parameters are not in effect.

'N' Optimization parameters are not in effect.

blank Optimization parameters might be in effect.
When the value is blank you must query the
SYSIBM.SYSQUERYOPTS catalog table to
determine whether option overrides are in effect.

G

SELECTIVITY_VALID CHAR(1) NOT NULL Whether selectivity overrides are valid:

blank No selectivity overrides exist for the statement.

'Y' Selectivity overrides exist for the query. The
overrides are valid if the statement has already
been executed and the overrides were used.

'N' Selectivity overrides exist but the overrides are
invalid and not used.

G

Related tasks:

Influencing access path selection (DB2 Performance)
Related reference:

Tables for influencing access path selection (DB2 Performance)

Appendix. Additional information for DB2 SQL 2317

|
|
||
|

||

||

||
|
|
|

|

|||
|

||

||

||
|
|
|

|

|||

||

||
|
|

||
|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_influenceaccesspaths.htm#db2z_influenceaccesspaths
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_bindquerytables.htm#db2z_bindquerytables

SYSIBM.SYSQUERY_AUX table
The SYSIBM.SYSQUERY_AUX table is an auxiliary table for the STMTTEXT
column of the SYSIBM.SYSQUERY table.

Column name Data type Description Use

STMTTEXT CLOB(2M) The full text of the query. G

2318 SQL Reference

SYSIBM.SYSQUERYOPTS table
The SYSIBM.SYSQUERYOPTS table contains optimization parameters for the
queries that are in the SYSIBM.SYSQUERY table.

Column name Data type Description Use

QUERYID
BIGINT
NOT NULL
ON DELETE
CASCADE

Unique identifier for the query. This column corresponds
to the QUERYID column in the SYSIBM.SYSQUERY table.

G

COPYID SMALLINT
NOT NULL

The version of the plan hints for the query in this row.

0 Current version of the plan hints.

1 Previous version of the plan hints used by PLAN
STABILITY

2 Original version of the plan hints used by PLAN
STABILITY

G

REOPT CHAR(1)
NOT NULL

The value of the REOPT bind option that is in effect for
the plan:

1 REOPT(ONCE)

A REOPT(AUTO)

N REOPT(NONE)

Y REOPT(ALWAYS)

blank REOPT is not specified

G

STARJOIN CHAR(1)
NOT NULL

Whether star join is enabled:

Y Star join is enabled

N Star join is disabled

blank Star join is not specified

G

MAX_PAR_DEGREE INTEGER
NOT NULL

The maximum parallel degree. This column will contain a
value between 0 and 254. If the value of the column is -1,
the maximum parallel degree is not specified.

G

DEF_CURR_DEGREE CHAR(3)
NOT NULL

Whether query parallelism is enabled:

ONE Query parallelism is disabled

ANY Query parallelism is enabled

blank Query parallelism is disabled

G

SJTABLES INTEGER
NOT NULL

The number of tables specified in a query to qualify for
star join processing. If this column contains -1, star join
processing is not specified.

G

VARCHAR(128)
NOT NULL

For IBM internal use only I

GROUP_MEMBER VARCHAR(24)
NOT NULL

The group member name to which the parameters are to
be applied. This column contains blank if the group
member name is not specified.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2319

Related tasks:

Specifying optimization parameters at the statement level (DB2 Performance)
Related reference:

Tables for influencing access path selection (DB2 Performance)

DSN_USERQUERY_TABLE (DB2 Performance)

2320 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_createzparmhint.htm#db2z_createzparmhint
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_bindquerytables.htm#db2z_bindquerytables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_dsnuserquerytable.htm#db2z_dsnuserquerytable

SYSIBM.SYSQUERYPLAN table
The SYSIBM.SYSQUERYPLAN table contains the plan hint information for the
queries in the SYSIBM.SYSQUERY table. It correlates to the SYSIBM.SYSQUERY
table by the QUERYID column. For a query, there can be up to 3 copies of plan
hints stored in the SYSIBM.SYSQUERYPLAN table, distinguished by the value of
the COPYID column.

Column name Data type Description Use

QUERYID
BIGINT
NOT NULL
ON DELETE
CASCADE

Unique identifier for the query. The value of QUERYID
corresponds to the value of the QUERYID column in the
SYSIBM.SYSQUERY column.

G

COPYID SMALLINT
NOT NULL

The version of the plan hints for the query in this row.

0 Current version of the plan hints.

1 Previous version of the plan hints used by PLAN
STABILITY

2 Original version of the plan hints used by PLAN
STABILITY

G

PLAN_VALID CHAR(1)
NOT NULL

Whether the plan hints are valid:

N The plan hints are invalid

Y The plan hints are valid

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

QBLOCKNO SMALLINT
NOT NULL

A number that identifies each query block within a query.
The value of the numbers are not in any particular order,
nor are they necessarily consecutive.

G

PLANNO SMALLINT
NOT NULL

The number of the step in which the query that is
indicated in QBLOCKNO was processed. This column
indicates the order in which the steps were executed.

G

Appendix. Additional information for DB2 SQL 2321

Column name Data type Description Use

METHOD SMALLINT
NOT NULL

A number that indicates the join method that is used for
the step:

0 The table in this step is the first table that is
accessed, a continuation of a previous table that
was accessed, or a table that is not used.

1 A nested loop join is used. For each row of the
current composite table, matching rows of a new
table are found and joined.

2 A merge scan join is used. The current composite
table and the new table are scanned in the order
of the join columns, and matching rows are
joined.

3 Sorts are needed by ORDER BY, GROUP BY,
SELECT DISTINCT, UNION, INTERSECT,
EXCEPT, a quantified predicate, or an IN
predicate. This step does not access a new table.

4 A hybrid join was used. The current composite
table is scanned in the order of the join-column
rows of the new table. The new table is accessed
using list prefetch.

G

CREATOR VARCHAR(128)
NOT NULL

The creator of the new table that is accessed in this step,
blank if METHOD is 3.

G

TNAME VARCHAR(128)
NOT NULL

The name of one of the following objects:
v Materialized query table
v Created or declared temporary table
v Materialized view
v materialized table expression

The value is blank if METHOD is 3. The column can also
contain the name of a table in the form
DSNWFQB(qblockno). DSNWFQB(qblockno) is used to
represent the intermediate result of a UNION ALL,
INTERSECT ALL, EXCEPT ALL, or an outer join that is
materialized. If a view is merged, the name of the view
does not appear. DSN_DIM_TBLX(qblockno) is used to the
represent the work file of a star join dimension table.

G

SMALLINT
NOT NULL

Values are for IBM use only. I

2322 SQL Reference

Column name Data type Description Use

ACCESSTYPE CHAR(2)
NOT NULL

The method of accessing the new table:
A Accelerated query table access.
DI By an intersection of multiple DOCID lists to

return the final DOCID list
DU By a union of multiple DOCID lists to return the

final DOCID list
DX By an XML index scan on the index that is

named in ACCESSNAME to return a DOCID list
E By direct row access using a row change

timestamp column.
H By hash overflow index (identified in

ACCESSCREATOR and ACCESSNAME)
I By an index (identified in ACCESSCREATOR

and ACCESSNAME)
IN By an index scan when the matching predicate

contains an IN predicate and the IN-list is
accessed through an in-memory table.

I1 By a one-fetch index scan
M By a multiple index scan (followed by MX, MI,

MU, or MH)
MH By the hash overflow index named in

ACCESSNAME
MI By an intersection of multiple indexes
MU By a union of multiple indexes
MX By an index scan on the index named in

ACCESSNAME. When the access method MX
follows the access method DX, DI, or DU, the
table is accessed by the DOCID index by using
the DOCID list that is returned by DX, DI, or
DU.

N
v By an index scan when the matching predicate

contains the IN keyword
v By an index scan when DB2 rewrites a query

using the IN keyword
v By hash access with the IN keyword
v By hash access when DB2 rewrites a query

using the IN keyword
NR Range list access.
P By a dynamic pair-wise index scan
R By a table space scan
RW By a work file scan of the result of a materialized

user-defined table function
V By buffers for an INSERT statement within a

SELECT
blank Not applicable to the current row

G

MATCHCOLS SMALLINT
NOT NULL

For ACCESSTYPE I, I1, N, NR, MX, or DX, the number of
index keys that are used in an index scan; otherwise, 0.

G

ACCESSCREATOR VARCHAR(128)
NOT NULL

For ACCESSTYPE I, I1, N, NR, MX, or DX, the creator of
the index; otherwise, blank.

G

ACCESSNAME VARCHAR(128)
NOT NULL

For ACCESSTYPE I, I1, H, MH, N, NR, MX, or DX, the
name of the index; for ACCESSTYPE P,
DSNPJW(mixopseqno) is the starting pair-wise join leg in
MIXOPSEQNO; otherwise, blank.

G

Appendix. Additional information for DB2 SQL 2323

Column name Data type Description Use

INDEXONLY CHAR(1)
NOT NULL

Indication of whether access to an index alone is enough
to perform the step, or Indication of whether data too
must be accessed.

Y Yes

N No

G

SORTN_UNIQ CHAR(1)
NOT NULL

Indication of whether the new table is sorted to remove
duplicate rows.

Y Yes

N No

G

SORTN_JOIN CHAR(1)
NOT NULL

Indication of whether the new table is sorted for join
method 2 or 4.

Y Yes

N No

G

SORTN_ORDERBY CHAR(1)
NOT NULL

Indication of whether the new table is sorted for ORDER
BY.

Y Yes

N No

G

SORTN_GROUPBY CHAR(1)
NOT NULL

Indication of whether the new table is sorted for GROUP
BY.

Y Yes

N No

G

SORTC_UNIQ CHAR(1)
NOT NULL

Indication of whether the composite table is sorted to
remove duplicate rows.

Y Yes

N No

G

SORTC_JOIN CHAR(1)
NOT NULL

Indication of whether the composite table is sorted for
join method 1, 2 or 4.

Y Yes

N No

G

SORTC_ORDERBY CHAR(1)
NOT NULL

Indication of whether the composite table is sorted for an
ORDER BY clause or a quantified predicate.

Y Yes

N No

G

SORTC_GROUPBY CHAR(1)
NOT NULL

Indication of whether the composite table is sorted for a
GROUP BY clause.

Y Yes

N No

G

2324 SQL Reference

Column name Data type Description Use

TSLOCKMOD CHAR(3)
NOT NULL

An indication of the mode of lock that is acquired on
either the new table, or its table space or table space
partitions. If the isolation can be determined at bind time,
the values are:
IS Intent share lock
IX Intent exclusive lock
S Share lock
U Update lock
X Exclusive lock
SIX Share with intent exclusive lock
N UR isolation; no lock
If the isolation level cannot be determined at bind time,
the lock mode is determined by the isolation level at run
time is shown by the following values.
NS For UR isolation, no lock; for CS, RS, or RR, an S

lock.
NIS For UR isolation, no lock; for CS, RS, or RR, an

IS lock.
NSS For UR isolation, no lock; for CS or RS, an IS

lock; for RR, an S lock.
SS For UR, CS, or RS isolation, an IS lock; for RR,

an S lock.

The data in this column is right justified. For example, IX
appears as a blank, followed by I, followed by X. If the
column contains a blank, then no lock is acquired.

If the access method in the ACCESSTYPE column is DX,
DI, or DU, no latches are acquired on the XML index
page and no lock is acquired on the new base table data
page or row, nor on the XML table and the corresponding
table spaces. The value of TSLOCKMODE is a blank in
this case.

G

PREFETCH CHAR(1)
NOT NULL

Indication of whether data pages are to be read in
advance by prefetch:

D Optimizer expects dynamic prefetch

S Pure sequential prefetch

L Prefetch through a page list

blank Unknown or no prefetch

G

COLUMN_FN_EVAL CHAR(1)
NOT NULL

When an SQL aggregate function is evaluated:

R While the data is being read from the table or
index

S While performing a sort to satisfy a GROUP BY
clause

blank After data retrieval and after any sorts

G

MIXOPSEQ SMALLINT
NOT NULL

The sequence number of a step in a multiple index
operation.

1, 2, ... n
For the steps of the multiple index procedure
(ACCESSTYPE is MX, MI, MU, DX, DI, or DU),
or the sequence number of range list access
(ACCESSTYPE is 'NR').

0 For any other rows.

G

Appendix. Additional information for DB2 SQL 2325

Column name Data type Description Use

ACCESS_DEGREE SMALLINT The number of parallel tasks or operations that are
activated by a query. This value is determined at bind
time; the actual number of parallel operations that are
used at execution time could be different. This column
contains 0 if a host variable is used. This column contains
the null value if the plan or package was bound using a
plan table with fewer than 43 columns. Otherwise, it can
contain null if the method that it refers to does not apply.

G

ACCESS_PGROUP_ID SMALLINT The identifier of the parallel group for accessing the new
table. A parallel group is a set of consecutive operations,
executed in parallel, that have the same number of
parallel tasks. This value is determined at bind time; it
could change at execution time.This column contains the
null value if the plan or package was bound using a plan
table with fewer than 43 columns. Otherwise, it can
contain null if the method that it refers to does not apply.

G

JOIN_DEGREE SMALLINT The number of parallel operations or tasks that are used
in joining the composite table with the new table. This
value is determined at bind time and can be 0 if a host
variable is used. The actual number of parallel operations
or tasks used at execution time could be different. This
column contains the null value if the plan or package was
bound using a plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that it refers
to does not apply.

G

JOIN_PGROUP_ID SMALLINT The identifier of the parallel group for joining the
composite table with the new table. This value is
determined at bind time; it could change at execution
time. This column contains the null value if the plan or
package was bound using a plan table with fewer than 43
columns. Otherwise, it can contain null if the method that
it refers to does not apply.

G

SORTC_PGROUP_ID SMALLINT The parallel group identifier for the parallel sort of the
composite table. This column contains the null value if
the plan or package was bound using a plan table with
fewer than 43 columns. Otherwise, it can contain null if
the method that it refers to does not apply.

G

SORTN_PGROUP_ID SMALLINT The parallel group identifier for the parallel sort of the
new table. This column contains the null value if the plan
or package was bound using a plan table with fewer than
43 columns. Otherwise, it can contain null if the method
that it refers to does not apply.

G

PARALLELISM_
MODE

CHAR(1) The kind of parallelism, if any, that is used at bind time:

I Query I/O parallelism

C Query CP parallelism
This column contains the null value if the plan or package
was bound using a plan table with fewer than 43
columns. Otherwise, it can contain null if the method that
it refers to does not apply.

G

MERGE_
JOIN_
COLS

SMALLINT The number of columns that are joined during a merge
scan join (Method=2). This column contains the null value
if the plan or package was bound using a plan table with
fewer than 43 columns. Otherwise, it can contain null if
the method that it refers to does not apply.

G

2326 SQL Reference

Column name Data type Description Use

CORRELATION_
NAME

VARCHAR(128) The correlation name of a table or view that is specified
in the statement. If no correlation name exists, then the
column is null. This column contains the null value if the
plan or package was bound using a plan table with fewer
than 43 columns. Otherwise, it can contain null if the
method that it refers to does not apply.

G

PAGE_RANGE CHAR(1)
NOT NULL
WITH DEFAULT

Indication of whether the table qualifies for page range
screening, so that plans scan only the partitions that are
needed.

Y Yes

blank No

G

JOIN_TYPE CHAR(1)
NOT NULL
WITH DEFAULT

The type of join:

F FULL OUTER JOIN

L LEFT OUTER JOIN

P Pair-wise join

S Star join

blank INNER JOIN or no join

RIGHT OUTER JOIN converts to a LEFT OUTER JOIN
when you use it, so that JOIN_TYPE contains L.

G

Appendix. Additional information for DB2 SQL 2327

Column name Data type Description Use

QBLOCK_TYPE CHAR(6)
NOT NULL
WITH DEFAULT

For each query block, an indication of the type of SQL
operation that is performed. For the outermost query, this
column identifies the statement type. Possible values
include:

SELECT
SELECT

INSERT
INSERT

UPDATE
UPDATE

MERGE
MERGE

DELETE
DELETE

SELUPD
SELECT with FOR UPDATE OF

DELCUR
DELETE WHERE CURRENT OF CURSOR

UPDCUR
UPDATE WHERE CURRENT OF CURSOR

CORSUB
Correlated subselect or fullselect

TRUNCA
TRUNCATE

NCOSUB
Noncorrelated subselect or fullselect

TABLEX
Table expression

TRIGGR
WHEN clause on CREATE TRIGGER

UNION
UNION

UNIONA
UNION ALL

INTERS
INTERSECT

INTERA
INTERSECT ALL

EXCEPT
EXCEPT

EXCEPTA
EXCEPT ALL

G

2328 SQL Reference

Column name Data type Description Use

PRIMARY_
ACCESSTYPE

CHAR(1)
NOT NULL
WITH DEFAULT

Indicates Indication of whether direct row access is
attempted first:

D DB2 tries to use direct row access with a rowid
column. If DB2 cannot use direct row access with
a rowid column at run time, it uses the access
path that is described in the ACCESSTYPE
column of PLAN_TABLE.

T The base table or result file is materialized into a
work file, and the work file is accessed via
sparse index access. If a base table is involved,
then ACCESSTYPE indicates how the base table
is accessed.

blank DB2 does not try to use direct row access by
using a rowid column or sparse index access for
a work file. The value of the ACCESSTYPE
column of PLAN_TABLE provides information
on the method of accessing the table.

G

PARENT_QBLOCKNO SMALLINT
NOT NULL

A number that indicates the QBLOCKNO of the parent
query block.

G

TABLE_TYPE CHAR(1) The type of new table:

B Buffers for SELECT from INSERT, SELECT from
UPDATE, SELECT from MERGE, or SELECT
from DELETE statement.

C Common table expression

F Table function

I The new table is generated from an IN-LIST
predicate. If the IN-LIST predicate is selected as
the matching predicate, it will be accessed as an
in-memory table.

M Materialized query table

Q Temporary intermediate result table (not
materialized). For the name of a view or nested
table expression, a value of Q indicates that the
materialization was virtual and not actual.
Materialization can be virtual when the view or
nested table expression definition contains a
UNION ALL that is not distributed.

R Recursive common table expression

S Subquery (correlated or non-correlated)

T Table

W Work file

The value of the column is null if the query uses GROUP
BY, ORDER BY, or DISTINCT, which requires an implicit
sort.

G

Appendix. Additional information for DB2 SQL 2329

Column name Data type Description Use

TABLE_ENCODE CHAR(1) The encoding scheme of the table. The possible values
are:

A ASCII

E EBCDIC

U Unicode

M The table contains multiple CCSID sets

G

TABLE_SCCSID SMALLINT
NOT NULL
WITH DEFAULT

The SBCS CCSID value of the table. If column
TABLE_ENCODE is M, the value is 0.

G

TABLE_MCCSID SMALLINT
NOT NULL
WITH DEFAULT

The mixed CCSID value of the table. If the value of the
TABLE_ENCODE column is M, the value is 0. If
MIXED=NO in the DSNHDECP module, the value is -2.

G

TABLE_DCCSID SMALLINT
NOT NULL
WITH DEFAULT

The DBCS CCSID value of the table. If the value of the
TABLE_ENCODE column is M, the value is 0. If
MIXED=NO in the DSNHDECP module, the value is -2.

G

INTEGER
NOT NULL
WITH DEFAULT

The values in this column are for IBM use only. I

CTEREF SMALLINT
NOT NULL
WITH DEFAULT

If the referenced table is a common table expression, the
value is the top-level query block number.

G

PARENT_PLANNO SMALLINT
NOT NULL

Corresponds to the plan number in the parent query
block where a correlated subquery is invoked. Or, for
non-correlated subqueries, corresponds to the plan
number in the parent query block that represents the
work file for the subquery.

G

2330 SQL Reference

Column name Data type Description Use

EXPANSION_REASON CHAR(2)
NOT NULL

This column applies to only static statements that
reference archive tables or temporal tables. For other
statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT
TEMPORAL SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable.
These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind
options.

If one of these special registers or the global variable is
set to Y and the corresponding bind option is set to YES,
DB2 implicitly adds certain syntax to the statement. This
column indicates whether the query contains this implicit
query transformation and why.

This column can have one of the following values:

A The query contains implicit query transformation
as a result of the SYSIBMADM.GET_ARCHIVE
built-in global variable.

B The query contains implicit query transformation
as a result of the CURRENT TEMPORAL
BUSINESS_TIME special register.

S The query contains implicit query transformation
as a result of the CURRENT TEMPORAL
SYSTEM_TIME special register.

SB The query contains implicit query transformation
as a result of the CURRENT TEMPORAL
SYSTEM_TIME special register and the
CURRENT TEMPORAL BUSINESS_TIME special
register.

blank The query does not contain implicit query
transformation.

Related information:

“References to built-in global variables” on page 223

“CURRENT TEMPORAL BUSINESS_TIME” on page
194

“CURRENT TEMPORAL SYSTEM_TIME” on page 196

BIND and REBIND options (DB2 Commands)

G

Related tasks:

Specifying access paths at the statement level (DB2 Performance)
Related reference:

Tables for influencing access path selection (DB2 Performance)

PLAN_TABLE (DB2 Performance)

Appendix. Additional information for DB2 SQL 2331

||
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

||
|
|

||
|
|

||
|
|

||
|
|
|
|

||
|
|

|

|
|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_createpathhint.htm#db2z_createpathhint
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_bindquerytables.htm#db2z_bindquerytables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_plantable.htm#db2z_plantable

SYSIBM.SYSQUERYPREDICATE table
The SYSIBM.SYSQUERYPREDICATE table contains information about predicates
for queries in the SYSIBM.SYSQUERY table that have been identified for extended
optimization. It correlates to the SYSIBM.SYSQUERY table by the QUERYID
column.

Column name Data type Description Use

QUERYID BIGINT Identifier of the query. S

QUERYNO INTEGER NOT NULL A number that identifies the statement that is being
explained. The origin of the value depends on the context
of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause,
which is an optional part of the SELECT, INSERT,
UPDATE, MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line
number of the SQL statement in the source
program.

When the values of QUERYNO are based on the statement
number in the source program, values that exceed 32767
are reported as 0. However, in certain rare cases, the value
is not guaranteed to be unique.

S

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query.
The value of the numbers are not in any particular order,
nor are they necessarily consecutive.

S

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only
to embedded EXPLAIN statements that are executed from
a plan or to statements that are explained when binding a
plan. A blank indicates that the column is not applicable.

S

PROGNAME VARCHAR(128) NOT
NULL

The name of the program or package containing the
statement being explained. Applies only to embedded
EXPLAIN statements and to statements explained as the
result of binding a plan or package. A blank indicates that
the column is not applicable.

S

PREDNO INTEGER NOT NULL The predicate number, a number used to identify a
predicate within a query.

S

2332 SQL Reference

|

|
|
|
|

|||||

||||

|||
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

||
|
|
|
|

|

||
|
|
|
|
|

|

||
|
|
|
|
|
|

|

|||
|
|

Column name Data type Description Use

TYPE CHAR(8) NOT NULL A string used to indicate the type or the operation of the
predicate. The possible values are:

v 'AND'

v 'OR'

v 'EQUAL'

v 'RANGE'

v 'BETWEEN'

v 'IN'

v 'LIKE'

v 'NOT LIKE'

v 'EXISTS

v 'NOTEXIST'

v 'SUBQUERY'

v 'HAVING'

v 'OTHERS'

S

LEFT_HAND_SIDE VARCHAR(128) NOT
NULL

If the LHS of the predicate is a table column (LHS_TABNO
> 0), then this column indicates the column name. Other
possible values are:

v 'VALUE'

v 'COLEXP'

v 'NONCOLEXP'

v 'CORSUB'

v 'NONCORSUB'

v 'SUBQUERY'

v 'EXPRESSION'

v Blanks

S

LEFT_HAND_PNO INTEGER NOT NULL If the LHS of the predicate is a table column (LHS_TABNO
> 0), then this column indicates the column name. Other
possible values are:

v 'VALUE'

v 'COLEXP'

v 'NONCOLEXP'

v 'CORSUB'

v 'NONCORSUB'

v 'SUBQUERY'

v 'EXPRESSION'

v Blanks

S

LHS_TABNO SMALLINT NOT
NULL

If the LHS of the predicate is a table column, then this
column indicates a number which uniquely identifies the
corresponding table reference within a query.

S

LHS_QBNO SMALLINT NOT
NULL

If the LHS of the predicate is a table column, then this
column indicates a number which uniquely identifies the
corresponding table reference within a query.

S

Appendix. Additional information for DB2 SQL 2333

||||

|||
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||
|
|
|
|

|

|

|

|

|

|

|

|

|

|||
|
|

|

|

|

|

|

|

|

|

|

||
|
|
|
|

|

||
|
|
|
|

|

Column name Data type Description Use

RIGHT_HAND_SIDE VARCHAR(128) NOT
NULL

If the RHS of the predicate is a table column (RHS_TABNO
> 0), then this column indicates the column name. Other
possible values are:

v 'VALUE'

v 'COLEXP'

v 'NONCOLEXP'

v 'CORSUB'

v 'NONCORSUB'

v 'SUBQUERY'

v 'EXPRESSION'

v Blanks

S

RIGHT_HAND_PNO INTEGER NOT NULL If the predicate is a compound predicate (AND/OR), then
this column indicates the second child predicate. However,
this column is not reliable when the predicate tree
consolidation happens. Use PARENT_PNO instead to
reconstruct the predicate tree.

S

RHS_TABNO SMALLINT NOT
NULL

If the RHS of the predicate is a table column, then this
column indicates a number which uniquely identifies the
corresponding table reference within a query.

S

RHS_QBNO SMALLINT NOT
NULL

If the RHS of the predicate is a subquery, then this column
indicates a number which uniquely identifies the
corresponding query block within a query.

S

FILTER_FACTOR FLOAT NOT NULL The estimated filter factor. S

BOOLEAN_TERM CHAR(1) NOT NULL Whether this predicate can be used to determine the truth
value of the whole WHERE clause.

S

SEARCHARG CHAR(1) NOT NULL Whether this predicate can be processed by data manager
(DM). If it is not, then the relational data service (RDS)
needs to be used to take care of it, which is more costly.

S

JOIN CHAR(1) NOT NULL Whether the predicate can be used as a simple join
predicate between two tables.

S

AFTER_JOIN CHAR(1) NOT NULL Indicates the predicate evaluation phase:

'A' After join

'D' During join

blank Not applicable

S

ADDED_PRED CHAR(1) NOT NULL Whether it is generated by transitive closure, which means
DB2 can generate additional predicates to provide more
information for access path selection, when the set of
predicates that belong to a query logically imply other
predicates.

S

REDUNDANT_PRED CHAR(1) NOT NULL Whether it is a redundant predicate, which means
evaluation of other predicates in the query already
determines the result that the predicate provides.

S

DIRECT_ACCESS CHAR(1) NOT NULL Whether the predicate is direct access, which means one
can navigate directly to the row through ROWID.

S

KEYFIELD CHAR(1) NOT NULL Whether the predicate includes the index key column of
the involved table for all applicable indexes considered by
DB2.

S

2334 SQL Reference

||||

||
|
|
|
|

|

|

|

|

|

|

|

|

|

|||
|
|
|
|

|

||
|
|
|
|

|

||
|
|
|
|

|

||||

|||
|
|

|||
|
|

|

|||
|
|

|||

||

||

||

|

|||
|
|
|
|

|

|||
|
|

|

|||
|
|

|||
|
|

|

Column name Data type Description Use

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form
of a full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a
full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a
value equivalent to a CHAR(16) representation of
the time appended by 4 zeros.

S

CATEGORY SMALLINT NOT
NULL,

IBM internal use only. S

CATEGORY_B SMALLINT NOT
NULL

IBM internal use only. S

TEXT VARCHAR(2000) NOT
NULL

The transformed predicate text; truncated if exceeds 2000
characters.

S

PRED_ENCODE CHAR(1) NOT NULL
WITH DEFAULT

IBM internal use only. S

PRED_CCSID SMALLINT NOT
NULL WITH
DEFAULT

IBM internal use only. S

PRED_MCCSID SMALLINT NOT
NULL WITH
DEFAULT

IBM internal use only. S

MARKER CHAR(1) NOT NULL
WITH DEFAULT

Whether this predicate includes host variables, parameter
markers, or special registers.

S

PARENT_PNO INTEGER NOT NULL The parent predicate number. If this predicate is a root
predicate within a query block, then this column is 0.

S

NEGATION CHAR(1) NOT NULL Whether this predicate is negated via NOT. S

LITERALS VARCHAR(128) NOT
NULL

This column indicates the literal value or literal values
separated by colon symbols.

S

CLAUSE CHAR(8) NOT NULL The clause where the predicate exists:

'HAVING '
The HAVING clause

'ON ' The ON clause

'WHERE '
The WHERE clause

SELECT
The SELECT clause

S

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data
sharing environment when EXPLAIN was executed.

S

Appendix. Additional information for DB2 SQL 2335

||||

||
|
|

|
|
|

|
|
|

|
|
|
|

|

||
|
||

||
|
||

||
|
|
|
|

||
|
||

||
|
|

||

||
|
|

||

||
|
|
|
|

|||
|
|

||||

||
|
|
|
|

|||

|
|

||

|
|

|
|

|

||
|
|
|
|

|

Column name Data type Description Use

ORIGIN CHAR(1) NOT NULL
WITH DEFAULT

Indicates the origin of the predicate.

Blank Generated by DB2

C Column mask

R Row permission

U Specified by the user

S

UNCERTAINTY FLOAT(4) NOT NULL
WITH DEFAULT

Describes the uncertainty factor of a predicate's estimated
filter factor. A bigger value indicates a higher degree of
uncertainty. Value zero indicates no uncertainty or
uncertainty not considered.

S

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken
from the same column in SYSPACKSTMT or SYSSTMT
tables and can be used to join tables to reconstruct the
access path for the statement. This column is applicable
only for static statements.

S

COLLID VARCHAR(128) NOT
NULL WITH
DEFAULT

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement
cache

DSNEXPLAINMODEYES
The row originates from an application that
specifies YES for the value of the CURRENT
EXPLAIN MODE special register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that
specifies EXPLAIN for the value of the CURRENT
EXPLAIN MODE special register.

S

VERSION VARCHAR(122) NOT
NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or
to a statement that is explained when binding a package. A
blank indicates that the column is not applicable.

S

Related tasks:

Overriding predicate selectivities at the statement level (DB2 Performance)
Related reference:

Tables for influencing access path selection (DB2 Performance)

DSN_PREDICAT_TABLE (DB2 Performance)

2336 SQL Reference

||||

||
|
|

||

||

||

||

|

||
|
|
|
|
|

|

||
|
|
|
|
|
|

|

||
|
|

|

|
|
|

|
|
|
|

|
|
|
|

|

||
|
|

|
|
|
|

|

|

|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_createselecthint.htm#db2z_createselecthint
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_bindquerytables.htm#db2z_bindquerytables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_dsnpredicattable.htm#db2z_dsnpredicattable

SYSIBM.SYSQUERYSEL table
The SYSIBM.SYSQUERYSEL table contains information about the selectivity of
predicates for queries in the SYSIBM.SYSQUERY table that have been identified for
extended optimization. It correlates to the SYSIBM.SYSQUERY table by the
QUERYID column.

Column name Data type Description Use

QUERYID BIGINT The identifier of the query. S

QUERYNO INTEGER NOT NULL A number that identifies the statement that is being
explained. The origin of the value depends on the context
of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause,
which is an optional part of the SELECT,
INSERT, UPDATE, MERGE, and DELETE
statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line
number of the SQL statement in the source
program.

When the values of QUERYNO are based on the
statement number in the source program, values that
exceed 32767 are reported as 0. However, in certain rare
cases, the value is not guaranteed to be unique.

S

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query.
The value of the numbers are not in any particular order,
nor are they necessarily consecutive.

S

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies
only to embedded EXPLAIN statements that are executed
from a plan or to statements that are explained when
binding a plan. A blank indicates that the column is not
applicable.

S

PROGNAME VARCHAR(128) NOT
NULL

The name of the program or package containing the
statement being explained. Applies only to embedded
EXPLAIN statements and to statements explained as the
result of binding a plan or package. A blank indicates that
the column is not applicable.

S

PREDNO INTEGER NOT NULL Identifies the predicate S

INSTANCE SMALLINT NOT
NULL

The selectivity instance, which is used to group related
selectivities.

S

SELECTIVITY FLOAT NOT NULL The selectivity of the predicate. S

WEIGHT FLOAT (4) NOT NULL The weight of the selectivity instance. For example, a
value of .025 means that 25% of the time when a query is
executed the predicate will have this selectivity.

S

ASSUMPTION VARCHAR(128) NOT
NULL

Indicates how the selectivity was estimated, or will be
used: One of the following values:

'NORMAL'
Estimated using the normal selectivity
assumptions.

'OVERRIDE'
To be used as input to the Optimizer and
override it's selectivity estimation.

S

Appendix. Additional information for DB2 SQL 2337

|

|
|
|
|

|||||

||||

|||
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|

||
|
|
|
|

|

||
|
|
|
|
|
|

|

||
|
|
|
|
|
|

|

||||

||
|
|
|
|

||||

|||
|
|

|

||
|
|
|

|
|
|

|
|
|

|

Column name Data type Description Use

INSERT_TIME TIMESTAMP NOT
NULL GENERATED
ALWAYS AS ROW
CHANGE
TIMESTAMP

The time when the row was inserted. S

EXPLAIN_TIME TIMESTAMP The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the
form of a full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a
full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a
value equivalent to a CHAR(16) representation of
the time appended by 4 zeros.

S

REMARKS VARCHAR(762) IBM internal use only. S

Related tasks:

Overriding predicate selectivities at the statement level (DB2 Performance)
Related reference:

Tables for influencing access path selection (DB2 Performance)

DSN_PREDICATE_SELECTIVITY table (DB2 Performance)

2338 SQL Reference

||||

||
|
|
|
|

||

|||

|
|
|

|
|
|

|
|
|
|

|

||||
|

|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_createselecthint.htm#db2z_createselecthint
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_bindquerytables.htm#db2z_bindquerytables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_dsnpredicateselectivity.htm#db2z_dsnpredicateselectivity

SYSIBM.SYSRELS table
The SYSIBM.SYSRELS table contains one row for every referential constraint.

Column name Data type Description Use

CREATOR
VARCHAR(128)
NOT NULL

The schema of the dependent table of the referential
constraint.

G

TBNAME
VARCHAR(128)
NOT NULL

Name of the dependent table of the referential constraint. G

RELNAME
VARCHAR(128)
NOT NULL

Constraint name. G

REFTBNAME
VARCHAR(128)
NOT NULL

Name of the parent table of the referential constraint. G

REFTBCREATOR
VARCHAR(128)
NOT NULL

The schema of the parent table.
G

COLCOUNT
SMALLINT
NOT NULL

Number of columns in the foreign key. G

DELETERULE
CHAR(1)
NOT NULL

Type of delete rule for the referential constraint:
A NO ACTION
C CASCADE
N SET NULL
R RESTRICT

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

RELOBID1
SMALLINT
NOT NULL WITH
DEFAULT

Internal identifier of the constraint with respect to the
database that contains the parent table.

S

RELOBID2
SMALLINT
NOT NULL WITH
DEFAULT

Internal identifier of the constraint with respect to the
database that contains the dependent table.

S

TIMESTAMP
TIMESTAMP
NOT NULL WITH
DEFAULT

Date and time the constraint was defined. If the constraint
is between catalog tables prior to DB2 Version 2 Release 3,
the value is '1985-04-01-00.00.00.000000.'.

G

IXOWNER
VARCHAR(128)
NOT NULL WITH
DEFAULT

The schema of unique non-primary index used for the
parent key. '99999999' if the enforcing index has been
dropped. Blank if the enforcing index is a primary index.

G

IXNAME
VARCHAR(128)
NOT NULL WITH
DEFAULT

Name of unique non-primary index used for a parent key.
'99999999' if the enforcing index has been dropped. Blank
if the enforcing index is a primary index.

G

Appendix. Additional information for DB2 SQL 2339

Column name Data type Description Use

ENFORCED
CHAR(1)
NOT NULL WITH
DEFAULT 'Y"

Enforced by the system or not:
Y Enforced by the system
N Not enforced by the system (trusted)

G

CHECKEXISTING-
DATA CHAR(1)

NOT NULL WITH
DEFAULT

Option for checking existing data:
I Immediately check existing data. If ENFORCED

= 'Y', this column will have a value of 'I'.
N Never check existing data. If ENFORECED = 'N',

this column will have a value of 'N'.

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for the values.

G

2340 SQL Reference

SYSIBM.SYSRESAUTH table
The SYSIBM.SYSRESAUTH table records CREATE IN and PACKADM ON
privileges for collections; USAGE privileges for distinct types; and USE privileges
for buffer pools, storage groups, and table spaces.

Column name Data type Description Use

GRANTOR
VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the privilege. G

GRANTEE
VARCHAR(128)
NOT NULL

Authorization ID of the user who holds the privilege.
Could also be PUBLIC for a grant to PUBLIC.

G

QUALIFIER
VARCHAR(128)
NOT NULL

Qualifier of the table space (the database name) if the
privilege is for a table space (OBTYPE='R'). The schema
name of the user-defined data type if the privilege is for a
distinct type (OBTYPE='D'). The schema name of the JAR
file if the privilege is for a JAR file (OBTYPE='J'). The
value is PACKADM if the privilege is for a collection
(OBTYPE='C') and the authority held is PACKADM.
Otherwise, the value is blank.

G

NAME
VARCHAR(128)
NOT NULL

Name of the buffer pool, collection, DB2 storage group,
distinct type, or table space. Could also be ALL when
USE OF ALL BUFFERPOOLS is granted.

G

CHAR(1)
NOT NULL

Internal use only I

AUTHHOWGOT
CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges
were received. This authorization level is not necessarily
the highest authorization level of the grantor.
blank Not applicable
A PACKADM (on collection *)
C DBCTRL
D DBADM
E SECADM
G ACCESSCTRL
L SYSCTRL
M DBMAINT
P PACKADM (on a specific collection)
S SYSADM
T DATAACCESS

G

OBTYPE
CHAR(1)
NOT NULL

Type of object:
B Buffer pool
C Collection
D Distinct type
R Table space
S Storage group
J JAR file (Java archive file)

G

CHAR(12)
NOT NULL

Internal use only I

CHAR(6)
NOT NULL

Not used N

Appendix. Additional information for DB2 SQL 2341

|
|
|

Column name Data type Description Use

CHAR(8)
NOT NULL

Not used N

USEAUTH
CHAR(1)
NOT NULL

Whether the privilege is held with the GRANT option:
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

The authority held is PACKADM when the OBTYPE is C
(a collection) and QUALIFIER is PACKADM. The
authority held is CREATE IN when the OBTYPE is C and
QUALIFIER is blank.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

GRANTEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

GRANTEETYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantee:
blank Authorization ID
L Role

G

GRANTORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank Authorization ID
L Role

G

2342 SQL Reference

SYSIBM.SYSROLES table
The SYSIBM.SYSROLES table contains one row for each role.

Column name Data type Description Use

NAME
VARCHAR(128)
NOT NULL

The name of the role. G

DEFINER
VARCHAR(128)
NOT NULL

The authorization ID or role that defined this role listed
in the NAME column.

G

DEFINERTYPE
CHAR(1)
NOT NULL

The type of definer:

L Role

blank Authorization ID

G

CREATEDTS
TIMESTAMP
NOT NULL

The time when the role is created. G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the role. See
Release dependency indicators for the values.

G

REMARKS
VARCHAR(762)
NOT NULL

A character string that is provided using the COMMENT
statement.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

Appendix. Additional information for DB2 SQL 2343

SYSIBM.SYSROUTINEAUTH table
The SYSIBM.SYSROUTINEAUTH table records the privileges that are held by
users on routines. (A routine can be a user-defined function, cast function, or
stored procedure.)

Column name Data type Description Use

GRANTOR
VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the privilege. G

GRANTEE
VARCHAR(128)
NOT NULL

Authorization ID of the user who holds the privilege or
the name of a plan or package that uses the privilege.
Can also be PUBLIC for a grant to PUBLIC.

G

SCHEMA
VARCHAR(128)
NOT NULL

Schema of the routine G

SPECIFICNAME
VARCHAR(128)
NOT NULL

Specific name of the routine. An asterisk (*) if the
privilege is held on all routines in the schema.

G

GRANTEDTS
TIMESTAMP
NOT NULL

Time when the GRANT statement was executed. G

ROUTINETYPE
CHAR(1)
NOT NULL

Type of routine:
F User-defined function or cast function
P Stored procedure

G

GRANTEETYPE
CHAR(1)
NOT NULL

Type of grantee:
blank An authorization ID
L Role
P An application plan or package. The grantee is a

package if COLLID is not blank.
R Internal use only

G

AUTHHOWGOT
CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges
were received. This authorization level is not necessarily
the highest authorization level of the grantor.

This field is also used to indicate that the privilege was
held on all schemas by the grantor.
blank Not applicable
1 Grantor had privilege on schema.* at time of

grant
E SECADM
G ACCESSCTRL
L SYSCTRL
S SYSADM
T DATAACCESS

G

EXECUTEAUTH
CHAR(1)
NOT NULL

Whether GRANTEE can execute the routine:
Y Privilege is held without GRANT option.
G Privilege is held with GRANT option.

G

COLLID
VARCHAR(128)
NOT NULL

If the GRANTEE is a package, its collection name.
Otherwise, the value is blank.

G

CONTOKEN
CHAR(8)
NOT NULL
FOR BIT DATA

If the GRANTEE is a package, the consistency token of
the DBRM from which the package was derived.
Otherwise, the value is blank.

G

2344 SQL Reference

Column name Data type Description Use

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

GRANTORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank Authorization ID
L Role

G

Appendix. Additional information for DB2 SQL 2345

SYSIBM.SYSROUTINES table
The SYSIBM.SYSROUTINES table contains a row for every routine. (A routine can
be a user-defined function, cast function, or stored procedure.)

Column name Data type Description Use

SCHEMA
VARCHAR(128)
NOT NULL

Schema of the routine. G

OWNER
VARCHAR(128)
NOT NULL

Owner of the routine. G

NAME
VARCHAR(128)
NOT NULL

Name of the routine. G

ROUTINETYPE
CHAR(1)
NOT NULL

Type of routine:
F User-defined function or cast function
P Stored procedure

G

CREATEDBY
VARCHAR(128)
NOT NULL

Primary authorization ID of the user who created the
routine.

G

SPECIFICNAME
VARCHAR(128)
NOT NULL

Specific name of the routine. G

ROUTINEID
INTEGER
NOT NULL

Internal identifier of the routine. S

RETURN_TYPE
INTEGER
NOT NULL

Internal identifier of the result data type of the function.
The column contains a -2 if the function is a table
function.

S

ORIGIN
CHAR(1)
NOT NULL

Origin of the routine:
E External routine or external SQL procedure
N Native SQL procedure
Q SQL function
S System-generated function
U Sourced on user-defined function or built-in

function

G

FUNCTION_TYPE
CHAR(1)
NOT NULL

Type of function:
C Aggregate function
S Scalar function
T Table function
blank For a stored procedure (ROUTINETYPE = 'P')

G

PARM_COUNT
SMALLINT
NOT NULL

Number of parameters for the routine. G

2346 SQL Reference

Column name Data type Description Use

LANGUAGE
VARCHAR(24)
NOT NULL

Implementation language of the routine:
v ASSEMBLE
v C
v COBOL
v COMPJAVA
v JAVA
v PLI
v REXX
v SQL

The value is blank if ROUTINETYPE = 'F' and ORIGIN
is not 'E' or not 'Q'.

G

COLLID
VARCHAR(128)
NOT NULL

Name of the package collection to be used when the
routine is executed. A blank value indicates the package
collection is the same as the package collection of the
program that invoked the routine.

G

SOURCESCHEMA
VARCHAR(128)
NOT NULL

If ORIGIN is 'U' and ROUTINETYPE is 'F', the schema
of the source user-defined function ('SYSIBM' for a
source built-in function). Otherwise, the value is blank.

G

SOURCESPECIFIC
VARCHAR(128)
NOT NULL

If ORIGIN is 'U' and ROUTINETYPE is 'F', the specific
name of the source user-defined function or source
built-in function name. Otherwise, the value is blank.

G

DETERMINISTIC
CHAR(1)
NOT NULL

The deterministic option of an external function or a
stored procedure:
N Indeterminate (results might differ with a given

set of input values).
Y Deterministic (results are consistent).
blank ROUTINETYPE='F' and ORIGIN is not 'E' or

not 'Q' (the routine is a function, but not an
external function or an SQL function).

G

EXTERNAL_ACTION
CHAR(1)
NOT NULL

The external action option of an external function or
SQL function:
N Function has no side effects.
E Function has external side effects so that the

number of invocations is important.
blank ORIGIN is not 'E' or 'Q' for the function

(ROUTINETYPE='F'), or it is a stored procedure
(ROUTINETYPE='P').

G

NULL_CALL
CHAR(1)
NOT NULL

The CALLED ON NOT NULL INPUT option of an
external function or stored procedure:
N The routine is not called if any parameter has a

NULL value.
Y The routine is called if any parameter has a

NULL value.
blank ROUTINETYPE='F' and ORIGIN is not 'E' (the

routine is a function, but not an external
function).

G

CAST_FUNCTION
CHAR(1)
NOT NULL

Whether the routine is a cast function:
N The routine is not a cast function.
Y The routine is a cast function.
blank ORIGIN is not 'E' for the function

(ROUTINETYPE='F'), or it is a stored procedure
(ROUTINETYPE='P').

A cast function is generated by DB2 for a CREATE
TYPE statement.

G

Appendix. Additional information for DB2 SQL 2347

Column name Data type Description Use

SCRATCHPAD
CHAR(1)
NOT NULL

The SCRATCHPAD option of an external function:
N This function does not have a SCRATCHPAD.
Y This function has a SCRATCHPAD.
blank ORIGIN is not 'E' for the function

(ROUTINETYPE='F'), or it is a stored procedure
(ROUTINETYPE='P').

G

SCRATCHPAD_LENGTH
INTEGER
NOT NULL

Length of the scratchpad if the ORIGIN is 'E' for the
function (ROUTINETYPE='F') and NO SCRATCHPAD is
not specified. Otherwise, the value is 0.

G

FINAL_CALL
CHAR(1)
NOT NULL

The FINAL CALL option of an external function:
N A final call will not be made to the function.
Y A final call will be made to the function.
blank ORIGIN is not 'E' for the function

(ROUTINETYPE='F'), or it is a stored procedure
(ROUTINETYPE='P').

G

PARALLEL
CHAR(1)
NOT NULL

The PARALLEL option of an external function:
A This function can be invoked by parallel tasks.
D This function cannot be invoked by parallel

tasks.
blank ORIGIN is not 'E' for the function

(ROUTINETYPE='F'), or it is a stored procedure
(ROUTINETYPE='P').

G

PARAMETER_STYLE
CHAR(1)
NOT NULL

The PARAMETER STYLE option of an external function
or stored procedure:
D DB2SQL. All parameters are passed to the

external function or stored procedure according
to the DB2SQL standard convention.

G GENERAL. All parameters are passed to the
stored procedure according to the GENERAL
standard convention.

N GENERAL CALL WITH NULLS. All
parameters are passed to the stored procedure
according to the GENERAL WITH NULLS
convention.

J JAVA. All parameters are passed to the function
or procedure according to the conventions for
JAVA and SQLJ specifications.

blank The column is blank if the ORIGIN is not 'E' or
if LANGUAGE is SQL.

G

FENCED
CHAR(1)
NOT NULL

Y Indicates that this routine runs separately from
the DB2 address space in a WLM managed
DB2 address space. All user-defined routines
that are not marked with Y in this column run
in the DB2 address space.

blank ORIGIN is 'Q' or ORIGIN is 'N'.

G

SQL_DATA_ACCESS
CHAR(1)
NOT NULL

The SQL statements that are allowed in an external
function, SQL function, or stored procedure:
C CONTAINS SQL - Only SQL that does not read

or modify data is allowed.
M MODIFIES SQL DATA - All SQL is allowed,

including SQL that reads or modifies data.
N NO SQL - SQL is not allowed.
R READS SQL DATA - Only SQL that reads data

is allowed.
blank Not applicable.

G

2348 SQL Reference

Column name Data type Description Use

DBINFO
CHAR(1)
NOT NULL

The DBINFO option of an external function or stored
procedure:
N No, the DBINFO parameter will not be passed

to the external function or stored procedure.
Y Yes, the DBINFO parameter will be passed to

the external function or stored procedure.
blank ORIGIN is not 'E'.

G

STAYRESIDENT
CHAR(1)
NOT NULL

The STAYRESIDENT option of the routine, which
determines whether the routine is to be deleted from
memory when the routine ends.
N The load module is to be deleted from memory

after the routine terminates.
Y The load module is to remain resident in

memory after the routine terminates.
blank ORIGIN is not 'E'.

G

ASUTIME
INTEGER
NOT NULL

Number of CPU service units permitted for any single
invocation of this routine. If ASUTIME is zero, the
number of CPU service units is unlimited. The value is
0 if ROUTINETYPE = 'F' and ORIGIN is not 'E'.

If a routine consumes more CPU service units than the
ASUTIME value allows, DB2 cancels the routine.

G

WLM_ENVIRONMENT
VARCHAR(96)
NOT NULL

Name of the WLM environment to be used to run this
routine.

When ORIGIN = 'N', this is the name of the WLM
ENVIRONMENT FOR DEBUG MODE that is to be used
when debugging a native SQL procedure.

The column is blank if ROUTINETYPE = 'F' and
ORIGIN is not 'E'. If the ROUTINETYPE = 'P', the value
might be blank. If this value is blank the stored
procedure cannot be run.

G

WLM_ENV_FOR_
NESTED CHAR(1)

NOT NULL

For nested routine calls, indicates whether the address
space of the calling stored procedure or user-defined
function is used to run the nested stored procedure or
user-defined function:
N The nested stored procedure or user-defined

function runs in an address space other than
the specified WLM environment if the calling
stored procedure or user-defined function is
not running in the specified WLM
environment. 'WLM ENVIRONMENT name'
was specified.

Y The nested stored procedure or user-defined
function runs in the environment used by the
calling stored procedure or user-defined
function. 'WLM ENVIRONMENT(name,*)' was
specified.

blank WLM_ENVIRONMENT is blank. The column
is blank if ROUTINETYPE = 'F' and ORIGIN is
not 'E'.

G

PROGRAM_TYPE
CHAR(1)
NOT NULL

Indicates whether the routine runs as a Language
Environment main routine or a subroutine:
M The routine runs as a main routine.
S The routine runs as a subroutine.
blank ORIGIN is not 'E'.

G

Appendix. Additional information for DB2 SQL 2349

Column name Data type Description Use

EXTERNAL_SECURITY
CHAR(1)
NOT NULL

Specifies the authorization ID to be used if the routine
accesses resources protected by an external security
product:
D DB2 - The authorization ID associated with the

WLM-established stored procedure address
space.

U SESSION_USER - The authorization ID of the
SQL user that invoked the routine.

C DEFINER - The authorization ID of the owner
of the routine.

blank ORIGIN is not 'E'.

G

COMMIT_ON_RETURN
CHAR(1)
NOT NULL

If ROUTINETYPE = 'P', whether the transaction is
always to be committed immediately on successful
return (non-negative SQLCODE) from this stored
procedure:
N The unit of work is to continue.
Y The unit of work is to be committed

immediately.
A The unit of work of the autonomous procedure

is committed immediately, but other work of
the calling application is not committed.

If ROUTINETYPE = 'F', the value is blank.

G

RESULT_SETS
SMALLINT
NOT NULL

If ROUTINETYPE = 'P', the maximum number of ad hoc
result sets that this stored procedure can return.

If no ad hoc result sets exist or ROUTINETYPE = 'F', the
value is zero.

G

LOBCOLUMNS
SMALLINT
NOT NULL

If ORIGIN = 'E' or 'Q', the number of LOB columns
found in the parameter list for this user-defined
function.

If no LOB columns are found in the parameter list or
ORIGIN is not 'E' or not 'Q', the value is 0.

S

CREATEDTS
TIMESTAMP
NOT NULL

Time when the CREATE statement was executed for this
routine.

G

ALTEREDTS
TIMESTAMP
NOT NULL

Time when the last ALTER statement was executed for
this routine.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

PARM1
SMALLINT
NOT NULL

Internal use only I

PARM2
SMALLINT
NOT NULL

Internal use only I

PARM3
SMALLINT
NOT NULL

Internal use only I

2350 SQL Reference

||
|
|

Column name Data type Description Use

PARM4
SMALLINT
NOT NULL

Internal use only I

PARM5
SMALLINT
NOT NULL

Internal use only I

PARM6
SMALLINT
NOT NULL

Internal use only I

PARM7
SMALLINT
NOT NULL

Internal use only I

PARM8
SMALLINT
NOT NULL

Internal use only I

PARM9
SMALLINT
NOT NULL

Internal use only I

PARM10
SMALLINT
NOT NULL

Internal use only I

PARM11
SMALLINT
NOT NULL

Internal use only I

PARM12
SMALLINT
NOT NULL

Internal use only I

PARM13
SMALLINT
NOT NULL

Internal use only I

PARM14
SMALLINT
NOT NULL

Internal use only I

PARM15
SMALLINT
NOT NULL

Internal use only I

PARM16
SMALLINT
NOT NULL

Internal use only I

PARM17
SMALLINT
NOT NULL

Internal use only I

PARM18
SMALLINT
NOT NULL

Internal use only I

PARM19
SMALLINT
NOT NULL

Internal use only I

Appendix. Additional information for DB2 SQL 2351

Column name Data type Description Use

PARM20
SMALLINT
NOT NULL

Internal use only I

PARM21
SMALLINT
NOT NULL

Internal use only I

PARM22
SMALLINT
NOT NULL

Internal use only I

PARM23
SMALLINT
NOT NULL

Internal use only I

PARM24
SMALLINT
NOT NULL

Internal use only I

PARM25
SMALLINT
NOT NULL

Internal use only I

PARM26
SMALLINT
NOT NULL

Internal use only I

PARM27
SMALLINT
NOT NULL

Internal use only I

PARM28
SMALLINT
NOT NULL

Internal use only I

PARM29
SMALLINT
NOT NULL

Internal use only I

PARM30
SMALLINT
NOT NULL

Internal use only I

IOS_PER_INVOC
FLOAT
NOT NULL WITH
DEFAULT -1

Estimated number of I/Os that required to execute the
routine. The value is -1 if the estimated number is not
known.

S

INSTS_PER_INVOC
FLOAT
NOT NULL WITH
DEFAULT -1

Estimated number of machine instructions that required
to execute the routine. The value is -1 if the estimated
number is not known.

S

INITIAL_IOS
FLOAT
NOT NULL WITH
DEFAULT -1

Estimated number of I/O's that are performed the first
time or the last time the routine is invoked. The value is
-1 if the estimated number is not known.

S

INITIAL_INSTS
FLOAT
NOT NULL WITH
DEFAULT -1

Estimated number of machine instructions that are
performed the first time or the last time the routine is
invoked. The value is -1 if the estimated number is not
known.

S

2352 SQL Reference

Column name Data type Description Use

CARDINALITY
FLOAT
NOT NULL WITH
DEFAULT -1

The predicted cardinality of the routine, -1 to trigger the
use of the default value (10,000).

S

RESULT_COLS
SMALLINT
NOT NULL
DEFAULT 1

For a table function, the number of columns in the
result table. Otherwise, the value is 1.

S

EXTERNAL_NAME
VARCHAR(762)
NOT NULL

The path/module/function that DB2 should load to
execute the routine. The column is blank if
ROUTINETYPE = 'F' and ORIGIN is not 'E'.

G

VARCHAR(150)
NOT NULL
FOR BIT DATA

Internal use only I

RUNOPTS
VARCHAR(762)
NOT NULL

The Language Environment run time options to be used
for this routine. An empty string indicates that the
installation default Language Environment run time
options are to be used. The column is blank if
ROUTINETYPE = 'F' and ORIGIN is not 'E'.

G

REMARKS
VARCHAR(762)
NOT NULL

A character string provided by the user with the
COMMENT statement.

G

JAVA_SIGNATURE
VARCHAR(3072)
NOT NULL WITH
DEFAULT

The signature of the JAR file.
blank When PARAMETER STYLE is not JAVA. The

column is also blank if ROUTINETYPE = 'F'
and ORIGIN is not 'E'.

G

CLASS
VARCHAR(384)
NOT NULL WITH
DEFAULT

The class name contained in the JAR file.
blank When PARAMETER STYLE is not JAVA. The

column is also blank if ROUTINETYPE = 'F'
and ORIGIN is not 'E'.

G

JARSCHEMA
VARCHAR(128)
NOT NULL WITH
DEFAULT

The schema of the JAR file.
blank When PARAMETER STYLE is not JAVA. The

column is also blank if ROUTINETYPE = 'F'
and ORIGIN is not 'E'.

G

JAR_ID
VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the JAR file.
blank When PARAMETER STYLE is not JAVA. The

column is also blank if ROUTINETYPE = 'F'
and ORIGIN is not 'E'.

G

SPECIAL_REGS
CHAR(1)
NOT NULL WITH
DEFAULT 'I'

The SPECIAL REGISTER option for a routine.
I INHERIT SPECIAL REGISTERS
D DEFAULT SPECIAL REGISTERS
blank ROUTINETYPE = 'F' and ORIGIN is not 'E' or

not 'Q'.

G

NUM_DEP_MQTS
SMALLINT
NOT NULL WITH
DEFAULT

Number of dependent materialized query tables. The
value is 0 if the row does not describe a user-defined
table function, or if no materialized query tables are
defined on the table function.

G

Appendix. Additional information for DB2 SQL 2353

Column name Data type Description Use

MAX_FAILURE
SMALLINT
NOT NULL WITH
DEFAULT -1

Allowable failures for this routine (0-32767). If zero is
specified, the routine will never be stopped. If no value
is specified for this routine, the default will be -1 to
indicate that the DB2 installation parameter
(STORMXAB) will be used.

G

PARAMETER_CCSID
INTEGER
NOT NULL WITH
DEFAULT

A CCSID that specifies how character, graphic, date,
time, and timestamp data types for system generated
parameters to the routine such as message tokens and
DBINFO should be passed. The value is dependent on
the encoding scheme specified implicitly or explicitly for
the PARAMETER CCSID clause defined at the system
for that encoding scheme. The following list describes
the CCSID for each encoding scheme:

ASCII If mixed data is allowed, this CCSID is for
mixed ASCII data, SBCS data uses the
corresponding SBCS CCSID, and graphic data
uses the corresponding DBCS CCSID.
Otherwise, this CCSID is for SBCS ASCII data.

EBCDIC
If mixed data is allowed, this CCSID is for
mixed EBCDIC data, SBCS data uses the
corresponding SBCS CCSID, and graphic data
uses the corresponding DBCS CCSID.
Otherwise, this is the CCSID for SBCS EBCDIC
data.

UNICODE
This CCSID is for mixed data (1208).

A value of zero means that the CCSIDs used are those
CCSIDs for the encoding scheme of other string or
datetime parameters in the parameter list or RETURNS
clause CCSID clauses, or the value in the DEF
ENCODING SCHEME on installation panel DSNTIPF.

G

VERSION
VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for a native SQL procedure
(indicated by the value 'N' in the column ORIGIN) or a
non-inline SQL scalar function (indicated by the value
'Q' in the column ORIGIN and 'N' in the column
INLINE).

A zero length string for the rows that are created prior
to Version 9 and for the rows that correspond to neither
native SQL procedures or non-inline SQL scalar
functions.

G

CONTOKEN
CHAR(8)
NOT NULL WITH
DEFAULT FOR
BIT DATA

The consistency token for the routine. The column is set
to X'20' if the value of ORIGIN is not 'N'

G

ACTIVE
CHAR(1)
NOT NULL WITH
DEFAULT

Identifies the active version of the routine:
Y The routine is the active version.
N The routine is not the active version.
blank The value of ORIGIN is not 'N' or the row was

created prior to Version 9.

G

2354 SQL Reference

Column name Data type Description Use

DEBUG_MODE
CHAR(1)
NOT NULL WITH
DEFAULT

Identifies whether or not this routine is enabled for
debugging:
1 This routine is enabled for debugging and can

be debugged in a client debug session using
the DB2 Unified Debugger.

0 This routine is not enabled for debugging.
N This routine can never be enabled for

debugging.
blank The LANGUAGE is not specified as JAVA, the

value of ORIGIN is not 'N', or the row was
created prior to Version 9.

G

TEXT_ENVID
INTEGER
NOT NULL WITH
DEFAULT

Internal identifier of the environment. The column is 0 if
the value of ORIGIN is not 'N' or if the row was created
prior to Version 9.

G

TEXT_ROWID
ROWID
NOT NULL
GENERATED
ALWAYS

ID to support LOB columns for source text.
G

TEXT
CLOB(2M)
NOT NULL WITH
DEFAULT

The source text of the CREATE statement or the ALTER
statement with the body for the routine. The column is
a zero-length string if the value of ORIGIN is not 'N' or
if the row was created prior to Version 9.

G

OWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank Authorization ID
L Role

G

PARAMETER_
VARCHARFORM

INTEGER
NOT NULL WITH
DEFAULT

A non-zero value that indicates the actual
representation, to a LANGUAGE C routine, of any
varying length string parameter that appears in the
parameter list or RETURNS clause for that routine.

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object.
Blank if created prior to Version 9. See Release
dependency indicators for all other values.

G

PACKAGEPATH
VARCHAR(4096)

The value of the PACKAGE PATH option of the
CREATE FUNCTION, CREATE PROCEDURE, ALTER
FUNCTION, or ALTER PROCEDURE statement that
created or last changed the routine. PACKAGE PATH
identifies the package path to use when the routine is
executed. A blank value indicates the package path is
the same as the package path of the program that
invoked the routine.

G

SECURE CHAR(1)
NOT NULL
WITH DEFAULT 'N'

Indicates if the routine is secured:

N The routine is not secured

Y The routine is secured

G

Appendix. Additional information for DB2 SQL 2355

Column name Data type Description Use

INLINE CHAR(1)
NOT NULL
WITH DEFAULT

Specifies if the SQL function is inline:

Y The SQL function is inline when referenced. No
package is associated with this type of routine.

N The SQL function has an associated package.

blank Not an SQL function (the ORIGIN column has
a value other than 'Q')

G

BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only I

SYSTEM_DEFINED CHAR(1)
NOT NULL
WITH DEFAULT

Identifies whether this routine is system defined:

blank This routine is not system defined

S This routine is system defined

G

2356 SQL Reference

SYSIBM.SYSROUTINESTEXT table
The SYSIBM.SYSROUTINESTEXT is an auxiliary table for the TEXT column of
SYSIBM.SYSROUTINES and is required to hold the LOB data.

Column name Data type Description Use

TEXT
CLOB(2M)
NOT NULL WITH
DEFAULT

The source text of the CREATE PROCEDURE statement
for the routine. TEXT can also hold the source text of
the ALTER PROCEDURE statement for the routine if the
routine is a native SQL procedure and the SQL
procedure body is included in the ALTER PROCEDURE
statement.

G

Appendix. Additional information for DB2 SQL 2357

SYSIBM.SYSROUTINES_OPTS table
The SYSIBM.SYSROUTINES_OPTS table Contains a row for each generated
routine, such as one created by DB2 for z/OS Procedure Processor DSNTPSMP,
that records the build options for the routine.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

SCHEMA
VARCHAR(128)
NOT NULL

Schema of the routine. G

ROUTINENAME
VARCHAR(128)
NOT NULL

Name of the routine. G

BUILDDATE
DATE
NOT NULL WITH
DEFAULT

Date the routine was built. G

BUILDTIME
TIME
NOT NULL WITH
DEFAULT

Time the routine was built. G

BUILDSTATUS
CHAR(1)
NOT NULL WITH
DEFAULT 'C'

Whether this version of the routine's options is the
current version.

G

BUILDSCHEMA
VARCHAR(128)
NOT NULL

Schema name for BUILDNAME. G

BUILDNAME
VARCHAR(128)
NOT NULL

Procedure used to create the routine. G

BUILDOWNER
VARCHAR(128)
NOT NULL

Authorization ID used to create the routine. G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

PRECOMPILE_OPTS
VARCHAR(765)
NOT NULL WITH
DEFAULT

SQL processing (precompiler or coprocessor) options
used to build the routine.

G

COMPILE_OPTS
VARCHAR(765)
NOT NULL WITH
DEFAULT

Compiler options used to build the routine. G

PRELINK_OPTS
VARCHAR(765)
NOT NULL WITH
DEFAULT

Prelink-edit options used to build the routine. G

2358 SQL Reference

Column name Data type Description Use

LINK_OPTS
VARCHAR(765)
NOT NULL WITH
DEFAULT

Link-edit options used to build the routine. G

BIND_OPTS
VARCHAR(3072)
NOT NULL WITH
DEFAULT

Bind options used to build the routine. G

SOURCEDSN
VARCHAR(765)
NOT NULL WITH
DEFAULT

Name of the source data set. G

DEBUG_MODE
CHAR(1) NOT NULL

Debugging is on or off for this object.
0 Debugging is off. Default and value on

migration are both 0.
1 Debugging is on.

G

Appendix. Additional information for DB2 SQL 2359

SYSIBM.SYSROUTINES_TREE table
The SYSIBM.SYSROUTINES_TREE table is an auxiliary table for the PTREE
column of the SYSIBM.SYSROUTINES table.

Column name Data type Description Use

PTREE BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only. I

2360 SQL Reference

SYSIBM.SYSROUTINES_SRC table
The SYSIBM.SYSROUTINES_SRC table contains source for generated routines, such
as those created by DB2 for z/OS Procedure Processor DSNTPSMP.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

SCHEMA
VARCHAR(128)
NOT NULL

Schema of the routine. G

ROUTINENAME
VARCHAR(128)
NOT NULL

Name of the routine. G

BUILDDATE
DATE
NOT NULL WITH
DEFAULT

Date the routine was built. G

BUILDTIME
TIME
NOT NULL WITH
DEFAULT

Time the routine was built. G

BUILDSTATUS
CHAR(1)
NOT NULL WITH
DEFAULT 'C'

Whether this version of the routine's source is the
current version.

G

SEQNO
INTEGER
NOT NULL

Number of the source statement piece in CREATESTMT. G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

CREATESTMT
VARCHAR(7500)
NOT NULL

Routine source statement. G

Appendix. Additional information for DB2 SQL 2361

SYSIBM.SYSSCHEMAAUTH table
The SYSIBM.SYSSCHEMAAUTH table contains one or more rows for each user
that is granted a privilege on a particular schema in the database.

Column name Data type Description Use

GRANTOR
VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the privileges
or SYSADM.

G

GRANTEE
VARCHAR(128)
NOT NULL

Authorization ID of the user or group who holds the
privileges. Can also be PUBLIC for a grant to PUBLIC.

G

SCHEMANAME
VARCHAR(128)
NOT NULL

Name of the schema or '*' for all schemas. G

AUTHHOWGOT
CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges
were received. This authorization level is not necessarily
the highest authorization level of the grantor.

This field is also used to indicate that the privilege was
held on all schemas by the grantor.
1 Grantor had privilege on all schemas at time of

grant
E SECADM
G ACCESSCTRL
L SYSCTRL
S SYSADM

G

CREATEINAUTH
CHAR(1)
NOT NULL

Indicates whether grantee holds CREATEIN privilege on
the schema:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

ALTERINAUTH
CHAR(1)
NOT NULL

Indicates whether grantee holds ALTERIN privilege on
the schema:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

DROPINAUTH
CHAR(1)
NOT NULL

Indicates whether grantee holds DROPIN privilege on the
schema:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

GRANTEDTS
TIMESTAMP
NOT NULL

Time when the GRANT statement was executed. G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

GRANTEETYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantee:
blank Authorization ID
L Role

G

2362 SQL Reference

Column name Data type Description Use

GRANTORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank Authorization ID
L Role

G

Appendix. Additional information for DB2 SQL 2363

SYSIBM.SYSSEQUENCEAUTH table
The SYSIBM.SYSSEQUENCEAUTH table records the privileges that are held by
users over sequences.

Column name Data type Description Use

GRANTOR
VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the privileges. G

GRANTEE
VARCHAR(128)
NOT NULL

Authorization ID of the user or group that holds the
privileges or the name of an application plan or package
that uses the privileges. PUBLIC for a grant to PUBLIC.

G

SCHEMA
VARCHAR(128)
NOT NULL

Schema of the sequence. G

NAME
VARCHAR(128)
NOT NULL

Name of the sequence. G

GRANTEETYPE
CHAR(1)
NOT NULL

Type of grantee:
blank An authorization ID.
L Role
P An application plan or package. The grantee is a

package if COLLID is not blank.
R Internal use only.

G

AUTHHOWGOT
CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges
were received. This authorization level is not necessarily
the highest authorization level of the grantor:
blank Not applicable
E SECADM
G ACCESSCTRL
L SYSCTRL
S SYSADM
T DATAACCESS

G

ALTERAUTH
CHAR(1)
NOT NULL

Indicates whether grantee holds ALTER privilege on the
sequence:
blank Privilege is not held.
G Privilege is held with the GRANT option.
Y Privilege is held without the GRANT option.

G

USEAUTH
CHAR(1)
NOT NULL

Indicates whether grantee holds USAGE privilege on the
sequence:
blank Privilege is not held.
G Privilege is held with the GRANT option.
Y Privilege is held without the GRANT option.

G

COLLID
VARCHAR(128)
NOT NULL

If the GRANTEE is a package, its collection name.
Otherwise, a string of length zero.

G

CONTOKEN
CHAR(8)
NOT NULL
FOR BIT DATA

If the GRANTEE is a package, the consistency token of
the DBRM from which the package was derived.
Otherwise, blank.

G

GRANTEDTS
TIMESTAMP
NOT NULL

Time when the GRANT statement was executed. G

2364 SQL Reference

Column name Data type Description Use

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

GRANTORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank Authorization ID
L Role

G

Appendix. Additional information for DB2 SQL 2365

SYSIBM.SYSSEQUENCES table
The SYSIBM.SYSSEQUENCES table contains one row for each identity column or
user-defined sequence.

Column name Data type Description Use

SCHEMA
VARCHAR(128)
NOT NULL

Schema of the alias or sequence. For an identity column,
the value of TBCREATOR from the SYSCOLUMNS entry
for the column.

G

OWNER
VARCHAR(128)
NOT NULL

Owner of the alias or sequence. For an identity column,
the value of TBCREATOR from the SYSCOLUMNS entry
for the column.

G

NAME
VARCHAR(128)
NOT NULL

Name of the alias, identity column, or sequence. The
name for an identity column is generated by DB2.

G

SEQTYPE
CHAR(1)
NOT NULL

Type of sequence object:
A Alias for a sequence
I An identity column
S A user-defined sequence
X An implicitly created DOCID column for a base

table that contains XML data.

G

SEQUENCEID
INTEGER
NOT NULL

Internal identifier of the alias, identity column, or
sequence.

G

CREATEDBY
VARCHAR(128)
NOT NULL

Primary authorization ID of the user who created the
alias, identity column, or sequence.

G

INCREMENT
DECIMAL(31,0)
NOT NULL

Increment value (positive or negative, within INTEGER
scope).

The value is 0 if the row describes an alias.

G

START
DECIMAL(31,0)
NOT NULL

Start value.

The value is 0 if the row describes an alias.

G

MAXVALUE
DECIMAL(31,0)
NOT NULL

Maximum value allowed for the identity column or
sequence.

The value is 0 if the row describes an alias.

G

MINVALUE
DECIMAL(31,0)
NOT NULL

Minimum value allowed for the identity column or
sequence.

The value is 0 if the row describes an alias.

G

CYCLE
CHAR(1)
NOT NULL

Whether cycling will occur when a boundary is reached:
N No
Y Yes, cycling will occur
blank The row describes an alias

G

CACHE
INTEGER
NOT NULL

Number of sequence values to preallocate in memory for
faster access. A value of 0 indicates that values are not to
be preallocated.

The value is 0 if the row describes an alias.

G

2366 SQL Reference

|

|

|

||

|
|

|

|

|

|

|

||

|

Column name Data type Description Use

ORDER
CHAR(1)
NOT NULL

Whether the values must be generated in order:
Y Yes
N No
R The values must be generated in pseudo-random

order for an XML document ID column that was
created when subsystem parameter
XML_RANDOMIZE_DOCID was set to YES.

blank The row describes an alias

G

DATATYPEID
INTEGER
NOT NULL

For a built-in data type, the internal ID of the built-in
type. For a distinct type, the internal ID of the distinct
type.

The value is 0 if the row describes an alias.

S

SOURCETYPEID
INTEGER
NOT NULL

For a built-in data type, 0. For a distinct type, the internal
ID of the built-in data type upon which the distinct type
is based.

The value is 0 if the row describes an alias.

S

CREATEDTS
TIMESTAMP
NOT NULL

Timestamp of the creation of the alias, identity column, or
sequence.

G

ALTEREDTS
TIMESTAMP
NOT NULL

Timestamp when the last ALTER statement was executed
for this alias, identity column, or sequence.

G

MAXASSIGNEDVAL
DECIMAL(31,0)

Last possible assigned value. Initialized to null when the
object is created. Updated each time the next chunk of n
values is cached, where n is the value for CACHE.

The value is 0 if the row describes an alias.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

REMARKS
VARCHAR(762)
NOT NULL

Character string provided by user with the COMMENT
statement. The value is blank for an identity column.

G

PRECISION
SMALLINT
NOT NULL WITH
DEFAULT

The precision defined for a sequence with a decimal or
numeric type. The value is 5 for SMALLINT, 10 for
INTEGER, or the actual precision specified by the user for
the decimal data type. The value is 0 for rows created
prior to Version 8.

The value is 0 if the row describes an alias.

G

RESTARTWITH
DECIMAL(31,0)
NULLABLE WITH
DEFAULT

The RESTART WITH value specified for a sequence
during ALTER.

The value is NULL for the following:

v There have been no ALTER with RESTART WITH

v The row describes an alias

G

Appendix. Additional information for DB2 SQL 2367

||

|

|

|
|

|

|

|

|

Column name Data type Description Use

OWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank Authorization ID
L Role

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. Blank
if created prior to Version 9. See Release dependency
indicators for all other values.

G

SEQSCHEMA VARCHAR(128)
NOT NULL WITH
DEFAULT

The schema of the target sequence. G

SEQNAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the target sequence. G

2368 SQL Reference

||
|
|

||

||
|
|

||

SYSIBM.SYSSEQUENCESDEP table
The SYSIBM.SYSSEQUENCESDEP table records the dependencies of identity
columns and sequences.

Column name Data type Description Use

BSEQUENCEID
INTEGER
NOT NULL

Internal identifier of the identity column or sequence. G

DCREATOR
VARCHAR(128)
NOT NULL

The owner of the object that is dependent on this identity
column or sequence.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

DNAME
VARCHAR(128)
NOT NULL

Name of the object that is dependent on this identity
column or sequence.

G

DCOLNAME
VARCHAR(128)
NOT NULL

Name of the identity column. Blank for SQL function
rows.

G

DTYPE
CHAR(1)
NOT NULL
WITH DEFAULT
'I'

The type of object that is dependent on this sequence:
F SQL function
I Identity column
X Implicit DOCID column that is created on a base

table with XML
blank Represents an identity column created prior to

Version 8

G

BSCHEMA
VARCHAR(128)
NOT NULL WITH
DEFAULT

The schema name of the sequence, will be a string of
length zero for an object created prior to Version 8.

G

BNAME
VARCHAR(128)
NOT NULL WITH
DEFAULT

The sequence name (generated by DB2 for an identity
column), will be a string of length zero for an object
created prior to Version 8.

G

DSCHEMA
VARCHAR(128)
NOT NULL WITH
DEFAULT

The qualifier of the object that is dependent on this
sequence, will be a string of length zero for an object
created prior to Version 8.

G

DOWNER
VARCHAR(128)
NOT NULL WITH
DEFAULT

The owner of the object that is dependent on this
sequence. This will be a string of length zero for an object
that was created prior to Version 9.

G

DOWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

The type of owner:

Blank An authorization ID

L A role

G

Appendix. Additional information for DB2 SQL 2369

SYSIBM.SYSSTATFEEDBACK table
The SYSIBM.SYSTATFEEDBACK table contains information about missing or
conflicting catalog statistics for SQL statements.

The following values control the collection of statistics feedback data in the
SYSIBM.SYSSTATFEEDBACK catalog table:
v The STATFDBK_SCOPE subsystem parameter controls whether the data is

collected, and whether it is collected only for static SQL statements, only for
dynamic SQL statements, or for both.

v The STATSINT subsystem parameter controls when and how frequently the data
is externalized.

v The STATS_FEEDBACK column of the SYSIBM.SYSTABLES catalog table
controls whether the data is collected for a particular table.

The RUSNTATS utility removes data from the SYSIBM.SYSSTATFEEDBACK
catalog table when the recommended statistics are collected.

Column name Data type Description Use

TBCREATOR VARCHAR(128) The creator of the table. S

TBNAME VARCHAR(128) The name of the table. S

IXCREATOR VARCHAR(128) The creator of the index. S

IXNAME VARCHAR(128) The name of the index. S

COLNAME VARCHAR(128) The name of the column. S

NUMCOLUMNS SMALLINT The number of columns in the column group. S

COLGROUPCOLNO VARCHAR(254) FOR
BIT DATA

A hex representation that identifies the set of columns
associated with the statistics. If the statistics are only
associated with a single column, the field contains a zero
length. Otherwise, the field is an array of SMALLINT
column numbers with a dimension equal to the value in
NUMCOLUMNS.

S

TYPE CHAR(1) The type of statistic to collect:

'C' Cardinality.

'F' Frequency.

'H' Histogram.

'I' Index.

'T' Table.

I

DBNAME VARCHAR(24) The name of the database. S

TSNAME VARCHAR(24) The name of the table space. S

2370 SQL Reference

|

|
|

|
|

|
|
|

|
|

|
|

|
|

|||||

||||

||||

||||

||||

||||

||||

||
|
|
|
|
|
|
|

|

|||

||

||

||

||

||

|

||||

||||

Column name Data type Description Use

REASON CHAR(8) The reason that the statistic was recommend:

'BASIC'
A basic statistical value for a column table or
index is missing.

'KEYCARD'
The cardinalities of index key columns are
missing.

'LOWCARD'
The cardinality of the column is a low value,
which indicates that data skew is likely.

'NULLABLE'
Distribution statistics are not available for a
nullable column.

'DEFAULT'
A predicate references a value that is probably a
default value.

'RANGEPRD'
Histogram statistics are not available for a range
predicate.

'PARALLEL'
Parallelism could be improved by uniform
partitioning of key ranges.

'CONFLICT'
Another statistic conflicts with this statistic.

'COMPFFIX'
Multi-column cardinality statistics are needed for
an index compound filter factor.

S

BLOCK_RUNSTATS CHAR(1) Whether the row is used when optimization tools collect
statistics based on the recommendations. DB2 inserts a
blank value in this column for all new rows. DB2 does
not refer to or change the value of this column. This is an
updatable column.

S

REMARKS VARCHAR(254) Free form text for extensibility. S

LASTDATE DATE The last date that this statistics recommendation was
updated by DB2.

S

Appendix. Additional information for DB2 SQL 2371

||||

|||

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

|||
|
|
|
|

|

||||

|||
|
|

|

Related tasks:

Maintaining statistics in the catalog (DB2 Performance)
Related reference:

DSN_STAT_FEEDBACK (DB2 Performance)

Statistics used for access path selection (DB2 Performance)

STATISTICS FEEDBACK field (STATFDBK_SCOPE subsystem parameter) (DB2
Installation and Migration)

REAL TIME STATS field (STATSINT subsystem parameter) (DB2 Installation
and Migration)
“SYSIBM.SYSTABLES table” on page 2396

RUNSTATS (DB2 Utilities)

2372 SQL Reference

|

|

|

|

|

|
|

|
|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_maintaincatalogstatistics.htm#db2z_maintaincatalogstatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_dsnstatfeedback.htm#db2z_dsnstatfeedback
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_statistics4accesspathselection.htm#db2z_statistics4accesspathselection
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_statfdbkscope.htm#db2z_ipf_statfdbkscope
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_statfdbkscope.htm#db2z_ipf_statfdbkscope
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_statsint.htm#db2z_dsntipo14
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_statsint.htm#db2z_dsntipo14
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_runstats.htm#db2z_utl_runstats

SYSIBM.SYSSTMT table
The SYSIBM.SYSSTMT table contains one or more rows for each SQL statement of
each DBRM.

Column name Data type Description Use

NAME
VARCHAR(24)
NOT NULL

Name of the DBRM. G

PLNAME
VARCHAR(24)
NOT NULL

Name of the application plan. G

PLCREATOR
VARCHAR(128)
NOT NULL

Authorization ID of the owner of the application plan. G

SEQNO
INTEGER
NOT NULL

Sequence number of this row with respect to a statement
of the plan. Rows in which the values of SEQNO,
STMTNO, and SECTNO are zero are for internal use. The
numbering starts with zero.

G

STMTNO
SMALLINT
NOT NULL

The statement number of the statement in the source
program. A statement number greater than 32767 is stored
as zero. If the value is zero, see STMTNOI for the
statement number. Rows in which the values of SEQNO,
STMTNO, and SECTNO are zero are for internal use.

G

SECTNO
SMALLINT
NOT NULL

The section number of the statement. Rows in which the
values of SEQNO, STMTNO, and SECTNO are zero are
for internal use.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

TEXT
VARCHAR(3800)
NOT NULL
FOR BIT DATA

Text or portion of the text of the SQL statement. S

ISOLATION
CHAR(1)
NOT NULL WITH
DEFAULT

Isolation level for the SQL statement:
R RR (repeatable read)
T RS (read stability)
S CS (cursor stability)
U UR (uncommitted read)
L RS isolation, with a lock-clause
X RR isolation, with a lock-clause
blank The WITH clause was not specified on this

statement. The isolation level is recorded in
SYSPACKAGE.ISOLATION and in
SYSPLAN.ISOLATION.

G

Appendix. Additional information for DB2 SQL 2373

Column name Data type Description Use

STATUS CHAR(1)
NOT NULL WITH
DEFAULT

Status of binding the statement:
A Distributed - statement uses DB2 private protocol

access. The statement will be parsed and
executed at the server using defaults for input
variables during access path selection.

B Distributed - statement uses DB2 private protocol
access. The statement will be parsed and
executed at the server using values for input
variables during access path selection.

C Compiled - statement was bound successfully
using defaults for input variables during access
path selection.

D Distributed - statement references a remote object
using a three-part name. DB2 will implicitly use
DRDA access either because the DBPROTOCOL
bind option was not specified (defaults to
DRDA), or the bind option
DBPROTOCOL(DRDA) was explicitly specified.
This option allows the use of three-part names
with DRDA access but it requires that the
package be bound at the target remote site.

E Explain - statement is an SQL EXPLAIN
statement. The explain is done at bind time using
defaults for input variables during access path
selection.

F Parsed - statement did not bind successfully and
VALIDATE(RUN) was used. The statement will
be rebound at execution time using values for
input variables during access path selection.

G Compiled - statement bound successfully, but
REOPT is specified. The statement will be
rebound at execution time using values for input
variables during access path selection.

H Parsed - statement is either a data definition
statement or a statement that did not bind
successfully and VALIDATE(RUN) was used.
The statement will be rebound at execution time
using defaults for input variables during access
path selection. Data manipulation statements use
defaults for input variables during access path
selection.

I Indefinite - statement is dynamic. The statement
will be bound at execution time using defaults
for input variables during access path selection.

S

2374 SQL Reference

Column name Data type Description Use

STATUS
J Indefinite - statement is dynamic. The statement

will be bound at execution time using values for
input variables during access path selection.

K Control - CALL statement.

L Bad - the statement has some allowable error.
The bind continues but the statement cannot be
executed.

M Parsed - statement references a table that is
qualified with SESSION and was not bound
because the table reference could be for a
declared temporary table that will not be defined
until the package or plan is run. The SQL
statement will be rebound at execution time
using values for input variables during access
path selection.

blank The statement is non-executable, or was bound
in a DB2 release prior to Version 5.

ACCESSPATH
CHAR(1)
NOT NULL WITH
DEFAULT

For static statements, indicates if the access path for the
statement is based on user-specified optimization hints. A
value of 'H' indicates that optimization hints were used. A
blank value indicates that the access path was determined
without the use of optimization hints, or that there is no
access path associated with the statement.

For dynamic statements, the value is blank.

G

STMTNOI
INTEGER
NOT NULL WITH
DEFAULT

If the value of STMTNOI is not zero, the column contains
the statement number of the statement in the source
program.

G

SECTNOI
INTEGER
NOT NULL WITH
DEFAULT

The section number of the statement. G

EXPLAINABLE
CHAR(1)
NOT NULL WITH
DEFAULT

Contains one of the following values:
Y Indicates that the SQL statement can be used

with the EXPLAIN function and might have
rows describing its access path in the
owner.PLAN_TABLE.

N Indicates that the SQL statement does not have
any rows describing its access path in the
owner.PLAN_TABLE.

blank Indicates that the SQL statement was bound
prior to Version 7.

G

QUERYNO
INTEGER
NOT NULL WITH
DEFAULT –1

The query number of the SQL statement in the source
program. SQL statements bound prior to Version 7 have a
default value of –1. Statements bound in Version 7 or later
use the value specified on the QUERYNO clause on
SELECT, UPDATE, INSERT, DELETE, EXPLAIN, and
DECLARE CURSOR statements. If the QUERYNO clause
is not specified, the query number is set to the statement
number.

G

Appendix. Additional information for DB2 SQL 2375

Column name Data type Description Use

PLCREATORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank Authorization ID
L Role

G

2376 SQL Reference

SYSIBM.SYSSTOGROUP table
The SYSIBM.SYSSTOGROUP table contains one row for each storage group.

Column name Data type Description Use

NAME
VARCHAR(128)
NOT NULL

Name of the storage group. G

CREATOR
VARCHAR(128)
NOT NULL

Authorization ID of the owner of the storage group. G

VCATNAME
VARCHAR(24)
NOT NULL

Name of the integrated catalog facility catalog. G

VARCHAR(24)
NOT NULL

Not used N

SPACE
INTEGER
NOT NULL

Number of kilobytes of DASD storage allocated to the
storage group as determined by the last execution of the
STOSPACE utility.

G

CHAR(5)
NOT NULL

Not used N

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

CREATEDBY
VARCHAR(128)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the
storage group.

G

STATSTIME
TIMESTAMP
NOT NULL WITH
DEFAULT

If the STOSPACE utility was executed for the storage
group, date and time when STOSPACE was last executed.

G

CREATEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the
storage group.

G

ALTEREDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER STOGROUP statement
was executed for the storage group. If no ALTER
STOGROUP statement has been applied, ALTEREDTS has
the value of CREATEDTS.

G

SPACEF
FLOAT
NOT NULL WITH
DEFAULT

Kilobytes of DASD storage for the storage group. The
value is -1 if statistics have not been gathered. This is an
updatable column.

G

DATACLAS
VARCHAR(24)
NOT NULL

Name of the SMS data class. Blank if data class is not
used.

G

Appendix. Additional information for DB2 SQL 2377

Column name Data type Description Use

MGMTCLAS
VARCHAR(24)
NOT NULL

Name of the SMS management class. Blank if
management class is not used.

G

STORCLAS
VARCHAR(24)
NOT NULL

Name of the SMS storage class. Blank if storage class is
not used.

G

CREATORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank Authorization ID
L Role

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. Blank
if created prior to Version 9. See Release dependency
indicators for all other values.

G

2378 SQL Reference

SYSIBM.SYSSTRINGS table
The SYSIBM.SYSSTRINGS table contains information about character conversion.
Each row describes a conversion from one coded character set to another.

Also refer to z/OS C/C++ Programming Guide for information on the additional
conversions that are supported.

Each row in the table must have a unique combination of values for its INCCSID,
OUTCCSID, and IBMREQD columns. Rows for which the value of IBMREQD is N
can be deleted, inserted, and updated subject to this uniqueness constraint and to
the constraints imposed by a VALIDPROC defined on the table. An inserted row
could have values for the INCCSID and OUTCCSID columns that match those of a
row for which the value of IBMREQD is Y. DB2 then uses the information in the
inserted row instead of the information in the IBM-supplied row. Rows for which
the value of IBMREQD is Y cannot be deleted, inserted, or updated. For
information about the use of inserted rows for character conversion, see DB2
Installation Guide.

DB2 has two methods for character conversions and applies them in the following
order:
1. Conversions specified by the various combinations of the INCCSID and

OUTCCSID columns in the SYSIBM.SYSSTRINGS catalog table.
2. Conversions provided by z/OS support for Unicode. For more information, see

z/OS Support for Unicode: Using Conversion Services.

If neither of these methods can be used for a particular character conversion, DB2
returns an error.

Column name Data type Description Use

INCCSID
INTEGER
NOT NULL

The source CCSID for the character conversion
represented by this row. The value of the source CCSID
must be in the range of 1 to 65533 and must not be the
same as the value for the OUTCCSID column.

G

OUTCCSID
INTEGER
NOT NULL

The target CCSID for the character conversion represented
by this row. The value of the target CCSID must be in the
range of 1 to 65533 and must not be the same as the value
for the INCCSID column.

G

TRANSTYPE
CHAR(2)
NOT NULL

Indicates the nature of the conversion. Values can be:
GG GRAPHIC to GRAPHIC
MM EBCDIC MIXED to EBCDIC MIXED
MS EBCDIC MIXED to SBCS
PM ASCII MIXED to EBCDIC MIXED
PS ASCII MIXED to SBCS
SM SBCS to EBCDIC MIXED
SS SBCS to SBCS
MP EBCDIC MIXED to ASCII MIXED
PP ASCII MIXED to ASCII MIXED
SP SBCS to ASCII MIXED

G

ERRORBYTE
CHAR(1)
FOR BIT DATA
(Nulls are allowed)

The byte used in the conversion table as an error byte.
Any non-null value that is specified for the ERRORBYTE
column must not be the same as the value that is
specified for the SUBBYTE column.

Null indicates the absence of an error byte.

S

Appendix. Additional information for DB2 SQL 2379

Column name Data type Description Use

SUBBYTE
CHAR(1)
FOR BIT DATA
(Nulls are allowed)

The byte used in the conversion table as a substitution
character. Any non-null value that is specified for the
SUBBYTE column must not be the same as the value that
is specified for the ERRORBYTE column.

Null indicates the absence of a substitution character.

S

TRANSPROC
VARCHAR(24)
NOT NULL WITH
DEFAULT

The name of a module or blanks. A nonblank value must
conform to the rules for z/OS program names.

If IBMREQD is 'N', a nonblank value is the name of a
conversion procedure provided by the user. The first five
characters of the name of a user-provided conversion
procedure must not be 'DSNXV'; these characters are used
to distinguish user-provided conversion procedures from
DB2 modules that contain DBCS conversion tables.

If IBMREQD is 'Y', a nonblank value is the name of a DB2
module that contains DBCS conversion tables.

G

2380 SQL Reference

Column name Data type Description Use

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape.

Value Meaning

B Version 1R3 dependency indicator, not from the
machine-readable material (MRM) tape

C Version 2R1 dependency indicator, not from
MRM tape

D Version 2R2 dependency indicator, not from
MRM tape

E Version 2R3 dependency indicator, not from
MRM tape

F Version 3R1 dependency indicator, not from
MRM tape

G Version 4 dependency indicator, not from MRM
tape

H Version 5 dependency indicator, not from MRM
tape

I Version 6 dependency indicator, not from MRM
tape

J Version 6 dependency indicator, not from MRM
tape

K Version 7 dependency indicator, not from MRM
tape

L Version 8 dependency indicator, not from MRM
tape

M Version 9 dependency indicator, not from MRM
tape

O Version 10 dependency indicator, not from MRM
tape

N Not from MRM tape, no dependency

The value in this field is not a reliable indicator of release
dependencies.

G

TRANSTAB
VARCHAR(256)
FOR BIT DATA
NOT NULL WITH
DEFAULT

Either a 256-byte conversion table or an empty (0 length)
string.

S

Appendix. Additional information for DB2 SQL 2381

SYSIBM.SYSSYNONYMS table
The SYSIBM.SYSSYNONYMS table contains one row for each synonym of a table
or view.

Column name Data type Description Use

NAME
VARCHAR(128)
NOT NULL

Synonym for the table or view. G

CREATOR
VARCHAR(128)
NOT NULL

Authorization ID of the owner of the synonym. G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table or view. G

TBCREATOR
VARCHAR(128)
NOT NULL

The schema of the table or view.
G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

CREATEDBY
VARCHAR(128)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the
synonym.

G

CREATEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the
synonym. The value is '0001-01.01.00.00.00.000000' for
synonyms created in a DB2 release prior to Version 5.

G

CREATORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank Authorization ID
L Role

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. Blank
if created prior to Version 9. See Release dependency
indicators for all other values.

G

2382 SQL Reference

SYSIBM.SYSTABAUTH table
The SYSIBM.SYSTABAUTH table records the privileges that users hold on tables
and views.

Column name Data type Description Use

GRANTOR
VARCHAR(128)
NOT NULL

Authorization ID or role of the user who granted the
privileges. Could also be PUBLIC.

G

GRANTEE
VARCHAR(128)
NOT NULL

Authorization ID or role of the user who holds the
privileges or the name of an application plan or package
that uses the privileges. PUBLIC for a grant to PUBLIC.

G

GRANTEETYPE
CHAR(1)
NOT NULL

Type of grantee:
blank An authorization ID
L Role
P An application plan or a package. The grantee is

a package if COLLID is not blank.

G

DBNAME
VARCHAR(24)
NOT NULL

If the privileges were received from a user with DBADM,
DBCTRL, or DBMAINT authority, DBNAME is the name
of the database on which the GRANTOR has that
authority. Otherwise, DBNAME is blank.

G

SCREATOR
VARCHAR(128)
NOT NULL

If the row of SYSIBM.SYSTABAUTH was created as a
result of a CREATE VIEW statement, SCREATOR is the
schema of a table or view referred to in the CREATE
VIEW statement. Otherwise, SCREATOR is the same as
TCREATOR.

G

STNAME
VARCHAR(128)
NOT NULL

If the row of SYSIBM.SYSTABAUTH was created as a
result of a CREATE TABLE statement or a materialized
query table, STNAME is the name of a table or view
referred to in the fullselect of the CREATE TABLE
statement.

G

TCREATOR
VARCHAR(128)
NOT NULL

The schema of the table or view.
G

TTNAME
VARCHAR(128)
NOT NULL

Name of the table or view. G

AUTHHOWGOT
CHAR(1)
NOT NULL
WITH DEFAULT

Authorization level of the user from whom the privileges
were received. This authorization level is not necessarily
the highest authorization level of the grantor.
blank Not applicable
B System DBADM
C DBCTRL
D DBADM
E SECADM
G ACCESSCTRL
K SQLADM
L SYSCTRL
M DBMAINT
S SYSADM
T DATAACCESS

G

46. PUBLIC followed by an asterisk (PUBLIC*) denotes PUBLIC AT ALL LOCATIONS.

Appendix. Additional information for DB2 SQL 2383

Column name Data type Description Use

CHAR(12)
NOT NULL

Internal use only I

CHAR(6)
NOT NULL

Not used N

CHAR(8)
NOT NULL

Not used N

UPDATECOLS
CHAR(1)
NOT NULL

The value of this column is blank if the value of
UPDATEAUTH applies uniformly to all columns of the
table or view. The value is an asterisk (*) if the value of
UPDATEAUTH applies to some columns but not to
others. In this case, rows will exist in
SYSIBM.SYSCOLAUTH with matching timestamps and
PRIVILEGE = blank. These rows list the columns on
which update privileges have been granted.

G

ALTERAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can alter the table:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

DELETEAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can delete rows from the table or
view:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

INDEXAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can create indexes on the table:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

INSERTAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can insert rows into the table or
view:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

SELECTAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can select rows from the table or
view:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

UPDATEAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can update rows of the table or
view:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2384 SQL Reference

Column name Data type Description Use

VARCHAR(128)
NOT NULL WITH
DEFAULT

Not used N

VARCHAR(128)
NOT NULL WITH
DEFAULT

Not used N

COLLID
VARCHAR(128)
NOT NULL WITH
DEFAULT

If the GRANTEE is a package, its collection name.
Otherwise, the value is blank.

G

CONTOKEN
CHAR(8)
NOT NULL WITH
DEFAULT
FOR BIT DATA

If the GRANTEE is a package, the consistency token of
the DBRM from which the package was derived.
Otherwise, the value is blank.

S

CHAR(1)
NOT NULL WITH
DEFAULT

Not used N

REFERENCESAUTH
CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can create or drop referential
constraints in which the table is a parent.
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege held without the GRANT option

G

REFCOLS
CHAR(1)
NOT NULL WITH
DEFAULT

The value of this column is blank if the value of
REFERENCESAUTH applies uniformly to all columns of
the table. The value is an asterisk(*) if the value of
REFERENCESAUTH applies to some columns but not to
others. In this case, rows will exist in
SYSIBM.SYSCOLAUTH with PRIVILEGE = R and
matching timestamps that list the columns on which
reference privileges have been granted.

G

GRANTEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

TRIGGERAUTH
CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can create triggers in which the
table is named as the subject table:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

GRANTORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank Authorization ID
L Role

G

Appendix. Additional information for DB2 SQL 2385

SYSIBM.SYSTABCONST table
The SYSIBM.SYSTABCONST table contains one row for each unique constraint
(primary key or unique key) created in DB2 Version 7 or later.

Column name Data type Description Use

CONSTNAME
VARCHAR(128)
NOT NULL

Name of the constraint. G

TBCREATOR
VARCHAR(128)
NOT NULL

The schema of the table on which the constraint is
defined.

G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table on which the constraint is defined. G

CREATOR
VARCHAR(128)
NOT NULL

Authorization ID under which the constraint was created. G

TYPE
CHAR(1)
NOT NULL

Type of constraint:
P Primary key
U Unique key

G

IXOWNER
VARCHAR(128)
NOT NULL

The schema of the index enforcing the constraint or blank
if index has not been created yet.

G

IXNAME
VARCHAR(128)
NOT NULL

Name of the index enforcing the constraint or blank if
index has not been created yet.

G

CREATEDTS
TIMESTAMP
NOT NULL

Time when the statement to create the constraint was
executed.

G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

COLCOUNT
SMALLINT
NOT NULL

Number of columns in the constraint. G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. Blank
if created prior to Version 9. See Release dependency
indicators for all other values.

G

2386 SQL Reference

SYSIBM.SYSTABLEPART table
The SYSIBM.SYSTABLEPART table contains one row for each nonpartitioned table
space and one row for each partition of a partitioned table space.

Column name Data type Description Use

PARTITION
SMALLINT
NOT NULL

Partition number; 0 if table space is not partitioned. G

TSNAME
VARCHAR(24)
NOT NULL

Name of the table space. G

DBNAME
VARCHAR(24)
NOT NULL

Name of the database that contains the table space. G

IXNAME
VARCHAR(128)
NOT NULL

Name of the partitioning index. This column is blank
unless this is a table that uses index-controlled
partitioning.

G

IXCREATOR
VARCHAR(128)
NOT NULL

The schema of the partitioning index. This column is
blank unless this is a table that uses index-controlled
partitioning.

G

PQTY
INTEGER
NOT NULL

For user-managed data sets, the value is the primary
space allocation in units of 4 KB storage blocks or -1.

PQTY is based on a value of PRIQTY in the appropriate
CREATE or ALTER TABLESPACE statement. Unlike
PQTY, however, PRIQTY asks for space in 1 KB units.

A value of -1 indicates that either of the following cases is
true:

v PRIQTY was not specified for a CREATE TABLESPACE
statement or for any subsequent ALTER TABLESPACE
statements.

v -1 was the most recently specified value for PRIQTY,
either on the CREATE TABLESPACE statement or a
subsequent ALTER TABLESPACE statement.

G

SQTY
SMALLINT
NOT NULL

For user-managed data sets, the value is the secondary
space allocation in units of 4 KB storage blocks or -1.

SQTY is based on a value of SECQTY in the appropriate
CREATE or ALTER TABLESPACE statement. Unlike
SQTY, however, SECQTY asks for space in 1 KB units.

A value of -1 indicates that either of the following cases is
true:

v SECQTY was not specified for a CREATE TABLESPACE
statement or for any subsequent ALTER TABLESPACE
statements.

v -1 was the most recently specified value for SECQTY,
either on the CREATE TABLESPACE statement or a
subsequent ALTER TABLESPACE statement.

If the value does not fit into the column, the value of the
column is 32767. See the description of column SECQTYI.

G

STORTYPE
CHAR(1)
NOT NULL

Type of storage allocation:
E Explicit (storage group not used)
I Implicit (storage group used)

G

Appendix. Additional information for DB2 SQL 2387

Column name Data type Description Use

STORNAME
VARCHAR(128)
NOT NULL

Name of storage group used for space allocation. Blank if
storage group not usedor for the catalog table spaces.

G

VCATNAME
VARCHAR(24)
NOT NULL

Name of integrated catalog facility catalog used for space
allocation.

G

CARD
INTEGER
NOT NULL

Number of rows in the table space or partition or, if the
table space is a LOB table space, the number of LOBs in
the table space. The value is '2 147 483 647' if the number
of rows is greater than or equal to '2 147 483 647'. The
value is -1 if statistics have not been gathered.

G

FARINDREF
INTEGER
NOT NULL

Number of rows that have been relocated far from their
original page. The value is -1 if statistics have not been
gathered. Not applicable if the table space is a LOB table
space.

S

NEARINDREF
INTEGER
NOT NULL

Number of rows that have been relocated near their
original page. The value is -1 if statistics have not been
gathered. Not applicable if the table space is a LOB table
space.

S

PERCACTIVE
SMALLINT
NOT NULL

Percentage of space occupied by rows of data from active
tables. The value is -1 if statistics have not been gathered.
The value is -2 if the table space is a LOB table space.

This value is not applicable for understanding data
distribution in tables that are organized for hash access.

S

PERCDROP
SMALLINT
NOT NULL

Percentage of space occupied by rows of dropped tables.
The value is -1 if statistics have not been gathered. The
value is 0 for segmented table spaces. Not applicable if
the table is an auxiliary table.

S

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

LIMITKEY
VARCHAR(765)
NOT NULL

The high value of the partition in external format. If the
table space was converted from index-controlled
partitioning to table-controlled partitioning, the value is
the highest possible value for an ascending key, or the
lowest possible value for a descending key. If the table
space is not partitioned, the value is an empty string.

Beginning in Version 11, date and time values in the
LIMITKEY field are delimited by single quotation marks
(for example, '2001-01-01'). However, values that were
added by previous versions of DB2 are not delimited.
Therefore, this column can contain a mixture of delimited
and non-delimited values.

G

FREEPAGE
SMALLINT
NOT NULL

Number of pages loaded before a page is left as free
space.

G

PCTFREE
SMALLINT
NOT NULL

Percentage of each page left as free space. G

2388 SQL Reference

|
|
|
|
|
|

Column name Data type Description Use

CHECKFLAG
CHAR(1)
NOT NULL WITH
DEFAULT

blank The table space is not a partition, or does not
contain rows that might violate referential
constraints, check constraints, or both.

C The table space partition is in a check pending
status and there are rows in the table that can
violate referential constraints, check constraints,
or both.

D The inline length of the LOB column that is
associated with this LOB table space was
decremented when the inline length was altered.

I The inline length of the LOB column that is
associated with this LOB table space was
incremented when the inline length was altered.

G

CHAR(4)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Not used N

SPACE
INTEGER
NOT NULL WITH
DEFAULT

Number of kilobytes of DASD storage allocated to the
table space partition, as determined by the last execution
of the STOSPACE utility or RUNSTATS utility.

0 The STOSPACE or RUNSTATS utility has not
been run.

-1 The table space was defined with the DEFINE
NO clause, which defers the physical creation of
the data sets until data is first inserted into one
of the partitions, and data has yet to be inserted.

non-zero or non-negative value
An auxiliary table in the LOB table space.

The value is if The value is updated by STOSPACE if the
table space is related to a storage group. The value is
updated by RUNSTATS if the utility is executed as
RUNSTATS TABLESPACE with UPDATE(ALL) or
UPDATE(SPACE).

G

COMPRESS
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the following:

v For a table space partition, whether the COMPRESS
attribute for the partition is YES.

v For a nonpartitioned table space, whether the
COMPRESS attribute is YES for the table space.

Values for the column can be:
Y Compression is defined for the table space
blank No compression

G

Appendix. Additional information for DB2 SQL 2389

Column name Data type Description Use

PAGESAVE
SMALLINT
NOT NULL WITH
DEFAULT

Percentage of pages saved in the table space or partition
as a result of defining the table space with COMPRESS
YES. For example, a value of 25 indicates a savings of 25
percent, so that the pages required are only 75 percent of
what would be required without data compression. The
calculation includes overhead bytes for each row, the
bytes required for dictionary, and the bytes required for
the current FREEPAGE and PCTFREE specification for the
table space or partition. This calculation is based on an
average row length, and the result varies depending on
the actual lengths of the rows. The value is 0 if there are
no savings from using data compression, or if statistics
have not been gathered. The value can be negative, if for
example, data compression causes an increase in the
number of pages in the data set.

S

STATSTIME
TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics. The default value is '0001-01-01.00.00.00.000000'.

G

GBPCACHE
CHAR(1)
NOT NULL WITH
DEFAULT

Group buffer pool cache option specified for this table
space or table space partition.
A Changed and unchanged pages are cached in the

group buffer pool.
N No data is cached in the group buffer pool.
S Only changed system pages, such as space map

pages that do not contain actual data values, are
cached in the group buffer pool.

blank Only changed pages are cached in the group
buffer pool.

G

CHECKRID5B
CHAR(5)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Blank if the table or partition is not in a check pending
status (CHECKFLAG is blank), or if the table space is not
partitioned. Otherwise, the RID of the first row of the
table space partition that can violate referential
constraints, check constraints, or both; or the value is
X'0000000000', indicating that any row can violate
referential constraints.

S

TRACKMOD
CHAR(1)
NOT NULL WITH
DEFAULT

Whether to track the page modifications in the space map
pages:
N No
blank Yes

G

EPOCH
INTEGER
NOT NULL WITH
DEFAULT

A number that increments whenever a utility operation
that changes the location of rows in a table occurs.

G

SECQTYI
INTEGER
NOT NULL WITH
DEFAULT

Secondary space allocation in units of 4KB storage. For
user-managed data sets, the value is the secondary space
allocation in units of 4KB blocks.

G

CARDF
FLOAT
NOT NULL WITH
DEFAULT -1

Number of rows in the table space or partition, or if the
table space is a LOB table space, the number of LOBs in
the table space. The value is -1 if statistics have not been
gathered.

G

2390 SQL Reference

Column name Data type Description Use

IPREFIX
CHAR(1)
NOT NULL WITH
DEFAULT 'I'

The first character of the instance qualifier for the data set
name for the table space or partition. 'I' or 'J' are the only
valid characters for this field. The default is 'I'.

G

ALTEREDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER TABLESPACE
statement was executed for the table space or partition. If
no ALTER TABLESPACE statement has been applied, the
value is '0001-01-01.00.00.00.000000'.

G

SPACEF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Kilobytes of DASD storage. The value is -1 if statistics
have not been gathered. The value might be non-zero for
an auxiliary table in the LOB table space. This is an
updatable column.

G

DSNUM
INTEGER
NOT NULL WITH
DEFAULT -1

Number of data sets. The value is -1 if statistics have not
been gathered. This is an updatable column.

G

EXTENTS
INTEGER
NOT NULL WITH
DEFAULT -1

Number of data set extents. The value is -1 if statistics
have not been gathered. This is an updatable column. This
value is only for the last DSNUM for the object.

G

LOGICAL_PART
SMALLINT
NOT NULL WITH
DEFAULT

The logical partition (logical ascending or descending
order) for table spaces created with either table-controlled
partitioning or index-controlled partitioning. The physical
partition number is kept in column PART and is zero for
partitioned table spaces created prior to Version 8 and for
nonpartitioned table spaces.

G

LIMITKEY_
INTERNAL VARCHAR(512)

NOT NULL WITH
DEFAULT
FOR BIT DATA

The highest value of the limit key of the partition in an
internal format. If the uses index-controlled partitioning
instead of table-controlled partitioning or the table is not
partitioned, the value is an empty string. If the table space
was converted from index-controlled partitioning to
table-controlled partitioning, the value is the highest
possible value for an ascending key, or the lowest possible
value for a descending key. If any column of the key has a
field procedure, the internal format is the encoded form of
the value.

G

OLDEST_VERSION
SMALLINT
NOT NULL WITH
DEFAULT

The version number of the oldest format of data in the
table part and any image copies at the part level.

G

CREATEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the partition was created. G

AVGROWLEN
INTEGER
NOT NULL WITH
DEFAULT -1

Average length of rows for the tables in the table space or
part. If the table space or part is compressed, the value is
the compressed row length. If the table space or part is
not compressed, the value is the uncompressed row
length. The value is -1 if statistics have not been gathered.

G

FORMAT
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the format of the rows in the table space or
partition:
R Indicates reordered row format
blank Indicates basic row format or a LOB table space

G

Appendix. Additional information for DB2 SQL 2391

Column name Data type Description Use

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. Blank
if created prior to Version 9. See Release dependency
indicators for all other values.

G

REORG_LR_TS
TIMESTAMP
NOT NULL WITH
DEFAULT

The time when the REORG or LOAD REPLACE utility
last occurred. The default value is '0001-01-
01.00.00.00.000000'.

G

HASHSPACE
BIGINT
NOT NULL WITH
DEFAULT

For partition-by-growth table spaces this is zero. For
range-partitioned universal table spaces, this is the
amount of space, in KB, specified at the partition level to
override the space specification at the table level. If no
override is provided it will be the same as the value of
HASHSPACE in the SYSIBM.SYSTABLEPSACE catalog
table.

G

HASHDATAPAGES
BIGINT
NOT NULL WITH
DEFAULT

For partition-by-growth table spaces, the value is zero. For
range-partitioned universal table spaces, this is the
number of hash data pages that correspond to the value
of the HASHSPACE column for each partition. The value
is 0 for table spaces which have been changed to use hash
access but have not been reorganized.

G

RBA_FORMAT CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the format of the RBA/LRSN.

B Basic, 6-byte RBA/LRSN format.

E Extended, 10-byte RBA/LRSN format.

U Undefined. DEFINE NO was specified when
creating the table space, and the table space is
not an XML table space with XML versions.

blank For migrated objects.

G

PCTFREE_UPD SMALLINT NOT
NULL WITH
DEFAULT

The percentage of free space that is reserved for updates
to variable length records, as defined when the object as
created or altered.

G

PCTFREE_UPD_CALC SMALLINT NOT
NULL WITH
DEFAULT

The percentage of free space that is reserved for updates
to variable length records, calculated by DB2 or utilities.

G

2392 SQL Reference

||
|
|

|

||

||

||
|
|

||

|

||
|
|

|
|
|

|

||
|
|

|
|
|

SYSIBM.SYSTABLEPART_HIST table
The SYSIBM.SYSTABLEPART_HIST table contains rows from SYSTABLEPART.

Rows are added or changed in this table when RUNSTATS collects history
statistics. Rows in this table can also be inserted, updated, and deleted.

Column name Data type Description Use

PARTITION
SMALLINT
NOT NULL

Partition number. 0 if table space is not partitioned. G

TSNAME
VARCHAR(24)
NOT NULL

Name of the table space. G

DBNAME
VARCHAR(24)
NOT NULL

Name of the database that contains the table space. G

PQTY
INTEGER
NOT NULL

For user-managed data sets, the value is the primary
space allocation in units of 4 KB storage blocks or -1.

For user-specified values of PRIQTY other than -1, the
value is set to the primary space allocation only if
RUNSTATS TABLESPACE with UPDATE(ALL) or
UPDATE(SPACE) is executed; otherwise, the value is zero.
PQTY is based on a value of PRIQTY in the appropriate
CREATE or ALTER TABLESPACE statement. Unlike
PQTY, however, PRIQTY asks for space in 1 KB units.

A value of -1 indicates that either of the following cases is
true:

v PRIQTY was not specified for a CREATE TABLESPACE
statement or for any subsequent ALTER TABLESPACE
statements.

v -1 was the most recently specified value for PRIQTY,
either on the CREATE TABLESPACE statement or a
subsequent ALTER TABLESPACE statement.

If a storage group is not used, the value is 0.

G

Appendix. Additional information for DB2 SQL 2393

Column name Data type Description Use

SECQTYI
INTEGER
NOT NULL

For user-managed data sets, the value is the secondary
space allocation in units of 4 KB storage blocks or -1.

For user-specified values of SECQTY other than -1, the
value is set to the secondary space allocation only if
RUNSTATS TABLESPACE with UPDATE(ALL) or
UPDATE(SPACE) is executed; otherwise, the value is zero.
SQTY is based on a value of SECQTY in the appropriate
CREATE or ALTER TABLESPACE statement. Unlike
SQTY, however, SECQTY asks for space in 1 KB units.

A value of -1 indicates that either of the following cases is
true:

v SECQTY was not specified for a CREATE
TABLESPACE statement or for any subsequent ALTER
TABLESPACE statements.

v -1 was the most recently specified value for SECQTY,
either on the CREATE TABLESPACE statement or a
subsequent ALTER TABLESPACE statement.

If a storage group is not used, the value is 0.

G

FARINDREF
INTEGER
NOT NULL WITH
DEFAULT -1

Number of rows that have been relocated far from their
original page. The value is -1 if statistics have not been
gathered. Not applicable if the table space is a LOB table
space.

S

NEARINDREF
INTEGER
NOT NULL WITH
DEFAULT -1

Number of rows that have been relocated near their
original page. The value is -1 if statistics have not been
gathered. Not applicable if the table space is a LOB table
space.

S

PERCACTIVE
SMALLINT
NOT NULL WITH
DEFAULT -1

Percentage of space occupied by rows of data from active
tables. The value is -1 if statistics have not been gathered.
The value is -2 if the table space is a LOB table space.

S

PERCDROP
SMALLINT
NOT NULL WITH
DEFAULT -1

Percentage of space occupied by rows of dropped tables.
The value is -1 if statistics have not been gathered. The
value is 0 for segmented table spaces. Not applicable if
the table is an auxiliary table.

S

SPACEF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of kilobytes of DASD storage allocated to the
table space partition. The value is -1 if statistics have not
been gathered.

G

2394 SQL Reference

Column name Data type Description Use

PAGESAVE
SMALLINT
NOT NULL

Percentage of pages saved in the table space or partition
as a result of defining the table space with COMPRESS
YES. For example, a value of 25 indicates a savings of 25
percent, so that the pages required are only 75 percent of
what would be required without data compression.

The calculation includes overhead bytes for each row, the
bytes required for dictionary, and the bytes required for
the current FREEPAGE and PCTFREE specification for the
table space or partition. This calculation is based on an
average row length, and the result varies depending on
the actual lengths of the rows.

The value is 0 if there are no savings from using data
compression, or if statistics have not been gathered. The
value can be negative, if for example, data compression
causes an increase in the number of pages in the data set.

S

STATSTIME
TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics. The default value is '0001-01-01.00.00.00.000000'.

G

CARDF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of rows in the table space or partition, or if the
table space is a LOB table space, the number of LOBS in
the table space. The value is '-1' if statistics have not been
gathered.

S

EXTENTS
INTEGER
NOT NULL WITH
DEFAULT -1

Number of data set extents. The value is '-1' if statistics
have not been gathered. This value is only for the last
DSNUM for the object.

G

DSNUM
INTEGER
NOT NULL WITH
DEFAULT -1

Data set number within the table space. For partitioned
table spaces, this value corresponds to the partition
number for a single partition copy, or 0 for a copy of an
entire partitioned table space or index space. The value is
'-1' if statistics have not been gathered.

G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

AVGROWLEN
INTEGER
NOT NULL WITH
DEFAULT -1

Average length of rows for the tables in the table space or
part. If the table space or part is compressed, the value is
the compressed row length. If the table space or part is
not compressed, the value is the uncompressed row
length. The value is '-1' if statistics have not been
gathered.

G

Appendix. Additional information for DB2 SQL 2395

SYSIBM.SYSTABLES table
The SYSIBM.SYSTABLES table contains one row for each table, view, or alias.

Column name Data type Description Use

NAME
VARCHAR(128)
NOT NULL

Name of the table, view, or alias. G

CREATOR
VARCHAR(128)
NOT NULL

The schema of the table, view, or alias. G

TYPE
CHAR(1)
NOT NULL

Type of object:
A Alias
C Clone table
G Created global temporary table
H History table
M Materialized query table
P Table that was implicitly created for XML

columns
R Archive table
T Table
V View
X Auxiliary table

G

DBNAME
VARCHAR(24)
NOT NULL

For a table, or a view of tables, the name of the database
that contains the table space that is named in TSNAME.
For a created temporary table, an alias, or a view of a
view, the value is DSNDB06.

G

TSNAME
VARCHAR(24)
NOT NULL

For a table, or a view of one table, the name of the table
space that contains the table. For a view of more than one
table, the name of a table space that contains one of the
tables. For a created temporary table, a view of a view, or
an alias, it is SYSTSTAB.

G

DBID
SMALLINT
NOT NULL

Internal identifier of the database; 0 if the row describes a
view, alias, or created temporary table. Non-zero if the
view has an INSTEAD OF trigger defined.

S

OBID
SMALLINT
NOT NULL

Internal identifier of the table; 0 if the row describes a
view, an alias, or a created temporary table. Non-zero if
the view has an INSTEAD OF trigger defined.

S

COLCOUNT
SMALLINT
NOT NULL

Number of columns in the table or view. The value is 0 if
the row describes an alias.

G

EDPROC
VARCHAR(24)
NOT NULL

Name of the edit procedure; blank if the row describes a
view or alias or a table without an edit procedure.

G

VALPROC
VARCHAR(24)
NOT NULL

Name of the validation procedure; blank if the row
describes a view or alias or a table without a validation
procedure.

G

CLUSTERTYPE
CHAR(1)
NOT NULL

Whether RESTRICT ON DROP applies:
blank No
Y Yes. You cannot drop the table or any table space

or database that contains the table.

G

CLUSTERID
INTEGER
NOT NULL

Not used N

2396 SQL Reference

||

Column name Data type Description Use

CARD
INTEGER
NOT NULL

Not used N

NPAGES
INTEGER
NOT NULL

Total number of pages that include rows of the table. The
value is -1 if statistics have not been gathered, or the row
describes a view, an alias, a created temporary table, or an
auxiliary table. This column can be updated.

S

PCTPAGES
SMALLINT
NOT NULL

Percentage of active table space pages that contain rows
of the table. A page is termed active if it is formatted for
rows, regardless of whether it contains any. If the table
space is segmented, the percentage is based on the
number of active pages in the set of segments that are
assigned to the table. The value is -1 if statistics have not
been gathered, or the row describes a view, alias, created
temporary table, or auxiliary table. This column can be
updated.

S

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

REMARKS
VARCHAR(762)
NOT NULL

A character string that is provided by the user with the
COMMENT statement.

G

PARENTS
SMALLINT
NOT NULL

Number of relationships in which the table is a
dependent. The value is 0 if the row describes a view, an
alias, a created temporary table, or a materialized query
table.

G

CHILDREN
SMALLINT
NOT NULL

Number of relationships in which the table is a parent.
The value is 0 if the row describes a view, an alias, a
created temporary table, or a materialized query table.

G

KEYCOLUMNS
SMALLINT
NOT NULL

Number of columns in the primary key of the table. The
value is 0 if the row describes a view, an alias, or a
created temporary table.

G

Appendix. Additional information for DB2 SQL 2397

Column name Data type Description Use

RECLENGTH
SMALLINT
NOT NULL

For user tables, the maximum length of any record in the
table. Length is 8+N+L, where:
v The number 8 accounts for the header (6 bytes) and the

ID map entry (2 bytes).
v N is 10 if the table has an edit procedure, or 0

otherwise.
v L is the sum of the maximum column lengths. In

determining the maximum length of a column, take
into account whether the column allows nulls and the
data type of the column. If the column can contain
nulls and is not a LOB or ROWID column, add 1 byte
for a null indicator. Use 4 bytes for the length of a LOB
column and 19 bytes for the length of a ROWID
column. If the column has a varying-length data type
(for example, VARCHAR, CLOB, or BLOB), add 2 bytes
for a length indicator. For more information about
column lengths, see “Data types” on page 80.

The value is 0 if the row describes a view, alias, or
auxiliary table. For maximum row and record sizes, see
Maximum record size.

G

STATUS
CHAR(1)
NOT NULL

Indicates the status of the table definition:
I The definition of the table is incomplete. The

TABLESTATUS column indicates the reason why
the table definition is incomplete.

R An error occurred when an attempt was made to
regenerate the internal representation of the
view.

X The table has a unique constraint (primary key
or unique key) and the table definition is
complete.

blank The table has no unique constraint (primary key
or unique key), the table is a catalog table, or the
row describes a view or alias. The definition of
the table, view, or alias is complete.

G

KEYOBID
SMALLINT
NOT NULL

Internal DB2 identifier of the index that enforces
uniqueness of the primary key of the table; 0 if not
applicable.

S

LABEL
VARCHAR(90)
NOT NULL

The label as given by a LABEL statement; otherwise, the
value is an empty string.

G

2398 SQL Reference

Column name Data type Description Use

CHECKFLAG
CHAR(1)
NOT NULL WITH
DEFAULT

C The table space that contains the table is in
CHECK-pending status. One of the following
conditions is true:
v There are rows in the table that violate

referential constraints, check constraints, or
both

v The table is a materialized query table that
might contain inconsistent data

blank Indicates one of the following conditions:
v The table contains no rows that violate

referential constraints, check constraints, or
both

v The table is a materialized query table that
contains consistent data

v The row describes a view, an alias, or a
temporary table

G

CHECKRID
CHAR(4)
NOT NULL WITH
DEFAULT
FOR BIT DATA

A value of 'FFFFFF00' in this column indicates that the
edit procedure on this table is defined without row
attribute sensitivity. Any other value indicates that the
edit procedure is defined with row attribute sensitivity.

G

AUDITING
CHAR(1)
NOT NULL WITH
DEFAULT

Value of the audit option:
A AUDIT ALL
C AUDIT CHANGE
blank AUDIT NONE, or the row describes a view, an

alias, or a created temporary table.

G

CREATEDBY
VARCHAR(128)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the
table, view, or alias.

G

LOCATION
VARCHAR(128)
NOT NULL WITH
DEFAULT

Location name of the object of an alias. The value is blank
for a table, a view, an alias that was not defined with a
three-part object name, or a materialized query table.

G

TBCREATOR
VARCHAR(128)
NOT NULL WITH
DEFAULT

v For an alias, the schema of the referenced table or view
v For a base table that is involved in a clone relationship,

the name of the creator of the clone table
v For a clone table that is involved in a clone

relationship, the name of the creator of the base table
v For a view, the name of the underlying table.
v Otherwise, TBCREATOR is blank

G

TBNAME
VARCHAR(128)
NOT NULL WITH
DEFAULT

v For an alias, the name for the referenced table or view
v For a base table that is involved in a clone relationship,

the name of the clone table
v For a clone table that is involved in a clone

relationship, the name of the base table
v For a view, the name of the underlying table.
v Otherwise, TBNAME is blank

G

CREATEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the
table, view, or alias

G

Appendix. Additional information for DB2 SQL 2399

Column name Data type Description Use

ALTEREDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

For a table, the time when the latest ALTER TABLE
statement was applied. If no ALTER TABLE statement
was applied, or if the row is for an alias, ALTEREDTS has
the value of CREATEDTS. For a view, the time when the
last ALTER VIEW REGENERATE statement was applied.

G

DATACAPTURE
CHAR(1)
NOT NULL WITH
DEFAULT

Records the value of the DATA CAPTURE option for a
table:
blank No
Y Yes

For a created temporary table, DATACAPTURE is always
blank.

G

RBA1
CHAR(10)
NOT NULL WITH
DEFAULT
FOR BIT DATA

The log RBA when the table was created. Otherwise,
RBA1 is X'00000000000000000000', indicating that the log
RBA is not known, or that the object is a view, an alias, or
a created temporary table. In a data sharing environment,
RBA1 is the LRSN (Log Record Sequence Number) value.

S

RBA2
CHAR(10)
NOT NULL WITH
DEFAULT
FOR BIT DATA

The log RBA when the table was last altered. Otherwise,
RBA2 is X'00000000000000000000' indicating that the log
RBA is not known, or that the object is a view, an alias, or
a created temporary table. RBA1 equals RBA2 if the table
has not been altered. In a data sharing environment,
RBA2 is the LRSN (Log Record Sequence Number) value.

S

PCTROWCOMP
SMALLINT
NOT NULL WITH
DEFAULT

Percentage of rows that are compressed within the total
number of active rows in the table. This number includes
any row in a table space that is defined with COMPRESS
YES. The value is -1 if statistics have not been gathered,
or the row describes a view, alias, created temporary
table, or auxiliary table. This column can be updated.

S

STATSTIME
TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics. The default value is '0001-01-01.00.00.00.000000'.
For a created temporary table, the value of STATSTIME is
always the default value. This column can be updated.

G

CHECKS
SMALLINT
NOT NULL WITH
DEFAULT

Number of check constraints that are defined on the table.
The value is 0 if either of the following conditions are
true:

v The row describes a view, an alias, a created temporary
table, or a materialized query table.

v No constraints are defined on the table.

G

CARDF
FLOAT
NOT NULL WITH
DEFAULT -1

Total number of rows in the table or total number of
LOBs in an auxiliary table. The value is -1 if statistics
have not been gathered or the row describes a view, alias,
or created temporary table. This column can be updated.

S

2400 SQL Reference

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

Column name Data type Description Use

CHECKRID5B
CHAR(5)
NOT NULL WITH
DEFAULT
FOR BIT DATA

RID of the first row of the table space partition that can
violate referential constraints, check constraints, or both.
The value of X'0000000000' indicates that any row can
violate referential constraints.

The value is blank if any of the following conditions are
true:

v The table or partition is not in CHECK-pending status
(CHECKFLAG is blank)

v The table space is not partitioned

v The table is a created temporary table

S

ENCODING_SCHEME
CHAR(1)
NOT NULL WITH
DEFAULT 'E'

Encoding scheme for tables, views, and local aliases:
E EBCDIC
A ASCII
M Multiple CCSID set or multiple encoding

schemes
U UNICODE
blank For remote aliases
The value is 'E' for tables in non-work file databases. The
value is blank for tables in work file databases that were
created before Version 5 or in the default database,
DSNDB04.

This column is not applicable for tables that were created
before DB2 for z/OS Version 5.

G

TABLESTATUS
VARCHAR(30)
NOT NULL WITH
DEFAULT

Indicates the reason for an incomplete table definition:
L Definition is incomplete because an auxiliary

table or auxiliary index has not been defined for
a LOB column.

P Definition is incomplete because the table lacks a
primary index.

R Definition is incomplete because the table lacks a
required index on a row ID.

U Definition is incomplete because the table lacks a
required index on a unique key.

V An error occurred when an attempt was made to
regenerate the internal representation of the
view.

blank Definition is complete.

G

NPAGESF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of pages that are used by the table. The value is
-1 if statistics have not been gathered or the table is an
auxiliary table. This column can be updated.

G

SPACEF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Kilobytes of DASD storage. The value is -1 if statistics
have not been gathered. The value might be non-zero for
an auxiliary table in the LOB table space. This column can
be updated.

G

AVGROWLEN
INTEGER
NOT NULL WITH
DEFAULT -1

Average length of rows for the tables in the table space. If
the table space is compressed, the value is the compressed
row length. If the table space is not compressed, the value
is the uncompressed row length. The value is -1 if
statistics have not been gathered.

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for the values.

G

Appendix. Additional information for DB2 SQL 2401

Column name Data type Description Use

NUM_DEP_MQTS
SMALLINT
NOT NULL WITH
DEFAULT

Number of dependent materialized query tables. The
value is zero if the row describes an alias or a created
temporary table, or if no materialized query tables are
defined on the table.

G

VERSION
SMALLINT
NOT NULL WITH
DEFAULT

The version of the data row format for this table.

v A value of zero indicates that an alter operation that
creates a new version has never occurred for this table.

v A value of -1 indicates that the view has been
regenerated because a column of the base table has
been altered.

v A value of 800 indicates that a successful CREATE
VIEW or ALTER VIEW statement has occurred against
this view in Version 8 or later.

v A value of 900 indicates that a successful ALTER
TABLE statement with a DROP COLUMN clause has
occurred against this view.

G

PARTKEYCOLNUM
SMALLINT
NOT NULL WITH
DEFAULT

The number of columns in the partitioning key. This
value is zero for tables that do not have partitioning or
use index-controlled partitioning. The value is non-zero
for tables that use table-controlled partitioning.

G

SPLIT_ROWS
CHAR(1)
NOT NULL WITH
DEFAULT

This column is blank except for volatile tables. For
volatile table, this column contains 'Y' to indicate to DB2
to use index access on this table whenever possible.

G

SECURITY_LABEL
CHAR(1)
NOT NULL

This column is only meaningful if the TYPE column is a T
(for table) or M (for materialized query table). The value
indicates whether the table has multilevel security:
Blank The table does not have multilevel security.
R The table has multilevel security with row

granularity.

G

OWNER
VARCHAR(128)
NOT NULL WITH
DEFAULT

Authorization ID of the owner of the table, view, or alias.
This column is blank for tables, views, or aliases that
were created before DB2 for z/OSVersion 9.

G

APPEND
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether the APPEND option is specified for the
table.
Y The APPEND option is specified.
N The APPEND option is not specified.

G

OWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank Authorization ID
L Role

G

CONTROL CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether access to the table is enforced by using
row or column access control:
blank No access control enforcement
B The table is enforced by using both row and

column access control
C The table is enforced by using column access

control
R The table is enforced by using row access control

G

2402 SQL Reference

|
|
|

Column name Data type Description Use

VERSIONING
_SCHEMA VARCHAR(128)

NOT NULL WITH
DEFAULT

Indicates the schema name of the history table if the table
is a system-period temporal table with versioning.
Indicates the schema name of the system-period temporal
table if the table is a history table. Otherwise, the value is
blank.

G

VERSIONING
_TABLE VARCHAR(128)

NOT NULL WITH
DEFAULT

Indicates the table name of the history table if the table is
a system-period temporal table with versioning. Indicates
the table name of system-period temporal table if the
table is a history table. Otherwise, the value is blank.

G

HASHKEYCOLUMNS
SMALLINT
NOT NULL WITH
DEFAULT

The number of columns in the hash key of the table. The
value is 0 if the row describes a view, an alias, or a
created temporary table.

G

ARCHIVING_
SCHEMA

VARCHAR(128)
NOT NULL WITH
DEFAULT

Contains a schema name as follows:

v If the table is an archive-enabled table, this column
contains the schema name of the archive table.

v If the table is an archive table, this column contains the
schema name of the archive-enabled table.

v If the table is not an archive-enabled table or an archive
table, the value is blank.

G

ARCHIVING
_TABLE

VARCHAR(128)
NOT NULL WITH
DEFAULT

Contains a table name as follows:

v If the table is an archive-enabled table, this column
contains the table name of the archive table.

v If the table is an archive table, this column contains the
table name of the archive-enabled table.

v If the table is not an archive-enabled table or an archive
table, the value is blank.

G

STATS_FEEDBACK CHAR (1)
NOT NULL

When a query qualifies for statistics collection based on
DSNZPARM STATFDBK_SCOPE, this column controls
whether statistics recommendations for this table are
placed in SYSIBM.SYSSTATFEEDBACK. You can update
this flag to 'Y' or 'N' to enable or disable collection for the
table.

G

Appendix. Additional information for DB2 SQL 2403

|
|
|
|
|

|

|
|

|
|

|
|

|

|
|
|
|
|

|

|
|

|
|

|
|

|

||
|
|
|
|
|
|
|

|

SYSIBM.SYSTABLESPACE table
The SYSIBM.SYSTABLESPACE table contains one row for each table space.

Column name Data type Description Use

NAME
VARCHAR(24)
NOT NULL

Name of the table space. G

CREATOR
VARCHAR(128)
NOT NULL

Authorization ID of the owner of the table space. G

DBNAME
VARCHAR(24)
NOT NULL

Name of the database that contains the table space. G

DBID
SMALLINT
NOT NULL

Internal identifier of the database which contains the table
space.

S

OBID
SMALLINT
NOT NULL

Internal identifier of the table space file descriptor. S

PSID
SMALLINT
NOT NULL

Internal identifier of the table space page set descriptor. S

BPOOL
CHAR(8)
NOT NULL

Name of the buffer pool used for the table space. G

PARTITIONS
SMALLINT
NOT NULL

Number of partitions of the table space; 0 if the table
space is not partitioned.

G

LOCKRULE
CHAR(1)
NOT NULL

Lock size of the table space:
A Any
L Large object (LOB)
P Page
R Row
S Table space
T Table
X implicitly created XML table space

G

PGSIZE
SMALLINT
NOT NULL

Size of pages in the table space in kilobytes. G

ERASERULE
CHAR(1)
NOT NULL

Whether the data sets are to be erased when dropped.
The value is meaningless if the table space is partitioned.
N No erase
Y Erase

G

STATUS
CHAR(1)
NOT NULL

Availability status of the table space:
A Available
C Definition is incomplete because the table space

does not use table-controlled partitioning and a
partitioning index has not been created.

P Table space is in a check pending status.
S Table space is in a check pending status with the

scope less than the entire table space.
T Definition is incomplete because no table has

been created.

G

2404 SQL Reference

Column name Data type Description Use

IMPLICIT
CHAR(1)
NOT NULL

Whether the table space was created implicitly:
N No
Y Yes

G

NTABLES
SMALLINT
NOT NULL

Number of tables defined in the table space. G

NACTIVE
INTEGER
NOT NULL

Number of active pages in the table space. A page is
termed active if it is formatted for rows, even if it
currently contains none. The value is 0 if statistics have
not been gathered. This is an updatable column.

S

VARCHAR(24)
NOT NULL

Not used N

CLOSERULE
CHAR(1)
NOT NULL

Whether the data sets are candidates for closure when the
limit on the number of open data sets is reached.
N No
Y Yes

G

SPACE
INTEGER
NOT NULL

Number of kilobytes of DASD storage allocated to the
table space, as determined by the last execution of the
STOSPACE utility. The value is 0 if the table space is not
related to a storage group, or if STOSPACE has not been
run. If the table space is partitioned, the value is the total
kilobytes of DASD storage allocated to all partitions that
are storage group defined.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

If ALTER TABLESPACE changes the DSSIZE value to
128G or 256G, this column value is changed to O, which
is the release dependency indicator for Version 10.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

VARCHAR(54)
NOT NULL

Internal use only I

VARCHAR(24)
NOT NULL

Internal use only I

SEGSIZE
SMALLINT
NOT NULL WITH
DEFAULT

Number of pages in each segment of a segmented table
space. The value is 0 if the table space is not segmented.

G

CREATEDBY
VARCHAR(128)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the
table space.

G

STATSTIME
TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics. The default value is '0001-01-01.00.00.00.000000'.
This is an updatable column.

G

Appendix. Additional information for DB2 SQL 2405

Column name Data type Description Use

LOCKMAX INTEGER The maximum number of locks per user to acquire for the
table or table space before escalating to the next locking
level.
0 Lock escalation does not occur.
n n, where n > 0, is the maximum number of locks

(row, page, or LOB locks for the table or table
space) an application process can acquire before
lock escalation occurs.

-1 Represents LOCKMAX SYSTEM. The value of
field LOCKS PER TABLE(SPACE) on installation
panel DSNTIPJ determines lock escalation. If the
value of the field is 0, lock escalation does not
occur. If the value is n, where n > 0, lock
escalation occurs as it does for LOCKMAX n.

G

TYPE
CHAR(1)
NOT NULL WITH
DEFAULT

The type of table space:
blank The table space was created without the LOB or

MEMBER CLUSTER options. If the DSSIZE
column is zero, the table space is not greater
than 64 gigabytes.

G The table space was defined with the
MAXPARTITIONS option (a
partitioned-by-growth table space) with the
underlying structure of a universal table space.

L The table space can be greater than 64 gigabytes.
O The table space was defined with the LOB option

(the table space is a LOB table space).
P Implicit table space created for XML columns.
R Range-partitioned universal table space.

G

CREATEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the
table space. If the table space was created in a DB2 release
prior to Version 5, the value is '0001-01-01.00.00.00.000000'.

G

ALTEREDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER TABLESPACE
statement was executed for the table space. If no ALTER
TABLESPACE statement has been applied, ALTEREDTS
has the value of CREATEDTS. If the index was created in
a DB2 release prior to Version 5, the value is
'0001-01-01.00.00.00.000000'.

G

ENCODING_SCHEME
CHAR(1)
NOT NULL WITH
DEFAULT 'E'

Default encoding scheme for the table space:
E EBCDIC
A ASCII
U UNICODE
blank For table spaces in a work file database or a

TEMP database (a database that was created AS
TEMP, which is for declared temporary tables.)

The value is 'E' for tables in non work file databases and
blank for tables in work file databases created prior to
Version 5 or the default database, DSNDB04.

G

SBCS_CCSID
INTEGER
NOT NULL WITH
DEFAULT

Default SBCS CCSID for the table space. For a table space
in a work file database, a TEMP database, or a database
created in a DB2 release prior to Version 5, the value is 0.

G

DBCS_CCSID
INTEGER
NOT NULL WITH
DEFAULT

Default DBCS CCSID for the table space. For a table space
in a work file database, a TEMP database, or a database
created in a DB2 release prior to Version 5, the value is 0.

G

2406 SQL Reference

Column name Data type Description Use

MIXED_CCSID
INTEGER
NOT NULL WITH
DEFAULT

Default mixed CCSID for the table space. For a table
space in a work file database, a TEMP database, or a
database created in a DB2 release prior to Version 5, the
value is 0.

G

MAXROWS
SMALLINT
NOT NULL
DEFAULT 255

The maximum number of rows that DB2 will place on a
data page. The default value is 255. For a LOB table
space, the value is 0 to indicate that the column is not
applicable.

G

CHAR(1)
NOT NULL WITH
DEFAULT

Not used N

LOG
CHAR(1)
NOT NULL WITH
DEFAULT 'Y'

Whether the changes to a table space are to be logged.
N This table space has the NOT LOGGED attribute.

Undo and redo logging for the table space and
all indexes for tables in the table space is
suppressed. Logging is also suppressed for the
auxiliary indexes for all auxiliary tables
associated with tables in the table space.

Y This table space has the LOGGED attribute.
Normal logging is associated with modifications
to this table space, all indexes for tables in this
table space, and all auxiliary indexes for all
auxiliary tables associated with tables in the table
space.

X This LOB or XML table space has the NOT
LOGGED attribute. Undo and redo logging for
the table space is suppressed. Also, the logging
attribute for this LOB or XML table space is
linked to the logging attribute of the associated
base table space and might not be able to be
altered independently. If the logging attribute of
the base table space is altered to LOGGED, the
logging attribute of the LOB or XML table space
will also be altered to LOGGED.

G

NACTIVEF
FLOAT
NOT NULL WITH
DEFAULT -1

Number of active pages in the table space. A page is
termed active if it is formatted for rows, even if it
currently contains none. The value is -1 if statistics have
not been gathered. This is an updatable column.

S

DSSIZE
INTEGER
NOT NULL WITH
DEFAULT

Maximum size of a data set in kilobytes. The value might
be 0 if the table space was created prior to Version 10, but
will contain the actual value after the table space is
converted to a partitioned by growth table space.

G

OLDEST_VERSION
SMALLINT
NOT NULL WITH
DEFAULT

The version number of the oldest format of data in the
table space and any image copies.

G

CURRENT_VERSION
SMALLINT
NOT NULL WITH
DEFAULT

The version number describing the newest format of data
in the table space. A zero indicates that the table space
has never had versioning. After the version number
reaches the maximum value, the number wraps back to
one.

G

Appendix. Additional information for DB2 SQL 2407

Column name Data type Description Use

AVGROWLEN
INTEGER
NOT NULL WITH
DEFAULT -1

Average length of rows for the tables in the table space or
part. If the table space or part is compressed, the value is
the compressed row length. If the table space or part is
not compressed, the value is the uncompressed row
length. The value is -1 if statistics have not been gathered.

G

SPACEF
FLOAT
NOT NULL WITH
DEFAULT

Kilobytes of DASD storage for the storage group. The
value is -1 if statistics have not been gathered. This is an
updatable column.

G

CREATORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank Authorization ID
L Role

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. Blank
if created prior to Version 9. See Release dependency
indicators for all other values.

G

INSTANCE
SMALLINT
NOT NULL WITH
DEFAULT

INSTANCE indicates the data set instance number of the
current base object (table and index).

G

CLONE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether the table space contains any objects that
are involved in a clone relationship:
Y Table space contains objects that are involved in

a clone relationship
N Table space does not contain any objects that are

involved in a clone relationship

G

MAXPARTITIONS
SMALLINT
NOT NULL WITH
DEFAULT

Identifies the maximum number of partitions to which the
table space can grow. 0 if the table space is not a
partition-by-growth table space.

G

MEMBER_CLUSTER CHAR(1)
NOT NULL WITH
DEFAULT

Whether MEMBER CLUSTER is specified for the table
space:

Y MEMBER CLUSTER is specified for the table
space

blank MEMBER CLUSTER is not specified for the table
space

G

ORGANIZATIONTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Type of table space organization:

blank Not known. Blank is the default.

H Hash organization

G

HASHSPACE
BIGINT
NOT NULL WITH
DEFAULT

The amount of space, in KB, that is to be allocated to the
table space or partition as hash space. For
partition-by-growth table spaces, the space applies to the
whole table space. For range-partitioned universal table
spaces, the space is applicable for each partition.

G

2408 SQL Reference

Column name Data type Description Use

HASHDATAPAGES
BIGINT
NOT NULL WITH
DEFAULT

The total number of hash data pages to preallocate for
hash space. For partition-by-growth table spaces, this
includes all pages in the fixed part of the table space. For
range-partitioned universal table spaces, this is the
number of pages in the fixed hash space in each partition
unless it is overridden by providing hash space at the
partition level. This is calculated by DB2 from the value
specified with the HASH SPACE option or when the
REORG utility is run with automatic estimation of space.
The calculated value is used in the hash algorithm. The
value is 0 for non-hash table spaces. The value is also 0
for table spaces which have been changed to use hash
access but have not been reorganized.

G

Appendix. Additional information for DB2 SQL 2409

SYSIBM.SYSTABLESPACESTATS table
The SYSIBM.SYSTABLESPACESTATS table contains real time statistics for table
spaces.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

UPDATESTATSTIME
TIMESTAMP
NOT NULL
WITH DEFAULT

The timestamp that the row in the
SYSTABLESPACESTATS table is inserted or updated.

G

NACTIVE
INTEGER

The number of active pages in the table space or
partition.

G

NPAGES
INTEGER

The number of distinct pages with active rows in the
partition or table space. This is an updatable column.

This column can be used to calculate an estimate of the
size of LOB data in a table space. To produce an estimate,
use the following formula:

value of NPAGES * page size =
approximate size of LOB data

G

EXTENTS
SMALLINT

The number of extents in the table space. For multi-piece
table spaces, this value is the number of extents for the
last data set. For a data set that is striped across multiple
volumes, the value is the number of logical extents. A null
value indicates the number of extents is unknown.

G

LOADRLASTTIME
TIMESTAMP

The timestamp that the LOAD REPLACE utility was last
run on the table space or partition.

A null value indicates that the LOAD REPLACE utility
has never been run on the table space or partition or that
the timestamp is unknown.

G

REORGLASTTIME
TIMESTAMP

The timestamp the REORG utility was last run on the
table space or partition, or when the REORG utility has
not been run, the time when the table space or partition
was created. A null value indicates that the timestamp is
unknown.

G

REORGINSERTS
INTEGER

The number of records or LOBs that have been inserted
into the table space or partition or loaded into the table
space or partition using the LOAD utility specified
without the REPLACE option since the last time the
REORG or LOAD REPLACE utilities were run, or since
the object was created.

A null value indicates that the number of inserted records
or LOBs is unknown.

G

REORGDELETES
INTEGER

The number of records or LOBs that have been deleted
from the table space or partition since the last time the
REORG or LOAD REPLACE utilities were run, or since
the object was created.

A null value indicates that the number of deleted records
or LOBs is unknown.

G

2410 SQL Reference

Column name Data type Description Use

REORGUPDATES
INTEGER

The number of rows that have been updated in the table
space or partition since the last time the REORG or
LOAD REPLACE utilities were run, or since the object
was created.

A null value indicates that the number of updated rows is
unknown.

G

REORGUNCLUSTINS
INTEGER

The number of records that were inserted that are not
well-clustered with respect to the clustering index since
the last REORG or LOAD REPLACE , or since the object
was created. A record is well-clustered if the record is
inserted into a page that is within 16 pages of the ideal
candidate page. The clustering index determines the ideal
candidate page.

A null value indicates that the number of not well
clustered pages is unknown.

G

REORGDISORGLOB
INTEGER

The number of LOBs that were inserted that are not
perfectly chunked since the last REORG or LOAD
REPLACE, or since the object was created. A LOB is
perfectly chunked if the allocated pages are in the
minimum number of chunks.

A null value indicates that the number of not perfectly
chunked LOBs is unknown.

G

REORGMASSDELETE
INTEGER

The number of mass deletes from a segmented or LOB
table space, or the number of dropped tables from a
segmented table space since the last time the REORG or
LOAD REPLACE utilities were run, or since the object
was created.

A null value indicates that the number of mass deletes is
unknown.

G

REORGNEARINDREF
INTEGER

The number of overflow records that are created and
relocated near the pointer record since the last time the
REORG and LOAD REPLACE utilities were run, or since
the object was created. For non-segmented table spaces, a
page is near the present page if the two page numbers
differ by 16 or less. For segmented table spaces, a page is
near the present page if the two page numbers differ by
SEGSIZE*2 or less.

A null value indicates that the number of overflow
records that are near the pointer record is unknown.

G

REORGFARINDREF
INTEGER

The number of overflow records that are created and
relocated far from the pointer record since the last time
the REORG and LOAD REPLACE utilities were run, or
since the object was created. For non-segmented table
spaces, a page is far from the present page if the two
page numbers differ by more than 16. For segmented
table spaces, a page is far from the present page if the
two page numbers differ by at least (SEGSIZE*2)+1.

A null value indicates that the number of overflow
records that are near the pointer record is unknown.

G

STATSLASTTIME
TIMESTAMP

The timestamp of the last time that the RUNSTATS utility
is run on the table space or partition.

G

Appendix. Additional information for DB2 SQL 2411

Column name Data type Description Use

STATSINSERTS
INTEGER

The number of records or LOBs that have been inserted
into the table space or partition or loaded into the table
space or partition using the LOAD utility specified
without the REPLACE option since the last time that the
RUNSTATS utility was run, or since the object was
created.

A null value indicates that the number of inserted records
or LOBs is unknown.

G

STATSDELETES
INTEGER

The number of records or LOBs that have been deleted
from the table space or partition since the last time that
the RUNSTATS utility was run, or since the object was
created.

A null value indicates that the number of deleted records
or LOBs is unknown.

G

STATSUPDATES
INTEGER

The number of rows that have been updated in the table
space or partition since the last time that the RUNSTATS
utility was run, or since the object was created.

A null value indicates that the number of updated rows is
unknown.

G

STATSMASSDELETE
INTEGER

The number of mass deletes from a segmented or LOB
table space, or the number of tables that are dropped
from a segmented table space, since the last time the
RUNSTATS utility was run, or since the object was
created.

A null value indicates that the number of mass deletes is
unknown.

G

COPYLASTTIME
TIMESTAMP

The timestamp of the last full or incremental image copy
of the table space or partition, or since the object was
created.

A null value indicates that the COPY utility has never
been run on the table space or partition. A null value can
also indicate that the timestamp of the last image copy is
unknown.

G

COPYUPDATED-
PAGES INTEGER

The number of distinct pages that have been updated
since the last time that the COPY utility was run, or since
the object was created.

A null value indicates that the number of updated pages
is unknown.

G

COPYCHANGES
INTEGER

The number of insert, update, and delete operations, or
the number of records loaded, since the last time that the
COPY utility was run, or since the object was created.

A null value indicates that the number of insert, update,
and delete operations or the number of records loaded is
unknown.

G

COPYUPDATELRSN
CHAR(10)
FOR BIT DATA

The LRSN or RBA of the first update that occurs after the
last time the COPY utility was run, or since the object
was created.

A null value indicates that the LRSN or RBA is unknown.

G

2412 SQL Reference

|
|

Column name Data type Description Use

COPYUPDATETIME
TIMESTAMP

The timestamp of the first update that occurs after the last
time that the COPY utility was run, or since the object
was created.

A null value indicates that the timestamp is unknown.

The value is 6 bytes of X'FF' if the RBA/LRSN exceeds
the 6-byte limit.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

DBID
SMALLINT
NOT NULL

The internal identifier of the database. This column is
used to map a DBID to its statistics.

G

PSID
SMALLINT
NOT NULL

The internal identifier of the table space page set
descriptor. This column is used to map a PSID to its
statistics.

G

PARTITION
SMALLINT
NOT NULL

The data set number within the table space. This column
is used to map a data set number in a table space to its
statistics. For partitioned table spaces, this value
corresponds to the partition number for a single partition.
For non-partitioned table spaces, this value is 0.

G

INSTANCE
SMALLINT
NOT NULL
WITH DEFAULT 1

Indicates if the object is associated with data set instance
1 or 2. This is an updatable column.

G

SPACE
BIGINT

The amount of space, in KB, that is allocated to the table
space or partition. For multi-piece, linear page sets, this
value is the amount of space in all data sets. A null value
indicates the amount of space is unknown.

G

TOTALROWS
BIGINT

The number of rows or LOBs that are in the table space
or partition.

For XML, this column contains the number of physical
records in the table space or partition. Each XML
document might have more than one physical record in a
table space or partition.

G

DATASIZE
BIGINT

The total number of bytes that row data occupy. For LOB
table spaces this column is always 0. This is an updatable
column.

G

UNCOMPRESSED-
DATASIZE BIGINT

This column is not used. The value is always set to 0. G

DBNAME
VARCHAR(24)
NOT NULL

The name of the database. This column is used to map a
database to its statistics.

G

NAME
VARCHAR(24)
NOT NULL

The name of the table space. This column is used to map
a table space to its statistics.

G

Appendix. Additional information for DB2 SQL 2413

|
|

Column name Data type Description Use

REORGSCAN-
ACCESS BIGINT

The number of times data is accessed for SELECT,
FETCH, searched UPDATE, or searched DELETE since the
last CREATE, LOAD REPLACE or REORG, or since the
object was created.A null value indicates that the number
of times data is accessed is unknown.

G

REORGHASH-
ACCESS BIGINT

The number of times data is accessed using hash access
for SELECT, FETCH, searched UPDATE, searched
DELETE, or used to enforce referential integrity
constraints since the last CREATE, LOAD REPLACE or
REORG, or since the object was created. A null value
indicates that the number of times data is accessed is
unknown.

G

HASHLASTUSED
TIMESTAMP

The date when hash access was last used for SELECT,
FETCH, searched UPDATE, searched DELETE, or used to
enforce referential integrity constraints.

G

REORGCLUSTERSENS BIGINT The number of times data has been read by SQL
statements that are sensitive to the clustering sequence of
the data since the last REORG or LOAD REPLACE, or
since the object was created.

G

DRIVETYPE CHAR(3)
NOT NULL

WITH DEFAULT

The drive type on which the table space or table space
partition data set is defined.

HDD Hard Disk Drive

SSD Solid State Drive
For multi-volume data sets, the drive type is set to SSD if
any volume is SSD. For multi-piece linear page sets, the
drive type of the first data set is used. This is an
updatable column.

G

LPFACILITY CHAR(1) Whether the disk control unit has the high performance
list prefetch facility.

N No

Y Yes
A NULL value indicates that it is unknown whether the
disk control unit has the high performance list prefetch
facility. This is an updatable column.

G

BIGINT Reserved for future IBM use. R

UPDATESIZE BIGINT The net number of bytes that were added or removed by
UPDATE operations since the object was created, or since
the last REORG or LOAD REPLACE operation.

G

LASTDATACHANGE TIMESTAMP The last time that this row was updated because data was
modified in the table space or partition. The timestamp
reflects the time at which the real-time statistics table was
updated, and not the time at which the data in the table
space or partition was modified. Physical data changes
such as reorganization of data are not reflected in this
column.

G

In data sharing environments, the values in SYSIBM.SYSTABLESPACESTATS can
be negative for short periods of time for certain situations.

2414 SQL Reference

|||
|
|

|

|||
|
|
|
|
|
|

|

Related concepts:

How DB2 maintains in-memory statistics in data sharing (DB2 Data Sharing
Planning and Administration)

Appendix. Additional information for DB2 SQL 2415

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_howdb2maintainsstats.htm#db2z_howdb2maintainsstats
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_howdb2maintainsstats.htm#db2z_howdb2maintainsstats

SYSIBM.SYSTABLES_HIST table
The SYSIBM.SYSTABLES_HIST table contains rows from SYSTABLES.

Rows are added or changed in this table when RUNSTATS collects history
statistics. Rows in this table can also be inserted, updated, and deleted.

Column name Data type Description Use

NAME
VARCHAR(128)
NOT NULL

Name of the table, view, or alias. G

CREATOR
VARCHAR(128)
NOT NULL

The schema of the table, view, or alias. G

DBNAME
VARCHAR(24)
NOT NULL

For a table, or a view of tables, the name of the database
that contains the table space named in TSNAME. For a
temporary table, an alias, or a view of a view, the value is
DSNDB06.

G

TSNAME
VARCHAR(24)
NOT NULL

For a table, or a view of one table, the name of the table
space that contains the table. For a view of more than one
table, the name of a table space that contains one of the
tables. For a temporary table, a view of a view, or an alias,
it is SYSTSTAB.

G

COLCOUNT
SMALLINT
NOT NULL

Number of columns in the table or view. The value is 0 if
the row describes an alias.

G

PCTPAGES
SMALLINT
NOT NULL WITH
DEFAULT -1

Percentage of active table space pages that contain rows of
the table. A page is termed active if it is formatted for
rows, regardless of whether it contains any. If the table
space is segmented, the percentage is based on the
number of active pages in the set of segments assigned to
the table. The value is -1 if statistics have not been
gathered, or the row describes a view, alias, temporary
table, or auxiliary table.

S

PCTROWCOMP
SMALLINT
NOT NULL WITH
DEFAULT -1

Percentage of rows compressed within the total number of
active rows in the table. This includes any row in a table
space that is defined with COMPRESS YES. The value is
-1 if statistics have not been gathered, or the row describes
a view, alias, temporary table, or auxiliary table.

G

STATSTIME
TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics. The default value is '0001-01-01.00.00.00.000000'.
For a temporary table, the value of STATSTIME is always
the default value.

G

CARDF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of rows in the table or total number of LOBs
in an auxiliary table. The value is -1 if statistics have not
been gathered or the row describes a view, alias, or
temporary table.

S

NPAGESF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of pages on which rows of the partition
appear. The value is -1 if statistics have not been gathered.

S

2416 SQL Reference

Column name Data type Description Use

AVGROWLEN
INTEGER
NOT NULL WITH
DEFAULT -1

Average row length of the table specified in the table
space. The value is -1 if statistics have not been gathered.

G

SPACEF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Kilobytes of DASD storage. The value is -1 if statistics
have not been gathered. This is an updatable column.

G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2417

SYSIBM.SYSTABLES_PROFILES table
The SYSIBM.SYSTABLES_PROFILES table contains one row for each profile that is
associated with a table in SYSIBM.SYSTABLES.

Column name Data type Description Use

SCHEMA VARCHAR(128)
NOT NULL

The schema (qualifier) for the table. G

TBNAME VARCHAR(128)
NOT NULL

The table name. G

PROFILE_TYPE VARCHAR(32)
NOT NULL

The type of profile. Allowed values are 'RUNSTATS'. G

VARCHAR(32) Internal use only. I

PROFILE_TEXT CLOB(1M) The text of the profile. G

ROWID ROWID
NOT NULL
GENERATED ALWAYS

The ROWID value for the LOB column of this table. G

PROFILE_UPDATE TIMESTAMP
NOT NULL

The last time the profile was updated, or the timestamp
for when the profile was inserted into the table.

G

TIMESTAMP Internal use only. I

Related concepts:

RUNSTATS profiles (DB2 Utilities)
Related tasks:

Automating statistics maintenance (DB2 Performance)

2418 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_runstatsprofiles.htm#db2z_runstatsprofiles
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_automatestatistics.htm#db2z_automatestatistics

SYSIBM.SYSTABLES_PROFILE_TEXT table
The SYSIBM.SYSTABLES_PROFILE_TEXT table is an auxiliary table for the
PROFILE_TEXT column of the SYSIBM.SYSTABLES_PROFILES table and is
required to hold LOB data.

Column name Data type Description Use

PROFILE_TEXT CLOB(2M)
NOT NULL
WITH DEFAULT

The complete text for the profile that the row represents. G

Appendix. Additional information for DB2 SQL 2419

SYSIBM.SYSTABSTATS table
The SYSIBM.SYSTABSTATS table contains one row for each partition of a
partitioned table space.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

CARD
INTEGER
NOT NULL

Total number of rows in the partition. S

NPAGES
INTEGER
NOT NULL

Total number of pages on which rows of the partition
appear.

S

PCTPAGES
SMALLINT
NOT NULL

Percentage of total active pages in the partition that
contain rows of the table.

S

NACTIVE
INTEGER
NOT NULL

Number of active pages in the partition. S

PCTROWCOMP
SMALLINT
NOT NULL

Percentage of rows compressed within the total number
of active rows in the partition. This includes any row in a
table space that is defined with COMPRESS YES.

S

STATSTIME
TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

DBNAME
VARCHAR(24)
NOT NULL

Database that contains the table space named in
TSNAME.

G

TSNAME
VARCHAR(24)
NOT NULL

Table space that contains the table. G

PARTITION
SMALLINT
NOT NULL

Partition number of the table space that contains the table. G

OWNER
VARCHAR(128)
NOT NULL

The schema of the table. G

NAME
VARCHAR(128)
NOT NULL

Name of the table. G

CARDF
FLOAT
NOT NULL WITH
DEFAULT -1

Total number of rows in the partition. S

2420 SQL Reference

SYSIBM.SYSTABSTATS_HIST table
The SYSIBM.SYSTABSTATS_HIST table contains rows from SYSTABSTATS.

Rows are added or changed in this table when RUNSTATS collects history
statistics. Rows in this table can also be inserted, updated, and deleted.

Column name Data type Description Use

NPAGES
INTEGER
NOT NULL

Total number of pages on which rows of the partition
appear.

S

STATSTIME
TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time
when the last invocation of RUNSTATS updated the
statistics.

G

DBNAME
VARCHAR(24)
NOT NULL

Database that contains the table space named in
TSNAME.

G

TSNAME
VARCHAR(24)
NOT NULL

Table space that contains the table. G

PARTITION
SMALLINT
NOT NULL

Partition number of the table space that contains the table. G

OWNER
VARCHAR(128)
NOT NULL

The schema of the table. G

NAME
VARCHAR(128)
NOT NULL

Name of the table. G

CARDF
FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of rows in the partition. The value is -1 if
statistics have not been gathered.

S

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2421

SYSIBM.SYSTRIGGERS table
The SYSIBM.SYSTRIGGERS table contains one row for each trigger.

Column name Data type Description Use

NAME
VARCHAR(128)
NOT NULL

Name of the trigger and trigger package. G

SCHEMA
VARCHAR(128)
NOT NULL

Schema of the trigger. This implicit or explicit qualifier for
the trigger name is also used for the collection ID of the
trigger package.

G

SMALLINT
NOT NULL

Not used. N

DBID
SMALLINT
NOT NULL

Internal identifier of the database for the trigger. G

OBID
SMALLINT
NOT NULL

Internal identifier of the trigger. G

OWNER
VARCHAR(128)
NOT NULL

Owner of the trigger. G

CREATEDBY
VARCHAR(128)
NOT NULL

Primary authorization ID of the user who created the
trigger.

G

TBNAME
VARCHAR(128)
NOT NULL

Name of the table or view. G

TBOWNER
VARCHAR(128)
NOT NULL

Qualifier of the name of the table or view to which this
trigger applies.

G

TRIGTIME
CHAR(1)
NOT NULL

Time when triggered actions are applied to the base table,
relative to the event that activated the trigger:
A Trigger is applied after the event.
B Trigger is applied before the event.
I Trigger is applied instead of the event

G

TRIGEVENT
CHAR(1)
NOT NULL

Operation that activates the trigger:
I Insert
D Delete
U Update

G

GRANULARITY
CHAR(1)
NOT NULL

Trigger is executed once per:
S Statement
R Row

G

CREATEDTS
TIMESTAMP
NOT NULL

Time when the CREATE statement was executed for this
trigger. The time value is used in resolving functions,
distinct types, and stored procedures. It is also used to
order the execution of multiple triggers.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

2422 SQL Reference

Column name Data type Description Use

VARCHAR(6000)
NOT NULL

Not used. N

REMARKS
VARCHAR(762)
NOT NULL

A character string provided by the user with the
COMMENT statement.

G

TRIGNAME
VARCHAR(128)
NOT NULL

Unused G

OWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank Authorization ID
L Role

G

ENVID
INTEGER
NOT NULL WITH
DEFAULT

Internal environment identifier. G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. Blank
if created prior to Version 9. See Release dependency
indicators for all other values.

G

CHAR(1)
NOT NULL
WITH DEFAULT

Reserved for IBM use. I

CHAR(1)
NOT NULL
WITH DEFAULT

Reserved for IBM use. I

INTEGER
NOT NULL

Reserved for IBM use. I

VARCHAR(96)
NOT NULL

Reserved for IBM use. I

SECURE CHAR(1)
NOT NULL
WITH DEFAULT 'N'

Indicates if the trigger is secured:

N The trigger is not secured

Y The trigger is secured

G

ALTEREDTS TIMESTAMP
NOT NULL

Time when the last ALTER statement was executed for
this trigger.

G

ROWID ROWID
NULL
GENERATED
ALWAYS

ROWID column, created for the lob columns in this table. G

STATEMENT CLOB(2M)
NOT NULL
WITH DEFAULT

The text of the entire CREATE TRIGGER statement that
was used to create the object.

G

Appendix. Additional information for DB2 SQL 2423

SYSIBM.SYSTRIGGERS_STMT table
The SYSIBM.SYSTRIGGERS_STMT table is an auxiliary table for the STATEMENT
column of the SYSIBM.SYSTRIGGERS table and is required to hold LOB data.

Column name Data type Description Use

STATEMENT CLOB(2M)
NOT NULL
WITH DEFAULT

The text of the entire CREATE TRIGGER statement that
was used to create the object.

G

2424 SQL Reference

SYSIBM.SYSUSERAUTH table
The SYSIBM.SYSUSERAUTH table records the system privileges that are held by
users.

Column name Data type Description Use

GRANTOR
VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the privileges. G

GRANTEE
VARCHAR(128)
NOT NULL

Authorization ID of the user that holds the privilege.
Could also be PUBLIC for a grant to PUBLIC.

G

CHAR(12)
NOT NULL

Internal use only I

CHAR(6)
NOT NULL

Not used N

CHAR(8)
NOT NULL

Not used N

CHAR(1)
NOT NULL

Not used N

AUTHHOWGOT
CHAR(1)
NOT NULL
WITH DEFAULT

Authorization level of the user from whom the privileges
were received. This authorization level is not necessarily
the highest authorization level of the grantor.
blank Not applicable
C DBCTRL
D DBADM
E SECADM
G ACCESSCTRL
K SQLADM
L SYSCTRL
M DBMAINT
O SYSOPR
S SYSADM

G

CHAR(1)
NOT NULL

Not used N

BINDADDAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can use the BIND subcommand
with the ADD option:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

BSDSAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can issue the RECOVER BSDS
command:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

Appendix. Additional information for DB2 SQL 2425

Column name Data type Description Use

CREATEDBAAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can create databases and
automatically receive DBADM authority over the new
databases:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

CREATEDBCAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can execute the CREATE
DATABASE statement to create new databases and
automatically receive DBCTRL authority over the new
databases:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

CREATESGAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can execute the CREATE
STOGROUP statement to create new storage groups:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

DISPLAYAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can use the DISPLAY commands:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

RECOVERAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can use the RECOVER INDOUBT
command:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

STOPALLAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can use the STOP command:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

STOSPACEAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can use the STOSPACE utility:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

SYSADMAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE has system administration
authority:
blank Privilege is not held
G Privilege was granted with the GRANT option
Y Privilege was granted without the GRANT

option

GRANTEE has the privilege with the GRANT option for
a value of either Y or G.

G

SYSOPRAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE has system operator authority:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

TRACEAUTH
CHAR(1)
NOT NULL

Whether the GRANTEE can issue the START TRACE and
STOP TRACE commands:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

2426 SQL Reference

Column name Data type Description Use

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

MON1AUTH
CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can obtain IFC serviceability data:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

MON2AUTH
CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can obtain IFC data:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

CREATEALIASAUTH
CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can execute the CREATE ALIAS
statement:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege held without the GRANT option

G

SYSCTRLAUTH
CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE has SYSCTRL authority:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option
GRANTEE has the privilege with the GRANT option for
a value of either Y or G.

G

BINDAGENTAUTH
CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE has BINDAGENT privilege:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

ARCHIVEAUTH
CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE is privileged to use the ARCHIVE
LOG command:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

CHAR(1)
NOT NULL WITH
DEFAULT

Not used N

CHAR(1)
NOT NULL WITH
DEFAULT

Not used N

GRANTEDTS
TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. The
value is '1985-04-01.00.00.00.000000' for the one
installation row.

G

CREATETMTAB-
AUTH CHAR(1)

NOT NULL WITH
DEFAULT

Whether the GRANTEE has CREATETMTABAUTH
privilege:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

Appendix. Additional information for DB2 SQL 2427

Column name Data type Description Use

GRANTEETYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantee:
blank Authorization ID
L Role

G

GRANTORTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank Authorization ID
L Role

G

DEBUGSESSION-
AUTH CHAR(1)

NOT NULL WITH
DEFAULT

Whether the GRANTEE has DEBUGSESSION privilege:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

EXPLAINAUTH CHAR(1)
NOT NULL
WITH DEFAULT

Whether the GRANTEE can explain and prepare
statements:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

SQLADMAUTH CHAR(1)
NOT NULL
WITH DEFAULT

Whether the GRANTEE has SQLADM authority:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

SDBADMAUTH CHAR(1)
NOT NULL
WITH DEFAULT

Whether the GRANTEE has system DBADM authority:
blank Privilege is not held
Y Privilege is held without the GRANT option

G

DATAACCESSAUTH CHAR(1)
NOT NULL
WITH DEFAULT

Whether the GRANTEE has DATAACCESS authority:
blank Privilege is not held
Y Privilege is held without the GRANT option

G

ACCESSCTRLAUTH CHAR(1)
NOT NULL
WITH DEFAULT

Whether the GRANTEE has ACCESSCTRL authority:
blank Privilege is not held
Y Privilege is held without the GRANT option

G

CREATESECURE-
AUTH

CHAR(1)
NOT NULL
WITH DEFAULT

Whether the GRANTEE can create secured objects
(triggers and user-defined functions):
blank Privilege is not held
Y Privilege is held without the GRANT option

G

2428 SQL Reference

SYSIBM.SYSVARIABLES table
The SYSIBM.SYSVARIABLES table contains one row for each global variable that is
created.

Column name Data type Description Use

VARID BIGINT
NOT NULL
GENERATED ALWAYS
AS IDENTITY

The identifier of the global variable. G

SCHEMA VARCHAR(128)
NOT NULL

The schema name of the global variable. G

NAME VARCHAR(128)
NOT NULL

The unqualified name of the global variable. G

OWNER VARCHAR(128)
NOT NULL

The authorization ID of the owner of the global variable. G

OWNERTYPE CHAR(1)
NOT NULL

The type of owner of the global variable:

L The owner is a role

blank The owner is an authorization ID

G

RELCREATED CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for all other values.

G

CREATEDTS TIMESTAMP
NOT NULL

Time at which the global variable was created. G

TYPESCHEMA VARCHAR(128)
NOT NULL

The schema name of the data type. For built-in data
types, this value is SYSIBM.

G

TYPENAME VARCHAR(128)
NOT NULL

The unqualified name of the data type. G

DATATYPEID INTEGER
NOT NULL

For a built-in data type, the internal ID of the built-in
type. For a distinct type, the internal ID of the distinct
type.

S

SOURCETYPEID INTEGER
NOT NULL

For a built-in data type, 0. For a distinct type, the internal
ID of the built-in data type on which the distinct type is
based.

S

LENGTH INTEGER
NOT NULL

The maximum length of the global variable. G

SCALE SMALLINT
NOT NULL

The scale of the global variable. G

CCSID INTEGER
NOT NULL

The CCSID of the global variable. G

Appendix. Additional information for DB2 SQL 2429

|

|
|

|||||

||
|
|
|

||

||
|
||

||
|
||

||
|
||

||
|
|

||

||

|

||
|
|
|
|

||
|
||

||
|
|
|
|

||
|
||

||
|
|
|
|

|

||
|
|
|
|

|

||
|
||

||
|
||

||
|
||

Column name Data type Description Use

DEFAULT CHAR(3)
NOT NULL

The default value of the global variable.

This column can contain one of the following values:
N The global variable does not have a default

value.
S The default value is the value of the SQL

authorization ID of the process at the time that a
default value is used.

1 The default value is a string constant.
2 The default value is a floating-point constant.
3 The default value is a decimal constant.
4 The default value is an integer constant.
5 The default value is a hexadecimal character

string.
6 The default value is a UX string.
7 The global variable has a graphic data type and

has a default value that is a character string
constant.

8 The global variable has a character data type and
has a default value that is a character string
constant.

9 The default value is a DECFLOAT constant

If this column contains one of the following values, the
default value of the global variable is the value of the
indicated special register at the time that a default value
is used:
AES CURRENT APPLICATION ENCODING

SCHEME
ACT CURRENT CLIENT_ACCTNG
APN CURRENT CLIENT_APPLNAME
CID CURRENT CLIENT_USERID
WSN CURRENT CLIENT_WRKSTNNAME
DAT CURRENT DATE
DBG CURRENT DEBUG MODE
DEC CURRENT DECFLOAT ROUNDING MODE
DEG CURRENT DEGREE
EXP CURRENT EXPLAIN MODE
LCT CURRENT LOCALE LC_CTYPE
MTT CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION
MEM CURRENT MEMBER
HNT CURRENT OPTIMIZATION HINT
CPP CURRENT PACKAGE PATH
CPS CURRENT PACKAGESET
PTH CURRENT PATH
PRC CURRENT PRECISION
RFA CURRENT REFRESH AGE
RVS CURRENT ROUTINE VERSION
RUL CURRENT RULES
SCH CURRENT SCHEMA
SVR CURRENT SERVER
TIM CURRENT TIME
TST CURRENT TIMESTAMP
STZ SESSION TIME ZONE
U SESSION_USER

G

2430 SQL Reference

||||

||
|
|

|
||
|
||
|
|
||
||
||
||
||
|
||
||
|
|
||
|
|
||

|
|
|
|
||
|
||
||
||
||
||
||
||
||
||
||
||
|
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

|

Column name Data type Description Use

ROWID ROWID
NOT NULL
GENERATED
ALWAYS

The ROWID value for the lob columns in this table. G

DEFAULTTEXT CLOB(2M)
NOT NULL
WITH DEFAULT

The text of the default value of the global variable. G

BLOB(2M)
NOT NULL

Reserved for IBM use. I

ENVID INTEGER
NOT NULL

Internal environment identifier. G

REMARKS VARCHAR(762)
NOT NULL

A character string about this global variable that is
provided by using the COMMENT statement.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

Appendix. Additional information for DB2 SQL 2431

||||

||
|
|
|

||

||
|
|

||

||
|
||

||
|
||

||
|
|
|
|

||
|
|
|
|

|
|

|

|
|

SYSIBM.SYSVARIABLEAUTH table
The SYSIBM.SYSVARIABLEAUTH table contains one row for each privilege of
each authorization ID that has privileges on a global variable.

Column name Data type Description Use

GRANTOR VARCHAR(128)
NOT NULL

The grantor of the privilege. G

GRANTORTYPE CHAR(1)
NOT NULL

The type of grantor:

blank Grantor is an authorization ID

L Grantor is a role

G

GRANTEE VARCHAR(128)
NOT NULL

The holder of the privilege. G

GRANTEETYPE CHAR(1)
NOT NULL

The type of grantee:

blank Grantee is an authorization ID

L Grantee is a role

P Grantee is a package. The grantee is a package if
COLLID is a value other than blank.

G

SCHEMA VARCHAR(128)
NOT NULL

The schema name of the global variable. G

NAME VARCHAR(128)
NOT NULL

The unqualified name of the global variable. G

COLLID VARCHAR(128)
NOT NULL

If the grantee is a package, this value is the COLLID of
the package.

G

CONTOKEN CHAR(8)
NOT NULL
FOR BIT DATA

If the grantee is a package, this value is the consistency
token of the DBRM from which the package is derived.
Otherwise, this value is blank.

G

READAUTH CHAR(1)
NOT NULL

The privilege to read the global variable:

blank The READ privilege is not held

G The READ privilege is held with the GRANT
option

Y The READ privilege is held without the GRANT
option

G

WRITEAUTH CHAR(1)
NOT NULL

The privilege to write to the global variable:

blank The WRITE privilege is not held

G The WRITE privilege is held with the GRANT
option

Y The WRITE privilege is held without the
GRANT option

G

2432 SQL Reference

|

|
|

|||||

||
|
||

||
|
|

||

||

|

||
|
||

||
|
|

||

||

||
|

|

||
|
||

||
|
||

||
|
|
|
|

||
|
|

|
|
|

|

||
|
|

||

||
|

||
|

|

||
|
|

||

||
|

||
|

|

Column name Data type Description Use

AUTHHOWGOT CHAR(1)
NOT NULL

The authorization level of the user who granted the
privileges:

blank Not applicable

E SECADM

G ACCESSCTRL

S SYSADM

T DATAACCESS
This authorization level is not necessarily the highest
authority level of the grantor.

G

GRANTEDTS TIMESTAMP
NOT NULL

The time when the GRANT statement was executed. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2433

||||

||
|
|
|

||

||

||

||

||
|
|

|

||
|
||

||
|
|
|
|

|
|

|

|
|

SYSIBM.SYSVARIABLES_DESC table
The SYSIBM.SYSVARIABLES_DESC table is an auxiliary table for the
SYSIBM.SYSVARIABLES table.

Column name Data type Description Use

BLOB(2M) IBM-internal use only. I

2434 SQL Reference

|

|
|

|||||

||||
|
|

SYSIBM.SYSVARIABLES_TEXT table
The SYSIBM.SYSVARIABLES_TEXT table is an auxiliary table for the
DEFAULTTEXT column of the SYSIBM.SYSVARIABLES table.

Column name Data type Description Use

DEFAULTTEXT CLOB(2M) The text of the default value of the global variable. G

Appendix. Additional information for DB2 SQL 2435

|

|
|

|||||

||||
|
|

SYSIBM.SYSVIEWDEP table
The SYSIBM.SYSVIEWDEP table records the dependencies of views on tables,
functions, and other views.

Column name Data type Description Use

BNAME
VARCHAR(128)
NOT NULL

Name of the object on which the view is dependent. If the
object type is a function (BTYPE='F'), the name is the
specific name of the function.

G

BCREATOR
VARCHAR(128)
NOT NULL

Authorization ID of the owner of BNAME. G

BTYPE
CHAR(1)
NOT NULL

Type of object:
F Function
G Created global temporary table
M Materialized query table
T Table
V View
W SYSTEM_TIME period
Z BUSINESS_TIME period

G

DNAME
VARCHAR(128)
NOT NULL

Name of the view. G

DCREATOR
VARCHAR(128)
NOT NULL

The schema of the view. G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

BSCHEMA
VARCHAR(128)
NOT NULL WITH
DEFAULT

Schema of BNAME. G

DTYPE
CHAR(1)
NOT NULL

Type of table:
F SQL function
M Materialized query table
V View

G

DOWNER
VARCHAR(128)
NOT NULL WITH
DEFAULT

Authorization ID of the owner of the view, blank for
views that were created in a DB2 release prior to Version
9.

G

OWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank Authorization ID
L Role

G

2436 SQL Reference

SYSIBM.SYSVIEWS table
The SYSIBM.SYSVIEWS table contains one or more rows for each view,
materialized query table, or user-defined SQL function.

Column name Data type Description Use

NAME
VARCHAR(128)
NOT NULL

Name of the object. G

CREATOR
VARCHAR(128)
NOT NULL

The schema of the object. G

SMALLINT
NOT NULL

Not used N

CHECK
CHAR(1)
NOT NULL

Whether the WITH CHECK OPTION clause was specified
in the CREATE VIEW statement:
N No
C Yes with the cascaded semantic
Y Yes with the local semantic
The value is N if the view has no WHERE clause, or the
object is not a view.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

VARCHAR(1500)
NOT NULL

Not used N

PATHSCHEMAS
VARCHAR(2048)
NOT NULL WITH
DEFAULT

SQL path at the time the object was defined. The path is
used to resolve unqualified data type and function names
used in the object definition.

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. Blank
if created prior to Version 9. See Release dependency
indicators for all other values.

G

TYPE
CHAR(1)
NOT NULL

Type of table:
F SQL function
M Materialized query table
V View

G

REFRESH
CHAR(1)
NOT NULL WITH
DEFAULT

Refresh mode:
D A materialized query table with a deferred

refresh mode
blank Not a materialized query table

G

ENABLE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether query optimization is enabled:
Y Enabled
N Disabled
blank Not a materialized query table

G

MAINTENANCE
CHAR(1)
NOT NULL WITH
DEFAULT

Maintenance mode:
S For a REFRESH = 'D', a materialized query table

that is maintained by the system.
U For a REFRESH = 'D', a materialized query table

that is maintained by the user.
blank Not a materialized query table.

G

Appendix. Additional information for DB2 SQL 2437

Column name Data type Description Use

REFRESH_TIME
TIMESTAMP
NOT NULL WITH
DEFAULT

For REFRESH = 'D' and MAINTENANCE = 'S', the
timestamp of the REFRESH TABLE statement that last
refreshed the data. Otherwise, this is the default
timestamp ('0001-01-01.00.00.00.000000').

G

ISOLATION
CHAR(1)
NOT NULL WITH
DEFAULT

Isolation level when the materialized query table is
created or altered from a base table:
R RR (repeatable read)
S CS (cursor stability)
T RS (read stability)
U UR (uncommitted read)
blank Not a materialized query table

G

SIGNATURE
VARCHAR(1024)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Contains an internal description. Used for materialized
query tables.

G

APP_ENCODING_
CCSID INTEGER

NOT NULL WITH
DEFAULT

CCSID of the current application encoding scheme at the
time the object was created. For objects created prior to
Version 8 of DB2, the value is 0.

G

OWNER
VARCHAR(128)
NOT NULL WITH
DEFAULT

Authorization ID of the owner of the view, blank for
views that were created in a DB2 release prior to Version
9.

G

OWNERTYPE
CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank Authorization ID
L Role

G

ENVID INTEGER
NOT NULL
WITH DEFAULT

Internal environment identifier. G

ROWID ROWID
NULL
GENERATED

ALWAYS

ROWID column, created for the lob columns in this table G

STATEMENT CLOB(2M)
NOT NULL
WITH DEFAULT

The text of the entire CREATE VIEW statement that was
used to create the object.

G

BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only. I

2438 SQL Reference

SYSIBM.SYSVIEWS_STMT table
The SYSIBM.SYSVIEWS_STMT table is an auxiliary table for the STATEMENT
column of the SYSIBM.SYSVIEWS table and is required to hold LOB data.

Column name Data type Description Use

STATEMENT CLOB(2M)
NOT NULL
WITH DEFAULT

The text of the statement that was used to create the
object.

G

Appendix. Additional information for DB2 SQL 2439

SYSIBM.SYSVIEWS_TREE table
The SYSIBM.SYSVIEWS_TREE table is an auxiliary table for the PARSETREE
column of the SYSIBM.SYSVIEWS table and is required to hold LOB data.

Column name Data type Description Use

BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only. I

2440 SQL Reference

SYSIBM.SYSVOLUMES table
The SYSIBM.SYSVOLUMES table contains one row for each volume of each
storage group.

Column name Data type Description Use

SGNAME
VARCHAR(128)
NOT NULL

Name of the storage group. G

SGCREATOR
VARCHAR(128)
NOT NULL

Authorization ID of the owner of the storage group. G

VOLID
VARCHAR(18)
NOT NULL

Serial number of the volume or * if SMS-managed. G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. Blank
if created prior to Version 9. See Release dependency
indicators for all other values.

G

Appendix. Additional information for DB2 SQL 2441

SYSIBM.SYSXMLRELS table
The SYSIBM.SYSXMLRELS table contains one row for each XML table that is
created for an XML column.

Column name Data type Description Use

TBOWNER
VARCHAR(128)
NOT NULL

Schema or qualifier of the base table. G

TBNAME
VARCHAR(128)
NOT NULL

Name of the base table. G

COLNAME
VARCHAR(128)
NOT NULL

Name of the XML column in the base table. G

XMLTBOWNER
VARCHAR(128)
NOT NULL

Schema or qualifier of the XML table. G

XMLTBNAME
VARCHAR(128)
NOT NULL

Name of the XML table. G

XMLRELOBID
INTEGER
NOT NULL

Internal identifier of the relationship between the base
table and the XML table.

G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

CREATEDTS
TIMESTAMP
NOT NULL

Time when the XML table was created. G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for the values.

G

2442 SQL Reference

SYSIBM.SYSXMLSTRINGS table
Each row of the SYSIBM.SYSXMLSTRINGS table contains a single string and its
unique ID that are used to condense XML data. The string can be an element
name, attribute name, name space prefix, or a namespace URI.

Column name Data type Description Use

STRINGID
INTEGER
NOT NULL
GENERATED
ALWAYS
AS IDENTITY

Unique ID for the string. G

STRING
VARCHAR(1000)
NOT NULL

The string data. G

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix. Additional information for DB2 SQL 2443

SYSIBM.USERNAMES table
Each row in the SYSIBM.USERNAMES table is used to carry out one outbound ID
translation or inbound ID translation and “come from” checking.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

TYPE
CHAR(1)
NOT NULL

How the row is to be used:
I For inbound translation and “come from”

checking.
O For outbound translation.
S For outbound system AUTHID to establish a

trusted connection.

G

AUTHID
VARCHAR(128)
NOT NULL WITH
DEFAULT

Authorization ID to be translated. Applies to any
authorization ID if blank.

G

LINKNAME
VARCHAR(24)
NOT NULL

Identifies the VTAM or TCP/IP network locations
associated with this row. A blank value in this column
indicates this name translation rule applies to any TCP/IP
or SNA partner.

If a non-blank LINKNAME is specified, one or both of the
following statements must be true:

v A row exists in SYSIBM.LUNAMES whose LUNAME
matches the value specified in the
SYSIBM.USERNAMES LINKNAME column. This row
specifies the VTAM site associated with this name
translation rule.

v A row exists in SYSIBM.IPNAMES whose LINKNAME
matches the value specified in the
SYSIBM.USERNAMES LINKNAME column. This row
specifies the TCP/IP host associated with this name
translation rule.

Inbound name translation and “come from” checking
are not performed for TCP/IP clients.

G

NEWAUTHID
VARCHAR(128)
NOT NULL WITH
DEFAULT

Translated value of AUTHID. Blank specifies no
translation.NEWAUTHID can be stored as encrypted data
by calling the DSNLEUSR stored procedure. To send the
encrypted value of AUTHID across a network, one of the
encryption security options in the SYSIBM.IPNAMES
table should be specified.

G

PASSWORD
VARCHAR(255)
NOT NULL WITH
DEFAULT

Password to accompany an outbound request, if
passwords are not encrypted by RACF. If passwords are
encrypted, or the row is for inbound requests, the column
is not used.PASSWORD can be stored as encrypted data
by calling the DSNLEUSR stored procedure. To send the
encrypted value of PASSWORD across a network, one of
the encryption security options in the SYSIBM.IPNAMES
table should be specified.

G

IBMREQD
CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

2444 SQL Reference

SYSIBM.SYSXMLTYPMOD table
The SYSIBM.SYSXMLTYPMOD table contains rows about the XML type modifiers
of XML columns. Rows in this table can be inserted, updated and deleted.

Column name Data type Description Use

XML_TYPEMOD
_ID

INTEGER
NOT NULL
GENERATED ALWAYS
AS IDENTITY

An id generated for the XML type modifier, it is an
identity column and primary key.

G

TYPE_
ANNOTATION

CHAR(1)
NOT NULL

Indicate whether there is type annotation.

Y WITH type annotation

N with no type annotation.

G

CREATEDTS TIMESTAMP
NOT NULL

The timestamp when this type modifier is created. G

ALTEREDTS TIMESTAMP
NOT NULL

The timestamp when this type modifier is altered G

RELCREATED CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for the values.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

CREATEDBY VARCHAR(128)
NOT NULL

Primary authorization ID of the user who created the
database.

G

Appendix. Additional information for DB2 SQL 2445

SYSIBM.SYSXMLTYPMSCHEMA table
The SYSIBM.SYSXMLTYPMSCHEMA table contains the XML schema information
for an XML type modifier. It contains one row per XML schema for an XML type
modifier.

Column name Data type Description Use

XML_TYPEMOD
_ID

INTEGER
NOT NULL

The id for the XML type modifier. G

XSROBJECTID INTEGER
NOT NULL

The id for an XML schema registered in XSR. G

ELEMENT_
NAMESPACE

INTEGER
NOT NULL

String id for the namespace name of the root element
node. By default, it is the TARGETNAMESPACE of the
XML schema. It would be 0 if it is NO NAMESPACE.

G

ELEMENT_
NAME

INTEGER
NOT NULL

String id for the local name of the root element node. It
would be 0 if it is not specified.

G

CREATEDTS TIMESTAMP
NOT NULL

The timestamp when this type modifier is created. G

ALTEREDTS TIMESTAMP
NOT NULL

The timestamp when this type modifier is altered G

RELCREATED CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for the values.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other
values, see Release dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

2446 SQL Reference

DB2 directory tables
DB2 for z/OS maintains a set of tables (in database DSNDB01) called the DB2
directory.

About these topics

These topics describe the directory tables that allow SELECT operations by
describing the columns of those tables.

Authorized users can query the directory; however, it is primarily intended for use
by DB2 and is therefore subject to change.

Users must have one of the following privileges to execute SELECT statements on
the directory tables:
v Installation SYSADM
v SYSADM
v SYSCTRL
v ACCESSCTRL
v DATAACCESS
v SECADM
v SQLADM
v System DBADM
v DBADM on DSNDB01
v The SELECT privilege on a specific table

All directory tables are qualified by SYSIBM. Do not use this qualifier for
user-defined tables.

The directory tables are updated by DB2 during normal operations in response to
certain SQL statements, commands, and utilities.

Programming interface information

Not all directory table columns are part of the general-use programming interface.
Whether a column is part of this interface is indicated in a column labeled “Use”
in the table that describes the column. The values that “Use” can assume are as
follows:

Value Meaning
S Column is part of the product-sensitive interface
I Column is for internal use only

For columns for which “Use” is I, the name of the column and its description do
not appear in the explanation of the column.

Appendix. Additional information for DB2 SQL 2447

Directory table spaces and indexes
DB2 directory tables are contained in certain table spaces and have indexes.

The following table lists the table space and indexes for each directory table and
lists the index fields for each index. The indexes are in ascending order.

The directory table space, tables, and indexes are primarily intended for use by
DB2 and are therefore subject to change.

Table 177. Table spaces and indexes for the directory tables

TABLE SPACE
DSNDB01. ...

TABLE
SYSIBM. ...

INDEX
SYSIBM. ... INDEX FIELDS

DBD01 DBDR DSNDB01X DBID.SECTION

SYSDBDXA SYSDBD_DATA DSNDB1XA DBD_DATA

SCT02 SCTR DSNSCT02 SCTNAME.SCTSEC.
SPTSEQ

SPT01 SPTR DSNSPT01 SPTPID.SPTSEC.
SPTSEQ

DSNSPT02 version.SPTID.
SPTSEC.SPTSEQ

SYSSPUXA SYSSPTSEC_DATA DSNSPDXA SPTSEC_DATA

SYSSPUXB SYSSPTSEC_EXPL DSNSPEXA SPTSEC_EXPL

SYSLGRNX SYSLGRNX DSNLLX01 LGRDBID.LGRPSID.
LGRPART.LGRMEMB.
LGRSLRSN

DSNLLX02 LGRDBID.LGRPSID.
LGRSLRSN

SYSUTILX SYSUTIL DSNLUX01 USUUID

SYSUTILX DSNLUX02 UTILID.SEQNO

2448 SQL Reference

SYSIBM.DBDR table
The DBDR table stores one row for each DBD section.

Column name Data type Description Use

INTEGER Not used S

DBID SMALLINT DBID of the database S

SECTION SMALLINT DBD section number S

DBD_ROWID ROWID ID that is used to support the DBD_DATA column S

DBD_DATA BLOB(2G) DBD data for the section I

Appendix. Additional information for DB2 SQL 2449

SYSIBM.SYSDBD_DATA table
The SYSIBM.SYSDBD_DATA table is an auxiliary table for the SYSIBM.DBDR table.

Column name Data type Description Use

DBD_DATA BLOB(2G) Contents of the DBD section. I

2450 SQL Reference

SYSIBM.SCTR table
The SYSIBM.SCTR table stores Skeleton Cursor Tables (SKCT) information.

Column name Data type Description Use

SCTLL CHAR (4)
FOR BIT DATA

The length of the record. S

SCTNAME CHAR (14)
FOR BIT DATA

The plan name, section number, and sequence number. S

SCTDAT VARCHAR(4028) SKCT data. I

Appendix. Additional information for DB2 SQL 2451

|

|

|||||

||
|
||

||
|
||

||||
|
|

SYSIBM.SPTR table
The SYSIBM.SPTR table stores Skeleton Package Table (SKPT) information

Column name Data type Description Use

SPTLL INTEGER S

SPTLOCID VARCHAR(128) S

SPTCOLID VARCHAR(128) S

SPTNAME VARCHAR(128) S

SPTCONID CHAR(8)
FOR BIT DATA

S

SPTRESV CHAR(2)
FOR BIT DATA

S

SPTSEC CHAR(4)
FOR BIT DATA

S

SPTSEQ CHAR(2)
FOR BIT DATA

S

SPTBODY VARCHAR(1) S

SPTVER VARCHAR(64) S

SPT_ROWID ROWID S

SPT_DATA BLOB(2G) I

SPT_EXPLAIN BLOB(2G) I

2452 SQL Reference

SYSIBM.SYSSPTSEC_DATA table
The SYSIBM.SYSSPTSEC_DATA table is an auxiliary table that contains package
data for the SYSIBM.SPTR table.

Column name Data type Description Use

SPT_DATA BLOB(2G) Contents of the SKPT section I

Appendix. Additional information for DB2 SQL 2453

SYSIBM.SYSSPTSEC_EXPL table
The SYSIBM.SYSSPTSEC_EXPL table is an auxiliary table that contains static
package explain data for the SYSIBM.SPTR table.

Column name Data type Description Use

SPT_EXPLAIN BLOB(2G) Contents of the SKPT section explain block I

2454 SQL Reference

SYSIBM.SYSLGRNX table
The SYSLGRNX table stores recovery log ranges that record the time an index
space defined with COPY YES or a table space was open for updates. This
provides an efficient way for DB2 to access the appropriate log records for
recovery, rather than having to scan every record in the recovery log for a
particular table.

Column name Data type Description Use

LGRDBID CHAR(2)
FOR BIT DATA

DBID of the modified object S

LGRPSID CHAR(2)
FOR BIT DATA

OBID of the modified object S

LGRUCDT CHAR(6) Modification date in the form mmddyy S

LGRUCTM CHAR(8) Modification time in the form hhmmssth S

LGRSRBA1 CHAR(10)
FOR BIT DATA

Starting RBA S

LGRSPBA1 CHAR(10)
FOR BIT DATA

Stopping RBA S

LGRPART SMALLINT Partition number in the table space or index space S

LGRSLRSN1 CHAR(10)
FOR BIT DATA

Starting LRSN of update log records for data sharing.
Otherwise, the system clock value that corresponds to the
first update log record.

S

LGRELRSN1 CHAR(10)
FOR BIT DATA

Ending LRSN of update log records for data sharing.
Otherwise, the system clock value that corresponds to the
last update log record.

S

LGRMEMB CHAR(2) Data sharing member ID of the modifying DB2
subsystem. X'0000' for a non-data-sharing environment.

S

Note:

1. A SELECT from SYSIBM.SYSLGRNX displays this column in either 6-byte or
10-byte format. Before CATENFM of SYSLGRNX the data and the display are
in 6-byte format. After CATENFM of SYSLGRNX the data and the display are
in 10-byte format.

Appendix. Additional information for DB2 SQL 2455

|
|

|
|

|
|

|
|

|
|
|
|

SYSIBM.SYSUTIL table
The SYSUTIL table stores status information about DB2 utilities that are active or
stopped. Each record is uniquely identified by the utility identifier. Each row of the
table contains the information for one utility execution step. When the utility
completes, the corresponding entries in the SYSUTIL table are deleted.

Name Data type Description Use

USUUID CHAR(16) UTILID value that was passed in a JOB statement
parameter

S

USUJOBNM CHAR(8) Job name from the JOB statement S

USUAUID CHAR(8) Authorization ID of the invoker S

USURDATE CHAR(4)
FOR BIT DATA

Date of the utility S

USUREL CHAR(3) Utility release level at restart time S

USUIRQD CHAR(1) IBM required field S

USULSIZE CHAR(4)
FOR BIT DATA

List size S

USULCUR CHAR(4)
FOR BIT DATA

The object that is currently being processed or was last
processed

S

USUUTNAM CHAR(8) Name of the currently executing utility S

USUPHASE CHAR(8) Current phase of the currently executing utility S

USUDSNU CHAR(2)
FOR BIT DATA

Data set or piece number S

USUDSNU2 CHAR(2)
FOR BIT DATA

Ending number of the partition range S

USUSTATU CHAR(1) Status of the currently executing utility S

USUTREQ CHAR(1) Termination requested (Y or N) S

USUFORCE CHAR(1) Element of USO forced (Y or N) S

USURLOK CHAR(1) Reload was successful (Y or N) S

USUCMPOK CHAR(1) Compatibility check passed (Y or N) S

USURSFLG BIT(8) Utility restriction flags S

USURTFLG BIT(8) Term settings S

USURSFLG2 BIT(8) Utility flags S

USUPOS CHAR(4)
FOR BIT DATA

Relative USM position in the SYSIN DD statement S

USUDONE CHAR(8)
FOR BIT DATA

Number of objects processed S

USUCKSUM CHAR(4)
FOR BIT DATA

USU checksum S

USUDBOB CHAR(2)
FOR BIT DATA

DBID for the table space S

USUPSID CHAR(2)
FOR BIT DATA

PSID for the table space or index space S

USUPSDD CHAR(2)
FOR BIT DATA

Secondary PSID for RECOVER INDEX data page set S

USUCATMGFRM CHAR(1)
FOR BIT DATA

Saved catalog level for the release from which migration
is done, from the DBD01 header page

S

2456 SQL Reference

Name Data type Description Use

USUOFLAG CHAR(1)
FOR BIT DATA

Flags for object properties S

USUDBNAM CHAR(8) Database name S

USUSPNAM CHAR(8) Table space or index space name S

USUMEMBR CHAR(8) Member name S

USUOCATR CHAR(1)
FOR BIT DATA

Saved catalog release level, from the DBD01 header page S

USUOCATV CHAR(1)
FOR BIT DATA

Saved catalog version level, from the DBD01 header page S

USUOCATCV CHAR(1)
FOR BIT DATA

Saved migration mode, from the DBD01 header page S

USUOCATH CHAR(1)
FOR BIT DATA

Saved highest version of the catalog S

USUUDA CHAR(150)
FOR BIT DATA

Utility-dependent data S

USURTIME CHAR(4)
FOR BIT DATA

Latest utility start time S

USURLSN CHAR(6)
FOR BIT DATA

Latest utility start LRSN S

USURDATO CHAR(4)
FOR BIT DATA

Original utility start date S

USURTIMO CHAR(4)
FOR BIT DATA

Original utility start time S

USURLSNO CHAR(4)
FOR BIT DATA

Original utility start LRSN S

USUR5 CHAR(10)
FOR BIT DATA

Reserved I

USURCNTR CHAR(31)
FOR BIT DATA

Generic counter or value holder S

USURLSNX CHAR(10)
FOR BIT DATA

Latest utility start LRSN value S

USURLSOX CHAR(10)
FOR BIT DATA

Original utility start LRSN value S

USUR6 CHAR(72)
FOR BIT DATA

Reserved I

USUUSTRN CHAR(27000)
FOR BIT DATA

Utility-dependent restart information S

Appendix. Additional information for DB2 SQL 2457

||
|
||

||
|
||

|
|

SYSIBM.SYSUTILX table
The SYSUTILX table is a dependent of the SYSUTIL table. A record is created in
the SYSUTILX table when the amount of information in the parent record exceeds
the record size of SYSUTIL. The rows in SYSUTILX are uniquely identified by the
utility identifier and sequence number.

Column name Data type Description Use

UTILID CHAR(16) The utility ID that identifies the parent record in
SYSIBM.SYSUTIL

S

SEQNO SMALLINT The sequence number of this row S

CHAR(12) Reserved I

CHECKPOINT VARCHAR(32000) The overflow checkpoint/restart information S

Performance information for SQL application programming
Efficient applications are an important first step to good system and application
performance. As you code applications that access data in DB2, consider
performance objectives in your application design.

The following topics can help you understand how application programmers can
consider performance as they write applications that access data in DB2 for z/OS.

Concurrency and programming

The goal is to program and prepare applications in a way that:
v Protects the integrity of the data that is being read or updated from being

changed by other applications.
v Minimizes the length of time that other access to the data is prevented.

For more information about DB2 concurrency and recommendations for improving
concurrency in your application programs, see the following topics:
v Concurrency recommendations for application designers (Introduction to DB2

for z/OS)
v Concurrency and locks (DB2 Performance)
v Improving concurrency (DB2 Performance)
v Improving concurrency in data sharing environments (DB2 Data Sharing

Planning and Administration)

Writing efficient queries

The predicates, subqueries, and other structures in SQL statements affect the access
paths that DB2 uses to access the data.

For information about how to write SQL statements that access data efficiently, see
the following topics:
v Ways to improve query performance (Introduction to DB2 for z/OS)
v Writing efficient SQL queries (DB2 Performance)

2458 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_concurrencyrecommendappdesign.htm#db2z_concurrencyrecommendappdesign
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_concurrencyrecommendappdesign.htm#db2z_concurrencyrecommendappdesign
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_concurrencyandlocksdefined.htm#db2z_concurrencyandlocksdefined
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_recommend4concurrency.htm#db2z_recommend4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_tuninguseoflocks.htm#db2z_tuninguseoflocks
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_tuninguseoflocks.htm#db2z_tuninguseoflocks
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_improvequeryperformance.htm#db2z_improvequeryperformance
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programsqlperf.htm#db2z_programsqlperf

Analyzing access paths

By analyzing the access path that DB2 uses to access the data for an SQL
statement, you can discover potential problems. You can use this information to
modify your statement to perform better.

For information about how you can use EXPLAIN tables, and SQL optimization
tools, to analyze the access paths for your SQL statements, see the following topics:
v Investigating access path problems (DB2 Performance)
v Using EXPLAIN to understand the access path (Introduction to DB2 for z/OS)
v Investigating SQL performance by using EXPLAIN (DB2 Performance)
v Interpreting data access by using EXPLAIN (DB2 Performance)
v EXPLAIN tables (DB2 Performance)
v “EXPLAIN” on page 1642
v Tuning SQL with Optim Query Tuner, Part 1: Understanding access paths
v Generating visual representations of access plans

Distributed data access performance

The goal is to reduce the amount of network traffic that is required to access the
distributed data, and to manage the use of system resources such as distributed
database access threads and connections.

For information about improving the performance of applications that access
distributed data, see the following topics:
v Ways to reduce network traffic (Introduction to DB2 for z/OS)
v Managing DB2 threads (DB2 Performance)
v Improving performance for applications that access distributed data (DB2

Performance)
v Improving performance for SQL statements in distributed applications (DB2

Performance)

Stored procedures performance

For information about stored procedures and DB2 performance, see the following
topics:
v Implementing DB2 stored procedures (DB2 Administration Guide)
v Improving the performance of stored procedures and user-defined functions

(DB2 Performance)
Related concepts:

Structured query language (Introduction to DB2 for z/OS)

Application programming for DB2 (Introduction to DB2 for z/OS)
Related tasks:

Programming applications for performance (DB2 Performance)

Planning for and designing DB2 applications (DB2 Application programming
and SQL)

Appendix. Additional information for DB2 SQL 2459

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_investigateaccesspaths.htm#db2z_investigateaccesspaths
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_explainforunderstandingaccesspath.htm#db2z_explainforunderstandingaccesspath
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useexplain2capturesqlinfo.htm#db2z_useexplain2capturesqlinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_interpretdataaccess.htm#db2z_interpretdataaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_explaintables.htm#db2z_explaintables
https://ltsbwass001.sby.ibm.com/cms/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html
http://publib.boulder.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_waystoreducenetworktraffic.htm#db2z_waystoreducenetworktraffic
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_managethreads.htm#db2z_managethreads
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_sqloptions4dist.htm#db2z_sqloptions4dist
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_sqloptions4dist.htm#db2z_sqloptions4dist
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_implementstoredprocedure.htm#db2z_implementstoredprocedure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_improvestoreprocudfperf.htm#db2z_improvestoreprocudfperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_improvestoreprocudfperf.htm#db2z_improvestoreprocudfperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_structuredquerylanguage.htm#db2z_structuredquerylanguage
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_applicationprogrammingfordb2.htm#db2z_applicationprogrammingfordb2
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapplicationperformance.htm#db2z_programapplicationperformance
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_planapplications.htm#db2z_planapplications
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_planapplications.htm#db2z_planapplications

DB2 XML schema repository tables
The DB2 for z/OS XML schema repository (XSR) is a set of DB2 tables where you
can store XML schemas.

DB2 creates the XSR tables during installation or migration. After you add XML
schemas to the DB2 XSR, you can use them to validate XML documents before you
store them in XML columns.

An XML schema consists of a set of XML schema documents. To add an XML
schema to the DB2 XSR, you register XML schema documents to DB2. The XML
schema documents must be in the Unicode encoding scheme.

Programming interface information

Not all XSR table columns are part of the general-use programming interface.
Whether a column is part of this interface is indicated in a column labeled “Use”
in the row that describes the table column. The meaning of the values for the
“Use” column is indicated in the following table.

Table 178. Meaning of values in the “Use” column if table descriptions

Value Meaning

G Column is part of the general-use
programming interface

S Column is part of the product-sensitive
interface

I Column is for IBM use only

N Column is not used

For columns for which “Use” is N or I, the name of the column and its description
do not appear in the explanation of the column.
Related concepts:

XML schema management with the XML schema repository (XSR) (DB2
Programming for XML)
Related tasks:

Additional steps for enabling the stored procedures and objects for XML
schema support (DB2 Installation and Migration)
Related information:

DB2-supplied stored procedures for XML schema registration and removal
(DB2 Programming for XML)

2460 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_xsrmanage.htm#db2z_xsrmanage
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_xsrmanage.htm#db2z_xsrmanage
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_enablexmlstprocs.htm#db2z_enablexmlstprocs
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_enablexmlstprocs.htm#db2z_enablexmlstprocs
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_xmldb2storedprocs.htm#db2z_xmldb2storedprocs
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_xmldb2storedprocs.htm#db2z_xmldb2storedprocs

XML schema repository (XSR) table spaces and indexes
DB2 XSR tables are contained in certain table spaces and have indexes.

The following tables list the table space and indexes for each XRS table and lists
the index fields for each index. The indexes are in ascending order, except where
noted.

Table 179. Table spaces and indexes for the DSNXSR database tables

Table space
DSNXSR. ...

Table
SYSIBM. ...

Index
SYSIBM. ... Index fields

SYSXSR XSROBJECTS XSROBJ01 XSROBJECTID

XSROBJ02 XSROBJECTSCHEMA.XSROBJECTNAME

XSROBJ03 TARGETNAMESPACE.SCHEMALOCATION

XSROBJ04 SCHEMALOCATION

XSROBJECT-
COMPONENTS

XSRCOMP01 XSRCOMPONENTID

XSRCOMP02 TARGETNAMESPACE.SCHEMALOCATION

XSROBJECT-
HIERARCHIES

XSRHIER01
XSROBJECTID.TARGETNAMESPACE.
SCHEMALOCATION

XSRHIER02 XSROBJECTID.TARGETNAMESPACE

SYSXSRA1 XSROBJECTGRAMMAR XSRXOG01 GRAMMAR

SYSXSRA2 XSROBJECTPROPERTY XSRXOP01 PROPERTIES

SYSXSRA3 XSRCOMPONENT XSRXCC01 COMPONENT

SYSXSRA4 XSRPROPERTY XSRXCP01 PROPERTIES

Note: Index field is in descending order

Appendix. Additional information for DB2 SQL 2461

SYSIBM.XSRCOMPONENT table
The SYSIBM.XSRCOMPONENT table is an auxiliary table for the BLOB column
COMPONENT in SYSIBM.SYSXSROBJECTCOMPONENTS. It is in LOB table space
SYSXSRA3.

Column name Data type Description Use

COMPONENT
BLOB(30M)

Contents of the XML schema document G

2462 SQL Reference

SYSIBM.XSROBJECTS table
The SYSIBM.XSROBJECTS table contains one row for each registered XML schema.

Rows in this table can only be changed using static SQL statements issued by the
DB2-supplied XSR stored procedures.

Column name Data type Description Use

XSROBJECTID
INTEGER
NOT NULL

Internal identifier of the XML schema. XSROBJECTID is
generated as an identity column.

G

XSROBJECTSCHEMA
VARCHAR(128)
NOT NULL

Qualifier of the XML schema name. This is always set to
'SYSXSR'.

G

XSROBJECTNAME
VARCHAR(128)
NOT NULL

Name of the XML schema. G

TARGETNAMESPACE
INTEGER

The value of the STRINGID column in
SYSIBM.SYSXMLSTRINGS when the target namespace
URI of the primary XML schema document is stored in
SYSIBM.SYSXMLSTRINGS

G

SCHEMALOCATION
INTEGER

The value of the STRINGID column in
SYSIBM.SYSXMLSTRINGS when the schema location URI
of the primary XML schema document is stored in
SYSIBM.SYSXMLSTRINGS

G

ROWID
ROWID
NOT NULL
GENERATED
ALWAYS

The ID that is used to support BLOB data type values. G

GRAMMAR
BLOB(250M)

The internal binary representation of the XML schema. G

PROPERTIES
BLOB(5M)

Additional property information of the entire XML
schema.

G

CREATEDBY
VARCHAR(128)
NOT NULL

Authorization ID under which the XML schema was
created.

G

CREATEDTS
TIMESTAMP
NOT NULL

The time that the DB2-supplied stored procedure
XSR_REGISTER was executed for the XML schema.

G

STATUS
CHAR(1)
NOT NULL WITH
DEFAULT

Registration status of the XML schema:

C Complete

I Incomplete

T Temporary

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for the values.

G

CHAR(1)
Not used. N

VARCHAR(128)
Not used. N

Appendix. Additional information for DB2 SQL 2463

Column name Data type Description Use

REMARKS
VARCHAR(762)

Character string that contains comments about this XML
schema.

G

2464 SQL Reference

SYSIBM.XSROBJECTCOMPONENTS table
The SYSIBM.XSROBJECTCOMPONENTS table contains one row for each
component (document) in an XML schema.

Rows in this table can only be changed using static SQL statements issued by the
DB2-supplied XSR stored procedures.

Column name Data type Description Use

XSRCOMPONENTID
INTEGER
NOT NULL

Internal identifier of the XML schema document.
XSRCOMPONENTID is generated as an identity column.

G

TARGETNAMESPACE
INTEGER

The value of the STRINGID column in
SYSIBM.SYSXMLSTRINGS when the target namespace
URI of the primary XML schema document is stored in
SYSIBM.SYSXMLSTRINGS.

G

SCHEMALOCATION
INTEGER

The value of the STRINGID column in
SYSIBM.SYSXMLSTRINGS when the schema location URI
of the primary XML schema document is stored in
SYSIBM.SYSXMLSTRINGS.

G

ROWID
ROWID
NOT NULL
GENERATED
ALWAYS

The ID that is used to support BLOB data type values. G

COMPONENT
BLOB(30M)
NOT NULL

Contents of the XML schema document. G

PROPERTIES
BLOB(5M)

If available, additional property information of the XML
schema document

G

CREATEDTS
TIMESTAMP
NOT NULL

The time that the XML schema document was registered. G

STATUS
CHAR(1)
NOT NULL WITH
DEFAULT

Registration status of the XML schema:

C Complete

I Incomplete

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for the values.

G

Appendix. Additional information for DB2 SQL 2465

SYSIBM.XSROBJECTGRAMMAR table
SYSIBM.XSROBJECTGRAMMAR is an auxiliary table for the BLOB column
GRAMMAR in SYSIBM.SYSXSROBJECTS. It is in LOB table space SYSXSRA1.

Column name Data type Description Use

GRAMMAR
BLOB(250M)

Internal binary representation of the XML schema G

2466 SQL Reference

SYSIBM.XSROBJECTHIERARCHIES table
The SYSIBM.XSROBJECTHIERARCHIES table contains one row for each
component (document) in an XML schema to record the XML schema document
hierarchy relationship.

Rows in this table can only be changed using static SQL statements issued by the
DB2-supplied XSR stored procedures.

Column name Data type Description Use

XSROBJECTID
INTEGER

Internal identifier of the XML schema. G

XSRCOMPONENTID
INTEGER

Internal identifier of the XML schema document. G

HTYPE
CHAR(1)

Hierarchy type:

D Document

P Primary document

G

TARGETNAMESPACE
INTEGER

The value of the STRINGID column in
SYSIBM.SYSXMLSTRINGS when the target namespace
URI of the primary XML schema document is stored in
SYSIBM.SYSXMLSTRINGS.

G

SCHEMALOCATION
INTEGER

The value of the STRINGID column in
SYSIBM.SYSXMLSTRINGS when the schema location URI
of the primary XML schema document is stored in
SYSIBM.SYSXMLSTRINGS.

G

RELCREATED
CHAR(1)
NOT NULL

The release of DB2 that is used to create the object. See
Release dependency indicators for the values.

G

Appendix. Additional information for DB2 SQL 2467

SYSIBM.XSROBJECTPROPERTY table
SYSIBM.XSROBJECTPROPERTY is an auxiliary table for the BLOB column
PROPERTIES in SYSIBM.SYSXSROBJECTS. It is in LOB table space SYSXSRA2.

Column name Data type Description Use

PROPERTIES
BLOB(5M)

Contents of the additional property information of the
entire XML schema.

G

2468 SQL Reference

SYSIBM.XSRPROPERTY table
The SYSIBM.XSRPROPERTY table is an auxiliary table for the BLOB column
COMPONENT in SYSIBM.SYSXSROBJECTCOMPONENTS. It is in LOB table space
SYSXSRA3.

Column name Data type Description Use

COMPONENT
BLOB(5M)

Contents of the additional property information of the
XML schema document.

G

Appendix. Additional information for DB2 SQL 2469

EXPLAIN tables
EXPLAIN tables contain information about SQL statements and functions that run
on DB2 for z/OS.

You can create and maintain a set of EXPLAIN tables to capture and analyze
information about the performance of SQL statements and functions that run on
DB2 for z/OS. Each row in an EXPLAIN table describes some aspect of a step in
the execution of a query or subquery in an explainable statement. The column
values for the row identify, among other things, the query or subquery, the tables
and other objects involved, the methods used to carry out each step, and cost
information about those methods. DB2 creates EXPLAIN output and populates
EXPLAIN tables in the following situations:
v When an EXPLAIN statement is executed.
v At BIND or REBIND with the EXPLAIN(YES) or (ONLY) bind options. Rows are

added for every explainable statement in the plan or package being bound. For a
plan, these do not include statements in the packages that can be used with the
plan. For either a package or plan, they do not include explainable statements
within EXPLAIN statements nor do they include explainable statements that
refer to declared temporary tables, which are incrementally bound at run time.

v When an explainable dynamic statement is executed and the value of the
CURRENT EXPLAIN MODE special register is set to YES or EXPLAIN.

Related reference:

BIND and REBIND options (DB2 Commands)

Interpreting data access by using EXPLAIN (DB2 Performance)
“EXPLAIN” on page 1642

Capturing EXPLAIN information (DB2 Performance)

Creating EXPLAIN tables (DB2 Performance)

2470 SQL Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_interpretdataaccess.htm#db2z_interpretdataaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_captureexplaininfo.htm#db2z_captureexplaininfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_createexplaintables.htm#db2z_createexplaintables

PLAN_TABLE
The plan table, PLAN_TABLE, contains information about access paths that is
collected from the results of EXPLAIN statements.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

Optional PLAN_TABLE formats

A PLAN_TABLE instance can have a format with fewer columns than those shown
in the sample CREATE TABLE statement. However instances of PLAN_TABLE
must have one of the following formats:

Version 11 format
All columns shown in the sample CREATE TABLE statement, up to and
including the EXPANSION_REASON column (COLCOUNT=66).

Version 10 format
All columns shown in the sample CREATE TABLE statement, up to and
including the MERGN column (COLCOUNT=64).

Version 9 format
All columns shown in the sample CREATE TABLE statement, to and
including the PARENT_PLANNO column (COLCOUNT=59).

Version 8 format
All columns shown in the sample CREATE TABLE statement, up to and
including the STMTTOKEN column (COLCOUNT=58).

Appendix. Additional information for DB2 SQL 2471

|
|
|

Important: If the EXPLAIN tables have any format older than the Version 8
format, or are encoded in EBCDIC, DB2 returns an error for any operation that
inserts rows in the EXPLAIN tables.

Column descriptions

Your subsystem or data sharing group can contain more than one of these tables,
including a table with the qualifier SYSIBM, a table with the qualifier DB2OSCA,
and additional tables that are qualified by user IDs.

The following table shows the descriptions of the columns in PLAN_TABLE.

Table 180. Descriptions of columns in PLAN_TABLE

Column name Data Type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is
being explained. The origin of the value depends
on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO
clause, which is an optional part of the
SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on
the line number of the SQL statement in
the source program.

When the values of QUERYNO are based on the
statement number in the source program, values
that exceed 32767 are reported as 0. However, in
certain rare cases, the value is not guaranteed to
be unique.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
if the QUERYNO clause is specified, then its
value is used by DB2. Otherwise DB2 assigns a
number based on the line number of the SQL
statement in the non-inline SQL function, native
SQL procedure.

QBLOCKNO SMALLINT NOT NULL A number that identifies each query block within
a query. The value of the numbers are not in any
particular order, nor are they necessarily
consecutive.

APPLNAME VARCHAR(24) NOT NULL The name of the application plan for the row.
Applies only to embedded EXPLAIN statements
that are executed from a plan or to statements
that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

2472 SQL Reference

Table 180. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

PROGNAME VARCHAR(128) NOT NULL The name of the program or package containing
the statement being explained. Applies only to
embedded EXPLAIN statements and to
statements explained as the result of binding a
plan or package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

PLANNO SMALLINT NOT NULL The number of the step in which the query that is
indicated in QBLOCKNO was processed. This
column indicates the order in which the steps
were executed.

METHOD SMALLINT NOT NULL A number that indicates the join method that is
used for the step:

0 The table in this step is the first table
that is accessed, a continuation of a
previous table that was accessed, or a
table that is not used.

1 A nested loop join is used. For each row
of the current composite table, matching
rows of a new table are found and
joined.

2 A merge scan join is used. The current
composite table and the new table are
scanned in the order of the join columns,
and matching rows are joined.

3 Sorts are needed by ORDER BY, GROUP
BY, SELECT DISTINCT, UNION,
INTERSECT, EXCEPT, a quantified
predicate, or an IN predicate. This step
does not access a new table.

4 A hybrid join was used. The current
composite table is scanned in the order
of the join-column rows of the new table.
The new table is accessed using list
prefetch.

CREATOR VARCHAR(128) NOT NULL The creator of the new table that is accessed in
this step, blank if METHOD is 3.

Appendix. Additional information for DB2 SQL 2473

Table 180. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

TNAME VARCHAR(128) NOT NULL The name of one of the following objects:
v Table
v Materialized query table
v Created or declared temporary table
v Materialized view
v materialized table expression

The value is blank if METHOD is 3. The column
can also contain the name of a table in the form
DSNWFQB(qblockno). DSNWFQB(qblockno) is used
to represent the intermediate result of a UNION
ALL, INTERSECT ALL, EXCEPT ALL, or an outer
join that is materialized. If a view is merged, the
name of the view does not appear.
DSN_DIM_TBLX(qblockno) is used to the represent
the work file of a star join dimension table.

TABNO SMALLINT NOT NULL Values are for IBM use only.

ACCESSTYPE1 CHAR(2) NOT NULL The method of accessing the new table.4

MATCHCOLS SMALLINT NOT NULL For ACCESSTYPE I, IN, I1, N, NR, MX, or DX,
the number of index keys that are used in an
index scan; otherwise, 0.

ACCESSCREATOR VARCHAR(128) NOT NULL For ACCESSTYPE I, I1, N, NR, MX, or DX, the
creator of the index; otherwise, blank.

ACCESSNAME VARCHAR(128) NOT NULL For ACCESSTYPE I, I1, H, MH, N, NR, MX, or
DX, the name of the index; for ACCESSTYPE P,
DSNPJW(mixopseqno) is the starting pair-wise join
leg in MIXOPSEQ; otherwise, blank.

INDEXONLY CHAR(1) NOT NULL Indication of whether access to an index alone is
enough to perform the step, or Indication of
whether data too must be accessed.

Y Yes

N No

SORTN_UNIQ CHAR(1) NOT NULL Indication of whether the new table is sorted to
remove duplicate rows.

Y Yes

N No

SORTN_JOIN CHAR(1) NOT NULL Indication of whether the new table is sorted for
join method 2 or 4.

Y Yes

N No

SORTN_ORDERBY CHAR(1) NOT NULL Indication of whether the new table is sorted for
ORDER BY.

Y Yes

N No

SORTN_GROUPBY CHAR(1) NOT NULL Indication of whether the new table is sorted for
GROUP BY.

Y Yes

N No

2474 SQL Reference

Table 180. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

SORTC_UNIQ CHAR(1) NOT NULL Indication of whether the composite table is
sorted to remove duplicate rows.

Y Yes

N No

SORTC_JOIN CHAR(1) NOT NULL Indication of whether the composite table is
sorted for join method 1, 2 or 4.

Y Yes

N No

SORTC_ORDERBY CHAR(1) NOT NULL Indication of whether the composite table is
sorted for an ORDER BY clause or a quantified
predicate.

Y Yes

N No

SORTC_GROUPBY CHAR(1) NOT NULL Indication of whether the composite table is
sorted for a GROUP BY clause.

Y Yes

N No

TSLOCKMOD CHAR(3) NOT NULL An indication of the mode of lock that is acquired
on either the new table, or its table space or table
space partitions. If the isolation can be
determined at bind time, the values are:
IS Intent share lock
IX Intent exclusive lock
S Share lock
U Update lock
X Exclusive lock
SIX Share with intent exclusive lock
N UR isolation; no lock
If the isolation level cannot be determined at bind
time, the lock mode is determined by the isolation
level at run time is shown by the following
values.
NS For UR isolation, no lock; for CS, RS, or

RR, an S lock.
NIS For UR isolation, no lock; for CS, RS, or

RR, an IS lock.
NSS For UR isolation, no lock; for CS or RS,

an IS lock; for RR, an S lock.
SS For UR, CS, or RS isolation, an IS lock;

for RR, an S lock.

The data in this column is right justified. For
example, IX appears as a blank, followed by I,
followed by X. If the column contains a blank,
then no lock is acquired.

If the access method in the ACCESSTYPE column
is DX, DI, or DU, no latches are acquired on the
XML index page and no lock is acquired on the
new base table data page or row, nor on the XML
table and the corresponding table spaces. The
value of TSLOCKMODE is a blank in this case.

Appendix. Additional information for DB2 SQL 2475

Table 180. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

TIMESTAMP CHAR(16) NOT NULL This column is deprecated. Use EXPLAIN_TIME
instead.

REMARKS VARCHAR(762) NOT NULL A field into which you can insert any character
string of 762 or fewer characters.

DB2 inserts a value into this column in certain
situations. 6, 7

PREFETCH CHAR(1) NOT NULL WITH
DEFAULT

Indication of whether data pages are to be read in
advance by prefetch:

D Optimizer expects dynamic prefetch

S Pure sequential prefetch

L Prefetch through a page list

U List prefetch with an unsorted RID list

blank Unknown or no prefetch

COLUMN_FN_EVAL CHAR(1) NOT NULL WITH
DEFAULT

When an SQL aggregate function is evaluated:

R While the data is being read from the
table or index

S While performing a sort to satisfy a
GROUP BY clause

blank After data retrieval and after any sorts

MIXOPSEQ SMALLINT NOT NULL WITH
DEFAULT

The sequence number of a step in a multiple
index operation.

1, 2, ... n
For the steps of the multiple index
procedure (ACCESSTYPE is MX, MI,
MU, DX, DI, or DU), the sequence
number of the OR predicate in the SQL
statement. (ACCESSTYPE is 'NR').

0 For any other rows.

VERSION VARCHAR(122) NOT NULL
WITH DEFAULT

The version identifier for the package. Applies
only to an embedded EXPLAIN statement
executed from a package or to a statement that is
explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

2476 SQL Reference

|

Table 180. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

COLLID VARCHAR(128) NOT NULL
WITH DEFAULT

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic
statement cache

DSNEXPLAINMODEYES
The row originates from an application
that specifies YES for the value of the
CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application
that specifies EXPLAIN for the value of
the CURRENT EXPLAIN MODE special
register.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

ACCESS_DEGREE SMALLINT The number of parallel tasks or operations that
are activated by a query. This value is determined
at bind time; the actual number of parallel
operations that are used at execution time could
be different. This column contains 0 if a host
variable is used. This column contains the null
value if the plan or package was bound using a
plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

ACCESS_PGROUP_ID2 SMALLINT The identifier of the parallel group for accessing
the new table. A parallel group is a set of
consecutive operations, executed in parallel, that
have the same number of parallel tasks. This
value is determined at bind time; it could change
at execution time.This column contains the null
value if the plan or package was bound using a
plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

JOIN_DEGREE SMALLINT The number of parallel operations or tasks that
are used in joining the composite table with the
new table. This value is determined at bind time
and can be 0 if a host variable is used. The actual
number of parallel operations or tasks used at
execution time could be different. This column
contains the null value if the plan or package was
bound using a plan table with fewer than 43
columns. Otherwise, it can contain null if the
method that it refers to does not apply.

Appendix. Additional information for DB2 SQL 2477

Table 180. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

JOIN_PGROUP_ID2 SMALLINT The identifier of the parallel group for joining the
composite table with the new table. This value is
determined at bind time; it could change at
execution time. This column contains the null
value if the plan or package was bound using a
plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

SORTC_PGROUP_ID3 SMALLINT The parallel group identifier for the parallel sort
of the composite table. This column contains the
null value if the plan or package was bound
using a plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

SORTN_PGROUP_ID3 SMALLINT The parallel group identifier for the parallel sort
of the new table. This column contains the null
value if the plan or package was bound using a
plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

PARALLELISM_
MODE2

CHAR(1) The kind of parallelism, if any, that is used at
bind time:

C Query CP parallelism.

I Query I/O parallelism.
This column contains the null value if the plan or
package was bound using a plan table with fewer
than 43 columns, if the method that it refers to
does not apply, or if the plan or package was
bound prior to Version 10.

MERGE_
JOIN_
COLS

SMALLINT The number of columns that are joined during a
merge scan join (Method=2). This column
contains the null value if the plan or package was
bound using a plan table with fewer than 43
columns. Otherwise, it can contain null if the
method that it refers to does not apply.

CORRELATION_
NAME

VARCHAR(128) The correlation name of a table or view that is
specified in the statement. If no correlation name
exists, then the column is null. This column
contains the null value if the plan or package was
bound using a plan table with fewer than 43
columns. Otherwise, it can contain null if the
method that it refers to does not apply.

PAGE_RANGE CHAR(1) NOT NULL WITH
DEFAULT

Indication of whether the table qualifies for page
range screening, so that plans scan only the
partitions that are needed.

Y Yes

blank No

2478 SQL Reference

Table 180. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

JOIN_TYPE CHAR(1) NOT NULL WITH
DEFAULT

The type of join:

F FULL OUTER JOIN

L LEFT OUTER JOIN

P Pair-wise join

S Star join

blank INNER JOIN or no join

RIGHT OUTER JOIN converts to a LEFT OUTER
JOIN when you use it, so that JOIN_TYPE
contains L.

GROUP_MEMBER VARCHAR(24) NOT NULL WITH
DEFAULT

The member name of the DB2 that executed
EXPLAIN. The column is blank if the DB2
subsystem was not in a data sharing environment
when EXPLAIN was executed.

IBM_
SERVICE_
DATA

VARCHAR(254) FOR BIT DATA This column contains values that are for IBM use
only.

WHEN_OPTIMIZE CHAR(1) NOT NULL WITH
DEFAULT

When the access path was determined:

blank At bind time, using a default filter factor
for any host variables, parameter
markers, or special registers.

B At bind time, using a default filter factor
for any host variables, parameter
markers, or special registers; however,
the statement is re-optimized at run time
using input variable values for input
host variables, parameter markers, or
special registers. The bind option
REOPT(ALWAYS), REOPT(AUTO), or
REOPT(ONCE) must be specified for
reoptimization to occur.

R At run time, using input variables for
any host variables, parameter markers,
or special registers. The bind option
REOPT(ALWAYS), REOPT(AUTO), or
REOPT(ONCE) must be specified for this
to occur.

QBLOCK_TYPE1 CHAR(6) NOT NULL WITH
DEFAULT

For each query block, an indication of the type of
SQL operation that is performed. For the
outermost query, this column identifies the
statement type.5 on page 2486

BIND_TIME TIMESTAMP NOT NULL WITH
DEFAULT

This column is deprecated. Use EXPLAIN_TIME
instead.

OPTHINT VARCHAR(128) NOT NULL
WITH DEFAULT

A string that you use to identify this row as an
optimization hint for DB2. DB2 uses this row as
input when choosing an access path.

Appendix. Additional information for DB2 SQL 2479

Table 180. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

HINT_USED VARCHAR(128) NOT NULL
WITH DEFAULT

One of the following values:

'APREUSE'
When an access path was successfully
reused because the APREUSE option was
specified at bind or rebind.

'opthint-value'
When PLAN_TABLE access path hints
are used. opthint-value is the value of the
OPTHINT column for the hint that was
used.

'SYSQUERYPLAN query-id'
When statement-level access path hints
are used. query-id is the value of the
QUERYID column in the
SYSQUERYPLAN catalog table for the
hint.

'SYSQUERYSEL query-id'
When a predicate selectivity override is
used. query-id is the value of the
QUERYID column of the SYSQUERYSEL
catalog table row for the hint.

'EXPLAIN PACKAGE: COPY copy-id'
When the row is the result of an
EXPLAIN PACKAGE statement. copy-id
is one of the following values:
0 The current copy.
1 The previous copy.
2 The original copy.

PRIMARY_
ACCESSTYPE

CHAR(1) NOT NULL WITH
DEFAULT

Indicates whether direct row access is attempted
first:

D DB2 tries to use direct row access with a
rowid column. If DB2 cannot use direct
row access with a rowid column at run
time, it uses the access path that is
described in the ACCESSTYPE column of
PLAN_TABLE.

P DB2 used data partitioned secondary
index and a part-level operation to
access the data.

T The base table or result file is
materialized into a work file, and the
work file is accessed via sparse index
access. If a base table is involved, then
ACCESSTYPE indicates how the base
table is accessed.

blank DB2 does not try to use direct row access
by using a rowid column or sparse index
access for a work file. The value of the
ACCESSTYPE column of PLAN_TABLE
provides information on the method of
accessing the table.

2480 SQL Reference

|
|
|
|

|
|
|
|
|

||
|
|

Table 180. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

PARENT_QBLOCKNO SMALLINT NOT NULL WITH
DEFAULT

A number that indicates the QBLOCKNO of the
parent query block.

TABLE_TYPE CHAR(1) The type of new table:

B Buffers for SELECT from INSERT,
SELECT from UPDATE, SELECT from
MERGE, or SELECT from DELETE
statement.

C Common table expression

F Table function

I The new table is generated from an
IN-LIST predicate. If the IN-LIST
predicate is selected as the matching
predicate, it will be accessed as an
in-memory table.

M Materialized query table

Q Temporary intermediate result table (not
materialized). For the name of a view or
nested table expression, a value of Q
indicates that the materialization was
virtual and not actual. Materialization
can be virtual when the view or nested
table expression definition contains a
UNION ALL that is not distributed.

R Recursive common table expression

S Subquery (correlated or non-correlated)

T Table

W Work file

The value of the column is null if the query uses
GROUP BY, ORDER BY, or DISTINCT, which
requires an implicit sort.

TABLE_ENCODE CHAR(1) NOT NULL WITH
DEFAULT

The encoding scheme of the table. The possible
values are:

A ASCII

E EBCDIC

U Unicode

M The table contains multiple CCSID sets

TABLE_SCCSID SMALLINT NOT NULL WITH
DEFAULT

The SBCS CCSID value of the table. If column
TABLE_ENCODE is M, the value is 0.

TABLE_MCCSID SMALLINT NOT NULL WITH
DEFAULT

The mixed CCSID value of the table. If the value
of the TABLE_ENCODE column is M, the value is
0. If MIXED=NO in the application defaults
module, the value is -2.

TABLE_DCCSID SMALLINT NOT NULL WITH
DEFAULT

The DBCS CCSID value of the table. If the value
of the TABLE_ENCODE column is M, the value is
0. If MIXED=NO in the application defaults
module, the value is -2.

Appendix. Additional information for DB2 SQL 2481

Table 180. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

ROUTINE_ID INTEGER NOT NULL WITH
DEFAULT

The values in this column are for IBM use only.

CTEREF SMALLINT NOT NULL WITH
DEFAULT

If the referenced table is a common table
expression, the value is the top-level query block
number.

STMTTOKEN VARCHAR(240) User-specified statement token.

PARENT_PLANNO SMALLINT NOT NULL Corresponds to the plan number in the parent
query block where a correlated subquery is
invoked. Or, for non-correlated subqueries,
corresponds to the plan number in the parent
query block that represents the work file for the
subquery.

BIND_EXPLAIN_ONLY CHAR(1) NOT NULL WITH
DEFAULT

Identifies whether the row was inserted because a
command specified the EXPLAIN(ONLY) option.

SECTNOI INTEGER NOT NULL WITH
DEFAULT

The section number of the statement. The value is
taken from the same column in SYSPACKSTMT
or SYSSTMT tables and can be used to join tables
to reconstruct the access path for the statement.
This column is applicable only for static
statements. The default value of -1 indicates
EXPLAIN information that was captured in
Version 9 or earlier.

EXPLAIN_TIME TIMESTAMP NOT NULL WITH
DEFAULT

The time when the EXPLAIN information was
captured:

All cached statements
When the statement entered the cache, in
the form of a full-precision timestamp
value.

Non-cached static statements
When the statement was bound, in the
form of a full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the
form of a value equivalent to a
CHAR(16) representation of the time
appended by 4 zeros.

MERGC CHAR(1) NOT NULL WITH
DEFAULT

Indicates whether the composite table is
consolidated before the join.

Y Yes

N No

2482 SQL Reference

Table 180. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

MERGN CHAR(1) NOT NULL WITH
DEFAULT

Indicates whether the new table is consolidated
before the join, or whether access that used a data
partitioned secondary index (DPSI) involved a
merge operation.

Y Yes, the new table is consolidated before
the join.

N No, the new table is not consolidated
before the join

D Access through a DPSI involved a merge
operation.

U Access through a DPSI that did not
involve a merge operation.

SCAN_DIRECTION CHAR(1) For index access, the direction of the index scan:

F Forward

R Reverse

blank Index scan is not used

Appendix. Additional information for DB2 SQL 2483

|
|
|
|

||
|

||
|

|||

||

||

||

Table 180. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

EXPANSION_REASON CHAR(2) NOT NULL WITH
DEFAULT

This column applies to only statements that
reference archive tables or temporal tables. For
other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT
TEMPORAL SYSTEM_TIME special register, and
the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the
BUSTIMESENSITIVE, SYSTIMESENSITIVE, and
ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if
one of the following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global
variable is set to Y and the
ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME
special register is not null and the
BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME
special register is not null and the
SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following
values:

A The query contains implicit query
transformation as a result of the
SYSIBMADM.GET_ARCHIVE built-in
global variable.

B The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL
BUSINESS_TIME special register.

S The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL SYSTEM_TIME
special register.

SB The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT
TEMPORAL BUSINESS_TIME special
register.

blank The query does not contain implicit
query transformation.

Notes:

1. For PLAN_TABLE rows in which ACCESSTYPE='A' and
QBLOCK_TYPE='SELECT', the values of all other columns except QUERYNO,
APPLNAME, and PROGNAME are the default values for those columns.

2. In rows that are used for optimization hints, NULL values in the following
columns indicate a hint for no parallelism:

2484 SQL Reference

||
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|
|
|

||
|

v PARALLELISM_MODE
v ACCESS_PGROUP_ID
v JOIN_PGROUP_ID

3. In rows that are used for optimization hints, NULL values in the following
columns indicate a hint for no parallel sort:
v SORTN_PGROUP_ID
v SORTC_PGROUP_ID

4. The ACCESSTYPE column contains the following values:
A The query is sent to an accelerator server.
DI By an intersection of multiple DOCID lists to return the final DOCID

list
DU By a union of multiple DOCID lists to return the final DOCID list
DX By an XML index scan on the index that is named in ACCESSNAME to

return a DOCID list
E By direct row access using a row change timestamp column.
H By hash access. IF an overflow condition occurs, the hash overflow

index that is identified by ACCESSCREATOR and ACCESSNAME is
used.

HN By hash access using an IN predicate, or an IN predicate that DB2
generates. If a hash overflow condition occurs, the hash overflow index
that is identified in ACCESSCREATOR and ACCESSNAME is used.

I By an index (identified in ACCESSCREATOR and ACCESSNAME)
IN By an index scan when the matching predicate contains an IN predicate

and the IN-list is accessed through an in-memory table.
I1 By a one-fetch index scan
M By a multiple index scan. A row that contains this value might be

followed by a row that contains one of the following values:
v DI
v DU
v MH
v MI
v MU
v MX

MH By the hash overflow index named in ACCESSNAME. A row that
contains this value always follows a row that contains M.

MI By an intersection of multiple indexes. A row that contains this value
always follows a row that contains M.

MU By a union of multiple indexes. A row that contains this value always
follows a row that contains M.

MX By an index scan on the index named in ACCESSNAME. When the
access method MX follows the access method DX, DI, or DU, the table
is accessed by the DOCID index by using the DOCID list that is
returned by DX, DI, or DU. A row that contains this value always
follows a row that contains M.

N One of the following types:
v By an index scan when the matching predicate contains the IN

keyword
v By an index scan when DB2 rewrites a query using the IN keyword

O By a work file scan, as a result of a subquery.
NR Range list access.
P By a dynamic pair-wise index scan
R By a table space scan
RW By a work file scan of the result of a materialized user-defined table

function
V By buffers for an INSERT statement within a SELECT

Appendix. Additional information for DB2 SQL 2485

blank Not applicable to the current row
5. The QBLOCK_TYPE column contains the following values:

SELECT
SELECT

INSERT
INSERT

UPDATE
UPDATE

MERGE
MERGE

DELETE
DELETE

SELUPD
SELECT with FOR UPDATE OF

DELCUR
DELETE WHERE CURRENT OF CURSOR

UPDCUR
UPDATE WHERE CURRENT OF CURSOR

CORSUB
Correlated subselect or fullselect

TRUNCA
TRUNCATE

NCOSUB
Noncorrelated subselect or fullselect

TABLEX
Table expression

TRIGGR
WHEN clause on CREATE TRIGGER

UNION
UNION

UNIONA
UNION ALL

INTERS
INTERSECT

INTERA
INTERSECT ALL

EXCEPT
EXCEPT

EXCEPTA
EXCEPT ALL

PRUNED
DB2 does not generate an access path for the query because the query
is guaranteed to qualify zero rows, such as the case of an always-false
WHERE clause. For example:WHERE 0=1

2486 SQL Reference

6. DB2 inserts a value into the REMARKS column at bind or rebind when the
EXPLAIN(ONLY) option is specified and reuse or comparison fails for an
access path. The value might include the following information:
v A reason code that corresponds to the reason codes in SQLCODE +395 when

reuse fails
v The name of the unmatched PLAN_TABLE column for which comparison

failed
v A string that identifies that unmatched rows where found

7. DB2 inserts a value into the REMARKS column when selectivity overrides
cannot be used for a statement . The value contains a reason code that indicates
why the selectivity override was not used. The value might also contain
additional diagnostic information.
The reason code values correspond to SQLCODE +395 reason codes:

'1'-'41' Indicate that an optimization hint that was generated as part of the
extended optimization process cannot be applied. Use only a single
selectivity instance.

'42' Indicates that the structure of the selectivity override is not valid.
Generate the selectivity override again.

'43' The selectivity override cannot be applied because of an unexpected
error. If the problem persists, you might need to contact IBM Software
Support.

'44'-'99'
Indicate that an optimization hint that was generated as part of the
extended optimization process cannot be applied. Use only a single
selectivity instance.

The PLAN_TABLE_HINT_IX index

The PLAN_TABLE_HINT_IX index improves prepare performance when access
path hints are used. This index is required for statement-level access paths and
optimization parameters. The PLAN_TABLE_HINT_IX index is optional, although
strongly recommended, for PLAN_TABLE access path hints.

The statement that creates the PLAN_TABLE_HINT_IX index is included as part of

the DSNTESC member of the SDSNSAMP library. PSPI

Related concepts:

Interpreting data access by using EXPLAIN (DB2 Performance)
Related tasks:

Preparing to influence access paths (DB2 Performance)

Generating visual representations of access plans
Related reference:
“EXPLAIN” on page 1642

Information about one example of an IBM accelerator product

EXPLAIN table changes in Version 11 (DB2 for z/OS What's New?)

Appendix. Additional information for DB2 SQL 2487

|
|
|
|

|

||
|
|

||
|

||
|
|

|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/p395.htm#p395
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/p395.htm#p395
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_interpretdataaccess.htm#db2z_interpretdataaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_enablehints.htm#db2z_enablehints
http://publib.boulder.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://www-947.ibm.com/support/entry/portal/Documentation/Software/Information_Management/DB2_Analytics_Accelerator_for_z~OS
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.wnew/src/tpc/db2z_11_explaintableschanges.htm#db2z_11_explaintableschanges

DSN_COLDIST_TABLE
The column distribution table contains non-uniform column group statistics that
are obtained dynamically by DB2 from non-index leaf pages.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

Column descriptions

PSPI

The following table shows the descriptions of the columns in the
DSN_COLDIST_TABLE table.

2488 SQL Reference

Table 181. Descriptions of columns in DSN_COLDIST_TABLE

Column name Data Type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is
being explained. The origin of the value depends
on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO
clause, which is an optional part of the
SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on
the line number of the SQL statement in
the source program.

When the values of QUERYNO are based on the
statement number in the source program, values
that exceed 32767 are reported as 0. However, in
certain rare cases, the value is not guaranteed to
be unique.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
if the QUERYNO clause is specified, then its
value is used by DB2. Otherwise DB2 assigns a
number based on the line number of the SQL
statement in the non-inline SQL function, native
SQL procedure.

APPLNAME VARCHAR(128) NOT NULL The name of the application plan for the row.
Applies only to embedded EXPLAIN statements
that are executed from a plan or to statements
that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

PROGNAME VARCHAR(128) NOT NULL The name of the program or package containing
the statement being explained. Applies only to
embedded EXPLAIN statements and to
statements explained as the result of binding a
plan or package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

Appendix. Additional information for DB2 SQL 2489

Table 181. Descriptions of columns in DSN_COLDIST_TABLE (continued)

Column name Data Type Description

COLLID VARCHAR(128) NOT NULL The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic
statement cache

DSNEXPLAINMODEYES
The row originates from an application
that specifies YES for the value of the
CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application
that specifies EXPLAIN for the value of
the CURRENT EXPLAIN MODE special
register.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

GROUP_MEMBER VARCHAR(128) NOT NULL The member name of the DB2 that executed
EXPLAIN. The column is blank if the DB2
subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT NULL The section number of the statement. The value
is taken from the same column in
SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path
for the statement. This column is applicable only
for static statements. The default value of -1
indicates EXPLAIN information that was
captured in Version 9 or earlier.

VERSION VARCHAR(122) NOT NULL The version identifier for the package. Applies
only to an embedded EXPLAIN statement
executed from a package or to a statement that is
explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

EXPLAIN_TIME TIMESTAMP NOT NULL The time when the EXPLAIN information was
captured:

All cached statements
When the statement entered the cache,
in the form of a full-precision timestamp
value.

Non-cached static statements
When the statement was bound, in the
form of a full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the
form of a value equivalent to a
CHAR(16) representation of the time
appended by 4 zeros.

2490 SQL Reference

Table 181. Descriptions of columns in DSN_COLDIST_TABLE (continued)

Column name Data Type Description

SCHEMA VARCHAR(128) NOT NULL The schema of the table that contains the column.

TBNAME VARCHAR(128) NOT NULL The name of the table that contains the column.

NAME VARCHAR(128) NOT NULL Name of the column. If the value of
NUMCOLUMNS is greater than 1, this name
identifies the first column name of the set of
columns associated with the statistics.

COLVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

Contains the data of a frequently occurring value
in the column. Statistics are not collected for an
index on a ROWID column. If the value has a
non-character data type, the data might not be
printable.

This column might contain values that depend
on the value of the type column:

TYPE='T'
One of the following values:

v 'E3C2C1C3C1D9C4C6' for
TBACARDF

v 'E3C2C1D5C1C3E3C6' for TBANPAGF

v 'E3C2C1D5D7C1C7C6' for
TBANACTF

TYPE='L'
'C3C1E3C6D3C4C3C6' for CATFLDCF

TYPE='P'
One of the following values:

v 'D7C3C1D7D5D9E6C6' for
PCAPNRWF

v 'D7C3C1D7D5D7C7C6' for
PCAPNPGF

TYPE CHAR(1) NOT NULL The type of statistics:
C Cardinality
F Frequent value
H Histogram
T Real-time table cardinality
L Real-time column cardinality (unique

index only)
P real-time partition cardinality

Appendix. Additional information for DB2 SQL 2491

Table 181. Descriptions of columns in DSN_COLDIST_TABLE (continued)

Column name Data Type Description

CARDF FLOAT NOT NULL For TYPE='C', the number of distinct values for
the column group. For TYPE='H', the number of
distinct values for the column group in a quantile
indicated by the value of the QUANTILENO
column.

For TYPE='T', a value related to real-time
statistics table values that are determined by the
COLVALUE column.

For TYPE= 'L', a value related to a real-time
statistics column value that is determined by the
COLVALUE column. The QUANTILENO column
contains the column number. The NAME column
contains the column name.

For TYPE='P' a value related to real-time
statistics partition value that is determined by the
COLVALUE column. The QUANTILENO column
contains the partition number.

COLGROUPCOLNO VARCHAR(254) NOT NULL FOR
BIT DATA

The identity of the set of columns associated with
the statistics. If the statistics are only associated
with a single column, the field contains a zero
length. Otherwise, the field is an array of
SMALLINT column numbers with a dimension
equal to the value in the NUMCOLUMNS
column. This is an updatable column.

NUMCOLUMNS SMALLINT NOT NULL Identifies the number of columns associated with
the statistics.

FREQUENCYF FLOAT NOT NULL The percentage of rows in the table with the
value that is specified in the COLVALUE column
when the number is multiplied by 100. For
example, a value of '1' indicates 100%. A value of
'.153' indicates 15.3%.

QUANTILENO SMALLINT NOT NULL The ordinary sequence number of a quantile in
the whole consecutive value range, from low to
high. This column is not updatable.

For TYPE= 'L', this column contains the column
number.

For TYPE='P', the column contains the partition
number.

LOWVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

For TYPE='H', this is the lower bound for the
quantile indicated by the value of the
QUANTILENO column. Not used if the value of
the TYPE column is not 'H'. This column is not
updatable.

HIGHVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

For TYPE='H', this is the higher bound for the
quantile indicated by the value of the
QUANTILENO column. This column is not used
if the value of the TYPE column is not 'H'. This
column is not updatable.

2492 SQL Reference

Table 181. Descriptions of columns in DSN_COLDIST_TABLE (continued)

Column name Data Type Description

EXPANSION_REASON CHAR(2) NOT NULL WITH
DEFAULT

This column applies to only statements that
reference archive tables or temporal tables. For
other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT
TEMPORAL SYSTEM_TIME special register, and
the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the
BUSTIMESENSITIVE, SYSTIMESENSITIVE, and
ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if
one of the following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global
variable is set to Y and the
ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME
special register is not null and the
BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME
special register is not null and the
SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following
values:

A The query contains implicit query
transformation as a result of the
SYSIBMADM.GET_ARCHIVE built-in
global variable.

B The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL
BUSINESS_TIME special register.

S The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL SYSTEM_TIME
special register.

SB The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT
TEMPORAL BUSINESS_TIME special
register.

blank The query does not contain implicit
query transformation.

PSPI

Related concepts:

Dynamic collection of index filtering estimates (DB2 Performance)

Appendix. Additional information for DB2 SQL 2493

||
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|
|
|

||
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_dynamicindexfilterestimate.htm#db2z_dynamicindexfilterestimate

DSN_DETCOST_TABLE
The detailed cost table, DSN_DETCOST_TABLE, contains information about
detailed cost estimation of the mini-plans in a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

2494 SQL Reference

Column descriptions

The following table describes the columns of DSN_DETCOST_TABLE.

Table 182. DSN_DETCOST_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is
an optional part of the SELECT, INSERT, UPDATE,
MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, if the QUERYNO clause is
specified, then its value is used by DB2. Otherwise DB2 assigns a
number based on the line number of the SQL statement in the
non-inline SQL function, native SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

APPLNAME VARCHAR(24)
NOT NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

PLANNO SMALLINT NOT
NULL

The plan number, a number used to identify each mini-plan with a
query block.

OPENIO FLOAT(4) NOT
NULL

The Do-at-open IO cost for non-correlated subquery.

OPENCPU FLOAT(4) NOT
NULL

The Do-at-open CPU cost for non-correlated subquery.

OPENCOST FLOAT(4) NOT
NULL

The Do-at-open total cost for non-correlated subquery.

DMIO FLOAT(4) NOT
NULL

IBM internal use only.

Appendix. Additional information for DB2 SQL 2495

Table 182. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

DMCPU FLOAT(4) NOT
NULL

IBM internal use only.

DMTOT FLOAT(4) NOT
NULL

IBM internal use only.

SUBQIO FLOAT(4) NOT
NULL

IBM internal use only.

SUBQCOST FLOAT(4) NOT
NULL

IBM internal use only.

BASEIO FLOAT(4) NOT
NULL

IBM internal use only.

BASECPU FLOAT(4) NOT
NULL

IBM internal use only.

BASETOT FLOAT(4) NOT
NULL

IBM internal use only.

ONECOMPROWS FLOAT(4) NOT
NULL

The number of rows qualified after applying local predicates.

IMLEAF FLOAT(4) NOT
NULL

The number of index leaf pages scanned by Data Manager.

IMIO FLOAT(4) NOT
NULL

IBM internal use only.

IMPREFH CHAR(2) NOT
NULL

IBM internal use only.

IMMPRED INTEGER NOT
NULL

IBM internal use only.

IMFF FLOAT(4) NOT
NULL

The filter factor of matching predicates only.

IMSRPRED INTEGER NOT
NULL

IBM internal use only.

IMFFADJ FLOAT(4) NOT
NULL

The filter factor of matching and screening predicates.

IMSCANCST FLOAT(4) NOT
NULL

IBM internal use only.

IMROWCST FLOAT(4) NOT
NULL

IBM internal use only.

IMPAGECST FLOAT(4) NOT
NULL

IBM internal use only.

IMRIDSORT FLOAT(4) NOT
NULL

IBM internal use only.

IMMERGCST FLOAT(4) NOT
NULL

IBM internal use only.

IMCPU FLOAT(4) NOT
NULL

IBM internal use only.

IMTOT FLOAT(4) NOT
NULL

IBM internal use only.

IMSEQNO SMALLINT NOT
NULL

IBM internal use only.

2496 SQL Reference

Table 182. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

DMPEREFH FLOAT(4) NOT
NULL

IBM internal use only.

DMCLUDIO FLOAT(4) NOT
NULL

IBM internal use only.

DMPREDS INTEGER NOT
NULL

IBM internal use only.

DMSROWS FLOAT(4) NOT
NULL

IBM internal use only.

DMSCANCST FLOAT(4) NOT
NULL

IBM internal use only.

DMCOLS FLOAT(4) NOT
NULL

The number of data manager columns.

DMROWS FLOAT(4) NOT
NULL

The number of data manager rows returned (after all stage 1
predicates are applied).

RDSROWCST FLOAT(4) NOT
NULL

IBM internal use only.

DMPAGECST FLOAT(4) NOT
NULL

IBM internal use only.

DMDATAIO FLOAT(4) NOT
NULL

IBM internal use only.

DMDATAIO FLOAT(4) NOT
NULL

IBM internal use only.

DMDATACPU FLOAT(4) NOT
NULL

IBM internal use only.

DMDATACPU FLOAT(4) NOT
NULL

IBM internal use only.

RDSROW FLOAT(4) NOT
NULL

The number of RDS rows returned (after all stage 1 and stage 2
predicates are applied).

SNCOLS SMALLINT NOT
NULL

The number of columns as sort input for new table.

SNROWS FLOAT(4) NOT
NULL

The number of rows as sort input for new table.

SNRECSZ INTEGER NOT
NULL

The record size for new table.

SNPAGES FLOAT(4) NOT
NULL

The page size for new table.

SNRUNS FLOAT(4) NOT
NULL

The number of runs generated for sort of new table.

SNMERGES FLOAT(4) NOT
NULL

The number of merges needed during sort.

SNIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

SNCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

SNCOST FLOAT(4) NOT
NULL

IBM internal use only.

Appendix. Additional information for DB2 SQL 2497

Table 182. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

SNCSCANIO FLOAT(4) NOT
NULL

IBM internal use only.

SNSCANCPU FLOAT(4) NOT
NULL

IBM internal use only.

SNCCOLS FLOAT(4) NOT
NULL

The number of columns as sort input for Composite table.

SCROWS FLOAT(4) NOT
NULL

The number of rows as sort input for Composite Table.

SCRECSZ FLOAT(4) NOT
NULL

The record size for Composite table.

SCPAGES FLOAT(4) NOT
NULL

The page size for Composite table.

SCRUNS FLOAT(4) NOT
NULL

The number of runs generated during sort of composite.

SCMERGES FLOAT(4) NOT
NULL

The number of merges needed during sort of composite.

SCIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

SCCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

SCCOST FLOAT(4) NOT
NULL

IBM internal use only.

SCSCANIO FLOAT(4) NOT
NULL

IBM internal use only.

SCSCANCPU FLOAT(4) NOT
NULL

IBM internal use only.

SCSCANCOST FLOAT(4) NOT
NULL

IBM internal use only.

COMPCARD FLOAT(4) NOT
NULL

The total composite cardinality.

COMPIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

COMPCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

COMPCOST FLOAT(4) NOT
NULL

The total cost.

JOINCOLS SMALLINT NOT
NULL

IBM internal use only.

2498 SQL Reference

Table 182. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

COSTBLK INTEGER NOT
NULL

IBM internal use only.

COSTSTOR INTEGER NOT
NULL

IBM internal use only.

MPBLK INTEGER NOT
NULL

IBM internal use only.

MPSTOR INTEGER NOT
NULL

IBM internal use only.

COMPOSITES INTEGER NOT
NULL

IBM internal use only.

CLIPPED INTEGER NOT
NULL

IBM internal use only.

TABREF VARCHAR(64)
NOT NULL FOR
BIT DATA

IBM internal use only.

MAX_COMPOSITES INTEGER NOT
NULL

IBM internal use only.

MAX_STOR INTEGER NOT
NULL

IBM internal use only.

MAX_CPU INTEGER NOT
NULL

IBM internal use only.

MAX_ELAP INTEGER NOT
NULL

IBM internal use only.

TBL_JOINED_THRESH INTEGER NOT
NULL

IBM internal use only.

STOR_USED INTEGER NOT
NULL

IBM internal use only.

CPU_USED INTEGER NOT
NULL

IBM internal use only.

ELAPSED INTEGER NOT
NULL

IBM internal use only.

MIN_CARD_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_CARD_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_COST_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

Appendix. Additional information for DB2 SQL 2499

Table 182. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

MAX_COST_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_CARD_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_COST_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_CARD_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_CARD_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_COST_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_COST_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_CARD_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_COST_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_VALUE_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_VALUE_CARD_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_VALUE_COST_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

GROUP_MEMBER VARCHAR(24)
NOT NULL

The member name of the DB2 that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

PSEQIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

PSEQIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

PSEQCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

PSEQCOST FLOAT(4) NOT
NULL

IBM internal use only.

PADJIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

PADJCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

PADJCOST FLOAT(4) NOT
NULL

IBM internal use only.

2500 SQL Reference

Table 182. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

UNCERTAINTY FLOAT(4) NOT
NULL WITH
DEFAULT

Describes the uncertainty factor of inner table index access. It is
aggregated from uncertainty of inner table probing predicates. A
larger value indicates a higher uncertainty. 0 indicates no
uncertainty or uncertainty not considered.

UNCERTAINTY_1T FLOAT(4) NOT
NULL WITH
DEFAULT

Describes the uncertainty factor of ONECOMPROWS column of
the table. It is aggregated from all local predicates on the table. A
larger value indicates a higher uncertainty. 0 indicates no
uncertainty or uncertainty not considered.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path for the statement.
This column is applicable only for static statements. The default
value of -1 indicates EXPLAIN information that was captured in
Version 9 or earlier.

COLLID VARCHAR(128)
NOT NULL

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

VERSION VARCHAR(128)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

IMNP FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

DMNP FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

IMJC FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

IMFC FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

IMJBC FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

Appendix. Additional information for DB2 SQL 2501

Table 182. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

IMJFC FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

CRED INTEGER NOT
NULL WITH
DEFAULT

IBM internal use only.

IXSCAN_SKIP_DUPS CHAR(1) NOT
NULL WITH
DEFAULT 'N'

Whether duplicate index key values are skipped during an index
scan.

'Y' Duplicate key values are skipped.

'N' Duplicate key values are not skipped.

IXSCAN_SKIP_SCREEN CHAR(1) NOT
NULL WITH
DEFAULT 'N'

Whether key ranges that are disqualified by index screening
predicates are skipped during an index scan.

'Y' Disqualified key ranges are skipped.

'N' Key ranges are not skipped.

EARLY_OUT CHAR(1) NOT
NULL WITH
DEFAULT ' '

Whether fetching from the table stops after the first qualified row.

'Y' Internal fetching stops after the first qualified row

'N' Internal fetching continues after the first qualified row.

blank The EXPLAIN information was captured in a previous
release, or the EXPLAIN information was captured for a
package that was bound in a previous release.

2502 SQL Reference

||
|
|

|
|

||

||

||
|
|

|
|

||

||

||
|
|

|

||

||

||
|
|

Table 182. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies to only statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT TEMPORAL
SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable. These items
are controlled by the BUSTIMESENSITIVE, SYSTIMESENSITIVE,
and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is
not null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query transformation as a
result of the SYSIBMADM.GET_ARCHIVE built-in global
variable.

B The query contains implicit query transformation as a
result of the CURRENT TEMPORAL BUSINESS_TIME
special register.

S The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME
special register.

SB The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT TEMPORAL
BUSINESS_TIME special register.

blank The query does not contain implicit query transformation.

PSPI

Related reference:

Information about one example of an IBM accelerator product

Appendix. Additional information for DB2 SQL 2503

||
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|

||
|
|

||
|
|

||
|
|

||
|
|
|

||

http://www-947.ibm.com/support/entry/portal/Documentation/Software/Information_Management/DB2_Analytics_Accelerator_for_z~OS

DSN_FILTER_TABLE
The filter table, DSN_FILTER_TABLE, contains information about how predicates
are used during query processing.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

2504 SQL Reference

Column descriptions

The following table describes the columns of DSN_FILTER_TABLE.

Table 183. DSN_FILTER_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, if the QUERYNO clause is specified, then
its value is used by DB2. Otherwise DB2 assigns a number based on
the line number of the SQL statement in the non-inline SQL
function, native SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

PLANNO SMALLINT The plan number, a number used to identify each miniplan with a
query block.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

Appendix. Additional information for DB2 SQL 2505

Table 183. DSN_FILTER_TABLE description (continued)

Column name Data type Description

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

ORDERNO INTEGER NOT
NULL

The sequence number of evaluation. Indicates the order in which the
predicate is applied within each stage

PREDNO INTEGER NOT
NULL

The predicate number, a number used to identify a predicate within
a query.

STAGE CHAR(9) NOT
NULL

The processing stage in which the predicate is evaluated:

MATCHING
During the index matching stage.

SCREENING
During the index screening stage.

PAGERANGE
DB2 used page range screening to limit the number of
partitions that were accessed to evaluate the predicate in a
join context.

STAGE1
During stage 1 processing, after data page access.

STAGE2
During stage 2 processing on the returned data rows.

ORDERCLASS INTEGER NOT
NULL

IBM internal use only.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

MIXOPSEQNO SMALLINT NOT
NULL

IBM internal use only.

REEVAL CHAR(1) NOT
NULL

IBM internal use only.

2506 SQL Reference

|
|
|
|

Table 183. DSN_FILTER_TABLE description (continued)

Column name Data type Description

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of
-1 indicates EXPLAIN information that was captured in Version 9 or
earlier.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

PUSHDOWN CHAR(1) NOT
NULL WITH
DEFAULT

Whether the predicate is pushed down the Index Manager or Data
Manager subcomponents for evaluation:

'I' The Index Manager subcomponent evaluates the predicate.

'D' The Data Manager subcomponent evaluates the predicate.

blank The predicate is not pushed down for evaluation.

Appendix. Additional information for DB2 SQL 2507

Table 183. DSN_FILTER_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies to only statements that reference archive tables
or temporal tables. For other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query transformation as a result
of the SYSIBMADM.GET_ARCHIVE built-in global variable.

B The query contains implicit query transformation as a result
of the CURRENT TEMPORAL BUSINESS_TIME special
register.

S The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register.

SB The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register and the CURRENT TEMPORAL BUSINESS_TIME
special register.

blank The query does not contain implicit query transformation.

PSPI

2508 SQL Reference

||
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|

||
|

||
|
|

||
|
|

||
|
|
|

||

DSN_FUNCTION_TABLE
The function table, DSN_FUNCTION_TABLE, contains descriptions of functions
that are used in specified SQL statements.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

Column descriptions

PSPI

The following table describes the columns of DSN_FUNCTION_TABLE.

Appendix. Additional information for DB2 SQL 2509

Table 184. Descriptions of columns in DSN_FUNCTION_TABLE

Column name Data type Description

QUERYNO INTEGER NOT
NULL WITH
DEFAULT

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, if the QUERYNO clause is specified, then
its value is used by DB2. Otherwise DB2 assigns a number based on
the line number of the SQL statement in the non-inline SQL
function, native SQL procedure.

QBLOCKNO INTEGER NOT
NULL WITH
DEFAULT

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

APPLNAME VARCHAR(24) NOT
NULL WITH
DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

PROGNAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

2510 SQL Reference

Table 184. Descriptions of columns in DSN_FUNCTION_TABLE (continued)

Column name Data type Description

GROUP_MEMBER VARCHAR(24) NOT
NULL WITH
DEFAULT

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

EXPLAIN_TIME TIMESTAMP NOT
NULL WITH
DEFAULT

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

SCHEMA_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The schema name of the function invoked in the explained
statement.

FUNCTION_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the function invoked in the explained statement.

SPEC_FUNC_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The specific name of the function invoked in the explained
statement.

FUNCTION_TYPE CHAR(2) NOT
NULL WITH
DEFAULT

The type of function invoked in the explained statement. Possible
values are:
CU Column function
SU Scalar function
TU Table function

VIEW_CREATOR VARCHAR(128)
NOT NULL WITH
DEFAULT

If the function specified in the FUNCTION_NAME column is
referenced in a view definition, the creator of the view. Otherwise,
blank.

VIEW_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

If the function specified in the FUNCTION_NAME column is
referenced in a view definition, the name of the view. Otherwise,
blank.

PATH VARCHAR(2048)
NOT NULL WITH
DEFAULT

The value of the SQL path that was used to resolve the schema
name of the function.

FUNCTION_TEXT VARCHAR(1500)
NOT NULL WITH
DEFAULT

The text of the function reference (the function name and
parameters). If the function reference is over 100 bytes, this column
contains the first 100 bytes. For functions specified in infix notation,
FUNCTION_TEXT contains only the function name. For example,
for a function named /, which overloads the SQL divide operator, if
the function reference is A/B, FUNCTION_TEXT contains only /.

FUNC_VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

For a version of a non-inline SQL scalar function, this column
contains the version identifier. For all other cases, this column
contains a zero length string. A version of a non-inline SQL scalar
function is defined in the SYSIBM.SYSROUTINES table with
ORIGIN='Q', FUNCTION_TYPE='S', INLINE='N', and VERSION
column containing the version identifier.

Appendix. Additional information for DB2 SQL 2511

Table 184. Descriptions of columns in DSN_FUNCTION_TABLE (continued)

Column name Data type Description

SECURE CHAR(1) NOT
NULL WITH
DEFAULT

Whether the user-defined function is secure.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of
-1 indicates EXPLAIN information that was captured in Version 9 or
earlier.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies to only statements that reference archive tables
or temporal tables. For other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query transformation as a result
of the SYSIBMADM.GET_ARCHIVE built-in global variable.

B The query contains implicit query transformation as a result
of the CURRENT TEMPORAL BUSINESS_TIME special
register.

S The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register.

SB The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register and the CURRENT TEMPORAL BUSINESS_TIME
special register.

blank The query does not contain implicit query transformation.

PSPI

2512 SQL Reference

||
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|

||
|

||
|
|

||
|
|

||
|
|
|

||

Related tasks:

Checking how DB2 resolves functions by using DSN_FUNCTION_TABLE (DB2
Application programming and SQL)

Appendix. Additional information for DB2 SQL 2513

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_checkfunctionresolution.htm#db2z_checkfunctionresolution
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_checkfunctionresolution.htm#db2z_checkfunctionresolution

DSN_KEYTGTDIST_TABLE
The key-target distribution table contains non-uniform index expression statistic
that are obtained dynamically by the DB2 optimizer.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

COLUMN descriptions

The following table shows the descriptions of the columns in the
DSN_KEYTGTDIST_TABLE table.

2514 SQL Reference

Table 185. Descriptions of columns in DSN_KEYTGTDIST_TABLE

Column name Data Type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is
being explained. The origin of the value depends
on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO
clause, which is an optional part of the
SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on
the line number of the SQL statement in
the source program.

When the values of QUERYNO are based on the
statement number in the source program, values
that exceed 32767 are reported as 0. However, in
certain rare cases, the value is not guaranteed to
be unique.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
if the QUERYNO clause is specified, then its
value is used by DB2. Otherwise DB2 assigns a
number based on the line number of the SQL
statement in the non-inline SQL function, native
SQL procedure.

APPLNAME VARCHAR(128) NOT NULL The name of the application plan for the row.
Applies only to embedded EXPLAIN statements
that are executed from a plan or to statements
that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

PROGNAME VARCHAR(128) NOT NULL The name of the program or package containing
the statement being explained. Applies only to
embedded EXPLAIN statements and to
statements explained as the result of binding a
plan or package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

Appendix. Additional information for DB2 SQL 2515

Table 185. Descriptions of columns in DSN_KEYTGTDIST_TABLE (continued)

Column name Data Type Description

COLLID VARCHAR(128) NOT NULL The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic
statement cache

DSNEXPLAINMODEYES
The row originates from an application
that specifies YES for the value of the
CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application
that specifies EXPLAIN for the value of
the CURRENT EXPLAIN MODE special
register.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

GROUP_MEMBER VARCHAR(128) NOT NULL The member name of the DB2 that executed
EXPLAIN. The column is blank if the DB2
subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT NULL The section number of the statement. The value
is taken from the same column in
SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path
for the statement. This column is applicable only
for static statements. The default value of -1
indicates EXPLAIN information that was
captured in Version 9 or earlier.

VERSION VARCHAR(122) NOT NULL The version identifier for the package. Applies
only to an embedded EXPLAIN statement
executed from a package or to a statement that is
explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

EXPLAIN_TIME TIMESTAMP NOT NULL The time when the EXPLAIN information was
captured:

All cached statements
When the statement entered the cache,
in the form of a full-precision timestamp
value.

Non-cached static statements
When the statement was bound, in the
form of a full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the
form of a value equivalent to a
CHAR(16) representation of the time
appended by 4 zeros.

2516 SQL Reference

Table 185. Descriptions of columns in DSN_KEYTGTDIST_TABLE (continued)

Column name Data Type Description

IXSCHEMA VARCHAR(128) NOT NULL The qualifier of the index.

IXNAME VARCHAR(128) NOT NULL The name of the index.

KEYSEQ VARCHAR(128) NOT NULL The numeric position of the key-target in the
index.

KEYVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

Contains the data of a frequently occurring value.
Statistics are not collected for an index on a
ROWID column. If the value has a non-character
data type, the data might not be printable.

When the value of the TYPE column contains 'I',
this column contains one of the following values:

v 'C9C4E7C6E4D3D2C6' for IDXFULKF

v 'C9C4E7D3C5C1C6C6' for IDXLEAFF

v 'C9C4E7D5D3E5D3C6' for IDXNLVLF

TYPE CHAR(1) NOT NULL The type of statistics:
C Cardinality
F Frequent value
H Histogram
I Real-time index statistics

CARDF FLOAT NOT NULL For TYPE='C', the number of distinct values for
the column group. For TYPE='H', the number of
distinct values for the column group in a quantile
indicated by the value of the QUANTILENO
column.

For TYPE='I', a value related to real-time index
statistics values determined by the KEYVALUE
column.

KEYGROUPKEYNO VARCHAR(254) NOT NULL FOR
BIT DATA

Contains a value that identifies the set of keys
that are associated with the statistics. If the
statistics are associated with more than a single
key, it contains an array of SMALLINT key
numbers with a dimension that is equal to the
value in NUMKEYS. If the statistics are only
associated with a single key, it contains 0.

NUMKEYS SMALLINT NOT NULL The number of keys that are associated with the
statistics.

FREQUENCYF FLOAT NOT NULL The percentage of rows in the table with the
value that is specified in the COLVALUE column
when the number is multiplied by 100. For
example, a value of '1' indicates 100%. A value of
'.153' indicates 15.3%.

QUANTILENO SMALLINT NOT NULL The ordinary sequence number of a quantile in
the whole consecutive value range, from low to
high. This column is not updatable

LOWVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

For TYPE='H', this is the lower bound for the
quantile indicated by the value of the
QUANTILENO column. Not used if the value of
the TYPE column is not 'H'. This column is not
updatable.

Appendix. Additional information for DB2 SQL 2517

Table 185. Descriptions of columns in DSN_KEYTGTDIST_TABLE (continued)

Column name Data Type Description

HIGHVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

For TYPE='H', this is the higher bound for the
quantile indicated by the value of the
QUANTILENO column. This column is not used
if the value of the TYPE column is not 'H'. This
column is not updatable.

EXPANSION_REASON CHAR(2) NOT NULL WITH
DEFAULT

This column applies to only statements that
reference archive tables or temporal tables. For
other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT
TEMPORAL SYSTEM_TIME special register, and
the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the
BUSTIMESENSITIVE, SYSTIMESENSITIVE, and
ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if
one of the following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global
variable is set to Y and the
ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME
special register is not null and the
BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME
special register is not null and the
SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following
values:

A The query contains implicit query
transformation as a result of the
SYSIBMADM.GET_ARCHIVE built-in
global variable.

B The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL
BUSINESS_TIME special register.

S The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL SYSTEM_TIME
special register.

SB The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT
TEMPORAL BUSINESS_TIME special
register.

blank The query does not contain implicit
query transformation.

PSPI

2518 SQL Reference

||
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|
|
|

||
|

Related concepts:

Dynamic collection of index filtering estimates (DB2 Performance)

Appendix. Additional information for DB2 SQL 2519

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_dynamicindexfilterestimate.htm#db2z_dynamicindexfilterestimate

DSN_PGRANGE_TABLE
The page range table, DSN_PGRANGE_TABLE, contains information about
qualified partitions for all page range scans in a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

2520 SQL Reference

Column descriptions

The following table describes the columns of DSN_PGRANGE_TABLE.

Table 186. DSN_PGRANGE_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is
an optional part of the SELECT, INSERT, UPDATE,
MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number
of the SQL statement in the source program.

When the values of QUERYNO are based on the statement
number in the source program, values that exceed 32767 are
reported as 0. However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, if the QUERYNO clause is
specified, then its value is used by DB2. Otherwise DB2 assigns a
number based on the line number of the SQL statement in the
non-inline SQL function, native SQL procedure.

QBLOCKNO SMALLINT NOT NULL A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

TABNO SMALLINT NOT NULL The table number, a number which uniquely identifies the
corresponding table reference within a query.

RANGE SMALLINT NOT NULL The sequence number of the current page range.

FIRSTPART SMALLINT NOT NULL The starting partition in the current page range.

LASTPART SMALLINT NOT NULL The ending partition in the current page range.

NUMPARTS SMALLINT NOT NULL The number of partitions in the current page range.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

Appendix. Additional information for DB2 SQL 2521

Table 186. DSN_PGRANGE_TABLE description (continued)

Column name Data type Description

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in Version 9 or earlier.

APPLNAME VARCHAR(24) NOT
NULL WITH DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

PROGNAME VARCHAR(128) NOT
NULL WITH DEFAULT

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

COLLID VARCHAR(128) NOT
NULL WITH DEFAULT

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies
YES for the value of the CURRENT EXPLAIN MODE
special register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

VERSION VARCHAR(122) NOT
NULL WITH DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

2522 SQL Reference

Table 186. DSN_PGRANGE_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT NULL
WITH DEFAULT

This column applies to only statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT TEMPORAL
SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable. These
items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y
and the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register
is not null and the BUSTIMESENSITIVE bind option is set to
YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is
not null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query transformation as a
result of the SYSIBMADM.GET_ARCHIVE built-in
global variable.

B The query contains implicit query transformation as a
result of the CURRENT TEMPORAL BUSINESS_TIME
special register.

S The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME
special register.

SB The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT TEMPORAL
BUSINESS_TIME special register.

blank The query does not contain implicit query
transformation.

PSPI

Appendix. Additional information for DB2 SQL 2523

||
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|

|

||
|
|

||
|
|

||
|
|

||
|
|
|

||
|

DSN_PGROUP_TABLE
The parallel group table, DSN_PGROUP_TABLE, contains information about the
parallel groups in a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

2524 SQL Reference

Column descriptions

The following table describes the columns of DSN_PGROUP_TABLE

Table 187. DSN_PGROUP_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which
is an optional part of the SELECT, INSERT, UPDATE,
MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number
of the SQL statement in the source program.

When the values of QUERYNO are based on the statement
number in the source program, values that exceed 32767 are
reported as 0. However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, if the QUERYNO clause is
specified, then its value is used by DB2. Otherwise DB2 assigns
a number based on the line number of the SQL statement in the
non-inline SQL function, native SQL procedure.

QBLOCKNO SMALLINT NOT NULL A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are
they necessarily consecutive.

PLANNAME VARCHAR(24) NOT
NULL

The application plan name.

COLLID VARCHAR(128) NOT
NULL

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies
YES for the value of the CURRENT EXPLAIN MODE
special register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and
is blank.

PROGNAME VARCHAR(128) NOT
NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN
statements and to statements explained as the result of binding
a plan or package. A blank indicates that the column is not
applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and
is blank.

Appendix. Additional information for DB2 SQL 2525

Table 187. DSN_PGROUP_TABLE description (continued)

Column name Data type Description

EXPLAIN_TIME TIMESTAMP NOT NULL The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

VERSION VARCHAR(122) NOT
NULL

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and
is blank.

GROUPID SMALLINT NOT NULL The parallel group identifier within the current query block.

FIRSTPLAN SMALLINT NOT NULL The plan number of the first contributing mini-plan associated
within this parallel group.

LASTPLAN SMALLINT NOT NULL The plan number of the last mini-plan associated within this
parallel group.

CPUCOST REAL NOT NULL The estimated total CPU cost of this parallel group in
milliseconds.

IOCOST REAL NOT NULL The estimated total I/O cost of this parallel group in
milliseconds.

BESTTIME REAL NOT NULL The estimated elapsed time for each parallel task for this
parallel group.

DEGREE SMALLINT NOT NULL The degree of parallelism for this parallel group determined at
bind time. Max parallelism degree if the Table space is large is
255, otherwise 64.

MODE CHAR(1) NOT NULL The parallel mode:

'I'
I/O parallelism

'C'
CPU parallelism

'N'
No parallelism

REASON SMALLINT NOT NULL The reason code for downgrading parallelism mode.

LOCALCPU SMALLINT NOT NULL The number of CPUs currently online when preparing the
query.

TOTALCPU SMALLINT NOT NULL The total number of CPUs in Sysplex. LOCALCPU and
TOTALCPU are different only for the DB2 coordinator in a
Sysplex.

FIRSTBASE SMALLINT The table number of the table that partitioning is performed on.

LARGETS CHAR(1) 'Y' if the TableSpace is large in this group.

2526 SQL Reference

Table 187. DSN_PGROUP_TABLE description (continued)

Column name Data type Description

PARTKIND CHAR(1) The partitioning type:

'L'
Logical partitioning

'P'
Physical partitioning

GROUPTYPE CHAR(3) Determines what operations this parallel group contains: table
Access, Join, or Sort 'A' 'AJ' 'AJS'

ORDER CHAR(1) The ordering requirement of this parallel group :

'N'
No order. Results need no ordering.

'T'
Natural Order. Ordering is required but results already
ordered if accessed via index.

'K'
Key Order. Ordering achieved by sort. Results ordered by
sort key. This value applies only to parallel sort.

STYLE CHAR(4) The Input/Output format style of this parallel group. Blank for
IO Parallelism. For other modes:

'RIRO'
Records IN, Records OUT

'WIRO'
Work file IN, Records OUT

'WIWO'
Work file IN, Work file OUT

RANGEKIND CHAR(1) The range type:

'K'
Key range

'L'
IN-list elements partitioning

'P'
Page range

'R'
Record range partitioning

NKEYCOLS SMALLINT The number of interesting key columns, that is, the number of
columns that will participate in the key operation for this
parallel group.

LOWBOUND VARCHAR(40) FOR BIT
DATA

The low bound of parallel group.

HIGHBOUND VARCHAR(40) FOR BIT
DATA

The high bound of parallel group.

LOWKEY VARCHAR(40) FOR BIT
DATA

The low key of range if partitioned by key range.

HIGHKEY VARCHAR(40) FOR BIT
DATA

The high key of range if partitioned by key range.

FIRSTPAGE CHAR(4) FOR BIT DATA The first page in range if partitioned by page range.

LASTPAGE CHAR(4) FOR BIT DATA The last page in range if partitioned by page range.

Appendix. Additional information for DB2 SQL 2527

Table 187. DSN_PGROUP_TABLE description (continued)

Column name Data type Description

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

HOST_REASON SMALLINT IBM internal use only.

PARA_TYPE CHAR(4) IBM internal use only.

PART_INNER CHAR(1) IBM internal use only.

GRNU_KEYRNG CHAR(1) IBM internal use only.

OPEN_KEYRNG CHAR(1) IBM internal use only.

APPLNAME VARCHAR(24) NOT
NULL WITH DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan
or to statements that are explained when binding a plan. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and
is blank.

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken from
the same column in SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in Version 9 or earlier.

STRAW_MODEL CHAR(1) NOT NULL
WITH DEFAULT

IBM internal use only.

2528 SQL Reference

Table 187. DSN_PGROUP_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT NULL
WITH DEFAULT

This column applies to only statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT TEMPORAL
SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable. These
items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y
and the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register
is not null and the BUSTIMESENSITIVE bind option is set to
YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is
not null and the SYSTIMESENSITIVE bind option is set to
YES

This column can have one of the following values:

A The query contains implicit query transformation as a
result of the SYSIBMADM.GET_ARCHIVE built-in
global variable.

B The query contains implicit query transformation as a
result of the CURRENT TEMPORAL BUSINESS_TIME
special register.

S The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME
special register.

SB The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT TEMPORAL
BUSINESS_TIME special register.

blank The query does not contain implicit query
transformation.

PSPI

Appendix. Additional information for DB2 SQL 2529

||
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|

|

||
|
|

||
|
|

||
|
|

||
|
|
|

||
|

DSN_PREDICAT_TABLE
The predicate table, DSN_PREDICAT_TABLE, contains information about all of the
predicates in a query. It is also used as input when you issue a BIND QUERY
command to override predicate selectivities for matching SQL statements.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

2530 SQL Reference

|
|

Column descriptions

The following table describes the columns of the DSN_PREDICAT_TABLE

Table 188. DSN_PREDICAT_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, if the QUERYNO clause is specified, then
its value is used by DB2. Otherwise DB2 assigns a number based on
the line number of the SQL statement in the non-inline SQL
function, native SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

PREDNO INTEGER NOT
NULL

The predicate number, a number used to identify a predicate within
a query.

Appendix. Additional information for DB2 SQL 2531

Table 188. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

TYPE CHAR(8) NOT
NULL

A string used to indicate the type or the operation of the predicate.
The possible values are:

v 'AND'

v 'BETWEEN'

v 'EQUAL'

v 'EXISTS

v 'COMPOUND'

v 'HAVING'

v 'IN'

v 'LIKE'

v 'NOT LIKE'

v 'NOTEXIST'

v 'OTHERS'

v 'OR'

v 'RANGE'

v 'SUBQUERY'

v 'XEXISTS'

v 'NXEXISTS'

LEFT_HAND_SIDE VARCHAR(128)
NOT NULL

Describes the left side of the predicate.

If the left side of the predicate is a table column, this value indicates
the name of that column.

Other possible values are:

v 'VALUE'

v 'COLEXP'

v 'NONCOLEXP'

v 'CORSUB'

v 'NONCORSUB'

v 'SUBQUERY'

v 'EXPRESSION'

v Blanks

LEFT_HAND_PNO INTEGER NOT
NULL

If the predicate is a compound predicate (AND/OR), then this
column indicates the first child predicate. However, this column is
not reliable when the predicate tree consolidation happens. Use
PARENT_PNO instead to reconstruct the predicate tree.

LHS_TABNO SMALLINT NOT
NULL

If the left side of the predicate is a table column or a column
expression in an expression-based index, then this column indicates
a number which uniquely identifies the corresponding table
reference within a query.

LHS_QBNO SMALLINT NOT
NULL

If the left side of the predicate is a table column or a column
expression in expression-based index, then this column indicates a
number which uniquely identifies the corresponding query block
within a query.

2532 SQL Reference

|

Table 188. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

RIGHT_HAND_SIDE VARCHAR(128)
NOT NULL

Describes the right side of the predicate.

If the right side of the predicate is a table column, this value column
indicates the column name.

Other possible values are:

v 'VALUE'

v 'COLEXP'

v 'NONCOLEXP'

v 'CORSUB'

v 'NONCORSUB'

v 'SUBQUERY'

v 'EXPRESSION'

v Blanks

RIGHT_HAND_PNO INTEGER NOT
NULL

If the predicate is a compound predicate (AND/OR), then this
column indicates the second child predicate. However, this column
is not reliable when the predicate tree consolidation happens. Use
PARENT_PNO instead to reconstruct the predicate tree.

RHS_TABNO CHAR(1) NOT
NULL

If the right side of the predicate is a table column or a column
expression in an index on expression, then this column indicates a
number which uniquely identifies the corresponding table reference
within a query.

RHS_QBNO CHAR(1) NOT
NULL

If the right side of the predicate is a subquery or a column
expression in an expression-based index, then this column indicates
a number which uniquely identifies the corresponding query block
within a query.

FILTER_FACTOR FLOAT NOT NULL The estimated filter factor.

BOOLEAN_TERM CHAR(1) NOT
NULL

Whether this predicate can be used to determine the truth value of
the whole WHERE clause.

SEARCHARG CHAR(1) NOT
NULL

Whether this predicate can be processed by data manager (DM). If it
is not, then the relational data service (RDS) needs to be used to
take care of it, which is more costly.

JOIN CHAR(1) NOT
NULL

Whether the predicate can be used as a simple join predicate
between two tables.

AFTER_JOIN CHAR(1) NOT
NULL

Indicates the predicate evaluation phase:

'A' After join

'D' During join

blank Not applicable

Appendix. Additional information for DB2 SQL 2533

Table 188. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

ADDED_PRED CHAR(1) NOT
NULL

Whether the predicate is generated by DB2, and the reason why the
predicate is added:

blank DB2 did not add the predicate.

'B' For bubble up.

'C' For correlation.

'J' For join.

'K' For LIKE for expression-based index.

'L' For localization.

'P' For push down.

'R' For page range.

'S' For simplification.

'T' For transitive closure.

REDUNDANT_PRED CHAR(1) NOT
NULL

Whether it is a redundant predicate, which means evaluation of
other predicates in the query already determines the result that the
predicate provides.

DIRECT_ACCESS CHAR(1) NOT
NULL

Whether the predicate is direct access, which means one can
navigate directly to the row through ROWID.

KEYFIELD CHAR(1) NOT
NULL

Whether the predicate includes the index key column of the
involved table for all applicable indexes considered by DB2.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

CATEGORY SMALLINT NOT
NULL

IBM internal use only.

CATEGORY_B SMALLINT NOT
NULL

IBM internal use only.

TEXT VARCHAR(2000)
NOT NULL

The text of the transformed predicate text. If the text of the predicate
contains more than 2000 characters, it is truncated.

PRED_ENCODE CHAR(1) NOT
NULL WITH
DEFAULT

IBM internal use only.

PRED_CCSID SMALLINT NOT
NULL WITH
DEFAULT

IBM internal use only.

PRED_MCCSID SMALLINT NOT
NULL WITH
DEFAULT

IBM internal use only.

2534 SQL Reference

|
|

||

||

||

||

||

||

||

||

||

||

Table 188. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

MARKER CHAR(1) NOT
NULL WITH
DEFAULT

Whether this predicate includes host variables, parameter markers,
or special registers.

PARENT_PNO INTEGER NOT
NULL

The parent predicate number. If this predicate is a root predicate
within a query block, then this column is 0.

NEGATION CHAR(1) NOT
NULL

Whether this predicate is negated via NOT.

LITERALS VARCHAR(128)
NOT NULL

This column indicates the literal value or literal values separated by
colon symbols.

CLAUSE CHAR(8) NOT
NULL

The clause where the predicate exists:

'HAVING '
The HAVING clause

'ON ' The ON clause

'WHERE '
The WHERE clause

SELECT
The SELECT clause

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

ORIGIN CHAR(1) NOT
NULL WITH
DEFAULT

Indicates the origin of the predicate.

Blank Generated by DB2

C Column mask

R Row permission

U Specified by the user

UNCERTAINTY FLOAT(4) NOT
NULL WITH
DEFAULT

Describes the uncertainty factor of a predicate's estimated filter
factor. A bigger value indicates a higher degree of uncertainty. Value
zero indicates no uncertainty or uncertainty not considered.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path for the statement.
This column is applicable only for static statements. The default
value of -1 indicates EXPLAIN information that was captured in
Version 9 or earlier.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

Appendix. Additional information for DB2 SQL 2535

Table 188. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies to only statements that reference archive tables
or temporal tables. For other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query transformation as a result
of the SYSIBMADM.GET_ARCHIVE built-in global
variable.

B The query contains implicit query transformation as a result
of the CURRENT TEMPORAL BUSINESS_TIME special
register.

S The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register.

SB The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register and the CURRENT TEMPORAL BUSINESS_TIME
special register.

blank The query does not contain implicit query transformation.

PSPI

2536 SQL Reference

||
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|

||
|
|

||
|
|

||
|
|

||
|
|
|

||

Related concepts:
“Predicates” on page 296

Predicates and access path selection (DB2 Performance)
Related tasks:

Overriding predicate selectivities at the statement level (DB2 Performance)
Related reference:

Tables for influencing access path selection (DB2 Performance)

BIND QUERY (DSN) (DB2 Commands)

Appendix. Additional information for DB2 SQL 2537

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_predicateproperties.htm#db2z_predicateproperties
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_createselecthint.htm#db2z_createselecthint
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_bindquerytables.htm#db2z_bindquerytables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_bindquery.htm#db2z_cmd_bindquery

DSN_PREDICATE_SELECTIVITY table
The predicate selectivity table contains information about the selectivity of
predicates that are used for access path selection. It is used as an input table for
the BIND QUERY command when selectivity overrides are specified.

PSPI

When selectivity overrides are not specified, or specified selectivity overrides
cannot not be used by DB2, the DSN_PREDICATE_SELECTIVITY table contains
one row for each predicate in DSN_PREDICAT_TABLE that is used for access path
selection. These rows contain ASSUMPTION='NORMAL' values.
DSN_PREDICATE_SELECTIVITY does not contain rows from
DSN_PREDICAT_TABLE for predicates that are not used for access path selection.

When selectivity overrides are specified and used by DB2, this table also contains
one row for each selectivity override that was used. These rows contain
ASSUMPTION='OVERRIDE' values.

Additionally, if the sum of the weights for all specified selectivity override
instances is less than one, this table contains one row for each predicate in
DSN_PREDICAT_TABLE that is used for access path selection. These rows contain
ASSUMPTION='NORMAL' values and WEIGHT values equal to one minus the
sum of the specified override weight values.

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

2538 SQL Reference

|

|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|

|
|
|
|
|

||
|
|
|
|
|
|

|

|
|

Column descriptions

Your subsystem or data sharing group can contain more than one of these tables,
including a table with the qualifier SYSIBM, a table with the qualifier DB2OSCA,
and additional tables that are qualified by user IDs.

The following table shows the descriptions of the columns in the
DSN_PREDICATE_SELECTIVITY table.

Table 189. Descriptions of columns in the DSN_PREDICATE_SELECTIVITY table

Column name Data Type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is
being explained. The origin of the value depends
on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO
clause, which is an optional part of the
SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on
the line number of the SQL statement in
the source program.

When the values of QUERYNO are based on the
statement number in the source program, values
that exceed 32767 are reported as 0. However, in
certain rare cases, the value is not guaranteed to
be unique.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
if the QUERYNO clause is specified, then its value
is used by DB2. Otherwise DB2 assigns a number
based on the line number of the SQL statement in
the non-inline SQL function, native SQL
procedure.

QBLOCKNO SMALLINT NOT NULL A number that identifies each query block within
a query. The value of the numbers are not in any
particular order, nor are they necessarily
consecutive.

APPLNAME VARCHAR(24) NOT NULL The name of the application plan for the row.
Applies only to embedded EXPLAIN statements
that are executed from a plan or to statements
that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

Appendix. Additional information for DB2 SQL 2539

|

|
|
|

|
|

||

|||

|||
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|||
|
|
|

|||
|
|
|
|

|
|
|

Table 189. Descriptions of columns in the DSN_PREDICATE_SELECTIVITY table (continued)

Column name Data Type Description

PROGNAME VARCHAR(128) NOT NULL The name of the program or package containing
the statement being explained. Applies only to
embedded EXPLAIN statements and to statements
explained as the result of binding a plan or
package. A blank indicates that the column is not
applicable.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

SECTNOI INTEGER NOT NULL WITH
DEFAULT

The section number of the statement. The value is
taken from the same column in SYSPACKSTMT or
SYSSTMT tables and can be used to join tables to
reconstruct the access path for the statement. This
column is applicable only for static statements.
The default value of -1 indicates EXPLAIN
information that was captured in Version 9 or
earlier.

COLLID VARCHAR(128) NOT NULL The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic
statement cache

DSNEXPLAINMODEYES
The row originates from an application
that specifies YES for the value of the
CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application
that specifies EXPLAIN for the value of
the CURRENT EXPLAIN MODE special
register.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

VERSION VARCHAR(122) NOT NULL The version identifier for the package. Applies
only to an embedded EXPLAIN statement
executed from a package or to a statement that is
explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
non-inline SQL function or native SQL procedure,
this column is not used and is blank.

PREDNO INTEGER NOT NULL The predicate number, a number used to identify
a specific predicate within a query.

INSTANCE SMALLINT NOT NULL The selectivity instance. Used to group related
selectivities.

SELECTIVITY FLOAT NOT NULL The selectivity estimate.

2540 SQL Reference

|

|||

|||
|
|
|
|
|

|
|
|

||
|
|
|
|
|
|
|
|
|

|||

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|||
|
|
|
|

|
|
|

|||
|

|||
|

|||

Table 189. Descriptions of columns in the DSN_PREDICATE_SELECTIVITY table (continued)

Column name Data Type Description

WEIGHT FLOAT(4) NOT NULL The percentage of executions that have the
specified selectivity. For example, a value of 0.25
means that 25% of the time when query is
executed it has this selectivity.

ASSUMPTION VARCHAR(128) NOT NULL Indicates how the selectivity was estimated, or is
used. One of the following values:

'NORMAL'
Selectivity is estimated by using the
normal selectivity assumptions.

'OVERRIDE'
Selectivity is based on an override.

INSERT_TIME TIMESTAMP NOT NULL
GENERATED ALWAYS FOR
EACH ROW ON UPDATE AS
ROW CHANGE TIMESTAMP

The time when the row was inserted or updated.

EXPLAIN_TIME TIMESTAMP The time when the EXPLAIN information was
captured:

All cached statements
When the statement entered the cache, in
the form of a full-precision timestamp
value.

Non-cached static statements
When the statement was bound, in the
form of a full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the
form of a value equivalent to a
CHAR(16) representation of the time
appended by 4 zeros.

REMARKS VARCHAR(762) IBM internal use only.

Appendix. Additional information for DB2 SQL 2541

|

|||

|||
|
|
|

|||
|

|
|
|

|
|

||
|
|
|

|

|||
|

|
|
|
|

|
|
|

|
|
|
|
|

|||

Table 189. Descriptions of columns in the DSN_PREDICATE_SELECTIVITY table (continued)

Column name Data Type Description

EXPANSION_REASON CHAR(2) NOT NULL WITH
DEFAULT

This column applies to only statements that
reference archive tables or temporal tables. For
other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT
TEMPORAL SYSTEM_TIME special register, and
the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the
BUSTIMESENSITIVE, SYSTIMESENSITIVE, and
ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if
one of the following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global
variable is set to Y and the
ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME
special register is not null and the
BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME
special register is not null and the
SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query
transformation as a result of the
SYSIBMADM.GET_ARCHIVE built-in
global variable.

B The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL BUSINESS_TIME
special register.

S The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL SYSTEM_TIME
special register.

SB The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT
TEMPORAL BUSINESS_TIME special
register.

blank The query does not contain implicit
query transformation.

PSPI

2542 SQL Reference

|

|||

||
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|
|
|

||
|
|

|

Related tasks:

Overriding predicate selectivities at the statement level (DB2 Performance)
Related reference:

BIND QUERY (DSN) (DB2 Commands)

DSN_PREDICAT_TABLE (DB2 Performance)

Tables for influencing access path selection (DB2 Performance)

Appendix. Additional information for DB2 SQL 2543

|

|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_createselecthint.htm#db2z_createselecthint
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_bindquery.htm#db2z_cmd_bindquery
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_dsnpredicattable.htm#db2z_dsnpredicattable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_bindquerytables.htm#db2z_bindquerytables

DSN_PTASK_TABLE
The parallel tasks table, DSN_PTASK_TABLE, contains information about all of the
parallel tasks in a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

2544 SQL Reference

Column descriptions

The following table describes the columns of DSN_PTASK_TABLE.

Table 190. DSN_PTASK_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, if the QUERYNO clause is specified, then
its value is used by DB2. Otherwise DB2 assigns a number based on
the line number of the SQL statement in the non-inline SQL function,
native SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

PGDNO SMALLINT NOT
NULL

The parallel group identifier within the current query block. This
value corresponds to the value of the GROUPID column in
DSN_PGROUP_TABLE table rows.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank indicates
that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

LPTNO SMALLINT NOT
NULL

The parallel task number.

KEYCOLID SMALLINT The key column ID (KEY range only).

DPSI CHAR(1) NOT
NULL

Indicates if a data partition secondary index (DPSI) is used.

LPTLOKEY VARCHAR(40) FOR
BIT DATA

The low key value for this key column for this parallel task (KEY
range only).

LPTHIKEY VARCHAR(40) FOR
BIT DATA

The high key value for this key column for this parallel task (KEY
range only).

Appendix. Additional information for DB2 SQL 2545

Table 190. DSN_PTASK_TABLE description (continued)

Column name Data type Description

LPTLOPAG CHAR(4) FOR BIT
DATA

The low page information if partitioned by page range.

LPTLHIPAG CHAR(4) FOR BIT
DATA

The high page information if partitioned by page range.

LPTLOPG1 CHAR(4) FOR BIT
DATA

The lower bound page number for this parallel task (Page range or
DPSI enabled only).

LPTHIPG1 CHAR(4) FOR BIT
DATA

The upper bound page number for this parallel task (Page range or
DPSI enabled only).

LPTLOPT1 SMALLINT The lower bound partition number for this parallel task (Page range
or DPSI enabled only).

LPTHIPT1 SMALLINT The upper bound partition number for this parallel task (Page range
or DPSI enabled only).

KEYCOLDT SMALLINT The data type for this key column (KEY range only).

KEYCOLPREC SMALLINT The precision/length for this key column (KEY range only).

KEYCOLSCAL SMALLINT The scale for this key column (KEY range with Decimal datatype
only).

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing environment
when EXPLAIN was executed.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of
-1 indicates EXPLAIN information that was captured in Version 9 or
earlier.

2546 SQL Reference

Table 190. DSN_PTASK_TABLE description (continued)

Column name Data type Description

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

Appendix. Additional information for DB2 SQL 2547

Table 190. DSN_PTASK_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies to only statements that reference archive tables
or temporal tables. For other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query transformation as a result
of the SYSIBMADM.GET_ARCHIVE built-in global variable.

B The query contains implicit query transformation as a result
of the CURRENT TEMPORAL BUSINESS_TIME special
register.

S The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register.

SB The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register and the CURRENT TEMPORAL BUSINESS_TIME
special register.

blank The query does not contain implicit query transformation.

Notes:

1. The name of these columns originally contained the # symbol as the last
character in the names. However, the names that contain these characters are
obsolete and are no longer supported.

PSPI

2548 SQL Reference

||
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|

||
|

||
|
|

||
|
|

||
|
|
|

||

DSN_QUERYINFO_TABLE
The query information table, DSN_QUERYINFO_TABLE, contains information
about the eligibility of query blocks for automatic query rewrite, information about
the materialized query tables that are considered for eligible query blocks, reasons
why ineligible query blocks are not eligible, and information about acceleration of
query blocks.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind, or rebind, a plan or package
with the EXPLAIN(YES) option. SQL optimization tools might also create
EXPLAIN tables that are qualified by a user ID. You can find the SQL
statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

Appendix. Additional information for DB2 SQL 2549

Column descriptions

Table 191. Descriptions of columns in DSN_QUERYINFO_TABLE

Column name Data type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is
an optional part of the SELECT, INSERT, UPDATE,
MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, if the QUERYNO clause is specified, then
its value is used by DB2. Otherwise DB2 assigns a number based
on the line number of the SQL statement in the non-inline SQL
function, native SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

QINAME1 VARCHAR(128) NOT
NULL WITH
DEFAULT

When TYPE='A':

v When REASON_CODE=0, this value is the name of the
accelerator server to which the query is sent.

v When REASON_CODE<>0, the query was not sent to an
accelerator server. The REASON_CODE value indicates why the
query was not sent to the accelerator server.

QINAME2 VARCHAR(128) NOT
NULL WITH
DEFAULT

When TYPE='A' and REASON_CODE=0, this value is the name of
the location name of the accelerator server to which the query is
sent.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

PROGNAME VARCHAR(128) NOT
NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

2550 SQL Reference

Table 191. Descriptions of columns in DSN_QUERYINFO_TABLE (continued)

Column name Data type Description

VERSION VARCHAR(122) NOT
NULL

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

COLLID VARCHAR(128) NOT
NULL

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path for the statement.
This column is applicable only for static statements. The default
value of -1 indicates EXPLAIN information that was captured in
Version 9 or earlier.

SEQNO INTEGER NOT NULL
WITH DEFAULT

The sequence number for this row if QI_DATA exceeds the size of
its column.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

TYPE CHAR(8) NOT NULL
WITH DEFAULT

The type of the output for this row:

A This row is for a query that DB2 attempts to run on an
accelerator server. The value in column REASON_CODE
indicates the outcome.

Appendix. Additional information for DB2 SQL 2551

Table 191. Descriptions of columns in DSN_QUERYINFO_TABLE (continued)

Column name Data type Description

QI_DATA CLOB(2M) NOT
NULL WITH
DEFAULT

When TYPE='A':

v For REASON_CODE values other than 0, this value is the
description of the REASON_CODE value.

v For a REASON_CODE value of 0, this value is the query text,
after it is converted for processing by the accelerator.

SERVICE_INFO BLOB(2M) NOT
NULL WITH
DEFAULT

IBM internal use only.

QB_INFO_ROWID ROWID NOT NULL
GENERATED
ALWAYS

IBM internal use only.

EXPANSION_REASON CHAR(2) NOT NULL
WITH DEFAULT

This column applies to only statements that reference archive tables
or temporal tables. For other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is
not null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query transformation as a
result of the SYSIBMADM.GET_ARCHIVE built-in global
variable.

B The query contains implicit query transformation as a
result of the CURRENT TEMPORAL BUSINESS_TIME
special register.

S The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME
special register.

SB The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT TEMPORAL
BUSINESS_TIME special register.

blank The query does not contain implicit query transformation.

Notes:

1. The REASON_CODE column has the following values:

0 The query block qualifies for routing to an accelerator server. The
values of QINAME1 and QINAME2 identify the accelerator server.

2552 SQL Reference

||
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|

||
|
|

||
|
|

||
|
|

||
|
|
|

||

For example, for version 1 of the IBM DB2 Analytics Accelerator for
z/OS, the associated data mart name is recorded in the QINAME2
column, with the following naming convention: data-mart-
name@accelerator-name@digits.

1 No active accelerator server was found when EXPLAIN was executed.

2

Special register CURRENT QUERY ACCELERATION is set to NONE.

3 DB2 classified the query as a short-running query, or DB2 determined
that sending the query to an accelerator server provided no
performance advantage.

4 The query is not read-only.

6 The cursor is defined as a scrollable cursor or rowset cursor.

7 The query references objects with multiple encoding schemes.

8 The FROM clause of the query specifies a data change table reference.

9 The query contains a table expression with one or more correlated
references to other tables in the same FROM clause.

10 The query contains a reference to a recursive common table expression.

11 The query contains an unsupported expression. The text of the
expression is in QI_DATA.

12 The query references a table that meets one of the following conditions:
v The table is not defined in the accelerator server.
v The table is defined in the accelerator server, but is not enabled for

processing by an accelerator.

13 The accelerator server that contains the tables that are referenced by the
query is not started.

14 A column that is referenced in the query was altered by DB2 after the
data was loaded in the accelerator server.

15 The query uses functionality that is available only in DB2 for z/OS
Version 10 new-function mode or later, and the functionality is not
supported by the accelerator server.

17 The query is an INSERT statement, but the DB2 subsystem parameter
DSN6SPRM.QUERY_ACCEL_OPTIONS does not specify option 2 to
enable its acceleration.

19 The accelerator server is not at the correct level and does not support a
function in the SQL statement. The QI_DATA column contains the
function text or expression text that is using the unsupported function
for the accelerator server.

900-999
For IBM internal use only.

PSPI

Related reference:

Information about one example of an IBM accelerator product

Appendix. Additional information for DB2 SQL 2553

http://www-947.ibm.com/support/entry/portal/Documentation/Software/Information_Management/DB2_Analytics_Accelerator_for_z~OS

DSN_QUERY_TABLE
The query table, DSN_QUERY_TABLE, contains information about a SQL
statement, and displays the statement before and after query transformation.

PSPI

Unlike other EXPLAIN tables, rows in DSN_QUERY_TABLE are not populated for
static SQL statements at BIND or REBIND with the EXPLAIN(YES) option.

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

2554 SQL Reference

Column descriptions

The following table describes the columns of DSN_QUERY_TABLE.

Table 192. DSN_QUERY_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement number in
the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a non-inline SQL function or
native SQL procedure, if the QUERYNO clause is specified, then its
value is used by DB2. Otherwise DB2 assigns a number based on the
line number of the SQL statement in the non-inline SQL function,
native SQL procedure.

TYPE CHAR(8) NOT
NULL

The type of the data in the NODE_DATA column.

QUERY STAGE CHAR(8) NOT
NULL WITH
DEFAULT

The stage during query transformation when this row is populated.

SEQNO NOT NULL The sequence number for this row if NODE_DATA exceeds the size of
its column.

NODE_DATA CLOB(2M) The XML data containing the SQL statement and its query block,
table, and column information.

EXPLAIN_TIME TIMESTAMP The EXPLAIN timestamp.

QUERY_ROWID ROWID NOT
NULL
GENERATED
ALWAYS

The ROWID of the statement.

GROUP MEMBER VARCHAR(24)
NOT NULL

The member name of the DB2 subsystem that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

HASHKEY INTEGER NOT
NULL

The hash value of the contents in NODE_DATA

HAS_PRED CHAR(1) NOT
NULL

When NODE_DATA contains an SQL statement, this column indicates
if the statement contains a parameter marker literal, non-parameter
marker literal, or no predicates.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of -1
indicates EXPLAIN information that was captured in Version 9 or
earlier.

Appendix. Additional information for DB2 SQL 2555

Table 192. DSN_QUERY_TABLE description (continued)

Column name Data type Description

APPLNAME VARCHAR(24)
NOT NULL WITH
DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank indicates
that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function or
native SQL procedure, this column is not used and is blank.

PROGNAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function or
native SQL procedure, this column is not used and is blank.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a non-inline SQL function or
native SQL procedure, this column is not used and is blank.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that is
explained when binding a package. A blank indicates that the column
is not applicable.

When the SQL statement is embedded in a non-inline SQL function or
native SQL procedure, this column is not used and is blank.

2556 SQL Reference

Table 192. DSN_QUERY_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies to only statements that reference archive tables or
temporal tables. For other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global variable.
These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the following
conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register is not
null and the BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query transformation as a result
of the SYSIBMADM.GET_ARCHIVE built-in global variable.

B The query contains implicit query transformation as a result
of the CURRENT TEMPORAL BUSINESS_TIME special
register.

S The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register.

SB The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special register
and the CURRENT TEMPORAL BUSINESS_TIME special
register.

blank The query does not contain implicit query transformation.

PSPI

Appendix. Additional information for DB2 SQL 2557

||
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|

||
|

||
|
|

||
|
|

||
|
|
|

||

DSN_SORTKEY_TABLE
The sort key table, DSN_SORTKEY_TABLE, contains information about sort keys
for all of the sorts required by a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

2558 SQL Reference

Column descriptions

The following table describes the columns of DSN_SORTKEY_TABLE.

Table 193. DSN_SORTKEY_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, if the QUERYNO clause is specified, then
its value is used by DB2. Otherwise DB2 assigns a number based on
the line number of the SQL statement in the non-inline SQL function,
native SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

PLANNO SMALLINT NOT
NULL

The plan number, a number used to identify each miniplan with a
query block.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank indicates
that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

Appendix. Additional information for DB2 SQL 2559

Table 193. DSN_SORTKEY_TABLE description (continued)

Column name Data type Description

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

SORTNO SMALLINT NOT
NULL

The sequence number of the sort

ORDERNO SMALLINT NOT
NULL

The sequence number of the sort key

EXPTYPE CHAR(3) NOT
NULL

The type of the sort key. The possible values are:

v 'COL'

v 'EXP'

v 'QRY'

TEXT VARCHAR(128)
NOT NULL

The sort key text, can be a column name, an expression, or a scalar
subquery, or 'Record ID'.

TABNO SMALLINT NOT
NULL

The table number, a number which uniquely identifies the
corresponding table reference within a query.

COLNO SMALLINT NOT
NULL

The column number, a number which uniquely identifies the
corresponding column within a query. Only applicable when the sort
key is a column.

DATATYPE CHAR(18) The data type of sort key. The possible values are

v 'HEXADECIMAL'

v 'CHARACTER'

v 'PACKED FIELD '

v 'FIXED(31)'

v 'FIXED(15)'

v 'DATE'

v 'TIME'

v 'VARCHAR'

v 'PACKED FLD'

v 'FLOAT'

v 'TIMESTAMP'

v 'UNKNOWN DATA TYPE'

LENGTH INTEGER NOT
NULL

The length of sort key.

CCSID INTEGER NOT
NULL

IBM internal use only.

2560 SQL Reference

Table 193. DSN_SORTKEY_TABLE description (continued)

Column name Data type Description

ORDERCLASS INTEGER NOT
NULL

IBM internal use only.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing environment
when EXPLAIN was executed.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of
-1 indicates EXPLAIN information that was captured in Version 9 or
earlier.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

Appendix. Additional information for DB2 SQL 2561

Table 193. DSN_SORTKEY_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies to only statements that reference archive tables
or temporal tables. For other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query transformation as a result
of the SYSIBMADM.GET_ARCHIVE built-in global variable.

B The query contains implicit query transformation as a result
of the CURRENT TEMPORAL BUSINESS_TIME special
register.

S The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register.

SB The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register and the CURRENT TEMPORAL BUSINESS_TIME
special register.

blank The query does not contain implicit query transformation.

PSPI

2562 SQL Reference

||
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|

||
|

||
|
|

||
|
|

||
|
|
|

||

DSN_SORT_TABLE
The sort table, DSN_SORT_TABLE, contains information about the sort operations
required by a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

Appendix. Additional information for DB2 SQL 2563

Column descriptions

The following table describes the columns of DSN_SORT_TABLE.

Table 194. DSN_SORT_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, if the QUERYNO clause is specified, then
its value is used by DB2. Otherwise DB2 assigns a number based on
the line number of the SQL statement in the non-inline SQL
function, native SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

PLANNO SMALLINT NOT
NULL

The plan number, a number used to identify each miniplan with a
query block.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

2564 SQL Reference

Table 194. DSN_SORT_TABLE description (continued)

Column name Data type Description

COLLID VARCHAR(128)
NOT NULL

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

SORTC CHAR(5) NOT
NULL WITH
DEFAULT

Indicates the reasons for sort of the composite table. The reasons are
shown as a series of bytes:

v Byte 1 is 'G' if the reason is GROUP BY, or otherwise blank.

v The second byte is 'J' if the reason is JOIN, or otherwise blank.

v Byte is 'O' if the reason is ORDER BY, or otherwise blank.

v The fourth by is 'U' if the reason is uniqueness, or otherwise
blank.

SORTN CHAR(5) NOT
NULL WITH
DEFAULT

Indicates the reasons for sort of the new table. The reasons are
shown as a series of bytes:

v The first byte is 'G' if the reason is GROUP BY, or otherwise
blank.

v The second byte is 'J' if the reason is JOIN, or otherwise blank.

v The third byte is 'O' if the reason is ORDER BY, or otherwise
blank.

v The fourth by is 'U' if the reason is uniqueness, or otherwise
blank.

SORTNO SMALLINT NOT
NULL

The sequence number of the sort.

KEYSIZE SMALLINT NOT
NULL

The sum of the lengths of the sort keys.

ORDERCLASS INTEGER NOT
NULL

IBM internal use only.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

Appendix. Additional information for DB2 SQL 2565

Table 194. DSN_SORT_TABLE description (continued)

Column name Data type Description

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of
-1 indicates EXPLAIN information that was captured in Version 9 or
earlier.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies to only statements that reference archive tables
or temporal tables. For other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query transformation as a result
of the SYSIBMADM.GET_ARCHIVE built-in global variable.

B The query contains implicit query transformation as a result
of the CURRENT TEMPORAL BUSINESS_TIME special
register.

S The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register.

SB The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register and the CURRENT TEMPORAL BUSINESS_TIME
special register.

blank The query does not contain implicit query transformation.

PSPI

2566 SQL Reference

||
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|

||
|

||
|
|

||
|
|

||
|
|
|

||

DSN_STATEMENT_CACHE_TABLE
The statement cache table, DSN_STATEMENT_CACHE_TABLE, contains
information about the SQL statements in the statement cache, information captured
as the results of an EXPLAIN STATEMENT CACHE ALL statement.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

Column descriptions

The following table shows the descriptions of the columns in
DSN_STATEMENT_CACHE_TABLE.

Table 195. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE

Column name Data Type Description

STMT_ID INTEGER NOT NULL The statement ID; this value is the EDM unique token for the
statement.

STMT_TOKEN VARCHAR(240) The statement token; you provide this value as an identification
string.

Appendix. Additional information for DB2 SQL 2567

Table 195. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

COLLID VARCHAR(128) NOT
NULL

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies
YES for the value of the CURRENT EXPLAIN MODE
special register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

PROGRAM_NAME VARCHAR(128) NOT
NULL

The name of the package that performed the initial PREPARE
for the statement.

INV_DROPALT CHAR(1) NOT NULL This column indicates if the statement has been invalidated by a
DROP or ALTER statement.3 on page 2572

INV_REVOKE CHAR(1) NOT NULL This column indicates if the statement has been invalidated by a
REVOKE statement.3 on page 2572

INV_LRU CHAR(1) NOT NULL This column indicates if the statement has been removed from
the cache by LRU.3 on page 2572

INV_RUNSTATS CHAR(1) NOT NULL This column indicates if the statement has been invalidated by
RUNSTATS.3 on page 2572

CACHED_TS TIMESTAMP NOT
NULL

The timestamp when the statement was stored in the dynamic
statement cache.3 on page 2572

USERS INTEGER NOT NULL The number of current users of the statement. This number
indicates the users that have prepared or run the statement
during their current unit of work. 1 on page 2572,3 on page 2572

COPIES INTEGER NOT NULL The number of copies of the statement that are owned by all
threads in the system. 1 on page 2572,3 on page 2572

LINES INTEGER NOT NULL The precompiler line number from the initial PREPARE of the
statement. 1 on page 2572

PRIMAUTH VARCHAR(128) NOT
NULL

The primary authorization ID that did the initial PREPARE of
the statement.

CURSQLID VARCHAR(128) NOT
NULL

The CURRENT SQLID that did the initial PREPARE of the
statement.

BIND_QUALIFIER VARCHAR(128) NOT
NULL

The BIND qualifier. For unqualified table names, this is the
object qualifier.

BIND_ISO CHAR(2) NOT NULL The value of the ISOLATION BIND option that is in effect for
this statement. The value will be one of the following values:
'UR' Uncommitted read
'CS' Cursor stability
'RS' Read stability
'RR' Repeatable read

BIND_CDATA CHAR(1) NOT NULL The value of the CURRENTDATA BIND option that is in effect
for this statement. The value will be one of the following values:
'Y' CURRENTDATA(YES)
'N' CURRENTDATA(NO)

2568 SQL Reference

Table 195. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

BIND_DYNRL CHAR(1) NOT NULL The value of the DYNAMICRULES BIND option that is in effect
for this statement. The value will be one of the following values:
'B' DYNAMICRULE(BIND)
'R' DYNAMICRULES(RUN)

BIND_DEGRE CHAR(1) NOT NULL The value of the CURRENT DEGREE special register that is in
effect for this statement. The value will be one of the following
values:
'A' CURRENT DEGREE = ANY
'1' CURRENT DEGREE = 1

BIND_SQLRL CHAR(1) NOT NULL The value of the CURRENT RULES special register that is in
effect for this statement. The value will be one of the following
values:
'D' CURRENT RULES = DB2
'S' CURRENT RULES = SQL

BIND_CHOLD CHAR(1) NOT NULL The value of the WITH HOLD attribute of the PREPARE for this
statement. The value will be one of the following values:
'Y' Initial PREPARE specified WITH HOLD
'N' Initial PREPARE specified WITHOUT HOLD

STAT_TS TIMESTAMP NOT
NULL

Timestamp of the statistics. This is the timestamp when IFCID
318 is started. 2 on page 2572

STAT_EXEC INTEGER NOT NULL This column is deprecated. Use STAT_EXECB instead.

STAT_GPAG INTEGER NOT NULL This column is deprecated. Use STAT_GPAGB instead. 1 on page
2572

STAT_SYNR INTEGER NOT NULL This column is deprecated. Use STAT_SYNRB instead. 1 on page
2572

STAT_WRIT INTEGER NOT NULL This column is deprecated. Use STAT_WRITB instead. 1 on page
2572

STAT_EROW INTEGER NOT NULL This column is deprecated. Use STAT_EROWB instead. 1 on
page 2572

STAT_PROW INTEGER NOT NULL This column is deprecated. Use STAT_PROWB instead. 1 on
page 2572

STAT_SORT INTEGER NOT NULL This column is deprecated. Use STAT_SORTB instead. 1 on page
2572

STAT_INDX INTEGER NOT NULL This column is deprecated. Use STAT_SORTB instead.

STAT_RSCN INTEGER NOT NULL This column is deprecated. Use STAT_SORTB instead.

STAT_PGRP INTEGER NOT NULL This column is deprecated. Use STAT_SORTB instead.

STAT_ELAP FLOAT NOT NULL The accumulated elapsed time that is used for the statement. 2
on page 2572

STAT_CPU FLOAT NOT NULL The accumulated CPU time that is used for the statement. 2 on
page 2572

STAT_SUS_SYNIO FLOAT NOT NULL The accumulated wait time for synchronous I/O operations for
the statement. 2 on page 2572

STAT_SUS_LOCK FLOAT NOT NULL The accumulated wait time for lock requests for the statement. 2
on page 2572

STAT_SUS_SWIT FLOAT NOT NULL The accumulated wait time for synchronous execution unit
switch for the statement. 2 on page 2572

STAT_SUS_GLCK FLOAT NOT NULL The accumulated wait time for global locks for this statement. 2
on page 2572

Appendix. Additional information for DB2 SQL 2569

Table 195. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

STAT_SUS_OTHR FLOAT NOT NULL The accumulated wait time for read activity that is done by
another thread. 2 on page 2572

STAT_SUS_OTHW FLOAT NOT NULL The accumulated wait time for write activity done by another
thread. 2 on page 2572

STAT_RIDLIMT INTEGER NOT NULL This column is deprecated. Use STAT_SORTB instead.

STAT_RIDSTOR INTEGER NOT NULL This column is deprecated. Use STAT_SORTB instead.

EXPLAIN_TS TIMESTAMP NOT
NULL

The timestamp for when the statement cache table is populated.

SCHEMA VARCHAR(128) NOT
NULL

The value of the CURRENT SCHEMA special register.

STMT_TEXT CLOB(2M) NOT NULL The statement that is being explained.

STMT_ROWID ROWID NOT NULL
GENERATED ALWAYS

The ROWID of the statement.

BIND_RO_TYPE CHAR(1) NOT NULL
WITH DEFAULT

The current specification of the REOPT option for the statement3
on page 2572:
'N' REOPT(NONE) or its equivalent
'1' REOPT(ONCE) or its equivalent
'A' REOPT(AUTO) or its equivalent
'O' The current plan is deemed optimal and there is no

need for REOPT(AUTO)

BIND_RA_TOT INTEGER NOT NULL
WITH DEFAULT

The total number of REBIND commands that have been issued
for the dynamic statement because of the REOPT(AUTO)
option.1 on page 2572,3 on page 2572

GROUP_MEMBER VARCHAR(24) NOT
NULL WITH DEFAULT

The member name of the DB2 that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

STAT_EXECB BIGINT NOT NULL
WITH DEFAULT

The number of times this statement has been run. For a
statement with a cursor, this is the number of OPENs.2 on page
2572

STAT_GPAGB BIGINT NOT NULL
WITH DEFAULT

The number of getpage operations that are performed for the
statement. 2 on page 2572

STAT_SYNRB BIGINT NOT NULL
WITH DEFAULT

The number of synchronous buffer reads that are performed for
the statement. 2 on page 2572

STAT_WRITB BIGINT NOT NULL
WITH DEFAULT

The number of buffer write operations that are performed for
the statement. 2 on page 2572

STAT_EROWB BIGINT NOT NULL
WITH DEFAULT

The number of rows that are examined for the statement. 2 on
page 2572

STAT_PROWB BIGINT NOT NULL
WITH DEFAULT

The number of rows that are processed for the statement. 2 on
page 2572

STAT_SORTB BIGINT NOT NULL
WITH DEFAULT

The number of sorts that are performed for the statement.2 on
page 2572

STAT_INDXB BIGINT NOT NULL
WITH DEFAULT

The number of index scans that are performed for the
statement.2 on page 2572

STAT_RSCNB BIGINT NOT NULL
WITH DEFAULT

The number of table space scans that are performed for the
statement.2 on page 2572

STAT_PGRPB BIGINT NOT NULL
WITH DEFAULT

The number of parallel groups that are created for the
statement.2 on page 2572

2570 SQL Reference

Table 195. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

STAT_RIDLIMTB BIGINT NOT NULL
WITH DEFAULT

The number of times a RID list was not used because the
number of RIDs would have exceeded DB2 limits.2 on page 2572

STAT_RIDSTORB BIGINT NOT NULL
WITH DEFAULT

.The number of times a RID list was not used because there is
not enough storage available to hold the list of RIDs.2 on page
2572

LITERAL_REPL CHAR(1) NOT NULL
WITH DEFAULT

Identifies cached statements where the literal values are replaced
by the '&' symbol:3 on page 2572
'R' The statement is prepared with CONCENTRATE

STATEMENTS WITH LITERALS behavior and the
literal constants in the statement have been replaced
with '&' .

'D' This statement is a duplicate statement instance with
different literal reusability criteria.

blank Literal values are not replaced.

STAT_SUS_LATCH FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for latch requests for the statement.

STAT_SUS_PLATCH FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for page latch requests for the
statement.

STAT_SUS_DRAIN FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for drain lock requests for the
statement.

STAT_SUS_CLAIM FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for claim count requests for the
statement.

STAT_SUS_LOG FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for log writer requests for the
statement.

Appendix. Additional information for DB2 SQL 2571

Table 195. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

EXPANSION_REASON CHAR(2) NOT NULL
WITH DEFAULT

This column applies to only statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT TEMPORAL
SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable. These
items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y
and the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register
is not null and the BUSTIMESENSITIVE bind option is set to
YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is
not null and the SYSTIMESENSITIVE bind option is set to
YES

This column can have one of the following values:

A The query contains implicit query transformation as a
result of the SYSIBMADM.GET_ARCHIVE built-in
global variable.

B The query contains implicit query transformation as a
result of the CURRENT TEMPORAL BUSINESS_TIME
special register.

S The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME
special register.

SB The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT TEMPORAL
BUSINESS_TIME special register.

blank The query does not contain implicit query
transformation.

Notes:

1. If the specified value exceeds 2147483647, the column contains the value
2147483647.

2. Statistics are cumulative, across executions of the same statement, and across
threads, if the value of COLLID is DSNDYNAMICSQLCACHE. If the value of
COLLID is DSNEXPLAINMODEYES, the values are for a single run of the
statement only. If the value of COLLID is DSNEXPLAINMODE EXPLAIN, the
values of all statistics columns are 0.

3. The column is not applicable when the value of the COLLID column is
'DSNEXPLAINMODEYES' or 'DSNEXPLAINMODEEXPLAIN'

PSPI

2572 SQL Reference

||
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|

|

||
|
|

||
|
|

||
|
|

||
|
|
|

||
|

DSN_STATEMNT_TABLE
The statement table, DSN_STATEMNT_TABLE, contains information about the
estimated cost of specified SQL statements.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

Appendix. Additional information for DB2 SQL 2573

Column descriptions

The following table describes the content of each column in STATEMNT_TABLE.

Table 196. Descriptions of columns in DSN_STATEMNT_TABLE

Column name Data type Description

QUERYNO INTEGER NOT NULL
WITH DEFAULT

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is
an optional part of the SELECT, INSERT, UPDATE,
MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, if the QUERYNO clause is specified, then
its value is used by DB2. Otherwise DB2 assigns a number based
on the line number of the SQL statement in the non-inline SQL
function, native SQL procedure.

APPLNAME VARCHAR(24) NOT
NULL WITH
DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

PROGNAME VARCHAR(128) NOT
NULL WITH
DEFAULT

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

COLLID VARCHAR(128) NOT
NULL WITH
DEFAULT

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

2574 SQL Reference

Table 196. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Data type Description

GROUP_MEMBER VARCHAR(24) NOT
NULL WITH
DEFAULT

The member name of the DB2 that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

EXPLAIN_TIME TIMESTAMP NOT
NULL WITH
DEFAULT

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

STMT_TYPE CHAR(6) NOT NULL
WITH DEFAULT

The type of statement being explained. Possible values are:

SELECT
SELECT

INSERT
INSERT

UPDATE
UPDATE

MERGE
MERGE

DELETE
DELETE

TRUNCA
TRUNCATE

SELUPD
SELECT with FOR UPDATE OF

DELCUR
DELETE WHERE CURRENT OF CURSOR

UPDCUR
UPDATE WHERE CURRENT OF CURSOR

COST_CATEGORY CHAR(1) NOT NULL
WITH DEFAULT

Indicates if DB2 was forced to use default values when making its
estimates. Possible values:

A Indicates that DB2 had enough information to make a cost
estimate without using default values.

B Indicates that some condition exists for which DB2 was
forced to use default values. See the values in REASON to
determine why DB2 was unable to put this estimate in
cost category A.

PROCMS INTEGER NOT NULL
WITH DEFAULT

The estimated processor cost, in milliseconds, for the SQL
statement. The estimate is rounded up to the next integer value.
The maximum value for this cost is 2147483647 milliseconds,
which is equivalent to approximately 24.8 days. If the estimated
value exceeds this maximum, the maximum value is reported. If
an accelerator is used, the difference is reflected in this value.

Appendix. Additional information for DB2 SQL 2575

Table 196. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Data type Description

PROCSU INTEGER NOT NULL
WITH DEFAULT

The estimated processor cost, in service units, for the SQL
statement. The estimate is rounded up to the next integer value.
The maximum value for this cost is 2147483647 service units. If the
estimated value exceeds this maximum, the maximum value is
reported. If an accelerator is used, this value represents the
estimated cost including any impact of acceleration.

REASON VARCHAR(254)
WITH DEFAULT

A string that indicates the reasons for putting an estimate into cost
category B.

HAVING CLAUSE
A subselect in the SQL statement contains a HAVING
clause.

HOST VARIABLES
The statement uses host variables, parameter markers, or
special registers.

MATERIALIZATION
Statistics are missing because the statement uses
materialized views or nested table expresses.

PROFILEID value
When profile monitoring is used for the statement, the
value of the PROFILEID column in
SYSIBM.DSN_PROFILE_TABLE.

REFERENTIAL CONSTRAINTS
Referential constraints of the type CASCADE or SET
NULL exist on the target table of a DELETE statement.

TABLE CARDINALITY
The cardinality statistics are missing for one or more of
the tables that are used in the statement.

TRIGGERS
Triggers are defined on the target table of an insert,
update, or delete operation.

UDF The statement uses user-defined functions.

STMT_ENCODE CHAR(1) WITH
DEFAULT

Encoding scheme of the statement. If the statement represents a
single CCSID set, the possible values are:
A ASCII
E EBCDIC
U Unicode

If the statement has multiple CCSID sets, the value is M.

TOTAL_COST FLOAT NOT NULL
WITH DEFAULT

The overall estimated cost of the statement. If an accelerator is
used the benefit is reflected in this value. This cost should be used
only for reference purposes.

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path for the statement.
This column is applicable only for static statements. The default
value of -1 indicates EXPLAIN information that was captured in
Version 9 or earlier.

2576 SQL Reference

Table 196. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Data type Description

VERSION VARCHAR(122) NOT
NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

EXPANSION_REASON CHAR(2) NOT NULL
WITH DEFAULT

This column applies to only statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT TEMPORAL
SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable. These items
are controlled by the BUSTIMESENSITIVE, SYSTIMESENSITIVE,
and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is
not null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query transformation as a
result of the SYSIBMADM.GET_ARCHIVE built-in global
variable.

B The query contains implicit query transformation as a
result of the CURRENT TEMPORAL BUSINESS_TIME
special register.

S The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME
special register.

SB The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT TEMPORAL
BUSINESS_TIME special register.

blank The query does not contain implicit query transformation.

PSPI

Related reference:

Information about one example of an IBM accelerator product

Appendix. Additional information for DB2 SQL 2577

||
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|

||
|
|

||
|
|

||
|
|

||
|
|
|

||

http://www-947.ibm.com/support/entry/portal/Documentation/Software/Information_Management/DB2_Analytics_Accelerator_for_z~OS

DSN_STAT_FEEDBACK
The DSN_STAT_FEEDBACK table contains recommendations for capturing missing
or conflicting statistics that are defined during EXPLAIN. Collecting these statistics
by the RUNSTATS utility might improve the performance of the query.

PSPI The values in this table are updated only at EXPLAIN time, and are not
modified by the RUNSTATS utility.

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

Column descriptions

The following table contains descriptions of the columns in the
DSN_STAT_FEEDBACK table.

2578 SQL Reference

|

|
|
|

|
|

|
|
|
|
|
|

|

|

|
|
|
|
|

||
|
|
|
|
|
|

|

|
|

|

|
|

Table 197. Descriptions of columns in the DSN_STAT_FEEDBACK table

Column name Data Type Descriptions

QUERYNO INTEGER NOT NULL A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is
an optional part of the SELECT, INSERT, UPDATE,
MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number
of the SQL statement in the source program.

When the values of QUERYNO are based on the statement
number in the source program, values that exceed 32767 are
reported as 0. However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, if the QUERYNO clause is
specified, then its value is used by DB2. Otherwise DB2 assigns a
number based on the line number of the SQL statement in the
non-inline SQL function, native SQL procedure.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

PROGNAME VARCHAR(128) NOT
NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

COLLID VARCHAR(128) NOT
NULL WITH DEFAULT

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies
YES for the value of the CURRENT EXPLAIN MODE
special register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

Appendix. Additional information for DB2 SQL 2579

||

|||

|||
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

||
|
|
|
|
|

|
|
|

||
|
|
|
|
|

|
|
|

||
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

||
|
|
|
|

Table 197. Descriptions of columns in the DSN_STAT_FEEDBACK table (continued)

Column name Data Type Descriptions

EXPLAIN_TIME TIMESTAMP NOT NULL The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

SECTNOI INTEGER NOT NULL
WITH DEFAULT WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in Version 9 or earlier.

VERSION VARCHAR(122) NOT
NULL WITH DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

TBCREATOR VARCHAR(128) NOT
NULL

The creator of the table.

TBNAME VARCHAR(128) NOT
NULL

The name of the table.

IXCREATOR VARCHAR(128) NOT
NULL

The creator of the index.

IXNAME VARCHAR(128) NOT
NULL

The name of the index.

COLNAME VARCHAR(128) NOT
NULL

The name of the column.

NUMCOLUMNS SMALLINT NOT NULL The number of columns in the column group.

COLGROUPCOLNO VARCHAR(254) NOT
NULL FOR BIT DATA

A hex representation that identifies the set of columns associated
with the statistics. If the statistics are only associated with a
single column, the field contains a zero length. Otherwise, the
field is an array of SMALLINT column numbers with a
dimension equal to the value in NUMCOLUMNS.

TYPE CHAR(1) NOT NULL The type of statistic to collect:

'C' Cardinality.

'F' Frequency.

'H' Histogram.

'I' Index.

'T' Table.

2580 SQL Reference

|

|||

|||

|
|
|

|
|
|

|
|
|
|

||
|
|

|
|
|
|
|
|

||
|
|
|
|
|

|
|
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

|||

||
|
|
|
|
|
|

|||

||

||

||

||

||

Table 197. Descriptions of columns in the DSN_STAT_FEEDBACK table (continued)

Column name Data Type Descriptions

DBNAME VARCHAR(24) NOT
NULL

The name of the database.

TSNAME VARCHAR(24) NOT
NULL

The name of the table space.

REASON CHAR(8) NOT NULL The reason that the statistic was recommend:

'BASIC'
A basic statistic value for a column table or index is
missing. No statistics were collected for the identified
object.

'KEYCARD'
The cardinalities of index key columns are missing.

'LOWCARD'
The cardinality of the column is a low value, which
indicates that data might be skewed.

'NULLABLE'
Distribution statistics are not available for a nullable
column, which indicates that data might be skewed.

'DEFAULT'
A predicate references a value that is probably a default
value, which indicates that data might be skewed.

'RANGEPRD'
Histogram statistics are not available for a range
predicate.

'PARALLEL'
Parallelism could be improved by uniform partitioning
of key ranges.

'CONFLICT'
Another statistic contains a value that conflicts with the
value of this statistic. Such conflicts usually occur
because statistics were collected for related objects at
different times.

'COMPFFIX'
Multi-column cardinality statistics are needed for an
index compound filter factor.

REMARKS VARCHAR(254) NOT
NULL

Free form text for extensibility.

PSPI

Related tasks:

Maintaining statistics in the catalog (DB2 Performance)
Related reference:

RUNSTATS (DB2 Utilities)

Statistics used for access path selection (DB2 Performance)
“SYSIBM.SYSSTATFEEDBACK table” on page 2370

Appendix. Additional information for DB2 SQL 2581

|

|||

||
|
|

||
|
|

|||

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

||
|
|

|

|

|

|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_maintaincatalogstatistics.htm#db2z_maintaincatalogstatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_runstats.htm#db2z_utl_runstats
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_statistics4accesspathselection.htm#db2z_statistics4accesspathselection

DSN_STRUCT_TABLE
The structure table, DSN_STRUCT_TABLE, contains information about all of the
query blocks in a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

2582 SQL Reference

Column descriptions

The following table describes the columns of DSN_STRUCT_TABLE

Table 198. DSN_STRUCT_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, if the QUERYNO clause is specified, then
its value is used by DB2. Otherwise DB2 assigns a number based on
the line number of the SQL statement in the non-inline SQL
function, native SQL procedure.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank indicates
that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

PARENT SMALLINT NOT
NULL

The parent query block number of the current query block in the
structure of SQL text; this is the same as the PARENT_QBLOCKNO
in PLAN_TABLE.

TIMES FLOAT NOT NULL The estimated number of rows returned by Data Manager; also the
estimated number of times this query block is executed.

ROWCOUNT INTEGER NOT
NULL

The estimated number of rows returned by RDS (Query Cardinality).

ATOPEN CHAR(1) NOT
NULL

Whether the query block is moved up for do-at-open processing; 'Y'
if done-at-open; 'N': otherwise.

Appendix. Additional information for DB2 SQL 2583

Table 198. DSN_STRUCT_TABLE description (continued)

Column name Data type Description

CONTEXT CHAR(10) NOT
NULL

This column indicates what the context of the current query block is.
The possible values are:

v 'TOP LEVEL'

v 'UNION'

v 'UNION ALL'

v 'PREDICATE'

v 'TABLE EXP'

v 'UNKNOWN'

ORDERNO SMALLINT NOT
NULL

Not currently used.

DOATOPEN_PARENT SMALLINT NOT
NULL

The parent query block number of the current query block;
Do-at-open parent if the query block is done-at-open, this may be
different from the PARENT_QBLOCKNO in PLAN_TABLE.

QBLOCK_TYPE CHAR(6) NOT
NULL WITH
DEFAULT

This column indicates the type of the current query block. The
possible values are

v 'SELECT'

v 'INSERT'

v 'UPDATE'

v 'DELETE'

v 'SELUPD'

v 'DELCUR'

v ''UPDCUR'

v 'CORSUB'

v 'NCOSUB'

v 'TABLEX'

v 'TRIGGR'

v 'UNION'

v 'UNIONA'

v 'CTE'

It is equivalent to QBLOCK_TYPE column in PLAN_TABLE, except
for CTE.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

QUERY_STAGE CHAR(8) NOT
NULL

IBM internal use only.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing environment
when EXPLAIN was executed.

2584 SQL Reference

Table 198. DSN_STRUCT_TABLE description (continued)

Column name Data type Description

ORIGIN CHAR(1) NOT
NULL WITH
DEFAULT

Indicates the origin of the query block:

Blank Generated by DB2

C Column mask

R Row permission

U Specified by the user

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of
-1 indicates EXPLAIN information that was captured in Version 9 or
earlier.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

Appendix. Additional information for DB2 SQL 2585

Table 198. DSN_STRUCT_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies to only statements that reference archive tables
or temporal tables. For other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query transformation as a result
of the SYSIBMADM.GET_ARCHIVE built-in global variable.

B The query contains implicit query transformation as a result
of the CURRENT TEMPORAL BUSINESS_TIME special
register.

S The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register.

SB The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register and the CURRENT TEMPORAL BUSINESS_TIME
special register.

blank The query does not contain implicit query transformation.

PSPI

2586 SQL Reference

||
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|

||
|

||
|
|

||
|
|

||
|
|
|

||

DSN_VIEWREF_TABLE
The view reference table, DSN_VIEWREF_TABLE, contains information about all of
the views and materialized query tables that are used to process a query.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

Appendix. Additional information for DB2 SQL 2587

Column descriptions

The following table describes the columns of DSN_VIEWREF_TABLE.

Table 199. DSN_VIEWREF_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT NULL
WITH DEFAULT

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is
an optional part of the SELECT, INSERT, UPDATE,
MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, if the QUERYNO clause is
specified, then its value is used by DB2. Otherwise DB2 assigns a
number based on the line number of the SQL statement in the
non-inline SQL function, native SQL procedure.

APPLNAME VARCHAR(24) NOT
NULL WITH
DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

PROGNAME VARCHAR(128) NOT
NULL WITH
DEFAULT

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

VERSION VARCHAR(122) NOT
NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

2588 SQL Reference

Table 199. DSN_VIEWREF_TABLE description (continued)

Column name Data type Description

COLLID VARCHAR(128) NOT
NULL WITH
DEFAULT

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

When the SQL statement is embedded in a non-inline SQL
function or native SQL procedure, this column is not used and is
blank.

CREATOR VARCHAR(128) NOT
NULL WITH
DEFAULT

Authorization ID of the owner of the object.

NAME VARCHAR(128) Name of the object.

TYPE CHAR(1) NOT NULL
WITH DEFAULT

The type of the object:

'V' View

'R' MQT that has been used to replace the base table for
rewrite

'M' MQT

MQTUSE SMALLINT WITH
DEFAULT

IBM internal use only.

EXPLAIN_TIME TIMESTAMP NOT
NULL WITH
DEFAULT

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the DB2 that executed EXPLAIN. The
column is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be
used to join tables to reconstruct the access path for the statement.
This column is applicable only for static statements. The default
value of -1 indicates EXPLAIN information that was captured in
Version 9 or earlier.

Appendix. Additional information for DB2 SQL 2589

Table 199. DSN_VIEWREF_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT NULL
WITH DEFAULT

This column applies to only statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT TEMPORAL
SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable. These items
are controlled by the BUSTIMESENSITIVE, SYSTIMESENSITIVE,
and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is
not null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query transformation as a
result of the SYSIBMADM.GET_ARCHIVE built-in global
variable.

B The query contains implicit query transformation as a
result of the CURRENT TEMPORAL BUSINESS_TIME
special register.

S The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME
special register.

SB The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT TEMPORAL
BUSINESS_TIME special register.

blank The query does not contain implicit query transformation.

PSPI

2590 SQL Reference

||
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|

||
|
|

||
|
|

||
|
|

||
|
|
|

||

Tables that are used by accelerators
To interact with accelerator servers, DB2 requires two tables that record
characteristics of those accelerator servers: SYSACCELERATORS and
SYSACCELERATEDTABLES.

The following table lists the table space and indexes for these two tables, and lists
the index fields for each index. The indexes are in ascending order, except where
noted.

Table 200. Table spaces and indexes for the tables that are used for accelerators

TABLE SPACE
DSNACCEL. ...

TABLE
SYSACCEL. ...

INDEX
SYSACCEL. ... INDEX FIELDS

SYSACCEL SYSACCELERATORS DSNACC01 ACCELERATORNAME

SYSACCELERATEDTABLES DSNACT01 CREATOR.NAME.ACCELERATORNAME

Appendix. Additional information for DB2 SQL 2591

SYSACCEL.SYSACCELERATORS table
The SYSACCEL.SYSACCELERATORS table contains rows that describe the
characteristics of each accelerator server.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

ACCELERATORNAME VARCHAR(128)
NOT NULL

A unique name for the accelerator server. This is the
name by which the accelerator server is known to the
local DB2 accelerated query tables.

G

LOCATION VARCHAR(128) Identifies the location name that is associated with the
accelerator server.

G

2592 SQL Reference

SYSACCEL.SYSACCELERATEDTABLES table
The SYSACCEL.SYSACCELERATEDTABLES table contains rows that describe the
characteristics of each table that is marked for acceleration.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

The name of the table. G

CREATOR VARCHAR(128)
NOT NULL

The schema of the table. G

ACCELERATORNAME VARCHAR(128)
NOT NULL

A unique name for the accelerator server. This is the
name by which the accelerator server is known to the
local DB2 accelerated query tables.

G

REMOTENAME VARCHAR(128)
NOT NULL

The name of the base alias object. G

REMOTECREATOR VARCHAR(128)
NOT NULL

The owner of the base alias object. G

ENABLE CHAR(1)
NOT NULL

Indicates whether the remote table is enabled or disabled
for query acceleration:

Y Enabled

N Disabled

G

CREATEDBY VARCHAR(128)
NOT NULL

The primary authorization ID of the user who created the
table.

G

CREATEDTS TIMESTAMP
NOT NULL
WITH DEFAULT

The time when the CREATE statement was executed for
the table.

G

ALTEREDTS TIMESTAMP
NOT NULL
WITH DEFAULT

The time when the table was last altered. G

REFRESH_TIME TIMESTAMP
NOT NULL
WITH DEFAULT

The timestamp when the data was last refreshed. If the
data was not refreshed, this column contains the default
timestamp ('0001-01-01.00.00.00.000000').

G

SUPPORTLEVEL SMALLINT
NOT NULL

Internal use only. I

ARCHIVE CHAR(1) The archive status of the table in the accelerator database:

A The table is archived in the accelerator server
that is specified by the ACCELERATORNAME
value. The accelerator server contains active and
archived data.

C The table is archived in other accelerator servers.
The accelerator server that is specified by the
ACCELERATORNAME value contains only
active data.

blank The table is not archived in an accelerator server.

G

Appendix. Additional information for DB2 SQL 2593

Tables that are used for program authorization

For program authorization, a table is provided to record the authorization for a
program to execute a plan.

2594 SQL Reference

|

|
|

Table spaces and indexes for program authorization
Tables that are used for program authorization are contained in certain table spaces
and have indexes.

The following table lists the table space and index for the table that is used for
program authorization, and lists the index fields for the index. The index is in
ascending order.

Table 201. Table spaces and indexes for the tables that are used for program authorization

TABLE SPACE
DSNMDCDB. ...

TABLE
SYSIBM. ...

INDEX
SYSIBM. ... INDEX FIELDS

DSNMDCTS DSNPROGAUTH DSNPROGAUTH_IDX1 PROGNAME.PLANNAME

Appendix. Additional information for DB2 SQL 2595

|

|
|

|
|
|

||

|
|
|
|
|
|
|
|

||||
|
|

SYSIBM.DSNPROGAUTH table
The SYSIBM.DSNPROGAUTH table enables program authorization with or
without program data integrity checking.

Column name Data type Description Use

PROGNAME VARCHAR(24)
NOT NULL

Name of the application program that can run the plan. G

PLANNAME VARCHAR(24)
NOT NULL

Name of the application plan for the application program. G

PROGMDCVAL CHAR(16)
NOT NULL

FOR BIT DATA
WITH DEFAULT
X'000000000000000-
00000000000000000'

Reserved. G

PROGMDCPAD CHAR(1)
NOT NULL
WITH DEFAULT

Reserved. G

CREATOR VARCHAR(128)
NOT NULL
WITH DEFAULT
CURRENT SQLID

The authorization ID under which the row was inserted or
most recently updated.

G

ENABLED CHAR(1)
NOT NULL
WITH DEFAULT 'N'

Whether program authorization is enabled:
Y Program authorization is enabled.
N Program authorization is disabled.

CREATETS TIMESTAMP
NOT NULL WITH
DEFAULT

The time at which the row was inserted or most recently
updated.

G

REMARKS VARCHAR(762) A user-specified character string. G

Using the catalog in database design
Retrieving information from the catalog by using SQL statements, can be helpful in
designing your relational database.

DB2 SQL Reference lists all the DB2 catalog tables and the information stored in
them.

The information in the catalog is vital to normal DB2 operation. You can retrieve
catalog information, but changing it can have serious consequences. Therefore you
cannot execute insert or delete operations that affect the catalog, and only a limited
number of columns exist that you can update. Exceptions to these restrictions are
the SYSIBM.SYSSTRINGS, SYSIBM.SYSCOLDIST, and SYSIBM.SYSCOLDISTSTATS
catalog tables, into which you can insert rows and proceed to update and delete
rows.

To retrieve information from the catalog, you need at least the SELECT privilege
on the appropriate catalog tables.

Note: Some catalog queries can result in long table space scans.

2596 SQL Reference

|

|
|

|||||

||
|
||

||
|
||

||
|
|
|
|
|

||

||
|
|

||

||
|
|
|

|
|
|

||
|
|

|
||
||

|

||
|
|

|
|
|

||||
|

|

Retrieving catalog information about DB2 storage groups
The SYSIBM.SYSSTOGROUP and SYSIBM.SYSVOLUMES tables contain
information about DB2 storage groups and the volumes in those storage groups.

Procedure

To obtain information about DB2 storage groups and the volumes in those storage
groups:

Query the SYSIBM.SYSSTOGROUP and SYSIBM.SYSVOLUMES tables. The
following query shows what volumes are in a DB2 storage group, how much space
is used, and when that space was last calculated.
SELECT SGNAME,VOLID,SPACE,SPCDATE

FROM SYSIBM.SYSVOLUMES,SYSIBM.SYSSTOGROUP
WHERE SGNAME=NAME
ORDER BY SGNAME;

Related reference:
“SYSIBM.SYSSTOGROUP table” on page 2377
“SYSIBM.SYSVOLUMES table” on page 2441

Retrieving catalog information about a table
The SYSIBM.SYSTABLES table contains information about every table, view, and
alias in your DB2 system.

About this task

The SYSIBM.SYSTABLES table contains a row for every table, view, and
alias in your DB2 system. Each row tells you whether the object is a table, a view,
or an alias, its name, who created it, what database it belongs to, what table space
it belongs to, and other information. The SYSTABLES table also has a REMARKS
column in which you can store your own information about the table in question.

Procedure

To retrieve catalog information about a table:

Query the SYSIBM.SYSTABLES table. The following example query displays all the
information for the project activity sample table:
SELECT *

FROM SYSIBM.SYSTABLES
WHERE NAME = ’PROJACT’
AND CREATOR = ’DSN8B10’;

Appendix. Additional information for DB2 SQL 2597

Related concepts:
“Adding and retrieving comments” on page 2606
Related reference:
“SYSIBM.SYSTABLES table” on page 2396

Retrieving catalog information about partition order
The LOGICAL_PART column in the SYSIBM.SYSTABLEPART table contains
information for key order or logical partition order.

Procedure

To retrieve catalog information about partition order:

Query the SYSIBM.SYSTABLEPART table. The following statement displays
information on partition order in ascending limit value order:
SELECT LIMITKEY, PARTITION

FROM SYSIBM.SYSTABLEPART
ORDER BY LOGICAL_PART;

Related reference:
“SYSIBM.SYSTABLEPART table” on page 2387

Retrieving catalog information about aliases
Query SYSIBM.SYSTABLES to obtain information about aliases.

About this task

You can use the SYSIBM.SYSTABLES table to find information about aliases by
referencing the following three columns:
v LOCATION contains your subsystem's location name for the remote system, if

the object on which the alias is defined resides at a remote subsystem.
v TBCREATOR contains the schema table or view.
v TBNAME contains the name of the table or the view.

You can also find information about aliases by using the following user-defined
functions:
v TABLE_NAME returns the name of a table, view, or undefined object found

after resolving aliases for a user-specified object.
v TABLE_SCHEMA returns the schema name of a table, view, or undefined object

found after resolving aliases for a user-specified object.
v TABLE_LOCATION returns the location name of a table, view, or undefined

object found after resolving aliases for a user-specified object.

The NAME and CREATOR columns of the SYSTABLES table contain the name and
schema of the alias, and three other columns contain the following information for
aliases:
v TYPE is A.

2598 SQL Reference

v DBNAME is DSNDB06.
v TSNAME is SYSTSTAB.

If similar tables at different locations have names with the same second and third
parts, you can retrieve the aliases for them with a query like this one:
SELECT LOCATION, CREATOR, NAME

FROM SYSIBM.SYSTABLES
WHERE TBCREATOR=’DSN8B10’ AND TBNAME=’EMP’

AND TYPE=’A’;

Related reference:
“SYSIBM.SYSTABLES table” on page 2396
“TABLE_NAME” on page 2631
“TABLE_SCHEMA” on page 2633
“TABLE_LOCATION” on page 2629

Retrieving catalog information about columns
The SYSIBM.SYSCOLUMNS table has one row for each column of every table and
view.

Procedure

To obtain information about the columns of a table or view:

Query the SYSIBM.SYSCOLUMNS table.
The following statement retrieves information about columns in the sample
department table:
SELECT NAME, TBNAME, COLTYPE, LENGTH, NULLS, DEFAULT

FROM SYSIBM.SYSCOLUMNS
WHERE TBNAME=’DEPT’
AND TBCREATOR = ’DSN8B10’;

The result is shown below; for each column, the following information about each
column is given:
v The column name
v The name of the table that contains it
v Its data type
v Its length attribute. For LOB columns, the LENGTH column shows the length of

the pointer to the LOB.
v Whether it allows nulls
v Whether it allows default values
NAME TBNAME COLTYPE LENGTH NULLS DEFAULT
DEPTNO DEPT CHAR 3 N N
DEPTNAME DEPT VARCHAR 36 N N
MGRNO DEPT CHAR 6 Y N
ADMRDEPT DEPT CHAR 3 N N

Appendix. Additional information for DB2 SQL 2599

Related tasks:
“Retrieving catalog information about LOBs” on page 2604
Related reference:
“SYSIBM.SYSCOLUMNS table” on page 2155

Retrieving catalog information about indexes
The SYSIBM.SYSINDEXES table contains a row for every index, including indexes
on catalog tables.

Procedure

To obtain information about indexes:

Query the SYSIBM.SYSINDEXES table. For example, to retrieve a row about an
index named XEMPL2:
SELECT *

FROM SYSIBM.SYSINDEXES
WHERE NAME = ’XEMPL2’
AND CREATOR = ’DSN8B10’;

A table can have more than one index. To display information about all the indexes
of a table:
SELECT *

FROM SYSIBM.SYSINDEXES
WHERE TBNAME = ’EMP’
AND TBCREATOR = ’DSN8B10’;

Related reference:
“SYSIBM.SYSINDEXES table” on page 2211

Retrieving catalog information about views
For every view you create, DB2 stores descriptive information in several catalog
tables. Query these catalog tables to obtain information about views in your
database.

About this task

The following actions occur in the catalog after the execution of CREATE VIEW:
v A row is inserted into the SYSIBM.SYSTABLES table.
v A row is inserted into the SYSIBM.SYSTABAUTH table to record the owner's

privileges on the view.
v For each column of the view, a row is inserted into the SYSIBM.SYSCOLUMNS

table.
v One or more rows are inserted into the SYSIBM.SYSVIEWS table to record the

text of the CREATE VIEW statement.
v For each table or view on which the view is dependent, a row is inserted into

the SYSIBM.SYSVIEWDEP table to record the dependency.

2600 SQL Reference

Procedure

To obtain information about views:

Query one or more catalog tables.
Related reference:
“CREATE VIEW” on page 1527
“SYSIBM.SYSTABLES table” on page 2396
“SYSIBM.SYSTABAUTH table” on page 2383
“SYSIBM.SYSCOLUMNS table” on page 2155
“SYSIBM.SYSVIEWS table” on page 2437
“SYSIBM.SYSVIEWDEP table” on page 2436

Retrieving catalog information about authorizations
The SYSIBM.SYSTABAUTH table contains information about who can access your
data.

Procedure

To obtain information about who can access your data:

Query the SYSIBM.SYSTABAUTH table. The following query retrieves the
names of all users who have been granted access to the DSN8B10.DEPT table.
SELECT GRANTEE

FROM SYSIBM.SYSTABAUTH
WHERE TTNAME = ’DEPT’

AND GRANTEETYPE <> ’P’
AND TCREATOR = ’DSN8B10’;

GRANTEE is the name of the column that contains authorization IDs for users of
tables. The TTNAME and TCREATOR columns specify the DSN8B10.DEPT table.
The clause GRANTEETYPE <> 'P' ensures that you retrieve the names only of
users (not application plans or packages) that have authority to access the table.

Related reference:
“SYSIBM.SYSTABAUTH table” on page 2383

Retrieving catalog information about primary keys
The SYSIBM.SYSCOLUMNS table identifies columns of a primary key in column
KEYSEQ; a nonzero value indicates the place of a column in the primary key.

Procedure

To obtain catalog information about primary keys:

Query the SYSIBM.SYSCOLUMNS table. To retrieve the creator, database, and
names of the columns in the primary key of the sample project activity table using
SQL statements, execute:

Appendix. Additional information for DB2 SQL 2601

SELECT TBCREATOR, TBNAME, NAME, KEYSEQ
FROM SYSIBM.SYSCOLUMNS
WHERE TBCREATOR = ’DSN8B10’
AND TBNAME = ’PROJACT’
AND KEYSEQ > 0

ORDER BY KEYSEQ;

The SYSIBM.SYSINDEXES table identifies the primary index of a table by the
value P in column UNIQUERULE. To find the name, creator, database, and index
space of the primary index on the project activity table, execute:
SELECT TBCREATOR, TBNAME, NAME, CREATOR, DBNAME, INDEXSPACE

FROM SYSIBM.SYSINDEXES
WHERE TBCREATOR = ’DSN8B10’
AND TBNAME = ’PROJACT’
AND UNIQUERULE = ’P’;

Related reference:
“SYSIBM.SYSCOLUMNS table” on page 2155
“SYSIBM.SYSINDEXES table” on page 2211

Retrieving catalog information about foreign keys
The SYSIBM.SYSRELS and SYSIBM.SYSFOREIGNKEYS tables contain information
about referential constraints and the columns of the foreign key that defines the
constraint.

About this task

The SYSIBM.SYSRELS table contains information about referential constraints, and
each constraint is uniquely identified by the schema and name of the dependent
table and the constraint name (RELNAME). The SYSIBM.SYSFOREIGNKEYS table
contains information about the columns of the foreign key that defines the
constraint.

Procedure

To obtain information about referential constraints and the columns of the foreign
key that defines the constraint:

Query the SYSIBM.SYSRELS table or the SYSIBM.SYSFOREIGNKEYS table. To
retrieve the constraint name, column names, and parent table names for every
relationship in which the project table is a dependent, execute:
SELECT A.CREATOR, A.TBNAME, A.RELNAME, B.COLNAME, B.COLSEQ,

A.REFTBCREATOR, A.REFTBNAME
FROM SYSIBM.SYSRELS A, SYSIBM.SYSFOREIGNKEYS B
WHERE A.CREATOR = ’DSN8B10’
AND B.CREATOR = ’DSN8B10’
AND A.TBNAME = ’PROJ’
AND B.TBNAME = ’PROJ’
AND A.RELNAME = B.RELNAME

ORDER BY A.RELNAME, B.COLSEQ;

To find information about the foreign keys of tables to which the project table is a
parent:

2602 SQL Reference

SELECT A.RELNAME, A.CREATOR, A.TBNAME, B.COLNAME, B.COLNO
FROM SYSIBM.SYSRELS A, SYSIBM.SYSFOREIGNKEYS B
WHERE A.REFTBCREATOR = ’DSN8B10’
AND A.REFTBNAME = ’PROJ’
AND A.RELNAME = B.RELNAME

ORDER BY A.RELNAME, B.COLNO;

Related reference:
“SYSIBM.SYSRELS table” on page 2339
“SYSIBM.SYSFOREIGNKEYS table” on page 2209

Retrieving catalog information about check pending
The SYSIBM.SYSTABLESPACE table contains information about table spaces that
are in check-pending status.

About this task

The SYSIBM.SYSTABLESPACE table indicates that a table space is in
check-pending status by a value in column STATUS: P if the entire table space has
that status, S if the status has a scope of less than the entire space.

Procedure

To obtain information about table spaces that are in check-pending status:

Query the SYSIBM.SYSTABLESPACE table. To list all table spaces whose use is
restricted for any reason, issue this command:
-DISPLAY DATABASE (*) SPACENAM(*) RESTRICT

To retrieve the names of table spaces in check-pending status only, with the names
of the tables they contain, execute:
SELECT A.DBNAME, A.NAME, B.CREATOR, B.NAME

FROM SYSIBM.SYSTABLESPACE A, SYSIBM.SYSTABLES B
WHERE A.DBNAME = B.DBNAME
AND A.NAME = B.TSNAME
AND (A.STATUS = ’P’ OR A.STATUS = ’S’)

ORDER BY 1, 2, 3, 4;

Related reference:
“SYSIBM.SYSTABLESPACE table” on page 2404

Retrieving catalog information about check constraints
The SYSIBM.SYSCHECKS and SYSIBM.SYSCHECKDEP tables contain information
about check constraints.

Appendix. Additional information for DB2 SQL 2603

About this task

Information about check constraints is stored in the DB2 catalog in:
v SYSIBM.SYSCHECKS, which contains one row for each check constraint defined

on a table
v SYSIBM.SYSCHECKDEP, which contains one row for each reference to a column

in a check constraint

Procedure

To retrieve catalog information about check constraints:

Query the SYSIBM.SYSCHECKS and SYSIBM.SYSCHECKDEP tables. The
following query shows all check constraints on all tables named SIMPDEPT and
SIMPEMPL in order by column name within table schema. It shows the name,
authorization ID of the creator, and text for each constraint. A constraint that uses
more than one column name appears more than once in the result.
CREATE TABLE SIMPDEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(12) CONSTRAINT CC1 CHECK (DEPTNAME IS NOT NULL),
MGRNO CHAR(6),
MGRNAME CHAR(6));

SELECT A.TBOWNER, A.TBNAME, B.COLNAME,
A.CHECKNAME, A.CREATOR, A.CHECKCONDITION
FROM SYSIBM.SYSCHECKS A, SYSIBM.SYSCHECKDEP B
WHERE A.TBOWNER = B.TBOWNER

AND A.TBNAME = B.TBNAME
AND B.TBNAME = ’SIMPDEPT’
AND A.CHECKNAME = B.CHECKNAME
ORDER BY TBOWNER, TBNAME, COLNAME;

Related reference:
“SYSIBM.SYSCHECKS table” on page 2143
“SYSIBM.SYSCHECKDEP table” on page 2142

Retrieving catalog information about LOBs
The SYSIBM.SYSAUXRELS table contains information about the relationship
between a base table and an auxiliary table.

Procedure

To retrieve catalog information about LOBs:

Query the SYSIBM.SYSAUXRELS table. For example, this query returns
information about the name of the LOB columns for the employee table and its
associated auxiliary table schema and name:
SELECT COLNAME, PARTITION, AUXTBOWNER, AUXTBNAME

FROM SYSIBM.SYSAUXRELS
WHERE TBNAME = ’EMP’ AND TBOWNER = ’DSN8B10’;

2604 SQL Reference

Information about the length of a LOB is in the LENGTH2 column of the
SYSCOLUMNS table. You can query information about the length of the column as
it is returned to an application with the following query:
SELECT NAME, TBNAME, COLTYPE, LENGTH2, NULLS, DEFAULT

FROM SYSIBM.SYSCOLUMNS
WHERE TBNAME=’DEPT’
AND TBCREATOR = ’DSN8B10’;

Related reference:
“SYSIBM.SYSAUXRELS table” on page 2141
“SYSIBM.SYSCOLUMNS table” on page 2155

Retrieving catalog information about user-defined functions
and stored procedures

The SYSIBM.SYSROUTINES table contains information about routines.

Procedure

To retrieve information about user-defined functions and stored procedures:

Query the SYSIBM.SYSROUTINES table to obtain information about
user-defined functions and stored procedures. You can use this example to find
packages with stored procedures that were created prior to Version 6 and then
migrated to the SYSIBM.SYSROUTINES table:
SELECT SCHEMA, NAME FROM SYSIBM.SYSROUTINES

WHERE ROUTINETYPE = ’P’;

You can use this query to retrieve information about user-defined functions:
SELECT SCHEME, NAME, FUNCTION_TYPE, PARM_COUNT FROM SYSIBM.SYSROUTINES

WHERE ROUTINETYPE=’F’;

Related tasks:

Preparing a client program that calls a remote stored procedure (DB2
Application programming and SQL)
Related reference:
“SYSIBM.SYSROUTINES table” on page 2346

Retrieving catalog information about triggers
The SYSIBM.SYSTRIGGERS table contains information about triggers.

Procedure

To retrieve catalog information about triggers:

Query the SYSIBM.SYSTRIGGERS table to obtain information about the
triggers defined in your databases. You can issue this query to find all the triggers
defined on a particular table, their characteristics, and to determine the order they
are activated in:

Appendix. Additional information for DB2 SQL 2605

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_prepareclientprogramsp.htm#db2z_prepareclientprogramsp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_prepareclientprogramsp.htm#db2z_prepareclientprogramsp

SELECT DISTINCT SCHEMA, NAME, TRIGTIME, TRIGEVENT, GRANULARITY, CREADEDTS
FROM SYSIBM.SYSTRIGGERS
WHERE TBNAME = ’EMP’ AND TBOWNER = ’DSN8B10’;

Issue this query to retrieve the text of a particular trigger:
SELECT STATEMENT, CREATEDTS

FROM SYSIBM.SYSTRIGGERS
WHERE SCHEMA = schema_name

AND NAME = trigger_name
ORDER BY CREATEDTS;

Issue this query to determine triggers that must be rebound because they are
invalidated after objects are dropped or altered:
SELECT COLLID, NAME

FROM SYSIBM.SYSPACKAGE
WHERE TYPE = ’T’

AND (VALID = ’N’ OR OPERATIVE = ’N’);

Related reference:
“SYSIBM.SYSTRIGGERS table” on page 2422

Retrieving catalog information about sequences
The SYSIBM.SYSSEQUENCES and SYSIBM.SYSSEQUENCEAUTH tables contain
information about sequences.

Procedure

To obtain information about sequences:

Query the SYSIBM.SYSSEQUENCES or SYSIBM.SYSSEQUENCEAUTH table. To
retrieve the attributes of a sequence, issue this query:
SELECT *

FROM SYSIBM.SYSSEQUENCES
WHERE NAME = ’MYSEQ’ AND SCHEMA = ’USER1B’;

Issue this query to determine the privileges that user USER1B has on sequences:
SELECT GRANTOR, NAME, DATEGRANTED, ALTERAUTH, USEAUTH

FROM SYSIBM.SEQUENCEAUTH
WHERE GRANTEE = ’USER1B’;

Related reference:
“SYSIBM.SYSSEQUENCES table” on page 2366
“SYSIBM.SYSSEQUENCEAUTH table” on page 2364

Adding and retrieving comments
After you create an object, you can provide explanatory information about it for
future reference. For example, you can provide information about the purpose of
the object, who uses it, and anything unusual about it.

2606 SQL Reference

You can create comments about tables, views, indexes, aliases, packages, plans,
distinct types, triggers, stored procedures, and user-defined functions. You can
store a comment about the table or the view as a whole, and you can also include
a comment for each column. A comment must not exceed 762 bytes.

A comment is especially useful if your names do not clearly indicate the contents
of columns or tables. In that case, use a comment to describe the specific contents
of the column or table.

Below are two examples of COMMENT:
COMMENT ON TABLE DSN8B10.EMP IS

’Employee table. Each row in this table represents one
employee of the company.’;

COMMENT ON COLUMN DSN8B10.PROJ.PRSTDATE IS
’Estimated project start date. The format is DATE.’;

After you execute a COMMENT statement, your comments are stored in the
REMARKS column of SYSIBM.SYSTABLES or SYSIBM.SYSCOLUMNS. (Any
comment that is already present in the row is replaced by the new one.) The next
two examples retrieve the comments that are added by the previous COMMENT
statements.
SELECT REMARKS

FROM SYSIBM.SYSTABLES
WHERE NAME = ’EMP’
AND CREATOR = ’DSN8B10’;

SELECT REMARKS
FROM SYSIBM.SYSCOLUMNS
WHERE NAME = ’PRSTDATE’ AND TBNAME = ’PROJ’
AND TBCREATOR = ’DSN8B10’;

Verifying the accuracy of the database definition
You can use the catalog to verify the accuracy of your database definition.

Procedure

To verify that you have created the objects in your database and check that
no errors are in your CREATE statements:

Query the catalog tables to verify that your tables are in the correct table space,

your table spaces are in the correct storage group, and so on.
Related reference:
“DB2 catalog tables” on page 2102

Sample user-defined functions
Some sample user-defined functions are provided with DB2. You can use the
functions in your applications just as you would use other user-defined functions,
or as examples to help you define your own user-defined functions..
v To use these functions in your applications: Use the functions only if installation

job DSNTEJ2U, which prepares the functions for use, has been run. Because the
external programs that implement the logic of the sample functions are written

Appendix. Additional information for DB2 SQL 2607

in C and C++, the installation job requires that your site has IBM C/C++ for
OS/390®. For information on installation job DSNTEJ2U, see DB2 Installation
Guide.

v If you want to use these functions as examples to help you define and
implement your own user-defined functions: Data set prefix.SDSNSAMP contains
the code for the sample functions.

The following table lists the sample user-defined functions. The detailed
descriptions of the functions include their external program names and specific
names. The functions are in schema DSN8. The functions are defined to treat
character or graphic string parameters, both input and output, as EBCDIC-encoded
data.

Table 202. DB2 sample user-defined functions

Function Name Description

ALTDATE Returns the current date or a user-specified date in a user-specified format

ALTTIME Returns the current time or a user-specified time in a user-specified format

CURRENCY Returns a floating-point number as a currency value

DAYNAME Returns the name of the day of the week on which a date in ISO format falls

MONTHNAME Returns the name of the month in which a date in ISO format falls

TABLE_LOCATION Returns the location name of a table or view after resolving any aliases

TABLE_NAME Returns the unqualified name of a table or view after resolving any aliases

TABLE_SCHEMA Returns the schema name of a table or view after resolving any aliases

WEATHER Shows how to use a user-defined table function to make non-relational data
available for SQL manipulation

2608 SQL Reference

ALTDATE
The ALTDATE function returns the current date in the specified format or converts
a user-specified date from one format to another.

�� ALTDATE(output-format)
input-date, input-format,

��

The schema is DSN8.

The ALTDATE function returns the current date in one of the following formats or
converts a user-specified date from one format to another:

D MONTH YY D MONTH YYYY DD MONTH YY DD MONTH YYYY
D.M.YY D.M.YYYY DD.MM.YY DD.MM.YYYY
D-M-YY D-M-YYYY DD-MM-YY DD-MM-YYYY
D/M/YY D/M/YYYY DD/MM/YY DD/MM/YYYY
M/D/YY M/D/YYYY MM/DD/YY MM/DD/YYYY
YY/M/D YYYY/M/D YY/MM/DD YYYY/MM/DD
YY.M.D YYYY.M.D YY.MM.DD YYYY.MM.DD

YYYY-M-D YYYY-MM-DD
YYYY-D-XX YYYY-DD-XX
YYYY-XX-D YYYY-XX-DD

where:
D: Suppress leading zero if the day is less than 10
DD: Retain leading zero if the day is less than 10
M: Suppress leading zero if the month is less than 10
MM: Retain leading zero if the month is less than 10
MONTH: Use English-language name of month
XX: Use a capital Roman numeral for month
YY: Use a year format without century
YYYY: Use a year format with century

The ALTDATE function demonstrates how you can create an overloaded
function—a function name for which there are multiple function instances. Each
instance supports a different parameter list enabling you to group related but
distinct functions in a single user-defined function. The ALTDATE function has
two forms.

Form 1: ALTDATE(output-format)
This form of the function converts the current date into the specified format.

output-format
A character string that matches one of the 34 date formats that are shown
above. The character string must have a data type of VARCHAR and an
actual length that is not greater than 13 bytes.

The result of the function is VARCHAR(17).

Form 2: ALTDATE(input-date, input-format, output-format)
This form of the function converts a date (input-date) in one user-specified
format (input-format) into another format (output-format).

input-date
The argument must be a date or a character string representation of a date

Appendix. Additional information for DB2 SQL 2609

in the format specified by input-format. The character string must have a
data type of VARCHAR and an actual length that is not greater than 17
bytes.

input-format
A character string that matches one of the 34 date formats that are shown
above. The character string must have a data type of VARCHAR and an
actual length that is not greater than 13 bytes.

output-format
A character string that matches one of the 34 date formats that are shown
above. The character string must have a data type of VARCHAR and an
actual length that is not greater than 13 bytes.

The result of the function is VARCHAR(17).

The following table shows the external and specific names for the two forms of the
function, which are based on the input to the function.

Table 203. External program and specific names for ALTDATE

Conversion
type

Input arguments External name Specific name

Current date output-format (VARCHAR) DSN8DUAD DSN8.DSN8DUADV

User-specified
date input-date (VARCHAR)

input-format (VARCHAR)
output-format (VARCHAR)

DSN8DUCD DSN8.DSN8DUCDVVV

input-date (DATE)
input-format (VARCHAR)
output-format (VARCHAR)

DSN8DUCD DSN8.DSN8DUCDDVV

Example 1: Convert the current date into format 'DD MONTH YY', a format that
will include any leading zero for the month, the name of the month in English,
and the year without the two digits for the century.

VALUES DSN8.ALTDATE(’DD MONTH YY’);

Example 2: Convert the current date into format 'D.M.YYYY', a format that will
suppress any leading zero for the day or month and include the year with the
century.

VALUES DSN8.ALTDATE(’D.M.YYYY’);

Example 3: Convert the current date into format 'YYYY-XX-DD', a format that will
include the century, the month of the year as a roman numeral, and the day of the
month with any leading zero.

VALUES DSN8.ALTDATE(’YYYY-XX-DD’);

Example 4: Convert a date in the format of 'DD MONTH YYYY' to a date in the
format of 'YYYY/MM/DD'.

VALUES DSN8.ALTDATE(’11 November 1918’,
’DD MONTH YYYY’,
’YYYY/MM/DD’);

The result of the above example is '1918/11/18'.

2610 SQL Reference

Example 5: Convert the date that employee 000130 was hired, a date in ISO format,
into the format of 'D.M.YY'.

SELECT FIRSTNME || ’ ’
|| LASTNAME || ’ was hired on ’
|| DSN8.ALTDATE(HIREDATE,

’YYYY-MM-DD’,
’D.M.YY’)

FROM EMP
WHERE EMPNO = ’000130’;

Assuming that the HIREDATE is '1971-07-28', the above example returns: 'DELORES
QUINTANA was hired on 28.7.71'.

Appendix. Additional information for DB2 SQL 2611

ALTTIME
The ALTTIME function returns the current time in the specified format or converts
a user-specified time from one format to another.

�� ALTTIME(output-format)
input-time, input-format,

��

The schema is DSN8.

The ALTTIME function returns the current time in one of the following formats or
converts a user-specified time from one of the formats to another:

H:MM AM/PM HH:MM AM/PM
HH:MM:SS AM/PM HH:MM:SS
H.MM HH.MM
H.MM.SS HH.MM.SS
where:
H: Suppress leading zero if the hour is less than 10
HH: Retain leading zero if the hour is less than 10
M: Suppress leading zero if the minute is less than 10
MM: Retain leading zero if the minute is less than 10
AM/PM: Return time in 12-hour clock format, else 24-hour

The ALTTIME function demonstrates how you can create an overloaded
function—a function name for which there are multiple function instances. Each
instance supports a different parameter list enabling you to group related but
distinct functions in a single user-defined function. The ALTTIME function has two
forms.

Form 1: ALTTIME(output-format)
This form of the function converts the current time into the specified format.

output-format
A character string that matches one of the 8 time formats that are shown
above. The character string must have a data type of VARCHAR and an
actual length that is not greater than 14 bytes.

The result of the function is VARCHAR(11).

Form 2: ALTTIME(input-time, input-format, output-format)
This form of the function converts a time (input-date) in one user-specified
format (input-format) into another format (output-format).

input-time
The argument must be a time or a character string representation of a time
in the format specified by input-format. A character string argument must
have a data type of VARCHAR and an actual length that is not greater
than 11 bytes.

input-format
A character string that matches one of the 8 time formats that are shown
above. The character string must have a data type of VARCHAR and an
actual length that is not greater than 14 bytes.

output-format
A character string that matches one of the 8 time formats that are shown

2612 SQL Reference

above. The character string must have a data type of VARCHAR and an
actual length that is not greater than 14 bytes.

The result of the function is VARCHAR(11).

The following table shows the external program and specific names for the two
forms of the function, which are based on the input to the function.

Table 204. External and specific names for ALTTIME

Conversion
type

Input arguments External name Specific name

Current time output-format (VARCHAR) DSN8DUAT DSN8.DSN8DUATV

User-specified
time input-time (VARCHAR)

input-format (VARCHAR)
output-format (VARCHAR)

DSN8DUCT DSN8.DSN8DUCTVVV

input-time (TIME)
input-format (VARCHAR)
output-format (VARCHAR)

DSN8DUCT DSN8.DSN8DUCTTVV

Example 1: Convert the current time into a 12-hour clock format without seconds,
'H.MM AM/PM'.

VALUES DSN8.ALTTIME(’H:MM AM/PM’);

Example 2: Convert the current time into a 24-hour clock format without seconds,
'HH.MM'.

VALUES DSN8.ALTTIME(’HH.MM’);

Example 3: Convert the current time into a 24-hour clock format with seconds,
'HH.MM.SS'.

VALUES DSN8.ALTTIME(’HH.MM.SS’);

Example 4: Convert '00:00:00', a time in 24-hour clock format with seconds, to a
time in 12-hour clock format without seconds.

VALUES DSN8.ALTTIME(’00:00:00’,’HH:MM:SS’,’HH:MM AM/PM’);

The function returns '12:00 AM'.

Example 5: Convert '00:00:00', a time in 24-hour clock format with seconds, to a
time in 12-hour clock format without seconds and without any leading zero on the
hour.

VALUES DSN8.ALTTIME(’06.42.37’,’HH.MM.SS’,’H:MM AM/PM’);

The function returns '6:42 AM'.

Appendix. Additional information for DB2 SQL 2613

BASE64ENCODE and BASE64DECODE
The BASE64ENCODE and BASE64DECODE helper REST functions complete
Base64 encoding or decoding of the provided text or data.

�� BASE64ENCODE (text,encoding)
BASE64DECODE

��

The schema is DB2XML.

text
Specifies the text to encode or decode. For BASE64ENCODE, this argument is
provided as a VARCHAR(2732) value and the function returns a
Base64-encoded string. For BASE64DECODE, this argument is provided as a
Base64-encoded VARCHAR(4096) value and the function returns the data as
binary.

encoding
Specifies the character set that is to be used. It can be set to NULL where
UTF-8 is used as the default.

2614 SQL Reference

|

|
|

|

|||||||||||||||

|
||

|

|
|
|
|
|
|

|
|
|

CURRENCY
The CURRENCY function returns a value that is formatted as an amount with a
user-specified currency symbol and, if specified, one of three symbols that indicate
debit or credit.

�� CURRENCY(input-amount, currency-symbol)
, credit/debit-indicator

��

The schema is DSN8.

input-amount
An expression that specifies the value to be formatted. The expression must be
a floating-point value.

currency-symbol
A character string that specifies the currency symbol. The string must have a
data type of VARCHAR and an actual length that is not greater than 2 bytes.

credit/debit-indicator
A character string that specifies the symbol that is included with the result to
indicate whether the value is negative or positive. The string must have a data
type of VARCHAR and an actual length that is not greater than 5 bytes. If
credit/debit-indicator is not specified or is the value null, the result is formatted
without an indicator symbol. You can specify the following symbols:

CR/DB
Bank style. Negative input values are appended with 'DB'; positive
input values are appended with 'CR'.

+/- Arithmetic style. Negative input values are prefixed with a minus sign
'-'; positive values are formatted without symbols.

(/) Accounting style. Negative input values are enclosed in parentheses '()';
positive values are formatted without symbols.

The result of the function is VARCHAR(19).

The CURRENCY function uses the C language functions strfmon to facilitate
formatting of money amounts and setlocale to initialize strfmon for local
conventions. If setlocale fails, the CURRENCY function returns an error.

The following table shows the external program and specific names for
CURRENCY. The specific names differ depending on the input to the function.

Table 205. External program and specific names for CURRENCY

Input arguments External name Specific name

input-amount
currency-symbol

DSN8DUCY DSN8.DSN8DUCYFV

input-amount
currency-symbol
credit/debit-indicator

DSN8DUCY DSN8.DSN8DUCYFVV

Appendix. Additional information for DB2 SQL 2615

Example 1: Express® '-1234.56' as an amount in US dollars, using the bank style
debit/credit indicator to indicate whether the value is negative or positive.

VALUES DSN8.CURRENCY(-1234.56,’$’,’CR/DB’);

The result of the function is '$1,234.56 DB'.

Example 2: Express '-1234.56' as an amount in Deutsche marks, using the
accounting style debit/credit indicator to indicate whether the value is negative or
positive.

VALUES DSN8.CURRENCY(-1234.56,’DM’,’(/)’);

The result of the function is '(DM 1,234.56)'.

Example 3: Express '-1234.56' as an amount in Canadian dollars, using the
accounting style debit/credit indicator to indicate whether the value is negative or
positive.

VALUES DSN8.CURRENCY(-1234.56,’CD’,’+/-’);

The result of the function is '-CD 1,234.56'.

2616 SQL Reference

DAYNAME
The DAYNAME function returns the name of the weekday on which a given date
falls. The name is returned in English.

�� DAYNAME(input-date) ��

The schema is DSN8.

input-date
A valid date or valid character string representation of a date. A character
string representation The string must have a data type of VARCHAR and an
actual length that is not greater than 10 bytes. The date must be in ISO format.

The result of the function is VARCHAR(9).

The DAYNAME function uses the IBM C++ classIDate.

The following table shows the external and specific names for DAYNAME. The
specific names differ depending on the data type of the input argument.

Table 206. External and specific names for DAYNAME

Input arguments External name Specific name

input-date (VARCHAR)
DSN8EUDN DSN8.DSN8EUDNV

input-date (DATE)
DSN8EUDN DSN8.DSN8EUDND

Example 1: For the current date, find the day of the week.
VALUES DSN8.DAYNAME(CURRENT DATE);

Example 2: Find the day of the week on which leap year falls in the year 2008.
VALUES DSN8.DAYNAME(’2008-02-29’);

The result of the function is 'Friday'.

Example 3: Find the day of the week on which Delores Quintana, employee number
000130, was hired.

SELECT FIRSTNME || ’ ’
|| LASTNAME || ’ was hired on ’
|| DSN8.DAYNAME(HIREDATE) || ’, ’
|| CHAR(HIREDATE)

FROM EMP
WHERE EMPNO = ’000130’;

The result of the function is 'DELORES QUINTANA was hired on Wednesday,
1971-07-28'.

Appendix. Additional information for DB2 SQL 2617

HTTPBLOB
The HTTPBLOB REST function completes an HTTP request with the specified
HTTP verb. Response messages from the server are returned as BLOB data.

�� HTTPBLOB (url,method, ,)
httpHeader <input>

��

The schema is DB2XML.

url
Specifies the URL at which to complete the request. This argument is defined
as a VARCHAR(2048) value.

method
Specifies the HTTP verb to use. Valid values are GET, POST, PUT, and
DELETE.

httpHeader
Specifies an optional header XML document. This argument is defined as a
CLOB(10K) value.

The XML header document can provide additional HTTP header values in the
following format:
<httpHeader headerAttribute="headerAtributeValue">

<header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:

connectionTimeout
Specifies an integer value for the connection timeout threshold in
milliseconds.

readTimeout
Specifies an integer value for the read timeout threshold in
milliseconds.

followRedirects
Specifies whether redirects should be followed. This is a boolean value.

useCaches
Specifies whether caches should be used. This is a boolean value.

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and
headerAttributeValue combinations with single spaces.

name
The header name.

value
The header value.

<input>
Specifies the data to update at the specified URL. This argument is defined as
BLOB(5M).

2618 SQL Reference

|

|
|

|

|||||||||||||||||||||||

|
||

|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

HTTPCLOB
The HTTPCLOB REST function completes an HTTP request with the specified
HTTP verb. Response messages from the server are returned as CLOB data. The
character set is converted into the database code page if necessary.

�� HTTPCLOB (url,method, ,)
httpHeader <input>

��

The schema is DB2XML.

url
Specifies the URL at which to complete the request. This argument is defined
as a VARCHAR(2048) value.

method
Specifies the HTTP verb to use. Valid values are GET, POST, PUT, and
DELETE.

httpHeader
Specifies an optional header XML document. This argument is defined as a
CLOB(10K) value.

The XML header document can provide additional HTTP header values in the
following format:
<httpHeader headerAttribute="headerAtributeValue">

<header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:

connectionTimeout
Specifies an integer value for the connection timeout threshold in
milliseconds.

readTimeout
Specifies an integer value for the read timeout threshold in
milliseconds.

followRedirects
Specifies whether redirects should be followed. This is a boolean value.

useCaches
Specifies whether caches should be used. This is a boolean value.

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and
headerAttributeValue combinations with single spaces.

name
The header name.

value
The header value.

Appendix. Additional information for DB2 SQL 2619

|

|
|
|

|

|||||||||||||||||||||||

|
||

|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

<input>
Specifies the data to update at the specified URL. This argument is defined as
CLOB(5M).

2620 SQL Reference

|
|
|

HTTPDELETEBLOB and HTTPDELETECLOB
The HTTPDELETEBLOB and HTTPDELETECLOB REST functions delete a binary
or text-based resource from the specified URL through an HTTP DELETE request.
HTTPDELETEBLOB returns messages as BLOB data. HTTPDELETECLOB returns
messages as CLOB data. The character set is converted into the database code page
if necessary.

�� HTTPDELETEBLOB (url,)
HTTPDELETECLOB httpHeader

��

The schema is DB2XML.

url
Specifies the URL of the resource being accessed. This parameter is defined as
a VARCHAR(2048) value.

httpHeader
Specifies an optional header XML document. This argument is defined as a
CLOB(10K) value.

The XML header document can provide additional HTTP header values in the
following format:
<httpHeader headerAttribute="headerAtributeValue">

<header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:

connectionTimeout
Specifies an integer value for the connection timeout threshold in
milliseconds.

readTimeout
Specifies an integer value for the read timeout threshold in
milliseconds.

followRedirects
Specifies whether redirects should be followed. This is a boolean value.

useCaches
Specifies whether caches should be used. This is a boolean value.

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and
headerAttributeValue combinations with single spaces.

name
The header name.

value
The header value.

Appendix. Additional information for DB2 SQL 2621

|

|
|
|
|
|

|

||||||||||||||||||||||

|
||

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

HTTPGETBLOB and HTTPGETCLOB
The HTTPGETBLOB and HTTPGETCLOB REST functions retrieve a binary or
text-based resource from the specified URL through an HTTP GET request.
HTTPGETBLOB returns the resource as BLOB(5M) data. HTTPGETCLOB returns
the resource as CLOB(5M) data. The character set is converted into the database
code page if necessary.

�� HTTPGETBLOB (url,)
HTTPGETCLOB httpHeader

��

The schema is DB2XML.

url
Specifies the URL of the resource being accessed. This argument is defined as a
VARCHAR(2048) value.

httpHeader
Specifies an optional header XML document. This argument is defined as a
CLOB(10K) value.

The XML header document can provide additional HTTP header values in the
following format:
<httpHeader headerAttribute="headerAtributeValue">

<header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:

connectionTimeout
Specifies an integer value for the connection timeout threshold in
milliseconds.

readTimeout
Specifies an integer value for the read timeout threshold in
milliseconds.

followRedirects
Specifies whether redirects should be followed. This is a boolean value.

useCaches
Specifies whether caches should be used. This is a boolean value.

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and
headerAttributeValue combinations with single spaces.

name
The header name.

value
The header value.

The following SQL statement retrieves country information from the GeoNames
database:

2622 SQL Reference

|

|
|
|
|
|

|

||||||||||||||||||||||

|
||

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

SELECT DB2XML.HTTPGETCLOB(
CAST (’http://ws.geonames.org/countryInfo?lang=’ ||

DB2XML.URLENCODE(’en’,’’) ||
’&country=’ ||

DB2XML.URLENCODE(’us’,’’) ||
’&type=XML’ AS VARCHAR(255)),

CAST(NULL AS CLOB(1K)))
FROM SYSIBM.SYSDUMMY1;

Appendix. Additional information for DB2 SQL 2623

|
|
|
|
|
|
|
|

|

HTTPGETBLOBFILE and HTTPGETCLOBFILE
The HTTPGETBLOBFILE and HTTPGETCLOBFILE REST functions retrieve a
binary or text-based resource from the specified URL through an HTTP GET
request. The resource is stored in a temporary file, and the path of the temporary
file is returned as VARCHAR data. The character set is converted into the database
code page if necessary.

�� HTTPGETBLOBFILE (url,)
HTTPGETCLOBFILE httpHeader

��

The schema is DB2XML.

url
Specifies the URL of the resource that is being accessed. This argument is
defined as a VARCHAR(2048) value.

httpHeader
Specifies an optional header XML document. This argument is defined as a
CLOB(10K) value.

The XML header document can provide additional HTTP header values in the
following format:
<httpHeader headerAttribute="headerAtributeValue">

<header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:

connectionTimeout
Specifies an integer value for the connection timeout threshold in
milliseconds.

readTimeout
Specifies an integer value for the read timeout threshold in
milliseconds.

followRedirects
Specifies whether redirects should be followed. This is a boolean value.

useCaches
Specifies whether caches should be used. This is a boolean value.

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and
headerAttributeValue combinations with single spaces.

name
The header name.

value
The header value.

2624 SQL Reference

|

|
|
|
|
|

|

||||||||||||||||||||||

|
||

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

HTTPHEAD
The HTTPHEAD REST function verifies the HTTP header for the specified resource
through an HTTP HEAD request. The HTTP header is returned as CLOB or XML
data.

�� HTTPHEAD (url,)
httpHeader

��

The schema is DB2XML.

url
Specifies the URL of the resource. This argument is defined as a
VARCHAR(2048) value.

httpHeader
Specifies an optional header XML document. This argument is defined as a
CLOB(10K) value.

The XML header document can provide additional HTTP header values in the
following format:
<httpHeader headerAttribute="headerAtributeValue">

<header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:

connectionTimeout
Specifies an integer value for the connection timeout threshold in
milliseconds.

readTimeout
Specifies an integer value for the read timeout threshold in
milliseconds.

followRedirects
Specifies whether redirects should be followed. This is a boolean value.

useCaches
Specifies whether caches should be used. This is a boolean value.

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and
headerAttributeValue combinations with single spaces.

name
The header name.

value
The header value.

Appendix. Additional information for DB2 SQL 2625

|

|
|
|

|

||||||||||||||||

|
||

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

HTTPPOSTBLOB and HTTPPOSTCLOB
The HTTPPOSTBLOB and HTTPPOSTCLOB REST functions update a binary or
text-based resource under the specified URL through an HTTP POST request.
Response messages from the server are returned as BLOB for HTTPPOSTBLOB or
as CLOB for HTTPPOSTCLOB. The character set is converted into the database
code page if necessary.

�� HTTPPOSTBLOB (url, ,<input>)
HTTPPOSTCLOB httpHeader

��

The schema is DB2XML.

url
Specifies the URL at which to update the data. This argument is defined as a
VARCHAR(2048) value.

httpHeader
Specifies an optional header XML document. This argument is defined as a
CLOB(10K) value.

The XML header document can provide additional HTTP header values in the
following format:
<httpHeader headerAttribute="headerAtributeValue">

<header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:

connectionTimeout
Specifies an integer value for the connection timeout threshold in
milliseconds.

readTimeout
Specifies an integer value for the read timeout threshold in
milliseconds.

followRedirects
Specifies whether redirects should be followed. This is a boolean value.

useCaches
Specifies whether caches should be used. This is a boolean value.

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and
headerAttributeValue combinations with single spaces.

name
The header name.

value
The header value.

<input>
Specifies the data to update at the specified URL. This argument is defined as
BLOB(5M) for HTTPPOSTBLOB or CLOB(5M) for HTTPPOSTCLOB.

2626 SQL Reference

|

|
|
|
|
|

|

||||||||||||||||||||||

|
||

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

HTTPPUTBLOB and HTTPPUTCLOB
The HTTPPUTBLOB and HTTPPUTCLOB REST functions create or update a
binary or text-based resource under the specified URL through an HTTP PUT
request. Response messages from the server are returned as BLOB for
HTTPPUTBLOB or as CLOB for HTTPPUTCLOB. The character set is converted
into the database code page if necessary.

�� HTTPPUTBLOB (url, ,<input>)
HTTPPUTCLOB httpHeader

��

The schema is DB2XML.

url
Specifies the URL at which to create or update the data. This argument is
defined as a VARCHAR(2048) value.

httpHeader
Specifies an optional header XML document. This argument is defined as a
CLOB(10K) value.

The XML header document can provide additional HTTP header values in the
following format:
<httpHeader headerAttribute="headerAtributeValue">

<header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:

connectionTimeout
Specifies an integer value for the connection timeout threshold in
milliseconds.

readTimeout
Specifies an integer value for the read timeout threshold in
milliseconds.

followRedirects
Specifies whether redirects should be followed. This is a boolean value.

useCaches
Specifies whether caches should be used. This is a boolean value.

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and
headerAttributeValue combinations with single spaces.

name
The header name.

value
The header value.

<input>
Specifies the data to create or update at the specified URL. This argument is
defined as BLOB(5M) for HTTPPUTBLOB or CLOB(5M) for HTTPPUTCLOB.

Appendix. Additional information for DB2 SQL 2627

|

|
|
|
|
|

|

||||||||||||||||||||||

|
||

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

MONTHNAME
The MONTHNAME function returns the calendar name of the month in which a
given date falls. The name is returned in English.

�� MONTHNAME(input-date) ��

The schema is DSN8.

input-date
A valid date or valid character string representation of a date. A character
string representation must have a data type of VARCHAR and an actual length
that is no greater than 10 bytes. The date must be in ISO format.

The result of the function is VARCHAR(9).

The MONTHNAME function uses the IBM C++ class IDate.

The following table shows the external and specific names for MONTHNAME. The
specific names differ depending on the data type of the input argument.

Table 207. External and specific names for MONTHNAME

Input arguments External name Specific name

input-date (VARCHAR)
DSN8EUMN DSN8.DSN8EUMNV

input-date (DATE)
DSN8EUMN DSN8.DSN8EUMND

Example 1: For the current date, find the name of the month.
VALUES DSN8.MONTHNAME(CURRENT DATE);

Example 2: Find the month of the year in which Delores Quintana, employee
number 000130, was hired.

SELECT FIRSTNME || ’ ’
|| LASTNAME || ’ was hired in the month of ’
|| DSN8.MONTHNAME(HIREDATE)
|| CHAR(HIREDATE)

FROM EMP
WHERE EMPNO = ’000130’;

The result of the function is 'DELORES QUINTANA was hired in the month of July'.

2628 SQL Reference

TABLE_LOCATION
The TABLE_LOCATION function searches for an object and returns the location
name of the object after any alias chains have been resolved.

�� TABLE_LOCATION(object-name)
, object-schema

, location-name

��

The schema is DSN8.

The starting point of the resolution is the object that is specified by object-name and,
if specified, object-schema and location-name. If the starting point does not refer to an
alias, the location name of the starting point is returned. The resulting name can be
of a table, view, or undefined object. The function returns a blank if there is no
location name.

object-name
A character expression that specifies the unqualified name to be resolved. The
unqualified name is usually of an existing alias. object-name must have a data
type of VARCHAR and an actual length that is no greater than 18 bytes.

object-schema
A character expression that represents the schema that is used to qualify the
value specified in object-name before resolution. object-schema must have a data
type of VARCHAR and an actual length that is no greater than 8 bytes.

If object-schema is not specified or is null, the default schema is used for the
qualifier.

location-name
A character expression that represents the location that is used to qualify the
value specified in object-name before resolution. location-name must have a data
type of VARCHAR and an actual length that is no greater than 16 bytes.

If location-name is not specified or is null, the location name is equivalent to
“any”.

The result of the function is VARCHAR(16). If object-name can be null, the result
can be null; if object-name is null, the result is the null value.

The following table shows the external and specific names for TABLE_LOCATION.
The specific names differ depending on the number of input arguments to the
function.

Table 208. External and specific names for TABLE_LOCATION

Input arguments External name Specific name

object-name (VARCHAR)
DSN8DUTI DSN8.DSN8DUTILV

object-name (VARCHAR)
object-schema (VARCHAR)

DSN8DUTI DSN8.DSN8DUTILVV

Appendix. Additional information for DB2 SQL 2629

Table 208. External and specific names for TABLE_LOCATION (continued)

Input arguments External name Specific name

object-name (VARCHAR)
object-schema (VARCHAR)
location-name (VARCHAR)

DSN8DUTI DSN8.DSN8DUTILVVV

Example: Assume that:
v DSN8.ALIAS_RS_SYSTABLES is an alias of SYSIBM.SYSTABLES at location

name 'REMOTE_SITE'.
v The CURRENT SQLID is DSN8.

Use TABLE_LOCATION to find the location name where the base object for
ALIAS_RS_SYSTABLES resides.

VALUES DSN8.TABLE_LOCATION(’ALIAS_RS_SYSTABLES’);

The result of the function is 'REMOTE_SITE'.

2630 SQL Reference

TABLE_NAME
The TABLE_NAME function searches for an object and returns the unqualified
name of the object after any alias chains have been resolved.

�� TABLE_NAME(object-name)
, object-schema

, location-name

��

The schema is DSN8.

The starting point of the resolution is the object that is specified by object-name and,
if specified, object-schema and location name. If the starting point does not refer to an
alias, the unqualified name of the starting point is returned. The resulting name
can be of a table, view, or undefined object.

object-name
A character expression that specifies the unqualified name to be resolved. The
unqualified name is usually of an existing alias. object-name must have a data
type of VARCHAR and an actual length that is no greater than 18 bytes.

object-schema
A character expression that represents the schema that is used to qualify the
value specified in object-name before resolution. object-schema must have a data
type of VARCHAR and an actual length that is no greater than 8 bytes.

If object-schema is not specified or is null, the default schema is used for the
qualifier.

location-name
A character expression that represents the location that is used to qualify the
value specified in object-name before resolution. location-name must have a data
type of VARCHAR and an actual length than is no greater than 16 bytes.

If location-name is not specified or is null, the location name is equivalent to
“any”.

The result of the function is VARCHAR(128). If object-name can be null, the result
can be null; if object-name is null, the result is the null value.

The following table shows the external and specific names for TABLE_NAME. The
specific names differ depending on the number of input arguments to the function.

Table 209. External and specific names for TABLE_NAME

Input arguments External name Specific name

object-name (VARCHAR)
DSN8DUTI DSN8.DSN8DUTINV

object-name (VARCHAR)
object-schema (VARCHAR)

DSN8DUTI DSN8.DSN8DUTINVV

Appendix. Additional information for DB2 SQL 2631

Table 209. External and specific names for TABLE_NAME (continued)

Input arguments External name Specific name

object-name (VARCHAR)
object-schema (VARCHAR)
location-name (VARCHAR)

DSN8DUTI DSN8.DSN8DUTINVVV

Example: Assume that:
v DSN8.VIEW_OF_SYSTABLES is a view of SYSIBM.SYSTABLES.
v DSN8.ALIAS_OF_VIEW is an alias of DSN8.VIEW_OF_SYSTABLES.
v The CURRENT SQLID is DSN8.

Use TABLE_NAME to find the name of the base object for ALIAS_OF_VIEW.
VALUES DSN8.TABLE_NAME(’ALIAS_OF_VIEW’);

The result of the function is 'VIEW_OF_SYSTABLES'.

2632 SQL Reference

TABLE_SCHEMA
The TABLE_SCHEMA function searches for an object and returns the schema name
of the object after any synonyms or alias chains have been resolved.

�� TABLE_SCHEMA(object-name)
, object-schema

, location-name

��

The schema is DSN8.

The starting point of the resolution is the object that is specified by objectname and
objectschema. If the starting point does not refer to an alias or synonym, the schema
name of the starting point is returned. The resulting schema name can be of a
table, view, or undefined object.

object-name
A character expression that specifies the unqualified name to be resolved. The
unqualified name is usually of an existing alias. object-name must have a data
type of VARCHAR and an actual length that is no greater than 18 bytes.

object-schema
A character expression that represents the schema that is used to qualify the
value specified in object-name before resolution. object-schema must have a data
type of VARCHAR and an actual length that is no greater than 8 bytes.

If object-schema is not specified or is null, the default schema is used for the
qualifier.

location-name
A character expression that represents the location that is used to qualify the
value specified in object-name before resolution. location-name must have a data
type of VARCHAR (and an actual length that is no greater than 16 bytes.

If location-name is not specified or is null, the location name is equivalent to
“any”.

The result of the function is VARCHAR(128). If object-name can be null, the result
can be null; if object-name is null, the result is the null value.

The following table shows the external and specific names for TABLE_SCHEMA.
The specific names differ depending on the number of input arguments.

Table 210. External and specific names for function TABLE_SCHEMA

Input arguments External name Specific name

object-name (VARCHAR)
DSN8DUTI DSN8.DSN8DUTISV

object-name (VARCHAR)
object-schema (VARCHAR)

DSN8DUTI DSN8.DSN8DUTISVV

Appendix. Additional information for DB2 SQL 2633

Table 210. External and specific names for function TABLE_SCHEMA (continued)

Input arguments External name Specific name

object-name (VARCHAR)
object-schema (VARCHAR)
location-name (VARCHAR)

DSN8DUTI DSN8.DSN8DUTISVVV

Example: Assume that:
v DSN8.ALIAS_OF_SYSTABLES is an alias of SYSIBM.SYSTABLES.
v The CURRENT SQLID is DSN8.

Find the name of the schema of the base table for ALIAS_OF_SYSTABLES.
VALUES DSN8.TABLE_SCHEMA(’ALIAS_OF_SYSTABLES’);

The result of the function is 'SYSIBM'.

2634 SQL Reference

URLENCODE and URLDECODE
The URLENCODE and URLDECODE helper REST functions complete URL
encoding or decoding of the provided text.

�� URLENCODE (text,encoding)
URLDECODE

��

The schema is DB2XML.

text
Specifies the text to encode or decode. This argument is defined as a
VARCHAR(2048) value.

encoding
Specifies the character set that is to be used. It can be set to NULL where
UTF-8 is used as the default.

Appendix. Additional information for DB2 SQL 2635

|

|
|

|

|||||||||||||||

|
||

|

|
|
|

|
|
|

WEATHER
The WEATHER function returns information from a TSO data set as a DB2 table.
The TSO data set contains sample weather statistics for various cities in the United
States. The statistics are returned to the client with a row for each city and a
column for each statistic. The WEATHER function is provided primarily to help
you design and implement table functions.

�� WEATHER(input-data-set-name) RETURNS TABLE(name-of-city)
temperature-in-fahrenheit
percent-humidity
wind-direction
wind-velocity
barometer
forecast

��

The schema is DSN8.

Unlike the other sample user-defined functions, which are scalar functions,
WEATHER is a table function. WEATHER shows how to use a table function to
make non-relational data available to a client for manipulation by SQL.

input-data-set-name
The name of the TSO data set that contains sample weather statistics. The
name is a character string with a data type of VARCHAR and an actual length
that is not greater than 44 bytes.

The result of the function is a DB2 table with the following columns. Each column
can be null.
name-of-city

VARCHAR(30)
temperature-in-fahrenheit

INTEGER
percent-humidity

INTEGER
wind-direction

VARCHAR(5)
wind-velocity

INTEGER
barometer

FLOAT
forecast

VARCHAR(25)

The external program name for the function is DSN8DUWF, and the specific name
is DSN8.DSN8DUWF.

Example: Find the name of and the forecast for the cities that have a temperature
less than 25 degrees.

SELECT CITY, FORECAST
FROM TABLE(DSN8.WEATHER(’prefix.SDSNIVPD(DSN8LWC)’)) AS W
WHERE TEMP_IN_F < 25
ORDER BY CITY;

2636 SQL Reference

This example returns:
Bessemer, MI Slight chance of snow
Cheyenne, WY Continued cooling
Helena, MT Heavy snow
Pierre, SD Continued cold

Appendix. Additional information for DB2 SQL 2637

2638 SQL Reference

Information resources for DB2 for z/OS and related products

Information about DB2 for z/OS and products that you might use in conjunction
with DB2 for z/OS is available in online information centers or on library websites.

Obtaining DB2 for z/OS publications

The current DB2 for z/OS publications are available from the following website:

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/
alltoc/db2z_lib.htm

Links to the information center version and the PDF version of each publication
are provided.

DB2 for z/OS publications are also available for download from the IBM
Publications Center (http://www.ibm.com/shop/publications/order).

In addition, books for DB2 for z/OS are available on a CD-ROM that is included
with your product shipment:
v DB2 11 for z/OS Licensed Library Collection, LK5T-8882, in English. The

CD-ROM contains the collection of books for DB2 11 for z/OS in PDF format.
Periodically, IBM refreshes the books on subsequent editions of this CD-ROM.

Installable information center

You can download or order an installable version of the Information Management
Software for z/OS Solutions Information Center, which includes information about
DB2 for z/OS, QMF, IMS, and many DB2 and IMS Tools products. You can install
this information center on a local system or on an intranet server. For more
information, see http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/
com.ibm.dzic.doc/installabledzic.htm.

© Copyright IBM Corp. 1982, 2013 2639

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://www.ibm.com/shop/publications/order
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm

2640 SQL Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1982, 2013 2641

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

2642 SQL Reference

Programming interface information
This information is intended to help you to code SQL statements. This information
primarily documents General-use Programming Interface and Associated Guidance
Information provided by DB2 11 for z/OS. This information also documents
Product-sensitive Programming Interface and Associated Guidance Information
provided by DB2 11 for z/OS.

General-use Programming Interface and Associated Guidance
Information

General-use Programming Interfaces allow the customer to write programs that
obtain the services of DB2 11 for z/OS.

Product-sensitive Programming Interface and Associated
Guidance Information

Product-sensitive Programming Interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this IBM software product. Use of such interfaces creates dependencies
on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces may
need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

PSPI Product-sensitive Programming Interface and Associated Guidance

Information... PSPI

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at http://www.ibm.com/
legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Notices 2643

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

2644 SQL Reference

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Glossary

The glossary is available in the Information Management Software for z/OS
Solutions Information Center.

See the Glossary topic for definitions of DB2 for z/OS terms.

© Copyright IBM Corp. 1982, 2013 2645

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z.doc.gloss/src/gloss/db2z_gloss.htm

2646 SQL Reference

Index

Special characters
_ (underscore character) as escape character 312
- (minus sign) 243
, (comma) as decimal point 328
: (colon)

preceding a host variable 215
! (exclamation mark) as not sign 298
? (question mark) 1634
/ (divide sign) 243
. (period) as decimal point 328
* (asterisk)

COUNT function 345
COUNT_BIG function 345
multiply sign 243
use in subselect 766

% (percent sign) as escape character 312
|| (vertical bars) 250
+ (plus sign) 243
+ (plus sign) as escape character 312

A
ABS function 366
ABSOLUTE clause

FETCH statement 1656
ABSVAL function 366
accelerator tables

SYSACCELERATEDTABLES 2593
SYSACCELERATORS 2592

accelerators tables
indexes 2591
table space 2591

ACCESSCTRL privilege
GRANT statement 1716
REVOKE statement 1842

accessibility
keyboard xx
shortcut keys xx

ACCESSPATH column
SYSPACKSTMT catalog table 2290
SYSSTMT catalog table 2373

ACOS function 367
ACQUIRE

column of SYSPLAN catalog table 2306
ACTIVATE VERSION clause

ALTER PROCEDURE (SQL - native) statement 953
ACTIVE column

SYSROUTINES catalog table 2346
active logs 20
ACTIVE VERSION clause

ALTER PROCEDURE (SQL - native) statement 953
ADD ATTRIBUTES clause

ALTER TRUSTED CONTEXT statement 1101
ADD clause

ALTER TABLE statement 997
ADD CLONE clause

ALTER TABLE statement 1041
ADD COLUMN clause

ALTER INDEX statement 918

ADD MATERIALIZED QUERY clause
ALTER TABLE statement 1037

ADD ORGANIZE BY HASH clause
ALTER TABLE statement 1042

ADD PARTITION clause
ALTER TABLE statement 1029

ADD RESTRICT ON DROP clause
ALTER TABLE statement 1041

ADD USE FOR clause
ALTER TRUSTED CONTEXT statement 1103

ADD VERSION clause
ALTER PROCEDURE (SQL - native) statement 953

ADD VOLUMES clause of ALTER STOGROUP statement 982
ADD_MONTHS function 368
ADDRESS clause

ALTER TRUSTED CONTEXT statement 1101
CREATE TRUSTED CONTEXT statement 1503

ADMIN_TASK_LIST function 734
ADMIN_TASK_OUTPUT function 739
ADMIN_TASK_STATUS function 741
AFTER clause

FETCH statement 1653
AFTER clause of CREATE TRIGGER statement 1484
alias

creating 1154
description 67
dropping 1613
naming convention 57
qualifying a column name 209
retrieving catalog information about 2598
unqualified name 66

ALIAS clause
COMMENT statement 1136
CREATE ALIAS statement 1154
DROP statement 1613
LABEL statement 1755

ALL
clause of RELEASE statement 1805
clause of subselect 765
keyword

aggregate functions 345
AVG function 350
COUNT function 352
COUNT_BIG function 353
MAX function 356
MIN function 357
STDDEV function 358
STDDEV_SAMP function 358
SUM function 360
VARIANCE function 361
VARIANCE_SAMP function 361

quantified predicate 300
ALL PRIVILEGES clause

GRANT statement 1721
REVOKE statement 1847

ALL SQL clause of RELEASE statement 1805
ALLOCATE CURSOR statement

description 847
example 847

ALLOW DEBUG MODE clause
ALTER PROCEDURE (external) statement 939

© Copyright IBM Corp. 1982, 2013 2647

ALLOW DEBUG MODE clause (continued)
ALTER PROCEDURE (SQL - native) statement 956
CREATE PROCEDURE (external) statement 1326
CREATE PROCEDURE (SQL - native) statement 882,

1234, 1357
ALLOW PARALLEL clause

ALTER FUNCTION statement 865
CREATE FUNCTION statement 1182, 1234

ALLOWPUBLIC column
SYSCONTEXT catalog table 2171

alphabetic extender 53
ALTDATE function 2609
ALTER ATTRIBUTES clause

ALTER TRUSTED CONTEXT statement 1101
ALTER clause

ALTER TRUSTED CONTEXT statement 1099
ALTER COLUMN clause

ALTER TABLE statement 1009
ALTER DATABASE statement

description 849
example 849

ALTER FUNCTION (external scalar) statement
example 869

ALTER FUNCTION (external) statement
description 852

ALTER FUNCTION (SQL scalar) statement
description 871
examples 897

ALTER FUNCTION (SQL table) statement
description 899
examples 906

ALTER INDEX statement
description 907
example 924

ALTER MASK statement
description 926
examples 927

ALTER MATERIALIZED QUERY clause
ALTER TABLE statement 1039

ALTER PARTITION
clause of ALTER INDEX statement 920
clause of CREATE TABLESPACE statement 1469

ALTER PARTITION clause
ALTER TABLE statement 1031
ALTER TABLESPACE statement 1090

ALTER PERMISSION statement
description 928
examples 929

ALTER privilege
GRANT statement 1714, 1721
REVOKE statement 1839, 1847

ALTER PROCEDURE (external) statement
description 930
example 940

ALTER PROCEDURE (SQL - external) statement
description 941
example 946

ALTER PROCEDURE (SQL - native) statement
description 947
examples 973

ALTER SEQUENCE statement
description 975
example 980

ALTER STOGROUP statement
description 981
example 983

ALTER TABLE statement
alternative syntax 1068
description 984
examples 1068

ALTER TABLESPACE statement
description 1074
example 1093

ALTER TRIGGER statement
description 1094
examples 1096

ALTER TRUSTED CONTEXT statement
description 1097
examples 1108
usage notes 1106

ALTER VERSION clause
ALTER PROCEDURE (SQL - native) statement 953

ALTER VIEW statement
description 1109

ALTERAUTH
column of SYSSEQUENCEAUTH catalog table 2364

ALTERAUTH column of SYSTABAUTH catalog table 2383
ALTEREDTS

SYSSTOGROUP catalog table 2377
ALTEREDTS column

SYSCOLUMNS catalog table 2155
SYSCONTEXT catalog table 2171
SYSDATABASE catalog table 2189
SYSINDEXES catalog table 2211
SYSINDEXPART catalog table 2221
SYSJAROBJECTS catalog table 2242
SYSROUTINES catalog table 2346
SYSSEQUENCES catalog table 2366
SYSTABLEPART catalog table 2387
SYSTABLES catalog table 2396
SYSTABLESPACE catalog table 2404

ALTERIN privilege
GRANT statement 1712
REVOKE statement 1836

ALTERINAUTH column of SYSSCHEMAAUTH catalog
table 2362

alternative syntax
GRANT (type or JAR file privileges) statement 1725
REVOKE (type or JAR file privileges) statement 1852
SET PATH statement 1923

ALTTIME function 2612
AND

truth table 324
ANY

quantified predicate 300
USING clause of DESCRIBE statement 1597, 1607
USING clause of PREPARE statement 1784

APOST option
precompiler 330

apostrophe
string delimiter precompiler option 330

APOSTSQL option
precompiler 330

APP_ENCODING_CCSID column
SYSVIEWS catalog table 2437

APPEND
clause of CREATE TABLE statement 1435

APPEND clause
ALTER TABLE statement 1046

APPEND column
SYSTABLES catalog table 2396

APPLICATION ENCODING SCHEME clause
ALTER PROCEDURE (SQL - native) statement 961

2648 SQL Reference

APPLICATION ENCODING SCHEME clause (continued)
CREATE PROCEDURE (SQL - native) statement 885,

1238, 1362
application plan

privileges
GRANT statement 1711
REVOKE statement 1834

application plans 31
application process

initial state in distributed unit of work 37
initial state in remote unit of work 41
state transitions 37

application processes 28
application program

SQLCA 2069
SQLDA 2079

application programming
performance

for application programmers 2458
recommendations 2458

performance recommendations 2458
application programs

recovery 28
application requester

definition of 35
application server

definition of 35
APPLICATION_ENCODING_CCSID column

SYSENVIRONMENT catalog table 2205
APPLICATION_ENCODING_SCHEME session variable 225
archive logs 20
ARCHIVE privilege

GRANT statement 1716
REVOKE statement 1842

archive-enabled table
creating 1047

ARCHIVEAUTH column of SYSUSERAUTH catalog
table 2425

arguments
passing to stored procedure 1120

arithmetic operators 243
array

variable 228
array constructor

definition 280
array element specification

definition 278
array type 1510

assignment of values 133
comparison of values 144
creating 1511
description 108
naming convention 58

array variable
FETCH statement 1663

ARRAY_AGG function 347
ARRAY_DELETE function 370
ARRAY_EXISTS predicate 303
ARRAY_FIRST function 372
ARRAY_LAST function 374
ARRAY_NEXT function 376
ARRAY_PRIOR function 378
array-variable

SELECT INTO statement 1867
ARRAYINDEXSUBTYPE column

SYSDATATYPES catalog table 2191

ARRAYINDEXTYPEID column
SYSDATATYPES catalog table 2191

ARRAYINDEXTYPELEN column
SYSDATATYPES catalog table 2191

ARRAYLENGTH column
SYSDATATYPES catalog table 2191

AS (fullselect) WITH NO DATA clause
DECLARE GLOBAL TEMPORARY TABLE statement 1553

AS clause
CREATE VIEW statement 1529
naming result columns 766
use in subselect 766

AS IDENTITY clause
ALTER TABLE statement 1002
CREATE TABLE statement 1412
DECLARE GLOBAL TEMPORARY TABLE statement 1552

AS LOCATOR clause
CREATE FUNCTION statement 1172, 1196, 1214
CREATE PROCEDURE (external) statement 1325
CREATE PROCEDURE (SQL - native) statement 1356

AS SECURITY LABEL clause
ALTER TABLE statement 1008
CREATE TABLE statement 1415

AS WORKFILE clause of CREATE DATABASE
statement 1163

ASC clause
ALTER TABLE statement 1028
CREATE INDEX statement 1275
CREATE TABLE statement 1429
select-statement 802

ASCII
definition 42
effect on MBCS and DBCS characters 85

ASCII function 380
ASCII_CHR function 381
ASCII_STR function 382
ASENSITIVE clause

DECLARE CURSOR statement 1537
ASIN function 383
assembler application program

host variable
EXECUTE IMMEDIATE statement 1639
referencing 215

INCLUDE SQLCA 2075
INCLUDE SQLDA 2095
varying-length string variables 85

assignment
array type values 133
compatibility rules 121
datetime values 129
distinct type values 131
IEEE floating-point numbers 124
numbers 122
retrieval rules 128
row ID values 131
statement

example 1971, 2036
SQL procedure 1971, 2036

storage rules 127
strings, basic rules for 126
user-defined type values 131
XML values 131

ASSOCIATE LOCATORS statement
description 1111
example 1113

asterisk (*)
COUNT function 352

Index 2649

asterisk (*) (continued)
COUNT_BIG function 353
multiply sign 243
use in subselect 766

ASUTIME clause
ALTER FUNCTION statement 866
ALTER PROCEDURE (external) statement 937
ALTER PROCEDURE (SQL - external) statement 943
ALTER PROCEDURE (SQL - native) statement 957
CREATE FUNCTION statement 1184, 1206
CREATE PROCEDURE (external) statement 1332
CREATE PROCEDURE (SQL - external) statement 1346
CREATE PROCEDURE (SQL - native) statement 883,

1235, 1358
ASUTIME column

SYSROUTINES catalog table 2346
ATAN function 384
ATAN2 function 386
ATANH function 385
ATOMIC clause

INSERT statement 1742
PREPARE statement 1789

ATTRIBUTES clause
CREATE TRUSTED CONTEXT statement 1503
PREPARE statement 1784

AUDIT
clause of CREATE TABLE statement 1432

AUDIT clause
ALTER TABLE statement 1046

auditing
ALTER TABLE statement 1046
CREATE TABLE statement 1432

AUDITING column of SYSTABLES catalog table 2396
AUTHENTICATE column

SYSCONTEXTAUTHIDS catalog table 2173
AUTHENTICATEPUBLIC column

SYSCONTEXT catalog table 2171
AUTHHOWGOT

column of SYSSEQUENCEAUTH catalog table 2364
AUTHHOWGOT column

SYSDBAUTH catalog table 2193
SYSPACKAUTH catalog table 2285
SYSPLANAUTH catalog table 2311
SYSRESAUTH catalog table 2341
SYSROUTINEAUTH catalog table 2344
SYSSCHEMAAUTH catalog table 2362
SYSUSERAUTH catalog table 2425
SYSVARIABLEAUTH catalog table 2432

AUTHHOWGOT column of SYSTABAUTH catalog
table 2383

AUTHID
column of MODESELECT catalog table 2130
column of SYSCOPY catalog table 2176
column of USERNAMES catalog table 2444

AUTHID column
SYSCONTEXTAUTHIDS catalog table 2173

authority
retrieving catalog information 2601

authorization
clause of CONNECT statement 1148
naming convention 58

authorization ID
primary 72
privileges 70
secondary 72
translating

concepts 79

AUX clause of CREATE AUXILIARY TABLE statement 1159
aux-table

naming convention 58
AUXILIARY clause of CREATE AUXILIARY TABLE

statement 1159
auxiliary table

CREATE AUXILIARY TABLE statement 1158
AUXRELOBID column

SYSAUXRELS catalog table 2141
AUXTBNAME column of SYSAUXRELS catalog table 2141
AUXTBOWNER column of SYSAUXRELS catalog table 2141
AVG function 350
AVGKEYLEN column

SYSINDEXES catalog table 2211
SYSINDEXES_HIST catalog table 2217
SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226

AVGROWLEN
column of SYSTABLESPACE catalog table 2404

AVGROWLEN column
SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393
SYSTABLES catalog table 2396
SYSTABLES_HIST catalog table 2416

AVGSIZE column
SYSLOBSTATS catalog table 2262
SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

B
BASE64DECODE function 2614
BASE64ENCODE function 2614
BASED UPON CONNECTION clause

CREATE TRUSTED CONTEXT statement 1502
basic operations in SQL 121
basic predicate 298
BAUTH column

SYSDEPENDENCIES catalog table 2198
BCOLNAME column

SYSDEPENDENCIES catalog table 2198
BCOLNO column

SYSDEPENDENCIES catalog table 2198
BCREATOR column

SYSPLANDEP catalog table 2313
SYSVIEWDEP catalog table 2436

BEGIN DECLARE SECTION statement
description 1115
example 1116

BETWEEN predicate 304
BIGINT

data type 82
CREATE TABLE statement 1399

BIGINT (binary large integer) function 387
BINARY

data type 1399
BINARY function 389
binary large object (BLOB) 96
BINARY LARGE OBJECT data type 96
binary string

assignment 127
constants 151
description 96

binary strings
varying-length

description 96
bind behavior for dynamic SQL statements 75

2650 SQL Reference

BIND PACKAGE subcommand of DSN
options

QUALIFIER 66
BIND PLAN subcommand of DSN

options
QUALIFIER 66

BIND privilege
GRANT statement 1708, 1711
REVOKE statement 1831, 1834

bind process 74
BIND_OPTS column

SYSJAVAOPTS catalog table 2243
SYSROUTINES_OPTS catalog table 2358

BINDADD privilege
binding a package 78
GRANT statement 1716
REVOKE statement 1842

BINDADDAUTH column of SYSUSERAUTH catalog
table 2425

BINDAGENT privilege
GRANT statement 1716
REVOKE statement 1842

BINDAGENTAUTH column of SYSUSERAUTH catalog
table 2425

BINDAUTH column
SYSPACKAUTH catalog table 2285
SYSPLANAUTH catalog table 2311

BINDERROR column of SYSPACKSTMT catalog table 2290
binding

process 74
SQL statements 1

BINDTIME column
SYSPACKAGE catalog table 2265

BIT data
description 85

BITAND function 391
BITANDNOT function 391
BITNOT function 391
BITOR function 391
BITXOR function 391
BLOB (binary large object)

data type 96, 1399
description 96

description 96
file reference 220
host variable 218
locator 218

BLOB (binary large object) function 393
BLOB LARGE OBJECT data type 1399
BNAME column

SYSCONSTDEP catalog table 2170
SYSDEPENDENCIES catalog table 2198
SYSPACKDEP catalog table 2287
SYSPLANDEP catalog table 2313
SYSVIEWDEP catalog table 2436

BNAME column of SYSSEQUENCEDEP catalog table 2369
bootstrap data set (BSDS)

overview 21
BOTH

USING clause of DESCRIBE statement 1597, 1607
BOUNDBY column of SYSPLAN catalog table 2306
BOUNDTS column

SYSPLAN catalog table 2306
BOWNER column

SYSDEPENDENCIES catalog table 2198
BOWNERTYPE column

SYSDEPENDENCIES catalog table 2198

BPOOL column
SYSDATABASE catalog table 2189
SYSINDEXES catalog table 2211
SYSTABLESPACE catalog table 2404

BQUALIFIER column of SYSPACKDEP catalog table 2287
BSCHEMA column

SYSCONSTDEP catalog table 2170
SYSDEPENDENCIES catalog table 2198
SYSVIEWDEP catalog table 2436

BSCHEMA column of SYSSEQUENCEDEP catalog table 2369
BSDS (bootstrap data set)

privilege
granting 1716
revoking 1842

BSDSAUTH column of SYSUSERAUTH catalog table 2425
BSEQUENCEID column of SYSSEQUENCEDEP catalog

table 2369
BTYPE column

SYSCONSTDEP catalog table 2170
SYSDEPENDENCIES catalog table 2198
SYSPACKDEP catalog table 2287
SYSPLANDEP catalog table 2313
SYSVIEWDEP catalog table 2436

buffer pool
naming convention 58

buffer pools
described 21

BUFFERPOOL
clause of CREATE TABLE statement 1436

BUFFERPOOL clause
ALTER DATABASE statement 849
ALTER INDEX statement 910
ALTER TABLESPACE statement 1076
CREATE DATABASE statement 1163
CREATE INDEX statement 1289
CREATE TABLESPACE statement 1469

BUFFERPOOL privilege
GRANT statement 1728
REVOKE statement 1856

BUILDDATE column
SYSROUTINES_OPTS catalog table 2358
SYSROUTINES_SRC catalog table 2361

BUILDNAME column
SYSJAVAOPTS catalog table 2243
SYSROUTINES_OPTS catalog table 2358

BUILDOWNER column
SYSJAVAOPTS catalog table 2243
SYSROUTINES_OPTS catalog table 2358

BUILDSCHEMA column
SYSJAVAOPTS catalog table 2243
SYSROUTINES_OPTS catalog table 2358

BUILDSTATUS column
SYSROUTINES_OPTS catalog table 2358
SYSROUTINES_SRC catalog table 2361

BUILDTIME column
SYSROUTINES_OPTS catalog table 2358
SYSROUTINES_SRC catalog table 2361

built-in data type 80
built-in function

description 231
invocation 237
resolution 234, 238
string units 87

business rules
enforcing 23, 27, 28
triggers 28

BY clause of REVOKE statement 1813

Index 2651

C
C application program

host variable
EXECUTE IMMEDIATE statement 1639
referencing 215

INCLUDE SQLCA 2075
INCLUDE SQLDA 2095
varying-length string 85

CACHE
clause of ALTER SEQUENCE statement 978

CACHE clause
ALTER TABLE statement 1004
CREATE SEQUENCE statement 1379

CACHE column of SYSSEQUENCES catalog table 2366
CACHESIZE

column of SYSPLAN catalog table 2306
Call Level Interface (CLI) 3
CALL statement

description 1117
example 1129, 1973, 2038
SQL procedure 1973, 2038

CALLED ON NULL INPUT clause
ALTER FUNCTION statement 861
CREATE FUNCTION statement 1178, 1201, 1234
CREATE PROCEDURE (external) statement 1335
CREATE PROCEDURE (SQL - external) statement 1344

capturing changed data
ALTER TABLE statement 1040
CREATE TABLE statement 1433

CARD column
SYSTABLEPART catalog table

description 2387
SYSTABSTATS catalog table

description 2420
CARDF column

SYSCOLDIST catalog table 2147
SYSCOLDIST_HIST catalog table 2151
SYSCOLDISTSTATS catalog table 2149
SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSKEYTARGETSTATS catalog table 2251
SYSKEYTGTDIST catalog table 2256
SYSKEYTGTDIST_HIST catalog table 2260
SYSKEYTGTDISTSTATS catalog table 2258
SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393
SYSTABLES catalog table 2396
SYSTABLES_HIST catalog table 2416
SYSTABSTATS catalog table 2420
SYSTABSTATS_HIST catalog table 2421

CARDINALITY clause 777
CARDINALITY column

SYSROUTINES catalog table 2346
CARDINALITY function 395
CARDINALITY MULTIPLIER clause 777
CASCADE delete rule

ALTER TABLE statement 1024
CREATE TABLE statement 1420

cascade revoke 1815
CASE expression

description 263
CASE statement

example 1975, 2040
SQL procedure 1975, 2040

cast function 232

CAST specification
definition 267
NULL 267
parameter marker 267
string units 87

CAST_FUNCTION column
SYSPARMS catalog table 2297
SYSROUTINES catalog table 2346

CAST_FUNCTION_ID column of SYSPARMS catalog
table 2297

casting
XML values 276

casts
data types 111

catalog
naming convention 58

catalog name
VCAT clause

ALTER INDEX statement 912
CREATE INDEX statement 1282
CREATE TABLESPACE statement 1459, 1461

catalog tables 18
description 2102
indexes 2104
IPLIST 2119
IPNAMES 2120
LOCATIONS 2123
LULIST 2125
LUMODES 2126
LUNAMES 2127
MODESELECT 2130
release dependency indicators 2102
retrieving information about

primary keys 2601
status 2603

SQL statements allowed 2113
SYSAUDITPOLICIES

contents 2131
SYSAUTOALERTS 2135
SYSAUTOALERTS_OUT 2137
SYSAUTORUNS_HIST 2138
SYSAUTORUNS_HISTOU 2139
SYSAUTOTIMEWINDOWS 2140
SYSAUXRELS 2141, 2604
SYSCHECKDEP 2142
SYSCHECKS 2143
SYSCHECKS2 2144
SYSCOLAUTH 2145
SYSCOLDIST

contents 2147
SYSCOLDISTSTATS

contents 2149
SYSCOLSTATS

contents 2153
SYSCOLUMNS

contents 2155
updated by COMMENT ON statement 2606
updated by CREATE VIEW statement 2600

SYSCOLUMNS_HIST
contents 2166

SYSCONSTDEP 2170
SYSCONTEXT

contents 2171
SYSCONTEXTAUTHIDS

contents 2173
SYSCONTROLS

contents 2174

2652 SQL Reference

catalog tables (continued)
SYSCOPY

contents 2176
SYSCTXTTRUSTATTRS

contents 2188
SYSDATABASE

contents 2189
SYSDATATYPES 2191
SYSDBAUTH 2193
SYSDBRM 2196
SYSDEPENDENCIES 2198
SYSDUMMY1 2201
SYSDUMMYA 2202
SYSDUMMYE 2203
SYSDUMMYU 2204
SYSENVIRONMENT 2205
SYSFIELDS 2207
SYSFOREIGNKEYS 2209, 2602
SYSIBM.SYSINDEXCLEANUP 2210
SYSIBM.SYSQUERYSEL 2337
SYSIBM.SYSSTATFEEDBACK 2370
SYSIBMS.YSQUERYPREDICATE 2332
SYSINDEXES

contents 2211
SYSINDEXES_HIST

contents 2217
SYSINDEXES_RTSECT 2219
SYSINDEXES_TREE 2220
SYSINDEXPART

contents 2221
SYSINDEXPART_HIST 2226
SYSINDEXSPACESTATS

contents 2229
SYSINDEXSTATS

contents 2235
SYSINDEXSTATS_HIST 2237
SYSJARCLASS_SOURCE 2239
SYSJARCONTENTS 2240
SYSJARDATA 2241
SYSJAROBJECTS 2242
SYSJAVAOPTS 2243
SYSJAVAPATHS 2244
SYSKEYCOLUSE 2245
SYSKEYS 2246
SYSKEYTARGETS

contents 2247
SYSKEYTARGETS_HIST

contents 2253
SYSKEYTARGETSTATS

contents 2251
SYSKEYTGTDIST

contents 2256
SYSKEYTGTDIST_HIST

contents 2260
SYSKEYTGTDISTSTATS

contents 2258
SYSLOBSTATS 2262
SYSLOBSTATS_HIST 2263
SYSOBJROLEDEP

contents 2264
SYSPACKAGE 2265
SYSPACKAUTH 2285
SYSPACKCOPY 2275
SYSPACKDEP 2287
SYSPACKLIST 2289
SYSPACKSTMT 2290
SYSPACKSTMT_STMB 2295

catalog tables (continued)
SYSPACKSTMT_STMT 2296
SYSPARMS 2297
SYSPENDINGDDL

contents 2301
SYSPENDINGOBJECTS

contents 2303
SYSPKSYSTEM 2304
SYSPLAN 2306
SYSPLANAUTH

contents 2311
SYSPLANDEP

contents 2313
SYSPLSYSTEM 2314
SYSQUERY 2315
SYSQUERY_AUX 2318
SYSQUERYOPTS 2319
SYSQUERYPLAN 2321
SYSRELS

contents 2339
describes referential constraints 2602

SYSRESAUTH 2341
SYSROLES

contents 2343
SYSROUTINEAUTH 2344
SYSROUTINES 2605

contents 2346
SYSROUTINES_OPTS 2358
SYSROUTINES_SRC 2361
SYSROUTINES_TREE 2360
SYSROUTINESTEXT

contents 2357
SYSSCHEMAAUTH 2362
SYSSEQUENCEAUTH 2364
SYSSEQUENCES 2366, 2606
SYSSEQUENCESDEP 2369
SYSSTMT 2373
SYSSTOGROUP

contents 2377
sample query 2597

SYSSTRINGS
contents 2379

SYSSYNONYMS 2382
SYSTABAUTH

contents 2383
table authorizations 2601
updated by CREATE VIEW statement 2600
view authorizations 2601

SYSTABCONST
contents 2386

SYSTABLEAPART
partition order 2598

SYSTABLEPART
contents 2387

SYSTABLEPART_HIST
contents 2393

SYSTABLES
contents 2396
rows maintained 2597
updated by COMMENT ON statement 2606
updated by CREATE VIEW statement 2600

SYSTABLES_HIST
contents 2416

SYSTABLES_PROFILE_TEXT 2419
SYSTABLES_PROFILES 2418
SYSTABLESPACE

contents 2404

Index 2653

catalog tables (continued)
SYSTABLESPACESTATS

contents 2410
SYSTABSTATS

contents 2420
SYSTABSTATS_HIST

contents 2421
SYSTRIGGERS 2422, 2605
SYSTRIGGERS_STMT 2424
SYSUSERAUTH 2425
SYSVARIABLEAUTH 2432
SYSVARIABLES 2429
SYSVARIABLES_DESC 2434
SYSVARIABLES_TEXT 2435
SYSVIEWDEP

contents 2436
SYSVIEWS 2437
SYSVIEWS_STMT 2439
SYSVIEWS_TREE 2440
SYSVOLUMES 2441
SYSXMLRELS 2442
SYSXMLSTRINGS 2443
SYSXMLTYPMOD 2445
SYSXMLTYPMSCHEMA 2446
table space 2104
USERNAMES 2444

catalog, DB2
constraint information 2603
database design 2596, 2607
retrieving information from 2596
tables 2102

catalogs 18
CCSID

clause of CREATE DATABASE statement 1163
clause of CREATE FUNCTION statement 1171, 1195, 1214,

1230
clause of CREATE GLOBAL TEMPORARY TABLE

statement 1264
clause of CREATE TABLE statement 1434
clause of CREATE TABLESPACE statement 1471
clause of CREATE TYPE (distinct) statement 1518
clause of DECLARE GLOBAL TEMPORARY TABLE

statement 1555
column of SYSPARMS catalog table 2297

CCSID (coded character set identifier)
definition 42
Definition 47
description 42

CCSID (Coded Character Set Identifier)
of strings 47

CCSID clause
ALTER DATABASE statement 849
ALTER TABLESPACE statement 1077
CREATE PROCEDURE (external) statement 1324
CREATE PROCEDURE (SQL - external) statement 1342

CCSID column
SYSCOLUMNS catalog table 2155
SYSKEYTARGETS catalog table 2247
SYSVARIABLES catalog table 2429

CCSID_ENCODING function 396
CDB (communications database) 18
CEIL function 397
CEILING function 397
CHAR

data type 85
CHAR function 398
CHAR LARGE OBJECT data type 85, 1399

CHAR VARYING data type 85, 1399
character 53
character conversion

ASCII 42
assignment rules 129
character set 42
code page 42
code point 42
coded character set 42
comparison rules 138
concatenation rules 816
contracting conversion 51
description 42
EBCDIC 42
encoding scheme 42
expanding conversion 51
set operations rules 816
substitution character 42
SYSIBM.SYSSTRINGS catalog table 2379
Unicode 42
UTF-16 42
UTF-8 42

Character conversion
Coded character sets and ccsids 47

CHARACTER data type
CREATE TABLE statement 1399
description 85

character large object (CLOB) 96
CHARACTER LARGE OBJECT data type 85, 1399
character set 42
character string

assignment 127
comparison 136
constants 150
description 84
empty 84

CHARACTER VARYING data type 85, 1399
CHARACTER_LENGTH function 407
Characteristics of SQL statements in DB2 2025
CHARSET column

SYSDBRM catalog table 2196
SYSENVIRONMENT catalog table 2205
SYSPACKAGE catalog table 2265

CHECK
clause of CREATE TABLE statement 1421
column of SYSVIEWS catalog table 2437

CHECK clause
ALTER TABLE statement 1025

check constraint
defining

ALTER TABLE statement 1025
SYSCHECKDEP catalog table 2142

check constraints 23, 27
check pending status

retrieving catalog information 2603
CHECKCONDITION column

SYSCHECKS catalog table 2143
CHECKEXISTINGDATA column

SYSRELS catalog table 2339
CHECKFLAG column

SYSTABLEPART catalog table 2387
SYSTABLES catalog table 2396

CHECKNAME column
SYSCHECKDEP catalog table 2142
SYSCHECKS catalog table 2143
SYSCHECKS2 catalog table 2144

2654 SQL Reference

CHECKRID5B column
SYSTABLEPART catalog table 2387
SYSTABLES catalog table 2396

CHECKS column
SYSTABLES catalog table 2396

CHILDREN column of SYSTABLES catalog table 2396
CLASS column

SYSJARCONTENTS catalog table 2240
SYSROUTINES catalog table 2346

CLASS_SOURCE column
SYSJARCLASS_SOURCE catalog table 2239
SYSJARCONTENTS catalog table 2240

CLASS_SOURCE_ROWID column
SYSJARCONTENTS catalog table 2240

CLI (Call Level Interface) 3
CLIENT_IPADDR global variable 223
CLOB (character large object)

description 85, 96, 1399
file reference 220
function 409
host variable 218
locator 218

CLONE column
SYSTABLESPACE catalog table 2404

clone table
naming convention 58

CLOSE
clause of ALTER INDEX statement 910
clause of CREATE INDEX statement

description 1289
clause of CREATE TABLESPACE statement

description 1471
statement

description 1131
example 1131

CLOSE clause
ALTER TABLESPACE statement 1077

closed state of cursor 1777
CLOSERULE column

SYSINDEXES catalog table 2211
SYSTABLESPACE catalog table 2404

CLUSTER clause
ALTER INDEX statement 917
CREATE INDEX statement 1280

CLUSTERED column of SYSINDEXES catalog table
description 2211

CLUSTERING column
SYSINDEXES_HIST catalog table 2217

CLUSTERING column of SYSINDEXES catalog table
description 2211

CLUSTERRATIO column
SYSINDEXES catalog table 2211
SYSINDEXSTATS catalog table 2235

CLUSTERRATIOF column
SYSINDEXES catalog table 2211
SYSINDEXES_HIST catalog table 2217
SYSINDEXSTATS catalog table 2235
SYSINDEXSTATS_HIST catalog table 2237

CLUSTERTYPE column of SYSTABLES catalog table 2396
CNAME column

SYSPKSYSTEM catalog table 2304
SYSPLSYSTEM catalog table 2314

COALESCE function 144, 412, 491
COBOL application program

host structure 229
host variable

description 215

COBOL application program (continued)
host variable (continued)

EXECUTE IMMEDIATE statement 1639
host-variable-arrays 230
INCLUDE SQLCA 2075
varying-length string 85

COBOL_STRING_DELIMITER session variable 225
code page 42
code point 42
coded character set 42
CODEUNITS16 87
CODEUNITS32 87
COLCARDDATA column of SYSCOLSTATS catalog

table 2153
COLCARDF column

SYSCOLUMNS catalog table 2155
SYSCOLUMNS_HIST catalog table 2166

COLCOUNT column
SYSINDEXES catalog table 2211
SYSRELS catalog table 2339
SYSTABCONST catalog table 2386
SYSTABLES catalog table 2396
SYSTABLES_HIST catalog table 2416

COLGROUPCOLNO column
SYSCOLDIST catalog table 2147
SYSCOLDIST_HIST catalog table 2151
SYSCOLDISTSTATS catalog table 2149

COLLATION_KEY function 414
collection-derived table

description 788
collection-id

naming convention 58
collection, package

granting privileges 1699
revoking privileges 1819
SET CURRENT PACKAGESET statement 1903

COLLID
column of SYSSEQUENCEAUTH catalog table 2364

COLLID clause
ALTER FUNCTION statement 865
ALTER PROCEDURE (external) statement 936
ALTER PROCEDURE (SQL - external) statement 943
CREATE FUNCTION statement 1183, 1205
CREATE PROCEDURE (external) statement 1331
CREATE PROCEDURE (SQL - external) statement 1345

COLLID column
SYSCOLAUTH catalog table 2145
SYSPACKAGE catalog table 2265
SYSPACKAUTH catalog table 2285
SYSPACKLIST catalog table 2289
SYSPACKSTMT catalog table 2290
SYSPKSYSTEM catalog table 2304
SYSROUTINEAUTH catalog table 2344
SYSROUTINES catalog table 2346
SYSTABAUTH catalog table 2383
SYSVARIABLEAUTH catalog table 2432

COLNAME column
SYSAUXRELS catalog table 2141
SYSCHECKDEP catalog table 2142
SYSFOREIGNKEYS catalog table 2209
SYSKEYCOLUSE catalog table 2245
SYSKEYS catalog table 2246
SYSXMLRELS catalog table 2442

COLNAME column of SYSCOLAUTH catalog table 2145
COLNO column

SYSCOLUMNS_HIST catalog table 2166
SYSFIELDS catalog table 2207

Index 2655

COLNO column (continued)
SYSFOREIGNKEYS catalog table 2209
SYSKEYCOLUSE catalog table 2245
SYSKEYS catalog table 2246
SYSKEYTARGETS catalog table 2247

COLNO column of SYSCOLUMNS catalog table 2155
colon

host variable in SQL 215
COLSEQ column

SYSFOREIGNKEYS catalog table 2209
SYSKEYCOLUSE catalog table 2245
SYSKEYS catalog table 2246

COLSTATUS column of SYSCOLUMNS catalog table 2155
COLTYPE column

SYSCOLUMNS_HIST catalog table 2166
COLTYPE column of SYSCOLUMNS catalog table 2155
column

derived
CREATE VIEW statement 1529
DELETE statement 1580
functions 337
INSERT statement 1737
string comparison 138
UPDATE statement 1940

name
ambiguous reference 210
correlated reference 211
in a result 769
undefined reference 210

naming convention 58
retrieving

catalog information 2599
comments 2606

COLUMN clause
COMMENT statement 1137
LABEL statement 1756

column mask
altering 926

column masks
creating 1299

COLVALUE column
SYSCOLDIST catalog table 2147
SYSCOLDIST_HIST catalog table 2151
SYSCOLDISTSTATS catalog table

description 2149
COMMA

column of SYSDBRM catalog table 2196
column of SYSPACKAGE catalog table 2265
option of precompiler 328

comment
adding 1133
replacing 1133
SQL 54

COMMENT ON statement
column name qualification 208
examples 2606
storing 2606

COMMENT statement
description 1133
example 1141

comments
SQL statements 846

COMMIT ON RETURN clause
ALTER PROCEDURE (external) statement 938
ALTER PROCEDURE (SQL - external) statement 945
AUTONOMOUS clause

CREATE PROCEDURE (SQL - native) statement 1359

COMMIT ON RETURN clause (continued)
CREATE PROCEDURE (external) statement 1334
CREATE PROCEDURE (SQL - external) statement 1347
CREATE PROCEDURE (SQL - native) statement 957, 1359

commit operations 28
commit processing 36
COMMIT statement

description 1143
example 1146

COMMIT_ON_RETURN column
SYSROUTINES catalog table 2346

common table expression 820
communications database (CDB) 18
COMPARE_DECFLOAT function 417
comparison

array type values 144
compatibility rules 121
datetime values 136
distinct type values 142
numbers 134
row ID values 138
strings 136
user-defined type values 142
XML values 138

compatibility
data types 121
rules 121

COMPILE_OPTS column
SYSROUTINES_OPTS catalog table 2358

COMPONENT column
SYSIBM.XSRCOMPONENT table 2462
SYSIBM.XSROBJECTCOMPONENTS table 2465
SYSIBM.XSRPROPERTY table 2469

composite keys 7
compound statement

example 1977, 2043
order of statements in 1977, 2043
SQL procedure 1977, 2043

COMPRESS
clause of CREATE TABLESPACE statement 1471
column of SYSTABLEPART catalog table 2387

COMPRESS clause
ALTER TABLESPACE statement 1078

COMPRESS column
SYSINDEXES catalog table 2211

COMPRESS NO
clause of CREATE TABLE statement 1435

COMPRESS NO clause
ALTER INDEX statement 918
CREATE INDEX statement 1286

COMPRESS YES
clause of CREATE TABLE statement 1435

COMPRESS YES clause
ALTER INDEX statement 918
CREATE INDEX statement 1286

CONCAT
function 419
operator 250

concatenation
CONCAT function 419
operator 250

concurrency
LOCK TABLE statement 1757

CONCURRENT ACCESS RESOLUTION clause
CREATE PROCEDURE (SQL - native) statement 884, 959,

1237, 1361

2656 SQL Reference

condition
naming convention 62

CONNECT
option of precompiler 325
statement 1147

connectable and connected state 41
connectable and unconnected state 41
connected state 39
connection

application process states 39, 41
definition of 36
initial state in distributed unit of work 37
management in distributed unit of work 37
management in remote unit of work 41
SQL state

in a distributed unit of work 38
state transitions 37
when ended in a distributed unit of work 39

connection exit routine
description 193

connection state
SET CONNECTION statement 1872

constant
binary string 151
character string 150
datetime 151
decimal 149
decimal floating point 149
floating-point 149
graphic string 154
hexadecimal 150
integer 148

CONSTNAME column
SYSKEYCOLUSE catalog table 2245
SYSTABCONST catalog table 2386

constraint
naming convention 59

CONSTRAINT clause
ALTER TABLE statement 1020, 1022, 1025
CREATE TABLE statement 1404, 1417, 1418

CONSTRAINT
clause of CREATE TABLE statement 1420

constraints
types 23

CONTAINS function 420
CONTAINS SQL clause

ALTER FUNCTION statement 861
ALTER PROCEDURE (external) statement 936
ALTER PROCEDURE (SQL - external) statement 942
ALTER PROCEDURE (SQL - native) statement 955
CREATE FUNCTION statement 1178, 1201, 1233
CREATE PROCEDURE (external) statement 1329
CREATE PROCEDURE (SQL - external) statement 1344
CREATE PROCEDURE (SQL - native) statement 1357

context-name
naming convention 59

context-name clause
ALTER TRUSTED CONTEXT statement 1099
CREATE TRUSTED CONTEXT statement 1502

CONTEXTID column
SYSCONTEXT catalog table 2171
SYSCONTEXTAUTHIDS catalog table 2173
SYSCTXTTRUSTATTRS catalog table 2188

CONTINUE
clause of WHENEVER statement 1961

CONTINUE AFTER FAILURE clause
ALTER FUNCTION statement 867

CONTINUE AFTER FAILURE clause (continued)
ALTER PROCEDURE (external) statement 939
ALTER PROCEDURE (SQL - external) statement 945
CREATE FUNCTION statement 1185, 1207
CREATE PROCEDURE (external) statement 1333
CREATE PROCEDURE (SQL - external) statement 1347

CONTINUE handler
SQL procedure 1977, 2043

CONTOKEN
column of SYSSEQUENCEAUTH catalog table 2364

CONTOKEN column
SYSCOLAUTH catalog table 2145
SYSPACKAGE catalog table 2265
SYSPACKSTMT catalog table 2290
SYSPKSYSTEM catalog table 2304
SYSROUTINEAUTH catalog table 2344
SYSROUTINES catalog table 2346
SYSTABAUTH catalog table 2383
SYSVARIABLEAUTH catalog table 2432

control character 54
control statement 1963, 2032
conversion of numbers

precision 123
scale 123

CONVERT TO clause
ALTER INDEX statement 907

CONVLIMIT column of LUMODES catalog table
description 2126

Coordinated Universal Time (UTC) 158
COPY

clause of ALTER INDEX statement 911
clause of CREATE INDEX statement 1291
column of SYSINDEXES catalog table 2211

COPY privilege
GRANT statement 1708
REVOKE statement 1831

COPYAUTH column of SYSPACKAUTH catalog table 2285
COPYCHANGES column

SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

COPYLASTTIME column
SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

COPYLRSN column of SYSINDEXES catalog table 2211
COPYLRSN_EX column

SYSINDEXES catalog table 2211
COPYPAGESF column of SYSCOPY catalog table 2176
COPYUPDATEDPAGES column

SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

COPYUPDATELRSN column
SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

COPYUPDATELRSN_EX column
SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

COPYUPDATETIME column
SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

correlated reference
correlation name

defining 209
FROM clause of subselect 773
naming convention 59
qualifying a column name 209

description 211
HAVING clause 799

Index 2657

correlated reference (continued)
WHERE clause 795

CORRELATION
function 351

correlation-clause
description 784

COS function 423
COSH function 424
COUNT function 352
COUNT_BIG function 353
COVARIANCE or COVARIANCE_SAMP

function 355
CPAGESF column of SYSCOPY catalog table 2176
CREATE ALIAS statement

description 1154
examples 1157

CREATE AUXILIARY TABLE statement
description 1158
example 1161

CREATE DATABASE statement 14
description 1162
example 1164

CREATE FUNCTION (external scalar) statement
description 1166
example 1189

CREATE FUNCTION (external table) statement
description 1191
example 1209

CREATE FUNCTION (sourced) statement
description 1210
example 1223

CREATE FUNCTION (SQL scalar) statement
description 1224
example 1250

CREATE FUNCTION (SQL table) statement
description 1251
examples 1259

CREATE FUNCTION statement 1165
CREATE GLOBAL TEMPORARY TABLE statement

description 1261
example 1266

CREATE IN privilege
binding a package 78
GRANT statement 1699
REVOKE statement 1819

CREATE INDEX statement
description 1267
example 1296

CREATE MASK statement
description 1299
examples 1306

CREATE PERMISSION statement
description 1310
examples 1316

CREATE PROCEDURE (external) statement
description 1319
example 1337

CREATE PROCEDURE (SQL - external) statement
description 1338
example 1349

CREATE PROCEDURE (SQL - native) statement
description 1350
examples 1371

CREATE PROCEDURE statement 1318
assignment statement 1971, 2036
SQL procedure body 1968, 2035

CREATE ROLE statement
description 1374
example 1374

CREATE SEQUENCE statement 34
description 1375
example 1382

CREATE STOGROUP statement 1383
example 1385

CREATE SYNONYM statement
description 1386
example 1387

CREATE TABLE statement
description 1388
example 1451
materialized query table 1388

CREATE TABLESPACE statement
description 1455
example 1479

CREATE TRIGGER statement
description 1482
example 1497

CREATE TRUSTED CONTEXT statement
description 1500
example 1509
usage notes 1508

CREATE TYPE (array) statement
description 1511
example 1515

CREATE TYPE (distinct) statement
description 1516
example 1523

CREATE TYPE statement
description 1510

CREATE VARIABLE statement
description 1524

CREATE VIEW statement
description 1527
example 1534

CREATE_SECURE_OBJECT privilege
GRANT statement 1716
REVOKE statement 1842

CREATEALIAS privilege
GRANT statement 1716
REVOKE statement 1842

CREATEALIASAUTH column of SYSUSERAUTH catalog
table 2425

CREATEDBA privilege
GRANT statement 1716
REVOKE statement 1842

CREATEDBAAUTH column of SYSUSERAUTH catalog
table 2425

CREATEDBC privilege
GRANT statement 1716
REVOKE statement 1842

CREATEDBCAUTH column of SYSUSERAUTH catalog
table 2425

CREATEDBY column
SYSDATABASE catalog table 2189
SYSDATATYPES catalog table 2191
SYSIBM.XSROBJECTS table 2463
SYSINDEXES catalog table 2211
SYSROUTINES catalog table 2346
SYSSEQUENCES catalog table 2366
SYSSTOGROUP catalog table 2377
SYSSYNONYMS catalog table 2382
SYSTABLES catalog table 2396
SYSTABLESPACE catalog table 2404

2658 SQL Reference

CREATEDBY column (continued)
SYSTRIGGERS catalog table 2422

CREATEDTS column
SYSCOLUMNS catalog table 2155
SYSCONTEXT catalog table 2171
SYSCONTEXTAUTHIDS catalog table 2173
SYSCTXTTRUSTATTRS catalog table 2188
SYSDATABASE catalog table 2189
SYSDATATYPES catalog table 2191
SYSIBM.XSROBJECTCOMPONENTS table 2465
SYSIBM.XSROBJECTS table 2463
SYSINDEXES catalog table 2211
SYSINDEXPART catalog table 2221
SYSJAROBJECTS catalog table 2242
SYSKEYTARGETS catalog table 2247
SYSROLES catalog table 2343
SYSROUTINES catalog table 2346
SYSSEQUENCES catalog table 2366
SYSSTOGROUP catalog table 2377
SYSSYNONYMS catalog table 2382
SYSTABCONST catalog table 2386
SYSTABLEPART catalog table 2387
SYSTABLES catalog table 2396
SYSTABLESPACE catalog table 2404
SYSTRIGGERS catalog table 2422
SYSVARIABLES catalog table 2429
SYSXMLRELS catalog table 2442

CREATEIN privilege
GRANT statement 1712
REVOKE statement 1836

CREATEINAUTH column of SYSSCHEMAAUTH catalog
table 2362

CREATESG privilege
GRANT statement 1716
REVOKE statement 1842

CREATESGAUTH column of SYSUSERAUTH catalog
table 2425

CREATESTMT column
SYSROUTINES_SRC catalog table 2361

CREATETAB privilege
GRANT statement 1700
REVOKE statement 1821

CREATETABAUTH column of SYSDBAUTH catalog
table 2193

CREATETMTAB privilege
GRANT statement 1716
REVOKE statement 1842

CREATETMTABAUTH column
SYSUSERAUTH catalog table 2425

CREATETS
column of DSNPROGAUTH table 2596

CREATETS privilege
GRANT statement 1700
REVOKE statement 1821

CREATETSAUTH column of SYSDBAUTH catalog table 2193
CREATOR column

DSNPROGAUTH table 2596
SYSCHECKS catalog table 2143
SYSCOLAUTH catalog table 2145
SYSDATABASE catalog table 2189
SYSFOREIGNKEYS catalog table 2209
SYSINDEXES catalog table 2211
SYSINDEXES_HIST catalog table 2217
SYSINDEXSPACESTATS catalog table 2229
SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306
SYSRELS catalog table 2339

CREATOR column (continued)
SYSSTOGROUP catalog table 2377
SYSSYNONYMS catalog table 2382
SYSTABCONST catalog table 2386
SYSTABLES catalog table 2396
SYSTABLES_HIST catalog table 2416
SYSTABLESPACE catalog table 2404
SYSVIEWS catalog table 2437

CREATORTYPE column
SYSDATABASE catalog table 2189
SYSPLAN catalog table 2306
SYSSTOGROUP catalog table 2377
SYSSYNONYMS catalog table 2382
SYSTABCONST catalog table 2386
SYSTABLESPACE catalog table 2404

CURRENCY function 2615
CURRENT

clause of RELEASE statement 1805
CURRENT APPLICATION COMPATIBILITY special register

description 161
CURRENT APPLICATION ENCODING SCHEME special

register 162
CURRENT clause

FETCH statement 1655
CURRENT CLIENT_ACCTNG special register 163
CURRENT CLIENT_APPLNAME special register 164
CURRENT CLIENT_CORR_TOKEN special register 166
CURRENT CLIENT_USERID special register 167
CURRENT CLIENT_WRKSTNNAME special register 168
current connection state 38
CURRENT DATA clause

ALTER PROCEDURE (SQL - native) statement 959
CREATE PROCEDURE (SQL - native) statement 883,

1236, 1360
CURRENT DATE special register 170
CURRENT DEBUG MODE special register 171, 1884
CURRENT DECFLOAT ROUNDING MODE special

register 172, 1886
CURRENT DEGREE special register

assigning a value 1889
description 174
setting 1889

CURRENT EXPLAIN MODE special register
assigning a value 1891
description 175
setting 1891

CURRENT GET_ACCEL_ARCHIVE special register
description 176

CURRENT LC_CTYPE special register
description 177

CURRENT LOCALE LC_CTYPE special register
assigning a value 1894
description 177

CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION special register

description 179
CURRENT MEMBER

description 180
CURRENT OPTIMIZATION HINT special register

assigning a value 1898
description 181

CURRENT PACKAGE PATH clause
SET PATH statement 1921

CURRENT PACKAGE PATH special register
description 182

CURRENT PACKAGESET special register
assigning a value 1903

Index 2659

CURRENT PACKAGESET special register (continued)
description 183
stored procedures 1904

CURRENT PATH clause
SET PATH statement 1921

CURRENT PATH special register
assigning a value 1921
description 184

CURRENT PRECISION special register
assigning a value 1905
description 185

CURRENT QUERY ACCELERATION special register
description 186

CURRENT REFRESH AGE special register
description 187

CURRENT ROUTINE VERSION special register 188, 1910
CURRENT ROWSET clause

FETCH statement 1660
CURRENT RULES special register

assigning a value 1912
description 189

CURRENT SCHEMA special register
assigning a value 1924
description 191

CURRENT SERVER special register
description 192

CURRENT SQLID special register
assigning a value 1913
description 193
initial value 75

CURRENT TEMPORAL BUSINESS_TIME special register 194
assigning a value 1915

CURRENT TEMPORAL SYSTEM_TIME special register 196
assigning a value 1917

CURRENT TIME special register
description 198

CURRENT TIMESTAMP special register
description 199

CURRENT TIMEZONE special register 200, 203
CURRENT_SCHEMA column

SYSENVIRONMENT catalog table 2205
CURRENT_VERSION

column of SYSTABLESPACE catalog table 2404
CURRENT_VERSION column

SYSINDEXES catalog table 2211
CURRENTSERVER

column of SYSPLAN catalog table 2306
cursor

ASENSITIVE 1537
closed state 1777
closing

CLOSE statement 1131
CONNECT statement 1147
error in FETCH 1669
error in UPDATE 1944

DYNAMIC 1537
INSENSITIVE 1537, 1784
naming convention 59
NO SCROLL 1537, 1786
open state 1669
opening

errors 1777
OPEN statement 1775

rowset positioning 1540
rowset-positioning 1787
SCROLL 1537, 1786
SENSITIVE 1537

cursor (continued)
SENSITIVE DYNAMIC 1785
SENSITIVE STATIC 1785
STATIC 1538
using

current row 1669
DECLARE CURSOR statement 1535
FETCH statement 1650
positions 1669

cursor-name clause
DECLARE CURSOR statement 1536
FETCH statement 1662

CYCLE
clause of ALTER SEQUENCE statement 978

CYCLE clause
ALTER TABLE statement 1004
CREATE SEQUENCE statement 1378

CYCLE column of SYSSEQUENCES catalog table 2366

D
DATA CAPTURE clause

ALTER TABLE statement 1040
CREATE TABLE statement 1433

data compression
COMPRESS clause

ALTER TABLESPACE statement 1078
CREATE TABLESPACE statement 1471

data structures
databases 14
hash spaces 17
hierarchy 4
index spaces 17
indexes 6
keys 7
table spaces 16
types 4
views 9

data type
array 108
built-in 80
cast from numeric 119
cast from string 120
casting between 111
character string 84
compatibility matrix 121
CREATE TABLE statement 1399
datetime 98
distinct 107
graphic string 94
list of built-in types 80
name, unqualified 66
naming convention

built-in 58
distinct type 59

numeric 81
promotion 110
result column 770
results of an operation 144
row ID 105
unqualified name 66
XML values 106

DATA TYPE clause 1629
DATA_FORMAT column

SYSENVIRONMENT catalog table 2205
DATA_SHARING_GROUP_NAME session variable 225

2660 SQL Reference

DATAACCESS privilege
GRANT statement 1716
REVOKE statement 1842

database
altering

ALTER DATABASE statement 849
creating 1162
default database 63
designing

using catalog 2596
dropping 1614
DSNDB04 (default database) 63
DSNXSR (XML schema repository) 2462, 2463, 2465, 2466,

2467, 2468, 2469
implementing a design 2607
limits 2012
naming convention 59
privileges

granting 1700
revoking 1821

DATABASE clause
ALTER DATABASE statement 849
DROP statement 1614

database descriptors 19
contents 19

database request module (DBRM) 31
DATABASE

clause of GRANT statement 1701
clause of REVOKE statement 1822

databases
creating 14
default databases 14
lock operations 14
overview 14
starting 14
stopping 14
users who need their own 14

DATACAPTURE column of SYSTABLES catalog table 2396
DATACLAS clause

CREATE STOGROUP statement 982, 1384
DATACLAS column

SYSSTOGROUP catalog table 2377
DATAREPEATFACTORF column

SYSINDEXES catalog table 2211
SYSINDEXES_HIST catalog table 2217
SYSINDEXESSTATS catalog table 2235
SYSINDEXESSTATS_HIST catalog table 2237

DATASIZE column
SYSTABLESPACESTATS catalog table 2410

DATATYPEID column
DATATYPES catalog table 2191
SYSCOLUMNS catalog table 2155
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSPARMS catalog table 2297
SYSSEQUENCES catalog table 2366
SYSVARIABLES catalog table 2429

date
arithmetic 258
data type 99
duration 254
strings 101, 105

DATE
data type

CREATE TABLE statement 1399
function 425

DATE FORMAT clause
ALTER PROCEDURE (SQL - native) statement 965
CREATE PROCEDURE (SQL - native) statement 888,

1241, 1367
DATE FORMAT field of panel DSNTIP4 332
date routine

CHAR function 398
DATE_FORMAT session variable 225
DATE_LENGTH session variable 225
DATE

data type
description 99

datetime
arithmetic 257
constants 151
data types

description 98
string representation 101

EUR (IBM European standard) 101
format

setting through the CHAR function 398
ISO (International Standards Organization) 101
JIS (Japanese Industrial Standard) 101
LOCAL 101
string formats 101
USA 101

datetime host variables
data type

description 101
Datetime operands 147
DAY function 427
day of week calculation 435
DAYNAME function 2617
DAYOFMONTH function 429
DAYOFWEEK function 430
DAYOFWEEK_ISO function 432
DAYOFYEAR function 434
DAYS function 435
DB2 catalog 2116
DB2 databases 14
DB2 private protocol access

authorization ID 78
DB2 Query Management Facility (QMF) 14
DB2 subsystem

local 35
DB2 version identification, current server 1149
DBADM authority

GRANT statement 1700
REVOKE statement 1821

DBADM privilege
GRANT statement 1717
REVOKE statement 1842

DBADMAUTH column of SYSDBAUTH catalog table 2193
DBALIAS column

LOCATIONS catalog table 2123
DBCLOB

function 436
DBCLOB (double-byte character large object)

data type 95, 1399
description 96
file reference 220
host variable 218
locator 218

DBCS (double-byte character set)
ASCII 85
EBCDIC 85
SQL ordinary identifier 53, 55

Index 2661

DBCS (double-byte character set) (continued)
Unicode 85

DBCS_CCSID column
SYSDATABASE catalog table 2189
SYSTABLESPACE catalog table 2404

DBCTRL authority
GRANT statement 1700
REVOKE statement 1821

DBCTRLAUTH column of SYSDBAUTH catalog table 2193
DBD01 directory table space

contents 19
DBID

column of SYSCHECKS catalog table 2143
column of SYSDATABASE catalog table 2189
column of SYSINDEXES catalog table 2211
column of SYSTABLES catalog table 2396
column of SYSTABLESPACE catalog table 2404
column of SYSTRIGGERS catalog table 2422

DBID column
SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

DBINFO
clause of ALTER FUNCTION statement 865
clause of CREATE FUNCTION statement 1183, 1205
column of SYSROUTINES catalog table 2346

DBINFO clause
ALTER PROCEDURE (external) statement 936
CREATE PROCEDURE (external) statement 1331

DBMAINT authority
GRANT statement 1700
REVOKE statement 1821

DBMAINTAUTH column of SYSDBAUTH catalog table 2193
DBNAME column

SYSCOPY catalog table 2176
SYSINDEXES catalog table 2211
SYSINDEXSPACESTATS catalog table 2229
SYSLOBSTATS catalog table 2262
SYSLOBSTATS_HIST catalog table 2263
SYSTABAUTH catalog table 2383
SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393
SYSTABLES catalog table 2396
SYSTABLES_HIST catalog table 2416
SYSTABLESPACE catalog table 2404
SYSTABLESPACESTATS catalog table 2410
SYSTABSTATS catalog table 2420
SYSTABSTATS_HIST catalog table 2421

DBPROTOCOL column
SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

DBRMLIB column of SYSJAVAOPTS catalog table 2243
DCLGEN subcommand of DSN

description 99
DCOLLID column of SYSPACKDEP catalog table 2287
DCOLNAME column

SYSDEPENDENCIES catalog table 2198
DCOLNAME column of SYSSEQUENCEDEP catalog

table 2369
DCOLNO column

SYSDEPENDENCIES catalog table 2198
DCONSTNAME column of SYSCONSTDEP catalog

table 2170
DCONTOKEN column of SYSPACKDEP catalog table 2287
DCREATOR column

SYSSEQUENCEDEP catalog table 2369
SYSVIEWDEP catalog table 2436

DDCS (data definition control support)
database 22

DDL (Data Definition Language) 1
deadlocks

locks 28
uncommitted changes 28

DEBUG_MODE column
SYSROUTINES catalog table 2346
SYSROUTINES_OPTS catalog table 2358

DEBUGSESSION privilege
GRANT statement 1717
REVOKE statement 1843

DEBUGSESSIONAUTH column
SYSUSERAUTH catalog table 2425

DEC function 447
DEC15 precompiler option 244
DEC31

column of SYSDBRM catalog table 2196
column of SYSPACKAGE catalog table 2265
precompiler option 244

DECFLOAT
arithmetic 248
data type 82

CREATE TABLE statement 1399
rounding mode 328

DECFLOAT function 440
DECFLOAT_FORMAT function 442
DECFLOAT_SORTKEY function 445
decimal

constants 149
numbers 82

DECIMAL
data type 82

CREATE TABLE statement 1399
function

description 447
DECIMAL clause

ALTER PROCEDURE (SQL - native) statement 965
CREATE PROCEDURE (SQL - native) statement 889,

1242, 1367
decimal division 246
decimal floating point

constants 149
numbers 82

decimal floating-point operands 248
DECIMAL POINT IS field of panel DSNTIPF 328
decimal point precompiler option 328
DECIMAL_ARITHMETIC column

SYSENVIRONMENT catalog table 2205
DECIMAL_ARITHMETIC session variable 225
DECIMAL_POINT column

SYSENVIRONMENT catalog table 2205
DECIMAL_POINT session variable 225
DECLARE CURSOR statement

description 1535
example 1544

declare default element namespace clause
CREATE INDEX statement 1277

DECLARE GLOBAL TEMPORARY TABLE statement
description 1547
example 1561

declare namespace clause
CREATE INDEX statement 1277

DECLARE STATEMENT statement
description 1562
example 1562

2662 SQL Reference

DECLARE TABLE statement
description 1563
example 1568

DECLARE VARIABLE statement
description 1570
example 1572

DECODE function 449
DECOMPOSITION column

SYSIBM.XSROBJECTS table 2463
DECOMPOSITION_VERSION column

SYSIBM.XSROBJECTS table 2463
decrementing time 259
DECRYPT_BINARY function 451
DECRYPT_BIT function 451
DECRYPT_CHAR function 451
DECRYPT_DB function 451
DEFAULT clause

ALTER TABLE statement 999
DEFAULT column

SYSCOLUMNS catalog table 2155
SYSVARIABLES catalog table 2429

default database (DSNDB04)
defining 14
implicit specification 63

DEFAULT REGISTERS clause
ALTER PROCEDURE (external) statement 939
ALTER PROCEDURE (SQL - external) statement 945
ALTER PROCEDURE (SQL - native) statement 958
CREATE PROCEDURE (SQL - external) statement 1347
CREATE PROCEDURE (SQL - native) statement 883,

1236, 1360
DEFAULT ROLE clause

ALTER TRUSTED CONTEXT statement 1100
CREATE TRUSTED CONTEXT statement 1502

DEFAULT SECURITY LABEL clause
ALTER TRUSTED CONTEXT statement 1101
CREATE TRUSTED CONTEXT statement 1503

DEFAULT SPECIAL REGISTERS clause
ALTER FUNCTION statement 868
CREATE FUNCTION statement 1185, 1207
CREATE PROCEDURE (external) statement 1334

DEFAULT_DECFLOAT_ROUND_MODE session variable 225
DEFAULT_DEFAULT_SSID session variable 225
DEFAULT_LANGUAGE session variable 225
DEFAULT_LOCALE_LC_CTYPE session variable 225
DEFAULTROLE column

SYSCONTEXT catalog table 2171
DEFAULTSECURITYLABEL column

SYSCONTEXT catalog table 2171
DEFAULTTEXT column

SYSVARIABLES catalog table 2429
DEFAULTVALUE column of SYSCOLUMNS catalog

table 2155
DEFER

clause of CREATE INDEX statement 1289
DEFER PREPARE clause

ALTER PROCEDURE (SQL - native) statement 958
CREATE PROCEDURE (SQL - native) statement 1360

DEFERPREP column
SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

DEFERPREPARE column of SYSPACKAGE catalog table 2265
deferred embedded SQL 3
define behavior for dynamic SQL statements 75
DEFINE clause

CREATE INDEX statement 1286
CREATE TABLESPACE statement 1464

DEFINER column
SYSCONTEXT catalog table 2171
SYSOBJROLEDEP catalog table 2264
SYSROLES catalog table 2343

DEFINERTYPE column
SYSCONTEXT catalog table 2171
SYSOBJROLEDEP catalog table 2264
SYSROLES catalog table 2343

DEFINITION ONLY clause
CREATE TABLE statement 1451
DECLARE GLOBAL TEMPORARY TABLE statement 1560

DEGREE
column of SYSPACKAGE catalog table 2265
column of SYSPLAN catalog table 2306

DEGREE clause
ALTER PROCEDURE (SQL - native) statement 959
CREATE PROCEDURE (SQL - native) statement 884,

1237, 1361
DEGREES function 455
DELETE

clause of TRIGGER statement 1485
statement

description 1573
example 1588

DELETE privilege
GRANT statement 1721
REVOKE statement 1847

delete rules 1583
DELETEAUTH column of SYSTABAUTH catalog table 2383
DELETERULE column of SYSRELS catalog table 2339
deleting

all rows from a table 1929
rows from a table 1573
SQL objects 1609

delimited identifier in SQL 56
delimiter

SQL 56
DENSE_RANK expression 282
DENSERANK expression 282
dependency

of objects on each other 1626
dependent rows 23
dependent tables 23
DERIVED_FROM column

SYSKEYTARGETS catalog table 2247
DESC clause

ALTER TABLE statement 1028
CREATE INDEX statement 1275
CREATE TABLE statement 1429
select-statement 802

DESCRIBE CURSOR statement
description 1591
example 1592

DESCRIBE INPUT statement
prepared statement 1593

DESCRIBE OUTPUT statement 1596
DESCRIBE PROCEDURE statement

description 1603
example 1604

DESCRIBE statement 1590
variables 1596, 1607

DESCRIBE TABLE statement 1606
descriptor

naming convention 59
DESCRIPTOR column

SYSVARIABLES catalog table 2429

Index 2663

DESCSTAT column
SYSPACKAGE catalog table 2265

DETERMINISTIC clause
ALTER FUNCTION statement 860, 880
ALTER PROCEDURE (external) statement 935
ALTER PROCEDURE (SQL - external) statement 942
ALTER PROCEDURE (SQL - native) statement 955
CREATE FUNCTION statement 1178, 1201, 1232
CREATE PROCEDURE (external) statement 1330
CREATE PROCEDURE (SQL - external) statement 1344
CREATE PROCEDURE (SQL - native) statement 1356

DETERMINISTIC column of SYSROUTINES catalog
table 2346

DEVTYPE column of SYSCOPY catalog table 2176
DFSMShsm (Data Facility Hierarchical Storage Manager)

dropping an index or table space 1626
DIFFERENCE function 456
digit, description in DB2 53
DIGITS function 457
directory 19

table space names 19
directory tables

description 2447
indexes 2448
table space 2448

directory, DB2
formats

SYSIBM.DRDR 2449
SYSIBM.SCTR 2451
SYSIBM.SPTR 2452
SYSIBM.SYSDBD_DATA 2450
SYSIBM.SYSLGRNX 2455
SYSIBM.SYSSPTSEC_DATA 2453
SYSIBM.SYSSPTSEC_EXPL 2454
SYSIBM.SYSUTIL 2456
SYSIBM.SYSUTILX 2458

SYSUTIL 2456
SYSUTILX 2458
tables 2447

disability xx
DISABLE ARCHIVE clause

ALTER TABLE statement 1049
DISABLE clause

ALTER TRUSTED CONTEXT statement 1100
CREATE TRUSTED CONTEXT statement 1503

DISABLE DEBUG MODE clause
ALTER PROCEDURE (external) statement 939
ALTER PROCEDURE (SQL - native) statement 956
CREATE PROCEDURE (external) statement 1326
CREATE PROCEDURE (SQL - native) statement 882,

1234, 1357
DISALLOW DEBUG MODE clause

ALTER PROCEDURE (external) statement 939
ALTER PROCEDURE (SQL - native) statement 956
CREATE PROCEDURE (external) statement 1326
CREATE PROCEDURE (SQL - native) statement 882,

1234, 1357
DISALLOW PARALLEL clause

ALTER FUNCTION statement 865
CREATE FUNCTION statement 1182, 1205

DISCONNECT
column of SYSPLAN catalog table 2306

DISPLAY privilege
GRANT statement 1717
REVOKE statement 1843

DISPLAYAUTH column of SYSUSERAUTH catalog
table 2425

DISPLAYDB privilege
GRANT statement 1700
REVOKE statement 1822

DISPLAYDBAUTH column of SYSDBAUTH catalog
table 2193

DISTINCT
clause of subselect 765
keyword

AVG function 350
COUNT function 352
COUNT_BIG function 353
MAX function 356
MIN function 357
STDDEV function 358
STDDEV_SAMP function 358
SUM function 360
VARIANCE function 361
VARIANCE_SAMP function 361

DISTINCT predicate 305
distinct type 35, 107, 1510

assignment of values 131
casting 111
comparison of values 142
CREATE TABLE statement 1403
creating 1516
description 107
granting privileges 1725
name, unqualified 59, 66
naming convention 59
promotion 110
revoking privileges 1851
unqualified name 66

distributed access
restriction 57

distributed data
CONNECT statement 1147
CURRENT SERVER special register 192
RELEASE (connection) statement 1805
SET CONNECTION statement 1872

distributed relational database
definition of 35

Distributed Relational Database Architecture (DRDA) 35
distributed unit of work

connection management 37
definition of 37

DISTRIBUTED_SQL_STRING_DELIMITER session
variable 225

DLOCATION column of SYSPACKDEP catalog table 2287
DML (Data Manipulation Language) 1
DNAME column

SYSDEPENDENCIES catalog table 2198
SYSOBJROLEDEP catalog table 2264
SYSPACKDEP catalog table 2287
SYSPLANDEP catalog table 2313
SYSSEQUENCEDEP catalog table 2369
SYSVIEWDEP catalog table 2436

dormant connection state 38
DOUBLE data type

CREATE TABLE statement 1399
description 82

DOUBLE function 458
DOUBLE or DOUBLE_PRECISION

function 458
DOUBLE PRECISION data type

CREATE TABLE statement 1399
description 82

double precision floating-point number 82

2664 SQL Reference

DOUBLE_PRECISION function 458
double-byte character

LABEL statement 1756
truncated during assignment 128

double-byte character large object (DBCLOB) 96
DOWNER column

SYSDEPENDENCIES catalog table 2198
SYSVIEWDEP catalog table 2436

DOWNER column of SYSPACKDEP catalog table 2287
DOWNERTYPE column

SYSDEPENDENCIES catalog table 2198
SYSPACKDEP catalog table 2287

DRDA access
authorization ID 78
mixed environment 2026

DROP ATTRIBUTES clause
ALTER TRUSTED CONTEXT statement 1103

DROP CHECK clause
ALTER TABLE statement 1027

DROP CLONE clause
ALTER TABLE statement 1041

DROP CONSTRAINT clause
ALTER TABLE statement 1027

DROP FOREIGN KEY clause
ALTER TABLE statement 1027

DROP MATERIALIZED QUERY clause
ALTER TABLE statement 1039

DROP PENDING CHANGES clause
ALTER TABLESPACE statement 1078

DROP PRIMARY KEY clause
ALTER TABLE statement 1026

DROP privilege
GRANT statement 1701
REVOKE statement 1822

DROP RESTRICT ON DROP clause
ALTER TABLE statement 1042

DROP statement
description 1609
example 1629

DROP STORAGE clause
TRUNCATE statement 1930

DROP UNIQUE clause
ALTER TABLE statement 1026

DROP USE FOR clause
ALTER TRUSTED CONTEXT statement 1106

DROP VERSION clause
ALTER PROCEDURE (SQL - native) statement 954

DROPAUTH column of SYSDBAUTH catalog table 2193
DROPIN privilege

GRANT statement 1712
REVOKE statement 1836

DROPINAUTH column of SYSSCHEMAAUTH catalog
table 2362

DSCHEMA column
SYSDEPENDENCIES catalog table 2198
SYSOBJROLEDEP catalog table 2264

DSCHEMA column of SYSSEQUENCEDEP catalog table 2369
DSN_DETCOST_TABLE

columns 2494
DSN_FILTER_TABLE

columns 2504
DSN_PGRANGE_TABLE

columns 2520
DSN_PGROUP_TABLE

columns 2524
DSN_PREDICATE_SELECTIVITY

column descriptions 2538

DSN_PREDICATE_TABLE
columns 2530

DSN_PTASK_TABLE
columns 2544

DSN_QUERY_TABLE
columns 2554

DSN_QUERYINFO_TABLE
columns 2549

DSN_SORT_TABLE
columns 2563

DSN_SORTKEY_TABLE
columns 2558

DSN_STRUCT_TABLE
columns 2582

DSN_VIEWREF_TABLE
columns 2587

DSN_XMLVALIDATE function 460
DSNAME

column of SYSCOPY catalog table 2176
DSNDB04 default database 14
DSNHDECP_NAME session variable 225
DSNUM column

SYSCOPY catalog table 2176
SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226
SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393

DSNXSR database
SYSIBM.XSRCOMPONENT table 2462
SYSIBM.XSROBJECTCOMPONENTS table 2465
SYSIBM.XSROBJECTGRAMMAR table 2466
SYSIBM.XSROBJECTHIERARCHIES table 2467
SYSIBM.XSROBJECTPROPERTY table 2468
SYSIBM.XSROBJECTS table 2463
SYSIBM.XSRPROPERTY table 2469

DSSIZE
clause of CREATE TABLE statement 1435
clause of CREATE TABLESPACE statement 1465
column of SYSTABLESPACE catalog table 2404

DSSIZE clause
ALTER TABLESPACE statement 1078

DSVOLSER column of SYSCOPY catalog table 2176
DTBCREATOR column of SYSCONSTDEP catalog table 2170
DTBNAME column of SYSCONSTDEP catalog table 2170
DTBOWNER column

SYSCONSTDEP catalog table 2170
DTYPE column

SYSCONSTDEP catalog table 2170
SYSDEPENDENCIES catalog table 2198
SYSOBJROLEDEP catalog table 2264
SYSPACKDEP catalog table 2287
SYSVIEWDEP catalog table 2436

DTYPE column of SYSSEQUENCEDEP catalog table 2369
dual logging 20
duplicate rows, UNION clause 811
duration

date 254
labeled 254
time 254
timestamp 254

DYNAMIC clause
DECLARE CURSOR statement 1537

DYNAMIC RESULT SET clause
ALTER PROCEDURE (external) statement 932
ALTER PROCEDURE (SQL - native) statement 956
CREATE PROCEDURE (SQL - external) statement 1343
CREATE PROCEDURE (SQL - native) statement 1357

Index 2665

DYNAMIC RESULT SETS clause
ALTER PROCEDURE (SQL - external) statement 942
CREATE PROCEDURE (external) statement 1326

dynamic SQL 3
description 3, 839
DYNAMICRULES bind option 75
EXECUTE IMMEDIATE statement 1639
EXECUTE statement 1633
execution 840
INTO clause

DESCRIBE statement 1596
PREPARE statement 1783

invocation of SELECT statement 842
preparation 840
SQLDA 2079
statements allowed 2026

DYNAMIC_RULES session variable 225
DYNAMICRULES

column of SYSPACKAGE catalog table 2265
column of SYSPLAN catalog table 2306
dynamic SQL authorization 75
option 66
unqualified names 66

DYNAMICRULES behavior 75
DYNAMICRULES clause

ALTER PROCEDURE (SQL - native) statement 960
CREATE PROCEDURE (SQL - native) statement 884,

1237, 1361

E
EBCDIC

definition 42
effect on MBCS and DBCS characters 85

EBCDIC CCSID field of panel DSNTIPF 331
EBCDIC_CHR function 462
EBCDIC_STR function 463
edit routine

named in CREATE TABLE statement 1431
specified by EDITPROC option 1431

EDITPROC clause
CREATE TABLE statement 1431

EDPROC column of SYSTABLES catalog table 2396
ENABLE

column of SYSPKSYSTEM catalog table 2304
column of SYSPLSYSTEM catalog table 2314

ENABLE ARCHIVE clause
ALTER TABLE statement 1047

ENABLE clause
ALTER TRUSTED CONTEXT statement 1100
CREATE TRUSTED CONTEXT statement 1503

ENABLE column
SYSVIEWS catalog table 2437

ENABLE QUERY OPTIMIZATION clause
ALTER TABLE statement 1025
CREATE TABLE statement 1420

ENABLED
column of DSNPROGAUTH table 2596

ENABLED column
SYSCONTEXT catalog table 2171

encoding scheme 42
of strings 47

ENCODING_CCSID column
SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

ENCODING_SCHEME column
SYSDATABASE catalog table 2189

ENCODING_SCHEME column (continued)
SYSDATATYPES catalog table 2191
SYSPARMS catalog table 2297
SYSTABLES catalog table 2396
SYSTABLESPACE catalog table 2404

ENCODING_SCHEME session variable 225
ENCRYPT function 464
ENCRYPT_TDES function 464
encryption 1504
ENCRYPTION clause

ALTER TRUSTED CONTEXT statement 1102
CREATE TRUSTED CONTEXT statement 1504

encryption password 1919
ENCRYPTION PASSWORD special register 201
ENCRYPTPSWDS column of LUNAMES catalog table 2127
END DECLARE SECTION statement

description 1631
example 1631

ENDING AT clause
ALTER INDEX statement 920
ALTER TABLE statement 1028, 1030
CREATE INDEX statement 1287
CREATE TABLE statement 1430

ENFORCED clause
ALTER TABLE statement 1024
CREATE TABLE statement 1420

ENFORCED column
SYSRELS catalog table 2339

entity integrity 23
ENVID column

SYSENVIRONMENT catalog table 2205
SYSINDEXES catalog table 2211
SYSTRIGGERS catalog table 2422
SYSVARIABLES catalog table 2429

EPOCH column of SYSTABLEPART catalog table 2387
ERASE clause

ALTER INDEX statement 914
ALTER TABLESPACE statement 1088
CREATE INDEX statement 1283
CREATE TABLESPACE statement 1461

ERASERULE column
SYSINDEXES catalog table 2211
SYSTABLESPACE catalog table 2404

error
closes cursor 1777
during FETCH 1669
during update 1944
signaling 1928

ERRORBYTE column of SYSSTRINGS catalog table 2379
ESCAPE clause

LIKE predicate 312
evaluation order 262
EXCEPT clause 811
EXCEPTION clause 1692
EXCHANGE statement

description 1632
example 1632

EXCLUDING COLUMN DEFAULTS clause
CREATE TABLE statement 1427
DECLARE GLOBAL TEMPORARY TABLE statement 1554

EXCLUDING IDENTITY COLUMN ATTRIBUTES clause
CREATE TABLE statement 1426
DECLARE GLOBAL TEMPORARY TABLE statement 1554

EXCLUDING ROW CHANGE TIMESTAMP COLUMN
ATTRIBUTES clause

CREATE TABLE statement 1426

2666 SQL Reference

EXCLUSIVE
option of LOCK TABLE statement 1757

exclusive dependence 1815
executable statement 839
EXECUTE IMMEDIATE statement

description 1639
example 1641

EXECUTE privilege
GRANT statement 1704, 1708, 1711
REVOKE statement 1826, 1831, 1834

EXECUTE statement
description 1633
example 1637

EXECUTEAUTH column
SYSPACKAUTH catalog table 2285
SYSPLANAUTH catalog table 2311
SYSROUTINEAUTH catalog table 2344

EXISTS predicate 307
EXIT handler

SQL procedure 1977, 2043
exit routine

named in ALTER TABLE statement 1046
named in CREATE TABLE statement 1415

EXITPARM column of SYSFIELDS catalog table 2207
EXITPARML column of SYSFIELDS catalog table 2207
EXP function 467
EXPLAIN

column of SYSPACKAGE catalog table 2265
statement

description 1642
example 1648

EXPLAIN privilege
GRANT statement 1717
REVOKE statement 1843

EXPLAIN tables 2549
DSN_COLDIST_TABLE 2488
DSN_DETCOST_TABLE 2494
DSN_FILTER_TABLE 2504
DSN_FUNCTION_TABLE 2509
DSN_KEYTGTDIST_TABLE 2514
DSN_PGRANGE_TABLE 2520
DSN_PGROUP_TABLE 2524
DSN_PREDICAT_TABLE 2530
DSN_PREDICATE_SELECTIVITY 2538
DSN_PTASK_TABLE 2544
DSN_QUERY_TABLE 2554
DSN_SORT_TABLE 2563
DSN_SORTKEY_TABLE 2558
DSN_STATEMENT_CACHE_TABLE 2567
DSN_STATEMNT_TABLE 2573
DSN_STRUCT_TABLE 2582
DSN_VIEWREF_TABLE 2587
overview 2470
PLAN_TABLE 2471

EXPLAINABLE column
SYSPACKSTMT catalog table 2290
SYSSTMT catalog table 2373

explainable statement
description 1642
EXPLAIN statement 1644

EXPLAN column of SYSPLAN catalog table 2306
exposed name 212
EXPREDICATE column of SYSPLAN catalog table 2306
expression

arithmetic operators 243
array constructor 280
array element specification 278

expression (continued)
CASE 263
CAST specification 267
concatenation operator 250
datetime operands 254
decimal floating-point operands 248
decimal operands 244
DENSE_RANK expression 282
DENSERANK expression 282
distinct type operands 250
floating-point operands 248
integer operands 244
NEXT VALUE expression 291
nextval-expression 291
OLAP-specification 282
precedence of operation 262
PREVIOUS VALUE expression 291
prevval-expression 291
RANK expression 282
ROW CHANGE TIMESTAMP expression 289
ROW CHANGE TOKEN expression 289
ROW_NUMBER expression 282
row-value 296
ROWNUMBER expression 282
subselect statement 766
time zone specific 255
without operators 243

expressions 240
EXTENTS column

SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226
SYSINDEXSPACESTATS catalog table 2229
SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393
SYSTABLESPACESTATS catalog table 2410

EXTERNAL ACTION clause
ALTER FUNCTION statement 862, 880
CREATE FUNCTION statement 1179, 1202, 1233

EXTERNAL clause
ALTER PROCEDURE (external) statement 932
CREATE FUNCTION statement 1175, 1199
CREATE PROCEDURE (external) statement 1327

EXTERNAL NAME clause
ALTER FUNCTION statement 858
ALTER PROCEDURE (SQL - external) statement 942
CREATE PROCEDURE (SQL - external) statement 1344

external SQL procedures 33
external stored procedures 33
EXTERNAL_ACTION column of SYSROUTINES catalog

table 2346
EXTERNAL_NAME column of SYSROUTINES catalog

table 2346
EXTERNAL_SECURITY column

SYSROUTINES catalog table 2346
external-java-routine-name clause

ALTER FUNCTION statement 858
ALTER PROCEDURE (external) statement 932
CREATE FUNCTION statement 1175
CREATE PROCEDURE (external) statement 1327

external-program
naming convention 59

external-program-name clause
CREATE FUNCTION statement 1175

EXTRACT function 468

Index 2667

F
FARINDREF column

SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393

FAROFFPOSF column
SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226

FENCED
clause of CREATE FUNCTION statement 1178, 1201
column of SYSROUTINES catalog table 2346

FENCED clause
CREATE PROCEDURE (external) statement 1326
CREATE PROCEDURE (SQL - external) statement 1343

FETCH FIRST clause
select-statement 803

FETCH FIRST n ROWS ONLY clause
SELECT INTO statement 1869

FETCH statement
description 1650
example 1676

field description 1007
field procedure

comparisons 136
named in ALTER TABLE statement 1007
named in CREATE TABLE statement 1415

FIELDPROC clause
ALTER TABLE statement 1007
CREATE TABLE statement 1415

file reference
LOB 220

FILESEQNO column of SYSCOPY catalog table 2176
FINAL CALL clause

ALTER FUNCTION statement 864, 1181
CREATE FUNCTION statement 1204

FINAL TABLE clause
FROM clause 778

FINAL_CALL column of SYSROUTINES catalog table 2346
FIRST clause

FETCH statement 1655
FIRST ROWSET clause

FETCH statement 1660
FIRSTKEYCARD column

SYSINDEXSTATS catalog table 2235
FIRSTKEYCARDF column

SYSINDEXES catalog table 2211
SYSINDEXES_HIST catalog table 2217
SYSINDEXSTATS catalog table 2235
SYSINDEXSTATS_HIST catalog table 2237

fixed-length binary strings 96
FLDPROC column

SYSCOLUMNS catalog table 2155
SYSFIELDS catalog table 2207

FLDTYPE column of SYSFIELDS catalog table 2207
FLOAT

data type
CREATE TABLE statement 1399
description 82

FLOAT function 458
FLOAT_FORMAT column

SYSENVIRONMENT catalog table 2205
floating-point

constants 149
double precision number 82
single precision number 82

FLOOR function 473
FOLD column

SYSENVIRONMENT catalog table 2205

FOR
clause of CREATE SYNONYM statement 1386
clause of CREATE TABLE statement 1399
clause of CREATE TYPE (distinct) statement 1518
clause of EXPLAIN statement 1644

FOR EACH ROW clause of TRIGGER statement 1487
FOR EACH ROW ON UPDATE AS ROW CHANGE

TIMESTAMP clause
ALTER TABLE statement 1005
CREATE TABLE statement 1409

FOR EACH STATEMENT clause of TRIGGER statement 1487
FOR FETCH ONLY clause 825
FOR host-variable or integer constant clause

FETCH statement 1665
FOR MULTIPLE ROWS clause

PREPARE statement 1789
FOR n ROWS clause

EXECUTE statement 1636
INSERT statement 1742

FOR READ ONLY clause 825
FOR RESULT SET clause of ALLOCATE CURSOR

statement 847
FOR ROW n OF ROWSET clause

DELETE statement 1582
UPDATE statement 1943

FOR SEQUENCE
clause of CREATE ALIAS statement 1156

FOR SINGLE ROW clause
PREPARE statement 1789

FOR statement
example 1986
SQL procedure 1986

FOR TABLE
clause of CREATE ALIAS statement 1156

FOR UPDATE clause
NOFOR precompiler option 333
select-statement 823

FOR UPDATE CLAUSE OPTIONAL clause
ALTER PROCEDURE (SQL - native) statement 966
CREATE PROCEDURE (SQL - native) statement 889,

1242, 1367
FOR UPDATE CLAUSE REQUIRED clause

ALTER PROCEDURE (SQL - native) statement 966
CREATE PROCEDURE (SQL - native) statement 889,

1242, 1367
FOREIGN KEY clause

ALTER TABLE statement 1022
CREATE TABLE statement 1418

foreign keys 7
FOREIGNKEY column of SYSCOLUMNS catalog table 2155
FORMAT column

SYSTABLEPART catalog table 2387
Fortran application program

host variable 215
INCLUDE SQLCA 2075
varying-length string 85

FREE LOCATOR statement
description 1678
example 1678

free space
index 1284
table space 1085

FREEPAGE
clause of ALTER INDEX statement

description 916
clause of CREATE INDEX statement

description 1284

2668 SQL Reference

FREEPAGE (continued)
clause of CREATE TABLESPACE statement

description 1462
column of SYSINDEXPART catalog table 2221
column of SYSTABLEPART catalog table 2387

FREEPAGE clause
ALTER TABLESPACE statement

description 1085
FREESPACE column

SYSLOBSTATS catalog table 2262
SYSLOBSTATS_HIST catalog table 2263

FREQUENCYF column
SYSCOLDIST catalog table 2147
SYSCOLDIST_HIST catalog table 2151
SYSCOLDISTSTATS catalog table 2149
SYSKEYTGTDIST catalog table 2256
SYSKEYTGTDIST_HIST catalog table 2260
SYSKEYTGTDISTSTATS catalog table 2258

FROM clause
DELETE statement 1577
PREPARE statement 1790
REVOKE statement 1813
subselect 773

FULL OUTER JOIN
description 791
example 805
FROM clause of subselect 791

FULLKEYCARD column of SYSINDEXSTATS catalog
table 2235

FULLKEYCARDF column
SYSINDEXES catalog table 2211
SYSINDEXES_HIST catalog table 2217
SYSINDEXSTATS catalog table 2235
SYSINDEXSTATS_HIST catalog table 2237

fullselect
CREATE VIEW statement 1530
description 811
example 814
INSERT statement 1740

function 496
aggregate 232

ARRAY_AGG 347
AVG 350
column name 208
CORRELATION 351
COUNT 352
COUNT_BIG 353
COVARIANCE or COVARIANCE_SAMP 355
description 345
example 345
MAX 356
MIN 357
STDDEV 358
STDDEV_SAMP 358
SUM 360
VARIANCE or VAR 361
VARIANCE_SAMP or VAR_SAMP 361
XMLAGG 363

built-in 231
cast function 232
column 232
CORRELATION function 351
DENSE_RANK function 282
DENSERANK function 282
description 231, 337
invocation 237
maximum number in select 2012

function (continued)
name, unqualified 66
RANK function 282
resolution 234
row

description 759
ROW_NUMBER function 282
ROWNUMBER function 282
scalar 232

ABS 366
ACOS 367
ADD_MONTHS 368
ARRAY_DELETE 370
ARRAY_FIRST 372
ARRAY_LAST 374
ARRAY_NEXT 376
ARRAY_PRIOR 378
ASCII 380
ASCII_CHR 381
ASCII_STR 382
ASIN 383
ATAN 384
ATAN2 386
ATANH 385
BIGINT 387
BINARY 389
BITAND 391
BITANDNOT 391
BITNOT 391
BITOR 391
BITXOR 391
BLOB 393
CARDINALITY 395
CCSID_ENCODING 396
CEIL or CEILING 397
CHAR 398
CHARACTER_LENGTH 407
CLOB 409
COALESCE 412
COLLATION_KEY 414
COMPARE_DECFLOAT 417
CONCAT 419
COS 423
COSH 424
DATE 425
DAY 427
DAYOFMONTH 429
DAYOFWEEK 430
DAYOFWEEK_ISO 432
DAYOFYEAR 434
DAYS 435
DBCLOB 436
DECFLOAT 440
DECFLOAT_FORMAT 442
DECFLOAT_SORTKEY 445
DECIMAL or DEC 447
DECODE 449
DECRYPT_BINARY 451
DECRYPT_BIT 451
DECRYPT_CHAR 451
DEGREES 455
DIFFERENCE 456
DIGITS 457
DOUBLE or DOUBLE_PRECISION 458
DSN_XMLVALIDATE 460
EBCDIC_CHR 462
EBCDIC_STR 463

Index 2669

function (continued)
scalar (continued)

ENCRYPT_TDES 464
EXP 467
EXTRACT 468
FLOOR 473
GENERATE_UNIQUE 474
GETHINT 476
GETVARIABLE 477
GRAPHIC 479
HEX 483
HOUR 484
IDENTITY_VAL_LOCAL 486
IFNULL 491
INSERT 492
JULIAN_DAY 498
LAST_DAY 500
LCASE 517
LCASE function 502
LEFT 503
LENGTH 507
LN 509
LOCATE 510
LOCATE_IN_STRING 513
LOG 509
LOG10 516
LOWER 517
LPAD 520
LTRIM 522
MAX 524
MAX_CARDINALITY 525
MICROSECOND 526
MIDNIGHT_SECONDS 528
MIN 530
MINUTE 531
MOD 533
MONTH 535
MONTHS_BETWEEN 537
MULTIPLY_ALT 550
NEXT_DAY 551
NORMALIZE_DECFLOAT 553
NORMALIZE_STRING 554
NULLIF 556
NVL 557
OVERLAY 558
PACK 562
POSITION 566
POSSTR 569
POWER 572
QUANTIZE 573
QUARTER 575
RADIANS 577
RAISE_ERROR 578
RAND 579
REAL 580
REPEAT 582
REPLACE 584
RID 587
RIGHT 588
ROUND 590
ROUND_TIMESTAMP 592
ROWID 595
RPAD 596
RTRIM 598
SECOND 603
SIGN 605
SIN 606

function (continued)
scalar (continued)

SINH 607
SMALLINT 608
SOAPHTTPC and SOAPHTTPV 611
SOAPHTTPNC and SOAPHTTPNV 613
SOUNDEX 610
SPACE 615
SQRT 616
STRIP 617
SUBSTR 618
SUBSTRING 621
TAN 627
TANH 628
TIME 629
TIMESTAMP 630
TIMESTAMP_FORMAT 635
TIMESTAMP_ISO 641
TIMESTAMP_TZ 645
TIMESTAMPADD 633
TIMESTAMPDIFF 642
TO_CHAR 647, 680
TO_DATE 635, 648
TO_NUMBER 649
TOTALORDER 650
TRANSLATE 652
TRIM 656
TRIM_ARRAY 658
TRUNC_TIMESTAMP 661
TRUNCATE 659
UCASE 664, 668
UNICODE 665
UNICODE_STR 666
UNPACK 760
UPPER 668
VALUE 412
VARBINARY 671
VARCHAR 673
VARCHAR_FORMAT 680
VARGRAPHIC 690
VERIFY_GROUP_FOR_USER 694
VERIFY_ROLE_FOR_USER 696
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER 698
WEEK 700
WEEK_ISO 701
XMLATTRIBUTES 703
XMLCOMMENT 704
XMLCONCAT 705
XMLDOCUMENT 706
XMLELEMENT 707
XMLFOREST 712
XMLMODIFY 715
XMLNAMESPACES 718
XMLPARSE 720
XMLPI 722
XMLQUERY 723
XMLSERIALIZE 727
XMLTEXT 730
XMLXSROBJECTID 731
YEAR 732

string units 87
table 232

ADMIN_TASK_LIST function 734
ADMIN_TASK_OUTPUT function 739
ADMIN_TASK_STATUS function 741
description 733
MQREAD function 539

2670 SQL Reference

function (continued)
table (continued)

MQREADALL function 745
MQREADALLCLOB function 747
MQREADCLOB function 541
MQRECEIVE function 543
MQRECEIVEALL function 749
MQRECEIVEALLCLOB function 752
MQRECEIVECLOB function 545
MQSEND function 547

types 231
unqualified name 66
version resolution 239

FUNCTION clause
COMMENT statement 1137
DROP statement 1614

function resolution 234
built-in function 238
data type cast 237
data type promotion 236
implicit casting 237
promotable process 236

function table 1642
FUNCTION_TYPE column

SYSROUTINES catalog table 2346
function, built-in

nesting 365
scalar

description 365
example 365

functions 32
best fit 235
casting

XMLCAST 276
CONTAINS 420
SCORE 600
table

XMLTABLE 755
VALUE 670

FUNCTIONTS column
SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

G
GBPCACHE clause

ALTER INDEX statement 916
ALTER TABLESPACE statement 1089
CREATE INDEX statement 1285
CREATE TABLESPACE statement 1463

GBPCACHE column
SYSINDEXPART catalog table 2221
SYSTABLEPART catalog table 2387

general-use programming information, described 2643
GENERATE KEY USING clause

CREATE INDEX statement 1276
GENERATE_UNIQUE function 474
GENERATED clause

ALTER TABLE statement 1001
CREATE TABLE statement 1409
DECLARE GLOBAL TEMPORARY TABLE statement 1552

GENERIC column of LUNAMES catalog table 2127
GET DIAGNOSTICS statement

description 1679
SQL procedure 1988, 2049

GET_ARCHIVE global variable 223
GETHINT function 476

GETVARIABLE function 477
global variable

built-in 223
dropping 1622
naming convention 62

global variables
privileges

granting 1727
revoking 1854

GO TO clause of WHENEVER statement 1961
GOTO statement

example 2050
examples 1989
SQL procedure 1989, 2050

GRAMMAR column
SYSIBM.XSROBJECTGRAMMAR table 2466
SYSIBM.XSROBJECTS table 2463

GRANT statement
collection privileges 1699
database privileges 1700
description 1695
function privileges 1703
package privileges 1708
plan privileges 1711
procedure privileges 1703
schema privileges 1712
sequence privileges 1714
system privileges 1715
table privileges 1721
USAGE privilege 1725
use privileges 1728
variable privileges 1727
view privileges 1721

GRANTEDTS
column of SYSSEQUENCEAUTH catalog table 2364

GRANTEDTS column
SYSCOLAUTH catalog table 2145
SYSDBAUTH catalog table 2193
SYSPLANAUTH catalog table 2311
SYSRESAUTH catalog table 2341
SYSROUTINEAUTH catalog table 2344
SYSSCHEMAAUTH catalog table 2362
SYSTABAUTH catalog table 2383
SYSUSERAUTH catalog table 2425
SYSVARIABLEAUTH catalog table 2432

GRANTEE
column of SYSSEQUENCEAUTH catalog table 2364

GRANTEE column
SYSCOLAUTH catalog table 2145
SYSDBAUTH catalog table 2193
SYSPACKAUTH catalog table 2285
SYSPLANAUTH catalog table 2311
SYSRESAUTH catalog table 2341
SYSROUTINEAUTH catalog table 2344
SYSSCHEMAAUTH catalog table 2362
SYSTABAUTH catalog table 2383
SYSUSERAUTH catalog table 2425
SYSVARIABLEAUTH catalog table 2432

GRANTEETYPE
column of SYSSEQUENCEAUTH catalog table 2364

GRANTEETYPE column
SYSCOLAUTH catalog table 2145
SYSDBAUTH catalog table 2193
SYSPACKAUTH catalog table 2285
SYSPLANAUTH catalog table 2311
SYSRESAUTH catalog table 2341
SYSROUTINEAUTH catalog table 2344

Index 2671

GRANTEETYPE column (continued)
SYSSCHEMAAUTH catalog table 2362
SYSTABAUTH catalog table 2383
SYSUSERAUTH catalog table 2425
SYSVARIABLEAUTH catalog table 2432

GRANTOR column
SYSCOLAUTH catalog table 2145
SYSDBAUTH catalog table 2193
SYSPACKAUTH catalog table 2285
SYSPLANAUTH catalog table 2311
SYSRESAUTH catalog table 2341
SYSROUTINEAUTH catalog table 2344
SYSSCHEMAAUTH catalog table 2362
SYSTABAUTH catalog table 2383
SYSUSERAUTH catalog table 2425
SYSVARIABLEAUTH catalog table 2432

GRANTORS
column of SYSSEQUENCEAUTH catalog table 2364

GRANTORTYPE column
SYSCOLAUTH catalog table 2145
SYSDBAUTH catalog table 2193
SYSPACKAUTH catalog table 2285
SYSPLANAUTH catalog table 2311
SYSRESAUTH catalog table 2341
SYSROUTINEAUTH catalog table 2344
SYSSCHEMAAUTH catalog table 2362
SYSSEQUENCEAUTH catalog table 2364
SYSTABAUTH catalog table 2383
SYSUSERAUTH catalog table 2425
SYSVARIABLEAUTH catalog table 2432

GRANULARITY column of SYSTRIGGERS catalog table 2422
GRAPHIC

data type
CREATE TABLE statement 1399
description 94

function 479
option of precompiler 331

graphic string
constants 154
description 94

GREATEST function 524
group buffer pools

described 21
GROUP BY clause

cannot join view 1532
subselect

description 797
results 765

GROUP_MEMBER column
SYSCOPY catalog table 2176
SYSDATABASE catalog table 2189
SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

grouping column 797

H
handler

SQL procedure 1977, 2043
handling errors

SQL procedure 1977, 2043
hash access 17
hash spaces 17
HAVING clause of subselect

description 799
results 765

held connection state 38

HEX function 483
hexadecimal constant 150
HIDDEN column of SYSCOLUMNS catalog table 2155
high encryption 1504
HIGH2KEY column

SYSCOLSTATS catalog table 2153
SYSCOLUMNS catalog table 2155
SYSCOLUMNS_HIST catalog table 2166
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSKEYTARGETSTATS catalog table 2251

HIGHDSNUM column of SYSCOPY catalog table 2176
HIGHKEY column

SYSKEYTARGETSTATS catalog table 2251
HIGHKEY column of SYSCOLSTATS catalog table 2153
HIGHVALUE column

SYSCOLDIST catalog table 2147
SYSCOLDIST_HIST catalog table 2151
SYSCOLDISTSTATS catalog table 2149
SYSKEYTGTDIST catalog table 2256
SYSKEYTGTDIST_HIST catalog table 2260
SYSKEYTGTDISTSTATS catalog table 2258

HOLD LOCATOR statement
description 1730
example 1730

host identifier 57
host label

naming convention 59
host structure

description 229
host variable

colon 215
description 215
EXECUTE IMMEDIATE statement 1639
EXPLAIN statement 1644
input 215
naming convention 60
output 215
PREPARE statement 1790
SELECT INTO statement 1867
XML 219

HOST_LANGUAGE column
SYSENVIRONMENT catalog table 2205

host-variable-arrays
description 230

HOSTLANG column
SYSDBRM catalog table 2196
SYSPACKAGE catalog table 2265

HOUR function 484
HPJCOMPILE_OPTS column

SYSJAVAOPTS catalog table 2243
HTTPBLOB function 2618
HTTPCLOB function 2619
HTTPDELETEBLOB function 2621
HTTPDELETECLOB function 2621
HTTPGETBLOB function 2622
HTTPGETBLOBFILE function 2624
HTTPGETCLOB function 2622
HTTPGETCLOBFILE function 2624
HTTPHEAD function 2625
HTTPPOSTBLOB function 2626
HTTPPOSTCLOB function 2626
HTTPPUTBLOB function 2627
HTTPPUTCLOB function 2627
HTYPE column

SYSIBM.XSROBJECTHIERARCHIES table 2467

2672 SQL Reference

I
I/O processing

CURRENT DEGREE special register 174
CURRENT EXPLAIN MODE special register 175

IBMREQD
column of SYSSEQUENCEAUTH catalog table 2364

IBMREQD column
IPLIST catalog table 2119
IPNAMES catalog table 2120
LOCATIONS catalog table 2123
LULIST catalog table 2125
LUMODES catalog table 2126
LUNAMES catalog table 2127
MODESELECT catalog table 2130
release dependency indicators 2102
SYSAUXRELS catalog table 2141
SYSCHECKDEP catalog table 2142
SYSCHECKS catalog table 2143
SYSCHECKS2 catalog table 2144
SYSCOLDIST catalog table 2147
SYSCOLDIST_HIST catalog table 2151
SYSCOLDISTSTATS catalog table 2149
SYSCOLSTATS catalog table 2153
SYSCOLUMNS catalog table 2155
SYSCOLUMNS_HIST catalog table 2166
SYSCONSTDEP catalog table 2170
SYSCONTEXT catalog table 2171
SYSCONTEXTAUTHIDS catalog table 2173
SYSCOPY catalog table 2176
SYSCTXTTRUSTATTRS catalog table 2188
SYSDATABASE catalog table 2189
SYSDATATYPES catalog table 2191
SYSDBAUTH catalog table 2193
SYSDBRM catalog table 2196
SYSDEPENDENCIES catalog table 2198
SYSDUMMY1 catalog table 2201
SYSDUMMYA catalog table 2202
SYSDUMMYE catalog table 2203
SYSDUMMYU catalog table 2204
SYSENVIRONMENT catalog table 2205
SYSFIELDS catalog table 2207
SYSFOREIGNKEYS catalog table 2209
SYSINDEXES catalog table 2211
SYSINDEXES_HIST catalog table 2217
SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226
SYSINDEXSPACESTATS catalog table 2229
SYSINDEXSTATS catalog table 2235
SYSINDEXSTATS_HIST catalog table 2237
SYSJARCONTENTS catalog table 2240
SYSJAROBJECTS catalog table 2242
SYSJAVAOPTS catalog table 2243
SYSJAVAPATHS catalog table 2244
SYSKEYCOLUSE catalog table 2245
SYSKEYS catalog table 2246
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSKEYTARGETSTATS catalog table 2251
SYSKEYTGTDIST catalog table 2256
SYSKEYTGTDIST_HIST catalog table 2260
SYSKEYTGTDISTSTATS catalog table 2258
SYSLOBSTATS catalog table 2262
SYSLOBSTATS_HIST catalog table 2263
SYSOBJROLEDEP catalog table 2264
SYSPACKAGE catalog table 2265
SYSPACKAUTH catalog table 2285
SYSPACKDEP catalog table 2287

IBMREQD column (continued)
SYSPACKLIST catalog table 2289
SYSPACKSTMT catalog table 2290
SYSPARMS catalog table 2297
SYSPKSYSTEM catalog table 2304
SYSPLAN catalog table 2306
SYSPLANAUTH catalog table 2311
SYSPLANDEP catalog table 2313
SYSPLSYSTEM catalog table 2314
SYSRELS catalog table 2339
SYSRESAUTH catalog table 2341
SYSROLES catalog table 2343
SYSROUTINEAUTH catalog table 2344
SYSROUTINES catalog table 2346
SYSROUTINES_OPTS catalog table 2358
SYSROUTINES_SRC catalog table 2361
SYSSCHEMAAUTH catalog table 2362
SYSSEQUENCEDEP catalog table 2369
SYSSEQUENCES catalog table 2366
SYSSTMT catalog table 2373
SYSSTOGROUP catalog table 2377
SYSSTRINGS catalog table 2379
SYSSYNONYMS catalog table 2382
SYSTABAUTH catalog table 2383
SYSTABCONST catalog table 2386
SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393
SYSTABLES catalog table 2396
SYSTABLES_HIST catalog table 2416
SYSTABLESPACE catalog table 2404
SYSTABLESPACESTATS catalog table 2410
SYSTABSTATS catalog table 2420
SYSTABSTATS_HIST catalog table 2421
SYSTRIGGERS catalog table 2422
SYSUSERAUTH catalog table 2425
SYSVARIABLEAUTH catalog table 2432
SYSVARIABLES catalog table 2429
SYSVIEWDEP catalog table 2436
SYSVIEWS catalog table 2437
SYSVOLUMES catalog table 2441
SYSXMLRELS catalog table 2442
SYSXMLSTRINGS catalog table 2443
USERNAMES catalog table 2444

IBMREQD column of SYSCOLAUTH catalog table 2145
ICBACKUP column of SYSCOPY catalog table 2176
ICTYPE column of SYSCOPY catalog table 2176
ICUNIT column of SYSCOPY catalog table 2176
identifier in SQL

delimited 56
ordinary 55

identity column
ALTER TABLE statement 1002
CREATE TABLE statement 1412

IDENTITY_VAL_LOCAL function 486
IF statement

example 1991, 2052
SQL procedure 1991, 2052

IFNULL function 491
IGNORE DELETE TRIGGERS clause

TRUNCATE statement 1930
IMAGCOPY privilege

GRANT statement 1701
REVOKE statement 1822

IMAGCOPYAUTH column of SYSDBAUTH catalog
table 2193

IMMEDIATE clause
TRUNCATE statement 1931

Index 2673

IMMEDWRITE column
SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

IMPLICIT column
SYSDATABASE catalog table 2189

IMPLICIT column of SYSTABLESPACE catalog table 2404
implicit time zone 104
IMPLICITLY HIDDEN clause

ALTER TABLE statement 1007
CREATE TABLE statement 1416

IN
clause of CREATE AUXILIARY TABLE statement 1159
clause of CREATE TABLE statement 1428
clause of CREATE TABLESPACE statement 1458
predicate 144, 309

IN clause
ALTER PROCEDURE (SQL - native) statement 954
CREATE PROCEDURE (external) statement 1324
CREATE PROCEDURE (SQL - external) statement 1342
CREATE PROCEDURE (SQL - native) statement 1355

IN EXCLUSIVE MODE clause of LOCK TABLE
statement 1757

IN SHARE MODE clause of LOCK TABLE statement 1757
INCCSID column of SYSSTRINGS catalog table 2379
INCLUDE clause

DELETE statement 1579
INSERT statement 1738
MERGE statement 1765
UPDATE statement 1940

INCLUDE statement
assembler declarations 2075
description 1732
example 1733
SQLCA

C 2075
COBOL 2075
Fortran 2075

SQLDA
assembler 2095
C 2095
C++ 2095
COBOL 2095
PL/I 2075, 2095

INCLUDING COLUMN DEFAULTS clause
CREATE TABLE statement 1427
DECLARE GLOBAL TEMPORARY TABLE statement 1554

INCLUDING DEPENDENT PRIVILEGES clause of REVOKE
statement 1814, 1819, 1822, 1828, 1832, 1834, 1836, 1839,
1844, 1848, 1851, 1857

INCLUDING IDENTITY COLUMN ATTRIBUTES clause
CREATE TABLE statement 1426
DECLARE GLOBAL TEMPORARY TABLE statement 1554

INCLUDING ROW CHANGE TIMESTAMP COLUMN
ATTRIBUTES clause

CREATE TABLE statement 1426
INCLUSIVE clause

ALTER INDEX statement 922
ALTER TABLE statement 1029, 1031, 1032, 1035
CREATE INDEX statement 1289
CREATE TABLE statement 1431

INCREMENT BY
clause of ALTER SEQUENCE statement 976

INCREMENT BY clause
CREATE SEQUENCE statement 1377

INCREMENT column of SYSSEQUENCES catalog table 2366
incrementing time 259

index
accelerators table 2591
altering

ALTER INDEX statement 907
catalog information about 2600, 2602
catalog table 2104
creating with CREATE INDEX statement 1267
directory table 2448
dropping 1616
name, unqualified 66
naming convention 60
partitioning 1287
program authorization table 2595
renaming with RENAME statement 1808
types

changing 907
primary 2602

unqualified name 66
XML schema repository table 2461

INDEX clause
ALTER INDEX statement 907
COMMENT statement 1139
CREATE INDEX statement 1273
DROP statement 1616

INDEX privilege
GRANT statement 1721
REVOKE statement 1848

index spaces 17
INDEXAUTH column of SYSTABAUTH catalog table 2383
INDEXBP

clause of CREATE DATABASE statement 1163
column of SYSDATABASE catalog table 2189

INDEXBP clause
ALTER DATABASE statement 849

indexes 6
INDEXSPACE column

SYSINDEXSPACESTATS catalog table 2229
INDEXSPACE column of SYSINDEXES catalog table 2211
INDEXTYPE column of SYSINDEXES catalog table 2211
indicator array 229
indicator variable

description 215
string expression 1639

infix operators 243
INHERIT SPECIAL REGISTERS clause

ALTER FUNCTION statement 868
ALTER PROCEDURE (external) statement 939
ALTER PROCEDURE (SQL - external) statement 945
ALTER PROCEDURE (SQL - native) statement 958
CREATE FUNCTION statement 1185, 1207
CREATE PROCEDURE (external) statement 1334
CREATE PROCEDURE (SQL - external) statement 1347
CREATE PROCEDURE (SQL - native) statement 883,

1236, 1359
INITIAL_INSTS column of SYSROUTINES catalog table 2346
INITIAL_IOS column of SYSROUTINES catalog table 2346
INLINE LENGTH clause

CREATE TABLE statement 1008, 1416
INLINE_LENGTH column

SYSDATATYPES catalog table 2191
INNER JOIN

description 791
example 805
FROM clause of subselect 791

INOUT clause
ALTER PROCEDURE (SQL - native) statement 955
CREATE PROCEDURE (external) statement 1324

2674 SQL Reference

INOUT clause (continued)
CREATE PROCEDURE (SQL - external) statement 1342
CREATE PROCEDURE (SQL - native) statement 1355

input host variable 215
INPUT SEQUENCE clause

ORDER BY clause of subselect 800
INSENSITIVE clause

DECLARE CURSOR statement 1537
FETCH statement 1652, 1654

INSERT clause of CREATE TRIGGER statement 1484
INSERT function 492
INSERT privilege

GRANT statement 1722
REVOKE statement 1848

insert rule 1743
INSERT statement

description 1734
example 1751

INSERTAUTH column of SYSTABAUTH catalog table 2383
inserting

declaration in a program 1732
rows in a table 1734, 1760

INSTANCE column
SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACE catalog table 2404
SYSTABLESPACESTATS catalog table 2410

INSTS_PER_INVOC column of SYSROUTINES catalog
table 2346

INT function 496
INTEGER 496

data type
CREATE TABLE statement 1399
large 82
small 82

integer constants 148
INTEGER or INT 496
integrated catalog facility

CREATE INDEX statement 1284
identifier 58

interactive SQL 3, 842
INTERSECT clause 811
INTO clause

DESCRIBE CURSOR statement 1591
DESCRIBE INPUT statement 1593
DESCRIBE PROCEDURE statement 1603
DESCRIBE statement 1596, 1607
FETCH statement 1663
INSERT statement 1737
MERGE statement 1764
PREPARE statement 1783
SELECT INTO statement 1867
VALUES INTO statement 1957

INTO DESCRIPTOR clause
FETCH statement 1664, 1666

INTO host-variable-array clause
FETCH statement 1666

invoke behavior for dynamic SQL statements 75
IOS_PER_INVOC column of SYSROUTINES catalog

table 2346
IPADDR column

IPLIST catalog table 2119
IPADDR column of IPNAMES catalog table 2120
IPREFIX column

SYSINDEXPART catalog table 2221
SYSTABLEPART catalog table 2387

IS clause
COMMENT statement 1141

IS clause (continued)
LABEL statement 1756

IS DISTINCT FROM predicate 305
ISOBID column of SYSINDEXES catalog table 2211
ISOLATION

column of SYSPACKAGE catalog table 2265
column of SYSPACKSTMT catalog table 2290
column of SYSPLAN catalog table 2306
column of SYSSTMT catalog table 2373

ISOLATION column
SYSVIEWS catalog table 2437

isolation level
control by SQL statement

DELETE statement 1582
INSERT statement 1740
SELECT INTO statement 1869
select-statement 827
UPDATE statement 1943

ISOLATION LEVEL clause
ALTER PROCEDURE (SQL - native) statement 962
CREATE PROCEDURE (SQL - native) statement 887,

1239, 1363
isolation-clause

DELETE statement 1582
INSERT statement 1740
SELECT INTO statement 1869
UPDATE statement 1943

ITERATE statement
example 2054
examples 1992
SQL procedure 1992, 2054

IX_EXTENSION_TYPE column
SYSINDEXES catalog table 2211

IXCREATOR column
SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226
SYSKEYS catalog table 2246
SYSTABLEPART catalog table 2387

IXNAME column
SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226
SYSKEYS catalog table 2246
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSKEYTARGETSTATS catalog table 2251
SYSKEYTGTDIST catalog table 2256
SYSKEYTGTDIST_HIST catalog table 2260
SYSKEYTGTDISTSTATS catalog table 2258
SYSTABCONST catalog table 2386
SYSTABLEPART catalog table 2387

IXNAME column of SYSRELS catalog table 2339
IXOWNER column

SYSRELS catalog table 2339
SYSTABCONST catalog table 2386

IXSCHEMA column
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSKEYTARGETSTATS catalog table 2251
SYSKEYTGTDIST catalog table 2256
SYSKEYTGTDIST_HIST catalog table 2260
SYSKEYTGTDISTSTATS catalog table 2258

J
JAR file

unqualified name 66

Index 2675

JAR file privileges
granting 1725
revoking 1851

JAR_DATA column
SYSJARDATA catalog table 2241
SYSJAROBJECTS catalog table 2242

JAR_DATA_ROWID column
SYSJAROBJECTS catalog table 2242

JAR_ID column
SYSJARCONTENTS catalog table 2240
SYSJAROBJECTS catalog table 2242
SYSJAVAOPTS catalog table 2243
SYSJAVAPATHS catalog table 2244
SYSROUTINES catalog table 2346

JARSCHEMA column
SYSROUTINES catalog table 2346

JARSCHENA column
SYSJARCONTENTS catalog table 2240
SYSJAROBJECTS catalog table 2242
SYSJAVAOPTS catalog table 2243
SYSJAVAPATHS catalog table 2244

JAVA_SIGNATURE column
SYSROUTINES catalog table 2346

JDBC 4
JOBNAME clause

ALTER TRUSTED CONTEXT statement 1102
CREATE TRUSTED CONTEXT statement 1505

JOBNAME column of SYSCOPY catalog table 2176
join operation

example 805
FROM clause of subselect 793
FULL OUTER JOIN

FROM clause of subselect 791
INNER JOIN

FROM clause of subselect 791
joining tables 791
LEFT OUTER JOIN

FROM clause of subselect 791
RIGHT OUTER JOIN

FROM clause of subselect 791
summary of results 793

JULIAN_DAY function 498

K
Katakana character 54
KATAKANA value for EBCDIC CCSID 54
KEEPDYNAMIC column

SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

key
foreign

catalog information 2602
length

maximum 2012
partitioning index 920, 1287, 1940

primary
catalog information 2601
defining on a single column 1404

key-expression clause
CREATE INDEX statement 1274

KEYCOLUMNS column of SYSTABLES catalog table 2396
KEYCOUNT column of SYSINDEXSTATS catalog table 2235
KEYCOUNTF column

SYSINDEXSTATS catalog table 2235
SYSINDEXSTATS_HIST catalog table 2237

KEYGROUPKEYNO column
SYSKEYTGTDIST catalog table 2256
SYSKEYTGTDIST_HIST catalog table 2260
SYSKEYTGTDISTSTATS catalog table 2258

KEYOBID column of SYSTABLES catalog table 2396
keys

composite keys 7
foreign keys 7
parent keys 7
primary keys 7
unique keys 7

KEYSEQ column
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSKEYTARGETSTATS catalog table 2251
SYSKEYTGTDIST catalog table 2256
SYSKEYTGTDIST_HIST catalog table 2260
SYSKEYTGTDISTSTATS catalog table 2258

KEYSEQ column of SYSCOLUMNS catalog table 2155
KEYTARGET_COUNT column

SYSINDEXES catalog table 2211
KEYVALUE column

SYSKEYTGTDIST catalog table 2256
SYSKEYTGTDIST_HIST catalog table 2260
SYSKEYTGTDISTSTATS catalog table 2258

keywords, reserved 2021

L
LABEL

column of SYSTABLES catalog table 2396
LABEL column

SYSCOLUMNS catalog table 2155
LABEL statement

description 1755
example 1756

labeled duration 254
labels 1966
LABELS

USING clause of DESCRIBE statement 1597, 1607
USING clause of PREPARE statement 1784

LANGUAGE
clause of ALTER FUNCTION statement 859
clause of CREATE FUNCTION statement 1177, 1199

LANGUAGE clause
ALTER PROCEDURE (external) statement 934
CREATE PROCEDURE (external) statement 1329
CREATE PROCEDURE (SQL - external) statement 1343

LANGUAGE column
SYSROUTINES catalog table 2346

LANGUAGE SQL clause
CREATE PROCEDURE (SQL - native) statement 1356

large object (LOB)
description 96

large object table spaces 16
LAST ROWSET clause

FETCH statement 1660
LAST_DAY function 500
LASTUSED column

SYSINDEXSPACESTATS catalog table 2229
LCASE function 502, 517
LEAFDIST column

SYSINDEXPART_HIST catalog table 2226
LEAFDIST column of SYSINDEXPART catalog table

description 2221
LEAFFAR column

SYSINDEXPART catalog table 2221

2676 SQL Reference

LEAFFAR column (continued)
SYSINDEXPART_HIST catalog table 2226

LEAFNEAR column
SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226

LEAST function 530
LEAVE statement

example 1994, 2055
SQL procedure 1994, 2055

LEFT function 503
LEFT OUTER JOIN

example 805
FROM clause of subselect 791

length attribute of column 85
LENGTH column

SYSCOLUMNS catalog table 2155
SYSCOLUMNS_HIST catalog table 2166
SYSDATATYPES catalog table 2191
SYSFIELDS catalog table 2207
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSPARMS catalog table 2297
SYSVARIABLES catalog table 2429

LENGTH function 507
LENGTH2 column

SYSCOLUMNS catalog table 2155
SYSCOLUMNS_HIST catalog table 2166
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253

letter, description in DB2 53
LIKE clause

CREATE GLOBAL TEMPORARY TABLE statement 1263
CREATE TABLE statement 1423
DECLARE GLOBAL TEMPORARY TABLE statement 1552

LIKE predicate 312
LIMITKEY column

SYSINDEXPART catalog table 2221
SYSTABLEPART catalog table 2387

LIMITKEY_INTERNAL column
SYSTABLEPART catalog table 2387

limits, DB2 2012
LINK_OPTS column

SYSROUTINES_OPTS catalog table 2358
LINKNAME column

IPLIST catalog table 2119
IPNAMES catalog table 2120
LOCATIONS catalog table 2123
LULIST catalog table 2125
USERNAMES catalog table 2444

literal 148
LN function 509
LOAD privilege

GRANT statement 1701
REVOKE statement 1822

LOADAUTH column of SYSDBAUTH catalog table 2193
LOADLASTTIME column

SYSTABLESPACESTATS catalog table 2410
LOADRLASTTIME column

SYSINDEXSPACESTATS catalog table 2229
LOB

restrictions 97
LOB (large object)

clause of CREATE TABLESPACE statement 1458
description 96
file reference 220
host variable 97, 218
locator 97, 218

LOB (large object) (continued)
retrieving catalog information 2604

LOBCOLUMNS column of SYSROUTINES catalog table 2346
local DB2 subsystem 35
locale

CURRENT LOCALE LC_CTYPE special register 177
LOCATE function 510
LOCATE_IN_STRING function 513
location

naming convention 60
LOCATION

column of SYSPACKAGE catalog table 2265
column of SYSPACKAUTH catalog table 2285
column of SYSPACKLIST catalog table 2289
column of SYSPACKSTMT catalog table 2290
column of SYSPKSYSTEM catalog table 2304
column of SYSTABLES catalog table 2396

LOCATION column
LOCATIONS catalog table 2123

locator
LOB 97, 218
result set 222

LOCATOR column of SYSPARMS catalog table 2297
locator variable

freeing 1678
holding beyond a unit of work 1730

lock
ALTER TABLESPACE statement 1080
CREATE TABLESPACE statement 1470
during update 1944
LOCK TABLE statement 1757
object

table space (table) 1757
LOCK TABLE statement

description 1757
example 1758

LOCKMAX clause
ALTER TABLESPACE statement

description 1079
CREATE TABLESPACE statement

description 1470
LOCKMAX column

SYSTABLESPACE catalog table 2404
LOCKPART

clause of ALTER TABLESPACE statement 1093
LOCKPART clause

CREATE TABLESPACE statement 1478
LOCKRULE column of SYSTABLESPACE catalog table 2404
locks 28
LOCKSIZE clause

ALTER TABLESPACE statement
description 1080

CREATE TABLESPACE statement
description 1470

LOG
column of SYSTABLESPACE catalog table 2404
function 509

LOG NO
clause of ALTER TABLESPACE statement 1093
clause of CREATE TABLESPACE statement 1478

log range directory 19
LOG YES

clause of ALTER TABLESPACE statement 1093
clause of CREATE TABLESPACE statement 1478

LOG10 function 516
LOGGED

clause of CREATE TABLE statement 1434

Index 2677

LOGGED clause
ALTER TABLESPACE statement 1081
CREATE TABLESPACE statement 1464
DECLARE GLOBAL TEMPORARY TABLE statement 1556

LOGGED column
SYSCOPY catalog table 2176

logical operator 324
LOGICAL_PART column

SYSCOPY catalog table 2176
SYSTABLEPART catalog table 2387

logs 20
long column string 95
LONG VARCHAR data type 1443

description 85
LONG VARGRAPHIC data type 1443

description 95
LOOP statement

example 1996, 2056
SQL procedure 1996, 2056

low encryption 1504
LOW2KEY column

SYSCOLSTATS catalog table 2153
SYSCOLUMNS catalog table 2155
SYSCOLUMNS_HIST catalog table 2166
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSKEYTARGETSTATS catalog table 2251

LOWDSNUM column of SYSCOPY catalog table 2176
LOWER function 517
lowercase character folded to uppercase 54
LOWKEY column

SYSKEYTARGETSTATS catalog table 2251
LOWKEY column of SYSCOLSTATS catalog table 2153
LOWVALUE column

SYSCOLDIST catalog table 2147
SYSCOLDIST_HIST catalog table 2151
SYSCOLDISTSTATS catalog table 2149
SYSKEYTGTDIST catalog table 2256
SYSKEYTGTDIST_HIST catalog table 2260
SYSKEYTGTDISTSTATS catalog table 2258

LPAD function 520
LTRIM function 522
LUNAME

column of LULIST catalog table 2125
column of LUMODES catalog table 2126
column of LUNAMES catalog table 2127
column of MODESELECT catalog table 2130

M
MAINTENANCE column

SYSVIEWS catalog table 2437
mappings from SQL to XML 334
MASK clause

COMMENT statement 1139
mask-name

naming convention 60
materialized-query-definition

CREATE TABLE statement 1436
MAX

aggregate function 356
scalar function 524

MAX_CARDINALITY function 525
MAX_FAILURE column

SYSROUTINES catalog table 2346
MAXASSIGNEDVAL column of SYSSEQUENCES catalog

table 2366

MAXPARTITIONS clause
ALTER TABLESPACE statement 1082
CREATE TABLESPACE statement 1466

MAXPARTITIONS column
SYSTABLESPACE catalog table 2404

MAXROWS
clause of CREATE TABLESPACE statement 1472
column of SYSTABLESPACE catalog table 2404

MAXROWS clause
ALTER TABLESPACE statement 1082

MAXVALUE
clause of ALTER SEQUENCE statement 977
clause of CREATE TABLE statement 1413

MAXVALUE clause
ALTER TABLE statement 1003
CREATE SEQUENCE statement 1378

MAXVALUE column of SYSSEQUENCES catalog table 2366
MEMBER CLUSTER

clause of CREATE TABLE statement 1436
MEMBER CLUSTER clause

CREATE TABLESPACE statement 1467
MERGE statement

description 1760
examples 1773
usage 1770

message
precompiler processing of DECLARE TABLE

statement 1568
METATYPE column of SYSDATATYPES catalog table 2191
MGMTCLAS clause

CREATE STOGROUP statement 982, 1384
MGMTCLAS column

SYSSTOGROUP catalog table 2377
MICROSECOND function 526
MIDNIGHT_SECONDS function 528
MIN

aggregate function 357
scalar function 530

MIN_DIVIDE_SCALE column
SYSENVIRONMENT catalog table 2205

Minimum divide result scale 246
MINUTE function 531
MINVALUE

clause of ALTER SEQUENCE statement 977
clause of CREATE TABLE statement 1413

MINVALUE clause
ALTER TABLE statement 1003
CREATE SEQUENCE statement 1377

MINVALUE column of SYSSEQUENCES catalog table 2366
MIXED column

SYSDBRM catalog table 2196
SYSPACKAGE catalog table 2265

mixed data
convention xxiv
description 85
in string assignments 128
LIKE predicate 312

MIXED DATA
field of panel DSNTIPF 84, 331

MIXED_CCSID column
SYSDATABASE catalog table 2189
SYSTABLESPACE catalog table 2404

MIXED_DATA column
SYSENVIRONMENT catalog table 2205

MIXED_DATA session variable 225
MOD function 533
MODE SQL clause of TRIGGER statement 1488

2678 SQL Reference

MODENAME column
LUMODES catalog table 2126
MODESELECT catalog table 2130

MODESELECT column of LUNAMES catalog table 2127
MODIFIES SQL DATA clause

ALTER FUNCTION statement 861
ALTER PROCEDURE (external) statement 936
ALTER PROCEDURE (SQL - external) statement 942
ALTER PROCEDURE (SQL - native) statement 955
CREATE FUNCTION statement 1178, 1233
CREATE PROCEDURE (external) statement 1329
CREATE PROCEDURE (SQL - external) statement 1344
CREATE PROCEDURE (SQL - native) statement 1357

MON1AUTH column of SYSUSERAUTH catalog table 2425
MON2AUTH column of SYSUSERAUTH catalog table 2425
MONITOR1 privilege

GRANT statement 1718
REVOKE statement 1843

MONITOR2 privilege
GRANT statement 1718
REVOKE statement 1843

MONTH function 535
MONTHNAME function 2628
MONTHS_BETWEEN function 537
MOVE_TO_ARCHIVE global variable 223
MQREAD function 539
MQREADALL function 745
MQREADALLCLOB function 747
MQREADCLOB function 541
MQRECEIVE function 543
MQRECEIVEALL function 749
MQRECEIVEALLCLOB function 752
MQRECEIVECLOB function 545
MQSEND function 547
MQSeries functions 337
multiple-row-fetch clause

FETCH statement 1664
MULTIPLY_ALT function 550

N
NACTIVE column

SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACE catalog table

description 2404
SYSTABLESPACESTATS catalog table 2410
SYSTABSTATS catalog table 2420

NACTIVEF column
SYSTABLESPACE catalog table

description 2404
NAME

column of SYSCOLDIST catalog table 2147
column of SYSCOLDISTSTATS catalog table 2149
column of SYSCOLSTATS catalog table 2153
column of SYSCOLUMNS catalog table 2155
column of SYSSEQUENCEAUTH catalog table 2364

NAME clause
CREATE FUNCTION statement 1175
CREATE PROCEDURE (external) statement 1327

NAME column
SYSCOLDIST_HIST catalog table 2151
SYSCOLUMNS_HIST catalog table 2166
SYSCONTEXT catalog table 2171
SYSCTXTTRUSTATTRS catalog table 2188
SYSDATABASE catalog table 2189
SYSDATATYPES catalog table 2191
SYSDBAUTH catalog table 2193

NAME column (continued)
SYSDBRM catalog table 2196
SYSFIELDS catalog table 2207
SYSINDEXES catalog table 2211
SYSINDEXES_HIST catalog table 2217
SYSINDEXSPACESTATS catalog table 2229
SYSINDEXSTATS catalog table 2235
SYSINDEXSTATS_HIST catalog table 2237
SYSLOBSTATS catalog table 2262
SYSLOBSTATS_HIST catalog table 2263
SYSPACKAGE catalog table 2265
SYSPACKAUTH catalog table 2285
SYSPACKLIST catalog table 2289
SYSPACKSTMT catalog table 2290
SYSPARMS catalog table 2297
SYSPKSYSTEM catalog table 2304
SYSPLAN catalog table 2306
SYSPLANAUTH catalog table 2311
SYSRESAUTH catalog table 2341
SYSROLES catalog table 2343
SYSROUTINES catalog table 2346
SYSSEQUENCES catalog table 2366
SYSSTMT catalog table 2373
SYSSTOGROUP catalog table 2377
SYSSYNONYMS catalog table 2382
SYSTABLES catalog table 2396
SYSTABLES_HIST catalog table 2416
SYSTABLESPACE catalog table 2404
SYSTABLESPACESTATS catalog table 2410
SYSTABSTATS catalog table 2420
SYSTABSTATS_HIST catalog table 2421
SYSTRIGGERS catalog table 2422
SYSVARIABLEAUTH catalog table 2432
SYSVARIABLES catalog table 2429
SYSVIEWS catalog table 2437

names, prepared SQL statements 1562
NAMES

USING clause of DESCRIBE statement 1597, 1607
USING clause of PREPARE statement 1783

naming convention
SQL 57

native SQL procedures 33
NEARINDREF column

SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393

NEAROFFPOSF column
SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226

nested table expressions 776
new and changed tables 2116
NEW AS clause of CREATE TRIGGER statement 1486
new line control character 54
NEW TABLE AS clause of CREATE TRIGGER statement 1486
NEW TABLE clause 1497
NEWAUTHID column of USERNAMES catalog table 2444
NEWFUN session variable 225
NEXT clause

FETCH statement 1654
NEXT ROWSET clause

FETCH statement 1658
NEXT VALUE expression

definition 291
NEXT_DAY function 551
NLEAF column

SYSINDEXES catalog table
description 2211

SYSINDEXES_HIST catalog table 2217

Index 2679

NLEAF column (continued)
SYSINDEXSPACESTATS catalog table 2229
SYSINDEXSTATS catalog table 2235
SYSINDEXSTATS_HIST catalog table 2237

NLEVELS column
SYSINDEXES catalog table

description 2211
SYSINDEXES_HIST catalog table 2217
SYSINDEXSPACESTATS catalog table 2229
SYSINDEXSTATS catalog table 2235
SYSINDEXSTATS_HIST catalog table 2237

NO ACTION delete rule
CREATE TABLE statement 1420

NO CACHE
clause of ALTER SEQUENCE statement 978

NO CACHE clause
ALTER TABLE statement 1004
CREATE SEQUENCE statement 1379

NO CASCADE BEFORE clause of CREATE TRIGGER
statement 1484

NO COLLID clause
ALTER FUNCTION statement 865
ALTER PROCEDURE (external) statement 936
ALTER PROCEDURE (SQL - external) statement 943
CREATE FUNCTION statement 1183, 1205

NO CYCLE
clause of ALTER SEQUENCE statement 978

NO CYCLE clause
ALTER TABLE statement 1004
CREATE SEQUENCE statement 1378

NO DBINFO clause
ALTER FUNCTION statement 865
ALTER PROCEDURE (external) statement 936
CREATE FUNCTION statement 1183, 1205
CREATE PROCEDURE (external) statement 1331
CREATE PROCEDURE (SQL - external) statement 1345

NO DEFAULT ROLE clause
ALTER TRUSTED CONTEXT statement 1100
CREATE TRUSTED CONTEXT statement 1502

no encryption 1504
NO EXTERNAL ACTION clause

ALTER FUNCTION statement 862, 880
CREATE FUNCTION statement 1179, 1202, 1233

NO FINAL CALL clause
ALTER FUNCTION statement 864, 1181
CREATE FUNCTION statement 1204

NO MAXVALUE
clause of ALTER SEQUENCE statement 977
clause of CREATE TABLE statement 1413

NO MAXVALUE clause
ALTER TABLE statement 1003
CREATE SEQUENCE statement 1378

NO MINVALUE
clause of ALTER SEQUENCE statement 977
clause of CREATE TABLE statement 1413

NO MINVALUE clause
ALTER TABLE statement 1003
CREATE SEQUENCE statement 1377

NO ORDER
clause of ALTER SEQUENCE statement 979
clause of CREATE TABLE statement 1414

NO ORDER clause
ALTER TABLE statement 1004
CREATE SEQUENCE statement 1379

NO PACKAGE PATH clause
ALTER FUNCTION statement 862
ALTER PROCEDURE (external) statement 935

NO PACKAGE PATH clause (continued)
CREATE FUNCTION statement 1180, 1202
CREATE PROCEDURE (external) statement 1331

NO SCRATCHPAD clause
ALTER FUNCTION statement 863
CREATE FUNCTION statement 1180, 1203

NO SCROLL clause
DECLARE CURSOR statement 1537

NO SQL clause
ALTER FUNCTION statement 861
ALTER PROCEDURE (external) statement 936
CREATE FUNCTION statement 1178, 1201
CREATE PROCEDURE (external) statement 1329

NOCACHE clause
CREATE SEQUENCE statement 1381
CREATE TABLE statement 1451

NOCOLLID clause
CREATE PROCEDURE (external) statement 1331
CREATE PROCEDURE (SQL - external) statement 1345

NOCYCLE clause
CREATE SEQUENCE statement 1381
CREATE TABLE statement 1451

NODEFER PREPARE clause
ALTER PROCEDURE (SQL - native) statement 958
CREATE PROCEDURE (SQL - native) statement 1360

NOFOR option
precompiler 333

NOGRAPHIC option of precompiler 331
NOMAXVALUE clause

CREATE SEQUENCE statement 1381
CREATE TABLE statement 1451

NOMINVALUE clause
CREATE SEQUENCE statement 1381
CREATE TABLE statement 1451

nonexecutable statement 839
NOORDER clause

CREATE SEQUENCE statement 1381
CREATE TABLE statement 1451

NORMALIZE_DECFLOAT function 553
NORMALIZE_STRING function 554
NOT ATOMIC clause

compound statement of an SQL procedure 1977, 2043
NOT ATOMIC CONTINUE ON SQLEXCEPTION clause

INSERT statement 1742
MERGE statement 1769
PREPARE statement 1789

NOT CLUSTER
clause of ALTER INDEX statement 917

NOT CLUSTER clause
CREATE INDEX statement 1280

NOT DETERMINISTIC clause
ALTER FUNCTION statement 860, 880
ALTER PROCEDURE (external) statement 935
ALTER PROCEDURE (SQL - external) statement 942
ALTER PROCEDURE (SQL - native) statement 955
CREATE FUNCTION statement 1178, 1201, 1232
CREATE PROCEDURE (external) statement 1330
CREATE PROCEDURE (SQL - external) statement 1344
CREATE PROCEDURE (SQL - native) statement 1356

NOT ENFORCED clause
ALTER TABLE statement 1024
CREATE TABLE statement 1420

NOT FOUND clause of WHENEVER statement 1961
NOT LOGGED

clause of CREATE TABLE statement 1434
NOT LOGGED clause

ALTER TABLESPACE statement 1081

2680 SQL Reference

NOT LOGGED clause (continued)
CREATE TABLESPACE statement 1464
DECLARE GLOBAL TEMPORARY TABLE statement 1556

NOT NULL CALL clause
CREATE FUNCTION statement 1189, 1209, 1249

NOT NULL clause
ALTER TABLE statement 1006
CREATE GLOBAL TEMPORARY TABLE statement 1263
CREATE TABLE statement

description 1404
DECLARE GLOBAL TEMPORARY TABLE statement 1552

NOT PADDED
clause of ALTER INDEX statement 918

NOT PADDED clause
CREATE INDEX statement 1281

NOT VARIANT clause
CREATE FUNCTION statement 1189, 1209, 1249
CREATE PROCEDURE (external) statement 1336
CREATE PROCEDURE (SQL - external) statement 1348
CREATE PROCEDURE (SQL - native) statement 1371

NOT VOLATILE
clause of CREATE TABLE statement 1434

NOT VOLATILE clause
ALTER TABLE statement 1040

NPAGES column
SYSINDEXSPACESTATS catalog table 2229
SYSTABLES catalog table

description 2396
SYSTABLESPACESTATS catalog table 2410
SYSTABSTATS catalog table 2420
SYSTABSTATS_HIST catalog table 2421

NPAGESF column
SYSCOPY catalog table 2176
SYSTABLES catalog table 2396
SYSTABLES_HIST catalog table 2416

NTABLES column of SYSTABLESPACE catalog table 2404
NULL

CAST specification 267
predicate 320

NULL CALL clause
CREATE FUNCTION statement 1189, 1209, 1249
CREATE PROCEDURE (external) statement 1336

null value
assigned to target variable 1867
assignment 121
description 81
duplicate rows 765
grouping columns 797
specified by indicator variable 215

NULL_CALL column of SYSROUTINES catalog table 2346
NULLIF function 556
NULLS column

SYSCOLUMNS catalog table 2155
SYSCOLUMNS_HIST catalog table 2166
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253

NULLS LAST clause
ALTER TABLE statement 1028
CREATE TABLE statement 1429

NUM_DEP_MQTS column
SYSROUTINES catalog table 2346
SYSTABLES catalog table 2396

numbers
data types

string representation 83
subnormal numbers 84

numbers in SQL 81

NUMCOLUMNS column
SYSCOLDIST catalog table 2147
SYSCOLDIST_HIST catalog table 2151
SYSCOLDISTSTATS catalog table 2149

numeric
assignments 122
comparisons 134
data type 81

NUMERIC data type
CREATE TABLE statement 1399
description 82

NUMKEYS column
SYSKEYTGTDIST catalog table 2256
SYSKEYTGTDIST_HIST catalog table 2260
SYSKEYTGTDISTSTATS catalog table 2258

NUMPARTS
clause of CREATE TABLESPACE statement 1467

NVL function 557

O
OBID

clause of CREATE TABLE statement 1433
column of SYSCHECKS catalog table 2143
column of SYSINDEXES catalog table 2211
column of SYSTABLES catalog table 2396
column of SYSTABLESPACE catalog table 2404
column of SYSTRIGGERS catalog table 2422

object name, resolution 65
object name, unqualified 66
object ownership 70
object table 209
OBJECTOWNERTYPE column

SYSCONTEXT catalog table 2171
OBTYPE column of SYSRESAUTH catalog table 2341
OCTETS 87
ODBC (Open Database Connectivity) 3
OLAP-specification

expression 282
OLD AS clause of TRIGGER statement 1486
OLD TABLE AS clause of CREATE TRIGGER statement 1486
OLD TABLE clause 1497

FROM clause 778
OLDEST_VERSION

column of SYSTABLESPACE catalog table 2404
OLDEST_VERSION column

SYSCOPY catalog table 2176
SYSINDEXES catalog table 2211
SYSINDEXPART catalog table 2221
SYSTABLEPART catalog table 2387

ON clause
CREATE INDEX statement 1273
CREATE TRIGGER statement 1485
joining tables 791

ON COMMIT clause
DECLARE GLOBAL TEMPORARY TABLE statement 1556

ON DELETE clause
ALTER TABLE statement 1024
CREATE TABLE statement 1420

ON ROLLBACK RETAIN CURSORS clause
SAVEPOINT statement 1863

ON ROLLBACK RETAIN LOCKS clause
SAVEPOINT statement 1864

ON search condition
MERGE statement 1766

ON TABLE clause
GRANT statement 1722

Index 2681

ON TABLE clause (continued)
REVOKE statement 1848

one-phase commit 36
OPEN

statement
description 1775
example 1779

open cursor 1669
Open Database Connectivity (ODBC) 3
operands

datetime 254
decimal 244
decimal floating-point 248
distinct type 250
floating-point 248
integer 244
XML 148

operation
SQL

assignment 121
comparison 134
description 121

operational form
SQL statements 1

OPERATIVE column
SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

operator
arithmetic 243

OPTHINT clause
ALTER PROCEDURE (SQL - native) statement 963
CREATE PROCEDURE (SQL - native) statement 887,

1240, 1364
OPTHINT column

SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

optimization hints 887, 963, 1240, 1364
OPTIMIZE FOR n ROWS clause 826
OR truth table 324
ORDER

clause of ALTER SEQUENCE statement 979
clause of CREATE TABLE statement 1414

ORDER BY clause
subselect 800

ORDER clause
ALTER TABLE statement 1004
CREATE SEQUENCE statement 1379

ORDER column of SYSSEQUENCES catalog table 2366
ORDER OF clause

ORDER BY clause of subselect 800
order of evaluation, operators 262
order of statements in a compound statement 1977, 2043
ORDERING column

SYSKEYTARGETS catalog table 2247
ORDERING column of SYSKEYS catalog table 2246
ORDINAL column

SYSJAVAPATHS catalog table 2244
ORDINAL column of SYSPARMS catalog table 2297
ordinary identifier in SQL 55
ORGRATIO column

SYSLOBSTATS catalog table 2262
SYSLOBSTATS_HIST catalog table 2263

ORIGIN column of SYSROUTINES catalog table 2346
ORIGINAL_ENCODING_CCSID column

SYSENVIRONMENT catalog table 2205
OTYPE column of SYSCOPY catalog table 2176

OUT clause
ALTER PROCEDURE (SQL - native) statement 954
CREATE PROCEDURE (external) statement 1324
CREATE PROCEDURE (SQL - external) statement 1342
CREATE PROCEDURE (SQL - native) statement 1355

OUTCCSID column of SYSSTRINGS catalog table 2379
outer join

FULL OUTER JOIN
example 805
FROM clause of subselect 791

LEFT OUTER JOIN
example 805
FROM clause of subselect 791

RIGHT OUTER JOIN
example 805
FROM clause of subselect 791

output host variable 215
OVERLAY function 558
OVERRIDING USER VALUE

clause of INSERT statement 1738
OWNER

column of SYSDATATYPES catalog table 2191
column of SYSINDEXSTATS catalog table 2235
column of SYSINDEXSTATS_HIST catalog table 2237
column of SYSJAROBJECTS catalog table 2242
column of SYSPACKAGE catalog table 2265
column of SYSPARMS catalog table 2297
column of SYSROUTINES catalog table 2346
column of SYSSEQUENCES catalog table 2366
column of SYSTABSTATS catalog table 2420
column of SYSTABSTATS_HIST catalog table 2421
column of SYSTRIGGERS catalog table 2422

OWNER column
SYSINDEXES catalog table 2211
SYSJAVAPATHS catalog table 2244
SYSTABLES catalog table 2396
SYSVARIABLES catalog table 2429
SYSVIEWS catalog table 2437

OWNERTYPE column
SYSCONSTDEP catalog table 2170
SYSDATABASE catalog table 2191
SYSINDEXES catalog table 2211
SYSJAROBJECTS catalog table 2242
SYSPACKAGE catalog table 2265
SYSPARMS catalog table 2297
SYSROUTINES catalog table 2346
SYSSEQUENCES catalog table 2366
SYSTABLES catalog table 2396
SYSTABLESPACE catalog table 2422
SYSVARIABLES catalog table 2429
SYSVIEWDEP catalog table 2436
SYSVIEWS catalog table 2437

P
PACK function 562
PACKADM authority

GRANT statement 1699
REVOKE statement 1819

package
binding

remote 78
dropping 1617
invalidated

ALTER TABLE statement 1057
privileges

granting 1708

2682 SQL Reference

package (continued)
privileges (continued)

remote bind 78
revoking 1831

PACKAGE clause
COMMENT statement 1140
DROP statement 1617

PACKAGE OWNER clause
ALTER PROCEDURE (SQL - native) statement 957
CREATE PROCEDURE (SQL - native) statement 882,

1235, 1358
PACKAGE PATH clause

ALTER FUNCTION statement 862
ALTER PROCEDURE (external) statement 935
CREATE FUNCTION statement 1180, 1202
CREATE PROCEDURE (external) statement 1331

PACKAGE_NAME session variable 225
PACKAGE_SCHEMA session variable 225
PACKAGE_VERSION session variable 225
package-name

naming convention 60
PACKAGE

clause of GRANT statement 1708
clause of REVOKE statement 1832

PACKAGEPATH column
SYSROUTINES catalog table 2346

packages 31
PAD_NUL_TERMINATED session variable 225
PADDED clause

ALTER INDEX statement 918
CREATE INDEX statement 1281

PADDED column
SYSINDEXES catalog table 2211

page sets 16
PAGESAVE column

SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393

PARALLEL column of SYSROUTINES catalog table 2346
parallel processing

SET CURRENT DEGREE statement 1889
Parallel Sysplex

group buffer pool 21
parameter

passing to stored procedure 1973, 2038
PARAMETER CCSID ASCII clause

ALTER PROCEDURE (SQL - native) statement 956
PARAMETER CCSID clause

CREATE FUNCTION statement 1174, 1198, 1216
CREATE PROCEDURE (external) statement 1326
CREATE PROCEDURE (SQL - external) statement 1343
CREATE PROCEDURE (SQL - native) statement 1235,

1358
PARAMETER CCSID EBCDIC clause

ALTER PROCEDURE (SQL - native) statement 956
PARAMETER CCSID UNICODE clause

ALTER PROCEDURE (SQL - native) statement 956
parameter marker

CAST specification 267
description 1791
EXECUTE statement 1634
EXPLAIN statement 1644
host variables in dynamic SQL 217
obtaining information with DESCRIBE INPUT 1593
OPEN statement 1776
PREPARE statement 1791
rules 1791

PARAMETER STYLE clause
ALTER FUNCTION statement 859
ALTER PROCEDURE (external) statement 934
CREATE FUNCTION statement 1177, 1200
CREATE PROCEDURE (external) statement 1329

PARAMETER STYLE DB2SQL clause
CREATE FUNCTION statement 1189, 1209
CREATE PROCEDURE (external) statement 1336

PARAMETER VARCHAR clause
CREATE FUNCTION statement 1174, 1198
CREATE PROCEDURE (external) statement 1326

PARAMETER_CCSID column
SYSROUTINES catalog table 2346

PARAMETER_STYLE column of SYSROUTINES catalog
table 2346

PARAMETER_VARCHARFORM column
SYSROUTINES catalog table 2346

parameter-name
naming convention 60

parent keys 7, 23
parent rows 23
parent tables 23
PARENTS column of SYSTABLES catalog table 2396
PARM_COUNT column of SYSROUTINES catalog table 2346
PARM_SIGNATURE column of SYSROUTINES catalog

table 2346
PARM1 - PARM30 columns of SYSROUTINES catalog

table 2346
PARMLIST column

SYSFIELDS catalog table 2207
PARMNAME column of SYSPARMS catalog table 2297
PART

clause of CREATE AUXILIARY TABLE statement 1160
PART clause

CREATE INDEX statement 1296
CREATE TABLE statement 1451
CREATE TABLESPACE statement 1478
synonym for PARTITION clause 1758

partition
maximum size 1465

PARTITION
clause of ALTER INDEX statement 920
clause of CREATE INDEX statement 1287
clause of CREATE TABLESPACE statement 1469
clause of LOCK TABLE statement 1757

PARTITION BY RANGE
clause of CREATE INDEX statement 1287

PARTITION BY RANGE clause
ALTER TABLE statement 1027
CREATE TABLE statement 1429

PARTITION BY SIZE clause
CREATE TABLE statement 1431

PARTITION clause
ALTER TABLE statement 1028
CREATE TABLE statement 1430

PARTITION column
SYSCOLDISTSTATS catalog table 2149
SYSCOLSTATS catalog table 2153
SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226
SYSINDEXSPACESTATS catalog table 2229
SYSINDEXSTATS catalog table 2235
SYSINDEXSTATS_HIST catalog table 2237
SYSKEYTARGETSTATS catalog table 2251
SYSKEYTGTDISTSTATS catalog table 2258
SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393

Index 2683

PARTITION column (continued)
SYSTABLESPACE catalog table 2404
SYSTABLESPACESTATS catalog table 2410
SYSTABSTATS catalog table 2420
SYSTABSTATS_HIST catalog table 2421

PARTITION column of SYSAUXRELS catalog table 2141
partition order

retrieving
catalog information 2598

partition-by-clause
CREATE TABLE statement 1429

partition-by-growth table space 1472
PARTITIONED clause

CREATE INDEX statement 1280
partitioned table spaces 16
PARTKEY_COLSEQ column

SYSCOLUMNS catalog table 2155
PARTKEY_ORDERING column

SYSCOLUMNS catalog table 2155
PARTKEYCOLNUM column

SYSTABLES catalog table 2396
PASSWORD column

USERNAMES catalog table 2444
password, encryption 1919
PATH column

SYSJAROBJECTS catalog table 2242
PATHSCHEMAS column

SYSCHECKS2 catalog table 2144
SYSENVIRONMENT catalog table 2205
SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306
SYSVIEWS catalog table 2437

PCTFREE
clause of ALTER INDEX statement 916
clause of CREATE INDEX statement 1285
clause of CREATE TABLESPACE statement 1462
column of SYSINDEXPART catalog table 2221
column of SYSTABLEPART catalog table 2387

PCTFREE clause
ALTER TABLESPACE statement 1085

PCTFREE_UPD column
SYSTABLEPART catalog table 2387

PCTFREE_UPD_CALC column
SYSTABLEPART catalog table 2387

PCTIMESTAMP column of SYSPACKAGE catalog table 2265
PCTPAGES column

SYSTABLES catalog table 2396
SYSTABLES_HIST catalog table 2416
SYSTABSTATS catalog table 2420

PCTROWCOMP column
SYSTABLES catalog table

description 2396
SYSTABLES_HIST catalog table 2416
SYSTABSTATS catalog table 2420

PDSNAME column
SYSDBRM catalog table 2196
SYSPACKAGE catalog table 2265

PE_CLASS_PATTERN column
SYSJAVAPATHS catalog table 2244

PE_JAR_ID column
SYSJAVAPATHS catalog table 2244

PE_JARSCHEMA column
SYSJAVAPATHS catalog table 2244

PERCACTIVE column
SYSTABLEPART catalog table

description 2387
SYSTABLEPART_HIST catalog table 2393

PERCDROP column
SYSTABLEPART catalog table

description 2387
SYSTABLEPART_HIST catalog table 2393

PERIOD option of precompiler 328
PERMISSION clause

COMMENT statement 1139
permission-name

naming convention 60
PGSIZE column

SYSINDEXES catalog table 2211
SYSTABLESPACE catalog table 2404

PIECESIZE clause
ALTER INDEX statement 911
CREATE INDEX statement 1289

PIECESIZE column of SYSINDEXES catalog table 2211
PIT_RBA column of SYSCOPY catalog table 2176
PIT_RBA_EX column

SYSCOPY catalog table 2176
PKSIZE column of SYSPACKAGE catalog table 2265
PL/I application program

host structure 229
host variable

description 215
host-variable-arrays 230
INCLUDE SQLCA 2075
INCLUDE SQLDA 2095
varying-length string 85

PLAN
clause of EXPLAIN statement 1644

PLAN clause
COMMENT statement 1139

plan element 1903
plan table 1642

column descriptions 2471
creating 2471
format 2471
SET CURRENT EXPLAIN MODE statement 1891

PLAN_NAME session variable 225
PLAN_TABLE

column descriptions 2471
plan-name

naming convention 61
PLAN

clause of GRANT statement 1711
clause of REVOKE statement 1834

PLANNAME column
DSNPROGAUTH table 2596
MODESELECT catalog table 2130
SYSPACKLIST catalog table 2289

PLCREATOR column
SYSDBRM catalog table 2196
SYSSTMT catalog table 2373

PLCREATORTYPE column
SYSDBRM catalog table 2196
SYSSTMT catalog table 2373

PLENTRIES column of SYSPLAN catalog table 2306
PLNAME column

SYSDBRM catalog table 2196
SYSSTMT catalog table 2373

PLSIZE column of SYSPLAN catalog table 2306
POBJECT_LIB column

SYSJAVAOPTS catalog table 2243
points of consistency 29
PORT column

LOCATIONS catalog table 2123
POSITION function 566

2684 SQL Reference

POSSTR function 569
POWER function 572
PQTY column

SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226
SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393

precedence of operators 262
PRECISION column

SYSSEQUENCES catalog table 2366
precision of numbers

description 81
determined by SQLLEN variable 2090
in assignments 122
in comparisons 134
results of arithmetic operations 243
values for data types 81

PRECOMPILE_OPTS column of SYSROUTINES_OPTS catalog
table 2358

precompiler
checks SQL statements 1565
DECLARE TABLE statement 1563
DECLARE VARIABLE statement 1570
escape character 56
options

COBOL decimal point 328
CONNECT 325
date 332
NOFOR 333
STDSQL 332
string delimiter 330
time 332

SET CURRENT APPLICATION ENCODING SCHEME
statement 1883

using INCLUDE statements 1732
PRECOMPTS column of SYSDBRM catalog table 2196
predicate

ARRAY_EXISTS 303
basic 298
BETWEEN 304
description 296
DISTINCT 305
EXISTS 307
IN 309
LIKE 312
NULL 320
quantified 300
XMLEXISTS 321

predicate selectivity table
column descriptions 2538
creating 2538
format 2538

prefix operator 243
PRELINK_OPTS column

SYSROUTINES_OPTS catalog table 2358
PREPARE statement

description 1781
example 1802

prepared SQL statement
dynamically prepared by PREPARE 1781
executing 1633
identifying by DECLARE 1562
obtaining information

with DESCRIBE 1596
with DESCRIBE INPUT 1593

SQLDA provides information 2079
statements allowed 2026

PREVIOUS VALUE expression
definition 291

PRIMARY KEY clause
ALTER TABLE statement

description 1020
CREATE TABLE statement 1404, 1417

primary keys 7
PRIOR clause

FETCH statement 1654
PRIOR ROWSET clause

FETCH statement 1659
PRIQTY clause

ALTER INDEX statement 913
ALTER TABLESPACE statement 1087
CREATE INDEX statement 1282
CREATE TABLESPACE statement 1460

privilege
granting 1695
revoking 1812
types 1695

PRIVILEGE column of SYSCOLAUTH catalog table 2145
privileges

object ownership 70
procedure

creating with CREATE PROCEDURE statement 1318
PROCEDURE clause

COMMENT statement 1140
DROP statement 1617

procedure, stored
naming convention 61

procedures
creating

with CREATE PROCEDURE (SQL - native)
statement 1350

external SQL procedures 33
external stored procedures 33
inheriting special registers 205
native SQL procedures 33

product-sensitive programming information, described 2643
PROGAUTH column

SYSPLAN catalog table 2306
PROGMDCPAD column

DSNPROGAUTH table 2596
PROGMDCVAL

column of DSNPROGAUTH table 2596
PROGNAME column

DSNPROGAUTH table 2596
program

naming convention 61
program authorization tables

indexes 2595
table space 2595

PROGRAM clause 1629
PROGRAM TYPE clause

ALTER FUNCTION statement 867
ALTER PROCEDURE (external) statement 938
ALTER PROCEDURE (SQL - external) statement 944
CREATE FUNCTION statement 1184, 1206
CREATE PROCEDURE (external) statement 1333
CREATE PROCEDURE (SQL - external) statement 1346

PROGRAM_TYPE column of SYSROUTINES catalog
table 2346

programming interface information, described 2643
promotion of data types 110
PROPERTIES column

SYSIBM.XSROBJECTCOMPONENTS table 2465
SYSIBM.XSROBJECTPROPERTY table 2468

Index 2685

PROPERTIES column (continued)
SYSIBM.XSROBJECTS table 2463

PSEUDO_DEL_ENTRIES column
SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226

PSID column
SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

PSID column of SYSTABLESPACE catalog table 2404
PSPI symbols 2643
PUBLIC

clause of CREATE ALIAS statement 1155
PUBLIC clause

CREATE TRUSTED CONTEXT statement 1507
GRANT statement 1696
REVOKE statement 1813

Q
qualification of column names 209
QUALIFIER

column of SYSPACKAGE catalog table 2265
column of SYSPLAN catalog table 2306
column of SYSRESAUTH catalog table 2341
unqualified object names 66

QUALIFIER clause
ALTER PROCEDURE (SQL - native) statement 957
CREATE PROCEDURE (SQL - native) statement 882,

1235, 1358
quantified predicate 300
QUANTILENO column

SYSCOLDIST catalog table 2147
SYSCOLDIST_HIST catalog table 2151
SYSCOLDISTSTATS catalog table 2149
SYSKEYTGTDIST catalog table 2256
SYSKEYTGTDIST_HIST catalog table 2260
SYSKEYTGTDISTSTATS catalog table 2258

QUANTIZE function 573
QUARTER function 575
query 761
QUERYNO clause

DELETE statement 1583
INSERT statement 1741
SELECT INTO statement 1869
select-statement 829
UPDATE statement 1944

QUERYNO column
SYSPACKSTMT catalog table 2290
SYSSTMT catalog table 2373

question mark (?) 1634
quotation mark 56, 330
QUOTE

column of SYSDBRM catalog table 2196
column of SYSPACKAGE catalog table 2265
option of precompiler 330

QUOTESQL option of precompiler 330

R
RACF (Resource Access Control Facility)

security for remote execution 80
RADIANS function 577
RAISE_ERROR function 578
RAND function 579
range-partitioned table space 1472
RANK expression 282

RBA column of SYSCHECKS catalog table 2143
RBA_EX column

SYSCHECKS catalog table 2143
RBA_FORMAT column

SYSINDEXPART catalog table 2221
SYSTABLEPART catalog table 2387

RBA1 column of SYSTABLES catalog table 2396
RBA1_EX column

SYSTABLES catalog table 2396
RBA2 column of SYSTABLES catalog table 2396
RBA2_EX column

SYSTABLES catalog table 2396
READ SQL clause

ALTER PROCEDURE (external) statement 936
READ SQL DATA clause

ALTER FUNCTION statement 861
read-only

FOR FETCH ONLY clause 825
FOR READ ONLY clause 825
view 1532

READAUTH column
SYSVARIABLEAUTH catalog table 2432

READS SQL DATA clause
ALTER PROCEDURE (SQL - external) statement 942
ALTER PROCEDURE (SQL - native) statement 955
CREATE FUNCTION statement 1178, 1201, 1233
CREATE PROCEDURE (external) statement 1329
CREATE PROCEDURE (SQL - external) statement 1344
CREATE PROCEDURE (SQL - native) statement 1357

REAL data type
CREATE TABLE statement 1399
description 82

REAL function 580
REBUILDLASTTIME column

SYSINDEXSPACESTATS catalog table 2229
RECLENGTH column of SYSTABLES catalog table 2396
RECOVER privilege

GRANT statement 1718
REVOKE statement 1843

RECOVERAUTH column of SYSUSERAUTH catalog
table 2425

RECOVERDB privilege
GRANT statement 1701
REVOKE statement 1822

RECOVERDBAUTH column of SYSDBAUTH catalog
table 2193

recovery
COMMIT statement 1143
restoring data consistency 28
unit of 30

REFCOLS column of SYSTABAUTH catalog table 2383
REFERENCES clause

ALTER TABLE statement 1023
REFERENCES privilege

GRANT statement 1722
REVOKE statement 1848

references to labels 1966
REFERENCESAUTH column of SYSTABAUTH catalog

table 2383
REFERENCING clause of TRIGGER statement 1485
referencing SQL parameters 1964
referencing SQL variables 1964
referential constraint

ALTER TABLE statement 1022
CREATE TABLE statement 1418

referential constraints 23
enforcing business rules 23

2686 SQL Reference

referential integrity 23
REFRESH column

SYSVIEWS catalog table 2437
REFRESH TABLE statement

description 1803
REFRESH_TIME column

SYSVIEWS catalog table 2437
REFTBCREATOR column of SYSRELS catalog table 2339
REFTBNAME column of SYSRELS catalog table 2339
REGENERATE clause

ALTER INDEX statement 910
ALTER VIEW statement 1109

REGENERATE VERSION clause
ALTER PROCEDURE (SQL - native) statement 954

RELATIVE clause
FETCH statement 1657

RELBOUND column
SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

RELCREATED column
SYSAUXRELS catalog table 2141
SYSCHECKS catalog table 2143, 2144
SYSCOLUMNS catalog table 2155
SYSCONTEXT catalog table 2171
SYSCOPY catalog table 2176
SYSDATABASE catalog table 2189
SYSDATATYPES catalog table 2191
SYSDBRM catalog table 2196
SYSENVIRONMENT catalog table 2205
SYSIBM.XSROBJECTCOMPONENTS table 2465
SYSIBM.XSROBJECTHIERARCHIES table 2467
SYSIBM.XSROBJECTS table 2463
SYSINDEXES catalog table 2211
SYSKEYTARGETS catalog table 2247
SYSRELS catalog table 2339
SYSROLES catalog table 2343
SYSROUTINES catalog table 2346
SYSSEQUENCES catalog table 2366
SYSSTOGROUP catalog table 2377
SYSSYNONYMS catalog table 2382
SYSTABCONST catalog table 2386
SYSTABLEPART catalog table 2387
SYSTABLES catalog table 2396
SYSTABLESPACE catalog table 2404
SYSTRIGGERS catalog table 2422
SYSVARIABLES catalog table 2429
SYSVIEWS catalog table 2437
SYSVOLUMES catalog table 2441
SYSXMLRELS catalog table 2442

RELEASE
column of SYSPACKAGE catalog table 2265
column of SYSPLAN catalog table 2306

RELEASE (connection) statement
description 1805
example 1806

RELEASE AT clause
ALTER PROCEDURE (SQL - native) statement 964
CREATE PROCEDURE (SQL - native) statement 1365

release dependency indicators 2102
release level identification, current server 1149
RELEASE SAVEPOINT statement

description 1807
example 1807

release-pending connection state 38
RELNAME column

SYSFOREIGNKEYS catalog table 2209
SYSRELS catalog table 2339

RELOBID1 column of SYSRELS catalog table 2339
RELOBID2 column of SYSRELS catalog table 2339
REMARKS column

SYSCOLUMNS catalog table 2155
SYSCONTEXT catalog table 2171
SYSDATATYPES catalog table 2191
SYSIBM.XSROBJECTS table 2463
SYSINDEXES catalog table 2211
SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306
SYSROLES catalog table 2343
SYSROUTINES catalog table 2346
SYSSEQUENCES catalog table 2366
SYSTABLES catalog table 2396, 2597
SYSTRIGGERS catalog table 2422
SYSVARIABLES catalog table 2429

REMOTE column of SYSPACKAGE catalog table 2265
remote database server

definition of 35
Remote Recovery Data Facility (RRDF) 1433
remote unit of work

connection management 41
definition of 40

REMOVE VOLUMES clause of ALTER STOGROUP
statement 982

RENAME COLUMN clause
ALTER TABLE statement 1017

RENAME statement
description 1808
example 1811

REOPT clause
ALTER PROCEDURE (SQL - native) statement 964
CREATE PROCEDURE (SQL - native) statement 887,

1240, 1366
REOPTVAR column

SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

REORDMASSDELETE column
SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

REORG privilege
GRANT statement 1701
REVOKE statement 1822

REORG_LR_TS column
SYSTABLEPART catalog table 2387

REORGAPPENDINSERT column
SYSINDEXSPACESTATS catalog table 2229

REORGAUTH column of SYSDBAUTH catalog table 2193
REORGDELETES column

SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

REORGDISORGLOB column
SYSTABLESPACESTATS catalog table 2410

REORGFARINDREF column
SYSTABLESPACESTATS catalog table 2410

REORGINSERTS column
SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

REORGLASTTIME column
SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

REORGLEAFFAR column
SYSINDEXSPACESTATS catalog table 2229

REORGLEAFNEAR column
SYSINDEXSPACESTATS catalog table 2229

REORGNEARINDREF column
SYSTABLESPACESTATS catalog table 2410

Index 2687

REORGNUMLEVELS column
SYSINDEXSPACESTATS catalog table 2229

REORGPSEUDODELETES column
SYSINDEXSPACESTATS catalog table 2229

REORGUNCLUSTINS column
SYSTABLESPACESTATS catalog table

description 2410
REORGUPDATES column

SYSTABLESPACESTATS catalog table
description 2410

REPAIR privilege
GRANT statement 1701
REVOKE statement 1822

REPAIRAUTH column of SYSDBAUTH catalog table 2193
REPEAT function 582
REPEAT statement

example 1998
SQL procedure 1998, 2058

REPLACE function 584
REPLACE USE FOR clause

ALTER TRUSTED CONTEXT statement 1104
REPLACE VERSION clause

ALTER PROCEDURE (SQL - native) statement 953
reserved keywords 2021
reserved schema names 2020
RESET

clause of CONNECT statement 1148
RESET clause

ALTER TABLE statement 1035
RESIGNAL statement

example 2000, 2059
SQL procedure 2000, 2059

resource limit facility (governor)
database 22

RESTART WITH
clause of ALTER SEQUENCE statement 976

RESTART WITH clause
ALTER TABLE statement 1016

RESTARTWITH column
SYSSEQUENCES catalog table 2366

RESTRICT
delete rule

ALTER TABLE statement 1024
CREATE TABLE statement 1420

RESTRICT clause of REVOKE statement 1815, 1852
RESTRICT WHEN DELETE TRIGGERS clause

TRUNCATE statement 1930
result column

data type 770
names 769

Result data types with numeric operands 145
RESULT SET clause

CREATE PROCEDURE (external) statement 1336
CREATE PROCEDURE (SQL - external) statement 1348
CREATE PROCEDURE (SQL - native) statement 1371

result set locator
description 222

RESULT SETS clause
CREATE PROCEDURE (external) statement 1336
CREATE PROCEDURE (SQL - external) statement 1348
CREATE PROCEDURE (SQL - native) statement 1371

RESULT_COLS column of SYSROUTINES catalog table 2346
RESULT_SETS column

SYSROUTINES catalog table 2346
RETURN clause

CREATE FUNCTION statement 1232

RETURN statement
example 2062
examples 2003
SQL procedure 2003, 2062

RETURN STATUS clause 1692
RETURN_TYPE column of SYSROUTINES catalog table 2346
RETURNS clause

CREATE FUNCTION statement 1231
RETURNS clause of CREATE FUNCTION statement 1173,

1215
RETURNS GENERIC TABLE clause

CREATE FUNCTION statement 1197
RETURNS NULL ON NULL INPUT clause

ALTER FUNCTION statement 861
CREATE FUNCTION statement 1178, 1201, 1234

RETURNS TABLE clause
CREATE FUNCTION statement 1197

REUSE STORAGE clause
TRUNCATE statement 1930

REVOKE statement
alternative syntax 1709, 1833
cascading effect 1815
collection privileges 1819
database privileges 1821
description 1812
function privileges 1824
JAR file privileges 1851
package privileges 1831
plan privileges 1834
procedure privileges 1824
schema privileges 1836
sequence privileges 1839
system privileges 1841
table privileges 1847
type privileges 1851
use privileges 1856
variable privileges 1854
view privileges 1847

REXX
SQLCA 2077
SQLDA 2100

REXX SQLCA 2077
REXX SQLDA 2100
RID function 587
RIGHT function 588
RIGHT OUTER JOIN

example 805
FROM clause of subselect 791

role
defining 1374
naming convention 61

ROLE AS OBJECT OWNER clause
ALTER TRUSTED CONTEXT statement 1100
CREATE TRUSTED CONTEXT statement 1502

ROLE clause
COMMENT statement 1140
CREATE TRUSTED CONTEXT statement 1505, 1506
DROP statement 1618
GRANT statement 1696
REVOKE statement 1813

ROLE column
SYSCONTEXTAUTHIDS catalog table 2173

ROLENAME column
SYSOBJROLEDEP catalog table 2264

rollback operations 28
ROLLBACK statement

description 1859

2688 SQL Reference

ROLLBACK statement (continued)
example 1861

ROTATE PARTITION FIRST TO LAST clause
ALTER TABLE statement 1033

ROTATE PARTITION integer TO LAST clause
ALTER TABLE statement 1033

ROUND function 590
ROUND_TIMESTAMP function 592
ROUNDING clause

ALTER PROCEDURE (SQL - native) statement 965
CREATE PROCEDURE (SQL - native) statement 888,

1241, 1367
ROUNDING column

SYSENVIRONMENT catalog table 2205
SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

rounding mode
DECFLOAT values 328

routine versions
naming convention 61, 1231

ROUTINEID column
SYSPARMS catalog table 2297
SYSROUTINES catalog table 2346

ROUTINENAME column
SYSROUTINES_OPTS catalog table 2358
SYSROUTINES_SRC catalog table 2361

routines
inheriting special registers 205
types 32

ROUTINETYPE column
SYSPARMS catalog table 2297
SYSROUTINEAUTH catalog table 2344
SYSROUTINES catalog table 2346

row
deleting 1573
inserting 1734, 1760
selecting single row 1866
updating 1933

ROW CHANGE TIMESTAMP
expression 289

row change timestamp column
CREATE TABLE statement 1409

row change timestamp columns
ALTER TABLE statement 1005

ROW CHANGE TIMESTAMP expression
definition 289

ROW CHANGE TOKEN
expression 289

ROW CHANGE TOKEN expression
definition 289

row ID
assignment of values 131
comparison of values 138
data type 105, 1399

Row ID
operands 148

row permission
creating 1310

row permissions
altering 928

ROW_NUMBER expression 282
row-positioned clause

FETCH statement 1654
row-value expression 296
ROWID

data type
CREATE TABLE statement 1399

ROWID (continued)
data type (continued)

description 105
function 595

ROWID column
SYSIBM.XSROBJECTCOMPONENTS table 2465
SYSIBM.XSROBJECTS table 2463
SYSVARIABLES catalog table 2429

ROWNUMBER expression 282
ROWSET STARTING AT clause

FETCH statement 1661
rowset-positioned clause

FETCH statement 1658
rowset-positioning clause

DECLARE CURSOR statement 1540
PREPARE statement 1787

ROWTYPE column of SYSPARMS catalog table 2297
RPAD function 596
RRDF (Remote Recovery Data Facility)

altering a table for 1040
creating a table for 1433

RTRIM function 598
run behavior for dynamic SQL statements 75
RUN OPTIONS clause

ALTER FUNCTION statement 867
ALTER PROCEDURE (external) statement 938
ALTER PROCEDURE (SQL - external) statement 944
CREATE FUNCTION statement 1185, 1207
CREATE PROCEDURE (external) statement 1334
CREATE PROCEDURE (SQL - external) statement 1347

RUNOPTS column
SYSROUTINES catalog table 2346

S
sample user-defined functions 2607
savepoint

naming convention 61
releasing 1807
setting 1863

SAVEPOINT statement
description 1863
example 1864

SBCS data
description 85

SBCS_CCSID column
SYSDATABASE catalog table 2189
SYSTABLESPACE catalog table 2404

scalar 496
scalar-fullselect 253
SCALE column

SYSCOLUMNS catalog table 2155
SYSDATATYPES catalog table 2191
SYSFIELDS catalog table 2207
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSPARMS catalog table 2297
SYSVARIABLES catalog table 2429

scale of numbers
assignments 123
comparisons 134
description 82
results of arithmetic operations 245

schema
naming convention 61
privileges 1712, 1836

Index 2689

SCHEMA
column of SYSSEQUENCEAUTH catalog table 2364

SCHEMA column
SYSDATATYPES catalog table 2191
SYSPARMS catalog table 2297
SYSROUTINEAUTH catalog table 2344
SYSROUTINES catalog table 2346
SYSROUTINES_OPTS catalog table 2358
SYSROUTINES_SRC catalog table 2361
SYSSEQUENCES catalog table 2366
SYSTRIGGERS catalog table 2422
SYSVARIABLEAUTH catalog table 2432
SYSVARIABLES catalog table 2429

schema names 11
schema names, reserved 2020
schema qualifiers 11
SCHEMALOCATION column

SYSIBM.XSROBJECTCOMPONENTS table 2465, 2467
SYSIBM.XSROBJECTS table 2463

SCHEMANAME column
SYSSCHEMAAUTH catalog table 2362

schemas 11
SCORE function 600
SCRATCHPAD clause

ALTER FUNCTION statement 863
CREATE FUNCTION statement 1180, 1203

SCRATCHPAD column of SYSROUTINES catalog table 2346
SCRATCHPAD_LENGTH column of SYSROUTINES catalog

table 2346
SCREATOR column of SYSTABAUTH catalog table 2383
SCROLL clause

DECLARE CURSOR statement 1537
SCT02 table space 19
search condition

DELETE statement 1580
description 324
HAVING clause 799
order of evaluation 324
UPDATE statement 1942
WHERE clause 795

SECLABEL session variable 225
SECOND function 603
SECQTY clause

ALTER INDEX statement 914
ALTER TABLESPACE statement 1088
CREATE INDEX statement 1283
CREATE TABLESPACE statement 1461

SECQTYI column
SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226
SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393

SECTNO column
SYSPACKSTMT catalog table 2290
SYSSTMT catalog table 2373

SECTNOI column
SYSPACKSTMT catalog table 2290
SYSSTMT catalog table 2373

SECURE column
LOCATIONS catalog table 2123

SECURITY clause
ALTER FUNCTION statement 867
ALTER PROCEDURE (external) statement 938
ALTER PROCEDURE (SQL - external) statement 944
CREATE FUNCTION statement 1184, 1207
CREATE PROCEDURE (external) statement 1333
CREATE PROCEDURE (SQL - external) statement 1346

SECURITY LABEL clause
CREATE TRUSTED CONTEXT statement 1506

SECURITY_IN column of LUNAMES catalog table 2127
SECURITY_LABEL column

SYSTABLES catalog table 2396
SECURITY_OUT column

IPNAMES catalog table 2120
LUNAMES catalog table 2127

SECURITYLABEL column
SYSCONTEXTAUTHIDS catalog table 2173

segmented table spaces 16
SEGSIZE

clause of CREATE TABLESPACE statement 1472
column of SYSTABLESPACE catalog table 2404

SEGSIZE clause
ALTER TABLESPACE statement 1083

SELECT
clause as syntax component 765

SELECT INTO statement
description 1866
example 1871

SELECT privilege
GRANT statement 1722
REVOKE statement 1848

SELECT statement
common table expression 820
description 771, 819, 1865
dynamic invocation 842
example 831

SYSIBM.SYSCOLUMNS 2599
SYSIBM.SYSINDEXES 2600
SYSIBM.SYSTABAUTH 2601
SYSIBM.SYSTABLEPART 2598
SYSIBM.SYSTABLES 2597, 2606

fullselect 811
list

application 765
description 765
maximum number of elements 2012
notation 766

static invocation 841
subselect 764

SELECTAUTH column of SYSTABAUTH catalog table 2383
selecting

single row 1866
self-referencing tables 23
SENSITIVE clause

DECLARE CURSOR statement 1537
FETCH statement 1653

SEQNO column
SYSPACKLIST catalog table 2289
SYSPACKSTMT catalog table 2290
SYSROUTINES_SRC catalog table 2361
SYSSTMT catalog table 2373
SYSTRIGGERS catalog table 2422
SYSVIEWS catalog table 2437

SEQTYPE column of SYSSEQUENCES catalog table 2366
sequence

ALTER SEQUENCE statement 975
catalog information 2606
CREATE SEQUENCE statement 1375
dropping 1618
granting privileges 1714
name, unqualified 66
naming convention 61
reference 291
revoking privileges 1839

2690 SQL Reference

sequence (continued)
unqualified name 66

SEQUENCE
clause of ALTER SEQUENCE statement 976

SEQUENCE clause
COMMENT statement 1140
CREATE SEQUENCE statement 1376
DROP statement 1618
GRANT statement 1714
REVOKE statement 1839

SEQUENCEID column of SYSSEQUENCES catalog table 2366
sequences 34
SERVAUTH clause

ALTER TRUSTED CONTEXT statement 1102
CREATE TRUSTED CONTEXT statement 1505

server
naming convention 62
remote 35

SESSION TIME ZONE special register
assigning a value 1927

session variable
built-in 225
naming convention 62
returning values 477

session variable, built-in 225
SESSION_USER 204
SESSION_USER clause

SET PATH statement 1921
SESSION_USER special register 202
SET assignment-statement

description 1875
SET assignment-statement statement

example 1879
SET CACHE clause

ALTER TABLE statement 1017
SET clause

DELETE statement 1580
SET clause of UPDATE statement 1940
SET CONNECTION statement

description 1872
example 1873

SET CURRENT APPLICATION COMPATIBILITY statement
description 1882
example 1882

SET CURRENT APPLICATION ENCODING SCHEME
statement

description 1883
example 1883

SET CURRENT DEBUG MODE statement
description 1884
example 1885

SET CURRENT DECFLOAT ROUNDING MODE statement
description 1886
example 1887

SET CURRENT DEGREE statement
description 1889
example 1889

SET CURRENT EXPLAIN MODE statement
description 1891
example 1892

SET CURRENT GET_ACCEL_ARCHIVE statement
description 1893

SET CURRENT LOCALE LC_CTYPE statement
description 1894
example 1895

SET CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION statement

description 1896
example 1897

SET CURRENT OPTIMIZATION HINT statement
description 1898
example 1898

SET CURRENT PACKAGE PATH
statement

description 1899
example 1901

SET CURRENT PACKAGESET statement
description 1903
example 1904

SET CURRENT PRECISION statement
description 1905
example 1905

SET CURRENT QUERY ACCELERATION statement
description 1906

SET CURRENT REFRESH AGE statement
description 1908

SET CURRENT ROUTINE VERSION statement
description 1910
example 1911

SET CURRENT RULES statement
description 1912
example 1912

SET CURRENT SQLID statement
description 1913
example 1914

SET CURRENT TEMPORAL BUSINESS_TIME statement
description 1915

SET CURRENT TEMPORAL SYSTEM_TIME statement
description 1917

SET CYCLE clause
ALTER TABLE statement 1017

SET ENCRYPTION PASSWORD statement 1919
SET INCREMENT BY clause

ALTER TABLE statement 1017
SET MAXVALUE clause

ALTER TABLE statement 1017
SET MINVALUE clause

ALTER TABLE statement 1017
SET NO CYCLE clause

ALTER TABLE statement 1017
SET NO MAXVALUE clause

ALTER TABLE statement 1017
SET NO MINVALUE clause

ALTER TABLE statement 1017
SET NO ORDER clause

ALTER TABLE statement 1017
SET NULL delete rule

ALTER TABLE statement 1024
CREATE TABLE statement 1420

set operators 811
SET ORDER clause

ALTER TABLE statement 1017
SET PATH statement

description 1921
example 1923

SET QUERYNO clause of EXPLAIN statement 1644
SET SCHEMA statement

description 1924
SET SESSION TIME ZONE statement

description 1927
example 1927

SGCREATOR column of SYSVOLUMES catalog table 2441

Index 2691

SGNAME column of SYSVOLUMES catalog table 2441
SHARE

option of LOCK TABLE statement 1757
shift-in character

convention xxiv
LABEL statement 1756
not truncated by assignments 128

shift-out character
convention xxiv
LABEL statement 1756

short string column 85, 94
shortcut keys

keyboard xx
SHRLEVEL

column of SYSCOPY catalog table 2176
SIGN function 605
sign-on exit routine

CURRENT SQLID special register 75, 193
SIGNAL statement

description 1928
example 2006, 2064
SQL procedure 2064
SQL routine 2006

SIGNATURE column
SYSVIEWS catalog table 2437

SIMPLE CALL clause
CREATE PROCEDURE (external) statement 1336

SIMPLE CALL WITH NULLS clause
CREATE PROCEDURE (external) statement 1336

simple table spaces 16
SIN function 606
single logging 20
single precision floating-point number 82
single-row-fetch clause

FETCH statement 1663
SINH function 607
SKCT (skeleton cursor table) 19
skeleton cursor table (SKCT) 19
skeleton package table (SKPT) 19
SKIP LOCKED DATA clause

DELETE statement 1583
SELECT INTO statement 1869
select-statement 830
UPDATE statement 1944

SKPT (skeleton package table) 19
SMALLINT function 608
SOAPHTTPC and SOAPHTTPV functions 611
SOAPHTTPNC and SOAPHTTPNV functions 613
SOME quantified predicate 300
sort-key

ORDER BY clause of subselect 801
SOUNDEX function 610
SOURCE clause of CREATE FUNCTION statement 1216
SOURCEDSN column

SYSROUTINES_OPTS catalog table 2358
SOURCESCHEMA column

SYSDATATYPES catalog table 2191
SYSROUTINES catalog table 2346

SOURCESPECIFIC column of SYSROUTINES catalog
table 2346

SOURCETYPE column of SYSDATATYPES catalog table 2191
SOURCETYPEID column

DATATYPES catalog table 2191
SYSCOLUMNS catalog table 2155
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSPARMS catalog table 2297

SOURCETYPEID column (continued)
SYSSEQUENCES catalog table 2366
SYSVARIABLES catalog table 2429

space character 54
SPACE column

SYSINDEXES catalog table 2211
SYSINDEXPART catalog table 2221
SYSSTOGROUP catalog table 2377
SYSTABLEPART catalog table 2387
SYSTABLESPACE catalog table 2404

SPACE column of SYSINDEXSPACESTATS catalog table 2229
SPACE column of SYSTABLESPACESTATS catalog table 2410
SPACE function 615
SPACEF

column of SYSTABLESPACE catalog table 2404
SPACEF column

SYSINDEXES catalog table 2211
SYSINDEXES_HIST catalog table 2217
SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226
SYSSTOGROUP catalog table 2377
SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393
SYSTABLES catalog table 2396
SYSTABLES_HIST catalog table 2416

special character 53
special register

behavior in user-defined functions and stored
procedures 205

CURRENT APPLICATION COMPATIBILITY 161
CURRENT APPLICATION ENCODING SCHEME 162
CURRENT CLIENT_ACCTNG 163
CURRENT CLIENT_APPLNAME 164
CURRENT CLIENT_CORR_TOKEN 166
CURRENT CLIENT_USERID 167
CURRENT CLIENT_WRKSTNNAME 168
CURRENT DATE 170
CURRENT DEBUG MODE 171
CURRENT DECFLOAT ROUNDING MODE 172
CURRENT DEGREE 174
CURRENT EXPLAIN MODE 175
CURRENT GET_ACCEL_ARCHIVE 176
CURRENT LOCALE LC_CTYPE 177
CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION 179
CURRENT MEMBER 180
CURRENT OPTIMIZATION HINT 181
CURRENT PACKAGE PATH 182
CURRENT PACKAGESET 183
CURRENT PATH 184
CURRENT PRECISION 185
CURRENT QUERY ACCELERATION 186
CURRENT REFRESH AGE 187
CURRENT ROUTINE VERSION 188
CURRENT RULES 189
CURRENT SCHEMA 191
CURRENT SERVER 192
CURRENT SQLID 193
CURRENT TEMPORAL BUSINESS_TIME 194
CURRENT TEMPORAL SYSTEM_TIME 196
CURRENT TIME 198
CURRENT TIMESTAMP 199
CURRENT TIMEZONE 200, 203
CURRENT_DATE 170
CURRENT_TIME 198
CURRENT_TIMESTAMP 199
description 156

2692 SQL Reference

special register (continued)
ENCRYPTION PASSWORD 201
SESSION_USER 202
USER 202
values in trigger 1494

SPECIAL REGS column
SYSROUTINES catalog table 2346

specific
naming convention 62

SPECIFIC clause
CREATE FUNCTION statement 1174, 1198, 1216, 1231

SPECIFIC FUNCTION clause of ALTER FUNCTION
statement 857

specific name
unqualified name 66

specifications
XMLCAST 276

SPECIFICNAME column
SYSPARMS catalog table 2297
SYSROUTINEAUTH catalog table 2344
SYSROUTINES catalog table 2346

SPLIT_ROWS column
SYSTABLES catalog table 2396

SPT01 table space 19
SQL (Structured Query Language)

assignment operation 121
Call Level Interface (CLI) 3
character 53
comparison operation 121
constants 148
data types

binary strings 96
casting 111
character strings 84
datetime 98
description 80
graphic strings 94
LOBs (large objects) 96
numbers 81
numeric implicit cast 119
promotion 110
results of an operation 144
row ID 105
string implicit cast 120
XML values 106

deferred embedded 3
delimited identifier 56
dynamic 3

statements allowed 2026
identifier 55
interactive 3
JDBC 4
keywords, reserved 2021
limits 2012
naming conventions 57
null value 81
Open Database Connectivity (ODBC) 3
ordinary identifier 53
rules 189
schema names, reserved 2020
SQLJ 4
standard 332
standards xxv
static 2
token 54
value 80
variable names 57

SQL comments 846
SQL condition

naming convention 62
SQL condition names 1965
SQL control statement

assignment statement 1971, 2036
CALL statement 1973, 2038
CASE statement 1975, 2040
compound statement 1977, 2043
CONTINUE handler 1977, 2043
EXIT handler 1977, 2043
FOR statement 1986
GET DIAGNOSTICS statement 1988, 2049
GOTO statement 1989, 2050
handler 1977, 2043
handling errors 1977, 2043
IF statement 1991, 2052
ITERATE statement 1992, 2054
LEAVE statement 1994, 2055
LOOP statement 1996, 2056
order of statements 1977, 2043
REPEAT statement 1998, 2058
RESIGNAL statement 2000, 2059
RETURN statement 2003, 2062
SIGNAL statement 2006, 2064
WHILE statement 2010, 2068

SQL cursor names 1965
SQL label

naming convention 62
SQL parameter

naming convention 62
SQL parameters 1964
SQL path 64, 234
SQL PATH clause

ALTER PROCEDURE (SQL - native) statement 963
CREATE FUNCTION statement 887, 1240
CREATE PROCEDURE (SQL - native) statement 1364

SQL procedure
new line control character 54

SQL scalar statements
ALTER FUNCTION 871

SQL statements
ALLOCATE CURSOR 847
ALTER DATABASE 849
ALTER FUNCTION 852
ALTER FUNCTION (SQL table) 899
ALTER INDEX 907
ALTER MASK 926
ALTER PERMISSION 928
ALTER PROCEDURE (external) 930
ALTER PROCEDURE (SQL - external) 941
ALTER PROCEDURE (SQL - native) statement 947
ALTER SEQUENCE 975
ALTER STOGROUP 981
ALTER TABLE 984
ALTER TABLESPACE 1074
ALTER TRIGGER 1094
ALTER TRUSTED CONTEXT 1097
ALTER VIEW 1109
ASSOCIATE LOCATORS 1111
BEGIN DECLARE SECTION 1115
binding 1
CALL 1117
catalog table restrictions 2113
CLOSE 1131
COMMENT 1133
COMMIT 1143

Index 2693

SQL statements (continued)
CONNECT 1147
CONTINUE 1961
CREATE ALIAS 1154
CREATE AUXILIARY TABLE 1158
CREATE DATABASE 1162
CREATE FUNCTION 1165
CREATE FUNCTION (external scalar) 1166
CREATE FUNCTION (external table) 1191
CREATE FUNCTION (sourced) 1210
CREATE FUNCTION (SQL scalar) 1224
CREATE FUNCTION (SQL table) 1251
CREATE GLOBAL TEMPORARY TABLE 1261
CREATE INDEX 1267
CREATE MASK 1299
CREATE PERMISSION 1310
CREATE PROCEDURE 1318
CREATE PROCEDURE (external) 1319
CREATE PROCEDURE (SQL - external) 1338
CREATE PROCEDURE (SQL - native) 1350
CREATE ROLE 1374
CREATE SEQUENCE 1375
CREATE STOGROUP 1383
CREATE SYNONYM 1386
CREATE TABLE 1388
CREATE TABLESPACE 1455
CREATE TRIGGER 1482
CREATE TRUSTED CONTEXT 1500
CREATE TYPE 1510
CREATE TYPE (array) 1511
CREATE TYPE (distinct) 1516
CREATE VARIABLE 1524
CREATE VIEW 1527
DECLARE CURSOR

description 1535
example 1544

DECLARE GLOBAL TEMPORARY TABLE 1547
DECLARE STATEMENT 1562
DECLARE TABLE 1563
DECLARE VARIABLE 1570
DELETE

description 1573
example 1588

DESCRIBE 1590
DESCRIBE CURSOR 1591
DESCRIBE INPUT 1593
DESCRIBE OUTPUT 1596
DESCRIBE PROCEDURE 1603
DESCRIBE TABLE 1606
DROP 1609
END DECLARE SECTION 1631
EXCHANGE 1632
EXECUTE 1633
EXECUTE IMMEDIATE 1639
EXPLAIN

description 1642
example 1648

FETCH
description 1650
example 1676

FOR 1644
FREE LOCATOR 1678
GET DIAGNOSTICS 1679
GRANT 1695
HOLD LOCATOR 1730
INCLUDE

description 1732

SQL statements (continued)
INCLUDE (continued)

example 1733
SQLCA 2075
SQLDA 2095

INSERT
description 1734
example 1751

invocation 839
LABEL 1755
LOCALE LC_CTYPE 1894
LOCK TABLE 1757
MERGE

description 1760
examples 1773

OPEN
description 1775
example 1779

operational form 1
PREPARE 1781
REFRESH TABLE 1803
RELEASE (connection) 1805
RELEASE SAVEPOINT 1807
remote execution

description 78
RENAME 1808
REVOKE 1812
ROLLBACK 1859
SAVEPOINT 1863
SELECT 1865

unpacked-row 771
SELECT INTO 1866
SET assignment-statement 1875
SET CONNECTION 1872
SET CURRENT APPLICATION COMPATIBILITY 1882
SET CURRENT APPLICATION ENCODING

SCHEME 1883
SET CURRENT DEBUG MODE 1884
SET CURRENT DECFLOAT ROUNDING MODE 1886
SET CURRENT DEGREE 1889
SET CURRENT EXPLAIN MODE 1891
SET CURRENT GET_ACCEL_ARCHIVE 1893
SET CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION 1896
SET CURRENT OPTIMIZATION HINT 1898
SET CURRENT PACKAGE PATH 1899

example 1901
SET CURRENT PRECISION 1905
SET CURRENT QUERY ACCELERATION 1906
SET CURRENT REFRESH AGE 1908
SET CURRENT ROUTINE VERSION 1910
SET CURRENT RULES 1912
SET CURRENT SQLID 1913
SET CURRENT TEMPORAL BUSINESS_TIME 1915
SET CURRENT TEMPORAL SYSTEM_TIME 1917
SET ENCRYPTION PASSWORD 1919
SET PATH 1921
SET SCHEMA 1924
SET SESSION TIME ZONE 1927
SIGNAL 1928
TRUNCATE 1929
UPDATE

description 1933
example 1951

VALUES 1955
VALUES INTO 1956
WHENEVER 1961

2694 SQL Reference

SQL variable
naming convention 63

SQL variables 1964
SQL_DATA_ACCESS column of SYSROUTINES catalog

table 2346
SQL_STRING_DELIMITER column

SYSENVIRONMENT catalog table 2205
SQL_STRING_DELIMITER session variable 225
SQL-routine-body

ALTER PROCEDURE (SQL - native) statement 967
CREATE PROCEDURE (SQL - native) statement 1369

SQL-routine-body clause
CREATE FUNCTION statement 891, 1244

SQL/OLB 4
SQLADM privilege

GRANT statement 1718
REVOKE statement 1843

SQLCA
REXX 2077

SQLCA (SQL communication area)
contents 2069
entry changed by UPDATE 1944
INCLUDE statement 1732

SQLCABC field of SQLCA 2070
SQLCAID field of SQLCA 2070
SQLCODE

+100 844, 1740, 1775, 1866, 1961
description 844
field of SQLCA 2070

SQLD field of SQLDA 1599, 2081
SQLDA

header 2081
REXX 2100
unrecognized data types 2094

SQLDA (SQL descriptor area)
clause of INCLUDE statement 1732
contents 2079, 2081

SQLDABC field of SQLDA 1599, 2081
SQLDAID field of SQLDA 1598, 2081
SQLDATA field of SQLDA 1600, 2085
SQLDATAL field of SQLDA 2088
SQLDATALEN field of SQLDA 2088
SQLDATATYPE field of SQLDA 1601
SQLDATATYPE-NAME field of SQLDA 2088
SQLERRD(n) field of SQLCA 2070
SQLERRMC field of SQLCA 2070
SQLERRML field of SQLCA 2070
SQLERROR

clause of WHENEVER statement 1961
column of SYSPACKAGE catalog table 2265

SQLERRP field of SQLCA 2070
SQLIND field of SQLDA 1600, 2085
SQLJ 4
SQLLEN field of SQLDA 1600, 2085
SQLLONGL field of SQLDA 2088
SQLLONGLEN field of SQLDA 1600, 2088
SQLN field of SQLDA

description 1596, 1607, 2081
SQLNAME field of SQLDA 1600, 2085
SQLRULES

column of SYSPLAN catalog table 2306
SQLSTATE

'02000' 1740, 1775, 1866, 1961
description 844
field of SQLCA 2070
signaling 1928

SQLTNAME field of SQLDA 2088

SQLTYPE field of SQLDA
description 2085
values 1600, 2090

SQLVAR
base 1599
extended 1599

SQLVAR field of SQLDA 1599
SQLWARN6 field of SQLCA 258
SQLWARNING clause

WHENEVER statement 1961
SQLWARNn field of SQLCA 2070
SQRT function 616
SQTY column

SYSINDEXPART catalog table 2221
SYSTABLEPART catalog table 2387

SSID session variable 225
STANDARD CALL clause

CREATE PROCEDURE (external) statement 1336
STANDARD_SQL session variable 225
standard, SQL (ANSI/ISO)

description xxv
SET CONNECTION statement 1872
SQL-style comments 54
STDSQL precompiler option 332

START column of SYSSEQUENCES catalog table 2366
START WITH clause

CREATE SEQUENCE statement 1377
START_RBA column of SYSCOPY catalog table 2176
START_RBA_EX column

SYSCOPY catalog table 2176
STARTDB privilege

GRANT statement 1701
REVOKE statement 1822

STARTDBAUTH column of SYSDBAUTH catalog table 2193
state

application process 39, 41
SQL connection 38

statement
naming convention 63

STATEMENT clause of DECLARE STATEMENT
statement 1562

statement table
EXPLAIN statement 1642

STATIC clause
DECLARE CURSOR statement 1538

STATIC DISPATCH clause
ALTER FUNCTION statement 868, 881
CREATE FUNCTION statement 1185, 1207, 1234, 1257

static SQL 2
description 839
invocation of SELECT statement 841

STATS privilege
GRANT statement 1701
REVOKE statement 1822

STATS_FORMAT column
SYSCOLSTATS catalog table 2153
SYSCOLUMNS catalog table 2155
SYSCOLUMNS_HIST catalog table 2166
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSKEYTARGETSTATS catalog table 2251

STATSAUTH column of SYSDBAUTH catalog table 2193
STATSDELETES column

SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

STATSINSERTS column
SYSINDEXSPACESTATS catalog table 2229

Index 2695

STATSINSERTS column (continued)
SYSTABLESPACESTATS catalog table 2410

STATSLASTTIME column
SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

STATSMASSDELETE column
SYSTABLESPACESTATS catalog table 2410

STATSMASSDELETES column
SYSINDEXSPACESTATS catalog table 2229

STATSTIME column
SYSCOLDIST catalog table 2147
SYSCOLDIST_HIST catalog table 2151
SYSCOLDISTSTATS catalog table 2149
SYSCOLSTATS catalog table 2153
SYSCOLUMNS catalog table 2155
SYSCOLUMNS_HIST catalog table 2166
SYSINDEXES catalog table 2211
SYSINDEXES_HIST catalog table 2217
SYSINDEXPART catalog table 2221
SYSINDEXPART_HIST catalog table 2226
SYSINDEXSTATS catalog table 2235
SYSINDEXSTATS_HIST catalog table 2237
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSKEYTARGETSTATS catalog table 2251
SYSKEYTGTDIST catalog table 2256
SYSKEYTGTDIST_HIST catalog table 2260
SYSKEYTGTDISTSTATS catalog table 2258
SYSLOBSTATS catalog table 2262
SYSLOBSTATS_HIST catalog table 2263
SYSSTOGROUP catalog table 2377
SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393
SYSTABLES catalog table 2396
SYSTABLES_HIST catalog table 2416
SYSTABLESPACE catalog table 2404
SYSTABSTATS catalog table 2420
SYSTABSTATS_HIST catalog table 2421

STATSUPDATES column
SYSTABLESPACESTATS catalog table 2410

STATUS column
SYSIBM.XSROBJECTCOMPONENTS table 2465
SYSIBM.XSROBJECTS table 2463
SYSPACKSTMT catalog table 2290
SYSSTMT catalog table 2373
SYSTABLES catalog table 2396
SYSTABLESPACE catalog table 2404

STAY RESIDENT clause
ALTER FUNCTION statement 866
ALTER PROCEDURE (external) statement 937
ALTER PROCEDURE (SQL - external) statement 944
CREATE FUNCTION statement 1184, 1206
CREATE PROCEDURE (external) statement 1333
CREATE PROCEDURE (SQL - external) statement 1346

STAYRESIDENT column
SYSROUTINES catalog table 2346

STD SQL LANGUAGE field of panel DSNTIP4 332
STDDEV

aggregate function 358
STDDEV_POP function 358
STDDEV_SAMP

aggregate function 358
STDSQL option

precompiler 332
STGROUP column of SYSDATABASE catalog table 2189
STMT column of SYSPACKSTMT catalog table 2290
STMTCACHE clause of EXPLAIN statement 1645

STMTNO column
SYSPACKSTMT catalog table 2290
SYSSTMT catalog table 2373

STMTNOI column
SYSPACKSTMT catalog table 2290
SYSSTMT catalog table 2373

STNAME column of SYSTABAUTH catalog table 2383
stogroup

naming convention 63
STOGROUP

clause of ALTER INDEX statement 912, 915
clause of ALTER STOGROUP statement 981
clause of CREATE DATABASE statement 1163
clause of CREATE INDEX statement 1282, 1284
clause of CREATE TABLESPACE statement 1459, 1461

STOGROUP clause
ALTER DATABASE statement 849
ALTER TABLESPACE statement 1086
DROP statement 1619

STOGROUP privilege
GRANT statement 1728
REVOKE statement 1856

STOP AFTER SYSTEM DEFAULT FAILURES clause
ALTER FUNCTION statement 867
ALTER PROCEDURE (external) statement 939
ALTER PROCEDURE (SQL - external) statement 945
CREATE FUNCTION statement 1185, 1207
CREATE PROCEDURE (external) statement 1333
CREATE PROCEDURE (SQL - external) statement 1347

STOPALL privilege
GRANT statement 1719
REVOKE statement 1844

STOPALLAUTH column of SYSUSERAUTH catalog
table 2425

STOPAUTH column of SYSDBAUTH catalog table 2193
STOPDB privilege

GRANT statement 1701
REVOKE statement 1822

storage group, DB2
altering 981
creating 1383
dropping 1619
retrieving catalog information 2597

storage groups 13
storage structures

index spaces 16
table spaces 16

STORCLAS clause
CREATE STOGROUP statement 982, 1384

STORCLAS column
SYSSTOGROUP catalog table 2377

stored procedure
altering

ALTER PROCEDURE (external) statement 930
with ALTER PROCEDURE (SQL - external)

statement 941
with ALTER PROCEDURE (SQL - native)

statement 947
CALL statement 1117
creating

CREATE PROCEDURE (external) statement 1319
with CREATE PROCEDURE (SQL - external)

statement 1338
with CREATE PROCEDURE (SQL - native)

statement 1350
CURRENT PACKAGESET special register 1904
dropping 1617

2696 SQL Reference

stored procedure (continued)
invoking 1117
name, unqualified 66
naming convention 61
privileges

granting 1703
revoking 1824

statements allowed 2030
unqualified name 66

stored procedures
external SQL procedures 33
external stored procedures 33
inheriting special registers 205
native SQL procedures 33

STORES clause of CREATE AUXILIARY TABLE
statement 1159

STORNAME column
SYSINDEXPART catalog table 2221
SYSTABLEPART catalog table 2387

STORTYPE column
SYSINDEXPART catalog table 2221
SYSTABLEPART catalog table 2387

STOSPACE privilege
GRANT statement 1719
REVOKE statement 1844

STOSPACEAUTH column of SYSUSERAUTH catalog
table 2425

string
binary 96
CCSID 47
character 84
comparison 136
constant 150
conversion 42
datetime values 101
delimiter

COBOL 330
controlling representation 330
SQL 330

description 42
encoding scheme 47
fixed-length

description 85, 94
graphic 94
long column

description 95
limitations 766

numbers 83
short 85, 94
varying-length

description 85, 95
string clause

CREATE PROCEDURE (external) statement 1327
STRING column

SYSXMLSTRINGS catalog table 2443
string delimiter precompiler option 330
string unit 87
STRING_DELIMITER column

SYSENVIRONMENT catalog table 2205
STRINGID column

SYSXMLSTRINGS catalog table 2443
STRIP function 598, 617
strong typing 107
structured query language (SQL)

binding 1
operational form 1
result tables 1

STYPE column of SYSCOPY catalog table 2176
SUBBYTE column of SYSSTRINGS catalog table 2379
subnormal numbers 84
subquery

description 211
HAVING clause 799
ORDER BY clause 800
WHERE clause 795

subselect
CREATE VIEW statement 764
description 764
examples 805
INSERT statement 764

substitution character 42, 129
SUBSTR function 618
SUBSTRING function 621
SUBTYPE column

SYSDATATYPES catalog table 2191
SYSKEYTARGETS catalog table 2247
SYSPARMS catalog table 2297

SUM function 360
synonym

defining 1386
description 68
dropping 1619
naming convention 63
qualifying a column name 209

SYNONYM clause
CREATE SYNONYM statement 1386
DROP statement 1619

syntax diagram
how to read xxii

SYSADM authority
GRANT statement 1719
REVOKE statement 1844

SYSADMAUTH column of SYSUSERAUTH catalog
table 2425

SYSCTRL authority
GRANT statement 1719
REVOKE statement 1844

SYSCTRLAUTH column of SYSUSERAUTH catalog
table 2425

SYSENTRIES column
SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

SYSIBM.DBDR 2449
SYSIBM.SCTR 2451
SYSIBM.SPTR 2452
SYSIBM.SYSDBD_DATA 2450
SYSIBM.SYSINDEXCLEANUP

catalog table 2210
SYSIBM.SYSLGRNX 2455
SYSIBM.SYSQUERYPREDICATE

catalog table 2332
columns 2332

SYSIBM.SYSQUERYSEL
catalog table 2337
columns 2337

SYSIBM.SYSSPTSEC_DATA 2453
SYSIBM.SYSSPTSEC_EXPL 2454
SYSIBM.SYSSTATFEEDBACK

catalog table 2370
SYSIBM.SYSUTIL 2456
SYSIBM.SYSUTILX 2458
SYSLGRNX directory table

table space 19
SYSMODENAME column of LUNAMES catalog table 2127

Index 2697

SYSOPR authority
GRANT statement 1719
REVOKE statement 1844

SYSOPRAUTH column of SYSUSERAUTH catalog table 2425
SYSTEM AUTHID clause

ALTER TRUSTED CONTEXT statement 1099
SYSTEM column

SYSPKSYSTEM catalog table 2304
SYSPLSYSTEM catalog table 2314

system objects 18
SYSTEM PATH clause

SET PATH statement 1921
system schemas 11
system structures

active logs 20
archive logs 20
bootstrap data set (BSDS) 21
buffer pools 21
catalog tables 18
catalogs 18

SYSTEM_ASCII_CCSID session variable 225
SYSTEM_EBCDIC_CCSID session variable 225
SYSTEM_NAME session variable 225
SYSTEM_UNICODE_CCSID session variable 225
system, limits 2012
SYSTEMAUTHID column

SYSCONTEXT catalog table 2171
SYSUTILX directory table space 19

T
table

altering
ALTER TABLE statement 984

creating
CREATE AUXILIARY TABLE statement 1158
CREATE GLOBAL TEMPORARY TABLE

statement 1261
CREATE TABLE statement 1388
CREATE VARIABLE statement 1524
DECLARE GLOBAL TEMPORARY TABLE

statement 1547
designator 210
dropping

DROP statement 1619
joining 791
naming convention 63
privileges 1721

revoking 1847
renaming with RENAME statement 1808
result table 1777
retrieving

catalog information 2597
comments 2606

temporary copy 1777
Table

expressions, common 820
expressions, nested 820

TABLE
column of SYSPARMS catalog table 2297

table check constraint
catalog information 2603
defining

CREATE TABLE statement 1420
deleting rows 1584
inserting rows 1743
updating rows 1945

TABLE clause
COMMENT statement 1140
DROP statement 1619

table function reference 777
TABLE LIKE clause

CREATE FUNCTION statement 1172, 1196, 1215
CREATE PROCEDURE (external) statement 1325
CREATE PROCEDURE (SQL - external) statement 1343
CREATE PROCEDURE (SQL - native) statement 1356

table locator variable 776
table name

qualifying a column name 209
unqualified 66

table space
accelerators table 2591
altering with ALTER TABLESPACE statement 1074
catalog table 2104
creating

CREATE TABLESPACE statement 1455
implicitly 1428

directory table 2448
dropping 1620
naming convention 63
partition-by-growth 1472
program authorization table 2595
range-partitioned 1472
universal 1472
XML schema repository table 2461

table spaces
large object 16
partitioned 16
segmented 16
simple 16
universal 16
XML 16

TABLE_COLNO column of SYSPARMS catalog table 2297
TABLE_LOCATION function 2629
TABLE_NAME function 2631
TABLE_SCHEMA function 2633
table-name clause

EXCHANGE statement 1632
TABLE

clause of DECLARE TABLE statement 1563
TABLE�

clause of LABEL statement 1755
tables

dependent 23
DSNPROGAUTH 2596
overview 6
self-referencing 23
supplied by DB2

DSN_COLDIST_TABLE 2488
DSN_DETCOST_TABLE 2494
DSN_FILTER_TABLE 2504
DSN_FUNCTION_TABLE 2509
DSN_KEYTGTDIST_TABLE 2514
DSN_PGRANGE_TABLE 2520
DSN_PGROUP_TABLE 2524
DSN_PREDICAT_TABLE 2530
PLAN_TABLE 2471

TABLESPACE
clause of ALTER TABLESPACE statement 1074

TABLESPACE clause
DROP statement 1620

TABLESPACE privilege
GRANT statement 1728
REVOKE statement 1856

2698 SQL Reference

TABLESTATUS column of SYSTABLES catalog table 2396
TAN function 627
TANH function 628
target variable

FETCH statement 1663
target-variable

SELECT INTO statement 1867
TARGETNAMESPACE column

SYSIBM.XSROBJECTCOMPONENTS table 2465
SYSIBM.XSROBJECTHIERARCHIES table 2467
SYSIBM.XSROBJECTS table 2463

TBCREATOR column
SYSCOLUMNS catalog table 2155
SYSCOLUMNS_HIST catalog table 2166
SYSFIELDS catalog table 2207
SYSINDEXES catalog table 2211
SYSINDEXES_HIST catalog table 2217
SYSKEYCOLUSE catalog table 2245
SYSSYNONYMS catalog table 2382
SYSTABCONST catalog table 2386
SYSTABLES catalog table 2396

TBNAME column
SYSAUXRELS catalog table 2141
SYSCHECKDEP catalog table 2142
SYSCHECKS catalog table 2143
SYSCHECKS2 catalog table 2144
SYSCOLDIST catalog table 2147
SYSCOLDIST_HIST catalog table 2151
SYSCOLDISTSTATS catalog table 2149
SYSCOLSTATS catalog table 2153
SYSCOLUMNS catalog table 2155
SYSCOLUMNS_HIST catalog table 2166
SYSFIELDS catalog table 2207
SYSFOREIGNKEYS catalog table 2209
SYSINDEXES catalog table 2211
SYSINDEXES_HIST catalog table 2217
SYSKEYCOLUSE catalog table 2245
SYSRELS catalog table 2339
SYSSYNONYMS catalog table 2382
SYSTABCONST catalog table 2386
SYSTABLES catalog table 2396
SYSTRIGGERS catalog table 2422
SYSXMLRELS catalog table 2442

TBOWNER column
SYSAUXRELS catalog table 2141
SYSCHECKDEP catalog table 2142
SYSCHECKS catalog table 2143
SYSCHECKS2 catalog table 2144
SYSCOLDIST catalog table 2147
SYSCOLDIST_HIST catalog table 2151
SYSCOLDISTSTATS catalog table 2149
SYSCOLSTATS catalog table 2153
SYSTRIGGERS catalog table 2422
SYSXMLRELS catalog table 2442

TCREATOR column of SYSTABAUTH catalog table 2383
temporary

copy of table 1777
temporary table

creating 1261, 1547
TEXT column

SYSROUTINES catalog table 2346
SYSROUTINESTEXT catalog table 2357
SYSSTMT catalog table 2373
SYSTRIGGERS catalog table 2422
SYSVIEWS catalog table 2437

TEXT_ENVID column
SYSROUTINES catalog table 2346

TEXT_ROWID column
SYSROUTINES catalog table 2346

time
arithmetic 259
data type 99
duration 254
strings 101, 105

TIME
data type

CREATE TABLE statement 1399
description 99

function 629
TIME FORMAT clause

ALTER PROCEDURE (SQL - native) statement 966
CREATE PROCEDURE (SQL - native) statement 889,

1242, 1368
TIME FORMAT field of panel DSNTIP4 332
time zone

implicit 104
TIME_FORMAT column

SYSENVIRONMENT catalog table 2205
TIME_FORMAT session variable 225
TIME_LENGTH session variable 225
timestamp

arithmetic 260
data type 99
duration 254
strings 101

TIMESTAMP
column of SYSCHECKS catalog table 2143
column of SYSCOPY catalog table 2176
column of SYSDBRM catalog table 2196
column of SYSPACKAGE catalog table 2265
column of SYSPACKAUTH catalog table 2285
column of SYSPACKLIST catalog table 2289
column of SYSRELS catalog table 2339
data type

CREATE TABLE statement 1399
description 99

function 630
TIMESTAMP_FORMAT function 635
TIMESTAMP_ISO

function 641
TIMESTAMP_TZ

function 645
TIMESTAMPADD

function 633
TIMESTAMPDIFF

function 642
TNAME column of SYSCOLAUTH catalog table 2145
TO

clause of CONNECT statement 1147
TO clause

GRANT statement 1696
TO SAVEPOINT clause

ROLLBACK statement 1860
TO_CHAR function 647, 680
TO_DATE function 635, 648
TO_NUMBER function 649
token in SQL 54
TOTALENTRIES column

SYSINDEXSPACESTATS catalog table 2229
TOTALORDER function 650
TOTALROWS column

SYSTABLESPACESTATS catalog table 2410
TPN column

LOCATIONS catalog table 2123

Index 2699

TRACE privilege
GRANT statement 1719
REVOKE statement 1844

TRACEAUTH column of SYSUSERAUTH catalog table 2425
TRACKMOD

clause of CREATE TABLESPACE statement 1465
column of SYSTABLEPART catalog table 2387

TRACKMOD clause
ALTER TABLESPACE statement 1084

TRACKMOD NO
clause of CREATE TABLE statement 1436

TRACKMOD YES
clause of CREATE TABLE statement 1436

TRANSLATE function 652
TRANSPROC column of SYSSTRINGS catalog table 2379
TRANSTAB column of SYSSTRINGS catalog table 2379
TRANSTYPE column of SYSSTRINGS catalog table 2379
TRIGEVENT column of SYSTRIGGERS catalog table 2422
trigger

altering 1094
catalog information 2605
creating 1482
dropping 1621
name, unqualified 66
naming convention 63
SQL statements allowed in 1489
unqualified name 66

TRIGGER clause
COMMENT statement 1140
DROP statement 1621

TRIGGER privilege
GRANT statement 1722
REVOKE statement 1848

TRIGGERAUTH column
SYSTABAUTH catalog table 2383

triggered-SQL-statement clause of TRIGGER statement 1488
triggers

overview 28
TRIGTIME column of SYSTRIGGERS catalog table 2422
TRIM function 656
TRIM_ARRAY function 658
TRUNC function 659
TRUNC_TIMESTAMP function 661
TRUNCATE function 659
TRUNCATE statement

description 1929
examples 1932

truncation
numbers 122

TRUSTED column
LOCATIONS catalog table 2123

trusted context
altering 1097
defining 1500

TRUSTED CONTEXT clause
COMMENT statement 1140
DROP statement 1621

truth table 324
truth valued logic 324
TSNAME column

SYSCOPY catalog table 2176
SYSTABLEPART catalog table 2387
SYSTABLEPART_HIST catalog table 2393
SYSTABLES catalog table 2396
SYSTABLES_HIST catalog table 2416
SYSTABSTATS catalog table 2420
SYSTABSTATS_HIST catalog table 2421

TTNAME column of SYSTABAUTH catalog table 2383
TTYPE column

SYSCOPY catalog table 2176
two-phase commit 36
TYPE clause

COMMENT statement 1140
DROP statement 1621

TYPE column
SYSCOLDIST catalog table 2147
SYSCOLDIST_HIST catalog table 2151
SYSCOLDISTSTATS catalog table 2149
SYSDATABASE catalog table 2189
SYSKEYTGTDIST catalog table 2256
SYSKEYTGTDIST_HIST catalog table 2260
SYSKEYTGTDISTSTATS catalog table 2258
SYSPACKAGE catalog table 2265
SYSTABCONST catalog table 2386
SYSTABLES catalog table 2396
SYSTABLESPACE catalog table 2404
USERNAMES catalog table 2444

typed parameter marker 1791
typed-correlation-clause

description 786
TYPENAME column

SYSCOLUMNS catalog table 2155
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSPARMS catalog table 2297
SYSVARIABLES catalog table 2429

TYPESCHEMA column
SYSCOLUMNS catalog table 2155
SYSKEYTARGETS catalog table 2247
SYSKEYTARGETS_HIST catalog table 2253
SYSPARMS catalog table 2297
SYSVARIABLES catalog table 2429

U
UCASE function 664, 668
UDF

catalog information 2605
unary operation 243
UNCOMPRESSEDDATASIZE column

SYSTABLESPACESTATS catalog table 2410
unconnectable and connected state 41
unconnectable and unconnected state 41
unconnected state 39
underflow 84
Unicode

definition 42
effect on MBCS and DBCS characters 85

UNICODE function 665
UNICODE_STR function 666
UNION clause

duplicate rows 811
fullselect 811

UNIQUE clause
ALTER TABLE statement 1021
CREATE INDEX statement 1273
CREATE TABLE statement 1404, 1417
SAVEPOINT statement 1863

unique constraints 23
unique indexes 7
unique keys 7
UNIQUE_COUNT column

SYSINDEXES catalog table 2211
UNIQUERULE column of SYSINDEXES catalog table 2211

2700 SQL Reference

unit of recovery 28, 30
COMMIT statement 1143
ROLLBACK statement 1859

unit of work 29
closes cursors 1777
dynamic caching 1797
ending 29, 1143, 1859
initiating 29
persistence of prepared statements 1797
referring to prepared statements 1781

universal table space 1472
universal table spaces 16
universal time, coordinated (UTC) 158
UNNEST

description 788
UNPACK function 760
unqualified object names 66

resolution 65
unsupported data types

SQLDA 2094
untyped parameter marker 1791
UPDATE

clause of TRIGGER statement 1485
statement

description 1933
example 1951

UPDATE privilege
GRANT statement 1722
REVOKE statement 1848

update rule 1944
UPDATEAUTH column of SYSTABAUTH catalog table 2383
UPDATECOLS column of SYSTABAUTH catalog table 2383
UPDATES column

SYSCOLUMNS catalog table 2155
UPDATESTATSTIME column

SYSINDEXSPACESTATS catalog table 2229
SYSTABLESPACESTATS catalog table 2410

updating
rows in a table 1933

UPPER function 668
URLDECODE function 2635
URLENCODE function 2635
USAGE privilege

GRANT statement 1714, 1725
REVOKE statement 1839, 1851

USEAUTH
column of SYSSEQUENCEAUTH catalog table 2364

USEAUTH column of SYSRESAUTH catalog table 2341
USER 204
USER clause

SET PATH statement 1921
USER special register 202
user-defined data types 107
user-defined function

altering with ALTER FUNCTION statement 852, 871
changing with ALTER FUNCTION statement 899
creating with CREATE FUNCTION statement 1165, 1166,

1191, 1210, 1224, 1251
dropping 1614
privileges 1703

revoking 1824
statements allowed 2030

user-defined function (UDF)
description 231
external functions 231
inheriting special registers 205
invocation 237

user-defined function (UDF) (continued)
MQSeries functions 337
name, unqualified 66
naming convention 59
resolution 234
sample

ALTDATE 2609
ALTTIME 2612
BASE64DECODE 2614
BASE64ENCODE 2614
CURRENCY 2615
DAYNAME 2617
HTTPBLOB 2618
HTTPCLOB 2619
HTTPDELETEBLOB 2621
HTTPDELETECLOB 2621
HTTPGETBLOB 2622
HTTPGETBLOBFILE 2624
HTTPGETCLOB 2622
HTTPGETCLOBFILE 2624
HTTPHEAD 2625
HTTPPOSTBLOB 2626
HTTPPOSTCLOB function 2626
HTTPPUTBLOB 2627
HTTPPUTCLOB 2627
MONTHNAME 2628
TABLE_LOCATION 2629
TABLE_NAME 2631
TABLE_SCHEMA 2633
URLDECODE 2635
URLENCODE 2635
WEATHER 2636

sourced functions 231
table functions 231
unqualified name 66
version resolution 239

user-defined type
assignment of values 131
comparison of values 142
dropping 1621

user-defined types 35
USERNAMES column

IPNAMES catalog table 2120
LUNAMES catalog table 2127

USING clause
ALTER INDEX statement 912, 914
ALTER TABLESPACE statement 1086
CREATE INDEX statement 1281, 1283
CREATE TABLESPACE statement 1459, 1461
DESCRIBE statement 1597, 1607
EXECUTE statement 1634
OPEN statement 1776
PREPARE statement 1783

USING DESCRIPTOR clause
EXECUTE statement 1634, 1635
OPEN statement 1776

USING host-variable-array clause
EXECUTE statement 1634

USING TYPE DEFAULTS clause
CREATE TABLE statement 1427
DECLARE GLOBAL TEMPORARY TABLE statement 1555

USING VALUES clause
MERGE statement 1765

UTC (universal time, coordinated) 158
UTF-16 42
UTF-8 42

Index 2701

V
VALID column

SYSPACKAGE catalog table 2265
SYSPLAN catalog table 2306

VALIDATE
column of SYSPACKAGE catalog table 2265
column of SYSPLAN catalog table 2306

VALIDATE clause
ALTER PROCEDURE (SQL - native) statement 965
CREATE PROCEDURE (SQL - native) statement 888,

1241, 1366
validation procedure 1046
validation routine

VALIDPROC clause 1046, 1432
VALIDPROC clause

ALTER TABLE statement 1046
CREATE TABLE statement 1432

VALPROC column of SYSTABLES catalog table 2396
value

SQL 80
VALUE column

SYSCTXTTRUSTATTRS catalog table 2188
VALUE function 144, 412, 491, 670
VALUES clause

CREATE INDEX statement 1296
CREATE TABLE statement 1451
INSERT statement 1739, 1741
VALUES INTO statement 1957
VALUES statement 1955

VALUES INTO statement
description 1956
example 1959

VALUES statement
description 1955
example 1955

VAR function 361
VAR_POP function 361
VAR_SAMP function 361
VARBINARY

data type
description 96

function 671
VARCHAR

data type
CREATE TABLE statement 1399
description 85

function 673
VARCHAR_FORMAT function 680
VARGRAPHIC

data type
CREATE TABLE statement 1399
description 95

function 690
variable

built-in global
referencing 223

built-in session
referencing 225

description 214
host

referencing 215
SQL syntax 215

referencing 214
SQL syntax 214
substitution for parameter markers 1634

VARIABLE clause
COMMENT statement 1141

VARIABLE clause (continued)
DECLARE VARIABLE statement 1570

VARIANCE function 361
VARIANCE_SAMP function 361
VARIANT clause

CREATE FUNCTION statement 1189, 1209, 1249
CREATE PROCEDURE (external) statement 1336
CREATE PROCEDURE (SQL - external) statement 1348
CREATE PROCEDURE (SQL - native) statement 1371

VARID column
SYSVARIABLES catalog table 2429

VCAT
USING clause

ALTER INDEX statement 912
CREATE INDEX statement 915, 1282, 1284
CREATE TABLESPACE statement 1459, 1461

VCAT clause
ALTER TABLESPACE statement 1086
CREATE STOGROUP statement 1384

VCATNAME column
SYSINDEXPART catalog table 2221
SYSSTOGROUP catalog table 2377
SYSTABLEPART catalog table 2387

VERIFY_GROUP_FOR_USER function 694
VERIFY_ROLE_FOR_USER function 696
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER

function 698
VERSION

column of SYSDBRM catalog table 2196
column of SYSPACKAGE catalog table 2265
column of SYSPACKSTMT catalog table 2290

VERSION clause
COMMENT statement 1139
CREATE PROCEDURE (SQL - native) statement 1356
DROP statement 1617

VERSION column
SYSINDEXES catalog table 2211
SYSPARMS catalog table 2297
SYSROUTINES catalog table 2346
SYSTABLES catalog table 2396

version identification, current server 1149
version resolution 239
VERSION session variable 225
view

creating
CREATE VIEW statement 1527

dropping
description 1622

name, unqualified 66
naming convention 63
privileges 1847

granting 1721
regenerating

ALTER VIEW statement 1109
unqualified name 66
using

adding comments 2606
read-only 1532
retrieving catalog information 2600
retrieving comments 2606

VIEW clause
CREATE VIEW statement 1527
DROP statement 1622

views
overview 9

VOLATILE
clause of CREATE TABLE statement 1434

2702 SQL Reference

VOLATILE clause
ALTER TABLE statement 1040

VOLID column of SYSVOLUMES catalog table 2441
VOLUMES clause

CREATE STOGROUP statement 1384
VSAM (virtual storage access method)

catalog 1284

W
WEATHER function 2636
WEEK function 700
WEEK_ISO function 701
WHEN clause of TRIGGER statement 1488
WHEN MATCHED clause

MERGE statement 1766
WHEN NOT MATCHED clause

MERGE statement 1766
WHENEVER statement

description 1961
example 1962

WHERE clause
DELETE statement 1580
description 795
search condition 795
UPDATE statement 1942

WHERE CURRENT OF clause
DELETE statement 1581
UPDATE statement 1942

WHILE statement
example 2010, 2068
SQL procedure 2010, 2068

WITH AUTHENTICATION clause
ALTER TRUSTED CONTEXT statement 1106
CREATE TRUSTED CONTEXT statement 1506, 1507

WITH CHECK OPTION clause of CREATE VIEW
statement 1530

WITH clause
select-statement 827

WITH common-table-expression clause
select-statement 820

WITH common-table-expression clause of CREATE VIEW
statement 1529

WITH EXPLAIN clause
ALTER PROCEDURE (SQL - native) statement 961
CREATE PROCEDURE (SQL - native) statement 885,

1238, 1362
WITH GRANT OPTION clause

GRANT statement 1697
WITH HOLD clause of DECLARE CURSOR statement 1539
WITH IMMEDIATE WRITE clause

ALTER PROCEDURE (SQL - native) statement 962
CREATE PROCEDURE (SQL - native) statement 886,

1239, 1363
WITH KEEP DYNAMIC clause

ALTER PROCEDURE (SQL - native) statement 962
CREATE PROCEDURE (SQL - native) statement 1364

WITH PROCEDURE clause of ASSOCIATE LOCATORS
statement 1111

WITH RETURN clause of DECLARE CURSOR
statement 1539

WITH RETURN clause of PREPARE statement 1786
WITH ROWSET POSITIONING clause

DECLARE CURSOR statement 1541
PREPARE statement 1787

WITH USE FOR clause
CREATE TRUSTED CONTEXT statement 1505

WITHOUT AUTHENTICATION clause
ALTER TRUSTED CONTEXT statement 1106
CREATE TRUSTED CONTEXT statement 1506, 1507

WITHOUT EXPLAIN clause
ALTER PROCEDURE (SQL - native) statement 961
CREATE PROCEDURE (SQL - native) statement 885,

1238, 1362
WITHOUT HOLD clause of DECLARE CURSOR

statement 1539
WITHOUT IMMEDIATE WRITE clause

ALTER PROCEDURE (SQL - native) statement 962
CREATE PROCEDURE (SQL - native) statement 886,

1239, 1363
WITHOUT KEEP DYNAMIC clause

ALTER PROCEDURE (SQL - native) statement 962
CREATE PROCEDURE (SQL - native) statement 1364

WITHOUT RETURN clause of DECLARE CURSOR
statement 1539

WITHOUT RETURN clause of PREPARE statement 1786
WITHOUT ROWSET POSITIONING clause

DECLARE CURSOR statement 1540
PREPARE statement 1787

WLM ENVIRONMENT clause
ALTER FUNCTION statement 866
ALTER PROCEDURE (external) statement 937
ALTER PROCEDURE (SQL - external) statement 943
CREATE FUNCTION statement 1183, 1206
CREATE PROCEDURE (external) statement 1332
CREATE PROCEDURE (SQL - external) statement 1345

WLM ENVIRONMENT FOR DEBUG MODE clause
ALTER PROCEDURE (SQL - native) statement 958
CREATE PROCEDURE (SQL - native) statement 883,

1236, 1360
WLM_ENV_FOR_NESTED column of SYSROUTINES catalog

table 2346
WLM_ENVIRONMENT column of SYSROUTINES catalog

table 2346
work file database

creating 1163
description 23

WORKAREA column of SYSFIELDS catalog table 2207
WRITEAUTH column

SYSVARIABLEAUTH catalog table 2432

X
XML

assignment of values 131
comparison of values 138
data type

CREATE TABLE statement 1399
host variable 219

XML operands 148
XML pattern expression clause

CREATE INDEX statement 1277
XML schema repository

description 2460
XML schema repository tables

indexes 2461
table space 2461
XSRCOMPONENT 2462
XSROBJECTCOMPONENTS 2465
XSROBJECTGRAMMAR 2466
XSROBJECTHIERARCHIES 2467
XSROBJECTPROPERTY 2468
XSROBJECTS 2463
XSRPROPERTY 2469

Index 2703

XML schema repository, DB2
tables 2460

XML table spaces 16
XML values

data type 106
XML-attribute

naming convention 64
XML-element

naming convention 64
XMLAGG function 363
XMLATTRIBUTES function 703
XMLCAST specification

description 276
XMLCOMMENT function 704
XMLCONCAT function 705
XMLDOCUMENT function 706
XMLELEMENT function 707
XMLEXISTS

predicate 321
XMLFOREST function 712
XMLMODIFY

function 715
XMLNAMESPACES function 718
XMLPARSE function 720
XMLPATTERN clause

CREATE INDEX statement 1276
XMLPI function 722
XMLQUERY function 723
XMLRELOBID column

SYSXMLRELS catalog table 2442
XMLSCHEMA

data type
CREATE TABLE statement 1399

XMLSERIALIZE function 727
XMLTABLE table function

description 755
XMLTBNAME column

SYSXMLRELS catalog table 2442
XMLTBOWNER column

SYSXMLRELS catalog table 2442
XMLTEXT function 730
XMLXSROBJECTID function 731
XSR

See XML schema repository
XSRCOMPONENTID column

SYSIBM.XSROBJECTCOMPONENTS table 2465
SYSIBM.XSROBJECTHIERARCHIES table 2467

XSROBJECTID column
SYSIBM.XSROBJECTHIERARCHIES table 2467
SYSIBM.XSROBJECTS table 2463

XSROBJECTNAME column
SYSIBM.XSROBJECTS table 2463

XSROBJECTSCHEMA column
SYSIBM.XSROBJECTS table 2463

Y
YEAR function 732

2704 SQL Reference

����

Product Number: 5615-DB2
5697-P43

Printed in USA

SC19-4066-00

Sp
in
e
in
fo
rm
at
io
n:

DB
2

11
fo

rz
/O

S
SQ

L
Re

fe
re

nc
e

�
�

�

	Contents
	About this information
	Who should read this information
	DB2 Utilities Suite
	Terminology and citations
	Accessibility features for DB2 11 for z/OS
	How to send your comments
	How to read syntax diagrams
	Conventions for describing mixed data values
	Industry standards

	Chapter 1. DB2 concepts
	Structured query language
	Static SQL
	Dynamic SQL
	Deferred embedded SQL
	Interactive SQL
	SQL Call Level Interface and Open Database Connectivity
	Java database connectivity and embedded SQL for Java

	DB2 data structures
	DB2 tables
	DB2 indexes
	DB2 keys
	DB2 views
	DB2 schemas and schema qualifiers
	DB2 storage groups
	DB2 databases

	Storage structures
	DB2 table spaces
	DB2 index spaces

	DB2 hash spaces
	DB2 system objects
	DB2 catalog
	DB2 directory
	Active and archive logs
	Bootstrap data set
	Buffer pools
	Data definition control support database
	Resource limit facility tables
	Work file database

	DB2 and data integrity
	Constraints
	Unique constraints
	Referential constraints
	Check constraints

	Triggers

	Application processes, concurrency, and recovery
	Locking, commit, and rollback
	Unit of work
	Unit of recovery
	Rolling back work
	Packages and application plans

	Routines
	Functions
	Stored procedures

	Sequences
	User-defined types
	Distributed data
	Connections
	Distributed unit of work
	Connection management
	SQL connection states
	Application process connection states

	Remote unit of work
	Connection management

	Character conversion
	Character sets and code pages
	Coded character sets and CCSIDS
	Determining the encoding scheme and CCSID of a string
	Expanding conversions
	Contracting conversions

	Chapter 2. Language elements
	Characters
	Tokens
	Identifiers
	SQL identifiers
	Ordinary identifiers
	Delimited identifiers

	Host identifiers
	Restrictions for distributed access

	Naming conventions
	SQL path
	Resolution of unqualified object names
	Qualification of unqualified object names
	Unqualified alias, index, JAR file, sequence, table, trigger, and view names
	Unqualified type, function, procedure, global variable, and specific names

	Aliases
	Synonyms
	Authorization, privileges, permissions, masks, and object ownership
	Authorization IDs, roles, and authorization names
	Authorization IDs and schema names
	Authorization IDs and statement preparation
	Authorization IDs and dynamic SQL
	Authorization IDs and remote execution
	DRDA access with DB2 for z/OS only
	DRDA access with a server or requester other than DB2
	Authorization ID translations
	Other security measures

	Data types
	Nulls
	Numbers
	Small integer (SMALLINT)
	Large integer (INTEGER)
	Big integer (BIGINT)
	Single precision floating-point (REAL)
	Double precision floating-point (DOUBLE or FLOAT)
	Decimal (DECIMAL or NUMERIC)
	Decimal floating-point (DECFLOAT)
	Numeric host variables
	String representations of numeric values
	Subnormal numbers and underflow

	Character strings
	Default CCSIDs
	Fixed-length character strings
	Varying-length character strings
	Character string variables
	Character string encoding schemes
	Examples
	String unit specifications

	Graphic strings
	Fixed-length graphic strings
	Varying-length graphic strings
	Graphic string variables
	Graphic string encoding schemes
	String units in built-in functions

	Binary strings
	Fixed-length binary strings
	Varying-length binary strings

	Large objects (LOBs)
	Restrictions using LOBs
	Manipulating LOBs using locators

	Datetime values
	Date
	Time
	Timestamp
	Datetime host variables
	String representations of datetime values
	Determination of the implicit time zone
	Restrictions on the use of local datetime formats

	Row ID values
	XML values
	User-defined data types
	Distinct types
	Array types

	Promotion of data types
	Casting between data types
	Implicit cast from numeric data to string data
	Implicit cast from string data to numeric data

	Assignment and comparison
	Numeric assignments
	Decimal or integer to floating-point
	Floating-point or decimal to integer
	Decimal to decimal
	Decimal to DECFLOAT
	Integer to decimal
	Integer to DECFLOAT
	Floating-point to floating-point
	Floating-point to decimal
	Floating point to DECFLOAT
	DECFLOAT to integer
	DECFLOAT to decimal
	DECFLOAT to floating-point
	DECFLOAT(16) to DECFLOAT(34)
	DECFLOAT(34) to DECFLOAT(16)
	To COBOL integers

	String assignments
	Binary string assignment
	Character and graphic string assignment
	Assignments involving mixed data strings
	Assignments involving C NUL-terminated strings
	Conversion rules for string assignment

	Datetime assignments
	Row ID assignments
	XML assignments
	User-defined type assignments
	Distinct type assignments
	Array type assignments

	Assignments to LOB locators
	Numeric comparisons
	String comparisons
	Binary string comparisons
	Character and graphic string comparisons

	Datetime comparisons
	Row ID comparisons
	XML comparisons
	Conversion rules for comparisons
	User-defined type comparisons
	Distinct type comparisons
	Array type comparisons

	Rules for result data types
	Numeric operands
	Character and graphic string operands
	Binary string operands
	Datetime operands
	Row ID operands
	XML operands
	Distinct type operands

	Constants
	Integer constants
	Floating-point constants
	Decimal constants
	Decimal floating-point constants
	Character string constants
	Binary string constants
	Datetime constants
	Graphic string constants

	Special registers
	General rules for special registers
	CURRENT APPLICATION COMPATIBILITY
	CURRENT APPLICATION ENCODING SCHEME
	CURRENT CLIENT_ACCTNG
	CURRENT CLIENT_APPLNAME
	CURRENT CLIENT_CORR_TOKEN
	CURRENT CLIENT_USERID
	CURRENT CLIENT_WRKSTNNAME
	CURRENT DATE
	CURRENT DEBUG MODE
	CURRENT DECFLOAT ROUNDING MODE
	CURRENT DEGREE
	CURRENT EXPLAIN MODE
	CURRENT GET_ACCEL_ARCHIVE
	CURRENT LOCALE LC_CTYPE
	CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
	CURRENT MEMBER
	CURRENT OPTIMIZATION HINT
	CURRENT PACKAGE PATH
	CURRENT PACKAGESET
	CURRENT PATH
	CURRENT PRECISION
	CURRENT QUERY ACCELERATION
	CURRENT REFRESH AGE
	CURRENT ROUTINE VERSION
	CURRENT RULES
	CURRENT SCHEMA
	CURRENT SERVER
	CURRENT SQLID
	CURRENT TEMPORAL BUSINESS_TIME
	CURRENT TEMPORAL SYSTEM_TIME
	CURRENT TIME
	CURRENT TIMESTAMP
	CURRENT TIME ZONE
	ENCRYPTION PASSWORD
	SESSION_USER
	SESSION TIME ZONE
	USER
	Special registers in a user-defined function or a stored procedure

	Column names
	Qualified column names
	Correlation names
	Column name qualifiers to avoid ambiguity
	Column name qualifiers in correlated references
	Resolution of column name qualifiers and column names

	References to variables
	References to host variables
	Host variables in dynamic SQL
	References to LOB host variables
	References to LOB locator variables
	References to XML host variables
	References to file reference variables
	References to stored procedure result sets
	References to result set locator variables
	References to built-in global variables
	References to built-in session variables
	References to array variables

	Host structures in PL/I, C, and COBOL
	Host-variable-arrays in PL/I, C, C++, and COBOL
	Functions
	Types of functions
	Built-in functions
	User-defined functions
	Generated user-defined functions for distinct types
	Additional way to classify functions

	Function invocation
	Function resolution
	Determining the best fit
	SQL path considerations for built-in functions
	Version resolution
	Examples of function resolution

	Expressions
	Expressions without operators
	Expressions with arithmetic operators
	Arithmetic with two integer operands
	Arithmetic with an integer and a decimal operand
	Arithmetic with an integer and a decimal floating-point operand
	Arithmetic with two decimal operands
	Arithmetic with a decimal and a decimal floating-point operand
	Arithmetic with floating-point operands
	Arithmetic with a floating-point and a decimal floating-point operand
	Arithmetic with two decimal floating-point operands
	Arithmetic with distinct type operands

	Expressions with the concatenation operator
	Scalar-fullselect
	Datetime operands and durations
	Time zone specific expressions
	Datetime arithmetic in SQL
	Date arithmetic
	Time arithmetic
	Timestamp arithmetic

	Precedence of operations
	CASE expressions
	CAST specification
	XMLCAST specification
	Array element specification
	Array constructor
	OLAP specification
	ROW CHANGE expression
	Sequence reference

	Predicates
	Basic predicate
	Quantified predicate
	ARRAY_EXISTS predicate
	BETWEEN predicate
	DISTINCT predicate
	EXISTS predicate
	IN predicate
	LIKE predicate
	NULL predicate
	XMLEXISTS predicate

	Search conditions
	Options affecting SQL
	SQL processing options for dynamic statements
	DECFLOAT rounding mode
	Decimal point representation
	Apostrophes and quotation marks as string delimiters
	Katakana characters for EBCDIC
	Mixed data in character strings
	Formatting of datetime strings
	SQL standard language
	Positioned updates of columns

	Mappings from SQL to XML
	Mapping SQL character sets to XML character sets
	Mapping SQL identifiers to XML names
	Mapping SQL data values to XML data values

	Chapter 3. Functions
	Aggregate functions
	ARRAY_AGG
	AVG
	CORRELATION
	COUNT
	COUNT_BIG
	COVARIANCE or COVARIANCE_SAMP
	MAX
	MIN
	STDDEV or STDDEV_SAMP
	SUM
	VARIANCE or VARIANCE_SAMP
	XMLAGG

	Scalar functions
	ABS
	ACOS
	ADD_MONTHS
	ARRAY_DELETE
	ARRAY_FIRST
	ARRAY_LAST
	ARRAY_NEXT
	ARRAY_PRIOR
	ASCII
	ASCII_CHR
	ASCII_STR
	ASIN
	ATAN
	ATANH
	ATAN2
	BIGINT
	BINARY
	BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT
	BLOB
	CARDINALITY
	CCSID_ENCODING
	CEILING
	CHAR
	CHARACTER_LENGTH
	CLOB
	COALESCE
	COLLATION_KEY
	COMPARE_DECFLOAT
	CONCAT
	CONTAINS
	COS
	COSH
	DATE
	DAY
	DAYOFMONTH
	DAYOFWEEK
	DAYOFWEEK_ISO
	DAYOFYEAR
	DAYS
	DBCLOB
	DECFLOAT
	DECFLOAT_FORMAT
	DECFLOAT_SORTKEY
	DECIMAL or DEC
	DECODE
	DECRYPT_BINARY, DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB
	DEGREES
	DIFFERENCE
	DIGITS
	DOUBLE_PRECISION or DOUBLE
	DSN_XMLVALIDATE
	EBCDIC_CHR
	EBCDIC_STR
	ENCRYPT_TDES
	EXP
	EXTRACT
	FLOAT
	FLOOR
	GENERATE_UNIQUE
	GETHINT
	GETVARIABLE
	GRAPHIC
	HEX
	HOUR
	IDENTITY_VAL_LOCAL
	IFNULL
	INSERT
	INTEGER or INT
	JULIAN_DAY
	LAST_DAY
	LCASE
	LEFT
	LENGTH
	LN
	LOCATE
	LOCATE_IN_STRING
	LOG10
	LOWER
	LPAD
	LTRIM
	MAX
	MAX_CARDINALITY
	MICROSECOND
	MIDNIGHT_SECONDS
	MIN
	MINUTE
	MOD
	MONTH
	MONTHS_BETWEEN
	MQREAD
	MQREADCLOB
	MQRECEIVE
	MQRECEIVECLOB
	MQSEND
	MULTIPLY_ALT
	NEXT_DAY
	NORMALIZE_DECFLOAT
	NORMALIZE_STRING
	NULLIF
	NVL
	OVERLAY
	PACK
	POSITION
	POSSTR
	POWER
	QUANTIZE
	QUARTER
	RADIANS
	RAISE_ERROR
	RAND
	REAL
	REPEAT
	REPLACE
	RID
	RIGHT
	ROUND
	ROUND_TIMESTAMP
	ROWID
	RPAD
	RTRIM
	SCORE
	SECOND
	SIGN
	SIN
	SINH
	SMALLINT
	SOUNDEX
	SOAPHTTPC and SOAPHTTPV
	SOAPHTTPNC and SOAPHTTPNV
	SPACE
	SQRT
	STRIP
	SUBSTR
	SUBSTRING
	TAN
	TANH
	TIME
	TIMESTAMP
	TIMESTAMPADD
	TIMESTAMP_FORMAT
	TIMESTAMP_ISO
	TIMESTAMPDIFF
	TIMESTAMP_TZ
	TO_CHAR
	TO_DATE
	TO_NUMBER
	TOTALORDER
	TRANSLATE
	TRIM
	TRIM_ARRAY
	TRUNCATE or TRUNC
	TRUNC_TIMESTAMP
	UCASE
	UNICODE
	UNICODE_STR
	UPPER
	VALUE
	VARBINARY
	VARCHAR
	VARCHAR_FORMAT
	VARGRAPHIC
	VERIFY_GROUP_FOR_USER
	VERIFY_ROLE_FOR_USER
	VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER
	WEEK
	WEEK_ISO
	XMLATTRIBUTES
	XMLCOMMENT
	XMLCONCAT
	XMLDOCUMENT
	XMLELEMENT
	XMLFOREST
	XMLMODIFY
	XMLNAMESPACES
	XMLPARSE
	XMLPI
	XMLQUERY
	XMLSERIALIZE
	XMLTEXT
	XMLXSROBJECTID
	YEAR

	Table functions
	ADMIN_TASK_LIST
	ADMIN_TASK_OUTPUT
	ADMIN_TASK_STATUS
	MQREADALL
	MQREADALLCLOB
	MQRECEIVEALL
	MQRECEIVEALLCLOB
	XMLTABLE

	Row functions
	UNPACK

	Chapter 4. Queries
	Authorization
	subselect
	select-clause
	unpacked-row

	from-clause
	table-reference
	collection-derived-table
	joined-table

	where-clause
	group-by-clause
	having-clause
	order-by-clause
	fetch-first-clause
	Examples of subselects

	fullselect
	Character conversion in set operations and concatenations
	Selecting the result CCSID

	select-statement
	common-table-expression
	update-clause
	read-only-clause
	optimize-clause
	isolation-clause
	queryno-clause
	SKIP LOCKED DATA
	Examples of select statements

	Chapter 5. Statements
	How SQL statements are invoked
	Embedding a statement in an application program
	Dynamic preparation and execution
	Static invocation of a SELECT statement
	Dynamic invocation of a SELECT statement
	Interactive invocation
	SQL diagnostics information
	Detecting and processing error and warning conditions in host language applications
	SQLSTATE
	SQLCODE

	SQL comments
	ALLOCATE CURSOR
	ALTER DATABASE
	ALTER FUNCTION (external)
	ALTER FUNCTION (SQL scalar)
	ALTER FUNCTION (SQL table)
	ALTER INDEX
	ALTER MASK
	ALTER PERMISSION
	ALTER PROCEDURE (external)
	ALTER PROCEDURE (SQL - external)
	ALTER PROCEDURE (SQL - native)
	ALTER SEQUENCE
	ALTER STOGROUP
	ALTER TABLE
	ALTER TABLESPACE
	ALTER TRIGGER
	ALTER TRUSTED CONTEXT
	ALTER VIEW
	ASSOCIATE LOCATORS
	BEGIN DECLARE SECTION
	CALL
	CLOSE
	COMMENT
	COMMIT
	CONNECT
	CREATE ALIAS
	CREATE AUXILIARY TABLE
	CREATE DATABASE
	CREATE FUNCTION
	CREATE FUNCTION (external scalar)
	CREATE FUNCTION (external table)
	CREATE FUNCTION (sourced)
	CREATE FUNCTION (SQL scalar)
	CREATE FUNCTION (SQL table)
	CREATE GLOBAL TEMPORARY TABLE
	CREATE INDEX
	CREATE MASK
	CREATE PERMISSION
	CREATE PROCEDURE
	CREATE PROCEDURE (external)
	CREATE PROCEDURE (SQL - external)
	CREATE PROCEDURE (SQL - native)
	CREATE ROLE
	CREATE SEQUENCE
	CREATE STOGROUP
	CREATE SYNONYM
	CREATE TABLE
	CREATE TABLESPACE
	CREATE TRIGGER
	CREATE TRUSTED CONTEXT
	CREATE TYPE
	CREATE TYPE (array)
	CREATE TYPE (distinct)
	CREATE VARIABLE
	CREATE VIEW
	DECLARE CURSOR
	DECLARE GLOBAL TEMPORARY TABLE
	DECLARE STATEMENT
	DECLARE TABLE
	DECLARE VARIABLE
	DELETE
	DESCRIBE
	DESCRIBE CURSOR
	DESCRIBE INPUT
	DESCRIBE OUTPUT
	DESCRIBE PROCEDURE
	DESCRIBE TABLE
	DROP
	END DECLARE SECTION
	EXCHANGE
	EXECUTE
	EXECUTE IMMEDIATE
	EXPLAIN
	FETCH
	FREE LOCATOR
	GET DIAGNOSTICS
	GRANT
	GRANT (collection privileges)
	GRANT (database privileges)
	GRANT (function or procedure privileges)
	GRANT (package privileges)
	GRANT (plan privileges)
	GRANT (schema privileges)
	GRANT (sequence privileges)
	GRANT (system privileges)
	GRANT (table or view privileges)
	GRANT (type or JAR file privileges)
	GRANT (variable privileges)
	GRANT (use privileges)
	HOLD LOCATOR
	INCLUDE
	INSERT
	LABEL
	LOCK TABLE
	MERGE
	OPEN
	PREPARE
	REFRESH TABLE
	RELEASE (connection)
	RELEASE SAVEPOINT
	RENAME
	REVOKE
	REVOKE (collection privileges)
	REVOKE (database privileges)
	REVOKE (function or procedure privileges)
	REVOKE (package privileges)
	REVOKE (plan privileges)
	REVOKE (schema privileges)
	REVOKE (sequence privileges)
	REVOKE (system privileges)
	REVOKE (table or view privileges)
	REVOKE (type or JAR file privileges)
	REVOKE (variable privileges)
	REVOKE (use privileges)
	ROLLBACK
	SAVEPOINT
	SELECT
	SELECT INTO
	SET CONNECTION
	SET assignment-statement
	SET CURRENT APPLICATION COMPATIBILITY
	SET CURRENT APPLICATION ENCODING SCHEME
	SET CURRENT DEBUG MODE
	SET CURRENT DECFLOAT ROUNDING MODE
	SET CURRENT DEGREE
	SET CURRENT EXPLAIN MODE
	SET CURRENT GET_ACCEL_ARCHIVE
	SET CURRENT LOCALE LC_CTYPE
	SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
	SET CURRENT OPTIMIZATION HINT
	SET CURRENT PACKAGE PATH
	SET CURRENT PACKAGESET
	SET CURRENT PRECISION
	SET CURRENT QUERY ACCELERATION
	SET CURRENT REFRESH AGE
	SET CURRENT ROUTINE VERSION
	SET CURRENT RULES
	SET CURRENT SQLID
	SET CURRENT TEMPORAL BUSINESS_TIME
	SET CURRENT TEMPORAL SYSTEM_TIME
	SET ENCRYPTION PASSWORD
	SET PATH
	SET SCHEMA
	SET SESSION TIME ZONE
	SIGNAL
	TRUNCATE
	UPDATE
	VALUES
	VALUES INTO
	WHENEVER

	Chapter 6. SQL control statements for SQL routines
	References to SQL parameters and SQL variables
	References to SQL condition names
	References to SQL cursor names
	References to labels
	Nested compound statements and scope of names
	SQL-procedure-statement
	assignment-statement
	CALL statement
	CASE statement
	compound-statement
	FOR statement
	GET DIAGNOSTICS statement
	GOTO statement
	IF statement
	ITERATE statement
	LEAVE statement
	LOOP statement
	REPEAT statement
	RESIGNAL statement
	RETURN statement
	SIGNAL statement
	WHILE statement

	Appendix. Additional information for DB2 SQL
	Limits in DB2 for z/OS
	Reserved schema names and reserved words
	Reserved schema names
	Reserved words

	Characteristics of SQL statements in DB2 for z/OS
	Actions allowed on SQL statements
	SQL statements allowed in external functions and stored procedures

	SQL control statements for external SQL procedures
	References to SQL parameters and SQL variables
	SQL-procedure-statement
	assignment-statement (SQL control statements for external routines)
	CALL statement
	CASE statement
	compound-statement
	GET DIAGNOSTICS statement
	GOTO statement
	IF statement
	ITERATE statement
	LEAVE statement
	LOOP statement
	REPEAT statement
	RESIGNAL statement
	RETURN statement
	SIGNAL statement
	WHILE statement

	SQL communication area (SQLCA)
	Description of SQLCA fields
	The included SQLCA
	The REXX SQLCA

	SQL descriptor area (SQLDA)
	Description of SQLDA fields
	The SQLDA Header
	SQLVAR entries

	Unrecognized and unsupported SQLTYPES
	The included SQLDA
	Identifying an SQLDA in C or C++
	The REXX SQLDA

	DB2 catalog tables
	Table spaces and indexes
	SQL statements allowed on the catalog
	Reorganizing the catalog

	New and changed catalog tables
	SYSIBM.IPLIST table
	SYSIBM.IPNAMES table
	SYSIBM.LOCATIONS table
	SYSIBM.LULIST table
	SYSIBM.LUMODES table
	SYSIBM.LUNAMES table
	SYSIBM.MODESELECT table
	SYSIBM.SYSAUDITPOLICIES table
	SYSIBM.SYSAUTOALERTS table
	SYSIBM.SYSAUTOALERTS_OUT table
	SYSIBM.SYSAUTORUNS_HIST table
	SYSIBM.SYSAUTORUNS_HISTOU table
	SYSIBM.SYSAUTOTIMEWINDOWS table
	SYSIBM.SYSAUXRELS table
	SYSIBM.SYSCHECKDEP table
	SYSIBM.SYSCHECKS table
	SYSIBM.SYSCHECKS2 table
	SYSIBM.SYSCOLAUTH table
	SYSIBM.SYSCOLDIST table
	SYSIBM.SYSCOLDISTSTATS table
	SYSIBM.SYSCOLDIST_HIST table
	SYSIBM.SYSCOLSTATS table
	SYSIBM.SYSCOLUMNS table
	SYSIBM.SYSCOLUMNS_HIST table
	SYSIBM.SYSCONSTDEP table
	SYSIBM.SYSCONTEXT table
	SYSIBM.SYSCONTEXTAUTHIDS table
	SYSIBM.SYSCONTROLS table
	SYSIBM.SYSCOPY table
	SYSIBM.SYSCTXTTRUSTATTRS table
	SYSIBM.SYSDATABASE table
	SYSIBM.SYSDATATYPES table
	SYSIBM.SYSDBAUTH table
	SYSIBM.SYSDBRM table
	SYSIBM.SYSDEPENDENCIES table
	SYSIBM.SYSDUMMY1 table
	SYSIBM.SYSDUMMYA table
	SYSIBM.SYSDUMMYE table
	SYSIBM.SYSDUMMYU table
	SYSIBM.SYSENVIRONMENT table
	SYSIBM.SYSFIELDS table
	SYSIBM.SYSFOREIGNKEYS table
	SYSIBM.SYSINDEXCLEANUP table
	SYSIBM.SYSINDEXES table
	SYSIBM.SYSINDEXES_HIST table
	SYSIBM.SYSINDEXES_RTSECT table
	SYSIBM.SYSINDEXES_TREE table
	SYSIBM.SYSINDEXPART table
	SYSIBM.SYSINDEXPART_HIST table
	SYSIBM.SYSINDEXSPACESTATS table
	SYSIBM.SYSINDEXSTATS table
	SYSIBM.SYSINDEXSTATS_HIST table
	SYSIBM.SYSJARCLASS_SOURCE table
	SYSIBM.SYSJARCONTENTS table
	SYSIBM.SYSJARDATA table
	SYSIBM.SYSJAROBJECTS table
	SYSIBM.SYSJAVAOPTS table
	SYSIBM.SYSJAVAPATHS table
	SYSIBM.SYSKEYCOLUSE table
	SYSIBM.SYSKEYS table
	SYSIBM.SYSKEYTARGETS table
	SYSIBM.SYSKEYTARGETSTATS table
	SYSIBM.SYSKEYTARGETS_HIST table
	SYSIBM.SYSKEYTGTDIST table
	SYSIBM.SYSKEYTGTDISTSTATS table
	SYSIBM.SYSKEYTGTDIST_HIST table
	SYSIBM.SYSLOBSTATS table
	SYSIBM.SYSLOBSTATS_HIST table
	SYSIBM.SYSOBJROLEDEP table
	SYSIBM.SYSPACKAGE table
	SYSIBM.SYSPACKCOPY table
	SYSIBM.SYSPACKAUTH table
	SYSIBM.SYSPACKDEP table
	SYSIBM.SYSPACKLIST table
	SYSIBM.SYSPACKSTMT table
	SYSIBM.SYSPACKSTMT_STMB table
	SYSIBM.SYSPACKSTMT_STMT table
	SYSIBM.SYSPARMS table
	SYSIBM.SYSPENDINGDDL table
	SYSIBM.SYSPENDINGOBJECTS table
	SYSIBM.SYSPKSYSTEM table
	SYSIBM.SYSPLAN table
	SYSIBM.SYSPLANAUTH table
	SYSIBM.SYSPLANDEP table
	SYSIBM.SYSPLSYSTEM table
	SYSIBM.SYSQUERY table
	SYSIBM.SYSQUERY_AUX table
	SYSIBM.SYSQUERYOPTS table
	SYSIBM.SYSQUERYPLAN table
	SYSIBM.SYSQUERYPREDICATE table
	SYSIBM.SYSQUERYSEL table
	SYSIBM.SYSRELS table
	SYSIBM.SYSRESAUTH table
	SYSIBM.SYSROLES table
	SYSIBM.SYSROUTINEAUTH table
	SYSIBM.SYSROUTINES table
	SYSIBM.SYSROUTINESTEXT table
	SYSIBM.SYSROUTINES_OPTS table
	SYSIBM.SYSROUTINES_TREE table
	SYSIBM.SYSROUTINES_SRC table
	SYSIBM.SYSSCHEMAAUTH table
	SYSIBM.SYSSEQUENCEAUTH table
	SYSIBM.SYSSEQUENCES table
	SYSIBM.SYSSEQUENCESDEP table
	SYSIBM.SYSSTATFEEDBACK table
	SYSIBM.SYSSTMT table
	SYSIBM.SYSSTOGROUP table
	SYSIBM.SYSSTRINGS table
	SYSIBM.SYSSYNONYMS table
	SYSIBM.SYSTABAUTH table
	SYSIBM.SYSTABCONST table
	SYSIBM.SYSTABLEPART table
	SYSIBM.SYSTABLEPART_HIST table
	SYSIBM.SYSTABLES table
	SYSIBM.SYSTABLESPACE table
	SYSIBM.SYSTABLESPACESTATS table
	SYSIBM.SYSTABLES_HIST table
	SYSIBM.SYSTABLES_PROFILES table
	SYSIBM.SYSTABLES_PROFILE_TEXT table
	SYSIBM.SYSTABSTATS table
	SYSIBM.SYSTABSTATS_HIST table
	SYSIBM.SYSTRIGGERS table
	SYSIBM.SYSTRIGGERS_STMT table
	SYSIBM.SYSUSERAUTH table
	SYSIBM.SYSVARIABLES table
	SYSIBM.SYSVARIABLEAUTH table
	SYSIBM.SYSVARIABLES_DESC table
	SYSIBM.SYSVARIABLES_TEXT table
	SYSIBM.SYSVIEWDEP table
	SYSIBM.SYSVIEWS table
	SYSIBM.SYSVIEWS_STMT table
	SYSIBM.SYSVIEWS_TREE table
	SYSIBM.SYSVOLUMES table
	SYSIBM.SYSXMLRELS table
	SYSIBM.SYSXMLSTRINGS table
	SYSIBM.USERNAMES table
	SYSIBM.SYSXMLTYPMOD table
	SYSIBM.SYSXMLTYPMSCHEMA table

	DB2 directory tables
	Directory table spaces and indexes
	SYSIBM.DBDR table
	SYSIBM.SYSDBD_DATA table
	SYSIBM.SCTR table
	SYSIBM.SPTR table
	SYSIBM.SYSSPTSEC_DATA table
	SYSIBM.SYSSPTSEC_EXPL table
	SYSIBM.SYSLGRNX table
	SYSIBM.SYSUTIL table
	SYSIBM.SYSUTILX table

	Performance information for SQL application programming
	DB2 XML schema repository tables
	XML schema repository (XSR) table spaces and indexes
	SYSIBM.XSRCOMPONENT table
	SYSIBM.XSROBJECTS table
	SYSIBM.XSROBJECTCOMPONENTS table
	SYSIBM.XSROBJECTGRAMMAR table
	SYSIBM.XSROBJECTHIERARCHIES table
	SYSIBM.XSROBJECTPROPERTY table
	SYSIBM.XSRPROPERTY table

	EXPLAIN tables
	PLAN_TABLE
	DSN_COLDIST_TABLE
	DSN_DETCOST_TABLE
	DSN_FILTER_TABLE
	DSN_FUNCTION_TABLE
	DSN_KEYTGTDIST_TABLE
	DSN_PGRANGE_TABLE
	DSN_PGROUP_TABLE
	DSN_PREDICAT_TABLE
	DSN_PREDICATE_SELECTIVITY table
	DSN_PTASK_TABLE
	DSN_QUERYINFO_TABLE
	DSN_QUERY_TABLE
	DSN_SORTKEY_TABLE
	DSN_SORT_TABLE
	DSN_STATEMENT_CACHE_TABLE
	DSN_STATEMNT_TABLE
	DSN_STAT_FEEDBACK
	DSN_STRUCT_TABLE
	DSN_VIEWREF_TABLE

	Tables that are used by accelerators
	SYSACCEL.SYSACCELERATORS table
	SYSACCEL.SYSACCELERATEDTABLES table

	Tables that are used for program authorization
	Table spaces and indexes for program authorization
	SYSIBM.DSNPROGAUTH table

	Using the catalog in database design
	Retrieving catalog information about DB2 storage groups
	Retrieving catalog information about a table
	Retrieving catalog information about partition order
	Retrieving catalog information about aliases
	Retrieving catalog information about columns
	Retrieving catalog information about indexes
	Retrieving catalog information about views
	Retrieving catalog information about authorizations
	Retrieving catalog information about primary keys
	Retrieving catalog information about foreign keys
	Retrieving catalog information about check pending
	Retrieving catalog information about check constraints
	Retrieving catalog information about LOBs
	Retrieving catalog information about user-defined functions and stored procedures
	Retrieving catalog information about triggers
	Retrieving catalog information about sequences
	Adding and retrieving comments
	Verifying the accuracy of the database definition

	Sample user-defined functions
	ALTDATE
	ALTTIME
	BASE64ENCODE and BASE64DECODE
	CURRENCY
	DAYNAME
	HTTPBLOB
	HTTPCLOB
	HTTPDELETEBLOB and HTTPDELETECLOB
	HTTPGETBLOB and HTTPGETCLOB
	HTTPGETBLOBFILE and HTTPGETCLOBFILE
	HTTPHEAD
	HTTPPOSTBLOB and HTTPPOSTCLOB
	HTTPPUTBLOB and HTTPPUTCLOB
	MONTHNAME
	TABLE_LOCATION
	TABLE_NAME
	TABLE_SCHEMA
	URLENCODE and URLDECODE
	WEATHER

	Information resources for DB2 for z/OS and related products
	Notices
	Programming interface information
	Trademarks
	Privacy policy considerations

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

