
DB2 11 for z/OS

Utility Guide and Reference

SC19-4067-00

���

DB2 11 for z/OS

Utility Guide and Reference

SC19-4067-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

First edition (October 2013)

This edition applies to DB2 11 for z/OS (product number 5615-DB2), DB2 11 for z/OS Value Unit Edition (product
number 5697-P43), DB2 Utilities Suite for z/OS, Version 11 (product number 5655-W87), and to any subsequent
releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the
product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright IBM Corporation 1983, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information . xv
Who should read this information . xv
DB2 Utilities Suite . xv
Terminology and citations . xv
Accessibility features for DB2 11 for z/OS . xvi
How to send your comments . xvii
Naming conventions used in this information . xvii
How to read syntax diagrams . xx

Part 1. Introduction to the DB2 utilities. 1

Chapter 1. Basic information about the DB2 utilities. 3
Types of DB2 utilities . 3
Privileges and authorization IDs . 3
Utilities that can be run on declared temporary objects . 4
Effect of utilities on objects that have the DEFINE NO attribute 4
Effect of utilities on data that is encrypted through built-in functions 5

Chapter 2. DB2 utilities packaging . 7
SMP/E jobs for DB2 utility products . 7
Operation of DB2 utilities in a mixed-release data sharing environment. 8

Part 2. DB2 online utilities. 9

Chapter 3. Invoking DB2 online utilities. 11
Data sets that online utilities use . 11
Utility control statements . 13
Required authorizations for invoking online utilities on tables that have multilevel security with row-level
granularity . 17
Invoking DB2 online utilities in a trusted connection . 17
Using the DB2 Utilities panel in DB2I . 17
Invoking a DB2 utility by using the DSNU CLIST command in TSO 20

DSNU CLIST command . 21
Invoking a DB2 utility by using the supplied JCL procedure (DSNUPROC) 27
Invoking a DB2 utility by creating the JCL data set yourself 30

Chapter 4. Monitoring and controlling online utilities 33
Monitoring utilities with the DISPLAY UTILITY command 33
Traces for monitoring processor use by utilities . 35
Running utilities concurrently . 35
Online utilities in a data sharing environment . 36
Termination of an online utility with the TERM UTILITY command 36
Subsystem parameters for refining DFSMSdss COPY operation with utilities 37
Restart of an online utility . 39

Using the RESTART parameter . 41
Adding or deleting utility statements . 42
Modifying utility control statements . 42
Restarting after the output data set is full . 43
Restarting with templates. 43
How utilities restart with lists . 44

Chapter 5. BACKUP SYSTEM . 45
Syntax and options of the BACKUP SYSTEM control statement 46

© Copyright IBM Corp. 1983, 2013 iii

Before running BACKUP SYSTEM. 49
Data sets that BACKUP SYSTEM uses . 49
Concurrency and compatibility for BACKUP SYSTEM . 50

Dumping a fast replication copy to tape . 50
Backups of log copy pools . 51
Termination or restart of BACKUP SYSTEM . 52
Sample BACKUP SYSTEM control statements . 52

Chapter 6. CATENFM. 55
Syntax and options of the CATENFM control statement . 55
Before converting the catalog . 56

Data sets that CATENFM uses when converting the catalog 56
Concurrency and compatibility for CATENFM. 57

Converting to new-function mode . 57
Termination or halt of CATENFM . 57

Chapter 7. CATMAINT . 59
Syntax and options of the CATMAINT control statement . 59
Before running CATMAINT . 61

Data sets that CATMAINT uses . 61
Concurrency and compatibility for CATMAINT . 62

Updating the catalog for a new release . 62
Renaming the owner, creator, and schema of database objects 62
Changing the ownership of objects from an authorization ID to a role 62
Changing the catalog name used by storage groups or index spaces and table spaces. 63
Identifying invalidated packages after the owner, creator, or schema name of an object is renamed 63
Termination or restart of CATMAINT. 64

Chapter 8. CHECK DATA . 65
Syntax and options of the CHECK DATA control statement 66
Before running CHECK DATA . 77

Data sets that CHECK DATA uses . 78
Concurrency and compatibility for CHECK DATA . 82

Exception tables for the CHECK DATA utility . 84
Exception processing for tables with auxiliary columns . 85
Specifying the scope of CHECK DATA . 85
How violations are identified . 86
Detection and correction of constraint violations . 86
CHECK DATA XML error detection . 87
Correcting XML data after running CHECK DATA . 87
Resetting CHECK-pending status . 88
LOB column errors . 88
Resetting auxiliary CHECK-pending status . 90
Termination and restart of CHECK DATA . 90
Sample CHECK DATA control statements . 91

Chapter 9. CHECK INDEX. 95
Syntax and options of the CHECK INDEX control statement 96
Data sets that CHECK INDEX uses . 100

Shadow data sets . 101
Concurrency and compatibility for CHECK INDEX. 103
Single logical partitions . 104
Indexes in parallel . 105
Reviewing CHECK INDEX output . 109
Termination or restart of CHECK INDEX . 110
Correcting XML data after running CHECK INDEX . 110
Sample CHECK INDEX control statements . 110

Chapter 10. CHECK LOB . 113
Syntax and options of the CHECK LOB control statement 114

iv Utility Guide and Reference

Before running CHECK LOB . 117
Data sets that CHECK LOB uses . 117
Concurrency and compatibility for CHECK LOB . 120

How CHECK LOB identifies violations . 121
Removing CHECK-pending status for a LOB table space . 121
Resolving media failure . 121
Termination or restart of CHECK LOB . 122
Sample CHECK LOB control statements . 122

Chapter 11. COPY . 125
Syntax and options of the COPY control statement . 127
Before running COPY . 139

Data sets that COPY uses . 139
Concurrency and compatibility for COPY . 142

Full image copies . 145
Incremental image copies . 146
Multiple image copies . 147
FlashCopy image copies . 149
Copies of lists of objects . 153
Using more than one COPY statement . 155
Copying partitions or data sets simultaneously . 155
Copies of partition-by-growth table spaces . 156
Copies of XML table spaces . 156
Copying catalog and directory objects . 157
Make copies of XML schema repository objects . 157
Copies of Indexes . 158
Using DFSMSdss concurrent copy . 158
Specifying conditional image copies . 160
Preparing for recovery by using the COPY utility . 161
Improving performance . 162
Generation data group definitions for the COPY utility . 162
Using DB2 with DFSMS products . 163
Image copies on tape . 163
Termination of COPY. 163
Restart of COPY . 164
Sample COPY control statements . 164

Chapter 12. COPYTOCOPY . 177
Syntax and options of the COPYTOCOPY control statement 178
Data sets that COPYTOCOPY uses . 183
Concurrency and compatibility for COPYTOCOPY . 185
Full or incremental image copies with COPYTOCOPY. 186
Incremental image copies with COPYTOCOPY . 186
Using more than one COPYTOCOPY statement . 186
Copying from a specific image copy. 187
Copying a FlashCopy image copy by using COPYTOCOPY 187
Using TEMPLATE with COPYTOCOPY . 188
Updating SYSCOPY records . 188
How COPYTOCOPY determines which input copy to use 188
Generation data group definitions for the COPYTOCOPY utility 189
Using DB2 with DFSMS products . 189
Image copies on tape . 189
Copies of lists of objects from tape . 189
Termination or restart of COPYTOCOPY . 190
Sample COPYTOCOPY control statements. 191

Chapter 13. DIAGNOSE . 195
Syntax and options of the DIAGNOSE control statement . 195
Data sets that DIAGNOSE uses . 199
Concurrency and compatibility for DIAGNOSE . 199

Contents v

Forcing a utility abend . 200
Termination or restart of DIAGNOSE . 200
Sample DIAGNOSE control statements . 200

Chapter 14. EXEC SQL . 203
Syntax and options of the EXEC SQL control statement . 203
Concurrency and compatibility for EXEC SQL . 205
Termination or restart of EXEC SQL . 205
Sample EXEC SQL control statements . 205

Chapter 15. LISTDEF . 207
Syntax and options of the LISTDEF control statement . 207
Concurrency and compatibility for LISTDEF . 218
Creating the LISTDEF control statement . 218
Including objects in a list . 219
Previewing the contents of a list . 222
Creating LISTDEF libraries . 223
Referencing LISTDEF lists in other utility jobs . 223
Using the TEMPLATE utility with LISTDEF . 225
Using the OPTIONS utility with LISTDEF . 226
Termination or restart of LISTDEF . 226
Sample LISTDEF control statements . 226

Chapter 16. LOAD . 231
Syntax and options of the LOAD control statement. 233
Before running LOAD . 285

Data sets that LOAD uses . 286
Concurrency and compatibility for LOAD . 291
Preparing DB2 internal format input records that are not generated by UNLOAD for LOAD 294

When to use SORTKEYS NO . 294
Loading variable-length data . 295
How LOAD orders loaded records . 295
Replacing data with LOAD. 295
Loading tables with special column types by using generated LOAD statements 298
Adding more data to a table or partition . 300
Deleting all the data in a table space . 300
Loading partitions . 301
Partition-by-growth table spaces . 303
Loading data containing XML columns . 303
Loading delimited files . 304
Loading data with referential constraints . 307
Referential constraint violations . 308
Data compression . 309
Loading data from DL/I . 310
Loading data by using the cross-loader function . 311
Using inline COPY with LOAD . 313
Creating a FlashCopy image copy with LOAD . 313
Improving LOAD performance . 315

Improving performance for parallel processing . 316
Improved performance with SORTKEYS . 316
Improving performance with LOAD or REORG PREFORMAT 317
Improving performance with LOAD by avoiding LOB and XML materialization 319

Conversion of input data . 319
Specifying input fields . 321
Specifying the TRUNCATE and STRIP options . 321
How LOAD builds indexes while loading data . 321
Building indexes in parallel for LOAD . 322
How LOAD leaves free space . 325
Loading with RECOVER-pending, REBUILD-pending, or REORG-pending status 325
Exit procedures. 326

vi Utility Guide and Reference

Loading ROWID columns . 326
Loading a LOB column . 327
LOAD LOG on a LOB table space . 328
Loading an XML column . 328
LOAD LOG on an XML table space . 329
Running LOAD RESUME YES SHRLEVEL CHANGE without logging 329
Collecting inline statistics while loading a table . 330
Inline COPY for a base table space . 331
Termination of LOAD . 331
Restart of LOAD . 332
After running LOAD . 334

Copying the loaded table space or partition . 334
Resetting COPY-pending status . 334
Resetting REBUILD-pending status . 335
Resetting the CHECK-pending status . 335
Running CHECK INDEX after loading a table that has indexes. 337
Recovering data after a failed LOAD job . 338
Reorganization of an auxiliary index after LOAD . 339

Effects of running LOAD . 339
Sample LOAD control statements. 340

Chapter 17. MERGECOPY . 355
Syntax and options of the MERGECOPY control statement 356
Data sets that MERGECOPY uses . 359
Concurrency and compatibility for MERGECOPY . 360
Full or incremental image copy . 361
How MERGECOPY determines which input copy to use . 361
Merging online copies . 361
Using MERGECOPY with individual data sets . 362
Using MERGECOPY or COPY. 362
Avoiding MERGECOPY LOG RBA inconsistencies . 362
Termination or restart of MERGECOPY. 363
Sample MERGECOPY control statements . 363

Chapter 18. MODIFY RECOVERY . 367
Syntax and options of the MODIFY RECOVERY control statement 369
Before running MODIFY RECOVERY . 372

Data sets that MODIFY RECOVERY uses . 372
Concurrency and compatibility for MODIFY RECOVERY. 373

How MODIFY RECOVERY deletes rows . 373
Reclaiming space in the DBD . 375
Improving REORG performance after adding a column . 375
Termination or restart of MODIFY RECOVERY . 376
The effect of MODIFY RECOVERY on version numbers . 376
Sample MODIFY RECOVERY control statements . 377

Chapter 19. MODIFY STATISTICS . 381
Syntax and options of the MODIFY STATISTICS control statement 382
Data sets that MODIFY STATISTICS uses . 384
Concurrency and compatibility for MODIFY STATISTICS. 384
Guidelines for deciding which statistics history rows to delete 385
Deletion of specific statistics history rows . 385
Termination or restart of MODIFY STATISTICS . 385
Sample MODIFY STATISTICS control statements . 386

Chapter 20. OPTIONS . 389
Syntax and options of the OPTIONS control statement . 389
Concurrency and compatibility for OPTIONS. 392
Executing statements in preview mode . 393
Specifying LISTDEF and TEMPLATE libraries . 393

Contents vii

Overriding standard utility processing behavior . 393
Termination or restart of OPTIONS . 394
Sample OPTIONS control statements . 394

Chapter 21. QUIESCE . 397
Syntax and options of the QUIESCE control statement. 398
Before running QUIESCE . 401

Data sets that QUIESCE uses . 401
Concurrency and compatibility for QUIESCE . 401

Using QUIESCE on catalog and directory objects . 403
Common quiesce points . 403
Running QUIESCE on a table space in pending status . 404
Reasons why QUIESCE fails to write to disk . 405
Termination and restart of QUIESCE . 405
Sample QUIESCE control statements . 405

Chapter 22. REBUILD INDEX . 409
Syntax and options of the REBUILD INDEX control statement 410
Before running REBUILD INDEX. 421

Data sets that REBUILD INDEX uses . 422
Concurrency and compatibility for REBUILD INDEX . 424

Access with REBUILD INDEX SHRLEVEL . 426
Rebuilding index partitions. 427
Rebuilding indexes on partition-by-growth table spaces . 427
Improving performance when rebuilding index partitions 428
Rebuilding multiple indexes . 429
Resetting the REBUILD-pending status . 433
Rebuilding critical catalog indexes . 434
Recoverability of a rebuilt index . 435
Creating a FlashCopy image copy with REBUILD INDEX 435
Termination or restart of REBUILD INDEX . 436
The effect of REBUILD INDEX on index version numbers 436
Sample REBUILD INDEX control statements . 437

Chapter 23. RECOVER . 441
Syntax and options of the RECOVER control statement . 444
Before running RECOVER . 455

Data sets that RECOVER uses . 455
Concurrency and compatibility for RECOVER . 456

Recovering with a system-level backup. 458
How to determine which system-level backups DB2 recovers 459
Determining which recovery base DB2 uses . 460
Determining whether the system-level backups reside on disk or tape 460
Recovering a table space . 461
Recovering a list of objects . 461
Recovering a data set or partition . 462
Recovering with incremental copies . 463
Recovering with FlashCopy image copies . 463
Recovering a page. 465
Recovering an error range . 466
Effect on RECOVER of the NOT LOGGED or LOGGED table space attributes 466
Recovering with a data set copy that is not made by DB2 467
Recovering catalog and directory objects . 468

Objects that contain recovery information . 473
Point-in-time recovery of the catalog, directory, and all user objects 475

Reinitializing DSNDB01.SYSUTILX . 477
Recovering a table space that contains LOB or XML data . 478
Recovering a table space that contains clone objects . 479
Point-in-time recovery . 479
Avoiding specific image copy data sets during a recovery 487

viii Utility Guide and Reference

Improving RECOVER performance . 488
Optimizing the LOGAPPLY phase . 488
Recovering image copies in a JES3 environment . 490
Resetting RECOVER-pending or REBUILD-pending status 490
How the RECOVER utility allocates incremental image copies 491
How the RECOVER utility performs fallback recovery. 491
How the RECOVER utility retains tape mounts . 492
Avoiding damaged media . 492
Termination or restart of RECOVER . 493
Effects of running RECOVER . 494
Sample RECOVER control statements . 494

Chapter 24. REORG INDEX . 499
Syntax and options of the REORG INDEX control statement 500
Before running REORG INDEX . 517

Data sets that REORG INDEX uses . 519
Concurrency and compatibility for REORG INDEX . 523

Determining which indexes require reorganization . 525
Using the LEAFDISTLIMIT and REPORTONLY options to determine when reorganization is needed 525
Access with REORG INDEX SHRLEVEL . 526
Creating a FlashCopy image copy with REORG INDEX . 528
Temporarily interrupting REORG. 528
Improving performance with REORG INDEX . 529
Termination of REORG INDEX . 530
Restart of REORG INDEX . 531
Review of REORG INDEX output . 532
Effect of REORG INDEX on index version numbers . 532
Sample REORG INDEX control statements . 533

Chapter 25. REORG TABLESPACE . 537
Syntax and options of the REORG TABLESPACE control statement 540
Before running REORG TABLESPACE . 582

Data sets that REORG TABLESPACE uses . 587
Concurrency and compatibility for REORG TABLESPACE 595

Determining whether an object requires reorganization . 600
Access with REORG TABLESPACE SHRLEVEL . 602
Omitting the output data set . 605
Unloading without reloading . 605
Reclaiming space from dropped tables . 606
Reorganizing the catalog and directory . 606
Changing data set definitions . 609
Temporarily interrupting REORG. 610
How to override dynamic sort work data set allocation . 610
Redistributing data across partitions by using REORG. 611
How partitions can be unloaded and reloaded in parallel. 612
Using inline copy with REORG TABLESPACE . 612
Creating a FlashCopy image copy with REORG TABLESPACE 613
Improving REORG TABLESPACE performance . 615
Parallel index building for REORG TABLESPACE . 616
How DB2 unloads data . 620
Encountering an error in the RELOAD phase. 620
Reorganization of partitioned table spaces . 620
Reorganization of partition-by-growth table spaces . 620
Reorganization of segmented table spaces . 621
Comparison of the numbers of loaded and unloaded records 622
Reorganization of a LOB table space. 622
Reorganization of an XML table space . 623
Termination of REORG TABLESPACE . 624
Restart of REORG TABLESPACE . 626
Review of REORG TABLESPACE output . 628

Contents ix

After running REORG TABLESPACE . 628
Effects of running REORG TABLESPACE . 629
Sample REORG TABLESPACE control statements . 631

Chapter 26. REPAIR. 645
Syntax and options of the REPAIR control statement . 646
Before running REPAIR . 663

Data sets that REPAIR uses. 663
Concurrency and compatibility for REPAIR . 664

Resetting table space status. 667
Resetting index space status . 667
Repairing a damaged page . 668
Repairing DBDs . 668
Locating rows by key. 669
Using VERIFY with REPLACE and DELETE operations . 670
Repairing critical catalog table spaces and indexes . 670
Updating version information when moving objects to another subsystem 670
Termination or restart of REPAIR . 672
Review of REPAIR output . 672
After running REPAIR . 672
Sample REPAIR control statements . 673

Chapter 27. REPORT . 677
Syntax and options of the REPORT control statement . 679
Data sets that REPORT uses . 683
Concurrency and compatibility for REPORT . 683
Recovery information that REPORT provides . 684
Running REPORT on the catalog and directory . 686
Termination or restart of REPORT . 686
Review of REPORT output . 686
Sample REPORT control statements . 695

Chapter 28. RESTORE SYSTEM . 711
Syntax and options of the RESTORE SYSTEM control statement 712
Before running RESTORE SYSTEM . 714

Data sets that RESTORE SYSTEM uses . 716
Concurrency and compatibility for RESTORE SYSTEM 717

Restoring data in a data sharing environment . 717
Using DISPLAY UTILITY with RESTORE SYSTEM . 717
Termination and restart of RESTORE SYSTEM . 717
Effects of running RESTORE SYSTEM . 718
After running RESTORE SYSTEM . 718
Sample RESTORE SYSTEM control statements . 718

Chapter 29. RUNSTATS . 721
Syntax and options of the RUNSTATS control statement . 722

The RUNSTATS profile syntax. 741
Before running RUNSTATS . 744

Data sets that RUNSTATS uses . 744
Concurrency and compatibility for RUNSTATS . 746

When to use RUNSTATS . 748
Collecting distribution statistics for column groups . 749
Updating statistics for a partitioned table space . 749
Running RUNSTATS on the DB2 catalog . 750
Improving RUNSTATS performance . 750
Collecting frequency statistics for data-partitioned secondary indexes 751
Invalidating statements in the dynamic statement cache . 751
Collecting statistics history . 752
Collection of statistics on LOB table spaces . 753
Collection of statistics on XML objects . 753

x Utility Guide and Reference

RUNSTATS profiles . 753
Creating RUNSTATS profiles . 754
Using RUNSTATS profiles . 755
Updating RUNSTATS profiles . 755
Deleting RUNSTATS profiles . 756
Combining autonomic and manual statistics maintenance 756

Termination or restart of RUNSTATS . 757
Review of RUNSTATS output . 757
Resetting access path statistics . 762
After running RUNSTATS . 764
Sample RUNSTATS control statements . 765

Chapter 30. STOSPACE . 769
Syntax and options of the STOSPACE control statement . 770
Data sets that STOSPACE uses . 770
Concurrency and compatibility for STOSPACE . 771
How STOSPACE ensures availability of objects it STOSPACE requires 771
Obtaining statistical information with STOSPACE . 771
Analysis of the values in a SPACE or SPACEF column . 772
Termination or restart of STOSPACE. 773
Sample STOSPACE control statement . 773

Chapter 31. TEMPLATE . 775
Syntax and options of the TEMPLATE control statement . 775
Before running TEMPLATE. 791

Concurrency and compatibility for TEMPLATE . 792
Key TEMPLATE operations . 792
Choosing data set names . 793
Default space calculations for data set templates. 794
Guidelines for templates and tape data sets . 795
How TEMPLATE supports GDG data sets. 796
Template switching . 796
Termination or restart of TEMPLATE . 797
Sample TEMPLATE control statements . 797

Chapter 32. UNLOAD . 803
Syntax and options of the UNLOAD control statement . 804
Before running UNLOAD . 842

Data sets that UNLOAD uses . 842
Concurrency and compatibility for UNLOAD . 843

Unloading partitions . 845
Unloading XML data . 845
Unloading LOB data . 846
Unloading data in spanned record format . 847
Selecting tables and rows to unload . 848
Selecting and ordering columns to unload . 849
Unloading data from image copy data sets . 849
Data conversion with the UNLOAD utility . 851
Output field types . 852
Output field positioning and size. 853
Layout of output fields . 854
Output for special values Infinity, sNaN, or NaN . 857
Unloading delimited files . 857
Specifying TRUNCATE and STRIP options for output data 860
Generating LOAD statements . 861
Unloading compressed data . 861
Field specification errors. 862
Termination or restart of UNLOAD . 862
Sample UNLOAD control statements . 862

Contents xi

||

Part 3. DB2 stand-alone utilities . 869

Chapter 33. Invoking stand-alone utilities . 871
Stand-alone utility control statements . 871
Specifying options by using the JCL EXEC PARM parameter 871
Effects of invoking stand-alone utilities on tables that have multilevel security with row-level granularity . . . 872

Chapter 34. DSNJCNVB . 873

Chapter 35. DSNJCNVT . 875

Chapter 36. DSNJLOGF (preformat active log) 877

Chapter 37. DSNJU003 (change log inventory) 879
Syntax and options of the DSNJU003 control statement . 880
Making changes for active logs . 894
Making changes for archive logs . 896
A conditional restart control record . 896
Deleting log data sets with errors. 897
Altering references to log data sets in the BSDS . 898
Defining the high-level qualifier for catalog and directory objects 899
Renaming DB2 system data sets . 899
Renaming DB2 active log data sets . 900
Renaming DB2 archive log data sets . 900
Sample DSNJU003 control statements . 900

Chapter 38. DSNJU004 (print log map) . 903
Syntax and options of the DSNJU004 control statement . 905
Sample DSNJU004 control statement . 905
DSNJU004 (print log map) output . 906

Chapter 39. DSN1COMP . 921
Syntax and options of the DSN1COMP control statement. 923
Before running DSN1COMP . 926
Estimating compression savings achieved with option REORG 927
Free space in compression calculations on table space . 927
Sample DSN1COMP control statements . 928
DSN1COMP output . 930

Chapter 40. DSN1COPY . 933
Syntax and options of the DSN1COPY control statement . 936
Before running DSN1COPY . 941

Data sets that DSN1COPY uses . 943
Inconsistent data checks . 948
The effects of not specifying the OBIDXLAT option. 948
Requirements for using an image copy as input to DSN1COPY. 949
Copying from an image copy . 949
Restoring indexes with DSN1COPY . 950
Restoring table spaces with DSN1COPY . 950
Printing with DSN1COPY . 952
Copying tables from one subsystem to another . 952
Sample DSN1COPY control statements . 953

Chapter 41. DSN1LOGP . 959
Syntax and options of the DSN1LOGP control statement . 961
Determining the PSID for base and clone objects . 968
Archive log data sets on tape . 969
Sample DSN1LOGP control statements . 970

xii Utility Guide and Reference

||

DSN1LOGP output . 973

Chapter 42. DSN1PRNT . 979
Syntax and options of the DSN1PRNT control statement . 980
Printing with DSN1PRNT instead of DSN1COPY . 986
Determining the page size and data set size for DSN1PRNT. 986
Sample DSN1PRNT control statements . 987

Chapter 43. DSN1SDMP . 991
Syntax and options of the DSN1SDMP control statement . 992
Assigning buffers . 997
Conditions for generating a dump . 998
Stopping or modifying DSN1SDMP traces . 998
Sample DSN1SDMP control statements . 999

Part 4. Appendixes . 1003

Appendix A. Limits in DB2 for z/OS . 1005

Appendix B. DB2-supplied stored procedures for utility operations 1013
DSNUTILS stored procedure (deprecated) . 1013
DSNUTILU stored procedure. 1024
DSNACCOR stored procedure (deprecated) . 1029
DSNACCOX stored procedure . 1050

Appendix C. Advisory or restrictive states 1083
Auxiliary CHECK-pending status . 1083
Auxiliary warning status . 1084
CHECK-pending status. 1085
COPY-pending status . 1086
DBETE status . 1086
Group buffer pool RECOVER-pending status . 1087
Informational COPY-pending status . 1087
PRO restricted status . 1088
REBUILD-pending status . 1088
RECOVER-pending status . 1089
REFRESH-pending status . 1090
REORG-pending status . 1090
Restart-pending status . 1092

Appendix D. Productivity-aid sample programs 1093
DSNTIAUL. 1094
DSNTIAD . 1100
DSNTEP2 and DSNTEP4 . 1101

Appendix E. DSNADMSB . 1109
Parameters of the DSNADMSB program . 1110
Before running DSNADMSB . 1117
Data sets that DSNADMSB uses . 1117
Copying the data that DSNADMSB and ADMIN_INFO_SQL collect to another subsystem 1118
Examples of DSNADMSB invocation . 1119

Appendix F. DSNTSMFD . 1127
Before running DSNTSMFD . 1127
Data sets that DSNTSMFD uses . 1128
Examples of DSNTSMFD invocation . 1128

Contents xiii

Appendix G. How real-time statistics are used by DB2 utilities. 1131

Appendix H. Delimited file format . 1133
Data types in delimited files . 1134
Examples of delimited files . 1135

Information resources for DB2 for z/OS and related products 1137

Notices . 1139
Programming interface information. 1140
Trademarks. 1141
Privacy policy considerations . 1141

Glossary . 1143

Index . 1145

xiv Utility Guide and Reference

About this information

This information contains usage information for the tasks of system administration,
database administration, and operation. It presents detailed information about
using utilities, specifying syntax (including keyword and parameter descriptions),
and starting, stopping, and restarting utilities. This book also includes job control
language (JCL) and control statements for each utility.

This information assumes that your DB2® subsystem is running in Version 11
new-function mode. Generally, new functions that are described, including changes
to existing functions, statements, and limits, are available only in new-function
mode, unless explicitly stated otherwise. Exceptions to this general statement
include optimization and virtual storage enhancements, which are also available in
conversion mode unless stated otherwise.

Who should read this information
This information is intended for system administrators, database administrators,
system operators, and application programmers of DB2 online and stand-alone
utilities.

Recommendation: Familiarize yourself with DB2 for z/OS® prior to using this
book.

DB2 Utilities Suite

Important: In this version of DB2 for z/OS, the DB2 Utilities Suite is available as
an optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not intended
to otherwise imply that you have a license to them.

The DB2 Utilities Suite can work with DB2 Sort and the DFSORT program. You are
licensed to use DFSORT in support of the DB2 utilities even if you do not
otherwise license DFSORT for general use. If your primary sort product is not
DFSORT, consider the following informational APARs mandatory reading:
v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES
v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL

ARCHITECTURE

These informational APARs are periodically updated.
Related information

DB2 utilities packaging (Utility Guide)

Terminology and citations
When referring to a DB2 product other than DB2 for z/OS, this information uses
the product's full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

© Copyright IBM Corp. 1983, 2013 xv

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utlpackaging.htm

OMEGAMON®

Refers to any of the following products:
v IBM® Tivoli® OMEGAMON XE for DB2 Performance Expert on z/OS
v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS
v IBM DB2 Performance Expert for Multiplatforms and Workgroups
v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS.

IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®

Represents the functions that are provided by the RACF component of the
z/OS Security Server.

Accessibility features for DB2 11 for z/OS
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 11 for z/OS. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size

Tip: The Information Management Software for z/OS Solutions Information
Center (which includes information for DB2 11 for z/OS) and its related
publications are accessibility-enabled for the IBM Home Page Reader. You can
operate all features using the keyboard instead of the mouse.

Keyboard navigation

You can access DB2 11 for z/OS ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the DB2 11 for z/OS ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS
ISPF User's Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for DB2 11 for z/OS is available in the Information
Management Software for z/OS Solutions Information Center, which is available at
the following website: http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

xvi Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the commitment that IBM has to accessibility.

How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.
You can use the following methods to provide comments:
v Send your comments by email to db2zinfo@us.ibm.com and include the name of

the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

v You can also send comments by using the Feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp.

Naming conventions used in this information
When you use DB2 commands and utilities, be aware of the applicable naming
conventions

When you use a parameter for an object that is created by SQL statements (for
example, tables, table spaces, and indexes), identify the object by following the
SQL syntactical naming conventions.

In this information, characters are classified as letters, digits, or special characters.
v A letter is any one of the uppercase characters A through Z (including the three

characters that are reserved in the United States as alphabetic extenders for
national languages, #, @, and $.).

v A digit is any one of the characters 0 through 9.
v A special character is any character other than a letter or a digit.

authorization-id
A short identifier of one to eight letters, digits, or the underscore that identifies
a set of privileges. An authorization ID must begin with a letter.

connection-name
An identifier of one to eight characters that identifies an address space
connection to DB2. A connection identifier is one of the following values:
v TSO (for DSN processes that run in TSO foreground).
v BATCH (for DSN processes that run in TSO batch).
v DB2CALL (for the call attachment facility (CAF)).
v The system identification name (for IMS and CICS processes).

Related information:

Managing connection requests from local applications (Managing Security)

correlation-id
An identifier of 1 to 12 characters that identifies a process within an address
space connection. A correlation ID must begin with a letter.

A correlation ID can be one of the following values:

About this information xvii

http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_localrequest.htm#db2z_localrequest

v The TSO logon identifier (for DSN processes that run in TSO foreground
and for CAF processes).

v The job name (for DSN processes that run in TSO batch).
v The PST#.PSBNAME (for IMS processes).
v The entry identifier.thread_number.transaction_identifier (for CICS

processes).

cursor-name
An identifier that designates a result set. Cursor names that are specified with
the EXEC SQL and LOAD utilities cannot be longer than eight characters.

database-name
A short identifier that identifies a database. The identifier must start with a
letter and must not include special characters.

data-set-name
An identifier of 1 to 44 characters that identifies a data set.

dbrm-member-name
An identifier of one to eight letters or digits that identifies a member of a
partitioned data set.

A DBRM member name should not begin with DSN because of a potential
conflict with DB2-provided DBRM member names. If you specify a DBRM
member name that begins with DSN, DB2 issues a warning message.

dbrm-pds-name
An identifier of 1 to 44 characters that identifies a partitioned data set.

ddname
An identifier of one to eight characters that identifies the name of a DD
statement.

hexadecimal-constant
A sequence of digits or any of the letters from A to F (uppercase or lowercase).

hexadecimal-string
An X followed by a sequence of characters that begins and ends with the
string delimiter, an apostrophe. The characters between the string delimiters
must be a hexadecimal number.

index-name
A qualified or unqualified name that identifies an index.

A qualified index name is a schema name followed by a period and an
identifier.

An unqualified index name is an identifier with an implicit schema name
qualifier. The implicit schema is determined by the SQL rules for unqualified
types, functions, procedures, global variables, and specific names.

If the index name contains a blank character, the name must be enclosed in
quotation marks when specified in a utility control statement.

Related information:

Unqualified type, function, procedure, global variable, and specific names
(DB2 SQL)

location-name
A location identifier of 1 to 16 letters (but excluding the alphabetic extenders),
digits, or the underscore that identifies an instance of a database management
system. A location name must begin with a letter.

xviii Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_unqualifiedroutinenames.htm#db2z_unqualifiedroutinenames
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_unqualifiedroutinenames.htm#db2z_unqualifiedroutinenames

luname
An SQL short identifier of one to eight characters that identifies a logical unit
name. A LU name must begin with a letter.

member-name
An identifier of one to eight letters (including the three alphabetic extenders)
or digits that identifies a member of a partitioned data set.

A member name should not begin with DSN because of a potential conflict
with DB2-provided member names. If you specify a member name that begins
with DSN, DB2 issues a warning message.

qualifier-name
An SQL short identifier of one to eight letters, digits, or the underscore that
identifies the implicit qualifier for unqualified table names, views, indexes, and
aliases.

string
A sequence of characters that begins and ends with an apostrophe.

subsystem-name
An identifier that specifies the DB2 subsystem as it is known to the operating
system.

table-name
A qualified or unqualified name that designates a table.

A fully qualified table name is a three-part name. The first part is a location
name that designates the DBMS at which the table is stored. The second part is
a schema name. The third part is an SQL identifier. A period must separate
each of the parts.

A two-part table name is implicitly qualified by the location name of the
current server. The first part is a schema name. The second part is an SQL
identifier. A period must separate the two parts.

A one-part or unqualified table name is an SQL identifier with two implicit
qualifiers. The first implicit qualifier is the location name of the current server.
The second is a schema name, which is determined by the SQL rules for
unqualified types, functions, procedures, global variables, and specific names.

If the table name contains a blank, the name must be enclosed in quotation
marks when specified in a utility control statement.

Related information:

Unqualified type, function, procedure, global variable, and specific names
(DB2 SQL)

table-space-name
A short identifier that identifies a table space of an identified database. The
identifier must start with a letter and must not include special characters. If a
database is not identified, a table space name specifies a table space of
database DSNDB04.

utility-id
An identifier of 1 to 16 characters that uniquely identifies a utility process
within DB2. A utility ID must begin with a letter. The remaining characters can
be uppercase and lowercase letters, numbers 0 through 9, and the following
characters: #, $, ., ¢, !, ¬, and @.

About this information xix

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_unqualifiedroutinenames.htm#db2z_unqualifiedroutinenames
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_unqualifiedroutinenames.htm#db2z_unqualifiedroutinenames

Related concepts:

Naming conventions (DB2 SQL)

SQL identifiers (DB2 SQL)

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM
documentation.

Apply the following rules when reading the syntax diagrams that are used in DB2
for z/OS documentation:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

xx Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_namingconventions.htm#db2z_namingconventions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlidentifiers.htm#db2z_sqlidentifiers

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

required_item
optional_name

v With the exception of XPath keywords, keywords appear in uppercase (for
example, FROM). Keywords must be spelled exactly as shown. XPath keywords
are defined as lowercase names, and must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent
user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

About this information xxi

xxii Utility Guide and Reference

Part 1. Introduction to the DB2 utilities

Individual DB2 utilities have utility-specific characteristics. However, certain
characteristics apply to most or all DB2 utilities.

© Copyright IBM Corp. 1983, 2013 1

2 Utility Guide and Reference

Chapter 1. Basic information about the DB2 utilities

DB2 online and stand-alone utilities have specific authorization rules for coding
utility control statements and the data sets that the utilities use.

Types of DB2 utilities
DB2 offers two types of utilities: online utilities and stand-alone utilities.

DB2 online utilities run as standard batch jobs or stored procedures, and they
require DB2 to be running. They do not run under control of the terminal monitor
program (TMP); they have their own attachment mechanism and they invoke DB2
control facility services directly.

The stand-alone utilities run as batch jobs that are independent of DB2. The only
way to run these utilities is to use JCL. See the topics on the individual utilities for
information about the ways to run these utilities.
Related concepts:
Chapter 33, “Invoking stand-alone utilities,” on page 871
Related tasks:
Chapter 3, “Invoking DB2 online utilities,” on page 11

Privileges and authorization IDs
A command or a utility job can be issued by an individual user, by a program that
runs in batch mode, or by an IMS or CICS transaction.

The term process describes any of these initiators.

A process is represented to DB2 by a set of identifiers (IDs). What the process can
do with DB2 is determined by privileges and privileges that can be held by its
identifiers. The phrase "privilege set of a process" means the entire set of privileges
and authorities that can be used by the process in a specific situation.

Three types of identifiers exist: primary authorization IDs, secondary authorization
IDs, and SQL authorization IDs.
v Generally, the primary authorization ID identifies a specific process. For example,

in the process that is initiated through the TSO attachment facility, the primary
authorization ID is identical to the TSO logon ID. A trace record identifies the
process by that ID.

v Secondary authorization IDs, which are optional, can hold additional privileges
that are available to the process. A secondary authorization ID is often a
SecureWay Security Server Resource Access Control Facility (RACF) group ID.
For example, a process can belong to a RACF group that holds the LOAD
privilege on a particular database. Any member of the group can run the LOAD
utility to load table spaces in the database.
DB2 commands that are entered from a z/OS console are not associated with
any secondary authorization IDs.

v An SQL authorization ID (SQL ID) holds the privileges that are exercised when
issuing certain dynamic SQL statements. Generally, this topic does not discuss
the SQL ID.

© Copyright IBM Corp. 1983, 2013 3

Within DB2, a process can be represented by a primary authorization ID and
possibly one or more secondary IDs. For DB2 online utilities, the process can be
represented by a primary authorization ID, possibly one or more secondary IDs,
and role, if running in a trusted connection with an associated role.

An administrator can grant or revoke a privilege or authority for an identifier by
executing an SQL GRANT or a REVOKE statement.

If you use the access control authorization exit routine, that exit routine might
control the authorization rules, rather than the exit routines that are documented
for each utility.
Related reference:

Processing of sign-on requests (Managing Security)

Utilities that can be run on declared temporary objects
The REPAIR DBD utility and the STOSPACE utility can be run on declared
temporary objects.
v You can use the REPAIR DBD utility on declared temporary tables, which must

be created in a database that is defined with the AS TEMP clause.
v You can use the STOSPACE utility on storage groups that have objects within

temporary databases.

No other DB2 utilities can be used on a declared temporary table, its indexes, or its
table spaces.
Related reference:
“Concurrency and compatibility for REPAIR” on page 664
“Concurrency and compatibility for STOSPACE” on page 771

Effect of utilities on objects that have the DEFINE NO attribute
With DB2 Version 7 or above, you can run certain online utilities on table spaces or
index spaces that were defined with the DEFINE NO attribute. When you specify
this attribute, the table space or index space is defined, but DB2 does not allocate
the associated data sets until a row is inserted or loaded into a table in that table
space.

You can populate table spaces whose data sets are not yet defined by using the
LOAD utility with either the RESUME keyword, the REPLACE keyword, or both.
Using LOAD to populate these table spaces results in the following actions:
1. DB2 allocates the data sets.
2. DB2 updates the SPACE column in the catalog table to show that data sets

exist.
3. DB2 loads the specified table space.

For a partitioned table space, all partitions are allocated even if the LOAD utility is
loading only one partition. Avoid attempting to populate a partitioned table space
with concurrent LOAD PART jobs until after one of the jobs has caused all the data
sets to be created.

Online utilities that encounter an undefined target object might issue informational
message DSNU185I, but processing continues.

4 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_signonreqprocess.htm#db2z_signonreqprocess

The following online utilities issue informational message DSNU185I when a table
space or index space with the DEFINE NO attribute is encountered. The object is
not processed.
v CHECK DATA
v CHECK INDEX
v COPY
v MERGECOPY
v MODIFY RECOVERY
v QUIESCE
v REBUILD INDEX
v RECOVER
v REORG INDEX
v REORG TABLESPACE
v REPAIR, but not REPAIR DBD
v RUNSTATS TABLESPACE INDEX(ALL) 1

v RUNSTATS INDEX 1

v UNLOAD

Note:

1. RUNSTATS recognizes DEFINE NO objects and updates the catalog's access
path statistics to reflect the empty objects.

You cannot use stand-alone utilities on objects whose data sets have not been
defined.

Effect of utilities on data that is encrypted through built-in functions
You can copy and recover encrypted data. You can also move encrypted data
between systems. Data remains encrypted throughout these processes.

However, running any of the following utilities on encrypted data might produce
unexpected results:
v CHECK DATA
v LOAD
v REBUILD INDEX
v REORG TABLESPACE
v REPAIR
v RUNSTATS
v UNLOAD
v DSN1PRNT

Chapter 1. Basic information about the DB2 utilities 5

6 Utility Guide and Reference

Chapter 2. DB2 utilities packaging

Several utilities are included with DB2 at no extra charge. Other utilities are
available as a separate product.

The following utilities are core utilities, which are included (at no extra charge)
with Version 11 of DB2 for z/OS:
v CATENFM
v CATMAINT
v DIAGNOSE
v LISTDEF
v OPTIONS
v QUIESCE
v REPAIR
v REPORT
v TEMPLATE
v All DSN stand-alone utilities

All other utilities are available as a separate product called the DB2 Utilities Suite
for z/OS (5655-W87, FMID JDBBB1K), which includes the following utilities:
v BACKUP SYSTEM
v CHECK DATA
v CHECK INDEX
v CHECK LOB
v COPY
v COPYTOCOPY
v EXEC SQL
v LOAD
v MERGECOPY
v MODIFY RECOVERY
v MODIFY STATISTICS
v REBUILD INDEX
v RECOVER
v REORG INDEX
v REORG TABLESPACE
v RESTORE SYSTEM
v RUNSTATS
v STOSPACE
v UNLOAD

All DB2 utilities operate on catalog, directory, and sample objects, without
requiring any additional products.

SMP/E jobs for DB2 utility products
To load the DB2 utility products, use System Modification Program Extended
(SMP/E). SMP/E processes the installation cartridges and creates DB2 distribution
target libraries.

DB2 provides several jobs that invoke SMP/E. These jobs are on the cartridge that
you received with the utility product. The job prologues in these jobs contain
directions on how to tailor the job for your site. Follow these directions carefully to
ensure that your DB2 Utilities Suite SMP/E process works correctly.

© Copyright IBM Corp. 1983, 2013 7

The SMP/E RECEIVE job, DSNRECVK, loads the DB2 Utilities Suite Version 11
program modules, macros, and procedures into temporary data sets (SMPTLIBs). If
these jobs fail or abnormally terminate, correct the problem and rerun the jobs.

The SMP/E APPLY job, DSNAPPLK, copies and link-edits the program modules,
macros, and procedures for the DB2 Utilities Suite Version 11 into the DB2 target
libraries.

The SMP/E ACCEPT job, DSNACCPK, copies the program modules, macros, and
procedures for the DB2 Utilities Suite Version 11 into the DB2 distributed libraries.
Related information:

DB2 for z/OS Program Directories

Operation of DB2 utilities in a mixed-release data sharing environment
The utilities batch module, DSNUTILB, is split into multiple parts: a
release-independent module called DSNUTILB, a release-dependent module
DSNUT111, and utility-dependent load modules.

To operate in a mixed-release data sharing environment, you must have the
release-dependent modules from both releases and all applicable utility-dependent
modules available to the utility jobs that operate across the data sharing group.
Related reference:

Load module names for running purchased utilities in coexistence (DB2
Installation and Migration)

8 Utility Guide and Reference

https://www-304.ibm.com/support/docview.wss?uid=swg27019288
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_loadnamesincoexmode.htm#db2z_loadnamesincoexmode
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_loadnamesincoexmode.htm#db2z_loadnamesincoexmode

Part 2. DB2 online utilities

DB2 online utilities run as standard batch jobs or stored procedures, and they
require DB2 to be running. They do not run under control of the terminal monitor
program (TMP); they have their own attachment mechanism and they invoke DB2
control facility services directly.

© Copyright IBM Corp. 1983, 2013 9

10 Utility Guide and Reference

Chapter 3. Invoking DB2 online utilities

You can invoke DB2 online utilities by using any of a variety of methods.

About this task

Requirement: In the JCL for all utility jobs, specify a load library that is at a
maintenance level that is compatible with the DB2 subsystem. Otherwise, errors
can occur.

Procedure

To run DB2 online utilities:
1. Prepare the necessary data sets.
2. Create a utility control statement using the syntax, option descriptions, and

samples.
3. Check for any concurrency and compatibility restrictions.
4. Plan for a restart in case the utility job does not complete.
5. Invoke the online utilities using one of the following methods:

v Use the DB2 Utilities panel in DB2I.
This method involves little involvement with JCL. You can edit the generated
JCL to alter or add necessary fields on the JOB or ROUTE cards before you
submit the job.

Requirement: To use this method you must have TSO and access to the DB2
Utilities Panel in DB2 Interactive (DB2I).

v Use the DSNU CLIST command in TSO.
This method involves little involvement with JCL. You can edit the generated
JCL to alter or add necessary fields on the JOB or ROUTE cards before you
submit the job.

Requirement: To use this method you must have TSO.
v Use the supplied JCL procedure (DSNUPROC).

This method involves working with or creating your own JCL.
v Use the EXEC statement to create the JCL data set yourself.

This method involves working with or creating your own JCL.
v Use the DSNUTILS or DSNUTILT stored procedure.

This method involves invoking online utilities from a DB2 application
program.

Related reference:
Chapter 14, “EXEC SQL,” on page 203
“DSNUTILS stored procedure (deprecated)” on page 1013
“DSNUTILU stored procedure” on page 1024

Data sets that online utilities use
Every online utility job requires a SYSIN DD statement to describe an input data
set; some utilities also require other data sets.

© Copyright IBM Corp. 1983, 2013 11

For input data sets
The online utilities use the logical record length (LRECL), the record
format (RECFM) and the block size (BLKSIZE) with which the data set was
created. Variable-spanned (VS) or variable-blocked-spanned (VBS) record
formats are not allowed for utility input data sets. The only exceptions are
for the LOAD and UNLOAD utilities. These utilities use VBS data sets for
SPANNED YES, and LOAD accepts VBS data sets for FORMAT SQL/DS.

For output data sets
The online utilities determine both the logical record length and the record
format. Any specified values for LRECL or RECFM are ignored. If you
supply block size, that size is used; otherwise, the utility lets the system
determine the optimal block size for the storage device.

DB2 supports the large block interface (LBI) that allows block sizes that are
greater than 32 KB on certain tape drives. LBI is supported in new function
mode (NFM) only.

Partitioned data sets (PDS) are not allowed for output data sets. The
TAPEBLKSZLIM parameter of the DEVSUPxx member of SYS1.PARMLIB
controls the block size limit for tapes. See the z/OS MVS Initialization and
Tuning Guide for more details.

For output data sets for FlashCopy® image copies
The online utilities determine the data set names based on the template
provided. The output VSAM data sets are allocated during the processing
of the DFSMSdss COPY command. The output data sets for FlashCopy
image copies are always cataloged.

For both input and output data sets
The online utilities use the value that you supply for the number of buffers
(BUFNO), with a maximum of 99 buffers. The default number of buffers is
20. The utilities set the number of channel programs equal to the number
of buffers. The parameters that specify the buffer size (BUFSIZE) and the
number of channel programs (NCP) are ignored. If you omit any DCB
parameters, the utilities choose default values.

Increasing the number of buffers (BUFNO) can result in an increase in real
storage utilization and page fixing below the 16-MB line.

Restriction: DB2 does not support the undefined record format (RECFM=U) for
any data set.

Extended addressing support by DB2 utilities

DB2 utilities support the use of extended address volumes (EAV) for VSAM data
sets and extended format (EF) sequential data sets.

Data set concatenation

DB2 utilities let you concatenate unlike input data sets. Therefore, the data sets in a
concatenation list can have different block sizes, logical record lengths, and record
formats. If you want to concatenate variable and fixed-blocked data sets, the logical
record length must be 8 bytes smaller than the block size.

You cannot concatenate output data sets.

12 Utility Guide and Reference

Controlling data set disposition

Most data sets need to exist only during utility execution (for example, during
reorganization). However, you must retain several data sets in certain
circumstances:
v Retain the image copy data sets until you no longer need them for recovery.
v Retain the unload data sets if you specify UNLOAD PAUSE, UNLOAD ONLY,

UNLOAD EXTERNAL, or DISCARD for the REORG utility.
v Retain the SYSPUNCH data set if you specify UNLOAD EXTERNAL or

DISCARD for the REORG utility until you no longer need the contents for
subsequent loads.

v Retain the discard data set until you no longer need the contents for subsequent
loads.

Because you might need to restart a utility, take the following precautions when
defining the disposition of data sets:
v Use DISP=(NEW,CATLG,CATLG) or DISP=(MOD,CATLG) for data sets that you

want to retain.
v Use DISP=(MOD,DELETE,CATLG) for data sets that you want to discard after

utility execution.
v Use DISP=(NEW,DELETE) for the SORTWKnn data sets for your sort program,

or refer to the documentation for your sort program for alternatives.
v Do not use temporary data set names.

Preventing unauthorized access to data sets

To prevent unauthorized access to data sets (for example, image copies), you can
protect the data sets with the Resource Access Control Facility (RACF) licensed
program. To use a utility with a data set that is protected by RACF, you must be
authorized to access the data set.
Related concepts:

Extended Address Volumes (z/OS DFSMS Using Data Sets)
Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

Utility control statements
Utility control statements define the function that the utility job performs.

Create the utility control statements with the ISPF/PDF edit function and use the
control statement coding rules that are listed. After the utility control statements
are created, save them in a sequential or partitioned data set.

Control statement coding rules

DB2 typically reads utility control statements from the SYSIN data set. DB2 can
read LISTDEF control statements from the SYSLISTD data set and TEMPLATE
control statements from the SYSTEMPL data set. The statements in these data sets
must obey the following rules:

Chapter 3. Invoking DB2 online utilities 13

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d4a0/1.3.9?ACTION=MATCHES&REQUEST=extended+address+volumes&TYPE=FUZZY&SHELF=&DT=20110606092005&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

v If the records are 80-character fixed-length records, DB2 ignores columns 73
through 80.

v The records are concatenated before they are parsed; therefore, a statement or
any of its syntactical constructs can span more than one record. No continuation
character is necessary.
However, if the input data set contains variable-length records, DB2 might
interpret the part of a statement that is in column 1 as the continuation of the
statement from the previous record. To avoid syntax errors, ensure that all
syntactical constructs in utility control statements are properly delimited. Doing
so is especially important for the first character in each record of a data set with
variable-length records.

v All control statements in a data set must be written entirely in a single character
set. The following two character sets are supported: EBCDIC (code page 500)
and Unicode UTF-8 (code page 1208). DB2 automatically detects and processes
Unicode UTF-8 control statements if the first character of the data set is one of
the following characters:
– A Unicode UTF-8 blank (x'20')
– A Unicode UTF-8 dash (x'2D')
– A Unicode UTF-8 uppercase A through Z (x'41' through x'5A')

In all other cases, the control statement data set is processed as EBCDIC. An
informational message is issued to identify the character set that is being
processed.
The following EBCDIC characters have the same hexadecimal code point value
as the Unicode UTF-8 characters J to P:
¢ . < (+ | &

If any of these characters are the first character in the input data set, the control
statement can be misinterpreted as Unicode. This error is a utility syntax error.
However, these characters might cause Unicode to EBCDIC translation errors
and abends before the syntax error is detected. After the syntax error is detected,
message DSNU005I might contain indecipherable statements and message
DSNU082I might identify an indecipherable keyword.

v The utility statement must start with the syntax for a utility.
v Other syntactical constructs in the utility control statement describe options; you

can separate these constructs with an arbitrary number of blanks.
v The SYSIN stream can contain multiple utility control statements.

The options that you can specify after the online utility name depend on which
online utility you use. To specify a utility option, specify the option keyword,
followed by its associated parameter or parameters, if any. The parameter value
can be a keyword. You need to enclose the values of some parameters in
parentheses. The syntax diagrams for utility control statements show parentheses
where they are required.

You can specify more than one utility control statement in the SYSIN stream.
However, if any of the control statements returns a return code of 8 or greater, the
subsequent statements in the job step are not executed.

In a utility control statement, when you specify multiple numeric values that are
meant to be delimited, you must delimit these values with a comma (","). You must
use this delimiter regardless of the definition of DECIMAL in the application
defaults load module (either DSNHDECP or a user-specified application defaults

14 Utility Guide and Reference

load module). Likewise, when you specify a decimal number in a utility control
statement, you must use a period ("."), regardless of the definition of DECIMAL in
the application defaults load module.

You can enter comments within the SYSIN stream. Comments must begin with two
hyphens (--) and are subject to the following rules:
v You must use two hyphens on the same line with no space between them.
v You can start comments wherever a space is valid, except within a delimiter

token.
v The end of a line terminates a comment.

Two comments are shown in the following statement:
// SYSIN DD *
RUNSTATS TABLESPACE DSNDB06.SYSDDF -- COMMENT HERE
-- COMMENT HERE
/*

Related information:

DSNU005I (DB2 Messages)
DSNU082I (DB2 Messages)
Code pages and CCSIDs (DB2 Internationalization Guide)
EBCDIC (DB2 Internationalization Guide)
Unicode (DB2 Internationalization Guide)

Tips for using multi-byte character sets

Multi-byte character sets can be difficult to work with in fixed 80-byte SYSIN data
sets. Long object names and long character literals might not fit on a single line.

Where possible, avoid having to break object names or character literals:
v Use a SYSIN with variable length records or sufficiently large record length.
v Use shorter object names. The longer the name, the more likely continuation

issues arise.
v If possible, process the object by space name (table space or index space) and

avoid specifying long multi-byte table and index names in utility syntax.

If necessary, use a continuation technique:
v Shift the starting point of the string left or right within the input record such

that a complete multi-byte character ends in column 72. Continue with the next
character in column 1 of the next input record.

v Separate qualified object names into two parts following the dot ".", which
separates the qualifiers. Separating long names into multiple parts makes it
easier to follow the continuation rules. This technique cannot be used in the
EXEC SQL utility, which must follow both utility and SQL syntax rules.

v Use the || concatenation operator to divide long identifiers into two or more
parts that fit properly into each SYSIN record. Place the || concatenation
operator between two delimited character strings or between two non-delimited
character strings. Delimited character strings are enclosed in double quotation
marks. The || concatenation operator must be preceded and followed by at
least one blank space. An example of the || concatenation operator is shown in
the following statement:

Chapter 3. Invoking DB2 online utilities 15

|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu005i.htm#dsnu005i
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu082i.htm#dsnu082i
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.char/src/tpc/db2z_codepageccsid.htm#db2z_codepageccsid
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.char/src/tpc/db2z_ebcdic.htm#db2z_ebcdic
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.char/src/tpc/db2z_unicode.htm#db2z_unicode

LOAD INTO TABLE
CREA ||
TOR.
"TABL" ||
"ENAME"

In this example, the strings CREA and TOR are non-delimited, and the strings
TABL and ENAME are delimited by double quotation marks. The processed
output of this example is equivalent to the following statement:
LOAD INTO TABLE CREATOR."TABLENAME"

The utility || operator is ignored in an EXEC SQL control statement by utility
processing since the operator has an existing SQL meaning. The operators
remain part of the SQL statement for subsequent processing by SQL.

The concatenation operator

Utility control statements support the || concatenation operator. The operator is
allowed between two non-delimited character strings or two quoted character
strings. The result is a character string that consists of the string that is after the
operator concatenated to the string that precedes the operator. The operation is
shown in the following statement:
string1 || string2

Both string1 and string2 must be syntactically correct within each SYSIN input
record. Quotation marks must be balanced within each string. If DBCS characters
are used, shift-out and shift-in characters must be balanced within each string. Any
one multi-byte character must be contained entirely within a single SYSIN record.

The || operator must be entered as a stand-alone token, with one or more blanks
before and after it. It can be entered on the same input record as "string1", alone or
on an input record, or on the same input record with "string2". This operator
functions at the token level before any context is detected or semantic meaning is
applied. An example utility statement is shown in the following statement:
COPY INDEX

"A" ||
"B"

results in:
COPY INDEX "AB"

The utility || operator is ignored in an EXEC SQL control statement by utility
processing since the operator has an existing SQL meaning. The operators remain
part of the SQL statement for subsequent processing by SQL.

Descriptions of utility options

Where the syntax of each utility control statement is described, parameters are
indented under the option keyword that they must follow. The following option is
a typical example:

WORKDDN ddname
Specifies a temporary work file.

ddname is the data set name of the temporary file.

The default value is SYSUT1.

In the example, WORKDDN is an option keyword, and ddname is a variable
parameter. As noted previously, you can enclose parameter values in parentheses,
but parentheses are not always required. You can specify the temporary work file

16 Utility Guide and Reference

as either WORKDDN SYSUT1 or WORKDDN (SYSUT1).

Required authorizations for invoking online utilities on tables that have
multilevel security with row-level granularity

If you use RACF access control with multilevel security, you need additional
authorizations to run certain utility jobs. Each utility has its own authorization
requirements.

All other utilities ignore the row-level granularity. They check only for
authorization to operate on the table space; they do not check row-level
authorization. On tables that have multilevel security with row-level granularity,
additional authorizations are needed to run the following utility jobs:
v LOAD
v UNLOAD
v REORG TABLESPACE
Related concepts:

Multilevel security (Managing Security)

Invoking DB2 online utilities in a trusted connection
The DB2 online utilities can run in a trusted connection if a matching trusted
context is defined where the primary authorization ID matches the trusted context
SYSTEM AUTHID and the job name matches the JOBNAME attribute defined for
the identified trusted context. The primary authorization ID can acquire special set
of privileges in a trusted context, by roles.

Using the DB2 Utilities panel in DB2I
If you do not have much JCL knowledge, using the DB2 Utilities panel is probably
the best way to execute the DB2 online utilities.

About this task

Restriction: You cannot use the DB2 Utilities panel in DB2I to submit a BACKUP
SYSTEM job, a COPYTOCOPY job, a RESTORE SYSTEM job, or a COPY job for a
list of objects.

If your site does not have default JOB and ROUTE statements, you must edit the
JCL to define them. If you edit the utility job before submitting it, you must use
the ISPF editor and submit your job directly from the editor.

Procedure

To use the DB2 Utilities panel in DB2I:
1. Create the utility control statement for the online utility that you intend to

execute, and save it in a sequential or partitioned data set. For example, the
following utility control statement specifies that the COPY utility is to make
an incremental image copy of table space DSN8D11A.DSN8S11D with a
SHRLEVEL value of CHANGE:
COPY TABLESPACE DSN8D11A.DSN8S11D

FULL NO
SHRLEVEL CHANGE

Chapter 3. Invoking DB2 online utilities 17

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_mls.htm#db2z_mls

For the rest of this example, suppose that you save the statement in the
default data set, UTIL.

2. From the ISPF Primary Option menu, select the DB2I menu.
3. On the DB2I Utilities panel, select the UTILITIES option. Items that you must

specify are highlighted on the DB2 Utilities panel, as shown in the following
figure.

4. Complete field 1 with the function that you want to execute. In this example,
you want to submit the utility job, but you want to edit the JCL first, so
specify EDITJCL. After you edit the JCL, you do not need to return to this
panel to submit the job. Instead, type SUBMIT on the editor command line.

5. Ensure that Field 2 is a unique identifier for your utility job. The default value
is TEMP. In this example, that value is satisfactory; leave it as is.

6. Complete field 3 with the utility that you want to run. In this example, specify
COPY.

7. Complete field 4 if you want to use an input data set other than the default
data set. Unless you enclose the data set name between apostrophes, TSO
adds your user identifier as a prefix. In this example, specify UTIL, which is
the default data set.

8. Change field 5 if this job restarts a stopped utility or if you want to execute a
utility in PREVIEW mode. In this example, leave the default value, NO.

9. Specify in field 6 whether you are using LISTDEF statements or TEMPLATE
statements in this utility. If you specify YES for LISTDEF or TEMPLATE, DB2
displays the Control Statement Data Set Names panel, but the field entries are
optional.

10. Complete field 7 with the data set name of the DB2 subsystem library when
you want the generated JCL to use the default DB2 subsystem library.

11. Press Enter.

DSNEUP01 DB2 UTILITIES
===>

Select from the following:

1 FUNCTION ===> EDITJCL (SUBMIT job, EDITJCL, DISPLAY, TERMINATE)
2 JOB ID ===> TEMP (A unique job identifier string)
3 UTILITY ===> COPY (CHECK DATA, CHECK INDEX, CHECK LOB,

COPY, DIAGNOSE, LOAD, MERGE, MODIFY,
QUIESCE, REBUILD, RECOVER, REORG INDEX,
REORG LOB, REORG TABLESPACE, REPORT,
REPAIR, RUNSTATS, STOSPACE, UNLOAD.)

4 STATEMENT DATA SET ===> UTIL

Specify restart or preview option, otherwise specify NO.

5 RESTART ===> NO (NO, CURRENT, PHASE or PREVIEW)

6 LISTDEF? (YES|NO) ===> TEMPLATE? (YES|NO) ===>

7 LIB ==> (BLANK or DB2 LIB NAME)

* The data set names panel will be displayed when required by a utility.

PRESS: ENTER to process END to exit HELP for more information

Figure 1. DB2 Utilities panel

18 Utility Guide and Reference

v If you specified COPY, LOAD, MERGECOPY, REORG TABLESPACE, or
UNLOAD as the utility in field 3, you must complete the fields on the Data
Set Names panel, as shown in the following figure.

a. Complete field 1 if you are running LOAD, REORG, or UNLOAD. For
LOAD, you must specify the data set name that contains the records that
are to be loaded. For REORG or UNLOAD, you must specify the unload
data set. In this example, you do not need to complete field 1, because
you are running COPY.

b. Complete field 2 if you are running LOAD or REORG with discard
processing, in which case you must specify a discard data set. In this
example, you do not need to complete field 2, because you are running
COPY.

c. Complete field 3 with the primary output data set name for the local site
if you are running COPY, LOAD, or REORG, or with the current site if
you are running MERGECOPY. The DD name that the panel generates
for this field is SYSCOPY. This is an optional field for LOAD and for
REORG with SHRLEVEL NONE; this field is required for COPY, for
MERGECOPY, and for REORG with SHRLEVEL REFERENCE or
CHANGE. In this example, the primary output data set name for the
local site is ABC.

d. Complete field 4 with the backup output data set name for the local site
if you are running COPY, LOAD, or REORG, or the current site if you
are running MERGECOPY. The DD name that the panel generates for
this field is SYSCOPY2. This is an optional field. In this example, you do
not need to complete field 4.

e. Complete field 5 with the primary output data set for the recovery site if
you are running COPY, LOAD, or REORG. The DD name that the panel
generates for this field is SYSRCOPY1. This is an optional field. In this
example, the primary output data set name for the recovery site is
ABC1.

f. Complete field 6 with the backup output data set for the recovery site if
you are running COPY, LOAD, or REORG. The DD name that the panel
generates for this field is SYSRCOPY2. This field is optional. In this
example, you do not need to complete field 6.

DSNEUP02 DATA SET NAMES
===>

Enter data set name for LOAD or REORG TABLESPACE:
1 RECDSN ==>

Enter data set name for
LOAD, REORG TABLESPACE or UNLOAD:
2 DISCDSN ==>

Enter output data sets for local/current site for COPY, MERGECOPY,
LOAD, or REORG:

3 COPYDSN ==> ABC
4 COPYDSN2 ==>

Enter output data sets for recovery site for COPY, LOAD, or REORG:
5 RCPYDSN1 ==> ABC1
6 RCPYDSN2 ==>

Enter output data sets for REORG or UNLOAD:
7 PUNCHDSN ==>
PRESS: ENTER to process END to exit HELP for more information

Figure 2. Data Set Names panel

Chapter 3. Invoking DB2 online utilities 19

g. Complete field 7 with the output data set for the generated LOAD
utility control statements if you are running REORG UNLOAD
EXTERNAL, REORG DISCARD, or UNLOAD. The DD name that the
panel generates for this field is SYSPUNCH. In this example, you do not
need to complete field 7.

h. Press Enter.
v If you specified LISTDEF YES or TEMPLATE YES in field 6, you must

complete the fields on the Control Set Data Set Names panel, as shown in
the following figure.

a. Complete field 1 to specify the data set that contains a LISTDEF control
statement. The default is the SYSIN data set. This field is ignored if you
specified NO in the LISTDEF? field in the DB2 Utilities panel.

b. Complete field 2 to specify the data set that contains a TEMPLATE. The
default is the SYSIN data set. This field is ignored if you specified NO in
the TEMPLATE? field in the DB2 Utilities panel.

Related reference:
Chapter 15, “LISTDEF,” on page 207
Chapter 31, “TEMPLATE,” on page 775

Invoking a DB2 utility by using the DSNU CLIST command in TSO
You can initiate a DB2 online utility by invoking the DSNU CLIST command under
TSO, without being concerned about details of the JCL data set. The CLIST
command generates the JCL data set that is required to execute the DSNUPROC
procedure and to execute online utilities as batch jobs.

About this task

Restriction: You cannot use the DSNU CLIST command to submit a COPY job for
a list of objects.

The CLIST command creates a job that performs only one utility operation.
However, you can invoke the CLIST command for each utility operation that you
need, and then edit and merge the outputs into one job or step.

Procedure

To use the DSNU CLIST command:

DSNEUP03 CONTROL STATEMENT DATA SET NAMES SSID:
===>

Enter the data set name for the LISTDEF data set (SYSLISTD DD):
1 LISTDEF DSN ===>

OPTIONAL or IGNORED

Enter the data set name for the TEMPLATE data set (SYSTEMPL DD):
2 TEMPLATE DSN ===>

OPTIONAL or IGNORED

PRESS: ENTER to process END to exit HELP for more information

Figure 3. Control Statement Data Set Names panel

20 Utility Guide and Reference

1. Create a file containing the required utility control statements. DB2 uses the file
to create the SYSIN data set in the generated job stream. Do not include
double-byte character set (DBCS) data in this file.

2. Ensure that the DB2 CLIST library is allocated to the DD name SYSPROC.
3. Execute the command procedure by using the DSNU CLIST command syntax.
4. Optional: Edit the generated JCL data set to alter or add DD statements as

needed.

DSNU CLIST command
You can execute the DSNU CLIST command from the TSO command processor or
from the DB2I Utilities panel.

Syntax

��
%

DSNU UTILITY(utility-name) INDSN(data-set-name)
(member-name)

�

�

�

CONTROL (NONE)

:

CONTROL (control-option)

DB2I (NO)

DB2I (YES) DISCDSN(data-set-name)
�

�
COPYDSN(data-set-name)

COPYDSN2(data-set-name)

�

�
RCPYDSN1(data-set-name)

RCPYDSN2(data-set-name)
RECDSN(data-set-name)

�

�
PUNCHDSN (data-set-name)

EDIT (NO)

EDIT (SPF)
TSO

RESTART (NO)

RESTART (CURRENT)
PHASE
PREVIEW

�

�
SUBMIT (NO)

SUBMIT (YES)
PROMPT

SYSTEM (DSN)

SYSTEM (subsystem-name)
group-attach

UID(utility-id)
�

�
UNIT (SYSDA)

UNIT (unit-name) VOLUME(vol-ser) LIB(data-set-name)
��

DSNU CLIST option descriptions

The parentheses that are shown in the following descriptions are required. If you
make syntax errors or omit parameter values, TSO prompts you for the correct
parameter spelling and omitted values.

Chapter 3. Invoking DB2 online utilities 21

% Identifies DSNU as a member of a command procedure library. Specifying this
parameter is optional; however, it does improve performance.

UTILITY (utility-name)
Specifies the utility that you want to execute.

DB2 places the JCL in a data set that is named DSNUxxx.CNTL, where
DSNUxxx is a control file name. The control file contains the statements that
are necessary to invoke the DSNUPROC procedure which, in turn, executes the
utility. If you execute another job with the same utility name, the first job is
deleted. See the table below for a list of the online utilities and the control file
name that is associated with each utility.

INDSN(data-set-name(member-name))
Specifies the data set that contains the utility statements and control
statements. Do not specify a data set that contains double-byte character set
data.

(data-set-name)
Specifies the name of the data set. If you do not specify a data set name,
the default command procedure prompts you for the data set name.

(member-name)
Specifies the member name. You must specify the member name if the data
set is partitioned.

CONTROL(control-option: ...)
Specifies whether to trace the CLIST command execution.

NONE
Omits tracing.

control-option
Lists one or more of the following options. Separate items in the list by
colons (:). To abbreviate, specify only the first letter of the option.

LIST Displays TSO commands after symbolic substitution and before
command execution.

CONLIST
Displays CLIST commands after symbolic substitution and before
command execution.

SYMLIST
Displays all executable statements (TSO commands and CLIST
statements) before the scan for symbolic substitution.

NONE
Generates a CONTROL statement with the options NOLIST,
NOCONLIST, and NOSYMLIST.

DB2I
Indicates the environment from which the DSNU CLIST command is called.

(NO)
Indicates that DSNU CLIST command is not being called from the DB2I
environment.

(YES)
Indicates that DSNU CLIST command is called from the DB2I
environment. Only the utility panels should execute the CLIST command
with DB2I(YES).

22 Utility Guide and Reference

DISCDSN (data-set-name)
The name of the cataloged data set that LOAD and REORG use for a discard
data set. For LOAD, this data set holds records that are not loaded; for
REORG, it holds records that are not reloaded.

COPYDSN(data-set-name)
The name of the cataloged data set that DB2 utilities use as a target (output)
data set. If you do not supply this information, the CLIST command prompts
you for it. This keyword is optional for LOAD and for REORG with
SHRLEVEL NONE; it is required for COPY, for MERGECOPY, and for REORG
with SHRLEVEL REFERENCE or CHANGE.

COPYDSN2 (data-set-name)
The name of the cataloged data set that DB2 utilities use as a target (output)
data set for the backup copy. This keyword is optional for COPY,
MERGECOPY, LOAD, and REORG.

RCPYDSN1 (data-set-name)
The name of the cataloged data set that DB2 utilities use as a target (output)
data set for the remote-site primary copy. This keyword is optional for COPY,
LOAD, and REORG.

RCPYDSN2 (data-set-name)
The name of the cataloged data set that DB2 utilities use as a target (output)
data set for the remote-site backup copy. This keyword is optional for COPY,
LOAD, and REORG.

RECDSN (data-set-name)
The name of the cataloged data set that LOAD uses for input or that REORG
TABLESPACE or UNLOAD use as the unload data set. If you do not supply
this information, the CLIST command prompts you for it. This keyword is
required for LOAD and REORG TABLESPACE only.

PUNCHDSN (data-set-name)
The name of the cataloged data set that REORG or UNLOAD use to hold the
generated LOAD utility control statements for UNLOAD EXTERNAL or
DISCARD.

EDIT
Specifies whether to invoke an editor to edit the temporary file that the CLIST
command generates.

(NO)
Does not invoke an editor.

(SPF)
Invokes the ISPF editor.

(TSO)
Invokes the TSO editor.

RESTART
Specifies whether this job restarts a current utility job, and, if so, at what point
it is to be restarted.

(NO)
Indicates that the utility is a new job, not a restarted job. The utility
identifier (UID) must be unique for each utility job step.

(CURRENT)
Restarts the utility at the most recent commit point.

Chapter 3. Invoking DB2 online utilities 23

(PHASE)
Restarts the utility at the beginning of the current stopped phase. You can
determine the current stopped phase by issuing the DISPLAY UTILITY
command.

(PREVIEW)
Restarts the utility in PREVIEW mode. While in PREVIEW mode, the
utility checks for syntax errors in all utility control statements, but normal
utility execution does not take place.

SUBMIT
Specifies whether to submit the generated JCL for processing.

(NO)
Does not submit the JCL data set for processing.

(YES)
Submits the JCL data set for background processing, using the TSO
SUBMIT command.

(PROMPT)
Prompts you, after the data set is processed, to specify whether to submit
the JCL data set for batch processing. You cannot use PROMPT when the
CLIST command is executed in the TSO batch environment.

SYSTEM (subsystem-name)
Specifies the DB2 subsystem or group attachment name or subgroup
attachment name. The default value is DSN.

UID (utility-id)
Provides a unique identifier for this utility job within DB2. Do not reuse the
utility ID of a stopped utility that has not yet been terminated, unless you
want to restart that utility. If you do use the same utility ID to invoke a
different utility, DB2 tries to restart the original stopped utility with the
information that is stored in the SYSUTIL directory table.

The default value is tso-userid.control-file-name, where control-file-name for each
of the utilities is listed in the following table.

Table 1. Control-file name for each utility

Utility control-file-name

CHECK INDEX DSNUCHI

CHECK DATA DSNUCHD

CHECK LOB DSNUCHL

COPY DSNUCOP

DIAGNOSE DSNUDIA

LOAD DSNULOA

MERGECOPY DSNUMER

MODIFY DSNUMOD

QUIESCE DSNUQUI

REBUILD INDEX DSNUREB

RECOVER DSNUREC

REORG INDEX DSNURGI

REORG LOB DSNURGL

REORG TABLESPACE DSNURGT

24 Utility Guide and Reference

Table 1. Control-file name for each utility (continued)

Utility control-file-name

REPAIR DSNUREP

REPORT DSNURPT

RUNSTATS DSNURUN

STOSPACE DSNUSTO

UNLOAD DSNUUNL

UNIT (unit-name)
Assigns a unit address, a generic device type, or a user-assigned group name
for a device on which a new temporary or permanent data set resides. When
the CLIST command generates the JCL, it places unit-name after the UNIT
clause of the generated DD statement.

The default value is SYSDA.

VOLUME (vol-ser)
Assigns the serial number of the volume on which a new temporary or
permanent data set resides. When the CLIST command generates the JCL, it
places vol-ser after the VOL=SER clause of the generated DD statement. If you
omit VOLUME, the VOL=SER clause is omitted from the generated DD
statement.

LIB (data-set-name)
Specifies the data set name of the DB2 subsystem library. The value that you
specify is used as the LIB parameter value when the DSNUPROC JCL
procedure is invoked.

DSNU CLIST command output

DSNU builds a one-step job stream. The JCL data set consists of a JOB statement,
an EXEC statement that executes the DB2 utility processor, and the required DD
statements. This JOB statement also includes the SYSIN DD * job stream, as shown
in the following figure. You can edit any of these statements.

The following list describes the required JCL data set statements:

Statement
Description

JOB The CLIST command uses any JOB statements that you saved when using
DB2I. If no JOB statements exist, DB2 produces a skeleton JOB statement
that you can modify. The job name is DSNU, followed by the first three
letters of the name of the utility that you are using.

//DSNUCOP JOB your-job-statement-parameters
// USER=userid,PASSWORD=password
//*ROUTE PRINT routing-information
//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID=TEMP,UTPROC=’
//SYSCOPY DD DSN=MYCOPIES.DSN8D11A.JAN1,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSIN DD *

COPY TABLESPACE DSN8D11A.DSN8S11D
FULL NO
SHRLEVEL CHANGE

/*

Figure 4. Control file DSNUCOP.CNTL. This is an example of the JCL data set before editing.

Chapter 3. Invoking DB2 online utilities 25

EXEC The CLIST command builds the EXEC statement. The values that you
specified for SYSTEM (DSN, by default), UID(TEMP), and RESTART (none)
become the values of SYSTEM, UID, and UTPROC for the DSNUPROC.

The CLIST command builds the necessary JCL DD statements. Those statements
vary depending on the utility that you execute. The following DD statements are
generated by the CLIST command:

SYSPRINT DD SYSOUT=A
Defines OUTPUT, SYSPRINT as SYSOUT=A. Utility messages are sent to the
SYSPRINT data set. You can use the TSO ALLOCATE command to control the
disposition of the SYSPRINT data set. For example, you can send the data set
to your terminal.

UTPRINT DD SYSOUT=A
Defines UTPRINT as SYSOUT=A. If any utility requires a sort, it executes the
sort program. Messages from that program are sent to UTPRINT.

SYSIN DD *
Defines SYSIN. To build the SYSIN DD * job stream, DSNU copies the data set
that is named by the INDSN parameter. The INDSN data set does not change,
and you can reuse it when the DSNU procedure has finished running.

Editing the generated JCL data set

You can edit the data set before you process it by using the EDIT parameter on the
command procedure. Use the editor to add a JCL statement to the job stream, to
change JCL parameters (such as ddnames), or to change utility control statements.

If you use a ddname that is not the default on a utility statement that you use, you
must change the ddname in the JCL that is generated by the DSNU procedure. For
example, in the REORG TABLESPACE utility, the default option for UNLDDN is
SYSREC, and DSNU builds a SYSREC DD statement for REORG TABLESPACE. If
you use a different value for UNLDDN, you must edit the JCL data set and change
SYSREC to the ddname that you used.

When you finish editing the data set, you can either save changes to the data set
(by issuing SAVE), or instruct the editor to ignore all changes.

The SUBMIT parameter specifies whether to submit the data set statement as a
background job. The temporary data set that holds the JCL statement is reused. If
you want to submit more than one job that executes the same utility, you must
rename the JCL data sets and submit them separately.

Example 1: Generating a data set

The following CLIST command statement generates a data set that is called
authorization-id.DSNURGT.CNTL and that contains JCL statements that invoke the
DSNUPROC procedure.
%DSNU UTILITY(REORG TABLESPACE) INDSN(MYREOR.DATA)

RECDSN(MYREOR.WORK) RESTART(NO)
EDIT(TSO) SUBMIT(YES)

The DSNUPROC procedure invokes the REORG TABLESPACE utility. The
MYREOR.DATA data set is merged into the JCL data set as SYSIN input.
MYREOR.WORK is a temporary data set that is required by REORG
TABLESPACE. The TSO editor is invoked to allow editing of the JCL data set,
authorization-id.DSNURGT.CNTL. The TSO editor then submits the JCL data set as

26 Utility Guide and Reference

a batch job. This JCL data set is not modified by this CLIST command statement
until a new request is made to execute the REORG TABLESPACE utility.

Example 2: Invoking the CLIST command for the COPY utility

The following example shows how to invoke the CLIST command for the COPY
utility.
%DSNU

UTILITY (COPY)
INDSN (’MYCOPY(STATEMNT)’)
COPYDSN (’MYCOPIES.DSN8D11A.JAN1’)
EDIT (TSO)
SUBMIT (YES)
UID (TEMP)
RESTART (NO)

Related reference:

DB2 Sort

ALLOCATE command (TSO/E Command Reference)
Related information:

DFSORT Application Programming Guide

Invoking a DB2 utility by using the supplied JCL procedure
(DSNUPROC)

Another method of invoking a DB2 online utility uses the supplied JCL procedure,
DSNUPROC, which is shown in the figure below. This procedure uses the
parameters that you supply to build an appropriate EXEC statement that executes
an online utility.

To execute the DSNUPROC procedure, write and submit a JCL data set like the
one that the DSNU CLIST command builds (An example is shown in Figure 4 on
page 25.) In your JCL, the EXEC statement executes the DSNUPROC procedure.

DSNUPROC syntax

�� DSNUPROC
LIB=prefix.SSPGM

LIB=DB2library-name

,SIZE=OM

,SIZE=region-size

,SYSTEM=DSN

,SYSTEM=subsystem-name
�

�
,UID=' '

,UID=utility-qualifier

,UTPROC=' '

,UTPROC= 'RESTART'
'RESTART(CURRENT)'
'RESTART(PHASE)'
'PREVIEW'

��

DSNUPROC option descriptions

The following list describes all the parameters. For example, in Figure 4 on page
25, you need to use only one parameter, UID=TEMP; for all others, you can use the
default values.

Chapter 3. Invoking DB2 online utilities 27

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c5c0/1.7?ACTION=MATCHES&REQUEST=allocate+command&TYPE=FUZZY&SHELF=&DT=20110621113414&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

LIB=
Specifies the data set name of the DB2 subsystem library.

The default value is prefix.SSPGM.

SIZE=
Specifies the region size of the utility execution area; that is, the value
represents the number of bytes of virtual storage that are allocated to this
utility job.

The default value is 0M.

SYSTEM=
Specifies the DB2 subsystem or group attachment name or subgroup
attachment name.

The default value is DSN.

UID=
Specifies the unique identifier for your utility job. The maximum name length
is 16 characters. If the name contains special characters, enclose the entire
name between apostrophes (for example, 'PETERS.JOB'). Do not reuse the
utility ID of a stopped utility that has not yet been terminated. If you do use
the same utility ID to invoke a different utility, DB2 tries to restart the original
stopped utility with the information that is stored in the SYSUTIL directory
table.

The default is an empty string. If you do not specify UID, or you specify
UID='', DB2 assigns a utility ID of the form user-id.job-name to the utility job.
user-id is the user ID. job-name is the job name in the JCL in which DSNUPROC
is executed. If the total length of the generated utility ID is longer than 16
bytes, the user ID is truncated to seven bytes.

UTPROC=
Controls restart processing. The default is an empty string. Use the default if
you want to allow DB2 to perform default restart processing as documented in
“Restart of an online utility” on page 39.

To override the default restart behavior, specify:

'RESTART'
To restart at the most recent commit point. This option has the same
meaning as 'RESTART(CURRENT).'

'RESTART(CURRENT)'
To restart at the most recent commit point. This option has the same
meaning as 'RESTART.'

'RESTART(PHASE)'
To restart at the beginning of the phase that executed most recently.

'PREVIEW'
To restart in preview mode. While in PREVIEW mode, the utility
checks for syntax errors in all utility control statements, but normal
utility execution does not take place.

The DSNUPROC procedure provides the SYSPRINT and UTPRINT DD statements
for printed output. You must provide DD statements for SYSIN and other data sets
that your job needs. See “Data sets that online utilities use” on page 11 for a
description of data sets that you might need.

28 Utility Guide and Reference

Sample DSNUPROC listing

The following figure is the DSNUPROC procedure that was executed by the JCL
example in Figure 4 on page 25.
//DSNUPROC PROC LIB=’DSN!!0.SDSNLOAD’,
// SYSTEM=DSN,
// SIZE=0K,UID=’’,UTPROC=’’
//**
//* PROCEDURE-NAME: DSNUPROC *
//* *
//* DESCRIPTIVE-NAME: UTILITY PROCEDURE *
//* *
//* FUNCTION: THIS PROCEDURE INVOKES THE ADMF UTILITIES IN THE *
//* BATCH ENVIRONMENT *
//* *
//* PROCEDURE-OWNER: UTILITY COMPONENT *
//* *
//* COMPONENT-INVOKED: ADMF UTILITIES (ENTRY POINT DSNUTILB). *
//* *
//* ENVIRONMENT: BATCH *
//* *
//* INPUT: *
//* PARAMETERS: *
//* LIB = THE DATA SET NAME OF THE DB2 PROGRAM LIBRARY. *
//* THE DEFAULT LIBRARY NAME IS PREFIX.SDSNLOAD, *
//* WITH PREFIX SET DURING INSTALLATION. *
//* SIZE = THE REGION SIZE OF THE UTILITIES EXECUTION AREA.*
//* THE DEFAULT REGION SIZE IS 2048K. *
//* SYSTEM = THE SUBSYSTEM NAME USED TO IDENTIFY THIS JOB *
//* TO DB2. THE DEFAULT IS "DSN". *
//* UID = THE IDENTIFIER WHICH WILL DEFINE THIS UTILITY *
//* JOB TO DB2. IF THE PARAMETER IS DEFAULTED OR *
//* SET TO A NULL STRING, THE UTILITY FUNCTION WILL *
//* USE ITS DEFAULT, USERID.JOBNAME. EACH UTILITY *
//* WHICH HAS STARTED AND IS NOT YET TERMINATED *
//* (MAY NOT BE RUNNING) MUST HAVE A UNIQUE UID. *
//* UTPROC = AN OPTIONAL INDICATOR USED TO DETERMINE WHETHER *
//* THE USER WANTS TO INITIALLY START THE REQUESTED*
//* UTILITY OR TO RESTART A PREVIOUS EXECUTION OF *
//* THE UTILITY. IF OMITTED, THE UTILITY WILL *
//* BE INITIALLY STARTED. OTHERWISE, THE UTILITY *
//* WILL BE RESTARTED BY ENTERING THE FOLLOWING *
//* VALUES: *
//* RESTART(PHASE) = RESTART THE UTILITY AT THE *
//* BEGINNING OF THE PHASE EXECUTED *
//* LAST. *
//* RESTART = RESTART THE UTILITY AT THE LAST *
//* OR CURRENT COMMIT POINT. *
//* *
//* OUTPUT: NONE. *
//* *
//* EXTERNAL-REFERENCES: NONE. *
//* *
//* CHANGE-ACTIVITY: *
//* *
//**
//DSNUPROC EXEC PGM=DSNUTILB,REGION=&SIZE,
// PARM=’&SYSTEM,&UID,&UTPROC’
//STEPLIB DD DSN=&LIB,DISP=SHR
//**
//* *
//* THE FOLLOWING DEFINE THE UTILITIES’ PRINT DATA SETS *
//* *
//**
//*
//SYSPRINT DD SYSOUT=*

Chapter 3. Invoking DB2 online utilities 29

//UTPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//*DSNUPROC PEND REMOVE * FOR USE AS INSTREAM PROCEDURE

Invoking a DB2 utility by creating the JCL data set yourself
DB2 online utilities execute as standard z/OS jobs.

To execute the utility, you must supply the JOB statement that is required by your
installation and the JOBLIB or STEPLIB DD statements that are required to access
DB2. You must also include an EXEC statement and a set of DD statements. The
EXEC statement and the DD statements that you might need are described in
“Data sets that online utilities use” on page 11.

Recommendation: Use DSNUPROC to invoke a DB2 online utility, rather than
creating the JCL yourself.

The EXEC statement can be a procedure that contains the required JCL, or it can be
of the following form:
//stepname EXEC PGM=DSNUTILB,PARM=’system,[uid],[utproc]’

The brackets, [], indicate optional parameters. The parameters have the following
meanings:

DSNUTILB
Specifies the utility control program. The program must reside in an
APF-authorized library.

system
Specifies the DB2 subsystem.

uid
The unique identifier for your utility job. Do not reuse the utility ID of a
stopped utility that has not yet been terminated. If you do use the same utility
ID to invoke a different utility, DB2 tries to restart the original stopped utility
with the information that is stored in the SYSUTIL directory table.

utproc
The value of the UTPROC parameter in the DSNUPROC procedure. Specify
this option only when you want to restart the utility job. Specify:

'RESTART'
To restart at the most recent commit point. This option has the same
meaning as 'RESTART(CURRENT).'

'RESTART(CURRENT)'
To restart the utility at the most recent commit point. This option has
the same meaning as 'RESTART.'

'RESTART(PHASE)'
To restart at the beginning of the phase that executed most recently.

'RESTART(PREVIEW)'
To restart the utility in preview mode. While in PREVIEW mode, the
utility checks for syntax errors in all utility control statements, but
normal utility execution does not take place.

Figure 5. Sample listing of supplied JCL procedure DSNUPROC

30 Utility Guide and Reference

For the example in Figure 5 on page 30 you can use the following EXEC statement:
//stepname

EXEC PGM=DSNUTILB,PARM=’DSN,TEMP’

Chapter 3. Invoking DB2 online utilities 31

32 Utility Guide and Reference

Chapter 4. Monitoring and controlling online utilities

You can monitor utilities, run utilities concurrently, terminate utilities, and restart
utilities.

Monitoring utilities with the DISPLAY UTILITY command
Use the DB2 DISPLAY UTILITY command to check the current status of online
utilities.

The following figure shows an example of the output that the DISPLAY
UTILITY command generates.

The items in the example output are described in the following table.

Item Description

�A� The member name.

�B� The utility identifier.

�C� The utility name.

�D� The utility phase.

�E� The number of pages or records that are processed by the utility. In a data
sharing environment, the number of records is current when the command is
issued from the same member on which the utility is executing. When the
command is issued from a different member, the count might lag substantially.
For some utilities in some build phases, the count number is not updated when
the command is issued from a different member.

�F� The number of objects in the list.

�G� The last object that started.

�H� The utility status.

�I� The job name for the job that invoked the utility.

�J� The date and time when the job originally started.

The output might also report additional information about an executing utility,
such as log phase estimates or utility subtask activity.

DSNU100I - DSNUGDIS - USERID = SAMPID
�A� MEMBER = DB1G
�B� UTILID = RUNTS

PROCESSING UTILITY STATEMENT 1
�C�UTILITY = RUNSTATS
�D� PHASE = RUNSTATS �E� COUNT = 0
�F� NUMBER OF OBJECTS IN LIST = n
�G� LAST OBJECT STARTED = m
�H� STATUS = STOPPED
�I� JOBNAME = STATSJOB
�J� TIME STARTED = 2014-01-09-10:26:03

DSN9022I - DSNUGCC ’-DISPLAY UTILITY’ NORMAL COMPLETION

Figure 6. DISPLAY UTILITY command sample output

© Copyright IBM Corp. 1983, 2013 33

|
|
|
|
|
|
|
|
|
|
|
|

Determining the status of a utility

To determine the status of an online utility, look at the status part (�H�) of the
DISPLAY UTILITY output. An online utility can have one of these statuses:

Status Description

Active The utility has started execution.

Stopped The utility has abnormally stopped executing before completion, but the table
spaces and indexes that were accessed by the utility remain under utility
control. To make the data available again, you must take one of the following
actions:

v Correct the condition that stopped the utility, and restart the utility so that it
runs to termination.

v Terminate the utility with the DB2 TERM UTILITY command.

Terminated The utility has been requested to terminate by the DB2 TERM UTILITY
command. If the utility has terminated, no message is issued.

Determining which utility phase is currently executing

DB2 online utility execution is divided into phases. Each utility starts with the
UTILINIT phase, which performs initialization and set up. Each utility finishes
with a UTILTERM phase, which cleans up after processing has completed. The
other phases of online utility execution differ, depending on the utility. See the
“Execution Phases” information in the descriptions of each utility. To determine
which utility phase is currently executing, look at the output from the DISPLAY
UTILITY command. The example output in the figure above shows the current
phase (�D�).

Determining why a utility failed to complete

If an online utility job completes normally, it issues return code 0. If it completes
with warning messages, it issues return code 4. Return code 8 means that the job
failed to complete. Return code 12 means that an authorization error occurred.

To determine why a utility failed to complete, consider the following problems that
can cause a failure during execution of the utility:
v Problem: DB2 terminates the utility job step and any subsequent utility steps.

Solution: Submit a new utility job to execute the terminated steps. Use the same
utility identifier for the new job to ensure that no duplicate utility job is running.

v Problem: DB2 does not execute the particular utility function, but prior utility
functions are executed.
Solution: Submit a new utility step to execute the function.

v Problem: DB2 places the utility function in the stopped state.
Solution: Restart the utility job step at either the last commit point or the
beginning of the phase by using the same utility identifier. Alternatively, use a
TERM UTILITY (uid) command to terminate the job step and resubmit it.

v Problem: DB2 terminates the utility and issues return code 8.
Solution: One or more objects might be in a restrictive or advisory status.
Alternatively, a DEADLINE condition in online REORG might have terminated
the reorganization.

34 Utility Guide and Reference

Related concepts:
“Termination of an online utility with the TERM UTILITY command” on page 36
Related tasks:
“Repairing DBDs” on page 668
Related reference:
Chapter 24, “REORG INDEX,” on page 499

Traces for monitoring processor use by utilities
You can run traces to collect data about the amount of processor time that is used
by online utilities.

PSPI

When you run a trace that writes IFCID 0025 trace records, you can collect data on
processor use by utilities.

The types of information that are collected are:
v Whether DFSORT or DB2SORT were invoked
v The number of parallel data or index sorts that were performed
v The amounts of time that a utility job used:

– Total elapsed time
– Total CPU time
– Total zIIP time (if an accounting class 1 trace is also activated)
– CPU time for sorts
– zIIP time for sorts (if the sort program provided this value)

PSPI

Running utilities concurrently
Some online utilities allow other utilities and SQL statements to run concurrently
on the same target object.

To determine if utilities can be run concurrently, look in the compatibility and
concurrency topic for each online utility. Each concurrency and compatibility topic
includes the following information:
v For each target object on which the utility acts, the topic outlines the claim

classes that the utility must claim or drain. The topic also outlines the restrictive
state that the utility sets on the target object.

v For other online utilities, the topic summarizes the compatibility of the utility
with the same target object. If two actions are compatible on a target object, they
can run simultaneously on that object in separate applications. If compatibility
depends on particular options of a utility, that dependency is also shown.

If the utility supports parallelism, it can use additional threads to support the
parallel subtasking. Consider increasing the values of subsystem parameters that
control threads, such as MAX BATCH CONNECT and MAX USERS.

Chapter 4. Monitoring and controlling online utilities 35

Related concepts:

Claims and drains (DB2 Performance)
Related reference:

Thread management panel 1: (DB2 Installation and Migration)

Online utilities in a data sharing environment
You can run online utilities in a data sharing environment.

Submission of online utility jobs in a data sharing environment

When you submit a utility job, you must specify the name of the DB2 subsystem to
which the utility is to attach or the group attachment name or subgroup
attachment name. If you do not use the group attachment name or subgroup
attachment name, the utility job must run on the z/OS system where the specified
DB2 subsystem is running. Ensure that the utility job runs on the appropriate z/OS
system. You must use one of several z/OS installation-specific statements to make
sure this happens. These include:
v For JES2 multi-access spool (MAS) systems, insert the following statement into

the utility JCL:
/*JOBPARM SYSAFF=cccc

v For JES3 systems, insert the following statement into the utility JCL:
//*MAIN SYSTEM=(main-name)

Your installation might have other mechanisms for controlling where batch jobs
run, such as by using job classes.

Stop and restart of utilities in a data sharing environment

In a data sharing environment, you can terminate an active utility by using the
TERM UTILITY command only on the DB2 subsystem on which it was started. If a
DB2 subsystem fails while a utility is in progress, you must restart that DB2
subsystem, and then you can terminate the utility from any system.

You can restart a utility only on a member that is running the same DB2 release
level as the member on which the utility job was originally submitted. The same
utility ID (UID) must be used to restart the utility. That UID is unique within a
data sharing group. However, if DB2 fails, you must restart DB2 on either the same
or another z/OS system before you restart the utility.
Related reference:

DD statement (MVS JCL Reference)

Termination of an online utility with the TERM UTILITY command
You can terminate online utilities with the TERM UTILITY command.

Use the TERM UTILITY command to terminate the execution of an active
utility or to release the resources that are associated with a stopped utility.

Restriction: If the utility was started in a previous release of DB2, issue the TERM
UTILITY command from that release.

36 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_claimsdrans4concurrency.htm#db2z_claimsdrans4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntipe.htm#db2z_dsntipe
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b6b1/12.0?DN=SA22-7597-16&DT=20120814180937&SHELF=&CASE=&PATH=/bookmgr/

After you issue the TERM UTILITY command, you cannot restart the terminated
utility job. The objects on which the utility was operating might be left in an
indeterminate state. In many cases, you cannot rerun the same utility without first
recovering the objects on which the utility was operating. The situation varies,
depending on the utility and the phase that was in process when you issued the
command. These considerations about the state of the object are particularly
important when terminating the COPY, LOAD, and REORG utilities.

In a data sharing environment, TERM UTILITY is effective for active utilities when
the command is submitted from the DB2 subsystem that originally issued the
command. You can terminate a stopped utility from any active member of the data
sharing group.

Restriction: In a data sharing coexistence environment, you can terminate a utility
only on the same release in which the utility was started.

If the utility is active, TERM UTILITY terminates it at the next commit point. It then
performs any necessary cleanup operations.

You might choose to put TERM UTILITY in a conditionally executed job step; for
example, if you never want to restart certain utility jobs. the following figure
shows a sample job stream.

Alternatively, consider specifying the TIMEOUT TERM parameter for some online

REORG situations.

Subsystem parameters for refining DFSMSdss COPY operation with
utilities

You can use subsystem parameters to control whether utilities that invoke
DFSMSdss COPY use FlashCopy technology.

The utilities that invoke DFDSMSdss COPY are:
v CHECK DATA with SHRLEVEL CHANGE
v CHECK INDEX with SHRLEVEL CHANGE
v CHECK LOB with SHRLEVEL CHANGE
v COPY with FLASHCOPY YES or FLASHCOPY CONSISTENT
v LOAD with FLASHCOPY YES or FLASHCOPY CONSISTENT

//TERM EXEC PGM=IKJEFT01,COND=((8,GT,S1),EVEN)
//*
//**
//* IF THE PREVIOUS UTILITY STEP, S1, ABENDS, ISSUE A
//* TERMINATE COMMAND. IT CANNOT BE RESTARTED.
//**
//*
//SYSPRINT DD SYSOUT=A
//SYSTSPRT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//SYSTSIN DD *
DSN SYSTEM(DSN)
-TERM UTILITY(TEMP)
END
/*

Figure 7. Example of conditionally executed TERM UTILITY

Chapter 4. Monitoring and controlling online utilities 37

v REBUILD INDEX with FLASHCOPY YES or FLASHCOPY CONSISTENT
v RECOVER with FLASHCOPY YES or FLASHCOPY CONSISTENT
v REORG INDEX with FLASHCOPY YES or FLASHCOPY CONSISTENT
v REORG TABLESPACE with FLASHCOPY YES or FLASHCOPY CONSISTENT

The subsystem parameters are:

FLASHCOPY_PPRC
Specifies the behavior for DFSMSdss FlashCopy requests when the target disk
storage volume is the primary device in a peer-to-peer remote copy (Metro
Mirror) relationship:
v Whether DFSMSdss preserves mirroring while processing a DB2 utilities

request
v Whether the target device pair is allowed to go to duplex pending state

FLASHCOPY_PPRC applies to the CHECK DATA, CHECK INDEX, CHECK
LOB, COPY, REORG TABLESPACE, REORG INDEX, REBUILD INDEX, LOAD,
and RECOVER utilities.

CHECK_FASTREPLICATION
Specifies whether the CHECK utilities direct DFSMSdss COPY to use
FlashCopy as the preferred for copying objects to shadow data sets, or as the
only method for copying objects to shadow data sets.

REC_FASTREPLICATION
Specifies how the RECOVER utility directs DFSMSdss COPY to restore an
image copy that was created with FlashCopy. REC_FASTREPLICATION directs
DFSMSdss COPY to use FlashCopy as the preferred method, as the only
method, or not to use FlashCopy.

The parameters that DFSMSdss COPY specifies for the CHECK utilities depend on
the combination of values for FLASHCOPY_PPRC and
CHECK_FASTREPLICATION that you specify, as shown in the following table.

Table 2. FLASHCOPY_PPRC and CHECK_FASTREPLICATION values and resulting DFSMSdss COPY parameter
values for CHECK utilities

FLASHCOPY_PPRC
value

CHECK_FASTREPLICATION value

PREFERRED REQUIRED

blank FASTREP(PREF) FASTREP(REQ)

NONE FASTREP(PREF) FASTREP(REQ)

FCTOPPRCP(PresMirNone) FCTOPPRCP(PresMirNone)

PREFERRED FASTREP(PREF) FASTREP(REQ)

FCTOPPRCP(PresMirPref) FCTOPPRCP(PresMirPref)

REQUIRED FASTREP(PREF) FASTREP(REQ)

FCTOPPRCP(PresMirReq) FCTOPPRCP(PresMirReq)

The parameters that DFSMSdss COPY specifies for the RECOVER utility depend
on the combination of values for FLASHCOPY_PPRC and
CHECK_FASTREPLICATION that you specify, as shown in the following table.

38 Utility Guide and Reference

Table 3. FLASHCOPY_PPRC and CHECK_FASTREPLICATION values and resulting DFSMSdss COPY parameter
values for the RECOVER utility

FLASHCOPY_PPRC
value

REC_FASTREPLICATION value

NONE PREFERRED REQUIRED

blank FASTREP(NONE) FASTREP(PREF) FASTREP(REQ)

NONE FASTREP(NONE) FASTREP(PREF) FASTREP(REQ)

FCTOPPRCP(PresMirNone) FCTOPPRCP(PresMirNone)

PREFERRED FASTREP(NONE) FASTREP(PREF) FASTREP(REQ)

FCTOPPRCP(PresMirPref) FCTOPPRCP(PresMirPref)

REQUIRED FASTREP(NONE) FASTREP(PREF) FASTREP(REQ)

FCTOPPRCP(PresMirReq) FCTOPPRCP(PresMirReq)

Related reference:

FAST REPLICATION field (CHECK_FASTREPLICATION subsystem
parameter) (DB2 Installation and Migration)

FLASHCOPY PPRC field (FLASHCOPY_PPRC subsystem parameter) (DB2
Installation and Migration)

FAST RESTORE field (REC_FASTREPLICATION subsystem parameter) (DB2
Installation and Migration)

Restart of an online utility
If a utility finishes abnormally, you might be able to restart it.

With the autonomic restart procedure, you avoid repeating much of the work that
the utility has already done.

Before you restart a job, correct the problem that caused the utility job to stop.
Then resubmit the job. DB2 recognizes the utility ID and restarts the utility job if
possible. DB2 retrieves information about the stopped utility from the SYSUTIL
directory table.

Do not reuse the utility ID of a stopped utility that has not yet been terminated,
unless you want to restart that utility. If you do use the same utility ID to invoke a
different utility, DB2 tries to restart the original stopped utility with the
information that is stored in the SYSUTIL directory table.

Two different methods of restart are available:
v You can do a phase restart from the beginning of the phase that was being

processed. This method is indicated by the value RESTART(PHASE).
v You can do a current restart from the last checkpoint that was taken during the

execution of the utility phase. If the utility phase does not take any checkpoints
or has not reached the first checkpoint, current restart is equivalent to phase
restart. This method is indicated by the value RESTART or
RESTART(CURRENT).

For each utility, DB2 uses the default RESTART value that is specified in the
following table. For a complete description of the restart behavior for an individual
utility, including any phase restrictions, refer to the restart topic for that utility.

Chapter 4. Monitoring and controlling online utilities 39

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_checkfastreplication.htm#db2z_ipf_checkfastreplication
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_checkfastreplication.htm#db2z_ipf_checkfastreplication
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_flashcopypprc.htm#db2z_ipf_flashcopypprc
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_flashcopypprc.htm#db2z_ipf_flashcopypprc
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_recfastreplication.htm#db2z_ipf_recfastreplication
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_recfastreplication.htm#db2z_ipf_recfastreplication

You can override the default RESTART value by specifying the RESTART
parameter in the original JCL data set. DB2 ignores the RESTART parameter if you
are submitting the utility job for the first time. For instructions on how to specify
this parameter, see the following table.

Table 4. Default RESTART values for each utility

Utility Default RESTART value

BACKUP SYSTEM RESTART(CURRENT)

CATMAINT No restart

CHECK DATA RESTART(CURRENT)

CHECK INDEX RESTART(CURRENT)

CHECK LOB RESTART(CURRENT)

COPY RESTART(CURRENT)

COPYTOCOPY RESTART(CURRENT)

DIAGNOSE Restarts from the beginning

EXEC SQL Restarts from the beginning

LISTDEF Restarts from the beginning

LOAD RESTART(CURRENT) or RESTART(PHASE)1

MERGECOPY RESTART(PHASE)

MODIFY RECOVERY RESTART(CURRENT)

MODIFY STATISTICS RESTART(CURRENT)

OPTIONS Restarts from the beginning

QUIESCE RESTART(CURRENT)

REBUILD INDEX RESTART(PHASE)

RECOVER RESTART(CURRENT)

REORG INDEX RESTART(CURRENT) or RESTART(PHASE)1

REORG TABLESPACE RESTART(CURRENT) or RESTART(PHASE)1

REPAIR No restart

REPORT RESTART(CURRENT)

RESTORE SYSTEM RESTART(CURRENT)

RUNSTATS RESTART(CURRENT)

STOSPACE RESTART(CURRENT)

TEMPLATE Restarts from the beginning

UNLOAD RESTART(CURRENT)

Note:

1. The RESTART value that DB2 uses for these utilities depends on the situation.
Refer to the restart topic for each utility for a complete explanation.

If you cannot restart a utility job, you might have to terminate it to make the data
available to other applications. To terminate a utility job, issue the DB2 TERM
UTILITY command. Use the command only if you must start the utility from the
beginning.

40 Utility Guide and Reference

Restarting hints

The following guidelines provide additional information about restarting utilities:
v If the data set is not dynamically allocated, ensure that the DD name that is

specified in the restart JCL matches the DD name for the original job. Do not
change DD names on a restart job. If the LOAD utility is restarted with a
different SYSREC data set from the SYSREC data set for the initial invocation,
the data set characteristics (DCB) must be the same as the SYSREC data set
characteristics for the initial invocation. RESTART(PHASE) is recommended.
RESTART(CURRENT) might have unpredictable results because data set
checkpoint information is not used during restart processing.
If the data set is dynamically allocated, the file sequence numbers must match
for the restart and the original run.
In either case, if the data set is not cataloged, any explicit specification of
VOLSERs must match for the restart and the original job. If you copy a work
data set, such as SYSUT1, after an ABENDB37, and the number of volumes
changes, do not specify RESTART(CURRENT). If you do, ABEND 413-1C occurs.
To prevent this abend, start the utility in RESTART(PHASE).

v When restarting a utility with cataloged data sets, do not specify VOLSER. Let
DB2 determine the VOLSER of the data sets from the system catalog.

v Do not change the utility function that is currently stopped and the DB2 objects
on which it is operating. However, you can change other parameters that are
related to the stopped step and to subsequent utility steps.

v Do not specify z/OS automatic step restart.
v If a utility is restarted in the UTILINIT phase, it is re-executed from the

beginning of the phase.
v Run the RUNSTATS utility after the completion of a restarted LOAD, REBUILD

INDEX, or REORG job with the STATISTICS option. When you restart these jobs,
DB2 does not collect inline statistics. The exception is REORG UNLOAD PAUSE;
when restarted after the pause, REORG UNLOAD PAUSE collects statistics.

v Ensure that the required data sets are properly defined.

Recommendation: Allocate the data sets by using TEMPLATE statements that
do not specify the DISP and SPACE parameter values. When these parameters
are not specified, DB2 determines the correct disposition and size of these data
sets.

v When using the DSNUTILS stored procedure, specify NONE or ANY for the
utility-name parameter. These values suppress the dynamic allocation that is
normally performed by DSNUTILS. You can then specify TEMPLATE statements
(in the utstmt parameter) to allocate the necessary data sets.

Restart is not always possible. The restrictions applying to the phases of each
utility are discussed under the description of each utility.

Using the RESTART parameter
You can use the RESTART parameter to override the default RESTART value.

About this task

You do not need to use the RESTART parameter to restart a utility job. When you
resubmit a job that finished abnormally and has not been terminated, DB2
automatically recognizes the utility ID from the SYSUTIL directory table and
restarts the utility job if possible. However, if you want to override the default

Chapter 4. Monitoring and controlling online utilities 41

RESTART value, you can update the original JCL data set by adding the RESTART
parameter. Any RESTART values that you specify always override the default
values. DB2 ignores the RESTART parameter if you are submitting the utility job
for the first time.

Procedure

To add the RESTART parameter, use one of the following methods:
v Use DB2I.

1. Access the DB2 Utilities panel.
2. Complete the panel fields, as documented in Figure 2 on page 19, except for

field 5.
3. Change field 5 to CURRENT or PHASE, depending on the method of restart that

you want.
4. Press Enter.

v Use the DSNU CLIST command. When you invoke the DSNU CLIST command,
change the value of the RESTART parameter by specifying either RESTART,
RESTART (CURRENT), or RESTART(PHASE).

v Create your own JCL. If you create your own JCL, you can specify RESTART
(CURRENT) or RESTART(PHASE) to override the default RESTART value. You
must also check the DISP parameters on the DD statements. For example, for
DD statements that have DISP=NEW and need to be reused, change DISP to
OLD or MOD. If generation data groups (GDGs) are used and any (+1)
generations were cataloged, ensure that the JCL is changed to GDG (+0) for such
data sets.
Automatically generated JCL normally has DISP=MOD. DISP=MOD allows a
data set to be allocated during the first execution and then reused during a
restart.
When restarting a job that involves templates, DB2 automatically changes the
disposition from NEW to MOD. Therefore, you do not need to change template
specifications for restart.

Related tasks:
“Invoking a DB2 utility by using the DSNU CLIST command in TSO” on page 20
“Using the DB2 Utilities panel in DB2I” on page 17
Related reference:

SYSIBM.SYSUTIL table (DB2 SQL)

Adding or deleting utility statements
During restart processing, DB2 remembers the relative position of the stopped
utility statement in the input stream. Therefore, you must include all the original
utility statements when restarting any online utility. However, you can add or
delete DIAGNOSE statements.

Modifying utility control statements
When restarting a utility job, do not change any EXEC SQL or OPTIONS utility
control statements that have been executed prior to the stopped utility, if possible.
If you must change these utility control statements, use caution; any changes can
cause the restart processing to fail. For example, if you specify a valid OPTIONS
statement in the initial invocation, and then on restart, specify OPTIONS
PREVIEW, the restart fails.

42 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysutiltable.htm#db2z_sysibmsysutiltable

About this task

Use caution when changing LISTDEF lists prior to a restart. When DB2 restarts list
processing, it uses a saved copy of the list. Modifying the LISTDEF list that is
referred to by the stopped utility has no effect. Only control statements that follow
the stopped utility are affected.

Do not change the position of any other utilities that have been executed.

Restarting after the output data set is full
You can restart a job at the last commit point after the output data set is full.

About this task

If a utility job terminates with an out-of-space condition on the output data set you
might need to restart the job at the last commit point.

Procedure

To restart the job at the last commit point:
1. Copy the output data set to a temporary data set. Use the same DCB

parameters. Use z/OS utilities that do not reblock the data set during the copy
operation (for example, DFSMSdss ADRDSSU or DFSORT ICEGENER). Avoid
using the IEBGENER or ISPF 3.3 utilities.

2. Delete or rename the output data set. Ensure that you know the current DCB
parameters, and then redefine the data set with additional space. Use the same
VOLSER (if the data set is not cataloged), the same DSNAME, and the same
DCB parameters.

3. Copy the data from the temporary data set into the new, larger output data set.
Use z/OS utilities that do not reblock the data set during the copy operation
(for example, DFSMSdss ADRDSSU or DFSORT ICEGENER).

Restarting with templates
Unlike most other utility control statements, TEMPLATE control statements can be
modified before restarting a utility, and, in some cases, they must be modified in
order to correct a prior failure.

About this task

Use caution when modifying templates. In some cases, modifications can cause
restart processing to fail. For example, if you change the template name of a
temporary work data set that was opened in an earlier phase and closed but is to
be used later, restart processing fails.

TEMPLATE allocation during a restart automatically adjusts data set dispositions
to reallocate the data sets from the prior execution. No modification to the
TEMPLATE DISP is required. If the prior failure was due to space problems on a
data set, the same restart considerations apply as if DD statements were being
used. If the prior failure was due to insufficient space on a volume, you can alter
the TEMPLATE statement. How the TEMPLATE statement needs to be altered
depends on whether the SPACE keyword was specified. If SPACE was specified,
specify a different volume or alter the primary and secondary space quantities. If
SPACE was not specified, specify a different volume or add the PCTPRIME and
NBRSECND keywords. Lower PCTPRIME to decrease the size of the primary

Chapter 4. Monitoring and controlling online utilities 43

allocation, and increase NBRSECND to decrease the size of the secondary
allocation. DB2 takes checkpoints for the values that are used for TEMPLATE DSN
variables, and the old values are reused on restart.

How utilities restart with lists
Lists are defined by the LISTDEF utility. Unlike other utility control statements,
LISTDEF control statements can be modified before restarting a utility. However,
the modification does not affect the currently running utility. The changed list
affects only those utility control statements that follow the stopped utility.

To determine whether the utility that you are restarting is processing a list or the
size of the list that the utility is processing, issue the DISPLAY UTILITY command.
If a list is being used, the size is reported in message DSNU100 or DSNU105 in the
DISPLAY UTILITY output.

When you originally submit a utility control statement that references a list, DB2
expands the contents of the list and saves the list before executing the utility. DB2
uses this saved list to restart the utility at the point of failure. After LISTDEF
repositions in the list at the point of failure, individual utility restart processing is
invoked. This restart behavior varies by utility. After the utility is successfully
restarted, the LISTDEF list is re-expanded before it is used by subsequent utilities
in the same job step.
Related concepts:
“Restart of an online utility” on page 39
Related reference:
Chapter 15, “LISTDEF,” on page 207

-DISPLAY UTILITY (DB2) (DB2 Commands)
Related information:

DSNU100I (DB2 Messages)

44 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_displayutility.htm#db2z_cmd_displayutility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu100i.htm#dsnu100i

Chapter 5. BACKUP SYSTEM

The online BACKUP SYSTEM utility invokes z/OS DFSMShsm (Version 1 Release
7 or above) to copy the volumes on which the DB2 data and log information
resides. This function can be done for either a DB2 subsystem or data sharing
group.

You can use BACKUP SYSTEM to copy all data for a single application (for
example, when DB2 is the database server for a resource planning solution). All
data sets that you want to copy must be SMS-managed data sets. You can later run
the RESTORE SYSTEM utility to recover the entire system.

In a data sharing environment, if any failed or abnormally quiesced members exist,
the BACKUP SYSTEM request fails.

The BACKUP SYSTEM utility uses copy pools. A copy pool is a defined set of
storage groups that contain data that DFSMShsm can back up and recover
collectively.

Each DB2 subsystem can have up to two copy pools, one for databases and one for
logs. BACKUP SYSTEM copies the volumes that are associated with these copy
pools at the time of the copy.

With the BACKUP SYSTEM utility, you can manage the dumping of system-level
backups (copy of the database, the log copy pools, or both) to tape. To use this
functionality, you need to have z/OS DFSMShsm V1R8 or above.

To use the DISPLAY UTILITY command for BACKUP SYSTEM on a data sharing
group, issue the command from the member on which the BACKUP SYSTEM
utility is invoked. Otherwise, the current utility information is not displayed.

Output

The output for BACKUP SYSTEM is the copy of the volumes on which the DB2
data and log information resides. The BACKUP SYSTEM history is recorded in the
bootstrap data sets (BSDSs).

In all migration modes, RBA and LRSN values are displayed in 10-byte format.
This 10-byte display is unrelated to migration of the catalog or directory,
conversion of individual objects to EXTENDED format, or BSDS conversion. For
recovery purposes, this 10-byte format is the preferred input format for DB2. When
10-byte RBA or LRSN values are specified as input to DB2, conversion to 6-byte
format is performed internally as needed.

Even before the BSDS is converted to Version 11 format on all data sharing
members or the catalog and directory are migrated, 10-byte LRSN values might be
displayed with non-zero digits in the low order 3 bytes. LRSN values captured
before the BSDS is converted continue to be displayed as they were saved until
they are no longer available for display (for example, deleted by MODIFY
RECOVERY). This behavior is normal and to be expected, given the many ways
LRSN values are generated, stored, and handled in DB2. If these LRSN values are
specified as input to DB2, specify them as shown. If the LRSN value contains

© Copyright IBM Corp. 1983, 2013 45

|
|
|
|
|
|

|
|
|
|
|
|
|
|

non-zero digits in the low order 3 bytes, do not remove them. Any conversion that
might be required takes place inside DB2.

Authorization required

To execute this utility, you must use a privilege set that includes SYSCTRL or
SYSADM authority.

Execution phases of BACKUP SYSTEM

The BACKUP SYSTEM utility operates in these phases:

Phase Description

UTILINIT
Performs initialization and setup

COPY Copies data

UTILTERM
Performs cleanup

Related concepts:

Point-in-time recovery with system-level backups (DB2 Administration Guide)
Related reference:
Chapter 28, “RESTORE SYSTEM,” on page 711
Related information:

Defining Copy Pools (DFSMSdfp Storage Administration)

Syntax and options of the BACKUP SYSTEM control statement
The BACKUP SYSTEM utility control statement, with its multiple options, defines
the function that the utility job performs.

Use the ISPF/PDF edit function to create a control statement and to save it in a
sequential or partitioned data set. When you create the JCL for running the job, use
the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

When you specify BACKUP SYSTEM, you can specify only the following
statements in the same step:
v DIAGNOSE
v OPTIONS PREVIEW
v OPTIONS OFF
v OPTIONS KEY
v OPTIONS EVENT WARNING

In addition, BACKUP SYSTEM must be the last statement in SYSIN.

46 Utility Guide and Reference

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_recovertotimeusingbackupsystem.htm#db2z_recovertotimeusingbackupsystem
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2s2a1/10.0?ACTION=MATCHES&REQUEST=defining+copy+pools&TYPE=FUZZY&SHELF=&DT=20120126150025&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

Syntax diagram

�� BACKUP SYSTEM
FULL

DATA ONLY ESTABLISH FCINCREMENTAL
END FCINCREMENTAL

�

�
FORCE
DUMP

dumpclass-spec FORCE
DUMPONLY

TOKEN (X'byte-string') dumpclass-spec

��

dumpclass-spec:

�� �

,

DUMPCLASS (dc1)
dc2
dc3
dc4
dc5

��

Option descriptions

FULL
Indicates that you want to copy both the database copy pool and the log copy
pool.

You must ensure that the database copy pool is set up to contain the volumes
for the databases and the associated integrated catalog facility (ICF) catalogs.
You must also ensure that the log copy pool is set up to contain the volumes
for the BSDSs, the active logs, and the associated catalogs.

Use BACKUP SYSTEM FULL to allow for recovery of both data and logs. You
can use the RESTORE SYSTEM utility to recover the data. However, RESTORE
SYSTEM does not restore the logs; the utility only applies the logs. If you want
to restore the logs, you must use another method to restore them.

DATA ONLY
Indicates that you want to copy only the database copy pool. You must ensure
that the database copy pool is set up to contain the volumes for the databases
and the associated ICF catalogs.

ESTABLISH FCINCREMENTAL
Specifies that a persistent incremental FlashCopy relationship is to be
established, if none exists, for source copy volumes in the database copy pool.
Use this keyword once to establish the persistent incremental FlashCopy

Chapter 5. BACKUP SYSTEM 47

relationships. Subsequent invocations of BACKUP SYSTEM (without this
keyword) will automatically process the persistent incremental FlashCopy
relationship.

END FCINCREMENTAL
Specifies that a last incremental FlashCopy be taken and for the persistent
incremental FlashCopy relationship to be withdrawn for all of the volumes in
the database copy pool. Use this keyword only if you do not want further
incremental FlashCopy backups of the database copy pool.

FORCE
Indicates that you want to overwrite the oldest DFSMShsm version of the fast
replication copy of the database copy pool. You can overwrite these copy pools
even if the dump to tape or the copy pool's DFSMShsm dump classes have
been initiated, but are only partially completed.

You should only use the FORCE option if it is more important to take a new
system-level backup than to save a previous system-level backup to tape.

DUMP
Indicates that you want to create a fast replication copy of the database copy
pool and the log copy pool on disk and then initiate a dump to tape of the fast
replication copy. The dump to tape begins after DB2 successfully establishes
relationships for the fast replication copy.

The BACKUP SYSTEM utility does not wait for the dump processing to
complete.

This option requires z/OS Version 1.8.

DUMPCLASS
Indicates the DFSMShsm dump class that you want to use for the dump
processing. You can specify up to five dump classes. If you do not specify a
dump class, DB2 uses the default dump classes that are defined for the copy
pools.

DUMPONLY
Indicates that you want to create a dump on tape of an existing fast replication
copy (that is currently residing on the disk) of the database copy pool and the
log copy pool. You can also use this option to resume a dump process that has
failed.

The BACKUP SYSTEM utility does not wait for the dump processing to
complete.

This option requires z/OS Version 1.8.

TOKEN (X'byte-string')
Specifies which fast replication copy of the database copy pool and the log
copy pool to dump to tape.

The token is a 36 digit or 44 digit hexadecimal byte string that uniquely
identifies each system-level backup and is reported in the DSNJU0004 job
output. For a data sharing system, run DSNJU0004 with the MEMBER option
so that the system-level backup information is displayed for all members.
Backups that are taken before the BSDS is converted to 10-byte extended
format are identified with 36-digit tokens. Backups that are taken after the
BSDS is converted to 10-byte extended format are identified with 44-digit
tokens. If specified, the token must be in the correct format for the system-level
backup.

48 Utility Guide and Reference

|
|
|
|
|
|
|
|
|

If you do not specify TOKEN, the most recent fast replication copy of the copy
pools is dumped to tape.

Before running BACKUP SYSTEM
Certain activities might be required before you run the BACKUP SYSTEM utility,
depending on your situation.

To run BACKUP SYSTEM, ensure that the following conditions are true:
v The data sets that you want to copy are SMS-managed data sets.
v You are running z/OS V1R7 or above.
v You are running z/OS V1R8 or above if both of the following conditions are

true:
– You want to use the DUMP, DUMPONLY, or FORCE options.
– You want the RECOVER utility to be able to use system-level backups for

object-level recoveries.
v You have disk control units that support ESS FlashCopy.
v A copy pool is defined for your database data, and that definition includes the

ICF catalog names. (You can add the ICF catalog names to the database copy
pool definition by altering the copy pools.) If you plan to also copy the logs,
define another copy pool for your logs. Use the DB2 naming convention for both
of these copy pools.

v The ICF catalog for the data must be on a separate volume than the ICF catalog
for the logs.

v An SMS backup storage group is defined for each storage group in the copy
pools.

Use the following DB2 naming convention when you define the required copy
pools:
DSN$locn-name$cp-type

The variables that are used in this naming convention have the following
meanings:

DSN The unique DB2 product identifier.

$ A delimiter. You must use the dollar sign character ($).

locn-name
The DB2 location name.

cp-type The copy pool type. Use DB for database and LG for log.
Related information:

Defining Copy Pools (DFSMSdfp Storage Administration)

Defining Storage Group Attributes (DFSMSdfp Storage Administration)

Altering copy pool (DFSMSdfp Storage Administration)

Data sets that BACKUP SYSTEM uses
The BACKUP SYSTEM utility uses a number of data sets during its operation.

Chapter 5. BACKUP SYSTEM 49

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2s2a1/10.0?ACTION=MATCHES&REQUEST=defining+copy+pools&TYPE=FUZZY&SHELF=&DT=20120126150025&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2s2a1/4.4?ACTION=MATCHES&REQUEST=defining+storage+group+attributes&TYPE=FUZZY&SHELF=&DT=20120126150025&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2s2a1/13.4.6?ACTION=MATCHES&REQUEST=altering+copy+pool&TYPE=FUZZY&SHELF=&DT=20120126150025&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

The following table lists the data sets that the BACKUP SYSTEM utility uses. The
table lists the DD name that is used to identify the data set, a description of the
data set, and an indication of whether it is required. Include statements in your
JCL for each required data set

Table 5. Data sets that BACKUP SYSTEM uses

Data sets Description Required?

SYSIN An input data set that contains the utility
control statement

Yes

SYSPRINT An output data set for messages Yes

Concurrency and compatibility for BACKUP SYSTEM
The BACKUP SYSTEM utility has certain concurrency and compatibility
characteristics associated with it.

The BACKUP SYSTEM utility can run concurrently with any other utility; however,
it must wait for the following DB2 events to complete before the copy can begin:
v Extending of data sets
v Writing of 32-KB pages
v Writing close page set control log records (PSCRs)
v Creating data sets (for table spaces, indexes, and so forth)
v Deleting data sets (for dropping tables spaces, indexes, and so forth)
v Renaming data sets (for online reorganizing of table spaces, indexes, and so

forth during the SWITCH phase)

Only one BACKUP SYSTEM job can be running at one time.

BACKUP SYSTEM cannot run concurrently with utilities that use FlashCopy to
create data sets in the database copy pool. For example, suppose that CHECK
INDEX SHRLEVEL CHANGE does a FlashCopy from a source object to a shadow
data set. The disk volume where the shadow data set resides becomes the target in
a FlashCopy relationship. If this disk volume is in the database copy pool,
BACKUP SYSTEM cannot copy it.

For the CHECK INDEX, CHECK DATA, and CHECK LOB utilities, you can use
subsystem parameter UTIL_TEMP_STORCLAS to specify an alternative storage
class that contains volumes that are not in the database copy pool. When
UTIL_TEMP_STORCLAS is specified, the CHECK utilities use the alternative
storage class to create the shadow data sets. Therefore, volumes that are targets in
a FlashCopy relationship after the CHECK utilities run are not in the database
copy pool.

Dumping a fast replication copy to tape
With the BACKUP SYSTEM online utility, you can dump a fast replication copy of
a system-level backup to tape. You can then manage the available disk space,
retain the system-level backups, and provide a means of recovery after a media
failure.

50 Utility Guide and Reference

Procedure

To dump a fast replication copy of a system-level backup to tape that was taken
without the DUMP option, or to re-initiate dump processing that has failed:
1. Identify the token (a 36 digit or 44 digit hexadecimal byte string) in the

DSNJU004 output.
2. Create and run your utility control statement with the DUMPONLY option.

Specify the token if the system-level backup is not the most recent system-level
backup taken.

Restriction: Do not dump system-backups to the same tape that contains
image copies or concurrent copies because the RECOVER utility requires access
to both

3. Run the DFSMShsm command LIST COPYPOOL with the ALLVOLS option to
verify that the dump to tape was successful. The BACKUP SYSTEM utility
issues the DFSMShsm command to initiate a dump, but it does not wait for the
dump to be completed.

Backups of log copy pools
If you take backups of both the log and database copy pool, you can use the
backups to restore the log copy pool.

When you use backups to restore the log copy pool, if the active log data sets are
stripped, or if the log copy pool is for a data sharing environment, you must
specify the data complete LRSN during the conditional restart in the following
scenarios:
v You are cloning a DB2 system by using a system-level backup as the source. In

this case, conditionally restart DB2 with an ENDRBA or ENDLRSN that is equal
to the data complete LRSN of the system-level backup.

v You are performing a system-level point-in-time recovery. In this case,
conditionally restart DB2 with the log truncation point equal to or less than the
data complete LRSN of the system-level backup. Use the data complete LRSN as
the CRESTART ENDRBA, ENDLRSN, or SYSPITR log truncation point.

You can determine the data complete LRSN from the following places:
v Message DSNU1614I, which is generated when BACKUP SYSTEM completes

successfully
v The report generated by the print log map utility (DSNJU004)

Chapter 5. BACKUP SYSTEM 51

|
|

Related concepts:
“Before running RESTORE SYSTEM” on page 714

Conditional restart with system-level backups (DB2 Administration Guide)
Related reference:
Chapter 38, “DSNJU004 (print log map),” on page 903
Related information:

DSNU1614I (DB2 Messages)

Termination or restart of BACKUP SYSTEM
You can terminate BACKUP SYSTEM by using the TERM UTILITY command.
BACKUP SYSTEM checks for the TERM UTILITY command before the call to copy
data. TERM UTILITY deletes the copy that is being created through the BACKUP
SYSTEM utility.

To use TERM UTILITY to terminate BACKUP SYSTEM on a data sharing group,
you must issue the command from the member on which the BACKUP SYSTEM
utility is invoked.

You can restart a BACKUP SYSTEM utility job, but it starts from the beginning
again.

Sample BACKUP SYSTEM control statements
Use sample control statements as models for developing your own BACKUP
SYSTEM control statements.

Example 1: Creating a full backup of a DB2 subsystem or data
sharing group.

The following control statement specifies that the BACKUP SYSTEM utility is to
create a full backup copy of a DB2 subsystem or data sharing group. The full
backup includes copies of both the database copy pool and the log copy pool. In
this control statement, the FULL option is not explicitly specified, because it is the
default.
//STEP1 EXEC DSNUPROC,TIME=1440,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSIN DD *

BACKUP SYSTEM
/*

Example 2: Creating a data-only backup of a DB2 subsystem or
data sharing group.

The following control statement specifies that BACKUP SYSTEM is to create a
backup copy of only the database copy pool for a DB2 subsystem or data sharing
group.
//STEP1 EXEC DSNUPROC,TIME=1440,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSIN DD *

BACKUP SYSTEM DATA ONLY
/*

52 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_conditionalrestartwithslb.htm#db2z_conditionalrestartwithslb
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu1614i.htm#dsnu1614i

Example 3: Creating a fast replication copy of the database copy
pool and dumping the copy to tape.

The following control statement specifies that BACKUP SYSTEM is to create a fast
replication copy of the database copy pool and initiate a dump to tape of the fast
replication copy.
//SYSOPRB JOB (ACCOUNT),’NAME’,CLASS=K
//UTIL EXEC DSNUPROC,SYSTEM=V91A,UID=’TEMB’,UTPROC=’’
//*
//*
//DSNUPROC.SYSUT1 DD DSN=SYSOPR.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *

BACKUP SYSTEM DATA ONLY DUMP
/*

Example 4: Creating a fast replication copy of the database copy
pool, dumping the copy to tape, and allowing oldest copy to be
overwritten.

The following control statement specifies that BACKUP SYSTEM is to create a fast
replication copy of the database copy pool, initiate a dump to tape of the fast
replication copy, and allow the oldest fast replication copy to be overwritten.
//SYSOPRB JOB (ACCOUNT),’NAME’,CLASS=K
//UTIL EXEC DSNUPROC,SYSTEM=V91A,UID=’TEMB’,UTPROC=’’
//*
//*
//DSNUPROC.SYSUT1 DD DSN=SYSOPR.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *

BACKUP SYSTEM DATA ONLY DUMP FORCE
/*

Example 5: Dumping an existing fast replication copy to tape.

The following control statement specifies that BACKUP SYSTEM is to dump the
existing fast replication copy X'E5F9F1C1BD1909683AA8A1A600000E6962DE' to
tape, using the DB2STGD2 dump class.
//SYSOPRB JOB (ACCOUNT),’NAME’,CLASS=K
//UTIL EXEC DSNUPROC,SYSTEM=V91A,UID=’TEMB’,UTPROC=’’
//*
//*
//DSNUPROC.SYSUT1 DD DSN=SYSOPR.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *

BACKUP SYSTEM DATA ONLY DUMPONLY
TOKEN (X’E5F9F1C1BD1909683AA8A1A600000E6962DE’)

DUMPCLASS(DB2STGD2)
/*

Chapter 5. BACKUP SYSTEM 53

54 Utility Guide and Reference

Chapter 6. CATENFM

The CATENFM online utility enables a DB2 subsystem to enter DB2 Version 11
enabling-new-function mode and Version 11 new-function mode. It also enables a
DB2 subsystem to return to enabling-new-function mode from new-function mode.

All new Version 11 functions are unavailable when the subsystem is in conversion
mode or enabling-new-function mode.

Output

Output from the CATENFM utility consists of:
v If you specify the CONVERT option, the CATENFM utility converts table spaces

during the enabling-new-function mode process.
v If you specify the ALTER option, some objects in the DB2 catalog are altered or

created.
v For other options, there is no output.

Authorization required

The required authorization for CATENFM is installation SYSADM.

Execution phases of CATENFM

The CATENFM utility operates in these phases:

Phase Description

UTILINIT
Performs initialization and setup

UTILTERM
Performs cleanup

Syntax and options of the CATENFM control statement
The CATENFM utility control statement, with its multiple options, defines the
function that the utility job performs.

The CATENFM utility is invoked by jobs DSNTIJEN, DSNTIJNF, DSNTIJES, and
DSNTIJCS.

Syntax diagram

�� CATENFM START
COMPLETE
ENFMON
CMON
CONVERT INPUT table-space-name

��

© Copyright IBM Corp. 1983, 2013 55

Option descriptions

START
Invokes the CATENFM utility and indicates the start of enabling-new-function
mode processing. No start processing is done if CATENFM START was run
previously; however, you can run the CATENFM utility as many times as
needed.

COMPLETE
Checks if the DB2 subsystem has completed enabling-new-function mode
processing. If the subsystem has completed this processing, the CATENFM
utility returns 0, and the subsystem enters new-function mode.

ENFMON
Returns DB2 to enabling-new-function mode. If the subsystem is currently in
enabling-new-function mode, no change occurs. If the subsystem has been to
new-function mode, ENFMON returns it to enabling-new-function* mode.
New Version 11 functions are not available in Version 11 enabling-new-function
mode.

CMON
Returns DB2 to conversion mode. If the system is currently in conversion
mode, no change occurs. If the system has been to enabling-new-function
mode or new-function mode, CMON returns it to conversion* mode.
Conversion* mode is similar to conversion mode, but the * indicates that at
one time the system was in enabling-new-function mode or new-function
mode. You can still access objects that were created in enabling-new-function
mode or new-function mode. Data sharing groups cannot have any Version 10
members. You cannot fall back to Version 10 from conversion* mode or coexist
with a Version 10 system.

CONVERT
Starts enabling-new-function mode processing for the table space that is listed
after the INPUT keyword.

INPUT table-space-name
Specifies the table space for which enabling-new-function mode processing
should begin.

table-space-name
The name of the table space for which enabling-new-function mode
processing should begin.

Before converting the catalog
Certain activities might be required before you run the CATMAINT utility,
depending on your situation.

Before you run the CATENFM utility to convert the catalog, take image copies of
all catalog and directory objects and save your entire subsystem.

To convert the catalog, you must run the DSNTIJEN job.

Data sets that CATENFM uses when converting the catalog
The CATENFM utility uses a number of data sets during its operation.

A CATENFM job allocates all of the data sets that it needs. CATENFM uses data
sets only when the CONVERT option is specified.

56 Utility Guide and Reference

The following table lists the data sets that CATENFM uses during conversion. The
table lists the DD name that is used to identify the data set, a description of the
data set, and an indication of whether it is required.

Table 6. Data sets that CATENFM uses during conversion

Data set Description Required?

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

Concurrency and compatibility for CATENFM
The CATENFM utility has certain concurrency and compatibility characteristics
associated with it.

Certain catalog and directory objects are not available during some of the
CATENFM phases. The objects that are unavailable vary based on the CATENFM
option that you specify. The unavailability of these objects can cause other jobs to
time out with message DSNT376I or DSNT501I. You cannot run CATENFM when
the DB2 catalog or directory are in UT status.

Converting to new-function mode
The DB2 subsystem leaves conversion mode and enters enabling-new-function
mode when you invoke CATENFM START by running the DSNTIJEN job.

About this task

When you migrate to DB2 Version 11, the DB2 subsystem enters conversion mode.
In conversion mode, the DB2 subsystem can coexist with other data sharing
members that are at either Version 10 or Version 11 conversion mode.

Procedure

To convert to DB2 Version 11 new-function mode:

Invoke CATENFM START by running the DSNTIJEN job.
The subsystem cannot begin enabling-new-function mode processing if any Version
10 members are active in the data sharing group. All members, including members
that are not converting to Version 11 new-function mode, must be running Version
11 when the subsystem enters enabling-new-function mode. Note that when a
member starts enabling-new-function mode, the group enters enabling-new-
function mode.
After enabling-new-function mode completes, the DB2 subsystem can enter Version
11 new-function mode. All new Version 11 functions are unavailable until the DB2
subsystem enters new-function mode.
The DSNTIJEN job runs CATENFM START, which causes the DB2 subsystem to
enter enabling-new-function mode. Run CATENFM START only when you are
ready to begin the enabling-new-function mode conversion process.

Termination or halt of CATENFM
You can terminate CATENFM by using the TERM UTILITY command.

Chapter 6. CATENFM 57

You can stop the enabling-new-function mode processing by specifying CATENFM
HALTENFM or by running job DSNTIJNH. Either action stops the
enabling-new-function mode processing at the completion of the step that is
currently executing.

CATENFM CONVERT cannot be restarted. If you attempt to restart CATENFM
CONVERT, you receive message DSNU191I, which states that the utility cannot be
restarted. You must terminate the job, and rerun job DSNTIJEN from the beginning
to convert the catalog.

58 Utility Guide and Reference

Chapter 7. CATMAINT

The CATMAINT online utility updates the catalog; run this utility during
migration to a new release of DB2 or when IBM Software Support instructs you to
do so.

Output

Output for CATMAINT UPDATE is the updated catalog.

Authorization required

The required authorization for CATMAINT is installation SYSADM.

Execution phases of CATMAINT

The CATMAINT utility operates in these phases:

Phase Description

UTILINIT
Performs initialization

UTILTERM
Performs cleanup

If the catalog contains plans or packages that were bound with
DBPROTOCOL(PRIVATE), the CATMAINT utility executes successfully; however,
plans and packages that were bound with DBPROTOCOL(PRIVATE) and access
remote locations cannot execute in DB2 for z/OS Version 10 and later. To enable
the plans or packages to execute, convert them to use the DRDA® protocol by
rebinding them. Use the DSNTP2DP to determine which packages need to be
rebound.

Syntax and options of the CATMAINT control statement
The CATMAINT utility control statement, with its multiple options, defines the
function that the utility job performs.

Use the ISPF/PDF edit function to create a control statement and to save it in a
sequential or partitioned data set. When you create the JCL for running the job, use
the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

© Copyright IBM Corp. 1983, 2013 59

Syntax diagram

�� CATMAINT UPDATE

�

�

SCHEMA SWITCH(schema-name,new-schema-name)
,

OWNER FROM (owner-name) TO ROLE

�

�

�VCAT SWITCH(vcat-name,new-vcat-name)

UTILX BASIC
EXTENDED

��

Option descriptions

UPDATE
Indicates that you want to update the catalog. Run this option only when you
migrate to a new release of DB2 or when IBM Software Support instructs you
to do so.

SCHEMA SWITCH(schema-name,new-schema-name)
Changes the owner, creator, and schema of database objects. The schema is not
changed for views, materialized query tables, SQL scalar function, triggers, and
native SQL procedures. The authorization IDs of the creator or owner for plans
and packages that use the objects are not changed.

schema-name is a string that identifies the existing owner, creator, or schema to
be changed. It will be ignored if it does not identify any owner, creator, or
schema names.

schema-name cannot identify a schema or qualifier of an object on which any of
the following objects depend:
v Triggers
v Views
v SQL functions
v Materialized query tables
v Native SQL procedures
v Expression-based indexes
v Column masks
v Row permissions

schema-name cannot be referenced in a check condition in any check constraints.
Ownership of objects will not be changed if the owner is a role.

new-schema-name specifies the new name for the owner, creator, or schema. The
name cannot be a schema that qualifies existing objects.

OWNER FROM(owner-name) TO ROLE
Changes the ownership of objects from a user to a role. A trusted context must
have been created for INSTALL SYSADM before CATMAINT UPDATE
OWNER can run. The authorization IDs of the creator or owner for plans and
packages that use the objects are not changed.

owner-name specifies the current owner of the object. You can specify multiple
owners.

60 Utility Guide and Reference

|||

VCAT SWITCH(vcat-name,new-vcat-name)
Changes the catalog name that is used by storage groups, user indexes, and
table spaces.

vcat-name identifies the integrated catalog facility catalog that is currently used
by user-managed data sets for indexes, table spaces, and storage groups.

new-vcat-name specifies the new integrated catalog facility catalog that is to be
used by user-managed data sets for indexes, table spaces, and storage groups.

To specify any non-alphanumeric characters, enclose each name in single
quotes.

UTILX
Reinitializes the DSNDB01.SYSUTILX directory table space. Reinitialize this
table space in any of the following situations:
v You cannot successfully run the DISPLAY UTILITY and TERMINATE

UTILITY commands.
v You want to change the page between basic 6-byte format and extended

10-byte format.

After running this statement, DSNDB01.SYSUTILX is reset to an empty state,
and the previous contents are lost. If there were active or stopped utilities at
that time, their tracking information is lost and the subsystem might
experience unpredictable results. It is important that all utilities be terminated
before running UPDATE UTILX.

BASIC
Initializes SYSUTILX and its indexes to basic 6-byte RBA format.

EXTENDED
Initializes SYSUTILX and its indexes to extended 10-byte RBA format.

Because DSNDB01.SYSUTILX contains information about active and
outstanding utilities, the process of reinitializing this table space involves
determining which objects have a utility in progress and resolving any pending
states to make the object available for access.

Related tasks:
“Reinitializing DSNDB01.SYSUTILX” on page 477

Before running CATMAINT
Certain activities might be required before you run the CATMAINT utility,
depending on your situation.

During migration, the work file database is used for CATMAINT sorting. If you
are migrating from a previous version, calculate the size of the work file database.

Data sets that CATMAINT uses
The CATMAINT utility uses a number of data sets during its operation.

Include DD statements for all data sets that your job uses. The following table lists
the data sets that CATMAINT uses. The table lists the DD name that is used to
identify the data set, a description of the data set, and an indication of whether it
is required.

Chapter 7. CATMAINT 61

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

Table 7. Data sets that CATMAINT uses

Data set Description Required?

SYSIN An input data set that contains the utility
control statement

Yes

SYSPRINT An output data set for messages Yes

Concurrency and compatibility for CATMAINT
The CATMAINT utility has certain concurrency and compatibility characteristics
associated with it.

Many catalog and directory indexes are not available while CATMAINT is
running. The unavailability of these indexes can cause other jobs to time out with
message DSNT318I, DSNT376I or DSNT501I.

Updating the catalog for a new release
When you install or migrate to a new release of DB2, you must update the catalog
for the prior release to the new version.

About this task

The DSNTIJTC job runs CATMAINT UPDATE to update the catalog. DB2 displays
migration status message DSNU777I at several points during CATMAINT
execution.

If an abend occurs during migration processing, message DSNU776I or DSNU778I
can give you information about the problem.

Renaming the owner, creator, and schema of database objects
You can rename the owner, creator, and schema of database objects.

Procedure

To rename the owner, creator, and schema of database objects:

Run the CATMAINT utility with the SCHEMA SWITCH options. This process
updates every owner, creator or schema name in the catalog and directory that
matches the schema_name value. All grants that were made by or received by the
original owner are changed to the new owner. You can change multiple names by
repeating the SWITCH keyword, but you can not specify the same name more
than once. The names cannot be longer than 8 bytes in EBCDIC representation.
'SYSIBM' is not allowed as a schema_name or new_schema_name. OWNER FROM
and SCHEMA SWITCH are mutually exclusive. You cannot specify both clauses in
the same CATMAINT UPDATE statement.

Changing the ownership of objects from an authorization ID to a role
With the CATMAINT online utility, you can change the ownership of objects from
an authorization ID to a role.

62 Utility Guide and Reference

Procedure

To change the ownership of objects from an authorization ID to a role:

Run CATMAINT OWNER FROM owner_name TO ROLE.
You must be running under a trusted context with a role to run this utility. The
current role will become the owner. Privileges held on the object will be transferred
from the original owner to the role. The original user can be the grantor or grantee,
and the original owner does not have any privileges to the object after the utility
completes. You can change multiple object owners by specifying multiple
owner_name, but you can not specify the same name more than once. If the
owner_name does not own any objects, it is ignored. 'SYSIBM' is not allowed as an
owner_name.
Ownership of roles is changed like other objects. However, if the associated trusted
context role is owned by the owner_name, the ownership of the role will not be
changed because a role cannot be owned by itself.
OWNER FROM and SCHEMA SWITCH are mutually exclusive. You cannot specify
both clauses in the same CATMAINT UPDATE statement.

Changing the catalog name used by storage groups or index spaces
and table spaces

You can use the CATMAINT online utility to change the catalog name that is used
by storage groups or by index spaces and table spaces.

Procedure

To change the catalog name that is used by storage groups or index spaces and
table spaces:

Run the CATMAINT VCAT SWITCH utility. The VCAT SWITCH option is similar
to the ALTER TABLESPACE USING VCAT statement for changing the catalog
name. You need to move the data for the affected indexes or table spaces to the
data set on the new catalog in a separate step. You can change multiple names by
repeating the SWITCH keyword, but you cannot specify the same name more than
once. The names cannot be longer than 8 bytes in EBCDIC representation. The
VCAT SWITCH option has no effect on the system indexes and table spaces in
DSNDB06/DSNDB01 because the catalog name is maintained in the parameter.

Identifying invalidated packages after the owner, creator, or schema
name of an object is renamed

When the schema name of an object is changed, any packages that are dependent
on the object are invalidated. Automatic rebind occurs when the invalidated
package is executed.

About this task

Rebind might not be successful if the object is referenced in the application
explicitly with the original schema name. In this case, you need to modify the
application. The following queries identify the packages that will be invalidated:

Chapter 7. CATMAINT 63

SELECT DISTINCT COLLID, NAME
FROM SYSIBM.SYSPACKDEP, SYSIBM.SYSPACKAGE
WHERE BQUALIFIER IN (schema_name1, schema_name2...)
ORDER BY COLLID, NAME;

Termination or restart of CATMAINT
You can terminate CATMAINT by using the TERM UTILITY command, but the
termination might leave some indexes in REBUILD-pending status.

CATMAINT cannot be restarted. If you attempt to restart CATMAINT, you receive
message DSNU191I, which states that the utility cannot be restarted. You must
terminate the job with the TERM UTILITY command, and rerun CATMAINT from
the beginning.

64 Utility Guide and Reference

Chapter 8. CHECK DATA

The CHECK DATA online utility checks table spaces for violations of referential
and table check constraints, and it reports information about violations that it
detects. CHECK DATA checks for consistency between a base table space and the
corresponding LOB or XML table spaces.

CHECK DATA does not check LOB table spaces. The utility does not check
informational referential constraints.

Run CHECK DATA after a conditional restart or a point-in-time recovery on all
table spaces where parent and dependent tables might not be synchronized or
where base tables and auxiliary tables might not be synchronized.

Run CHECK DATA to check the integrity of XML documents and their related
node ID indexes.

Run CHECK DATA to verify data consistency in hash access tables.

Restriction: Do not run CHECK DATA on encrypted data. Because CHECK DATA
does not decrypt the data, the utility might produce unpredictable results.

Output

CHECK DATA SHRLEVEL REFERENCE optionally copies rows and optionally
deletes those rows that violate referential or table check constraints. CHECK DATA
SHRLEVEL REFERENCE copies each row that violates one or more constraints to
an exception table. If a row violates two or more constraints, CHECK DATA
SHRLEVEL REFERENCE copies the row only once. For SHRLEVEL CHANGE,
CHECK DATA generates REPAIR statements that you can run to delete the rows.

If the utility finds any violation of constraints, the table space that is checked is not
put into the CHECK-pending status. You can force the prior behavior, that a table
space is put into CHECK-pending status when violations or constraints are
detected, by specifying CHECK_SETCHKP=Y on the CHECK_SETCHKP system
parameter.

CHECK DATA SHRLEVEL REFERENCE resets CHECK-pending status if it finds
no errors or if all rows that contain violations were copied to exception tables and
deleted.

CHECK DATA SHRLEVEL CHANGE operates on shadow copies of the table space
and generates the corresponding REPAIR statements.

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v STATS privilege for the database
v DBADM, DBCTRL, or DBMAINT authority for the database. If the object on

which the utility operates is in an implicitly created database, DBADM authority
on the implicitly created database or DSNDB04 is required.

v DATAACCESS authority

© Copyright IBM Corp. 1983, 2013 65

v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute CHECK DATA.
However, you cannot use SYSOPR authority to execute CHECK DATA on any
object except SYSUTILX in database DSNDB01.

If you are using SHRLEVEL CHANGE, the batch user ID that invokes COPY with
the CONCURRENT option must provide the necessary authority to execute the
DFSMSdss COPY command. DFSMSdss will create a shadow data set with the
authority of the utility batch address space. The submitter should have an RACF
ALTER authority, or its equivalent, for the shadow data set.

If you specify the DELETE option, the privilege set must include the DELETE
privilege on the tables that are being checked. If you specify the FOR EXCEPTION
option, the privilege set must include the INSERT privilege on any exception table
that is used.If you specify the AUXERROR INVALIDATE or the XMLERROR
INVALIDATE option, the privilege set must include the UPDATE privilege on the
base tables that contain LOB columns.

Execution phases of CHECK DATA

Phase Description

UTILINIT
Performs initialization

CHECKXML
Performs XML structure checking for all XML table spaces specified by
INCLUDE XML TABLESPACES.

SCANTAB
Extracts foreign keys; uses an index if the index contains the same columns
or a superset of the columns in the foreign key; otherwise scans the table

SORT Sorts foreign keys if they are not extracted from the foreign key index

CHECKDAT
Looks in primary indexes for foreign key parents, checks XML schema
validations, checks XML structure, and issues messages to report detected
errors

REPORTCK
Copies error rows into exception tables, and delete them from source table
if DELETE YES is specified

UTILTERM
Performs cleanup

Syntax and options of the CHECK DATA control statement
The CHECK DATA utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After you
create it, save it in a sequential or partitioned data set. When you create the JCL
for running the job, use the SYSIN DD statement to specify the name of the data
set that contains the utility control statement.

66 Utility Guide and Reference

|
|
|

Syntax diagram

�� CHECK DATA � table-space-spec
PART integer

�

�
ALL

INCLUDE XML TABLESPACES

xml-spec

CLONE

SHRLEVEL REFERENCE

SHRLEVEL CHANGE
�

�
SCOPE PENDING

drain-spec
SCOPE AUXONLY

ALL
REFONLY
XMLSCHEMAONLY

(1)
AUXERROR REPORT

AUXERROR INVALIDATE
�

�
LOBERROR REPORT XMLERROR REPORT

LOBERROR INVALIDATE XMLERROR INVALIDATE
�

�

�FOR EXCEPTION IN table-name1 USE table-name2

DELETE NO

LOG YES
DELETE YES

LOG NO

�

�
EXCEPTIONS 0

EXCEPTIONS integer

ERRDDN SYSERR

ERRDDN ddname

WORKDDN SYSUT1 , SYSUT2

WORKDDN ddname1 , ddname2
, SYSUT2

ddname1
SYSUT1

, ddname2

�

�
SYSPUNCH

PUNCHDDN ddname
SORTDEVT device-type SORTNUM integer

��

Notes:

1 If you specify AUXERROR and LOBERROR or XMLERROR, the options for the keywords
(REPORT and INVALIDATE) must match.

xml-spec:

Chapter 8. CHECK DATA 67

�� �

,

(table-space-spec)
xml-column-spec XMLSCHEMA

��

xml-column-spec:

�� TABLE
schema-name

table-name XMLCOLUMN column-name ��

table-space-spec:

�� TABLESPACE table-space-name
database-name.

��

drain-spec:

��
DRAIN_WAIT integer RETRY integer RETRY_DELAY integer

��

Option descriptions

DATA
Indicates that you want the utility to check referential and table check
constraints. CHECK DATA does not check informational referential constraints.

TABLESPACE database-name.table-space-name
Specifies the table space to which the data belongs. You can specify base table
spaces or, if TABLESPACE is specified as a part of the INCLUDE XML
TABLESPACES option, XML table spaces. TABLESPACE cannot be used to
specify LOB table spaces.

database-name is the name of the database and is optional. The default value is
DSNDB04.

table-space-name is the name of the table space.

PART integer
Identifies which partition to check for constraint violations.

integer is the number of the partition and must be in the range from 1 to the
number of partitions that are defined for the table space. The maximum is
4096.

68 Utility Guide and Reference

INCLUDE XML TABLESPACES
Indicates that CHECK DATA is to perform consistency checks on the specified
XML table spaces and related node ID indexes.

By default, the utility checks only the XML table spaces and their related node
ID indexes. If an XML type modifier exists for an XML column and xml-spec is
specified, XML documents can also be checked against the stored XML
schemas. Specify XMLSCHEMA on the xml-spec option to enable the check
against stored XML schemas.

The consistency checks enabled by INCLUDE XML TABLESPACE are
performed in addition to the existing checks specified by the SCOPE keyword.

XML indexes that are associated with the XML table spaces that are checked
are not verified. Run the CHECK INDEX utility separately on those indexes.

The following checks are performed:
v The XML table space is checked to ensure that all rows of each XML

document are present in the XML table space and that the XML document is
structurally intact.

v All entries in the node ID index are checked against the rows in the XML
table space. Each index entry must have a corresponding row in the XML
table space, and vice versa. This functionality is equivalent to running the
CHECK INDEX utility on the node ID index.

v All values in the document ID column are checked against the node ID
index. Each document ID value must have matching entries in the node ID
index. Each node ID index value must also have a document ID value.

v If XMLSCHEMA is specified, CHECK DATA validates documents that are
stored in that column. When a document is validated, the base table row is
updated with the validated document that is returned when SHRLEVEL
REFERENCE and XMLERROR INVALIDATE or AUXERROR INVALIDATE
are specified.

ALL
Checks all XML table spaces that are related to the base table spaces that
are identified by the table-space-spec. Specifying ALL is equivalent to
explicitly specifying all the XML column identifiers.

xml-spec
Checks only those XML table spaces and related node ID indexes that are
identified by either the XML column of a table or by the explicit table
space name.

Each XML column has a single XML table space that is associated with it.
Therefore, an XML table space can be identified either by the XML column
of the base table or by the explicit table space name.

If an XML column identifier is used, the utility finds the name of the XML
table space in the DB2 catalog or the database directory.

table-space-spec
Identifies an XML table space to check. The XML table space
specification must identify an XML table space that has a
corresponding column in a base table. The base table must reside in
the table space that is identified by the table-space-spec option of the
main CHECK DATA control statement.

xml-column-spec
Identifies an XML table space to check by the XML column of the XML
table space in a base table. An XML column identifier consists of the

Chapter 8. CHECK DATA 69

fully qualified table name and the name of the XML column. An XML
column identifier must reference a table in any one of the base table
spaces that are to be checked.

XMLSCHEMA
Specifies that if the XML columns have an XML type modifier, the
CHECK DATA utility checks the XML documents against the stored
XML schema.

CLONE
Indicates that CHECK DATA is to check the clone table in the specified table
space. Because clone tables cannot have referential constraints, the utility
checks only constraints for inconsistencies between the clone table data and the
corresponding LOB data. If you do not specify CLONE, CHECK DATA
operates against only the base table.

SHRLEVEL
Indicates the type of access that is to be allowed for the index, table space, or
partition that is to be checked during CHECK DATA processing.

REFERENCE
Specifies that applications can read from but cannot write to the index,
table space, or partition that is to be checked.

The CHECK DATA utility can write changes to the table space, index
space, or partition during processing.

Restriction: You cannot run CHECK DATA with the SHRLEVEL
REFERENCE option on a table space that contains an archive-enabled table
or system-period temporal table when one of the following options is also
specified:
v DELETE YES
v LOBERROR INVALIDATE
v AUXERROR INVALIDATE
v XMLERROR INVALIDATE

CHANGE
Specifies that applications can read from and write to the index, table
space, or partition that is to be checked.

The CHECK DATA utility operates on shadow copies only and does not
change the table space, index space, or partition during processing.
REPAIR statements are generated for any changes to be made and are
written to the data set that is indicated in the PUNCHDDN option.
CHECK DATA does not generate REPAIR statements for inconsistencies
that it finds in compressed rows if you specify SHRLEVEL CHANGE and
one of the following options:
v AUXERROR INVALIDATE
v LOBERROR INVALIDATE
v XMLERROR INVALIDATE

If you specify SHRLEVEL CHANGE, DB2 performs the following actions:
v Drains all writers and forces the buffers to disk for the specified object

and all of its indexes
v Invokes DFSMSdss to copy the specified object and all of its indexes to

shadow data sets
v Enables read/write access for the specified object and all of its indexes

70 Utility Guide and Reference

|
|
|
|

|

|

|

|

v Runs CHECK INDEX on the shadow data sets

By default, DFSMSdss uses FlashCopy to copy DB2 objects to shadow data
sets, if FlashCopy is available. If DFSMSdss cannot use FlashCopy,
DFSMSdss uses a slower method. As a result, creating copies of objects
might take a long time, and the time during which the data and indexes
have read-only access might increase. You can set the
CHECK_FASTREPLICATION subsystem parameter to REQUIRED to force
the CHECK utility to use only FlashCopy. If FlashCopy is not available, the
CHECK utility fails.

DRAIN_WAIT
Specifies the number of seconds that CHECK DATA is to wait when it drains
the table space or index. The specified time is the aggregate time for objects
that are to be checked. This value overrides the values that are specified by the
IRLMRWT and UTIMOUT subsystem parameters.

integer can be any integer from 0 to 1800. If you do not specify DRAIN_WAIT
or specify a value of 0, CHECK DATA uses the value of the lock timeout
subsystem parameter IRLMRWT.

RETRY integer
Specifies the maximum number of retries that CHECK DATA is to attempt.

integer can be any integer from 0 to 255. If you do not specify RETRY, CHECK
DATA uses the value of the utility multiplier system parameter UTIMOUT.

Specifying RETRY can increase processing costs and result in multiple or
extended periods during which the specified index, table space, or partition is
in read-only access.

RETRY_DELAY integer
Specifies the minimum duration, in seconds, between retries. integer can be any
integer from 1 to 1800.

If you do not specify RETRY_DELAY, CHECK DATA uses the smaller of the
following two values:
v DRAIN_WAIT value × RETRY value
v DRAIN_WAIT value × 10

SCOPE
Limits the scope of the rows in the table space that are to be checked.

PENDING
Indicates that the only rows that are to be checked are those rows that are
in table spaces, partitions, or tables that are in CHECK-pending (CHKP)
status. The referential integrity check, constraint check, and the LOB and
XML checks are all performed.

If you specify SCOPE PENDING for a table space that is not in
CHECK-pending status, CHECK DATA does not check the table space. The
utility does not issue an error message.

Checking XML columns verifies the relationship between the node ID
index and the values in the XML indicator column in the base table space.
If INCLUDE XML TABLESPACES is specified, schema validation is done
for all specified XML table spaces that satisfy both of the following
conditions:
v Are in CHKP status
v Reference a table in any of the base table spaces to be checked

Chapter 8. CHECK DATA 71

AUXONLY
Indicates that only the LOB column and the XML column check are to be
performed for table spaces that have tables with LOB columns or XML
columns. The referential integrity and constraint checks are not performed.

Checking XML columns verifies only the relationship between the node ID
index and the values in the XML indicator column in the base table space.

ALL
Indicates that all dependent tables in the specified table spaces are to be
checked. The referential integrity check, constraints check, LOB check, and
XML checks are performed.

If INCLUDE XML is specified in the TABLESPACES keyword, the
associated XML table space and node ID index are checked for structural
defects and inconsistencies.

REFONLY
Indicates the same behavior as the ALL option, except that the LOB
column check and the XML column check are not performed.

XMLSCHEMAONLY
Indicates that only the XML schema validation is to be performed on the
XML objects that are specified by the INCLUDE XML TABLESPACE
keyword. XML and LOB integrity checks and the referential integrity and
constraints checks are not performed.

AUXERROR
Specifies the action that CHECK DATA is to perform when it finds a LOB or
XML column check error.

REPORT
A LOB or XML column check error is reported with a warning message.
The base table space is set to the auxiliary CHECK-pending (ACHKP)
status.

Note: CHECK DATA sets the base table space to ACHKP status if
SHRLEVEL REFERENCE is specified. If SHRLEVEL CHANGE is specified,
CHECK DATA does not change the status of the base table space.

INVALIDATE
A LOB or XML column check error is reported with a warning message.
The base table LOB or XML column is set to an invalid status. A LOB or
XML column with invalid status that is now correct is set valid. This action
is also reported with a message. The base table space is set to the auxiliary
warning (AUXW) status if any LOB column remains in invalid status.

If SHRLEVEL REFERENCE is specified, CHECK DATA sets the base table
of a LOB or XML column to an invalid status and the base table space to
AUXW status. If SHRLEVEL CHANGE is specified, CHECK DATA does
not change the status of the base table space or a LOB or XML column.

If SHRLEVEL REFERENCE and INCLUDE XML TABLESPACES are
specified, CHECK DATA deletes corrupted XML documents and the
associated node ID index entries. If the node ID index is not consistent
with the content in the XML table, CHECK DATA corrects the node ID
index.

Restrictions: You cannot run CHECK DATA SHRLEVEL REFERENCE with
AUXERROR INVALIDATE on the following objects:
v A table or a history table that is defined with data versioning

72 Utility Guide and Reference

|
|

|

v A table space that contains an archive-enabled table

Before you use CHECK DATA to check a LOB or XML column, take the
following actions:
1. Run CHECK LOB to ensure the validity of the LOB table space.
2. Run REBUILD INDEX or CHECK INDEX on the index on the auxiliary

table to ensure its validity.
3. Run REBUILD INDEX or CHECK INDEX on the NODE ID index on the

XML table space to ensure its validity.

LOBERROR
Specifies the action that CHECK DATA is to perform when it finds a LOB
column check error. Do not specify LOBERROR if AUXERROR is specified. If
both are specified, the keywords must match. LOBERROR is ignored for
SCOPE XMLONLY since LOB checking is not being performed.

REPORT
A LOB column check error is reported with a warning message. The base
table space is set to the auxiliary CHECK-pending (ACHKP) status.

If AUXERROR is not specified, the default value is REPORT.

INVALIDATE
A LOB column check error is reported with a warning message. The base
table LOB column is set to an invalid status. A LOB column with invalid
status that is now correct is set valid. The base table space is set to the
auxiliary warning (AUXW) status if any LOB column remains in invalid
status.

Restrictions: You cannot run CHECK DATA with LOBERROR
INVALIDATE on the following objects:
v A table or a history table that is defined with data versioning
v A table space that contains an archive-enabled table if SHRLEVEL

REFERENCE is also specified

XMLERROR
Specifies the action that CHECK DATA is to perform when it finds an XML
column check error. Do not specify XMLERROR if AUXERROR is specified. If
both are specified, the keywords must match. XMLERROR is ignored for
SCOPE XMLONLY since LOB checking is not being performed.

REPORT
An XML column check error is reported with a warning message. The base
table space is set to the auxiliary CHECK-pending (ACHKP) status.

If AUXERROR is not specified, the default value is REPORT.

Note: CHECK DATA sets the base table space to ACHKP status if
SHRLEVEL REFERENCE is specified. If SHRLEVEL CHANGE is specified,
CHECK DATA does not change the status of the base table space.

INVALIDATE
An XML column check error is reported with a warning message. The base
table XML column is set to an invalid status. An XML column with invalid
status that is now correct is set valid. The base table space is set to the
auxiliary warning (AUXW) status if any LOB column remains in invalid
status.

Chapter 8. CHECK DATA 73

|

|
|

|

|
|

CHECK DATA sets the base table of a LOB or XML column to an invalid
status and the base table space to AUXW only if SHRLEVEL REFERENCE
is specified. If SHRLEVEL CHANGE is specified, CHECK DATA does not
change the status of the base table space or a LOB or XML column.

If SHRLEVEL REFERENCE and INCLUDE XML TABLESPACES are
specified, CHECK DATA deletes corrupted XML documents and the
associated node ID index entries. If the node ID index is not consistent
with the content in the XML table, CHECK DATA corrects the node ID
index.

Restrictions: You cannot run CHECK DATA SHRLEVEL REFERENCE with
XMLERROR INVALIDATE on the following objects:
v A table or a history table that is defined with data versioning
v A table space that contains an archive-enabled table

FOR EXCEPTION

Indicates that any row that is in violation of referential or table check
constraints is to be copied to an exception table. Although this keyword does
not apply to the checking of LOB or XML columns, rows with LOB or XML
columns are moved to the exception tables. If you specify AUXONLY for LOB
and XML checking only, the FOR EXCEPTION option is ignored.

If any row violates more than one constraint, that row is included only once in
the exception table.CHECK DATA includes checking for XML schema
violations and XML structure checking.

This option is ignored when SHRLEVEL CHANGE is specified.

If you run CHECK DATA on a base table with XML columns, the
EXCEPTIONS keyword has an effect only if the INCLUDE XML
TABLESPACES option is also specified.

IN table-name1
Specifies the table (in the table space that is specified on the TABLESPACE
keyword) from which rows are to be copied.

table-name1 is the name of the table.

USE table-name2
Specifies the exception table into which error rows are to be copied.

table-name2 is the name of the exception table and must be a base table; it
cannot be a view, synonym, or alias.

For both table-name1 and table-name2, enclose the table name in quotation
marks if the name contains a blank or a special character. (A special character is
any character other than a letter or a digit.)

DELETE
Indicates whether rows that are in violation of referential or table check
constraints are to be deleted from the table space.

NO Indicates that error rows are to remain in the table space. Primary errors in
dependent tables are copied to exception tables.

If DELETE NO and SHRLEVEL REFERENCE are specified, and constraint
violations are detected, CHECK DATA places the table space in the
CHECK-pending status.

74 Utility Guide and Reference

|
|

|

|

YES
Indicates that error rows are to be deleted from the table space.

You can specify DELETE YES only if you specify the FOR EXCEPTION
clause. When you specify FOR EXCEPTION, deleted rows from both
dependent and descendant tables are placed into exception tables.

If you specify SHRLEVEL REFERENCE, error rows are deleted from the
table space. If you specify SHRLEVEL CHANGE, CHECK DATA generates
REPAIR LOCATE DELETE statements that you can run to delete the rows.
These statements are written to the PUNCHDDN data set.

Important: Check any generated REPAIR statements after you run CHECK
DATA SHRLEVEL CHANGE on tables that have data versioning activated
or on history tables. Historic information could be deleted.

If you delete rows from a table space that is not logged, the table space is
placed in informational COPY-pending (ICOPY) status.

Restrictions: You cannot run CHECK DATA with DELETE YES on the
following objects:
v A table or a history table that is defined with data versioning
v A table space that contains an archive-enabled table if SHRLEVEL

REFERENCE is also specified

LOG
Specifies the logging action that is to be taken when records are deleted.

YES
Logs all records that are deleted during the REPORTCK PHASE.

If the table space has the NOT LOGGED attribute, LOG YES is ignored.

NO

Does not log any records that are deleted during the REPORTCK phase. If
any rows are deleted, CHECK DATA places the table space in
COPY-pending status and any indexes with the COPY YES attribute in
informational COPY-pending status. If rows are deleted from a table space
that is not logged, the table space is marked informational COPY-pending.

Attention: Use the LOG NO option with caution because its use limits
your ability to recover data by using the log. For example, suppose that
you issue a CHECK DATA DELETE YES LOG NO statement at particular
log RBA. You can recover data that exists on the log before that point in
time or after the point on the log at which the utility execution completes.

EXCEPTIONS integer
Specifies the maximum number of exceptions, which are reported by messages
only. CHECK DATA terminates in the CHECKDATA phase when it reaches the
specified number of exceptions; if termination occurs, the error rows are not
written to the EXCEPTION table.

Only records that contain primary referential integrity errors or table check
constraint violations are applied toward the exception limit. The number of
records that contain secondary errors is not limited.

integer is the maximum number of exceptions. The default value is 0, which
indicates no limit on the number of exceptions.

Chapter 8. CHECK DATA 75

|
|

|

|
|

This keyword does not apply to LOB table spaces or base table spaces that
contain XML columns.

ERRDDN ddname
Specifies a DD statement for an error processing data set.

ddname is either a DD name or a TEMPLATE name specification from a
previous TEMPLATE control statement. If utility processing detects that the
specified name is both a DD name in the current job step and a TEMPLATE
name, the utility uses the DD name. The default value isSYSERR.

WORKDDN (ddname1,ddname2)
Specifies the DD statements for the temporary work file for sort input and the
temporary work file for sort output. A temporary work file for sort input and
output is required.

You can use the WORKDDN keyword to specify either a DD name or a
TEMPLATE name specification from a previous TEMPLATE control statement.
If utility processing detects that the specified name is both a DD name in the
current job step and a TEMPLATE name, WORKDDN uses the DD name.

ddname1 is the DD name of the temporary work file for sort input. The default
is SYSUT1.

ddname2 is the DD name of the temporary work file for sort output. The
default is SORTOUT.

PUNCHDDN ddname
Specifies the DD statement for a data set that is to receive the REPAIR utility
control statements that CHECK DATA SHRLEVEL CHANGE generates.

ddname is the DD name.

The default value is SYSPUNCH.

The PUNCHDDN keyword specifies either a DD name or a TEMPLATE name
specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a name in the current job
step and a TEMPLATE name, the utility uses the DD name.

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically
allocated by a sort program. You can specify any disk device type that is
acceptable to the DYNALLOC parameter of the SORT or OPTION control
statement for the sort program.

Do not use a TEMPLATE specification to dynamically allocate sort work data
sets. The presence of the SORTDEVT keyword controls dynamic allocation of
these data sets.

device-type is the device type. If you omit SORTDEVT and a sort is required,
you must provide the DD statements that the sort program requires for the
temporary data sets.

SORTNUM integer
Specifies the number of temporary data sets that are to be dynamically
allocated by the sort program.

integer is the number of temporary data sets that can range from 2 to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and
omit SORTNUM, no value is passed to the sort program; the sort program uses
its own default.

76 Utility Guide and Reference

You need at least two sort work data sets for each sort. The SORTNUM value
applies to each sort invocation in the utility.

Important: The SORTNUM keyword is not considered if subsystem parameter
UTSORTAL is set to YES and IGNSORTN is set to YES.

Related concepts:
“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on
page 37
Related reference:
Chapter 31, “TEMPLATE,” on page 775

Before running CHECK DATA
Certain activities might be required before you run the CHECK DATA utility,
depending on your situation.

For a table with no LOB columns

Before running CHECK DATA, you should run CHECK INDEX on primary key
indexes and foreign key indexes to ensure that the indexes that CHECK DATA
uses are valid. This action is especially important before using CHECK DATA with
the DELETE YES or PART options.

For a table with LOB columns

If you plan to run CHECK DATA on a base table space that contains at least one
LOB column, complete the following steps prior to running CHECK DATA:
1. Run CHECK LOB on the LOB table space.
2. Run CHECK INDEX on the index on the auxiliary table to ensure the validity

of the LOB table space and the index on the auxiliary table.
3. Run CHECK INDEX on the indexes on the base table space.

The relationship between a base table with a LOB column and the LOB table space
is shown in the following figure. The LOB column in the base table points to the
auxiliary index on the LOB table space, as illustrated in the figure.

Chapter 8. CHECK DATA 77

If the LOB table space is in either the CHECK-pending or RECOVER-pending
status, or if the index on the auxiliary table is in REBUILD-pending status, CHECK
DATA issues an error message and fails.

Complete all LOB column definitions. You must complete all LOB column
definitions for a base table before running CHECK DATA. A LOB column
definition is not complete until the LOB table space, auxiliary table, and index on
the auxiliary table have been created. If any LOB column definition is not
complete, CHECK DATA fails and issues error message DSNU075E.

For an XML table space

Before running CHECK DATA, run CHECK INDEX on the node ID index of each
XML column. If you need to determine the XML objects, query the SYSXMLRELS
catalog table.

Data sets that CHECK DATA uses
The CHECK DATA utility uses a number of data sets during its operation.

The following table lists the data sets that CHECK DATA uses. The table lists the
DD name that is used to identify the data set, a description of the data set, and an
indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 8. Data sets that CHECK DATA uses

Data set Description Required?

SYSIN An input data set that contains the utility
control statement.

Yes

SYSPRINT An output data set for messages. Yes

Work data sets Two temporary data sets for sort input and
sort output. Specify the DD names by using
the WORKDDN option of the utility control
statement. The default ddname for sort input
is SYSUT1. The default ddname for sort
output is SORTOUT.

Yes

Figure 8. Relationship between a base table with a LOB column and the LOB table space

78 Utility Guide and Reference

Table 8. Data sets that CHECK DATA uses (continued)

Data set Description Required?

Error data set An output data set that collects information
about violations that are encountered during
the CHECKDAT phase for referential
constraints or the SCANTAB phase for check
constraints. Specify the DD name by using
the ERRDDN parameter of the utility control
statement. The default ddname is SYSERR.

Yes

UTPRINT A data set that contains messages from the
sort program (usually, SYSOUT or
DUMMY).

Yes

The following objects are named in the utility control statement and do not require
DD statements in the JCL:

Table space
Object that is to be checked. (If you want to check only one partition of a
table space, use the PART option in the control statement.)

Exception table
Table that stores rows that violate any referential constraints. For each table
in a table space that is checked, specify the name of an exception table in
the utility control statement. Any row that violates a referential constraint
is copied to the exception table.

Sort work data sets cannot span volumes. Smaller volumes require more sort work
data sets to sort the same amount of data; therefore, large volume sizes can reduce
the number of needed sort work data sets. It is recommended that at least 1.2
times the amount of data to be sorted be provided in sort work data sets on disk.
Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

Defining work data sets
Three sequential data sets are required during execution of CHECK DATA. Two
work data sets and one error data set are described by DD statements in the
WORKDDN and ERRDDN options.

Procedure

To define work data sets:
1. Find the approximate size, in bytes, of the WORKDDN data set:

Option Description

If a table space has a LOB column Count a total of 70 bytes for the LOB
column and multiply the sum by the
number of keys and LOB columns that are
checked.

Chapter 8. CHECK DATA 79

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

Option Description

If a table space does not have a LOB
column

Add 18 to the length of the longest foreign
key.

For nonpadded indexes, the length of the
longest foreign key is the maximum possible
length of the key with all varying-length
columns in the key padded to their
maximum length, plus 2 bytes for each
varying-length column.

2. Create the ERRDDN data set so that it is large enough to accommodate one
error entry (length=60 bytes) per violation that CHECK DATA detects.

Shadow data sets
When you execute the CHECK DATA utility with the SHRLEVEL CHANGE
option, the utility uses shadow data sets.

If a table space, partition, or index resides in DB2-managed data sets and shadow
data sets do not already exist when you execute CHECK DATA, DB2 creates the
shadow data sets. At the end of CHECK DATA processing, the DB2-managed
shadow data sets are deleted.

For user-managed data sets, DFSMSdss can create, or scratch and re-create, the
required shadow data sets as needed. When the CHECK DATA utility completes
the processing of user-managed data sets, the shadow data sets are not
automatically scratched.

If you do not want the shadow data sets to be allocated in the same storage class
as the production data sets, set the UTIL_TEMP_STORCLAS system parameter to
specify the storage class for the shadow data sets.

Shadow data set names

Each shadow data set must have the following name:

catname.DSNDBx.dbname.psname.y000z.Lnnn

In the preceding name, the variables have the following meanings:

variable
meaning

catname
The VSAM catalog name or alias

x C or D

dbname
Database name

psname
Table space name or index name

y I or J

z 1 or 2

Lnnn Partition identifier. Use one of the following values:
v A001 through A999 for partitions 1 through 999

80 Utility Guide and Reference

v B000 through B999 for partitions 1000 through 1999
v C000 through C999 for partitions 2000 through 2999
v D000 through D999 for partitions 3000 through 3999
v E000 through E996 for partitions 4000 through 4096

To determine the names of existing data sets, execute one of the following
queries against the SYSTABLEPART or SYSINDEXPART catalog tables:
SELECT DBNAME, TSNAME, IPREFIX

FROM SYSIBM.SYSTABLEPART
WHERE DBNAME = ’dbname’
AND TSNAME = ’psname’;

SELECT DBNAME, IXNAME, IPREFIX
FROM SYSIBM.SYSINDEXES X, SYSIBM.SYSINDEXPART Y
WHERE X.NAME = Y.IXNAME
AND X.CREATOR = Y.IXCREATOR
AND X.DBNAME = ’dbname’
AND X.INDEXSPACE = ’psname’;

For a partitioned table space, DB2 returns rows from which you select the row for
the partitions that you want to check.

Defining shadow data sets

For a partitioned table space, DB2 returns rows from which you select the row for
the partitions that you want to check.

Consider the following actions when you preallocate the data sets:
v Allocate the shadow data sets according to the rules for user-managed data sets.
v Define the shadow data sets as LINEAR.
v Use SHAREOPTIONS(3,3).
v Define the shadow data sets as EA-enabled if the original table space or index

space is EA-enabled.
v Allocate the shadow data sets on the volumes that are defined in the storage

group for the original table space or index space.

If you specify a secondary space quantity, DB2 does not use it. Instead, DB2 uses
the SECQTY value for the table space or index space.

Recommendation: Use the MODEL option, which causes the new shadow data set
to be created like the original data set. This method is shown in the following
example:
DEFINE CLUSTER +

(NAME(’catname.DSNDBC.dbname.psname.x0001.L001’) +
MODEL(’catname.DSNDBC.dbname.psname.y0001.L001’)) +
DATA +
(NAME(’catname.DSNDBD.dbname.psname.x0001.L001’) +
MODEL(’catname.DSNDBD.dbname.psname.y0001.L001’))

Creating shadow data sets for indexes

When you preallocate shadow data sets for indexes, create the data sets as follows:

Chapter 8. CHECK DATA 81

v Create shadow data sets for the partition of the table space and the
corresponding partition in each partitioning index and data-partitioned
secondary index.

v Create a shadow data set for logical partitions of nonpartitioned secondary
indexes.

Use the same naming scheme for these index data sets as you use for other data
sets that are associated with the base index, except use J0001 instead of I0001.

Estimating the size of shadow data sets

If you have not changed the value of FREEPAGE or PCTFREE, the amount of
required space for a shadow data set is comparable to the amount of required
space for the original data set.

Concurrency and compatibility for CHECK DATA
The CHECK DATA utility has certain concurrency and compatibility characteristics
associated with it.

DB2 treats individual data and index partitions as distinct target objects. Utilities
that operate on different partitions of the same table space or index space are
compatible.

Claims and drains

The following table shows which claim classes CHECK DATA claims and drains
and any restrictive status that the utility sets on the target object. The legend for
these claim classes is located at the bottom of the table.

Table 9. Claim classes of CHECK DATA operations

Target objects
CHECK DATA
DELETE NO

CHECK DATA
DELETE YES

CHECK DATA
PART DELETE
NO

CHECK DATA
PART DELETE
YES

Table space or partition DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Partitioning index or
index partition

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Secondary index DW/UTRO DA/UTUT none DR

Logical partition of
index

none none DW/UTRO DA/UTUT

Primary index DW/UTRO DW/UTRO DW/UTRO DW/UTRO

RI dependent and
descendent table spaces
and indexes

none DA/UTUT none DA/UTUT

RI exception table
spaces and indexes
(FOR EXCEPTION
only)

DA/UTUT DA/UTUT DA/UTUT DA/UTUT

82 Utility Guide and Reference

Table 9. Claim classes of CHECK DATA operations (continued)

Target objects
CHECK DATA
DELETE NO

CHECK DATA
DELETE YES

CHECK DATA
PART DELETE
NO

CHECK DATA
PART DELETE
YES

Legend:
v DA: Drain all claim classes, no concurrent SQL access
v DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers
v DW: Drain the write claim class, concurrent access for SQL readers
v UTUT: Utility restrictive state, exclusive control
v UTRO: Utility restrictive state, read-only access allowed
v none: Object not affected by this utility
v RI: Referential Integrity

The following table shows claim classes on a LOB table space and an index on the
auxiliary table.

Table 10. Claim classes of CHECK DATA operations on a LOB table space and index on the
auxiliary table

Target objects
CHECK DATA DELETE
NO

CHECK DATA DELETE
YES

LOB table space DW/UTRO DA/UTUT

Index on the auxiliary table DW/UTRO DA/UTUT

Legend:
v DW: Drain the write claim class, concurrent access for SQL readers
v DA: Drain all claim classes, no concurrent SQL access
v UTRO: Utility restrictive state, read-only access allowed
v UTUT: Utility restrictive state, exclusive control

The following table shows claim classes of XML objects.

Table 11. Claim classes of XML objects

Target objects
CHECK DATA DELETE
NO

CHECK DATA DELETE
YES

XML table space DW/UTRO DA/UTUT

document ID and node ID indexes DW/UTRO DA/UTUT

XML index DW/UTRO DA/UTUT

Legend:
v DW: Drain the write claim class, concurrent access for SQL readers
v DA: Drain all claim classes, no concurrent SQL access
v UTRO: Utility restrictive state, read-only access allowed
v UTUT: Utility restrictive state, exclusive control

When you specify CHECK DATA AUXERROR INVALIDATE, a drain-all is
performed on the base table space, and the base table space is set UTUT.

Compatibility

The following utilities are compatible with CHECK DATA and can run
concurrently on the same target object:
v DIAGNOSE
v MERGECOPY
v MODIFY

Chapter 8. CHECK DATA 83

v REPORT
v STOSPACE
v UNLOAD (when CHECK DATA DELETE NO)

SQL operations and other online utilities are incompatible.

To run on DSNDB01.SYSUTILX, CHECK DATA must be the only utility in the job
step and the only utility that is running in the DB2 subsystem.

The index on the auxiliary table for each LOB column inherits the same
compatibility and concurrency attributes of a primary index.

Exception tables for the CHECK DATA utility
An exception table is a user-created table that duplicates the definition of a
dependent table. The CHECK DATA utility checks the number of columns in the
dependent table. The CHECK DATA utility also copies the deleted rows from the
dependent table to the exception table.

The following table describes the contents of an exception table. This table lists the
columns, a description of the column content, whether or not the column is
required, the data type and length of the column value, and whether or not the
column has the NULL attribute.

Table 12. Contents of exception tables

Column Description Required?
Data type and
length NULL attribute

1 to n Corresponds to columns in the table
that is being checked. These
columns hold data from table rows
that violate referential or table check
constraints.

Yes The same as the
corresponding
columns in the
table that is being
checked.

The same as the
corresponding
columns in the
table that is being
checked.

n+1 Identifies the RIDs of the invalid
rows of the table that is being
checked.

No CHAR(4);
CHAR(5)1 for
table spaces that
are defined with
LARGE or DSSIZE
options

Anything

n+2 Indicates the starting time of the
CHECK DATA utility.

No TIMESTAMP Anything

≥ n+2 Additional columns that the
CHECK DATA utility does not use.

No Anything Anything

Note:

1. You can use CHAR(5) for any type of table space, but you must use it for table spaces that are defined with the
LARGE or DSSIZE options.

If you delete rows by using the CHECK DATA utility with SCOPE ALL, you must
create exception tables for all tables that are named in the table spaces and for all
their descendents. All descendents of any row are deleted.

When creating or using exception tables, be aware of the following guidelines:
v The exception tables should not have any unique indexes or referential or table

check constraints that might cause errors when CHECK DATA inserts rows into
them.

84 Utility Guide and Reference

v You can create a new exception table before you run CHECK DATA, or you can
use an existing exception table. The exception table can contain rows from
multiple invocations of CHECK DATA.

v If column n+2 is of type TIMESTAMP, CHECK DATA records the starting time.
Otherwise, it does not use column n+2.

v You must have DELETE authorization on the dependent table that is being
checked.

v You must have INSERT authorization on the exception table.
v Column names in the exception table can have any name.
v Any change to the structure of the dependent table (such as a dropped column)

is not automatically recorded in the exception table. You must make that change
in the exception table.

Related reference:

CREATE TABLE (DB2 SQL)

Exception processing for tables with auxiliary columns
CHECK DATA writes constraint violations to exception tables. The exception table
for the base table must have a similar auxiliary column and an auxiliary table
space for each auxiliary column.

If an exception is found, DB2 moves the base table row with its auxiliary column
to the exception table. If you specify DELETE YES, DB2 deletes the base table row
and the auxiliary column.

An auxiliary table cannot be an exception table. A LOB column check error is not
included in the exception count. A row with only a LOB column check error does
not participate in exception processing.

Specifying the scope of CHECK DATA
Running CHECK DATA with SCOPE PENDING is normally sufficient. DB2 records
which data rows must be checked to ensure the referential integrity of the table
space.

About this task

You can find inconsistencies in the XML table space, the node ID index, or in the
relationship between the document ID column and the node ID index by running
the CHECK DATA utility.

Running CHECK DATA with SCOPE ALL or SCOPE AUXONLY and specifying
INCLUDE XML TABLESPACES enables the XML structure checking of the
specified XML table spaces and consistency checking of the XML columns in the
base table and their associated node ID indexes. Specifying XMLSCHEMAONLY
with INCLUDE XML TABLESPACES limits the CHECK DATA scope to only XML
schema validation for the XML columns.

Procedure

To specify the scope of CHECK DATA:

Use one of the following approaches:

Chapter 8. CHECK DATA 85

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable

v If the scope information is in doubt, run the utility with the SCOPE ALL option.
The scope information is recorded in the DB2 catalog. The scope information can
become indoubt whenever you start the target table space with
ACCESS(FORCE), or when the catalog is recovered to a point in time.

v If you want to check only the tables with LOB columns, specify the AUXONLY
option. If you want to check all dependent tables in the specified table spaces
except tables with LOB columns, specify the REFONLY option.

How violations are identified
CHECK DATA issues a message for every row that contains a referential constraint
violation or table check constraint violation.

The violation is identified by:
v The RID of the row
v The name of the table that contains the row
v The name of the constraint that is being violated

The following figure shows an example of messages that CHECK DATA issues.

Detection and correction of constraint violations
You can avoid problems by running CHECK DATA with DELETE NO to detect
violations before you attempt to correct the errors.

If required, use DELETE YES after you analyze the output and understand the
errors.

You can automatically delete rows that violate referential or table check constraints
by specifying CHECK DATA with DELETE YES. However, you should be aware of
the following possible problems:

DSNU0501 DSNUGUTC - CHECK DATA TABLESPACE DBJM1203.TLJM1203
TABLESPACE DBJM1203.TPJM1204
FOR EXCEPTION IN TLJM1203.TBJM1203 USE ADMF001.EXCPT3
IN TPJM1204.TBJM1204 USE ADMF001.EXCPT4 DELETE YES

DSNU7271 = DSNUKINP - TABLESPACE ’DBJM1203.TLJM1203’ IS NOT CHECK PENDING

DSNU7301 DSNUKDST - CHECKING TABLE TPJM1204.TBJM1204
DSNU0421 DSNUGSOR - SORT PHASE STATISTICS -

NUMBER OF RECORDS=4
ELAPSED TIME=00:00:00

DSN0733l DSNUKERK - ROW (RID=X’000000020B’) HAS NO PARENT FOR
TPJM1204.TBJM1204.TABFK
DSN0733l DSNUKERK - ROW (RID=X’0010000201’) HAS NO PARENT FOR
TPJM1204.TBJM1204.TABFK
DSN0733l DSNUKERK - ROW (RID=X’002000020B’) HAS NO PARENT FOR
TPJM1204.TBJM1204.TABFK
DSN0733l DSNUKERK - ROW (RID=X’0030000201’) HAS NO PARENT FOR
TPJM1204.TBJM1204.TABFK
DSNU739l DSNUKDAT - CHECK TABLE TPJM1204.TBJM1204 COMPLETE, ELAPSED
TIME=00:00:00
DSNU741l = DSNUKRDY - 4 ROWS DELETED FROM TABLE TPJM1204.TBJM1204
DSNU568l = DSNUGSRX - INDEX TPJM1204.IPJM1204 IS IN INFORMATIONAL COPY PENDING
DSNU568l = DSNUGSRX - INDEX TPJM1204.IXJM1204 IS IN INFORMATIONAL COPY PENDING
DSNU7491 DSNUK001 - CHECK DATA COMPLETE,ELAPSED TIME=00:00:02
DSNU010l DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=4

Figure 9. Example of messages that CHECK DATA issues

86 Utility Guide and Reference

v The violation might be created by a non-referential integrity error. For example,
the indexes on a table might be inconsistent with the data in a table.

v Deleting a row might cause a cascade of secondary deletes in dependent tables.
The cascade of deletes might be especially inconvenient within referential
integrity cycles.

v The error might be in the parent table.

CHECK DATA uses the primary key index and all indexes that exactly match a
foreign key. Therefore, before running CHECK DATA, ensure that the indexes are
consistent with the data by using the CHECK INDEX utility.

CHECK DATA XML error detection
Run CHECK DATA with the INCLUDE XML TABLESPACES option to verify the
consistency of the XML table space and the node ID index.

The following checks are performed:
v Verify that all rows that comprise an XML document exist in the XML table

space and that all nodes in that XML document are structurally intact.
v Verify that the node ID index is consistent with the content in the XML table

space. No index entries must exist without an associated XML document and
each XML document in the XML table space must have corresponding entries in
the node ID index.

v Verify that the references from the base table space ID column contains only
entries that can be found in the node ID index in the XML table space. Also
verify that the node ID index does not contain any entries for which no
matching value in the document ID column in the base table space can be
found.

Any inconsistencies found are reported as errors. All remaining parts of corrupted
XML documents will be deleted from the XML table space. All the associated node
ID index entries for the affected XML document will be deleted and the XML
column in the base table will be set to an invalid status.

When running with SHRLEVEL CHANGE, CHECK DATA operates on shadow
copies of the table spaces to be checked, corresponding REPAIR statements are
generated. These generated statements must be executed by the REPAIR utility to
perform the mandatory actions which CHECK DATA has identified.

Two REPAIR statements are generated.
v One statement deletes the corrupted XML document and its associated node ID

index entries.
v The other REPAIR statement sets the XML column in the base table to an invalid

status.

Correcting XML data after running CHECK DATA
After you run the CHECK DATA utility, you might need to correct XML data.

Procedure

To correct XML data after running CHECK DATA:

Based on the CHECK DATA output, perform one of the following actions:

Chapter 8. CHECK DATA 87

Problem Action

Problem with corrupted XML data REPAIR statements are generated to delete
each corrupted XML document from the
XML table space and its associated node ID
index entry.

Problem with document ID index Run generated REPAIR LOCATE
TABLESPACE control statements.

Problem with node ID index Run generated REPAIR LOCATE
TABLESPACE control statements.

Problem with integrity of XML column in
the base table and the node ID index

Resetting CHECK-pending status
If a table space has a status of CHECK-pending, you can remove the
CHECK-pending status by correcting the error and running a utility job. You can
either rerun the CHECK DATA utility with SHRLEVEL REFERENCE specified or
you can run the REPAIR utility.

Procedure

To remove CHECK-pending status by running the CHECK DATA utility, use the
following approaches:
v Use the DELETE NO option if no tables contain rows that violate referential or

table check constraints. If referential or table check constraint violations are
found, the table space or partition is placed in CHECK-pending status.

v Use the DELETE YES option to remove all rows that violate referential or table
check constraints.

Related reference:
“CHECK-pending status” on page 1085

LOB column errors
If you run CHECK DATA on a base table space that contains at least one LOB
column, you might receive an error on the LOB column.

If you specify CHECK DATA AUXERROR REPORT, AUXERROR INVALIDATE,
LOBERROR REPORT, or LOBERROR INVALIDATE and a LOB column check error
is detected, DB2 issues a message that identifies the table, row, column, and type
of error. Any additional actions depend on the option that you specify for the
AUXERROR or LOBERROR parameter:

When you specify the AUXERROR REPORT or LOBERROR REPORT option
DB2 sets the base table space to the auxiliary CHECK-pending (ACHKP)
status. If CHECK DATA encounters only invalid LOB columns and no
other LOB column errors, the base table space is set to the auxiliary
warning (AUXW) status.

When you specify the AUXERROR INVALIDATE or LOBERROR INVALIDATE
option DB2 sets the base table LOB columns that are in error to an invalid status.

DB2 resets the invalid status of LOB columns that have been corrected. If
any invalid LOB columns remain in the base table, DB2 sets the base table
space to auxiliary warning (AUXW) status. You can use SQL to update a

88 Utility Guide and Reference

LOB column that is in the AUXW status; however, any other attempt to
access the column results in a -904 SQL return code.

If you run CHECK DATA AUXERROR REPORT or INVALIDATE on a base table
space that contains at least one LOB column, the following errors might be
reported:

Orphan LOBs

An orphan LOB column is a LOB that is found in the LOB table space but that is
not referenced by the base table space. If an orphan error is the only type of error
reported by CHECK DATA, the base table is considered correct.

An orphan can result from the following situations:
v You recover the base table space to a point in time prior to the insertion of the

base table row.
v You recover the base table space to a point in time prior to the definition of the

LOB column.
v You recover the LOB table space to a point in time prior to the deletion of a base

table row.
v A base record ROWID is incorrect, which results in an orphan LOB column error

message and a missing LOB column error message. The missing LOB column
error message identifies the ROWID, VERSION and row in error. The missing
LOB column is handled depending on the value that you specify for the
AUXERROR or LOBERROR parameter.

Missing LOBs

A missing LOB column is a LOB that is referenced by the base table space but that
is not in the LOB table space. A missing LOB can result from the following
situations:
v You recover the LOB table space to a point in time prior to the first insertion of

the LOB into the base table.
v You recover the LOB table space to a point in time when the LOB column is null

or has a zero length

Out-of-synch LOBs

An out-of-synch LOB error is a LOB that is found in both the base table and the
LOB table space, but the LOB in the LOB table space is at a different level. A LOB
column is also out-of-synch if the base table is null or has a zero length, but the
LOB is found in the LOB table space. An out-of-synch LOB can occur anytime you
recover the LOB table space or the base table space to a prior point in time.

Invalid LOBs

An invalid LOB is an uncorrected LOB column error that is found by a previous
execution of CHECK DATA AUXERROR INVALIDATE.

Chapter 8. CHECK DATA 89

Related reference:
Appendix C, “Advisory or restrictive states,” on page 1083

Resetting auxiliary CHECK-pending status
A table space with LOB or XML columns can be recovered to a point in time. In
this case, RECOVER TABLESPACE sets the auxiliary CHECK-pending (ACHKP)
status on the table space. You can remove the auxiliary CHECK-pending status if
DB2 does not find any inconsistencies.

About this task

Use one of the following actions to reset auxiliary CHECK-pending status:

Procedure

To reset auxiliary CHECK-pending status:

Take one of the following actions:
v Use the SCOPE(ALL) option to check all dependent tables in the specified table

space. The checks include referential integrity constraints, table check
constraints, and the existence of LOB and XML columns.

v Use the SCOPE(PENDING) option to check table spaces or partitions with
CHKP status. The checks include referential integrity constraints, table check
constraints, and the existence of LOB and XML columns.

v Use the SCOPE(AUXONLY) option to check for LOB and XML columns.

Results

If you specified the AUXERROR(INVALIDATE), LOBERROR(INVALIDATE) or
XMLERROR(INVALIDATE) option and DB2 finds inconsistencies, it places the
table space in AUXW status.
Related reference:
Appendix C, “Advisory or restrictive states,” on page 1083

Termination and restart of CHECK DATA
You can terminate and restart the CHECK DATA utility.

When you terminate CHECK DATA, table spaces remain in the same
CHECK-pending status as they were at the time the utility was terminated. The
CHECKDAT phase places the table space in the CHECK-pending status when
CHECK DATA detects an error; at the end of the phase, CHECK DATA resets the
CHECK-pending status if it detects no errors. The REPORTCK phase resets the
CHECK-pending status if you specify the DELETE YES option.

You can restart a CHECK DATA utility job, but it starts from the beginning again.

90 Utility Guide and Reference

Related concepts:
“Restart of an online utility” on page 39
“Termination of an online utility with the TERM UTILITY command” on page 36

Sample CHECK DATA control statements
Use sample control statements as models for developing your own CHECK DATA
control statements.

Example 1: Copying violations into exception tables

The control statement specifies that the CHECK DATA utility is to check for and
delete any rows that violate referential and table check constraints in table spaces
DSN8D11A.DSN8S11D and DSN8D11A.DSN8S11E. CHECK DATA copies any rows
that violate these constraints into the exception tables that are specified in the FOR
EXCEPTION clause. For example, CHECK DATA is to copy the violations in table
DSN8810.DEPT into table DSN8810.EDEPT.
//STEP1 EXEC DSNUPROC,UID=’IUIQU1UQ.CHK1’,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSUT1 DD DSN=IUIQU1UQ.CHK3.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(8000,(200,20),,,ROUND)
//SYSERR DD DSN=IUIQU1UQ.CHK3.SYSERR,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(6000,(20,20),,,ROUND)
//SORTOUT DD DSN=IUIQU1UQ.CHK3.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(6000,(20,20),,,ROUND)
//SYSIN DD *
CHECK DATA TABLESPACE DSN8D11A.DSN8S11D

TABLESPACE DSN8D11A.DSN8S11E
FOR EXCEPTION IN DSN8B10.DEPT USE DSN8B10.EDEPT

IN DSN8B10.EMP USE DSN8B10.EEMP
IN DSN8B10.PROJ USE DSN8B10.EPROJ
IN DSN8B10.PROJACT USE DSN8B10.EPROJACT
IN DSN8B10.EMPPROJACT USE DSN8B10.EEPA

DELETE YES
//*

Example 2: Creating an exception table for the project activity
table

You can create an exception table for the project activity table by using the

following SQL statements:
EXEC SQL
CREATE TABLE EPROJACT

LIKE DSN8B10.PROJACT
IN DATABASE DSN8D11A

ENDEXEC

EXEC SQL
ALTER TABLE EPROJACT

ADD RID CHAR(4)
ENDEXEC

EXEC SQL
ALTER TABLE EPROJACT

ADD TIME TIMESTAMP NOT NULL WITH DEFAULT
ENDEXEC

Chapter 8. CHECK DATA 91

The first statement requires the SELECT privilege on table
DSN8B10.PROJACT and the privileges that are usually required to create a table.

Table EPROJACT has the same structure as table DSN8B10.PROJACT, but it can
have two extra columns. The columns in EPROJACT are:
v Its first five columns mimic the columns of the project activity table; they have

exactly the same names and descriptions. Although the column names are the
same, they do not need to be. However, the rest of the column attributes for the
initial columns must be same as those of the table that is being checked.

v The next column, which is added by ALTER TABLE, is optional; CHECK DATA
uses it as an identifier. The name “RID” is an arbitrary choice; if the table
already has a column with that name, use a different name. The column
description, CHAR(4), is required.

v The final timestamp column is also optional. If you define the timestamp
column, a row identifier (RID) column must precede this column. You might
define a permanent exception table for each table that is subject to referential or
table check constraints. You can define it once and use it to hold invalid rows
that CHECK DATA detects. The TIME column allows you to identify rows that
were added by the most recent run of the utility.

Eventually, you correct the data in the exception tables, perhaps with an SQL
UPDATE statement, and transfer the corrections to the original tables by using

statements that are similar to those in the following example:
INSERT INTO DSN8B10.PROJACT

SELECT PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE
FROM EPROJACT
WHERE TIME > CURRENT TIMESTAMP - 1 DAY;

Example 3: Running CHECK DATA on a table space with LOBs

Assume that table space DBIQUQ01.TPIQU01 contains LOB columns. In the
following control statement, the SCOPE ALL option indicates that CHECK DATA is
to check all rows in all dependent tables in table space DBIQUQ01.TPIQU01 for
the following violations:
v Violations of referential constraints
v Violations of table check constraints
v Inconsistencies between the base table space and the corresponding LOB table

space.

The AUXERROR INVALIDATE option indicates that if the CHECK DATA utility
finds a LOB column error in this table space, it is to perform the following actions:
v Issues a warning message
v Sets the base table LOB column to an invalid status
v Sets the base table to auxiliary warning (AUXW) status
//STEP11 EXEC DSNUPROC,UID=’IUIQU1UQ.CHK2’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//SYSUT1 DD DSN=IUIQU1UQ.CHK2.STEP5.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=IUIQU1UQ.CHK2.STEP5.SORTOUT,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSERR DD DSN=IUIQU1UQ.CHK2.SYSERR,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

92 Utility Guide and Reference

//SYSIN DD *
CHECK DATA TABLESPACE DBIQUQ01.TPIQUQ01 SCOPE ALL

AUXERROR INVALIDATE
/*

Example 4: Specifying the maximum number of exceptions

The control statement specifies that the CHECK DATA utility is to check all rows
in partition number 254 in table space DBNC0216.TPNC0216. The EXCEPTIONS 1
option indicates that the utility is to terminate when it finds one exception. Any
exceptions are to be reported by messages only.
//CKDATA EXEC DSNUPROC,UID=’L450TST3.CHECK’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//SYSERR DD DSN=L450TST3.CHECK.STEP1.SYSERR,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(2000,(20,20),,,ROUND)
//SYSUT1 DD DSN=L450TST3.CHECK.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=L450TST3.CHECK.STEP1.SORTOUT,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *

CHECK DATA TABLESPACE DBNC0216.TPNC0216 PART 254
SCOPE ALL EXCEPTIONS 1

/*

Example 5: Running CHECK DATA on a clone table

The control statement specifies that the CHECK DATA utility is to check the clone
table in the specified table space.
CHECK DATA TABLESPACE DBNI0101.TSNI010P CLONE SCOPE ALL

ERRDDN SYSERR

Example 6: Running CHECK DATA SHRLEVEL CHANGE

The control statement specifies that the CHECK DATA utility is to specifies that
applications can read from and write to the table space that is to be checked.
CHECK DATA TABLESPACE DBNI0101.TSNI010P SHRLEVEL CHANGE

Example 7: Checking several table spaces

To check several table spaces, you can specify more than one table space in a
CHECK DATA control statement. This technique is useful for checking a complete
set of referentially related table spaces. The following example shows a CHECK
DATA control statement that lists more than one table space.
CHECK DATA

TABLESPACE DBJM1203.TLJM1203
TABLESPACE DBJM1203.TPJM1204

FOR EXCEPTION IN TLJM1203.TBJM1203 USE ADMF001.EXCPT3
IN TPJM1204.TMBJM1204 USE ADMF001.EXCPT4

DELETE YES

Example 8:

The control statement specifies how to include consistency checking of XML
columns in a base table with the associated node ID indexes. Specify
XMLSCHEMAONLY with INCLUDE XML TABLESPACES to limit the CHECK
DATA scope to only XML schema validation for the XML columns.

Chapter 8. CHECK DATA 93

CHECK DATA TABLESPACE DBNI0101.TSNI010P INCLUDE XML TABLESPACES
SCOPE XMLSCHEMAONLY AUXONLY

94 Utility Guide and Reference

Chapter 9. CHECK INDEX

The CHECK INDEX online utility tests whether indexes are consistent with the
data that they index, and it issues warning messages when it finds an
inconsistency.

Run the CHECK INDEX utility after a conditional restart or a point-in-time
recovery on all table spaces whose indexes might not be consistent with the data.

Also run CHECK INDEX before running CHECK DATA, especially if you specify
DELETE YES. Running CHECK INDEX before CHECK DATA ensures that the
indexes that CHECK DATA uses are valid. When checking an auxiliary table index,
CHECK INDEX verifies that each LOB is represented by an index entry, and that
an index entry exists for every LOB.

Important: Inaccurate statistics for tables, table spaces, or indexes can result in a
sort failure during CHECK INDEX.

Running CHECK INDEX when the index has a VARBINARY
column

If you run CHECK INDEX against the index with the following characteristics,
CHECK INDEX fails:
v The index was created on a VARBINARY column or a column with a distinct

type that is based on a VARBINARY data type.
v The index column has the DESC attribute.

To fix the problem, alter the column data type to BINARY, and then rebuild the
index.

Output

CHECK INDEX generates several messages that show whether the indexes are
consistent with the data.

For unique indexes, any two null values are treated as equal values, unless the
index was created with the UNIQUE WHERE NOT NULL clause. In that case, if
the key is a single column, it can contain any number of null values, and CHECK
INDEX does not issue an error message.

CHECK INDEX issues an error message if it finds two or more null values and the
unique index was not created with the UNIQUE WHERE NOT NULL clause.

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v STATS privilege for the database
v DBADM, DBCTRL, or DBMAINT authority for the database. If the object on

which the utility operates is in an implicitly created database, DBADM authority
on the implicitly created database or DSNDB04 is required.

v System DBADM authority

© Copyright IBM Corp. 1983, 2013 95

v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute CHECK INDEX, but
only on a table space in the DSNDB01 or DSNDB06 databases.

If you are using SHRLEVEL CHANGE, the batch user ID that invokes COPY with
the CONCURRENT option must provide the necessary authority to execute the
DFSMSdss ADRDSSU command. DFSMSdss will create a shadow data set with the
authority of the utility batch address space. The submitter should have an RACF
ALTER authority, or its equivalent, for the shadow data set.

Execution phases of CHECK INDEX

Phase Description

UTILINIT
Performs initialization

UNLOAD
Unloads data keys

SORTCHK
Sorts unloaded data keys and scans the index to validate data keys.

UTILTERM
Performs cleanup

Syntax and options of the CHECK INDEX control statement
The CHECK INDEX utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

96 Utility Guide and Reference

Syntax diagram

�� CHECK INDEX �

� LIST listdef-name
(index-name)

PART integer
(ALL) TABLESPACE table-space-name

database-name. PART integer

CLONE
�

�
SHRLEVEL REFERENCE

SHRLEVEL CHANGE

DRAIN_WAIT IRLMRWT value

DRAIN_WAIT integer

RETRY UTIMOUT value

RETRY integer
�

�
RETRY_DELAY integer SORTDEVT device-type SORTNUM integer

�

�
PARALLEL 0

PARALLEL num-subtasks
��

Option descriptions

INDEX
Indicates that you are checking for index consistency.

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. The list should
contain only index spaces. Do not specify the name of an index or of a table
space. DB2 groups indexes by their related table space and executes CHECK
INDEX once per table space. CHECK INDEX allows one LIST keyword for
each control statement in CHECK INDEX. This utility will only process clone
data if the CLONE keyword is specified. The use of CLONED YES on the
LISTDEF statement is not sufficient.

The partitions or partition ranges can be specified in a list.

(index-name, ...)
Specifies the indexes that are to be checked. All indexes must belong to tables
in the same table space. If you omit this option, you must use the (ALL)
TABLESPACE option. Then CHECK INDEX checks all indexes on all tables in
the table space that you specify.

index-name is the name of an index, in the form creator-id.name. If you omit the
qualifier creator-id., the user identifier for the utility job is used. If you use a list
of names, separate items in the list by commas. Parentheses are required
around a name or list of names. Enclose the index name in quotation marks if
the name contains a blank.

PART integer
Identifies a physical partition of a partitioned index or a logical partition of a
nonpartitioned index that is to be checked for consistency. If you specify an
index on a nonpartitioned table space, an error occurs.

Chapter 9. CHECK INDEX 97

||||

integer is the number of the partition and must be in the range from 1 to the
number of partitions that are defined for the table space. The maximum is
4096.

If the PART keyword is not specified, CHECK INDEX tests the entire target
index for consistency.

(ALL)
Specifies that all indexes in the specified table space that are referenced by the
table space are to be checked.

TABLESPACE database-name.table-space-name
Specifies the table space from which all indexes are to be checked. If an explicit
list of index names is not specified, all indexes on all tables in the specified
table space are checked.

Do not specify TABLESPACE with an explicit list of index names.

database-name is the name of the database that the table space belongs to. The
default value is DSNDB04.

table-space-name is the name of the table space from which all indexes are
checked.

CLONE
Indicates that CHECK INDEX is to check only the specified indexes that are on
clone tables. This utility will only process clone data if the CLONE keyword is
specified. The use of CLONED YES on the LISTDEF statement is not sufficient.

SHRLEVEL
Indicates the type of access that is to be allowed for the index, table space, or
partition that is to be checked during CHECK INDEX processing.

REFERENCE
Specifies that applications can read from but cannot write to the index,
table space, or partition that is to be checked.

If you specify SHRLEVEL REFERENCE or use this value as the default,
DB2 unloads the index entries, sorts the index entries, and scans the data
to validate the index entries.

CHANGE
Specifies that applications can read from and write to the index, table
space, or partition that is to be checked.

If you specify SHRLEVEL CHANGE, DB2 performs the following actions:
v Drains all writers and forces the buffers to disk for the specified object

and all of its indexes
v Invokes DFSMSdss to copy the specified object and all of its indexes to

shadow data sets
v Enables read-write access for the specified object and all of its indexes
v Runs CHECK INDEX on the shadow data sets

By default, DFSMSdss uses FlashCopy to copy DB2 objects to shadow data
sets, if FlashCopy is available. If DFSMSdss cannot use FlashCopy,
DFSMSdss uses a slower method. As a result, creating copies of objects
might take a long time, and the time during which the data and indexes
have read-only access might increase. You can set the
CHECK_FASTREPLICATION subsystem parameter to REQUIRED to force
the CHECK utility to use only FlashCopy. If FlashCopy is not available, the
CHECK utility fails.

98 Utility Guide and Reference

DRAIN_WAIT integer
Specifies the number of seconds that CHECK INDEX is to wait when draining
the table space or index. The specified time is the aggregate time for objects
that are to be checked. This value overrides the values that are specified by the
IRLMRWT and UTIMOUT subsystem parameters.

integer can be any integer from 0 to 1800. If you do not specify DRAIN_WAIT
or specify a value of 0, CHECK INDEX uses the value of the lock timeout
subsystem parameter IRLMRWT.

RETRY integer
Specifies the maximum number of retries that CHECK INDEX is to attempt.

integer can be any integer from 0 to 255. Specifying a value other than 0 can
increase processing costs and result in multiple or extended periods during
which the specified index, table space, or partition is in read-only access.

If you do not specify RETRY, CHECK INDEX uses the value of the utility
multiplier subsystem parameter UTIMOUT.

RETRY_DELAY integer
Specifies the minimum duration, in seconds, between retries. integer can be any
integer from 1 to 1800.

If you do not specify RETRY_DELAY, CHECK INDEX uses the smaller of the
following two values:
v DRAIN_WAIT value × RETRY value
v DRAIN_WAIT value × 10

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically
allocated by the external sort program. You can specify any disk device type
that is acceptable to the DYNALLOC parameter of the SORT or OPTION
control statement for the sort program.

A TEMPLATE specification does not dynamically allocate sort work data sets.
The SORTDEVT keyword controls dynamic allocation of these data sets.

device-type is the device type. If you omit SORTDEVT and a sort is required,
you must provide the DD statements that the sort program requires for the
temporary data sets.

SORTNUM integer
Specifies the number of temporary data sets that are to be dynamically
allocated by the sort program.

integer is the number of temporary data sets that can range from 2 to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and
omit SORTNUM, no value is passed to the sort program; the sort program uses
its own default.

You need at least two sort work data sets for each sort. The SORTNUM value
applies to each sort invocation in the utility. For example, if three indexes,
SORTKEYS is specified, there are no constraints that limit parallelism, and
SORTNUM is specified as 8, a total of 24 sort work data sets are allocated for a
job.

Each sort work data set consumes both above-the-line and below-the-line
virtual storage, so if you specify a value for SORTNUM that is too high, the

Chapter 9. CHECK INDEX 99

utility might decrease the degree of parallelism due to virtual storage
constraints, and possibly decreasing the degree down to one, meaning no
parallelism.

Important: The SORTNUM keyword will not be considered if subsystem
parameter UTSORTAL is set to YES and IGNSORTN is set to YES.

PARALLEL num-subtasks
Specifies the maximum number of subtasks that are to be started in parallel to
rebuild indexes. If the PARALLEL keyword is omitted, the maximum number
of subtasks is limited by either the number of partitions being unloaded or the
number of indexes built.

The value of num-subtasks must be an integer between 0 and 32767, inclusive. If
the specified value for num-subtasks is greater than 32767, the CHECK INDEX
statement fails. If 0 or no value is specified for num-subtasks, the CHECK
INDEX utility uses the optimal number of parallel subtasks. If the specified
value for num-subtasks is greater than the calculated optimal number, the
CHECK INDEX utility limits the number of parallel subtasks to the optimal
number with applied constraints. CHECK INDEX typically allocates subtasks
in groups of two or three, so the actual number of subtasks that are started
might be less than the number specified by the PARALLEL option.

The specified number of subtasks for PARALLEL always overrides the
specification of the PARAMDEG_UTIL subsystem parameter, so PARALLEL
can be smaller or larger than the value of PARAMDEG_UTIL.

Related concepts:
“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on
page 37
Related reference:
Chapter 15, “LISTDEF,” on page 207

DB2 Sort
Related information:

DFSORT Application Programming Guide

Data sets that CHECK INDEX uses
The CHECK INDEX utility uses a number of data sets during its operation.

The following table lists the data sets that CHECK INDEX uses. The table lists the
DD name that is used to identify the data set, a description of the data set, and an
indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 13. Data sets that CHECK INDEX uses

Data set Description Required?

SYSIN An input data set that contains the utility
control statement.

Yes

SYSPRINT An output data set for messages. Yes

UTPRINT A data set that contains messages from the
sort program (usually, SYSOUT or
DUMMY).

Yes

100 Utility Guide and Reference

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

The following object is named in the utility control statement and does not require
a DD statement in the JCL:

Index space
Object that is to be checked. (If you want to check only one partition of an
index, use the PART option in the control statement.)

Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

Shadow data sets
When you execute the CHECK INDEX utility with the SHRLEVEL CHANGE
option, the utility uses shadow data sets.

If a table space, partition, or index resides in DB2-managed data sets and shadow
data sets do not already exist when you execute CHECK INDEX, DB2 creates the
shadow data sets. At the end of CHECK INDEX processing, the DB2-managed
shadow data sets are deleted.

For user-managed data sets, DFSMSdss can create or scratch and re-create the
required shadow data sets as needed. When the CHECK INDEX utility completes
the processing of user-managed data sets, the shadow data sets are not
automatically scratched.

If you do not want the shadow data sets to be allocated in the same storage class
as the production data sets, set the UTIL_TEMP_STORCLAS system parameter to
specify the storage class for the shadow data sets.

Shadow data set names

Each shadow data set must have the following name:

catname.DSNDBx.dbname.psname.y000z.Lnnn

In the preceding name, the variables have the following meanings:

variable
meaning

catname
The VSAM catalog name or alias

x C or D

dbname
Database name

psname
Table space name or index name

y I or J

z 1 or 2

Lnnn Partition identifier. Use one of the following values:
v A001 through A999 for partitions 1 through 999
v B000 through B999 for partitions 1000 through 1999

Chapter 9. CHECK INDEX 101

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

v C000 through C999 for partitions 2000 through 2999
v D000 through D999 for partitions 3000 through 3999
v E000 through E996 for partitions 4000 through 4096

To determine the names of existing data sets, execute one of the following
queries against the SYSTABLEPART or SYSINDEXPART catalog tables:
SELECT DBNAME, TSNAME, IPREFIX

FROM SYSIBM.SYSTABLEPART
WHERE DBNAME = ’dbname’
AND TSNAME = ’psname’;

SELECT DBNAME, IXNAME, IPREFIX
FROM SYSIBM.SYSINDEXES X, SYSIBM.SYSINDEXPART Y
WHERE X.NAME = Y.IXNAME
AND X.CREATOR = Y.IXCREATOR
AND X.DBNAME = ’dbname’
AND X.INDEXSPACE = ’psname’;

Defining shadow data sets

For a partitioned table space, DB2 returns rows from which you select the row for
the partitions that you want to check.

Consider the following actions when you preallocate the data sets:
v Allocate the shadow data sets according to the rules for user-managed data sets.
v Define the shadow data sets as LINEAR.
v Use SHAREOPTIONS(3,3).
v Allocate base or clone objects
v Define the shadow data sets as EA-enabled if the original table space or index

space is EA-enabled.
v Allocate the shadow data sets on the volumes that are defined in the storage

group for the original table space or index space.

If you specify a secondary space quantity, DB2 does not use it. Instead, DB2 uses
the SECQTY value for the table space or index space.

Recommendation: Use the MODEL option, which causes the new shadow data set
to be created like the original data set. This method is shown in the following
example:
DEFINE CLUSTER +

(NAME(’catname.DSNDBC.dbname.psname.x000z.L001’) +
MODEL(’catname.DSNDBC.dbname.psname.y000z.L001’)) +
DATA +
(NAME(’catname.DSNDBD.dbname.psname.x000z.L001’) +
MODEL(’catname.DSNDBD.dbname.psname.y000z.L001’))

Creating shadow data sets for indexes

When you preallocate shadow data sets for indexes, create the data sets as follows:
v Create shadow data sets for the partition of the table space and the

corresponding partition in each partitioning index and data-partitioned
secondary index.

102 Utility Guide and Reference

v Create a shadow data set for logical partitions of nonpartitioned secondary
indexes.

Use the same naming scheme for these index data sets as you use for other data
sets that are associated with the base index, except use J0001 instead of I0001.

Estimating the size of shadow data sets

If you have not changed the value of FREEPAGE or PCTFREE, the amount of
required space for a shadow data set is comparable to the amount of required
space for the original data set.

Concurrency and compatibility for CHECK INDEX
The CHECK INDEX utility has certain concurrency and compatibility
characteristics associated with it.

DB2 treats individual data and index partitions as distinct target objects. Utilities
that operate on different partitions of the same table space or index space are
compatible.

Claims and drains

The following table shows which claim classes CHECK INDEX claims and drains
and any restrictive state that the utility sets on the target object.

Table 14. Claim classes of CHECK INDEX operations

Target

CHECK
INDEX
SHRLEVEL
REFERENCE

CHECK
INDEX PART
SHRLEVEL
REFERENCE

CHECK
INDEX
SHRLEVEL
CHANGE

CHECK
INDEX PART
SHRLEVEL
CHANGE

Table space or partition DW/UTRO DW/UTRO DW/UTRW DW/UTRW

Partitioning index or index
partition

DW/UTRO DW/UTRO DW/UTRW DW/UTRW

Secondary index1 DW/UTRO none DW/UTRW DW/UTRW

Data-partitioned secondary
index or index partition2

DW/UTRO DW/UTRO DW/UTRW DW/UTRW

Logical partition of an index none DW/UTRO DW/UTRW DW/UTRW

Legend:
v DW: Drain the write claim class, concurrent access for SQL readers
v UTRO: Utility restrictive state, read only-access allowed
v UTRW: Utility restrictive state, read and write access allowed
v none: Object not affected by this utility

Note:

1. Includes document ID indexes and node ID indexes over non-partitioned XML table
spaces and XML indexes.

2. Includes document ID indexes and node ID indexes over partitioned XML table spaces.

CHECK INDEX does not set a utility restrictive state if the target object is
DSNDB01.SYSUTILX.

CHECK INDEX of an XML index cannot run if REBUILD INDEX, REORG INDEX,
or RECOVER is being run on that index because CHECK INDEX needs access to

Chapter 9. CHECK INDEX 103

the node ID index. CHECK INDEX SHRLEVEL CHANGE cannot run two jobs
concurrently for two different indexes that are in the same table space or partition
because the snapshot shadow will have a conflicting name for the table space.

Compatibility

The following table shows which utilities can run concurrently with CHECK
INDEX on the same target object. The first column lists the other utility and the
second column lists whether or not that utility is compatible with CHECK INDEX.
The target object can be a table space, an index space, or an index partition. If
compatibility depends on particular options of a utility, that information is also
documented in the table.

Table 15. Compatibility of CHECK INDEX SHRLEVEL REFERENCE with other utilities

Action
Compatible with
CHECK INDEX?

CHECK DATA No

CHECK INDEX. Yes

CHECK LOB Yes

COPY INDEXSPACE Yes

COPY TABLESPACE Yes

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

MODIFY Yes

QUIESCE Yes

REBUILD INDEX No

RECOVER INDEX No

RECOVER TABLESPACE No

REORG INDEX No

REORG TABLESPACE UNLOAD CONTINUE or PAUSE No

REORG TABLESPACE UNLOAD ONLY or EXTERNAL Yes

REPAIR DELETE or REPLACE No

REPAIR DUMP or VERIFY Yes

REPORT Yes

RUNSTATS Yes

STOSPACE Yes

UNLOAD Yes

To run on SYSIBM.DSNLUX01 or SYSIBM.DSNLUX02, CHECK INDEX must be
the only utility within the job step.

Single logical partitions
You can run CHECK INDEX on a single logical partition of a secondary index.
However, what CHECK INDEX can detect is limited.
v CHECK INDEX does not detect duplicate unique keys in different logical

partitions. For example, logical partition 1 might have the following keys:

104 Utility Guide and Reference

A B E F T Z

Logical partition 2 might have the following keys:
M N Q T V X

In this example, the keys are unique within each logical partition, but both
logical partitions contain the key, T; so for the index as a whole, the keys are not
unique. CHECK INDEX does not detect the duplicates.

v CHECK INDEX does not detect keys that are out of sequence between different
logical partitions. For example, the following keys are out of sequence:
1 7 5 8 9 10 12

If keys 1, 5, 9, and 12 belong to logical partition 1 and keys 7, 8, and 10 belong
to logical partition 2, the keys within each partition are in sequence, but the keys
for the index, as a whole, are out of sequence, as shown in the following
example:
LP 1 1 5 9 12 LP 2 7 8 10

When checking a single logical partition, CHECK INDEX does not detect this
out-of-sequence condition.

Indexes in parallel
If you specify more than one index, CHECK INDEX checks the indexes in parallel
unless they are constrained by available memory, sort work files, or the
PARALLEL option. Sorting the index keys and checking multiple indexes in
parallel, rather than sequentially, reduces the elapsed time for a CHECK INDEX
job.

If you do not specify the PARALLEL option, the PARAMDEG_UTIL subsystem
parameter determines the maximum degree of parallelism for the utility.

The following figure shows the flow of a CHECK INDEX job with a parallel index
check for a nonpartitioned table space or a single partition of a partitioned table
space.

Chapter 9. CHECK INDEX 105

|
|
|
|
|

|
|

The following figure shows the flow of a CHECK INDEX job with a parallel index
check for all partitioning indexes on a partitioned table space.

Table
space

Indexes

Snapshot copy

SW01WKnn SW02WKnn SW03WKnn

Table
space

Unload

Indexes

Sort
Sort
Sort

Check
Check
Check

Figure 10. Parallel index check for a nonpartitioned table space or a single partition of a
partitioned table space

106 Utility Guide and Reference

The following figure shows the flow of a CHECK INDEX job with a parallel index
check for a partitioned table space with a single nonpartitioned secondary index.

Index
parts

SW01WKnn SW02WKnn SW03WKnn

Index
parts

Sort
Sort
Sort

Check
Check
Check

Unload
Unload
Unload

Snapshot copy

Table
space
parts

Table
space
parts

Figure 11. Parallel index check for all partitioning indexes on a partitioned table space

Chapter 9. CHECK INDEX 107

The following figure shows the flow of a CHECK INDEX job with a parallel index
check for all indexes on a partitioned table space. Each unload task pipes keys to
each sort task, sorting the keys and piping them back to the check tasks.

Index

SW01WKnn SW02WKnn SW03WKnn

Index
Sort
Sort
Sort

Check
Unload
Unload
Unload

Snapshot copy

Table
space
parts

Table
space
parts

Merge

Figure 12. Parallel index check for a partitioned table space with a single nonpartitioned
secondary index

108 Utility Guide and Reference

Reviewing CHECK INDEX output
CHECK INDEX indicates whether a table space and its indexes are inconsistent,
but it does not correct any such inconsistencies. If CHECK INDEX detects
inconsistencies, you should analyze the output to determine the problem and then
correct the inconsistency.

Procedure

To identify the inconsistency:
1. Examine the error messages that CHECK INDEX issues.
2. Verify the point in time for each object that is recovered. Use output from

REPORT RECOVERY to ensure that the table space and indexes are recovered
to the same point in time. If you specify TOCOPY, TOLASTCOPY, or
TOLASTFULLCOPY, ensure that the point in time is a SHRLEVEL REFERENCE
copy.

3. If the table space is correct, run the REBUILD INDEX utility to rebuild the
indexes.

4. If the index is correct, determine a consistent point in time for the table space,
and run the RECOVER utility on the table space. Run CHECK INDEX again to
verify consistency.

5. If neither the table space nor its indexes are correct, determine a point in time
to which to recover both the table space and indexes, and then rerun the
RECOVER utility job, including the table space and its indexes all in the same
list.

SW01WKnn SW02WKnn SW03WKnn

Sort
Sort
Sort

Check
Check
Check

Unload
Unload
Unload

Snapshot copy

Table
space
parts

Table
space
parts Indexes

Indexes

Figure 13. Parallel index check for all indexes on a partitioned table space

Chapter 9. CHECK INDEX 109

Related concepts:

How to report recovery information (DB2 Administration Guide)
Related reference:
Chapter 22, “REBUILD INDEX,” on page 409
Chapter 23, “RECOVER,” on page 441
Chapter 27, “REPORT,” on page 677

Termination or restart of CHECK INDEX
You can terminate and restart the CHECK INDEX utility.

You can terminate CHECK INDEX in any phase without any integrity exposure.

You can restart a CHECK INDEX utility job, but it starts from the beginning again.
Related concepts:
“Termination of an online utility with the TERM UTILITY command” on page 36
“Restart of an online utility” on page 39

Correcting XML data after running CHECK INDEX
After you run the CHECK INDEX utility, you might need to correct XML data.

Procedure

To correct XML data:

Based on the CHECK INDEX output, perform one of the following actions:

Problem Action

Problem with a document ID index 1. Confirm that the base table space is at
the correct level.

2. Rebuild the index.

Problem with an XML table space for a
node ID index or an XML index and the
index is correct

Run REPAIR LOCATE RID DELETE to
remove the orphan row.

Problem with an XML table space for a
node ID index or an XML index and the
index is incorrect

Run REBUILD INDEX or RECOVER INDEX
to rebuild the index.

Problem with an XML index over an XML
table space

Run REBUILD INDEX to rebuild the index.
Restriction: Do not run REPAIR LOCATE
RID DELETE to remove orphan rows unless
the node ID index does not represent the
same row and the base table space does not
use the document ID index.

Sample CHECK INDEX control statements
Sample control statements are helpful as models for developing your own CHECK
INDEX control statements.

110 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_howreportrecoveryinfo.htm#db2z_howreportrecoveryinfo

Example 1: Checking all indexes

The control statement specifies that the CHECK INDEX utility is to check all
indexes in sample table space DSN8D81A.DSN8S81E.
//STEP1 EXEC DSNUPROC,UID=’IUIQU1UQ.CHK1’,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSERR DD DSN=IUIQU1UQ.CHK3.SYSERR,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(6000,(20,20),,,ROUND)
//SORTOUT DD DSN=IUIQU1UQ.CHK3.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(6000,(20,20),,,ROUND)
//SYSIN DD *
CHECK INDEX (ALL) TABLESPACE DSN8D11A.DSN8S11E
//*

Example 2: Checking one index

The following control statement specifies that the CHECK INDEX utility is to
check the project-number index (DSN8B10.XPROJ1) on the sample project table.
SORTDEVT SYSDA specifies that SYSDA is the device type for temporary data sets
that are to be dynamically allocated by the sort program.
CHECK INDEX (DSN8B10.XPROJ1)

SORTDEVT SYSDA

Example 3: Checking more than one index

The following control statement specifies that the CHECK INDEX utility is to
check the indexes DSN8B10.XEMPRAC1 and DSN8B10.XEMPRAC2 on the
employee-to-project-activity sample table.
CHECK INDEX NAME (DSN8B10.XEMPRAC1, DSN8B10.XEMPRAC2)

Example 4: Checking partitions of all indexes

In the following control statement, table space DB0S0301.TP0S0301 has one
partitioned index (ADMF001.IP0S0301), one data-partitioned secondary index
(ADMF001.ID0S0302), and one nonpartitioned secondary index
(ADMF001.IX0S0303). The (ALL) option indicates that all three indexes on the table
space are to be checked. PART 3 indicates that CHECK INDEX is to check the third
physical partition of any partitioned indexes and the third logical partition of any
nonpartitioned indexes.
CHECK INDEX(ALL) TABLESPACE DBOS0301.TPOS0301 PART 3 SORTDEVT SYSDA

In this case, CHECK INDEX checks the third physical partition of
ADMF001.IP0S0301, the third physical partition of ADMF001.ID0S0302, and the
third logical partition of ADMF001.IX0S0303, as indicated by the following output.

DSNU050I DSNUGUTC- CHECK INDEX(ALL) TABLESPACE DBOS0301.TPOS0301 PART 3 SORTDEVT SYSDA
DSNU700I= DSNUKGET- 10 INDEX ENTRIES UNLOADED FROM INDEX=’ADMF001.IPOS0301’ PARTITION=3
DSNU700I= DSNUKGET- 10 INDEX ENTRIES UNLOADED FROM INDEX=’ADMF001.IDOS0302’ PARTITION=3
DSNU701I= DSNUKGET- 10 INDEX ENTRIES UNLOADED FROM ’ADMF001.IXOS0303’
DSNU705I DSNUK001- UNLOAD PHASE COMPLETE - ELAPSED TIME=00:00:00
DSNU717I= DSNUKTER- 10 ENTRIES CHECKED FOR INDEX ’ADMF001.IPOS0301’ PARTITION=3
DSNU717I= DSNUKTER- 10 ENTRIES CHECKED FOR INDEX ’ADMF001.IDOS0302’ PARTITION=3
DSNU717I= DSNUKTER- 10 ENTRIES CHECKED FOR INDEX ’ADMF001.IXOS0303’ PARTITION=3
DSNU720I DSNUK001- CHECKIDX PHASE COMPLETE, ELAPSED TIME=00:00:00
DSNU010I DSNUGBAC- UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 14. CHECK INDEX output from a job that checks the third partition of all indexes.

Chapter 9. CHECK INDEX 111

Example 5: Checking indexes in a list

The LISTDEF control statement defines a list of indexes called CHKIDXB_LIST. The
CHECK INDEX control statement specifies that CHECK INDEX is to check all
indexes that are included in the CHKIDXB_LIST list. SORTDEVT SYSDA specifies
that SYSDA is the device type for temporary data sets that are to be dynamically
allocated by the sort program. SORTNUM 4 specifies that four of these data sets
are to be dynamically allocated.

Example 6: Checking all specified indexes on clone tables

The following control statement specifies that the CHECK INDEX utility is to
check all specified indexes that are on clone tables.
CHECK INDEX (ALL) TABLESPACE DBLOB01.TSLOBC4 CLONE

Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

//CHKIDXB EXEC PGM=DSNUTILB,REGION=4096K,PARM=’SSTR,CHKINDX1’
//SYSPRINT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//UTPRINT DD SYSOUT=A
//DSNTRACE DD SYSOUT=A
//SYSOUT DD UNIT=SYSDA,SPACE=(CYL,(5,2)),VOL=SER=SCR03
//SORTLIB DD DISP=SHR,DSN=SYS1.SORTLIB
//SORTOUT DD UNIT=SYSDA,SPACE=(CYL,(5,2)),VOL=SER=SCR03
//SYSERR DD UNIT=SYSDA,SPACE=(CYL,(5,2)),VOL=SER=SCR03
//SYSIN DD *
LISTDEF CHKIDXB_LIST INCLUDE INDEXSPACE DBOT55*.* ALL
CHECK INDEX LIST CHKIDXB_LIST

SORTDEVT SYSDA
SORTNUM 4

/*

Figure 15. Example of checking indexes in a list

112 Utility Guide and Reference

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

Chapter 10. CHECK LOB

You can run the CHECK LOB online utility on a LOB table space to identify any
structural defects in the LOB table space and any invalid LOB values.

The CHECK LOB utility is useful in a variety of circumstances:
v Run the utility on a LOB table space that is in CHECK-pending (CHKP) status

to identify structural defects. If none are found, the CHECK LOB utility turns
the CHKP status off.

v Run the utility on a LOB table space that is in auxiliary-warning (AUXW) status
to identify invalid LOBs. If none exist, the CHECK LOB utility turns AUXW
status off.

v Run the utility after a conditional restart or a point-in-time recovery on all table
spaces where LOB table spaces might not be synchronized.

v Run the utility before you run the CHECK DATA utility on a table space that
contains at least one LOB column.

Output

After successful execution, CHECK LOB SHRLEVEL CHANGE does not set or
reset the CHECK-pending (CHKP) and auxiliary-warning (AUXW) statuses.

If the utility finds any inconsistencies, the LOB table space that is checked is not
put into the CHECK-pending status. You can force the prior behavior, that a LOB
table space is put into CHECK-pending status when inconsistencies are detected,
by specifying CHECK_SETCHKP=Y on the CHECK_SETCHKP system parameter.

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v STATS privilege for the database
v DBADM, DBCTRL, or DBMAINT authority for the database. If the object on

which the utility operates is in an implicitly created database, DBADM authority
on the implicitly created database or DSNDB04 is required.

v System DBADM authority
v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute CHECK LOB.

If you are using SHRLEVEL CHANGE, the batch user ID that invokes COPY with
the CONCURRENT option must provide the necessary authority to execute the
DFSMSdss ADRDSSU command. DFSMSdss will create a shadow data set with the
authority of the utility batch address space. The submitter should have a RACF
ALTER authority, or its equivalent, for the shadow data set.

Execution phases of CHECK LOB

The CHECK LOB utility operates in the following phases:

© Copyright IBM Corp. 1983, 2013 113

UTILINIT
Performs initialization

CHECKLOB
Scans all active pages of the LOB table space; generates up to four records
per LOB page; passes records to the SORTIN phase

SORTIN
Passes CHECKLOB phase records to SORT

SORT Sorts the records from the CHECKLOB phase

SORTOUT
Passes sorted records to the REPRTLOB phase

REPRTLOB
Examines records that are produced by the CHECKLOB phase; issues error
messages

UTILTERM
Performs cleanup

Syntax and options of the CHECK LOB control statement
The CHECK LOB utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

Syntax diagram

�� CHECK LOB lob-table-space-spec
SHRLEVEL REFERENCE

SHRLEVEL CHANGE
drain-spec �

�
EXCEPTIONS 0

EXCEPTIONS integer SYSPUNCH
PUNCHDDN ddname

SORTDEVT device-type
�

�
SORTNUM integer

��

lob-table-space-spec:

�� TABLESPACE lob-table-space-name
database-name. CLONE

��

114 Utility Guide and Reference

drain-spec:

��
DRAIN_WAIT IRLMRWT value

DRAIN_WAIT integer

RETRY UTIMOUT value

RETRY integer RETRY_DELAY integer
��

Option descriptions

LOB
Indicates that you are checking a LOB table space for defects.

TABLESPACE database-name.lob-table-space-name
Specifies the table space to which the data belongs.

database-name is the name of the database and is optional.

The default value is DSNDB04.

lob-table-space-name is the name of the LOB table space.

SHRLEVEL
Indicates the type of access that is to be allowed for the index, table space, or
partition that is to be checked during CHECK LOB processing.

REFERENCE
Specifies that applications can read from but cannot write to the index,
table space, or partition that is to be checked.

CHANGE
Specifies that applications can read from and write to the index, table
space, or partition that is to be checked.

If you specify SHRLEVEL CHANGE, DB2 performs the following actions:
v Drains all writers and forces the buffers to disk for the specified object

and all of its indexes
v Invokes DFSMSdss to copy the specified object and all of its indexes to

shadow data sets
v Enables read-write access for the specified object and all of its indexes
v Runs CHECK INDEX on the shadow data sets

By default, DFSMSdss uses FlashCopy to copy DB2 objects to shadow data
sets, if FlashCopy is available. If DFSMSdss cannot use FlashCopy,
DFSMSdss uses a slower method. As a result, creating copies of objects
might take a long time, and the time during which the data and indexes
have read-only access might increase. You can set the
CHECK_FASTREPLICATION subsystem parameter to REQUIRED to force
the CHECK utility to use only FlashCopy. If FlashCopy is not available, the
CHECK utility fails.

DRAIN_WAIT
Specifies the number of seconds that CHECK LOB is to wait when draining the
table space or index. The specified time is the aggregate time for objects that
are to be checked. This value overrides the values that are specified by the
IRLMRWT and UTIMOUT subsystem parameters.

Chapter 10. CHECK LOB 115

integer can be any integer from 0 to 1800. If you do not specify DRAIN_WAIT
or specify a value of 0, CHECK LOB uses the value of the lock timeout
subsystem parameter IRLMRWT.

RETRY integer
Specifies the maximum number of retries that CHECK LOB is to attempt.

integer can be any integer from 0 to 255. If you do not specify RETRY, CHECK
LOB uses the value of the utility multiplier system parameter UTIMOUT.

Specifying RETRY can increase processing costs and result in multiple or
extended periods during which the specified index, table space, or partition is
in read-only access.

RETRY_DELAY integer
Specifies the minimum duration, in seconds, between retries. integer can be any
integer from 1 to 1800.

If you do not specify RETRY_DELAY, CHECK LOB uses the smaller of the
following two values:
v DRAIN_WAIT value × RETRY value
v DRAIN_WAIT value × 10

EXCEPTIONS integer
Specifies the maximum number of exceptions, which are reported by messages
only. CHECK LOB terminates in the CHECKLOB phase when it reaches the
specified number of exceptions.

All defects that are reported by messages are applied to the exception count.

integer is the maximum number of exceptions.

The default value is 0, which indicates no limit on the number of exceptions.

PUNCHDDN ddname
Specifies the DD statement for a data set that is to receive the REPAIR utility
control statements that CHECK LOB SHRLEVEL CHANGE generates. The
REPAIR statements generated deletes the LOBs reported in error messages
from the LOB table space. CHECK DATA should then be run against the base
table space to set the deleted LOB columns in the base records to invalid.

ddname is the DD name.

The default value is SYSPUNCH.

The PUNCHDDN keyword specifies either a DD name or a TEMPLATE name
specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a name in the current job
step and a TEMPLATE name, the utility uses the DD name.

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically
allocated by the sort program.

A TEMPLATE specification does not dynamically allocate sort work data sets.
The SORTDEVT keyword controls dynamic allocation of these data sets.

device-type is the device type and can be any disk device type that is acceptable
to the DYNALLOC parameter of the SORT or OPTION control statement for
the sort program.

If you omit SORTDEVT and a sort is required, you must provide the DD
statements that the sort program requires for the temporary data sets.

116 Utility Guide and Reference

SORTNUM integer
Indicates the number of temporary data sets that are to be dynamically
allocated by the sort program.

integer is the number of temporary data sets that can range from 2 to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and
omit SORTNUM, no value is passed to the sort program, which then uses its
own default. You need at least two sort work data sets for each sort.

Important: The SORTNUM keyword will not be considered if subsystem
parameter UTSORTAL is set to YES and IGNSORTN is set to YES.

CLONE
Indicates that CHECK LOB is to check the LOB space data for only the clone
table, not the LOB data for the base table.

Related concepts:
“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on
page 37
Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

Before running CHECK LOB
Certain activities might be required before you run the CHECK LOB utility,
depending on your situation.

You must first recover a LOB table space that is in RECOVER-pending status
before running CHECK LOB.

Beginning in Version 8, the CHECK LOB utility does not require SYSUT1 and
SORTOUT data sets. Work records are written to and processed from an
asynchronous SORT phase. The WORKDDN keyword, which provided the DD
names of the SYSUT1 and SORTOUT data sets in earlier versions of DB2, is not
needed and is ignored. You do not need to modify existing control statements to
remove the WORKDDN keyword.

Data sets that CHECK LOB uses
The CHECK LOB utility uses a number of data sets during its operation.

The following table lists the data sets that CHECK LOB uses. The table lists the
DD name that is used to identify the data set, a description of the data set, and an
indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 16. Data sets that CHECK LOB uses

Data set Description Required?

SYSIN An input data that contains the utility
control statement.

Yes

SYSPRINT An output data set for messages. Yes

Chapter 10. CHECK LOB 117

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

Table 16. Data sets that CHECK LOB uses (continued)

Data set Description Required?

UTPRINT A data set that contains messages from the
sort program (usually, SYSOUT or
DUMMY).

Yes

The following object is named in the utility control statement and does not require
DD statements in the JCL:

Table space
Object that is to be checked.

Sort work data sets cannot span volumes. Smaller volumes require more sort work
data sets to sort the same amount of data; therefore, large volume sizes can reduce
the number of needed sort work data sets. When you allocate sort work data sets
on disk, the recommended amount of space to allow provides at least 1.2 times the
amount of data that is to be sorted.
Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

Shadow data sets
When you execute the CHECK LOB utility with the SHRLEVEL CHANGE option,
the utility uses shadow data sets.

If a table space, partition, or index resides in DB2-managed data sets and shadow
data sets do not already exist when you execute CHECK LOB, DB2 creates the
shadow data sets. At the end of CHECK LOB processing, the DB2-managed
shadow data sets are deleted.

For user-managed data sets, DFSMSdss can create or scratch and recreate the
required shadow data sets as needed. When the CHECK LOB utility completes the
processing of user-managed data sets, the shadow data sets are not automatically
scratched.

If you have not changed the value of FREEPAGE or PCTFREE on the CREATE
TABLESPACE statement, the amount of required space for a shadow data set is
comparable to the amount of required space for the original data set.

If you do not want the shadow data sets to be allocated in the same storage class
as the production data sets, set the UTIL_TEMP_STORCLAS system parameter to
specify the storage class for the shadow data sets.

Shadow data set names

Each shadow data set must have the following name:

catname.DSNDBx.dbname.psname.y000z.Lnnn

In the preceding name, the variables have the following meanings:

variable
meaning

118 Utility Guide and Reference

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

catname
The VSAM catalog name or alias

x C or D

dbname
Database name

psname
Table space name or index name

y I or J

z 1 or 2

Lnnn Partition identifier. Use one of the following values:
v A001 through A999 for partitions 1 through 999
v B000 through B999 for partitions 1000 through 1999
v C000 through C999 for partitions 2000 through 2999
v D000 through D999 for partitions 3000 through 3999
v E000 through E996 for partitions 4000 through 4096

To determine the names of existing data sets, execute one of the following queries

against the SYSTABLEPART or SYSINDEXPART catalog tables:
SELECT DBNAME, TSNAME, IPREFIX

FROM SYSIBM.SYSTABLEPART
WHERE DBNAME = ’dbname’
AND TSNAME = ’psname’;

SELECT DBNAME, IXNAME, IPREFIX
FROM SYSIBM.SYSINDEXES X, SYSIBM.SYSINDEXPART Y
WHERE X.NAME = Y.IXNAME
AND X.CREATOR = Y.IXCREATOR
AND X.DBNAME = ’dbname’
AND X.INDEXSPACE = ’psname’;

Defining shadow data sets

For a partitioned table space, DB2 returns rows from which you select the row for
the partitions that you want to check.

Consider the following actions when you preallocate the data sets:
v Allocate the shadow data sets according to the rules for user-managed data sets.
v Define the shadow data sets as LINEAR.
v Use SHAREOPTIONS(3,3).
v Define the shadow data sets as EA-enabled if the original table space or index

space is EA-enabled.
v Allocate the shadow data sets on the volumes that are defined in the storage

group for the original table space or index space.

If you specify a secondary space quantity, DB2 does not use it. Instead, DB2 uses
the SECQTY value for the table space or index space.

Chapter 10. CHECK LOB 119

Recommendation: Use the MODEL option, which causes the new shadow data set
to be created like the original data set. This method is shown in the following
example:
DEFINE CLUSTER +

(NAME(’catname.DSNDBC.dbname.psname.x000z.L001’) +
MODEL(’catname.DSNDBC.dbname.psname.y000z.L001’)) +
DATA +
(NAME(’catname.DSNDBD.dbname.psname.x000z.L001’) +
MODEL(’catname.DSNDBD.dbname.psname.y000z.L001’))

Creating shadow data sets for indexes

When you preallocate shadow data sets for indexes, create the data sets as follows:
v Create shadow data sets for the partition of the table space and the

corresponding partition in each partitioning index and data-partitioned
secondary index.

v Create a shadow data set for logical partitions of nonpartitioned secondary
indexes.

Use the same naming scheme for these index data sets as you use for other data
sets that are associated with the base index, except use J0001 instead of I0001.

Concurrency and compatibility for CHECK LOB
The CHECK LOB utility has certain concurrency and compatibility characteristics
associated with it.

DB2 treats individual data and index partitions as distinct target objects. Utilities
that operate on different partitions of the same table space or index space are
compatible.

Claims and drains

The following table shows which claim classes CHECK LOB claims and drains and
any restrictive state that the utility sets on the target object.

Table 17. Claim classes for CHECK LOB operations on a LOB table space and index on the
auxiliary table

Target objects

CHECK LOB
SHRLEVEL
REFERENCE

CHECK LOB
SHRLEVEL CHANGE

LOB table space DW/UTRO CR/UTRW

Index on the auxiliary table DW/UTRO CR/UTRW

Legend:
v CR: Claim the read claim class
v DW: Drain the write claim class, concurrent access for SQL readers
v UTRO: Utility restrictive state, read-only access allowed
v UTRW: Utility restrictive state, read and write access allowed

Compatibility

Any SQL operation or other online utility that attempts to update the same LOB
table space is incompatible.

120 Utility Guide and Reference

How CHECK LOB identifies violations
You can find and resolve violations by reviewing messages that the CHECK LOB
utility issues.

CHECK LOB issues message DSNU743I whenever it finds a LOB value that is
invalid. The violation is identified by the row ID and version number of the LOB.
You can resolve LOB violations by using the UPDATE or DELETE SQL statements
to update the LOB column or delete the row that is associated with the LOB. (Use
the row ID from message DSNU743I.)

Contact IBM Software Support for assistance with diagnosing and resolving the
problem.
Related reference:

DELETE (DB2 SQL)

UPDATE (DB2 SQL)

Removing CHECK-pending status for a LOB table space
If a LOB table space has a status of CHECK-pending, you can remove the
CHECK-pending status by correcting the error and either rerunning the CHECK
LOB utility with SHRLEVEL REFERENCE specified or by running the REPAIR
utility.

About this task

Note: The CHECK LOB utility sets or resets the CHECK-pending status when
errors are found only if YES is specified on the CHECK_SETCHKP subsystem
parameter in the DSN6SPRM macro. The default value for CHECK_SETCHKP is
NO.

Procedure

To remove CHECK-pending status:
1. Correct any defects that are found in the LOB table space by using the REPAIR

utility.
Attention: Use the REPAIR utility with care because improper use can further
damage the data. If necessary, contact IBM Software Support for guidance on
using the REPAIR utility.

2. Run CHECK LOB again, or run the REPAIR utility to reset CHECK-pending or
auxiliary-warning status.

Related reference:
“Syntax and options of the CHECK LOB control statement” on page 114
Chapter 26, “REPAIR,” on page 645

SET CHECK PENDING field (CHECK_SETCHKP subsystem parameter) (DB2
Installation and Migration)
“CHECK-pending status” on page 1085

Resolving media failure
Some media failures leave LOB pages in the logical page list (LPL), which requires
action.

Chapter 10. CHECK LOB 121

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_delete.htm#db2z_sql_delete
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_update.htm#db2z_sql_update
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_checksetchkp.htm#db2z_ipf_checksetchkp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_checksetchkp.htm#db2z_ipf_checksetchkp

Procedure

To resolve media failure:

Run CHECK LOB on a LOB table space. The pages that were in the LPL are
removed from the list so that they are available.
Related tasks:

Displaying the logical page list (DB2 Administration Guide)

Termination or restart of CHECK LOB
You can terminate and restart the CHECK LOB utility.

If you terminate CHECK LOB during the CHECKLOB phase, LOB table spaces
remain in CHECK-pending status. During normal execution, the CHECKLOB
phase places the LOB table space in CHECK-pending status; at the end of the
phase, the CHECK-pending status is reset if no errors are detected.

You can restart a CHECK LOB utility job, but it starts from the beginning again.
Related concepts:
“Termination of an online utility with the TERM UTILITY command” on page 36
“Restart of an online utility” on page 39

Sample CHECK LOB control statements
Sample control statements are helpful as models for developing your own CHECK
LOB control statements.

Example 1: Checking a LOB table space

The following control statement specifies that the CHECK LOB utility is to check
LOB table space DBIQUG01.TLIQUG02 for structural defects or invalid LOB
values. The EXCEPTIONS 3 option indicates that the CHECK LOB utility is to
terminate when it finds three exceptions. The SORTDEVT and SORTNUM options
provide information about temporary data sets that are to be dynamically allocated
by the sort program. SORTDEVT SYSDA specifies that the device type is SYSDA,
and SORTNUM 4 indicates that four temporary data sets are to be dynamically
allocated by the sort program.
//STEP1 EXEC DSNUPROC,UID=’IUIQU2UG.CHECKL’,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSIN DD *
CHECK LOB TABLESPACE DBIQUG01.TLIQUG02

EXCEPTIONS 3 SORTDEVT SYSDA
SORTNUM 4

Example 2: Checking the LOB space data for a clone table

The following control statement specifies that the CHECK LOB utility is to check
the LOB space data for only the clone table, not the LOB data for the base table.
The EXCEPTIONS 0 option indicates that there is no limit on the number of
exceptions. The SORTDEVT and SORTNUM options provide information about
temporary data sets that are to be dynamically allocated by the sort program.

122 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_displaylogicalpagelist.htm#db2z_displaylogicalpagelist

SORTDEVT SYSDA specifies that the device type is SYSDA, and SORTNUM 10
indicates that ten temporary data sets are to be dynamically allocated by the sort
program.
CHECK LOB TABLESPACE DBLOB01.TSLOBB1 CLONE

EXCEPTIONS 0
SORTDEVT SYSDA
SORTNUM 10

Example 3: Checking the LOB table space data

The following control statement specifies that the CHECK LOB utility is to check
the LOB table space data with the SHRLEVEL CHANGE option, which specifies
that the application can read from and write to the table space that is to be
checked.
//STEP2 EXEC DSNUPROC,
// UTPROC=’’,SYSTEM=’SSTR’,
// UID=’CHKLOB12.STEP2’
//*SYSPUNCH DD DN=PUNCHS,DISP=(NEW,DELETE,DELETE),UNITE=SYSDA,
//* SPACE=(CYL,(1,1)),VOL=SER=SCR03
//SYSPRINT DD SYSOUT=*
//UTPRINT DD DUMMY
//SYSIN DD *

CHECK LOB TABLESPACE
DABA12.TSL12
SHRLEVEL CHANGE
EXCEPTIONS 5

/*

Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

Chapter 10. CHECK LOB 123

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

124 Utility Guide and Reference

Chapter 11. COPY

The COPY online utility creates copies of certain objects.

The COPY online utility creates up to five image copies, four sequential image
copies, and one FlashCopy image of any of the following objects:
v Table space
v Table space partition
v Data set of a linear table space
v Index space
v Index space partition

The two types of image copies are:
1. A full image copy, which is a copy of all pages in a table space, partition, data

set, or index space.
2. An incremental image copy, which is a copy only of those data pages that have

been modified since the last use of the COPY utility and system pages.

The RECOVER utility uses these copies when recovering a table space or index
space to the most recent time or to a previous time. Copies can also be used by the
MERGECOPY, COPYTOCOPY, and UNLOAD utilities.

You can copy a list of objects in parallel to improve performance. Specifying a list
of objects along with the SHRLEVEL REFERENCE option creates a single recovery
point for that list of objects. Specifying the PARALLEL keyword allows you to
copy a list of objects in parallel, rather than serially.

To calculate the number of threads you need when you specify the PARALLEL
keyword, use the formula (n * 2 + 1), where n is the number of objects that are to
be processed in parallel, regardless of the total number of objects in the list. If you
do not use the PARALLEL keyword, n is one and COPY uses three threads for a
single-object COPY job.

Output

Output from the COPY utility consists of:
v Up to four sequential data sets containing the image copy and one FlashCopy

image copy.
v Rows in the SYSIBM.SYSCOPY catalog table that describe the image copy data

sets that are available to the RECOVER utility. Your installation is responsible for
ensuring that these data sets are available if the RECOVER utility requests them.

v If you specify the CHANGELIMIT option, a report on the change status of the
table space.

The COPY-pending status is set off for table spaces if the copy was a full image
copy. However, DB2 does not reset the COPY-pending status if you copy a single
piece of a multi-piece linear data set. If you copy a single table space partition,
DB2 resets the COPY-pending status only for the copied partition and not for the
whole table space. DB2 resets the informational COPY-pending (ICOPY) status

© Copyright IBM Corp. 1983, 2013 125

after you copy an index space or index. The COPY utility will reset
ICOPY-pending status for not logged table spaces.

In all migration modes, RBA and LRSN values are displayed in 10-byte format.
This 10-byte display is unrelated to migration of the catalog or directory,
conversion of individual objects to EXTENDED format, or BSDS conversion. For
recovery purposes, this 10-byte format is the preferred input format for DB2. When
10-byte RBA or LRSN values are specified as input to DB2, conversion to 6-byte
format is performed internally as needed.

Even before the BSDS is converted to Version 11 format on all data sharing
members or the catalog and directory are migrated, 10-byte LRSN values might be
displayed with non-zero digits in the low order 3 bytes. LRSN values captured
before the BSDS is converted continue to be displayed as they were saved until
they are no longer available for display (for example, deleted by MODIFY
RECOVERY). This behavior is normal and to be expected, given the many ways
LRSN values are generated, stored, and handled in DB2. If these LRSN values are
specified as input to DB2, specify them as shown. If the LRSN value contains
non-zero digits in the low order 3 bytes, do not remove them. Any conversion that
might be required takes place inside DB2.

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v IMAGCOPY privilege for the database
v DBADM, DBCTRL, or DBMAINT authority for the database. If the object on

which the utility operates is in an implicitly created database, DBADM authority
on the implicitly created database or DSNDB04 is required.

v System DBADM authority
v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute COPY, but only on a
table space in the DSNDB01 or DSNDB06 database.

If the CONCURRENT option is specified, the batch user ID that invokes the COPY
utility must have the authority to execute the DFSMSdss DUMP command.

If either the FLASHCOPY YES or FLASHCOPY CONSISTENT option is specified,
the batch user ID that invokes the COPY utility must have the authority to execute
the DFSMSdss COPY command.

Restrictions on running COPY
v COPY cannot be run on a table space during the period after RECOVER is run

to a point in time before materialization of pending definition changes and
before REORG is run to complete the point-in-time recovery process.

Execution phases of COPY

The COPY utility operates in these phases:

UTILINIT
Performs initialization and setup.

REPORT
Reports for CHANGELIMIT option.

126 Utility Guide and Reference

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

COPY Creates copies.

If FLASHCOPY YES or FLASHCOPY CONSISTENT is specified, then the
FlashCopy image copies are created in this phase. If FLASHCOPY is not
specified, then sequential format image copies are created.

SEQCOPY
Creates additional sequential format image copies from a FlashCopy image
copy when either FLASHCOPY YES or CONSISTENT is specified. The
utility execution includes this phase only when both FlashCopy image
copies and sequential format image copies are requested.

LOGAPPLY
Log apply identifies the most recent checkpoint for each member. All
objects that are being copied will be updated to the same logpoint in order
to prepare for backout processing.

If COPY SHRLEVEL CHANGE FLASHCOPY CONSISTENT is specified,
log apply applies the updates to the FlashCopy image copy to ensure that
all activity is reflected up to the point of consistency.

LOGCSR
Log apply is called to do the current status rebuild.

If COPY SHRLEVEL CHANGE FLASHCOPY CONSISTENT is specified,
the LOGCSR phase identifies any uncommitted work to back out from the
FlashCopy image copy.

LOGUNDO
Uncommitted work is backed out from the image copy in order to make it
consistent.

If COPY SHRLEVEL CHANGE FLASHCOPY CONSISTENT is specified,
the LOGUNDO phase backs out uncommitted work from the FlashCopy
image copy.

UTILTERM
Performs cleanup.

Related concepts:
“Using inline copy with REORG TABLESPACE” on page 612
Related tasks:
“Using inline COPY with LOAD” on page 313

Syntax and options of the COPY control statement
The COPY utility control statement, with its multiple options, defines the function
that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

Chapter 11. COPY 127

Syntax diagram

�� COPY
(1)

copy-spec
(2)

concurrent-spec
(3)

filterddn-spec

CLONE

SHRLEVEL REFERENCE

SHRLEVEL CHANGE

SCOPE ALL

SCOPE PENDING
��

Notes:

1 Use the copy-spec if you do not want to use the CONCURRENT option.

2 Use the concurrent-spec if you want to use the CONCURRENT option, but not the FILTERDDN
option.

3 Use the filterddn spec if you want to use the CONCURRENT and FILTERDDN options.

copy-spec:

��

�

FULL YES
LIST listdef-name data-set-spec

FULL NO
changelimit-spec

FULL YES DSNUM ALL
table-space-spec data-set-spec
index-name-spec FULL NO (1)

changelimit-spec DSNUM integer

�

�
PARALLEL

(num-objects) TAPEUNITS (num-tape-units)

(2)

CHECKPAGE

SYSTEMPAGES YES

SYSTEMPAGES NO
�

�
NO

FLASHCOPY YES
CONSISTENT FCCOPYDDN(ddname)

��

Notes:

1 Not valid for nonpartioning indexes.

2 CHECKPAGE is the default for table spaces.

concurrent-spec:

128 Utility Guide and Reference

��

�

LIST listdef-name data-set-spec

DSNUM ALL
table-space-spec data-set-spec
index-name-spec (1)

DSNUM integer

CONCURRENT ��

Notes:

1 Not valid for nonpartioning indexes.

filterddn-spec:

��

�

LIST listdef-name

DSNUM ALL
table-space-spec
index-name-spec (1)

DSNUM integer

data-set spec FILTERDDN (ddname) CONCURRENT ��

Notes:

1 Not valid for nonpartioning indexes.

data-set-spec:

��
(1)

COPYDDN(ddname1)
,ddname2 RECOVERYDDN(ddname3)

,ddname2 ,ddname4
,ddname4

RECOVERYDDN(ddname3)
,ddname4

,ddname4

��

Notes:

1 COPYDDN SYSCOPY is the default for the primary copy, but this default can only be used for
one object in the list.

changelimit-spec:

�� CHANGELIMIT
(ANY) REPORTONLY
(percent_value1)

,percent_value2

��

Chapter 11. COPY 129

table-space-spec:

�� TABLESPACE table-space-name
database-name.

��

index-name-spec:

��
(1)

INDEXSPACE index-space-name
database-name.

INDEX index-name
creator-id.

��

Notes:

1 INDEXSPACE is the preferred specification.

Option descriptions

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. LIST specifies
one LIST keyword for each COPY control statement. Do not specify LIST with
either the INDEX or the TABLESPACE keyword. DB2 invokes COPY once for
the entire list. This utility will only process clone data if the CLONE keyword
is specified. The use of CLONED YES on the LISTDEF statement is not
sufficient.

The partitions or partition ranges can be specified in a list.

TABLESPACE database-name.table-space-name
Specifies the table space (and, optionally, the database it belongs to) that is to
be copied.

database-name is the name of the database that the table space belongs to. The
default value is DSNDB04.

table-space-name is the name of the table space to be copied.

Specify the DSNDB01.SYSUTILX, DSNDB06.SYSTSCPY, or
DSNDB01.SYSLGRNX table space by itself in a single COPY statement.
Alternatively, specify the DSNDB01.SYSUTILX, DSNDB06.SYSTSCPY, or
DSNDB01.SYSLGRNX table space with indexes over the table space that were
defined with the COPY YES attribute.

If you specify a segmented table space, COPY locates empty and unformatted
data pages in the table space and does not copy them.

You cannot copy a table space that uses a storage group that is defined with a
mixture of specific and non-specific volume IDs.

CLONE
Indicates that COPY is to copy only clone table or index data. This utility will
only process clone data if the CLONE keyword is specified. The use of
CLONED YES on the LISTDEF statement is not sufficient.

130 Utility Guide and Reference

|
|
|
|
|

If the utility is processing a table space and CLONE is specified, the utility will
only process clone table data. If the utility is processing an index and CLONE
is specified, the utility will only process indexes over clone tables. If you use
the LIST keyword to specify a list of objects, COPY processes only those
objects in the list that contain clone tables or indexes on clone tables. COPY
ignores other objects in the list.

INDEXSPACE database-name.index-space-name
Specifies the qualified name of the index space that is to be copied; the name is
obtained from the SYSIBM.SYSINDEXES table. The specified index space must
be defined with the COPY YES attribute.

database-name Optionally specifies the name of the database that the index
space belongs to. The default value is DSNDB04.

index-space-name specifies the name of the index space that is to be copied.

You cannot copy an index space that uses a storage group that is defined with
mixture of specific and non-specific volume IDs.

INDEX creator-id.index-name
Specifies the index that is to be copied. Enclose the index name in quotation
marks if the name contains a blank.

creator-id optionally specifies the creator of the index. The default value is the
user identifier for the utility.

index-name specifies the name of the index that is to be copied.

COPYDDN (ddname1,ddname2)
Specifies a DD name or a TEMPLATE name for the primary (ddname1) and
backup (ddname2) copy data sets for the image copy at the local site.

You can use the COPYDDN keyword to specify either a DD name or a
TEMPLATE name specification from a previous TEMPLATE control statement.
If utility processing detects that the specified name is both a DD name in the
current job step and a TEMPLATE name, the utility uses the DD name. For
more information about TEMPLATE specifications, see Chapter 31,
“TEMPLATE,” on page 775.

ddname is the DD name. The default value is SYSCOPY for the primary copy.
You can use the default for only one object in the list. The first object in the list
that does not have COPYDDN specified uses the default. Any other objects in
the list that do not have COPYDDN specified cause an error.

If you use the CHANGELIMIT REPORTONLY option, you can use a DD
DUMMY statement when you specify the SYSCOPY output data set. This card
prevents a data set from being allocated and opened.

Recommendation: Catalog all of your image copy data sets.

You cannot have duplicate image copy data sets. If the DD statement identifies
a noncataloged data set with the same name, volume serial, and file sequence
number as one that is already recorded in the SYSIBM.SYSCOPY catalog table,
the COPY utility issues a message and does not make an image copy. If COPY
identifies a cataloged data set with only the same name, it does not make an
image copy. For cataloged image copy data sets, CATLG must be specified for
the normal termination disposition in the DD statement, as shown in the
following example:
DISP=(MOD,CATLG,CATLG)

The DSVOLSER field of the SYSCOPY entry is blank.

Chapter 11. COPY 131

If you use the CONCURRENT and FILTERDDN options, ensure that the size
of the copy data set is large enough to include all of the objects in the list.

RECOVERYDDN (ddname3,ddname4)
Specifies a DD name or a template name for the primary (ddname3) and
backup (ddname4) copy data sets for the image copy at the recovery site.

You can use the RECOVERYDDN keyword to specify either a DD name or a
template name. If utility processing detects that the specified name is both a
DD name in the current job step and a template name, the utility THE uses the
DD name.

ddname3 and ddname4 are DD names.

You cannot have duplicate image copy data sets.

If you use the CONCURRENT and FILTERDDN options, ensure that the size
of the copy data set is large enough to include all of the objects in the list.

FULL
Specifies that COPY is to make either a full or an incremental image copy.

YES
Specifies a full image copy. Making a full image copy resets the
COPY-pending status for the table space or index, or for the partition if
you specify DSNUM.

NO Specifies only an incremental image copy. Only changes since the last
image copy are to be copied. NO is not valid for indexes.

Incremental image copies are not allowed in the following situations:
v The last full image copy of the table space was taken with the

CONCURRENT option.
v No full image copies exist for the table space or data set that is being

copied.
v After a successful LOAD or REORG operation, unless an inline copy

was made during the LOAD or REORG job.
v You specify one of the following table spaces: DSNDB01.DBD01,

DSNDB01.SYSUTILX, DSNDB06.SYSTSCPY, or DSNDB01.SYSDBDXA.
v A previous COPY was terminated with the -TERM UTIL command, so

the most recent SYSIBM.SYSCOPY record for the object contains ICTYPE
= T.

v If you specify both FLASHCOPY YES or CONSISTENT and FULL NO,
the COPY utility issues an informational message and creates a
FlashCopy image copy. (FlashCopy image copies are created as data set
level copies of the object and cannot be incremental.) If you also request
that sequential image copies be taken, those copies are created from the
FlashCopy image copy.

For incremental image copies of partitioned table spaces, COPY includes
the header page for each partition that has changed pages.

COPY automatically takes a full image copy of a table space if you specify
FULL NO when an incremental image copy is not allowed.

CHANGELIMIT

The CHANGELIMIT option is deprecated, and the alternative is running
DSNACCOX.Specifies the limit of changed pages in the table space, partition,
or data set at which an incremental or full image copy is to be taken.

132 Utility Guide and Reference

|
|

|
|

ANY
Specifies that COPY is to take a full image copy if any pages have changed
since the last image copy.

percent_value1
Specifies the first value in the CHANGELIMIT range. percent_value1 must
be an integer or decimal value from 0.0 to 100.0. You do not need to
specify leading zeroes, and the decimal point is not required when
specifying a whole integer. Specify a maximum of one decimal place for a
decimal value. For example, you can specify .5. If you specify this value,
COPY takes an incremental image copy if more than one half of one
percent of the pages have changed.

percent_value2
Specifies the second value in the CHANGELIMIT range. percent_value2
must be an integer or decimal value from 0.0 to 100.0. You do not need to
specify leading zeroes, and the decimal point is not required when
specifying a whole integer. Specify a maximum of one decimal place for a
decimal value (for example, .5).

COPY CHANGELIMIT accepts percentage values in any order. For example,
you can specify (10,1) or (1,10).

If only one percentage value is specified, COPY CHANGELIMIT:
v Creates an incremental image copy if the percentage of changed pages is

greater than 0 and less than percent_value1.
v Creates a full image copy if the percentage of changed pages is greater than

or equal to percent_value1, or if CHANGELIMIT(0) is specified.
v Does not create an image copy if no pages have changed, unless

CHANGELIMIT(0) is specified.
v Always creates a full image copy, even when no pages have been updated

since the last image copy, if CHANGELIMIT(0) is specified.
v Creates a full image copy if CHANGELIMIT(100) is specified and all pages

have been changed since the last image copy.
v Creates an incremental image copy if CHANGELIMIT(100) is specified and

some but not all pages have been changed since the last image copy.

If two percentage values are specified, COPY CHANGELIMIT:
v Creates an incremental image copy if the percentage of changed pages is

greater than the lowest specified value and less than the highest specified
value.

v Creates a full image copy if the percentage of changed pages is equal to or
greater than the highest specified value.

v Does not create an image copy if the percentage of changed pages is less
than or equal to the lowest specified value.

v If both values are equal, creates a full image copy if the percentage of
changed pages is equal to or greater than the specified value.

The default value is (10).

You cannot use the CHANGELIMIT option for a table space or partition that is
defined with TRACKMOD NO. If you change the TRACKMOD option from
NO to YES, you must take an image copy before you can use the
CHANGELIMIT option. For nonpartitioned table spaces, you must copy the
entire table space to allow future CHANGELIMIT requests.

Chapter 11. COPY 133

REPORTONLY
Specifies that image copy information is to be displayed. If you specify the
REPORTONLY option, only image copy information is displayed. Image copies
are not taken in this case; they are only recommended.

DSNUM
For a table space, identifies a partition or data set within the table space to be
copied; or it copies the entire table space. For an index space, DSNUM
identifies a partition to be copied, or it copies the entire index space. This
option can specify a partition of a data-partitioned secondary index if the index
is copy-enabled.

If a data set of a nonpartitioned table space is in the COPY-pending status, you
must copy the entire table space.

If DSNUM ALL is implicitly or explicitly specified for a table space that has a
partition in PRO restricted status, COPY fails. If COPY is specified for a single
partition that is in PRO restricted status, an informational message is issued,
and no image copy is produced.

ALL
Indicates that the entire table space or index space is to be copied. You
must use ALL for a nonpartitioned secondary index.

integer
Is the number of a partition or data set that is to be copied.

An integer value is not valid for nonpartitioned secondary indexes.

For a partitioned table space or index space, the integer is its partition
number. The maximum is 4096.

For a nonpartitioned table space, find the integer at the end of the data
set name as it is cataloged in the ICF catalog. The data set name has the
following format:
catname.DSNDBx.dbname.spacename.y000Z.Annn

In this format:

catname
Is the ICF catalog name or alias.

x Is C (for VSAM clusters) or D (for VSAM data components).

dbname
Is the database name.

spacename
Is the table space or index space name.

y Is I or J, which indicates the data set name used by REORG with
FASTSWITCH.

z Is 1 or 2.

nnn Is the data set integer.

If COPY takes an image copy of data sets (rather than on table spaces),
RECOVER, MERGECOPY, or COPYTOCOPY must use the copies on a data set
level. For a nonpartitioned table space, if COPY takes image copies on data
sets and you run MODIFY RECOVERY with DSNUM ALL, the table space is
placed in COPY-pending status if a full image copy of the entire table space
does not exist.

134 Utility Guide and Reference

PARALLEL
For sequential format image copies, specifies the maximum number of objects
in the list that are to be processed in parallel. The utility processes the list of
objects in parallel for image copies being written to or from different disk or
tape devices. If you specify TAPEUNITS with PARALLEL, you control the
number of tape drives that are dynamically allocated for the copy. If you omit
PARALLEL, the list is not processed in parallel.

Restriction: Do not specify the PARALLEL keyword if one or more of the
output data sets are defined with DD statements that specify UNIT=AFF to
refer to the same device as a previous DD statement. This usage is not
supported with the PARALLEL keyword and could result in an abend. Instead,
consider using templates to define your data sets.

The PARALLEL keyword is ignored for FlashCopy image copies.

(num-objects)
Specifies the number of objects in the list that are to be processed in
parallel. You can adjust this value to a smaller value if COPY encounters
storage constraints.

If you specify 0 or do not specify a value for num-objects, COPY determines
the optimal number of objects to process in parallel.

TAPEUNITS
Specifies the maximum number of tape drives that the utility dynamically
allocates for the list of objects to be processed in parallel. TAPEUNITS applies
only to tape drives that are dynamically allocated through the TEMPLATE
keyword. It does not apply to JCL allocated tape drives. The total number of
tape drives allocated for the COPY request is the sum of the JCL allocated tape
drives plus the number of tape drives determined as follows:
v the value that is specified for TAPEUNITS
v The value determined by the COPY utility if you omit the TAPEUNITS

keyword

If you omit this keyword, the utility determines the number of tape drives to
dynamically allocate for the copy function.

The TAPEUNITS keyword is ignored for FlashCopy image copies.

(num-tape-units)
Specifies the number of tape drives to allocate. If you specify 0 or do not
specify the TAPEUNITS keyword, COPY determines the maximum number
of tape drives to be dynamically allocated for the function. COPY
TAPEUNITS has a max value of 32767.

CHECKPAGE
Indicates that each page in the table space or index space is to be checked for
validity. The validity checking operates on one page at a time and does not
include any cross-page checking. If it finds an error, COPY issues a message
that describes the type of error. If more than one error exists in a given page,
only the first error is identified. COPY continues checking the remaining pages
in the table space or index space after it finds an error. CHECKPAGE is the
default for table spaces. CHECKPAGE is not the default for indexes. This
keyword is ignored by FlashCopy.

Note: Use of the CHECKPAGE option for indexes can result in greatly
increased processor usage.

Chapter 11. COPY 135

SYSTEMPAGES
Specifies whether the COPY utility puts system pages at the beginning of the
image copy data set.

Although the system pages are located at the beginning of many image copies,
this placement is not guaranteed. In many cases, the system pages are not
included. For example, incremental copies do not include system pages. This
keyword is ignored by FlashCopy.

YES
Ensures that any header, dictionary, and version system pages are copied
at the beginning of the image copy data set. The version system pages can
be copied twice.

Selecting YES ensures that the image copy contains the necessary system
pages for subsequent UNLOAD utility jobs to correctly format and unload
all data rows.

NO Does not ensure that the dictionary and version system pages are copied at
the beginning of the image copy data set. The COPY utility copies the
pages in the current order, including the header pages.

FLASHCOPY
Specifies whether FlashCopy technology is used to create a copy of the object.
Valid values are YES, NO, or CONSISTENT. When FlashCopy is used, a
separate data set is created for each partition or piece of the object.

Specify YES or CONSISTENT only if the DB2 data sets are on FlashCopy
Version 2 disk volumes.

The FlashCopy specifications on the utility control statement override any
specifications for FlashCopy that are defined by using the DB2 subsystem
parameters. If the FlashCopy subsystem parameters specify the use of
FlashCopy as the default behavior of this utility, the FLASHCOPY option can
be omitted from the utility control statement.

Important: If the input data set is less than one cylinder, FlashCopy
technology might not be used for copying the objects regardless of the
FLASHCOPY settings. The copy is performed by IDCAMS if FlashCopy is not
used.

For more information, see “FlashCopy image copies” on page 149.

NO Specifies that no FlashCopy is made. NO is the default value for
FLASHCOPY.

YES
Specifies that FlashCopy technology is used to copy the object.

Important: Under the following circumstances, the COPY utility might not
use FlashCopy even though YES is specified:
v FlashCopy Version 2 disk volumes are not available
v The source tracks are already the target of a FlashCopy operation
v The target tracks are the source of a FlashCopy operation
v The maximum number of relationships for the copy is exceeded

In the event that FlashCopy is not used, the COPY utility uses traditional
I/O methods to copy the object, which can result in longer than expected
execution time.

136 Utility Guide and Reference

CONSISTENT
Specifies that when SHRLEVEL CHANGE is also specified, FlashCopy
technology is used to copy the object and that any uncommitted work
included in the copy is backed out of the copy to make the copy
consistent. If SHRLEVEL CHANGE is not specified, specifying
FLASHCOPY CONSISTENT is the same as specifying FLASHCOPY YES.

Specifying FLASHCOPY CONSISTENT requires additional time and
system resources during utility processing, because the COPY utility must
read the logs and apply the changes to the image copy. Similarly,
recovering from a consistent FlashCopy image copy also requires
additional time and system resources to read the logs and reapply work
that was previously backed out.

Restriction: CONSISTENT cannot be specified when copying objects that
have been defined with the NOT LOGGED attribute. If CONSISTENT is
specified for an object that is defined with the NOT LOGGED attribute, the
COPY utility does not make a copy of the object and issues message
DSNU076I with return code 8.

FCCOPYDDN
Specifies the template to be used to create the FlashCopy image copy data set
names. If a value is not specified for FCCOPYDDN on the COPY control
statement when FlashCopy is used, the value specified on the FCCOPYDDN
subsystem parameter determines the template to be used.

(template-name)
The data set names for the FlashCopy image copy are allocated according
to the template specification. For table space or index space level
FlashCopy image copies, because a data set is allocated for each partition
or piece, ensure that the data set naming convention in the template
specification is unique enough. Use the &DSNUM variable, which resolves
to a partition number or piece number at execution time.

CONCURRENT
Specifies that DFSMSdss concurrent copy is to make the full image copy. The
image copy is recorded in the SYSIBM.SYSCOPY catalog table with ICTYPE=F
and STYPE=C or STYPE=J.

If the SYSPRINT DD statement points to a data set, you must use a DSSPRINT
DD statement.

When you specify SHRLEVEL(REFERENCE), an ICTYPE=Q record is placed
into the SYSIBM.SYSCOPY catalog table after the object has been quiesced. If
COPY fails, this record remains in SYSIBM.SYSCOPY. When COPY is
successful, this ICTYPE=Q record is replaced with the ICTYPE=F record.

If the page size in the table space matches the control interval for the
associated data set, you can use either the SHRLEVEL CHANGE option or the
SHRLEVEL REFERENCE option with the CONCURRENT option. If the page
size does not match the control interval, you must use the SHRLEVEL
REFERENCE option for table spaces with a 8-KB, 16-KB, or 32-KB page size.

When you do not specify FILTERDDN, the DFSMSdss dump statement cannot
include more than 255 data sets. When you request a concurrent copy on an
object that exceeds this limitation, DB2 dynamically allocates a temporary filter
data set for you.

FILTERDDNddname
Specifies the optional DD statement for the filter data set that COPY is to use

Chapter 11. COPY 137

with the CONCURRENT option. COPY uses this data set to automatically
build a list of table spaces that are to be copied by DFSMSdss with one
DFSMSdss DUMP statement.

You can use the FILTERDDN keyword to specify either a DD name or a
TEMPLATE name specification from a previous TEMPLATE control statement.
If utility processing detects that the specified name is both a DD name in the
current job step and a TEMPLATE name, the utility uses the DD name.

If you specify FILTERDDN, the SYSCOPY records for all objects in the list have
the same data set name.

ddname is the DD name.

SHRLEVEL
Indicates whether other programs can access or update the table space or index
while COPY is running.

REFERENCE
Allows read-only access by other programs.

CHANGE
Allows other programs to change the table space or index space.

When you specify SHRLEVEL CHANGE, uncommitted data might be
copied.

When SHRLEVEL CHANGE with FLASHCOPY CONSISTENT is specified,
the COPY utility uses DB2 shadow processing to backout uncommitted
work to make the FlashCopy image copy consistent without any
availability outage to applications. Application updates are allowed
throughout the creation of the FlashCopy image copy and the creation of
the sequential image copies.

Recommendation: Except when creating FlashCopy image copies or
traditional image copies with SHRLEVEL CHANGE and FLASHCOPY
CONSISTENT specified, do not use image copies that are made with
SHRLEVEL CHANGE when you run RECOVER TOCOPY.

SHRLEVEL CHANGE is not allowed for a table space that is defined as
NOT LOGGED unless it is a LOB table space and its base table space has
the LOGGED attribute.

SHRLEVEL CHANGE is not allowed when you use DFSMSdss concurrent
copy for table spaces that have a page size that is greater than 4 KB and
does not match the control interval size. If the page size in the table space
matches the control interval size for the associated data set, you can use
either the SHRLEVEL CHANGE option or the SHRLEVEL REFERENCE
option.

If you are copying a list and you specify the SHRLEVEL CHANGE option,
you can specify OPTIONS EVENT(ITEMERROR,SKIP) so that each object
in the list is placed in UTRW status and the read claim class is held only
while the object is being copied.

The read claim class is briefly obtained for each object during the
UTILINIT phase to determine the object size if LIMIT is specified on the
COPYDDN or RECOVERYDDN template. This applies only if OPTIONS
EVENT(ITEMERROR,SKIP) is specified.

138 Utility Guide and Reference

If you do not specify OPTIONS EVENT(ITEMERROR,SKIP), all of the
objects in the list are placed in UTRW status and the read claim class is
held on all objects for the entire duration of the COPY.

SCOPE
Indicates the scope of the copy for the specified objects.

ALL
Indicates that you want to copy all of the specified objects.

PENDING

Indicates that you want to copy only those objects in COPY-pending or
informational COPY-pending status. When the DSNUM ALL option is
specified for partitioned objects, and one or more of the partitions are in
COPY-pending or informational COPY-pending status, a copy will be taken
of the entire table space or index space.

For partitioned objects, if you only want the partitions in COPY-pending
status or informational COPY-pending status to be copied, then a list of
partitions should be specified. This is done by invoking COPY on a
LISTDEF list built with the PARTLEVEL option. An output image copy
data set will be created for each partition that is in COPY-pending or
informational COPY-pending status.

Related reference:
Chapter 15, “LISTDEF,” on page 207
Chapter 31, “TEMPLATE,” on page 775

Before running COPY
Certain activities might be required before you run the COPY utility, depending on
your situation.

Before running COPY, check that the table spaces and index spaces that you want
to copy are not in any restricted states.

Data sets that COPY uses
The COPY utility uses a number of data sets during its operation.

The following table lists the data sets that COPY uses. The table lists the DD name
that is used to identify the data set, a description of the data set, and an indication
of whether it is required. Include statements in your JCL for each required data set
and any optional data sets that you want to use.

Table 18. Data sets that COPY uses

Data set Description Required?

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

DSSPRINT Output data set for messages when making
concurrent copies.

No1

Chapter 11. COPY 139

Table 18. Data sets that COPY uses (continued)

Data set Description Required?

Filter A single data set that DB2 uses when you
specify the FILTERDDN option in the utility
control statement. This data set contains a
list of VSAM data set names that DB2
builds, and is used during COPY when you
specify the CONCURRENT and
FILTERDDN options.

No2

Sequential image copies From one to four sequential output data sets
that contain the resulting sequential format
image copy data sets. Specify their DD
names with the COPYDDN and
RECOVERYDDN options of the utility
control statement. The default is one copy to
be written to the data set described by the
SYSCOPY DD statement.

Yes

FlashCopy image copies For table space or index space level copies, a
VSAM data set for the output FlashCopy
image copy of each partition or piece.

For a partition level or piece level copy, a
VSAM data set for the output FlashCopy
image copy of the partition or piece.

No3

Note:

1. Required if you specify CONCURRENT and the SYSPRINT DD statement points to a
data set.

2. Required if you specify the FILTERDDN option.

3. Required if you specify either FLASHCOPY YES or FLASHCOPY CONSISTENT.

The following objects are named in the utility control statement and do not require
DD statements in the JCL:

Table space or index space
Object that is to be copied. (If you want to copy only certain data sets in a
table space, you must use the DSNUM option in the control statement.)

DB2 catalog objects
Objects in the catalog that COPY accesses. The utility records each copy in
the DB2 catalog table SYSIBM.SYSCOPY.

Output data set size

Sequential image copies are written to sequential non-VSAM data sets.

FlashCopy image copies are written to VSAM data sets.

Recommendation: Use a template for the image copy data set by specifying a
TEMPLATE statement without the SPACE keyword. When you omit this keyword,
the utility calculates the appropriate size of the data set for you.

Alternatively, you can find the approximate size of the image copy data set for a
table space, in bytes, by either executing COPY with the CHANGELIMIT
REPORTONLY option, or using the following procedure:

140 Utility Guide and Reference

1. Find the high-allocated page number, either from the NACTIVEF column of
SYSIBM.SYSTABLESPACE after running the RUNSTATS utility, or from
information in the VSAM catalog data set.

2. Multiply the high-allocated page number by the page size.

Filter data set size

Recommendation: Use a template for the filter data set by specifying a
TEMPLATE statement without the SPACE keyword. When you omit this keyword,
the utility calculates the appropriate size of the data set for you.

Alternatively, you can determine the approximate size of the filter data set size that
is required, in bytes, by using the following formula, where n = the number of
specified objects in the COPY control statement:
(240 + (80 * n))

JCL parameters

For the output data sets of sequential format image copies, you can specify a block
size by using the BLKSIZE parameter on the DD statement for the output data set.
Valid block sizes are multiples of 4096 bytes. You can increase the buffer using the
BUFNO parameter; for example, you might specify BUFNO=30, which creates 30
buffers.

For the output data sets of image copies created by invoking either the concurrent
copy function or FlashCopy function of DFSMSdss, the required specifications for
the output data sets might be different than those for sequential format image
copies. For example, the BUFNO parameter does not apply to the output data sets
for concurrent image copies.

Cataloging image copies

To catalog your image copy data sets, use the DISP=(MOD,CATLG,CATLG)
parameter in the DD statement or TEMPLATE that is named by the COPYDDN
option. After the image copy is taken, the DSVOLSER column of the row that is
inserted into SYSIBM.SYSCOPY contains blanks.

FlashCopy image copy data sets are always cataloged. The DISP= parameter is not
specified in the FlashCopy template. After the image copy is taken, unless
uncommitted work is backed out of the image copy when FLASHCOPY
CONSISTENT is specified, the DSVOLSER column of the row that is inserted into
SYSIBM.SYSCOPY contains blanks. If uncommitted work is backed out of a
FlashCopy image copy, the DSVOLSER column contains the DB2 checkpoint
information for each member.

Duplicate image copy data sets are not allowed. If a cataloged data set is already
recorded in SYSIBM.SYSCOPY with the same name as the new image copy data
set, the COPY utility issues a message and does not make the copy.

When RECOVER locates the SYSCOPY entry, it uses the operating system catalog
to allocate the required data set. If you have uncataloged the data set, the
allocation fails. In that case, the recovery can still go forward; RECOVER searches
for a previous image copy. But even if it finds one, RECOVER must use
correspondingly more of the log during recovery.

Chapter 11. COPY 141

Recommendation: Keep the ICF catalog consistent with the information about
existing image copy data sets in the SYSIBM.SYSCOPY catalog table.
Related concepts:
“Data sets that online utilities use” on page 11

Concurrency and compatibility for COPY
The COPY utility has certain concurrency and compatibility characteristics
associated with it.

DB2 treats individual data and index partitions as distinct target objects. Utilities
that operate on different partitions of the same table space or index space are
compatible.

Restricted states

Do not copy a table space that is in any of the following states:
v CHECK-pending
v RECOVER-pending
v REFRESH-pending
v Logical error range
v Group buffer pool RECOVER-pending
v Stopped
v STOP-pending
v PRO restricted status

Do not copy an index space that is in any of the following states:
v CHECK-pending
v REBUILD-pending
v RECOVER-pending
v REFRESH pending
v Logical error range
v Group buffer pool RECOVER-pending
v Stopped
v STOP-pending

If a table space is in COPY-pending status, or a table space or index is in
informational COPY-pending status, you can reset the status only by taking a full
image copy of the entire table space, all partitions of the partitioned table space, or
the index space. When you make an image copy of a partition, the COPY-pending
status of the partition is reset. If a nonpartitioned table space is in COPY-pending
status, you can reset the status only by taking a full image copy of the entire table
space, and not of each data set.

Claims and drains

The following table shows which claim classes COPY claims and drains and any
restrictive status that the utility sets on the target object.

Table 19. Claim classes of COPY operations

Target
SHRLEVEL
REFERENCE

SHRLEVEL
CHANGE

Table space, index space, or partition DW UTRO CR UTRW1

142 Utility Guide and Reference

Table 19. Claim classes of COPY operations (continued)

Target
SHRLEVEL
REFERENCE

SHRLEVEL
CHANGE

Legend:
v DW - Drain the write claim class - concurrent access for SQL readers
v CR - Claim the read claim class
v UTRO - Utility restrictive state, read-only access allowed
v UTRW - Utility restrictive state, read-write access allowed

Note:

1. If the target object is a segmented table space, SHRLEVEL CHANGE does not allow you
to concurrently execute an SQL DELETE without the WHERE clause.

COPY does not set a utility restrictive state if the target object is
DSNDB01.SYSUTILX.

Compatibility

The following table documents which utilities can run concurrently with COPY on
the same target object. The target object can be a table space, an index space, or a
partition of a table space or index space. If compatibility depends on particular
options of a utility, that information is also documented in the table.

Table 20. Compatibility of COPY with other utilities

Action

COPY
INDEXSPACE
SHRLEVEL
REFERENCE

COPY
INDEXSPACE
SHRLEVEL
CHANGE

COPY
TABLESPACE
SHRLEVEL
REFERENCE1

COPY
TABLESPACE
SHRLEVEL
CHANGE

BACKUP SYSTEM Yes Yes Yes Yes

CHECK DATA Yes Yes No No

CHECK INDEX Yes Yes Yes Yes

CHECK LOB Yes Yes Yes Yes

COPY INDEXSPACE No No Yes Yes

COPY TABLESPACE Yes Yes No No

COPYTOCOPY No No No No

DIAGNOSE Yes Yes Yes Yes

LOAD No No No No

MERGECOPY No No No No

MODIFY No No No No

QUIESCE Yes No Yes No

REBUILD INDEX No No Yes Yes

RECOVER INDEX No No Yes Yes

RECOVER TABLESPACE Yes Yes No No

REORG INDEX No No Yes Yes

REORG TABLESPACE
SHRLEVEL CHANGE

No No No Yes2

REORG TABLESPACE
UNLOAD CONTINUE or
PAUSE

No No No No

Chapter 11. COPY 143

|
|
||||

Table 20. Compatibility of COPY with other utilities (continued)

Action

COPY
INDEXSPACE
SHRLEVEL
REFERENCE

COPY
INDEXSPACE
SHRLEVEL
CHANGE

COPY
TABLESPACE
SHRLEVEL
REFERENCE1

COPY
TABLESPACE
SHRLEVEL
CHANGE

REORG TABLESPACE
UNLOAD ONLY or
EXTERNAL

Yes Yes Yes Yes

REPAIR LOCATE by KEY,
RID, or PAGE DUMP or
VERIFY

Yes Yes Yes Yes

REPAIR LOCATE by KEY
or RID DELETE or
REPLACE

No No No No

REPAIR LOCATE INDEX
PAGE REPLACE

No No Yes No

REPAIR LOCATE
TABLESPACE PAGE
REPLACE

Yes Yes No No

REPORT Yes Yes Yes Yes

RESTORE SYSTEM No No No No

RUNSTATS INDEX Yes Yes Yes Yes

RUNSTATS TABLESPACE Yes Yes Yes Yes

STOSPACE Yes Yes Yes Yes

UNLOAD1 Yes Yes Yes Yes

Note:

1. If CONCURRENT option is used, contention might be encountered when other utilities
are run on the same object at the same time.

2. REORG TABLESPACE SHRLEVEL CHANGE and COPY SHRLEVEL CHANGE are
compatible and can run concurrently except during the period when exclusive control is
needed to drain claimers of a target table space.
Restriction:

v COPY with the FLASHCOPY CONSISTENT option is not compatible with REORG.

v If REORG has drained the claimers of a table space or table space partition and a
COPY utility is submitted to access the same object, the COPY utility terminates with
a message that it is not compatible.

v If COPY and REORG are accessing the same table space or table space partitions,
REORG cannot drain claimers until COPY completes. The REORG DRAIN options
determine the actions taken.

v If COPY and REORG are accessing the same table space or table space partitions and
COPY abends, restart of the COPY is not allowed if REORG completes.

To run on DSNDB01.SYSUTILX, COPY must be the only utility in the job step.
Also, if SHRLEVEL REFERENCE is specified, the COPY job of
DSNDB01.SYSUTILX must be the only utility running in the Sysplex.

COPY on SYSUTILX is an “exclusive” job; such a job can interrupt another job
between job steps, possibly causing the interrupted job to time out.

144 Utility Guide and Reference

|
|
|
|

|

|
|
|

|
|
|

|
|

Related concepts:
“Monitoring utilities with the DISPLAY UTILITY command” on page 33
Related reference:
Appendix C, “Advisory or restrictive states,” on page 1083

Full image copies
You can make full image copies of a variety of data objects. Data objects include
table spaces, table space partitions, data sets of linear table spaces, index spaces,
and index space partitions.

The following statement specifies that the COPY utility is to make a full image
copy of the DSN8S11E table space in database DSN8D11A:
COPY TABLESPACE DSN8D11A.DSN8S11E

The COPY utility writes pages from the table space or index space to the output
data sets. The JCL for the utility job must include DD statements or have a
template specification for the data sets. If the object consists of multiple data sets
and all are copied in one run, the copies reside in one physical sequential output
data set.

For sequential image copies, if the object consists of multiple data sets and all are
copied in one run, the copies reside in one physical sequential output data set. For
FlashCopy image copies, if the object consists of multiple data sets and all are
copied in one run, there is a FlashCopy image copy data set for each data set.

Image copies should be made either by entire page set or by partition, but not by
both.

Recommendations:

v Take a full image copy after any of the following operations:
– CREATE or LOAD operations for a new object that is populated.
– REORG operation for an existing object.
– LOAD RESUME of an existing object.
– LOGGED operation of a table space.

v Copy the indexes over a table space whenever a full copy of the table space is
taken. More frequent index copies decrease the number of log records that need
to be applied during recovery. At a minimum, you should copy an index when
it is placed in informational COPY-pending (ICOPY) status.

If you create an inline copy during LOAD or REORG, you do not need to execute
a separate COPY job for the table space. If you do not create an inline copy, and if
the LOG option is NO, the COPY-pending status is set for the table space. You
must then make a full image copy for any subsequent recovery of the data. An
incremental image copy is not allowed in this case. If the LOG option is YES, the
COPY-pending status is not set. However, your next image copy must be a full
image copy. Again, an incremental image copy is not allowed.

The COPY utility automatically takes a full image copy of a table space if you
attempt to take an incremental image copy when it is not allowed.

Chapter 11. COPY 145

If a table space changes after an image copy is taken and before the table space is
altered from NOT LOGGED to LOGGED, the table space is marked
COPY-pending, and a full image copy must be taken.

The catalog table SYSIBM.SYSCOPY and the directory tables SYSIBM.SYSUTILX
and SYSIBM.SYSLGRNX record information from the COPY utility. Copying the
table spaces for those tables can lock out separate COPY jobs that are running
simultaneously; therefore, defer copying the table spaces for SYSIBM.SYSCOPY,
SYSIBM.SYSUTILX, and SYSIBM.SYSLGRNX until the other copy jobs have
completed. However, if you must copy other objects while another COPY job
processes the catalog or directory, specify SHRLEVEL(CHANGE) for copying the
catalog and directory table spaces. Beginning in DB2 Version 10, the COPY control
statements in the DSNTIJIC job specify SHRLEVEL(CHANGE).
Related concepts:
“Copying catalog and directory objects” on page 157
Related reference:
Appendix C, “Advisory or restrictive states,” on page 1083

Incremental image copies
An incremental image copy is a copy of the pages that have been changed since
the last full or incremental image copy.

You cannot take an incremental image copy of an index space.

You can make an incremental image copy of a table space if the following
conditions are true:
v A full image copy of the table space exists.
v The COPY-pending status is not on for that table space.
v The last copy was taken without the CONCURRENT option.
v The previous copy was not made by using FlashCopy. This applies even if

sequential copies were made from the FlashCopy image copy.

Copy by partition or data set

You can make an incremental image copy by partition or data set (specified by
DSNUM) in the following situations:
v A full image copy of the table space exists.
v A full image copy of the same partition or data set exists and the COPY-pending

status is not on for the table space or partition.

In addition, the full image copy must have been made after the most recent use of
CREATE, REORG or LOAD, or it must be an inline copy that was made during the
most recent use of LOAD or REORG.

Sample control statement

To specify an incremental image copy, use FULL NO on the COPY statement, as in
the following example:
COPY TABLESPACE DSN8D11A.DSN8S11E FULL NO SHRLEVEL CHANGE

146 Utility Guide and Reference

Performance advantage

An incremental image copy generally does not require a complete scan of the table
space, with two exceptions:
v The table space is defined with the TRACKMOD NO option.
v You are taking the first copy after you altered a table space to TRACKMOD YES.

Space maps in each table space indicate, for each page, regardless of whether it has
changed since the last image copy. Therefore, making an incremental copy can be
significantly faster than making a full copy if the table space is defined with the
TRACKMOD YES option. Incremental image copies of a table space that is defined
with TRACKMOD NO still saves space, although the performance advantage is
smaller.

Restriction: You cannot make incremental copies of DSNDB01.DBD01,
DSNDB01.SYSDBDXA, DSNDB01.SYSUTILX, or DSNDB06.SYSTSCPY in the
catalog. For those objects, COPY always makes a full image copy and places the
SYSCOPY record in the log.

Multiple image copies
In a single COPY job, you can create up to five exact copies of various data objects.
Data objects include table spaces, table space partitions, data sets of a linear table
space, index spaces, and index space partitions.

You can make two sequential copies for use on the local DB2 system (installed
with the option LOCALSITE), and two more for offsite recovery (on any system
that is installed with the option RECOVERYSITE). You can also make a fifth
FlashCopy image copy for use on the local DB2 system. All copies are identical,
and all are produced at the same time from one invocation of COPY.

Alternatively you can use COPYTOCOPY to create the needed image copies.
COPYTOCOPY can be used to create sequential image copies from a FlashCopy
image copy.

The ICBACKUP column in SYSIBM.SYSCOPY specifies whether the image copy
data set is for the local or recovery system, and whether the image copy data set is
for the primary copied data set or for the backup copied data set. The ICUNIT
column in SYSIBM.SYSCOPY specifies whether the image copy data set is on tape
or disk.

Remote-site recovery

For remote site recovery, DB2 assumes that the system and application libraries
and the DB2 catalog and directory are identical at the local site and recovery site.
You can regularly transport copies of archive logs and database data sets to a safe
location to keep current data for remote-site recovery current. This information can
be kept on tape until needed.

Naming the data sets for the copies

The COPYDDN option of COPY names the output data sets that receive copies for
local use. The RECOVERYDDN option names the output data sets that receive
copies that are intended for remote-site recovery. The options have the following
formats:

Chapter 11. COPY 147

|
|
|
|

COPYDDN (ddname1,ddname2) RECOVERYDDN (ddname3,ddname4)

The DD names for the primary output data sets are ddname1 and ddname3. The
ddnames for the backup output data sets are ddname2 and ddname4.

Sample control statement

The following statement makes four full image copies of the table space DSN8S11E
in database DSN8D11A. The statement uses LOCALDD1 and LOCALDD2 as DD
names for the primary and backup copies that are used on the local system and
RECOVDD1 and RECOVDD2 as DD names for the primary and backup copies for
remote-site recovery:
COPY TABLESPACE DSN8D11A.DSN8S11E

COPYDDN (LOCALDD1,LOCALDD2)
RECOVERYDDN (RECOVDD1,RECOVDD2)

You do not need to make copies for local use and for remote-site recovery at the
same time. COPY allows you to use either the COPYDDN or the RECOVERYDDN
option without the other. If you make copies for local use more often than copies
for remote-site recovery, a remote-site recovery could be performed with an older
copy, and more of the log, than a local recovery; hence, the recovery would take
longer. However, in your plans for remote-site recovery, that difference might be
acceptable. You can also use MERGECOPY RECOVERYDDN to create recovery-site
full image copies, and merge local incremental copies into new recovery-site full
copies.

Conditions for making multiple incremental image copies

DB2 cannot make incremental image copies if any of the following conditions is
true:
v The incremental image copy is requested only for a site other than the current

site (the local site from which the request is made).
v Incremental image copies are requested for both sites, but the most recent full

image copy was made for only one site.
v Incremental image copies are requested for both sites and the most recent full

image copies were made for both sites, but between the most recent full image
copy and current request, incremental image copies were made for the current
site only.

If you attempt to make incremental image copies under any of these conditions,
COPY terminates with return code 8, does not take the image copy or update the
SYSIBM.SYSCOPY table, and issues the following message:
DSNU404I csect-name

LOCAL SITE AND RECOVERY SITE INCREMENTAL
IMAGE COPIES ARE NOT SYNCHRONIZED

To proceed, and still keep the two sets of data synchronized, take another full
image copy of the table space for both sites, or change your request to make an
incremental image copy only for the site at which you are working.

DB2 cannot make an incremental image copy if the object that is being copied is an
index or index space.

148 Utility Guide and Reference

Maintaining copy consistency

Make full image copies for both the local and recovery sites:
v If a table space is in COPY-pending status
v After a LOAD or REORG procedure that did not create an inline copy
v If an index is in the informational COPY-pending status
v If a table space is in informational COPY-pending status

This action helps to ensure correct recovery for both local and recovery sites. If the
requested full image copy is for one site only, but the history shows that copies
were made previously for both sites, COPY continues to process the image copy
and issues the following warning message:
DSNU406I FULL IMAGE COPY SHOULD BE TAKEN FOR BOTH LOCAL SITE AND

RECOVERY SITE.

The COPY-pending status of a table space is not changed for the other site when
you make multiple image copies at the current site for that other site. For example,
if a table space is in COPY-pending status at the current site, and you make copies
from there for the other site only, the COPY-pending status is still on when you
bring up the system at that other site.
Related reference:
Chapter 12, “COPYTOCOPY,” on page 177

FlashCopy image copies
You can configure certain utilities to create image copies by using the FlashCopy
function that is provided by z/OS DFSMS and the IBM TotalStorage ESS storage
subsystems. FlashCopy can reduce both the unavailability of data during the copy
operation and the amount of time that is required for backup and recovery
operations.

The FlashCopy image copy is allocated by DFSMSdss and is always cataloged.

FlashCopy image copies are output to VSAM data sets. The traditional copy
methods that are used by the utilities output to a non-VSAM sequential format
data set. FlashCopy creates a separate VSAM data set for each partition or piece of
the object that is being copied.

When creating a FlashCopy image copy, the following utilities also can create one
to four additional sequential format image copies in a single execution:
v COPY
v LOAD with the REPLACE option specified
v REORG TABLESPACE

The COPYTOCOPY utility can create sequential format image copies by using an
existing FlashCopy image copy as input.

Recommendation: To provide a recovery base for media failures, create one or
more additional sequential format image copies when you create a FlashCopy
image copy.

Operational restrictions for FlashCopy

A data-set-level FlashCopy has certain operational restrictions that can cause a
utility to resort to traditional I/O methods to complete a copy operation. This

Chapter 11. COPY 149

behavior can occur even when you explicitly request FlashCopy support in either
the subsystem parameter or the utility control statement. In some cases, the utility
aborts the copy operation.

The circumstances in which the utilities might not be able to complete a copy
operation by using FlashCopy include the following situations. In these situations,
the term data set refers to a DB2 table space or index space or a FlashCopy image
copy:
v FlashCopy Version 2 disk volumes are not available.
v The source data set is already the target of a FlashCopy relationship.
v The target data set is already the source of a FlashCopy relationship.
v The source data set is already participating in the maximum number of

FlashCopy relationships.
v The CISIZE, CASIZE, physical record size, or physical block size of the target

data set is different from that of the source data set. The CASIZE of the target
data set can be different from the source data set if the source data set is less
than one cylinder.

v The source data set and the target data set are not both fully contained on the
same physical control unit (controller).

Recommendation: Use the storage class attribute ACCESSIBILITY=REQUIRED
or ACCESSIBILITY=PREFERRED for the source data set and for the target data
set. If the storage class that is associated with a data set has this attribute,
DFSMS attempts to select volumes such that the data set is contained on
volumes within a single physical control unit.

v Either the source data set or the target data set is not SMS-managed.

For more information about FlashCopy restrictions, see Moving Data Sets with
FlashCopy (z/OS DFSMSdss Storage Administration).

If FlashCopy cannot be used, the utility completes the copy operation by using
traditional I/O methods to copy the object, which can result in longer than
expected execution time.

Only one utility can create a FlashCopy image copy of an object at one time. For
example, suppose that the COPY utility with the SHRLEVEL CHANGE and
FLASHCOPY options is running on an object. Then, the LOAD utility with the
SHRLEVEL CHANGE and FLASHCOPY options starts running on the same object.
The LOAD utility receives message DSNU180I with a return code of 8 to indicate
that the LOAD utility is not compatible with the COPY utility.

Specification of the FlashCopy option

For utilities that support the creation of FlashCopy image copies, you can specify
the FlashCopy option by using DB2 subsystem parameters, utility control
statement parameters, or both.

You can use the FlashCopy subsystem parameters to define the FlashCopy option
as the default behavior for each of the utilities that support the FlashCopy option.
When the FlashCopy subsystem parameters are enabled as the default behavior,
you do not need to specify the FlashCopy options in the utility control statement.

If you specify the FlashCopy options in both the subsystem parameters and the
utility control statement parameters, the specifications in the utility control

150 Utility Guide and Reference

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2u2b1/1.7.11?ACTION=MATCHES&REQUEST=moving+data+sets+with+flashcopy&TYPE=FUZZY&SHELF=&DT=20120113165441&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2u2b1/1.7.11?ACTION=MATCHES&REQUEST=moving+data+sets+with+flashcopy&TYPE=FUZZY&SHELF=&DT=20120113165441&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

statement override the specifications of the subsystem parameters.

Image copy consistency with FlashCopy

The support for FlashCopy provided by the COPY and LOAD utilities includes an
option that can make an image copy consistent for recovery purposes.

When you specify the SHRLEVEL CHANGE and FLASHCOPY CONSISTENT
options, the utility does some extra checking after the FlashCopy image copy is
created. The utility checks the logs for changes to the copied data that were
uncommitted at the time that the image copy was created. Any uncommitted data
that is identified in the logs is backed out of the image copy before the utility
terminates.

DB2 shadow processing is used to make the FlashCopy image copy consistent. The
FlashCopy image copy data set is used as the shadow. Other utilities that use DB2
shadow processing use a different naming convention.

The process of creating an image copy by specifying FLASHCOPY CONSISTENT
uses more system resources and takes longer than creating an image copy by
specifying FLASHCOPY YES. The reason is that backing out uncommitted work
requires reading the logs and updating the image copy.

Restriction: You cannot specify CONSISTENT when copying objects that are
defined with the NOT LOGGED attribute.

SYSCOPY records for FlashCopy image copies

For each FlashCopy image copy, DB2 creates one or more records in the
SYSIBM.SYSCOPY table. SYSCOPY records for FlashCopy image copies can differ
slightly from the SYSCOPY records for sequential format image copies depending
on the following factors:
v Whether the object that is being copied is partitioned
v The number of partitions or object pieces that are being copied

For a FlashCopy image copy of a single partition or piece of an object, one
SYSCOPY record is created for the partition or piece.

For a FlashCopy image copy of a table space or index space:
v If a table space contains more than one partition or piece, DB2 creates a separate

SYSCOPY record for each of the following items:
– The table space or index space
– Each partition or piece in the table space or index space

In the DSNUM column of the SYSCOPY record, DB2 assigns a data set number
to the table space or index space and to each partition or piece. The data set
numbers start at 0 for the table space or index space and are incremented by 1
for each partition or piece.
For example, if a table space has two partitions, a FlashCopy image copy of the
table space creates three SYSCOPY records:
1. A SYSCOPY record for the tables space with DSNUM=0
2. A SYSCOPY record for the first partition with DSNUM=1
3. A SYSCOPY record for the second partition with DSNUM=2

Chapter 11. COPY 151

v If there is only one partition or piece in the table space, only one SYSCOPY
record is created with DSNUM=0.

For FlashCopy image copies that were created with the FLASHCOPY YES option,
the START_RBA value corresponds to the RBA or LRSN when the object's pages
were last externalized to disk.

For FlashCopy image copies that were created with the FLASHCOPY
CONSISTENT option and have undergone consistency processing, the START_RBA
value corresponds to one of the following values, depending on whether active
units of work existed:
v If active units of work existed, the START_RBA value corresponds to the

beginning RBA or LRSN of the oldest uncommitted unit of work that was
backed out.

v If no active units of work existed, the START_RBA value corresponds to the RBA
or LRSN when the object's pages were last externalized to disk.

In the SYSCOPY section of the output from REPORT RECOVERY, the SYSCOPY
records are presented in ascending START_RBA order and not in timestamp order.
Thus, the SYSCOPY records for FlashCopy image copies might be shown in the
REPORT RECOVERY out of chronological order as compared to other SYSCOPY
records.

The implication of the START_RBA value for FlashCopy image copies is that a
recovery from a FlashCopy image copy likely requires more log processing.

Recovery and FlashCopy image copies

Using FlashCopy to create image copies has the several implications for recovery.
Those implications are described in “Recovering with FlashCopy image copies” on
page 463

Utility support for FlashCopy

The following DB2 for z/OS utilities can use FlashCopy to create image copies:
v COPY
v LOAD
v REBUILD INDEX
v REORG INDEX
v REORG TABLESPACE

When creating a FlashCopy image copy, the COPY and LOAD utilities with
SHRLEVEL CHANGE can include additional phases of execution, depending on
the options that are specified in the utility control statement. The additional
execution phases include:

LOGAPPLY
If CONSISTENT was specified for either the COPY utility or the LOAD
utility, the utility identifies the most recent checkpoint for each member.
All objects that are being copied are updated to the same log point to
prepare for backout processing.

LOGCSR
If CONSISTENT was specified for either the COPY utility or the LOAD

152 Utility Guide and Reference

utility, the utility reads the logs during this phase. The utility uses the logs
to identify the uncommitted work that needs to be backed out of the image
copy.

LOGUNDO
If CONSISTENT was specified for either the COPY utility or the LOAD
utility, the utility backs out uncommitted work to make the image copy
consistent.

SEQCOPY
If additional sequential format image copies are requested, the COPY
utility creates them from the FlashCopy image copy during this phase.

The following utilities accept the VSAM data sets that are produced by FlashCopy
as input:
v COPYTOCOPY
v DSN1COMP
v DSN1COPY
v DSN1PRNT
v RECOVER

The UNLOAD utility does not accept FlashCopy image copies as input. To use a
FlashCopy image copy as the source for the UNLOAD utility, use the
COPYTOCOPY utility to create sequential format image copies from the FlashCopy
image copy.
Related concepts:
“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on
page 37
Related reference:
“Syntax and options of the COPY control statement” on page 127

DB2 utilities parameters panel 1: DSNTIP6 (DB2 Installation and Migration)
“Syntax and options of the LOAD control statement” on page 233
“Syntax and options of the REBUILD INDEX control statement” on page 410
“Syntax and options of the REORG INDEX control statement” on page 500
“Syntax and options of the REORG TABLESPACE control statement” on page 540

Copies of lists of objects
Within a single COPY control statement, the COPY utility allows you to process a
list that contains any of the following objects: table space, table space partition,
data set of a linear table space, index space, and index space partition.

Specifying objects in a list is useful for copying a complete set of referentially
related table spaces before running QUIESCE. Consider the following information
when taking an image copy for a list of objects:
v DB2 copies table spaces and index spaces in the list one at a time, in the

specified order, unless you invoke parallelism by specifying the PARALLEL
keyword.

v Each table space in the list with a CHANGELIMIT specification has a REPORT
phase, so the phase switches between REPORT and COPY while processing the
list.

Chapter 11. COPY 153

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntip6.htm#db2z_dsntip6

v If processing completes successfully, any COPY-pending or informational
COPY-pending status on the table spaces and informational COPY-pending
status on the indexes are reset.

v If you use COPY with the SHRLEVEL(REFERENCE) option:
– DB2 drains the write claim class on each table space and index in the

UTILINIT phase, which is held for the duration of utility processing.
– Utility processing inserts SYSCOPY rows for all of the objects in the list at the

same time, after all of the objects have been copied.
– All objects in the list have identical RBA or LRSN values for the START_RBA

column for the SYSCOPY rows: the START_RBA is set to the current LRSN at
the end of the COPY phase.

v If you use COPY with the SHRLEVEL(CHANGE) option:
– If you specify OPTIONS EVENT(ITEMERROR,SKIP), each object in the list is

placed in UTRW status and the read claim class is held only while the object
is being copied. If you do not specify OPTIONS EVENT(ITEMERROR,SKIP),
all of the objects in the list are placed in UTRW status and the read claim
class is held on all objects for the entire duration of the COPY.

– Utility processing inserts a SYSCOPY row for each object in the list when the
copy of each object is complete.

– Objects in the list have different LRSN values for the START_RBA column for
the SYSCOPY rows; the START_RBA value is set to the current RBA or LRSN
at the start of copy processing for that object.

When you specify the PARALLEL keyword, DB2 supports parallelism for image
copies on disk or tape devices. You can control the number of tape devices to
allocate for the copy function by using TAPEUNITS with the PARALLEL keyword.
If you use JCL statements to define tape devices, the JCL controls the allocation of
the devices.

When you explicitly specify objects with the PARALLEL keyword, the objects are
not necessarily processed in the specified order. Objects that are to be written to
tape and whose file sequence numbers have been specified in the JCL are
processed in the specified order. If templates are used, you cannot specify file
sequence numbers. In the absence of overriding JCL specifications, DB2 determines
the placement and, thus, the order of processing for such objects. When only
templates are used, objects are processed according to their size, with the largest
objects processed first.

Both the PARALLEL and TAPEUNITS keywords act as constraints on the
processing of the COPY utility. The PARALLEL keyword constrains the amount of
parallelism by restricting the maximum number of objects that can be processed
simultaneously. The TAPEUNITS keyword constrains the number of tape drives
that can be dynamically allocated for the COPY command. The TAPEUNITS
keyword can constrain the amount of parallelism if an object requires a number of
tapes such that the number of remaining tapes is insufficient to service another
object.

To calculate the number of threads that you need when you specify the PARALLEL
keyword, use the formula (n * 2 + 1), where n is the number of objects that are to
be processed in parallel, regardless of the total number of objects in the list. If you
do not use the PARALLEL keyword, n is 1 and COPY uses three threads for a
single-object COPY job.

154 Utility Guide and Reference

COPY SCOPE PENDING indicates that you want to copy only those objects in
COPY-pending or informational COPY-pending status. When the DSNUM ALL
option is specified for partitioned objects, and one or more of the partitions are in
COPY-pending or informational COPY-pending status, a copy will be taken of the
entire table space or index space.

For partitioned objects, if you only want the partitions in COPY-pending status or
informational COPY-pending status to be copied, then a list of partitions should be
specified. It is recommended that you do this by invoking COPY on a LISTDEF list
built with the PARTLEVEL option. An output image copy data set will be created
for each partition that is in COPY-pending or informational COPY-pending status.

The LIMIT option on the TEMPLATE statement allows you to switch templates for
output copy data sets. Template switching is most commonly needed to direct
small data sets to DASD and large data sets to TAPE. This allows you to switch to
templates that differ in the UNIT, DSNs, or HSM classes.

The following table spaces cannot be included in a list of table spaces. You must
specify each one as a single object:
v DSNDB01.SYSUTILX
v DSNDB06.SYSTSCPY
v DSNDB01.SYSLGRNX
v DSNDB01.SYSDBDXA

The only exceptions to this restriction are the indexes over these table spaces that
were defined with the COPY YES attribute. You can specify such indexes along
with the appropriate table space.
Related reference:
Chapter 31, “TEMPLATE,” on page 775

Using more than one COPY statement
You can use more than one control statement for COPY in one DB2 utility job step.

About this task

After each COPY statement executes successfully:
v A row that refers to each image copy is recorded in the SYSIBM.SYSCOPY table.
v The image copy data sets are valid and available for RECOVER, MERGECOPY,

COPYTOCOPY, and UNLOAD.

If a job step that contains more than one COPY statement abends, do not use TERM
UTILITY. Restart the job from the last commit point by using RESTART instead.
Terminating COPY by using TERM UTILITY in this case creates inconsistencies
between the ICF catalog and DB2 catalogs.

Copying partitions or data sets simultaneously
To potentially improve the performance of the COPY utility, copy partitions or data
sets at the same time.

Chapter 11. COPY 155

|

About this task

Procedure

To copy partitions or data sets simultaneously:
v If the table space is partitioned, take one of the following actions:

– Specify the PARALLEL option in the COPY utility control statement to copy
partitions in the same COPY execution in parallel.

– Copy the partitions independently in separate simultaneous jobs. This method
can reduce the time that it takes to create sequential image copies of the
entire table space.

v If the table space is a nonpartitioned table space that consists of more than one
data set, copy several or all of the data sets independently in separate jobs. To
do so, run simultaneous COPY jobs (one job for each data set) and specify
SHRLEVEL CHANGE on each job. However, creating copies simultaneously
does not provide you with a consistent recovery point unless you subsequently
run a QUIESCE for the table space.

Related reference:
“Syntax and options of the COPY control statement” on page 127

Copies of partition-by-growth table spaces
An image copy at the table space level with SHRLEVEL(CHANGE) will not
contain new partitions added by SQL INSERTS after the image copy began. The
newly added partitions are recoverable via the DB2 logs.

When you make an image copy of a partition-by-growth table space, the partition
is empty as a result of REORG, SQL delete operations, or recovery to a prior point
in time. The empty partition has a header page and space map pages or system
pages. The COPY utility still copies the empty partition.

Copies of XML table spaces
The COPY utility supports full and incremental image copies for XML table spaces.
The COPY utility options SHRLEVEL REFERENCE, SHRLEVEL CHANGE,
CONCURRENT, and FLASHCOPY are also supported for XML table spaces.

Unless either the CONCURRENT option or the FLASHCOPY option is specified,
COPY does not copy empty or unformatted data pages of an XML table space.

If you copy a LOB table space that has a base table space with the NOT LOGGED
attribute, copy the base table space and the LOB table space together so that a
RECOVER TOLOGPOINT of the entire set results in consistent data across the base
table space and all of the associated LOB table spaces.

Note: RECOVER TOLASTCOPY is not allowed on a list of objects. Instead, use
RECOVER TOLOGPOINT, where the TOLOGPOINT is the common RBA or LRSN
associated with the SHRLEVEL REFERENCE image copies.

To copy an XML table space with a base table space that has the NOT LOGGED
attribute, all associated XML table spaces must also have the NOT LOGGED
attribute. The XML table space acquires this NOT LOGGED attribute by being
linked to the logging attribute of its associated base table space. You cannot
independently alter the logging attribute of an XML table space.

156 Utility Guide and Reference

If the LOG column of the SYSIBM.SYSTABLESPACE record for an XML table space
has the value of "X", the logging attributes of the XML table space and its base
table space are linked, and that the logging attribute of both table spaces is NOT
LOGGED. To break the link, alter the logging attribute of the base table space back
to LOGGED, and the logging attribute of both table spaces are changed back to
LOGGED.

Copying catalog and directory objects
Use the DSNTIJIC installation job to create backup copies of catalog and directory
objects.

If you are migrating from a Version 9 or earlier DB2 for z/OS system, and your
Version 10 or later DB2 for z/OS system is in conversion mode, use the DSNTIJIC
job that is produced by running the installation CLIST in MIGRATE mode.

Depending on the migration mode in which the DB2 for z/OS system is running,
the COPY utility skips new or obsolete catalog and directory objects during
processing and issues message DSNU1530I with RC0 for each skipped object. For
example, in conversion mode, the COPY utility skips catalog and directory objects
that are new for the version to which you are migrating. In new function mode,
the COPY utility skips catalog and directory objects that are obsolete in the version
to which you are migrating.

If the output image copy has a hardcoded DD statement to a tape device, the
COPY utility opens and closes the data set to write a tape mark. This ensures that
subsequent image copies stacked to the same tape volume can be written.

Specifying OPTIONS EVENT(ITEMERROR,SKIP) or OPTIONS
EVENT(ITEMERROR,HALT) does not impact the skipping of new or obsolete
objects.

The catalog table SYSIBM.SYSCOPY and the directory tables SYSIBM.SYSUTILX
and SYSIBM.SYSLGRNX record information from the COPY utility. Copying the
table spaces for those tables can lock out separate COPY jobs that are running
simultaneously; therefore, defer copying the table spaces for SYSIBM.SYSCOPY,
SYSIBM.SYSUTILX, and SYSIBM.SYSLGRNX until the other copy jobs have
completed. However, if you must copy other objects while another COPY job
processes the catalog or directory, specify SHRLEVEL(CHANGE) for copying the
catalog and directory table spaces. Beginning in DB2 Version 10, the COPY control
statements in the DSNTIJIC job specify SHRLEVEL(CHANGE).
Related information:

DSNU1530I (DB2 Messages)

Make copies of XML schema repository objects
Although the XML schema repository is not part of the DB2 catalog, you need to
create backup copies of XML schema repository table spaces when you back up
catalog objects.

To determine which table spaces are part of the XML schema repository, see job
DSNTESR.

The table spaces for which you need to make image copies are in database
DSNXSR.

Chapter 11. COPY 157

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu1530i.htm#dsnu1530i

Copies of Indexes
If you copy a COPY YES index of a table space that has the NOT LOGGED
attribute, copy the indexes and table spaces together. Copying the indexes and
table spaces together ensures that the indexes and the table space have the same
recoverable point.

An index should be image copied after an ALTER INDEX REGENERATE. You
should copy the index after it has been rebuilt for these types of ALTER
statements:
v alter to padded
v alter to not padded
v alter add of a key column
v alter of a numeric data type key column

Any new partitions added by SQL INSERT are not contained in the image copy,
but the newly added partitions are recoverable by the DB2 logs.

When the index has the COMPRESS YES attribute, concurrent copies of indexes
and FlashCopy image copies of indexes are compressed because DFSMSdss is
invoked to copy the VSAM linear data sets (LDS) for the index. Image copies of
indexes are not compressed because the index pages are copied from the DB2
buffer pool. When image copies are taken without the concurrent option, you can
choose to compress the image copies by using access method compression via
DFSMS or by using IDRC if the image copies reside on tape.

Using DFSMSdss concurrent copy
You might be able to gain improved availability by using the concurrent copy
function of the DFSMSdss component of the Data Facility Storage Management
Subsystem (DFSMS). You can subsequently run the DB2 RECOVER utility to
restore those image copies and apply the necessary log records to them to
complete recovery.

The CONCURRENT option of COPY invokes DFSMSdss concurrent copy. The
COPY utility records the resulting DFSMSdss concurrent copies in the catalog table
SYSIBM.SYSCOPY with ICTYPE=F and STYPE=C or STYPE=J. STYPE=C indicates
that the concurrent copy was taken of the "I" instance of the table space (which
means that the instance qualifier in the name of the corresponding data set begins
with the letter "I"). STYPE=J indicates that the concurrent copy was taken of the "J"
instance of the table space (which means that the instance qualifier in the name of
the corresponding data set begins with the letter "J").

To obtain a consistent offline backup copy outside of DB2:
1. Start the DB2 objects that are being backed up for read-only access by issuing

the following command:
-START DATABASE(database-name) SPACENAM(
tablespace-name) ACCESS(RO)

Allowing read-only access is necessary to ensure that no updates to data occur
during this procedure.

2. Run QUIESCE with the WRITE(YES) option to quiesce all DB2 objects that are
being backed up.

3. Back up the DB2 data sets after the QUIESCE utility completes successfully.

158 Utility Guide and Reference

4. Issue the following command to allow transactions to access the data:
-START DATABASE(database-name) SPACENAM(tablespace-name)

If you use the CONCURRENT option:
v You must supply either a COPYDDN DD name, a RECOVERYDDN DD name,

or both. Note that the required JCL parameter specifications for the output data
sets for the CONCURRENT option might differ from the JCL specifications
required for sequential format data sets. For example, do not specify the BUFNO
parameter for the output data sets when specifying the CONCURRENT option.

v You can set the disposition to DISP=(MOD,CATLG,CATLG) if you specify the
new data set for the image copy on a scratch volume (a specific volume serial
number is not specified). You must set the disposition to
DISP=(NEW,CATLG,CATLG) if you specify a specific volume serial number for
the new image copy data set.

v If you are restarting COPY, specify DISP=(MOD,CATLG,CATLG) or
DISP=(NEW,CATLG,CATLG) for the COPYDDN and RECOVERYDDN data sets.
The DFSMSdss DUMP command does not support appending to an existing
data set. Therefore, the COPY utility converts any DISP=MOD data sets to
DISP=OLD before invoking DFSMSdss.

v If the SYSPRINT DD statement points to a data set, you must use a DSSPRINT
DD statement.

v If the page size in the table space matches the control interval for the associated
data set, you can use either the SHRLEVEL CHANGE option or the SHRLEVEL
REFERENCE option. If the page size does not match the control interval, you
must use the SHRLEVEL REFERENCE option for table spaces with a 8-KB,
16-KB, or 32-KB page size.

Restrictions on using DFSMSdss concurrent copy

You cannot use a copy that is made with DFSMSdss concurrent copy with the
PAGE or ERRORRANGE options of the RECOVER utility. If you specify PAGE or
ERROR RANGE, RECOVER bypasses any concurrent copy records when searching
the SYSIBM.SYSCOPY table for a recovery point.

You can use the CONCURRENT option with SHRLEVEL CHANGE on a table
space if the page size in the table space matches the control interval for the
associated data set.

Also, you cannot run the following DB2 stand-alone utilities on copies that are
made by DFSMSdss concurrent copy:

DSN1COMP
DSN1COPY
DSN1PRNT

You cannot execute the CONCURRENT option from the DB2I Utilities panel or
from the DSNU TSO CLIST command.

Requirements for using DFSMSdss concurrent copy

DFSMSdss concurrent copy is enabled by specific hardware. Contact IBM or the
vendor for your specific storage product to verify whether your controller or
storage server supports the concurrent copy function.

Chapter 11. COPY 159

Table space availability

If you specify COPY SHRLEVEL REFERENCE with the CONCURRENT option,
and if you want to copy all of the data sets for a list of table spaces to the same
dump data set, specify FILTERDDN in your COPY statement to improve table
space availability. If you do not specify FILTERDDN, COPY might force DFSMSdss
to process the list of table spaces sequentially, which might limit the availability of
some of the table spaces that are being copied.
Related concepts:
“How utilities restart with lists” on page 44

Specifying conditional image copies
Use the CHANGELIMIT option of the COPY utility to specify conditional image
copies. You can use it to get a report of image copy information about a table
space, or you can let DB2 decide whether to take an image copy based on this
information.

You cannot use the CHANGELIMIT option for a table space or partition that is
defined with TRACKMOD NO. If you change the TRACKMOD option from NO to
YES, you must take an image copy before you can use the CHANGELIMIT option.
When you change the TRACKMOD option from NO to YES for a linear table
space, you must take a full image copy by using DSNUM ALL before you can
copy using the CHANGELIMIT option.

Obtaining image copy information about a table space

When you specify COPY CHANGELIMIT REPORTONLY, COPY reports image
copy information for the table space and recommends the type of copy, if any, to
take. The report includes:
v The total number of pages in the table space. This value is the number of pages

that are to be copied if a full image copy is taken.
v The number of empty pages, if the table space is segmented.
v The number of changed pages. This value is the number of pages that are to be

copied if an incremental image copy is taken.
v The percentage of changed pages.
v The type of image copy that is recommended.

Adding conditional code to your COPY job

You can add conditional code to your jobs so that an incremental or full image
copy, or some other step, is performed depending on how much the table space
has changed. For example, you can add a conditional MERGECOPY step to create
a new full image copy if your COPY job took an incremental copy. COPY
CHANGELIMIT uses the following return codes to indicate the degree that a table
space or list of table spaces has changed:
1 (informational)

If no CHANGELIMIT was met.
2 (informational)

If the percentage of changed pages is greater than the low CHANGELIMIT
and less than the high CHANGELIMIT value.

3 (informational)
If the percentage of changed pages is greater than or equal to the high
CHANGELIMIT value.

160 Utility Guide and Reference

If you specify multiple COPY control statements in one job step, that job step
reports the highest return code from all of the imbedded statements. Basically, the
statement with the highest percentage of changed pages determines the return
code and the recommended action for the entire list of COPY control statements
that are contained in the subsequent job step.

Using conditional copy with generation data groups (GDGs)

When you use generation data groups (GDGs) and need to make an incremental
image copy, take the following steps to prevent creating an empty image copy:
1. Include in your job a first step in which you run COPY with CHANGELIMIT

REPORTONLY. Set the SYSCOPY DD statement to DD DUMMY so that no
output data set is allocated. If you specify REPORTONLY and use a template,
DB2 does not dynamically allocate the data set.

2. Add a conditional JCL statement to examine the return code from the COPY
CHANGELIMIT REPORTONLY step.

3. Add a second COPY step without CHANGELIMIT REPORTONLY to copy the
table space or table space list based on the return code from the second step.

Preparing for recovery by using the COPY utility
To prepare for recovery, you can use the COPY utility to create copies and establish
points of recovery.

Use the following guidelines to help you prepare for recovery:
v Consider periodically merging incremental image copies into one copy.

The RECOVER utility merges all incremental image copies since the last full
image copy, and it must have all the image copies available at the same time. If
this requirement is likely to strain your system resources (for example, by
demanding more tape units than are available), consider regularly merging
multiple image copies into one copy.
Even if you do not periodically merge multiple image copies into one copy,
when you do not have enough tape units, RECOVER can still attempt to recover
the object. RECOVER dynamically allocates the full image copy and attempts to
dynamically allocate all the incremental image copy data sets. If every
incremental copy can be allocated, recovery proceeds to merge pages to table
spaces and apply the log. If a point is reached where RECOVER cannot allocate
an incremental copy, the log RBA of the last successfully allocated data set is
noted. Attempts to allocate incremental copies cease, and the merge proceeds
with only the allocated data sets. The log is applied from the noted RBA, and
the incremental image copies that were not allocated are ignored.

v Create primary and backup image copies after a LOAD or REORG operation
with LOG NO when an inline copy is not created. Create these copies, so that if
the primary image copy is not available, fallback recovery with the secondary
image copy is possible.

v If you use COPY SHRLEVEL REFERENCE to copy a list of referentially related
structures, you do not need to quiesce these objects to create a consistent point
of recovery. The copy serves as a point of consistency.

v For LOB data, quiesce and copy both the base table space and the LOB table
space at the same time to establish a point of consistency for recovery. QUIESCE
does not create a recovery point for a LOB table space that contains LOBs that
are defined with LOG NO.

Chapter 11. COPY 161

v If an index is in informational COPY-pending (ICOPY) status, take a full image
copy of the index space so that the RECOVER utility can recover the index
space.
For an index that was defined with the COPY YES attribute the following
utilities can place the index in ICOPY status:
– REORG INDEX
– REORG TABLESPACE LOG YES or NO
– LOAD TABLE LOG YES or NO
– REBUILD INDEX
After the utility processing completes, take the full image copy. If you need to
recover an index of which you did not take a full image copy, use the REBUILD
INDEX utility to rebuild the index from data in the table space.

v Take image copies of table spaces with the NOT LOGGED attribute that have
been updated since the last full copy.
These table spaces are placed in ICOPY status. To copy the table spaces that
have been updated, run the COPY utility with the SCOPE PENDING option.

Related concepts:
“Point-in-time recovery” on page 479
Related reference:
Chapter 21, “QUIESCE,” on page 397

Improving performance
Certain activities can improve COPY performance.

You can merge a full image copy and subsequent incremental image copies into a
new full copy by running the MERGECOPY utility. After reorganizing a table
space, the first image copy must be a full image copy.

Do not base the decision of whether to run a full image copy or an incremental
image copy on the number of rows that are updated since the last image copy was
taken. Instead, base your decision on the percentage of pages that contain at least
one updated record (not the number of updated records). Regardless of the size of
the table, if more than 50% of the pages contain updated records, use full image
copy (this saves the cost of a subsequent MERGECOPY). To find the percentage of
changed pages, you can execute COPY with the CHANGELIMIT REPORTONLY
option. Alternatively, you can execute COPY CHANGELIMIT to allow COPY to
determine whether a full image copy or incremental copy is required.

Using DB2 data compression for table spaces can improve COPY performance
because COPY does not decompress data. The performance improvement is
proportional to the amount of compression.

Generation data group definitions for the COPY utility
Use generation data groups to hold image copies. Use of generation data groups
offers the benefit of automating the allocation of data set names and the deletion of
the oldest data set.

When you define the generation data group:
v You can specify that the oldest data set is automatically deleted when the

maximum number of data sets is reached. If you do that, make the maximum

162 Utility Guide and Reference

number large enough to support all recovery requirements. When data sets are
deleted, use the MODIFY utility to delete the corresponding rows in
SYSIBM.SYSCOPY.

v Make the limit number of generation data sets equal to the number of copies
that you want to keep. Use NOEMPTY to avoid deleting all the data sets from
the integrated catalog facility catalog when the limit is reached.

Attention: Do not take incremental image copies when using generation data
groups unless data pages have changed. When you use generation data groups,
taking an incremental image copy when no data pages have changed causes the
following results:
v The new image copy data set is empty.
v No SYSCOPY record is inserted for the new image copy data set.
v Your oldest image copy is deleted.

Recommendation: Use templates when using generation data groups.
Related concepts:
“Specifying conditional image copies” on page 160

Using DB2 with DFSMS products
You can use DB2 with DFSMS products.

If image copy data sets are managed by HSM or SMS, all data sets are cataloged.

If you plan to use SMS, catalog all image copies. Never maintain cataloged and
uncataloged image copies that have the same name.

Image copies on tape
Do not combine a full image copy and incremental image copies for the same table
space on one tape volume. If you do, the RECOVER TABLESPACE utility cannot
allocate the incremental image copies.

Termination of COPY
You can terminate the COPY utility.

An active or stopped COPY job may be terminated with the TERM UTILITY
command. However, if you issue TERM UTILITY while COPY is in the active or
stopped state, DB2 inserts an ICTYPE=T record in the SYSIBM.SYSCOPY catalog
table for each object that COPY had started processing, but not yet completed.
(Exception: If the COPY utility is already in the UTILTERM phase, the image copy
is considered completed.) For copies that are made with SHRLEVEL REFERENCE,
some objects in the list might not have an ICTYPE=T record. For SHRLEVEL
CHANGE, some objects might have a valid ICTYPE=F, I, or T record, or no record
at all. The COPY utility does not allow you to take an incremental image copy if
an ICTYPE=T record exists. You must make a full image copy.

Implications of DISP on the DD statement

The result of terminating a COPY job that uses the parameter
DISP=(MOD,CATLG,CATLG) varies as follows:

Chapter 11. COPY 163

v If only one COPY control statement exists, no row is written to
SYSIBM.SYSCOPY, but an image copy data set has been created and is cataloged
in the ICF catalog. You should delete that image copy data set.

v If several COPY control statements are in one COPY job step, a row for each
successfully completed copy is written to SYSIBM.SYSCOPY. However, all the
image copy data sets have been created and cataloged. You should delete all
image copy data sets that are not recorded in SYSIBM.SYSCOPY.

Restart of COPY
You can restart the COPY utility.

Recommendation: Use restart current when possible, because it:
v Is valid for full image copies and incremental copies
v Is valid for a single job step with several COPY control statements
v Is valid for a list of objects
v Requires a minimum of re-processing
v Keeps the DB2 catalog and the integrated catalog facility catalog synchronized

If you do not use the TERM UTILITY command, you can restart a COPY job. COPY
jobs with the CONCURRENT option restart from the beginning, and other COPY
jobs restart from the last commit point. You cannot use RESTART(PHASE) for any
COPY job. If you are restarting a COPY job with uncataloged output data sets, you
must specify the appropriate volumes for the job in the JCL or on the TEMPLATE
utility statement. Doing so could impact your ability to use implicit restart.

If the recommended procedure is not followed an ABEND 413-1C may occur
during restart of the COPY.

Restarting with a new data set

If you define a new output data set for a current restart, complete the following
actions before restarting the COPY job:
1. Copy the failed COPY output to the new data set.
2. Delete the old data set.
3. Rename the new data set to use the old data set name.

Restarting COPY after an out-of-space condition

You can also restart COPY from the last commit point after receiving an
out-of-space condition.
Related concepts:
“Restart of an online utility” on page 39
Related tasks:
“Restarting after the output data set is full” on page 43

Sample COPY control statements
Use the sample control statements as models for developing your own COPY
control statements.

In some cases, you might run a COPY utility job more than once. To avoid
duplicate image copy data sets, a DSN qualifier is used in the following examples.

164 Utility Guide and Reference

Example 1: Making a full image copy

The following control statement specifies that the COPY utility is to make a full
image copy of table space DSN8D11A.DSN8S11E. The copy is to be written to the
data set that is defined by the SYSCOPY DD statement in the JCL; SYSCOPY is the
default.
//STEP1 EXEC DSNUPROC,UID=’IUJMU111.COPYTS’,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSCOPY DD DSN=COPY001F.IFDY01,UNIT=SYSDA,VOL=SER=CPY01I,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//SYSIN DD *
COPY TABLESPACE DSN8D11A.DSN8S11E
/*

Instead of defining the data sets in the JCL, you can use templates. In the
following example, the preceding job is modified to use a template. In this
example, the name of the template is LOCALDDN. The LOCALDDN template is
identified in the COPY statement by the COPYDDN option.
//STEP1 EXEC DSNUPROC,UID=’IUJMU111.COPYTS’,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSIN DD *
TEMPLATE LOCALDDN UNIT SYSDA DSN(COPY001F.IFDY01)

SPACE(15,1) CYL DISP(NEW,CATLG,CATLG)
COPY TABLESPACE DSN8D81A.DSN8S81E COPYDDN(LOCALDDN)
/*

Recommendation: When possible, use templates to allocate data sets.

Example 2: Making full image copies for local site and recovery
site

The following COPY control statement specifies that COPY is to make primary and
backup full image copies of table space DSN8D11P.DSN8S11C at both the local site
and the recovery site. The COPYDDN option specifies the output data sets for the
local site, and the RECOVERYDDN option specifies the output data sets for the
recovery site. The PARALLEL option indicates that up to 2 objects are to be
processed in parallel.

The OPTIONS statement at the beginning indicates that if COPY encounters any
errors (return code 8) while making the requested copies, DB2 ignores that
particular item. COPY skips that item and moves on to the next item. For example,
if DB2 encounters an error copying the specified data set to the COPY1 data set,
DB2 ignores the error and tries to copy the table space to the COPY2 data set.
OPTIONS EVENT(ITEMERROR,SKIP)
COPY TABLESPACE DSN8D81P.DSN8S81C

COPYDDN(COPY1,COPY2)
RECOVERYDDN(COPY3,COPY4)
PARALLEL(2)

Example 3: Making full image copies of a list of objects

The control statement below specifies that COPY is to make local and recovery full
image copies (both primary and backup) of the following objects:
v Table space DSN8D11A.DSN8S11D, and its indexes:

– DSN8B10.XDEPT1
– DSN8B10.XDEPT2

Chapter 11. COPY 165

– DSN8B10.XDEPT3
v Table space DSN8D11A.DSN8S11E, and its indexes:

– DSN8710.XEMP1
– DSN8710.XEMP2

These copies are to be written to the data sets that are identified by the COPYDDN
and RECOVERYDDN options for each object. The COPYDDN option specifies the
data sets for the copies at the local site, and the RECOVERYDDN option specifies
the data sets for the copies at the recovery site. The first parameter of each of these
options specifies the data set for the primary copy, and the second parameter
specifies the data set for the backup copy. For example, the primary copy of table
space DSN8D81A.DSN8S81D at the recovery site is to be written to the data set
that is identified by the COPY3 DD statement.

PARALLEL(4) indicates that up to four of these objects can be processed in
parallel. As the COPY job of an object completes, the next object in the list begins
processing in parallel until all of the objects have been processed.

SHRLEVEL REFERENCE specifies that no updates are allowed during the COPY
job. This option is the default and is recommended to ensure the integrity of the
data in the image copy.
//STEP1 EXEC DSNUPROC,UID=’IUJMU111.COPYTS’,
// UTPROC=’’,
// SYSTEM=’DSN’
//COPY1 DD DSN=C81A.S20001.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY2 DD DSN=C81A.S20001.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY3 DD DSN=C81A.S20001.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY4 DD DSN=C81A.S20001.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY5 DD DSN=C81A.S20002.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY6 DD DSN=C81A.S20002.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY7 DD DSN=C81A.S20002.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY8 DD DSN=C81A.S20002.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY1 DD DSN=C81A.S20001.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY2 DD DSN=C81A.S20001.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY3 DD DSN=C81A.S20001.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY4 DD DSN=C81A.S20001.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY5 DD DSN=C81A.S20002.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY6 DD DSN=C81A.S20002.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY7 DD DSN=C81A.S20002.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY8 DD DSN=C81A.S20002.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY9 DD DSN=C81A.S20003.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY10 DD DSN=C81A.S20003.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY11 DD DSN=C81A.S20003.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

166 Utility Guide and Reference

//COPY12 DD DSN=C81A.S00003.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY13 DD DSN=C81A.S00004.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY14 DD DSN=C81A.S00004.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY15 DD DSN=C81A.S00004.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY16 DD DSN=C81A.S00004.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY17 DD DSN=C81A.S00005.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY18 DD DSN=C81A.S00005.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY19 DD DSN=C81A.S00005.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY20 DD DSN=C81A.S00005.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY21 DD DSN=C81A.S00006.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY22 DD DSN=C81A.S00006.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY23 DD DSN=C81A.S00006.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY24 DD DSN=C81A.S00006.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY25 DD DSN=C81A.S00007.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY26 DD DSN=C81A.S00007.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY27 DD DSN=C81A.S00007.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY28 DD DSN=C81A.S00007.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//SYSIN DD *
COPY

TABLESPACE DSN8D11A.DSN8S11D
COPYDDN (COPY1,COPY2)
RECOVERYDDN (COPY3,COPY4)

INDEX DSN8B10.XDEPT1
COPYDDN (COPY5,COPY6)
RECOVERYDDN (COPY7,COPY8)

INDEX DSN8B10.XDEPT2
COPYDDN (COPY9,COPY10)
RECOVERYDDN (COPY11,COPY12)

INDEX DSN8B10.XDEPT3
COPYDDN (COPY13,COPY14)
RECOVERYDDN (COPY15,COPY16)

TABLESPACE DSN8D11A.DSN8S11E
COPYDDN (COPY17,COPY18)
RECOVERYDDN (COPY19,COPY20)

INDEX DSN8B10.XEMP1
COPYDDN (COPY21,COPY22)
RECOVERYDDN (COPY23,COPY24)

INDEX DSN8B10.XEMP2
COPYDDN (COPY25,COPY26)
RECOVERYDDN (COPY27,COPY28)

PARALLEL(4)
SHRLEVEL REFERENCE
/*

Figure 16. Example of making full image copies of multiple objects

Chapter 11. COPY 167

You can also write this COPY job so that it uses lists and templates, as shown
below. In this example, the name of the template is T1. Note that this TEMPLATE
statement does not contain any space specifications for the dynamically allocated
data sets. Instead, DB2 determines the space requirements. The T1 template is
identified in the COPY statement by the COPYDDN and RECOVERYDDN options.
The name of the list is COPYLIST. This list is identified in the COPY control
statement by the LIST option.

Example 4: Using template switching

The following TEMPLATE control statement assumes that tables space SMALL.TS
occupies 10 cylinders and table space LARGE.TS occupies 100 cylinders. Both
COPY statements use the SMALLTP template which specifies a limit of 20
cylinders. Table space SMALL.TS is smaller than this limit so no switching is
performed. The output data set for table space SMALL.TS will be allocated on
UNIT=SYSALLDA. Table space LARGE.TS is larger than this limit so the template
is switched to the LARGETP template. The output data set for table space
LARGE.TS will be allocated on UNIT=TAPE.
TEMPLATE LARGETP DSN &DB..&TS..D&DA..T&TI. UNIT=TAPE
TEMPLATE SMALLTP DSN &DB..&TS..D&DA..T&TI. UNIT=SYSALLDA LIMIT(20 CYL, LARGETP)
COPY TABLESPACE SMALL.TS COPYDDN(SMALLTP)
COPY TABLESPACE LARGE.TS COPYDDN(SMALLTP)

Note that the DSN option of the TEMPLATE statement identifies the names of the
data sets to which the copies are to be written.

Each of the preceding COPY jobs create a point of consistency for the table spaces
and their indexes. You can subsequently use the RECOVER utility with the
TOLOGPOINT option to recover all of these objects.

Example 5: Making full image copies of a list of objects in
parallel on tape

The following COPY control statement specifies that COPY is to make image
copies of the specified table spaces and their associated index spaces in parallel
and stack the copies on different tape devices.

//STEP1 EXEC DSNUPROC,UID=’IUJMU111.COPYTS’,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSIN DD *
TEMPLATE T2 UNIT(SYSDA) SPACE CYL

DSN(T2.&SN..T&TI..COPY&IC.&LOCREM.)
TEMPLATE T1 UNIT(SYSDA) SPACE CYL

DSN(T1.&SN..T&TI..COPY&IC.&LOCREM.)
LIMIT(5 MB,T2)
LISTDEF COPYLIST

INCLUDE TABLESPACE DSN8D81A.DSN8S81D
INCLUDE INDEX DSN8810.XDEPT1
INCLUDE INDEX DSN8810.XDEPT2
INCLUDE INDEX DSN8810.XDEPT3
INCLUDE TABLESPACE DSN8D81A.DSN8S81E
INCLUDE INDEX DSN8810.XEMP1
INCLUDE INDEX DSN8810.XEMP2

COPY LIST COPYLIST COPYDDN(T1,T1)
RECOVERYDDN(T1,T1)

PARALLEL(4) SHRLEVEL REFERENCE
/*

Figure 17. Example of using a list and template to make full image copies of multiple objects

168 Utility Guide and Reference

The PARALLEL 2 option specifies that up to two objects can be processed in
parallel. The TAPEUNITS 2 option specifies that up to two tape devices can be
dynamically allocated at one time. The COPYDDN option for each object specifies
the data set that is to be used for the local image copy. In this example, all of these
data sets are dynamically allocated and defined by templates. For example, table
space DSN8D81A.DSN8S81D is copied into a data set that is defined by the A1
template.

The TEMPLATE utility control statements define the templates A1 and A2.
//COPY2A EXEC DSNUPROC,SYSTEM=DSN
//SYSIN DD *

TEMPLATE A1 DSN(&DB..&SP..COPY1) UNIT CART STACK YES
TEMPLATE A2 DSN(&DB..&SP..COPY2) UNIT CART STACK YES

COPY PARALLEL 2 TAPEUNITS 2
TABLESPACE DSN8D81A.DSN8S81D COPYDDN(A1)
INDEXSPACE DSN8810.XDEPT COPYDDN(A1)
TABLESPACE DSN8D81A.DSN8S81E COPYDDN(A2)
INDEXSPACE DSN8810.YDEPT COPYDDN(A2)

Although use of templates is recommended, you can also define the output data
sets by coding JCL DD statements, as in the following example. This COPY control
statement also specifies a list of objects to be processed in parallel, but in this case,
the data sets are defined by DD statements. In each DD statement, notice the
parameters for the VOLUME option. These values show that the data sets are
defined on three different tape devices as follows:
v The first tape device contains data sets that are defined by DD statements DD1

and DD4. (For DD4, the VOLUME option has a value of *.DD1 for the REF
parameter.)

v A second tape device contains data sets that are defined by DD statements DD2
and DD3. (For DD3, the VOLUME option has a value of *.DD3 for the REF
parameter.)

v A third tape device contains the data set that is defined by DD statement DD5.

The following table spaces are to be processed in parallel on two different tape
devices:
v DSN8D81A.DSN8S81D on the device that is defined by the DD1 DD statement

and the device that is defined by the DD5 DD statement
v DSN8D81A.DSN8S81E on the device that is defined by the DD2 DD statement

Copying of the following tables spaces must wait until processing has completed
for DSN8D81A.DSN8S81D and DSN8D81A.DSN8S81E:
v DSN8D81A.DSN8S81F on the device that is defined by the DD2 DD statement

after DSN8D81A.DSN8S81E completes processing
v DSN8D81A.DSN8S81G on the device that is defined by the DD1 DD statement

after DSN8D81A.DSN8S81D completes processing

Chapter 11. COPY 169

Example 6: Using both JCL-defined and template-defined data
sets to copy a list of objects on tape

This example uses both JCL DD statements and utility templates to define four
data sets for the image copies. The JCL defines two data sets (DB1.TS1.CLP and
DB2.TS2.CLB.BACKUP), and the TEMPLATE utility control statements define two
data sets that are to be dynamically allocated (&DB..&SP..COPY1 and
&DB..&SP..COPY2).

The COPYDDN options in the COPY control statement specify the data sets that
are to be used for the local primary and backup image copies of the specified table
spaces. For example, the primary copy of table space DSN8D81A.DSN8S71D is to
be written to the data set that is defined by the DD1 DD statement (DB1.TS1.CLP),
and the primary copy of table space DSN8D81A.DSN8S71E is to be written to the
data set that is defined by the A1 template (&DB..&SP..COPY1).

Four tape devices are allocated for this COPY job: the JCL allocates two tape
drives, and the TAPEUNITS 2 option in the COPY statement indicates that two
tape devices are to be dynamically allocated. Note that the TAPEUNITS option
applies only to those tape devices that are dynamically allocated by the
TEMPLATE statement.

Recommendation: Although this example shows how to use both templates and
DD statements, use only templates, if possible.

//COPY1A EXEC DSNUPROC,SYSTEM=DSN
//DD1 DD DSN=DB1.TS1.CLP,
// DISP=(NEW,CATLG,CATLG),
// UNIT=TAPE,LABEL=(1,SL),
// VOLUME=(,RETAIN)
//DD2 DD DSN=DB2.TS2.CLP,
// DISP=(NEW,CATLG,CATLG),
// UNIT=TAPE,LABEL=(1,SL),
// VOLUME=(,RETAIN)
//DD3 DD DSN=DB3.TS3.CLB.BACKUP,
// DISP=(NEW,CATLG,CATLG),
// UNIT=TAPE,LABEL=(2,SL),
// VOLUME=(,RETAIN,REF=*.DD2)
//DD4 DD DSN=DB4.TS4.CLB.BACKUP,
// DISP=(NEW,CATLG,CATLG),
// UNIT=TAPE,LABEL=(2,SL),
// VOLUME=(,RETAIN,REF=*.DD1)
//DD5 DD DSN=DB1.TS1.CLB.BACKUP,
// DISP=(NEW,CATLG,CATLG),
// UNIT=TAPE,LABEL=(1,SL),
// VOLUME=(,RETAIN)
COPY PARALLEL 2 TAPEUNITS 3

TABLESPACE DSN8D81A.DSN8S81D COPYDDN(DD1,DD5)
TABLESPACE DSN8D81A.DSN8S81E COPYDDN(DD2)
TABLESPACE DSN8D81A.DSN8S81F COPYDDN(DD3)
TABLESPACE DSN8D81A.DSN8S81G COPYDDN(DD4)

Figure 18. Example of making full image copies of a list of objects in parallel on tape

170 Utility Guide and Reference

Example 7: Using LISTDEF to define a list of objects to copy in
parallel to tape

The following example uses the LISTDEF utility to define a list of objects to be
copied in parallel to different tape sources. The COPY control statement specifies
that the table spaces that are included in the PAYROLL list are to copied. (The
PAYROLL list is defined by the LISTDEF control statement.) The TEMPLATE
control statements define two output data sets, one for the local primary copy
(&DB..©..LOCAL) and one for the recovery primary copy
(&DB..©..REMOTE).
//COPY3A EXEC DSNUPROC,SYSTEM=DSN
//SYSIN DD *

LISTDEF PAYROLL INCLUDE TABLESPACES TABLESPACE DBPAYROLL.*
TEMPLATE LOCAL DSN(&DB..©..LOCAL) (+1) UNIT CART STACK YES
TEMPLATE REMOTE DSN(&DB..©..REMOTE) (+1) UNIT CART STACK YES
COPY LIST PAYROLL PARALLEL(10) TAPEUNITS(8)

COPYDDN(LOCAL) RECOVERYDDN(REMOTE)

In the preceding example, the utility determines the number of tape streams to use
by dividing the value for TAPEUNITS (8) by the number of output data sets (2) for
a total of 4 in this example. For each tape stream, the utility attaches one subtask.
The list of objects is sorted by size and processed in descending order. The first
subtask to finish processes the next object in the list. In this example, the
PARALLEL(10) option limits the number of objects to be processed in parallel to 10
and attaches four subtasks. Each subtask copies the objects in the list in parallel to
two tape drives, one for the primary and one for the recovery output data sets.

Example 8: Making incremental copies with updates allowed

The FULL NO option in the following COPY control statement specifies that COPY
is to make incremental image copies of any specified objects. In this case, the
objects to be copied are those objects that are included in the NAME1 list, as
indicated by the LIST option. The preceding LISTDEF utility control statement
defines the NAME1 list to include index space DSN8D81A.XEMP1 and table space
DSN8D81A.DSN8S81D. Although one of the objects to be copied is an index space
and COPY does not take incremental image copies of index spaces, the job does
not fail; COPY takes a full image copy of the index space instead. However, if a
COPY FULL NO statement identifies only an index that is not part of a list, the
COPY job fails.

//COPY1D EXEC DSNUPROC,SYSTEM=DSN
//DD1 DD DSN=DB1.TS1.CLP,
// DISP=(,CATLG),
// UNIT=3490,LABEL=(1,SL)
// VOLUME=(,RETAIN)
//DD2 DD DSN=DB2.TS2.CLB.BACKUP,
// DISP=(,CATLG),
// UNIT=3490,LABEL=(2,SL)
// VOLUME=(,RETAIN)
//SYSIN DD *

TEMPLATE A1 DSN(&DB..&SN..COPY1) UNIT CART STACK YES
TEMPLATE A2 DSN(&DB..&SN..COPY2) UNIT CART STACK YES
COPY PARALLEL 2 TAPEUNITS 2

TABLESPACE DSN8D81A.DSN8S81D COPYDDN(DD1,DD2)
TABLESPACE DSN8D81A.DSN8S81E COPYDDN(A1,A2)

Figure 19. Example of using both JCL-defined and template-defined data sets to copy a list
of objects on a tape

Chapter 11. COPY 171

All specified copies (local primary and backup copies and remote primary and
backup copies) are written to data sets that are dynamically allocated according to
the specifications of the COPYDS template. This template is defined in the
preceding TEMPLATE utility control statement.

The SHRLEVEL CHANGE option in the following COPY control statement
specifies that updates can be made during the COPY job.
TEMPLATE COPYDS DSN &US.2.&SN..&LR.&PB..D&DATE.

LISTDEF NAME1 INCLUDE INDEXSPACE DSN8D81A.XEMP1
INCLUDE TABLESPACE DSN8D81A.DSN8S81D

COPY LIST NAME1 COPYDDN(COPYDS, COPYDS) RECOVERYDDN(COPYDS,COPYDS)
FULL NO SHRLEVEL CHANGE

Example 9: Making a conditional image copy

The CHANGELIMIT(5) option in the following control statement specifies the
following conditions for making an image copy of table space
DSN8D81P.DSN8S81C:
v Take a full image copy of the table space if the percentage of changed pages is

equal to or greater than 5%.
v Take an incremental image copy of the table space if the percentage of changed

pages is greater than 0 and less than 5%.
v Do not take an image copy if no pages have changed.
COPY TABLESPACE DSN8D11P.DSN8S11C CHANGELIMIT(5)

Example 10: Reporting image copy information for a table space

The REPORTONLY option in the following control statement specifies that image
copy information is to be displayed only; no image copies are to be made. The
CHANGELIMIT(10,40) option specifies that the following information is to be
displayed:
v Recommendation that a full image copy be made if the percentage of changed

pages is equal to or greater than 40%.
v Recommendation that an incremental image copy be made if the percentage of

changed pages is greater than 10% and less than 40%.
v Recommendation that no image copy be made if the percentage of changed

pages is 10% or less.
COPY TABLESPACE DSN8D11P.DSN8S11C CHANGELIMIT(10,40) REPORTONLY

Example 11: Invoking DFSMSdss concurrent copy

The CONCURRENT option in the following COPY control statement specifies that
DFSMSdss concurrent copy is to make a full image copy of the objects in the
COPYLIST list (table space DSN8D81A.DSN8S81D and table space
DSN8D81A.DSN8S81P). The COPYDDN option indicates that the copy is to be
written to the data set that is defined by the SYSCOPY1 template. The DSSPRINT
DD statement specifies the data set for message output.

172 Utility Guide and Reference

Example 12: Invoking DFSMSdss concurrent copy and using a
filter data set

The control statement specifies that DFSMSdss concurrent copy is to make full
image copies of the objects in the TSLIST list (table spaces TS1, TS2, and TS3). The
FILTERDDN option specifies that COPY is to use the filter data set that is defined
by the FILT template. All output is sent to the SYSCOPY data set, as indicated by
the COPYDDN(SYSCOPY) option. SYSCOPY is the default. This data set is defined
in the preceding TEMPLATE control statement.

Example 13: Copying LOB table spaces together with related
objects

Assume that table space TPIQUD01 is a base table space and that table spaces
TLIQUDA1, TLIQUDA2, TLIQUDA3, and TLIQUDA4 are LOB table spaces. The
control statement specifies that COPY is to take the following actions:
v Take a full image copy of each specified table space if the percentage of changed

pages is equal to or greater than the highest decimal percentage value for the
CHANGELIMIT option for that table space. For example, if the percentage of
changed pages for table space TPIQUD01 is equal to or greater than 6.7%, COPY
is to take a full image copy.

v Take an incremental image copy of each specified table space if the percentage of
changed pages is in the range between the specified decimal percentage values
for the CHANGELIMIT option for that table space. For example, if the
percentage of changed pages for table space TLIQUDA1 is greater than 7.9% and
less than 25.3%, COPY is to take an incremental image copy.

v Do not take an image copy of each specified table space if the percentage of
changed pages is equal to or less than the lowest decimal percentage value for

//COPY EXEC DSNUPROC,SYSTEM=DSN
//SYSPRINT DD DSN=COPY1.PRINT1,DISP=(NEW,CATLG,CATLG),
// SPACE=(4000,(20,20),,,ROUND),UNIT=SYSDA,VOL=SER=DB2CC5
//DSSPRINT DD DSN=COPY1.PRINT2,DISP=(NEW,CATLG,CATLG),
// SPACE=(4000,(20,20),,,ROUND),UNIT=SYSDA,VOL=SER=DB2CC5
//SYSIN DD *

TEMPLATE SYSCOPY1 DSN &DB..&TS..COPY&IC.&LR.&PB..D&DATE..T&TIME.
UNIT(SYSDA) DISP (MOD,CATLG,CATLG)

LISTDEF COPYLIST INCLUDE TABLESPACE DSN8D81A.DSN8S81D
INCLUDE TABLESPACE DSN8D81A.DSN8S81P

COPY LIST COPYLIST
COPYDDN (SYSCOPY1)
CONCURRENT

Figure 20. Example of invoking DFSMSdss concurrent copy with the COPY utility

LISTDEF TSLIST
INCLUDE TABLESPACE TS1
INCLUDE TABLESPACE TS2
INCLUDE TABLESPACE TS3

TEMPLATE SYSCOPY DSN &DB..&TS..COPY&IC.&LR.&PB..D&DATE..T&TIME.
UNIT(SYSDA) DISP (MOD,CATLG,CATLG)

TEMPLATE FILT DSN FILT.TEST1.&SN..D&DATE.
UNIT(SYSDA) DISP (MOD,CATLG,DELETE)

COPY LIST TSLIST
FILTERDDN(FILT)
COPYDDN(SYSCOPY)
CONCURRENT

SHRLEVEL REFERENCE

Figure 21. Example of invoking DFSMSdss concurrent copy with the COPY utility and using a
filter data set

Chapter 11. COPY 173

the CHANGELIMIT option for that table space. For example, if the percentage of
changed pages for table space TLIQUDA2 is equal to or less than 2.2%, COPY is
not to take an incremental image copy.

v Take full image copies of index spaces IPIQUD01, IXIQUD02, IUIQUD03,
IXIQUDA1, IXIQUDA2, IXIQUDA3, and IXIQUDA4.

Example 14: Using GDGs to make a full image copy

The following control statement specifies that the COPY utility is to make a full
image copy of table space DBLT2501.TPLT2501. The local copies are to be written
to data sets that are dynamically allocated according to the COPYTEM1 template.
The remote copies are to be written to data sets that are dynamically allocated
according to the COPYTEM2 template. For both of these templates, the DSN
option indicates the name of generation data group JULTU225 and the generation
number of +1. (If a GDG base does not already exist, DB2 creates one.) Both of
these output data sets are to be modeled after the JULTU255.MODEL data set (as
indicated by the MODELDCB option in the TEMPLATE statements).
//***
//* COMMENT: MAKE A FULL IMAGE COPY OF THE TABLESPACE.
//* USE A TEMPLATE FOR THE GDG.
//***
//STEP2 EXEC DSNUPROC,UID=’JULTU225.COPY’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//SYSIN DD *

TEMPLATE COPYTEM1
UNIT SYSDA
DSN ’JULTU225.GDG.LOCAL.&PB.(+1)’
MODELDCB JULTU225.MODEL

TEMPLATE COPYTEM2
UNIT SYSDA
DSN ’JULTU225.GDG.REMOTE.&PB.(+1)’
MODELDCB JULTU225.MODEL

COPY TABLESPACE DBLT2501.TPLT2501

COPY
TABLESPACE DBIQUD01.TPIQUD01 DSNUM ALL CHANGELIMIT(3.3,6.7)

COPYDDN(COPYTB1)
TABLESPACE DBIQUD01.TLIQUDA1 DSNUM ALL CHANGELIMIT(7.9,25.3)

COPYDDN(COPYTA1)
TABLESPACE DBIQUD01.TLIQUDA2 DSNUM ALL CHANGELIMIT(2.2,4.3)

COPYDDN(COPYTA2)
TABLESPACE DBIQUD01.TLIQUDA3 DSNUM ALL CHANGELIMIT(1.2,9.3)

COPYDDN(COPYTA3)
TABLESPACE DBIQUD01.TLIQUDA4 DSNUM ALL CHANGELIMIT(2.2,4.0)

COPYDDN(COPYTA4)
INDEXSPACE DBIQUD01.IPIQUD01 DSNUM ALL

COPYDDN(COPYIX1)
INDEXSPACE DBIQUD01.IXIQUD02 DSNUM ALL

COPYDDN(COPYIX2)
INDEXSPACE DBIQUD01.IUIQUD03 DSNUM ALL

COPYDDN(COPYIX3)
INDEXSPACE DBIQUD01.IXIQUDA1 DSNUM ALL

COPYDDN(COPYIXA1)
INDEXSPACE DBIQUD01.IXIQUDA2 DSNUM ALL

COPYDDN(COPYIXA2)
INDEXSPACE DBIQUD01.IXIQUDA3 DSNUM ALL

COPYDDN(COPYIXA3)
INDEXSPACE DBIQUD01.IXIQUDA4 DSNUM ALL

COPYDDN(COPYIXA4)
SHRLEVEL REFERENCE

Figure 22. Example of copying LOB table spaces together with related objects

174 Utility Guide and Reference

FULL YES
COPYDDN (COPYTEM1,COPYTEM1)
RECOVERYDDN (COPYTEM2,COPYTEM2)
SHRLEVEL REFERENCE

Example 15: Copying clone table data

The following control statement indicates that COPY is to copy only clone table
data in the specified table spaces or indexes.
COPY SHRLEVEL REFERENCE CLONE

TABLESPACE DBIQUD01.TPIQUD01 DSNUM ALL CHANGELIMIT(3.3,6.7)
COPYDDN(COPYTB1)

TABLESPACE DBIQUD01.TLIQUDA1 DSNUM ALL CHANGELIMIT(7.9,25.3)
COPYDDN(COPYTA1)

TABLESPACE DBIQUD01.TLIQUDA2 DSNUM ALL CHANGELIMIT(2.2,4.3)
COPYDDN(COPYTA2)

TABLESPACE DBIQUD01.TLIQUDA3 DSNUM ALL CHANGELIMIT(1.2,9.3)
COPYDDN(COPYTA3)

TABLESPACE DBIQUD01.TLIQUDA4 DSNUM ALL CHANGELIMIT(2.2,4.0)
COPYDDN(COPYTA4)

INDEXSPACE DBIQUD01.IPIQUD01 DSNUM ALL
COPYDDN(COPYIX1)

Example 16: Copying updated table space data

The following control statement indicates that COPY is to copy only the objects
that have been updated. SCOPE PENDING indicates that you want to copy only
those objects in COPY-pending or informational COPY-pending status.
COPY SHRLEVEL REFERENCE

TABLESPACE DBIQUD01.TPIQUD01 DSNUM ALL CHANGELIMIT(3.3,6.7)
COPYDDN(COPYTB1)

TABLESPACE DBIQUD01.TLIQUDA1 DSNUM ALL CHANGELIMIT(7.9,25.3)
COPYDDN(COPYTA1)

TABLESPACE DBIQUD01.TLIQUDA2 DSNUM ALL CHANGELIMIT(2.2,4.3)
COPYDDN(COPYTA2)

TABLESPACE DBIQUD01.TLIQUDA3 DSNUM ALL CHANGELIMIT(1.2,9.3)
COPYDDN(COPYTA3)

TABLESPACE DBIQUD01.TLIQUDA4 DSNUM ALL CHANGELIMIT(2.2,4.0)
COPYDDN(COPYTA4)

INDEXSPACE DBIQUD01.IPIQUD01 DSNUM ALL
COPYDDN(COPYIX1)PARALLEL(4)

SCOPE PENDING
/*

Chapter 11. COPY 175

176 Utility Guide and Reference

Chapter 12. COPYTOCOPY

The COPYTOCOPY online utility makes image copies from an image copy that
was taken by the COPY utility. The COPYTOCOPY utility can also make image
copies from inline copies that the REORG or LOAD utilities make.

Starting with the local primary copy or a recovery-site primary copy, or a copy
created by using FlashCopy technology, COPYTOCOPY can make up to four
sequential format copies of one or more of the following types of copies:
v Local primary
v Local backup
v Recovery site primary
v Recovery site backup

You can make both full and incremental image copies of a LOB or XML table
space.

You cannot run COPYTOCOPY on concurrent copies.

The RECOVER utility uses the copies when recovering a table space or index space
to the most recent time or to a previous time. These copies can also be used by
MERGECOPY, UNLOAD, and possibly a subsequent COPYTOCOPY execution.

Output

Output from the COPYTOCOPY utility consists of:
v Up to three sequential data sets that contain the image copy. If the copy base is a

FlashCopy, four sequential copies can be made.
v Up to three sequential data sets that contain the image copy.
v Rows in the SYSIBM.SYSCOPY catalog table that describe the image copy data

sets that are available to the RECOVER utility. Your installations responsible for
ensuring that these data sets are available if the RECOVER utility requests them.

The entries for SYSCOPY columns remain the same as the original entries in the
SYSCOPY row when the COPY utility recorded them. The COPYTOCOPY job
inserts values in the columns DSNAME, GROUP_MEMBER, JOBNAME, AUTHID,
DSVOLSER, and DEVTYPE.

In all migration modes, RBA and LRSN values are displayed in 10-byte format.
This 10-byte display is unrelated to migration of the catalog or directory,
conversion of individual objects to EXTENDED format, or BSDS conversion. For
recovery purposes, this 10-byte format is the preferred input format for DB2. When
10-byte RBA or LRSN values are specified as input to DB2, conversion to 6-byte
format is performed internally as needed.

Even before the BSDS is converted to Version 11 format on all data sharing
members or the catalog and directory are migrated, 10-byte LRSN values might be
displayed with non-zero digits in the low order 3 bytes. LRSN values captured
before the BSDS is converted continue to be displayed as they were saved until
they are no longer available for display (for example, deleted by MODIFY
RECOVERY). This behavior is normal and to be expected, given the many ways
LRSN values are generated, stored, and handled in DB2. If these LRSN values are

© Copyright IBM Corp. 1983, 2013 177

|
|
|
|
|
|

|
|
|
|
|
|
|

specified as input to DB2, specify them as shown. If the LRSN value contains
non-zero digits in the low order 3 bytes, do not remove them. Any conversion that
might be required takes place inside DB2.

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v IMAGCOPY privilege for the database
v DBADM, DBCTRL, or DBMAINT authority for the database. If the object on

which the utility operates is in an implicitly created database, DBADM authority
on the implicitly created database or DSNDB04 is required.

v System DBADM authority
v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute COPYTOCOPY, but
only on a table space in the DSNDB01 or DSNDB06 database.

Restrictions on running COPYTOCOPY
v COPYTOCOPY does not support the following catalog and directory objects:

– DSNDB01.SYSUTILX and its indexes
– DSNDB01.DBD01 and its indexes
– DSNDB01.SYSDBDXA and its indexes
– DSNDB06.SYSTSCPY and its indexes

v An image copy from a COPY job with the CONCURRENT option cannot be
processed by COPYTOCOPY.

v COPYTOCOPY does not check the recoverability of an object.
v COPYTOCOPY cannot be run on a table space during the period after

RECOVER is run to a point in time before materialization of pending definition
changes and before REORG is run to complete the point-in-time recovery
process.

v COPYTOCOPY does not support a range of partitions within a partitioned table
space. Specify individual DSNUM(n). From the inline copy, COPYTOCOPY
copies only the specified partition into the output image copy data set.

Execution phases of COPYTOCOPY

The COPYTOCOPY utility operates in these phases:

Phase Description

UTILINIT
Performs initialization

CPY2CPY
Copies an image copy

UTILTERM
Performs cleanup

Syntax and options of the COPYTOCOPY control statement
The COPYTOCOPY utility control statement, with its multiple options, defines the
function that the utility job performs.

178 Utility Guide and Reference

|
|
|

|

|
|
|
|

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

Syntax diagram

�� COPYTOCOPY

�

LIST listdef-name from-copy-spec data-set-spec

ts-num-spec from-copy-spec data-set-spec
index-name-spec

CLONE
��

ts-num-spec:

�� TABLESPACE
database-name.

table-space-name
DSNUM ALL

DSNUM integer
��

index-name-spec:

��
(1)

INDEXSPACE index-space-name
database-name.

INDEX index-name
creator-id.

DSNUM ALL

(2)
DSNUM integer

��

Notes:

1 INDEXSPACE is the preferred specification.

2 Not valid for nonpartitioning indexes.

from-copy-spec:

Chapter 12. COPYTOCOPY 179

��
FROMLASTCOPY

FROMLASTFULLCOPY
(1)

FROMLASTINCRCOPY
(2)

FROMCOPY dsn
FROMVOLUME CATALOG

volser
FROMSEQNO n

��

Notes:

1 Not valid with the INDEXSPACE or INDEX keyword.

2 Not valid with the LIST keyword.

data-set-spec:

��
(1) (2)

COPYDDN(ddname1)
,ddname2 RECOVERYDDN(ddname3)

,ddname2 ,ddname4
,ddname4

RECOVERYDDN(ddname3)
,ddname4

,ddname4

��

Notes:

1 Use this option if you want to make a local site primary copy from one of the recovery site
copies.

2 You can specify up to three DD names for both the COPYDDN and RECOVERYDDN options
combined.

Option descriptions

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. The utility
allows one LIST keyword for each COPYTOCOPY control statement. Do not
specify LIST with either the INDEX or TABLESPACE keywords. DB2 invokes
COPYTOCOPY once for the entire list. This utility will only process clone data
if the CLONE keyword is specified. The use of CLONED YES on the LISTDEF
statement is not sufficient.

The partitions or partition ranges can be specified in a list.

TABLESPACE
Specifies the table space (and, optionally, the database it belongs to) that is to
be copied. database-name is the name of the database that the table space
belongs to. The default value is DSNDB04.

table-space-name is the name of the table space to be copied.

180 Utility Guide and Reference

INDEXSPACE database-name.index-space-name
Specifies the qualified name of the index space that is to be copied; the name is
obtained from the SYSIBM.SYSINDEXES table. Define the index space with the
COPY YES attribute.

database-name optionally specifies the name of the database that the index space
belongs to. The default value is DSNDB04.

index-space-name specifies the name of the index space that is to be copied.

INDEX creator-id.index-name
Specifies the index that is to be copied. Enclose the index name in quotation
marks if the name contains a blank.

creator-id optionally specifies the creator of the index. The default value is the
user identifier for the utility.

index-name specifies the name of the index that is to be copied.

DSNUM
Identifies a partition or data set, within the table space or the index space, that
is to be copied. The keyword ALL specifies that the entire table space or index
space is to be copied.

You cannot specify DSNUM for nonpartitioned indexes.

ALL
Specifies that the entire table space or index space is to be copied. You
must use ALL for a nonpartitioned secondary index.

integer
Is the number of a partition or data set that is to be copied.

An integer value is not valid for nonpartitioned secondary indexes.

For a partitioned table space or index space, the integer is its partition
number. The maximum is 4096.

For a nonpartitioned table space, find the integer at the end of the data
set name as cataloged in the VSAM catalog. The data set name has the
following format:
catname.DSNDBx.dbname.spacename.y000Z.Annn

In this format:

catname
Is the VSAM catalog name or alias.

x Is C or D.

dbname
Is the database name.

spacename
Is the table space or index space name.

y Is I or J.

z Is 1 or 2.

nnn Is the data set integer.

Specifying or using the default of DSNUM(ALL) causes COPYTOCOPY to look
for an input image copy that was taken at the entire table space or index space
level.

Chapter 12. COPYTOCOPY 181

FROMLASTCOPY
Specifies the most recent image copy that was taken for the table space or
index space that is to be the input to the COPYTOCOPY utility. This could be a
full image copy or incremental copy that is retrieved from SYSIBM.SYSCOPY.

FROMLASTFULLCOPY
Specifies the most recent full image copy that was taken for the object, which
is to be the input to the COPYTOCOPY job.

FROMLASTINCRCOPY
Specifies the most recent incremental image copy that was taken for the object
that is to be the input to COPYTOCOPY job.

FROMLASTINCRCOPY is not valid with the INDEXSPACE or INDEX
keyword. If FROMLASTINCRCOPY is specified for an INDEXSPACE or
INDEX, COPYTOCOPY uses the last full copy that was taken, if one is
available.

FROMCOPY dsn
Specifies a particular image copy data set (dsn) as the input to the
COPYTOCOPY job. This option is not valid for LIST.

If the image copy data set is a generation data set, then supply a fully
qualified data set name, including the absolute generation and version number.
If the image copy data set is not a generation data set and more than one
image copy data set have the same data set name, use the FROMVOLUME
option to identify the data set exactly.

FROMVOLUME
Identifies the image copy data set.

CATALOG
Identifies the data set as cataloged. Use this option only for an image copy
that was created as a cataloged data set. (Its volume serial is not recorded
in SYSIBM.SYSCOPY.)

COPYTOCOPY refers to the SYSIBM.SYSCOPY catalog table during
execution. If you use FROMVOLUME CATALOG, the data set must be
cataloged. If you remove the data set from the catalog after creating it, you
must catalog the data set again to make it consistent with the record that
appears in SYSIBM.SYSCOPY for this copy.

vol-ser
Identifies the data set by an alphanumeric volume serial identifier of its
first volume. Use this option only for an image copy that was created as a
noncataloged data set. Specify the first vol-ser in the SYSCOPY record to
locate a data set that is stored on multiple tape volumes.If an individual
volume serial number contains leading zeros, it must be enclosed in single
quotation marks.

FROMSEQNO n
Identifies the image copy data set by its file sequence number. n is the file
sequence number.

COPYDDN (ddname1,ddname2)
Specifies a DD name (ddname) or a TEMPLATE name for the primary (ddname1)
and backup (ddname2) copied data sets for the image copy at the local site. If
ddname2 is specified by itself, COPYTOCOPY expects the local site primary
image copy to exist. If it does not exist, error message DSNU1401 is issued and
the process for the object is terminated.

182 Utility Guide and Reference

Recommendation: Catalog all of your image copy data sets.

You cannot have duplicate image copy data sets. If the DD statement identifies
a noncataloged data set with the same name, volume serial, and file sequence
number as one that is already recorded in SYSIBM.SYSCOPY, COPYTOCOPY
issues a message and no copy is made. If the DD statement identifies a
cataloged data set with only the same name, no copy is made. For cataloged
image copy data sets, you must specify CATLG for the normal termination
disposition in the DD statement; for example, DISP=(MOD,CATLG,CATLG).
The DSVOLSER field of the SYSCOPY entry is blank.

When the image copy data set is going to a tape volume, specify VOL=SER
parameter in the DD statement.

The COPYDDN keyword specifies either a DD name or a TEMPLATE name
specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name.

RECOVERYDDN (ddname3,ddname4)
Specifies a DD name (ddname) or a TEMPLATE name for the primary (ddname3)
and backup (ddname4) copied data sets for the image copy at the recovery site.
If ddname4 is specified by itself, COPYTOCOPY expects the recovery site
primary image copy to exist. If this image copy does not exist, error message
DSNU1401 is issued and the process for the object is terminated.

You cannot have duplicate image copy data sets. The same rules apply for
RECOVERYDDN as for COPYDDN.

The RECOVERYDDN keyword specifies either a DD name or a TEMPLATE
name specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name.

CLONE
Indicates that COPYTOCOPY is to process only image copy data sets that were
taken against clone tables or indexes on clone tables. This utility will only
process clone data if the CLONE keyword is specified. The use of CLONED
YES on the LISTDEF statement is not sufficient.

Related reference:
Chapter 31, “TEMPLATE,” on page 775
Chapter 15, “LISTDEF,” on page 207

Data sets that COPYTOCOPY uses
The COPYTOCOPY utility uses a number of data sets during its operation.

The following table describes the data sets that COPYTOCOPY uses. The table lists
the DD name that is used to identify the data set, a description of the data set, and
an indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 21. Data sets that COPYTOCOPY uses

Data set Description Required?

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

Chapter 12. COPYTOCOPY 183

Table 21. Data sets that COPYTOCOPY uses (continued)

Data set Description Required?

Output copies From one to four output data sets that
contain the resulting image copy data sets.
Specify their DD names with the COPYDDN
and RECOVERYDDN options of the utility
control statement.

Yes

The following objects are named in the utility control statement and do not require
DD statements in the JCL:

Table space or Index space
Object that is to be copied. (If you want to copy only certain partitions in a
partitioned table space, use the DSNUM option in the control statement.)

DB2 catalog objects
Objects in the catalog that COPYTOCOPY accesses. The utility records each
copy in the DB2 catalog table SYSIBM.SYSCOPY.

Input image copy data set
This information is accessed through the DB2 catalog. COPYTOCOPY
retains all tape mounts for you. You do not need to code JCL statements to
retain tape mounts. If the image copy data sets that are used by
COPYTOCOPY reside on the same tape, you do not need to remove the
tape.

Output data set size

Image copies are written to sequential non-VSAM data sets.

Recommendation: Use a template for the image copy data set for a table space by
specifying a TEMPLATE statement without the SPACE keyword. When you omit
this keyword, the utility calculates the appropriate size of the data set for you.

Alternatively, you can find the approximate size, in bytes, of the image copy data
set for a table space by using the following procedure:
1. Find the high-allocated page number from the COPYPAGESF column of

SYSIBM.SYSCOPY or from information in the VSAM catalog data set.
2. Multiply the high-allocated page number by the page size.

Another option is to look at the size of the input image copy.

JCL parameters: You can specify a block size for the output by using the BLKSIZE
parameter on the DD statement for the output data set. Valid block sizes are
multiples of 4096 bytes. It is recommended that the BLKSIZE parameter be
omitted. The TAPEBLKSZLIM parameter of the DEVSUPxx member of
SYS1.PARMLIB controls the block size limit for tapes. See the z/OS MVS
Initialization and Tuning Guide for more details.

Cataloging image copies

To catalog your image copy data sets, use the DISP=(NEW,CATLG,CATLG)
parameter in the DD statement or TEMPLATE that is named by the COPYDDN or
RECOVERYDDN option. After the image copy is taken, the DSVOLSER column of
the row that is inserted into SYSIBM.SYSCOPY contains blanks.

184 Utility Guide and Reference

Duplicate image copy data sets are not allowed. If a cataloged data set is already
recorded in SYSIBM.SYSCOPY with the same name as the new image copy data
set, a message is issued and the copy is not made.

When RECOVER locates the entry in SYSIBM.SYSCOPY, it uses the ICF catalog to
allocate the required data set. If you have uncataloged the data set, the allocation
fails. In that case, the recovery can still go forward; RECOVER searches for a
previous image copy. But even if RECOVER finds one, it must use correspondingly
more of the log to recover. You are responsible for keeping the z/OS catalog
consistent with SYSIBM.SYSCOPY with regard to existing image copy data sets.

Concurrency and compatibility for COPYTOCOPY
The COPYTOCOPY utility has certain concurrency and compatibility characteristics
associated with it.

DB2 treats individual data and index partitions as distinct target objects. Utilities
that operate on different partitions of the same table space or index space are
compatible.

Claims

The following table shows which claim classes COPYTOCOPY claims on the target
object.

Table 22. Claim classes of COPYTOCOPY operations.

Target COPYTOCOPY

Table space or partition, or index space or partition UTRW

Legend:
v UTRW - Utility restrictive state - read-write access allowed

Compatibility

The following table documents which utilities can run concurrently with
COPYTOCOPY on the same target object. The target object can be a table space, an
index space, or a partition of a table space or index space. If compatibility depends
on particular options of a utility, that information is also documented in the table.

Table 23. Compatibility of COPYTOCOPY with other utilities

Action
Compatible with
COPYTOCOPY?

CHECK DATA Yes

CHECK INDEX Yes

CHECK LOB Yes

COPY No

DIAGNOSE Yes

LOAD No

MERGECOPY No

MODIFY No

QUIESCE Yes

REBUILD INDEX Yes

Chapter 12. COPYTOCOPY 185

Table 23. Compatibility of COPYTOCOPY with other utilities (continued)

Action
Compatible with
COPYTOCOPY?

RECOVER No

REORG INDEX No

REORG TABLESPACE No

REPAIR Yes

REPORT Yes

RUNSTATS INDEX Yes

RUNSTATS TABLESPACE Yes

STOSPACE Yes

UNLOAD Yes

Full or incremental image copies with COPYTOCOPY
You can copy a full image copy or an incremental image copy by using
FROMLASTCOPY keyword.

If you do not specify FROMLASTCOPY, it will be used by default, as shown in the
following example. In this example, the COPYTOCOPY control statement specifies
that the utility is to make a backup copy of the most recent full image copy or an
incremental image copy of the table space DSN8S11E in database DSN8D11A:
COPYTOCOPY TABLESPACE DSN8D11A.DSN8S11E

COPYDDN(,DDNAME2)

The COPYTOCOPY utility makes a copy from an existing image copy and writes
pages from the image copy to the output data sets. The JCL for the utility job must
include DD statements or a template for the output data sets. If the object consists
of multiple data sets and all are copied in one job, the copies reside in one physical
sequential output data set.

Incremental image copies with COPYTOCOPY
An incremental image copy is a copy of the pages that have changed since the last
full or incremental image copy.

To make a copy of an incremental image copy, use the keyword
FROMLASTINCRCOPY.

The following example control statement specifies that COPYTOCOPY is to make a
local site backup image copy, a recovery site primary image copy, and a recovery
site backup image copy from an incremental image copy.
COPYTOCOPY TABLESPACE DSN8D11A.DSN8S11E

FROMLASTINCRCOPY
COPYDDN(,COPY2)
RECOVERYDDN(COPY3,COPY4)

Using more than one COPYTOCOPY statement
You can use more than one control statement for COPYTOCOPY in one DB2 utility
job step.

186 Utility Guide and Reference

About this task

After each COPYTOCOPY statement executes successfully:
v A row referring to the image copy is recorded in SYSIBM.SYSCOPY table.
v The image copy data set is valid and available for RECOVER, MERGECOPY,

COPYTOCOPY, and UNLOAD.

If a job step that contains more than one COPYTOCOPY statement abnormally
terminates, do not use TERM UTILITY. Restart the job from the last commit point
by using RESTART instead. Terminating COPYTOCOPY in this case might cause
inconsistencies between the ICF catalog and DB2 catalogs if generation data sets
are used.

Copying from a specific image copy
You can specify a particular image copy that is to be used as input to the
COPYTOCOPY utility by using the FROMCOPY option.

Procedure

Invoke the COPYTOCOPY utility with the FROMCOPY keyword. If the input data
set is a FlashCopy image copy and the copied object is partitioned, you must also
specify the data set number by including the DSNUM option in the control
statement. If you specify the FROMCOPY keyword and the specified data set is
not found in SYSIBM.SYSCOPY, COPYTOCOPY issues message DSNU1401I.
Processing for the object then terminates.

Example

The following control statement specifies that COPYTOCOPY is to make three
copies of the table space TPA9031C in database DBA90301 from the image copy
data set DH109003.COPY1.STEP1.COPY3:
COPYTOCOPY TABLESPACE DBA90301.TPA9031C

FROMCOPY DH109003.COPY1.STEP1.COPY3
COPYDDN(,COPY2)
RECOVERYDDN(COPY3,COPY4)

Copying a FlashCopy image copy by using COPYTOCOPY
COPYTOCOPY can create up to four sequential image copies of a FlashCopy
image copy. COPYTOCOPY and COPY are the only utilities that can create
sequential copies from a FlashCopy image copy.

About this task

Making sequential copies of a FlashCopy image copy is useful if you need to
unload data from an image copy. Because the UNLOAD utility does not accept
FlashCopy image copies as input, you must first make a sequential copy of the
FlashCopy image copy and then unload the data from the sequential copy.

Procedure

To copy a FlashCopy image copy:

In the COPYTOCOPY utility control statement, specify all of the following options:

Chapter 12. COPYTOCOPY 187

v FROMCOPY option with the name of VSAM data set that contains the
FlashCopy image copy

v DSNUM option with the appropriate data set or partition number for the
FlashCopy image copy

v COPYDDN and RECOVERYDDN as needed to indicate which sequential copies
you want to create

Related concepts:
“FlashCopy image copies” on page 149
Related tasks:
“Unloading data from image copy data sets” on page 849

Using TEMPLATE with COPYTOCOPY
Template data set name substitution variables resolve as usual. COPYTOCOPY
does not use the template values of the original COPY utility execution.

Updating SYSCOPY records
The image copies COPYTOCOPY made are registered in SYSIBM.SYSCOPY for
later use by the RECOVER utility. Other utilities can use these copies, too.

Columns that are inserted by COPYTOCOPY are the same as those of the original
entries in SYSCOPY row when the COPY utility recorded them. Except for
columns GROUP_MEMBER, JOBNAME, AUTHID, DSNAME, DEVTYPE, and
DSVOLSER, the columns are those of the COPYTOCOPY job. When
COPYTOCOPY is invoked at the partition level (DSNUM n) and the input data set
is an inline copy that was created by the REORG of a range of partitions,
COPYTOCOPY inserts zeros in the HIGHDSNUM and LOWDSNUM columns of
the SYSCOPY record.

How COPYTOCOPY determines which input copy to use
The COPYTOCOPY utility makes a copy of an existing image copy. Which image
copy the utility uses as input depends on the options that you specify and where
you run the utility job.

If you specify the FROMCOPY keyword in the utility control statement, only the
specified data set is used as input to the COPYTOCOPY job.

If you do not specify the FROMCOPY keyword, COPYTOCOPY uses the following
search order to determine the input data set:
v If you run the utility at the local site, the search order is the local site primary

copy, the local site backup copy, the recovery site primary copy, and the recovery
site backup copy.

v If you run the utility at the recovery site, the search order is the recovery site
primary copy, the recovery site backup copy, the local site primary copy, and the
local site backup copy.

If the input data set cannot be allocated or opened, COPYTOCOPY attempts to use
the next image copy data set, with the same START_RBA value in the
SYSIBM.SYSCOPY catalog table, in the preceding search order.

188 Utility Guide and Reference

Related reference:
“Syntax and options of the COPYTOCOPY control statement” on page 178

SYSIBM.SYSCOPY table (DB2 SQL)

Generation data group definitions for the COPYTOCOPY utility
You can use generation data groups to hold image copies. Use of generation data
groups offers the benefit of automating allocation of data set names and deletion of
the oldest data set. You can also use templates when using generation data groups.

To define the generation group, follow these guidelines:
v Use generation data groups to hold image copies because their use automates

the allocation of data set names and the deletion of the oldest data set.
v Use templates when using generation data groups.
v When you define the generation data group:

– You can specify that the oldest data set is to be automatically deleted when
the maximum number of data sets is reached. If you do that, make the
maximum number large enough to accommodate all recovery requirements.
When data sets are deleted, use the MODIFY utility to delete the
corresponding rows in SYSIBM.SYSCOPY.

– Make the limit number of generation data sets equal to the number of copies
that you want to keep. Use NOEMPTY to avoid deleting all the data sets
from the integrated catalog facility catalog when the limit is reached.

Using DB2 with DFSMS products
You can use DB2 with DFSMS products.

If image copy data sets are managed by HSM or SMS, all data sets are cataloged.

If you plan to use SMS, catalog all image copies. Never maintain cataloged and
uncataloged image copies that have the same name.

Image copies on tape
Do not combine a full image copy and incremental image copies for the same table
space on one tape volume. If you do, the RECOVER TABLESPACE utility cannot
allocate the incremental image copies.

Copies of lists of objects from tape
The COPYTOCOPY utility determines the number of tape drives to use for the
function.

If you use JCL to define tape drives, the JCL allocates tape drives for those
definitions. If you use TEMPLATES to allocate tape drives for the output data sets,
the utility dynamically allocates the tape drives according to the following
algorithm:
v One tape drive if the input data set resides on tape.
v A tape drive for each template with STACK YES that references tape.
v Three tape drives, one for each of the local and remote output image copies, in

case non-stacked templates reference tape.

Chapter 12. COPYTOCOPY 189

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsyscopytable.htm#db2z_sysibmsyscopytable

Thus, COPYTOCOPY allocates a minimum of three tape drives. The utility
allocates four tape drives if the input data set resides on tape, and more tape
drives if you specified tape templates with STACK YES.

If input data sets to be copied are stacked on tape and output data sets are defined
by a template, the utility sorts the list of objects by the file sequence numbers
(FSN) of the input data sets and processes the objects serially.

Image copies of compressed indexes are copied in uncompressed format, so if you
perform COPYTOCOPY using those image copies as input, it will result in
uncompressed image copies.

For example, image copies of the following table spaces with their FSNs are
stacked on TAPE1:
v DB2.TS1 FSN=1
v DB2.TS2 FSN=2
v DB2.TS3 FSN=3
v DB2.TS4 FSN=4

In the following statements, COPYTOCOPY uses a template for the output data
set:
//COPYTOCOPY EXEC DSNUPROC,SYSTEM=V71A
//SYSIN DD *
TEMPLATE A1 &DB..&SP..COPY1 TAPE UNIT CART STACK YES

COPYTOCOPY
TABLESPACE DB1.TS4

LASTFULL
RECOVERYDDN(A1)

TABLESPACE DB1.TS1
LASTFULL

RECOVERYDDN(A1)
TABLESPACE DB1.TS2

LASTFULL
RECOVERYDDN(A1)

TABLESPACE DB1.TS3
LASTFULL
RECOVERYDDN(A1)

As a result, the utility sorts the objects by FSN and processes them in the following
order:
v DB1.TS1
v DB1.TS2
v DB1.TS3
v DB1.TS4

If the output data sets are defined by JCL, the utility gives stacking preference to
the output data sets over input data sets. If the input data sets are not stacked, the
utility sorts the objects by size in descending order.

Termination or restart of COPYTOCOPY
You can terminate or restart the COPYTOCOPY utility.

Termination of COPYTOCOPY

You can use the TERM UTILITY command to terminate a COPYTOCOPY job

190 Utility Guide and Reference

Restart of a COPYTOCOPY job

If you do not use the TERM UTILITY command, you can restart a COPYTOCOPY
job. COPYTOCOPY jobs restart from the last commit point. You cannot use
RESTART(PHASE) for any COPYTOCOPY job. If you are restarting a
COPYTOCOPY job with uncataloged output data sets, you must specify the
appropriate volumes for the job in the JCL or on the TEMPLATE utility statement.
Doing so could impact your ability to use implicit restart.

To prepare for restarting a COPYTOCOPY job, specify
DISP=(MOD,CATLG,CATLG) on your DD statements.

Restart of COPYTOCOPY after an out-of-space condition

You can restart COPYTOCOPY from the last commit point after receiving an
out-of-space condition.
Related concepts:
“Termination of an online utility with the TERM UTILITY command” on page 36
“Restart of an online utility” on page 39
Related tasks:
“Restarting after the output data set is full” on page 43

Sample COPYTOCOPY control statements
Use the sample control statements as models for developing your own
COPYTOCOPY control statements.

Example 1: Making a local backup copy

The following control statement specifies that the COPYTOCOPY utility is to make
a local backup copy of the most recent full image copy or incremental image copy,
whichever is most recent. The COPYDDN option specifies that the data set for the
local site backup image copy is defined by the COPY2 DD statement. Because no
data set is specified for the local site primary image copy, which is usually the first
parameter of the COPYDDN option, COPYTOCOPY expects this copy to already
exist. If it does not exist, DB2 issues an error message and terminates the job.
//STEP1 EXEC DSNUPROC,UID=’DH109001.COPY1’,
// UTPROC=’’,
// SYSTEM=’DSN’
//COPY2 DD DSN=DH109001.C2C01.STEP2.COPY2,DISP=(MOD,CATLG,CATLG),
// SPACE=(1000,(20,20),,,ROUND)
//SYSIN DD *

COPYTOCOPY TABLESPACE DBA90101.TLA9011A COPYDDN(,COPY2)
//

Example 2: Copying the most recent copy

The following control statement specifies that COPYTOCOPY is to make a local
site backup copy, a recovery site primary copy, and a recovery site backup copy of
table space DBA90102.TPA9012C. The COPYDDN and RECOVERYDDN options
also indicate the data sets to which these copies should be written. For example,
the recovery site primary copy is to be written to the COPY3 data set. The
FROMLASTCOPY option specifies that the most recent full image copy or
incremental image copy is to be used as the input copy data set. This option is the
default and is therefore not required.

Chapter 12. COPYTOCOPY 191

COPYTOCOPY TABLESPACE DBA90102.TPA9012C
FROMLASTCOPY COPYDDN(,COPY2)
RECOVERYDDN(COPY3,COPY4)

Example 3: Copying the most recent full image copy

The following control statement specifies that COPYTOCOPY is to make primary
and backup copies at the recovery site of table space DBA90201.TPA9021C. The
FROMLASTFULLCOPY option specifies that the most recent full image copy is to
be used as the input copy data set.
COPYTOCOPY TABLESPACE DBA90201.TPA9021C

FROMLASTFULLCOPY
RECOVERYDDN(COPY3,COPY4)

Example 4: Specifying a copy data set for input

The following control statement specifies that COPYTOCOPY is to make a local
site backup copy, a recovery site primary copy, and a recovery site backup copy
from data set DH109003.COPY1.STEP1.COPY3. This input data set is specified by
the FROMCOPY option. The output data sets (COPY2, COPY3, and COPY4) are
specified by the COPYDDN and RECOVERYDDN options.
COPYTOCOPY TABLESPACE DBA90301.TPA9031C

FROMCOPY DH109003.COPY1.STEP1.COPY3
COPYDDN(,COPY2)
RECOVERYDDN(COPY3,COPY4)

Example 5: Identifying a cataloged image copy data set

The following control statement specifies that COPYTOCOPY is to make a local
site backup copy from a cataloged data set that is named
DH109003.COPY1.STEP1.COPY4. This data set is identified by the FROMCOPY
and FROMVOLUME options. The FROMCOPY option specifies the input data set
name, and the FROMVOLUME CATALOG option indicates that the input data set
is cataloged. Use the FROMVOLUME option to distinguish a data set from other
data sets that have the same name.
COPYTOCOPY TABLESPACE DBA90302.TLA9032A

FROMCOPY DH109003.COPY1.STEP1.COPY4
FROMVOLUME CATALOG
COPYDDN(,COPY2)

Example 6: Identifying an uncataloged image copy data set

The control statement specifies that COPYTOCOPY is to make a local site backup
copy, a recovery site primary copy, and a recovery site backup copy from an
uncataloged data set, JUKQU2BP.COPY1.STEP1.TP01. The FROMCOPY option
identifies this input data set name, and the FROMVOLUME option identifies the
volume (SCR03) for the input data set. Use the FROMVOLUME option to
distinguish a data set from other data sets that have the same name. The
COPYDDN option identifies the data set for the local site backup copy. This data
set is to be dynamically allocated according to the specifications of the C2C1_T1
template, which is defined in one of the preceding TEMPLATE control statements.
The RECOVERYDDN option identifies the data sets for the recovery site copies.
These data sets are to be dynamically allocated according to the specifications of
the C2C1_T2 and C2C1_T3 templates, which are defined in the preceding
TEMPLATE control statements.

192 Utility Guide and Reference

Example 7: Processing a list of objects

The following control statement specifies that COPYTOCOPY is to make local site
backup copies of the three partitions of table space DBA90402.TPA9042C that are
specified by the DSNUM option (partitions 2, 3, and 4). COPYTOCOPY uses the
following input copy data sets, as indicated by the FROMLASTFULLCOPY,
FROMLASTCOPY, and FROMLASTINCRCOPY options:
v The most recent full image copy for partition 2
v The most recent full image copy or incremental image copy, whichever is most

recent, for partition 3
v The most recent incremental image copy for partition 4

The COPYDDN option for each partition indicates the output data sets (COPY2,
COPY3, and COPY4).
COPYTOCOPY

TABLESPACE DBA90402.TPA9042C DSNUM 2
FROMLASTFULLCOPY COPYDDN(,COPY2)

TABLESPACE DBA90402.TPA9042C DSNUM 3
FROMLASTCOPY COPYDDN(,COPY3)

TABLESPACE DBA90402.TPA9042C DSNUM 4
FROMLASTINCRCOPY COPYDDN(,COPY4)

Example 8: Using LISTDEF and TEMPLATE switching

The following COPYTOCOPY control statement specifies that the utility is to copy
the list of objects that are included in the CPY1 list, which is defined by the
LISTDEF control statement. The copies are to be written to the data sets that are
defined by the T3 template, which is defined in the TEMPLATE control statement.
Additionally, T3 template has defined the LIMIT keyword, that is to switch from
T3 template to T4 template if the output data set size is bigger than the specified
limit value 5 MB. This template defines the naming convention for the output data
sets that are to be dynamically allocated.

//STEP1 EXEC DSNUPROC,UID=’JUKQU2BP.C2C1’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//SYSIN DD *

TEMPLATE C2C1_T1
DSN(JUKQU2BP.C2C1.LB.&SN.)
DISP(NEW,CATLG,CATLG)
UNIT(SYSDA)

TEMPLATE C2C1_T2
DSN(JUKQU2BP.C2C1.RP.&SN.)
DISP(NEW,CATLG,CATLG)
UNIT(SYSDA)

TEMPLATE C2C1_T3
DSN(JUKQU2BP.C2C1.RB.&SN.)
DISP(NEW,CATLG,CATLG)
UNIT(SYSDA)

COPYTOCOPY TABLESPACE DBKQBP01.TPKQBP01
FROMCOPY JUKQU2BP.COPY1.STEP1.TP01
FROMVOLUME SCR03
COPYDDN(,C2C1_T1)
RECOVERYDDN(C2C1_T2,C2C1_T3)

/*

Figure 23. Example of identifying an uncataloged image copy data set

Chapter 12. COPYTOCOPY 193

The OPTIONS PREVIEW statement before the LISTDEF statement is used to force
the CPY1 list contents to be included in the output. For long lists, using this
statement is not recommended, because it might cause the output to be too long.
The OPTIONS OFF statement ends the PREVIEW mode processing, so that the
following TEMPLATE and COPYTOCOPY jobs run normally.
OPTIONS PREVIEW

LISTDEF CPY1 INCLUDE TABLESPACES TABLESPACE DBA906*.T*A906*
INCLUDE INDEXSPACES COPY YES INDEXSPACE ADMF001.I?A906*

OPTIONS OFF
TEMPLATE T4 UNIT(3B0)

DSN(T4.&SN..T&TI..COPY&IC.&LOCREM.)
TEMPLATE T3 UNIT(SYSDA) SPACE CYL

DSN(T3.&SN..T&TI..COPY&IC.&LOCREM.)
LIMIT(5 MB,T4)

COPYTOCOPY LIST CPY1 COPYDDN(T3,T3)

Example 8: Using LISTDEF and TEMPLATE with the CLONE
option

The following COPYTOCOPY control statement specifies that the utility is to copy
the list of objects that are included in the C2C1_LIST list, which is defined by the
LISTDEF control statement. The CLONE option indicates that COPYTOCOPY is to
process only image copy data sets that were taken against clone objects.
LISTDEF C2C1_LIST

INCLUDE TABLESPACES TABLESPACE DBKQBS01.TPKQBS01
INCLUDE INDEXSPACES INDEXSPACE DBKQBS01.IPKQBS11
INCLUDE INDEXSPACES INDEXSPACE DBKQBS01.IXKQBS12
INCLUDE TABLESPACES TABLESPACE DBKQBS02.TSKQBS02
INCLUDE INDEXSPACES INDEXSPACE DBKQBS02.IXKQBS21
INCLUDE INDEXSPACES INDEXSPACE DBKQBS02.IXKQBS22

TEMPLATE C2C1_T1
DSN(JUKQU2BS.C2C1.LB.&SN.)
DISP(NEW,CATLG,CATLG)
UNIT(SYSDA)

TEMPLATE C2C1_T2
DSN(JUKQU2BS.C2C1.RP.&SN.)
DISP(NEW,CATLG,CATLG)
UNIT(SYSDA)

TEMPLATE C2C1_T3
DSN(JUKQU2BS.C2C1.RB.&SN.)
DISP(NEW,CATLG,CATLG)
UNIT(SYSDA)

COPYTOCOPY LIST C2C1_LIST
FROMLASTFULLCOPY
COPYDDN(,C2C1_T1)
RECOVERYDDN(C2C1_T2,C2C1_T3)
CLONE

194 Utility Guide and Reference

Chapter 13. DIAGNOSE

The DIAGNOSE online utility generates information that is useful in diagnosing
problems. Use this utility only under the direction of IBM Software Support.

Interpreting output

One intended use of this utility is to aid in determining and correcting system
problems. When diagnosing DB2 problems, you might need to refer to licensed
documentation to interpret output from this utility.

Authorization required

To execute this utility for options which access relational data, you must use a
privilege set that includes one of the following authorizations:
v REPAIR privilege for the database
v DBADM or DBCTRL authority for the database. If the object on which the utility

operates is in an implicitly created database, DBADM authority on the implicitly
created database or DSNDB04 is required.

v System DBADM authority
v DATAACCESS authority
v SQLADM authority
v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can execute the DIAGNOSE utility on a
table space in the DSNDB01 or DSNDB06 database.

An ID with installation SYSADM authority can execute the DIAGNOSE utility
with the WAIT statement option on any table space.

Syntax and options of the DIAGNOSE control statement
The DIAGNOSE utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After you
create it, save it in a sequential or partitioned data set. When you create the JCL
for running the job, use the SYSIN DD statement to specify the name of the data
set that contains the utility control statement.

Syntax diagram

�� DIAGNOSE diagnose statement
END

��

diagnose statement:

© Copyright IBM Corp. 1983, 2013 195

��

�

,

TYPE(integer)
�

ALLDUMPS
,

(X'abend-code')

�

�

�

NODUMPS
,

(X'abend-code')

�

�
display statement wait statement abend statement

��

display statement:

�� DISPLAY OBD table-space-name
database-name . ALL CLONE

TABLES
INDEXES

SYSUTIL
MEPL
AVAILABLE
DBET DATABASE database-name

TABLESPACE table-space-name CLONE
database-name.

INDEX index-name

��

wait statement:

�� �WAIT MESSAGE message-id
INSTANCE integer

TRACEID X'trace-id'
integer INSTANCE integer

��

abend statement:

�� ABEND MESSAGE message-id
INSTANCE integer NODUMP

TRACEID X'trace-id'
integer INSTANCE integer

��

196 Utility Guide and Reference

Option descriptions

TYPE(integer, ...)
Specifies one or more types of diagnose that you want to perform.

integer is the number of types of diagnoses. The maximum number of types is
32. IBM Software Support defines the types as needed to diagnose problems
with IBM utilities.

ALLDUMPS(X'abend-code', ...)
Forces a dump to be taken in response to any utility abend code.

X'abend-code' is a member of a list of abend codes to which the scope of
ALLDUMPS is limited.

abend-code is a hexadecimal value.

NODUMPS(X'abend-code', ...)
Suppresses the dump for any utility abend code.

X'abend-code' is a member of a list of abend codes to which the scope of
NODUMPS is limited.

abend-code is a hexadecimal value.

DISPLAY
Formats the specified database items using SYSPRINT.

OBD database-name.table-space-name
Formats the object descriptor (OBD) of the table space.

database-name is the name of the database in which the table space belongs.

table-space-name is the name of the table space whose OBD is to be
formatted.

ALL
Formats all OBDs of the table space. The OBD of any object that is
associated with the table space is also formatted.

TABLES
Formats the OBDs of all tables in the specified table spaces.

INDEXES
Formats the OBDs of all indexes in the specified table spaces.

SYSUTIL
Formats every record from SYSIBM.SYSUTIL. This directory table stores
information about all utility jobs.

MEPL
Dumps the module entry point lists (MEPLs) to SYSPRINT.

AVAILABLE
Displays the utilities that are installed on this subsystem in both bitmap
and readable format. The presence or absence of the DB2 Utilities Suite for
z/OS (5655-W87) affects the results of this display. Message DSNU862I
displays the output from DIAGNOSE DISPLAY AVAILABLE.

Related information:

DSNU862I (DB2 Messages)

DBET
Dumps the contents of a database exception table (DBET) to SYSPRINT.

Chapter 13. DIAGNOSE 197

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu862i.htm#dsnu862i

DATABASE database-name
Dumps the DBET entry that is associated with the specified database.

database-name is the name of the database.

TABLESPACE database-name.table-space-name
Dumps the DBET entry that is associated with the specified table
space.

database-name is the name of the database.

table-space-name is the name of the table space.

INDEX creator-name.index-name
Dumps the DBET entry that is associated with the specified index.

creator-name is the ID of the creator of the index.

index-name is the name of the index.

Enclose the index name in quotation marks if the name contains a
blank.

CLONE
Indicates that DIAGNOSE is to display information for only the following
specified objects:
v Clone tables
v Table spaces that contain clone tables
v Indexes on clone tables
v Index spaces that contain indexes on clone tables.

WAIT
Suspends utility execution when it encounters the specified utility message or
utility trace ID. DIAGNOSE issues a message to the console. Utility execution
does not resume until the operator replies to that message, the utility job times
out, or the utility job is canceled. This waiting period allows events to be
synchronized while you are diagnosing concurrency problems. The utility
waits for the operator to reply to the message, allowing the opportunity to
time or synchronize events.

If the utility message or trace ID is not encountered, processing continues.

ABEND
Forces an abend during utility execution if the specified utility message or
utility trace ID is issued.

If the utility message or trace ID is not encountered, processing continues

NODUMP
Suppresses the dump that is generated by an abend of DIAGNOSE.

MESSAGE message-id
Specifies a DSNUxxx or DSNUxxxx message that causes a wait or an abend to
occur when that message is issued.

message-id is the message, in the form of Uxxx or Uxxxx.

INSTANCE integer
Specifies that a wait or an abend is to occur when the MESSAGE option
message is encountered a specified number of times. If INSTANCE is not
specified, a wait or abend occurs each time that the message is
encountered.

198 Utility Guide and Reference

integer is the number of times that a message is to be encountered before a
wait or an abend occurs.

TRACEID trace-id
Specifies a trace ID that causes a wait or an abend to occur when the ID is
encountered. You can find valid trace IDs can be found in data set
prefix.SDSNSAMP(DSNWEIDS).

trace-id is a trace ID that is associated with the utility trace (RMID21). You can
specify trace-id in either decimal (integer) or hexadecimal (X'trace-id') format.

INSTANCE integer
Specifies that a wait or an abend is to occur when the TRACEID option is
encountered a specified number of times. If INSTANCE is not specified, a
wait or abend occurs each time that the trace ID is encountered.

integer is the number of times that a trace ID is to be encountered before a
wait or an abend occurs.

END
Ends DIAGNOSE processing.

Data sets that DIAGNOSE uses
The DIAGNOSE utility uses a number of data sets during its operation.

The following table lists the data sets that DIAGNOSE uses. The table lists the DD
name that is used to identify the data set, a description of the data set, and an
indication of whether it is required. Include statements in your JCL for each
required data set.

Table 24. Data sets that DIAGNOSE uses

Data set Description Required?

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

The following objects are named in the utility control statement and do not require
DD statements in the JCL:

Database
Database about which DIAGNOSE is to gather diagnosis information.

Table space
Table space about which DIAGNOSE is to gather diagnosis information.

Index space
Index about which DIAGNOSE is to gather diagnosis information.

Concurrency and compatibility for DIAGNOSE
The DIAGNOSE utility has certain concurrency and compatibility characteristics
associated with it.

DIAGNOSE can run concurrently on the same target object with any SQL
operation or utility, except a utility that is running on DSNDB01.SYSUTILX.

Chapter 13. DIAGNOSE 199

Forcing a utility abend
You can force a utility abend by specifying either a message or a trace IFCID in the
utility control statement.

Procedure

To force utilities to abend, use the following approaches:
v DIAGNOSE can force a utility to abend when a specific message is issued. To

force an abend when unique-index or referential-constraint violations are
detected, you must specify the message that is issued when the error is
encountered. Specify this message by using the MESSAGE option of the ABEND
statement.

v Instead of using a message, you can force an abend by using the TRACEID
option of the ABEND statement to specify a trace IFCID that is associated with
the utility to force an abend.

v Use the INSTANCE keyword to specify the number of times that the specified
message or trace record is to be generated before the utility abends.

Termination or restart of DIAGNOSE
You can terminate and restart the DIAGNOSE utility.

You can terminate a DIAGNOSE utility job by using the TERM UTILITY command
if you submitted the job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a DIAGNOSE utility job, but it starts from the beginning again.
Related concepts:
“Restart of an online utility” on page 39

Sample DIAGNOSE control statements
Use the sample control statements as models for developing your own DIAGNOSE
control statements.

Example 1: Displaying DB2 MEPLs

The following DIAGNOSE utility control statement specifies that the DB2 MEPLs
are to be displayed. You can use the output from this statement to find the service
level of a specific DB2 module. The output lists each module, the most recent PTF
or APAR that was applied to the module, and the date that the PTF or APAR was
installed.

Important: Specify DB2 load libraries in the JOBLIB or STEPLIB of the DIAGNOSE
DISPLAY MEPL job that are at the same maintenance level as the load libraries for
the DB2 subsystem on which you execute the utility. Doing this ensures that the
information that DIAGNOSE DISPLAY MEPL reports reflects the current state of
the DB2 subsystem.
DIAGNOSE
DISPLAY MEPL

200 Utility Guide and Reference

Example 2: Forcing a dump

The following control statement forces a dump if an abend occurs with either of
the following reason codes: X'00E40322' or X'00E40323'.
DIAGNOSE
ALLDUMPS(X’00E40322’,X’00E40323’)

The following control statement forces a dump for any utility abend that occurs
during the execution of the specified COPY job. The DIAGNOSE END option ends
DIAGNOSE processing.
DIAGNOSE
ALLDUMPS
COPY TABLESPACE DSNDB06.SYSDDF
DIAGNOSE END

Example 3: Performing a diagnosis of a specific type

The control statement in this example specifies that you want to perform a
diagnosis of type 66. Run this job under the direction of IBM Software Support to
diagnose problems with utility parallelism.

Example 4: Forcing a utility abend

The control statement in this example forces an abend of the specified COPY job
when one instance of message DSNU400 is issued. The NODUMP option indicates
that the DIAGNOSE utility is not to generate a dump in this situation.

//STEP3 EXEC DSNUPROC,UID=’JUOSU226.REBUI’,
// UTPROC=’’,SYSTEM=’SSTR’
//SYSIN DD *
DIAGNOSE TYPE(66)

REBUILD INDEX (IDOS0302, IDOS0304, IPOS0301)
SORTDEVT SYSDA SORTNUM 3

DIAGNOSE END
/*

Figure 24. Example of diagnosing type 66

Chapter 13. DIAGNOSE 201

|
|
|
|

Example 5: Suspending utility execution

The control statement in this example indicates that the specified COPYTOCOPY
job is to be suspended when it encounters 51 occurrences of the trace ID X'2E6F'.

Example 6: Displaying only CLONE data

The control statement indicates that the DIAGNOSE utility is to be display
information for only the specified objects that are table clones, table spaces that
contain clone tables, indexes on clone tables, or index spaces that contain indexes
on clone tables.
DIAGNOSE DISPLAY DBET

DATABASE DBNI0501
CLONE

//STEP1 EXEC DSNUPROC,UID=’IUJMU116.COPY1’,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSCOPY1 DD DSN=IUJMU116.COPY.STEP1.SYSCOPY1,DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
DIAGNOSE ABEND MESSAGE U400

INSTANCE 1
NODUMP

COPY TABLESPACE DSN8D11A.DSN8S11E
COPYDDN SYSCOPY1

DIAGNOSE END
//*

The following control statement forces an abend of the specified LOAD job when message
DSNU311 is issued for the fifth time. The NODUMP option indicates that the DIAGNOSE
utility is not to generate a dump in this situation.

DIAGNOSE
ABEND MESSAGE U311 INSTANCE 5 NODUMP
LOAD DATA RESUME NO

INTO TABLE TABLE1
(NAME POSITION(1) CHAR(20))

DIAGNOSE END

Figure 25. Example of forcing an abend of the COPY utility

//STEP2 EXEC DSNUPROC,UID=’DH109012.C2C01’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//COPY2 DD DSN=DH109012.C2C01.STEP2.COPY2,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(1000,(20,20),,,ROUND)
//COPY3 DD DSN=DH109012.C2C01.STEP2.COPY3,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(1000,(20,20),,,ROUND)
//COPY4 DD DSN=DH109012.C2C01.STEP2.COPY4,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(1000,(20,20),,,ROUND)
//SYSIN DD *

DIAGNOSE WAIT TRACEID X’2E6F’ INSTANCE 51
COPYTOCOPY TABLESPACE DBA91201.TPA91201 DSNUM 1

FROMLASTFULLCOPY COPYDDN(,COPY2)
RECOVERYDDN(COPY3,COPY4)

DIAGNOSE END
/*

Figure 26. Example of suspending utility execution

202 Utility Guide and Reference

Chapter 14. EXEC SQL

The EXEC SQL online utility control statement declares cursors or executes
dynamic SQL statements. You can use this utility as part of the DB2 cross-loader
function of the LOAD utility.

The cross-loader function enables you to use a single LOAD job to transfer data
from one location to another location or from one table to another table at the
same location. You can use either a local server or any DRDA-compliant remote
server as a data input source for populating your tables. Your input can even come
from other sources besides DB2 for z/OS; you can use IBM Information Integrator
Federation feature for access to data from sources as diverse as Oracle and Sybase,
as well as the entire DB2 family of database servers.

Output

The EXEC SQL control statement produces a result table when you specify a
cursor.

Authorization required

The EXEC SQL statement itself requires no privileges to execute. The authorization
rules that are defined for the dynamic preparation of the SQL statement specified
by EXECUTE IMMEDIATE apply.

Execution phases of EXEC SQL

The EXEC SQL control statement executes entirely in the EXEC phase. You can
restart the EXEC phase if necessary.
Related tasks:
“Loading data by using the cross-loader function” on page 311
Related reference:

Statements (DB2 SQL)

Syntax and options of the EXEC SQL control statement
The EXEC SQL utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

Utility control statements submitted in UNICODE, including EXEC SQL, are
translated into EBCDIC before processing; however, character string constants are
not translated. Character string constants are left in the character set in which the
were specified. In some cases, you might need to use hexadecimal string constants
in order to achieve the behavior that you want.

© Copyright IBM Corp. 1983, 2013 203

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_statementsintro.htm#db2z_sql_statementsintro

Syntax diagram

�� EXEC SQL declare-cursor-spec ENDEXEC
non-select dynamic SQL statement

��

declare-cursor-spec:

�� DECLARE cursor-name CURSOR FOR select-statement ��

Option descriptions

cursor-name
Specifies the cursor name. The name must not identify a cursor that is already
declared within the same input stream. When using the DB2 cross-loader
function to load data from a remote server, you must identify the cursor with a
three-part name. Cursor names that are specified with the EXEC SQL utility
cannot be longer than eight characters.

select-statement
Specifies the result table for the cursor. This statement can be any valid SQL
SELECT statement, including joins, unions, conversions, aggregations, special
registers, and user-defined functions.

non-select dynamic SQL statement
Specifies a dynamic SQL statement that is to be used as input to EXECUTE
IMMEDIATE. You can specify the following dynamic SQL statements in a
utility statement:

ALTER
COMMENT ON
COMMIT
CREATE
DELETE
DROP
EXPLAIN
GRANT
INSERT
LABEL ON
LOCK TABLE
RENAME
REVOKE
ROLLBACK
SET CURRENT DECFLOAT ROUNDING MODE
SET CURRENT DEGREE
SET CURRENT LOCALE LC_CTYPE
SET CURRENT OPTIMIZATION HINT
SET PATH
SET CURRENT PRECISION
SET CURRENT RULES
SET CURRENT SQLID
UPDATE

204 Utility Guide and Reference

Each SQL statement runs as a separate thread. When the utility executes the
SQL statement, the specified statement string is parsed and checked for errors.
If the SQL statement is invalid, EXEC SQL does not execute the statement and
reports the error condition. If the SQL statement is valid, but an error occurs
during execution, EXEC SQL reports that error condition. When an error
occurs, the utility terminates.

Related reference:

select-statement (DB2 SQL)

Concurrency and compatibility for EXEC SQL
The EXEC SQL utility has certain concurrency and compatibility characteristics
associated with it.

You can use the EXEC SQL control statement with any utility that allows
concurrent SQL access on a table space. Other databases are not affected.

Termination or restart of EXEC SQL
You can terminate and restart the EXEC SQL utility.

You can terminate an EXEC SQL utility job by using the TERM UTILITY command
if you submitted the job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart an EXEC SQL utility job, but it starts from the beginning again. If
you are restarting this utility as part of a larger job in which EXEC SQL completed
successfully, but a later utility failed, do not change the EXEC SQL utility control
statement, if possible. If you must change the EXEC SQL utility control statement,
use caution; any changes can cause the restart processing to fail.
Related concepts:
“Restart of an online utility” on page 39

Sample EXEC SQL control statements
Use the sample control statements as models for developing your own EXEC SQL
control statements.

Example 1: Creating a table

The following control statement specifies that DB2 is to create table MYEMP with
the same rows and columns as sample table EMP.

EXEC SQL
CREATE TABLE MYEMP LIKE DSN8B10.EMP CCSID EBCDIC

ENDEXEC

This type of statement can be used to create a mapping table.

Chapter 14. EXEC SQL 205

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectstatement.htm#db2z_sql_selectstatement

Example 2: Inserting rows into a table

The following control statement specifies that DB2 is to insert all rows from sample
table EMP into table MYEMP.

EXEC SQL
INSERT INTO MYEMP SELECT * FROM DSN8B10.EMP

ENDEXEC

Example 3: Declaring a cursor

The following control statement declares C1 as the cursor for a query that is to
return all rows from table DSN8810.EMP.

EXEC SQL
DECLARE C1 CURSOR FOR SELECT * FROM DSN8B10.EMP

ENDEXEC

You can use a declared cursor with the DB2 cross-loader function to load data from
a local server or from any DRDA-compliant remote server as part of the DB2
cross-loader function.
Related reference:
“Sample REORG TABLESPACE control statements” on page 631

206 Utility Guide and Reference

Chapter 15. LISTDEF

The LISTDEF utility enables you to group database objects into reusable lists. You
can then specify these lists in other utility control statements to indicate that the
utility is to process all of the items in the list.

You can use LISTDEF to standardize object lists and the utility control statements
that refer to them. This standardization reduces the need to customize or alter
utility job streams.

If you do not use lists and you want to run a utility on multiple objects, you must
run the utility multiple times or specify an itemized list of objects in the utility
control statement.

Output

Output from the LISTDEF control statement consists of a list with a name.

Authorization required

To execute the LISTDEF utility, you must have SELECT authority on
SYSIBM.SYSINDEXES, SYSIBM.SYSTABLES, and SYSIBM.SYSTABLESPACE.

You must use a privilege set that includes one of the following authorities:
v SELECT authority on SYSIBM.SYSINDEXES, SYSIBM. SYSTABLES, and

SYSIBM.SYSTABLESPACE
v SQLADM authority
v DATAACCESS authority
v System DBADM authority
v SYSCTRL or SYSADM authority

Additionally, you must have the authority to execute the utility that is used to
process the list, as currently documented in the “Authorization required” topic for
each utility.

If you do not have authorization to execute the utility on one or more of the items
in the list, the utility will stop on the first authorization error. To skip items in the
list that return an error, use the OPTIONS (ITEMERROR, SKIP) control statement.

Execution phases of LISTDEF

The LISTDEF control statement executes entirely within the UTILINIT phase.

Syntax and options of the LISTDEF control statement
The LISTDEF utility control statement, with its multiple options, defines a list of
table spaces, index spaces, or both on which other utilities can operate.

You can create a control statement with the ISPF/PDF edit function. After you
create it, save it in a sequential or partitioned data set. When you create the JCL

© Copyright IBM Corp. 1983, 2013 207

for running the job, use the SYSIN DD statement to specify the name of the data
set that contains the utility control statement.

Syntax diagram

�� LISTDEF list-name � list-options ��

list-options:

�� INCLUDE
EXCLUDE (1)

type-spec

LIST referenced-list
initial-object-spec CLONED YES

NO

�

�
DEFINED YES

DEFINED NO
DEFINED ALL

RI BASE
LOB
XML
ALL

(2)

HISTORY
ARCHIVE

BASIC NO
YES

EXTENDED NO
YES

��

Notes:

1 You must specify type-spec if you specify DATABASE.

2 HISTORY or ARCHIVE can be specified either before or after the BASE, LOB, XML, and ALL
keywords. However, HISTORY and ARCHIVE are always processed last, after all other keywords
are handled.

type-spec:

�� TABLESPACES
INDEXSPACES

COPY NO
YES

��

initial-object-spec:

208 Utility Guide and Reference

|||||||

��

�

DATABASE database-name
table-space-spec PARTLEVEL
index-space-spec ,
table-spec
index-spec (integer)

integer1:integer2

��

table-space-spec:

�� TABLESPACE table-space-name
database-name.

��

index-space-spec:

�� INDEXSPACE index-space-name
database-name.

��

table-spec:

�� TABLE table-name
creator-id.

��

index-spec:

�� INDEX index-name
creator-id.

��

Option descriptions

LISTDEF list-name
Defines a list of DB2 objects and assigns a name to the list. The list name
makes the list available for subsequent execution as the object of a utility
control statement or as an element of another LISTDEF statement.

list-name is the name (up to 18 alphanumeric characters in length) of the
defined list.

You can put LISTDEF statements either in a separate LISTDEF library data set
or before a DB2 utility control statement that references the list-name.

Chapter 15. LISTDEF 209

INCLUDE
Specifies that the list of objects that results from the expression that follows is
to be added to the list. You must first specify an INCLUDE clause. You can
then specify subsequent INCLUDE or EXCLUDE clauses in any order to add
to or delete clauses from the existing list.

EXCLUDE
Specifies, after the initial INCLUDE clause, a list of objects to exclude. The
expression that follows the EXCLUDE keyword determines this list of objects
to exclude. These objects are excluded from the existing LISTDEF list if the
objects are already in the list. If the objects are not in the existing list, they are
ignored, and DB2 proceeds to the next INCLUDE or EXCLUDE clause.

TABLESPACES
Specifies that the INCLUDE or EXCLUDE object expression is to create a list of
related table spaces.

TABLESPACES is the default type for lists that use a table space or a table for
the initial search. For more information about specifying these objects, see the
descriptions of the TABLESPACE and TABLE options.

No default type value exists for lists that use other lists for the initial search.
The list that is reference in the LIST option is used unless you specify
TABLESPACES or INDEXSPACES. Likewise, no type default value exists for
lists that use databases for the initial search. If you specify the DATABASE
option, you must specify INDEXSPACES or TABLESPACES. For more
information about specifying lists and databases, see the descriptions of the
LIST and DATABASE options.

The result of the TABLESPACES keyword varies depending on the type of
object that you specify in the INCLUDE or EXCLUDE clause. These results are
shown in The following table.

Table 25. Result of the TABLESPACES keyword based on the object type that is specified in
the INCLUDE or EXCLUDE clause.

Object type that is
specified in INCLUDE
or EXCLUDE clause Result of the TABLESPACES keyword

DATABASE Returns all table spaces that are contained within the database

TABLESPACE Returns the specified table space

TABLE Returns the table space that contains the table

INDEXSPACE Returns the table space that contains the related table

INDEX Returns the table space that contains the related table

LIST of table spaces Returns the table spaces from the expanded referenced list

LIST of index spaces Returns the related table spaces for the index spaces in the
expanded referenced list

LIST of table spaces and
index spaces

Returns the table spaces from the expanded referenced list and
the related table spaces for the index spaces in the same list

INDEXSPACES
Specifies that the INCLUDE or EXCLUDE object expression is to create a list of
related index spaces.

INDEXSPACES is the default type for lists that use an index space or an index
for the initial search. For more information about specifying these objects, see
the descriptions of the INDEXSPACE and INDEX options.

210 Utility Guide and Reference

No default type value exists for lists that use other lists for the initial search.
The list that is referenced in the LIST option is used unless you specify
TABLESPACES or INDEXSPACES. Likewise, no type default value exists for
lists that use databases for the initial search. If you specify the DATABASE
option, you must specify INDEXSPACES or TABLESPACES. For more
information about specifying lists and databases, see the descriptions of the
LIST and DATABASE options.

The result of the INDEXSPACES keyword varies depending on the type of
object that you specify in the INCLUDE or EXCLUDE clause. These results are
shown in The following table.

Table 26. Result of the INDEXSPACES keyword based on the object type that is specified in
the INCLUDE or EXCLUDE clause.

Object type that is
specified in INCLUDE or
EXCLUDE clause Result of the INDEXSPACES keyword

DATABASE Returns all index spaces that are contained within the database

TABLESPACE Returns all index spaces for indexes over all tables in the table
space

TABLE Returns all index spaces for indexes over the table

INDEXSPACE Returns the specified index space.

INDEX Returns the index space that contains the index

LIST of table spaces Returns the related index spaces for the table spaces in the
expanded referenced list

LIST of index spaces Returns the index spaces from the expanded referenced list

LIST of table spaces and
index spaces

Returns the index spaces from the expanded referenced list and
the related index spaces for the table spaces in the same list

COPY
Specifies whether indexes with COPY YES or COPY NO attributes are to be
included or excluded in this portion of the list. If you omit COPY, all index
spaces that satisfy the INCLUDE or EXCLUDE expression, regardless of their
COPY attribute, are included or excluded in this portion of the list. If specified,
this keyword must immediately follow the INDEXSPACES keyword. If you
specify this keyword elsewhere, it is interpreted as the start of the COPY utility
control statement.

YES
Specifies that only index spaces that were defined with or altered to COPY
YES are to be included in this portion of the list. Use INCLUDE with
COPY YES to develop a list of index spaces that the COPY utility can
process.

NO Specifies that only index spaces that were defined with or altered to COPY
NO are to be included in this portion of the list. Use EXCLUDE with
COPY NO to remove indexes that the COPY utility cannot process from a
larger list.

LIST referenced-list
Specifies the name of a previously defined object list that is to be expanded
and used for the initial search for the object.

referenced-list is the name of the list. You must explicitly specify this name. You
cannot specify pattern-matching characters (%,*, ?, and _) for lists.

Chapter 15. LISTDEF 211

No default type value exists for lists that are developed from the LIST option.
The list is expanded as defined, and it is then modified by subsequent
keywords, if any.

You can specify a type-spec of TABLESPACES to create a list of only table
spaces. If the list to be processed contains index spaces, the TABLESPACES
keyword creates a list that includes related table spaces.

You can specify a type-spec of INDEXSPACES to create a list of only index
spaces. If the list to be processed contains table spaces, the INDEXSPACES
keyword creates a list that includes related index spaces.

You can use the LIST keyword to perform any of the following actions:
v Make aggregate lists of lists
v Exclude entire lists from other lists
v Develop lists of objects that are related to other lists

The partitions or partition ranges can be specified in a list.

DATABASE database-name
Specifies the database that is to be used for the initial search for the object.

You can specify the database-name explicitly or as a pattern-matched name.
DATABASE * and DATABASE % are not supported.

If you specify DATABASE, you must also specify either TABLESPACES or
INDEXSPACES as the list type. Depending on the list type that you specify,
DB2 includes all table spaces or index spaces in database-name that satisfy the
pattern-matching expression in the list.

You cannot specify DSNDB01, DSNDB06, DSNDB07, or user-defined work file
databases in a LISTDEF.

Use caution when you specify an implicit DATABASE name. Authorization to
access objects that are within an implicit database is not uniform. Use the
OPTIONS EVENT (ITEMERROR, SKIP) control statement to continue
processing when authorization errors occur.

TABLESPACE database-name.table-space-name
Specifies the table space that is to be used for the initial search for the object.

If you specify TABLESPACE, the default list type is TABLESPACES. All table
spaces that satisfy the pattern-matching expression are included in the list
unless the list is modified by other keywords. TABLESPACE *.* and TABLESPACE
%.% are not supported.

database-name specifies the name of the database to which the table space
belongs. The default value is DSNDB04.

table-space-name specifies the name of the table space.

You can explicitly specify or use pattern-matching characters to specify
database-name, table-space-name, or both.

You cannot include any objects in DSNDB07 or any user-defined work file
databases in a LISTDEF. Pattern matching is not supported for DSNDB01 and
DSNDB06 objects.

INDEXSPACE database-name.index-space-name
Specifies the index space that is to be used for the initial search for the object.

If you specify INDEXSPACE, the default list type is INDEXSPACES. All index
spaces that satisfy the pattern-matching expression are included in the list

212 Utility Guide and Reference

unless the index spaces are excluded by other LISTDEF options. INDEXSPACE
. and INDEXSPACE %.% are not supported.

database-name specifies the name of the database to which the index space
belongs. The default value is DSNDB04.

index-space-name specifies the name of the index space.

You can explicitly specify or use pattern-matching characters to specify
database-name, index-space-name, or both.

You cannot include any objects in DSNDB07 or any user-defined work file
databases in a LISTDEF. Pattern-matching is not supported for DSNDB01 and
DSNDB06 objects.

TABLE creator-id.table-name
Specifies the table that is to be used for the initial search for the object.

If you specify TABLE, the default list type is TABLESPACES. All table spaces
that contain tables that satisfy the pattern-matching expression are included in
the list unless the list is modified by other keywords. TABLE *.* and TABLE %.%
are not supported.

creator-id specifies the qualifier creator ID for the table. The default value is the
user identifier for the utility. table-name specifies the name of the table. If you
specify a table name with CLONED, the CLONED keyword is ignored.

You can explicitly specify or use pattern-matching characters to specify
creator-id,table-name, or both. However, the underscore pattern-matching
character is ignored in a table name.

Pattern-matching is not supported for catalog and directory objects. In a
LISTDEF statement, you must include catalog and directory objects by their
fully qualified names.

Enclose the table name in quotation marks if the name contains a blank.

INDEX creator-id.index-name
Specifies the index that is to be used for the initial search for the object.

If you specify INDEX, the default list type is INDEXSPACES. All index spaces
that contain indexes that satisfy the pattern-matching expression are included
in the list unless the list is modified by other keywords. INDEX *.* and INDEX
%.% are not supported.

creator-id specifies the qualifier creator ID for the index. The default value is
the user identifier for the utility.

index-name specifies the name of the index.

Enclose the index name in quotation marks if the name contains a blank.

You can explicitly specify or use pattern-matching characters to specify
creator-id, index-name, or both. However, the underscore pattern-matching
character is ignored in an index name.

Pattern-matching is not supported for catalog and directory objects. In a
LISTDEF statement, you must include catalog and directory objects by their
fully qualified names.

PARTLEVEL
Specifies the partition granularity for partitioned table spaces, partitioning
indexes, and data-partitioned secondary indexes that are to be contained in the
list. You cannot specify the PARTLEVEL keyword with the RI keyword.

Chapter 15. LISTDEF 213

(integer)
integer is the integer partition number where integer >= 0.

If you specify PARTLEVEL 0, the resulting list contains one entry for each
nonpartitioned object.

If you specify PARTLEVEL with a nonzero operand, the resulting list
contains one entry for the specified partition for partitioned objects and
one entry for each nonpartitioned object.

If you specify PARTLEVEL without (integer), the resulting list contains one
entry for each partition in the partitioned object and one entry for each
nonpartitioned object.

(integer1:integer2)
integer1:integer2 indicates the partitions or a range of partitions to be
specified in a list. The partition range must follow these guidelines:
v integer1 >= 1
v integer1 < integer2

An INCLUDE with the PARTLEVEL keyword can be removed from the list
only by an EXCLUDE with PARTLEVEL.

For partition-by-growth objects, the PARTLEVEL keyword results in an entry
for each partition that exists when the LISTDEF list is evaluated. Partitions that
are added after the list is evaluated are not included in the list. If a partition is
added during long-running job steps in which the list is reused, the partitions
that were added are not included in the list and not processed. If a utility job
that uses a PARTLEVEL list is restarted, the original list is saved during the
original execution for a later restart. The list does not include any added
partitions.

CLONED
Use the CLONED keyword to have LISTDEF perform a final filtering of the
INCLUDE or EXCLUDE clause contents based on the existence or absence of
clone data. This operation is performed last, after LISTDEF processes all other
keywords on the INCLUDE or EXCLUDE clause.

CLONED YES specifies that only table spaces and index spaces that contain
cloned objects are to be returned in the INCLUDE or EXCLUDE clause.
CLONED NO specifies that only table spaces and index spaces that do not
contain cloned objects are to be returned in the INCLUDE or EXCLUDE clause.
Omit the CLONED keyword if the existence of clone data is not a factor.

The use of CLONED YES or CLONED NO affects only the contents of the list.
It does not determine whether clone or base data is later processed by the
utility that uses the list. Only the presence or absence of the CLONE keyword
on individual utility control statements determines whether clone or base data
is processed.

DEFINED
Specifies whether table spaces or index spaces with defined or undefined data
sets are to be returned in the INCLUDED or EXCLUDE clause. If you omit the
DEFINED keyword, DEFINED YES is the default.

YES
Specifies that only table spaces or index spaces that are currently defined
are to be included in the INCLUDED or EXCLUDED clause.

YES is the default if DEFINED is not specified. By default, only defined
objects are included in the list. Before DB2 Version 10, the DEFINED

214 Utility Guide and Reference

keyword did not exist and all objects, both defined and undefined, were
included in the list. Specify DEFINED ALL to get the behavior of Version 9
and earlier.

NO Specifies that only table spaces or index spaces that are currently
undefined are included in the INCLUDED or EXCLUDED clause. Use
EXCLUDE with DEFINED NO to remove table spaces and index spaces
that are currently undefined and would not normally be processed by the
utility. If you specify DEFINED NO, you cannot specify CLONED YES.

ALL
Specifies that table spaces or index spaces that are both undefined and
defined are to be included in the INCLUDED or EXCLUDED clause.

Before DB2 Version 10, the DEFINED keyword did not exist and all objects,
both defined and undefined, were included in the list. Specify DEFINED
ALL to get the behavior of Version 9 and earlier.

RI Specifies that all objects that are referentially related to the object expression
(PRIMARY KEY <--> FOREIGN KEY) are to be included in the list. DB2
processes all referential relationships repeatedly until the entire referential set
is developed. You cannot specify RI with PARTLEVEL(n).

Auxiliary indicator keywords: Use one of four auxiliary indicator keywords to
direct LISTDEF processing to follow auxiliary relationships to include related LOB
or XML objects in the list. The auxiliary relationship can be followed in either
direction. Auxiliary objects include the auxiliary table spaces, auxiliary tables,
indexes on auxiliary tables, and their containing index spaces.

Incomplete LOB or XML definitions cause seemingly related objects to not be
found. The auxiliary relationship does not exist until you create the AUX TABLE
with the STORES keyword.

No default auxiliary indicator keyword exists. If you do not specify BASE, LOB,
XML, or ALL, DB2 does not follow the auxiliary relationships.

ALL
Specifies that BASE, LOB, and XML objects are to be included in the list.
Auxiliary relationships are followed from all objects that result from the initial
object lookup. BASE, LOB, and XML objects remain in the final enumerated
list.

The behavior of the ALL keyword is altered by the presence or absence of the
HISTORY or ARCHIVE keywords. When ALL is specified with HISTORY, the
resulting list clause contains all related history objects. When ALL is specified
with ARCHIVE, the resulting list clause contains all related archive objects
(table spaces and index spaces that contain archive tables and their related
indexes). When ALL is specified without HISTORY or ARCHIVE, the resulting
list clause contains all related objects that are not history or archive objects.

BASE
Specifies that only base table spaces (non-LOB, non-XML) and index spaces are
to be included in this element of the list. If the result of the initial search for
the object is a base object, auxiliary relationships are not followed. If the result
of the initial search for the object is a LOB or XML object, the auxiliary
relationship is applied to the base table space or index space. Only those base
objects become part of the resulting list.

The behavior of the BASE keyword is altered by the presence or absence of the
HISTORY or ARCHIVE keywords. When BASE is specified with HISTORY, the

Chapter 15. LISTDEF 215

|
|
|
|
|
|
|

|
|

resulting list clause contains only base history objects. When BASE is specified
with ARCHIVE, the resulting list clause contains only base archive objects
(base table spaces and index spaces that contain archive tables and their related
indexes). When BASE is specified without HISTORY or ARCHIVE, the
resulting list clause contains only base objects that are not history or archive
objects.

LOB
Specifies that only LOB table spaces and related index spaces that contain
indexes on auxiliary tables are to be included in this element of the list. If the
result of the initial search for the object is a LOB object, auxiliary relationships
are not followed. If the result of the initial search for the object is a base object,
the auxiliary relationship is applied to the LOB table space or index space.
Only those LOB objects become part of the resulting list.

The behavior of the LOB keyword is altered by the presence or absence of the
HISTORY or ARCHIVE keywords. When LOB is specified with HISTORY, the
resulting list clause contains only LOB history objects (LOB table spaces and
index spaces for history tables). When LOB is specified with ARCHIVE, the
resulting list clause contains only LOB archive objects (LOB table spaces and
index spaces for archive tables). When LOB is specified without HISTORY or
ARCHIVE , the resulting list clause contains only LOB objects that are not
history or archive objects.

XML
Specifies that only XML table spaces and related index spaces that contain
indexes on auxiliary tables are to be included in this element of the list. If the
result of the initial search for the object is an XML object, auxiliary
relationships are not followed. If the result of the initial search for the object is
a base object, the auxiliary relationship is applied to the XML table space or
index space. Only those XML objects become part of the resulting list.

The behavior of the XML keyword is altered by the presence or absence of the
HISTORY or ARCHIVE keywords. When XML is specified with HISTORY, the
resulting list clause contains only XML history objects (XML table spaces and
index spaces for history tables). When XML is specified with ARCHIVE, the
resulting list clause contains only XML archive objects (XML table spaces and
index spaces for archive tables). When XML is specified without HISTORY or
ARCHIVE, the resulting list clause contains only XML objects that are not
history or archive objects.

HISTORY
Specifies that only history (versioning) objects are to be included in the
resulting list clause.

HISTORY is a filtering keyword that operates against the list clause contents
after other keywords are applied. Use the keywords BASE, LOB, XML, or ALL
with or without the HISTORY keyword to reference related objects. The order
in which these keywords are specified has no meaning. Two INCLUDE or
EXCLUDE clauses are required if both history and non-history objects are
required.

ARCHIVE
Specifies that only archive objects are to be included in the resulting list clause.

ARCHIVE is a filtering keyword that operates against the list clause contents
after other keywords are applied. Use the BASE, LOB, XML, or ALL keywords
with or without the ARCHIVE keyword to reference related objects. The order

216 Utility Guide and Reference

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

in which these keywords are specified has no meaning. Two INCLUDE or
EXCLUDE clauses are required if both archive and non-archive objects are
required.

ARCHIVE cannot be specified with the HISTORY or CLONED YES keywords

Related information:

Archive-enabled tables and archive tables (Introduction to DB2 for z/OS)

BASIC
Specifies that LISTDEF is to perform a final filtering of the INCLUDE or
EXCLUDE clause contents based on the basic format with 6-byte RBA or LRSN
values. This operation is performed last, after LISTDEF processes all other
keywords on the INCLUDE or EXCLUDE clause.

YES
Specifies that only table spaces and index spaces that are in basic format
with 6-byte RBA or LRSN values are to be returned in the INCLUDE or
EXCLUDE clause. This option is the same as EXTENDED NO.

NO Specifies that only table spaces and index spaces that are not in basic
format with 6-byte RBA or LRSN values format are to be returned in the
INCLUDE or EXCLUDE clause. This option is the same as EXTENDED
YES.

The BASIC keyword does not have a default value. If the RBA or LRSN format
is not a factor, omit the BASIC and EXTENDED keywords.

If the clause also includes the PARTLEVEL keyword with either a non-zero
operand or no operand, filtering is performed based on the RBA or LRSN
format of the partition. If partitioned objects have partitions in different
formats, PARTLEVEL must specify a non-zero operand or no operand to use
BASIC or EXTENDED.

EXTENDED
Specifies that LISTDEF is to perform a final filtering of the INCLUDE or
EXCLUDE clause contents based on the extended format with 10-byte RBA or
LRSN values. This operation is performed last, after LISTDEF processes all
other keywords on the INCLUDE or EXCLUDE clause.

YES
Specifies that only table spaces and index spaces that are in extended
format with 10-byte RBA or LRSN values are to be returned in the
INCLUDE or EXCLUDE clause. This option is the same as BASIC NO.

NO Specifies that only table spaces and index spaces that are not in extended
format with 10-byte RBA or LRSN values format are to be returned in the
INCLUDE or EXCLUDE clause. This option is the same as BASIC YES.

The EXTENDED keyword does not have a default value. If the RBA or LRSN
format is not a factor, omit the BASIC and EXTENDED keywords.

If the clause also includes the PARTLEVEL keyword with either a non-zero
operand or no operand, filtering is performed based on the RBA or LRSN
format of the partition. If partitioned objects have partitions in different
formats, PARTLEVEL must specify a non-zero operand or no operand to use
BASIC or EXTENDED.

Chapter 15. LISTDEF 217

|
|
|

|

|

|

|
|
|
|
|

|
|
|
|

||
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

||
|
|

|
|

|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_archivetables.htm#db2z_archivetables

Concurrency and compatibility for LISTDEF
The LISTDEF utility has certain concurrency and compatibility characteristics
associated with it.

LISTDEF is a control statement that is used to set up an environment for another
utility to follow. The LISTDEF list is stored until it is referenced by a specific
utility. When referenced by an utility, the list expands. At that time, the
concurrency and compatibility restrictions of that utility apply, with the additional
restriction that the catalog tables that are necessary to expand the list must be
available for read-only access.

List processing limitations

Although DB2 does not limit the number of objects that a list can contain, be
aware that if your list is too large, the utility might fail with an error or abend in
either DB2 or another program. These errors or abends can be caused by storage
limitations, limitations of the operating system, or other restrictions imposed by
either DB2 or non-DB2 programs. Whether such a failure occurs depends on many
factors including, but not limited to the following items:
v The amount of available storage in both the utility batch and DBM1 address

spaces
v The utility that is running.
v The type and number of other utilities that are running at the same time.
v The specific combination of keywords and operands of all the utilities that are

running

Recommendation: If you receive a failure that you suspect is caused by running a
utility on a list that is too large, divide your list into smaller lists and run the
utility or utilities in separate job steps on the smaller lists until they run
successfully.

Creating the LISTDEF control statement
The LISTDEF control statement defines a list of objects and assigns a name to the
list.

Procedure

To create a LISTDEF control statement, include the following elements in the
control statement:
v The name of the list.
v An INCLUDE clause, optionally followed by additional INCLUDE or EXCLUDE

clauses to either include or exclude objects from the list.

218 Utility Guide and Reference

Related concepts:
“Including objects in a list”
Related reference:
“Syntax and options of the LISTDEF control statement” on page 207

Including objects in a list
Use the INCLUDE and EXCLUDE clauses to specify the objects that are to be
included in the list. Each INCLUDE clause adds objects to the list. Each EXCLUDE
clause removes objects from the list. You must first specify an INCLUDE clause.
You can then specify subsequent INCLUDE or EXCLUDE clauses in any order to
add to or delete objects from the existing list.

DB2 constructs the list, one clause at a time, by adding objects to or removing
objects from the list. If an EXCLUDE clause attempts to remove an object that is
not yet in the list, DB2 ignores the EXCLUDE clause of that object and proceeds to
the next INCLUDE or EXCLUDE clause. Be aware that a subsequent INCLUDE
can return a previously excluded object to the list.

You must specify either INCLUDE or EXCLUDE. No default specification exists.

Specifying objects to include or exclude

Each INCLUDE or EXCLUDE clause identifies specific objects to add to or remove
from the list.

You must include the following elements in each INCLUDE or EXCLUDE clause:
v The object that is to be used in the initial catalog lookup for each INCLUDE or

EXCLUDE clause. The search for objects can begin with databases, table spaces,
index spaces, tables, indexes, or other lists. You can explicitly specify the names
of these objects or, with the exception of other lists, use a pattern matching
expression. The resulting list contains only table spaces, only index spaces, or
both.

v The type of objects that the list contains, either TABLESPACES or
INDEXSPACES. You must explicitly specify the list type only when you specify
a database as the initial object by using the keyword DATABASE. Otherwise,
LISTDEF uses the default list type values shown in the following table. These
values depend on the type of object that you specified for the INCLUDE or
EXCLUDE clause.

Table 27. Default list type values that LISTDEF uses.

Specified object Default list type value

TABLESPACE TABLESPACES

TABLE TABLESPACES

INDEXSPACE INDEXSPACES

INDEX INDEXSPACES

LIST Existing type value of the list

For example, the following INCLUDE clause specifies that table space
DBLT0301.TLLT031A is to be added to the LIST:
INCLUDE TABLESPACE DBLT0301.TLLT031A

Chapter 15. LISTDEF 219

In the preceding example, table space DBLT0301.TLLT031A is specified as the
object that LISTDEF is to use for the initial catalog lookup. By default, the list type
value for a TABLESPACE object is TABLESPACES. Therefore, the list includes only
table space DBLT0301.TLLT031A.

The following example INCLUDE clause is similar to the preceding example,
except that it includes the INDEXSPACES keyword:
INCLUDE INDEXSPACES TABLESPACE DBLT0301.TLLT031A

In this example, the clause specifies that all index spaces over all tables in table
space DBLT0301.TLLT031A are to be added to the list.

Optionally, you can add related objects to the list by specifying keywords that
indicate a relationship, such as referentially related objects or auxiliary related
objects. Valid specifications include the following keywords:
v BASE (non-LOB and non-XML objects)
v LOB (LOB objects)
v XML (XML objects)
v ALL (BASE, LOB, and XML objects)
v TABLESPACES (related table spaces)
v INDEXSPACES (related index spaces)
v RI (related by referential constraints, including informational referential

constraints)

The preceding keywords perform two functions: they determine which objects are
related, and they then filter the contents of the list. The behavior of these keywords
varies depending on the type of object that you specify. For example, if your initial
object is a LOB object, the LOB keyword is ignored. If, however, the initial object is
not a LOB object, the LOB keyword determines which LOB objects are related, and
DB2 excludes non-LOB objects from the list.

DB2 processes each INCLUDE and EXCLUDE clause in the following order:
1. Perform the initial search for the object that is based on the specified

pattern-matching expression, including PARTLEVEL specification, if specified. If
an object is stopped, DB2 returns an error, even if the object is later excluded.

2. Add or remove related objects and filter the list elements based on the specified
list type, either TABLESPACES or INDEXSPACES (COPY YES or COPY NO).

3. Add or remove related objects depending on the presence or absence of the RI,
BASE, LOB, XML, and ALL keywords.

For example, to generate a list of all table spaces in the ACCOUNT database but
exclude all LOB table spaces, you can specify the following LISTDEF statement:
LISTDEF ACCNT INCLUDE TABLESPACES DATABASE ACCOUNT BASE

In the preceding example, the name of the list is ACCNT. The TABLESPACES
keyword indicates that the list is to include table spaces that are associated with
the specified object. In this case, the table spaces to be included are those table
spaces in database ACCOUNT. Finally, the BASE keyword limits the objects to only
base table spaces.

If you want a list of only LOB index spaces in the ACCOUNT database, you can
specify the following LISTDEF statement:
LISTDEF ACLOBIX INCLUDE INDEXSPACES DATABASE ACCOUNT LOB

220 Utility Guide and Reference

In the preceding example, the INDEXSPACES and LOB keywords indicate that the
INCLUDE clause is to add only LOB index spaces to the ACLOBIX list.

Restriction: Utilities do not support SYSUTILX-related objects inside a LISTDEF
specification. You cannot specify the following objects in a LISTDEF:
v TABLESPACE DSNDB01.SYSUTILX
v TABLE SYSIBM.SYSUTILX
v TABLE SYSIBM.SYSUTIL
v INDEXSPACE DSNDB01.DSNLUX01
v INDEXSPACE DSNDB01.DSNLUX02
v INDEX SYSIBM.DSNLUX01
v INDEX SYSIBM.DSNLUX02

Using pattern matching expressions

You can use four special pattern-matching characters (%, *, _,?) to define generic
object names in a LISTDEF statement. These characters are similar to those
characters that are used in the SQL LIKE predicate. Utilities that reference a list
access the DB2 catalog at execution time and dynamically expand each generic
object name into an equivalent enumerated list. A utility processes this enumerated
list either sequentially or in parallel, depending on the utility function and the
parameters that you specify.

Restrictions: DB2 does not support all-inclusive lists (such as DATABASE * or
TABLESPACE *.*).

Pattern-matching of DB2 catalog and directory objects (DSNDB06 and DSNDB01) is
not supported. Catalog and directory objects must be included in a LISTDEF by
their full table space or index space name. Even if catalog and directory objects
match a LISTDEF pattern matching expression, they are not included in the list. To
process those objects, you must use syntax from releases prior to Version 7.

Specify pattern-matching object names by using the pattern-matching characters
that are shown in the following table. This table lists the pattern-matching
character, the equivalent SQL symbol, and any additional information.

Table 28. LISTDEF pattern-matching characters

LISTDEF
pattern-
matching
character

Equivalent
symbol used in
SQL LIKE
predicates Usage notes

Percent sign (%) Percent sign (%) Performs the same function.

Question mark
(?)

Underscore (_) Use the question mark (?) instead of underscore (_) as
a pattern-matching character in table and index
names. The underscore character (_) in table and index
names represents a single occurrence of itself.

Asterisk (*) Percent sign (%) Performs the same function.

Underscore (_) Underscore (_) Use the underscore (_) as an alternative to the
question mark (?) for database, table space, and index
space names.

Chapter 15. LISTDEF 221

Including catalog and directory objects

If you specify DB2 directory objects (DSNDB01) and DB2 catalog objects
(DSNDB06) in object lists, you must specify the fully qualified table space or index
space names for those objects. Pattern-matching is not supported for catalog or
directory objects. DB2 issues error messages for any catalog or directory objects
that are invalid for a utility.

Although DB2 catalog and directory objects can appear in LISTDEF lists, these
objects might be invalid for a utility and result in an error message.

The following valid INCLUDE clauses contain catalog and directory objects:
v

INCLUDE TABLESPACE DSNDB06.SYSDDF
v

INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSDDF
v

INCLUDE INDEXSPACE DSNDB06.DSNDXX01
v

INCLUDE INDEXSPACES INDEXSPACE DSNDB06.DSNDXX01

Restriction: If you specify a catalog or directory object in a LISTDEF control
statement, you cannot specify the following keywords:
v DATABASE
v TABLE
v INDEX
v BASE
v LOB
v ALL
v Databases DSNDB01, DSNDB06, and DSNDB07
v Table or indexes with a creator id of SYSIBM

These keywords require DB2 to access the catalog, which can cause problems when
you specify a catalog or directory object.

All LISTDEF lists automatically exclude work file databases, which consist of
DSNDB07 objects and user-defined work file objects, because DB2 utilities do not
process these objects.

Previewing the contents of a list
You can preview the objects that are to be included in a list by using the PREVIEW
function.

About this task

When you run a utility using the PREVIEW function, DB2 expands any LISTDEF
control statements into the equivalent enumerated list, prints it to SYSPRINT, and
stops execution.

Procedure

To preview the objects that are included in the list:
v Specify PREVIEW as a JCL parameter.
v Specify PREVIEW on the OPTIONS PREVIEW control statement.

222 Utility Guide and Reference

|

|

Related concepts:
“Using the OPTIONS utility with LISTDEF” on page 226
Related reference:
Chapter 20, “OPTIONS,” on page 389

Creating LISTDEF libraries
When DB2 encounters a reference to a list, DB2 first searches SYSIN. If DB2 does
not find the definition of the referenced list, DB2 searches the specified LISTDEF
library.

Procedure

To create a library of LISTDEF control statements:

Use a DD statement to name LISTDEF data sets.
For example, assume that data sets ADMF001.DB.LIST1 and ADMF001.DB.LIST2
each contain several LISTDEF statements. For any utility jobs that reference these
LISTDEF statements, you can include the following DD statement in the JCL:
//LISTDSN DD DSN=ADMF001.DB.LIST1,DISP=SHR
// DD DSN=ADMF001.DB.LIST2,DISP=SHR

This DD statement defines a LISTDEF library. The statement gives a name
(LISTDSN) to a group of data sets that contain LISTDEF statements, in this case
ADMF001.DB.LIST1 and ADMF001.DB.LIST2. Defining such a library enables you
to subsequently refer to the LISTDEF statements in that library by using the
OPTIONS LISTDEFDD control statement.
Any data sets that are identified as part of a LISTDEF library must contain only
LISTDEF statements.
In the utility job that references those LISTDEF statements, include an OPTIONS
statement before the utility statement. In the OPTIONS statement, specify the DD
name of the LISTDEF library as LISTDEFDD ddname.
DB2 uses this LISTDEF library for any subsequent utility control statements, until
either the end of input or until you specify another OPTIONS LISTDEFDD ddname.
The default DD name for the LISTDEF definition library is SYSLISTD.

Referencing LISTDEF lists in other utility jobs
You can use a list of objects that was defined with a LISTDEF control statement as
a target object for another utility.

Procedure

To reference LISTDEF lists in other utility jobs:
1. Specify LISTDEF control statements to define the lists of objects. You can

specify these LISTDEF statements in one of the following places:
v In the SYSIN DD statement before the utility control statement that

references it

Example:
//SYSIN DD *

LISTDEF MYLIST INCLUDE TABLESPACES DATABASE PAYROLL
INCLUDE INDEXSPACES DATABASE PAYROLL

v In one or more LISTDEF library data sets

Chapter 15. LISTDEF 223

Example:
//*--
//* Create an input data set.
//*--
//LOAD1 EXEC PGM=IEBGENER
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY
//SYSUT2 DD DSN=JULTU103.TCASE.DATA2,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)
//SYSUT1 DD *

LISTDEF NAME1 INCLUDE TABLESPACE DBLT0301.TLLT031A
INCLUDE TABLESPACE DBLT0301.TSLT031B

Any LISTDEF statement that is defined within the SYSIN DD statement
overrides another LISTDEF definition of the same name in a LISTDEF library
data set.

2. If you want to reference a list that is defined in a LISTDEF library data set, use
the OPTIONS utility. In the SYSIN DD statement before the utility control
statement that references the list, specify OPTIONS LISTDEFDD with the name
of the LISTDEF library.

Example:
//***
//* QUIESCE LISTDEF DD LILSTDEF data sets
//***
//STEP1 EXEC DSNUPROC,UID=’JULTU103.QUIESC2’,
// UTPROC=’’,SYSTEM=’SSTR’
//LISTLIB DD DSN=JULTU103.TCASE.DATA2,DISP=SHR
//SYSIN DD *

OPTIONS LISTDEFDD LISTLIB

3. In the utility control statement, specify the LIST keyword and the list name.
For example, you can use the QUIESCE utility to quiesce all objects in a list by
specifying the following control statement:
QUIESCE LIST list-name

Some utilities such as COPY and RECOVER, can process a LIST without a
specified object type. Object types are determined from the list contents. Other
utilities, such as REPORT, RUNSTATS, and REORG INDEX, must know the
object type that is to be processed before processing can begin. These utilities
require that you specify an object type in addition to the LIST keyword (for
example: REPORT RECOVERY TABLESPACE LIST, RUNSTATS INDEX LIST,
and REORG INDEX LIST). See the syntax diagrams for an individual utility for
details.

Results

In general, utilities process the objects in the list in the order in which they are
specified. However, some utilities alter the list order for optimal processing. The
following table shows the utilities that support the LIST keyword and how each
utility processes the list.

Utility Order of list processing

CHECK INDEX Items are grouped by related table space. All index spaces that are
related to a particular table space are processed at one time,
regardless of list order.

224 Utility Guide and Reference

Utility Order of list processing

COPY Items are processed in the specified order on a single call to COPY.
The PARALLEL keyword is supported for a list, but if used, the order
of processing is determined by DB2.

COPYTOCOPY Items are processed in the specified order on a single call to
COPYTOCOPY.

MERGECOPY Items are processed in the specified order.

MODIFY
RECOVERY

Items are processed in the specified order.

MODIFY
STATISTICS

Items are processed in the specified order.

QUIESCE All items are processed in the specified order on a single call to
QUIESCE.

REBUILD Items are grouped by related table space. All index spaces that are
related to a particular table space are processed at one time,
regardless of list order.

RECOVER Items are processed in the specified order on a single call to
RECOVER.

REORG Items are processed in the specified order with one exception. Items
at the partition level are grouped by table space when the first
partition of a particular table space is encountered. Those partitions
are processed on a single call to REORG.

REPORT Items are processed in the specified order.

RUNSTATS INDEX Items are grouped by related table space. All index spaces that are
related to a particular table space are processed at one time,
regardless of list order.

RUNSTATS
TABLESPACE

Items are processed in the specified order.

UNLOAD Items at the partition level are grouped by table space. All specified
partitions of a particular table space are processed at one time,
regardless of list order.

Related tasks:
“Creating LISTDEF libraries” on page 223
Related reference:
“Syntax and options of the LISTDEF control statement” on page 207
“Sample LISTDEF control statements” on page 226
“Syntax and options of the OPTIONS control statement” on page 389

Using the TEMPLATE utility with LISTDEF
Together, the LISTDEF and TEMPLATE utilities enable faster development of
utility job streams, and require fewer modifications when the underlying list of
database objects change.

Many utilities require output data sets. In those cases, you should use the
TEMPLATE control statement to specify the naming convention and, optionally, the
allocation parameters for each type of output data set. Templates, like lists, can be
reused if the naming convention is robust enough to prevent duplicate data set
names from being allocated.

Chapter 15. LISTDEF 225

||
|
|
|

In some cases you can use traditional JCL DD statements with LISTDEF lists, but
this method is usually not practical unless you are processing small lists one object
at a time.
Related reference:
Chapter 31, “TEMPLATE,” on page 775

Using the OPTIONS utility with LISTDEF
You can use the OPTIONS utility with LISTDEF.

Use the following three functions of the OPTIONS utility in conjunction with the
LISTDEF utility when needed:

OPTIONS PREVIEW
Enables you to preview the list contents before actual processing.

OPTIONS ITEMERROR
Enables you to alter the handling of errors that might occur during list
processing.

OPTIONS LISTDEFDD
Enables you to identify a LISTDEF library. The default value is LISTDEFDD.

Related tasks:
“Creating LISTDEF libraries” on page 223

Termination or restart of LISTDEF
You can terminate and restart the LISTDEF utility.

You can terminate a LISTDEF utility job by using the TERM UTILITY command if
you submitted the job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a LISTDEF utility job, but it starts from the beginning again. Use
caution when changing LISTDEF lists prior to a restart. When DB2 restarts list
processing, it uses a saved copy of the list. Modifying the LISTDEF list that is
referred to by the stopped utility has no effect. Only control statements that follow
the stopped utility are affected.
Related concepts:
“Restart of an online utility” on page 39

Sample LISTDEF control statements
Use the sample control statements as models for developing your own LISTDEF
control statements.

Example 1: Defining a list of objects

The following control statement defines a list that includes the following objects:
v Table space DBLT0301.TLLT031A
v Index space DBLT0301.IXlT031A
v Table space DBLT0301.IPLT031C
v Table space that contains ADMF001.TBLT032A_1

The name of the list is NAME1. This list can be referenced by any subsequent
utility statements.

226 Utility Guide and Reference

LISTDEF NAME1 INCLUDE TABLESPACE DBLT0301.TLLT031A
INCLUDE INDEXSPACE DBLT0301.IXLT031A
INCLUDE TABLESPACE DBLT0301.TPLT031C
INCLUDE TABLE ADMF001.TBLT032A_1

Example 2: Defining a list of all objects in a database

The following control statement defines a list (EXAMPLE2) that includes all table
spaces and all index spaces in the PAYROLL database.
LISTDEF EXAMPLE2 INCLUDE TABLESPACES DATABASE PAYROLL

INCLUDE INDEXSPACES DATABASE PAYROLL

Example 3: Defining a list by using pattern-matching characters

The following control statement defines a list (PAYROLL) that includes the
following objects:
v All table spaces in the PAYROLL database, except for any table spaces whose

names begin with TEMP.
v All index spaces in the PAYROLL database that end with IX, except for those

index spaces that begin with TMPIX.

The subsequent COPY utility control statement processes this list.
LISTDEF PAYROLL INCLUDE TABLESPACE PAYROLL.*

EXCLUDE TABLESPACE PAYROLL.TEMP*
INCLUDE INDEXSPACE PAYROLL.*IX
EXCLUDE INDEXSPACE PAYROLL.TMPIX*

COPY LIST PAYROLL ...

Example 4: Defining a list of partitions and nonpartitioned table
spaces

The following LISTDEF statement defines a list that includes one entry for each
partition of the qualifying partitioned table spaces and one entry for each
qualifying nonpartitioned table space. The list is named EXAMPLE4. The table
spaces must satisfy the PAY*.* name pattern.
LISTDEF EXAMPLE4 INCLUDE TABLESPACE PAY*.* PARTLEVEL

Assume that three table spaces qualify. Of these table spaces, two are partitioned
table spaces (PAY2.DEPTA and PAY2.DEPTF) that each have three partitions and
one is a nonpartitioned table space (PAY1.COMP). In this case, the EXAMPLE4 list
includes the following items:
v PAY2.DEPTA partition 1
v PAY2.DEPTA partition 2
v PAY2.DEPTA partition 3
v PAY2.DEPTF partition 1
v PAY2.DEPTF partition 2
v PAY2.DEPTF partition 3
v PAY1.COMP

If you specified PARTLEVEL(2) instead of PARTLEVEL, the EXAMPLE4 list
includes the following items:
v PAY2.DEPTA partition 2
v PAY2.DEPTF partition 2
v PAY1.COMP

Chapter 15. LISTDEF 227

If you specified PARTLEVEL(0) instead of PARTLEVEL, the EXAMPLE4 list
includes only PAY1.COMP.

Example 5: Defining a list of COPY YES indexes

The following control statement defines a list (EXAMPLE5) that includes related
index spaces from the referenced list (EXAMPLE4) that were defined or altered to
COPY YES.
LISTDEF EXAMPLE5 INCLUDE LIST EXAMPLE4 INDEXSPACES COPY YES

Example 6: Defining a list that includes all table space partitions
except for one

The following control statement defines a list (EXAMPLE6) that includes all
partitions of table space X, except for partition 12. The INCLUDE clause adds an
entry for each partition, and the EXCLUDE clause removes the entry for partition
12.
LISTDEF EXAMPLE6 INCLUDE TABLESPACE X PARTLEVEL

EXCLUDE TABLESPACE X PARTLEVEL(12)

If the PARTLEVEL keyword is not specified in both clauses, as in the following
two sample statements, the INCLUDE and EXCLUDE items do not intersect. For
example, in the following statement, table space X is included in the list in its
entirety, not at the partition level. Therefore, partition 12 cannot be excluded.
LISTDEF EXAMPLE6 INCLUDE TABLESPACE X

EXCLUDE TABLESPACE X PARTLEVEL(12)

In the following sample statement, the list includes only partition 12 of table space
X, so table space X in its entirety cannot be excluded.
LISTDEF EXAMPLE6 INCLUDE TABLESPACE X PARTLEVEL(12)

EXCLUDE TABLESPACE X

Example 7: Defining a LISTDEF library and referencing a list in a
QUIESCE job

In this example, the first two LISTDEF control statements define the NAME1 and
NAME2 lists. The NAME1 list is stored in a sequential data set
(JULTU103.TCASE.DATA2). The NAME2 list is stored in a member of a partitioned
data set (JULTU103.TCASE.DATA3(MEM1)). These output data sets are identified
by the SYSUT2 DD statements (in the JCL for the CREATE1 and CREATE2 jobs).

The LISTLIB DD statement (in the JCL for the QUIESCE job) defines a LISTDEF
library. When you define a LISTDEF library, you give a name to a group of data
sets that contain LISTDEF statements. In this case, the library is to include the
following data sets:
v The sequential data set JULTU103.TCASE.DATA2 (which includes the NAME1

list)
v The MEM1 member of the partitioned data set JULTU103.TCASE.DATA3 (which

includes the NAME2 list).

When you define such a library, you can later reference a group of LISTDEF
statements with a single reference.

The OPTIONS utility statement in this example specifies that the library that is
identified by the LISTLIB DD statement is to be used as the default LISTDEF

228 Utility Guide and Reference

definition library. This declaration means that for any referenced lists, DB2 is to
first search SYSIN for the list definition. If DB2 does not find the list definition in
SYSIN, it is to search any data sets that are included in the LISTLIB LISTDEF
library.

The last LISTDEF statement defines the NAME3 list. This list includes all objects in
the NAME1 and NAME2 lists, except for three table spaces (TSLT032B, TSLT031B,
TSLT032C). Because the NAME1 and NAME2 lists are not included in SYSIN, DB2
searches the default LISTDEF library (LISTLIB) to find them.

Finally, the QUIESCE utility control statement specifies this list of objects (NAME3)
for which DB2 is to establish a quiesce point.
//CREATE1 JOB ’USER=NAME’,CLASS=A,...
//*--
//* Create an input data set.
//*--
//LOAD1 EXEC PGM=IEBGENER
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY
//SYSUT2 DD DSN=JULTU103.TCASE.DATA2,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)
//SYSUT1 DD *

LISTDEF NAME1 INCLUDE TABLESPACE DBLT0301.TLLT031A
INCLUDE TABLESPACE DBLT0301.TSLT031B

/*
//CREATE2 JOB ’USER=NAME’,CLASS=A,...
//*--
//* Create an input data set.
//*--
//CRECNTL EXEC PGM=IEFBR14
//CNTL DD DSN=JULTU103.TCASE.DATA3,UNIT=SYSDA,
// VOL=SER=SCR03,
// SPACE=(TRK,(2,2,2)),DCB=(DSORG=PO,
// LRECL=80,RECFM=FB,BLKSIZE=4560),
// DISP=(NEW,CATLG,CATLG)
/*
//*--
//* Create member of input data set.
//*--
//FILLCNTL EXEC PGM=IEBUPDTE
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=JULTU103.TCASE.DATA3,DISP=OLD
//SYSUT2 DD DSN=JULTU103.TCASE.DATA3,DISP=OLD
//SYSIN DD DATA
./ ADD NAME=MEM1

LISTDEF NAME2 INCLUDE TABLESPACE DBLT0302.TLLT032A
INCLUDE TABLESPACE DBLT0302.TSLT032B
INCLUDE TABLESPACE DBLT0302.TPLT032C

./ ENDUP
/*

//QUIESCE JOB ’USER=NAME’,CLASS=A,...
//***
//* QUIESCE LISTDEF DD LILSTDEF data sets
//***
//STEP1 EXEC DSNUPROC,UID=’JULTU103.QUIESC2’,
// UTPROC=’’,SYSTEM=’SSTR’
//LISTLIB DD DSN=JULTU103.TCASE.DATA2,DISP=SHR
// DD DSN=JULTU103.TCASE.DATA3(MEM1),DISP=SHR
//SYSIN DD *

OPTIONS LISTDEFDD LISTLIB
LISTDEF NAME3 INCLUDE LIST NAME1

Chapter 15. LISTDEF 229

INCLUDE LIST NAME2
EXCLUDE TABLESPACE DBLT0302.TSLT032B
EXCLUDE TABLESPACE DBLT0301.TSLT031B
EXCLUDE TABLESPACE DBLT0302.TPLT032C

QUIESCE LIST NAME3
/*

Example 8: Defining a list that includes related objects

The following LISTDEF control statement defines a list (EXAMPLE8) that includes
table space DBLT0101.TPLT011C and all objects that are referentially related to it.
Only base table spaces are included in the list. The subsequent RECOVER utility
control statement specifies that all objects in the EXAMPLE8 list are to be
recovered.
//STEP2 EXEC DSNUPROC,UID=’JULTU101.RECOVE5’,
// UTPROC=’’,SYSTEM=’SSTR’
//SYSIN DD *

LISTDEF EXAMPLE8 INCLUDE TABLESPACE DBLT0101.TPLT011C RI BASE
RECOVER LIST EXAMPLE8

/*

Example 9: Defining a list of cloned data

The following control statement indicates that the INCLUDE expression is to
return only the names of the following objects:
v Clone tables
v Table spaces that contain clone tables
v Indexes on clone tables
v Index spaces that contain indexes on clone tables
LISTDEF REORG_TBSP INCLUDE TABLESPACE DB42240*.T*

CLONED YES
EXCLUDE TABLESPACE DB42240*.TL4224L*
EXCLUDE TABLESPACE DB42240*.TL4224B*
EXCLUDE TABLESPACE DB42240*.TL4224C*
EXCLUDE TABLESPACE DB42240*.TL4224D*
EXCLUDE TABLESPACE DB42240*.TL4224E*
EXCLUDE TABLESPACE DB42240*.TL4224F*
EXCLUDE TABLESPACE DB422401.TSHR5702

Example 10: Defining a list that includes archive objects

The following LISTDEF statement defines a list with the name LISTALL that
includes all related table spaces, including related archive table spaces.
LISTDEF LISTALL

INCLUDE TABLESPACES TABLESPACE DB516A01.TU516A01 RI ALL
INCLUDE TABLESPACES TABLESPACE DB516A01.TU516A01 RI ALL ARCHIVE

The first INCLUDE clause specifies that all base, LOB, and XML table spaces that
are referentially related to the table space DB516A01.TU516A01 are to be included
in the list. The second INCLUDE clause specifies that all archive table spaces that
are related to table space DB516A01.TU516A01 are to be included in the list.

Figure 27. Example of building a LISTDEF library and then running the QUIESCE utility

230 Utility Guide and Reference

|

|
|

|
|
|

|
|
|
|

Chapter 16. LOAD

Use the LOAD online utility to load one or more tables of a table space. The
LOAD utility loads records into the tables and builds or extends any indexes that
are defined on them.

If the table space already contains data, you can choose whether you want to add
the new data to the existing data or replace the existing data.

The loaded data is processed by any edit or validation routine that is associated
with the table, and any field procedure that is associated with any column of the
table. The LOAD utility ignores and does not enforce informational referential
constraints.

Output

LOAD DATA generates one or more of the following forms of output:
v A loaded table space or partition.
v A discard file of rejected records.
v A summary report of errors that were encountered during processing; this report

is generated only if you specify ENFORCE CONSTRAINTS or if the LOAD
involves unique indexes.

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorizations:
v Ownership of the table
v LOAD privilege for the database
v STATS privilege for the database is required if STATISTICS keyword is specified
v DBADM or DBCTRL authority for the database. If the database is implicitly

created, these privileges must be on the implicitly created database or on
DSNDB04.

v DATAACCESS authority
v SYSCTRL or SYSADM authority

LOAD operates on a table space level, so you must have authority for all tables in
the table space when you perform LOAD.

To run LOAD STATISTICS, the privilege set must include STATS authority on the
database. To run LOAD STATISTICS REPORT YES, the privilege set must also
include the SELECT privilege on the tables required.

If either the FLASHCOPY YES or FLASHCOPY CONSISTENT option is specified,
the batch user ID that invokes the LOAD utility must have the authority to execute
the DFSMSdss COPY command.

If you use RACF access control with multilevel security and LOAD is to process a
table space that contains a table that has multilevel security with row-level
granularity, you must be identified to RACF and have an accessible valid security
label. You must also meet the following authorization requirements:

© Copyright IBM Corp. 1983, 2013 231

v To replace an entire table space with LOAD REPLACE, you must have the
write-down privilege unless write-down rules are not in effect.

v You must have the write-down privilege to specify values for the security label
columns, unless write-down rules are not in effect. If these rules are in effect and
you do not have write-down privilege, DB2 assigns your security label as the
value for the security label column for the rows that you are loading.

Restrictions on running LOAD
v LOAD with REPLACE cannot be run on a table space during the period after

RECOVER is run to a point in time before materialization of pending definition
changes and before REORG is run to complete the point-in-time recovery
process.

Execution phases of LOAD

The LOAD utility operates in the following phases:

UTILINIT
Performs initialization.

RELOAD
Loads record types and writes temporary file records for indexes and
foreign keys. RELOAD makes one pass through the sequential input data
set. Check constraints are checked for each row. Internal commits provide
commit points at which to restart in case operation should halt in this
phase.

RELOAD creates inline copies if you specified the COPYDDN or
RECOVERYDDN keywords.

A subtask is started at the beginning of the RELOAD phase to sort the
keys. The sort subtask initializes and waits for the main RELOAD phase to
pass its keys to SORT. RELOAD loads the data, extracts the keys, and
passes them in memory for sorting. At the end of the RELOAD phase, the
last key is passed to SORT, and record sorting completes.

Note that load partition parallelism starts subtasks. PREFORMAT for table
spaces occurs at the end of the RELOAD phase.

SORT Sorts temporary file records before creating indexes or validating
referential constraints, if indexes or foreign keys exist. The SORT phase is
skipped if all the following conditions apply for the data that is processed
during the RELOAD phase:
v Each table has no more than one key.
v All keys are the same type (index key only, indexed foreign key, or

foreign key only).
v The data that is being loaded or reloaded is in key order (if a key exists).

If the key is an index key only and the index is a data-partitioned
secondary index, the data is considered to be in order if the data is
grouped by partition and ordered within partition by key value. If the
key in question is an indexed foreign key and the index is a
data-partitioned secondary index, the data is never considered to be in
order.

v The data that is being loaded or reloaded is grouped by table, and each
input record is loaded into one table only.

SORT passes the sorted keys in memory to the BUILD phase, which builds
the indexes.

232 Utility Guide and Reference

|
|
|
|

BUILD
Creates indexes from temporary file records for all indexes that are defined
on the loaded tables. Build also detects duplicate keys. PREFORMAT for
indexes occurs at the end of the BUILD phase.

SORTBLD
Performs all activities that normally occur in both the SORT and BUILD
phases, if you specify a parallel index build.

INDEXVAL
Corrects unique index violations or index evaluation errors from the
information in SYSERR, if any exist.

ENFORCE
Checks referential constraints, except informational referential constraints,
and corrects violations. Information about violations of referential
constraints is stored in SYSERR.

DISCARD
Copies records that cause errors from the input data set to the discard data
set.

REPORT
Generates a summary report, if you specified ENFORCE CONSTRAINT or
if load index validation is performed. The report is sent to SYSPRINT.

LOGAPPLY
If LOAD SHRLEVEL CHANGE FLASHCOPY CONSISTENT is specified,
log apply applies the updates to the FlashCopy image copy to ensure that
all activity is reflected up to the point of consistency.

LOGCSR
If LOAD SHRLEVEL CHANGE FLASHCOPY CONSISTENT is specified,
the LOGCSR phase identifies any uncommitted work to back out from the
FlashCopy image copy.

LOGUNDO
If LOAD SHRLEVEL CHANGE FLASHCOPY CONSISTENT is specified,
the LOGUNDO phase backs out uncommitted work from the FlashCopy
image copy.

UTILTERM
Performs cleanup.

Related concepts:

Multilevel security (Managing Security)

Syntax and options of the LOAD control statement
The LOAD utility control statement, with its multiple options, defines the function
that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

Chapter 16. LOAD 233

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_mls.htm#db2z_mls

Syntax diagram

�� LOAD
DATA INDDN SYSREC

INDDN ddname
INCURSOR cursor-name

PREFORMAT 1
COPYDICTIONARY integer

PRESORTED NO

PRESORTED YES
�

�
PARALLEL

(num-subtasks)
ROWFORMAT BRF

RRF
RBALRSN_CONVERSION NONE

BASIC
EXTENDED

�

�
resume-spec flashcopy-spec KEEPDICTIONARY REUSE

LOG YES

LOG NO
NOCOPYPEND

workddn-spec �

�

(1)
SORTKEYS 0

SORTKEYS NO
SORTKEYS integer

format-spec
FLOAT(S390)

FLOAT(IEEE)

EBCDIC

ASCII
UNICODE

�

,

CCSID(integer)

NOSUBS
�

�
ENFORCE CONSTRAINTS

ENFORCE NO

ERRDDN SYSERR

ERRDDN ddname

MAPDDN SYSMAP

MAPDDN ddname

DISCARDDN SYSDISC

DISCARDDN ddname

DISCARDS 0

DISCARDS integer
�

�
SORTDEVT device-type SORTNUM integer CONTINUEIF(start)= X'byte-string'

:end 'character-string'

�

�
DECFLOAT_ROUNDMODE ROUND_CEILING

ROUND_DOWN
ROUND_FLOOR
ROUND_HALF_DOWN
ROUND_HALF_EVEN
ROUND_HALF_UP
ROUND_UP

IDENTITYOVERRIDE

INDEXDEFER NONE

INDEXDEFER NPI
ALL NONUNIQUE

�

�
IMPLICIT_TZ 'timezone-string'

� INTO-TABLE-spec ��

Notes:

1 The default is 0 if the input is on tape, a cursor, a PDS member or for SYSREC DD *. For
sequential data sets on disk, LOAD computes the default based on the input data set size.

resume-spec:

234 Utility Guide and Reference

��

(1)
RESUME NO SHRLEVEL NONE

REPLACE copy-spec statistics-spec
SHRLEVEL NONE

RESUME YES
SHRLEVEL CHANGE

��

Notes:

1 The value specified in the INTO TABLE for RESUME or REPLACE overrides the default value
for LOAD RESUME.

workddn-spec:

��
WORKDDN(SYSUT1,SORTOUT)

WORKDDN (ddname1,ddname2)
,SORTOUT

(ddname1)
SYSUT1

(,ddname2)

��

copy-spec:

��
(SYSCOPY)

COPYDDN
(ddname1)

,ddname2
(,ddname2)

RECOVERYDDN(ddname3)
,ddname4

��

flashcopy-spec:

��
NO

FLASHCOPY YES
CONSISTENT FCCOPYDDN(ddname)

��

statistics-spec:

Chapter 16. LOAD 235

�� STATISTICS

�

�

TABLE (ALL)

SAMPLE integer

COLUMN ALL
TABLE (table-name)

SAMPLE integer ,

COLUMN (column-name)

�

�
COLGROUP (column-name) colgroup-stats-spec

�

�

�

INDEX (ALL)
correlation-stats-spec

,

INDEX (index-name correlation-stats-spec)

REPORT NO

REPORT YES

UPDATE ALL

UPDATE ACCESSPATH
SPACE
NONE

�

�
HISTORY ALL

ACCESSPATH
SPACE
NONE

FORCEROLLUP YES
NO

��

colgroup-stats-spec:

��
MOST

FREQVAL COUNT integer
BOTH
LEAST

NUMQUANTILES 100
HISTOGRAM

NUMQUANTILES integer

��

correlation-stats-spec:

��

(1)
KEYCARD

�

FREQVAL NUMCOLS 1 COUNT 10

FREQVAL NUMCOLS integer COUNT integer
NUMCOLS 1 NUMQUANTILES 100

HISTOGRAM
NUMQUANTILES 100

NUMCOLS integer
NUMQUANTILES integer

��

Notes:

1 The KEYCARD option is deprecated. The KEYCARD functionality is now built into the default
execution of the inline statistics for indexes and cannot be disabled.

236 Utility Guide and Reference

||||

|
|

||

|
||

|||||||||||

format-spec:

��
FORMAT UNLOAD

SQL/DS
INTERNAL

COLDEL ',' CHARDEL '"' DECPT '.'
DELIMITED

COLDEL coldel CHARDEL chardel DECPT decpt
SPANNED YES

NO

��

INTO-TABLE-spec:

For the syntax diagram and the option descriptions of the into-table specification,
see “INTO-TABLE-spec” on page 261.

Option descriptions

DATA
Specifies that data is to be loaded. This keyword is optional and is used for
clarity only.

INDDN ddname
Specifies the data definition (DD) statement or template that identifies the
input data set for the partition. The record format for the input data set must
be fixed-length or variable-length. The data set must be readable by the basic
sequential access method (BSAM).

If the input file is an HFS or zFS file, use a template with the PATH option.

The ddname is the name of the input data set.

The default value is SYSREC.

Related information:

“Syntax and options of the TEMPLATE control statement” on page 775

INCURSOR cursor-name
Specifies the cursor for the input data set. You must declare the cursor before it
is used by the LOAD utility. Use the EXEC SQL utility control statement to
define the cursor. You cannot load data into the same table on which you
defined the cursor. You cannot load data into a table that is a parent in a RI
relationship with the dependent table on which the cursor is defined.

The specified cursor can be used with the DB2 family cross-loader function,
which enables you to load data from any DRDA-compliant remote server. For
more information about using the cross-loader function, see “Loading data by
using the cross-loader function” on page 311.

cursor-name is the cursor name. Cursor names that are specified with the
LOAD utility cannot be longer than eight characters.

You cannot use the INCURSOR option with the following options:
v SHRLEVEL CHANGE
v NOSUBS
v FORMAT UNLOAD
v FORMAT SQL/DS

Chapter 16. LOAD 237

v FORMAT INTERNAL
v CONTINUEIF
v WHEN

In addition, you cannot specify field specifications or use discard processing
with the INCURSOR option.

PREFORMAT
Specifies that the remaining pages are preformatted up to the high-allocated
RBA in the table space and index spaces that are associated with the table that
is specified in table-name. The preformatting occurs after the data has been
loaded and the indexes are built.

PREFORMAT can operate on an entire table space and its index spaces, or on a
partition of a partitioned table space and on the corresponding partitions of
partitioned indexes, if any exist. Specifying LOAD PREFORMAT (rather than
PART integer PREFORMAT) tells LOAD to serialize at the table space level,
which can inhibit concurrent processing of separate partitions. If you want to
serialize at the partition level, specify PART integer PREFORMAT.

The PREFORMAT keyword also applies to LOB table spaces and auxiliary
indexes that are associated with the base table or partitions that LOAD
serialized. XML objects are not preformatted.

COPYDICTIONARY integer
Allows the LOAD utility to copy an existing compression dictionary from a
partition to other partitions of a partitioned table space. LOAD copies the
current compression dictionary from the partition whose partition number is
integer, and uses that compression dictionary to compress the input data for
partitions that are being replaced. The default value of integer is 1.

COPYDICTIONARY provides a method for copying a compression dictionary
to an empty partition. The partition that is being copied must have a valid
compression dictionary.

COPYDICTIONARY causes LOAD to copy the compression dictionary only to
partitions that have the COMPRESS YES attribute.

Use of the COPYDICTIONARY keyword has these restrictions:
v COPYDICTIONARY can be used only when the target of the LOAD

statement is a partitioned or range-partitioned table space.
v PART integer REPLACE must also be specified in the LOAD statement.
v LOAD RESUME NO cannot be specified with COPYDICTIONARY. However

RESUME NO can be specified in the INTO-table-spec.
v RESUME YES cannot be specified with COPYDICTIONARY.
v KEEPDICTIONARY cannot also be specified in the LOAD statement.

PRESORTED
Specifies whether the input data set has already been sorted in clustering key
order. If the input data set is in clustering key order, the LOAD utility can
execute the RELOAD and BUILD phases in parallel, and can skip the sorting
of the clustering index.

NO Specifies that the input data set has not already been sorted. The LOAD
utility must sort the clustering index.

YES
Specifies that the input data set has already been sorted. The LOAD utility
does not sort the clustering index, and executes the RELOAD and BUILD
phases in parallel.

238 Utility Guide and Reference

The following requirements must be satisfied when PRESORTED YES is
specified:
v All data sets that are needed for parallel index build need to be

available.
v For partitioned table spaces with a clustering partitioned index, the

presorted order of the data rows must be:
1. By partition number
2. By key ordering of clustering index within each partition

v For partitioned table spaces with a clustering nonpartitioned index, or
nonpartitioned table space with a single table, the presorted order of the
data rows must be by key ordering of the clustering index.

v For simple and segmented table spaces:
– The presorted order of the data rows must be by key ordering of the

clustering index within the table.
– The LOAD statement can contain only one INTO TABLE clause.

Restrictions:

v Under the following conditions, LOAD issues a warning message, and
continues with processing as if PRESORTED NO were specified:
– When SHRLEVEL CHANGE is also specified
– When partition parallelism is used
– When the target tables have no indexes
– When SORTKEYS NO is specified

v Only LOAD with REPLACE and with PRESORTED YES can be restarted
in the RELOAD phase. If LOAD with RESUME and PRESORTED YES is
restarted in the RELOAD phase, utility processing abnormally
terminates, and LOAD issues an error message.

v If PRESORTED YES is specified, and LOAD determines that the input
data set is not sorted in clustering key order, LOAD tolerates the keys
that are not in order. However, for the clustering index, inline statistics
are not collected and real-time statistics are invalidated. LOAD issues a
warning message.

PARALLEL
For a single input data set, the PARALLEL option specifies the maximum
number of subtasks that are to be used in parallel when the utility loading a
table space from a single input data set and building the indexes. By using
parallel subtasks, the utility can potentially reduce the elapsed time of the load
operation.

For multiple input data sets, where there is one data set for each partition, the
PARALLEL option specifies the maximum number of subtasks that are to be
used with loading the data partitions, building the indexes, and gathering
statistics. This situation applies to partitioned (non-universal) table spaces and
range-partitioned universal table spaces. If the PARALLEL keyword is omitted,
the load operation uses the optimal number of subtasks with applied
constraints.

The specified number of subtasks for PARALLEL always overrides the
specification of the PARAMDEG_UTIL subsystem parameter, so PARALLEL
can be smaller or larger than the value of PARAMDEG_UTIL.

Chapter 16. LOAD 239

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

Recommendation: If you specify the PARALLEL keyword and SHRLEVEL
CHANGE, set the LOCKSIZE attribute of the table space to ROW to minimize
contention on the parallel subtasks.

Restrictions: The PARALLEL keyword is not valid in the following situations:
v For a single input data set, the LOAD statement includes any of the

following options:
– SPANNED YES
– INCURSOR
– PRESORTED
– FORMAT INTERNAL
– COLGROUP

v The table space to be loaded is a partition-by-growth table space.
v The table to be loaded has XML columns and is in a simple or segmented

table space, and the LOAD statement includes the SHRLEVEL CHANGE
option.

v The table to be loaded has LOB or XML columns, and the LOAD statement
includes the SHRLEVEL NONE option.

(num-subtasks)
Specifies the maximum number of subtasks that are to be processed in
parallel. The value must be an integer between 0 and 32767, inclusive. If
you specify SHRLEVEL CHANGE, num-subtasks represents the number of
subtasks for loading the data and preprocessing the records. If you specify
SHRLEVEL NONE, num-subtasks represents the number of subtasks for
only preprocessing the records.

Recommendation: Specify PARALLEL(0) or PARALLEL.

The LOAD utility calculates an optimal number of subtasks to process in
parallel based on memory constraints, virtual storage constraints, and the
number of available processors. If 0 or no value is specified for
num-subtasks, the LOAD utility uses the optimal number of parallel
subtasks. If the specified value for num-subtasks is greater than the
calculated optimal number, LOAD limits the number of parallel subtasks to
the optimal number. If the specified value for num-subtasks is less than the
calculated optimal number, LOAD uses the specified value. If the specified
value for num-subtasks is greater than 32767, the LOAD statement fails.

If you specify 1 for num-subtasks, the LOAD utility loads the data serially,
as if PARALLEL was not specified. For a single input data set, parallel
index building is still possible with PARALLEL(1). However, if you specify
PARALLEL(1) for partition parallelism (multiple input data sets),
parallelism is constrained for both loading data and building indexes.

For a single input data set, the default is PARALLEL(1). For partition
parallelism, the default is PARALLEL(0).

If you specify the PARALLEL keyword without a value, the default value is
PARALLEL(0).

Related information:

“Improving LOAD performance” on page 315
Types of DB2 table spaces (Introduction to DB2 for z/OS)
Specifying the size of locks for a table space (DB2 Performance)

240 Utility Guide and Reference

|
|
|

|

|
|

|

|

|

|

|

|

|
|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_typesofdb2tablespaces.htm#db2z_typesofdb2tablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_uselocksizeclause.htm#db2z_uselocksizeclause

ROWFORMAT
Specifies the output row format in the affected table space or partition. This
keyword overrides the existing RRF subsystem parameter setting. This
keyword has no effect on LOB, catalog, directory, XML, or universal table
spaces participating in a CLONE relationship.

BRF
Specifies that the table space or partition being reorganized or replaced
will be converted to or remain in basic row format.

RRF
Specifies that the table space or partition being reorganized or replaced
will be converted to or remain in reorder row format.

RBALRSN_CONVERSION
Specifies the RBA or LRSN format of the target object after the completion of
the LOAD utility. If the keyword is not specified, the conversion specified in
the UTILITY_OBJECT_CONVERSION subsystem parameter is accepted. If you
specify RBALRSN_CONVERSION, you must also specify the REPLACE
keyword.

NONE
Specifies that no conversion is performed.

The utility fails if RBALRSN_CONVERSION NONE is specified on a table
space that is in basic 6-byte format and the
UTILITY_OBJECT_CONVERSION subsystem parameter is set to
NOBASIC.

BASIC
Specifies that if an object is found in extended 10-byte format, it is
converted to 6-byte basic format.

The utility fails if RBALRSN_CONVERSION BASIC is specified and the
UTILITY_OBJECT_CONVERSION subsystem parameter is set to
NOBASIC.

EXTENDED
Specifies that if an object is found in basic 6-byte format, it is converted to
10-byte extended format.

LOAD REPLACE of a base table space, when converting page format to
extended, does not convert versioned XML table spaces that are associated
with that base table space.

RESUME
Indicates whether records are to be loaded into an empty or non-empty table
space. For nonsegmented table spaces, space is not reused for rows that have
been marked as deleted or for rows of dropped tables.

Important: Specifying LOAD RESUME (rather than PART integer RESUME)
tells LOAD to serialize on the entire table space, which can inhibit concurrent
processing of separate partitions. If you want to process other partitions
concurrently, specify PART integer RESUME.

NO Loads records into an empty table space. If the table space is not empty,
and you have not used REPLACE, a message is issued and the utility job
step terminates with a job step condition code of 8.

For nonsegmented table spaces that contain deleted rows or rows of
dropped tables, using the REPLACE keyword provides increased efficiency.

Chapter 16. LOAD 241

|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

The default value is NO, unless you override it with PART integer
RESUME YES.

YES
Loads records into a non-empty table space. If the table space is empty, a
warning message is issued, but the table space is loaded. Loading begins at
the current end of data in the table space. Space is not reused for rows that
are marked as deleted or for rows of dropped tables.

LOAD RESUME SHRLEVEL CHANGE activates the before triggers and after
triggers for each row that is loaded.

SHRLEVEL
Specifies the extent to which applications can concurrently access the table
space or partition during the LOAD utility job. The following parameter values
are listed in order of increasing extent of allowed concurrent access.

NONE
Specifies that applications have no concurrent access to the table space or
partition.

CHANGE
Specifies that applications can concurrently read from and write to the
table space or partition into which LOAD is loading data. If you specify
SHRLEVEL CHANGE, you cannot specify the following parameters:
INCURSOR, RESUME NO, REPLACE, KEEPDICTIONARY, LOG NO,
ENFORCE NO, STATISTICS, COPYDDN, RECOVERYDDN, MAPDDN,
PREFORMAT, REUSE, or PART integer REPLACE.

For a partition-directed LOAD, if you specify SHRLEVEL CHANGE, only
RESUME YES can be specified or inherited from the LOAD statement.

LOAD SHRLEVEL CHANGE does not perform the SORT, BUILD,
SORTBLD, INDEXVAL, or ENFORCE phases, and the compatibility and
concurrency considerations differ.

A LOAD SHRLEVEL CHANGE job functions like a mass INSERT. Whereas
a regular LOAD job drains the entire table space, LOAD SHRLEVEL
CHANGE functions like an INSERT statement and uses claims when
accessing an object.

Normally, a LOAD RESUME YES job loads the records at the end of the
already existing records. However, for a LOAD RESUME YES job with the
SHRLEVEL CHANGE option, the utility tries to insert the new records in
available free space as close to the clustering order as possible. This LOAD
job does not create any additional free pages. If you insert a lot of records,
these records are likely to be stored out of clustering order. In this case,
you should run the REORG TABLESPACE utility after loading the records.

When an identity column exists in the table being loaded, performance can
be improved by specifying the CACHE attribute for the identity column.

Lock escalation will be disabled on XML table spaces for LOAD
SHRLEVEL CHANGE.

Recommendation: If you have loaded a lot of records, run RUNSTATS
SHRLEVEL CHANGE UPDATE SPACE and then a conditional REORG.

Log records that DB2 creates during LOAD SHRLEVEL CHANGE can be
used by DB2 DataPropagator, if the tables that are being loaded are
defined with DATA CAPTURE CHANGES.

242 Utility Guide and Reference

LOAD jobs with the SHRLEVEL CHANGE option do not insert any
records into SYSIBM.SYSCOPY.

Note that before and after row triggers are activated for SHRLEVEL
CHANGE but not for SHRLEVEL NONE. Statement triggers for each row
are also activated for SHRLEVEL CHANGE but not for SHRLEVEL NONE.

REPLACE
Indicates whether the table space and all its indexes need to be reset to empty
before records are loaded. With this option, the newly loaded rows replace all
existing rows of all tables in the table space, not just those of the table that you
are loading. ForDB2 STOGROUP-defined data sets, the data set is deleted and
redefined with this option, unless you also specified the REUSE option. You
must have LOAD authority for all tables in the table space where you perform
LOAD REPLACE. If you attempt a LOAD REPLACE without this authority,
you get an error message.

You cannot use REPLACE with the PART integer REPLACE option of INTO
TABLE; you must either replace an entire table space by using the REPLACE
option or replace a single partition by using the PART integer REPLACE option
of INTO TABLE.

Specifying LOAD REPLACE (rather than PART integer REPLACE) tells LOAD
to serialize at the table space level. If you want to serialize at the partition
level, specify PART integer REPLACE. See the information about specifying
REPLACE at the partition level under the keyword descriptions for INTO
TABLE.

Restrictions:

v LOAD REPLACE is not allowed on a table or a history table defined with
data versioning.

v LOAD REPLACE is not allowed on a table space after RECOVER was run
on that table space to a point in time before pending definition changes were
materialized. Before running LOAD REPLACE, you need to run REORG on
the entire table space to complete the point-in-time recovery process.

v LOAD REPLACE is not allowed on an archive-enabled table. (LOAD
REPLACE is allowed on the table space that contains the archive table.)
“Replacing data with LOAD” on page 295

COPYDDN (ddname1,ddname2)
Specifies the DD statements for the primary (ddname1) and backup (ddname2)
copy data sets for the image copy.

ddname is the DD name.

The default value is SYSCOPY for the primary copy. No default exists for the
backup copy.

The COPYDDN keyword can be specified only with REPLACE. A full image
copy data set (SHRLEVEL REFERENCE) is created for the table or partitions
that are specified when LOAD executes. The table space or partition for which
an image copy is produced is not placed in COPY-pending status.

Image copies that are taken during LOAD REPLACE are not recommended for
use with RECOVER TOCOPY because these image copies might contain
unique index violations, referential constraint violations, or index evaluation
errors.

When using COPYDDN for XML data, an inline copy is taken only of the base
table space, not the XML table space.

Chapter 16. LOAD 243

|
|
|
|

|
|

Using COPYDDN when loading a table with LOB columns does not create a
copy of any index, LOB table space, or XML table space. You must perform
these tasks separately.

The COPYDDN keyword specifies either a DD name or a TEMPLATE name
specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name.

RECOVERYDDN ddname3,ddname4
Specifies the DD statements for the primary (ddname3) and backup (ddname4)
copy data sets for the image copy at the recovery site.

ddname is the DD name.

You cannot have duplicate image copy data sets. The same rules apply for
RECOVERYDDN and COPYDDN.

The RECOVERYDDN keyword specifies either a DD name or a TEMPLATE
name specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name.

FLASHCOPY
Specifies whether FlashCopy technology is used to create a copy of the object.
Valid values are YES, NO, or CONSISTENT. When FlashCopy is used, a
separate data set is created for each partition or piece of the object.

Specify YES or CONSISTENT only if the DB2 data sets are on FlashCopy
Version 2 disk volumes.

The FlashCopy specifications on the utility control statement override any
specifications for FlashCopy that are defined by using the DB2 subsystem
parameters. If the FlashCopy subsystem parameters specify the use of
FlashCopy as the default behavior of this utility, the FLASHCOPY option can
be omitted from the utility control statement.

Important: If the input data set is less than one cylinder, FlashCopy
technology might not be used for copying the objects regardless of the
FLASHCOPY settings. The copy is performed by IDCAMS if FlashCopy is not
used.

NO Specifies that no FlashCopy is made. NO is the default value for
FLASHCOPY.

YES
Specifies that FlashCopy technology is used to copy the object.

Important: Under the following circumstances, the COPY utility might not
use FlashCopy even though YES is specified:
v FlashCopy Version 2 disk volumes are not available
v The source tracks are already the target of a FlashCopy operation
v The target tracks are the source of a FlashCopy operation
v The maximum number of relationships for the copy is exceeded

In the event that FlashCopy is not used, the LOAD utility uses traditional
I/O methods to copy the object, which can result in longer than expected
execution time.

CONSISTENT
When SHRLEVEL CHANGE is specified, specifies that FlashCopy

244 Utility Guide and Reference

technology is used to copy the object and that any uncommitted work
included in the copy is backed out of the copy to make the copy
consistent. If SHRLEVEL NONE is specified on the LOAD control
statement, the image copy is already consistent and you do not need to
specify CONSISTENT.

A consistent FlashCopy image copy can by used for recovery without also
requiring a sequential format image copy.

Specifying FLASHCOPY CONSISTENT requires additional time and
system resources during utility processing, because the utility must read
the logs and apply the changes to the image copy. Similarly, recovering
from a consistent FlashCopy image copy also requires additional time and
system resources to read the logs and reapply work that was previously
backed out.

Restriction: CONSISTENT cannot be specified when copying objects that
have been defined with the NOT LOGGED attribute. If CONSISTENT is
specified for an object that is defined with the NOT LOGGED attribute, the
utility does not make a copy of the object and issues message DSNU076I
with return code 8.

FCCOPYDDN
Specifies the template to be used to create the FlashCopy image copy data set
names. If a value is not specified for FCCOPYDDN on the LOAD control
statement when FlashCopy is used, the value specified on the FCCOPYDDN
subsystem parameter determines the template to be used.

(template-name)
The data set names for the FlashCopy image copy are allocated according
to the template specification. For table space or index space level
FlashCopy image copies, because a data set is allocated for each partition
or piece, ensure that the data set naming convention in the template
specification is unique enough. Use the &DSNUM variable, which resolves
to a partition number or piece number at execution time.

STATISTICS
Specifies the gathering of statistics for a table space, index, or both; the
statistics are stored in the DB2 catalog.

If you specify the STATISTICS keyword with no other statistics-spec or
correlation-stats-spec options, DB2 gathers only table space statistics. Statistics
are collected on a base table space, but not on a LOB table space or XML table
space.

Restrictions:

v If you specify STATISTICS for encrypted data, DB2 might not provide useful
statistics on this data.

v You cannot specify STATISTICS if the named table is a table clone.

TABLE
Specifies the table for which column information is to be gathered. All tables
must belong to the table space that is specified in the TABLESPACE option.

(ALL)
Specifies that information is to be gathered for all columns of all tables in
the table space.

(table-name)
Specifies the tables for which column information is to be gathered. If you

Chapter 16. LOAD 245

omit the qualifier, the user identifier for the utility job is used. Enclose the
table name in quotation marks if the name contains a blank.

If you specify more than one table, you must repeat the TABLE option.
Multiple TABLE options must be specified entirely before or after any
INDEX keyword that may also be specified. For example, the INDEX
keyword may not be specified between any two TABLE keywords.

SAMPLE integer
Indicates the percentage of rows that LOAD is to sample when collecting
statistics on non-leading-indexed columns of an index or non-indexed columns.
You can specify any value from 1 through 100. The default value is 25.

COLUMN
Specifies the columns for which column information is to be gathered.

You can specify this option only if you specify the particular tables for which
statistics are to be gathered (TABLE (table-name)). If you specify particular
tables and do not specify the COLUMN option, the default, COLUMN(ALL), is
used. If you do not specify a particular table when using the TABLE option,
you cannot specify the COLUMN option; however, COLUMN(ALL) is
assumed.

(ALL)
Specifies that statistics are to be gathered for all columns in the table.

(column-name, ...)
Specifies the columns for which statistics are to be gathered.

You can specify a list of column names; the maximum is 10. If you specify
more than one column, separate each name with a comma.

INDEX
Specifies indexes for which information is to be gathered. Column information
is gathered for the first column of the index. All the indexes must be associated
with the same table space, which must be the table space that is specified in
the TABLESPACE option.

(ALL)
Specifies that the column information is to be gathered for all indexes that
are defined on tables in the table space.

(index-name)
Specifies the indexes for which information is to be gathered. Enclose the
index name in quotation marks if the name contains a blank.

COLGROUP (column-name, ...)
Indicates that the specified set of columns are treated as a group. This option
enables inline statistics to collect a cardinality value on the specified column
group. Inline statistics ignores COLGROUP when processing XML table spaces
and indexes.

When you specify the COLGROUP keyword, inline statistics collects
correlation statistics for the specified column group. If you want inline
statistics to also collect distribution statistics, specify the FREQVAL option with
COLGROUP.

(column-name, ...) specifies the names of the columns that are part of the
column group.

To specify more than one column group, repeat the COLGROUP option.

246 Utility Guide and Reference

|
|
|
|
|

|
|
|
|

|
|

|

Restriction: The length of the COLGROUP value cannot exceed the maximum
length of the COLVALUE column in the SYSIBM.SYSCOLDIST catalog table.

FREQVAL
Indicates, when specified with the COLGROUP option, that frequency statistics
are also to be gathered for the specified group of columns. (COLGROUP
indicates that cardinality statistics are gathered.) One group of statistics is
gathered for each column. You must specify COUNT integer with COLGROUP
FREQVAL. The LOAD utility ignores FREQVAL MOST/LEAST/BOTH when
processing XML table spaces and indexes.

COUNT integer
Indicates the number of frequently occurring values to be collected from the
specified column group. For example, COUNT 20 means that DB2 collects 20
frequently occurring values from the column group. You must specify a value
for integer; no default value is assumed. Be careful when specifying a high
value for COUNT. Specifying a value of 1000 or more can increase the prepare
time for some SQL statements.

MOST
Indicates that the utility is to collect the most frequently occurring values for
the specified set of columns when COLGROUP is specified.

BOTH
Indicates that the utility is to collect the most and the least frequently
occurring values for the specified set of columns when COLGROUP is
specified.

LEAST
Indicates that the utility is to collect the least frequently occurring values for
the specified set of columns when COLGROUP is specified.

HISTOGRAM
Indicates, when specified with the COLGROUP option, that histogram statistics
are to be gathered for the specified group of columns. Inline statistics ignore
HISTOGRAM when processing XML table spaces and indexes.

NUMQUANTILES integer
Indicates how many quantiles that the utility collects. The integer value must
be greater than or equal to one. The number of quantiles that you specify must
never exceed the total number of distinct values in the column or the column
group. The maximum number of quantiles is 100.

When the NUMQUANTILES keyword is omitted, NUMQUANTILES takes a
default value of 100. Based on the number of records in the table, the number
of quantiles is readjusted down to an optimal number.

KEYCARD
The KEYCARD option is deprecated in the LOAD control statement and no
longer needs to be specified to collect statistics on the values in the key
columns of an index.

When the STATISTICS and INDEX options are specified, the LOAD utility
automatically collects all of the distinct values in all of the 1 to n key column
combinations for the indexes being rebuilt.n is the number of columns in the
index. With the collection of inline statistics for indexes, this functionality is
performed by default and cannot be disabled.

The LOAD utility tolerates the specification of the KEYCARD option. The
utility does not issue any messages if the control statement includes or
excludes the KEYCARD option when STATISTICS and INDEX are specified.

Chapter 16. LOAD 247

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

FREQVAL
Controls the collection of frequent-value statistics. If you specify FREQVAL, it
must be followed by two additional keywords:

NUMCOLS
Indicates the number of key columns that are to be concatenated together
when collecting frequent values from the specified index. Specifying '3'
means that frequent values are to be collected on the concatenation of the
first three key columns. The default value is 1, which means that DB2
collects frequent values on the first key column of the index.

COUNT
Indicates the number of frequent values that are to be collected. Specifying
'15' means that DB2 collects 15 frequent values from the specified key
columns. The default value is 10.

HISTOGRAM
Indicates that histogram statistics are requested for the specified index.

NUMCOLS
The number of key columns that are to be concatenated when collecting
histogram statistics from the specified index.

NUMQUANTILES
The integer values that follows NUMQUANTILES indicates the number
quantiles are requested. The integer value must be greater than or equal to
1.

Histogram statistics can be collected only on keys with the same order. If the
specified key columns for histogram statistics are of mixed or random order, a
DSNU633I warning message is issued.

Related information:

Histogram statistics (DB2 Performance)
DSNU633I (DB2 Messages)

REPORT
Indicates whether a set of messages is to be generated to report the collected
statistics.

NO Indicates that the set of messages is not sent to SYSPRINT as output.

YES
Indicates that the set of messages is sent to SYSPRINT as output. The
generated messages are dependent on the combination of keywords (such
as TABLESPACE, INDEX, TABLE, and COLUMN) that are specified with
the RUNSTATS utility. However, these messages are not dependent on the
specification of the UPDATE option. REPORT YES always generates a
report of SPACE and ACCESSPATH statistics.

UPDATE
Indicates whether the collected statistics are to be inserted into the catalog
tables. UPDATE also allows you to select statistics that are used for access path
selection or statistics that are used by database administrators.

ALL
Indicates that all collected statistics are to be updated in the catalog.

ACCESSPATH
Indicates that updates are to be made only to the catalog table columns
that provide statistics that are used for access path selection.

248 Utility Guide and Reference

|
|

|
|
|

|
|
|
|

|
|
|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_histogramstatistics.htm#db2z_histogramstatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu633i.htm#dsnu633i

SPACE
Indicates that updates are to be made only to the catalog table columns
that provide statistics to help database administrators assess the status of a
particular table space or index.

NONE
Indicates that no catalog tables are to be updated with the collected
statistics. This option is valid only when REPORT YES is specified.

HISTORY
Records all catalog table inserts or updates to the catalog history tables.

The default is supplied by the value that is specified in STATISTICS HISTORY
on panel DSNTIP6.

ALL
Indicates that all collected statistics are to be updated in the catalog history
tables.

ACCESSPATH
Indicates that updates are to be made only to the catalog history table
columns that provide statistics that are used for access path selection.

SPACE
Indicates that only space-related catalog statistics are to be updated in
catalog history tables.

NONE
Indicates that no catalog history tables are to be updated with the collected
statistics.

FORCEROLLUP
Specifies whether aggregation or rollup of statistics is to take place when
RUNSTATS is executed even if some parts are empty. This keyword enables
the optimizer to select the best access path.

YES
Indicates that forced aggregation or rollup processing is to be done, even
though some parts might not contain data.

NO Indicates that aggregation or rollup is to be done only if data is available
for all parts.

If data is not available for all parts, DSNU623I message is issued if the
installation value for STATISTICS ROLLUP on panel DSNTIP6 is set to
NO.

KEEPDICTIONARY
Prevents the LOAD utility from building a new compression dictionary. LOAD
retains the current compression dictionary and uses it for compressing the
input data. This option eliminates the cost that is associated with building a
new dictionary.

The KEEPDICTIONARY keyword is ignored for XML table spaces. If you
specify REPLACE, any existing dictionary for the XML table space or partition
is deleted. If you do not specify REPLACE, any existing dictionary for the
XML table space or partition is saved.

DB2 ignores the KEEPDICTIONARY option during execution of a REORG or
LOAD REPLACE that changes the table space from basic row format to
reordered row format.

Chapter 16. LOAD 249

This keyword is valid only if the table space that is being loaded has the
COMPRESS YES attribute.

If the table space or partition is empty, DB2 performs one of these actions:
v DB2 builds a dictionary if a compression dictionary does not exist, but only

if the table space is not a simple table space.
v DB2 keeps the dictionary if a compression dictionary exists.

If RESUME NO and REPLACE are specified when the table space or partition
is not empty, DB2 performs the same actions as it does when the table space or
partition is empty.

If the table space or partition is not empty and RESUME YES is specified, DB2
performs one of these actions:
v DB2 does not build a dictionary if a compression dictionary does not exist.
v DB2 keeps the dictionary if a compression dictionary exists.

Note: You must use KEEPDICTIONARY to ensure that the compression
dictionary is maintained.

REUSE
Specifies (when used with REPLACE) that LOAD is to logically reset and reuse
DB2-managed data sets without deleting and redefining them. If you do not
specify REUSE, DB2 deletes and redefines DB2-managed data sets to reset
them.

REUSE must be accompanied by REPLACE to do the logical reset for all data
sets. However, if you specify REUSE for the table space and REPLACE only at
the partition level, only the replaced partitions are logically reset.

If a data set has multiple extents, the extents are not released if you specify the
REUSE parameter.

LOG
Indicates whether logging is to occur during the RELOAD phase of the load
process.

YES
Specifies normal logging during the load process. All records that are
loaded are logged. If the table space has the NOT LOGGED attribute, DB2
does the LOAD with no logging.

NO Specifies no logging of data during the load process. If the table space has
the LOGGED attribute, the NO option sets the COPY-pending restriction
against the table space or partition that the loaded table resides in. No
table or partition in the table space can be updated by SQL until the
restriction is removed. For ways to remove the restriction, see “Resetting
COPY-pending status” on page 334.

If you load a single partition of a partitioned table space and the table
space has a secondary index, some logging might occur during the build
phase as DB2 logs any changes to the index structure. This logging allows
recoverability of the secondary index in case an abend occurs, and it also
allows concurrency.

DB2 treats table spaces that were created as NOT LOGGED as if you
specified LOG NO. If you specify LOG NO without specifying COPYDDN,
the base table space is placed in COPY-pending status. If XML columns are
nullable and not loaded, only the base table space is placed in
COPY-pending status.

250 Utility Guide and Reference

A LOB table space affects logging while DB2 loads a LOB column
regardless of whether the LOB table space was defined with LOG YES or
LOG NO.

NOCOPYPEND
Specifies that LOAD is not to set the table space in the COPY-pending
status, even though LOG NO was specified. A NOCOPYPEND
specification does not turn on or change any informational
COPY-pending (ICOPY) status for indexes. A NOCOPYPEND
specification will not turn off any COPY-pending status that was set
prior to the LOAD. Normal completion of a LOAD LOG NO
NOCOPYPEND job returns a 0 code if no other errors or warnings
exist.

DB2 ignores a NOCOPYPEND specification if you also specified
COPYDDN to make a local-site inline image copy during the LOAD. If
the table space has the NOT LOGGED attribute, NOCOPYPEND is
ignored.

Attention: Specify the NOCOPYPEND option only if the data in the
table space can be easily re-created by another LOAD job if the data is
lost. If you do not take an image copy following the LOAD, you
cannot recover the table space by using the RECOVER utility, and you
might lose data.

WORKDDN (ddname1,ddname2)
Specifies the DD statements for the temporary work file for sort input and sort
output. Temporary work files for sort input and output are required if the
LOAD involves tables with indexes.

ddname1 is the DD name for the temporary work file for sort input. The
default value is SYSUT1.

ddname2 is the DD name for the temporary work file for sort output. The
default value is SORTOUT.

The WORKDDN keyword specifies either a DD name or a TEMPLATE name
specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name. For more
information about TEMPLATE specifications, see Chapter 31, “TEMPLATE,” on
page 775.

SORTKEYS
Specifies that index keys are to be sorted in parallel during the SORTBLD
phase to improve performance.

integer
Specifies an integer to provide an estimate of the number of index keys that
are to be sorted. Integer must be a positive integer between 0 and
562 949 953 421 311. The default value is 0 if any of the following
conditions are true:
v The target table has no index and SHRLEVEL is NONE.
v The target table has one index.
v The input is on tape, a cursor, a PDS member, or for SYSREC DD *.

NO Indicates that the SORTKEYS default is to be turned off.

For sequential data sets on disk, LOAD computes the default value for
SORTKEYS based on the input data set size.

Chapter 16. LOAD 251

If the NUMRECS keyword is specified at the table level in the same LOAD
statement, you cannot specify an integer value on the SORTKEYS keyword. To
turn off parallel sorts, you can specify SORTKEYS NO when the NUMRECS
keyword is specified. The NUMRECS keyword is specified at the table level to
improve the estimation of work file data set sizes when loading data into
multi-table table spaces with uneven distribution of rows between the tables.

For more information about sorting keys, see “Improved performance with
SORTKEYS” on page 316 and “Building indexes in parallel for LOAD” on page
322.

FORMAT
Identifies the format of the input record. If you use FORMAT UNLOAD,
FORMAT INTERNAL, or FORMAT SQL/DS, it uniquely determines the format
of the input, and no field specifications are allowed in an INTO TABLE option.

If you omit FORMAT, the format of the input data is determined by the rules
for field specifications.If you specify FORMAT DELIMITED, the format of the
input data is determined by the rules that are described in Appendix H,
“Delimited file format,” on page 1133.

UNLOAD

The FORMAT UNLOAD option is deprecated, and the alternative is
running FORMAT INTERNAL.Specifies that the input record format is
compatible with the DB2 unload format. (The DB2 unload format is the
result of REORG with the UNLOAD ONLY option.)

Input records that were unloaded by the REORG utility are loaded into the
tables from which they were unloaded, if an INTO TABLE option specifies
each table. Do not add columns or change column definitions of tables
between the time you run REORG UNLOAD ONLY and LOAD FORMAT
UNLOAD.

Any WHEN clause on the LOAD FORMAT UNLOAD statement is
ignored; DB2 reloads the records into the same tables from which they
were unloaded. Not allowing a WHEN clause with the FORMAT
UNLOAD clause ensures that the input records are loaded into the proper
tables. Input records that cannot be loaded are discarded.

If the DCB RECFM parameter is specified on the DD statement for the
input data set, and the data set format has not been modified since the
REORG UNLOAD (ONLY) operation, the record format must be variable
(RECFM=V).

SQL/DS
Specifies that the input record format is compatible with the SQL/DS
unload format. The data type of a column in the table that is to be loaded
must be the same as the data type of the corresponding column in the
SQL/DS table.

If the SQL/DS input contains rows for more than one table, the WHEN
clause of the INTO TABLE option indicates which input records are to be
loaded into which DB2 table.

LOAD cannot load SQL/DS strings that are longer than the DB2 limit.

SQL/DS data that has been unloaded to disk under DB2 Server for VSE &
VM resides in a simulated z/OS-type data set with a record format of VBS.
Consider this format when transferring the data to another system that is
to be loaded into a DB2 table (for example, the DB2 Server for VSE & VM.
FILEDEF must define it as a z/OS-type data set). Processing the data set as

252 Utility Guide and Reference

|
|

a standard CMS file puts the SQL/DS record type field at the wrong offset
within the records; LOAD is unable to recognize them as valid SQL/DS
input.

INTERNAL
Specifies that the input record format is DB2 internal format. DB2 internal
format is the format that is produced by running UNLOAD with the
FORMAT INTERNAL option. LOAD does no validation of the data to
ensure that it is in DB2 internal format.

When FORMAT INTERNAL is specified:
v LOAD ignores any field specifications in the LOAD control statement.
v LOAD does no data conversion.

Restrictions:

v The input data must be in decompressed format.
v LOAD can load only one table at a time when FORMAT INTERNAL is

specified.
v LOAD does not populate LOB or XML columns when FORMAT

INTERNAL is specified. LOAD puts the base table space in advisory
CHECK-pending status.

v FORMAT INTERNAL cannot be specified with any of the following
options:
– ASCII
– CCSID
– CONTINUEIF
– DECFLOAT_ROUNDMODE
– EBCDIC
– FLOAT
– IDENTITYOVERRIDE
– IGNOREFIELDS
– INCURSOR
– NOSUBS
– SHRLEVEL CHANGE
– UNICODE
– WHEN

DELIMITED
Specifies that the input data file is in a delimited format. When data is in a
delimited format, all fields in the input data set are character strings or
external numeric values. In addition, each column in a delimited file is
separated from the next column by a column delimiter character.

For each of the delimiter types that you can specify, you must ensure that
the delimiter character is specified in the code page of the source data. The
delimiter character can be specified as either a character or hexadecimal
constant. For example, to specify '#' as the delimiter, you can specify either
COLDEL '#' or COLDEL X'23'. If the utility statement is coded in a
character type that is different from the input file, such as a utility
statement that is coded in EBCDIC and input data that is in Unicode, you
should specify the delimiter character in the utility statement as a
hexadecimal constant, or the result can be unpredictable.

Chapter 16. LOAD 253

You cannot specify the same character for more than one type of delimiter
(COLDEL, CHARDEL, and DECPT). For more information about delimiter
restrictions, see “Loading delimited files” on page 304.

Unicode input data for FORMAT DELIMITED must be UTF-8, CCSID 1208.

If you specify the FORMAT DELIMITED option, you cannot use any of the
following options:
v CONTINUEIF
v INCURSOR
v Multiple INTO TABLE statements
v WHEN

Also, LOAD ignores any specified POSITION statements within the LOAD
utility control statement.

For more information about using delimited output and delimiter
restrictions, see “Loading delimited files” on page 304. For more
information about delimited files see Appendix H, “Delimited file format,”
on page 1133.

COLDEL coldel
Specifies the column delimiter that is used in the input file. The
default value is a comma (,). For most ASCII and UTF-8 data, this
value is X'2C', and for most EBCDIC data, this value is a X'6B'.

CHARDEL chardel
Specifies the character string delimiter that is used in the input file.
The default value is a double quotation mark (“). For most ASCII and
UTF-8 data, this value is X'22', and for most EBCDIC data, this value is
X'7F'.

To delimit character strings that contain the character string delimiter,
repeat the character string delimiter where it is used in the character
string. LOAD interprets any pair of character delimiters that are found
between the enclosing character delimiters as a single character. For
example, the phrase “what a ““nice warm”” day” is interpreted as what
a “nice warm” day. The LOAD utility recognizes these character
delimiter pairs for only CHAR, VARCHAR, and CLOB fields.

Character string delimiters are required only when the string contains
the CHARDEL character. However, you can put the character string
delimiters around other character strings. Data that has been unloaded
in delimited format by the UNLOAD utility includes character string
delimiters around all character strings.

DECPTdecpt
Specifies the decimal point character that is used in the input file. The
default value is a period (.). For most ASCII and UTF-8 data, this value
is X'2E', and for most EBCDIC data, this value is X'4B'.

Note: If you use an application defaults load module (either DSNHDECP,
which is the default, or a user-specified application defaults load module),
ensure that the specified decimal value is the same as the decimal value
that is used in the input data. You must specify the decimal value to match
the decimal value that is used in the input data.

SPANNED
Indicates whether records are to be loaded from a VBS data set in spanned
record format.

254 Utility Guide and Reference

YES
Indicates that the LOAD utility is to load data from spanned records.

The input data set must be in spanned record format and all LOB and
XML data must be at the end of the record.

You must provide a field specification list with all LOB and XML fields
at the end of the record. For LOB and XML columns, do not specify a
particular position with the POSITION option or specify POSITION(*).

If you specify FORMAT SPANNED YES, do not reference LOB or XML
data in the field-selection-criterion of a WHEN clause.

If you specify FORMAT SPANNED YES, the LOAD utility does not use
parallel processing.

NO Indicates that the LOAD utility is not to load data in spanned record
format.

Related information:

“Unloading data in spanned record format” on page 847

FLOAT
Specifies that LOAD is to expect the designated format for floating point
numbers.

(S390)
Specifies that LOAD is to expect that floating point numbers are provided
in System/390® hexadecimal floating point (HFP) format. (S390) is the
format that DB2 stores floating point numbers in. It is also the default
value if you do not explicitly specify the FLOAT keyword.

(IEEE)
Specifies that LOAD is to expect that floating point numbers are provided
in IEEE binary floating point (BFP) format.

When you specify FLOAT(IEEE), DB2 converts the BFP data to HFP format
as the data is being loaded into the DB2 table. If a conversion error occurs
while DB2 is converting from BFP to HFP, DB2 places the record in the
discard file.

FLOAT(IEEE) is mutually exclusive with any specification of the FORMAT
keyword. If you specify both FLOAT(IEEE) and FORMAT, DB2 issues
message DSNU070I.

BFP format is sometimes called IEEE floating point.

EBCDIC
Specifies that the input data file is EBCDIC. The default is EBCDIC.

ASCII
Specifies that the input data file is ASCII. Numeric, date, time, and timestamp
internal formats are not affected by the ASCII option.

UNICODE
Specifies that the input data file is Unicode. The UNICODE option does not
affect the numeric internal formats.

CCSID
Specifies up to three coded character set identifiers (CCSIDs) for the input file.
The first value specifies the CCSID for SBCS data that is found in the input
file, the second value specifies the CCSID for mixed DBCS data, and the third
value specifies the CCSID for DBCS data. If any of these values is specified as

Chapter 16. LOAD 255

0 or omitted, the CCSID of the corresponding data type in the input file is
assumed to be the same as the installation default CCSID. If the input data is
EBCDIC, the omitted CCSIDs are assumed to be the EBCDIC CCSIDs that are
specified at installation, and if the input data is ASCII, the omitted CCSIDs are
assumed to be the ASCII CCSIDs that are specified at installation. If the
CCSIDs of the input data file do not match the CCSIDs of the table that is
being loaded, the input data is converted to the table CCSIDs before being
loaded.

integer is any valid CCSID specification.

If the input data is Unicode, the default CCSID values are the Unicode CCSIDs
that are specified at system installation.

NOSUBS
Specifies that LOAD is not to accept substitution characters in a string.

Place a substitution character in a string when that string is being converted
from ASCII to EBCDIC, or when the string is being converted from one CCSID
to another. For example, this substitution occurs when a character (sometimes
referred to as a code point) that exists in the source CCSID (code page) does
not exist in the target CCSID (code page).

When you specify the NOSUBS option and the LOAD utility determines that a
substitution character has been placed in a string as a result of a conversion, it
performs one of the following actions:
v If discard processing is active: DB2 issues message DSNU310I and places

the record in the discard file.
v If discard processing is not active: DB2 issues message DSNU334I, and the

utility abnormally terminates.

ENFORCE
Specifies whether LOAD is to enforce check constraints and referential
constraints, except informational referential constraints, which are not enforced.

CONSTRAINTS
Indicates that constraints are to be enforced. If LOAD detects a violation, it
deletes the errant row and issues a message to identify it. If you specify
this option and referential constraints exist, sort input and sort output data
sets must be defined.

NO Indicates that constraints are not to be enforced. This option places the
target table space in the CHECK-pending status if at least one referential
constraint or check constraint is defined for the table.

ERRDDN ddname
Specifies the DD statement for a work data set that is being used during error
processing. Information about errors that are encountered during processing is
stored in this data set. A SYSERR data set is required if you request discard
processing.

ddname is the DD name.

The default value is SYSERR.

The ERRDDN keyword specifies either a DD name or a TEMPLATE name
specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name. For more
information about TEMPLATE specifications, see Chapter 31, “TEMPLATE,” on
page 775.

256 Utility Guide and Reference

MAPDDN ddname
Specifies the DD statement for a work data set that is to be used during error
processing. The work data set is used to correlate the identifier of a table row
with the input record that caused an error. A SYSMAP data set is required if
you specify ENFORCE CONSTRAINTS and the tables have a referential
relationship, or if you request discard processing when loading one or more
tables that contain unique indexes or extended indexes.

ddname is the DD name.

The default value is SYSMAP.

The MAPDDN keyword specifies either a DD name or a TEMPLATE name
specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name. For more
information about TEMPLATE specifications, see Chapter 31, “TEMPLATE,” on
page 775.

DISCARDDN ddname
Specifies the DD statement for a discard data set that is to hold copies of
records that are not loaded (for example, if they contain conversion errors). The
discard data set also holds copies of records that are loaded and then removed
(because of unique index errors, referential or check constraint violations, or
index evaluation errors). Flag input records for discarding during RELOAD,
INDEXVAL, and ENFORCE phases. However, the discard data set is not
written until the DISCARD phase when the flagged records are copied from
the input data set to the discard data set. The discard data set must be a
sequential data set that can be written to by BSAM, with the same record
format, record length, and block size as the input data set.

ddname is the DD name.

The default value is SYSDISC.

If you omit the DISCARDDN option, the utility application program saves
discarded records only if a SYSDISC DD statement is in the JCL input.

The DISCARDDN keyword is not supported if you use a BatchPipes® file as an
input to LOAD, using INDDN name for TEMPLATE SUBSYS.

The DISCARDDN keyword specifies either a DD name or a TEMPLATE name
specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name.

DISCARDS integer
Specifies the maximum number of source records that are to be written on the
discard data set. integer can range from 0 to 2147483647. If the discard
maximum is reached, LOAD abnormally terminates, the discard data set is
empty, and you cannot see which records were discarded. You can either
restart the job with a larger limit, or terminate the utility.

DISCARDS 0 specifies that you do not want to set a maximum value. The
entire input data set can be discarded.

The default value is 0.

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically

Chapter 16. LOAD 257

allocated by the external sort program. You can specify any disk device type
that is acceptable to the DYNALLOC parameter of the SORT or OPTION
options for the sort program.

If you omit SORTDEVT and a sort is required, you must provide the DD
statements that the sort application program needs for the temporary data sets.

A TEMPLATE specification does not dynamically allocate sort work data sets.
The SORTDEVT keyword controls dynamic allocation of these data sets.

SORTNUM integer
Specifies the number of temporary data sets that are to be dynamically
allocated by the sort application program.

integer is the number of temporary data sets that can range from 2 to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and
omit SORTNUM, no value is passed to the sort program. In this case, the sort
program uses its own default.

You need at least two sort work data sets for each sort. The SORTNUM value
applies to each sort invocation in the utility. For example, if three indexes,
SORTKEYS is specified, there are no constraints that limit parallelism, and
SORTNUM is specified as 8, a total of 24 sort work data sets are allocated for a
job.

Each sort work data set consumes both above-the-line and below-the-line
virtual storage, so if you specify a value for SORTNUM that is too high, the
utility might decrease the degree of parallelism due to virtual storage
constraints, and possibly decreasing the degree down to one, meaning no
parallelism.

Important: The SORTNUM keyword will not be considered if subsystem
parameter UTSORTAL is set to YES and IGNSORTN is set to YES.

CONTINUEIF
Indicates that you want to be able to treat each input record as a portion of a
larger record. After CONTINUEIF, write a condition in one of the following
forms:
(start:end) = X’byte-string’
(start:end) = ’character-string’

If the condition is true in any record, the next record is concatenated with it
before loading takes place. You can concatenate any number of records into a
larger record, up to a maximum size of 32767 bytes.

Character-string constants should be specified in LOAD utility control
statements in the character set that matches the input data record. Specify
EBCDIC constants in the LOAD control statement if your data is in EBCDIC
and specify UNICODE constants if your data is in UNICODE. You may also
code the CONTINUEIF condition using the hexadecimal form. For example,
use (1:1)=X’31’ rather than (1:1)=’1’.

(start:end)
Specifies column numbers in the input record; the first column of the
record is column 1. The two numbers tell the starting and ending columns
of a continuation field in the input record.

Other field position specifications (such as those for WHEN, POSITION, or
NULLIF) refer to the field position within the final assembled load record,
not within the input record.

258 Utility Guide and Reference

The continuation field is removed from the input record and is not part of
the final load record.

If you omit :end, DB2 assumes that the length of the continuation field is
the length of the byte string or character string. If you use :end, and the
length of the resulting continuation field is not the same as the length of
the byte string or character string, the shorter string is padded. Character
strings are padded with blanks. Hexadecimal strings are padded with
zeros.

X'byte-string'
Specifies a string of hexadecimal characters. This byte-string value in the
continuation field indicates that the next input record is a continuation of
the current load record. Records with this byte-string value are
concatenated until the value in the continuation field changes. For
example, the following CONTINUEIF specification indicates that for any
input records that have a value of X'FF'in column 72, LOAD is to
concatenate that record with the next input record.
CONTINUEIF (72) = X’FF’

'character-string'
Specifies a string of characters that has the same effect as X'byte-string'. For
example, the following CONTINUEIF specification indicates that for any
input records that have the string CC in columns 99 and 100, LOAD is to
concatenate that record with the next input record.
CONTINUEIF (99:100) = ’CC’

DECFLOAT_ROUNDMODE
Specifies the rounding mode to use when DECFLOATs are manipulated. The
following rounding modes are supported:

ROUND_CEILING
Round toward +infinity. The discarded digits are removed if they are all
zero or if the sign is negative. Otherwise, the result coefficient should be
incremented by 1 (rounded up).

ROUND_DOWN
Round toward 0 (truncation). The discarded digits are ignored.

ROUND_FLOOR
Round toward -infinity. The discarded digits are removed if they are all
zero or positive. Otherwise, the sign is negative and the result coefficient
should be incremented by 1 (rounded up).

ROUND_HALF_DOWN
Round to the nearest number. If equidistant, round down. If the discarded
digits are greater than 0.5, the result coefficient should be incremented by 1
(rounded up). The discarded digits are ignored if they are 0.5 or less.

ROUND_HALF_EVEN
Round to the nearest number. If equidistant, round so that the final digit is
even. If the discarded digits are greater than .05, the result coefficient
should be incremented by 1 (rounded up). The discarded digits are ignored
if they are less than 0.5. If the result coefficient is .05 and the rightmost
digit is even, the result coefficient is not altered. If the result coefficient is
.05 and the rightmost digit is odd, the result coefficient should be
incremented by 1 (rounded up).

ROUND_HALF_UP
Round to nearest. If equidistant, round up. If the discarded digits are

Chapter 16. LOAD 259

greater than or equal to 0.5, the result coefficient should be incremented by
1 (rounded up). Otherwise the discarded digits are ignored.

ROUND_UP
Round away from 0. If all of the discarded digits are 0, the result is
unchanged. Otherwise, the result coefficient should be incremented by 1
(rounded up).

If you do not specify DECFLOAT_ROUNDMODE, the LOAD statement uses
the DFPDEFDM value in the application defaults load module as the default
value. The application defaults load module is either DSNHDECP, which is the
default, or a user-specified application defaults load module.

IDENTITYOVERRIDE
Allows unloaded data to be reloaded into a GENERATED ALWAYS identity
column of the same table using LOAD REPLACE or LOAD RESUME. When
this option is used and input field specifications are coded, the identity column
must be specified and NULLIF or DEFAULTIF is not allowed.

Specifying this option allows LOAD INTO TABLE PART when an identity
column that is defined as GENERATED ALWAYS or GENERATED BY
DEFAULT is part of the partitioning index.

INDEXDEFER
Specifies whether index builds are done during the BUILD phase of LOAD, or
are deferred until REBUILD INDEX is run manually. Deferring index builds is
a way to improve LOAD performance, especially for LOAD with PART. If
index builds are not performed during LOAD, LOAD places the affected
indexes in the REBUILD-pending state.

NONE
Specifies that indexes are built during the BUILD phase of LOAD.

ALL
Specifies that no indexes are built as part of a BUILD phase of the LOAD
utility. Index builds are deferred until REBUILD INDEX is run manually.
ALL is valid only if SHRLEVEL NONE is also specified.

NPI
Specifies that building of nonpartitioned indexes is not done as part of a
BUILD phase of the LOAD utility. Nonpartitioned index builds are
deferred until REBUILD INDEX is run manually. NPI is valid only if
SHRLEVEL NONE is also specified.

NONUNIQUE
Specifies that building of only nonunique indexes is deferred.
NONUNIQUE is valid only if ALL or NPI is also specified. If
NONUNIQUE is not specified, building of unique and nonunique indexes
is deferred. If unique indexes are defined on the tables that are being
loaded, specify NONUNIQUE unless the data really is unique. REBUILD
INDEX does not resolve duplicate keys for unique indexes.

When INDEXDEFER ALL or INDEXDEFER NPI is specified:
v If ENFORCE CONSTRAINTS is also specified, building of indexed foreign

keys is not deferred.
v If RESUME is also specified, building of indexes that were created with

DEFINE NO and are still undefined is not deferred. Building of undefined
indexes is deferred only when REPLACE is specified.

260 Utility Guide and Reference

IMPLICIT_TZ
Specifies the implicit time zone to use when the timestamp value that is being
loaded does not contain a time zone, and the data type of the target column is
TIMESTAMP WITH TIME ZONE.

'timezone-string'
Specifies the implicit time zone value. The time zone is the difference (in
hours and minutes) between local time and UTC. The range of the hour
component is -12 to 14, and the minute component is 00 to 59. The time
zone is specified in the form ±th:tm, with values ranging from -12:59 to
+14:00.

If you do not specify the IMPLICIT_TZ option, LOAD uses the value from
the IMPLICIT_TIMEZONE DECP value. For more information about this
DECP value, see IMPLICIT TIME ZONE field (IMPLICIT_TIMEZONE
DECP value) (DB2 Installation and Migration).

INTO-TABLE-spec

The INTO-TABLE-spec control statement, with its multiple options, defines the
function that the utility job performs. More than one table or partition for each
table space can be loaded with a single invocation of the LOAD utility. At least one
INTO TABLE statement is required for each table that is to be loaded. Each INTO
TABLE statement:
v Identifies the table that is to be loaded
v Describes fields within the input record
v Defines the format of the input data set

All tables that are specified by INTO TABLE statements must belong to the same
table space.

If the data is already in UNLOAD or SQL/DS format, and FORMAT UNLOAD or
FORMAT SQL/DS is used on the LOAD statement, no field specifications are
allowed.

When loading XML or LOB columns from a VBS data set, the LOB and XML
values need to be at the end of the record as specified by a field specification list.

INTO-TABLE-spec:

Chapter 16. LOAD 261

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_implicittimezone.htm#db2z_ipf_implicittimezone
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_implicittimezone.htm#db2z_ipf_implicittimezone

�� INTO TABLE table-name
PERIODOVERRIDE TRANSIDOVERRIDE

IGNOREFIELDS NO

IGNOREFIELDS YES
�

�
INDDN SYSREC

PART integer resume-spec
PREFORMAT INDDN ddname

DISCARDDN ddname
INCURSOR cursor-name

�

�
NUMRECS integer WHEN SQL/DS='table-name'

field selection criterion
�

,

(field specification)

��

resume-spec:

��

(1)
RESUME NO

REPLACE
REUSE copy-spec

RESUME YES

KEEPDICTIONARY
��

Notes:

1 The value specified in the INTO TABLE for RESUME or REPLACE overrides the default value
for LOAD RESUME.

field selection criterion:

�� field-name
(start)

:end

= X'byte-string'
'character-string'
G'graphic-string'
N'graphic-string'

��

field specification:

262 Utility Guide and Reference

�� field-name
POSITION(start)

:end
CHAR

BIT (length) strip-spec
MIXEDstrip-spec
BLOBF

PRESERVE WHITESPACE BINARYXML
CLOBF

MIXED PRESERVE WHITESPACE
DBCLOBF

PRESERVE WHITESPACE
VARCHAR strip-spec

BIT
MIXED
BLOBF

PRESERVE WHITESPACE BINARYXML
CLOBF

MIXED PRESERVE WHITESPACE
DBCLOBF

PRESERVE WHITESPACE
GRAPHIC strip-spec

EXTERNAL (length)
VARGRAPHIC strip-spec
SMALLINT
INTEGER

EXTERNAL
(length)

BIGINT
BINARY strip-spec

(length)
VARBINARY strip-spec
BINARY VARYING

decimal-spec
FLOAT

EXTERNAL (length)
DATE EXTERNAL

(length)
TIMESTAMP EXTERNAL

(length)
TIMESTAMP-WITH-TIME-ZONE EXTERNAL

(length)
ROWID
BLOB
CLOB

MIXED
DBCLOB

(34)
DECFLOAT

(16)
EXTERNAL

(length)
XML

PRESERVE WHITESPACE BINARYXML

�

�
NULLIF field selection criterion
DEFAULTIF field selection criterion

��

strip spec:

��
BOTH

STRIP
TRAILING (1)
LEADING 'strip-char'

X'strip-char'

TRUNCATE
��

Notes:

1 If you specify GRAPHIC, BINARY, VARBINARY, or VARGRAPHIC, you cannot specify
'strip-char'. You can specify only X'strip-char'.

Chapter 16. LOAD 263

decimal spec:

��
PACKED

DECIMAL
ZONED
EXTERNAL

,0
(length)

,scale

��

Option descriptions for INTO TABLE

table-name
Specifies the name of the table that is to be loaded. The table must be
described in the catalog.

The table must not be a catalog table or a system-maintained materialized
query table.

If the table name is not qualified by a schema name, the authorization ID of
the invoker of the utility job step is used as the schema qualifier of the table
name. Enclose the table name in quotation marks if the name contains a blank.

Data from every LOAD record in the data set is loaded into the specified table
unless:
v A WHEN clause is used, and the data does not match the field selection

criterion.
v The FORMAT UNLOAD option is used on the LOAD statement, and the

data comes from a table that is not specified in an INTO TABLE statement.
v A certain partition is specified, and the data does not belong to that

partition.
v Data conversion errors occur.
v Any errors occur that are not generated by data conversion.

PERIODOVERRIDE
Allows unloaded data to be reloaded into a GENERATED ALWAYS column
that defines a system period. (System periods are defined with the AS ROW
BEGIN and AS ROW END generated columns in system temporal tables.)

If you specify PERIODOVERRIDE and include input field specifications in the
LOAD statement, both sets of columns that define the system period must be
specified. Also, the NULLIF and DEFAULTIF options are not allowed.

TRANSIDOVERRIDE
Allows unloaded data to be reloaded into a GENERATED ALWAYS column
participating in the TRANSACTION START ID column.

IGNOREFIELDS
Indicates whether LOAD is to skip fields in the input data set that do not
correspond to columns in the target table. Examples of fields that do not
correspond to table columns are the DSN_NULL_IND_nnnnn, DSN_ROWID,
DSN_IDENTITY, and DSN_RCTIMESTAMP fields that are generated by the
REORG utility.

NO Specifies that the LOAD process is not to skip any fields.

264 Utility Guide and Reference

YES
Specifies that LOAD is to skip fields in the input data set that do not
correspond to columns in the target table.

Specifying YES can be useful if each input record contains a variable-length
field, followed by some variable-length data that you do not want to load
and then some data that you want to load. Because of the variable-length
field, you cannot use the POSITION keyword to skip over the
variable-length data that you do not want to load. By specifying
IGNOREFIELDS, you can give a field specification for the variable-length
data that you do not want to load; and by giving it a name that is not one
of the table column names, LOAD skips the field without loading it.

Use this option with care, because it also causes fields to be skipped if you
intend to load a column but have misspelled the name.

NUMRECS
Indicates the number of input records for the specified table or table partition.

integer
A positive integer that is used as an estimate of the number of complete
input records that are to be loaded into the specified table. The specified
number refers to fully assembled input records when CONTINUEIF is
used.

Use the NUMRECS keyword for multi-table table spaces to indicate the
number of input records that will be loaded into each of the tables or table
partitions.

Specifying the number of records improves the sizing of the sort work data
sets that the utility requires when indexes are built in parallel. If the LOAD
utility underestimates the size of the sort work data sets, the execution of the
LOAD utility could fail.

For single-table table spaces you can also use the NUMRECS keyword when
the input data set is located on tape or if only a fraction of the input records
will be loaded.

If an integer value is specified on the SORTKEYS keyword at the table-space
level, the NUMRECS keyword cannot be specified in the same LOAD
statement.

If multiple tables or partitions are loaded in the same LOAD statement, the
NUMRECS keyword must be specified either for all of the tables or partitions
or for none of the tables or partitions.

PART integer
Specifies that data is to be loaded into a partition of a partitioned table space.
This option is valid only for partitioned table spaces, not including
partition-by-growth table spaces.

integer is the number of the partition into which records are to be loaded. The
same partition number cannot be specified more than once if partition
parallelism has been requested. Any data that is outside the range of the
specified partition is not loaded. The maximum is 4096.

LOAD INTO PART integer is not allowed if:
v An identity column is part of the partitioning index, unless

IDENTITYOVERRIDE is specified for the identity column GENERATED
ALWAYS

v A row ID is part of the partitioning index

Chapter 16. LOAD 265

v The table space is partition-by-growth

PREFORMAT
Specifies that the remaining pages are to be preformatted up to the
high-allocated RBA in the partition and its corresponding partitioning index
space. The preformatting occurs after the data is loaded and the indexes are
built.

RESUME
Specifies whether records are to be loaded into an empty or non-empty
partition. For nonsegmented table spaces, space is not reused for rows that
have been marked as deleted or by rows of dropped tables is not reused. If the
RESUME option is specified at the table space level, the RESUME option is not
allowed in the PART clause.

If you want the RESUME option to apply to the entire table space, use the
LOAD RESUME option. If you want the RESUME option to apply to a
particular partition, specify it by using PART integer RESUME.

NO Loads records into an empty partition. If the partition is not empty, and
you have not used REPLACE, a message is issued, and the utility job step
terminates with a job step condition code of 8.

For nonsegmented table spaces that contains deleted rows or rows of
dropped tables, using the REPLACE keyword provides increased efficiency.

YES
Loads records into a non-empty partition. If the partition is empty, a
warning message is issued, but the partition is loaded.

REPLACE
Indicates that you want to replace only the contents of the partition that is
cited by the PART option, rather than the entire table space.

You cannot use LOAD REPLACE with the PART integer REPLACE option of
INTO TABLE. If you specify the REPLACE option, you must either replace an
entire table space, using LOAD REPLACE, or a single partition, using the
PART integer REPLACE option of INTO TABLE. You can, however, use PART
integer REPLACE with LOAD RESUME YES.

REUSE
Specifies, when used with the REPLACE option, that LOAD should logically
reset and reuse DB2-managed data sets without deleting and redefining them.
If you do not specify REUSE, DB2 deletes and redefines DB2-managed data
sets to reset them.

If you specify REUSE with REPLACE on the PART specification (and not for
LOAD at the table space level), only the specified partitions are logically reset.
If you specify REUSE for the table space and REPLACE for the partition, data
sets for the replaced parts are logically reset.

KEEPDICTIONARY
Specifies that the LOAD utility is not to build a new dictionary. LOAD retains
the current dictionary and uses it for compressing the input data. This option
eliminates the cost that is associated with building a new dictionary.

This keyword is valid only if a dictionary exists and the partition that is being
loaded has the COMPRESS YES attribute.

If the partition has the COMPRESS YES attribute, but no dictionary exists, one
is built and an error message is issued.

266 Utility Guide and Reference

INDDN ddname
Specifies the data definition (DD) statement or template that identifies the
input data set for the partition. The record format for the input data set must
be fixed or variable. The data set must be readable by the basic sequential
access method (BSAM).

The ddname is the name of the input data set.

The default value is SYSREC. INDDN can be a template name.

When loading LOB data using file reference variables, this input data set
should include the names of the files that contain the LOB column values.
Each file can be either a sequential file, PDS member, PDSE member, or
separate HFS file.

If you specify INDDN, with or without DISCARDDN, in one INTO TABLE
PART specification and you supply more than one INTO TABLE PART clause,
you must specify INDDN in all INTO TABLE PART specifications.

Specifying INDDN at the partition level and supplying multiple PART clauses,
each with their own INDDN, enables load partition parallelism, which can
significantly improve performance. Loading all partitions in a single job with
load partition parallelism is recommended instead of concurrent separate jobs
whenever one or more nonpartitioned secondary indexes are on the table
space.

The field specifications apply separately to each input file. Therefore, if
multiple INTO TABLE PART INDDN clauses are used, field specifications are
required on each one.

DISCARDDN ddname
Specifies the DD statement for a discard data set for the partition. The discard
data set holds copies of records that are not loaded (for example, if they
contain conversion errors). The discard data set also holds copies of records
that were loaded and then removed (due to unique index errors, or referential
or check constraint violations).

Flag input records for discarding during the RELOAD, INDEXVAL, and
ENFORCE phases. However, the utility does not write the discard data set
until the DISCARD phase when the utility copies the flagged records from the
input data set to the discard data set.

The discard data set must be a sequential data set, and it must be
write-accessible by BSAM, with the same record format, record length, and
block size as the input data set.

The ddname is the name of the discard data set. DISCARDDN can be a
template name.

If you omit the DISCARDDN option, LOAD does not save discarded records.

INCURSOR cursor-name
Specifies the cursor for the input data set. You must declare the cursor before it
is used by the LOAD utility. Use the EXEC SQL utility control statement to
define the cursor. You cannot load data into the same table on which you
defined the cursor.

The specified cursor can be used as part of the DB2 family cross loader
function, which enables you to load data from any DRDA-compliant remote
server. For more information about using the cross loader function, see
“Loading data by using the cross-loader function” on page 311.

Chapter 16. LOAD 267

cursor-name is the cursor name. Cursor names that are specified with the
LOAD utility cannot be longer than eight characters.

You cannot use the INCURSOR option with the following options:
v SHRLEVEL CHANGE
v NOSUBS
v FORMAT UNLOAD
v FORMAT SQL/DS
v CONTINUEIF
v WHEN.

In addition, you cannot specify field specifications with the INCURSOR option.

WHEN
Indicates which records in the input data set are to be loaded. If no WHEN
clause is specified (and if FORMAT UNLOAD was not used in the LOAD
statement), all records in the input data set are loaded into the specified tables
or partitions. (Data that is beyond the range of the specified partition is not
loaded.)

The option following WHEN describes a condition; input records that satisfy
the condition are loaded. Input records that do not satisfy any WHEN clause
of any INTO TABLE statement are written to the discard data set, if one is
being used.

Character-string constants should be specified in LOAD utility control
statements in the character set that matches the input data record. Specify
EBCDIC constants in the LOAD control statement if your data is in EBCDIC
and specify UNICODE constants if your data is in UNICODE. You may also
code the WHEN condition using the hexadecimal form. For example, use
(1:1)=X’31’ rather than (1:1)=’1’.

SQL/DS='table-name'
Is valid only when the FORMAT SQL/DS option is used on the LOAD
statement.

table-name is the name of a table that has been unloaded into the unload
data set. The table name after INTO TABLE tells which DB2 table the
SQL/DS table is loaded into. Enclose the table name in quotation marks if
the name contains a blank.

If no WHEN clause is specified, input records from every SQL/DS table
are loaded into the table that is specified after INTO TABLE.

field-selection-criterion
Describes a field and a character constant. Only those records in which the
field contains the specified constant are to be loaded into the table that is
specified after INTO TABLE.

A field in a selection criterion must:
v Contain a character or graphic string. No data type conversions are

performed when the contents of the field in the input record are
compared to a string constant.

v Start at the same byte offset in each assembled input record. If any
record contains varying-length strings, which are stored with length
fields, that precede the selection field, they must be padded so that the
start of the selection field is always at the same offset.

268 Utility Guide and Reference

The field and the constant do not need to be the same length. If they are
not, the shorter of the two is padded before a comparison is made.
Character and graphic strings are padded with blanks. Hexadecimal strings
are padded with zeros.

field-name
Specifies the name of a field that is defined by a field-specification. If
field-name is used, the start and end positions of the field are given by
the POSITION option of the field specification.

(start:end)
Identifies column numbers in the assembled load record; the first
column of the record is column 1. The two numbers indicate the
starting and ending columns of a selection field in the load record.

If :end is not used, the field is assumed to have the same length as the
constant.

X'byte-string'
Identifies the constant as a string of hexadecimal characters. For
example, the following WHEN clause specifies that a record is to be
loaded if it has the value X'FFFF' in columns 33 through 34.
WHEN (33:34) = X’FFFF’

'character-string'
Identifies the constant as a string of characters. For example, the
following WHEN clause specifies that a record is to be loaded if the
field DEPTNO has the value D11.
WHEN DEPTNO = ’D11’

G'graphic-string'
Identifies the constant as a string of double-byte characters. For
example, the following WHEN clause specifies that a record is to be
loaded if it has the specified value in columns 33 through 36.
WHEN (33:36) = G’<**>’

In this example, < is the shift-out character,* is a double-byte character,
and > is the shift-in character.

If the first or last byte of the input data is a shift-out character, it is
ignored in the comparison. Specify G as an uppercase character.

N'graphic-string'
Identifies the constant as a string of double-byte characters. N and G
are synonymous for specifying graphic string constants. Specify N as
an uppercase character.

(field-specification, ...)
Describes the location, format, and null value identifier of the data that is to be
loaded.

If no field specifications are used:
v The fields in the input records are assumed to be in the same order as in the

DB2 table.
v The formats are set by the FORMAT option on the LOAD statement, if that

option is used.
v Fixed strings in the input are assumed to be of fixed maximum length.

VARCHAR and VARGRAPHIC fields must contain a valid 2-byte binary

Chapter 16. LOAD 269

length field preceding the data; no intervening gaps are allowed between the
VARCHAR or VARGRAPHIC fields and the field that follows.

v BINARY fields are assumed to be of fixed maximum length.
v VARBINARY fields must contain a valid 2-byte binary length field preceding

the data.
v ROWID fields are varying length, and must contain a valid 2-byte binary

length field preceding the data; no intervening gaps are allowed between
ROWID fields and the fields that follow.

v LOB fields are varying length, and require a valid 4-byte binary length field
preceding the data; no intervening gaps are allowed between them and the
LOB fields that follow.

v Numeric data is assumed to be in the appropriate internal DB2 number
representation.

v The NULLIF or DEFAULTIF options cannot be used.

If any field specification is used for an input table, a field specification must
exist for each field of the table that does not have a default value. Any field in
the table with no corresponding field specification is loaded with its default
value.

If any column in the output table does not have a field specification and is
defined as NOT NULL, with no default, the utility job step is terminated.

Identity columns or row change timestamp columns can appear in the field
specification only if you defined them with the GENERATED BY DEFAULT
attribute.

If you are loading application or system temporal data and you include field
specifications, you must specify both the start and end time column fields.

field-name
Specifies the name of a field, which can be a name of your choice. If the field
is to be loaded, the name must be the name of a column in the table that is
named after INTO TABLE unless IGNOREFIELDS is specified. You can use the
field name as a vehicle to specify the range of incoming data. See Example 4:
Loading data of different data types for an example of loading selected records
into an empty table space.

The starting location of the field is given by the POSITION option. If
POSITION is not used, the starting location is one column after the end of the
previous field.

LOAD determines the length of the field in one of the following ways, in the
order listed:
1. If the field has data type VARCHAR, VARGRAPHIC, VARBINARY,

ROWID, or XML the length is assumed to be contained in a 2-byte binary
field that precedes the data. For VARCHAR, VARBINARY, and XML fields,
the length is in bytes; for VARGRAPHIC fields, the length field identifies
the number of double-byte characters.
If the field has data type CLOB, BLOB, or DBCLOB, the length is assumed
to be contained in a 4-byte binary field that precedes the data. For BLOB
and CLOB fields, the length is in bytes; for DBCLOB fields, the length field
identifies the number of double-byte characters.

2. If :end is used in the POSITION option, the length is calculated from start
and end. In that case, any length attribute after the CHAR, GRAPHIC,
INTEGER, DECIMAL, FLOAT, or DECFLOAT specifications is ignored.

270 Utility Guide and Reference

3. The length attribute on the CHAR, GRAPHIC, INTEGER, DECIMAL,
FLOAT, or DECFLOAT specifications is used as the length.

4. The length is taken from the DB2 field description in the table definition, or
it is assigned a default value according to the data type. For DATE and
TIME fields, the length is defined during installation. For variable-length
fields, the length is defined from the column in the DB2 table definition,
excluding the null indicator byte, if it is present. The following table shows
the default length, in bytes, for each data type.

Table 29. Default length of each data type (in bytes)

Data type Default length in bytes

BIGINT 8

BINARY Length that is used in column definition

BLOB Varying

CHARACTER Length that is used in column definition

CLOB Varying

DATE 10 (or installation default)

DBCLOB Varying

DECFLOAT(16) 8

DECFLOAT(34) 16

DECIMAL EXTERNAL Decimal precision for output columns that are
decimal, otherwise the length that is used in column
definition

DECIMAL PACKED Length that is used in column definition

DECIMAL ZONED Decimal precision for output columns that are
decimal, otherwise the length that is used in column
definition

FLOAT (single precision) 4

FLOAT (double precision) 8

GRAPHIC 2 multiplied by (length that is used in column
definition)

INTEGER 4

MIXED Mixed DBCS data

ROWID Varying

SMALLINT 2

TIME 8 (or installation default)

TIMESTAMP 26

VARBINARY Varying

VARCHAR Varying

VARGRAPHIC Varying

XML Varying

TIMESTAMP WITH TIME ZONE 33

If a data type is not given for a field, its data type is assumed to be the same
as that of the column into which it is loaded, as given in the DB2 table
definition.

Chapter 16. LOAD 271

POSITION(start:end)
Indicates where a field is in the assembled load record.

start and end are the locations of the first and last columns of the field; the first
column of the record is column 1. The option can be omitted.

Column locations can be specified as:
v An integer n, meaning an actual column number
v *, meaning one column after the end of the previous field
v *+n, where n is an integer, meaning n columns after the location that is

specified by *

Do not enclose the entire POSITION option specification in parentheses;
enclose only the start:end description in parentheses. Valid and invalid
specifications are shown in the following table.

Table 30. Example of valid and invalid POSITION specifications

Valid Invalid

POSITION (10:20) (POSITION (10:20))

Data types in a field specification: The data type of the field can be specified by
any of the keywords that follow. Except for graphic fields, length is the length in
bytes of the input field.

All numbers that are designated EXTERNAL are in the same format in the input
records.

CHAR(length)
Specifies a fixed-length character string. If you do not specifylength, the length
of the string is determined from the POSITION specification. If you do not
specifylength or POSITION, LOAD uses the default length for CHAR, which is
determined from the length of the column in the table. You can also specify
CHARACTER and CHARACTER(length).

When you specify CHAR as the type for the file name for CLOBF, BLOBF, or
DBCLOBF, you must also provide the length so that the LOAD utility can
determine the correct file name. Otherwise message DSNU338I will be issued
for an invalid column specification.

BIT
Specifies that the input field contains BIT data. If BIT is specified, LOAD
bypasses any CCSID conversions for the input data. If the target column
has the BIT data type attribute, LOAD bypasses any code page translation
for the input data.

MIXED
Specifies that the input field contains mixed SBCS and DBCS data. If
MIXED is specified, any required CCSID conversions use the mixed CCSID
for the input data. If MIXED is not specified, any such conversions use the
SBCS CCSID for the input data.

BLOBF
Indicates that the input field contains the name of a BLOB file which is
going to be loaded to a specified BLOB/XML column.

BINARYXML Specifies that the XML document to be loaded using file
reference variables is in Extensible Dynamic Binary XML DB2
Client/Server Binary XML Format (binary XML) format.

272 Utility Guide and Reference

CLOBF
Indicates that the input field contains the name of a CLOB file which is
going to be loaded to a specified CLOB/XML column.

DBCLOBF
Indicates that the input field contains the name of a DBCLOBF file which
is going to be loaded to a specified DBCLOB/XML column.

PRESERVE WHITESPACE
Specifies that the white space in the XML column is preserved. The default
is not to preserve the white space.

STRIP
Specifies that LOAD is to remove zeros (the default) or the specified
characters from the beginning, the end, or both ends of the data. LOAD
pads the CHAR field, so that it fills the rest of the column.

LOAD applies the strip operation before performing any character code
conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar
function.

BOTH
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the beginning and end of the data.

TRAILING
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the end of the data.

LEADING
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the beginning of the data.

'strip-char'
Specifies a single-byte or double-byte character that LOAD is to strip
from the data.

Specify this character value in EBCDIC. Depending on the input
encoding scheme, LOAD applies SBCS CCSID conversion to the
strip-char value before it is used in the strip operation.

If the subtype of the column to be loaded is BIT or you want to specify
a strip-char value in an encoding scheme other than EBCDIC, use the
hexadecimal form (X'strip-char'). LOAD does not perform any CCSID
conversion if the hexadecimal form is used.

X'strip-char'
Specifies in hexadecimal form a single-byte or double-byte character
that LOAD is to strip from the data. For single-byte characters, specify
this value in the form X'hh', where hh is two hexadecimal characters.
For double-byte characters, specify this value in the form X'hhhh',
where hhhh is four hexadecimal characters.

Use the hexadecimal form to specify a character in an encoding scheme
other than EBCDIC. When you specify the character value in
hexadecimal form, LOAD does not perform any CCSID conversion.

If you specify a strip character in the hexadecimal format, you must
specify the character in the input encoding scheme.

Chapter 16. LOAD 273

TRUNCATE
Indicates that LOAD is to truncate the input character string from the right
if the string does not fit in the target column. LOAD performs the
truncation operation after any CCSID translation.

If the input data is BIT data, LOAD truncates the data at a byte boundary.
If the input data is SBCS or MIXED data, LOAD truncates the data at a
character boundary. (Double-byte characters are not split.) If a MIXED field
is truncated to fit a column, the truncated string can be shorter than the
specified column size. In this case, blanks in the output CCSID are padded
to the right. If MIXED data is in EBCDIC, truncation preserves the SO
(shift-out) and SI (shift-in) characters around a DBCS string.

VARCHAR
Specifies a character field of varying length. The length in bytes must be
specified in a 2-byte binary field preceding the data. (The length does not
include the 2-byte field itself.) The length field must start in the column that is
specified as start in the POSITION option. If :end is used, it is ignored.

BIT
Specifies that the input field contains BIT data. If BIT is specified, LOAD
bypasses any CCSID conversions for the input data. If the target column
has the BIT data type attribute, LOAD bypasses any code page translation
for the input data.

MIXED
Specifies that the input field contains mixed DBCS data. If MIXED is
specified, any required CCSID conversions use the mixed CCSID for the
input data. If MIXED is not specified, any such conversions use the SBCS
CCSID for the input data.

BLOBF
Indicates that the input field contains the name of a BLOB file which is
going to be loaded to a specified BLOB/XML column.

BINARYXML Specifies that the XML document to be loaded using file
reference variables is in binary XML format.

CLOBF
Indicates that the input field contains the name of a CLOB file which is
going to be loaded to a specified CLOB/XML column.

DBCLOBF
Indicates that the input field contains the name of a DBCLOBF file which
is going to be loaded to a specified DBCLOB/XML column.

PRESERVE WHITESPACE
Specifies that the white space in the XML column is preserved. The default
is not to preserve the white space.

STRIP
Specifies that LOAD is to remove zeros (the default) or the specified
characters from the beginning, the end, or both ends of the data. LOAD
adjusts the VARCHAR length field to the length of the stripped data.

LOAD applies the strip operation before performing any character code
conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar
function.

274 Utility Guide and Reference

BOTH
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the beginning and end of the data.

TRAILING
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the end of the data.

LEADING
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the beginning of the data.

'strip-char'
Specifies a single-byte or double-byte character that LOAD is to strip
from the data.

Specify this character value in EBCDIC. Depending on the input
encoding scheme, LOAD applies SBCS CCSID conversion to the
strip-charvalue before it is used in the strip operation.

If the subtype of the column to be loaded is BIT or you want to specify
a strip-char value in an encoding scheme other than EBCDIC, use the
hexadecimal form (X'strip-char'). LOAD does not perform any CCSID
conversion if the hexadecimal form is used.

X'strip-char'
Specifies in hexadecimal form a single-byte or double-byte character
that LOAD is to strip from the data. For single-byte characters, specify
this value in the form X'hh', where hh is two hexadecimal characters.
For double-byte characters, specify this value in the form X'hhhh',
where hhhh is four hexadecimal characters.

Use the hexadecimal form to specify a character in an encoding scheme
other than EBCDIC. When you specify the character value in
hexadecimal form, LOAD does not perform any CCSID conversion.

If you specify a strip character in the hexadecimal format, you must
specify the character in the input encoding scheme.

TRUNCATE
Indicates that LOAD is to truncate the input character string from the right
if the string does not fit in the target column. LOAD performs the
truncation operation after any CCSID translation.

If the input data is BIT data, LOAD truncates the data at a byte boundary.
If the input data is character type data, LOAD truncates the data at a
character boundary. If a mixed-character type data is truncated to fit a
column of fixed size, the truncated string can be shorter than the specified
column size. In this case, blanks in the output CCSID are padded to the
right.

GRAPHIC(length)
Specifies a fixed-length graphic type. You can specify both start and end for the
field specification.

If you use GRAPHIC, the input data must not contain shift characters. start
and end must indicate the starting and ending positions of the data itself.

length is the number of double-byte characters. The length of the field in bytes
is twice the value of length. If you do not specify length, the number of
double-byte characters is determined from the POSITION specification. If you

Chapter 16. LOAD 275

do not specify length or POSITION, LOAD uses the default length for
GRAPHIC, which is determined from the length of the column in the table.

For example, let *** represent three double-byte characters. Then, to describe
***, specify either POS(1:6) GRAPHIC or POS(1) GRAPHIC(3). A GRAPHIC field
that is described in this way cannot be specified in a field selection criterion.

STRIP
Specifies that LOAD is to remove zeros (the default) or the specified
characters from the beginning, the end, or both ends of the data.

LOAD applies the strip operation before performing any character code
conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar
function.

BOTH
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the beginning and end of the data.

TRAILING
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the end of the data.

LEADING
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the beginning of the data.

X'strip-char'
Specifies the hexadecimal form of the double-byte character that LOAD
is to strip from the data. Specify this value in the form X'hhhh', where
hhhh is four hexadecimal characters.

You must specify the character in the input encoding scheme.

TRUNCATE
Indicates that LOAD is to truncate the input character string from the right
if the string does not fit in the target column. LOAD performs the
truncation operation after any CCSID translation.

LOAD truncates the data at a character boundary. Double-byte characters
are not split.

GRAPHIC EXTERNAL(length)
Specifies a fixed-length field of the graphic type with the external format. You
can specify both start and end for the field specification.

If you use GRAPHIC EXTERNAL, the input data must contain a shift-out
character in the starting position, and a shift-in character in the ending
position. Other than the shift characters, this field must have an even number
of bytes. The first byte of any pair must not be a shift character.

length is the number of double-byte characters. length for GRAPHIC
EXTERNAL does not include the number of bytes that are represented by shift
characters. The length of the field in bytes is twice the value of length. If you
do not specify length, the number of double-byte characters is determined from
the POSITION specification. If you do not specify length or POSITION, LOAD
uses the default length for GRAPHIC, which is determined from the length of
the column in the table.

276 Utility Guide and Reference

For example, let *** represent three double-byte characters, and let < and >
represent shift-out and shift-in characters. Then, to describe <***>, specify
either POS(1:8) GRAPHIC EXTERNAL or POS(1) GRAPHIC EXTERNAL(3).

STRIP
Specifies that LOAD is to remove zeros (the default) or the specified
characters from the beginning, the end, or both ends of the data.

LOAD applies the strip operation before performing any character code
conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar
function.

BOTH
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the beginning and end of the data.

TRAILING
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the end of the data.

LEADING
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the beginning of the data.

X'strip-char'
Specifies the hexadecimal form of the double-byte character that LOAD
is to strip from the data. Specify this value in the form X'hhhh', where
hhhh is four hexadecimal characters.

You must specify the character in the input encoding scheme.

TRUNCATE
Indicates that LOAD is to truncate the input character string from the right
if the string does not fit in the target column. LOAD performs the
truncation operation after any CCSID translation.

LOAD truncates the data at a character boundary. Double-byte characters
are not split.

VARGRAPHIC
Identifies a graphic field of varying length. The length, in double-byte
characters, must be specified in a 2-byte binary field preceding the data. (The
length does not include the 2-byte field itself.) The length field must start in
the column that is specified as start in the POSITION option. :end, if used, is
ignored.

VARGRAPHIC input data must not contain shift characters.

STRIP
Specifies that LOAD is to remove zeros (the default) or the specified
characters from the beginning, the end, or both ends of the data. LOAD
adjusts the VARGRAPHIC length field to the length of the stripped data
(the number of DBCS characters).

LOAD applies the strip operation before performing any character code
conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar
function.

Chapter 16. LOAD 277

BOTH
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the beginning and end of the data.

TRAILING
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the end of the data.

LEADING
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the beginning of the data.

X'strip-char'
Specifies the hexadecimal form of the double-byte character that LOAD
is to strip from the data. Specify this value in the form X'hhhh', where
hhhh is four hexadecimal characters.

You must specify the character in the input encoding scheme.

TRUNCATE
Indicates that LOAD is to truncate the input character string from the right
if the string does not fit in the target column. LOAD performs the
truncation operation after any CCSID translation.

LOAD truncates the data at a character boundary. Double-byte characters
are not split.

SMALLINT
Specifies a 2-byte binary number. Negative numbers are in two's complement
notation.

INTEGER
Specifies a 4-byte binary number. Negative numbers are in two's complement
notation. You can also specify INT.

INTEGER EXTERNAL(length)
A string of characters that represent a number. The format is that of an SQL
numeric constant. If you do not specify length, the length of the string is
determined from the POSITION specification. If you do not specify length or
POSITION, LOAD uses the default length for INTEGER, which is 4 bytes. You
can also specify INT EXTERNAL.

BIGINT
Specifies an 8-byte binary number. Negative numbers are in two's complement
notation.

BINARY(length)
Specifies a fixed-length binary string. If you do not specify length, the length of
the string is determined from the POSITION specification. If you do not
specify length or POSITION, LOAD uses the default length for BINARY, which
is determined from the length of the column in the table. The default for
X'strip-char' is hexadecimal zero (X'00'). No data conversion is applied to the
field.

STRIP
Specifies that LOAD is to remove binary zeros (the default) or the specified
X'strip-char' from the beginning, the end, or both ends of the data. LOAD
pads the BINARY field, so that it fills the rest of the column.

The effect of the STRIP option is the same as the SQL STRIP scalar
function.

278 Utility Guide and Reference

BOTH
Indicates that LOAD is to remove occurrences of binary zeros or the
specified strip character from the beginning and end of the data.

TRAILING
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the end of the data.

LEADING
Indicates that LOAD is to remove occurrences of blank or the specified
strip character from the beginning of the data.

X'strip-char'
Specifies, in hexadecimal form, a single-byte or double-byte character
that LOAD is to strip from the data. For single-byte characters, specify
this value in the form X'hh', where hh is two hexadecimal characters.

TRUNCATE
Indicates that LOAD is to truncate the input character string from the right
if the string does not fit in the target column.

LOAD truncates the data at a character boundary.

VARBINARY
Specifies a varying length binary string. The length in bytes must be specified
in a 2-byte binary field preceding the data (the length does not include the
2-byte field itself). The length field must start in the column that is specified as
start in the POSITION option. If :end is used, it is ignored. The default for
X'strip-char' is hexadecimal zero (X'00'). No data conversion is applied to the
field.

STRIP
Specifies that LOAD is to remove binary zeros (the default) or the specified
characters from the beginning, the end, or both ends of the data. LOAD
pads the VARBINARY field, so that it fills the rest of the column.

The effect of the STRIP option is the same as the SQL STRIP scalar
function.

BOTH
Indicates that LOAD is to remove occurrences of binary zeros or the
specified strip character from the beginning and end of the data.

TRAILING
Indicates that LOAD is to remove occurrences of binary zeros or the
specified strip character from the end of the data.

LEADING
Indicates that LOAD is to remove occurrences of binary zeros or the
specified strip character from the beginning of the data.

X'strip-char'
Specifies, in hexadecimal form, a single-byte character that LOAD is to
strip from the data. For single-byte characters, specify this value in the
form X'hh', where hh is two hexadecimal characters.

TRUNCATE
Indicates that LOAD is to truncate the input character string from the right
if the string does not fit in the target column.

LOAD truncates the data at a character boundary.

Chapter 16. LOAD 279

DECIMAL PACKED
Specifies a number of the form ddd...ds, where d is a decimal digit that is
represented by four bits, and s is a 4-bit sign value. The plus sign (+) is
represented by A, C, E, or F, and the minus sign (-) is represented by B or D.
The maximum number of ds is the same as the maximum number of digits
that are allowed in the SQL definition. You can also specify DECIMAL, DEC,
or DEC PACKED.

DECIMAL ZONED
Specifies a number in the form znznzn...z/sn, where z, n, and s have the
following values:
n A decimal digit represented by the right 4 bits of a byte (called the

numeric bits)
z That digit's zone, represented by the left 4 bits
s The right-most byte of the decimal operand; s can be treated as a zone

or as the sign value for that digit

The plus sign (+) is represented by A, C, E, or F, and the minus sign (-) is
represented by B or D. The maximum number of zns is the same as the
maximum number of digits that are allowed in the SQL definition. You can
also specify DEC ZONED.

DECIMAL EXTERNAL(length,scale)
Specifies a string of characters that represent a number. The format is that of
an SQL numeric constant.

length
Overall length of the input field, in bytes. If you do not specify length, the
length of the input field is determined from the POSITION specification. If
you do not specify length or POSITION, LOAD uses the default length for
DECIMAL EXTERNAL, which is determined by using decimal precision.

scale
Specifies the number of digits to the right of the decimal point. scale must
be an integer greater than or equal to 0, and it can be greater than length.
The default value is 0.

If scale is greater than length, or if the number of provided digits is less than
the specified scale, the input number is padded on the left with zeros until the
decimal point position is reached. If scale is greater than the target scale, the
source scale locates the implied decimal position. All fractional digits greater
than the target scale are truncated. If scale is specified and the target column
has a data type of small integer or integer, the decimal portion of the input
number is ignored. If a decimal point is present, its position overrides the field
specification of scale.

FLOAT(length)
Specifies either a 64-bit floating-point number or a 32-bit floating-point
number. If length is between 1 and 21 inclusive, the number is 32 bits in the
s390 (HFP) format:

Bit 0 Represents a sign (0 for plus and 1 for minus)

Bits 1-7
Represent an exponent

Bits 8-31
Represent a mantissa

280 Utility Guide and Reference

If length is between 1 and 24 inclusive, the number is 32 bits in the IEEE (BFP)
format:

Bit 0 Represents a sign (0 for plus and 1 for minus)

Bits 1-8
Represent an exponent

Bits 9-31
Represent a mantissa

If length is not specified, or is between 22 and 53 inclusive, the number is 64
bits in the s390 (HFP) format:

Bit 0 Represents a sign (0 for plus and 1 for minus)

Bits 1-7
Represent an exponent

Bits 8-63
Represent a mantissa.

If length is not specified, or is between 25 and 53 inclusive, the number is 64
bits in the IEEE (BFP) format:

Bit 0 Represents a sign (0 for “plus”, and 1 for “minus”)

Bits 1-11
Represent an exponent

Bits 12-63
Represent a mantissa.

You can also specify REAL for single-precision floating-point numbers and
DOUBLE PRECISION for double-precision floating-point numbers.

FLOAT EXTERNAL(length)
Specifies a string of characters that represent a number. The format is that of
an SQL floating-point constant.

A specification of FLOAT(IEEE) or FLOAT(S390) does not apply for this format
(string of characters) of floating-point numbers.

If you do not specify length, the length of the string is determined from the
POSITION specification. If you do not specify length or POSITION, LOAD uses
the default length for FLOAT, which is 4 bytes for single precision and 8 bytes
for double precision.

DATE EXTERNAL(length)
Specifies a character string representation of a date. The length, if unspecified,
is the specified length on the LOCAL DATA LENGTH installation option, or, if
none was provided, the default is 10 bytes. If you specify a length, it must be
within the range of 8 to 254 bytes.

Dates can be in any of the following formats. You can omit leading zeros for
month and day. You can include trailing blanks, but no leading blanks are
allowed.
v dd.mm.yyyy
v mm/dd/yyyy
v yyyy-mm-dd
v Any local format that your site defined at the time DB2 was installed

TIME EXTERNAL(length)
Specifies a character string representation of a time. The length, if unspecified,

Chapter 16. LOAD 281

is the specified length on the LOCAL TIME LENGTH installation option, or, if
none was provided, the default is 8 bytes. If you specify a length, it must be
within the range of 4 to 254 bytes.

Times can be in any of the following formats:
v hh.mm.ss
v hh:mm AM
v hh:mm PM
v hh:mm:ss
v Any local format that your site defined at the time DB2 was installed

You can omit the mm portion of the hh:mm AM and hh:mm PM formats if mm is
equal to 00. For example, 5 PM is a valid time, and can be used instead of 5:00
PM.

TIMESTAMP EXTERNAL(length)
Specifies a character string representation of a time. The default for length is 26
bytes. If you specify a length, it must be within the range of 19 to 32 bytes.

Timestamps can be in any of the following formats. Note that nnnnnn
represents the number of microseconds, and can be from 0 to 12 digits. You
can omit leading zeros from the month, day, or hour parts of the timestamp;
you can omit trailing zeros from the microseconds part of the timestamp.
v yyyy-mm-dd-hh.mm.ss
v yyyy-mm-dd-hh.mm.ss.nnnnnn
v yyyy-mm-dd hh:mm:ss.nnnnnn

TIMESTAMP WITH TIME ZONE EXTERNAL(length)
Specifies a character string representation of a timestamp with time zone. The
default for length is 33 bytes. If you specify a length, it must be within the
range of 26 to 39 bytes.

Timestamp with time zone can be in any of the following formats. Note that
nnnnnn represents the number of digits in the fractional seconds, and can be
from 0 to 12 digits. You can omit leading zeros from the month, day, or hour
parts of the timestamp; you can omit trailing zeros from the fractional seconds
part of the timestamp.
v yyyy-mm-dd-hh.mm.ss.nnnnnn±th:tm
v yyyy-mm-dd-hh.mm.ss.nnnnnn ±th:tm
v yyyy-mm-dd hh:mm:ss.nnnnnn±th:tm
v yyyy-mm-dd hh:mm:ss.nnnnnn ±th:tm

ROWID
Specifies a row ID. The input data must be a valid value for a row ID; DB2
does not perform any conversions.

A field specification for a row ID column is not allowed if the row ID column
was created with the GENERATED ALWAYS option.

If the row ID column is part of the partitioning key, LOAD INTO TABLE PART
is not allowed; specify LOAD INTO TABLE instead.

BLOB
Specifies a BLOB field. You must specify the length in bytes in a 4-byte binary
field that precedes the data. (The length does not include the 4-byte field
itself.) The length field must start in the column that is specified as start in the
POSITION option. If :end is used, it is ignored.

CLOB
Specifies a CLOB field. You must specify the length in bytes in a 4-byte binary
field that precedes the data. (The length does not include the 4-byte field

282 Utility Guide and Reference

itself.) The length field must start in the column that is specified as start in the
POSITION option. If :end is used, it is ignored.

MIXED
Specifies that the input field contains mixed SBCS and DBCS data. If
MIXED is specified, any required CCSID conversions use the mixed CCSID
for the input data; if MIXED is not specified, any such conversions use the
SBCS CCSID for the input data.

DBCLOB
Specifies a DBCLOB field. You must specify the length in double-byte
characters in a 4-byte binary field that precedes the data. (The length does not
include the 4-byte field itself.) The length field must start in the column that is
specified as start in the POSITION option. If :end is used, it is ignored.

DECFLOAT (length)
Specifies either a 128-bit decimal floating-point number or a 64-bit decimal
floating-point number. The value of the length must be either 16 or 34. If the
length is 16, the number is in 64 bit decimal floating-point number format. If
the length is 34, the number is in 128 bit decimal floating-point format. If the
length is not specified, the number is in 128 bit decimal floating-point format.

DECFLOAT EXTERNAL (length)
Specifies a string of characters that represent a number. The format is an SQL
numeric constant. If you do not specify a length, the length of the string is
determined from the POSITION specification. If you do not specify a length or
POSITION, LOAD uses the default length for DECFLOAT.

XML
Specifies the input field type is XML. Field type XML can only be loaded to a
XML column. Specify XML when loading the XML value directly from the
input record. If the format of the input record is in nondelimited, you must
specify a 2 byte length field precedes the actual data value.

BINARYXML Specifies that the XML document to be loaded using the file
reference variables is in binary XML format.

PRESERVE WHITESPACE
Specifies that the white space in the XML column is preserved. The default is
not to preserve the white space.

DEFAULTIF field-selection-criterion
Describes a condition that causes the DB2 column to be loaded with its default
value. You can write the field-selection-criterion with the same options as
described under field-selection-criterion. If the contents of the DEFAULTIF field
match the provided character constant, the field that is specified in
field-specification is loaded with its default value.

If the DEFAULTIF field is defined by the name of a VARCHAR or
VARGRAPHIC field, DB2 takes the length of the field from the 2-byte binary
field that appears before the data portion of the VARCHAR or VARGRAPHIC
field.

Character-string constants should be specified in LOAD utility control
statements in the character set that matches the input data record. Specify
EBCDIC constants in the LOAD control statement if your data is in EBCDIC
and specify UNICODE constants if your data is in UNICODE. You may also
code the DEFAULTIF condition using the hexadecimal form. For example, if
the input data is in EBCDIC and the control statement is in UTF-8, use
(1:1)=X’31’ in the condition rather than (1:1)=’1’.

Chapter 16. LOAD 283

You can use the DEFAULTIF attribute with the ROWID keyword. If the
condition is met, the column is loaded with a value that DB2 generates.

You cannot specify the DEFAULTIF option for XML columns.

NULLIF field-selection-criterion
Describes a condition that causes the DB2 column to be loaded with NULL.
You can write the field-selection-criterion with the same options as described
under field-selection-criterion. If the contents of the NULLIF field match the
provided character constant, the field that is specified in field-specification is
loaded with NULL.

If the NULLIF field is defined by the name of a VARCHAR or VARGRAPHIC
field, DB2 takes the length of the field from the 2-byte binary field that appears
before the data portion of the VARCHAR or VARGRAPHIC field.

To load a null value into a BLOBF, CLOBF, or DBCLOBF field, use a null input
file name.

Character-string constants should be specified in LOAD utility control
statements in the character set that matches the input data record. Specify
EBCDIC constants in the LOAD control statement if your data is in EBCDIC
and specify UNICODE constants if your data is in UNICODE. You may also
code the NULLIF condition using the hexadecimal form. For example, if the
input data is in EBCDIC and the control statement is in UTF-8, use
(1:1)=X’31’ in the condition rather than (1:1)=’1’.

The fact that a field in the output table is loaded with NULL does not change
the format or function of the corresponding field in the input record. The input
field can still be used in a field selection criterion. For example, assume that a
LOAD statement has the following field specification:
(FIELD1 POSITION(*) CHAR(4)
FIELD2 POSITION(*) CHAR(3) NULLIF(FIELD1=’SKIP’)
FIELD3 POSITION(*) CHAR(5))

Assume also that LOAD is to process the following source record:
SKIP FLD03

In this example, the record is loaded as follows:

FIELD1
Has the value 'SKIP'.

FIELD2
Is NULL (not ' ' as in the source record).

FIELD3
Has the value 'FLD03'.

You cannot use the NULLIF parameter with the ROWID keyword because row
ID columns cannot be null.

Field selection criterion

Describes a condition that causes the DB2 column to be loaded with NULL or
with its default value.

284 Utility Guide and Reference

Related concepts:

Constants (DB2 SQL)
Related tasks:
“Preparing DB2 internal format input records that are not generated by UNLOAD
for LOAD” on page 294
Related reference:

STRIP (DB2 SQL)

EDITPROCs and VALIDPROCs for handling basic and reordered row formats
(DB2 Administration Guide)
Chapter 31, “TEMPLATE,” on page 775

DB2 Sort
Related information:

Converting basic row format table spaces with edit and validation routines to
reordered row format (DB2 Administration Guide)

DFSORT Application Programming Guide

Before running LOAD
Certain activities might be required before you run the LOAD utility, depending on
your situation.

You cannot run the LOAD utility on the DSNDB01 or DSNDB06 databases, except
to add rows to the following catalog tables:
v SYSSTRINGS
v MODESELECT
v LUMODES
v LULIST
v USERNAMES
v LUNAMES
v LOCATIONS
v IPNAMES

If you are using LOAD for a partition-by-growth table space, you can load data
only at the table space level, not at the partition level.

Preprocessing input data

No sorting of the data rows occurs during LOAD processing. Rows are loaded in
the physical sequence in which they are found.

Recommendation: Sort your input records in clustering sequence before loading
the data.

You should also:
v Ensure that no duplicate keys exist for unique indexes.
v Correct check constraint violations and referential constraint violations in the

input data set.

Chapter 16. LOAD 285

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_constantsintro.htm#db2z_constantsintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_strip.htm#db2z_bif_strip
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_procs4rfmttype.htm#db2z_procs4rfmttype
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_procs4rfmttype.htm#db2z_procs4rfmttype
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_convertrowformattable.htm#db2z_convertrowformattable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_convertrowformattable.htm#db2z_convertrowformattable
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

v Ensure that any input data that is provided for a security label column is a valid
security label. Security label columns are defined with the AS SECURITY LABEL
clause. These columns are used for multilevel security with row-level
granularity.

When loading data into a segmented table space, sort your data by table to ensure
that the data is loaded in the best physical organization.

Loading data by using a cursor

Before you can load data by using a cursor, you need to bind the DSNUT111
package at each location from which you plan to load data. A local package for
DSNUT111 is bound by installation job DSNTIJSG when you install or migrate to a
new version of DB2 for z/OS.

The following example statement binds the DSNUT111 package at a remote
location:
BIND PACKAGE(location.DSNUT111)

MEMBER(DSNUGSQL) -
ACTION(ADD) ISOLATION(CS) ENCODING(EBCDIC) -
VALIDATE(BIND) CURRENTDATA(NO) -
LIBRARY(’prefix.SDSNDBRM’)

You can improve the performance of cross-loading from a remote DB2 for z/OS
Version 11 subsystem in new-function mode to a local DB2 for z/OS Version 11
subsystem in new-function mode by binding the DSNUTIL and DSNUT111
packages again on the local and remote subsystems after you have converted to
new-function mode.

The following example statements bind the DSNUTIL and DSNUT111 packages on
the local subsystem, and binds the DSNUT111 package on the remote subsystem:
BIND PACKAGE(DSNUTIL) MEMBER(DSNUGSQL) -

ACTION(ADD) ISOLATION(CS) ENCODING(EBCDIC) -
VALIDATE(BIND) CURRENTDATA(NO) -
DBPROTOCOL(DRDACBF) -
LIBRARY(’prefix.SDSNDBRM’)

BIND PACKAGE(DSNUT111) MEMBER(DSNUGSQL) -
ACTION(ADD) ISOLATION(CS) ENCODING(EBCDIC) -
VALIDATE(BIND) CURRENTDATA(NO) -
DBPROTOCOL(DRDACBF) -
LIBRARY(’prefix.SDSNDBRM’)

BIND PACKAGE(location.DSNUT111) MEMBER(DSNUGSQL) -
ACTION(ADD) ISOLATION(CS) ENCODING(EBCDIC) -
VALIDATE(BIND) CURRENTDATA(NO) -
DBPROTOCOL(DRDACBF) -
LIBRARY(’prefix.SDSNDBRM’)

Running LOAD on a table with a spatial index

You cannot run the LOAD utility to load data into a table on which a spatial index
is defined. You need to drop the spatial index, run LOAD on the table, and then
create the spatial index again.
Related concepts:

Multilevel security (Managing Security)

Data sets that LOAD uses
The LOAD utility uses a number of data sets during its operation.

286 Utility Guide and Reference

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_mls.htm#db2z_mls

The following table lists the data sets that LOAD uses. The table lists the DD name
that is used to identify the data set, a description of the data set, and an indication
of whether it is required. Include statements in your JCL for each required data set,
and any optional data sets that you want to use. Alternatively, you can use the
TEMPLATE utility to dynamically allocate some of these data sets.

Table 31. Data sets that LOAD uses

Data set Description Required?

RNPRINnn A data set that contains messages from the
sort program (usually SYSOUT or DUMMY).
This data set is used when distribution
statistics are collected for column groups. nn
is a number from 01 to the number of
parallel subtasks.

No1

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

STPRIN01 A data set that contains messages from the
sort program (usually, SYSOUT or DUMMY).

This data set is used when statistics are
collected on at least one data-partitioned
secondary index, or when COLGROUP and
FREQVAL keywords are specified.

Yes 1, 2, 16

Input data set The input data set that contains the data that
is to be loaded. Specify its template or DD
name with the INDDN option of the utility
control statement. The default name is
SYSREC. It must be a sequential data set that
is readable by BSAM. The input file can be
an HFS or zFS file, in which case use a
template with the PATH option.

Yes4, 15

Sort data sets Two temporary work data sets for sort input
and sort output. Specify their DD or
template names with the WORKDDN option
of the utility control statement. The default
DD name for sort input is SYSUT1. The
default DD name for sort output is
SORTOUT.

Yes5, 6, 15

Mapping data set Work data set for mapping the identifier of a
table row back to the input record that
caused an error. Specify its template or DD
name with the MAPDDN option of the
utility control statement. The default DD
name is SYSMAP.

Yes5,7

UTPRINT Contains messages from the sort program
(usually, SYSOUT or DUMMY).

Yes

Discard data set A work data set that contains copies of
records that are not loaded. It must be a
sequential data set that is readable by BSAM.
Specify its DD or template name with the
DISCARDDN option of the utility control
statement. The default DD name is SYSDISC.

Yes 9, 15

Chapter 16. LOAD 287

||
|
|
|
|
|

|

|
|
|
|

|

Table 31. Data sets that LOAD uses (continued)

Data set Description Required?

Error data set Work data set for error processing. Specify
its DD or template name with the ERRDDN
option of the utility control statement. The
default DD or template name is SYSERR.

Yes

Copy data sets One to four output data sets that contain
image copy data sets. Specify their DD or
template names with the COPYDDN and
RECOVERYDDN options of the utility
control statement.

No10

FlashCopy image copies For table space or index space level copies, a
VSAM data set for the output FlashCopy
image copy of each partition or piece.

For a partition level or piece level copy, a
VSAM data set for the output FlashCopy
image copy of the partition or piece.

No14

Sort work data sets Temporary data sets for sort input and
output when sorting keys. If index build
parallelism is used, the DD names have the
form SWnnWKmm. If index build parallelism
is not used, the DD names have the form
SORTWKnn.

Yes11,13

Sort work data sets Temporary data sets for sort input and
output when collecting inline statistics on at
least one data-partitioned secondary index,
or when the COLGROUP or COLGROUP
and FREQVAL options are specified.

The DD names have the form ST01WKnn.

No3,12,13

Sort work data sets Temporary data sets for sort input and
output when collecting distribution statistics
for column groups.

The DD names have the form RNmmWKnn,
where mm is the subtask number, and nn is a
sequence number for the data set allocated
per task.

No3,12,13

Sort work data sets Temporary data sets for sort input and
output when collecting frequency statistics.

The DD names have the form SORTWK01.

No12,13

288 Utility Guide and Reference

|
|
|
|
|

||
|
|

|
|
|
|

|

||
|

|

|

Table 31. Data sets that LOAD uses (continued)

Data set Description Required?

Note:
1. Required when collecting distribution statistics for column groups.
2. STPRIN01 is required if statistics are being collected on at least one data-partitioned

secondary index, but LOAD dynamically allocates the STPRIN01 data set if UTPRINT
is allocated to SYSOUT.

3. Required when collecting inline statistics on at least one data-partitioned secondary
index.

4. As an alternative to specifying an input data set, you can specify a cursor with the
INCURSOR option.

5. Required if referential constraints exist and ENFORCE(CONSTRAINTS) is specified
(This option is the default).

6. Used for tables with indexes.
7. Required for discard processing when loading one or more tables that have unique

indexes.
8. Required if a sort is done.
9. If you omit the DD statement for this data set, LOAD creates the data set with the

same record format, record length, and block size as the input data set.
10. Required for inline copies.
11. Required if any indexes are to be built or if a sort is required for processing errors.
12. If the DYNALLOC parm of the SORT program is not turned on, you need to allocate

the data set. Otherwise, the sort program dynamically allocates the temporary data set.
13. It is recommended that you use dynamic allocation by specifying SORTDEVT in the

utility statement because dynamic allocation reduces the maintenance required of the
utility job JCL.

14. Required if you specify either FLASHCOPY YES or FLASHCOPY CONSISTENT.
15. If the SYSREC data set is on tape, and you use templates for the SYSUT1, SYSOUT, or

SYSDISC data sets, include the SPACE parameter in the TEMPLATE utility control
statements.

16. Required when the COLGROUP and FREQVAL options are specified.

The following object is named in the utility control statement and does not require
a DD statement in the JCL:

Table Table that is to be loaded. (If you want to load only one partition of a
table, you must use the PART option in the control statement.)

Defining work data sets

Use the formulas and instructions in The following table to calculate the size of
work data sets for LOAD. Each row in the table lists the DD name that is used to
identify the data set and either formulas or instructions that you should use to
determine the size of the data set. The key for the formulas is located at the
bottom of the table.

Table 32. Size of work data sets for LOAD jobs

Work data set Size

SORTOUT max(f,e)

ST01WKnn 2 ×(maximum record length × numcols × (count + 2) × number of
indexes)

SYSDISC Same size as input data set

SYSERR e

Chapter 16. LOAD 289

|

|

Table 32. Size of work data sets for LOAD jobs (continued)

Work data set Size

SYSMAP v Simple table space for discard processing:
m

v Partitioned or segmented table space without discard processing:
max(m,e)

SYSUT1 v Simple table space:
max(k,e)

v Partitioned or segmented table space:
max(k,e,m)

If you specify an estimate of the number of keys with the SORTKEYS
option:

max(f,e) for a simple table space
max(f,e,m) for a partitioned or segmented table space

Note:

variable
meaning

k Key calculation

f Foreign key calculation

m Map calculation

e Error calculation

max() Maximum value of the specified calculations

numcols Number of key columns to concatenate when you collect frequent values from the
specified index

count Number of frequent values that DB2 is to collect

maximum record length
Maximum record length of the SYSCOLDISTSTATS record that is processed when
collecting frequency statistics (You can obtain this value from the RECLENGTH
column in SYSTABLES.)

v Calculating the key: k

If a mix of data-partitioned secondary indexes and nonpartitioned indexes exists
on the table that is being loaded or a foreign key exists that is exactly indexed
by a data-partitioned secondary index, use this formula:
max(longest index key + 15, longest foreign key + 15) * (number of extracted keys).
Otherwise, use this formula:
max(longest index key + 13, longest foreign key + 13) * (number of extracted keys).
For nonpadded indexes, the length of the longest key means the maximum
possible length of a key with all varying-length columns padded to their
maximum lengths, plus 2 bytes for each varying-length column.

v Calculating the number of extracted keys:

1. Count 1 for each index.
2. Count 1 for each foreign key that is not exactly indexed (that is, where

foreign key and index definitions do not correspond identically).
3. For each foreign key that is exactly indexed (that is, where foreign key and

index definitions correspond identically):

290 Utility Guide and Reference

a. Count 0 for the first relationship in which the foreign key participates if
the index is not a data-partitioned secondary index. Count 1 if the index
is a data-partitioned secondary index.

b. Count 1 for subsequent relationships in which the foreign key participates
(if any).

4. Multiply count by the number of rows that are to be loaded.
v Calculating the foreign key: f

If a mix of data-partitioned secondary indexes and nonpartitioned indexes exists
on the table that is being loaded or a foreign key exists that is exactly indexed
by a data-partitioned secondary index, use this formula:
max(longest foreign key + 15) * (number of extracted keys)

Otherwise, use this formula:
max(longest foreign key + 13) * (number of extracted keys)

v Calculating the map: m

The data set must be large enough to accommodate one map entry (length = 21
bytes) per table row that is produced by the LOAD job.

v Calculating the error: e

The data set must be large enough to accommodate one error entry (length =
560 bytes) per defect that is detected by LOAD (for example, conversion errors,
unique index violations, violations of referential constraints).

v Calculating the number of possible defects:

– For discard processing, if the discard limit is specified, the number of possible
defects is equal to the discard limit.
If the discard limit is the maximum, calculate the number of possible defects
by using the following formula:
number of input records +
(number of unique indexes * number of extracted keys) +
(number of relationships * number of extracted foreign keys)

– For nondiscard processing, the data set is not required.

Allocating twice the space that is used by the input data sets is usually adequate
for the sort work data sets. Two or three large SORTWKnn data sets are preferable
to several small ones.

Sort work data sets cannot span volumes. Smaller volumes require more sort work
data sets to sort the same amount of data; therefore, large volume sizes can reduce
the number of needed sort work data sets. It is recommended that at least 1.2
times the amount of data to be sorted be provided in sort work data sets on disk.
Related reference:

DB2 Sort
“Syntax and options of the TEMPLATE control statement” on page 775
Related information:

DFSORT Application Programming Guide

Concurrency and compatibility for LOAD
The LOAD utility has certain concurrency and compatibility characteristics
associated with it.

Chapter 16. LOAD 291

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

DB2 treats Individual data and index partitions as distinct target objects. Utilities
that operate on different partitions of the same table space or index space are
compatible.

For nonpartitioned secondary indexes, LOAD PART:
v Drains only the logical partition
v Does not set the page set REBUILD-pending status (PSRBD)
v Does not consider PCTFREE or FREEPAGE attributes when inserting keys

Claims and drains

The following table shows which claim classes LOAD drains and the restrictive
states the utility sets.

Table 33. Claim classes of LOAD operations

Target

LOAD
SHRLEVEL
NONE

LOAD PART
SHRLEVEL
NONE

LOAD
SHRLEVEL
CHANGE

LOAD PART
SHRLEVEL
CHANGE

Table space, index, or
physical partition of a table
space or index space

DA/UTUT DA/UTUT CW/UTRW CW/UTRW

Nonpartitioned secondary
index1

DA/UTUT DR CW/UTRW CW/UTRW

Data-partitioned secondary
index2

DA/UTUT DA/UTUT CW/UTRW CW/UTRW

Index logical partition3 None DA/UTUT None CW/UTRW

Primary index (with
ENFORCE option only)

DW/UTRO DW/UTRO CR/UTRW CR/UTRW

RI dependents CHKP (NO) CHKP (NO) CHKP (NO) CHKP (NO)

Legend:
v CHKP (NO): Concurrently running applications do not see CHECK-pending status after

commit.
v CR: Claim the read claim class.
v CW: Claim the write claim class.
v DA: Drain all claim classes, no concurrent SQL access.
v DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers.
v DW: Drain the write claim class, concurrent access for SQL readers.
v UTUT: Utility restrictive state, exclusive control.
v UTRO: Utility restrictive state, read-only access allowed.
v UTRW: Utility restrictive state, read-write access allowed.
v None: Object is not affected by this utility.
v RI: Referential integrity

Note:

1. Includes the document ID indexes and node ID indexes over non-partitioned XML table
spaces and XML indexes.

2. Includes document ID indexes and node ID indexes over partitioned XML table spaces.

3. Includes logical partitions of an XML index over partitioned table spaces.

Compatibility

The following table shows whether or not utilities are compatible with LOAD and
can run concurrently on the same target object. The target object can be a table
space, an index space, or a partition of a table space or index space.

292 Utility Guide and Reference

Table 34. Compatibility of LOAD with other utilities

Action
LOAD SHRLEVEL
NONE

LOAD SHRLEVEL
CHANGE

BACKUP SYSTEM YES YES

CHECK DATA DELETE NO No No

CHECK DATA DELETE YES No No

CHECK INDEX No No

CHECK LOB No No

COPY INDEXSPACE SHRLEVEL
CHANGE

No Yes

COPY INDEXSPACE SHRLEVEL
REFERENCE

No No

COPY TABLESPACE SHRLEVEL
CHANGE

No Yes

COPY TABLESPACE SHRLEVEL
REFERENCE

No No

COPYTOCOPY No Yes

DIAGNOSE Yes Yes

LOAD SHRLEVEL CHANGE No Yes

LOAD SHRLEVEL NONE No No

MERGECOPY No Yes

MODIFY RECOVERY No Yes

MODIFY STATISTICS No Yes

QUIESCE No No

REBUILD INDEX No No

RECOVER (no options) No No

RECOVER ERROR RANGE No No

RECOVER TOCOPY or TORBA No No

REORG INDEX No No

REORG TABLESPACE UNLOAD
CONTINUE or PAUSE

No No

REORG TABLESPACE UNLOAD
ONLY or EXTERNAL

No No

REPAIR DUMP or VERIFY No No

REPAIR LOCATE KEY or RID
DELETE or REPLACE

No No

REPAIR LOCATE TABLESPACE
PAGE REPLACE

No No

REPORT Yes No

RESTORE SYSTEM No No

RUNSTATS INDEX SHRLEVEL
CHANGE

No Yes

RUNSTATS INDEX SHRLEVEL
REFERENCE

No No

Chapter 16. LOAD 293

Table 34. Compatibility of LOAD with other utilities (continued)

Action
LOAD SHRLEVEL
NONE

LOAD SHRLEVEL
CHANGE

RUNSTATS TABLESPACE
SHRLEVEL CHANGE

No Yes

RUNSTATS TABLESPACE
SHRLEVEL REFERENCE

No No

STOSPACE Yes Yes

UNLOAD No Yes

SQL operations and other online utilities on the same target partition are
incompatible.

Preparing DB2 internal format input records that are not
generated by UNLOAD for LOAD

Before you load records that are in DB2 internal format, but are not generated by
the UNLOAD utility, you need to modify the input records.

About this task

For LOAD input records that are in DB2 internal format, the seventh bit of the first
byte in each record needs to indicate whether the record is in basic row format or
reordered row format. A value of 0 in the seventh bit of the first byte indicates that
the record is in basic row format. A value of 1 indicates that the record is in
reordered row format.

Procedure

If your input records are in DB2 internal format, and you did not use UNLOAD
with FORMAT INTERNAL to generate the input data, you need to set the seventh
bit of the first byte of each record to indicate the row format of the record.
To avoid extra row format conversions that degrade performance, ensure that
input data rows are in the row format of the target table space or partition.
Related reference:
“Syntax and options of the LOAD control statement” on page 233

When to use SORTKEYS NO
The SORTKEYS value determines when you can restart a LOAD job on a table
space that has LOB columns.
v The default value for SORTKEYS is SORTKEYS 0. If you plan to load a table that

has LOB columns using LOAD RESUME YES SHRLEVEL NONE, and you
might need to restart the LOAD job with RESTART(CURRENT), you must
specify SORTKEYS NO.

v The point at which you can restart LOAD REPLACE SHRLEVEL NONE on a
table that has no LOB columns depends on whether you specify SORTKEYS NO:
– If you specify SORTKEYS NO, you can restart with RESTART(CURRENT).
– If you do not specify SORTKEYS NO, you can restart only with

RESTART(PHASE)

294 Utility Guide and Reference

Loading variable-length data
You can load variable-length data by using the LOAD utility.

Procedure

To load variable-length data:

Include a 2-byte binary length field before each field of variable-length data. The
value in that field depends on the data type of the column into which you load the
data. Use:
v The number of single-byte characters if the data type is VARCHAR
v The number of double-byte characters if the data type is VARGRAPHIC

For example, assume that you have a variable-length column that contains
X'42C142C142C2', which might be interpreted as either six single-byte characters or
three double-byte characters. With the two-byte length field, use:
v X'0006'X'42C142C142C2' to signify six single-byte characters in a VARCHAR

column
v X'0003'X'42C142C142C2' to signify three double-byte characters in a

VARGRAPHIC column

How LOAD orders loaded records
The LOAD utility loads records into a table space in the order in which they
appear in the input stream. It does not sort the input stream, and it does not insert
records in sequence with existing records, even if a clustering index exists.

To achieve clustering when loading an empty table or replacing data, sort the input
stream. When adding data to a clustered table, consider reorganizing the table after
running LOAD.

Because rows with duplicate key values for unique indexes fail to be loaded, any
records that are dependent on such rows either:
v Fail to be loaded because they would cause referential integrity violations (if you

specify ENFORCE CONSTRAINTS)
v Are loaded without regard to referential integrity violations (if you specify

ENFORCE NO)

As a result, violations of referential integrity might occur. Such violations can be
detected by LOAD (without the ENFORCE(NO) option) or by CHECK DATA.

Replacing data with LOAD
You can use the LOAD utility to replace data in a table space that has one or more
tables.

Procedure

To replace data with LOAD:

Specify the REPLACE option in the LOAD utility control statement.
This option specifies that all data in the table space is to be replaced. Alternatively,
you can load new records into a table space without deleting the existing rows by
using the RESUME option.

Chapter 16. LOAD 295

When you specify LOAD REPLACE, determine what other LOAD options to
specify depending on the following implications:

How data sets are processed
DB2 processes data sets depending on the LOAD options that you specify.
If you run LOAD REPLACE without the REUSE option, data sets that are
not user-managed are deleted before the LOAD utility runs. The LOAD
utility defines a new data set with a control interval that matches the page
size.

How row format is affected
When you run LOAD REPLACE with the ROWFORMAT RRF option on a
table space or partition that is in basic row format, LOAD converts the
table space or partition to the reordered row format. If the ROWFORMAT
BRF option is specified, existing basic row format table spaces are not
converted to reordered row format. If the clause EDITPROC or
VALIDPROC is used in a table space or partition, the table space or
partition remains in basic format after the LOAD REPLACE. For table
spaces that contain some partitions in basic row format and some
partitions in reordered row format, LOAD REPLACE converts the
partitions that are in basic row format to reordered row format.

How logging is handled
The LOAD REPLACE or PART REPLACE with LOG YES option logs only
the reset and not each deleted row. To see what rows are being deleted, use
the SQL DELETE statement.

Running LOAD REPLACE has the following effects on restrictive states:

REORG-pending
If an object is in REORG-pending status, you can run LOAD REPLACE on
the entire table space, which resets REORG-pending status. You can also
run LOAD PART REPLACE or RESUME on any partitions that are not in
REORG-pending status. In this situation, no other LOAD operations are
allowed.

Advisory REORG-pending
If an object is in advisory REORG-pending status, you can run LOAD
REPLACE on the entire table space, which resets advisory REORG-pending
status. The exception is pending limit key changes. LOAD REPLACE does
not materialize those changes or reset advisory REORG-pending status. In
that case, you must run the REORG TABLESPACE utility. Then, you can
run LOAD REPLACE. (You can continue to use LOAD REPLACE to
materialize immediate alter limit key changes, which are indicated by
REORG-pending status instead of advisory REORG-pending status.
Immediate alter limit key changes occur for a partitioned table space with
index-controlled partitioning and any alter limit key operations that occur
before Version 11 new-function mode.)

REBUILD-pending
If an object is in REBUILD-pending status, you can run LOAD REPLACE
on the entire table space, which resets REBUILD-pending status. You can
also run LOAD PART REPLACE or RESUME on any partitions. If these
partitions are in REBUILD-pending status, a LOAD PART REPLACE or
RESUME resets that status.

296 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|

Advisory REBUILD-pending
If an object is in advisory REBUILD-pending status, you can run LOAD
REPLACE on the entire table space, which resets advisory
REBUILD-pending status.

REFRESH-pending
If a user-defined table space is in REFRESH-pending (REFP) status, you
can replace the data by using LOAD REPLACE.

Examples

Example of replacing one table in a single-table table space
The following control statement specifies that LOAD is to replace one table
in a single-table table space.
LOAD DATA

REPLACE
INTO TABLE DSN8B10.DEPT
(DEPTNO POSITION (1) CHAR(3),

DEPTNAME POSITION (5) VARCHAR,
MGRNO POSITION (37) CHAR(6),
ADMRDEPT POSITION (44) CHAR(3),
LOCATION POSITION (48) CHAR(16))

ENFORCE NO

Example of replacing one table in a multiple-table table space
LOAD works on an entire table space. Therefore, be careful when using
LOAD REPLACE on a table space with multiple tables. To replace all rows
in a multiple-table table space, you must work with one table at a time by
using the RESUME YES option on all but the first table. For example, if
you have two tables in a table space, take the following steps:
1. Use LOAD REPLACE on the first table as shown in the following

control statement. This option removes data from the table space and
replaces just the data for the first table.
LOAD DATA CONTINUEIF(72:72)=’X’

REPLACE
INTO DSN8B10.TOPTVAL
(MAJSYS POSITION (2) CHAR(1),

ACTION POSITION (4) CHAR(1),
OBJECT POSITION (6) CHAR(2),
SRCHCRIT POSITION (9) CHAR(2),
SCRTYPE POSITION (12) CHAR(1),
HEADTXT POSITION (80) CHAR(50),
SELTXT POSITION (159) CHAR(50),
INFOTXT POSITION (238) CHAR(71),
HELPTXT POSITION (317) CHAR(71),
PFKTXT POSITION (396) CHAR(71),
DSPINDEX POSITION (475) CHAR(2))

2. Use LOAD with RESUME YES on the second table as shown in the
control statement in the following example. This option adds the
records for the second table without deleting the data in the first table.
LOAD DATA CONTINUEIF(72:72)=’X’

RESUME YES
INTO DSN8B10.TDSPTXT
(DSPINDEX POSITION (2) CHAR(2),

LINENO POSITION (6) CHAR(2),
DSPLINE POSITION (80) CHAR(79))

If you want to replace just one table in a multiple-table table space, delete
all rows in the table, and then use LOAD with RESUME YES. For example,

Chapter 16. LOAD 297

assume that you want to replace all the data in DSN8B10.TDSPTXT
without changing any data in DSN8B10.TOPTVAL. In this case, take the
following steps:
1. Delete all the rows from DSN8B10.TDSPTXT by using the following

SQL DELETE statement:
EXEC SQL

DELETE FROM DSN8B10.TDSPTXT
ENDEXEC

Tip: The mass delete works most quickly on a segmented table space.
2. Use the LOAD job that is shown in the following figure to replace the

rows in that table.
LOAD DATA CONTINUEIF(72:72)=’X’

RESUME YES
INTO DSN8B10.TDSPTXT
(DSPINDEX POSITION (2) CHAR(2),

LINENO POSITION (6) CHAR(2),
DSPLINE POSITION (80) CHAR(79))

Related concepts:

Improved availability when altering limit keys (DB2 for z/OS What's New?)
Related reference:
“Syntax and options of the LOAD control statement” on page 233
Chapter 25, “REORG TABLESPACE,” on page 537
Appendix C, “Advisory or restrictive states,” on page 1083

Loading tables with special column types by using generated LOAD
statements

When you run the UNLOAD utility or the REORG utility with the UNLOAD
EXTERNAL or DISCARD options, DB2 generates a LOAD statement for the
unloaded data. You can then use this LOAD statement to load the unloaded data
into any table that has a compatible format.

About this task

However, because the following types of columns can contain generated values,
they need special consideration:
v ROWID columns
v Identity columns
v Row change timestamp columns
v System period constraint columns (system periods that are defined with the AS

ROW BEGIN and AS ROW END generated columns in temporal tables)
v TRANSACTION START ID columns in temporal tables

For these table column types, the generated LOAD statement contains dummy
fields. The following table lists those dummy fields.

Source table column type
Dummy fields in the generated LOAD
statement

ROWID with GENERATED ALWAYS DSN_ROWID

Identity column with GENERATED ALWAYS DSN_IDENTITY

298 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.wnew/src/tpc/db2z_11_onlinealterlimitkey.htm#db2z_11_onlinealterlimitkey

Source table column type
Dummy fields in the generated LOAD
statement

Row change timestamp column with
GENERATED ALWAYS

DSN_RCTIMESTAMP

System period constraint columns DSN_ROWBEGIN and DSN_ROWEND

TRANSACTION START ID column DSN_TRANSACTIONSTID

Procedure

To load tables with special column types by using generated LOAD statements
1. Make sure that the target table has a compatible format for the data that you

want load.
2. Decide whether you want to include the data for the columns with special

column types when you load the unloaded data.
3. If you do not want to load data for the columns with special column types,

make sure that the column is defined in the target table as GENERATED
ALWAYS.
The IGNOREFIELDS keyword in the generated LOAD statement causes DB2 to
skip the dummy fields when it loads the data into a table.

4. If you want to load data for the columns with special column types, take the
following actions:

Option Description

For ROWID, identity, or row change
timestamp columns:

v In the target table, define the ROWID,
identity, or row change timestamp column
as GENERATED BY DEFAULT

v In the generated LOAD control statement,
remove the IGNOREFIELDS keyword and
change the dummy field names to the
corresponding column names in the target
table.

For columns that participate in a system
period constraint:

v In the target table, define the columns that
participate in a system period constraint
as GENERATED ALWAYS.

v Make the following changes to the
generated LOAD control statement:

– Specify the PERIODOVERRIDE
parameter.

– Remove the IGNOREFIELDS keyword.

– Change the dummy field names to the
corresponding column names in the
target table.

Chapter 16. LOAD 299

Option Description

For TRANSACTION START ID columns: v In the target table, define TRANSACTION
START ID columns as GENERATED
ALWAYS

v Make the following changes to the
generated LOAD control statement:

– Specify the TRANSIDOVERRIDE
parameter.

– Remove the IGNOREFIELDS keyword.

– Change the dummy field names to the
corresponding column names in the
target table.

5. Issue the LOAD utility control statement.
Related tasks:
“Generating LOAD statements” on page 861
Related reference:
“Syntax and options of the LOAD control statement” on page 233
“Syntax and options of the UNLOAD control statement” on page 804

CREATE TABLE (DB2 SQL)

Adding more data to a table or partition
You might want to use the LOAD utility to add data to a table or partition, rather
than replacing existing data.

The RESUME keyword specifies whether data is to be loaded into an empty or a
non-empty table space. RESUME NO loads records into an empty table space.
RESUME YES loads records into a non-empty table space.

If RESUME NO is specified and the target table is not empty, no data is loaded.

If RESUME YES is specified and the target table is empty, data is loaded.

LOAD always adds rows to the end of the existing rows, but index entries are
placed in key sequence.

Deleting all the data in a table space
You can use the LOAD utility to efficiently clean out a table space. You can delete
all of the data, but retain the structure, including any views and privileges.

Procedure

To delete all the data in a table space:

Submit a LOAD job with the following specifications:
v Specify the REPLACE option in the utility control statement. LOAD REPLACE

redefines the table space, but retains all views and privileges that are associated
with a table space or table.

300 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable

v Specify the appropriate LOG value in the utility control statement. If you want
this job to be recoverable, specify LOG YES. Otherwise, specify LOG NO so that
no rows are logged.

v Specify the input data set in the JCL as DD DUMMY. Such a data set indicates
that no rows are to be loaded.

LOAD REPLACE replaces all tables in the table space.
Related reference:
“Syntax and options of the LOAD control statement” on page 233
“Data sets that LOAD uses” on page 286

Loading partitions
You can use the LOAD utility to load one or more partitions of a partitioned table
space. To improve performance when loading more than one partition, consider
enabling partition parallelism.

About this task

Partition parallelism can reduce the elapsed time that is required for loading large
amounts of data into partitioned table spaces.

If you are loading a partitioned table space that is created with DEFINE NO, the
load operation might take longer. If a partitioned table space is created with
DEFINE NO, all partitions are also implicitly defined with DEFINE NO. The first
data row that is inserted by the LOAD utility defines all data sets in the
partitioned table space. If this process takes a long time, expect timeouts on the
database descriptor (DBD).

Restriction: You cannot load data at the partition level of a partition-by-growth
table space.

Procedure

To load partitions:
v If you want to load only certain partitions of a partitioned table, use the PART

clause of the INTO TABLE option. If you omit the PART clause, the entire table
is loaded.

Restriction: The following restrictions exist for identity columns:
– When index-based partitioning is used, LOAD INTO TABLE PART integer is

not allowed if an identity column is part of the partitioning index.
– When table-based partitioning is used, LOAD INTO TABLE PART integer is

not allowed if an identity column is used in a partitioning clause of the
CREATE TABLE or ALTER TABLE statement.

To override these restrictions, specify the IDENTITYOVERRIDE option in the
LOAD statement.

v If you want partitions to be processed in parallel, take one of the following
actions:
– If you have a single input data set and the partitioned table space is

partitioned (non-universal) or range-partitioned, specify the PARALLEL
keyword. This keyword enables LOAD to use multiple parallel subtasks.

Chapter 16. LOAD 301

|
|
|

When determining the degree of parallelism to specify on the PARALLEL
keyword, consider that a high degree of parallelism can result in increased
processor time.

Recommendation: Specify PARALLEL(0) or PARALLEL without a number so
that DB2 can determine the optimal degree of parallelism.

– If one or more nonpartitioned secondary indexes exists on the partitioned
table space, and you have a separate input data set for each partition, use
load partition parallelism. Partition parallelism loads all partitions in a single
job. To invoke partition parallelism, specify the INTO TABLE PART clause
with INDDN or INCURSOR and optionally DISCARDDN for each partition
that you want to load.
If the table space is created with DEFINE NO, coding your LOAD job with
SHRLEVEL CHANGE and enabling partition parallelism is equivalent to
concurrent, independent insert jobs. For example, in a large partitioned table
space that is created with DEFINE NO, the LOAD utility starts three tasks.
The first task tries to insert the first row, which causes an update to the DBD.
The other two tasks time out while they wait to access the DBD. The first task
holds the lock on the DBD while the data sets are defined for the table space.

– If the only indexes are the partitioned indexes, use multiple jobs to run
LOAD concurrently against separate partitions. This method also requires that
you have a separate input data set for each partition.

v If you use the INTO TABLE PART clause, take the following actions as
appropriate:
– If you specify the REPLACE or RESUME options, specify them separately by

partition. If you specify these options before the INTO TABLE PART clause,
LOAD serializes the load operation for the entire table space and does not
process the partitions concurrently.

– To load columns in an order that is different than the order of the columns in
the CREATE TABLE statement, code field specifications for each INTO TABLE
PART clause.

Examples

Example of loading certain records into certain partitions
The control statement in the following example specifies that DB2 is to
load data into the first and second partitions of the employee table.
Records with '0' in column 1 replace the contents of partition 1; records
with '1' in column 1 are added to partition 2; all other records are ignored.
This example control statement, which is simplified to illustrate the point,
does not list field specifications for all columns of the table.
LOAD DATA CONTINUEIF(72:72)=’X’

INTO TABLE DSN8B10.EMP PART 1 REPLACE WHEN (1) = ’0’
(EMPNO POSITION (1:6) CHAR(6),

FIRSTNME POSITION (7:18) CHAR(12),

...
)

INTO TABLE DSN8B10.EMP PART 2 RESUME YES WHEN (1) = ’1’
(EMPNO POSITION (1:6) CHAR(6),

FIRSTNME POSITION (7:18) CHAR(12),

...
)

Example of loading partitions from separate input data sets
The following example LOAD statements specify that partitions 1 and 2 of

302 Utility Guide and Reference

|
|
|

|
|

the EMP table are to be loaded from the EMPLDS1 and EMPLDS2 data
sets. This example assumes that your data is in separate input data sets
and already sorted by partition. Therefore, you do not need to use the
WHEN clause of INTO TABLE. Placing the RESUME YES option before the
PART option inhibits concurrent partition processing. If you want LOAD to
process other partitions concurrently, specify the RESUME option after the
PART option.
LOAD DATA INDDN EMPLDS1 CONTINUEIF(72:72)=’X’

RESUME YES
INTO TABLE DSN8B10.EMP REPLACE PART 1

LOAD DATA INDDN EMPLDS2 CONTINUEIF(72:72)=’X’
RESUME YES
INTO TABLE DSN8B10.EMP REPLACE PART 2

Example of loading partitions independently
In the following example, partition 1 and partition 2 are loaded
concurrently.
LOAD DATA INDDN SYSREC LOG NO

INTO TABLE DSN8B10.EMP PART 1 REPLACE

LOAD DATA INDDN SYSREC2 LOG NO
INTO TABLE DSN8B10.EMP PART 2 REPLACE

Related reference:
“Syntax and options of the LOAD control statement” on page 233

Partition-by-growth table spaces
When you load a partition-by-growth table space, you can load data only at the
table space level and not at the partition level. If you need additional partitions
during the LOAD process and the maximum number of partitions for the table
space is not yet reached, the LOAD utility will trigger the process to add
additional partitions. If the maximum number of partitions is reached, the LOAD
utility fails.

Restriction: You cannot use parallelism for LOAD processing for
partition-by-growth table spaces.

Loading data containing XML columns
You can load data containing XML columns with one of two methods.

About this task
v The XML column can be loaded from the input record. XML column value can

be placed in the INPUT record with or without any other any other loading
column values. The input record can be in delimited or non-delimited format.
For a non-delimited format, the XML column is treated like a variable character
with a 2-byte length preceding the XML value. For a delimited format there are
no length bytes present. If the input record is in spanned record format, specify
the FORMAT SPANNED YES option.

v The XML column can be loaded from a separate file whether the XML column
length is less than 32K or not.

Procedure

To load data into a base table that has XML columns:
1. Create input data sets to ensure that you use the appropriate format:

Chapter 16. LOAD 303

v If you use delimited format, specify XML data in the input data set as
delimited character strings, separated by the column delimiter.

v If you do not use delimited format, specify the XML input field length in a
2-byte binary field preceding the data.

2. Create a LOAD utility control statement.
v To load XML directly from input record, specify XML as the input field type.

XML is the only acceptable field type and data type conversion is not
supported. Do not specify DEFAULTIF.

v To load XML from a file, specify CHAR or VARCHAR along with either
BLOBF, CLOBF or DBCLOBF to indicate that the input column contains a
filename from which a BLOBF, CLOBF or DBCLOBF is to be loaded to the
XML column.

3. Submit the utility control statement.

Results

When you load XML documents into a table, and the XML value cannot be cast to
the type that you specified when you created the index, the value is ignored
without any warnings or errors, and the document is inserted into the table.

When you insert XML documents into a table with XML indexes that are of type
DECFLOAT, the values might be rounded when they are inserted. If the index is
unique, the rounding might cause duplicates even if the original values are not
exactly the same.

DB2 does not compress an XML table space during the LOAD process. If the XML
table space is defined with COMPRESS YES, the XML table space is compressed
during REORG.

Loading delimited files
You can load a delimited file by using the FORMAT DELIMITED option. A
delimited file contains cell values that are separated by delimiters. Delimiters are
predefined characters that separate data. The column delimiter separates one
column value from the next. Character string delimiters identify the beginning and
end of a single cell value and are required only if the cell value contains the
column delimiter.

Recommendation: If a delimited file is to be transferred to or from an operating
system other than z/OS or between DB2 for z/OS systems that use different
EBCDIC or ASCII CCSIDs, use Unicode as the encoding scheme for the delimited
file. Using Unicode avoids possible CCSID translation problems.

You are responsible for ensuring that the data in the file does not include the
chosen delimiters. If the delimiters are part of the file's data, unexpected errors can
occur.

Restrictions: The following restrictions apply to the use of delimiters:
v You cannot specify the same character for more than one type of delimiter

(COLDEL, CHARDEL, and DECPT).
v You cannot specify a character constant for a delimiter if the utility control

statement is not coded in the same encoding scheme as the input file. For
example, the utility control statement is coded in Unicode, and the input data is
coded in EBCDIC.

304 Utility Guide and Reference

v You should use the hexadecimal representation for non-default delimiters if the
utility control statement is coded in a different encoding scheme than the input
file. For example, the utility control statement is coded in Unicode, and the input
file is coded in EBCDIC. In this case, if you do not use the hexadecimal
representation for the non-default delimiters, the results can be unpredictable.

v You do not need to specify the POSITION keyword when you specify the
DELIMITED option. The utility ignores the POSITION keyword when you also
specify DELIMITED. The utility overrides field data type specifications
according to the specifications of the delimited format. (For example, length
values for CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, CLOB, DBCLOB, and
BLOB data are the delimited lengths of each field in the input data set, and the
utility expects all numeric types in external format.)

v You cannot specify a binary 0 (zero) for any delimiter.
v You cannot specify the default decimal point as a string character delimiter

(CHARDEL) or a column string delimiter (COLDEL).
v You cannot specify shift-in and shift-out characters for EBCDIC MBCS data.
v You cannot specify the pipe character (|) for DBCS data.
v You cannot specify the semicolon character (x'5E') as a delimiter character for

COlDEL.
v You must enclose all space values with CHARDEL if you want to load the

character string into a target column that is defined with NOT NULL and
without the default value. If a character string is not enclosed by CHARDEL, the
utility skips the leading and trailing space characters. If the characters between
two column delimiters are all space values, the field is set to null and cannot be
loaded into a column.

The following table lists the default hexadecimal values for the delimiter characters
based on encoding scheme.

Table 35. Default delimiter values for different encoding schemes

Character EBCDIC SBCS
EBCDIC
DBCS/MBCS

ASCII/Unicode
SBCS

ASCII/Unicode
MBCS

Character string
delimiter

X'7F' X'7F' X'22' X'22'

Decimal point
character

X'4B' X'4B' X'2E' X'2E'

Column
delimiter

X'6B' X'6B' X'2C' X'2C'

In most EBCDIC code pages, the hexadecimal values that are specified in the
previous table are a double quotation mark(") for the character string delimiter, a
period(.) for the decimal point character, and a comma(,) for the column delimiter.

The following table lists the maximum allowable hexadecimal values for any
delimiter character based on the encoding scheme.

Table 36. Maximum delimiter values for different encoding schemes

Encoding scheme Maximum allowable value

EBCDIC SBCS None

EBCDIC DBCS/MBCS X'3F'

ASCII/Unicode SBCS None

Chapter 16. LOAD 305

Table 36. Maximum delimiter values for different encoding schemes (continued)

Encoding scheme Maximum allowable value

ASCII/Unicode MBCS X'7F'

The following table identifies the acceptable data type forms for the delimited file
format that the LOAD and UNLOAD utilities use.

Table 37. Acceptable data type forms for delimited files.

Data type
Acceptable form for loading
a delimited file

Form that is created by
unloading a delimited file

CHAR, VARCHAR A delimited or non-delimited
character string

Character data that is
enclosed by character
delimiters. For VARCHAR,
length bytes do not precede
the data in the string.

GRAPHIC (any type) A delimited or non-delimited
character stream

Data that is unloaded as a
delimited character string.
For VARGRAPHIC, length
bytes do not precede the data
in the string.

INTEGER (any type) 1 A stream of characters that
represents a number in
EXTERNAL format

Numeric data in external
format.

DECIMAL (any type) 2 A character string that
represents a number in
EXTERNAL format

A string of characters that
represents a number.

FLOAT 3 A representation of a number
in the range -7.2E + 75 to
7.2E + 75 in EXTERNAL
format

A string of characters that
represents a number in
floating-point notation.

BLOB, CLOB A delimited or non-delimited
character string

Character data that is
enclosed by character
delimiters. Length bytes do
not precede the data in the
string.

DBCLOB A delimited or non-delimited
character string

Character data that is
enclosed by character
delimiters. Length bytes do
not precede the data in the
string.

DATE A delimited or non-delimited
character string that contains
a date value in EXTERNAL
format

Character string
representation of a date.

TIME A delimited or non-delimited
character string that contains
a time value in EXTERNAL
format

Character string
representation of a time.

TIMESTAMP A delimited or non-delimited
character string that contains
a timestamp value in
EXTERNAL format

Character string
representation of a
timestamp.

306 Utility Guide and Reference

Table 37. Acceptable data type forms for delimited files. (continued)

Data type
Acceptable form for loading
a delimited file

Form that is created by
unloading a delimited file

Note:

1. Field specifications of INTEGER or SMALLINT are treated as INTEGER EXTERNAL.

2. Field specifications of DECIMAL, DECIMAL PACKED, or DECIMAL ZONED are treated
as DECIMAL EXTERNAL.

3. Field specifications of FLOAT, REAL, or DOUBLE are treated as FLOAT EXTERNAL.

Related concepts:
“Unloading delimited files” on page 857
Related reference:
Appendix H, “Delimited file format,” on page 1133

Loading data with referential constraints
LOAD does not load a table with an incomplete definition; if the table has a
primary key, the unique index on that key must exist. If any table that is to be
loaded has an incomplete definition, the LOAD job terminates.

LOAD requires access to the primary indexes on the parent tables of any loaded
tables. For simple, segmented, and partitioned table spaces, it drains all writers
from the parent table's primary indexes. Other users cannot make changes to the
parent tables that result in an update to their own primary indexes. Concurrent
inserts and deletes on the parent tables are blocked, but updates are allowed for
columns that are not defined as part of the primary index.

By default, LOAD enforces referential constraints, except informational referential
constraints, which LOAD ignores. By enforcing referential constraints, LOAD
provides you with several possibilities for error:
v Records that are to be loaded might have duplicate values of a primary key.
v Records that are to be loaded might have invalid foreign-key values, which are

not values of the primary key of the corresponding parent table.
v The loaded table might lack primary key values that are values of foreign keys

in dependent tables.

The next few paragraphs describe how DB2 signals each of those errors and the
means it provides for correcting them.

Duplicate values of a primary key

A primary index must be a unique index and must exist if the table definition is
complete. Therefore, when you load a parent table, you build at least its primary
index. You need an error data set, and probably also a map data set and a discard
data set.

Invalid foreign key values:

A dependent table has the constraint that the values of its foreign keys must be
values of the primary keys of corresponding parent tables. By default, LOAD
enforces that constraint in much the same way as it enforces the uniqueness of key
values in a unique index. First, it loads all records to the table. Subsequently,
LOAD checks the validity of the records with respect to the constraints, identifies

Chapter 16. LOAD 307

any invalid record by an error message, and deletes the record from the table. You
can choose to copy this record to a discard data set. Again you need at least an
error data set, and probably also a map data set and a discard data set.

If a record fails to load because it violates a referential constraint, any of its
dependent records in the same job also fail. For example, suppose that the sample
project table and project activity tables belong to the same table space, that you
load them both in the same job, and that some input record for the project table
has an invalid department number. Then, that record fails to be loaded and does
not appear in the loaded table; the summary report identifies it as causing a
primary error.

However the project table has a primary key, the project number. In this case, the
record that is rejected by LOAD defines a project number, and any row in the
project activity table that refers to the rejected number is also rejected. The
summary report identifies those as causing secondary errors. If you use a discard
data set, records for both types of errors are copied to it.

Missing primary key values

The deletion of invalid records does not cascade to other dependent tables that are
already in place. Suppose now that the project and project activity tables exist in
separate table spaces, and that they are both currently populated and possess
referential integrity. In addition, suppose that the data in the project table is now to
be replaced (using LOAD REPLACE) and that the replacement data for some
department was inadvertently not supplied in the input data. Rows that reference
that department number might already exist in the project activity table. LOAD,
therefore, automatically places the table space that contains the project activity
table (and all table spaces that contain dependent tables of any table that is being
replaced) into CHECK-pending status.

The CHECK-pending status indicates that the referential integrity of the table
space is in doubt; it might contain rows that violate a referential constraint. DB2
places severe restrictions on the use of a table space in CHECK-pending status;
typically, you run the CHECK DATA utility to reset this status.

Consequences of ENFORCE NO

If you use the ENFORCE NO option, you tell LOAD not to enforce referential
constraints. Sometimes you have good reasons for doing that, but the result is that
the loaded table space might violate the constraints. Hence, LOAD places the
loaded table space in CHECK-pending status. If you use REPLACE, all table spaces
that contain any dependent tables of the tables that were loaded are also placed in
CHECK-pending status. You must reset the status of each table before you can use
any of the table spaces.
Related concepts:
“Resetting the CHECK-pending status” on page 335

Referential constraint violations
The referential integrity checking in LOAD can delete only incorrect dependent
rows, which were input to LOAD. In some circumstances, it is possible to correct
referential integrity violations without deleting the dependent rows.

308 Utility Guide and Reference

For example, the violations might occur because parent rows do not exist. In this
case, correcting the parent tables is better than deleting the dependent rows. In this
case, ENFORCE NO is more appropriate than ENFORCE CONSTRAINTS. After
you correct the parent table, you can use CHECK DATA to reset the
CHECK-pending status.

LOAD ENFORCE CONSTRAINTS is not equivalent to CHECK DATA. LOAD
ENFORCE CONSTRAINTS deletes any rows that cause referential constraint
violations. CHECK DATA detects violations and optionally deletes such rows.
CHECK DATA checks a complete referential structure, although LOAD checks only
the rows that are being loaded.

When loading referential structures with ENFORCE CONSTRAINTS, you should
load tables before dependent tables.

Data compression
You can use LOAD with the REPLACE, RESUME NO, or RESUME YES options to
build a compression dictionary. The RESUME NO option requires the table space
to be empty. If SHRLEVEL NONE is explicitly or implicitly specified, RESUME
YES builds a dictionary if the table space is empty. If SHRLEVEL CHANGE is
specified, RESUME YES builds a dictionary when the amount of data in the table
space reaches a DB2-determined threshold.

LOAD RESUME YES or NO build compression dictionaries for empty table spaces,
except for linear/simple table spaces. LOAD REPLACE must be used on
linear/simple table spaces in order to build new compression dictionaries. If your
table space, or a partition in a partitioned table space, is defined with COMPRESS
YES, the dictionary is created while records are loaded. After the dictionary is
build processing completes, the rest of the data is compressed as it is loaded.

For Partition-by-growth table spaces, the utility builds one dictionary and the same
dictionary page is populated through all partitions. For XML table spaces that are
defined with COMPRESS YES, compression does not occur until the first REORG.

The data is not compressed until the dictionary is built. You must use LOAD
REPLACE or RESUME NO to build the dictionary, except for linear/simple table
spaces where LOAD REPLACE must be used. To save processing costs, and initial
LOAD does not go back to compress the records that were used to build the
dictionary.

The number of records that are required to build a dictionary is dependent on the
frequency of patterns in the data. For large data sets, a small percentage of the
total number of rows are used to build the dictionary. For the best compression
results, build a new dictionary whenever you load the data.If a table has DATA
CAPTURE CHANGES active, any previously existing dictionary is written to the
log.

However, in some circumstances, you might want to compress data by using an
existing dictionary. If you are satisfied with the compression obtained from an
existing dictionary, you can keep that dictionary by using the KEEPDICTIONARY
option of LOAD or REORG. For both LOAD and REORG, this method also saves
you the processing time of building the dictionary. LOAD RESUME on a
linear/simple table space keeps the existing dictionary if one exists. In order to
build new dictionaries for a linear/simple table space, LOAD REPLACE or REORG
is required.

Chapter 16. LOAD 309

|
|
|

Consider using KEEPDICTIONARY if the last dictionary was built by REORG. The
REORG utility sampling method can yield more representative dictionaries than
LOAD and can thus mean better compression. REORG with KEEPDICTIONARY is
efficient because the data is not decompressed in the process.

However, REORG with KEEPDICTIONARY does not generate a compression
report. You need to use RUNSTATS to update the catalog statistics and then query
the catalog columns yourself.

If the data is not changed significantly since the last dictionary was built, use
KEEPDICTIONARY. An example of LOAD with the KEEPDICTIONARY option is
shown in the following figure.

You can also specify KEEPDICTIONARY for specific partitions of a partitioned
table space. In this case, each partition has its own dictionary.

You can use the COPYDICTIONARY option to copy an existing dictionary from an
existing partition into another, empty partition. LOAD a partition with the
COPYDICTIONARY option and a dummy input data set. Then data inserted into
the partition is compressed.
Related reference:
Chapter 25, “REORG TABLESPACE,” on page 537
Chapter 29, “RUNSTATS,” on page 721

Loading data from DL/I
To convert data in IMS DL/I databases from a hierarchic structure to a relational
structure so that it can be loaded into DB2 tables, you can use the DataRefresher™

and IMS DataPropagator (IMS DPROP) licensed programs.

About this task

You can use DataRefresher to create source-to-target mappings and to create DB2
databases. After your databases are created and the mappings are set, you can use
IMS DPROP to propagate any changes.

IMS DPROP runs as a z/OS application and can extract data from VSAM and
physical sequential access method (SAM) files, as well from DL/I databases. Using
IMS DPROP, you do not need to extract all the data in a database or data set. You
use a statement such as an SQL subselect to indicate which fields to extract and
which conditions, if any, the source records or segments must meet.

With JCL models that you edit, you can have IMS DPROP produce the statements
for a DB2 LOAD utility job. If you have more than one DB2 subsystem, you can

LOAD DATA
REPLACE KEEPDICTIONARY
INTO TABLE DSN8B10.DEPT
(DEPTNO POSITION (1) CHAR(3),

DEPTNAME POSITION (5) VARCHAR,
MGRNO POSITION (37) CHAR(6),
ADMRDEPT POSITION (44) CHAR(3),
LOCATION POSITION (48) CHAR(16))

ENFORCE NO

Figure 28. Example of LOAD with the KEEPDICTIONARY option

310 Utility Guide and Reference

name the one that is to receive the output. IMS DPROP can generate LOAD control
statements in the job to relate fields in the extracted data to target columns in DB2
tables.

You have the following choices for how IMS DPROP writes the extracted data:
v 80-byte records, which are included in the generated job stream
v A separate physical sequential data set (which can be dynamically allocated by

IMS DPROP), with a logical record length that is long enough to accommodate
any row of the extracted data

In the first case, the LOAD control statements that are generated by IMS DPROP
include the CONTINUEIF option to describe the extracted data to DB2 LOAD.

In the second case, you can have IMS DPROP name the data set that contains the
extracted data in the SYSREC DD statement in the LOAD job. (In that case, IMS
DPROP makes no provision for transmitting the extracted data across a network.)

Normally, you do not need to edit the job statements that are produced by IMS
DPROP. However, in some cases you might need to edit; for example, if you want
to load character data into a DB2 column with INTEGER data type, you need to
edit the job statements. (DB2 LOAD does not consider CHAR and INTEGER data
to be compatible.)

IMS DPROP is a versatile tool that contains more control, formatting, and output
options than are described here. For more information about this tool, see IMS
DataPropagator: An Introduction.

Loading data by using the cross-loader function
The LOAD utility can directly load the output of a dynamic SQL SELECT
statement into a table. The dynamic SQL statement can be executed on data at a
local server or at any remote server that complies with DRDA. This functionality is
called the DB2 family cross-loader function.

About this task

This function enables you to use a single LOAD job to transfer data from one
location to another location or from one table to another table at the same location.
Your input for this cross-loader function can come from other sources besides DB2
for z/OS; you can use IBM Information Integrator Federation feature for access to
data from sources as diverse as Oracle and Sybase, as well as the entire DB2 family
of database servers.

Note: If a table that uses row or column access control security is either the data
source or a load target for the cross-loader function, the data is subject to the rules
defined in the corresponding row permissions or column masks. The CONTROL
column in the SYSTABLES catalog table tells whether row or column access control
is activated for a table.

Procedure

To load data by using the cross-loader function:
1. Declare a cursor by using the EXEC SQL utility. Within the cursor definition,

specify a SELECT statement that identifies the result table that you want to use
as the input data for the LOAD job. The column names in the SELECT

Chapter 16. LOAD 311

statement must be identical to the column names in the table that is being
loaded. You can use the AS clause in the SELECT list to change the column
names that are returned by the SELECT statement so that they match the
column names in the target table. The columns in the SELECT list do not need
to be in the same order as the columns in the target table. Also, the SELECT
statement needs to refer to any remote tables by their three-part name.

2. Specify the cursor name with the INCURSOR option in the LOAD statement.
You cannot load the input data into the same table on which you defined the
cursor. You can, however, use the same cursor to load multiple tables.

Results

When you submit the LOAD job, DB2 parses the SELECT statement in the cursor
definition and checks for errors. If the statement is invalid, the LOAD utility issues
an error message and identifies the condition that prevented the execution. If the
statement syntax is valid but an error occurs during execution, the LOAD utility
also issues an error message. The utility terminates when it encounters an error. If
you specify a data-change-table-reference in the from-clause of the cursor, the
changes to the source might be committed even though the load fails.

If no errors occur, the utility loads the result table that is identified by the cursor
into the specified target table according to the following rules:
v LOAD matches the columns in the input data to columns in the target table by

name, not by sequence.
v If the number of columns in the cursor is less than the number of columns in the

table that is being loaded, DB2 loads the missing columns with their default
values. If the missing columns are defined as NOT NULL without defaults, the
LOAD job fails.

v If a source column is defined as NULLABLE and the corresponding target
column is defined as NOT NULL without defaults, the LOAD job fails.

v If you specify IGNOREFIELDS YES, LOAD skips any columns in the input data
that do not exist in the target table.

v If the data types in the target table do not match the data types in the cursor,
DB2 tries to convert the data as much as possible. If the conversion fails, the
LOAD job fails. You might be able to avoid these conversion errors by using
SQL conversion functions in the SELECT statement of the cursor declaration.

v If the encoding scheme of the input data is different from the encoding scheme
of the target table, DB2 converts the encoding schemes automatically. Make sure
that the length definition in the target table is able to fit the converted data.

v The sum of the lengths of all of the columns cannot exceed 1 GB.
v If the SELECT statement in the cursor definition specifies a table with at least

one LOB column and a ROWID column, or a row change timestamp column, or
a generated column that was created with the GENERATED ALWAYS clause,
you cannot specify this ROWID column, the row change timestamp column, and
the generated column in the SELECT list of the cursor.

v If the SELECT statement in the cursor definition specifies a table with a row
change timestamp column that was created with the GENERATED ALWAYS
clause, you cannot specify this row change timestamp column in the SELECT list
of the cursor.

Also, although you do not need to specify casting functions for any distinct types
in the input data or target table, you might need to add casting functions to any
additional WHERE clauses in the SQL.

312 Utility Guide and Reference

Related concepts:
“Before running LOAD” on page 285
Related reference:
“Sample LOAD control statements” on page 340

Using inline COPY with LOAD
You can create a full image copy data set (SHRLEVEL REFERENCE) during LOAD
execution. The new copy is an inline copy.

About this task

The advantage to using an inline copy is that the table space is not left in
COPY-pending status regardless of which LOG option was specified for the utility.
Thus, data availability is increased.

Procedure

To create an inline copy:

Use the COPYDDN and RECOVERYDDN keywords. You can specify up to two
primary and two secondary copies. Inline copies are produced during the
RELOAD phase of LOAD processing. You must specify LOAD REPLACE. If you
specify RESUME YES or RESUME NO but not REPLACE, an error message is
issued and LOAD terminates.
The SYSCOPY record that is produced by an inline copy contains ICTYPE=F and
SHRLEVEL=R. The STYPE column contains an R if the image copy was produced
by LOAD REPLACE LOG(YES). It contains an S if the image copy was produced
by LOAD REPLACE LOG(NO). The data set that is produced by the inline copy is
logically equivalent to a full image copy with SHRLEVEL REFERENCE, but the
data within the data set differs in the following ways:
v Data pages might be out of sequence and some might be repeated. If pages are

repeated, the last one is always the correct copy.
v Space map pages are out of sequence and might be repeated.
v If the compression dictionary is rebuilt with LOAD, the set of dictionary pages

occurs twice in the data set, with the second set being the correct one.

The total number of duplicate pages is small, with a negligible effect on the
required space for the data set.
Related tasks:
“Replacing data with LOAD” on page 295
Related reference:
“COPY-pending status” on page 1086

Creating a FlashCopy image copy with LOAD
As part of LOAD processing, you can use FlashCopy technology to take image
copies. This method is potentially faster than the traditional DB2 utility methods
for creating inline copies and thus reduces the time that data is unavailable.
FlashCopy image copies can also potentially reduce the time that is required for
recovery operations.

Chapter 16. LOAD 313

About this task

LOAD can also create one to four additional inline image copies by using the
traditional methods. Traditional inline image copies are output to a non-VSAM
sequential format data set. For more information about creating traditional inline
copies, see “Using inline COPY with LOAD” on page 313.

Procedure

To create a FlashCopy image copy with LOAD:

Specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT) in the LOAD utility
control statement.
Specify FLASHCOPY(CONSISTENT) if you specify SHRLEVEL CHANGE and
want to ensure that the image copy is consistent for recovery purposes. Otherwise,
specify FLASHCOPY(YES). Also, be aware that if you specify CONSISTENT rather
than YES, the process of creating an image copy could take longer.

Restriction: You cannot specify CONSISTENT when copying objects that have
been defined with the NOT LOGGED attribute.
As an alternative to specifying FLASHCOPY in the LOAD statement, you can set
the FLASHCOPY_LOAD subsystem parameter to YES, which specifies that LOAD
is to use FLASHCOPY(YES) by default. The value that you specify for the
FLASHCOPY option in the LOAD statement always overrides the value for the
FLASHCOPY_LOAD subsystem parameter.
Optionally, you can also specify FCCOPYDDN in the LOAD statement. Use this
option to specify a template for the FlashCopy image copy. If you do not specify
the FCCOPYDDN option in the LOAD statement, the utility uses the value from
the FCCOPYDDN subsystem parameter.

Restriction: The data sets that you specify for the FlashCopy image copy must be
on FlashCopy Version 2 disk volumes.
When you specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT), LOAD uses
FlashCopy technology to create a copy of the table space after the data is loaded. If
you also requested one or more inline copies in the LOAD statement (by specifying
REPLACE and COPYDDN or RECOVERYDDN), the utility also creates those
copies. LOAD does not use the FlashCopy image copy to create those traditional
inline copies.
Any indexes that are defined with the COPY YES attribute are also copied with
FlashCopy technology.
The FlashCopy image copy fails if the FlashCopy Version 2 disk volumes are not
available or if any of the other FlashCopy operational restrictions exist. For a list of
those operational restrictions, see “FlashCopy image copies” on page 149.
If the FlashCopy copy fails for the target object or auxiliary object and the LOAD
statement includes LOG NO but not NOCOPYPEND, the table space is set to
COPY-pending status.

314 Utility Guide and Reference

Related concepts:
“FlashCopy image copies” on page 149
Related reference:

DEFAULT TEMPLATE field (FCCOPYDDN subsystem parameter) (DB2
Installation and Migration)

LOAD field (FLASHCOPY_LOAD subsystem parameter) (DB2 Installation and
Migration)

Improving LOAD performance
You might be able to improve the performance of the LOAD utility, depending on
your situation.

About this task

The performance of LOAD on a table that is organized by hash is likely to be
slower. The reason is that the rows are loaded according to the hash key rather
than sequentially on the pages.

Procedure

To improve LOAD utility performance:

Complete one or more of the following recommended actions as appropriate:
v Present data to LOAD in the optimal order, as follows:

– Sort the data in cluster order to avoid needing to reorganize it after loading.
– If you are loading a single table that has, at most, one foreign key or one

index key, sort the data in key sequence. (An index over a foreign key is
allowed.) If the key is an index key, sort the data in either ascending or
descending order, depending on how the index was defined. If the key is a
foreign key, sort the data in ascending order. Null key values are treated as
“high” values.

– If you are loading more than one table, choose one of the following methods:
- Load each table separately. If you use this method, you can follow the rules

that are listed in the preceding bullet for loading single tables.
- Use the WHEN clause under each INTO TABLE option on your LOAD

statement to group your input data by table.

Within each table, sort the data in key sequence.

If you do presort the data, use the PRESORTED YES option.
v Do any other preprocessing of the input data, as described in “Before running

LOAD” on page 285.
v Load numeric data in its internal representation.
v If you specify LOAD REPLACE, specify LOG NO with COPYDDN or

RECOVERYDDN to create an inline copy.
v Avoid data conversion, such as from integer to decimal or from decimal to

floating-point.
v Avoid CCSID and encoding scheme conversions, if possible, by loading data that

has the same CCSID as the target table.
If you specify a CCSID or encoding scheme option that does not match that of
the table that is being loaded, CCSID conversions can occur.

Chapter 16. LOAD 315

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_fccopyddn.htm#db2z_ipf_fccopyddn
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_fccopyddn.htm#db2z_ipf_fccopyddn
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_flashcopyload.htm#db2z_ipf_flashcopyload
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_flashcopyload.htm#db2z_ipf_flashcopyload

v Enable LOAD to use parallelism when possible to reduce the elapsed time that
is required for loading large amounts of data. To enable parallelism, take one of
the following actions:
– If the table space is simple, segmented (non-universal), partitioned

(non-universal), or range-partitioned and all of the data to be loaded is in a
single data set, specify the PARALLEL keyword. This keyword enables LOAD
to use multiple parallel subtasks. When determining the degree of parallelism
to specify on the PARALLEL keyword, consider that a high degree of
parallelism can result in increased processor time. The recommended value is
to specify PARALLEL(0) or PARALLEL without a number so that DB2 can
determine the optimal degree of parallelism.

– If the table space is partitioned and one or more nonpartitioned secondary
indexes exist, and you have a separate input data set for each partition, use
partition parallelism. Partition parallelism loads all partitions in a single job.
To invoke partition parallelism, specify the INTO TABLE PART clause with an
INDDN specification for each partition.

Alternatively, if you cannot enable parallelism, use multiple jobs to run LOAD
concurrently against separate partitions. This method also requires that you have
a separate input data set for each partition.

Related concepts:
“Before running LOAD” on page 285

Situations in which character conversion occurs (DB2 Internationalization
Guide)
Related reference:
“Syntax and options of the LOAD control statement” on page 233

Improving performance for parallel processing
Taking advantage of any parallelism feature without allocating additional resources
or tuning your system can lead to significant performance degradation.

About this task

To benefit from parallel operations when using LOAD SHRLEVEL CHANGE or
parallel inserts, especially when secondary indexes are used, you can take the
following actions:
v Use a larger buffer pool to improve the buffer-pool hit ratio.
v Define a higher deferred-write threshold to reduce the number of pages that are

written to disk, which reduces the I/O time and contention.
v Define a larger checkpoint interval to reduce the number of pages that are

written to disk, which reduces the I/O time and contention.
v Use ESS Parallel Access Volume (PAV) to support multiple concurrent I/Os to

the same volume that contains secondary index data sets.
v Use secondary index pieces to support multiple concurrent secondary index

I/Os.

Improved performance with SORTKEYS
The SORTKEYS keyword improves performance of the index key sort. The
SORTKEYS keyword is the default if one of the following conditions is true:
SHRLEVEL is not NONE or SHRLEVEL is NONE, and the target table has one or
more indexes.

316 Utility Guide and Reference

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.char/src/tpc/db2z_situationcharconv.htm#db2z_situationcharconv
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.char/src/tpc/db2z_situationcharconv.htm#db2z_situationcharconv

About this task

Advantages of the SORTKEYS option: With SORTKEYS, index keys are passed in
memory rather than written to work files. Avoiding this I/O to the work files
improves LOAD performance.

You also reduce disk space requirements for the SYSUT1 and SORTOUT data sets,
especially if you provide an estimate of the number of keys to sort.

The SORTKEYS option reduces the elapsed time from the start of the RELOAD
phase to the end of the BUILD phase.

You can reduce the elapsed time of a LOAD job for a table space or partition with
more than one defined index by specifying the parameters to invoke a parallel
index build.

Estimating the number of keys: You can specify an estimate of the number of keys
for the job to sort. If the estimate is omitted or specified as 0, LOAD writes the
extracted keys to the work data set, which reduces the performance improvement
of using SORTKEYS.

Procedure

To estimate the number of keys to sort:
1. Count 1 for each index.
2. Count 1 for each foreign key where foreign key and index definitions are not

identical.
3. For each foreign key where foreign key and index definitions are identical:

a. Count 0 for the first relationship in which the foreign key participates
b. Count 1 for subsequent relationships in which the foreign key participates

(if any).
4. Multiply the count by the number of rows to be loaded.

What to do next

If more than one table is being loaded, repeat the preceding steps for each table,
and sum the results.
Related concepts:
“Building indexes in parallel for LOAD” on page 322

Improving performance with LOAD or REORG PREFORMAT
DB2 preformatting sometimes causes delay, which can affect the performance or
execution time consistency of high INSERT applications or LOAD jobs with
RESUME YES SHRLEVEL CHANGE. These LOAD jobs are also referred to as
online LOAD jobs. When these delays occur and when you can predict the table
size for a business processing cycle, consider the LOAD PREFORMAT or REORG
PREFORMAT technique. This technique is of value only when DB2 preformatting
causes a measurable delay with processing or causes inconsistent application
elapsed times for INSERT or online LOAD jobs.

Recommendation: Assess performance before and after using LOAD or REORG
PREFORMAT to quantify its value in your environment.

Chapter 16. LOAD 317

Considerations for using PREFORMAT

PREFORMAT is a technique that is used to eliminate the need for DB2 to
preformat new pages in a table space during execution time. This technique might
eliminate execution time delays but adds setup time prior to the application's
execution. LOAD or REORG PREFORMAT primes a new table space and prepares
it for INSERT or online LOAD processing. When the preformatted space is used
and DB2 needs to extend the table space, normal data set extending and
preformatting occurs.

Preformatting for online LOAD or INSERT processing can be desirable for
high-insert tables that receive a predictable amount of data because all the required
space can be pre-allocated prior to the application's execution. This benefit also
applies to the case of a table that acts as a repository for work items that come into
a system and that are subsequently used to feed a backend task that processes the
work items.

Preformatting of a table space that contains a table that is used for query
processing can cause table space scans to read additional empty pages, extending
the elapsed time for these queries. LOAD or REORG PREFORMAT is not
recommended for tables that have a high ratio of reads to inserts if the reads result
in table space scans.

Preformatting boundaries

You can manage your own data sets or have DB2 manage the data sets. For
user-managed data sets, DB2 does not delete and reallocate them during utility
processing. The size of the data set does not shrink back to the original data set
allocation size but either remains the same or increases in size if additional space
or data is added. This characteristic has implications when LOAD or REORG
PREFORMAT is used because of the preformatting that is done for all free pages
between the high-used RBA (or page) to the high-allocated RBA. This
preformatting includes secondary extents that have been allocated.

For DB2-managed data sets, DB2 deletes and reallocates them if you specify
REPLACE on the LOAD or REORG job. This results in the data sets being re-sized
to their original allocation size. They remain that size if the data that is being
reloaded does not fill the primary allocation and forces a secondary allocation. This
means the LOAD or REORG PREFORMAT option with DB2-managed data causes
at least the full primary allocation amount of a data set to be preformatted after
the reload of data into the table space.

For both user-managed and DB2-managed data sets, if the data set goes into
secondary extents during utility processing, the high-allocated RBA becomes the
end of the secondary extent, and that becomes the high value for preformatting.

Preformatting performance considerations

LOAD or REORG PREFORMAT can eliminate dynamic preformatting delays when
inserting into a new table space. The cost of this execution time improvement is an
increase in the LOAD or REORG time due to the additional required processing to
preformat all pages between the data that is loaded or reorganized and the
high-allocated RBA. The additional LOAD or REORG time that is required
depends on the amount of disk space that is being preformatted.

318 Utility Guide and Reference

Table space scans can also be elongated because empty preformatted pages are
read. Use the LOAD or REORG PREFORMAT option for table spaces that start out
empty and are filled through high insert activity before any query access is
performed against the table space. Mixing inserts and nonindexed queries against a
preformatted table space might have a negative impact on the query performance
without providing a compensating improvement in the insert performance. You
will see the best results where a high ratio of inserts to read operations exists.

Improving performance with LOAD by avoiding LOB and XML
materialization

Using file reference variables can eliminate the need to load large LOBs or XML
documents into virtual storage while the LOAD utility is running. Avoiding
materialization can have a positive impact on the performance of the LOAD utility.

About this task

LOB or XML data is not materialized into memory under the following conditions:
v The LOAD utility eliminates materialization when using file reference variables

for XML data that is greater than 32 KB in size.
v The LOAD utility eliminates materialization when using file reference variables

for large LOB data in a row with only 1 LOB. Large LOBs are usually
considered to be 2 MB or greater in size.

Conversion of input data
The LOAD utility converts data between compatible data types. The source type is
used for user-defined distinct types.

The tables shown below identify the compatibility of data types for assignments
and comparisons. Y indicates that the data types are compatible. N indicates that
the data types are not compatible. D indicates the defaults that are used when you
do not specify the input data type in a field specification of the INTO TABLE
statement.

The following table shows the compatibility of numeric data types.

Table 38. Compatibility of converting numeric data types.

Input data types Output data types

SMALLINT BIGINT INTEGER DECIMAL FLOAT DECFLOAT

SMALLINT D Y Y Y Y Y

BIGINT Y D Y Y Y Y

INTEGER Y Y D Y Y Y

DECIMAL Y Y Y D Y1 Y1

FLOAT Y Y Y Y D Y

DECFLOAT Y Y Y Y Y D

Notes:

1. Loading a DECFLOAT or FLOAT column from a DECIMAL PACKED input field can produce unpredictable results. Instead, use
the DECIMAL EXTERNAL format for the input field.

The following table shows the compatibility of character data types.

Chapter 16. LOAD 319

Table 39. Compatibility of converting character data types.
Input data types Output data types

BLOB CHAR VAR-
CHAR

CLOB GRAPHIC VAR-
GRAPHIC

DBCLOB ROWID BINARY VAR-
BINARY

CHAR Y D Y Y Y1 Y1 Y1 Y Y Y

CHAR MIXED Y D Y Y Y1 Y1 Y1 N Y Y

VARCHAR Y Y D Y Y1 Y1 Y1 Y Y Y

VARCHAR
MIXED

Y Y D Y Y1 Y1 Y1 N Y Y

GRAPHIC N Y1 Y1 Y1 D Y Y N N N

VAR-GRAPHIC N Y1 Y1 Y1 Y D Y N N N

ROWID N N N N N N N D N N

BINARY Y N N N N N N N D Y

VAR-BINARY Y N N N N N N N Y D

Note:

1. Conversion applies when either the input data or the target table is Unicode.

The following table shows the compatibility of time data types.

Table 40. Compatibility of converting time data types.

Input data types Output data types

DATE TIME TIMESTAMP TIMESTAMP WITH
TIME ZONE

DATE EXTERNAL D N N N

TIME EXTERNAL N D N N

TIMESTAMP EXTERNAL Y Y D Y1

TIMESTAMP WITH TIME ZONE
EXTERNAL

Y Y Y D

Note:

1. If the data type of the target column is TIMESTAMP WITH TIME ZONE and the timestamp value that is being loaded does not
contain a time zone, the LOAD utility uses the value that you specify for the IMPLICIT_TZ option. If you do not specify this
option, DB2 uses the value from the IMPLICIT_TIMEZONE DECP value. For more information about this DECP value, see
IMPLICIT TIME ZONE field (IMPLICIT_TIMEZONE DECP value) (DB2 Installation and Migration).

Input fields with data types CHAR, CHAR MIXED, CLOB, DBCLOB, VARCHAR,
VARCHAR MIXED, GRAPHIC, GRAPHIC EXTERNAL, and VARGRAPHIC are
converted from the CCSIDs of the input file to the CCSIDs of the table space when
they do not match. For example:
v You specify the ASCII or UNICODE option for the input data, and the table

space is EBCDIC.
v You specify the EBCDIC or UNICODE option, and the table space is ASCII.
v You specify the ASCII or EBCDIC option, and the table space is Unicode.
v The CCSID option is specified, and the CCSIDs of the input data are not the

same as the CCSIDs of the table space.

CLOB, BLOB, and DBCLOB input field types cannot be converted to any other
field type.

Conversion errors cause LOAD:
v To abend, if no discard data set is provided or if the discard limit is exceeded.
v To map the input record for subsequent discarding and continue (if a discard

data set is provided)

Truncation of the decimal part of numeric data is not considered a conversion
error.

320 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_implicittimezone.htm#db2z_ipf_implicittimezone

Specifying input fields
You can specify input fields in the LOAD utility control statement.

Procedure

To specify input fields in a LOAD utility control statement:

Take one of the following actions:
v Specify the length of VARCHAR, BLOB, CLOB, DBCLOB, ROWID, VARBINARY,

TIMESTAMP, and TIMESTAMP WITH TIME ZONE data in the input file.
v Explicitly define all input field specifications.
v Use DECIMAL EXTERNAL(length,scale) in full.
v Specify decimal points explicitly in the input file.

Specifying the TRUNCATE and STRIP options
You can load certain fields that are longer than the length of target column by
truncating the data. DB2 truncates the data only when you explicitly specify the
TRUNCATE option.

You can specify TRUNCATE with the CHAR, VARCHAR, GRAPHIC,
VARGRAPHIC, BINARY, and VARBINARY data type options. LOAD first applies
any CCSID conversion, and then truncates the data. The TRUNCATE option of the
LOAD utility truncates string data, and it has a different purpose than the SQL
TRUNCATE scalar function.

You can also remove a specified character from the beginning, end, or both ends of
the data by specifying the STRIP option. This option is valid only with the CHAR,
VARCHAR, GRAPHIC, VARGRAPHIC, BINARY, and VARBINARY data type
options. If you specify both the TRUNCATE and STRIP options, LOAD performs
the strip operation first. For example, if you specify both TRUNCATE and STRIP
for a field that is to be loaded into a VARCHAR(5) column, LOAD alters the
character strings as shown in the following table. In this table, an underscore
represents a character that is to be stripped.

Table 41. Results of specifying both TRUNCATE and STRIP for data that is to be loaded into
a VARCHAR(5) column.

Specified STRIP
option Input string

String after strip
operation String that is loaded

STRIP BOTH '_ABCDEFG_’ 'ABCDEFG’ 'ABCDE’

STRIP LEADING '_ABC_’ 'ABC_’ 'ABC_’

STRIP TRAILING '_ABC_DEF_’ '_ABC_DEF’ '_ABC_’

How LOAD builds indexes while loading data
LOAD builds all the indexes that are defined for any table that is being loaded.

At the same time the indexes are being built, LOAD checks for duplicate values of
any unique index key. If LOAD finds any duplicate values, none of the
corresponding rows are loaded. Error messages identify the input records that

Chapter 16. LOAD 321

produce duplicates; optionally, the records are copied to a discard data set. At the
end of the job, a summary report lists all errors that are found.

For unique indexes, any two null values are assumed to be equal, unless the index
was created with the UNIQUE WHERE NOT NULL clause. In that case, if the key
is a single column, it can contain any number of null values, although its other
values must be unique.

Neither the loaded table nor its indexes contain any of the records that might have
produced an error. Using the error messages, you can identify faulty input records,
correct them, and load them again. If you use a discard data set, you can correct
the records there and add them to the table with LOAD RESUME.

Building indexes in parallel for LOAD
Parallel index build reduces the elapsed time for a LOAD job by sorting the index
keys and rebuilding multiple indexes in parallel, rather than sequentially.
Optimally, a pair of subtasks process each index; one subtask sorts extracted keys
while the other subtask builds the index.

LOAD begins building each index as soon as the corresponding sort produces its
first sorted record.

LOAD uses parallel index build if all of the following conditions are true:
v More than one index needs to be built.
v The LOAD utility statement specifies a non-zero estimate of the number of keys

on the SORTKEYS option.
v The number of subtasks that is specified by the PARALLEL option value is not

exceeded.

You can either allow the utility to dynamically allocate the data sets that the SORT
phase needs, or provide the necessary data sets yourself. Select one of the
following methods to allocate sort work and message data sets:

Method 1: LOAD determines the optimal number of sort work and message data
sets.
1. Specify the SORTDEVT keyword in the utility statement.
2. Allow dynamic allocation of sort work data sets by not supplying SORTWKnn

DD statements in the LOAD utility JCL.
3. Allocate UTPRINT to SYSOUT.

Method 2: You control allocation of sort work data sets, while LOAD allocates
message data sets.
1. Provide DD statements with DD names in the form SWnnWKmm.
2. Allocate UTPRINT to SYSOUT.

Method 3: You have the most control over rebuild processing; you must specify
both sort work and message data sets.
1. Provide DD statements with DD names in the form SWnnWKmm.
2. Provide DD statements with DD names in the form UTPRINnn.

Using this method does not eliminate the requirement for a UTPRINT DD card.

322 Utility Guide and Reference

|
|

Data sets used

If you select Method 2 or 3 in the preceding information, use the following
information to define the necessary data sets.

Each sort subtask must have its own group of sort work data sets and its own
print message data set. Possible reasons to allocate data sets in the utility job JCL
rather than using dynamic allocation are:
v To control the size and placement of the data sets
v To minimize device contention
v To optimally use free disk space
v To limit the number of utility subtasks that are used to build indexes

The DD names SWnnWKmm define the sort work data sets that are used during
utility processing. nn identifies the subtask pair, and mm identifies one or more
data sets that are to be used by that subtask pair. For example:

SW01WK01
The first sort work data set that is used by the subtask as it builds the first
index.

SW01WK02
The second sort work data set that is used by the subtask as it builds the
first index.

SW02WK01
The first sort work data set that is used by the subtask as it builds the
second index.

SW02WK02
The second sort work data set that is used by the subtask as it builds the
second index.

The DD names UTPRINnn define the sort work message data sets that are used by
the utility subtask pairs. nn identifies the subtask pair.

Every time you invoke LOAD, new UTPRINnn data sets are dynamically allocated.
LOAD does not reuse UTPRINnn data sets from previous job steps. This behavior
might cause the available JES2 job queue elements to be consumed more quickly
than expected.

Determining the number of sort subtasks

The maximum number of utility subtask pairs that are started for parallel index
build is equal to the number of indexes that are to be built.

LOAD determines the number of subtask pairs according to the following
guidelines:
v The number of subtask pairs equals the number of sort work data set groups

that are allocated.
v The number of subtask pairs equals the number of message data sets that are

allocated.
v If you allocate both sort work and message data set groups, the number of

subtask pairs equals the smallest number of data sets that are allocated.

Chapter 16. LOAD 323

Allocation of sort subtasks

The LOAD utility attempts to assign one sort subtask pair for each index that is to
be built. If the LOAD utility cannot start enough subtasks to build one index per
subtask pair, it allocates any excess indexes across the pairs (in the order that the
indexes were created), so that one or more subtask pairs might build more than
one index.

During parallel index build processing, LOAD assigns all foreign keys to the first
utility subtask pair. Remaining indexes are then distributed among the remaining
subtask pairs according to the creation date of the index. If a table space does not
participate in any relationships, LOAD distributes all indexes among the subtask
pairs according to the index creation date, assigning the first created index to the
first subtask pair.

Refer to the following table for conceptual information about subtask pairing when
the number of indexes (seven indexes) exceeds the available number of subtask
pairs (five subtask pairs).

Table 42. LOAD subtask pairing for a relational table space

Subtask pair Assigned index

SW01WKmm Foreign keys, fifth created index

SW02WKmm First created index, sixth created index

SW03WKmm Second created index, seventh created index

SW04WKmm Third created index

SW05WKmm Fourth created index

Estimating the sort work file size

If you choose to provide the data sets, you need to know the size and number of
keys in all of the indexes that are being processed by the subtask in order to
calculate each sort work file size. After you determine which indexes are assigned
to which subtask pairs, use one of the following formulas to calculate the required
space:
v If the indexes being processed include a mixture of data-partitioned secondary

indexes and nonpartitioned indexes, use the following formula: 2 * (longest index
key + 15) * (number of extracted keys)

v Otherwise, if only one type of index is being built, use the following formula: 2 *
(longest index key + 13) * (number of extracted keys)

longest index key
The length of the longest key that is to be processed by the subtask. For
the first subtask pair for LOAD, compare the length of the longest key and
the length of the longest foreign key, and use the larger value. For
nonpadded indexes, longest index key means the maximum possible
length of a key with all varying-length columns, padded to their maximum
lengths, plus 2 bytes for each varying-length column.

number of extracted keys
The number of keys from all indexes that are to be sorted and that the
subtask is to process.

324 Utility Guide and Reference

Related concepts:
“Parallel index building for REORG TABLESPACE” on page 616
Related tasks:
“Improved performance with SORTKEYS” on page 316

How LOAD leaves free space
When it loads data into a nonsegmented table space, the LOAD utility leaves one
free page after reaching the FREEPAGE limit. This free page is added regardless of
whether the loaded records belong to the same or different tables.

When loading into a segmented table space, LOAD leaves free pages, and free
space on each page, in accordance with the current values of the FREEPAGE and
PCTFREE parameters. (You can set those values with the CREATE TABLESPACE,
ALTER TABLESPACE, CREATE INDEX, or ALTER INDEX statements.) LOAD
leaves one free page after reaching the FREEPAGE limit for each table in the table
space.

For XML table spaces, FREEPAGE and PCTFREE are not processed until the first
REORG.

Loading with RECOVER-pending, REBUILD-pending, or
REORG-pending status

You cannot load records by specifying RESUME YES if any partition of a table
space is in the RECOVER-pending status. In addition, you cannot load records if
any index on the table that is being loaded is in the REBUILD-pending status.

If you are replacing a partition, these preceding restrictions are relaxed; the
partition that is being replaced can be in the RECOVER-pending status, and its
corresponding index partition can be in the REBUILD-pending status. However, all
secondary indexes must not be in the page set REBUILD-pending status and
KEEPDICTIONARY must not have been specified on active compressed partitions.

The one RECOVER-pending restrictive status has the following description:

RECP RECOVER-pending status is set on a table space or partition. If a single
logical partition is in RECP status, the partition is treated as RECP status
for SQL access. A single logical partition in RECP status does not restrict
utility access to other logical partitions that are not in RECP status. RECP
status is reset by recovering only the single logical partition.

The four REBUILD-pending restrictive states have the following descriptions:

RBDP REBUILD-pending status is set on a physical or logical index partition. The
individual physical or logical partition is inaccessible and must be rebuilt
by using the REBUILD INDEX utility, or recovered by using the RECOVER
utility.

PSRBD
Page set REBUILD-pending is set on nonpartitioned secondary indexes.
Partitioned indexes, including data-partitioned secondary indexes, are
never placed in a page set REBUILD-pending status. The entire index
space is inaccessible until you rebuild it with the REBUILD utility, or
recover it with the RECOVER utility.

Chapter 16. LOAD 325

RBDP*
REBUILD-pending star status is set only on logical partitions of
nonpartitioning indexes. The entire index is inaccessible, but it is made
available again when the affected partitions are rebuilt by using the
REBUILD INDEX utility, or recovered by using the RECOVER utility.

The one REORG-pending restrictive status has the following description:

REORP
REORG-pending status indicates that a table space or partition needs to be
reorganized.

Related concepts:
“Resetting the REBUILD-pending status” on page 433

Exit procedures
Any field procedure that is associated with a column of a table that is being loaded
is executed to encode the data before it is loaded. The field procedures for all
columns are executed before any edit or validation procedure for the row.

Any field specification that describes the data is checked before a field procedure is
executed. That is, the field specification must describe the data as it appears in the
input record.

Loading ROWID columns
Columns that are defined as ROWID can be designated as input fields; refer to the
LOAD field specification syntax diagram. LOAD PART is not allowed if the
ROWID column is part of the partitioning key. In this situation, DB2 issues error
message DSNU256I.

Columns that are defined as ROWID can be designated as GENERATED BY
DEFAULT or GENERATED ALWAYS. With GENERATED ALWAYS, DB2 always
generates a row ID.

ROWID generated by default

The LOAD utility can set from input data columns that are defined as ROWID
GENERATED BY DEFAULT. The input field must be specified as a ROWID. No
conversions are allowed. The input data for a ROWID column must be a unique,
valid value for a row ID. If the value of the row is not unique, a duplicate key
violation occurs. If such an error occurs, the load fails. In this case, you need to
discard the duplicate value and re-run the LOAD job with a new unique value, or
allow DB2 to generate the value of the row ID.

You can use the DEFAULTIF attribute with the ROWID keyword. If the condition
is met, the column is loaded with a value that is generated by DB2. You cannot use
the NULLIF attribute with the ROWID keyword because row ID columns cannot
be null.

Row change timestamp generated always

The row change timestamp column that is defined as GENERATED ALWAYS
cannot be included in the field specification list unless you specify IGNOREFIELDS
YES, because DB2 generates the timestamp value for this column.

326 Utility Guide and Reference

Loading a LOB column
LOB columns are treated by the LOAD utility as varying-length data. The length
value for a LOB column must be 4 bytes.

Procedure

To load a LOB column:

Take one of the following actions:
v Load the LOB value directly from the input data set: To load a LOB value

directly from the input data set:
1. In the input data set, include the LOB value preceded by a 4-byte binary

field that contains the length of the LOB.
2. Specify CLOB, BLOB, or DBCLOB in the field specification portion of the

LOAD statement. These options indicate that the field in the input data set is
a LOB value. For example, to load a CLOB into the RESUME column, specify
something like RESUME POSITION(7) CLOB. This specification indicates that
position 7 of the input data set contains the length of the CLOB followed by
the CLOB value that is to be loaded into the RESUME column.

3. If the input record is in spanned record format, specify FORMAT SPANNED
YES and specify the LOB fields at the end of the field specification list.

v Load the LOB value from a file that is listed in the input data set: When you
load a LOB value from a file, the LOB value can be greater than 32 KB. To load
a LOB value from a file:
1. In the input data set, specify the names of the files that contain the LOB

values. Each file can be either a PDS, PDSE, or an HFS file.
2. Specify either BLOBF, CLOBF, or DBCLOBF in the field specification portion

of the LOAD statement. For example, to load a LOB into the RESUME
column of a table, specify something like RESUME POSITION(7) VARCHAR CLOBF.
This specification indicates that position 7 of the input data set contains the
name of a file from which a varying-length CLOB is to be loaded into the
RESUME column.

3. To insert an empty LOB value into a LOB column, specify one of the
following items in the LOAD statement:
– A blank file name for CHAR CLOBF, CHAR BLOBF, or CHAR DBCLOBF
– A blank file name for VARCHAR CLOBF, VARCHAR BLOBF, or

VARCHAR DBCLOBF
– A file name with length 0 for VARCHAR CLOBF, VARCHAR BLOBF, or

VARCHAR DBCLOB
Each of these items tell the LOAD utility that the LOB is empty, and the
LOAD utility does insert it into the auxiliary table space. LOAD uses a
column indicator to indicate that the LOB is empty.
This step assumes that the LOB is not NULL.

v Load data from another table: To transfer data from one location to another
location or from one table to another table at the same location, use a cursor.
This method of loading data is called the cross-loader function.
When you use the cross-loader function, the LOB value can be greater than 32
KB. For this method, DB2 uses a separate buffer for LOB data and therefore
stores only 8 bytes per LOB column. The sum of the lengths of the non-LOB
columns plus the sum of 8 bytes per LOB column cannot exceed 32 KB.

Chapter 16. LOAD 327

Related tasks:
“Loading data by using the cross-loader function” on page 311

LOAD LOG on a LOB table space
A LOB table space that is defined with LOG YES or LOG NO affects logging
during the load of a LOB column.

The following table shows the logging output and LOB table space effect, if any.

Table 43. LOAD LOG and REORG LOG impact for a LOB table space

LOAD LOG/ REORG
LOG keyword

LOB table space LOG
attribute What is logged

LOB table space
status after utility
completes

LOG YES LOG YES Control information and LOB data No pending status

LOG YES LOG NO Control information No pending status

LOG NO LOG YES Nothing COPY-Pending1

LOG NO LOG NO Nothing COPY-Pending1

Note:

1. REORG LOG NO of a LOB table space requires SHRLEVEL REFERENCE, which requires that an inline copy be
taken during the REORG. This means that you never set COPY-pending for REORG of LOB table spaces under
any circumstances

Loading an XML column
XML columns are treated by the LOAD utility as varying-length data. The length
value for an XML column must be 2 bytes.

About this task

LOAD performance can be improved if the input data is in binary XML format.

Procedure

To load an XML column:

Use one of the following approaches:
v Load the XML value directly from the input data set: To load an XML value

directly from the input data set:
1. In the input data set, include the XML value preceded by a 2-byte binary

field that contains the length of the XML column.
2. When loading directly from an input record, you must specify XML as the

input field type. This is the only acceptable input field type for loading XML
column from input record. For example, to load a data into the RESUME
column which is XML, specify something like RESUME POSITION(7) XML. This
specification indicates that position 7 of the input data set contains the length
of the XML followed by the XML value that is to be loaded into the
RESUME column.
If the input data is in Extensible Dynamic Binary XML DB2 Client/Server
Binary XML Format (binary XML format), you need to specify XML
BINARYXML as the input field type.

328 Utility Guide and Reference

|

3. If the input record is in spanned record format, specify FORMAT SPANNED
YES and specify the XML fields at the end of the field specification list.

v Load the XML value from a file that is listed in the input data set: When you
load an XML value from a file, the XML value can be greater than 32 KB. To
load an XML value from a file:
1. In the input data set, specify the name of the file that contains the value to

be loaded to the XML column. The file name can be a PDS, PDSE or a HFS
file.

2. Specify either BLOBF, CLOBF, or DBCLOBF in the field specification portion
of the LOAD statement. For example, to load a CLOB file into an XML
column RESUME, specify something like RESUME POSITION(7) VARCHAR CLOBF.
This specification indicates that position 7 of the input data set contains the
name of a file from which a varying-length CLOB is to be loaded into the
RESUME column.
If the input data is in binary XML format, you need to specify BLOBF
BINARYXML in the field specification.

3. When data loaded into an XML column that has an XML type modifier,
LOAD validates the input data according to the XML schema that is
specified in the type modifier. If LOAD detects a violation, it deletes the row
and issues a message to identify the violation.

Related concepts:

Best practices for XML performance in DB2 (DB2 Performance)

LOAD LOG on an XML table space
An XML table space that is defined with LOG YES or LOG NO affects logging
during the load of an XML column.

The following table shows the logging output and XML table space effect, if any.

Table 44. LOAD LOG impact for an XML table space

LOAD LOG keyword
XML table space
LOG attribute What is logged

XML table space
status after utility
completes

LOG YES LOG YES Data No pending status

LOG YES LOG NO Nothing No pending status

LOG NO LOG YES Nothing COPY-Pending

LOG NO LOG NO Nothing ICOPY-Pending

Running LOAD RESUME YES SHRLEVEL CHANGE without logging
You can run LOAD RESUME YES SHRLEVEL CHANGE without logging.

Procedure

To run LOAD RESUME YES SHRLEVEL CHANGE without logging:
1. Alter the table space to NOT LOGGED.
2. Run the online LOAD RESUME.
3. Alter the table space back to LOGGED.
4. Take an image copy of the table space.

Chapter 16. LOAD 329

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_bestpractice4xmlperf.htm#db2z_bestpractice4xmlperf

What to do next

You cannot restart LOAD against a NOT LOGGED table space. If the load fails,
terminate the load job, recover the data from a prior image copy, and rerun the
LOAD job.
Related concepts:

The NOT LOGGED attribute (DB2 Administration Guide)
Related tasks:

Changing the logging attribute (DB2 Administration Guide)
Related reference:

ALTER TABLESPACE (DB2 SQL)

Collecting inline statistics while loading a table
If you do not specify LOAD RESUME YES, you can use the STATISTICS keyword
to gather inline statistics. In most cases, using the STATISTICS keyword eliminates
the need to run RUNSTATS after loading a table space.

However, if you perform a LOAD PART operation, you should run RUNSTATS
INDEX on the nonpartitioned secondary indexes to update the catalog data about
these indexes.

Procedure

To collect statistics while loading a table:
1. Use the STATISTICS option to collect statistics so that the DB2 catalog statistics

contain information about the newly loaded data:

Option Description

Collecting inline statistics for discarded
rows

If you specify the DISCARDDN and
STATISTICS options and a row is found
with check constraint errors or conversion
errors, the row is not loaded into the table
and DB2 does not collect inline statistics on
it. However, the LOAD utility collects inline
statistics prior to discarding rows that have
unique index violations or referential
integrity violations. In these cases, if the
number of discarded rows is large enough to
make the statistics significantly inaccurate,
run the RUNSTATS utility separately on the
table to gather the most accurate statistics.

Collecting inline statistics for data
partitioned secondary indexes

To collect inline statistics on data partitioned
secondary indexes, you must allocate sort
work data sets.

If you perform a LOAD operation on a base table that contains an XML
column, DB2 does not collect inline statistics for the related XML table space or
its indexes. Recording these new statistics enables DB2 to select SQL paths with
accurate information.

2. Rebind any application plans that depend on the loaded tables to update the
path selection of any embedded SQL statements.

330 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_notloggedattribute.htm#db2z_notloggedattribute
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_setloggingattribute.htm#db2z_setloggingattribute
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertablespace.htm#db2z_sql_altertablespace

What to do next

To collect statistics on the loaded table, you might need to invoke the RUNSTATS
utility after the LOAD utility processing has completed.
Related reference:
“Data sets that LOAD uses” on page 286
Chapter 16, “LOAD,” on page 231
Chapter 29, “RUNSTATS,” on page 721

Inline COPY for a base table space
If you take an inline image copy of a table that has LOB columns, DB2 makes a
copy of the base table space, but does not copy the LOB table spaces.

Termination of LOAD
You can terminate a LOAD utility job.

If you terminate LOAD by using the TERM UTILITY command during the reload
phase, the records are not erased. The table space remains in RECOVER-pending
status, and indexes remain in the REBUILD-pending status.

If you terminate LOAD by using the TERM UTILITY command during the sort or
build phases, the indexes that are not yet built remain in the REBUILD-pending
status.

If you terminate a LOAD SHRLEVEL CHANGE, uncommitted records are rolled
back, but committed records remain in the table. The table space is not in
RECOVER-pending status, and the indexes are not in REBUILD-pending status.

If the LOAD job terminates during the RELOAD, SORT, BUILD, or SORTBLD
phases, both RESTART and RESTART(PHASE) phases restart from the beginning of
the RELOAD phase. However, restart of LOAD RESUME YES or LOAD PART
RESUME YES in the BUILD or SORTBLD phase results in message DSNU257I.

The following table lists the LOAD phases and their effects on any pending states
when the utility is terminated in a particular phase.

Table 45. LOAD phases and their effects on pending states when terminated.

Phase Effect on pending status

Reload v Places table spaces in RECOVER-pending status, and then resets the
status if there are no unique indexes.

v Places indexes in REBUILD-pending status.
v Places table spaces in COPY-pending status if there are no unique

indexes.
v Places table spaces in CHECK-pending status.

Build v Resets REBUILD-pending status for non-unique indexes.
v Resets RECOVER-pending status for table spaces with unique indexes,

if no INDEXVAL phase is needed.
v Places table spaces in COPY-pending status.

Indexval v Resets REBUILD-pending status for unique indexes.
v Resets RECOVER-pending status for table spaces with unique indexes.
v Places table spaces in COPY-pending status.

Enforce v Resets CHECK-pending status for table spaces.

Chapter 16. LOAD 331

Restart of LOAD
You can restart a LOAD utility job.

You can restart the job either at its last commit point (RESTART(CURRENT)) or at
the beginning of the phase during which operation ceased (RESTART(PHASE)).
LOAD output messages identify the completed phases. Use the DISPLAY
command to identify the specific phase during which operation stopped.

By default, DB2 uses RESTART(CURRENT), except if LOAD is restarting during
the UTILINIT phase or the UTILTERM phase. In both of these situations, DB2 uses
RESTART(PHASE) by default. You can override the default RESTART values by
using the RESTART parameter.

Restrictions: The following restrictions apply to restarting LOAD jobs:
v If LOAD abnormally terminates or a system failure occurs while LOAD is in the

UTILTERM phase, you must restart with RESTART(PHASE).
v If you restart a LOAD job with the RESUME YES and SORTKEYS NO options

for a table that has LOB columns, you must use RESTART(CURRENT).
v If you use RESTART(PHASE) to restart a LOAD job that specified RESUME NO,

the LOB table spaces and indexes on auxiliary tables are reset.
v For a table that has LOB columns, you cannot restart a LOAD job that uses the

INCURSOR option.
v If you restart a LOAD job that uses the STATISTICS keyword, inline statistics

collection does not occur. To update catalog statistics, run the RUNSTATS utility
after the restarted LOAD job completes.

v If you are using a BatchPipes file, you cannot restart the LOAD utility. If the
application that populates the BatchPipes file terminates, you need to terminate
the job where LOAD is running. If the LOAD utility was invoked from a stored
procedure, you also need to terminate the WLM application environment of the
LOAD utility that reads the BatchPipes file. After you terminate the job,
terminate the LOAD utility by using the DB2 TERM UTILITY command, and
then you can resubmit the LOAD job.

v You cannot restart LOAD with RESUME and with PRESORTED YES in the
RELOAD phase. If you do so, utility processing abnormally terminates, and
LOAD issues an error message. You must:
– Terminate LOAD
– Recover the table space that is being loaded
– Recover all indexes on the table space that are in the REBUILD-pending state

v If the LOAD statement includes the PARALLEL option with a value other than
1, you cannot use RESTART(CURRENT); RESTART(PHASE) is used instead.

The following table provides information about restarting LOAD, depending on
the phase that LOAD was in when the job stopped. The TYPE column
distinguishes between the effects of specifying RESTART or RESTART(PHASE).
Additional phase restrictions are explained in the notes.

332 Utility Guide and Reference

|
|

Table 46. LOAD restart information

Phase
Type of
RESTART Required data sets Notes

RELOAD CURRENT SYSREC and SYSUT1 SYSMAP
and SYSERR

1, 2, 10

PHASE SYSREC 3, 10, 11

SORT CURRENT SYSUT1 4, 10

PHASE SYSUT1 10

BUILD CURRENT SORTOUT 4, 5, 10

PHASE SORTOUT 5, 10

SORTBLD CURRENT SYSUT1 and SORTOUT 5, 6, 10

PHASE SYSUT1 and SORTOUT 5, 6, 10

INDEXVAL CURRENT SYSERR or SYSUT1 2

PHASE SYSERR or SYSUT1 2

ENFORCE CURRENT SORTOUT and SYSUT1 7

PHASE SORTOUT and SYSUT1 7

DISCARD CURRENT SYSMAP and SYSERR SORTOUT
and SYSUT1

7, 8

PHASE SYSMAP and SYSERR SORTOUT
and SYSUT1

7, 8

REPORT CURRENT SYSERR or SORTOUT SYSMAP
and SYSERR

7, 9

PHASE SYSERR or SORTOUT SYSMAP
and SYSERR

7, 9

Note:
1. SYSMAP and SYSERR data sets might not be required for all LOAD jobs.
2. If the SYSERR data set is not required and not provided, LOAD uses SYSUT1 as a

work data set to contain error information.
3. You must not restart during the RELOAD phase if you specified SYSREC DD *. This

statement prevents internal commits from being taken, and RESTART performs like
RESTART(PHASE), except without data back out. Also, you must not restart if your
SYSREC input consists of multiple concatenated data sets.

4. The utility can be restarted with either RESTART or RESTART(PHASE). However,
because this phase does not take checkpoints, RESTART is always re-executed from the
beginning of the phase.

5. A LOAD RESUME YES job cannot be restarted in the BUILD or SORTBLD phase.
6. Use RESTART or RESTART(PHASE) to restart at the beginning of the RELOAD phase.
7. This utility can be restarted with either RESTART or RESTART(PHASE). However, the

utility can be re-executed from the last internal checkpoint. This behavior is dependent
on the data sets that are used and whether any input data sets were rewritten.

8. The SYSUT1 data set is required if the target table space is segmented or partitioned.
9. If a report is required and this LOAD job does not specify discard processing, SYSMAP

is required to complete the report phase.
10. Any job that finished abnormally in the RELOAD, SORT, BUILD, or SORTBUILD phase

and has SORTKEYS enabled restarts from the beginning of the RELOAD phase. (A job
that has SORTKEYS enabled means that in the LOAD statement, SORTKEYS was either
explicitly specified with a valid value or implicitly specified as the default. In other
words, SORTKEYS NO was not specified.)

11. LOAD with RESUME and with PRESORTED YES cannot be restarted in the RELOAD
phase.

Chapter 16. LOAD 333

Related concepts:
“Restart of an online utility” on page 39
Related tasks:
“Restarting after the output data set is full” on page 43
Related reference:

-DISPLAY UTILITY (DB2) (DB2 Commands)

After running LOAD
You can perform certain activities after you run the LOAD utility.

Copying the loaded table space or partition
If you ran the LOAD utility with the LOG YES option, consider taking a full image
copy of the table space or partition that you loaded. Such a copy might reduce the
processing time of subsequent recovery operations.

About this task

If you took primary and backup inline copies during the load operation, you do
not need to take full image copies of the table space or partition after LOAD
completes. However, you might need to take images copies of indexes.

Procedure

To copy the loaded table space or partition:

Use the COPY utility to create a full image copy. If you specified the RESUME NO
option or the REPLACE option for LOAD, take two or more full image copies.
Related concepts:
“Full image copies” on page 145
Related tasks:
“Using inline COPY with LOAD” on page 313
Related reference:
Chapter 11, “COPY,” on page 125

Resetting COPY-pending status
If you load with LOG NO and do not take an inline copy, LOAD places a table
space in the COPY-pending status. Immediately after that operation, DB2 cannot
recover the table space (although you can, by loading it again).

Prepare for recovery, and turn off the restriction, by making a full image copy
using SHRLEVEL REFERENCE. (If you end the copy job before it is finished, the
table space is still in COPY-pending status.)

You can also remove the restriction by using one of these operations:
v LOAD REPLACE LOG YES
v LOAD REPLACE LOG NO with an inline copy
v REORG LOG YES
v REORG LOG NO with an inline copy
v REPAIR SET with NOCOPYPEND

334 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_displayutility.htm#db2z_cmd_displayutility

If you use LOG YES and do not make an image copy of the table space,
subsequent recovery operations are possible but take longer than if you had made
an image copy.

A table space that is in COPY-pending status can be read without restriction;
however, it cannot be updated.

Resetting REBUILD-pending status
LOAD sets index spaces to REBUILD-pending status when a REBUILD job ends
before the INDEXVAL phase is complete.

LOAD places all the index spaces for a table space in the REBUILD-pending status
if you end the job (by using the TERM UTILITY command) before it completes the
INDEXVAL phase. DB2 places the table space in RECOVER-pending status if you
end the job before the job completes the RELOAD phase.

Resetting the RECOVER-pending status depends on when the utility terminated:
v If the data is intact and you have a full image copy of the affected indexes, you

can recover the indexes using the RECOVER INDEX utility. Run the DISPLAY
DATABASE command and examine the output. Data is intact when the output
indicates that the indexes are in REBUILD-pending status and the table space is
not in RECOVER-pending status. If you do not have an image copy available,
you must rebuild the entire index by using the REBUILD INDEX utility.
However, for partitioning indexes and for secondary indexes that are in
REBUILD-pending (RBDP) status, you can use the PART option of REBUILD
INDEX to rebuild separate partitions of the index.

v If the data is not intact, you can either load the table again or recover it to a
prior point of consistency. Run the DISPLAY DATABASE command and examine
the output. The recovery puts the table space into COPY-pending status and
places all indexes in REBUILD-pending status.

Resetting the CHECK-pending status
LOAD places a table space in the CHECK-pending status if its referential integrity
is in doubt or its check constraints are violated. The intent of the restriction is to
encourage the use of the CHECK DATA utility, which locates invalid data and,
optionally, removes it.

If CHECK DATA removes the invalid data, the remaining data satisfies all check
and referential constraints and the CHECK-pending restriction is lifted.

Although CHECK DATA is usually preferred, you can also reset the
CHECK-pending status by using any of the following operations:
v Drop tables that contain invalid rows.
v Replace the data in the table space, by using LOAD REPLACE and enforcing

check and referential constraints.
v Recover all members of the table space that were set to a prior quiesce point.
v Use REPAIR SET with NOCHECKPEND.

Running CHECK DATA after LOAD REPLACE

Suppose that you choose to replace the contents of the project table by using
LOAD REPLACE. While doing that, you let LOAD enforce its referential and table
check constraints, so that the project table contains only valid records at the end of

Chapter 16. LOAD 335

the job; it is not in the CHECK-pending status. However, its dependent, the project
activity table, is placed in CHECK-pending status: some of its rows might have
project numbers that are no longer present in the project table. (If the project table
had any other dependents, they also would be in CHECK-pending status.)

You want to run CHECK DATA against the table space that contains the project
activity table to reset the status. First, review the review the description of DELETE
YES and exception tables. Then, when you run the utility, ensure the availability of
all table spaces that contain either parent tables or dependent tables of any table in
the table spaces that are being checked.

DELETE YES
This option deletes invalid records and resets the status, but it is not the
default. Use DELETE NO, the default, to find out quickly how large your
problem is; you can choose to correct it by reloading, rather than correcting
the current situation.

Exception tables

With DELETE YES, you do not use a discard data set to receive copies of
the invalid records; instead, you use another DB2 table called an exception
table. This topic assumes that you already have an exception table
available for every table that is subject to referential or table check
constraints.

If you use DELETE YES, you must name an exception table for every
descendent of every table in every table space that is being checked.
Deletes that are caused by CHECK DATA are not subject to any of the SQL
delete rules; they cascade without restraint to the lowest-level descendent.

If table Y is the exception table for table X, name it with the following
clause in the CHECK DATA statement:
FOR EXCEPTION IN X USE Y

Error and sort data sets

The options ERRDDN, WORKDDN, SORTDEVT, and SORTNUM work in CHECK
DATA just as they do in LOAD. That is, you need an error data set, and you can
name work data sets for sort and merge processing or let DB2 allocate them
dynamically.

Example:

In the following example, CHECK DATA is to be run against the table space that
contains the project activity table. Assume that the exception tables
DSN8B10.EPROJACT and DSN8B10.EEPA exist.
CHECK DATA TABLESPACE DSN8D11A.PROJACT

DELETE YES
FOR EXCEPTION IN DSN8B10.PROJACT USE DSN8B10.EPROJACT

IN DSN8B10.EMPPROJACT USE DSN8B10.EEPA
SORTDEVT SYSDA
SORTNUM 4

If the statement does not name error or work data sets, the JCL for the job must
contain DD statements similar to the following DD statements:
//SYSERR DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSUT1 DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//UTPRINT DD SYSOUT=A

336 Utility Guide and Reference

Running CHECK DATA after LOAD RESUME

Suppose now that you want to add records to both the project and project activity
tables by using LOAD RESUME. Furthermore, you want to run both jobs at the
same time, which you can do because the tables belong to separate table spaces.
The only new consideration is that you must load the project activity table by
using ENFORCE NO because you cannot assume that the parent project table is
already fully loaded.

When the two jobs are complete, what table spaces are in CHECK-pending status?
v If you enforced constraints when loading the project table, the table space is not

in CHECK-pending status.
v Because you did not enforce constraints on the project activity table, the table

space is in CHECK-pending status.
v Because you used LOAD RESUME (not LOAD REPLACE) when loading the

project activity table, its dependents (the employee-to-project-activity table) are
not in CHECK-pending status. That is, the operation might not delete any
parent rows from the project table, and therefore might not violate the referential
integrity of its dependent. However if you delete records from PROJACT when
checking, you still need an exception table for EMPPROJACT.

Therefore you should check the data in the project activity table.

DB2 records the identifier of the first row of the table that might violate referential
or table check constraints. For partitioned table spaces, that identifier is in
SYSIBM.SYSTABLEPART; for nonpartitioned table spaces, that identifier is in
SYSIBM.SYSTABLES. The SCOPE PENDING option speeds the checking by
confining it to just the rows that might be in error.

Example:

In the following example, CHECK DATA is to be run against the table space that
contains the project activity table after LOAD RESUME:
CHECK DATA TABLESPACE DSN8D11A.PROJACT

SCOPE PENDING
DELETE YES
FOR EXCEPTION IN DSN8B10.PROJACT USE DSN8B10.EPROJACT

IN DSN8B10.EMPPROJACT USE DSN8B10.EEPA
SORTDEVT SYSDA
SORTNUM 4

As before, the JCL for the job needs DD statements to define the error and sort
data sets.
Related reference:
“Exception tables for the CHECK DATA utility” on page 84

Running CHECK INDEX after loading a table that has indexes
The CHECK INDEX utility tests whether an index is consistent with the data it
indexes and issues error messages if it finds an inconsistency.

About this task

If you have any reason to doubt the accuracy of an index (for example, if the result
of an SQL SELECT COUNT statement is inconsistent with RUNSTATS output) you
might want to check the index.

Chapter 16. LOAD 337

Procedure

To check the accuracy of the index:

Invoke the CHECK INDEX utility. You might also want to invoke the CHECK
INDEX utility after any LOAD operation that shows some abnormal condition in
its execution, or even run it periodically to verify the accuracy of important
indexes.

What to do next

To rebuild an index that is inconsistent with its data, Invoke the REBUILD INDEX
utility.
Related reference:
Chapter 9, “CHECK INDEX,” on page 95
Chapter 22, “REBUILD INDEX,” on page 409
Chapter 29, “RUNSTATS,” on page 721

COUNT (DB2 SQL)

Recovering data after a failed LOAD job
If a LOAD utility job fails, you can recover the data to a point in time before the
LOAD job ran.

About this task

When you specify LOG YES in the LOAD utility control statement, DB2 inserts a
record into the SYSIBM.SYSCOPY catalog table at the beginning of the RELOAD
phase of LOAD processing. DB2 uses this SYSCOPY record to help facilitate
recovery in case of failure. However, because of this SYSCOPY record, if the LOAD
LOG YES job fails, recover to the point in time before the LOAD job was run.
Although you can recover the data to the current state, the results are
unpredictable.

Procedure

To recover a failed LOAD job, take one of the following actions:
v If the LOAD statement included the LOG YES option, recover the data to a point

in time before the LOAD job ran. You can use the RECOVER utility with the
TORBA option or another point-in-time recovery option.

v If the LOAD statement included the LOG NO option, recover the data to the
point in time before the LOAD job ran or to the current state.

338 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_count.htm#db2z_bif_count

Related concepts:
“Point-in-time recovery” on page 479

Options for restoring data to a prior point in time (DB2 Administration Guide)
Related reference:

SYSIBM.SYSCOPY table (DB2 SQL)

Reorganization of an auxiliary index after LOAD
Indexes on the auxiliary tables are not built during the BUILD phase. Instead, LOB
values are inserted (not loaded) into auxiliary tables during the RELOAD phase as
each row is loaded into the base table. Each index on the auxiliary table is also
updated as part of the insert operation.

Because the LOAD utility inserts keys into an auxiliary index, free space within the
index might be consumed and index page splits might occur. Consider
reorganizing an index on the auxiliary table after LOAD completes to introduce
free space into the index for future inserts and loads.

Effects of running LOAD
The effects of running LOAD can be different, depending on your situation.

This topic contains information about the effects of running the LOAD utility.

The effect of LOAD on index version numbers

DB2 stores the range of used index version numbers in the OLDEST_VERSION
and CURRENT_VERSION columns of the following catalog tables:
v SYSIBM.SYSINDEXES
v SYSIBM.SYSINDEXPART

The OLDEST_VERSION column contains the oldest used version number, and the
CURRENT_VERSION column contains the current version number.

When you run LOAD with the REPLACE option, the utility updates this range of
used version numbers for indexes that are defined with the COPY NO attribute.
LOAD REPLACE sets the OLDEST_VERSION column to the current version
number, which indicates that only one version is active; DB2 can then reuse all of
the other version numbers.

Recycling of version numbers is required when all of the version numbers are
being used. All version numbers are being used when one of the following
situations is true:
v The value in the CURRENT_VERSION column is one less than the value in the

OLDEST_VERSION column.
v The value in the CURRENT_VERSION column is 15, and the value in the

OLDEST_VERSION column is 0 or 1.

You can also run REBUILD INDEX, REORG INDEX, or REORG TABLESPACE to
recycle version numbers for indexes that are defined with the COPY NO attribute.
To recycle version numbers for indexes that are defined with the COPY YES
attribute or for table spaces, run MODIFY RECOVERY.

Chapter 16. LOAD 339

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_restoretotimeoptions.htm#db2z_restoretotimeoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsyscopytable.htm#db2z_sysibmsyscopytable

The effect of LOAD REPLACE on the control interval

When you run a LOAD job with the REPLACE option but without the REUSE
option and the data set that contains the data is DB2-managed, DB2 deletes this
data set before the LOAD and redefines a new data set with a control interval that
matches the page size.

The effect of LOAD on NOT LOGGED table spaces

The following table shows the effect of LOAD on NOT LOGGED table spaces.

Table 47. LOAD parameters

LOAD REORG LOG
keyword

Table space logging
attribute Table space type What is logged

Table space status
after utility
completes

LOG YES NOT LOGGED Non-LOB LOG YES changes to
LOG NO

No pending status or
ICOPY-pending1

LOG YES NOT LOGGED LOB control information No pending status

LOG NO NOT LOGGED Non-LOB nothing No pending status or
ICOPY-pending1

LOG NO NOT LOGGED LOB nothing No pending status

Note:

1. The table space is set to ICOPY-pending status if the records are discarded and no pending status if the records
are not discarded.

Related concepts:

Table space versions (DB2 Administration Guide)

Sample LOAD control statements
Use the sample control statements as models for developing your own LOAD
control statements.

Example 1: Specifying field positions

The control statement specifies that the LOAD utility is to load the records from
the data set that is defined by the SYSREC DD statement into table
DSN8810.DEPT. SYSREC is the default input data set.

Each POSITION clause specifies the location of a field in the input record. In this
example, LOAD accepts the input that is shown in Figure 30 on page 341 and
interprets it as follows:
v The first 3 bytes of each record are loaded into the DEPTNO column of the

table.
v The next 36 bytes, including trailing blanks, are loaded into the DEPTNAME

column.
If this input column were defined as VARCHAR(36), the input data would need
to contain a 2-byte binary length field preceding the data. This binary field
would begin at position 4.

v The next three fields are loaded into columns that are defined as CHAR(6),
CHAR(3), and CHAR(16).

340 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_tablespaceversions.htm#db2z_tablespaceversions

The RESUME YES clause specifies that the table space does not need to be empty;
new records are added to the end of the table.

Figure 30. shows the input to the preceding LOAD job.

The following table shows the result of executing the statement SELECT * FROM
DSN8B10.DEPT after the preceding input records are loaded.

Table 48. Data that is loaded into a table

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

A00 SPIFFY
COMPUTER
SERVICE DIV.

000010 A00 USIBMSTODB21

B01 PLANNING 000020 A00 USIBMSTODB21
C01 INFORMATION

CENTER
000030 A00 USIBMSTODB21

D01 DEVELOPMENT
CENTER

A00 USIBMSTODB21

Example 2: Replacing data in a given partition

The following control statement specifies that data from the data set that is defined
by the SYSREC DD statement is to be loaded into the first partition of table
DSN8810.DEPT. The default input data set is SYSREC. The REPLACE option
indicates that the input data is to replace only the specified partition. If the
REPLACE option was specified before the PART option, REPLACE would indicate
that entire table space is to be replaced, and the data is to be loaded into the
specified partition. Note that the keyword DATA does not need to be specified.
LOAD

INTO TABLE DSN8B10.DEPT PART 1 REPLACE

Example 3: Loading selected records into multiple tables

The control statement in specifies that the LOAD utility is to load certain data from
the EMPLDS input data set into tables DSN8B10.EMP, SMITH.EMPEMPL, and
DSN8810.DEPT. The input data set is identified by the INDDN option. The WHEN
clauses indicate which records are to be loaded into each table. For the EMP and
DEPT tables, the utility is to load only records that begin with the string LKA. For
the EMPEMPL table, the utility is to load only records that begin with the string
ABC. The RESUME YES option indicates that the table space does not need to be

LOAD DATA
RESUME YES
INTO TABLE DSN8B10.DEPT
(DEPTNO POSITION (1:3) CHAR(3),

DEPTNAME POSITION (4:39) CHAR(36),
MGRNO POSITION (40:45) CHAR(6),
ADMRDEPT POSITION (46:48) CHAR(3),
LOCATION POSITION (49:64) CHAR(16))

Figure 29. Example of a LOAD statement that specifies field positions

A00SPIFFY COMPUTER SERVICE DIV. 000010A00USIBMSTODB21
B01PLANNING 000020A00USIBMSTODB21
C01INFORMATION CENTER 000030A00USIBMSTODB21
D01DEVELOPMENT CENTER A00USIBMSTODB21

Figure 30. Records in an input data set for LOAD

Chapter 16. LOAD 341

empty for the LOAD job to proceed. The new rows are added to the end of the
tables. This example assumes that the first two tables being loaded have exactly
the same format, and that the input data matches that format; therefore, no field
specifications are needed for those two INTO TABLE clauses. The third table has a
different format, so field specifications are required and are supplied in the
example.

The three tables being loaded each contain a different number of records. To
improve the sizing of the sort work data sets that the LOAD utility requires, the
number of records being loaded into each table is specified on the NUMRECS
keyword for each table.

The POSITION clauses specify the location of the fields in the input data for the
DEPT table. For each source record that is to be loaded into the DEPT table:
v The characters in positions 7 through 9 are loaded into the DEPTNO column.
v The characters in positions 10 through 35 are loaded into the DEPTNAME

column.
v The characters in positions 36 through 41 are loaded into the MGRNO column.
v The characters in positions 42 through 44 are loaded into the ADMRDEPT

column.

Example 4: Loading data of different data types

The control statement specifies that LOAD is to load data from the SYSRECPJ
input data set into table DSN8B10.PROJ. The input data set is identified by the
INDDN option. Assume that the table space that contains table DSN8B10.PROJ is
currently empty.

For each input record, data is loaded into the specified columns (that is, PROJNO,
PROJNAME, DEPTNO, and so on) to form a table row. Any other PROJ columns
that are not specified in the LOAD control statement are set to the default value.

The POSITION clauses define the starting positions of the fields in the input data
set. The ending positions of the fields in the input data set are implicitly defined
either by the length specification of the data type (CHAR length) or the length
specification of the external numeric data type (LENGTH).

The numeric data that is represented in SQL constant format (EXTERNAL format)
is converted to the correct internal format by the LOAD process and placed in the
indicated column names. The two dates (PRSTDATE and PRENDATE) are

LOAD DATA INDDN EMPLDS
RESUME YES
INTO TABLE DSN8B10.EMP
NUMRECS 100000
WHEN (1:3)=’LKA’
INTO TABLE SMITH.EMPEMPL
NUMRECS 100
WHEN (1:3)=’ABC’
INTO TABLE DSN8B10.DEPT
NUMRECS 500
WHEN (1:3)=’LKA’
(DEPTNO POSITION (7:9) CHAR,

DEPTNAME POSITION (10:35) CHAR,
MGRNO POSITION (36:41) CHAR,
ADMRDEPT POSITION (42:44) CHAR)

Figure 31. Example LOAD statement that loads selected records into multiple tables

342 Utility Guide and Reference

assumed to be represented by eight digits and two separator characters, as in the
USA format (for example, 11/15/2006). The length of the date fields is given as 10
explicitly, although in many cases, the default is the same value.

Example 5: Loading data in delimited file format

The control statement specifies that data in delimited format is to be loaded into
the specified columns (FILENO, DATE1, TIME1, and TIMESTMP) in table
TBQB0103. The FORMAT DELIMITED option indicates that the data is in
delimited format. The data is to be loaded from the SYSREC data set, which is the
default.

The COLDEL option indicates that the column delimiter is a comma (,). The
CHARDEL option indicates that the character string delimiter is a double
quotation mark ("). The DECPT option indicates that the decimal point character is
a period (.). You are not required to explicitly specify these particular characters,
because they are all defaults.

//*
//STEP3 EXEC DSNUPROC,UID=’JUQBU101.LOAD2’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’SSTR’
//SYSERR DD DSN=JUQBU101.LOAD2.STEP3.SYSERR,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSDISC DD DSN=JUQBU101.LOAD2.STEP3.SYSDISC,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSMAP DD DSN=JUQBU101.LOAD2.STEP3.SYSMAP,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSUT1 DD DSN=JUQBU101.LOAD2.STEP3.SYSUT1,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//UTPRINT DD SYSOUT=*
//SORTOUT DD DSN=JUQBU101.LOAD2.STEP3.SORTOUT,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSIN DD *

LOAD DATA
FORMAT DELIMITED COLDEL ’,’ CHARDEL ’"’ DECPT ’.’
INTO TABLE TBQB0103

(FILENO CHAR,
DATE1 DATE EXTERNAL,
TIME1 TIME EXTERNAL,
TIMESTMP TIMESTAMP EXTERNAL)

/*
//SYSREC DD *
"001", 2000-02-16, 00.00.00, 2000-02-16-00.00.00.0000
"002", 2001-04-17, 06.30.00, 2001-04-17-06.30.00.2000

LOAD DATA INDDN(SYSRECPJ)
INTO TABLE DSN8B10.PROJ
(PROJNO POSITION (1) CHAR(6),
PROJNAME POSITION (8) CHAR(22),
DEPTNO POSITION (31) CHAR(3),
RESPEMP POSITION (35) CHAR(6),
PRSTAFF POSITION (42) DECIMAL EXTERNAL(5),
PRSTDATE POSITION (48) DATE EXTERNAL(10),
PRENDATE POSITION (59) DATE EXTERNAL(10),
MAJPROJ POSITION (70) CHAR(6))

Figure 32. Example of loading data of different data types

Chapter 16. LOAD 343

"003", 2002-06-18, 12.30.59, 2002-06-18-12.30.59.4000
"004", 1991-08-19, 18.59.30, 1991-08-19-18.59.30.8000
"005", 2000-12-20, 24.00.00, 2000-12-20-24.00.00.0000
/*

Example 6: Concatenating multiple input records

The control statement specifies that data from the SYSRECOV input data set is to
be loaded into table DSN8B10.TOPTVAL. The input data set is identified by the
INDDN option. The table space that contains the TOPTVAL table is currently
empty.

Some of the data that is to be loaded into a single row spans more than one input
record. In this situation, an X in column 72 indicates that the input record contains
fields that are to be loaded into the same row as the fields in the next input record.
In the LOAD control statement, CONTINUEIF(72:72)=’X’ indicates that LOAD is to
concatenate any input records that have an X in column 72 with the next record
before loading the data.

For each assembled input record (that is, after the concatenation), fields are loaded
into the DSN8B10.TOPTVAL table columns (that is, MAJSYS, ACTION, OBJECT ...,
DSPINDEX) to form a table row. Any columns that are not specified in the LOAD
control statement are set to the default value.

The POSITION clauses define the starting positions of the fields in the assembled
input records. Starting positions are numbered from the first column of the
internally assembled input record, not from the start of the input records in the
sequential data set. The ending positions of the fields are implicitly defined by the
length specification of the data type (CHAR length).

No conversions are required to load the input character strings into their
designated columns, which are also defined to be fixed-length character strings.
However, because columns INFOTXT, HELPTXT, and PFKTXT are defined as 79
characters in length and the strings that are being loaded are 71 characters in
length, those strings are padded with blanks as they are loaded.

Example 7: Loading null values

The control statement specifies that data from the SYSRECST data set is to be
loaded into the specified columns in table SYSIBM.SYSSTRINGS. The input data

Figure 33. Example of loading data in delimited file format

LOAD DATA INDDN(SYSRECOV) CONTINUEIF(72:72)=’X’
INTO TABLE DSN8B10.TOPTVAL
(MAJSYS POSITION (2) CHAR(1),
ACTION POSITION (4) CHAR(1),
OBJECT POSITION (6) CHAR(2),
SRCHCRIT POSITION (9) CHAR(2),
SCRTYPE POSITION (12) CHAR(1),
HEADTXT POSITION (80) CHAR(50),
SELTXT POSITION (159) CHAR(50),
INFOTXT POSITION (238) CHAR(71),
HELPTXT POSITION (317) CHAR(71),
PFKTXT POSITION (396) CHAR(71),
DSPINDEX POSITION (475) CHAR(2))

Figure 34. Example of concatenating multiple input records before loading the data

344 Utility Guide and Reference

set is identified by the INDDN option. The NULLIF option for the ERRORBYTE
and SUBBYTE columns specifies that if the input field contains a blank, LOAD is
to place a null value in the indicated column for that particular row. The
DEFAULTIF option for the TRANSTAB column indicates that the utility is to load
the default value for this column if the input field value is GG. The CONTINUEIF
option indicates that LOAD is to concatenate any input records that have an X in
column 80 with the next record before loading the data.

Example 8: Enforcing referential constraints when loading data

The control statement specifies that data from the SYSREC input data set is to be
loaded into table DSN8B10.PROJ. The default input data set is SYSREC. The table
space that contains the PROJ table is not empty. RESUME YES indicates that the
records are to be added to the end of the table.

The ENFORCE CONSTRAINTS option indicates that LOAD is to enforce
referential constraints on the data that is being added. This option is also the
default. All violations are reported in the output. All records causing these
violations are not loaded and placed in the SYSDISC data set, which is the default
data set for discarded records.

The CONTINUEIF option indicates that before loading the data LOAD is to
concatenate any input records that have an X in column 72 with the next record.

Example 9: Loading data without enforcing referential
constraints

The control statement specifies that data from the SYSRECAC input data set is to
be loaded into table DSN8810.ACT. The INDDN option identifies the input data
set.

ENFORCE NO indicates that the LOAD utility is not to enforce referential
constraints and places the table in CHECK-pending status. Use this option if you

LOAD DATA INDDN(SYSRECST) CONTINUEIF(80:80)=’X’ RESUME(YES)
INTO TABLE SYSIBM.SYSSTRINGS

(INCCSID POSITION(1) INTEGER EXTERNAL(5),
OUTCCSID POSITION(7) INTEGER EXTERNAL(5),
TRANSTYPE POSITION(13) CHAR(2),
ERRORBYTE POSITION(16) CHAR(1) NULLIF(ERRORBYTE=’ ’),
SUBBYTE POSITION(18) CHAR(1) NULLIF(SUBBYTE=’ ’),
TRANSPROC POSITION(20) CHAR(8),
IBMREQD POSITION(29) CHAR(1),
TRANSTAB POSITION(31) CHAR(256) DEFAULTIF(TRANSTYPE=’GG’))

Figure 35. Example of loading null values

LOAD DATA INDDN(SYSREC) CONTINUEIF(72:72)=’X’
RESUME YES
ENFORCE CONSTRAINTS
INTO TABLE DSN8B10.PROJ
(PROJNO POSITION (1) CHAR (6),
PROJNAME POSITION (8) VARCHAR,
DEPTNO POSITION (33) CHAR (3),
RESPEMP POSITION (37) CHAR (6),
PRSTAFF POSITION (44) DECIMAL EXTERNAL (5),
PRSTDATE POSITION (50) DATE EXTERNAL,
PRENDATE POSITION (61) DATE EXTERNAL,
MAJPROJ POSITION (80) CHAR (6) NULLIF(MAJPROJ=’ ’))

Figure 36. Example of enforcing referential constraints when loading data

Chapter 16. LOAD 345

are loading data into several tables that are related in such a way that the
referential constraints cannot be checked until all tables are loaded. For example, a
column in table A depends on a column in table B; a column in table B depends on
a column in table C; and a column in table C depends on a column in table A.

The POSITION clauses define the starting positions of the fields in the input data
set. The ending positions of the fields in the input data set are implicitly defined
by the length specification of the data type (CHAR length). In this case, the
characters in positions 1 through 3 are loaded into the ACTNO column, the
characters in positions 5 through 10 are loaded into the ACTKWD column, and the
characters in position 13 onward are loaded into the ACTDESC column. Because
the ACTDESC column is of type VARCHAR, the input data needs to contain a
2-byte binary field that contains the length of the character field. This binary field
begins at position 13.

Example 10: Loading data by using a parallel index build

The control statement specifies that data from the SYSREC input data set is to be
loaded into table DSN8810.DEPT. Assume that 22 000 rows need to be loaded into
table DSN8B10.DEPT, which has three indexes. In this example, the SORTKEYS
option is used to improve performance by forcing a parallel index build. The
SORTKEYS option specifies 66 000 as an estimate of the number keys to sort in
parallel during the SORTBLD phase. (This estimate was computed by using the
calculation that is described in “Improved performance with SORTKEYS” on page
316.) Because more than one index needs to be built, LOAD builds the indexes in
parallel.

The SORTDEVT and SORTNUM keywords specify that the sort program is to
dynamically allocate the required data sets. If sufficient virtual storage resources
are available, one utility subtask pair is started to build each index. This example
does not require UTPRINnn DD statements because it uses DSNUPROC to invoke
utility processing, which includes a DD statement that allocates UTPRINT to
SYSOUT.

The CONTINUEIF option indicates that, before loading the data, LOAD is to
concatenate any input records that have a plus sign (+) in column 79 and a plus
sign (+) in column 80 with the next record.

//STEP1 EXEC DSNUPROC,UID=’IUIQU2UB.LOAD’,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSRECAC DD DSN=IUIQU2UB.LOAD.DATA,DISP=SHR,VOL=SER=SCR03,
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSUT1 DD DSN=IUIQU2UB.LOAD.STEP1.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=IUIQU2UB.LOAD.STEP1.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
LOAD DATA INDDN(SYSRECAC) RESUME YES

INTO TABLE DSN8B10.ACT
(ACTNO POSITION(1) INTEGER EXTERNAL(3),
ACTKWD POSITION(5) CHAR(6),
ACTDESC POSITION(13) VARCHAR)

ENFORCE NO
//*

Figure 37. Example of loading data without enforcing referential constraints

346 Utility Guide and Reference

Example 11: Creating inline copies

The control statement specifies that the LOAD utility is to load data from the
SYSREC data set into the specified columns of table ADMF001.TB0S3902.

COPYDDN(COPYT1) indicates that LOAD is to create inline copies and write the
primary image copy to the data set that is defined by the COPYT1 template. This
template is defined in one of the preceding TEMPLATE control statements. To
create an inline copy, you must also specify the REPLACE option, which indicates
that any data in the table space is to be replaced.

CONTINUEIF(79:80)=’++’ indicates that, before loading the data, LOAD is to
concatenate any input records that have a plus sign (+) in column 79 and a plus
sign (+) in column 80 with the next record.

The ERRDDN(ERRDDN) and MAPDDN(MAP) options indicate that information
about errors is to be written to the data sets that are defined by the ERRDDN and
MAP templates. DISCARDDN(DISCARD) specifies that discarded records (those
that violate referential constraints) are to be written to the data set that is defined
by the DISCARD template. WORKDDN(UT1,OUT) specifies the temporary work
files for sort input and output; LOAD is to use the data set that is defined by the
UT1 template for sort input and the data set that is defined by the OUT template
for sort output.
//STEP1 EXEC DSNUPROC,UID=’JUOSU339.LOAD1’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’SSTR’
//SYSREC DD DSN=CUST.FM.CINT135.DATA,DISP=SHR,VOL=SER=FORDMD,
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *

TEMPLATE ERRDDN UNIT(SYSDA)
DSN(JUOSU339.T&TI..&ST..ERRDDN)
SPACE(50,10) TRK

TEMPLATE UT1 UNIT(SYSDA)
DSN(JUOSU339.T&TI..&ST..SYSUT1)
SPACE(50,10) TRK

TEMPLATE OUT UNIT(SYSDA)
DSN(JUOSU339.T&TI..&ST..SYSOUT)
SPACE(50,10) TRK

TEMPLATE MAP UNIT(SYSDA)
DSN(JUOSU339.T&TI..&ST..SYSMAP)
SPACE(50,10) TRK

//SAMPJOB JOB ...
//STEP1 EXEC DSNUPROC,UID=’SAMPJOB.LOAD’,UTPROC=’’,SYSTEM=’DSN’
//SORTOUT DD DSN=SAMPJOB.LOAD.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SYSUT1 DD DSN=SAMPJOB.LOAD.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SYSERR DD DSN=SAMPJOB.LOAD.STEP1.SYSERR,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(2000,(20,20),,,ROUND)
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)
//SYSMAP DD DSN=SAMPJOB.LOAD.STEP1.SYSMAP,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(2000,(20,20),,,ROUND),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)
//SYSREC DSN=SAMPJOB.TEMP.DATA,DISP=SHR,UNIT=SYSDA
//SYSIN DD *
LOAD DATA REPLACE INDDN SYSREC CONTINUEIF(79:80)=’++’
SORTKEYS 66000 SORTDEVT SYSDA SORTNUM 3
INTO TABLE DSN8B10.DEPT
/*

Figure 38. Example of loading data by using a parallel index build

Chapter 16. LOAD 347

TEMPLATE DISCARD UNIT(SYSDA)
DSN(JUOSU339.T&TI..&ST..DISCARD)
SPACE(50,10) TRK

TEMPLATE COPYT1
UNIT(SYSDA)
DSN(JUOSU339.COPY1.STEP1.&SN..COPY&LR.&PB.)
DISP(MOD,CATLG,CATLG)
SPACE(60,30) TRK

LOAD DATA INDDN SYSREC REPLACE
CONTINUEIF(79:80)=’++’
COPYDDN(COPYT1)
ERRDDN(ERRDDN)
WORKDDN(UT1,OUT)
MAPDDN(MAP)
DISCARDDN(DISCARD)
INTO TABLE

ADMF001.TBOS3902
(ID_PARTITION POSITION(1) CHAR(1),

CD_PLANT POSITION(2) CHAR(5),
NO_PART_BASE POSITION(7) CHAR(9),
NO_PART_PREFIX POSITION(16) CHAR(7),
NO_PART_SUFFIX POSITION(23) CHAR(8),
NO_PART_CONTROL POSITION(31) CHAR(3),
DT_TRANS_EFFECTIVE POSITION(34) DATE EXTERNAL(10),
CD_INV_TRANSACTION POSITION(44) CHAR(3),
TS_PROCESS POSITION(47) TIMESTAMP EXTERNAL(26),
QT_INV_TRANSACTION POSITION(73) INTEGER,
CD_UNIT_MEAS_USAGE POSITION(77) CHAR(2),
CD_USER_ID POSITION(79) CHAR(7),
NO_DEPT POSITION(86) CHAR(4),
NO_WORK_CENTER POSITION(90) CHAR(6))

/*

Example 12: Collecting statistics

This example is similar to the previous example, except that the STATISTICS
option and other related options have been added so that during the LOAD job,
DB2 also gathers statistics for the table space. Gathering these statistics eliminates
the need to run the RUNSTATS utility after completing the LOAD operation.

The TABLE, COLUMN, and INDEX options specify that information is to be
gathered for columns QT_INV_TRANSACTION, NO_DEPT, NO_PART_PREFIX,
DT_TRANS_EFFECTIVE and index ID0S3902 for table TB0S3902. SAMPLE 53
indicates that LOAD is to sample 53% of the rows when gathering statistics on
non-leading-indexed columns of an index or non-indexed columns. For the index,
statistics on all of the distinct values in all of the key column combinations are
collected by default. FREQVAL NUMCOLS 4 COUNT 20 indicates that 20 frequent
values are to be collected on the concatenation of the first four key columns.

REPORT YES indicates that the statistics are to be sent to SYSPRINT as output.
UPDATE ALL and HISTORY ALL indicate that all collected statistics are to be
updated in the catalog and catalog history tables.
//STEP1 EXEC DSNUPROC,UID=’JUOSU339.LOAD1’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’SSTR’
//SYSREC DD DSN=CUST.FM.CINT135.DATA,DISP=SHR,VOL=SER=FORDMD,
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *

TEMPLATE ERRDDN UNIT(SYSDA)

Figure 39. Example of creating inline copies

348 Utility Guide and Reference

DSN(JUOSU339.T&TI..&ST..ERRDDN)
SPACE(50,10) TRK

TEMPLATE UT1 UNIT(SYSDA)
DSN(JUOSU339.T&TI..&ST..SYSUT1)
SPACE(50,10) TRK

TEMPLATE OUT UNIT(SYSDA)
DSN(JUOSU339.T&TI..&ST..SYSOUT)
SPACE(50,10) TRK

TEMPLATE MAP UNIT(SYSDA)
DSN(JUOSU339.T&TI..&ST..SYSMAP)
SPACE(50,10) TRK

TEMPLATE DISCARD UNIT(SYSDA)
DSN(JUOSU339.T&TI..&ST..DISCARD)
SPACE(50,10) TRK

TEMPLATE COPYT1
UNIT(SYSDA)
DSN(JUOSU339.COPY1.STEP1.&SN..COPY&LR.&PB.)
DISP(MOD,CATLG,CATLG)
SPACE(60,30) TRK

LOAD DATA INDDN SYSREC REPLACE
CONTINUEIF(79:80)=’++’
COPYDDN(COPYT1)
STATISTICS

TABLE (TBOS3902) SAMPLE 53
COLUMN (QT_INV_TRANSACTION,

NO_DEPT,
NO_PART_PREFIX,
DT_TRANS_EFFECTIVE)

INDEX (IDOS3902
FREQVAL NUMCOLS 4 COUNT 20)

REPORT YES UPDATE ALL HISTORY ALL
ERRDDN(ERRDDN)
WORKDDN(UT1,OUT)
MAPDDN(MAP)
DISCARDDN(DISCARD)
INTO TABLE

ADMF001.TBOS3902
(ID_PARTITION POSITION(1) CHAR(1),

CD_PLANT POSITION(2) CHAR(5),
NO_PART_BASE POSITION(7) CHAR(9),
NO_PART_PREFIX POSITION(16) CHAR(7),
NO_PART_SUFFIX POSITION(23) CHAR(8),
NO_PART_CONTROL POSITION(31) CHAR(3),
DT_TRANS_EFFECTIVE POSITION(34) DATE EXTERNAL(10),
CD_INV_TRANSACTION POSITION(44) CHAR(3),
TS_PROCESS POSITION(47) TIMESTAMP EXTERNAL(26),
QT_INV_TRANSACTION POSITION(73) INTEGER,
CD_UNIT_MEAS_USAGE POSITION(77) CHAR(2),
CD_USER_ID POSITION(79) CHAR(7),
NO_DEPT POSITION(86) CHAR(4),
NO_WORK_CENTER POSITION(90) CHAR(6))

/*

Example 13: Loading Unicode data

The following control statement specifies that Unicode data from the REC1 input
data set is to be loaded into table ADMF001.TBMG0301. The UNICODE option
specifies the type of input data. Only data that satisfies the condition that is
specified in the WHEN clause is to be loaded. The CCSID option specifies the

Figure 40. Example of collecting statistics

Chapter 16. LOAD 349

three coded character set identifiers for the input file: one for SBCS data, one for
mixed data, and one for DBCS data. LOG YES indicates that logging is to occur
during the LOAD job.
LOAD DATA INDDN REC1 LOG YES REPLACE

UNICODE CCSID(00367,01208,01200)
INTO TABLE "ADMF001 "."TBMG0301"
WHEN(00004:00005 = X’0003’)

Example 14: Loading data from multiple input data sets by using
partition parallelism

The LOAD control statement in this example contains a series of INTO TABLE
statements that specify which data is to be loaded into which partitions of table
DBA01.TBLX3303. For each INTO TABLE statement:
v Data is to be loaded into the partition that is identified by the PART option. For

example, the first INTO TABLE statement specifies that data is to be loaded into
the first partition of table DBA01.TBLX3303.

v Data is to be loaded from the data set that is identified by the INDDN option.
For example, the data from the PART1 data set is to be loaded into the first
partition.

v Any discarded rows are to be written to the data set that is specified by the
DISCARDDN option. For example, rows that are discarded during the loading
of data from the PART1 data set are written to the DISC1 data set.

v The data is loaded into the specified columns (EMPNO, LASTNAME, and
SALARY).

LOAD uses partition parallelism to load the data into these partitions.

The TEMPLATE utility control statement defines the data set naming convention
for the data set that is to be dynamically allocated during the following LOAD job.
The name of the template is ERR3. The ERRDDN option in the LOAD statement
specifies that any errors are to be written to the data set that is defined by this
ERR3 template.

350 Utility Guide and Reference

Example 15: Loading data from another table in the same system
by using a declared cursor

The following LOAD control statement specifies that all rows that are identified by
cursor C1 are to be loaded into table MYEMP. The INCURSOR option is used to
specify cursor C1, which is defined in the EXEC SQL utility control statement.
Cursor C1 points to the rows that are returned by executing the statement SELECT
* FROM DSN8810.EMP. In this example, the column names in table DSN8810.EMP
are the same as the column names in table MYEMP. Note that the cursor cannot be
defined on the same table into which DB2 is to load the data.
EXEC SQL

DECLARE C1 CURSOR FOR SELECT * FROM DSN8810.EMP
ENDEXEC
LOAD DATA
INCURSOR(C1)
REPLACE
INTO TABLE MYEMP
STATISTICS

Example 16: Loading data partitions in parallel from a remote
site by using a declared cursor

The LOAD control statement in this example specifies that for each specified
partition of table MYEMPP, the rows that are identified by the specified cursor are
to be loaded. In each INTO TABLE statement, the PART option specifies the
partition number, and the INCURSOR option specifies the cursor. For example, the
rows that are identified by cursor C1 are to be loaded into the first partition. The
data for each partition is loaded in parallel.

Each cursor is defined in a separate EXEC SQL utility control statement and points
to the rows that are returned by executing the specified SELECT statement. These
SELECT statement are being executed on a table at a remote server, so the

TEMPLATE ERR3
DSN &UT..&JO..&ST..ERR3&MO.&DAY.
UNIT SYSDA DISP(NEW,CATLG,CATLG)

LOAD DATA
REPLACE
ERRDDN ERR3
INTO TABLE DBA01.TBLX3303

PART 1
INDDN PART1
DISCARDDN DISC1

(EMPNO POSITION(1) CHAR(6),
LASTNAME POSITION(8) VARCHAR(15),
SALARY POSITION(25) DECIMAL(9,2))

.

.

.
INTO TABLE DBA01.TBLX3303

PART 5
INDDN PART5
DISCARDDN DISC5

(EMPNO POSITION(1) CHAR(6),
LASTNAME POSITION(8) VARCHAR(15),
SALARY POSITION(25) DECIMAL(9,2))

/*

Figure 41. Example of loading data from individual data sets

Chapter 16. LOAD 351

three-part name is used to identify the table. In this example, the column names in
table CHICAGO.DSN8810.EMP are the same as the column names in table
MYEMPP.

The four partitions being loaded each contain a different number of records. To
improve the sizing of the sort work data sets that the LOAD utility requires, the
number of records being loaded into each partition is specified on the NUMRECS
keyword for each table.

Example 17: Loading LOB data from a file

The LOAD control statement in this example specifies that data from
000130DSN!10.SDSNIVPD(DSN8R130) is to be loaded into the
MY_EMP_PHOTO_RESUME table. The characters in positions 1 through 6 are
loaded into the EMPNO column, and the characters starting from position 7 are to
be loaded into the RESUME column. CLOBF indicates that the characters in
position 7 are the name of a file from which a CLOB is to be loaded.

REPLACE indicates that the new data will replace any existing data. Although no
logging is to be done, as indicated by the LOG NO option, the table space is not to
be set in CHECK-pending state, because NOCOPYPEND is specified.

SORTKEYS 1 indicates that one index key is to be sorted.

EXEC SQL
DECLARE C1 CURSOR FOR SELECT * FROM CHICAGO.DSN8810.EMP
WHERE EMPNO <= ’099999’

ENDEXEC
EXEC SQL

DECLARE C2 CURSOR FOR SELECT * FROM CHICAGO.DSN8810.EMP
WHERE EMPNO > ’099999’ AND EMPNO <= ’199999’

ENDEXEC
EXEC SQL

DECLARE C3 CURSOR FOR SELECT * FROM CHICAGO.DSN8810.EMP
WHERE EMPNO > ’199999’ AND EMPNO <= ’299999’

ENDEXEC
EXEC SQL

DECLARE C4 CURSOR FOR SELECT * FROM CHICAGO.DSN8810.EMP
WHERE EMPNO > ’299999’ AND EMPNO <= ’999999’

ENDEXEC
LOAD DATA

INTO TABLE MYEMPP PART 1 REPLACE INCURSOR(C1) NUMRECS 10000
INTO TABLE MYEMPP PART 2 REPLACE INCURSOR(C2) NUMRECS 50000
INTO TABLE MYEMPP PART 3 REPLACE INCURSOR(C3) NUMRECS 100000
INTO TABLE MYEMPP PART 4 REPLACE INCURSOR(C4) NUMRECS 50000

Figure 42. Example of loading data partitions in parallel using a declared cursor

352 Utility Guide and Reference

Example 18: Loading with parallel subtasks

The following LOAD statement specifies that LOAD is to use multiple parallel
subtasks, as indicated by the PARALLEL keyword. Because no value is specified
with the PARALLEL keyword, DB2 determines the optimal degree of parallelism.
This use of parallelism can potentially reduce the elapsed time that is required for
loading large amounts of data.
LOAD DATA
PARALLEL
RESUME YES
SHRLEVEL NONE
INDDN INPUT1
EBCDIC
CONTINUEIF(80:80)=’-’
INTO TABLE SCTX1300.TB_HISTORY_PART
(HISTORY_DAILY POSITION(1:11) INT EXTERNAL,
HISTORY_ROWNUM POSITION(13:23) INT EXTERNAL,
HISTORY_CUSTOMER_ID POSITION(25:35) INT EXTERNAL,
HISTORY_CUSTOMER_ACCOUNT_ID POSITION(37:50) DECIMAL EXTERNAL,
HISTORY_CUSTOMER_DISTRICT_ID POSITION(52:53) CHAR,
HISTORY_CUSTOMER_WAREHOUSE_ID POSITION(55:64) CHAR,
HISTORY_DISTRICT_ID POSITION(66:67) CHAR,
HISTORY_TRANSACTION_ID POSITION(69:70) CHAR,
HISTORY_WAREHOUSE_ID POSITION(72:81) CHAR,
HISTORY_DATE POSITION(83:108) TIMESTAMP EXTERNAL,
HISTORY_AMOUNT POSITION(110:126) DECIMAL EXTERNAL,
HISTORY_STATUS POSITION(128:144) VARCHAR,
HISTORY_DATA POSITION(3874:3899) VARCHAR)

Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

//***
//* LOAD LOB from file
//***
//LOADIT EXEC DSNUPROC,UID=’LOADIT’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSREC DD*
000130DSN!10.SDSNIVPD(DSN8R130)
//SYSUT1 DD DSN=SYSADM.LOAD.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=SYSADM.LOAD.SORTOUT,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
LOAD DATA

REPLACE LOG NO NOCOPYPEND
SORTKEYS 1

INTO TABLE MY_EMP_PHOTO_RESUME
(EMPNO POSITION(1:6) CHAR(6),
RESUME POSITION(7:31) CHAR CLOBF)

Figure 43. Example of loading LOB data from a file

Chapter 16. LOAD 353

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

354 Utility Guide and Reference

Chapter 17. MERGECOPY

The MERGECOPY online utility merges copies or inline copies that other utilities
produce. The COPY and COPYTOCOPY utilities produce image copies, and the
LOAD and REORG utilities produce inline copies.

The utility can merge several incremental copies of a table space to make one
incremental copy. It can also merge incremental copies with a full image copy to
make a new full image copy. You cannot run MERGECOPY on concurrent copies
or FlashCopy image copies.

MERGECOPY operates on the image copy data sets of a table space, and not on
the table space itself.

If you are creating copies in a JES3 environment, ensure that sufficient units are
available to mount the required image copies. In a JES3 environment, if the
number of image copies that are to be restored exceeds the number of available
online and offline units, and if the MERGECOPY job successfully allocates all
available units, the job waits for more units to become available.

Output

Output from the MERGECOPY utility consists of one of the following types of
copies:
v A new single incremental image copy
v A new full image copy

You can create the new image copy for the local or recovery site.

In all migration modes, RBA and LRSN values are displayed in 10-byte format.
This 10-byte display is unrelated to migration of the catalog or directory,
conversion of individual objects to EXTENDED format, or BSDS conversion. For
recovery purposes, this 10-byte format is the preferred input format for DB2. When
10-byte RBA or LRSN values are specified as input to DB2, conversion to 6-byte
format is performed internally as needed.

Even before the BSDS is converted to Version 11 format on all data sharing
members or the catalog and directory are migrated, 10-byte LRSN values might be
displayed with non-zero digits in the low order 3 bytes. LRSN values captured
before the BSDS is converted continue to be displayed as they were saved until
they are no longer available for display (for example, deleted by MODIFY
RECOVERY). This behavior is normal and to be expected, given the many ways
LRSN values are generated, stored, and handled in DB2. If these LRSN values are
specified as input to DB2, specify them as shown. If the LRSN value contains
non-zero digits in the low order 3 bytes, do not remove them. Any conversion that
might be required takes place inside DB2.

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v IMAGCOPY privilege for the database

© Copyright IBM Corp. 1983, 2013 355

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

v DBADM, DBCTRL, or DBMAINT authority for the database. If the object on
which the utility operates is in an implicitly created database, DBADM authority
on the implicitly created database or DSNDB04 is required.

v DATAACCESS authority
v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute MERGECOPY, but only
on a table space in the DSNDB01 or DSNDB06 database.

Restrictions on running MERGECOPY
v MERGECOPY cannot merge image copies into a single incremental image copy

for the other site, that is:
– At local sites, you cannot use RECOVERYDDN with NEWCOPY NO.
– At recovery sites, you cannot use COPYDDN with NEWCOPY NO.

v When none of the keywords NEWCOPY, COPYDDN, or RECOVERYDDN is
specified, the default, NEWCOPY NO COPYDDN(SYSCOPY), is valid for the
local site only.

v You cannot run MERGECOPY on concurrent copies.
v You cannot run the MERGECOPY utility on the DSNDB01.DBD01,

DSNDB01.SYSUTILX, DSNDB06.SYSTSCPY, or DSNDB01.SYSDBDXA table
spaces, because you cannot make incremental copies of those table spaces.

v MERGECOPY cannot be run on a table space during the period after RECOVER
is run to a point in time before materialization of pending definition changes
and before REORG is run to complete the point-in-time recovery process.

Execution phases of MERGECOPY

The MERGECOPY utility operates in these phases:

Phase Description

UTILINIT
Performs initialization

MERGECOP
Merges incremental copies

UTILTERM
Performs cleanup

Syntax and options of the MERGECOPY control statement
The MERGECOPY utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, you can use the SYSIN DD statement to specify the name of the
data set that contains the utility control statement.

356 Utility Guide and Reference

|
|
|

|
|
|

Syntax diagram

�� MERGECOPY LIST listdef-name
DSNUM ALL

TABLESPACE table-space-name
database-name. DSNUM integer

CLONE
�

�
WORKDDN SYSUT1

WORKDDN ddname
�

�
NEWCOPY NO COPYDDN SYSCOPY

COPYDDN(ddname1)
,ddname2

COPYDDN(,ddname2)
RECOVERYDDN(ddname3)

,ddname4
COPYDDN SYSCOPY

NEWCOPY YES
COPYDDN(ddname1) RECOVERYDDN(ddname3)

,ddname2 ,ddname4
COPYDDN(,ddname2)

��

Option descriptions

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name that contains
only table spaces. You can specify one LIST keyword per MERGECOPY control
statement. Do not specify LIST with the TABLESPACE keyword. MERGECOPY
is invoked once for each table space in the list. This utility will only process
clone data if the CLONE keyword is specified. The use of CLONED YES on
the LISTDEF statement is not sufficient.

The partitions or partition ranges can be specified in a list.

TABLESPACE database-name.table-space-name
Specifies the table space that is to be copied, and, optionally, the database to
which it belongs.

database-name
The name of the database that the table space belongs to. The default value
is DSNDB04.

table-space-name
The name of the table space whose incremental image copies are to be
merged.

You cannot run the MERGECOPY utility on the DSNDB01.DBD01,
DSNDB01.SYSUTILX, DSNDB06.SYSTSCPY, or DSNDB01.SYSDBDXA table
spaces, because you cannot make incremental copies of those table spaces.
Because MERGECOPY does not directly access the table space whose copies it
is merging, it does not interfere with concurrent access to that table space.

DSNUM
Identifies the table space or a partition or data set within the table space that is
to be merged. DSNUM is optional.

Chapter 17. MERGECOPY 357

|
|
|
|
|

ALL
Merges the entire table space.

integer
Is the number of a partition or data set that is to be merged. The maximum
is 4096.

For a partitioned table space, the integer is its partition number.

For a nonpartitioned table space, find the integer at the end of the data set
name as cataloged in the VSAM catalog. The data set name has the
following format, where y is either I or J, z is either 1 or 2, and nnn is the
data set integer:
catname.DSNDBx.dbname.tsname.y000z.Annn

You cannot specify DSNUM and LIST in the same MERGECOPY control
statement. Use PARTLEVEL on the LISTDEF instead. If image copies were
taken by data set (rather than by table space), MERGECOPY must use the
copies by data set.

CLONE
Indicates that MERGECOPY is to process only image copy data sets that were
taken against clone objects. This utility will only process clone data if the
CLONE keyword is specified. The use of CLONED YES on the LISTDEF
statement is not sufficient.

WORKDDN ddname
Specifies a DD statement for a temporary data set or template, which is to be
used for intermediate merged output. WORKDDN is optional.

ddname is the DD name. The default value is SYSUT1.

Use the WORKDDN option if you are not able to allocate enough data sets to
execute MERGECOPY; in that case, a temporary data set is used to hold
intermediate output. If you omit the WORKDDN option, you might find that
only some of the image copy data sets are merged. When MERGECOPY has
ended, a message is issued that tells the number of data sets that exist and the
number of data sets that have been merged. To continue the merge, repeat
MERGECOPY with a new output data set.

NEWCOPY
Specifies whether incremental image copies are to be merged with the full
image copy. NEWCOPY is optional.

NO Merges incremental image copies into a single incremental image copy but
does not merge them with the full image copy.

YES
Merges all incremental image copies with the full image copy to form a
new full image copy.

COPYDDN (ddname1,ddname2)
Specifies the DD statements for the output image copy data sets at the local
site. ddname1 is the primary output image copy data set. ddname2 is the backup
output image copy data set. COPYDDN is optional.

The default value is COPYDDN(SYSCOPY), where SYSCOPY identifies the
primary data set.

The COPYDDN keyword specifies either a DD name or a TEMPLATE name
specification from a previous TEMPLATE control statement. If utility

358 Utility Guide and Reference

processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name.

RECOVERYDDN (ddname3,ddname4)
Specifies the DD statements for the output image copy data sets at the
recovery site. You can have a maximum of two output data sets; the outputs
are identical. ddname3 is the primary output image copy data set. ddname4 is
the backup output image copy data set. RECOVERYDDN is optional. No
default value exists for RECOVERYDDN.

The RECOVERYDDN keyword specifies either a DD name or a TEMPLATE
name specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name.

Related reference:
Chapter 31, “TEMPLATE,” on page 775
Chapter 15, “LISTDEF,” on page 207

Data sets that MERGECOPY uses
The MERGECOPY utility uses a number of data sets during its operation.

The following table lists the data sets that MERGECOPY uses. The table lists the
DD name that is used to identify the data set, a description of the data set, and an
indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 49. Data sets that MERGECOPY uses

Data set Description Required?

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

Image copy data set Image copy data set that contains the
resulting image copy. Specify its DD name
with the COPYDDN option of the utility
control statement. The default DD name is
SYSCOPY.

Yes

Work data set A temporary data set that is used for
intermediate merged output. Specify its DD
name with the WORKDDN option of the
utility control statement. The default DD
name is SYSUT1.

Yes

Input data sets Image copy data sets that you can
preallocate. You define the DD names.

No

Table space
Object whose copies are to be merged.

The following object is named in the utility control statement and does not require
a DD statement in the JCL:

Data sets

The input data sets for the merge operation are dynamically allocated. To merge
incremental copies, allocate in the JCL a work data set (WORKDDN) and up to

Chapter 17. MERGECOPY 359

two new copy data sets (COPYDDN) for the utility job. You can allocate the data
sets to tape or disk. If you allocate them to tape, you need an additional tape drive
for each data set.

With the COPYDDN option of MERGECOPY, you can specify the DD names for
the output data sets. The option has the format COPYDDN (ddname1,ddname2), where
ddname1 is the DD name for the primary output data set in the system that
currently runs DB2, and ddname2 is the DD name for the backup output data set in
the system that currently runs DB2. The default for ddname1 is SYSCOPY.

The RECOVERYDDN option of MERGECOPY lets you specify the output image
copy data sets at the recovery site. The option has the format RECOVERYDDN
(ddname3, ddname4), where ddname3 is the DD name for the primary output image
copy data set at the recovery site, and ddname4 is the DD name for the backup
output data set at the recovery site.

Defining the work data set

The work data set should be at least equal in size to the largest input image copy
data set that is being merged. Use the same DCB attributes that are used for the
image copy data sets.

Concurrency and compatibility for MERGECOPY
The MERGECOPY utility has certain concurrency and compatibility characteristics
associated with it.

DB2 treats individual data and index partitions as distinct target objects. Utilities
that operate on different partitions of the same table space or index space are
compatible.

The following table shows the restrictive state that the utility sets on the target
object.

Table 50. Claim classes of MERGECOPY operations.

Target MERGECOPY

Table space or partition UTRW

Legend:

UTRW - Utility restrictive state - read-write access allowed.

MERGECOPY can run concurrently on the same target object with any utility
except the following utilities:
v COPY TABLESPACE
v LOAD
v MERGECOPY
v MODIFY
v RECOVER
v REORG TABLESPACE
v UNLOAD (only when from the same image copy data set)

The target object can be a table space or partition.

360 Utility Guide and Reference

Full or incremental image copy
You can use the NEWCOPY parameter if the new copy that MERGECOPY creates
is to be an incremental image copy or a full image copy.

In general, creating a new full image copy is recommended. The reasons for this
recommendation are as follows:
v A new full image copy creates a new recovery point.
v The additional time that it takes to create a new full image copy does not have

any adverse effect on the access to the table space. The only concurrency
implication is the access to SYSIBM.SYSCOPY.

v The range of log records that are to be applied by RECOVER is the same for
both the new full image copy and the merged incremental image copy.

v Assuming that the copies are on tape, only one tape drive is required for image
copies during a RECOVER.

If NEWCOPY is YES, the utility inserts an entry for the new full image copy into
the SYSIBM.SYSCOPY catalog table.

If NEWCOPY is NO, the utility:
v Replaces the SYSCOPY records of the incremental image copies that were

merged with an entry for the new incremental image copy
v Deletes all SYSCOPY records of the incremental image copies that have been

merged.

In either case, if any of the input data sets might not be allocated, or you did not
specify a temporary work data set (WORKDDN), the utility performs a partial
merge.

For large table spaces, consider using MERGECOPY to create full image copies.

Use MERGECOPY NEWCOPY YES immediately after each incremental image
copy. When you use this option, dates become a valid criterion for deletion of
image copy data sets and archive logs. A minimum number of tape drives are
allocated for MERGECOPY and RECOVER execution.

How MERGECOPY determines which input copy to use
The MERGECOPY utility uses as input the image copies that match the current
site.

If MERGECOPY is running at the local site, the local site image copies are chosen
as the input to be merged. If MERGECOPY is running at the recovery site, the
recovery site image copies are chosen as the input to be merged.

MERGECOPY does not accept a FlashCopy image copy as input.

Merging online copies
If you merge an online copy with incremental copies, the result is a full inline
copy. The data set is logically equivalent to a full image copy, but the data within
the data set differs in some respects

Chapter 17. MERGECOPY 361

Related tasks:
“Using inline COPY with LOAD” on page 313

Using MERGECOPY with individual data sets
Use MERGECOPY on copies of an entire table space, on individual data sets, or on
partitions. However, MERGECOPY can only merge incremental copies of the same
type. That is, you cannot merge incremental copies of an entire table space with
incremental copies of individual data sets to form new incremental copies.

About this task

The attempt to mix the two types of incremental copies results in the following
messages:
DSNU460I DSNUBCLO - IMAGE COPIES INCONSISTENT.

MERGECOPY REQUEST REJECTED
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE,

HIGHEST RETURN CODE=4

With the NEWCOPY YES option, however, you can merge a full image copy of a
table space with incremental copies of the table space and of individual data sets
to make a new full image copy of the table space.

If the image copy data sets that you want to merge reside tape, refer to “How the
RECOVER utility retains tape mounts” on page 492 for general information about
specifying the appropriate parameters on the DD statements.

Using MERGECOPY or COPY
COPY and MERGECOPY can create a full image copy. COPY is required after a
LOAD or REORG with LOG NO unless an inline copy is created. However, in
other cases an incremental image copy followed by MERGECOPY is a valid
alternative.

Avoiding MERGECOPY LOG RBA inconsistencies
MERGECOPY does not use information that was logged between the time of the
most recent image copy and the time when MERGECOPY was run. Therefore, you
cannot safely delete all log records that were created before you ran MERGECOPY.

About this task

You can safely delete all log records if you run MODIFY RECOVERY and specify
the date when MERGECOPY was run as the value of DATE.

Procedure

To delete all log information that is included in a copy that MERGECOPY makes:
1. Find the record of the copy in the catalog table SYSIBM.SYSCOPY by selecting

database name, table space name, and date (columns DBNAME, TSNAME, and
TIMESTAMP).

2. Column START_RBA contains the RBA of the last image copy that
MERGECOPY used. Find the record of the image copy that has the same value
of START_RBA.

362 Utility Guide and Reference

3. In that record, find the date in column TIMESTAMP. You can use MODIFY
RECOVERY to delete all copies and log records for the table space that were
made before that date.

Results

RECOVER uses the LOG RBA of image copies to determine the starting point in
the log that is needed for recovery. Normally, a timestamp directly corresponds to
a LOG RBA. Because of this, and because MODIFY uses dates to clean up recovery
history, you might decide to use dates to delete old archive log tapes. This decision
might cause a problem if you use MERGECOPY. MERGECOPY inserts the LOG
RBA of the last incremental image copy into the SYSCOPY row that is created for
the new image copy. The date that is recorded in the TIMESTAMP column of
SYSCOPY row is the date that MERGECOPY was executed.

Termination or restart of MERGECOPY
You can terminate and restart the MERGECOPY utility.

You can terminate the a MERGECOPY utility job using the TERM UTILITY
command.

You can restart MERGECOPY but by default, MERGECOPY restarts at the
beginning of the current phase. You can also restart MERGECOPY from the last
commit point after receiving an out-of-space condition.
Related concepts:
“Termination of an online utility with the TERM UTILITY command” on page 36
“Restart of an online utility” on page 39
Related tasks:
“Restarting after the output data set is full” on page 43

Sample MERGECOPY control statements
Use the sample control statements as models for developing your own
MERGECOPY control statements.

Example 1: Creating a merged incremental copy

The control statement in this example specifies that the MERGECOPY utility is to
merge incremental image copies from table space DSN8S11C into a single
incremental image copy. The NEWCOPY NO option indicates that these
incremental copies are not to be merged with the full image copy. The COPYDDN
option specifies that the output image copies are to be written to the data sets that
are defined by the COPY1 and COPY2 DD statements.

Chapter 17. MERGECOPY 363

Example 2: Creating merged incremental copies and using
template switching

Each MERGECOPY control statement in this example specifies that MERGECOPY
is to merge incremental image copies from the specified table space into a single
incremental image copy for that table space. For each control statement, the
COPYDDN option specifies that the output image copies are to be written to data
sets that are defined by the T1 template. The T1 template has specified the LIMIT
option. This means that the output image copies are to be written to DASD, if the
output image copy size is less than 5 MB. If the limit is exceeded, template
switching from template T1 to template T5 takes place and the output image
copies are to be written to TAPE. This template is defined in the TEMPLATE utility
control statement.

Example 3: Creating a merged full image copy

The control statement in this example specifies that MERGECOPY is to merge all
incremental image copies with the full image copy from table space DSN8S11C to
create a new full image copy.

//STEP1 EXEC DSNUPROC,UID=’IUJMU107.MERGE1’,
// UTPROC=’’,SYSTEM=’DSN’
//COPY1 DD DSN=IUJMU107.MERGE1.STEP1.COPY1,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//COPY2 DD DSN=IUJMU107.MERGE1.STEP1.COPY2,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSUT1 DD DSN=IUJMU107.MERGE1.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
MERGECOPY TABLESPACE DSN8D11P.DSN8S11C

COPYDDN (COPY1,COPY2)
NEWCOPY NO

Figure 44. Example of creating a merged incremental copy

//STEP1 EXEC DSNUPROC,UID=’JULTU224.MERGE’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//SYSUT1 DD DSN=JULTU224.MERGE.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *

TEMPLATE T1 UNIT(SYSDA) SPACE CYL
DSN(T1.&SN..T&TI..COPY&IC.&LOCREM.)
LIMIT(5 MB,T5)

TEMPLATE T5 UNIT(3BO)
DSN(T5.&SN..T&TI..COPY&IC.&LOCREM.)

MERGECOPY TABLESPACE DBLT2401.TPLT2401 DSNUM ALL NEWCOPY NO
COPYDDN(T1)

MERGECOPY TABLESPACE DBLT2401.TLLT24A1 DSNUM ALL NEWCOPY NO
COPYDDN(T1)

MERGECOPY TABLESPACE DBLT2401.TLLT24A2 DSNUM ALL NEWCOPY NO
COPYDDN(T1)

MERGECOPY TABLESPACE DBLT2401.TLLT24A3 DSNUM ALL NEWCOPY NO
COPYDDN(T1)

MERGECOPY TABLESPACE DBLT2401.TLLT24A4 DSNUM ALL NEWCOPY NO
COPYDDN(T1)

Figure 45. Example of using templates

364 Utility Guide and Reference

Example 4: Using MERGECOPY with CLONE keyword

The following control statement specifies that MERGECOPY is to process only
image copy data sets that were taken against clone objects.
MERGECOPY TABLESPACE DBIQUD01.TPIQUD01 DSNUM ALL CLONE NEWCOPY YES

COPYDDN(COPYTB1)

Related reference:
Chapter 31, “TEMPLATE,” on page 775

//STEP1 EXEC DSNUPROC,UID=’IUJMU107.MERGE2’,
// UTPROC=’’,SYSTEM=’DSN’
//COPY1 DD DSN=IUJMU107.MERGE2.STEP1.COPY1,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//COPY2 DD DSN=IUJMU107.MERGE2.STEP1.COPY2,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSUT1 DD DSN=IUJMU107.MERGE2.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
MERGECOPY TABLESPACE DSN8D11P.DSN8S11C

COPYDDN (COPY1,COPY2)
NEWCOPY YES

Figure 46. Example of creating a merged full image copy

Chapter 17. MERGECOPY 365

366 Utility Guide and Reference

Chapter 18. MODIFY RECOVERY

The MODIFY online utility with the RECOVERY option deletes certain records
from the DB2 catalog, directory, and DBD. This utility also recycles DB2 version
numbers for reuse.

The records that can be deleted include:
v Records from the SYSIBM.SYSCOPY catalog table
v Records from the SYSIBM.SYSOBDS catalog table
v Related log records from the SYSIBM.SYSLGRNX directory table
v Entries from the DBD
v Records that were written before a specific date
v Records of a specific age
v Records for an entire table space, partition, or data set

You can also ensure that a specified number of records is retained.

Run MODIFY regularly to remove outdated information from SYSIBM.SYSCOPY
and SYSIBM.SYSLGRNX. These tables, particularly SYSIBM.SYSLGRNX, can
become very large and take up a considerable amount of space. By deleting
outdated information from these tables, you can help improve performance for
processes that access data from these tables.

MODIFY RECOVERY automatically removes the SYSCOPY and SYSLGRNX
recovery records that meet the specified criteria for all indexes on the table space
with the COPY YES attribute.

Restriction: If a table space is in REORG-pending (REORP) status because a
RECOVER job was run to recover the data to a point in time before the
materialization of pending definition changes, you cannot run MODIFY
RECOVERY on that table space. You must run a REORG TABLESPACE job to
complete the point-in-time recovery process before you run MODIFY RECOVERY.

Output

MODIFY RECOVERY inserts a SYSIBM.SYSCOPY row with ICTYPE='M' and
STYPE='R' to record the RBA or LRSN of the most recent SYSCOPY or SYSLGRNX
record deleted.

For each full and incremental SYSCOPY record that is deleted from
SYSIBM.SYSCOPY, the utility returns a message that identifyies the name of the
copy data set.

If MODIFY RECOVERY deletes at least one SYSCOPY record, and the target table
space or partition is not recoverable from SYSCOPY records or from system-level
backups, the target object is placed in COPY-pending status.

For table spaces and indexes that are defined with COPY YES, the MODIFY
RECOVERY utility updates the OLDEST_VERSION column of the following
catalog tables:
v SYSIBM.SYSTABLESPACE

© Copyright IBM Corp. 1983, 2013 367

|
|
|
|
|

v SYSIBM.SYSTABLEPART
v SYSIBM.SYSINDEXES
v SYSIBM.SYSINDEXPART

When MODIFY RECOVERY deletes all of the SYSCOPY records for a table space
that contain an OLDEST_VERSION value of 0, MODIFY RECOVERY deletes the
corresponding rows for that table space from SYSIBM.SYSOBDS. The reason is
because point-in-time recovery for the table space is no longer possible.

In all migration modes, RBA and LRSN values are displayed in 10-byte format.
This 10-byte display is unrelated to migration of the catalog or directory,
conversion of individual objects to EXTENDED format, or BSDS conversion. For
recovery purposes, this 10-byte format is the preferred input format for DB2. When
10-byte RBA or LRSN values are specified as input to DB2, conversion to 6-byte
format is performed internally as needed.

Even before the BSDS is converted to Version 11 format on all data sharing
members or the catalog and directory are migrated, 10-byte LRSN values might be
displayed with non-zero digits in the low order 3 bytes. LRSN values captured
before the BSDS is converted continue to be displayed as they were saved until
they are no longer available for display (for example, deleted by MODIFY
RECOVERY). This behavior is normal and to be expected, given the many ways
LRSN values are generated, stored, and handled in DB2. If these LRSN values are
specified as input to DB2, specify them as shown. If the LRSN value contains
non-zero digits in the low order 3 bytes, do not remove them. Any conversion that
might be required takes place inside DB2.

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v IMAGCOPY privilege for the database to run MODIFY RECOVERY
v System DBADM authority
v DBADM, DBCTRL, or DBMAINT authority for the database. If the object on

which the utility operates is in an implicitly created database, DBADM authority
on the implicitly created database or DSNDB04 is required.

v SYSCTRL or SYSADM authority
v DBADM, authority

An ID with installation SYSOPR authority can also execute MODIFY RECOVERY,
but only on a table space in the DSNDB01 or DSNDB06 database.

SYSIBM.SYSCOPY or SYSIBM.SYSLGRNX does not contain records for
DSNDB06.SYSTSCPY, DSNDB01.SYSUTILX, DSNDB01.DBD01, or
DSNDB01.SYSDBDXA. You can run MODIFY RECOVERY on these table spaces,
but you receive message DSNU573I, indicating that no SYSCOPY records were
found. No SYSCOPY or SYSLGRNX records are deleted.

Execution phases of MODIFY RECOVERY

The MODIFY RECOVERY phase operates in these phases:

UTILINIT
Performs initialization and setup

368 Utility Guide and Reference

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

MODIFY
Deletes records

UTILTERM
Performs cleanup

Syntax and options of the MODIFY RECOVERY control statement
The MODIFY RECOVERY utility control statement, with its multiple options,
defines the function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

Syntax diagram

�� MODIFY RECOVERY LIST listdef-name
TABLESPACE table-space-name

database-name.

DSNUM ALL

DSNUM integer
�

�
CLONE

DELETE
AGE integer

(*)
DATE integer

(*)
RETAIN LAST (integer)

LOGLIMIT
GDGLIMIT

LAST (integer)
LOGLIMIT

��

Option descriptions

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name that contains
only table spaces. You can specify one LIST keyword per MODIFY RECOVERY
control statement. Do not specify LIST with the TABLESPACE keyword.
MODIFY is invoked once for each table space in the list. This utility will only
process clone data if the CLONE keyword is specified. The use of CLONED
YES on the LISTDEF statement is not sufficient.

The partitions or partition ranges can be specified in a list.

TABLESPACE database-name.table-space-name
Specifies the database and the table space for which records are to be deleted.

database-name
Specifies the name of the database to which the table space belongs.
database-name is optional.

The default value is DSNDB04.

Chapter 18. MODIFY RECOVERY 369

table-space-name
Specifies the name of the table space.

DSNUM integer
Identifies a single partition or data set of the table space for which records are
to be deleted; ALL deletes records for the entire data set and table space.

integer is the number of a partition or data set.

The default value is ALL.

For a partitioned table space, integer is its partition number. The maximum is
4096.

For a nonpartitioned table space, use the data set integer at the end of the data
set name as cataloged in the VSAM catalog. If image copies are taken by
partition or data set and you specify DSNUM ALL, the table space is placed in
COPY-pending status if a full image copy of the entire table space does not
exist. The data set name has the following format, where y is either I or J, z is
either a 1 or 2, and nnn is the data set integer.
catname.DSNDBx.dbname.tsname.y000z.Annn

If you specify DSNUM n, MODIFY RECOVERY does not delete any SYSCOPY
records for the partitions that have an RBA greater than that of the earliest
point to which the entire table space could be recovered. That point might
indicate a full image copy, a LOAD operation with LOG YES or a REORG
operation with LOG YES.

If you specify DSNUM n for a partitioned table space, MODIFY RECOVERY
deletes SYSCOPY records for all partitioned index spaces as well as for the
partition and updates the version numbers in the SYSIBM.SYSINDEXES
catalog table. However, DB2 does not perform these functions for the
nonpartitioned indexes.

If DSNUM ALL is implicitly or explicitly specified for a table space that has a
partition in PRO restricted status, MODIFY RECOVERY fails. If the partition
that you specify is in PRO restricted status, the RETAIN value is set to
LAST(2).

CLONE
Indicates that MODIFY RECOVERY is to delete SYSCOPY records and
SYSLGRNX records for only clone objects. If CLONE is not specified, only
records for the base objects are deleted. This utility will only process clone data
if the CLONE keyword is specified. The use of CLONED YES on the LISTDEF
statement is not sufficient.

DELETE
Indicates that records are to be deleted. See the DSNUM description for
restrictions on deleting partition statistics.

AGE integer
Deletes all SYSCOPY and SYSLGRNX records that are older than a
specified number of days. SYSLGRNX records that meet the age deletion
criteria specified will be deleted even if no SYSCOPY records are deleted.

integer is the number of days, and can range from 0 to 32767. Records that
are created today are of age 0 and cannot be deleted by this option.

(*) deletes all records, regardless of their age.

DATE integer
Deletes all SYSCOPY and SYSLGRNX records that are written before a

370 Utility Guide and Reference

specified date. SYSLGRNX records that meet the date deletion criteria
specified will be deleted even if no SYSCOPY records are deleted.

integer can be in eight- or six-character format. You must specify a year
(yyyy or yy), month (mm), and day (dd) in the form yyyymmdd or yymmdd.
DB2 checks the system clock and converts six-character dates to the most
recent, previous eight-character equivalent.

(*) deletes all records, regardless of the date on which they were written.

RETAIN
Indicates that records are to be retained. Older records are deleted.

To determine a cleanup date, RETAIN checks only records in
SYSIBM.SYSCOPY with ICTYPE=F (full copy), ICBACKUP=blank (LOCALSITE
primary copy), and DSNUM as stated for the specified table space.

RETAIN works internally with a date, not a complete timestamp. As a result,
more copies might be kept than are specified by RETAIN. For example, if the
most recent five copies have been taken on the same day, and RETAIN LAST
(2) is specified, then all five copies remain in SYSCOPY.

LAST (integer)
Specifies the number of recent records to retain in SYSIBM.SYSCOPY.

LOGLIMIT
Queries the BSDS to determine the oldest archive log timestamp and
deletes records older than this timestamp. For data sharing, DB2 queries
the BSDS of all data sharing members to determine the overall oldest log
timestamp. If the BSDS is not available for one of the members and the
corresponding member is quiesced, this BSDS is ignored.

GDGLIMIT
Retrieves the limit value for the generation data group (GDG) if the most
recent record in SYSIBM.SYSCOPY refers to a generation data set (GDS).
DB2 retains as many records that reference the same GDG as it can
without exceeding this GDG limit value. In this situation, DB2 does not
consider other GDGs that are referenced by SYSIBM.SYSCOPY records.
These records that reference other GDGs are deleted in accordance with the
deletion date.

LAST (integer)
Specifies the number of recent records to retain in SYSIBM.SYSCOPY if
the most recent record in SYSIBM.SYSCOPY refers to a non-GDS.

LOGLIMIT
Queries the BSDS to determine the oldest archive log timestamp if the
most recent record in SYSIBM.SYSCOPY refers to a non-GDS. For data
sharing, DB2 queries the BSDS of all data sharing members to
determine the overall oldest log timestamp, and deletes records older
than this timestamp. If the BSDS is not available for one of the
members and the corresponding member is quiesced, this BSDS is
ignored.

Chapter 18. MODIFY RECOVERY 371

Related reference:
Chapter 15, “LISTDEF,” on page 207
Chapter 31, “TEMPLATE,” on page 775

Before running MODIFY RECOVERY
Certain activities might be required before you run the MODIFY RECOVERY
utility, depending on your situation.

Before you run MODIFY RECOVERY, perform the following actions:
v Make sure that DSNDB01.SYSLGRNX is not in a restrictive state. Because

MODIFY RECOVERY updates DSNDB01.SYSLGRNX as part of its routine
processing, any restrictive status on this table space might cause the utility to
abend.
A prior MODIFY RECOVERY run on DSNDB01.SYSLGRNX could inadvertently
lead to this situation. For example, if all recovery information was deleted by the
specified age or date criteria, DSNDB01.SYSLGRNX is set to COPY-pending
status.

v

Recommendation: If you plan to use MODIFY RECOVERY to delete SYSCOPY
records, first run the REPORT utility with the RECOVERY option. This utility
reports all SYSCOPY records for the object at the specified site. Looking at this
report first helps you avoid deleting the wrong records.

v Remove RECOVER-pending status from any table spaces on which you plan to
run MODIFY RECOVERY. You cannot run MODIFY RECOVERY on a table
space that is in RECOVER-pending status.

v

Recommendation: To improve the performance of MODIFY RECOVERY and
reduce contention on SYSLGRNX, run the REORG TABLESPACE utility on
DSNDB01.SYSLGRNX on a regular basis.

Related concepts:
“Recovery information that REPORT provides” on page 684
Related tasks:
“Resetting RECOVER-pending or REBUILD-pending status” on page 490
Related reference:
Appendix C, “Advisory or restrictive states,” on page 1083
“Syntax and options of the REPORT control statement” on page 679
“Syntax and options of the REORG TABLESPACE control statement” on page 540

Data sets that MODIFY RECOVERY uses
The MODIFY RECOVERY utility uses a number of data sets during its operation.

The following table lists the data sets that MODIFY RECOVERY uses. The table
lists the DD name that is used to identify the data set, a description of the data set,
and an indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

372 Utility Guide and Reference

Table 51. Data sets that MODIFY RECOVERY uses

Data set Description Required?

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

The following object is named in the utility control statement and does not require
a DD statement in the JCL:

Table space
Object for which records are to be deleted.

Concurrency and compatibility for MODIFY RECOVERY
The MODIFY RECOVERY utility has certain concurrency and compatibility
characteristics associated with it.

DB2 treats individual data and index partitions as distinct target objects. Utilities
that operate on different partitions of the same table space or index space are
compatible.

The following table shows the restrictive state that the utility sets on the target
object.

Table 52. Claim classes of MODIFY RECOVERY operations.

Target MODIFY RECOVERY

Table space or partition UTRW

Legend:

UTRW - Utility restrictive state - Read-write access allowed.

MODIFY RECOVERY can run concurrently on the same target object with any
utility except the following utilities:
v COPY TABLESPACE
v LOAD
v MERGECOPY
v MODIFY RECOVERY
v RECOVER TABLESPACE
v REORG TABLESPACE

The target object can be a table space or partition.

How MODIFY RECOVERY deletes rows
You can use the MODIFY RECOVERY utility to delete specific rows from DB2
catalog and directory tables in certain conditions.

Deletion of SYSLGRNX and SYSCOPY rows for a single partition
or the entire table space

You can use the MODIFY RECOVERY utility to delete rows from the
SYSIBM.SYSLGRNX directory table and SYSIBM.SYSCOPY catalog table. Use the
DSNUM option to specify whether to delete rows for a single partition or for the

Chapter 18. MODIFY RECOVERY 373

entire table space. The DSNUM value that you specify (ALL or integer) depends on
the type of image copies that exist for the table space.

Use the following guidelines to determine whether to use DSNUM ALL or
DSNUM integer:
v If image copies exist at only the partition level, use DSNUM integer.
v If image copies exist at only the data set level for a nonpartitioned table space,

use DSNUM ALL. If DSNUM integer is used, SYSLGRNX records are not
deleted.

v If image copies exist at only the table space or index space level, use DSNUM
ALL.

v If image copies exist at both the partition level and the table space or index
space level, use DSNUM ALL.

Restriction: In this case, if you use DSNUM integer, MODIFY RECOVERY does
not delete any SYSCOPY or SYSLGRNX records that are newer than the oldest
recoverable point at the table space or index space level.

v If image copies exist at both the data set level and the table space level for a
nonpartitioned table space, use DSNUM ALL.

Restriction: In this case, if you use DSNUM integer, MODIFY RECOVERY does
not delete any SYSCOPY or SYSLGRNX records that are newer than the oldest
recoverable point at the table space level.

The preceding guidelines pertain to all image copies, regardless of how they were
created, including those copies that were created by COPY, COPYTOCOPY, LOAD,
REORG TABLESPACE, or MERGECOPY.

If MODIFY RECOVERY deletes SYSCOPY or SYSLGRNX rows, it inserts a row
into SYSCOPY with the following values:
v ICTYPE='M'
v STYPE='R'
v A START_RBA value that is equal to the START_RBA value of the SYSCOPY or

SYSLGRNX row that was most recently deleted

However, suppose that MODIFY RECOVERY deletes SYSCOPY rows with an
ICTYPE value of 'C', 'I' or 'Q' but does not delete any SYSLGRNX rows. In this
case, MODIFY RECOVERY does not insert rows into SYSCOPY with the values
ICTYPE='M', STYPE='R'.

Deletion of SYSLGRNX rows when no SYSCOPY rows exist

Use the AGE or DATE options when you want to delete SYSLGRNX rows and no
SYSCOPY rows meet the deletion criteria. The SYSLGRNX rows are deleted based
on the AGE or DATE specified. The RECOVER utility uses this information to
determine whether it has all of the necessary information for the recovery of
objects.

Deletion of recovery rows for indexes

When MODIFY RECOVERY processes a table space, the utility deletes SYSCOPY
and SYSLGRNX rows that meet the AGE and DATE criteria for related indexes
with the COPY YES attribute.

374 Utility Guide and Reference

Deletion of all image copy entries

You can use MODIFY RECOVERY to delete all image copy entries for a table space
or data set. In this case, MODIFY RECOVERY places the object in COPY-pending
(COPY) restrictive status and issues message DSNU572I.

Deletion of SYSOBDS entries

MODIFY RECOVERY removes entries that the database manager inserts in the
SYSOBDS catalog table during the materialization of pending definition changes.

When MODIFY RECOVERY is run on an entire table space, MODIFY RECOVERY
removes the SYSOBDS entries after deletion of the last image copy that contains
version 0 data rows or keys for the table space or associated indexes.
Related tasks:

Materializing pending definition changes (DB2 Administration Guide)
Related reference:

SYSIBM.SYSLGRNX table (DB2 SQL)

SYSIBM.SYSCOPY table (DB2 SQL)
“COPY-pending status” on page 1086
Related information:

DSNU572I (DB2 Messages)

Reclaiming space in the DBD
You can reclaim space in the DBD when you drop a table by using the MODIFY
RECOVERY utility.

Procedure

To reclaim space in the DBD when you drop a table:
1. Commit the drop.
2. Run the REORG utility.
3. Run the COPY utility to make a full image copy of the table space.
4. Run the MODIFY RECOVERY utility with the DELETE or RETAIN option to

delete all previous image copies.

Improving REORG performance after adding a column
After you add a column to a table space, you can take certain steps to improve
performance.

About this task

After a column is added to a table space, the next REORG utility job of that table
space creates default values for the new column, as follows:
v During its UNLOAD phase, the REORG job creates default values by converting

all fields in each row to the external DB2 format.
v During the RELOAD phase, the REORG job then converts the default values to

the internal DB2 format.

Chapter 18. MODIFY RECOVERY 375

|

|
|

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_materializingdefchanges.htm#db2z_materializingdefchanges
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsyslgrnxtable.htm#db2z_sysibmsyslgrnxtable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsyscopytable.htm#db2z_sysibmsyscopytable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu572i.htm#dsnu572i

This REORG processing, referred to as a compression cycle, occurs on each
subsequent run of the REORG utility on this table space. You can improve
performance by avoiding the compression cycle each time that the REORG job
runs on the table space.

Procedure

To improve performance after adding a column to a table space:
1. Run the REORG utility on the table space.
2. Run the COPY utility to make a full image copy of the table space.
3. Run MODIFY RECOVERY with the DELETE or RETAIN option to delete all

previous image copies. MODIFY RECOVERY changes the status of the column
that is added after using the ALTER statement only if SYSCOPY rows need to
be deleted.

Termination or restart of MODIFY RECOVERY
You can terminate and restart the MODIFY RECOVERY utility.

You can use the TERM UTILITY command to terminate MODIFY RECOVERY in any
phase without any integrity exposure.

You can restart a MODIFY RECOVERY utility job, but it starts from the beginning
again.
Related concepts:
“Termination of an online utility with the TERM UTILITY command” on page 36
“Restart of an online utility” on page 39

The effect of MODIFY RECOVERY on version numbers
When you run MODIFY RECOVERY, the utility updates the range of used version
numbers for table spaces and for indexes that are defined with the COPY YES
attribute.

MODIFY RECOVERY updates the OLDEST_VERSION column of the appropriate
catalog table or tables with the version number of the oldest version that has not
yet been applied to the entire object.

If a SYSCOPY record is deleted that has an OLDEST_VERSION number that equals
the CURRENT_VERSION number of the table space or index, MODIFY
RECOVERY updates the OLDEST_VERSION number in the appropriate catalog
table or tables with the CURRENT_VERSION number.

DB2 can reuse any version numbers that are not in the range that is set by the
values in the OLDEST_VERSION and CURRENT_VERSION columns.

DB2 stores the range of used version numbers in the OLDEST_VERSION and
CURRENT_VERSION columns of one or more of the following catalog tables,
depending on the object:
v SYSIBM.SYSTABLESPACE
v SYSIBM.SYSTABLEPART
v SYSIBM.SYSINDEXES
v SYSIBM.SYSINDEXPART

376 Utility Guide and Reference

The OLDEST_VERSION column contains the oldest used version number, and the
CURRENT_VERSION column contains the current version number.

Recycling of version numbers is required when all of the version numbers are
being used. All version numbers are being used when one of the following
situations is true:
v The value in the CURRENT_VERSION column is one less than the value in the

OLDEST_VERSION column.
v The value in the CURRENT_VERSION column is 255 for table spaces or 15 for

indexes, and the value in the OLDEST_VERSION column is 0 or 1.

To recycle version numbers for indexes that are defined with the COPY NO
attribute, run LOAD REPLACE, REBUILD INDEX, REORG INDEX, or REORG
TABLESPACE.
Related concepts:

Table space versions (DB2 Administration Guide)

Sample MODIFY RECOVERY control statements
Use the sample control statements as models for developing your own MODIFY
RECOVERY control statements.

Example 1: Deleting SYSCOPY and SYSLGRNX records that are
over a certain age

The following control statement specifies that the MODIFY RECOVERY utility is to
delete all SYSCOPY and SYSLGRNX records that are older than 90 days for table
space DSN8D81A.DSN8S81E.
//STEP1 EXEC DSNUPROC,UID=’IUIQU2UD.MODRCV1’,
// UTPROC=’’,SYSTEM=’DSN’
//SYSIN DD *
MODIFY RECOVERY TABLESPACE DSN8D11A.DSN8S11E DELETE AGE(90)
/*

Example 2: Deleting SYSCOPY and SYSLGRNX records that are
older than a certain date

The following control statement specifies that MODIFY RECOVERY is to delete all
SYSCOPY and SYSLGRNX records that were written before 10 September 2002.
MODIFY RECOVERY TABLESPACE DSN8D11A.DSN8S11D DELETE DATE(20020910)

Example 3: Deleting SYSCOPY records for partitions

The following control statements specifies that MODIFY RECOVERY is to delete
the following SYSCOPY records for table space TU5AP053:
v Any records in partition 2 that are older than 5 days
v Any records in partition 3 that were written before 9 October 2006

Chapter 18. MODIFY RECOVERY 377

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_tablespaceversions.htm#db2z_tablespaceversions

Example 4: Deleting all SYSCOPY records for objects in a list
and viewing the results

In the following example job, the LISTDEF utility control statements define three
lists (L1, L2, L3). The first group of REPORT utility control statements then specify
that the utility is to report recovery information for the objects in these lists. Next,
the MODIFY RECOVERY control statement specifies that the utility is to delete all
SYSCOPY records for the objects in the L1 list. Finally, the second group of
REPORT control statements specify that the utility is to report the recovery
information for the same three lists. In this second report, no information will be
reported for the objects in the L1 list because all of the SYSCOPY records have
been deleted.

Example 5: Deleting SYSCOPY and SYSLGRNX records for clone
objects

The following control statement specifies that MODIFY RECOVERY is to delete
SYSCOPY records and SYSLGRNX records for only clone objects.
MODIFY RECOVERY TABLESPACE DBKQBL01.TPKQBL01

CLONE
DELETE AGE(*)

Example 6: Retaining SYSCOPY and SYSLGRNX records of a
GDG

The following control statement specifies that MODIFY RECOVERY is to retain as
many recent records in SYSIBM.SYSCOPY as defined in the GDG limit.
MODIFY RECOVERY TABLESPACE DBKQBL01.TPKQBL01 RETAIN GDGLIMIT

//STEP2 EXEC DSNUPROC,UID=’FUN5U053.STEP2’,UTPROC=’’,SYSTEM=’SSTR’
//SYSIN DD *

MODIFY RECOVERY TABLESPACE TU5AP053
DSNUM 2
DELETE AGE(5)

MODIFY RECOVERY TABLESPACE TU5AP053
DSNUM 3
DELETE DATE(061009)

/*

Figure 47. Example MODIFY RECOVERY statements that delete SYSCOPY records for
partitions

//STEP4 EXEC DSNUPROC,UID=’JULTU224.RCV1’,
// UTPROC=’’,SYSTEM=’SSTR’
//SYSIN DD *

LISTDEF L1 INCLUDE TABLESPACE DBLT2401.T*
LISTDEF L2 INCLUDE INDEXSPACE DBLT2401.I*

LISTDEF L3 INCLUDE INDEX IXLT2402
REPORT RECOVERY TABLESPACE LIST L1
REPORT RECOVERY INDEXSPACE LIST L2

REPORT RECOVERY INDEX LIST L3
MODIFY RECOVERY LIST L1

DELETE DATE(*)

REPORT RECOVERY TABLESPACE LIST L1
REPORT RECOVERY INDEXSPACE LIST L2
REPORT RECOVERY INDEX LIST L3

/*

Figure 48. Example MODIFY RECOVERY statement that deletes all SYSCOPY records

378 Utility Guide and Reference

Example 7: Retaining SYSCOPY and SYSLGRNX records

The following control statement specifies that MODIFY RECOVERY is to retain 4
recent records in SYSIBM.SYSCOPY.
MODIFY RECOVERY TABLESPACE DBKQBL01.TPKQBL01 RETAIN LAST (4)

Related reference:
Chapter 15, “LISTDEF,” on page 207
Chapter 27, “REPORT,” on page 677

Chapter 18. MODIFY RECOVERY 379

380 Utility Guide and Reference

Chapter 19. MODIFY STATISTICS

The MODIFY STATISTICS online utility deletes unwanted statistics history records
from the corresponding catalog tables. You can remove statistics history records
that were written before a specific date, or you can remove records of a specific
age. You can delete records for an entire table space, index space, or index.

Run MODIFY STATISTICS regularly to clear outdated information from the
statistics history catalog tables. By deleting outdated information from those tables,
you can improve performance for processes that access data from those tables.

Restriction: MODIFY STATISTICS does not delete statistics history records for
clone tables because statistics are not collected for these tables.

Output

MODIFY STATISTICS deletes rows from the following catalog tables:
v SYSIBM.SYSCOLDIST_HIST
v SYSIBM.SYSCOLUMNS_HIST
v SYSIBM.SYSINDEXES_HIST
v SYSIBM.SYSINDEXPART_HIST
v SYSIBM.SYSINDEXSTATS_HIST
v SYSIBM.SYSLOBSTATS_HIST
v SYSIBM.SYSTABLEPART_HIST
v SYSIBM.SYSTABSTATS_HIST
v SYSIBM.SYSTABLES_HIST
v SYSKEYTARGETS_HIST
v SYSKEYTGTDIST_HIST

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v STATS privilege for the database to run MODIFY STATISTICS.
v DBADM, DBCTRL, or DBMAINT authority for the database. If the object on

which the utility operates is in an implicitly created database, DBADM authority
on the implicitly created database or DSNDB04 is required.

v SQLADM authority.
v System DBADM authority.
v SYSCTRL or SYSADM authority.

A user ID with installation SYSOPR authority can also execute MODIFY
STATISTICS, but only on a table space in the DSNDB01 or DSNDB06 database.

Execution phases of MODIFY STATISTICS

The MODIFY STATISTICS utility operates in these phases:

Phase Description

UTILINIT
Performs initialization and setup

© Copyright IBM Corp. 1983, 2013 381

MODIFYS
Deletes records

UTILTERM
Performs cleanup

Syntax and options of the MODIFY STATISTICS control statement
The MODIFY STATISTICS utility control statement, with its multiple options,
defines the function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

Syntax diagram

�� MODIFY STATISTICS LIST listdef-name
TABLESPACE table-space-name

database-name.
INDEXSPACE index-space-name

database-name.
INDEX index-name

creator-id.

�

� DELETE ALL
ACCESSPATH
SPACE

AGE (integer)
(*)

DATE (integer)
(*)

��

Option descriptions

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. You cannot
repeat the LIST keyword or specify it with TABLESPACE, INDEXSPACE, or
INDEX.

The list can contain index spaces, table spaces, or both. MODIFY STATISTICS
is invoked once for each object in the list.

The partitions or partition ranges can be specified in a list.

TABLESPACE database-name.table-space-name
Specifies the database and the table space for which catalog history records are
to be deleted.

database-name
Specifies the name of the database to which the table space belongs.
database-name is optional.

The default value is DSNDB04.

table-space-name
Specifies the name of the table space for which statistics are to be deleted.

382 Utility Guide and Reference

INDEXSPACE database-name.index-space-name
Specifies the qualified name of the index space for which catalog history
information is to be deleted. The utility lists the name in the
SYSIBM.SYSINDEXES table.

database-name
Optionally specifies the name of the database to which the index space
belongs.

The default value is DSNDB04.

index-space-name
Specifies the name of the index space for which the statistics are to be
deleted.

INDEX creator-id.index-name
Specifies the index for which catalog history information is to be deleted.

creator-id
Optionally specifies the creator of the index.

The default value is DSNDB04.

index-name
Specifies the name of the index for which the statistics are to be deleted.
Enclose the index name in quotation marks if the name contains a blank.

DELETE
Indicates that records are to be deleted.

ALL
Deletes all statistics history rows that are related to the specified object
from all catalog history tables.

Rows from the following history tables are deleted only when you specify
DELETE ALL:
v SYSTABLES_HIST
v SYSTABSTATS_HIST
v SYSINDEXES_HIST
v SYSINDEXSTATS_HIST
v SYSKEYTARGETS_HIST

ACCESSPATH
Deletes all access-path statistics history rows that are related to the
specified object from the following history tables:
v SYSIBM.SYSCOLDIST_HIST
v SYSIBM.SYSCOLUMNS_HIST
v SYSKEYTGTDIST_HIST

SPACE
Deletes all space-tuning statistics history rows that are related to the
specified object from the following history tables:
v SYSIBM.SYSINDEXPART_HIST
v SYSIBM.SYSTABLEPART_HIST
v SYSIBM.SYSLOBSTATS_HIST

AGE (integer)
Deletes all statistics history rows that are related to the specified object and
that are older than a specified number of days.

Chapter 19. MODIFY STATISTICS 383

(integer)
Specifies the number of days in a range from 0 to 32 767. This option
cannot delete records that are created today (age 0).

(*)
Deletes all records, regardless of their age.

DATE (integer)
Deletes all statistics history rows that were written before a specified date.

(integer)
Specifies the date in an eight-character format. Specify a year (yyyy), month
(mm), and day (dd) in the form yyyymmdd.

(*)
Deletes all records, regardless of the date on which they were written.

Data sets that MODIFY STATISTICS uses
The MODIFY STATISTICS utility uses a number of data sets during its operation.

The following table lists the data sets that MODIFY STATISTICS uses. The table
lists the DD name that is used to identify the data set, a description of the data set,
and an indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 53. Data sets that MODIFY STATISTICS uses

Data set Description Required?

SYSIN Input data set that contains the utility
control statement

Yes

SYSPRINT Output data set for messages Yes

The following object is named in the utility control statement and does not require
a DD statement in the JCL:

Table space or index space
Object for which records are to be deleted.

Concurrency and compatibility for MODIFY STATISTICS
The MODIFY STATISTICS utility has certain concurrency and compatibility
characteristics associated with it.

DB2 treats individual data and index partitions as distinct target objects. Utilities
that operate on different partitions of the same table space or index space are
compatible.

The following table shows the restrictive state that the utility sets on the target
object.

Table 54. Claim classes of MODIFY STATISTICS operations.

Target MODIFY STATISTICS

Table space, index, or index space UTRW

Legend:

UTRW - Utility restrictive state - read-write access allowed.

384 Utility Guide and Reference

Guidelines for deciding which statistics history rows to delete
After analyzing trends by using the relevant historical catalog information and
possibly taking actions based on this information, consider deleting all or part of
the statistics history catalog rows.

Deleting outdated information from the statistics history catalog tables can
improve performance for processes that access data from those tables. You also
make available the space in the catalog. Then, the next time you update the
relevant statistics by using RUNSTATS TABLESPACE, REBUILD INDEX, or
REORG INDEX, DB2 repopulates the statistics history catalog tables with more
recent historical data. Examining this data lets you determine the efficacy of any
adjustments that you made as a result of your previous analysis.

Be aware that when you manually insert, update, or delete catalog information,
DB2 does not store the historical information for those operations in the historical
catalog tables.

Deletion of specific statistics history rows
The MODIFY STATISTICS utility lets you delete some or all statistics history rows
for a table space, an index space, or an index.

You can choose to delete only the statistics rows that relate to access path selection
by specifying the ACCESSPATH option. Alternatively, you can delete the rows that
relate to space statistics by using the SPACE option. To delete rows in all statistics
history catalog tables, including the SYSIBM.SYSTABLES_HIST catalog table, you
must specify the DELETE ALL option in the utility control statement.

To delete statistics from the RUNSTATS history tables, you can either use the
MODIFY STATISTICS utility or issue SQL DELETE statements. The MODIFY
STATISTICS utility simplifies the purging of old statistics without requiring you to
write the SQL DELETE statements. You can also delete rows that meet the age and
date criteria by specifying the corresponding keywords (AGE and DATE) for a
particular object.

To avoid time outs when you delete historical statistics with MODIFY STATISTICS,
you should increase the LOCKMAX parameter for DSNDB06.SYSHIST with ALTER
TABLESPACE.

Termination or restart of MODIFY STATISTICS
You can terminate and restart the MODIFY STATISTICS utility.

You can use the TERM UTILITY command to terminate the MODIFY STATISTICS
utility in any phase.

You can restart a MODIFY STATISTICS utility job, but it starts from the beginning
again.

Chapter 19. MODIFY STATISTICS 385

Related concepts:
“Restart of an online utility” on page 39

Sample MODIFY STATISTICS control statements
Use the sample control statements as models for developing your own MODIFY
STATISTICS control statements.

Example 1: Deleting SYSIBM.SYSTABLES_HIST records by age

The following control statement specifies that the MODIFY STATISTICS utility is
delete all statistics history records for table space DSN8D81A.DSN8S81E that are
older than 60 days.
//STEP1 EXEC DSNUPROC,UID=’IUIQU2UD.MODSTAT1’,
// UTPROC=’’,SYSTEM=’DSN’
//SYSIN DD *

MODIFY STATISTICS TABLESPACE DSN8D11A.DSN8S11E
DELETE ALL
AGE 60

/*

Example 2: Deleting access path records for all objects in a list

The following MODIFY STATISTICS control statement specifies that the utility is to
delete access-path statistics history rows that were created before 17 April 2000 for
objects in the specified list. The list, M1, is defined in the preceding LISTDEF
control statement and includes table spaces DB0E1501.TL0E1501 and
DSN8D81A.DSN8S81E.

Example 3: Deleting space-tuning statistics records for an index
by age

The following control statement specifies that MODIFY STATISTICS is to delete
space-tuning statistics records for index ADMF001.IXOE15S1 that are older than
one day.

//STEP9 EXEC DSNUPROC,UID=’JUOEU115.MDFYL9’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

LISTDEF M1 INCLUDE TABLESPACE DBOE1501.TLOE1501
INCLUDE TABLESPACE DSN8D81A.DSN8S81E

MODIFY STATISTICS LIST M1
DELETE ACCESSPATH DATE(20000417)

/*

Figure 49. MODIFY STATISTICS control statement that specifies that access path history
records are to be deleted

386 Utility Guide and Reference

Example 4: Deleting all statistics history records for an index
space

The following control statement specifies that MODIFY STATISTICS is to delete all
statistics history records for index space DBOE1501.IUOE1501. Note that the
deleted records are not limited by date because (*) is specified.

//STEP9 EXEC DSNUPROC,UID=’JUOEU115.MOFYS9’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

MODIFY STATISTICS INDEX ADMF001.IXOE15S1
DELETE SPACE AGE 1

/*

Figure 50. MODIFY STATISTICS control statement that specifies that space-tuning statistics
records are to be deleted

//STEP8 EXEC DSNUPROC,UID=’JUOEU115.MDFYL8’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

MODIFY STATISTICS INDEXSPACE DBOE1501.IUOE1501
DELETE ALL DATE (*)

/*

Figure 51. MODIFY STATISTICS control statement that specifies that all statistics history
records are to be deleted

Chapter 19. MODIFY STATISTICS 387

388 Utility Guide and Reference

Chapter 20. OPTIONS

The OPTIONS online utility control statement specifies processing options that are
applicable across many utility executions in a job step.

By specifying various options, you can:
v Preview utility control statements
v Preview LISTDEF or TEMPLATE definitions
v Override library names for LISTDEF lists or TEMPLATE definitions
v Specify how to handle errors during list processing
v Alter the return code for warning messages
v Restore all default options

You can repeat an OPTIONS control statement within the SYSIN DD statement. If
you repeat the control statement, it entirely replaces any prior OPTIONS control
statement.

Output

The OPTIONS control statement sets the specified processing options for the
duration of the job step, or until replaced by another OPTIONS control statement
within the same job step.

Authorization required

The OPTIONS control statement performs setup for subsequent control statements.
The OPTIONS statement itself requires no privileges to execute.

Execution phases of OPTIONS

The OPTIONS control statement executes entirely in the UTILINIT phase, in which
it performs setup for the subsequent utility.

Syntax and options of the OPTIONS control statement
The OPTIONS utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

© Copyright IBM Corp. 1983, 2013 389

Syntax diagram

�� OPTIONS
PREVIEW LISTDEFDD ddname TEMPLATEDD ddname FILSZ integer event-spec

OFF
KEY key-value

��

event-spec:

�� EVENT (
ITEMERROR,HALT

ITEMERROR,SKIP ,

WARNING,RC4

WARNING,RC0
WARNING,RC8

) ��

Option descriptions

PREVIEW
Specifies that the utility control statements that follow are to run in PREVIEW
mode. The utility checks for syntax errors in all utility control statements, but
normal utility execution does not take place. If the syntax is valid, the utility
expands all LISTDEF lists and TEMPLATE DSNs that appear in SYSIN and
prints results to the SYSPRINT data set.

PREVIEW evaluates and expands all LISTDEF statements into an actual list of
table spaces or index spaces. It evaluates TEMPLATE DSNs and uses variable
substitution for actual data set names when possible. It also expands lists from
the SYSLISTD DD and TEMPLATE DSNs from the SYSTEMPL DD that a
utility invocation references.

A definitive preview of TEMPLATE DSN values is not always possible.
Substitution values for some variables, such as &DATE., &TIME., &SEQ. and
&PART., can change at execution time. In some cases, PREVIEW generates
approximate data set names. The OPTIONS utility substitutes unknown
character variables with the character string "UNKNOWN" and unknown
integer variables with zeroes.

Instead of OPTIONS PREVIEW, you can use a JCL PARM to activate preview
processing. Although the two functions are identical, use JCL PARM to
preview an existing set of utility control statements. Use the OPTION
PREVIEW control statement when you invoke DB2 utilities through a stored
procedure.

The JCL PARM is specified as the third JCL PARM of DSNUTILB and on the
UTPROC variable of DSNUPROC, as shown in the following JCL:
//STEP1 EXEC DSNUPROC,UID=’JULTU106.RECOVE1’,
// UTPROC=’PREVIEW’,SYSTEM=’SSTR’

The PARM value PREVIEW causes the utility control statements in that job
step to be processed for preview only. The LISTDEF and TEMPLATE control
statements are expanded, but the utility does not execute.

OPTIONS PREVIEW is identical to the PREVIEW JCL parameter, except that
you can specify a subsequent OPTIONS statement to turn off the preview for

390 Utility Guide and Reference

OPTIONS PREVIEW. Absence of the PREVIEW keyword in the OPTION
control statement turns off preview processing, but it does not override the
PREVIEW JCL parameter, which, if specified, remains in effect for the entire
job step.

LISTDEFDD ddname
Specifies the ddname of the LISTDEF definition library. A LISTDEF library is a
data set that contains only LISTDEF utility control statements. This data set is
processed only when a referenced LIST is not found in SYSIN.

The default value is SYSLISTD.

TEMPLATEDD ddname
Specifies the ddname of the TEMPLATE definition library. A TEMPLATE library
is a data set that contains only TEMPLATE utility control statements. This data
set is processed only when a referenced name does not exist in the job step as
a DD name and is not found in SYSIN as a TEMPLATE name.

The default value is SYSTEMPL.

FILSZ integer
Specifies a file size in megabytes and overrides the file size for the sort
program when sort work data sets are allocated by the utility with system
parameter UTSORTAL set to YES. Only use this keyword under the direction
of IBM Software Support.

EVENT
Specifies one or more pairs of utility processing events and the matching action
for the event. Not all actions are valid for all events.

The parentheses and commas in the EVENT operand are currently optional but
they may be required in a future release.

ITEMERROR

Specifies how utility processing is to handle errors during list processing.
Specifically, this keyword indicates the effect on processing in response to
return code 8. By default, utility processing stops (HALT). The ITEMERROR
event does not include abnormal terminations (abends).

Note that for the QUIESCE utility, the indexes for the table spaces in the list, if
any, are considered as list items for the purposes of the ITEMERROR event.
ITEMERROR affects how errors are handled on both the table spaces and the
indexes.

HALT
Specifies that the utility is to stop after the event.

SKIP
Ignores the event and skips the list item. Processing continues with the
next item in the list.

SKIP applies only during the processing of a valid list. SKIP does not
apply if a utility detects that a list is not valid for the utility that is
invoked. In that case, the list is rejected with an error message and the
processing of the list is not initiated.

If any of the items in a list is skipped, the utility produces a return code of
8, which terminates the job step. The following code shows an OPTIONS
statement with the SKIP option:

OPTIONS EVENT (ITEMERROR, SKIP)
COPY LISTA
COPY LISTB

Chapter 20. OPTIONS 391

If LISTA contains ten objects and one object produces a return code 8
during the COPY, the other nine objects in the list are copied successfully.
The job step ends with a return code 8 and COPY LISTB is not executed.

WARNING
Specifies a response to the return code message event.

Use WARNING to alter the return code for warning messages. You can alter
the return code from message DSNU010I with this option. If you alter the
message return code, message DSNU1024I is issued to document the new
return code.

Action choices are as follows:

RC0
Lowers the final return code of a single utility invocation that ends in a
return code 4 to a return code of 0. Use RC0 to force a return code of 0 for
warning messages.

Use this option only when return code 4 is expected, is acceptable, and
other mechanisms are in place to validate the results of a utility execution.

RC4
Specifies that return codes for warning messages are to remain unchanged.
Use RC4 to override a previous OPTIONS WARNING specification in the
same job step.

RC8
Raises the final return code of a single utility invocation that ends in a
return code 4 to a return code of 8. Use RC8 to force a return code of 8 for
warning messages. The return code of 8 causes the job step to terminate
and subsequent utility control statements are not executed.

OFF
Specifies that all default options are to be restored. OPTIONS OFF does not
override the PREVIEW JCL parameter, which, if specified, remains in effect for
the entire job step. You cannot specify any other OPTIONS keywords with
OPTIONS OFF.

OPTIONS OFF is equivalent to OPTIONS LISTDEFDD SYSLISTD
TEMPLATEDD SYSTEMPL EVENT (ITEMERROR, HALT, WARNING, RC4).

KEY
Specifies an option that you should use only when you are instructed by IBM
Software Support. OPTIONS KEY is followed by a single operand that IBM
Software Support provides when needed.

Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

Concurrency and compatibility for OPTIONS
The OPTIONS utility has certain concurrency and compatibility characteristics
associated with it.

OPTIONS is a utility control statement that you can use to set up an environment
for another utility to follow. The OPTIONS statement is stored until a specific
utility references the statement. When referenced by another utility, the list is

392 Utility Guide and Reference

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

expanded. At that time, the concurrency and compatibility restrictions of that
utility apply, with the additional restriction that the catalog tables that are
necessary to expand the list must be available for read-only access.

Executing statements in preview mode
You can execute OPTIONS utility control statements in preview mode. In this case,
the OPTIONS online utility checks for syntax errors in all utility control statements.
Normal utility execution does not occur.

About this task

Statistics profiles can be previewed using the PREVIEW option. Under normal
execution, statistics profiles are stored in the SYSIBM.SYSTABLES_PROFILES
catalog table. When executing RUNSTATS with the PREVIEW option, DB2 only
prints the statistics profile for each table to SYSPRINT and normal utility execution
does not take place.

Please note that the profile text is displayed prior to parsing for syntactical errors.

The contents of the profile is displayed using DSNU1376I.

Procedure

To execute utility control statements in preview mode:

Specify the PREVIEW option in the OPTIONS control statement. Control
statements are previewed for use with LISTDEF lists and TEMPLATE definitions
but the specified options are not actually executed.
Related reference:
“Syntax and options of the RUNSTATS control statement” on page 722

Specifying LISTDEF and TEMPLATE libraries
You can override the names of the optional library data sets.

Procedure

To specify LISTDEF and TEMPLATE libraries:

Specify the LISTDEFDD option and the TEMPLATEDD option in the OPTIONS
control statement to override the names of the optional library data sets.
Related tasks:
“Creating LISTDEF libraries” on page 223
Related reference:
Chapter 15, “LISTDEF,” on page 207

Overriding standard utility processing behavior
You can alter settings for warning return codes and error handling during list
processing.

Chapter 20. OPTIONS 393

Procedure

To override standard utility processing behavior:

Specify the EVENT option in the OPTIONS control statement.

Termination or restart of OPTIONS
You can terminate and restart the OPTIONS utility.

You can terminate an OPTIONS utility job by using the TERM UTILITY command if
you submitted the job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart an OPTIONS utility job, but it starts from the beginning again. If
you are restarting this utility as part of a larger job in which OPTIONS completed
successfully, but a later utility failed, do not change the OPTIONS utility control
statement, if possible. If you must change the OPTIONS utility control statement,
use caution; any changes can cause the restart processing to fail. For example, if
you specify a valid OPTIONS statement in the initial invocation, and then on
restart, specify OPTIONS PREVIEW, the job fails.
Related concepts:
“Restart of an online utility” on page 39

Sample OPTIONS control statements
Use the sample control statements as models for developing your own OPTIONS
control statements.

Example 1: Checking control statement syntax and previewing
lists and TEMPLATE data set names

The following OPTIONS utility control statement specifies that the subsequent
utility control statements are to run in PREVIEW mode. In PREVIEW mode, DB2
checks for syntax errors in all utility control statements, but normal utility
execution does not take place. If the syntax is valid, DB2 expands the CPYLIST list
and the data set names in the COPYLOC and COPYREM TEMPLATE utility
control statements and prints these results to the SYSPRINT data set.

OPTIONS PREVIEW
TEMPLATE COPYLOC UNIT(SYSDA)

DSN(&DB..&TS..D&JDATE..&STEPNAME..COPY&IC.&LOCREM.&PB.)
DISP(NEW,CATLG,CATLG) SPACE(200,20) TRK
VOLUMES(SCR03)

TEMPLATE COPYREM UNIT(SYSDA)
DSN(&DB..&TS..&UT..T&TIME..COPY&IC.&LOCREM.&PB.)
DISP(NEW,CATLG,CATLG) SPACE(100,10) TRK

LISTDEF CPYLIST INCLUDE TABLESPACES DATABASE DBLT0701
COPY LIST CPYLIST FULL YES

COPYDDN(COPYLOC,COPYLOC)
RECOVERYDDN(COPYREM,COPYREM)
SHRLEVEL REFERENCE

Figure 52. Example OPTIONS statement for checking syntax and previewing lists and
templates.

394 Utility Guide and Reference

Example 2: Specifying LISTDEF and TEMPLATE definition
libraries

In the following example, the OPTIONS control statements specify the DD names
of the LISTDEF definition libraries and the TEMPLATE definition libraries.

The first OPTIONS statement specifies that the LISTDEF definition library is
identified by the V1LIST DD statement and the TEMPLATE definition library is
identified by the V1TEMPL DD statement. These definition libraries apply to the
subsequent COPY utility control statement. Therefore, if DB2 does not find the
PAYTBSP list in SYSIN, it searches the V1LIST library, and if DB2 does not find the
PAYTEMP1 template in SYSIN, it searches the V1TEMP library.

The second OPTIONS statement is similar to the first, but it identifies different
libraries and applies to the second COPY control statement. This second COPY
control statement looks similar to the first COPY job. However, this statement
processes a different list and uses a different template. Whereas the first COPY job
uses the PAYTBSP list from the V1LIST library, the second COPY job uses the
PAYTBSP list from the V2LIST library. Also, the first COPY job uses the PAYTEMP1
template from the V1TEMPL library, the second COPY job uses the PAYTEMP1
template from the V2TEMPL library.
OPTIONS LISTDEFDD V1LIST TEMPLATEDD V1TEMPL
COPY LIST PAYTBSP COPYDDN(PAYTEMP1,PAYTEMP1)

OPTIONS LISTDEFDD V2LIST TEMPLATEDD V2TEMPL
COPY LIST PAYTBSP COPYDDN(PAYTEMP1,PAYTEMP1)

Example 3: Forcing a return code 0

In the following example, the first OPTIONS control statement forces a return code
of 0 for the subsequent MODIFY RECOVERY utility control statement. Ordinarily,
this statement ends with a return code of 4 because it specifies that DB2 is to
delete all SYSCOPY and SYSLGRNX records for table space A.B. The second
OPTIONS control statement restores the default options, so that no return codes
will be overridden for the second MODIFY RECOVERY control statement.
OPTIONS EVENT(WARNING,RC0)
MODIFY RECOVERY TABLESPACE A.B DELETE AGE(*)
OPTIONS OFF
MODIFY RECOVERY TABLESPACE C.D DELETE AGE(30)

Example 4: Checking syntax and skipping errors while
processing list objects

In the following control statement, the first OPTIONS utility control statement
specifies that the subsequent utility control statements are to run in PREVIEW
mode. In PREVIEW mode, DB2 checks for syntax errors in all utility control
statements, but normal utility execution does not take place. If the syntax is valid,
DB2 expands the three lists (LIST1_LISTDEF, LIST2_LISTDEF, and LIST3_LISTDEF)
and prints these results to the SYSPRINT data set.

The second OPTIONS control statement specifies how DB2 is to handle return
codes of 8 in any subsequent utility statements that process a valid list. If
processing of a list item produces return code 8, DB2 skips that item, and
continues to process the rest of the items in the list, but DB2 does not process the
next utility control statement. Instead, the job ends with return code 8.

Chapter 20. OPTIONS 395

OPTIONS PREVIEW
LISTDEF COPY1_LISTDEF

INCLUDE TABLESPACES TABLESPACE DSNDB01.SPT01
INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSGPAUT
INCLUDE TABLESPACES TABLESPACE DBA91302.T?A9132*

LISTDEF COPY2_LISTDEF
INCLUDE TABLESPACES TABLESPACE DBA91303.TLA9133A
INCLUDE TABLESPACES TABLESPACE DBA91303.TSA9133B
INCLUDE TABLESPACES TABLESPACE DBA91303.TPA9133C
INCLUDE TABLESPACES TABLESPACE DBA91304.TLA9134A
INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSUSER
INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSSTATS
INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSDDF

LISTDEF COPY3_LISTDEF
INCLUDE TABLESPACES TABLESPACE DBA91304.TSA9134B
INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSHIST
INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSGRTNS
INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSJAVA
INCLUDE TABLESPACES TABLESPACE DBA91304.TPA9134C

OPTIONS EVENT(ITEMERROR,SKIP)
TEMPLATE TMP1 UNIT(SYSDA) DISP(MOD,CATLG,CATLG)

VOLUMES(SCR03)
DSN(DH109013.&TS..COPY&ICTYPE.&LOCREM.&PRIBAC.)

COPY LIST COPY1_LISTDEF SHRLEVEL REFERENCE
COPYDDN (TMP1)
RECOVERYDDN (TMP1)
FULL YES

COPY LIST COPY2_LISTDEF SHRLEVEL REFERENCE
COPYDDN (TMP1,TMP1)
FULL YES

COPY LIST COPY3_LISTDEF SHRLEVEL REFERENCE
COPYDDN (TMP1,TMP1)
RECOVERYDDN (TMP1,TMP1)
FULL YES

Figure 53. Example OPTIONS statements for checking syntax and skipping errors

396 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Chapter 21. QUIESCE

The QUIESCE utility establishes a quiesce point for a table space, partition, table
space set, or list of table spaces and table space sets. A quiesce point is a point at
which data is consistent across these objects. You can later recover a table space to
its quiesce point by using the RECOVER utility.

Output

When you request that the QUIESCE utility take a quiesce point, the quiesce point
is the current log RBA or log record sequence number (LRSN). QUIESCE then
records the quiesce point in the SYSIBM.SYSCOPY catalog table.

A quiesce point is not essential when you plan for point-in-time recoveries. The
RECOVER utility can recover data to a prior point-in-time with consistency
without a quiesce point. The utility can recover objects with transactional
consistency, which means that the objects contain only data that has been
committed. However, recovering objects to a quiesce point can be faster because no
work must be backed out. You might also want to establish quiesce points for
related sets of objects if you need to plan for a point-in-time recovery for the entire
set.

Related information:

“Point-in-time recovery” on page 479
“Common quiesce points” on page 403

With the WRITE(YES) option, QUIESCE writes changed pages for the table spaces
and their indexes from the DB2 buffer pool to disk. The catalog table SYSCOPY
records the current RBA and the timestamp of the quiesce point. A row with
ICTYPE='Q' is inserted into SYSIBM.SYSCOPY for each table space that is
quiesced. DB2 also inserts a SYSCOPY row with ICTYPE='Q' for any indexes
(defined with the COPY YES attribute) over a table space that is being quiesced.
(Table spaces DSNDB06.SYSTSCPY, DSNDB01.DBD01, DSNDB01.SYSUTILX, and
DSNDB01.SYSDBDXA are an exception; their information is written to the log.)

In all migration modes, RBA and LRSN values are displayed in 10-byte format.
This 10-byte display is unrelated to migration of the catalog or directory,
conversion of individual objects to EXTENDED format, or BSDS conversion. For
recovery purposes, this 10-byte format is the preferred input format for DB2. When
10-byte RBA or LRSN values are specified as input to DB2, conversion to 6-byte
format is performed internally as needed.

Even before the BSDS is converted to Version 11 format on all data sharing
members or the catalog and directory are migrated, 10-byte LRSN values might be
displayed with non-zero digits in the low order 3 bytes. LRSN values captured
before the BSDS is converted continue to be displayed as they were saved until
they are no longer available for display (for example, deleted by MODIFY
RECOVERY). This behavior is normal and to be expected, given the many ways
LRSN values are generated, stored, and handled in DB2. If these LRSN values are
specified as input to DB2, specify them as shown. If the LRSN value contains
non-zero digits in the low order 3 bytes, do not remove them. Any conversion that
might be required takes place inside DB2.

© Copyright IBM Corp. 1983, 2013 397

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v IMAGCOPY privilege for the database
v DBADM, DBCTRL, or DBMAINT authority for the database. If the object on

which the utility operates is in an implicitly created database, DBADM authority
on the implicitly created database or DSNDB04 is required.

v System DBADM authority
v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute QUIESCE, but only on
a table space in the DSNDB01 or DSNDB06 database.

You can specify DSNDB01.SYSUTILX, but you cannot include it in a list with other
table spaces to be quiesced. Recovery to the current catalog and directory table
spaces is preferred and recommended. However, if you want a point-in-time
recovery of the catalog and directory table spaces, a separate quiesce of
DSNDB06.SYSTSCPY is required after a quiesce of the other catalog and directory
table spaces.

Execution phases of QUIESCE

The QUIESCE utility operates in these phases:

Phase Description

UTILINIT
Initialization and setup

QUIESCE
Determining the quiesce point and updating the catalog

UTILTERM
Cleanup

Syntax and options of the QUIESCE control statement
The QUIESCE utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After you
create the statement, save it in a sequential or partitioned data set. When you
create the JCL for running the job, use the SYSIN DD statement to specify the
name of the data set that contains the utility control statement.

398 Utility Guide and Reference

|
|
|
|
|
|

Syntax diagram

�� QUIESCE

�

LIST listdef-name

TABLESPACE table-space-name
database-name. PART integer

TABLESPACESET table-space-name
TABLESPACE database-name.

�

�
CLONE

WRITE YES

WRITE NO
��

Option descriptions

The purpose of most of the QUIESCE control statement options is to specify which
objects to quiesce. You can specify as many objects in your QUIESCE job as
allowed by available memory in the batch address space and in the DB2 DBM1
address space. If you specify a table space more than once, utility processing
continues, and the table space is quiesced only once. QUIESCE issues return code 4
and warning message DSNU533I to alert you of the duplication.

Use the following options to specify which objects to quiesce:

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name that contains
only table spaces. The utility allows one LIST keyword for each QUIESCE
control statement. Do not specify LIST with the TABLESPACE or
TABLESPACESET keyword. QUIESCE is invoked once for the entire list. For
the QUIESCE utility, the related index spaces are considered to be list items for
the purposes of OPTIONS ITEMERROR processing. You can alter the utility
behavior during processing of related indexes with the OPTIONS ITEMERROR
statement. This utility processes clone data only if the CLONE keyword is
specified. The use of CLONED YES on the LISTDEF statement is not sufficient.

The partitions or partition ranges can be specified in a list.

TABLESPACE database-name.table-space-name
For QUIESCE TABLESPACE, specifies the table space that is to be quiesced.

For QUIESCE TABLESPACESET, specifies a table space in the table space set
that is to be quiesced. For QUIESCE TABLESPACESET, the TABLESPACE
keyword is optional.

database-name
Optionally specifies the name of the database to which the table space
belongs.

The default value is DSNDB04.

table-space-name

Specifies the name of the table space that is to be quiesced. You can specify
DSNDB01.SYSUTILX, but do not include that name in a list with other
table spaces that are to be quiesced. If a point-in-time recovery is planned

Chapter 21. QUIESCE 399

|
|
|

for the catalog and directory, DSNDB06.SYSTSCPY must be quiesced
separately after all other catalog and directory table spaces.

All table spaces that are involved in a versioning relationship are quiesced
when QUIESCE is run on either the system-period temporal table or the
history table space. Auxiliary LOB and XML table spaces on both
system-period temporal table spaces and history table spaces are included.

PART integer
Identifies a partition that is to be quiesced.

integer is the number of the partition and must be in the range from 1 to the
number of partitions that are defined for the table space. The maximum is
4096.

If you specify the same table space twice in a list and use PART n in one
specification and PART m in the other specification, each partition is quiesced
once.

TABLESPACESET
Indicates that all of the referentially related table spaces in the table space set
are to be quiesced. For the purposes of the QUIESCE utility, a table space set
includes the following sets of objects:
v A group of table spaces that are related through referential constraints
v A base table space with all of its LOB table spaces
v A base table space with all of its XML table spaces
v A table space with a system-period temporal table and the table space with

the related history table
v A table space that includes an archive-enabled table and the table space that

contains the associated archive table

Each table space set that you specify is expanded into a list of these related
table spaces.

Related information:

“Common quiesce points” on page 403
Archive-enabled tables and archive tables (Introduction to DB2 for z/OS)

CLONE
Indicates that QUIESCE is to create a quiesce point for only the specified clone
table space. This utility processes clone data only if the CLONE keyword is
specified. The use of CLONED YES on the LISTDEF statement is not sufficient.

Use the following option to control the behavior of QUIESCE:

WRITE
Specifies whether the changed pages from the table spaces and index spaces
are to be written to disk.

YES
Establishes a quiesce point and writes the changed pages from the table
spaces and index spaces to disk.

NO Establishes a quiesce point but does not write the changed pages from the
table spaces and index spaces to disk.

Table spaces with the NOT LOGGED attribute are not quiesced.

400 Utility Guide and Reference

|
|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_archivetables.htm#db2z_archivetables

Before running QUIESCE
Certain activities might be required before you run the QUIESCE utility, depending
on your situation.

You cannot run QUIESCE on a table space that is in COPY-pending,
CHECK-pending, RECOVER-pending, or auxiliary CHECK-pending status.
Related concepts:
“Resetting COPY-pending status” on page 334
“Resetting REBUILD-pending status” on page 335
Related tasks:
“Resetting CHECK-pending status” on page 88
Related reference:
Appendix C, “Advisory or restrictive states,” on page 1083

Data sets that QUIESCE uses
The QUIESCE utility uses a number of data sets during its operation.

The following table lists the data sets that QUIESCE uses. The table lists the DD
name that is used to identify the data set, a description of the data set, and an
indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 55. Data sets that QUIESCE uses

Data set Description Required?

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

The following object is named in the utility control statement and does not require
a DD statement in the JCL:

Table space
Object that is to be quiesced. (If you want to quiesce only one partition of
a table space, you must use the PART option in the control statement.)

Concurrency and compatibility for QUIESCE
The QUIESCE utility has certain concurrency and compatibility characteristics
associated with it.

DB2 treats individual data and index partitions as distinct target objects. Utilities
that operate on different partitions of the same table space or index space are
compatible.

Claims

The following table shows which claim classes QUIESCE drains and any restrictive
state that the utility sets on the target object.

Table 56. Claim classes of QUIESCE operations.

Target WRITE YES WRITE NO

Table space or partition DW/UTRO DW/UTRO

Chapter 21. QUIESCE 401

Table 56. Claim classes of QUIESCE operations. (continued)

Target WRITE YES WRITE NO

Partitioning index, data-partitioned
secondary index, or partition

DW/UTRO

Nonpartitioned secondary index DW/UTRO

Legend:
v DW - Drain the write claim class - concurrent access for SQL readers
v UTRO - Utility restrictive state - read-only access allowed

Compatibility

The following table shows which utilities can run concurrently with QUIESCE on
the same target object. The target object can be a table space, an index space, or a
partition of a table space or index space. If compatibility depends on particular
options of a utility, that information is also documented in the table. QUIESCE
does not set a utility restrictive state if the target object is DSNDB01.SYSUTILX.

Table 57. Compatibility of QUIESCE with other utilities

Action
Compatible with
QUIESCE?

CHECK DATA DELETE NO Yes

CHECK DATA DELETE YES No

CHECK INDEX Yes

CHECK LOB Yes

COPY INDEXSPACE SHRLEVEL CHANGE No

COPY INDEXSPACE SHRLEVEL REFERENCE Yes

COPY TABLESPACE SHRLEVEL CHANGE No

COPY TABLESPACE SHRLEVEL REFERENCE Yes

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

MODIFY Yes

QUIESCE Yes

REBUILD INDEX No

RECOVER INDEX No

RECOVER TABLESPACE No

REORG INDEX No

REORG TABLESPACE UNLOAD CONTINUE or PAUSE No

REORG TABLESPACE UNLOAD ONLY or EXTERNAL Yes

REPAIR DELETE or REPLACE No

REPAIR DUMP or VERIFY Yes

REPORT Yes

RUNSTATS Yes

STOSPACE Yes

UNLOAD Yes

402 Utility Guide and Reference

To run the QUIESCE utility on DSNDB01.SYSUTILX, ensure that QUIESCE is the
only utility in the job step.

QUIESCE on SYSUTILX is an exclusive job; such a job can interrupt another job
between job steps, possibly causing the interrupted job to time out.

Using QUIESCE on catalog and directory objects
To plan for point in time recoveries using QUIESCE, you can quiesce
DSNDB01.SYSUTILX, but DSNDB01.SYSUTILX must be the only table space in the
QUIESCE control statement.

If a point-in-time recovery is planned for the catalog and directory, a separate
QUIESCE control statement for DSNDB06.SYSTSCPY is required after you quiesce
the other catalog and directory table spaces. A separate QUIESCE of
DSNDB06.SYSTSCPY is needed after the QUIESCE of other objects to ensure that a
subsequent point-in-time recovery of DSNDB06.SYSTSCPY recovers all of the
QUIESCE SYSTSCPY records for the other catalog and directory objects.

Common quiesce points
A common quiesce point is a point at which data is consistent across related table
spaces as a result of running the QUIESCE utility. Although establishing such a
quiesce point is not required for point-in-time recoveries, doing so can improve
recovery time and ensure consistency for sets of related objects.

A quiesce point is not essential for point-in-time recoveries. Additional methods
exist for ensuring that objects are recovered to a consistent state, without any
uncommitted data. You can recover objects to any RBA or LRSN by using the
TORBA or TOLOGPOINT options on the RECOVER utility statement. In this case,
RECOVER automatically handles any uncommitted units of work to ensure that
the data is left in a consistent state. You can also recover to an image copy that
was taken with SHRLEVEL REFERENCE. This image copy serves as a point of
consistency.

However, recovering objects to a quiesce point can be faster than recovering to any
RBA or LRSN, because no work has to be backed out. Also, you might want to
establish quiesce points for related sets of objects if you need to plan for
point-in-time recovery for the entire set. For point-in-time recoveries, all objects in
a table space set need to be recovered to the same point in time.

To obtain a common quiesce point for related table spaces, use the QUIESCE utility
with the TABLESPACESET option. For the purposes of the QUIESCE utility, a table
space set includes the following sets for objects:
v A group of table spaces that have a referential relationship
v A base table space with all of its LOB table spaces
v A base table space with all of its XML table spaces
v A table space with a system-period temporal table and the table space with the

related history table
v A table space that includes an archive-enabled table and the table space that

contains the associated archive table

If you use QUIESCE TABLESPACE instead and do not include every member of
the table space set, you might have problems when you run RECOVER on table
spaces in the set. RECOVER checks if a complete table space set is recovered to a

Chapter 21. QUIESCE 403

|
|
|
|
|
|

|
|

single point in time. If the complete table space set is not recovered to a single
point in time, RECOVER places all dependent table spaces in CHECK-pending
(CHKP) status.

When you use QUIESCE WRITE YES on a table space, the utility records the
quiesce point in SYSIBM.SYSCOPY. QUIESCE inserts a SYSCOPY row that
specifies ICTYPE='Q' for each related index that is defined with COPY=YES.
Related concepts:
“Point-in-time recovery” on page 479

Archive-enabled tables and archive tables (Introduction to DB2 for z/OS)
Related reference:
“Syntax and options of the QUIESCE control statement” on page 398
“CHECK-pending status” on page 1085

SYSIBM.SYSCOPY table (DB2 SQL)

Running QUIESCE on a table space in pending status
When you run QUIESCE on a table space in a pending status, the output will
contain various messages.

If you run QUIESCE on a table space in COPY-pending, CHECK-pending, or
RECOVER-pending status, it terminates with messages that are similar to those
messages shown in the following figure.

When you run QUIESCE on a table space or index space that is in COPY-pending,
CHECK-pending, or RECOVER-pending status, you might also receive one or
more of the messages that are shown in the following figure.

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = R92341Q
DSNU050I DSNUGUTC - QUIESCE TABLESPACE UTQPD22A.UTQPS22D

TABLESPACE UTQPD22A.UTQPS22E
TABLESPACE UTQPD22A.EMPPROJA

DSNU471I % DSNUQUIA COPY PENDING ON TABLESPACE UTQPD22A.EMPPROJA PROHIBITS
PROCESSING

DSNU012I DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

Figure 54. Termination messages when you run QUIESCE on a table space with pending
restrictions

DSNU202I csect RECOVER PENDING ON TABLESPACE... PROHIBITS PROCESSING
DSNU203I csect RECOVER PENDING ON INDEX ... PROHIBITS PROCESSING
DSNU204I csect PAGESET REBUILD PENDING ON INDEX ... PROHIBITS PROCESSING
DSNU208I csect GROUP BUFFER POOL RECOVER PENDING ON INDEX ... PROHIBITS PROCESSING
DSNU209I csect RESTART PENDING ON ... PROHIBITS PROCESSING
DSNU210I csect INFORMATIONAL COPY PENDING ON INDEX ... PROHIBITS PROCESSING
DSNU211I csect CHECK PENDING ON ... PROHIBITS PROCESSING
DSNU214I csect REBUILD PENDING ON INDEX ... PROHIBITS PROCESSING
DSNU215I csect REFRESH PENDING ON ... PROHIBITS PROCESSING
DSNU471I csect COPY PENDING ON TABLESPACE ... PROHIBITS PROCESSING
DSNU568I csect INDEX ... IS IN INFORMATIONAL COPY PENDING

Figure 55. Messages for pending restrictions on QUIESCE

404 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_archivetables.htm#db2z_archivetables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsyscopytable.htm#db2z_sysibmsyscopytable

Reasons why QUIESCE fails to write to disk
The QUIESCE utility attempts to write pages of each table space to disk. Any of
the following conditions can cause this write to fail:
v The table space has a write error range.
v The table space has deferred restart pending.
v An I/O error occurs.

If any of the preceding conditions occur, QUIESCE terminates with a return code
of 4 and issues a DSNU473I warning message.
Related information:

DSNU473I (DB2 Messages)

Termination and restart of QUIESCE
You can terminate and restart the QUIESCE utility.

If you use TERM UTILITY to terminate QUIESCE when it is active, QUIESCE
releases the drain locks on table spaces. If QUIESCE is stopped, the drain locks
have already been released.

You can restart a QUIESCE utility job, but it starts from the beginning again.

QUIESCE specifies whether the changed pages from the table spaces and index
spaces are to be written to disk. The default option, YES establishes a quiesce point
and writes the changed pages from the table spaces and index spaces to disk. The
NO option establishes a quiesce point, but does not write the changed pages from
the table spaces and index spaces to disk. QUIESCE is not performed on table
spaces with the NOT LOGGED attribute.
Related concepts:
“Restart of an online utility” on page 39

Sample QUIESCE control statements
Use the sample control statements as models for developing your own QUIESCE
control statements.

Example 1: Establishing a quiesce point for three table spaces

The following control statement specifies that the QUIESCE utility is to establish a
quiesce point for table spaces DSN8D81A.DSN8S81D, DSN8D81A.DSN8S81E, and
DSN8D81A.DSN8S81P.
//STEP1 EXEC DSNUPROC,UID=’IUIQU2UD.QUIESC2’,
// UTPROC=’’,SYSTEM=’DSN’
//SYSIN DD *
QUIESCE TABLESPACE DSN8D11A.DSN8S11D

TABLESPACE DSN8D11A.DSN8S11E
TABLESPACE DSN8D11A.DSN8S11P

//*

The following example shows the output that the preceding command produces.

Chapter 21. QUIESCE 405

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu473i.htm#dsnu473i

Example 2: Establishing a quiesce point for a list of objects

In the following example, the QUIESCE control statement uses a list to specify that
the QUIESCE utility is to establish a quiesce point for the same table spaces as in
example 1. The list is defined in the LISTDEF utility control statement.
//STEP1 EXEC DSNUPROC,UID=’IUIQU2UD.QUIESC2’,
// UTPROC=’’,SYSTEM=’DSN’
//SYSIN DD *
//DSNUPROC.SYSIN DD *
LISTDEF QUIESCELIST INCLUDE TABLESPACE DSN8D81A.DSN8S81D

INCLUDE TABLESPACE DSN8D81A.DSN8S81E
INCLUDE TABLESPACE DSN8D81A.DSN8S81P

QUIESCE LIST QUIESCELIST
//*

The following example shows the output that the preceding command produces.

Example 3: Establishing a quiesce point for a table space set.

The following control statement specifies that QUIESCE is to establish a quiesce
point for the indicated table space set. In this example, the table space set includes
table space DSN8D81A.DSN8S81D and all table spaces that are referentially related
to it. Run REPORT TABLESPACESET to obtain a list of table spaces that are
referentially related.
QUIESCE TABLESPACESET TABLESPACE DSN8D11A.DSN8S11D

The following example shows the output that the preceding command produces.

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I DSNUGUTC - QUIESCE TABLESPACE DSN8D81A.DSN8S81D

TABLESPACE DSN8D81A.DSN8S81E
TABLESPACE DSN8D81A.DSN8S81P

DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81D
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81E
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81P
DSNU474I = DSNUQUIA - QUIESCE AT RBA 000004E43B78 AND AT LRSN 000004E43B78
DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:02
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 56. Example output from a QUIESCE job that establishes a quiesce point for three
table spaces

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I DSNUGUTC - LISTDEF QUIESCELIST INCLUDE TABLESPACE DSN8D81A.DSN8S81D
INCLUDE TABLESPACE DSN8D81A.DSN8S81E
INCLUDE TABLESPACE DSN8D81A.DSN8S81P
DSNU1035I DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I DSNUGUTC - QUIESCE LIST QUIESCELIST
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81D
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81E
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81P
DSNU474I = DSNUQUIA - QUIESCE AT RBA 000004E56419 AND AT LRSN 000004E56419
DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:00
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 57. Example output from a QUIESCE job that establishes a quiesce point for a list of
objects

406 Utility Guide and Reference

Example 4: Establishing a quiesce point without writing the
changed pages to disk

In the following example, the control statement specifies that the QUIESCE utility
is to establish a quiesce point for table space DSN8D81A.DSN8S81D, without
writing the changed pages to disk. (The default is to write the changed pages to
disk.) In this example, a quiesce point is established for COPY YES indexes, but
not for COPY NO indexes. Note that QUIESCE jobs with the WRITE YES option,
which is the default, process both COPY YES indexes and COPY NO indexes. For
both QUIESCE WRITE YES jobs and QUIESCE WRITE NO jobs, the utility inserts
a row in SYSIBM.SYSCOPY for each COPY YES index.
//STEP1 EXEC DSNUPROC,UID=’IUIQU2UD.QUIESC2’,
// UTPROC=’’,SYSTEM=’DSN’
//SYSIN DD *
//DSNUPROC.SYSIN DD *
QUIESCE TABLESPACE DSN8D81A.DSN8S81D WRITE NO
//*

The preceding command produces the output that is shown in the following
example. Notice that the COPY YES index EMPNOI is placed in informational
COPY-pending (ICOPY) status:

Example 5: Establishing a quiesce point for a list of objects

The following control statement specifies that the QUIESCE utility is to establish a
quiesce point for the specified clone table space and its indexes, and write the
changes to disk.
QUIESCE TABLESPACE DBJM0901.TPJM0901 WRITE YES CLONE

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TSLQ.STEP1
DSNU050I DSNUGUTC - QUIESCE TABLESPACESET TABLESPACE DSN8D11A.DSN8S11D
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACESET DSN8D11A.DSN8S11D
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11D
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D11A.PROJ
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D11A.ACT
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D11A.PROJACT
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D11A.EMPPROJA
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S1D
DSNU474I - DSNUQUIA - QUIESCE AT RBA 000000052708 AND AT LRSN 000000052708
DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:25
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 58. Example output from a QUIESCE job that establishes a quiesce point for a table
space set

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I DSNUGUTC - QUIESCE TABLESPACE DSN8D81A.DSN8S81D WRITE NO
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81D
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR INDEXSPACE DSN8D81A.EMPNOI
DSNU474I = DSNUQUIA - QUIESCE AT RBA 000004E892A3 AND AT LRSN 000004E892A3
DSNU568I = DSNUGSRX - INDEX ADMF001.EMPNOI IS IN INFORMATIONAL COPY PENDING
DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:00
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 59. Example output from a QUIESCE job that establishes a quiesce point, without
writing the changed pages to disk.

Chapter 21. QUIESCE 407

408 Utility Guide and Reference

Chapter 22. REBUILD INDEX

The REBUILD INDEX online utility reconstructs indexes or index partitions from
the table that they reference.

During the rebuild process, the REBUILD INDEX utility can also create a
FlashCopy image copy of the indexes being rebuilt.

Restriction: REBUILD INDEX SHRLEVEL CHANGE should only be used to fix a
broken or restricted index, or to build an index after DEFER. You should not use
the REBUILD INDEX SHRLEVEL CHANGE utility to move an index to different
volumes; instead you should use the online REORG utility. REBUILD INDEX
SHRLEVEL CHANGE on a unique index will not allow the INSERT option, the
DELETE option, or updates that affect the unique index.

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v RECOVERDB privilege for the database
v STATS privilege for the database is required if the STATISTICS keyword is

specified.
v DBADM or DBCTRL authority for the database. If the object on which the utility

operates is in an implicitly created database, DBADM authority on the implicitly
created database or DSNDB04 is required.

v DATAACCESS authority
v System DBADM authority
v SYSCTRL or SYSADM authority

If either the FLASHCOPY YES or FLASHCOPY CONSISTENT option is specified,
the batch user ID that invokes the REBUILD INDEX utility must have the
authority to execute the DFSMSdss COPY command.

To run REBUILD INDEX STATISTICS REPORT YES, you must use a privilege set
that includes the SELECT privilege on the catalog tables.

Execution phases of REBUILD INDEX

The REBUILD INDEX utility operates in the following phases:

UTILINIT
Performs initialization and setup.

UNLOAD
Unloads index entries.

SORT Sorts unloaded index entries.

BUILD
Builds indexes.

SORTBLD
Sorts and builds a table space for parallel index build processing.

© Copyright IBM Corp. 1983, 2013 409

UTILTERM
Performs cleanup.

Syntax and options of the REBUILD INDEX control statement
The REBUILD INDEX utility control statement, with its multiple options, defines
the function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

410 Utility Guide and Reference

Syntax diagram

�� REBUILD �

� �

�

,
(1)

INDEX (creatorid.index-name)
PART integer

(ALL) table-space-spec
LIST listdef-name

,

INDEXSPACE (index-space-name)
database-name. PART integer

(ALL) table-space-spec
LIST listdef-name

�

�
SHRLEVEL REFERENCE

SHRLEVEL CHANGE change-spec
drain-spec

CLONE

SCOPE ALL

SCOPE PENDING REUSE
�

�
SORTDEVT device-type SORTNUM integer stats-spec

�

�
NO

FLASHCOPY
YES FCCOPYDDN(ddname)
CONSISTENT

PARALLEL (0)

PARALLEL (num-subtasks)
�

�
RBALRSN_CONVERSION NONE

BASIC
EXTENDED

��

Notes:

1 All listed indexes must reside in the same table space.

table-space-spec:

�� TABLESPACE
database-name.

table-space-name
PART integer

��

Chapter 22. REBUILD INDEX 411

||||||

||||

change-spec:

��
MAXRO integer

MAXRO DEFER

LONGLOG CONTINUE

LONGLOG TERM
LONGLOG DRAIN

DELAY 1200

DELAY integer
��

drain-spec:

��
DRAIN_WAIT IRLMRWT value

DRAIN_WAIT integer

RETRY UTIMOUT value

RETRY integer RETRY_DELAY integer
��

stats-spec:

�� STATISTICS
REPORT NO

REPORT YES
correlation-stats-spec

UPDATE ALL

UPDATE ACCESSPATH
SPACE
NONE

�

�
HISTORY ALL

ACCESSPATH
SPACE
NONE

FORCEROLLUP YES
NO

��

correlation-stats-spec:

412 Utility Guide and Reference

��

(1)
KEYCARD

�

FREQVAL NUMCOLS 1 COUNT 10

FREQVAL NUMCOLS integer COUNT integer
NUMCOLS 1 NUMQUANTILES 100

HISTOGRAM
NUMQUANTILES 100

NUMCOLS integer
NUMQUANTILES integer

��

Notes:

1 The KEYCARD option is deprecated. The functionality previously controlled by KEYCARD is
incorporated into the default processing of inline statistics during the execution of REBUILD
INDEX STATISTICS and cannot be disabled.

Option descriptions

INDEX creator-id.index-name
Indicates the qualified name of the index to be rebuilt. Use the form
creator-id.index-name to specify the name.

creator-id
Specifies the creator of the index. This qualifier is optional. If you omit the
qualifier creator-id, DB2 uses the user identifier for the utility job.

index-name
Specifies the qualified name of the index that is to be rebuilt. For an index,
you can specify either an index name or an index space name. Enclose the
index name in quotation marks if the name contains a blank.

To rebuild multiple indexes, separate each index name with a comma. All
listed indexes must reside in the same table space. If more than one index is
listed and the TABLESPACE keyword is not specified, DB2 locates the first
valid index name that is cited and determines the table space in which that
index resides. That table space is used as the target table space for all other
valid index names that are listed.

INDEXSPACE database-name.index-space-name
Specifies the qualified name of the index space that is obtained from the
SYSIBM.SYSINDEXES table.

database-name
Specifies the name of the database that is associated with the index. This
qualifier is optional.

index-space-name
Specifies the qualified name of the index space to copy. For an index, you
can specify either an index name or an index space name.

If you specify more than one index space, they must all be defined on the
same table space.

For an index, you can specify either an index name or an index space name.

Chapter 22. REBUILD INDEX 413

|||||||||||

(ALL)
Specifies that all indexes in the table space that is referred to by the
TABLESPACE keyword are to be rebuilt. If you specify ALL, only indexes on
the base table are included.

TABLESPACE database-name.table-space-name
Specifies the table space from which all indexes are to be rebuilt.

database-name
Identifies the database to which the table space belongs.

The default value is DSNDB04.

table-space-name
Identifies the table space from which all indexes are to be rebuilt.

PART integer

Specifies the physical partition of a partitioning index or a data-partitioned
secondary index in a partitioned table that is to be rebuilt. When the target of
the REBUILD operation is a nonpartitioned secondary index, the utility
reconstructs logical partitions. If any of the following situations are true for a
nonpartitioned index, you cannot rebuild individual logical partitions:
v the index was created with DEFER YES
v the index must be completely rebuilt (This situation is likely in a disaster

recovery scenario)
v the index is in page set REBUILD-pending (PSRBD) status

For these cases, you must rebuild the entire index.

integer is the number of the partition and must be in the range from 1 to the
number of partitions that are defined for the table space. The maximum value
is 4096.

You cannot specify PART with the LIST keyword. Use LISTDEF PARTLEVEL
instead.

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. The utility
allows one LIST keyword for each REBUILD INDEX control statement. The list
must contain either all index spaces or all table spaces. For a table space list,
REBUILD is invoked once per table space. For an index space list, DB2 groups
indexes by their related table space and executes the rebuild once per table
space. This utility will only process clone data if the CLONE keyword is
specified. The use of CLONED YES on the LISTDEF utility control statement is
not sufficient.

The partitions or partition ranges can be specified in a list.

SHRLEVEL
Indicates the type of access that is to be allowed for the index, table space, or
partition that is to be checked during REBUILD INDEX processing.

REFERENCE
Specifies that applications can read from but cannot write to the table
space or partition that REBUILD accesses. Applications cannot read or
write from the index REBUILD is building.

CHANGE
Specifies that applications can read from and write to the table space or
partition. The index is placed in RBDP and can be avoided by dynamic
SQL. CHANGE is invalid for indexes over XML tables.

414 Utility Guide and Reference

Do not specify SHRLEVEL CHANGE for an index on a NOT LOGGED
table space.

Restriction:

v SHRLEVEL CHANGE is not well suited for unique indexes and
concurrent DML because the index is placed in RBDP while being built.
Inserts and updates of the index will fail with a resource unavailable
(-904) because uniqueness checking cannot be done while the index is in
RBDP.

v SHRLEVEL CHANGE is not allowed on not logged tables, XML indexes,
or spatial indexes.

MAXRO
Specifies the maximum amount of time for the last iteration of log processing.
During that iteration, applications have read-only access.

The actual execution time of the last iteration might exceed the specified value
for MAXRO.

integer
integer is the number of seconds. Specifying a small positive value reduces
the length of the period of read-only access, but it might increase the
elapsed time for REBUILD INDEX to complete. If you specify a huge
positive value, the second iteration of log processing is probably the last
iteration.

The default value is the value of the lock timeout system parameter
IRLMRWT.

LONGLOG
Specifies the action that DB2 is to perform, after sending a message to the
console, if the number of records that the next iteration of logging is to process
is not sufficiently lower than the number that the previous iterations processed.
This situation means that the reading of the log by the REBUILD INDEX utility
is not being done at the same time as the writing of the application log.

CONTINUE
Specifies that until the time on the JOB statement expires, DB2 is to
continue performing reorganization, including iterations of log processing,
if the estimated time to perform an iteration exceeds the time that is
specified for MAXRO.

TERM
Specifies that DB2 is to terminate the reorganization after the delay that is
specified by the DELAY parameter.

DRAIN
Specifies that DB2 is to drain the write claim class after the delay that is
specified by the DELAY parameter. This action forces the final iteration of
log processing to occur.

DELAY integer
Specifies the minimum integer between the time that REBUILD send the
LONGLOG message to the console and the time that REBUILD performs the
action the LONGLOG parameter specifies.

The integer specifies the number of seconds.

The default value is 1200.

Chapter 22. REBUILD INDEX 415

DRAIN_WAIT
Specifies the number of seconds that REBUILD INDEX is to wait when
draining the table space or index. The specified time is the aggregate time for
objects that are to be checked. This value overrides the values that are specified
by the IRLMRWT and UTIMOUT subsystem parameters.

integer can be any integer from 0 to 1800. If you do not specify DRAIN_WAIT
or specify a value of 0, the utility uses the value of the lock timeout subsystem
parameter IRLMRWT.

RETRY integer
Specifies the maximum number of retries that REBUILD INDEX is to attempt.

integer can be any integer from 0 to 255. If you do not specify RETRY,
REBUILD INDEX uses the value of the utility multiplier system parameter
UTIMOUT.

Specifying RETRY can increase processing costs and result in multiple or
extended periods during which the specified index, table space, or partition is
in read-only access.

RETRY_DELAY integer
Specifies the minimum duration, in seconds, between retries. integer can be any
integer from 1 to 1800.

If you do not specify RETRY_DELAY, REBUILD INDEX uses the
DRAIN_WAIT value × RETRY value.

CLONE
Indicates that REBUILD INDEX is to reconstruct only the specified indexes that
are on clone tables. This utility will only process clone data if the CLONE
keyword is specified. The use of CLONED YES on the LISTDEF statement is
not sufficient. If you specify CLONE, you cannot specify STATISTICS. Statistics
are not collected for clone objects.

SCOPE
Indicates the scope of the rebuild organization of the specified index or
indexes.

ALL
Indicates that you want the specified index or indexes to be rebuilt.

PENDING
Indicates that you want the specified index or indexes with one or more
partitions in REBUILD-pending (RBDP), REBUILD-pending star (RBDP*),
page set REBUILD-pending (PSRBD), RECOVER-pending (RECP), or
advisory REORG-pending (AREO*) state to be rebuilt.

REUSE
Specifies that REBUILD should logically reset and reuse DB2-managed data
sets without deleting and redefining them. If you do not specify REUSE, DB2
deletes and redefines DB2-managed data sets to reset them.

If you are rebuilding the index because of a media failure, do not specify
REUSE.

If a data set has multiple extents, the extents are not released if you use the
REUSE parameter.

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically

416 Utility Guide and Reference

allocated by the sort program. For device-type, you can specify any disk device
that is valid on the DYNALLOC parameter of the SORT or OPTION options
for the sort program.

device-type is the device type.

A TEMPLATE specification does not dynamically allocate sort work data sets.
The SORTDEVT keyword controls dynamic allocation of these data sets.

SORTNUM integer
Specifies the number of temporary data sets that are to be dynamically
allocated by the sort program. If you omit SORTDEVT, SORTNUM is ignored.
If you use SORTDEVT and omit SORTNUM, no value is passed to the sort
program; the sort program uses its own default.

integer is the number of temporary data sets that can range from 2 to 255.

You need at least two sort work data sets for each sort. The SORTNUM value
applies to each sort invocation in the utility. For example, if there are three
indexes, SORTKEYS is specified, there are no constraints limiting parallelism,
and SORTNUM is specified as 8, then a total of 24 sort work data sets will be
allocated for a job.

Each sort work data set consumes both above the line and below the line
virtual storage, so if you specify too high a value for SORTNUM, the utility
may decrease the degree of parallelism due to virtual storage constraints, and
possibly decreasing the degree down to one, meaning no parallelism.

Important: The SORTNUM keyword will not be considered if subsystem
parameter UTSORTAL is set to YES and IGNSORTN is set to YES.

STATISTICS
Specifies that index statistics are to be collected.

If you specify the STATISTICS and UPDATE options, statistics are stored in the
DB2 catalog. You cannot collect inline statistics for indexes on the catalog and
directory tables.

Restriction:

v If you specify STATISTICS for encrypted data, DB2 might not provide useful
statistics on this data.

v You cannot specify STATISTICS for a clone index.

REPORT
Indicates whether a set of messages to report the collected statistics is to be
generated.

NO Indicates that the set of messages is not to be sent as output to SYSPRINT.

YES
Indicates that the set of messages is to be sent as output to SYSPRINT. The
generated messages are dependent on the combination of keywords (such
as TABLESPACE, INDEX, TABLE, and COLUMN) that you specify with
the RUNSTATS utility. However, these messages are not dependent on the
specification of the UPDATE option. REPORT YES always generates a
report of SPACE and ACCESSPATH statistics.

KEYCARD
The KEYCARD option is deprecated in the REBUILD INDEX control statement
and no longer needs to be specified to collect cardinality statistics on the
values in the key columns of an index.

Chapter 22. REBUILD INDEX 417

When the STATISTICS option is specified, the REBUILD INDEX utility
automatically collects all of the distinct values in all of the 1 to n key column
combinations for the indexes being rebuilt.n is the number of columns in the
index. With the deprecation of KEYCARD, this functionality cannot be
disabled.

The REBUILD INDEX utility tolerates the specification of the KEYCARD
option. The utility does not issue any messages if the control statement
includes or excludes the KEYCARD option when STATISTICS is specified.

FREQVAL
Controls the collection of frequent-value statistics. If you specify FREQVAL, it
must be followed by two additional keywords:

NUMCOLS
Indicates the number of key columns that are to be concatenated when
collecting frequent values from the specified index. If you specify 3, the
utility collects frequent values on the concatenation of the first three key
columns.

The default value is 1, which means that DB2 is to collect frequent values
only on the first key column of the index.

COUNT
Indicates the number of frequent values that are to be collected. If you
specify 15, the utility collects 15 frequent values from the specified key
columns.

The default value is 10.

HISTOGRAM
Indicates that histogram statistics are requested for the specified index.

NUMCOLS
The number of key columns that are to be concatenated when collecting
histogram statistics from the specified index.

NUMQUANTILES
The integer values that follows NUMQUANTILES indicates the number
quantiles are requested. The integer value must be greater than or equal to
1.

Histogram statistics can be collected only on keys with the same order. If the
specified key columns for histogram statistics are of mixed or random order, a
DSNU633I warning message is issued.

Related information:

Histogram statistics (DB2 Performance)
DSNU633I (DB2 Messages)

UPDATE
Indicates whether the collected statistics are to be inserted into the catalog
tables. UPDATE also allows you to select statistics that are used for access path
selection or statistics that are used by database administrators.

ALL
Indicates that all collected statistics are to be updated in the catalog.

ACCESSPATH
Indicates that the only catalog table columns that are to be updated are
those that provide statistics that are used for access path selection.

418 Utility Guide and Reference

|
|

|
|
|

|
|
|
|

|
|
|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_histogramstatistics.htm#db2z_histogramstatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu633i.htm#dsnu633i

SPACE
Indicates that the only catalog table columns that are to be updated are
those that provide statistics to help the database administrator assess the
status of a particular table space or index.

NONE
Indicates that catalog tables are not to be updated with the collected
statistics. This option is valid only when REPORT YES is specified.

HISTORY
Records all catalog table inserts or updates to the catalog history tables.

The default is supplied by the value that is specified in STATISTICS HISTORY
on panel DSNTIP6.

ALL
Indicates that all collected statistics are to be updated in the catalog history
tables.

ACCESSPATH
Indicates that the only catalog history table columns that are to be updated
are those that provide statistics that are used for access path selection.

SPACE
Indicates that only space-related catalog statistics are to be updated in
catalog history tables.

NONE
Indicates that catalog history tables are not to be updated with the
collected statistics.

FORCEROLLUP
Specifies whether aggregation or rollup of statistics is to take place when you
execute RUNSTATS even if some indexes or index partitions are empty. This
keyword enables the optimizer to select the best access path.

The following options are available for the FORCEROLLUP keyword:

YES
Indicates that forced aggregation or rollup processing is to be done, even
though some indexes or index partitions might not contain data.

NO Indicates that aggregation or rollup is to be done only if data is available
for all indexes or index partitions.

If data is not available, the utility issues DSNU623I message if you have set the
installation value for STATISTICS ROLLUP on panel DSNTIP6 to NO.

FLASHCOPY
Specifies whether FlashCopy technology is used to create a copy of the object.
Valid values are YES, NO, or CONSISTENT. When FlashCopy is used, a
separate data set is created for each partition or piece of the object.

The FlashCopy specifications on the utility control statement override any
specifications for FlashCopy that are defined by using the DB2 subsystem
parameters. If the FlashCopy subsystem parameters specify the use of
FlashCopy as the default behavior of this utility, the FLASHCOPY option can
be omitted from the utility control statement.

Chapter 22. REBUILD INDEX 419

Important: If the input data set is less than one cylinder, FlashCopy
technology might not be used for copying the objects regardless of the
FLASHCOPY settings. The copy is performed by IDCAMS if FlashCopy is not
used.

NO Specifies that no FlashCopy is made. NO is the default value for
FLASHCOPY.

YES
Specifies that FlashCopy technology is used to copy the object.

Specify YES only if the DB2 data sets are on FlashCopy Version 2 disk
volumes.

Important: Under the following circumstances, the REBUILD INDEX
utility might not use FlashCopy even though YES is specified:
v FlashCopy Version 2 disk volumes are not available
v The source tracks are already the target of a FlashCopy operation
v The target tracks are the source of a FlashCopy operation
v The maximum number of relationships for the copy is exceeded

In the event that FlashCopy is not used, the REBUILD INDEX utility uses
traditional I/O methods to copy the object, which can result in longer than
expected execution time.

CONSISTENT
Specifies that FlashCopy technology is used to copy the object. Because the
copies created by the REBUILD INDEX utility are already consistent, the
utility treats a specification of CONSISTENT the same as a specification of
YES.

PARALLELnum-subtasks
Specifies the maximum number of subtasks that are to be started in parallel to
rebuild indexes. If the PARALLEL keyword is omitted, the maximum number
of subtasks is limited by either the number of partitions being unloaded or the
number of indexes built.

REBUILD INDEX typically allocates subtasks in groups of two or three, so the
actual number of subtasks that are started might be less than the number
specified on PARALLEL.

The specified number of subtasks for PARALLEL always overrides the
specification of the PARAMDEG_UTIL subsystem parameter, so PARALLEL
can be smaller or larger than the value of PARAMDEG_UTIL.

num-subtasks
Specifies the maximum number of subtasks and must be an integer
between 0 and 32767, inclusive. If the specified value for num-subtasks is
greater than 32767, the REBUILD INDEX statement fails. If 0 or no value is
specified for num-subtasks, the REBUILD INDEX utility uses the optimal
number of parallel subtasks. If the specified value for num-subtasks is
greater than the calculated optimal number, the REBUILD INDEX utility
limits the number of parallel subtasks to the optimal number with applied
constraints.

RBALRSN_CONVERSION
Specifies the RBA or LRSN format of the target object after the completion of
the REBUILD INDEX utility. If the keyword is not specified, the conversion
specified in the UTILITY_OBJECT_CONVERSION subsystem parameter is
accepted.

420 Utility Guide and Reference

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

NONE
Specifies that no conversion is performed.

The utility fails if RBALRSN_CONVERSION NONE is specified on a table
space that is in basic 6-byte format and the
UTILITY_OBJECT_CONVERSION subsystem parameter is set to
NOBASIC.

BASIC
Specifies that if an object is found in extended 10-byte format, it is
converted to 6-byte basic format.

The utility fails if RBALRSN_CONVERSION BASIC is specified and the
UTILITY_OBJECT_CONVERSION subsystem parameter is set to
NOBASIC.

EXTENDED
Specifies that if an object is found in basic 6-byte format, it is converted to
10-byte extended format.

If a CLONE relationship exists, the page set conversion cannot be performed.
For clone relationships, you must drop the clone table, convert the base table
to extended 10-byte format, and then re-create the clone table.

REBUILD of a node ID index, when converting the page format to extended,
does not convert versioned XML table spaces that are associated with that base
table space.

Specify RBALRSN_CONVERSION NONE during Disaster Recovery scenarios
to avoid page set format conversions, which would complicate the recovery,
especially when you rebuild indexes over the catalog and directory table
spaces. Alternatively, set the UTILITY_OBJECT_CONVERSION subsystem
parameter to NONE until the Disaster Recovery completes.

FCCOPYDDN
Specifies the template to be used to create the FlashCopy image copy data set
names. If a value is not specified for FCCOPYDDN on the REBUILD INDEX
control statement when FlashCopy is used, the value specified on the
FCCOPYDDN subsystem parameter determines the template to be used.

(template-name)
The data set names for the FlashCopy image copy are allocated according
to the template specification. For table space or index space level
FlashCopy image copies, because a data set is allocated for each partition
or piece, ensure that the data set naming convention in the template
specification is unique enough. Use the &DSNUM variable, which resolves
to a partition number or piece number at execution time.

Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

Before running REBUILD INDEX
Certain activities might be required before you run the REBUILD INDEX utility,
depending on your situation.

Chapter 22. REBUILD INDEX 421

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

Because the data that DB2 needs to build an index is in the table space on which
the index is based, you do not need image copies of indexes. To rebuild the index,
you do not need to recover the table space, unless it is also damaged. You do not
need to rebuild an index merely because you have recovered the table space on
which it is based.

If you recover a table space to a prior point in time and do not recover all the
indexes to the same point in time, you must rebuild all of the indexes.

Some logging might occur if both of the following conditions are true:
v The index is a nonpartitioning index.
v The index is being concurrently accessed either by SQL on a different partition

of the same table space or by a utility that is run on a different partition of the
same table space.

Running REBUILD INDEX when the index has a VARBINARY
column.

If you run REBUILD INDEX against an index with the following characteristics,
REBUILD INDEX fails:
v The index was created on a VARBINARY column or a column with a distinct

type that is based on a VARBINARY data type.
v The index column has the DESC attribute.

To fix the problem, alter the column data type to BINARY, and then run REBUILD
INDEX.

Data sets that REBUILD INDEX uses
The REBUILD INDEX utility uses a number of data sets during its operation.

The following table lists the data sets that REBUILD INDEX uses. The table lists
the DD name that is used to identify the data set, a description of the data set, and
an indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 58. Data sets that REBUILD INDEX uses

Data set Description Required?

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

STPRIN01 A data set that contains messages from the
sort program (usually, SYSOUT or
DUMMY). This data set is used when
statistics are collected on at least one
data-partitioned secondary index.

No1

Work data sets Temporary data sets for sort input and
output when sorting keys. If index build
parallelism is used, the DD names have the
form SWnnWKmm. If index build
parallelism is not used, the DD names have
the form SORTWKnn.

Yes

422 Utility Guide and Reference

Table 58. Data sets that REBUILD INDEX uses (continued)

Data set Description Required?

Sort work data sets Temporary data sets for sort input and
output when collecting inline statistics on at
least one data-partitioned secondary index.
The DD names have the form ST01WKnn.

No2,3,4

UTPRINT A data set that contains messages from the
sort program (usually, SYSOUT or
DUMMY).

Yes

FlashCopy image copy data
sets

For copies of the entire index space, a
separate VSAM data set for each partition or
piece that is contained in the index space.
For partition-level or piece-level copies, a
VSAM data set for each partition or piece
that is being copied.

No5

Note:
1. STPRIN01 is required if statistics are being collected on at least one data-partitioned

secondary index, but REBUILD INDEX dynamically allocates the STPRIN01 data set if
UTPRINT is allocated to SYSOUT.

2. Required when collecting inline statistics on at least one data-partitioned secondary
index.

3. If the DYNALLOC parm of the SORT program is not turned on, you need to allocate the
data set. Otherwise, the sort program dynamically allocates the temporary data set.

4. It is recommended that you use dynamic allocation by specifying SORTDEVT in the
utility statement because dynamic allocation reduces the maintenance required of the
utility job JCL.

5. Required if you specify the FLASHCOPY YES

The following object is named in the utility control statement and does not require
a DD statement in the JCL:

Table space
Object whose indexes are to be rebuilt.

Calculating the size of the SORTWKnn data set

To calculate the approximate size (in bytes) of the SORTWKnn data set, use the
following formula:

2 x (longest index key + c) x (number of extracted keys)

longest index key
The length of the longest index key that is to be processed by the subtask.

If the index is of varying length, the longest key is the maximum possible
length of a key with all varying-length columns that are padded to their
maximum length, plus 2 bytes for each varying-length column in the
index. For example, if an index with 3 columns (A, B, and C) has length
values of CHAR(8) for A, VARCHAR(128) for B, and VARCHAR(50) for C,
the longest key is calculated as follows:
8 + 128 + 50 + 2 + 2 = 190

c A value as follows:
v 10 if the indexes that are being rebuilt are a mix of data-partitioned

secondary indexes and nonpartitioned indexes

Chapter 22. REBUILD INDEX 423

v 8 if the indexes that are being rebuilt are partitioned, or if none of them
are data-partitioned secondary indexes.

number of keys
The number of keys from all indexes that the subtask sorts and processes.

Using two or three large SORTWKnn data sets are preferable to several small ones.

Calculating the size of the ST01WKnn data set

To calculate the approximate size (in bytes) of the ST01WKnn data set, use the
following formula:

2 ×(maximum record length × numcols × (count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length
Maximum record length of the SYSCOLDISTSTATS record that is processed
when collecting frequency statistics (You can obtain this value from the
RECLENGTH column in SYSTABLES.)

numcols
Number of key columns to concatenate when you collect frequent values
from the specified index.

count Number of frequent values that DB2 is to collect.

Sort work data sets cannot span volumes. Smaller volumes require more sort work
data sets to sort the same amount of data; therefore, large volume sizes can reduce
the number of needed sort work data sets. When you allocate sort work data sets
on disk, the recommended amount of space to allow provides at least 1.2 times the
amount of data that is to be sorted.
Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

Concurrency and compatibility for REBUILD INDEX
The REBUILD INDEX utility has certain concurrency and compatibility
characteristics associated with it.

DB2 treats individual data and index partitions as distinct target objects. Utilities
that operate on different partitions of the same table space or index space are
compatible.

REBUILD INDEX SHRLEVEL CHANGE jobs cannot be run to rebuild indexes on
the same table space concurrently. As an alternative, REBUILD INDEX can build
indexes in parallel by specifying multiple indexes in a single utility statement.
Concurrency for rebuilding indexes in different table space is still allowed, as is the
concurrency in rebuilding different partitions of an index in a partitioned table
space.

Restriction: REBUILD INDEX SHRLEVEL CHANGE should only be used to fix a
broken or restricted index, or to build an index after DEFER. You should not use
the REBUILD INDEX SHRLEVEL CHANGE utility to move an index to different

424 Utility Guide and Reference

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

volumes; instead you should use the online REORG utility. REBUILD INDEX
SHRLEVEL CHANGE on a unique index will not allow the INSERT option, the
DELETE option, or updates that affect the unique index.

Claims

The following table shows which claim classes REBUILD INDEX drains and any
restrictive state that the utility sets on the target object.

Table 59. Claim classes of REBUILD INDEX operations.

Target

REBUILD
INDEX
SHRLEVEL
REFERENCE

REBUILD
INDEX PART
SHRLEVEL
REFERENCE

REBUILD
INDEX
SHRLEVEL
CHANGE

Table space or partition DW/UTRO DW/UTRO CR/UTRW

Partitioning index, data-partitioned
secondary index, or physical
partition1

DA/UTUT DA/UTUT CR/UTRW

Nonpartitioned secondary index2 DA/UTUT DR CR/UTRW

Logical partition of an index3 N/A DA/UTUT CR/UTRW

Legend:
v CR - Claim the read claim class
v DA - Drain all claim classes; no concurrent SQL access
v DW - Drain the write claim class; concurrent access for SQL readers
v DR - Drains the repeatable-read claim class
v N/A - Not applicable
v UTUT - Utility restrictive state; exclusive control
v UTRO - Utility restrictive state; read-only access allowed
v UTRW - Utility restrictive state; read and write access allowed

Note:

1. Includes document ID indexes and node ID indexes over partitioned XML table spaces

2. Includes document ID indexes and node ID indexes over nonpartitioned XML table
spaces and XML indexes

3. Includes logical partitions of an XML index over partitioned XML table spaces

Compatibility

The following table shows which utilities can run concurrently with REBUILD
INDEX on the same target object. The target object can be an index space or a
partition of an index space. If compatibility depends on particular options of a
utility, that information is also shown. REBUILD INDEX does not set a utility
restrictive state if the target object is DSNDB01.SYSUTILX.

Table 60. Compatibility of REBUILD INDEX with other utilities

Action REBUILD INDEX

CHECK DATA No

CHECK INDEX No

CHECK LOB Yes

COPY INDEX No

COPY TABLESPACE SHRLEVEL CHANGE No

COPY TABLESPACE SHRLEVEL REFERENCE Yes

Chapter 22. REBUILD INDEX 425

Table 60. Compatibility of REBUILD INDEX with other utilities (continued)

Action REBUILD INDEX

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

MODIFY Yes

QUIESCE No

REBUILD INDEX No

RECOVER INDEX No

RECOVER TABLESPACE No

REORG INDEX No

REORG TABLESPACE UNLOAD CONTINUE or PAUSE No

REORG TABLESPACE UNLOAD ONLY or EXTERNAL with
cluster index

No

REORG TABLESPACE UNLOAD ONLY or EXTERNAL without
cluster index

Yes

REPAIR LOCATE by KEY No

REPAIR LOCATE by RID DELETE or REPLACE No

REPAIR LOCATE by RID DUMP or VERIFY Yes

REPAIR LOCATE INDEX PAGE DUMP or VERIFY No

REPAIR LOCATE TABLESPACE or INDEX PAGE REPLACE No

REPAIR LOCATE TABLESPACE PAGE DUMP or VERIFY Yes

REPORT Yes

RUNSTATS INDEX No

RUNSTATS TABLESPACE Yes

STOSPACE Yes

UNLOAD Yes

To run REBUILD INDEX on SYSIBM.DSNLUX01 or SYSIBM.DSNLUX02, ensure
that REBUILD INDEX is the only utility in the job step and the only utility that is
running in the DB2 subsystem. Unloading a base table that has LOB columns is
not compatible with REBUILD INDEX.

Access with REBUILD INDEX SHRLEVEL
You can specify the level of access that you have to your data when running the
REBUILD INDEX utility by using the SHRLEVEL option of REBUILD INDEX.

Before target indexes are built, they are first drained (DRAIN ALL), then placed in
RBDP. The indexes are shown in UTRW states.

For rebuilding an index or a partition of an index, the SHRLEVEL option lets you
choose the data access level that you have during the rebuild:

426 Utility Guide and Reference

Log processing with SHRLEVEL CHANGE

When you specify SHRLEVEL CHANGE, DB2 processes the log. This step executes
iteratively. The first iteration processes the log records that accumulated during the
previous iteration. The iterations continue until one of these conditions is met:
v DB2 estimates that the time to perform the log processing in the next iteration

will be less than or equal to the time that is specified by MAXRO. If this
condition is met, the next iteration is the last.

v The number of log records that the next iteration will process is not sufficiently
lower than the number of log records that were processed in the previous
iteration. If this condition is met but the first two conditions are not, DB2 sends
message DSNU377I to the console. DB2 continues log processing for the length
of time that is specified by DELAY and then performs the action specified by
LONGLOG.

Operator actions

LONGLOG specifies the action that DB2 is to perform if log processing is not
occurring quickly enough. If the operator does not respond to the console message
DSNU377I, the LONGLOG option automatically goes into effect. You can take one
of the following actions:
v Execute the TERM UTILITY command to terminate the rebuild process.

DB2 does not take the action specified in the LONGLOG phrase if any one of these
events occurs before the delay expires:
v A TERM UTILITY command is issued.
v DB2 estimates that the time to perform the next iteration is likely to be less than

or equal to the time specified on the MAXRO keyword.
v REBUILD terminates for any reason (including the deadline).

Rebuilding index partitions
The REBUILD INDEX utility can rebuild one or more partitions of a partitioned
index by extracting the keys from the data rows of the table on which they are
based.

When you specify the PART option, one or more partitions from a partitioning
index or a data-partitioned secondary index can be rebuilt. However, for
nonpartitioned indexes, you cannot rebuild individual logical partitions in certain
situations.

If any of the following situations are true for a nonpartitioned index, you cannot
rebuild individual logical partitions:
v the index was created with DEFER YES
v the index must be completely rebuilt (This situation is likely in a disaster

recovery scenario)
v the index is in page set REBUILD-pending (PSRBD) status

For these cases, you must rebuild the entire index.

Rebuilding indexes on partition-by-growth table spaces
The REBUILD INDEX Utility might reset more partitions than it repopulates. Any
excess partitions will be empty after the REBUILD process.

Chapter 22. REBUILD INDEX 427

Improving performance when rebuilding index partitions
Certain activities can improve performance when rebuilding index partitions.

If you use the PART option to rebuild only a single partition of an index, the
utility does not need to scan the entire table space.

To rebuild several indexes (including data-partitioned secondary indexes) at the
same time and reduce recovery time, use parallel index rebuild, or submit multiple
index jobs.

When rebuilding nonpartitioned secondary indexes and partitions of partitioned
indexes, this type of parallel processing on the same table space decreases the size
of the sort data set, as well as the total time that is required to sort all the keys.

When you run the REBUILD INDEX utility concurrently on separate partitions of a
partitioned index (either partitioning or secondary), the sum of the processor time
is approximately the time for a single REBUILD INDEX job to run against the
entire index. For partitioning indexes, the elapsed time for running concurrent
REBUILD INDEX jobs is a fraction of the elapsed time for running a single
REBUILD INDEX job against an entire index.

When to use SHRLEVEL CHANGE:

Schedule REBUILD with SHRLEVEL CHANGE when the rate of writing is low
and transactions are short. Avoid scheduling REBUILD with SHRLEVEL CHANGE
when low-tolerance applications are executing.

When to use DRAIN_WAIT:

The DRAIN_WAIT option provides improved control over the time online
REBUILD waits for drains. Also, because the DRAIN_WAIT is the aggregate time
that online REBUILD is to wait to perform a drain on a table space and associated
indexes, the length of drains is more predictable than it is when each partition and
index has its own individual waiting-time limit.

By specifying a short delay time (less than the system timeout value, IRLMRWT),
you can reduce the impact on applications by reducing timeouts. You can use the
RETRY option to give opportunities for the online REBUILD INDEX utility to
complete successfully. If you do not want to use RETRY processing, you can still
use DRAIN_WAIT to set a specific and more consistent limit on the length of
drains.

RETRY allows an online REBUILD that is unable to drain the objects that it
requires to try again after a set period (RETRY_DELAY). Objects will remain in
their original state if the drain fails in the LOG phase.

Because application SQL statements can queue behind any unsuccessful drain that
the online REBUILD has tried, define a reasonable delay before you retry to allow
this work to complete; the default is lock timeout subsystem parameter IRLMRWT.

When the default DRAIN WRITERS is used with SHRLEVEL CHANGE and
RETRY, multiple read-only log iterations can occur. Because online REBUILD can
have to do more work when RETRY is specified, multiple or extended periods of
restricted access might occur. Applications that run with REBUILD must perform

428 Utility Guide and Reference

frequent commits. During the interval between retries, the utility is still active;
consequently, other utility activity against the table space and indexes is restricted.

Recommendation: Run online REBUILD during light periods of activity on the
table space or index.
Related concepts:
“Rebuilding multiple indexes”

Rebuilding multiple indexes
When you process both node ID indexes and XML indexes together, they are
processed sequentially. First the node ID index is processed and then the XML
index.

Building indexes in parallel

Parallel index build reduces the elapsed time for a REBUILD INDEX job by sorting
the index keys and rebuilding multiple indexes or index partitions in parallel,
rather than sequentially. Optimally, a pair of subtasks processes each index; one
subtask sorts extracted keys, while the other subtask builds the index. REBUILD
INDEX begins building each index as soon as the corresponding sort generates its
first sorted record. If you specify STATISTICS, a third subtask collects the sorted
keys and updates the catalog table in parallel.

The subtasks that are used for the parallel REBUILD INDEX processing use DB2
connections. If you receive message DSNU397I that indicates that the REBUILD
INDEX utility is constrained, increase the number of concurrent connections by
using the MAX BATCH CONNECT parameter on panel DSNTIPE.

The greatest elapsed processing-time improvements result from parallel rebuilding
for:
v Multiple indexes on a table space
v A partitioning index or a data-partitioned secondary index on all partitions of a

partitioned table space
v A nonpartitioned secondary index on a partitioned table space

The following figure shows the flow of a REBUILD INDEX job with a parallel
index build. The same flow applies whether you rebuild a data-partitioned
secondary index or a partitioning index. DB2 starts multiple subtasks to unload the
entire partitioned table space. Subtasks then sort index keys and build the
partitioning index in parallel. If you specify STATISTICS, additional subtasks
collect the sorted keys and update the catalog table in parallel, eliminating the
need for a second scan of the index by a separate RUNSTATS job.

Chapter 22. REBUILD INDEX 429

The following figure shows the flow of a REBUILD INDEX job with a parallel
index build. DB2 starts multiple subtasks to unload all partitions of a partitioned
table space and to sort index keys in parallel. The keys are then merged and
passed to the build subtask, which builds the nonpartitioned secondary index. If
you specify STATISTICS, a separate subtask collects the sorted keys and updates
the catalog table.

When parallel index build is used:
REBUILD INDEX always sorts the index keys and builds them in parallel
for partitioned table spaces unless constrained by available memory, sort
work files, or UTPRINnn file allocations.

Sort work data sets for parallel index build:
You can either allow the utility to dynamically allocate the data sets that
SORT needs, or provide the necessary data sets yourself. Select one of the
following methods to allocate sort work data sets and message data sets:

Method 1:
REBUILD INDEX determines the optimal number of sort work
data sets and message data sets.
1. Specify the SORTDEVT keyword in the utility statement.

Figure 60. How a partitioning index is rebuilt during a parallel index build

Figure 61. How a nonpartitioned secondary index is rebuilt during a parallel index build

430 Utility Guide and Reference

2. Allow dynamic allocation of sort work data sets by not
supplying SORTWKnn DD statements in the REBUILD INDEX
utility JCL.

3. Allocate UTPRINT to SYSOUT.

Method 2:
You control allocation of sort work data sets, and REBUILD INDEX
allocates message data sets.
1. Provide DD statements with DD names in the form

SWnnWKmm.
2. Allocate UTPRINT to SYSOUT.

Method 3:
You have the most control over rebuild processing; you must
specify both sort work data sets and message data sets.
1. Provide DD statements with DD names in the form

SWnnWKmm.
2. Provide DD statements with DD names in the form UTPRINnn.

Data sets that are used

If you select Method 2 or 3, define the necessary data sets by using the following
information.

Each sort subtask must have its own group of sort work data sets and its own
print message data set. In addition, you need to allocate the merge message data
set when you build a single nonpartitioned secondary index on a partitioned table
space.

Possible reasons to allocate data sets in the utility job JCL rather than using
dynamic allocation are to:
v Control the size and placement of the data sets
v Minimize device contention
v Optimally use free disk space
v Limit the number of utility subtasks that are used to build indexes

The DD names SWnnWKmm define the sort work data sets that are used during
utility processing. nn identifies the subtask pair, and mm identifies one or more
data sets that are to be used by that subtask pair. For example:

SW01WK01
Is the first sort work data set that is used by the subtask that builds the
first index.

SW01WK02
Is the second sort work data set that is used by the subtask that builds the
first index.

SW02WK01
Is the first sort work data set that is used by the subtask that builds the
second index.

SW02WK02
Is the second sort work data set that is used by the subtask that builds the
second index.

The DD names UTPRINnn define the sort work message data sets that are used by
the utility subtask pairs. nn identifies the subtask pair.

Chapter 22. REBUILD INDEX 431

Every time you invoke REBUILD INDEX, new UTPRINnn data sets are
dynamically allocated. REBUILD INDEX does not reuse UTPRINnn data sets from
previous job steps. This behavior might cause the available JES2 job queue
elements to be consumed more quickly than expected.

If you allocate the UTPRINT DD statement to SYSOUT in the job statement, the
sort message data sets and the merge message data set, if required, are
dynamically allocated. If you want the sort message data sets, merge message data
sets, or both, allocated to a disk or tape data set rather than to SYSOUT, you must
supply the UTPRINnn or the UTMERG01 DD statements (or both) in the utility
JCL. If you do not allocate the UTPRINT DD statement to SYSOUT, and you do
not supply a UTMERG01 DD statement in the job statement, partitions are not
unloaded in parallel.

Determining the number of sort subtasks

The maximum number of utility subtasks that are started for parallel index build
equals:
v For a simple table space, segmented table space, or simple partition of a

partitioned table space, the number of indexes that are to be built
v For a single index that is being built on a partitioned table space, the number of

partitions that are to be unloaded

REBUILD INDEX determines the number of subtasks according to the following
guidelines:
v The number of subtasks equals the number of allocated sort work data set

groups.
v The number of subtasks equals the number of allocated message data sets.
v If you allocate both sort work data sets and message data set groups, the

number of subtasks equals the smallest number of allocated data sets.

Allocation of sort subtasks

REBUILD INDEX attempts to assign one sort subtask for each index that is to be
built. If REBUILD INDEX cannot start enough subtasks to build one index per
subtask, it allocates any excess indexes across the pairs (in the order that the
indexes were created), so that one or more subtasks might build more than one
index.

Estimating the sort work file size

If you choose to provide the data sets, you need to know the size and number of
keys that are present in all of the indexes or index partitions that are being
processed by the subtask in order to calculate each sort work file size. When you
determine which indexes or index partitions are assigned to which subtask pairs,
use the following formula to calculate the required space.

2 ×(maximum record length × numcols × (count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length
Maximum record length of the SYSCOLDISTSTATS record that is processed
when collecting frequency statistics (You can obtain this value from the
RECLENGTH column in SYSTABLES.)

432 Utility Guide and Reference

numcols
Number of key columns to concatenate when you collect frequent values
from the specified index.

count Number of frequent values that DB2 is to collect.

Overriding dynamic sort work data set allocation

DB2 estimates how many records are to be sorted. This information is used for
dynamic allocation of sort work space. Sort work space is allocated by DB2 or by
the sort program that is used.

If the table space contains rows with VARCHAR columns, DB2 might not be able
to accurately estimate the number of records. If the estimated number of records is
too high, if the requested sort work space is not available, or if the estimated
number of records is too low, which causes the sort to overflow, the utility might
fail and cause an abend.

Recommendation: To enable DB2 to calculate a more accurate estimate:
v For a table space that is partitioned (non-universal), run RUNSTATS UPDATE

ALL before REORG.
v For any other type of table space, run RUNSTATS UPDATE SPACE before

REORG.

When you run RUNSTATS with SHRLEVEL REFERENCE, real-time statistics
values are also updated.

You can override the dynamic allocation of sort work space in one of the following
ways:
v Allocate the sort work data sets with SORTWKnn DD statements in your JCL.
v If the number of keys for the affected index in column TOTALENTRIES of table

SYSIBM.SYSINDEXSPACESTATS is not available or is significantly incorrect, you
can update the value to a more appropriate value using an SQL UPDATE
statement. When REBUILD INDEX on the affected index completes,
TOTALENTRIES is set to the number of keys for the affected index.

v If the number of rows in the associated table space in column TOTALROWS of
table SYSIBM.SYSTABLESPACESTATS is not available or is significantly
incorrect, you can update the value to a more appropriate value using an SQL
UPDATE statement. The next time that REORG is run, TOTALROWS is set to
the number of rows in the associated table space.

Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

Resetting the REBUILD-pending status
REBUILD-pending status (which appears as RBDP in the output from the DISPLAY
command) means that the physical or logical index partition, nonpartitioned
secondary index, or logical partition of a nonpartitioned secondary index is in
REBUILD-pending status.

The variations of REBUILD-pending status are as follows:

Chapter 22. REBUILD INDEX 433

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

RBDP The physical or logical index partition is in the REBUILD-pending status.
The individual physical or logical index partition is inaccessible. Reset the
RBDP status by rebuilding the single affected partition. If multiple
partitions are in RBDP status, you can rebuild either the entire index or all
affected partitions.

RBDP*
The logical partition of the nonpartitioned secondary index is in the
REBUILD-pending status. The entire nonpartitioned secondary index is
inaccessible. Reset RBDP* status by rebuilding only the affected logical
partitions.

PSRBD
The nonpartitioned secondary index space is in the REBUILD-pending
status. The entire index space is inaccessible. Rebuild the object with the
REBUILD INDEX utility. This state only applies to nonpartitioned
secondary indexes.

You can reset the REBUILD-pending status for an index with any of these
operations:
v REBUILD INDEX
v REORG TABLESPACE SORTDATA
v REPAIR SET INDEX with NORBDPEND
v START DATABASE command with ACCESS FORCE

Attention: Use the START DATABASE command with ACCESS FORCE only as a
means of last resort.

Rebuilding critical catalog indexes
In certain situations, you might need to rebuild critical catalog indexes.

About this task

If certain table spaces in DSNDB06 are unavailable when an ID with a granted
authority tries to rebuild indexes in the catalog or directory, DB2 issues message
DSNT501I, RESOURCE UNAVAILABLE.

Because the catalog and directory structures changed in Version 10, if you are
migrating from a Version 9 or earlier DB2 for z/OS system to a Version 10 or later
DB2 for z/OS system you might also receive message DSNU1530I for some new or
obsolete objects that the REBUILD INDEX skips. For example, in conversion mode,
the REBUILD INDEX utility skips catalog and directory objects that are new for
the version to which you are migrating. In new function mode, the REBUILD
INDEX utility skips catalog and directory objects that are obsolete in the version to
which you are migrating. Specifying OPTIONS EVENT(ITEMERROR,SKIP) or
OPTIONS EVENT(ITEMERROR,HALT) does not impact the skipping of new or
obsolete objects.

Procedure

To rebuild critical catalog indexes:

Use one of the following approaches:
v Make sure the following table spaces are available before rebuilding critical

catalog indexes:

434 Utility Guide and Reference

– SYSTSFAU
– SYSTSCOL
– SYSTSTSP
– SYSTSTPT
– SYSTSTAB
– SYSTSIXS
– SYSTSIXT
– SYSTSIXR
– SYSTSIPT
– SYSTSREL
– SYSTSFOR
– SYSTSSYN
– SYSTSFLD
– SYSTSTAU
– SYSTSKEY
– SYSUSER

v Run the RECOVER TABLESPACE utility on the catalog or directory, using an
authorization ID with the installation SYSADM or installation SYSOPR authority.

Related information:

DSNU1530I (DB2 Messages)

DSNU3343I (DB2 Messages)

Recoverability of a rebuilt index
When you successfully rebuild an index that was defined with COPY YES, utility
processing inserts a SYSCOPY row with ICTYPE='B' for each rebuilt index. Rebuilt
indexes are also placed in informational COPY-pending status, which indicates that
you should make a copy of the index.

Recommendation: If you have FlashCopy capability, create a FlashCopy image
copy during the REBUILD INDEX. Alternatively, after the index is rebuilt, make a
sequential full image copy of the index to create a recovery point. Both copy
methods reset the ICOPY status of the rebuilt index.

Creating a FlashCopy image copy with REBUILD INDEX
As part of REBUILD INDEX processing, you can use FlashCopy technology to
quickly take image copies of the target objects.

About this task

Restriction: You cannot create FlashCopy image copies of indexes that are defined
with the COPY NO attribute.

Procedure

To create a FlashCopy image copy with REBUILD INDEX:

Specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT) in the REBUILD
INDEX utility control statement. Alternatively, you can set the

Chapter 22. REBUILD INDEX 435

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu1530i.htm#dsnu1530i
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu3343i.htm#dsnu3343i

FLASHCOPY_REBUILD_INDEX subsystem parameter to YES, which specifies that
REBUILD INDEX is to use FLASHCOPY(YES) by default. The value that you
specify for the FLASHCOPY option in the REBUILD INDEX statement always
overrides the value for the FLASHCOPY_REBUILD_INDEX subsystem parameter.
Optionally, you can also specify FCCOPYDDN in the REBUILD INDEX statement.
Use this option to specify a template for the FlashCopy image copy. If you do not
specify the FCCOPYDDN option in the REBUILD INDEX statement, the utility
uses the value from the FCCOPYDDN subsystem parameter.

Restriction: The data sets that you specify for the FlashCopy image copy must be
on FlashCopy Version 2 disk volumes.
When you specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT), REBUILD
INDEX uses FlashCopy technology to create a consistent copy of the target objects.
The FlashCopy image copy fails if the FlashCopy Version 2 disk volumes are not
available or if any of the other FlashCopy operational restrictions exist. For a list of
those operational restrictions, see “FlashCopy image copies” on page 149.
Related concepts:
“FlashCopy image copies” on page 149
Related reference:

DEFAULT TEMPLATE field (FCCOPYDDN subsystem parameter) (DB2
Installation and Migration)

REBUILD INDEX field (FLASHCOPY_REBUILD_INDEX subsystem parameter)
(DB2 Installation and Migration)

Termination or restart of REBUILD INDEX
You can terminate and restart the REBUILD INDEX utility.

You can terminate REBUILD INDEX by using the TERM UTILITY command. If
you terminate a REBUILD INDEX job, the index space is placed in the
REBUILD-pending status and is unavailable until it is successfully rebuilt.

By default, DB2 uses RESTART(PHASE) when restarting REBUILD INDEX jobs.
The job starts again from the beginning.

If you restart a job that uses the STATISTICS keyword, inline statistics collection
does not occur. To update catalog statistics, run the RUNSTATS utility after the
restarted REBUILD INDEX job completes.
Related concepts:
“Restart of an online utility” on page 39

The effect of REBUILD INDEX on index version numbers
DB2 stores the range of used index version numbers in the OLDEST_VERSION
and CURRENT_VERSION columns of the SYSIBM.SYSINDEXES and
SYSIBM.SYSINDEXPART catalog tables.

The OLDEST_VERSION column contains the oldest used version number, and the
CURRENT_VERSION column contains the current version number.

When you run REBUILD INDEX, the utility updates this range of used version
numbers for indexes that are defined with the COPY NO attribute. REBUILD

436 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_fccopyddn.htm#db2z_ipf_fccopyddn
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_fccopyddn.htm#db2z_ipf_fccopyddn
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_flashcopyrebuildindex.htm#db2z_ipf_flashcopyrebuildindex
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_flashcopyrebuildindex.htm#db2z_ipf_flashcopyrebuildindex

INDEX sets the OLDEST_VERSION column to the current version number, which
indicates that only one version is active; DB2 can then reuse all of the other
version numbers.

Recycling of version numbers is required when all of the version numbers are
being used. All version numbers are being used when one of the following
situations is true:
v The value in the CURRENT_VERSION column is one less than the value in the

OLDEST_VERSION column
v The value in the CURRENT_VERSION column is 15, and the value in the

OLDEST_VERSION column is 0 or 1.

You can also run LOAD REPLACE, REORG INDEX, or REORG TABLESPACE to
recycle version numbers for indexes that are defined with the COPY NO attribute.
To recycle version numbers for indexes that are defined with the COPY YES
attribute or for table spaces, run MODIFY RECOVERY.
Related concepts:

Table space versions (DB2 Administration Guide)

Sample REBUILD INDEX control statements
Use the sample control statements as models for developing your own REBUILD
INDEX control statements.

Example 1: Rebuilding an index

The following control statement specifies that the REBUILD INDEX utility is to
rebuild the DSN8B10.XDEPT1 index.
//STEP1 EXEC DSNUPROC,UID=’IUIQU2UT.RBLD1’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSREC DD DSN=IUIQU2UT.RBLD1.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(8000,(20,20),,,ROUND)
//SYSIN DD *
REBUILD INDEX (DSN8B10.XDEPT1)
/*

Example 2: Rebuilding index partitions

The following control statement specifies that REBUILD INDEX is to rebuild
partitions 2 and 3 of the DSN8B10.XEMP1 index. The partition numbers are
indicated by the PART option.
REBUILD INDEX (DSN8B10.XEMP1 PART 2, DSN8B10.XEMP1 PART 3)

Example 3: Rebuilding multiple partitions of a partitioning or
secondary index

The following control statement specifies that REBUILD INDEX is to rebuild
partitions 2 and 3 of the DSN8B10.XEMP1 index. The partition numbers are
indicated by the PART option. The SORTDEVT and SORTNUM keywords indicate
that the utility is to use dynamic data set and message set allocation. Parallelism is
used by default.

If sufficient virtual storage resources are available, DB2 starts one pair of utility
sort subtasks for each partition. This example does not require UTPRINnn DD

Chapter 22. REBUILD INDEX 437

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_tablespaceversions.htm#db2z_tablespaceversions

statements because it uses DSNUPROC to invoke utility processing. DSNUPROC
includes a DD statement that allocates UTPRINT to SYSOUT.
//SAMPJOB JOB ...
//STEP1 EXEC DSNUPROC,UID=’SAMPJOB.RBINDEX’,UTPROC=’’,SYSTEM=’DSN’
//SYSIN DD *
REBUILD INDEX (DSN8B10.XEMP1 PART 2, DSN8B10.XEMP1 PART 3)
SORTDEVT SYSWK
SORTNUM 4
/*

Example 4: Rebuilding all partitions of a partitioning index

The control statement specifies that REBUILD INDEX is to rebuild all index
partitions of the DSN8B10.XEMP1 partitioning index. Parallelism is used by
default. For this example, REBUILD INDEX allocates sort work data sets in two
groups, which limits the number of utility subtask pairs to two. This example does
not require UTPRINnn DD statements because it uses DSNUPROC to invoke utility
processing. DSNUPROC includes a DD statement that allocates UTPRINT to
SYSOUT.

Example 5: Rebuilding all indexes of a table space

The following control statement specifies that REBUILD INDEX is to rebuild all
indexes for table space DSN8D11A.DSN8S11E. The SORTDEVT and SORTNUM
keywords indicate that the utility is to use dynamic data set and message set
allocation. Parallelism is used by default.

If sufficient virtual storage resources are available, DB2 starts one utility sort
subtask to build the partitioning index and another utility sort subtask to build the
nonpartitioning index. This example does not require UTPRINnn DD statements
because it uses DSNUPROC to invoke utility processing. DSNUPROC includes a
DD statement that allocates UTPRINT to SYSOUT.
//SAMPJOB JOB ...
//STEP1 EXEC DSNUPROC,UID=’SAMPJOB.RCVINDEX’,UTPROC=’’,SYSTEM=’DSN’
//SYSIN DD *
REBUILD INDEX (ALL) TABLESPACE DSN8D11A.DSN8S11E
SORTDEVT SYSWK
SORTNUM 4
/*

//SAMPJOB JOB ...
//STEP1 EXEC DSNUPROC,UID=’SAMPJOB.RCVINDEX’,UTPROC=’’,SYSTEM=’DSN’
//* First group of sort work data sets for parallel index rebuild
//SW01WK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW01WK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW01WK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//* Second group of sort work data sets for parallel index rebuild
//SW02WK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW02WK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW02WK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SYSIN DD *

REBUILD INDEX (DSN8B10.XEMP1)
/*

Figure 62. Example REBUILD INDEX statement

438 Utility Guide and Reference

Example 6: Rebuilding indexes only if they are in a restrictive
state and gathering inline statistics

The control statement in this example specifies that REBUILD INDEX is to rebuild
partition 9 of index ID0S482D if it is in REBUILD-pending (RBDP),
RECOVER-pending (RECP), or advisory REORG-pending (AREO*) state. This
condition that the index be in a certain restrictive state is indicated by the SCOPE
PENDING option. The STATISTICS FORCEROLLUP YES option indicates that the
utility is to collect inline statistics on the index partition that it is rebuilding and to
force aggregation of those statistics.

Example 7: Rebuilding indexes that are on clone tables

The following control statement specifies that REBUILD INDEX is to reconstruct
only the specified indexes that are on clone tables.
REBUILD INDEX (ADMF001.IUKQAI01)

CLONE

Example 8: Rebuilding indexes with SHRLEVEL CHANGE.

The following control statement specifies that during the rebuild, applications can
read from and write to ADMF001.IUKQAI01.
REBUILD INDEX (ADMF001.IUKQAI01)

SHRLEVEL CHANGE

//STEP6 EXEC DSNUPROC,UID=’JUOSU248.CHK6’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//UTPRINT DD SYSOUT=*
//SYSREC DD DSN=JUOSU248.CHKIXPX.STEP6.SYSREC,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSCOPY DD DSN=JUOSU248.CHKIXPX.STEP6.SYSCOPY,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=JUOSU248.CHKIXPX.STEP6.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *

REBUILD INDEX (IDOS482D PART 9)
STATISTICS FORCEROLLUP YES
SCOPE PENDING

/*

Figure 63. Example REBUILD INDEX statement with STATISTICS option

Chapter 22. REBUILD INDEX 439

440 Utility Guide and Reference

Chapter 23. RECOVER

The RECOVER online utility recovers data to the current state or to a previous
point in time by restoring a copy and then applying log records. The online
RECOVER utility can also recover data to a previous point in time by backing out
committed work.

The largest unit of data recovery is the table space or index space; the smallest is
the page. You can recover a single object or a list of objects. The RECOVER utility
recovers an entire table space, index space, a partition or data set, pages within an
error range, or a single page. You can recover data from sequential image copies of
an object, a FlashCopy image copy of an object, a system-level backup, or the log.
Point-in-time recovery with consistency automatically detects the uncommitted
transactions that are running at the recover point in time and rolls back their
changes on the recovered objects. So after recover, objects will be left in their
transactionally consistent state.

Output

Output from RECOVER consists of recovered data (a table space, index, partition
or data set, error range, or page within a table space).

In all migration modes, RBA and LRSN values are displayed in 10-byte format.
This 10-byte display is unrelated to migration of the catalog or directory,
conversion of individual objects to EXTENDED format, or BSDS conversion. For
recovery purposes, this 10-byte format is the preferred input format for DB2. When
10-byte RBA or LRSN values are specified as input to DB2, conversion to 6-byte
format is performed internally as needed.

Even before the BSDS is converted to Version 11 format on all data sharing
members or the catalog and directory are migrated, 10-byte LRSN values might be
displayed with non-zero digits in the low order 3 bytes. LRSN values captured
before the BSDS is converted continue to be displayed as they were saved until
they are no longer available for display (for example, deleted by MODIFY
RECOVERY). This behavior is normal and to be expected, given the many ways
LRSN values are generated, stored, and handled in DB2. If these LRSN values are
specified as input to DB2, specify them as shown. If the LRSN value contains
non-zero digits in the low order 3 bytes, do not remove them. Any conversion that
might be required takes place inside DB2.

Authorization required

To run this utility, you must use a privilege set that includes one of the following
authorities:
v RECOVERDB privilege for the database
v DBADM or DBCTRL authority for the database. If the object on which the utility

operates is in an implicitly created database, DBADM authority on the implicitly
created database or DSNDB04 is required.

v System DBADM authority
v DATAACCESS authority
v SYSCTRL or SYSADM authority

© Copyright IBM Corp. 1983, 2013 441

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

An ID with installation SYSOPR authority can also run RECOVER, but only on a
table space in the DSNDB01 or DSNDB06 database.

Restrictions on running RECOVER
v RECOVER cannot recover a table space or index space that is defined to use a

storage group that is defined with mixed specific and nonspecific volume IDs. If
you specify such a table space or index space, the job terminates and you receive
error message DSNU419I.

v RECOVER cannot recover an index that was altered to PADDED or NOT
PADDED. Instead, you need to rebuild the index.

v If a table space or partition in reordered row format is recovered to a point in
time when the table space or partition was in basic row format, the table space
or partition reverts to basic row format. Similarly, if a table space or partition in
basic row format is recovered to a point in time when the table space or
partition was in reordered row format, the table space or partition reverts to
reordered row format.

v You cannot run RECOVER on a table space or index space on which mixed
specific and non-specific volume IDs were defined with CREATE STOGROUP or
ALTER STOGROUP.

v You can take system-level backups with the BACKUP SYSTEM utility. However,
if any of the following utilities were run since the system-level backup that was
chosen as the recovery base, then the use of the system-level backup is
prohibited for object level recoveries to a prior point in time:
– REORG TABLESPACE
– REORG INDEX
– REBUILD INDEX
– LOAD REPLACE
– RECOVER from image copy or concurrent copy
This restriction does not apply if you are using z/OS V1R11.0 or later and you
set up DFSMShsm to capture catalog information.

v RECOVER cannot recover a table space or index to a point in time if pending
definition changes on that object were materialized by the REORG utility after
that point in time.

v You can use RECOVER to a point in time on an index to reset the
REBUILD-pending state only if the index is in the REBUILD-pending state
because the associated table space was recovered to a point in time.

v A point-in-time recovery that involves a trailing partition-by-growth partition
that was previously deleted by a REORG TABLESPACE is restricted.

v Partition level recovery is required when the recovery base is an inline copy that
was created by a REORG that pruned partitions.

v RECOVER cannot recover an XML table space to a point-in-time before the
REORG utility that changed the format from basic to extended format.

v The following restrictions apply to recovery to a point in time that is before
materialization of pending definition changes:
– The target object must be an entire range-partitioned table space, a LOB table

space, or an XML table space.
You cannot recover selected partitions.

– The pending definition changes cannot be changes to the table space type.
– The table space cannot be recovered with VERIFYSET NO. If VERIFYSET NO

is specified, RECOVER uses VERIFYSET YES instead.

442 Utility Guide and Reference

|
|

|
|

|
|

|
|

|
|

|

|

|
|

– The RECOVER statement cannot specify TOCOPY, TOLASTCOPY, or
TOLASTFULLCOPY if the source for recovery is an image copy that was
taken with the SHRLEVEL CHANGE option.

– The target table space cannot contain a clone table.
If a clone table exists in the table space, but no data exchange occurred, you
can drop the clone table, and then perform the point-in-time recovery. If data
exchange occurred, you cannot perform the point-in-time recovery.

– The pending definition change cannot be:
- A change to the table space type
- A change to hash organization
- Dropping of a column

– No RECOVER jobs that recover the table space to a different point in time can
run until recovery to a point-in-time before materialization of pending
definition changes is complete.
Completion of a subsequent REORG job that clears the REORG-pending
(REORP) state on the table space completes the recovery.

Execution phases of RECOVER

The RECOVER utility operates in these phases:

Phase Description

UTILINIT
Performs initialization and setup.

RESTORE
Locates and merges any appropriate sequential image copies and restores
the table space to a backup level; processes a list of objects in parallel if
you specify the PARALLEL keyword.

RESTORER
If you specify the PARALLEL keyword, reads and merges the sequential
image copies.

RESTOREW
If you specify the PARALLEL keyword, writes the pages to the object.

PRELOGC
Preliminary LOGCSR phase. Determines uncommitted work that was
backed out when the recovery base for an object is a FlashCopy image
copy with consistency.

PRELOGA
Preliminary LOGAPPLY phase. Applies the uncommitted work up to the
point of consistency for the object with a FlashCopy image copy with
consistency recovery base.

LOGAPPLY
Applies any outstanding log changes to the object that is restored from the
previous phase or step. If a recover job fails in the middle of the
LOGAPPLY phase, it can be restarted from last commit point.

LOGCSR
Analyzes log records and constructs information about inflight, indoubt,
inabort, and postponed abort units of recovery. This phase is executed if
either the TORBA and TOLOGPOINT option was specified. If a recover job
fails in the middle of the LOGCSR phase, it can be restarted from the

Chapter 23. RECOVER 443

|
|
|

|

|
|
|

|

|

|

|

|
|
|

|
|

beginning of the LOGCSR phase. DB2 members that finished the LOGCSR
phase before the RECOVER job failure go through the LOGCSR phase
again.

For BACKOUT YES processing, LOGCSR analyzes log records and
constructs information about committed and canceled units of recovery.

LOGUNDO
Rolls back any uncommitted changes that the active units of recovery
made to the recovered objects. This phase is executed if either the TORBA
and TOLOGPOINT option was specified. If you need to restart the recover
job after it enters into the LOGUNDO phase, objects that were not changed
by URs that were active during the recover to point in time will be marked
as finished and no need for further processing.

For BACKOUT YES processing, the LOGUNDO phase backs out
committed changes from the current state of the object to the prior point in
time specified. In addition, any uncommitted changes at the point in time
specified are rolled back.

UTILTERM
Performs cleanup.

Syntax and options of the RECOVER control statement
The RECOVER utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

444 Utility Guide and Reference

Syntax diagram

�� RECOVER

�

LIST listdef-name list-options-spec

DSNUM ALL
object

(1)
DSNUM integer

DSNUM ALL
object recover-options-spec

(1)
DSNUM integer

object PAGE page-number
CONTINUE

CLONE
�

�
LOCALSITE
RECOVERYSITE

LOGRANGES YES

(2)
LOGRANGES NO

��

Notes:

1 Not valid for nonpartitioning indexes.

2 Use the LOGRANGES NO option only at the direction of IBM Software Support. This option can
cause the LOGAPPLY phase to run much longer and, in some cases, apply log records that
should not be applied.

object:

�� TABLESPACE table-space-name
database-name.

INDEXSPACE index-space-name
database-name.

INDEX index-name
creator-id.

��

list-options-spec:

Chapter 23. RECOVER 445

��
BACKOUT NO

YES
BACKOUT

VERIFYSET YES ENFORCE YES
TORBA X'byte-string'

VERIFYSET NO ENFORCE NO
VERIFYSET YES ENFORCE YES

TOLOGPOINT X'byte-string'
VERIFYSET NO ENFORCE NO

�

� non-LOGONLY-options-spec
LOGONLY

��

non-LOGONLY-options-spec:

��
REUSE CURRENTCOPYONLY

�

�
PARALLEL

(num-objects) TAPEUNITS (num-tape-units)

�

�
RESTOREBEFORE X'byte-string' FROMDUMP

DUMPCLASS (dcl)

��

recover-options-spec:

��
ENFORCE YES

TOCOPY data-set
image-copy-spec REUSE CURRENTCOPYONLY ENFORCE NO

ENFORCE YES
TOLASTCOPY

REUSE CURRENTCOPYONLY ENFORCE NO
ENFORCE YES

TOLASTFULLCOPY
REUSE CURRENTCOPYONLY ENFORCE NO

ERROR RANGE

��

image-copy-spec:

��
TOVOLUME CATALOG

vol-ser
TOSEQNO integer

��

446 Utility Guide and Reference

Option descriptions

You can specify a list of objects by repeating the TABLESPACE, INDEX, or
INDEXSPACE keywords. If you use a list of objects, the valid keywords are:
DSNUM, TORBA, TOLOGPOINT, LOGONLY, PARALLEL, and either LOCALSITE
or RECOVERYSITE.

The options TOCOPY, TOLASTCOPY, TOLASTFULLCOPY, TORBA and
TOLOGPOINT are all referred to as point-in-time recovery options.

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. The utility
allows one LIST keyword for each control statement of RECOVER. The list can
contain a mixture of table spaces and index spaces. RECOVER is invoked once
for the entire list.

This utility will only process clone data if the CLONE keyword is specified.
The use of CLONED YES on the LISTDEF statement is not sufficient.

The partitions or partition ranges can be specified in a list.

TABLESPACE database-name.table-space-name
Specifies the table space (and optionally, the database to which it belongs) that
is to be recovered.

You can specify a list of table spaces by repeating the TABLESPACE keyword.
You can recover an individual catalog or directory table space in a list with its
IBM-defined indexes.

database-name
Is the name of the database to which the table space belongs.

The default value is DSNDB04.

table-space-name
Is the name of the table space that is to be recovered.

INDEXSPACE database-name.index-space-name
Specifies the index space that is to be recovered.

database-name
Specifies the name of the database to which the index space belongs.

The default value is DSNDB04.

index-space-name
Specifies the name of the index space that is to be recovered.

INDEX creator-id.index-name
Specifies the index in the index space that is to be recovered. The RECOVER
utility can recover only indexes that were defined with the COPY YES attribute
and subsequently copied.

creator-id
Optionally specifies the creator of the index.

The default value is the user identifier for the utility.

index-name
Specifies the name of the index in the index space that is to be recovered.
Enclose the index name in quotation marks if the name contains a blank.

DSNUM
Identifies a partition within a partitioned table space or a partitioned index, or

Chapter 23. RECOVER 447

identifies a data set within a nonpartitioned table space that is to be recovered.
You cannot specify a single data set of a nonpartitioned index or a logical
partition of a nonpartitioned index. Alternatively, the option can recover the
entire table space or index space.

ALL
Specifies that the entire table space or index space is to be recovered.

integer
Specifies the number of the partition or data set that is to be recovered.
The maximum value is 4096.

Specifying DSNUM is not valid for nonpartitioning indexes.

For a partitioned table space or index space:
The integer is its partition number.

For a nonpartitioned table space:

Find the integer at the end of the data set name. The data set name has
the following format:
catname.DSNDBx.dbname.tsname.y000z.Annn

catname
Is the VSAM catalog name or alias.

x Is C or D.

dbname
Is the database name.

tsname Is the table space name.

y Is I or J.

z Is 1 or 2.

nnn Is the data set integer.

PAGE page-number
Specifies a particular page that is to be recovered. You cannot specify this
option if you are recovering from a concurrent copy.

page-number is the number of the page, in either decimal or hexadecimal
notation. For example, both 999 and X'3E7' represent the same page. PAGE is
invalid with the LIST specification.

CONTINUE
Specifies that the recovery process is to continue. Use this option only if an
error causes RECOVER to terminate during reconstruction of a page. In
this case, the page is marked as “broken”. After you repair the page, you
can use the CONTINUE option to recover the page, starting from the point
of failure in the recovery log.

Contact the IBM Support Center before you run the RECOVER utility with
the PAGE CONTINUE keywords.

TORBA X'byte-string'
Specifies, in a non-data-sharing environment, a point on the log to which
RECOVER is to recover. Specify an RBA value. The recovery process ends with
the last log record whose relative byte address (RBA) is not greater than
X'byte-string'. If X'byte-string' is the RBA of the first byte of a log record, that
record is included in the recovery.

448 Utility Guide and Reference

The RBA is a string of up to 20 hexadecimal characters, which represent the
6-byte RBA format or the extended 10-byte RBA format. Values are padded on
the left with zeros if needed. Any 6-byte values are immediately converted to
10-byte format. All further RECOVER processing uses the 10-byte format.

In a data sharing environment, use TORBA only when you want to recover to
a point before the originating member joined the data sharing group. If you
specify an RBA after this point, the recovery fails.

For a NOT LOGGED table space, the value must be a recoverable point.

Uncommitted work by units of recovery that are active at the specified RBA
are backed out by RECOVER so that each object is left in a consistent state.

TOLOGPOINT X'byte-string'
Specifies a point on the log to which RECOVER is to recover. Specify either an
RBA or an LRSN value.

The RBA or LRSN is a string of 12 or 20 hexadecimal characters, which
represent the 6-byte RBA format or the extended 10-byte RBA format. Any
10-byte values are immediately converted to 6-byte format. All further
RECOVER processing is performed with the 6-byte format. In a data-sharing
environment, a 6-byte LRSN value must be greater than X'00FFFFFFFFFF' and
a 10-byte value must be greater than X'0000FFFFFFFFFFFFFFFF'.

For a NOT LOGGED table space, the value must be a recoverable point.

Uncommitted work by units of recovery that are active at the specified LRSN
or RBA will be backed out by RECOVER, leaving each object in a consistent
state.

REUSE
Specifies that RECOVER is to logically reset and reuse DB2-managed data sets
without deleting and redefining them. If you do not specify REUSE, DB2
deletes and redefines DB2-managed data sets to reset them.

If you are recovering an object because of a media failure, do not specify
REUSE.

If a data set has multiple extents, the extents are not released if you use the
REUSE parameter.

CURRENTCOPYONLY
Specifies that RECOVER is to improve the performance of restoring concurrent
copies (copies that were made by the COPY utility with the CONCURRENT
option) by using only the most recent primary copy for each object in the list.

When you specify CURRENTCOPYONLY for a concurrent copy, RECOVER
builds a DFSMSdss RESTORE command for each group of objects that is
associated with a concurrent copy data set name. If the RESTORE fails,
RECOVER does not automatically use the next most recent copy or the backup
copy, and the object fails. If you specify DSNUM ALL with
CURRENTCOPYONLY and one partition fails during the restore process, the
entire utility job on that object fails.

If you specify CURRENTCOPYONLY and the most recent primary copy of the
object to be recovered is not a concurrent copy, DB2 ignores this keyword.

For objects in the recovery list whose recovery base is a system-backup, the
default is CURRENTCOPYONLY.

PARALLEL

Chapter 23. RECOVER 449

|
|
|
|

|
|
|
|
|
|

Specifies the maximum number of objects in the list that are to be restored in
parallel from image copies on disk or tape. RECOVER attempts to retain tape
mounts for tapes that contain stacked image copies when the PARALLEL
keyword is specified. In addition, to maximize performance, RECOVER
determines the order in which objects are to be restored. PARALLEL also
specifies the maximum number of objects in the list that are to be restored in
parallel from system-level backups that have been dumped to tape. The
processing may be limited by DFSMShsm.

If you specify TAPEUNITS with PARALLEL, you control the number of tape
drives that are dynamically allocated for the recovery function. The
TAPEUNITS keyword applies only to tape drives that are dynamically
allocated. The TAPEUNITS keyword does not apply to JCL-allocated tape
drives. The total number of tape drives that are allocated for the RECOVER job
is the sum of the JCL-allocated tape drives, and the number of tape drives,
which is determined as follows:
v The specified value for TAPEUNITS.
v The value that is determined by the RECOVER utility if you omit the

TAPEUNITS keyword. The number of tape drives that RECOVER attempts
to allocate is determined by the object in the list that requires the most tape
drives.

If you specify PARALLEL, you cannot specify TOCOPY, TOLASTCOPY, or
TOLASTFULLCOPY.

(num-objects)
Specifies the number of objects in the list that are to be processed in
parallel. If storage constraints are encountered, you can adjust this value to
a smaller value.

If you specify 0 or do not specify TAPEUNITS keyword, RECOVER
determines the optimal number of objects to process in parallel.

TAPEUNITS
Specifies the number of tape drives that the utility should dynamically allocate
for the list of objects that are to be processed in parallel. If you omit this
keyword, the utility determines the number of tape drives to allocate for the
recovery function.

The TAPEUNITS option does not apply to recovery from system-level backups.
In this case, DFSMShsm determines the number of tape drives that are used
for the recovery.

(num-tape-units)
Specifies the number of tape drives to allocate. If you specify 0 or do not
specify a value for num-tape-units, RECOVER determines the maximum
number of tape units to use at one time. RECOVER TAPEUNITS has a max
value of 32767.

FROMDUMP
Specifies that only dumps of the database copy pool are used for the restore of
the data sets.

DUMPCLASS (dcl)
Indicates the DFSMShsm dump class to use to restore the data sets.

The FROMDUMP and DUMPCLASS options that you specify for the
RECOVER utility override the RESTORE/RECOVER and DUMP CLASS
NAME installation options that you specify on installation panel DSNTIP6.

450 Utility Guide and Reference

RESTOREBEFORE X'byte-string'
Specifies that RECOVER is to search for an image copy, concurrent copy, or
system-level backup (if yes has been specified for the
SYSTEM_LEVEL_BACKUPS subsystem parameter) with an RBA or LRSN
value earlier than the specified X'byte-string' value to use in the RESTORE
phase.

The RBA or LRSN is a string of 12 or 20 hexadecimal characters, which
represent the 6-byte RBA format or the extended 10-byte RBA format. Any
10-byte values are immediately converted to 6-byte format. All further
RECOVER processing is performed with the 6-byte format.In a data-sharing
environment, a 6-byte LRSN value must be greater than X'00FFFFFFFFFF' and
a 10-byte value must be greater than X'0000FFFFFFFFFFFFFFFF'.

To avoid specific image copies, concurrent copies, or system-level backups with
matching or more recent RBA or LRSN values in START_RBA, the RECOVER
utility applies the log records and restores the object to its current state or the
specified TORBA or TOLOGPOINT value. The RESTOREBEFORE value is
compared with the RBA or LRSN value in the START_RBA column in the
SYSIBM.SYSCOPY record for those copies. For system-level backups, the
RESTOREBEFORE value is compared with the data complete LRSN.

If you specify a TORBA or TOLOGPOINT value with the RESTOREBEFORE
option, the RBA or LRSN value for RESTOREBEFORE must be lower than the
specified TORBA OR TOLOGPOINT value. If you specify RESTOREBEFORE,
you cannot specify TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY.

LOGONLY
Specifies that the target objects are to be recovered from their existing data sets
by applying only log records to the data sets. DB2 applies all log records that
were written after a point that is recorded in the data set itself.

To recover an index space by using RECOVER LOGONLY, you must define the
index space with the COPY YES attribute.

Use the LOGONLY option when the data sets of the target objects have already
been restored to a point of consistency by another process offline, such as
DFSMSdss concurrent copy.

LOGONLY is not allowed on a table space or index space with the NOT
LOGGED attribute.

TOCOPY data-set
Specifies the particular image copy data set that DB2 is to use as a source for
recovery.

data-set is the name of the data set.

If the data set is a full image copy, it is the only data set that is used in the
recovery. If it is an incremental image copy, RECOVER also uses the previous
full image copy and any intervening incremental image copies.

If you specify the data set as the local backup copy, DB2 first tries to allocate
the local primary copy. If the local primary copy is unavailable, DB2 uses the
local backup copy.

If you use TOCOPY or TORBA to recover a single data set of a nonpartitioned
table space, DB2 issues message DSNU520I to warn that the table space can
become inconsistent following the RECOVER job. This point-in-time recovery
can cause compressed data to exist without a dictionary or can even overwrite
the data set that contains the current dictionary.

Chapter 23. RECOVER 451

|
|
|
|
|
|

If you use TOCOPY with a particular partition or data set (identified with
DSNUM), the image copy must be for the same partition or data set, or for the
whole table space or index space. If you use TOCOPY with DSNUM ALL, the
image copy must be for DSNUM ALL. You cannot specify TOCOPY with a
LIST specification.If the image copy is a Flash Copy image copy data set, and
the object is partitioned, you must specify the number of the partition that is to
be recovered on the DSNUM parameter.

If the image copy data set is a z/OS generation data set, supply a fully
qualified data set name, including the absolute generation and version number.

If the image copy data set is not a generation data set and more than one
image copy data set with the same data set name exists, use one of the
following options to identify the data set exactly:

TOVOLUME
Identifies the image copy data set.

CATALOG
Indicates that the data set is cataloged. Use this option only for an image
copy that was created as a cataloged data set. (Its volume serial is not
recorded in SYSIBM.SYSCOPY.)

RECOVER refers to the SYSIBM.SYSCOPY catalog table during execution.
If you use TOVOLUME CATALOG, the data set must be cataloged. If you
remove the data set from the catalog after creating it, you must catalog the
data set again to make it consistent with the record for this copy that
appears in SYSIBM.SYSCOPY.

vol-ser
Identifies the data set by an alphanumeric volume serial identifier of its
first volume. Use this option only for an image copy that was created as a
noncataloged data set. Specify the first vol-ser in the SYSCOPY record to
locate a data set that is stored on multiple tape volumes.

TOSEQNO integer
Identifies the image copy data set by its file sequence number. integer is
the file sequence number.

TOLASTCOPY
Specifies that RECOVER is to restore the object to the last image copy that was
taken. If the last image copy is a full image copy, it is restored to the object. If
the last image copy is an incremental image copy, the most recent full copy
along with any incremental copies are restored to the object.

If the image copy is a Flash Copy image copy data set, and the object is
partitioned, you must specify the number of the partition that is to be
recovered on the DSNUM parameter.

TOLASTFULLCOPY
Specifies that the RECOVER utility is to restore the object to the last full image
copy that was taken. Any incremental image copies that were taken after the
full image copy are not restored to the object.

If the image copy is a Flash Copy image copy data set, and the object is
partitioned, you must specify the number of the partition that is to be
recovered on the DSNUM parameter.

ERROR RANGE
Specifies that all pages within the range of reported I/O errors are to be
recovered. Recovering an error range is useful when the range is small, relative

452 Utility Guide and Reference

to the object that contains it; otherwise, recovering the entire object is
preferred. You cannot specify this option if you are recovering from a
concurrent copy.

In some situations, recovery using the ERROR RANGE option is not possible,
such as when a sufficient quantity of alternate tracks cannot be obtained for all
bad records within the error range. You can use the IBM Device Support
Facility, ICKDSF service utility to determine whether this situation exists. In
such a situation, redefine the error data set at a different location on the
volume or on a different volume, and then run the RECOVER utility without
the ERROR RANGE option.

You cannot specify ERROR RANGE with a LIST specification.

VERIFYSET
Specifies whether the RECOVER utility verifies that all related objects that are
required for a point-in-time recovery are included in the RECOVER control
statement. This option applies to point-in-time recoveries of base objects and
the following related objects:
v LOB objects
v XML objects
v History objects
v Archive objects

The VERIFYSET option does not apply to point-in-time recoveries of catalog
and directory objects. VERIFYSET NO behavior is always in effect for
point-in-time recoveries of catalog and directory objects.

VERIFYSET YES
The RECOVER utility verifies that all related objects that are required to
perform a point-in-time recovery are included in the RECOVER control
statement. VERIFYSET YES is the default.

VERIFYSET NO
The RECOVER utility does not verify that all related objects that are
required to perform a point-in-time recovery are included in the RECOVER
control statement.

By specifying VERIFYSET NO, you can break up a point-in-time recovery
into multiple jobs or avoid recovering objects that have changed since the
selected recovery point.

Related information:

Archive-enabled tables and archive tables (Introduction to DB2 for z/OS)

ENFORCE YES
Specifies that CHKP and ACHKP pending states are set for a point-in-time
recovery when only a subset of the related objects (BASE, LOB, XML, and RI)
have been recovered to a point in time. ENFORCE YES is the default for
catalog and directory objects. There is no override for the ENFORCE YES
option for catalog and directory objects.

ENFORCE NO
Specifies that CHKP and ACHKP pending states are not set for a point-in-time
recovery when only a subset of the related objects (BASE, LOB, XML, and RI)
have been recovered to a point in time.

CLONE
Indicates that RECOVER is to recover only clone table data in the specified
table spaces, index spaces or indexes that contain indexes on clone tables. This

Chapter 23. RECOVER 453

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_archivetables.htm#db2z_archivetables

utility will only process clone data if the CLONE keyword is specified. The use
of CLONED YES on the LISTDEF statement is not sufficient.

LOCALSITE
Specifies that RECOVER is to use image copies from the local site. If you
specify neither LOCALSITE or RECOVERYSITE, RECOVER uses image copies
from the current site of invocation. (The current site is identified on the
installation panel DSNTIPO under SITE TYPE and in the macro DSN6SPRM
under SITETYP.)

RECOVERYSITE
Specifies that RECOVER is to use image copies from the recovery site. If you
specify neither LOCALSITE or RECOVERYSITE, RECOVER uses image copies
from the current site of invocation. (The current site is identified on the
installation panel DSNTIPO under SITE TYPE and in the macro DSN6SPRM
under SITETYP.)

LOGRANGES YES
Specifies that RECOVER should use SYSLGRNX information for the
LOGAPPLY phase. This option is the default.

LOGRANGES NO
Specifies that RECOVER should not use SYSLGRNX information for the
LOGAPPLY phase. Use this option only under the direction of IBM Software
Support.

This option can cause RECOVER to run much longer. In a data sharing
environment this option can result in the merging of all logs from all members
that were created since the last image copy.

This option can also cause RECOVER to apply logs that should not be applied.
For example, assume that you take an image copy of a table space and then
run REORG LOG YES on the same table space. Assume also that the REORG
utility abends and you then issue the TERM UTILITY command for the
REORG job. The SYSLGRNX records that are associated with the REORG job
are deleted, so a RECOVER job with the LOGRANGES YES option (the
default) skips the log records from the REORG job. However, if you run
RECOVER LOGRANGES NO, the utility applies these log records.

BACKOUT
Specifies whether a log-only backout is to be used to recover objects to a prior
point in time. A log-only backout might decrease the amount of time that an
object is unavailable during a point-in-time recovery if the specified recovery
point is relatively recent.

NO Specifies that backout processing is not to be used.

BACKOUT NO is the default behavior.

YES
Specifies that RECOVER is to use the log to back out changes that were
made since the recovery point. (The recovery point is specified by the
TOLOGPOINT or TORBA options.) The changes are backed out from the
current state of the object. No image copy is restored. Any uncommitted
work at the specified recovery point is backed out so that the objects are
transactionally consistent.

If you specify BACKOUT YES, the recovery point must be within the most
recent DB2 system checkpoints that are recorded in the BSDS for each
member. Otherwise, the recovery cannot proceed and returns an error.

454 Utility Guide and Reference

If you specify the BACKOUT keyword without YES or NO, YES is the
default. (If you do not specify the BACKOUT keyword, BACKOUT NO is
the default.)

Related information:

“Point-in-time recovery” on page 479

Before running RECOVER
Certain activities might be required before you run the RECOVER utility,
depending on your situation.

If the table space or index space to be recovered is associated with a storage group,
DB2 deletes and redefines the necessary data sets. If the STOGROUP has been
altered to remove the volume on which the table space or index space is located,
RECOVER places the data set on another volume of the storage group.

If you are using Flash Copy image copies, before you start the RECOVER utility
confirm that the image copies are available in disk storage. If any of the required
Flash Copy image copies have been migrated to tape, issue the DFSMShsm
RECALL command to restore the image copies from tape to DASD.

Recovering data and indexes

You do not always need to recover both the data and indexes. If you recover the
table space or index space to a current RBA or LRSN, any referentially related
objects do not need to be recovered. If you plan to recover a damaged object to a
point in time, use a consistent point in time for all of its referentially related
objects, including related LOB and XML table spaces, for optimal performance. You
must rebuild the indexes from the data if one of the following conditions is true:
v The table space is recovered to a point in time.
v An index is damaged.
v An index is in REBUILD-pending status.
v No image copy of the index is available.

If you need to recover both the data and the indexes, and no image copies of the
indexes are available:
1. Use RECOVER TABLESPACE to recover the data.
2. Run REBUILD INDEX on any related indexes to rebuild them from the data.

If you have image copies of both the table spaces and the indexes, you can recover
both sets of objects in the same RECOVER utility statement. The objects are
recovered from the image copies and logs.

Data sets that RECOVER uses
The RECOVER utility uses a number of data sets during its operation.

The following table lists the data sets that RECOVER uses. The table lists the DD
name that is used to identify the data set, a description of the data set, and an
indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Chapter 23. RECOVER 455

Table 61. Data sets that RECOVER uses

Data set Description Required?

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

auth-id.job-name.HSM A temporary data set that is automatically
allocated by the utility and deleted when the
utility completes

Yes

The following objects are named in the utility control statement and do not require
DD statements in the JCL:

Table space, index space, or index
Object that is to be recovered. If you want to recover less than an entire
table space:
v Use the DSNUM option to recover a partition or data set.
v Use the PAGE option to recover a single page.
v Use the ERROR RANGE option to recover a range of pages with I/O

errors.

Image copy data set
Copy that RECOVER is to restore. DB2 accesses this information through
the DB2 catalog.

System-level backups
The RECOVER utility chooses the most recent backup (a sequential image
copy, a concurrent copy, a FlashCopy image copy, or a system-level
backup) to restore based on the recovery point for the table spaces or
indexes (with the COPY YES attribute) being recovered.

Related concepts:
“Before running RESTORE SYSTEM” on page 714
“How the RECOVER utility retains tape mounts” on page 492
Related tasks:
“Recovering with a system-level backup” on page 458

Concurrency and compatibility for RECOVER
The RECOVER utility has certain concurrency and compatibility characteristics
associated with it.

DB2 treats individual data and index partitions as distinct target objects. Utilities
that operate on different partitions of the same table space or index space are
compatible. However, if a nonpartitioned secondary index exists on a partitioned
table space, utilities that operate on different partitions of a table space can be
incompatible because of contention on the nonpartitioned secondary index.

The following table shows which claim classes RECOVER claims and drains and
any restrictive state that the utility sets on the target object.

456 Utility Guide and Reference

Claims

Table 62. Claim classes of RECOVER operations.

Target
RECOVER (no
option)

RECOVER
TORBA or
TOCOPY

RECOVER
PART TORBA
or TOCOPY

RECOVER
ERROR-
RANGE

Table space or
partition

DA/UTUT DA/UTUT DA/UTUT DA/UTUT
CW/UTRW1

Partitioning index,
data-partitioned
secondary index, or
physical partition2

DA/UTUT DA/UTUT DA/UTUT DA/UTUT
CW/UTRW1

Nonpartitioned
secondary index3

DA/UTUT DA/UTUT DA/UTUT DA/UTUT
CW/UTRW1

RI dependents none CHKP (YES) CHKP (YES) none

Legend:
v CHKP (YES): Concurrently running applications enter CHECK-pending after commit
v CW: Claim the write claim class
v DA: Drain all claim classes, no concurrent SQL access
v DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers
v RI: Referential integrity
v UTRW: Utility restrictive state, read-write access allowed
v UTUT: Utility restrictive state, exclusive control
v none: Object is not affected by this utility

Note:

1. During the UTILINIT phase, the claim and restrictive states change from DA/UTUT to
CW/UTRW.

2. Includes document ID indexes and node ID indexes over nonpartitioned XML table
spaces and XML indexes.

3. Includes document ID indexes and node ID indexes over partitioned XML table spaces.

RECOVER does not set a utility restrictive state if the target object is
DSNDB01.SYSUTILX.

Compatibility

The following table shows which utilities can run concurrently with RECOVER on
the same target object. The target object can be a table space, an index space, or a
partition of a table space or index space. If compatibility depends on particular
options of a utility, that information is also documented in the table.

Table 63. Compatibility of RECOVER with other utilities

Action

Compatible with
RECOVER (no
option)?

Compatible with
RECOVER
TOCOPY or
TORBA?

Compatible with
RECOVER
ERROR-
RANGE?

CHECK DATA No No No

CHECK INDEX No No No

CHECK LOB No No No

COPY INDEXSPACE No No No

COPY TABLESPACE No No No

DIAGNOSE Yes Yes Yes

Chapter 23. RECOVER 457

Table 63. Compatibility of RECOVER with other utilities (continued)

Action

Compatible with
RECOVER (no
option)?

Compatible with
RECOVER
TOCOPY or
TORBA?

Compatible with
RECOVER
ERROR-
RANGE?

LOAD No No No

MERGECOPY No No No

MODIFY No No No

QUIESCE No No No

REBUILD INDEX No No No

REORG INDEX Yes No Yes

REORG TABLESPACE No No No

REPAIR LOCATE INDEX Yes No Yes

REPAIR LOCATE TABLESPACE No No No

REPORT Yes Yes Yes

RUNSTATS INDEX No No No

RUNSTATS TABLESPACE No No No

STOSPACE Yes Yes Yes

UNLOAD No No No

To run on DSNDB01.SYSUTILX, RECOVER must be the only utility in the job step
and the only utility running in the DB2 subsystem.

RECOVER on any catalog or directory table space is an exclusive job; such a job
can interrupt another job between job steps, possibly causing the interrupted job to
time out.

Recovering with a system-level backup
You can take system-level backups by using the BACKUP SYSTEM utility. In some
cases, the RECOVER utility can use a system-level backup of the database copy
pool as a recovery base.

Before you begin

Recovery of objects from system-level backups requires z/OS Version 1.8 or later.

Procedure

To specify that system-level backups can be used by RECOVER:

Specify YES for the SYSTEM_LEVEL_BACKUPS installation option on installation
panel DSNTIP6.
The RECOVER utility chooses the most recent backup to restore. The backup can
be:
v A sequential format image copy
v A VSAM FlashCopy® image copy
v A concurrent copy
v A system-level backup

458 Utility Guide and Reference

The choice of which backup is to be restored is based on the recovery point for the
table spaces or indexes that are being recovered. (For an index to be recovered in
this way, the COPY YES attribute must be specified.) However, several exceptions
for using a system-level backup exist.
Exceptions:
If any of the following utilities were run since the system-level backup that was
chosen as the recovery base, the use of the system-level backup by the RECOVER
utility is prohibited:
v REORG TABLESPACE
v REORG INDEX
v REBUILD INDEX
v LOAD REPLACE
v RECOVER from image copy or concurrent copy

In these cases, the recovery terminates with message DSNU1528I and return code
8.

Note: For z/OS Version 1 Release 11 and later, the RECOVER utility can use a
system-level backup, even if the REBUILD INDEX, RECOVER, REORG, and LOAD
utilities ran after the system-level backup was created. The RECOVER utility has
been modified so that you can use system-level backups, even if a data set has
moved since the backup was created.
If a REORG that removes dropped columns has run since the system-level backup
that was chosen as the recovery base, the use of the system-level backup by the
RECOVER utility is prohibited, and the recovery terminates with message
DSNU556I and return code 8.
For a partition-by-growth table space, a point-in-time recovery is not allowed if the
recovery period includes REORG TABLESPACE deleting empty partitions. REORG
TABLESPACE can delete the highest numbered partitions if they are empty and the
REORG_DROP_PBG_PARTS subsystem parameter is set to ENABLE.
The RECOVER utility invokes DFSMShsm to restore the data sets for the object
from the system-level backup of the database copy pool.

How to determine which system-level backups DB2 recovers
DB2 recovers different system level backups, depending on your situation.

To determine which system-level backups will be recovered:
v If you specify YES in the RESTORE/RECOVER FROM DUMP field on

installation panel DSNTIP6 or you specify the FROMDUMP option in the
RECOVER utility statement, DB2 uses only the dumps on tape of the database
copy pool.

v If you specify a dump class name in the DUMP CLASS NAME field on
installation panel DSNTIP6 or you specify the DUMPCLASS option in the
RECOVER utility statement, DB2 uses dumps on tape of the database copy pool
to restore the data sets from the DFSMshsm dump class.

v If you do not specify a dump class name in the DUMP CLASS NAME field on
installation panel DSNTIP6, or you do not specify the DUMPCLASS option in
the RECOVER utility statement, RESTORE SYSTEM issues the DFSMShsm LIST
COPYPOOL command and uses the first dump class listed in the output.

If FROMDUMP was not specified on the RECOVER utility statement or on
installation panel DSNTIP6, the system-level backup on disk is used. If the
system-level backup does not reside on disk, an error message is issued. If

Chapter 23. RECOVER 459

FROMDUMP was specified either on the RECOVER utility statement or on
installation panel DSNTIP6, then the dumped copy of the system-level backup on
tape is used.

Determining which recovery base DB2 uses
The recovery base is the copy that the RECOVER utility starts with when
recovering an object. RECOVER then applies logs as needed.

Procedure

To determine which recovery base DB2 uses:

Run the REPORT utility with the RECOVERY option. Review the output to
determine whether the objects to be recovered have any of the following items:
v Sequential image copies
v Concurrent copies
v FlashCopy image copies
v a utility LOG YES event

If you take system-level backups and the value of the SYSTEM_LEVEL_BACKUPS
subsystem parameter is YES, also look at your system-level backup information in
the BSDS to determine the recovery base.
Related concepts:
“Recovery information that REPORT provides” on page 684
“How to determine which system-level backups DB2 recovers” on page 459
Related reference:

SYSTEM-LEVEL BACKUPS field (SYSTEM_LEVEL_BACKUPS subsystem
parameter) (DB2 Installation and Migration)

Determining whether the system-level backups reside on disk or tape
Restoring data sets for objects in the database copy pool that are to be recovered
from a system-level backup on disk occurs virtually instantaneously. Restoring data
sets for objects that are to be recovered from a system-level backup on tape
volumes takes much longer.

Procedure

To determine whether the system-level backups of the database copy pool reside
on the disk or tape:
1. Run the DFSMShsm LIST COPYPOOL command with the ALLVOLS option.
2. Run the DSNJU004 utility output. For data sharing, run the DSNJU004 utility

output on each member.
3. Review the output from the DFSMShsm LIST COPYPOOL command with the

ALLVOLS option.
4. Review the DB2 system-level backup information in the DSNJU004 utility

output.

Results

If the system-level backup that was chosen as the recovery base for the database
copy pool no longer resides on DASD and the FROMDUMP option has not been

460 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_systemlevelbackups.htm#db2z_dsntip601
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_systemlevelbackups.htm#db2z_dsntip601

specified, the recovery of the object will fail. You can specify the RECOVER
FROMDUMP option, or specify it on installation panel DSNTIP6, to direct the
utility to use the system-level backup that was dumped to tape. You can also use
the RECOVER RESTOREBEFORE option to direct the utility to use a recovery base
prior to the system-level backup.
Related reference:
Chapter 38, “DSNJU004 (print log map),” on page 903

Recovering a table space
Each table space that is involved is unavailable for most other applications until
recovery is complete. If you make image copies by table space, you can recover the
entire table space, or you can recover a data set or partition from the table space. If
you make image copies separately by partition or data set, you must recover the
partitions or data sets by running separate RECOVER operations.

The following RECOVER statement specifies that the utility is to recover table
space DSN8S11D in database DSN8D11A:
RECOVER TABLESPACE DSN8D11A.DSN8S11D

To recover multiple table spaces, create a list of table spaces that are to be
recovered; repeat the TABLESPACE keyword before each specified table space. The
following RECOVER statement specifies that the utility is to recover partition 2 of
the partitioned table space DSN8D11A.DSN8S11E, and recover the table space
DSN8D11A.DSN8S11D to the quiesce point (RBA X'000007425468').
RECOVER TABLESPACE DSN8D11A.DSN8S11E DSNUM 2

TABLESPACE DSN8D11A.DSN8S11D
TORBA X’000007425468’

The following example shows the RECOVER statement for recovering four data
sets in database DSN8D11A, table space DSN8S11E:
RECOVER PARALLEL (4)

TABLESPACE DSN8D11A.DSN8S11E DSNUM 1
TABLESPACE DSN8D11A.DSN8S11E DSNUM 2
TABLESPACE DSN8D11A.DSN8S11E DSNUM 3
TABLESPACE DSN8D11A.DSN8S11E DSNUM 4

Each of the 4 partitions will be restored in parallel. You can also schedule the
recovery of these data sets to run in four separate jobs.

If a table space or data set is in the COPY-pending status, recovering it might not
be possible.
Related concepts:
“Resetting COPY-pending status” on page 334

Recovering a list of objects
You can recover table spaces, table space partitions, pieces of a linear table space,
index spaces, index space partitions, and indexes.

When you recover an object to a prior point in time, you should recover a set of
referentially related table spaces together to avoid putting any of the table spaces
in CHECK-pending status. Use REPORT TABLESPACESET to obtain a table space
listing.

Chapter 23. RECOVER 461

Objects that are to be restored from a system-level backup are restored by the main
task for the RECOVER utility by invoking DFSMShsm. Objects that are to be
restored from a FlashCopy image copy are restored by invoking DFSMShsm.

Each object can have a different base from which to recover: system-level backup,
image copy, concurrent copy, or FlashCopy image copy.

RECOVER does not place dependent table spaces that are related by informational
referential constraints into CHECK-pending status.

The RECOVER utility merges incremental copies serially and dynamically. As a
result, recovery of a table space list with numerous incremental copies can be
time-consuming and operator-intensive.

If referential integrity violations are not an issue, you can run a separate job to
recover each table space.

When you specify the PARALLEL keyword, DB2 supports parallelism during the
RESTORE phase and performs recovery as follows:
v During initialization and setup (the UTILINIT recover phase), the utility locates

the full and incremental copy information for each object in the list from
SYSIBM.SYSCOPY.

v The utility sorts the list of objects for recovery into lists to be processed in
parallel according to the number of tape volumes, file sequence numbers, and
sizes of each image copy.

v The number of objects that can be restored in parallel depends on the maximum
number of available tape devices and on how many tape devices the utility
requires for the incremental and full image copy data sets. You can control the
number of objects that are to be processed in parallel on the PARALLEL
keyword. You can control the number of dynamically allocated tape drives on
the TAPEUNITS keyword, which is specified with the PARALLEL keyword.

v If an object in the list requires a DB2 concurrent copy, the utility sorts the object
in its own list and processes the list in the main task, while the objects in the
other sorted lists are restored in parallel. If the concurrent copies that are to be
restored are on tape volumes, the utility uses one tape device and counts it
toward the maximum value that is specified for TAPEUNITS.

v If objects in the list require a system-level backup that was dumped to tape as
its recovery base (that is, the FROMDUMP option was specified), the RECOVER
utility will invoke DFSMShsm to restore the data sets for the objects in parallel.
In this case, the degree of parallelism cannot exceed the maximum number of
tasks that can be started by the RECOVER utility. DFSMShsm restores the data
sets in parallel based on its installation options.

Recovering a data set or partition
You can use the RECOVER utility to recover individual partitions and data sets.
The phases for data set recovery are the same as for table space recovery.

About this task

If image copies are taken at the data set level, RECOVER must be run at the data
set level.

If you took FlashCopy image copies at the table space level (by specifying the
DSNUM ALL option in the COPY statement), you do not have to recover all of the

462 Utility Guide and Reference

data sets individually. Even though SYSIBM.SYSCOPY contains records for each
partition or piece of the FlashCopy image copy data set, you can recover the entire
table space as one object in the RECOVER statement. This recovery is possible,
because SYSIBM.SYSCOPY also contains a record to indicate that the FlashCopy
image copy was taken at the table space level. Alternatively, you can recover each
of the data sets individually.

Restriction: RECOVER does not support recovery of the following data sets and
partitions:
v A single data set for nonpartitioned secondary indexes
v A logical partition of a nonpartitioned secondary index

Procedure

To recover a data set or partition, take one of the following actions:
v If image copies are taken at the data set level and you want to recover the whole

table space, recover all of the data sets individually in one or more RECOVER
steps. If recovery is attempted at the table space level, DB2 returns an error
message.

v If image copies are taken at the table space, index, or index space level, recover
individual data sets by using the DSNUM parameter in the RECOVER
statement.

Recovering with incremental copies
The RECOVER utility merges all incremental image copies that were taken since
the last full image copy.

The utility must have all the image copies available at the same time. If this
requirement is likely to strain your system resources, for example, by demanding
more tape units than are available, consider running MERGECOPY regularly to
merge image copies into one copy.

Even if you do not periodically merge multiple image copies into one copy when
you do not have enough tape units, the utility can still perform. RECOVER
dynamically allocates the full image copy and attempts to dynamically allocate all
the incremental image copy data sets. If RECOVER successfully allocates every
incremental copy, recovery proceeds to merge pages to table spaces and apply the
log. If a point is reached where an incremental copy cannot be allocated,
RECOVER notes the log RBA or LRSN of the last successfully allocated data set.
Attempts to allocate incremental copies cease, and the merge proceeds using only
the allocated data sets. The log is applied from the noted RBA or LRSN, and the
incremental image copies that were not allocated are ignored.

Recovering with FlashCopy image copies
Recovering from a FlashCopy image copy is potentially faster than recovering from
a traditional image copy. If an appropriate FlashCopy image copy is available, the
RECOVER utility can use it to instantaneously restore an image copy.

About this task

Consider the following information when planning for recovery with FlashCopy
image copies:

Chapter 23. RECOVER 463

v Create both FlashCopy image copies and traditional sequential image copies to
provide a complete recovery base for media failures.

v Creating and recovering from a consistent FlashCopy image copy can consume
more processing resources than creating and recovering from a FlashCopy image
copy that was not guaranteed to be consistent. To recover from a consistent
FlashCopy image copy, the RECOVER utility must read the logs to apply
changes that were made to the recovered object after the point of consistency.
Some of those changes are likely to be work that was previously backed out and
must be reapplied, because the work was uncommitted at the time the
FlashCopy image copy was created. (In this case, recovery requires more
analysis of the logs during the PRELOGC phase. The preliminary log apply
phase, PRELOGA, and the other log phases also require more analysis.) The
START_RBA value in the SYSCOPY record of the FlashCopy image copy
indicates the low RBA or LRSN of the logs that are needed for processing by
RECOVER.

v Recovering with FlashCopy image copies could prevent a subsequent BACKUP
SYSTEM utility job on the same data from completing successfully if the
FlashCopy relationship is still outstanding.
This limitation exists because of the characteristics of FlashCopy relationships.
When the RECOVER utility uses fast replication to restore a FlashCopy image
copy, it establishes a FlashCopy relationship. This relationship is between the
FlashCopy image copy data set (the FlashCopy source) and the underlying data
sets for the table space or index space (the FlashCopy target). Cascading
FlashCopy relationships, where a data set or extent is both a FlashCopy target
and a source, is not supported by the hardware.
BACKUP SYSTEM also uses FlashCopy technology. Therefore, any of the
FlashCopy targets from the RECOVER operation (those underlying data sets for
the table space or index space) cannot also be used as a source for BACKUP
SYSTEM while the FlashCopy relationship from RECOVER still exists.
If you plan to use BACKUP SYSTEM, use the REC_FASTREPLICATION
subsystem parameter as described in step 1 to control whether the RECOVER
utility should use FlashCopy to restore FlashCopy image copies.

v If the FlashCopy image copy has been migrated or deleted, RECOVER uses the
sequential image copies if available.

Procedure

To recover with FlashCopy image copies:
1. Ensure that the REC_FASTREPLICATION subsystem parameter is set to

PREFERRED or REQUIRED.
If this subsystem parameter is set to PREFERRED, RECOVER attempts to use
fast replication (FlashCopy) to restore the FlashCopy image copy. Fast
replication is not used if the underlying data sets for the table space or index
space are already in a FlashCopy relationship due to the BACKUP SYSTEM
utility or to the COPY utility. In this case, traditional I/O methods are used
instead of fast replication to restore the FlashCopy image copy.
If this subsystem parameter is set to REQUIRED, RECOVER must use fast
replication to restore the FlashCopy image copy. If fast replication cannot be
used, the recovery of the object fails. For example, the recovery could fail if the
BACKUP SYSTEM utility has established a FlashCopy relationship with the
production volume.

Restriction: If the RECOVER utility establishes a FlashCopy relationship to
restore a FlashCopy image copy and the BACKUP SYSTEM utility is started,

464 Utility Guide and Reference

the creation of the system-level backup might fail. The reason for the failure is
because cascading FlashCopy relationships are not supported.
Otherwise, if this subsystem parameter is set to NONE, RECOVER restores the
FlashCopy image copy using traditional I/O methods. Use this option if you
use BACKUP SYSTEM and you do not want recovery from FlashCopy image
copies to interfere with the creation of system-level backups.

2. Specify an appropriate RECOVER utility control statement. You do not need to
specify any extra options in the RECOVER statement to indicate that you want
FlashCopy image copies to be used. The RECOVER utility uses FlashCopy
image copies if available.
However, if you specify that RECOVER is to use a specific FlashCopy image
copy (by specifying TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY), specify
the DSNUM option with the appropriate data set or partition number for the
FlashCopy image copy that you want to use.
If you took FlashCopy image copies at the table space level (by specifying the
DSNUM ALL option in the COPY statement), you do not have to recover all of
the data sets individually. You can recover the entire table space as one object
in the RECOVER statement. Alternatively, you can recover each of the data sets
individually.

Related concepts:
“FlashCopy image copies” on page 149
“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on
page 37
Related reference:

FAST RESTORE field (REC_FASTREPLICATION subsystem parameter) (DB2
Installation and Migration)

Recovering a page
Using RECOVER PAGE enables you to recover data on a page that is damaged.

In some situations, you can determine (usually from an error message) which page
of an object has been damaged. You can use the PAGE option to recover a single
page. You can use the CONTINUE option to continue recovering a page that was
damaged during the LOGAPPLY phase of a RECOVER operation.

Suppose that you start RECOVER for table space TSPACE1. During processing,
message DSNI012I informs you of a problem that damages page number 5.
RECOVER completes, but the damaged page, number 5, is in a stopped state and
is not recovered. When RECOVER ends, message DSNU501I informs you that page
5 is damaged.

To repair the damaged page:
1. Use the DUMP option of the REPAIR utility to view the contents of the

damaged page. Determine what change should have been made by the
applicable log record, and apply it by using the REPLACE option of REPAIR.
Use the RESET option to turn off the inconsistent-data indicator.
Attention: Be extremely careful when using the REPAIR utility to replace
data. Using REPAIR to change data to invalid values can produce unpredictable
results, particularly when you change page header information. Improper use
of REPAIR can result in damaged data, or in some cases, system failure.

Chapter 23. RECOVER 465

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_recfastreplication.htm#db2z_ipf_recfastreplication
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_recfastreplication.htm#db2z_ipf_recfastreplication

2. Resubmit the RECOVER utility job by specifying TABLESPACE(TSPACE1)
PAGE(5) CONTINUE. The RECOVER utility finishes recovering the damaged
page by applying the log records that remain after the one that caused the
problem.

If more than one page is damaged during RECOVER, perform the preceding steps
for each damaged page.

Recovering an error range
By using the ERROR RANGE option of RECOVER, you can repair pages with
reported I/O errors. DB2 maintains a page error range for I/O errors for each data
set; pages within the range cannot be accessed. The DISPLAY DATABASE
command displays the range.

When recovering an error range, RECOVER:
1. Locates, allocates, and applies image copies.
2. Applies changes from the log.

The following RECOVER statement specifies that the utility is to recover any
current error range problems for table space TS1:
RECOVER TABLESPACE DB1.TS1 ERROR RANGE

Recovering an error range is useful when the range is small, relative to the object
containing it; otherwise, recovering the entire object is preferable.

Message DSNU086I indicates that I/O errors were detected on a table space and
that you need to recover it. Before you attempt to use the ERROR RANGE option
of RECOVER, you should run the ICKDSF service utility to correct the disk error.
If an I/O error is detected during RECOVER processing, DB2 issues message
DSNU538I to identify the affected target tracks are involved. The message provides
enough information to run ICKDSF correctly.

In some situations, which are announced by error messages, recovery of only an
error range is not possible. In such a situation, recovering the entire object is
preferable.

During the recovery of the entire table space or index space, DB2 might still
encounter I/O errors that indicate DB2 is still using a bad volume. For
user-defined data sets, you should use Access Method Services to delete the data
sets and redefine them with the same name on a new volume. If you use DB2
storage groups, you can remove the bad volume from the storage group by using
ALTER STOGROUP. If you use DFSMS storage groups, you should also remove
the bad volume from the DFSMS storage group.

Effect on RECOVER of the NOT LOGGED or LOGGED table space
attributes

You can recover NOT LOGGED table spaces to any recoverable point.

Recoverable points are established when you take one of the following actions:
v Alter a table space from LOGGED to NOT LOGGED. If a base table space is

altered to NOT LOGGED and its associated LOB table spaces already have the
NOT LOGGED attribute, the ALTER to NOT LOGGED is not a recoverable
point.

466 Utility Guide and Reference

v Take an image copy from a NOT LOGGED table space.
v When a table has the NOT LOGGED attribute, and an ALTER TABLE with the

ADD PARTITION clause is executed.
v When insertion of data into a partition-by-growth table space causes DB2 to add

a new partition.

To recover a set of objects with LOB relationships, you should run RECOVER with
the TOLOGPOINT option to identify a common recoverable point for all objects.
For a non-LOB table space, or a LOB table space with a base table space that has
the NOT LOGGED attribute, the logging attribute of the table space must meet
these following conditions:
v For recovery to the current point in time, the current value of the logging

attribute of the object must match the logging attribute at the most current
recoverable point.

v For recovery to a prior point in time, the current value of the logging attribute
of the object must match the logging attribute at the time that is specified by
TOLOGPOINT, TORBA, TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY

Recovering with a data set copy that is not made by DB2
You can restore a data set to a point of consistency by using a data set copy that
was not made by the COPY utility.

After recovery to the point of consistency, if you choose to continue and recover to
the current point in time, you do not want RECOVER to begin processing by
restoring the data set from a DB2 image copy. Therefore, use the LOGONLY option
of RECOVER, which causes RECOVER to skip the RESTORE phase and apply the
log records only, starting from the first log record that was written after the data
set was backed up.

Because the data sets are restored offline without DB2 involvement, RECOVER
LOGONLY checks that the data set identifiers match those that are in the DB2
catalog. If the identifiers do not match, message DSNU548I is issued, and the job
terminates with return code 8.

You can use the LOGONLY option on a list of objects.

To ensure that no other transactions can access DB2 objects between the time that
you restore a data set and the time that you run RECOVER LOGONLY, follow
these steps:
1. Stop the DB2 objects that are being recovered by issuing the following

command:
-STOP DATABASE(database-name) SPACENAM(space-name)

2. Restore all DB2 data sets that are being recovered.
3. Start the DB2 objects that are being recovered by issuing the following

command:
-START DATABASE(database-name) SPACENAM(space-name) ACCESS(UT)

4. Run the RECOVER utility without the TORBA or TOLOGPOINT parameters
and with the LOGONLY parameter to recover the DB2 data sets to the current
point in time and to perform forward recovery using DB2 logs. If you want to
recover the DB2 data sets to a prior point in time, run the RECOVER utility
with either TORBA or TOLOGPOINT, and with the LOGONLY parameters.

Chapter 23. RECOVER 467

5. If you did not recover related indexes in the same RECOVER control statement,
rebuild all indexes on the recovered object.

6. Issue the following command to allow access to the recovered object if the
recovery completes successfully:
-START DATABASE(database-name) SPACENAM(space-name) ACCESS(RW)

With the LOGONLY option, when recovering a single piece of a multi-piece linear
page set, RECOVER opens the first piece of the page set. If the data set is migrated
by DFSMShsm, the data set is recalled by DFSMShsm. Without LOGONLY, no data
set recall is requested.

Backing up a single piece of a multi-piece linear page set is not recommended.
This action can cause a data integrity problem if the backup is used to restore the
data set at a later time.

Recovering catalog and directory objects
If you need to recover the catalog and directory, you must recover them before you
recover user table spaces. Also, you must recover catalog and directory objects in a
specific order.

Before you begin

Before you can recover catalog and directory objects, you must meet the following
requirements:
v Converting page sets to or from extended 10-byte format during REBUILD

INDEX on catalog and directory indexes complicates recovery and might cause
failures. To avoid conversions, set the UTILITY_OBJECT_CONVERSION
subsystem parameter to NONE until all catalog and directory objects are
recovered. Alternatively, specify RBALRSN_CONVERSION NONE on all
REBUILD INDEX steps.

v Recovering and rebuilding catalog and directory objects requires installation
SYSADM or installation SYSOPR authority.

v If you are performing a recovery at a remote site, start the remote DB2 for z/OS
subsystem with ACCESS(MAINT) specified on the START DB2 command and
with DEFER ALL specified in the DSNZPARM load module. (See installation
panels DSNTIPS and DSNTIPO3.) If DB2 is not started with ACCESS(MAINT),
resource unavailable conditions on the real-time statistics (RTS) catalog indexes
might occur during REBUILD INDEX(ALL) for the catalog and directory
indexes.

v If the logging environment requires adding or restoring active logs, restoring
archive logs, or performing any action that affects the log inventory in the BSDS,
you need to recover the BSDS before catalog and directory objects. To copy
active log data sets, use the Access Method Services REPRO function.

Also, preferably, indexes on catalog tables, such as SYSIBM.SYSCOPY, should be
user-managed indexes and not STOGROUP-managed.

A full recovery of the catalog and directory is recommended. However, if you need
to do a point-time-recovery, be aware of the implications associated with doing
point-in-time recovery of the catalog, directory, and user objects. See “Point-in-time
recovery of the catalog, directory, and all user objects” on page 475.

468 Utility Guide and Reference

|
|
|
|
|
|

About this task

The following table spaces do not have entries in SYSIBM.SYSLGRNX. The indexes
that are associated with these table spaces also do not have entries in
SYSIBM.SYSLGRNX, even if they were defined with COPY YES. These objects are
assumed to be open from the point of their last image copy, so the RECOVER
utility processes the log from that point forward.
v DSNDB01.SYSUTILX
v DSNDB01.DBD01
v DSNDB01.SYSLGRNX
v DSNDB06.SYSTSCPY
v DSNDB01.SYSDBDXA

Requirement: You must recover the catalog and directory objects in the order that
is specified in this task. If you are recovering any subset of the objects in the list,
start with the object that is listed first and continue in the order of the list. For
example, if you need to recover SYSLGRNX, SYSUTILX, and SYSUSR, recover
SYSUTILX first, then SYSLGRNX, and then SYSUSR. You do not need to recover
all of the objects; only recover those objects that require recovery.

If the DB2 for z/OS subsystem is in conversion mode, recover the catalog and
directory objects in the order that is defined for the version of DB2 from which
you are migrating. For example, if you are migrating from Version 9 to Version 10,
are in conversion mode, and need to recover catalog and directory objects, follow
the order of recovery that is defined in the DB2 for z/OS Version 9 documentation.

Use the following general guidelines for all of the steps in this task:
v If you copy your catalog or directory indexes, use the RECOVER utility to

recover your indexes. Otherwise, use the REBUILD INDEX utility to rebuild
those indexes.

v For all catalog and directory table spaces, you can list the IBM-defined indexes
that have the COPY YES attribute in the same RECOVER utility statement.

v Recovery of the items in the list can be done concurrently or included in the
same job step. However, the following restrictions apply:
– When you recover the following table spaces or indexes, the job step in which

the RECOVER statement appears must not contain any other utility
statements. No other utilities can run while the RECOVER utility is running.
- DSNDB01.SYSUTILX
- All indexes on SYSUTILX
- DSNDB01.DBD01

– When you recover the following table spaces, no other utilities can run while
the RECOVER utility is running. Other utility statements can exist in the
same job step.
- DSNDB06.SYSTSCPY
- DSNDB01.SYSLGRNX

Procedure

To recover catalog and directory objects:
1. Recover DSNDB01.SYSUTILX.
2. Run REBUILD INDEX(ALL) on DSNDB01.SYSUTILX.
3. Recover DSNDB01.DBD01.
4. Run REBUILD INDEX(ALL) on DSNDB01.DBD01.

Chapter 23. RECOVER 469

|
|
|
|
|

|

5. Recover DSNDB01.SYSDBDXA.
6. Run REBUILD INDEX(ALL) on DSNDB01.SYSDBDXA.
7. Recover DSNDB06.SYSTSCPY.
8. Run REBUILD INDEX(ALL) on DSNDB06.SYSTSCPY.

If any user-defined indexes are defined on SYSIBM.SYSCOPY, either
user-managed or STOGROUP-managed, first allocate the underlying VSAM
data sets for these indexes. Then execute the following utility statement to
rebuild the IBM-defined and all user-defined indexes on SYSIBM.SYSCOPY:
REBUILD INDEX (ALL) TABLESPACE DSNDB06.SYSTSCPY REUSE

If no user-defined indexes exist, execute the following utility statement:
REBUILD INDEX (ALL) TABLESPACE DSNDB06.SYSTSCPY

Important: You should not create user-defined indexes that are
STOGROUP-managed on SYSIBM.SYSCOPY. The existence of those indexes
might cause subsequent steps to fail.

9. Recover DSNDB01.SYSLGRNX.
10. Run REBUILD INDEX(ALL) on DSNDB01.SYSLGRNX.
11. Recover DSNDB06.SYSTSSTG and DSNDB06.SYSTSVOL.
12. Run REBUILD INDEX(ALL) on DSNDB06.SYSTSSTG and

DSNDB06.SYSTSVOL.
If no user-defined indexes that are managed by a storage group are defined
on these table spaces, execute the following utility statement to rebuild
IBM-defined and any user-defined indexes on the table spaces:
REBUILD INDEX (ALL) TABLESPACE DSNDB06.SYSTSSTG
REBUILD INDEX (ALL) TABLESPACE DSNDB06.SYSTSVOL

If user-defined indexes that are STOGROUP-managed are defined on these
table spaces, rebuild the IBM-defined indexes by name (REBUILD INDEX
(SYSIBM.index-name-1, SYSIBM.index-name-2, . . ., SYSIBM.index-name-n)). Then
rebuild the user-defined indexes in step 15 on page 471.

13. Rebuild any user-defined indexes that are STOGROUP-managed on
SYSIBM.SYSCOPY.

14. Recover all of the remaining catalog and directory table spaces in a single
RECOVER utility statement with the PARALLEL option.
Recover all of the active catalog and directory table spaces, including the
following table spaces:
v The directory table spaces in DSNDB01:

– SCT02
– SPT01
– SYSSPUXA
– SYSSPUXB

v The catalog table spaces that are listed in the following table:

470 Utility Guide and Reference

|

|
|

Table 64. Remaining catalog table spaces to recover

SYSALTER
SYSCONTX
SYSDDF
SYSEBCDC
SYSGPAUT
SYSGRTNS
SYSHIST
SYSJAUXA
SYSJAUXB
SYSJAVA
SYSPLUXA
SYSPLUXB
SYSROLES
SYSSEQ
SYSSEQ2
SYSSTATS
SYSTARG
SYSTSADT
SYSTSASC
SYSTSATS
SYSTSATW
SYSTSATX
SYSTSAUX
SYSTSCHX
SYSTSCKD
SYSTSCKS
SYSTSCOL

SYSTSCON
SYSTSCTD
SYSTSCTL
SYSTSCTR
SYSTSDAT
SYSTSDBA
SYSTSDBR
SYSTSDBU
SYSTSDEP
SYSTSENV
SYSTSFAU
SYSTSFLD
SYSTSFOR
SYSTSIPT
SYSTSISS
SYSTSIXC
SYSTSIXR
SYSTSIXS
SYSTSIXT
SYSTSKEY
SYSTSKYC
SYSTSOBX
SYSTSPDO
SYSTSPDT
SYSTSPEN
SYSTSPHX
SYSTSPKA

SYSTSPKC
SYSTSPKD
SYSTSPKG
SYSTSPKL
SYSTSPKS
SYSTSPKX
SYSTSPKY
SYSTSPLA
SYSTSPLD
SYSTSPLN
SYSTSPLY
SYSTSPRH
SYSTSPRM
SYSTSPTX
SYSTSPVR
SYSTSQRA
SYSTSQRE
SYSTSQRO
SYSTSQRP
SYSTSQRS
SYSTSQRY
SYSTSRAU
SYSTSREL
SYSTSROU
SYSTSSCM
SYSTSSFB
SYSTSSRG

SYSTSSTM
SYSTSSYN
SYSTSTAB
SYSTSTAU
SYSTSTBC
SYSTSTPF
SYSTSTPT
SYSTSTRG
SYSTSTRT
SYSTSTSP
SYSTSTSS
SYSTSUNI
SYSTSVAD
SYSTSVAR
SYSTSVAT
SYSTSVAU
SYSTSVEW
SYSTSVTR
SYSTSVWD
SYSTSVWT
SYSTSXTM
SYSTSXTS
SYSUSER
SYSXML

15. Rebuild all of the remaining catalog and directory indexes using REBUILD
INDEX(ALL) for each table space recovered in step14 on page 470. Rebuild all
user-defined indexes on the catalog that have not been rebuilt or recovered
yet.

Results

Messages that you might receive:

v Depending on the migration mode in which the DB2 for z/OS system is
running, the RECOVER utility skips new or obsolete catalog and directory
objects during processing and issues message DSNU1530I with RC0 for each
skipped object. For example, in conversion mode, the RECOVER utility skips
catalog and directory objects that are new for the version to which you are
migrating. In new-function mode, the RECOVER utility skips catalog and
directory objects that are obsolete in the version to which you are migrating.
Specifying OPTIONS EVENT(ITEMERROR,SKIP) or OPTIONS
EVENT(ITEMERROR,HALT) does not impact the skipping of new or obsolete
objects.

v An ID with a granted authority receives message DSNT500I RESOURCE
UNAVAILABLE while trying to recover a table space in the catalog or directory
if certain table spaces in the following list are unavailable:
– In table space DSNDB06:

- SYSTSFAU
- SYSTSCOL
- SYSTSTSP
- SYSTSTPT
- SYSTSTAB

Chapter 23. RECOVER 471

||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

- SYSTSIXS
- SYSTSIXT
- SYSTSIXR
- SYSTSIPT
- SYSTSREL
- SYSTSFOR
- SYSTSSYN
- SYSTSFLD
- SYSTSTAU
- SYSTSKEY

– DSNDB06.SYSUSER
If you receive message DSNT500I, you must take one of the following actions:
– Make these table spaces available.
– Run the RECOVER utility on the catalog or directory by using an

authorization ID that has the installation SYSADM or installation SYSOPR
authority.

What to do next

After you recover the DB2 catalog and directory, perform the following actions:
v After a point-in-time recovery on the catalog and directory, run the CHECK

DATA utility on the objects to ensure consistency.
v Recover XML scheme repository objects. Although the XML schema repository

database, DSNXSR, is not part of the DB2 catalog, you need to recover all table
spaces in the DSNXSR database and rebuild all indexes on those table spaces
immediately after you recover the DB2 catalog. If you perform a point-in-time
recovery of the catalog, you need to recover objects in the DSNXSR database to
the same point in time.

472 Utility Guide and Reference

Related concepts:

Management of the bootstrap data set (DB2 Administration Guide)
Related reference:

DB2 catalog tables (DB2 SQL)

DB2 directory tables (DB2 SQL)

Administrative authorities (Managing Security)

-START DB2 (DB2) (DB2 Commands)

Default startup modules panel: DSNTIPO3 (DB2 Installation and Migration)

Databases and spaces to start automatically panel: DSNTIPS (DB2 Installation
and Migration)
“Syntax and options of the CHECK DATA control statement” on page 66
“Syntax and options of the OPTIONS control statement” on page 389
“Syntax and options of the REBUILD INDEX control statement” on page 410
“Syntax and options of the RECOVER control statement” on page 444
Related information:

REPRO command (DFSMS Access Method Services for Catalogs)

DSNU1530I (DB2 Messages)

DSNT500I (DB2 Messages)

DSNT501I (DB2 Messages)

Objects that contain recovery information
To recover one object, the RECOVER utility must obtain information about it from
another object. Therefore, dependencies exist between catalog and directory objects,
and you must recover them in a specific order.

The following table lists the objects from which RECOVER must obtain
information.

Table 65. Objects that the RECOVER utility accesses

Object name Reason for access by RECOVER

DSNDB01.SYSUTILX Utility restart information. The object is not
accessed when it is recovered; a RECOVER
job for this object is not restartable, and no
other commands can be in the same job step.
SYSCOPY information for SYSUTILX is
obtained from the log.

You can use REPORT RECOVERY to obtain
SYSCOPY information for
DSNDB01.SYSUTILX.

Chapter 23. RECOVER 473

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_bsdsmanagement.htm#db2z_bsdsmanagement
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_catalogtablesintro.htm#db2z_catalogtablesintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_directorytablesintro.htm#db2z_directorytablesintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_adminauthorities.htm#db2z_adminauthorities
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_startdb2.htm#db2z_cmd_startdb2
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntipo3.htm#db2z_dsntipo3
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntips.htm#db2z_dsntips
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntips.htm#db2z_dsntips
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i2a1/30.0?ACTION=MATCHES&REQUEST=repro&TYPE=FUZZY&SHELF=&DT=20120126090739&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu1530i.htm#dsnu1530i
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnt500i.htm#dsnt500i
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnt501i.htm#dsnt501i

Table 65. Objects that the RECOVER utility accesses (continued)

Object name Reason for access by RECOVER

DSNDB01.DBD01, DSNDB01.SYSDBDXA Descriptors for the catalog database
(DSNDB06), the work file database
(DSNDB07), and user databases. A
RECOVER job for this object is not
restartable, and no other commands can be
in the same job step. SYSCOPY information
for DBD01 and SYSDBDXA is obtained from
the log.

You can use REPORT RECOVERY to obtain
SYSCOPY information for DSNDB01.DBD01
and DSNDB01.SYSDBDXA.

DSNDB06.SYSTSCPY Locations of image copy data sets. This table
space contains the SYSIBM.SYSCOPY table.
SYSCOPY information for SYSTSCPY itself is
obtained from the log.

You can use REPORT RECOVERY to obtain
SYSCOPY information for
DSNDB06.SYSTSCPY.

DSNDB01.SYSLGRNX The RBA or LRSN of the first log record after
the most recent copy.

DSNDB06.SYSTSDBA, DSNDB06.SYSTSDBU,
DSNDB06.SYSUSER

Verification that the authorization ID is
authorized to run RECOVER.

From several of the following table spaces
inDSNDB06:

v SYSTSFAU

v SYSTSCOL

v SYSTSTSP

v SYSTSTPT

v SYSTSTAB

v SYSTSIXS

v SYSTSIXT

v SYSTSIXR

v SYSTSIPT

v SYSTSREL

v SYSTSFOR

v SYSTSSYN

v SYSTSFLD

v SYSTSTAU

v SYSTSKEY

Information about table spaces that are to be
recovered.

474 Utility Guide and Reference

||
|
|
|

|
|
|

Related concepts:
“Recovery information that REPORT provides” on page 684
Related reference:
“Syntax and options of the REPORT control statement” on page 679

Point-in-time recovery of the catalog, directory, and all user
objects

Full recovery of the catalog and directory table spaces and indexes is strongly
recommended. However, in some situations, you might need to do a point-in-time
recovery. In this case, you should understand the implications and plan for this
type of recovery.

When you recover the DB2 catalog, directory, and all user objects, consider the
entire catalog and directory, including all table spaces and index spaces, to be one
logical unit. Recover all objects in the catalog, directory, and all user objects to the
same point of consistency. If you plan to do a point-in-time recovery of the catalog,
directory, and all user objects, a separate quiesce of the DSNDB06.SYSTSCPY table
space is required after a quiesce of the other catalog and directory table spaces.

The enabling-new-function mode process changes catalog and directory objects
from BASIC format to EXTENDED format. Point-in-time recoveries of these objects
need to be recovered in the correct format. Systems that are recovered during
conversion mode must be recovered to a point-in-time when the catalog and
directory were in BASIC mode. After the BSDS is converted to extended mode, the
catalog and directory must be recovered in EXTENDED mode. During the
enabling-new-function mode process and up to the conversion of the BSDS, catalog
objects might exist in both BASIC and EXTENDED format.

A point-in-time recovery on catalog and directory objects bypasses the checking for
the following items:
v A complete referential integrity (RI) set. If the complete RI set is not recovered

together, CHKP is not set on the dependents.
v A complete base and LOB set. If base and LOB objects are not recovered

together, ACHKP or CHKP is not set.

Recommendation: Before you recover the DB2 catalog, directory, and all user
objects to a prior point in time, shut down the DB2 subsystem cleanly and then
restart the subsystem in ACCESS(MAINT) mode. Recover the catalog and directory
objects to the point in time. You can use sample queries and documentation, which
are provided in DSNTESQ in the SDSNSAMP sample library, to check the
consistency of the catalog.

If you perform a point-in-time recovery on catalog and directory table spaces, the
indexes are placed in RBDP (rebuild-pending) status. Use the CHECK INDEX
utility to determine whether an index is inconsistent with the data that it indexes.
You can use the REBUILD INDEX utility to rebuild the indexes. Alternatively, you
can use the RECOVER utility to recover catalog and directory indexes if the index
was defined with the COPY YES attribute and if you have a full index image copy.

Chapter 23. RECOVER 475

|
|
|
|
|
|

|
|
|
|
|
|
|
|

Related concepts:
“Point-in-time recovery” on page 479
Related reference:

-START DB2 (DB2) (DB2 Commands)
“Syntax and options of the CHECK INDEX control statement” on page 96
“Syntax and options of the REBUILD INDEX control statement” on page 410
“Syntax and options of the RECOVER control statement” on page 444
Appendix C, “Advisory or restrictive states,” on page 1083

SYSIBM.SYSLGRNX table (DB2 SQL)

Creating a point of consistency for catalog and directory objects
Full recovery of the catalog and directory table spaces and indexes is strongly
recommended. However, if you need to plan for point-in-time recovery of the
catalog and directory, you should create a point of consistency for the catalog and
directory.

Procedure

To create a point of consistency for catalog and directory objects:
1. Quiesce all catalog and directory table spaces, except for DSNDB06.SYSTSCPY

and DSNDB01.SYSUTILX.
You can use the LISTDEF utility to group these table spaces into a single list
and then specify that list in the QUIESCE statement.

2. Quiesce DSNDB06.SYSTSCPY.

Recommendation: Quiesce DSNDB06.SYSTSCPY in a separate utility
statement. When you recover DSNDB06.SYSTSCPY to its own quiesce point, it
contains the SYSCOPY records with ICTYPE = 'Q' (quiesce) for the other
catalog and directory table spaces.

3. Quiesce DSNDB01.SYSUTILX in a separate job step.

What to do next

Later, if you need to recover to a point in time, recover DSNDB06.SYSTSCPY and
DSNDB01.SYSUTILX to their own quiesce points, and recover other catalog and
directory table spaces to their common quiesce point. The catalog and directory
objects must be recovered in the prescribed order for your version of DB2 for
z/OS.

476 Utility Guide and Reference

|
|

|
|

|

|
|
|
|

|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_startdb2.htm#db2z_cmd_startdb2
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsyslgrnxtable.htm#db2z_sysibmsyslgrnxtable

Related tasks:
“Recovering catalog and directory objects” on page 468
Related reference:

DB2 catalog tables (DB2 SQL)

DB2 directory tables (DB2 SQL)
“Syntax and options of the QUIESCE control statement” on page 398

SYSIBM.SYSCOPY table (DB2 SQL)

SYSIBM.SYSUTILX table (DB2 SQL)
Chapter 15, “LISTDEF,” on page 207

Reinitializing DSNDB01.SYSUTILX
You need to reinitialize the DSNDB01.SYSUTILX directory table space if you
cannot successfully execute the DISPLAY UTILITY and TERMINATE UTILITY
commands. In this case, DSNDB01.SYSUTILX is damaged and you cannot recover
DSNDB01.SYSUTILX, because errors occur in the LOGAPPLY phase.

About this task

Because DSNDB01.SYSUTILX contains information about active and outstanding
utilities, the process of reinitializing this table space involves determining which
objects have a utility in progress and resolving any pending states to make the
object available for access.

Procedure

If DSNDB01.SYSUTILX must be reinitialized, use the following procedure with
caution:
1. Issue the -DIS DB(*) SPACENAM(*) RESTRICT command and analyze the output.

Write down the following items:
v All of the objects with a utility in progress (The objects in UTUT, UTRO, or

UTRW status have utilities in progress.)
v Any pending states for these objects (RECP, CHKP, and COPY are examples

of pending states.
2. Run one of the following utility statements for the format of SYSUTILX that

you want:

CATMAINT UPDATE UTILX EXTENDED
Initialize SYSUTILX and its indexes to extended 10-byte RBA format.

CATMAINT UPDATE UTILX BASIC
Initialize SYSUTILX and its indexes to basic 6-byte RBA format.

3. Issue the -START DB(dbname) ACCESS(UT) command for each database that
has objects with a utility in progress.

4. Issue the -START DB(dbname)SPACENAM(spname) ACCESS(FORCE) command
on each object with a utility in progress. This action clears all utilities that are
in progress or in pending states. (Any pending states are cleared, but you still
need to resolve the pending states as directed in the next step.)

5. Resolve the pending states for each object by running the appropriate utility.
For example, if an object was in the RECP status, run the RECOVER utility.

6. Issue -START DB(dbname) ACCESS(RW) for each database.

Chapter 23. RECOVER 477

|
|

|
|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_catalogtablesintro.htm#db2z_catalogtablesintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_directorytablesintro.htm#db2z_directorytablesintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsyscopytable.htm#db2z_sysibmsyscopytable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysutilxtable.htm#db2z_sysibmsysutilxtable

Related reference:
Appendix C, “Advisory or restrictive states,” on page 1083

Recovering a table space that contains LOB or XML data
The RECOVER utility can set the auxiliary warning status for a LOB table space or
XML table space if it finds at least one invalid LOB or XML column.

DB2 marks a LOB or XML column invalid if all of the following conditions are
true:
v The LOB table space or XML table space was defined with the LOG(NO)

attribute.
v The LOB table space or XML table space was recovered.
v The LOB or XML was updated since the last image copy.

The status of an object that is related to a LOB or XML table space can change due
to a recovery operation, depending on the type of recovery that is performed. If all
of the following objects for all LOB or XML columns are recovered in a single
RECOVER utility statement to the present point in time, no pending status exists:
v Base table space
v Index on the auxiliary table
v LOB table space
v XML table space

The RECOVER utility verifies that all related objects that are required to perform a
point-in-time recovery are included in the RECOVER control statement. The
VERIFYSET keyword enables you to control whether a point-in-time recovery
requires all base, LOB, XML, and history objects in a set. You can choose to break
up point-in-time recoveries into multiple jobs with VERIFYSET NO.

In conversion mode, RECOVER to a point in time requires base, LOB, and XML
table spaces to be recovered as a set. A successful recovery will leave the table
spaces in a read/write state with no prohibitive pending status. Indexes on the
base table space and indexes on a LOB or XML table are not required in the
recover set. If the base table space is range-partitioned universal or partitioned
(non-universal), partition-level recoveries are allowed. Refer to the following table
for information about the status of a base table space, index on the auxiliary table,
LOB table space, or XML table space that was recovered without its related objects
in DB2 Version 10 CM mode.

Table 66. Object status after being recovered without its related objects

Object Recovery type
Base table space
status

Base index
space status

LOB or XML
table space
status

Index on a LOB
or XML table

Base table space Current RBA or LRSN None None None None

Base table space Prior point-in-time AUX-CHECK-
pending1

REBUILD
pending

None REBUILD
pending

Base index space Current RBA or LRSN None None None None

Base index space Prior point-in-time None CHECK-
pending1

None None

Index on a LOB
or XML table

Current RBA or LRSN None None None None

478 Utility Guide and Reference

Table 66. Object status after being recovered without its related objects (continued)

Object Recovery type
Base table space
status

Base index
space status

LOB or XML
table space
status

Index on a LOB
or XML table

Index a LOB or
XML table

Prior point-in-time None None None CHECK pending

LOB or XML
table space

TOCOPY,
TOLASTCOPY,
TOLASTFULLCOPY

AUX-CHECK-
pending1

None None REBUILD
pending

LOB or XML
table space

TORBA or
TOLOGPOINT

AUX-CHECK-
pending1

None Auxiliary
warning

REBUILD
pending

Notes:

1. For LOB table spaces defined with LOG NO, the update event is logged, even though the data change is not. If
such a log record is applied to the LOB table space and a LOB is consequently marked invalid, the LOB or XML
table space is set to auxiliary warning status.

Related reference:
Appendix C, “Advisory or restrictive states,” on page 1083

Recovering a table space that contains clone objects
The recovery guidelines and considerations for a cloned table space or cloned
index are the same as for a base table space or base index except in the
point-in-time recovery case.

For an object currently involved in cloning, or one that was previously involved in
cloning, a point-in-time recovery cannot be done to a time the precedes the most
recent EXCHANGE statement. The time of the most recent EXCHANGE for a table
space can be determined by querying SYSIBM.COPY for the table space to be
recovered where ICTYPE = 'A' and STYPE = 'E'.

When an EXCHANGE is done, two rows will be written to SYSIBM.SYSCOPY for
the table space being processed: one for the base object and one for the clone
object. These rows are differentiated by the SYSCOPY.INSTANCE column value:
one will have INSTANCE=1 and the other INSTANCE=2. These SYSIBM.SYSCOPY
rows do not indicate base or clone. The SYSIBM.SYSTABLESPACE catalog table
contains an INSTANCE column that indicates the instance number of the current
base objects. The SYSTABLESPACE.INSTANCE column value can be used to
determine which SYSIBM.SYSCOPY row is for a base object and which is for a
clone object.

Point-in-time recovery
Recovering data to a prior time is a point-in-time recovery. You can recover objects
to a particular RBA, LRSN, or image copy. You can do this type of recovery by
using the RECOVER utility point-in-time recovery options. These options are
TOCOPY, TOLOGPOINT, TOLASTCOPY, TORBA, and TOLASTFULLCOPY.

You can recover objects to any RBA or LRSN by using TORBA or TOLOGPOINT.
You can recover objects to a previous image copy by using TOCOPY,
TOLASTCOPY, or TOLASTFULLCOPY. The exception is objects that are currently,
or were previously, involved with cloning. For these objects, you cannot recover
them to a point in time that precedes the most recent EXCHANGE statement.

Chapter 23. RECOVER 479

When you recover objects to an RBA or LRSN, the RBA or LRSN does not have to
be a consistent point in time. The RECOVER utility automatically handles any
uncommitted units of work and the data is left in a consistent state.

When you recover objects to an image copy, whether the image copy is a
consistent point in time depends on the type of image copy. An image copy that
was taken with SHRLEVEL REFERENCE is a point of consistency. An image copy
that was taken with SHRLEVEL CHANGE is not an explicit point of consistency.

Another explicit point of consistency is a quiesce point, which is a point at which
data is consistent as a result of running the DB2 QUIESCE utility.

Recoveries to a consistent point in time are the most efficient because no
uncommitted units of work need to be backed out.

Recommendation: If you use the RECOVER utility to recover data to an image
copy by specifying TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY, specify a
copy that was made with the SHRLEVEL REFERENCE option.

To achieve consistency when you want to recover to a copy that was taken with
SHRLEVEL CHANGE, specify a recovery point immediately after the copy
completed. To find this point, locate a record for the SHRLEVEL CHANGE copy in
SYSIBM.SYSCOPY and use the value in the PIT_RBA column. Specify that recovery
point by using the TORBA or TOLOGPOINT options in the RECOVER statement.

You do not need to take a full image copy after you recover data to a point in
time, except in the case of fallback recovery. DB2 records the RBAs or LRSNs that
are associated with the point-in-time recovery in the SYSIBM.SYSCOPY catalog
table to allow future recover operations to skip the unwanted range of log records.

If you specify the TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY option to
recover data to a point in time, RECOVER puts any associated index spaces in
REBUILD-pending status. If you specify the TOLOGPOINT or TORBA option to
recover data to a point in time, RECOVER puts any associated index spaces in
REBUILD-pending status if the indexes are not recovered in the same RECOVER
statement as their corresponding table space. The reason is that a point-in-time
recovery of only the table space leaves data in a consistent state and indexes in an
inconsistent state.

You can remove the REBUILD-pending state in one of the following ways:
v Run REBUILD INDEX on the indexes.
v Run RECOVER to a point in time on the indexes. If you do that, DB2 sets the

CHECK-pending state on the indexes, because the table space was not recovered
in the same RECOVER utility statement as the indexes.

If you use a point-in-time recovery option to recover a single data set of a
nonpartitioned table space, DB2 issues message DSNU520I to warn that the table
space can become inconsistent following the RECOVER job. This point-in-time
recovery can cause compressed data to exist without a dictionary or can even
overwrite the data set that contains the current dictionary.

If you use the point-in-time recovery option to recover a partition-by-growth table
space that has an image copy with fewer partitions than the current table space,
any excess partitions (partitions that are currently defined but not in the image
copy) are empty after the RECOVER processing.

480 Utility Guide and Reference

If a table space or partition in reordered row format is recovered to a point in time
when the table space or partition was in basic row format, the table space or
partition reverts to basic row format after RECOVER processing. Similarly, if a
table space or partition in basic row format is recovered to a point in time when
the table space or partition was in reordered row format, the table space or
partition revert to reordered row format after RECOVER processing.

After recovering a set of table spaces to a point in time, you can use CHECK
DATA to check for inconsistencies.

If you use the RECOVER utility to recover a table space set to a point-in-time, you
must ensure that you recover the entire set of table spaces to the same point in
time. If you do not include every member of the set, or if you do not recover the
entire set to the same point in time, RECOVER sets the auxiliary CHECK-pending
status on for all table spaces in the set.

You can also use point-in-time recovery and the point-in-time recovery options to
recover all user-defined table spaces and indexes that are in refresh-pending status
(REFP).

Recommendation: After running any point-in-time recoveries, run REORG
TABLESPACE and REBUILD INDEX to reset the real-time statistics. For more
information about the affect of point-in-time recoveries on real-time statistics, see
“Effects of running RECOVER” on page 494.

Restriction: RECOVER cannot use system-level backups as a recovery base unless
DFSMShsm is at z/OS 1.8 or higher.

Backing out work to a point-in-time

The RECOVER utility can recover your data to a point in time by backing out
committed work from the current state of the data. To recover data by backing out,
specify BACKOUT YES on the RECOVER control statement.

In some circumstances, recovering to a point in time by backing out work can be
faster than recovering to a point in time by restoring a copy of the data and
applying the logs forward.

When the RECOVER utility performs a point-in-time recovery by backing out
committed work, the recovery is a point-in-time recovery with consistency, because
any work that was uncommitted at the point in time to which the data is being
recovered is also backed out. When the recovery is complete, the data is left in a
transaction consistent state.

Restrictions: You cannot perform a backout recovery to the following points in
time:
v A point in time that is earlier than the timestamp of the latest SQL ALTER

record in SYSIBM.SYSCOPY for the object being recovered.
v A point-in-time that is earlier than the completion time of a previous backout

recovery.
v A point-in-time before a utility that inserts SYSCOPY records was run.
v A point-in-time before REORG TABLESPACE with the LOG(YES) option was

run on the table space.

Chapter 23. RECOVER 481

Before running the RECOVERY utility with the BACKOUT YES option, run the
REPORT utility with the RECOVER option on the object being recovered to
identify events that might prevent you from recovering the object by backing out
work to a given point in time.

Recovery considerations after rebalancing partitions with
REORG

For partitioned table spaces, image copies that were taken before a REORG job that
materialized limit key changes are not usable for recovering to a current RBA or
LRSN. Avoid recovering a partitioned table space to a point-in-time that is after the
REORG-pending or advisory REORG-pending status was set but before the
REORG that redistributed data records. To determine an appropriate point in time:
1. Run REPORT RECOVERY.
2. Select an image copy for which the recovery point is a point after the REORG

that redistributed data records.

Suppose that you run the REORG utility to turn off a REORG-pending status, and
then recover to a point in time before that REORG job. In this case,DB2 sets
restrictive statuses on all partitions that you specified in the REORG job, as
follows:
v Sets REORG-pending (and possibly CHECK-pending) on for the data partitions
v Sets REBUILD-pending on for the associated index partitions
v Sets REBUILD-pending on for the associated logical partitions of nonpartitioned

secondary indexes

To create a new consistent recovery point, take one of the following actions
immediately after an ALTER INDEX, ALTER TABLE, or REORG REBALANCE
operation that changes partition boundaries:
v Run REORG with the COPYDDN and SHRLEVEL NONE options.
v Take a full image copy immediately after REORG completes.

Using offline copies to recover after rebalancing partitions

To recover data after a REORG job redistributes the data among partitions, use
RECOVER LOGONLY. If you perform a point-in-time recovery, you must keep the
offline copies synchronized with the SYSCOPY records. Therefore, do not use the
MODIFY RECOVERY utility to delete any SYSCOPY records with an ICTYPE
column value of 'A' because these records might be needed during the recovery.
Delete these SYSCOPY records only when you are sure that you no longer need to
use the offline copies that were taken before the REORG that performed the
rebalancing.

Actions that can affect recovery status

When you perform the following actions before you recover a table space, the
recovery status is affected as described:
v If you alter a table to rotate partitions:

– You can recover the partition to the current time.
– You can recover the partition to a point in time after the alter. The utility can

use a recovery base, (for example, a full image copy, a REORG LOG YES
operation, or a LOAD REPLACE LOG YES operation) that occurred before
the alter.

– You cannot recover the partition to a point in time before the alter; the
recover fails with MSGDSNU556I and RC8.

482 Utility Guide and Reference

v If you change partition boundaries with ALTER or REORG REBALANCE:
– You can recover the partition to the current time if a recovery base (for

example, a full image copy, a REORG LOG YES operation, or a LOAD
REPLACE LOG YES operation) exists.

– You can recover the partition to a point in time after the change.
– You can recover the partitions that are affected by the boundary change to a

point in time before the materialization of those changes by the REORG
TABLESPACE utility. However, after the RECOVER utility completes
successfully, the affected partitions with the limit key changes are placed in
REORG-pending (REORP) status. You then need to then run REORG
TABLESPACE to correctly redistribute the data according to the previous limit
key values.

v If you alter a table to add a partition:
– You can recover the partition to the current time.
– You can recover the partition to a point in time after the alter.
– You can recover the partition to a point in time before the alter; RECOVER

resets the partition to be empty.
v If you alter a table to add a column (by using ALTER TABLE ADD COLUMN)

and subsequently drop the default value of the column (by using ALTER
COLUMN DROP DEFAULT), you cannot recover the table space to a point in
time between those two events.

v If you convert a table space from basic row format to reordered row format, you
cannot recover a piece of the table space to a point in time when the table space
was in basic row format. Similarly, if you convert a table space from reordered
row format to basic row format, you cannot recover a piece of the table space to
a point in time when the table space was in reordered row format. In both cases,
you must recover the entire table space.

v If you regenerate an index (by using ALTER INDEX REGENERATE), you cannot
recover the index or index space to a point in time prior to the time that it was
regenerated. Instead, rebuild the index by using the REBUILD INDEX utility.

v If you alter an index such that DB2 creates a new version of the index, you
cannot recover the index to a point in time prior to the first ALTER INDEX that
created a new version of that index.

v If you convert a table to support multiple XML versions:
– You cannot recover the associated table space to a point in time before the

table was converted.
– You cannot recover any indexes for that table to a point in time before the

table was converted.
v If you alter the organization of your table space to hash organization:

– You can recover the table space to the current time.
– You can recover the table space to a point in time before or after the alter.
– You can recover the table space to a point in time before or after the REORG

that materialized the hash organization. RECOVER places the table space in
AREOR status if the table space was recovered to a point before the REORG.

v If you alter the size of the hash space in your table space:
– You can recover the table space to the current time.
– You can recover the table space to a point in time before or after the alter.
– You can recover the table space to a point in time before or after the REORG

that materialized the change in hash space size.
v If you drop the hash organization (using ALTER):

– You can recover the table space to the current time.
– You can recover the table space to a point in time after the alter.
– You cannot recover the table space to a point in time before the alter.

v If you execute pending definition changes, you must materialize or drop those
changes before you can perform a point-in-time recovery.
Examples of pending definition changes are ALTER statements that change:

Chapter 23. RECOVER 483

|
|
|
|
|
|
|

|
|

|

– Segment size
– Data set size
– Buffer pool page size
– MEMBER CLUSTER attribute
– Table space type
– Limit key values

v You cannot recover to a point in time before materialization of a pending
definition change that results from an ALTER statement that drops a column.

v If you perform any of the following SQL operations on a table in a segmented
table space or universal table space, you cannot back out the changes using
RECOVER with BACKOUT YES:
– DELETE without a WHERE clause (mass DELETE)
– TRUNCATE TABLE
– DROP TABLE
– ALTER TABLE ROTATE PARTITION
If you perform any of the previously indicated actions on tables in a base table
space that has indexes or auxiliary objects (LOB tables spaces, or XML table
spaces), this restriction also applies to those indexes or auxiliary objects.

When you perform the following actions before you recover an index to a prior
point in time or to the current time, the recovery status is affected as described:
v If you alter the data type of a column to a numeric data type, you cannot

recover the index until you take a full image copy of the index. However, the
index can be rebuilt.

v If you alter an index to NOT PADDED or PADDED , you cannot recover the
index until you take a full image copy of the index. However, the index can be
rebuilt.

Planning for point-in-time recovery

Recovering to a point in time that is a point of consistency (QUIESCE or
SHRLEVEL REFERENCE set) is desirable because there will be no uncommitted
work to back out.

When making copies of a single object, use SHRLEVEL REFERENCE to establish
consistent points for TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY recovery.
Copies that are made with SHRLEVEL CHANGE do not copy data at a single
instant because changes can occur as the copy is made. A subsequent RECOVER
TOCOPY operation can produce inconsistent data. Instead use RECOVER with the
TOLOGPOINT option to identify a point after the SHRLEVEL CHANGE copy and
any uncommitted units of work will be backed out.

When copying a list of objects, use SHRLEVEL REFERENCE. If a subsequent
recovery to a point in time is necessary, you can use a single RECOVER utility
statement to list all of the objects, along with TOLOGPOINT to identify the
common RBA or LRSN value. If you use SHRLEVEL CHANGE to copy a list of
objects, you should follow it with a QUIESCE of the objects.

To improve the performance of the recovery, take a full image copy of the table
space or set of table spaces, and then quiesce them by using the QUIESCE utility.
This action enables RECOVER TORBA or TOLOGPOINT to recover the table
spaces to the quiesce point with minimal use of the log.

Authorization: Restrict use of the point-in-time recovery options to personnel with
a thorough knowledge of the DB2 recovery environment.

484 Utility Guide and Reference

|
|
|
|
|
|
|
|

Ensuring consistency

You can use RECOVER TORBA, RECOVER TOLOGPOINT, and RECOVER
TOCOPY to recover one of the following single objects:
v Partition of a partitioned table space
v Partition of a partitioning index space
v Data set of a simple table space

For any of the previously listed objects, restore all data sets to the same level;
otherwise, the data becomes inconsistent.

If possible, specify a table space and all of its indexes (or a set of table spaces and
all related indexes) in the same RECOVER utility statement, and specify
TOLOGPOINT or TORBA to identify a QUIESCE point. This action avoids placing
indexes in the CHECK-pending or REBUILD-pending status. If the TOLOGPOINT
is not a common QUIESCE point for all objects, use the following procedure:
1. RECOVER table spaces to the value for TOLOGPOINT (either an RBA or

LRSN).
2. Use concurrent REBUILD INDEX jobs to recover the indexes over each table

space.

This procedure ensures that the table spaces and indexes are synchronized, and it
eliminates the need to run the CHECK INDEX utility.

If you cannot specify TOLOGPOINT or TORBA to identify a QUIESCE point, you
can specify any point in time, and DB2 will leave the data in a consistent state. The
RECOVER utility automatically handles any uncommitted units of work and leaves
the data in a consistent state when TORBA or TOLOGPOINT is specified.

When using RECOVER with the TORBA or TOLOGPOINT option, ensure that all
of the objects that are changed by the active units of recovery at the recovery point
are recovered to the same point-in-time so that they are synchronized:
v DB2 rolls back changes made to units of recovery that are inflight, inabort,

postponed abort, or indoubt during the recovery point-in-time.
v DB2 does not roll back changes made to units of recovery that are INCOMMIT

during the recovery point-in-time.
v DB2 rolls back only changes to objects in the RECOVER statement.

Resetting CHECK-pending status

Point-in-time recovery can cause table spaces to be placed in CHECK-pending
status if they have table check constraints or referential constraints defined on
them. When recovering tables that are involved in a referential constraint, you
should recover all the table spaces that are involved in a constraint.

RECOVER does not place dependent table spaces that are related by informational
referential constraints into CHECK-pending status.

The TORBA and TOLOGPOINT options set the CHECK-pending status for table
spaces when you perform any of the following actions:
v Recover all members of a set of table spaces that are to be recovered to the same

point in time, but referential constraints were defined for a dependent table after
that point in time. Table spaces that contain those dependent tables are placed in
CHECK-pending status.

Chapter 23. RECOVER 485

To avoid setting CHECK-pending status, you must perform both of the following
steps:
v Recover all dependent objects to the same point in time.

If you do not recover each table space to the same quiesce point, and if any of
the table spaces are part of a referential integrity structure, the following actions
occur:
– All dependent table spaces that are recovered are placed in CHECK-pending

status with the scope of the whole table space.
– All dependent table spaces of the recovered table spaces are placed in

CHECK-pending status with the scope of the specific dependent tables.
v Do not add table check constraints or referential constraints after the point in

time to which you want to recover.
If you recover each table space of a table space set to the same point in time, but
referential constraints were defined after the same point in time, the
CHECK-pending status is set for the table space that contains the table with the
referential constraint.

The TORBA and TOLOGPOINT options set the CHECK-pending status for indexes
when you recover one or more of the indexes to a previous point in time, but you
do not recover the related table space in the same RECOVER statement.

You can turn off CHECK-pending status for an index by using the TORBA and
TOLOGPOINT options. Recover indexes along with the related table space to the
same point in time (preferably a quiesce point) or SHRLEVEL REFERENCE point.
RECOVER processing resets the CHECK-pending status for all indexes in the same
RECOVER statement.

Compressed data

Use caution when recovering a portion of a table space or partition (for example,
one data set) to a prior point in time. If the data set that is being recovered has
been compressed with a different dictionary, you can no longer read the data.

Recovery to a point in time before materialization of pending
definition changes

You can recover a range-partitioned table space, a LOB table space, or an XML
table space to a point in time before a REORG job was run to materialize pending
definition changes. However, the REORG job that materialized the changes must
have been run in DB2 Version 11 new-function mode or later.

Before you run RECOVER to a point in time that is before materialization of
pending definition changes, run REPORT RECOVERY to obtain:
v The recovery history from the SYSIBM.SYSCOPY catalog table
v The log ranges from the SYSIBM.SYSLGRNX directory table

After you run RECOVER to a point in time that is before materialization of
pending definition changes, the target table space is put in the REORG-pending
state. You must run REORG on the entire table space to remove the
REORG-pending state and complete the recovery process.

486 Utility Guide and Reference

|
|

|
|
|
|

|
|

|

|

|
|
|
|

Related concepts:
“How the RECOVER utility performs fallback recovery” on page 491

Recovery of data to a prior point in time (DB2 Administration Guide)
“Resetting the REBUILD-pending status” on page 433
Related tasks:

Compressing your data (DB2 Performance)

Materializing pending definition changes (DB2 Administration Guide)
“Reviewing CHECK INDEX output” on page 109
Related reference:
Appendix C, “Advisory or restrictive states,” on page 1083
“REBUILD-pending status” on page 1088
“Syntax and options of the RECOVER control statement” on page 444
“REORG-pending status” on page 1090

Avoiding specific image copy data sets during a recovery
You might accidentally lose an image copy, or you might want to avoid a specific
image copy data set. Because the corresponding row is still present in
SYSIBM.SYSCOPY, the RECOVER utility always attempts to allocate the data set.

Use the RESTOREBEFORE option and specify the RBA or LRSN of the image copy,
concurrent copy, or system-level backup that you want to avoid, and RECOVER
will search for an older recovery base. The RECOVER utility then applies log
records to restore the object to its current state or the specified TORBA or
TOLOGPOINT value.

Image copy on tape

If the image copy is on tape, messages IEF233D and IEF455D request the tape for
RECOVER, as shown in the following example:
IEF233D M BAB,COPY ,,R92341QJ,DSNUPROC,

OR RESPOND TO IEF455D MESSAGE
*42 IEF455D MOUNT COPY ON BAB FOR R92341QJ,DSNUPROC OR REPLY ’NO’
R 42,NO
IEF234E K BAB,COPY ,PVT,R92341QJ,DSNUPROC

By replying NO, you can initiate the fallback to the previous image copy.
RECOVER responds with messages DSNU030I and DSNU508I, as shown in the
following example:
DSNU030I csect-name - UNABLE TO ALLOCATE R92341Q.UTQPS001.FCOPY010

RC=4, CODE=X’04840000’
DSNU508I csect-name - IN FALLBACK PROCESSING TO PRIOR FULL IMAGE COPY

Reason code X'0484' means that the request was denied by the operator.

Image copy on disk:

If the image copy is on disk, you can delete or rename the image copy data set
before RECOVER starts executing. RECOVER issues messages DSNU030I and
DSNU508I, as shown in the following example:
DSNU030I csect-name - UNABLE TO ALLOCATE R92341Q.UTQPS001.FCOPY010,

RC=4, CODE=X’17080000’
DSNU508I csect-name - IN FALLBACK PROCESSING TO PRIOR FULL IMAGE COPY

Chapter 23. RECOVER 487

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_recovertopriopoint.htm#db2z_recovertopriopoint
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_compressdataperf.htm#db2z_compressdataperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_materializingdefchanges.htm#db2z_materializingdefchanges

Reason code X'1708' means that the ICF catalog entry cannot be found.

Improving RECOVER performance
Certain activities might improve the performance of the RECOVER utility.

To improve recovery time, consider recovering to a quiesce point or SHRLEVEL
REFERENCE copy instead of recovering to any point in time. The following factors
impact performance when you recover to a non quiesce point:
v The duration of the units of recovery that were active at the recovery point.
v The number of DB2 members that have active units of recovery to roll back.

Use MERGECOPY to merge your table space image copies before recovering the
table space. If you do not merge your image copies, RECOVER automatically
merges them. If RECOVER cannot allocate all the incremental image copy data sets
when it merges the image copies, RECOVER uses the log instead.

Include a list of table spaces and indexes in your RECOVER utility statement to
apply logs in a single scan of the logs.

If you use RECOVER TOCOPY for full image copies, you can improve
performance by using data compression. The improvement is proportional to the
degree of compression.

Consider specifying the PARALLEL keyword to restore image copies from disk or
tape to a list of objects in parallel.

If you are recovering concurrent copies, consider specifying the
CURRENTCOPYONLY option to improve performance. When you specify this
option, RECOVER can issue one DFSMSdss RESTORE command for multiple
objects. The utility issues one RESTORE command for each group of objects that is
associated with the concurrent copy data set. If you do not use the
CURRENTCOPYONLY keyword, RECOVER issues one RESTORE command for
each object.

If you are recovering an object from a system-level backup, RECOVER invokes
DFSMShsm, which controls parallelism. If the system-level backup resides on disk,
the RECOVER utility passes the object to DFSMShsm before processing the objects
to be restored from image copies or concurrent copies. If the system-level backup
resides on tape, the RECOVER utility processes the objects to be restored from
system-level backups, image copies, and concurrent copies at the same time.

Recovery from a FlashCopy image copy with consistency or from a sequential
image copy with consistency might take longer due to the additional processing
required to read the logs and apply any changes made after the point of
consistency.

Optimizing the LOGAPPLY phase
The time that is required to recover a table space depends also on the time that is
required to read and apply log data. You can take several steps to optimize the
process. If possible, DB2 reads the required log records from the active log to
provide the best performance.

488 Utility Guide and Reference

Any log records that are not found in the active logs are read from the archive log
data sets, which are dynamically allocated to satisfy the requests. The type of
storage that is used for archive log data sets is a significant factor in the
performance. Consider the following actions to improve performance:
v RECOVER a list of objects in one utility statement to take only a single pass of

the log.
v Keep archive logs on disk to provide the best possible performance.
v Control archive logs data sets by using DFSMShsm to provide the next best

performance. DB2 optimizes recall of the data sets. After the data set is recalled,
DB2 reads it from disk.

v If the archive log must be read from tape, DB2 optimizes access by means of
ready-to-process and look-ahead mount requests. DB2 also permits delaying the
deallocation of a tape drive if subsequent RECOVER jobs require the same
archive log tape. Those methods are described in more detail in the subsequent
paragraphs.

The BSDS contains information about which log data sets to use and where they
reside. You must keep the BSDS information current. If the archive log data sets
are cataloged, the ICF catalog indicates where to allocate the required data set.

DFSMShsm data sets

The recall of the first DFSMShsm archive log data set starts automatically when the
LOGAPPLY phase starts. When the recall is complete and the first log record is
read, the recall for the next archive log data set starts. This process is known as
look-ahead recalling. Its purpose is to recall the next data set while it reads the
preceding one.

When a recall is complete, the data set is available to all RECOVER jobs that
require it. Reading proceeds in parallel.

Non-DFSMShsm tape data sets

DB2 reports on the console all tape volumes that are required for the entire job.
The report distinguishes two types of volumes:
v Any volume that is not marked with an asterisk (*) is required for the for the

job to complete. Obtain these volumes from the tape library as soon as possible.
v Any volume that is marked with an asterisk (*) contains data that is also

contained in one of the active log data sets. The volume might or might not be
required.

As tapes are mounted and read, DB2 makes two types of mount requests:
v Ready-to-process: The current job needs this tape immediately. As soon as the tape

is loaded, DB2 allocates and opens it.
v Look-ahead: This is the next tape volume that is required by the current job.

Responding to this request enables DB2 to allocate and open the data set before
it is needed, thus reducing overall elapsed time for the job.

You can dynamically change the maximum number of input tape units that are
used to read the archive log by specifying the COUNT option of the SET
ARCHIVE command. For example, use the following command to assign 10 tape
units to your DB2 subsystem:
-SET ARCHIVE COUNT (10)

Chapter 23. RECOVER 489

The DISPLAY ARCHIVE READ command shows the currently mounted tape
volumes and their statuses.

Delayed deallocation

DB2 can delay deallocating the tape units used to read the archive logs. This is
useful when several RECOVER utility statements run in parallel. By delaying
deallocation, DB2 can re-read the same volume on the same tape unit for different
RECOVER jobs, without taking time to allocate it again.

You can dynamically change the amount of time that DB2 delays deallocation by
using the TIME option of the SET ARCHIVE command. For example, to specify a
60 minute delay, issue the following command:
-SET ARCHIVE TIME(60)

In a data sharing environment, you might want to specify zero (0) to avoid having
one member hold onto a data set that another member needs for recovery.

Performance summary
1. Achieve the best performance by allocating archive logs on disk.
2. Consider staging cataloged tape data sets to disk before allocation by the log

read process.
3. If the data sets are read from tape, set both the COUNT and the TIME values

to the maximum allowable values within the system constraints.

Recovering image copies in a JES3 environment
You can recover sequential or concurrent image copies in a JES3 environment.

Procedure

To recover image copies in a JES3 environment:

Ensure that sufficient units are available to mount the required image copies. In a
JES3 environment, if the number of image copies that need to be restored exceeds
the number of available online and offline units, and the RECOVER job
successfully allocates all available units, the job waits for more units to become
available.

Resetting RECOVER-pending or REBUILD-pending status
Several possible operations on a table space can place the table space in the
RECOVER-pending status and the index space in REBUILD-pending status.

Procedure

To reset RECOVER-pending or REBUILD-pending status:

Use one of the following methods:
v Recover the table space, index space, or partition.
v Use REBUILD INDEX to rebuild the index space from existing data.
v Use the LOAD utility, with the REPLACE option, on the table space or partition.

490 Utility Guide and Reference

v Use the REPAIR utility, with the NORCVRPEND option, on the table space,
index space, or partition. Be aware that the REPAIR utility does not fix the data
inconsistency in the table space or index.

v Rebuild indexes, run REORG TABLESPACE SORTDATA for table spaces and
indexes.

Related reference:
“REBUILD-pending status” on page 1088
“RECOVER-pending status” on page 1089
Chapter 22, “REBUILD INDEX,” on page 409
Chapter 25, “REORG TABLESPACE,” on page 537
Chapter 26, “REPAIR,” on page 645

How the RECOVER utility allocates incremental image copies
RECOVER attempts to dynamically allocate all required incremental image copy
data sets.

If any of the incremental image copies are missing, RECOVER performs the
following actions:
v Identifies the first incremental image copy that is missing
v Uses the incremental image copies up to the missing incremental image copy
v Doesn’t use the remaining incremental image copy data sets
v Applies additional log records to compensate for any incremental image copies

that were not used

For example, if the incremental image copies are on tape and an adequate number
of tape drives are not available, RECOVER does not use the remaining incremental
image copy data sets.

How the RECOVER utility performs fallback recovery
The RECOVER utility attempts to use the latest primary copy data set as a starting
point for recovery. If the latest primary copy data set is not available, RECOVER
attempts to use the backup copy data set, if one is available.

If neither image copy is usable, RECOVER attempts to fall back to a previous
recovery point. If the previous recovery point is a full image copy, the RECOVER
utility uses the full image copy, any incremental image copies, and the log to
recover. If a previous REORG LOG YES or LOAD REPLACE LOG YES was done,
RECOVER attempts to recover from the log and applies any changes that occurred
between the two image copies. If good full image copies are not available, and no
previous REORG LOG YES or LOAD REPLACE LOG YES jobs were run, the
RECOVER utility terminates. The RECOVER utility will not fall back to a
system-level backup.

If one of the following actions occurs, the index remains untouched, and utility
processing terminates with return code 8:
v RECOVER processes an index for which no full copy exists.
v The copy cannot be used because of utility activity that occurred on the index or

on its underlying table space,

Chapter 23. RECOVER 491

If you always make multiple image copies, RECOVER should seldom fall back to
an earlier point. Instead, RECOVER relies on the backup copy data set if the
primary copy data set is unusable.

In a JES3 environment, you can do a fallback recovery by issuing a JES3 cancel,s
command at the time the allocation mount message is issued. This action might be
necessary if a volume is not available or if you do not want the given volume.

RECOVER does not perform parallel processing for objects that are in backup or
fallback recovery. Instead, the utility performs nonparallel image copy allocation
processing of the objects. RECOVER defers the processing of objects that require
backup or fallback processing until all other objects are recovered, at which time
the utility processes the objects one at a time.
Related concepts:
“Preparing for recovery by using the COPY utility” on page 161

How the RECOVER utility retains tape mounts
The RECOVER utility can automatically retain the tape volumes for the input
image copies when a list of objects is being recovered.

For input image copies (for the objects being recovered) that are stacked on one or
more tape volumes, you do not need to code JCL DD statements to retain the tape
volumes on the tape drive. Instead, you can use the PARALLEL and TAPEUNITS
keywords. The PARALLEL keyword directs the RECOVER utility to process the
objects in parallel. The objects will be sorted based on how the input image copies
are stacked on tape to maximize efficiency during the RESTORE phase by retaining
the tape volumes on the tape drive and by restoring the input image copies in the
right order (by ascending file sequence numbers). The TAPEUNITS keyword will
limit the number of tape units (or drives) that the RECOVER utility will use
during the RESTORE phase. In special cases, RECOVER cannot retain all of the
tape volumes, so the tape volumes may be demounted and deallocated even if the
PARALLEL and TAPEUNITS keywords are specified.

Avoiding damaged media
When a media error is detected, DB2 prints a message that indicates the extent of
the damage. If an entire volume is bad and storage groups are being used, you
must remove the bad volume first. If you don't remove the volume the RECOVER
utility might re-access the damaged media.

Procedure

To avoid damaged media:
1. Use ALTER STOGROUP to remove the bad volume and add another volume. If

your data sets are managed by DFSMS storage group, then you need to also
remove the bad volume from the DFSMS storage group.

2. Run the RECOVER utility for all objects on that volume.

What to do next

If the RECOVER utility cannot complete because of severe errors that are caused
by the damaged media, you might need to use Access Method Services (IDCAMS)
with the NOSCRATCH option to delete the cluster for the table space or index. If
the table space or index is defined by using STOGROUP, the RECOVER utility

492 Utility Guide and Reference

automatically redefines the cluster. For user-defined table spaces or indexes, you
must redefine the cluster before invoking the RECOVER utility.
Related tasks:

Altering DB2 storage groups (DB2 Administration Guide)
Related reference:

ALTER STOGROUP (DB2 SQL)

Termination or restart of RECOVER
You can terminate and restart the RECOVER utility.

Termination

Terminating a RECOVER job with the TERM UTILITY command leaves the table
space that is being recovered in RECOVER-pending status, and the index space
that is being recovered in the REBUILD-pending status. If you recover a table
space to a previous point in time, its indexes are left in the REBUILD-pending
status. The data or index is unavailable until the object is successfully recovered or
rebuilt. If the utility fails in the LOGAPPLY, LOGCSR, or LOGUNDO phases, fix
the problem that caused the job to stop and restart the job rather than terminate
the job. For the rest of objects in the recover job, the RECOVER utility restores the
original image copy and repeats the LOGAPPLY, LOGCSR, and LOGUNDO
process again for this subset of objects. All the objects being recovered in one
recover job will be available to the application at the end of the RECOVER utility,
even if some of the objects do not have any active URs operating on them and
therefore no rollback is needed for these objects.

Restart

You can restart RECOVER from the last commit point (RESTART(CURRENT)) or
the beginning of the phase (RESTART(PHASE)). By default, DB2 uses
RESTART(CURRENT).

If you attempt to recover multiple objects by using a single RECOVER statement
and the utility fails in:
v The RESTORE phase: All objects in the process of being restored are placed in

the RECOVER-pending or REBUILD-pending status. The status of the remaining
objects is unchanged.

v The LOGAPPLY phase: All objects that are specified in the RECOVER statement
are placed in the RECOVER-pending or REBUILD-pending status.

In both cases, you must identify and fix the causes of the failure before performing
a current restart.

If RECOVER fails in the LOGCSR phase and you restart the utility, the utility
restart behavior is RESTART(PHASE).

If RECOVER fails in the LOGUNDO phase and you restart the utility, the utility
repeats the RESTORE, LOGAPPLY, LOGCSR, and LOGUNDO phases for only
those objects that had active units of recovery that needed to be handled and that
did not complete undo processing prior to the failure.

Chapter 23. RECOVER 493

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_alterstoragegroups.htm#db2z_alterstoragegroups
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterstogroup.htm#db2z_sql_alterstogroup

Related concepts:
“Restart of an online utility” on page 39

Effects of running RECOVER
The effects of running the RECOVER utility vary depending on your situation.

RECOVER without the REUSE option

When you run the RECOVER utility without the REUSE option and the data set
that contains that data is DB2–managed, DB2 deletes this data set before recovery.
Then, DB2 redefines a new data set with a control interval that matches the page
size.

Recovering objects to a previous point in time

If you use the RECOVER utility to recover objects to a previous point in time, the
counter columns in the real-time statistics tables might not be valid. Therefore,
after any point-in-time recoveries, you must run the following utilities:
v REORG TABLESPACE to reestablish real-time statistic values for table spaces
v REBUILD INDEX to reestablish real-time statistic values for indexes

These actions do not apply if you recover objects to the current state. When you
recover objects to the current state, the counter columns in the real-time statistics
tables are still valid. DB2 does not modify them.

Cases when indexes are placed in REBUILD-pending status

When you use the RECOVER utility to recover indexes, an index might be left in
REBUILD-pending status. In these rare cases, you must rebuild the index by
running the REBUILD INDEX utility.

Indexes are left in REBUILD-pending status, if:
v An index with the COPY YES attribute has gone through the two-pass group

buffer pool recovery pending (GRECP) or logical page list (LPL) recovery, and
the RECOVER utility needs to apply the logs that are processed by the two-pass
LPL or GRECP recovery

v Or the indexes are still in GRECP or LPL status, and the compensation log
records are written before the physical undo logs

Sample RECOVER control statements
Use the sample control statements as models for developing your own RECOVER
control statements.

Example 1: Recovering a table space

The following control statement specifies that the RECOVER utility is to recover
table space DSN8D11A.DSN8S11D to the current point in time.
RECOVER TABLESPACE DSN8D11A.DSN8S11D

494 Utility Guide and Reference

|

|
|
|

|

|
|
|
|

|
|

Example 2: Recovering a table space partition

The following control statement specifies that the RECOVER utility is to recover
the second partition of table space DSN8D11A.DSN8S11D. The partition number is
indicated by the DSNUM option.
RECOVER TABLESPACE DSN8D11A.DSN8S11D DSNUM 2

Example 3: Recovering a table space partition to the last image
copy that was taken

The following control statement specifies that the RECOVER utility is to recover
the first partition of table space DSN8D81A.DSN8S81D to the last image copy that
was taken. If the last image copy that was taken is a full image copy, this full
image copy is restored. If the last image copy that was taken is an incremental
image copy, the most recent full image copy, along with any incremental image
copies, are restored.
RECOVER TABLESPACE DSN8D81A.DSN8S81D DSNUM 1 TOLASTCOPY

Example 4: Recovering table spaces to a point in time

The following control statement specifies that the RECOVER utility is to recover
the second partition of table space DSN8D11A.DSN8S11E and all of table space
DSN8D11A.DSN8S11D to the indicated quiesce point (LRSN X'00000551BE7D'). The
quiesce point is indicated by the TOLOGPOINT option. Note that the value for this
option can be either an LRSN or an RBA.
RECOVER TABLESPACE DSN8D11A.DSN8S11E DSNUM 2

TABLESPACE DSN8D11A.DSN8S11D
TOLOGPOINT X’00000551BE7D’

Example 5: Recovering an index to the last full image copy that
was taken without deleting and redefining the data sets

The following control statement specifies that the RECOVER utility is to recover
index ADMF001.IADH082P to the last full image copy. The REUSE option specifies
that DB2 is to logically reset and reuse DB2-managed data sets without deleting
and redefining them.
RECOVER INDEX ADMF001.IADH082P REUSE TOLASTFULLCOPY

Example 6: Recovering from concurrent copies

The RECOVER utility control statement specifies that the utility is to recover all of
the objects that are included in the RCVR4_LIST. This list is defined by the
preceding LISTDEF utility control statement. Because the most recent primary copy
for all of these objects is a concurrent copy, the CURRENTCOPYONLY option is
used in the RECOVER statement to improve the performance of restoring these
concurrent copies. The LOCALSITE option indicates that RECOVER is to use
image copies at the local site.

Chapter 23. RECOVER 495

Example 7: Recovering a list of objects on different tape devices
in parallel

The control statement specifies that the RECOVER utility is to recover the list of
table spaces. Full image copies and incremental image copies of the eight table
spaces are stacked on four different tape volumes. The utility sorts the list of
objects and, if possible, recovers two objects at a time in parallel. This number of
objects is specified by the PARALLEL option. The TAPEUNITS option specifies that
up to four tape drives are to be dynamically allocated.

Example 8: Recovering a list of objects to a point in time

The following RECOVER control statement specifies that the RECOVER utility is to
recover the specified list of objects to a common point in time (LRSN
X'00000551BE7D'). The LISTDEF control statement defines which objects are to be
included in the list. These objects are logically consistent after successful
completion of this RECOVER job. The PARALLEL option indicates that RECOVER
is to restore four objects at a time in parallel. If any of the image copies are on tape
(either stacked or not stacked), RECOVER determines the number of tape drives to

//STEP1 EXEC DSNUPROC,UID=’JUOLU210.RCVR4’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//UTPRINT DD SYSOUT=*
//SYSUT1 DD DSN=JUOLU210.RCVR4.STEP1.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=JUOLU210.RCVR4.STEP1.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *

LISTDEF RCVR4_LIST
INCLUDE TABLESPACES TABLESPACE DBOL1002.TSOL1002
INCLUDE TABLESPACES TABLESPACE DBOL1003.TPOL1003 PARTLEVEL 3
INCLUDE TABLESPACES TABLESPACE DBOL1003.TPOL1003 PARTLEVEL 6
INCLUDE TABLESPACES TABLESPACE DBOL1003.TPOL1004 PARTLEVEL 5
INCLUDE TABLESPACES TABLESPACE DBOL1003.TPOL1004 PARTLEVEL 9
INCLUDE INDEXSPACES INDEXSPACE DBOL1003.IPOL1051 PARTLEVEL 22
INCLUDE INDEXSPACES INDEXSPACE DBOL1003.IPOL1061 PARTLEVEL 10
INCLUDE INDEXSPACES INDEXSPACE DBOL1003.IXOL1062

RECOVER LIST RCVR4_LIST
LOCALSITE
CURRENTCOPYONLY

/*

Figure 64. Example RECOVER control statement with the CURRENTCOPYONLY option

//RECOVER EXEC DSNUPROC,SYSTEM=’DSN’
//SYSIN DD *
RECOVER PARALLEL(2) TAPEUNITS(4)
TABLESPACE DB1.TS8
TABLESPACE DB1.TS7
TABLESPACE DB1.TS6
TABLESPACE DB1.TS5
TABLESPACE DB1.TS4
TABLESPACE DB1.TS3
TABLESPACE DB1.TS2
TABLESPACE DB1.TS1

Figure 65. Example RECOVER control statement for a list of objects on tape

496 Utility Guide and Reference

use to optimize the process. Note that any uncommitted work for all of the objects
at the specified RBA have been backed out by the recover to point in time with
consistency.
LISTDEF RCVRLIST INCLUDE TABLESPACE DSN8D81A.DSN8S81D

INCLUDE INDEX DSN8810.XDEPT1
INCLUDE INDEX DSN8810.XDEPT2
INCLUDE INDEX DSN8810.XDEPT3
INCLUDE TABLESPACE DSN8D81A.DSN8S81E
INCLUDE INDEX DSN8810.XEMP1
INCLUDE INDEX DSN8810.XEMP2

RECOVER LIST RCVRLIST TOLOGPOINT X’00000551BE7D’ PARALLEL(4)

Example 9: Recovering clone table data

The following control statement specifies that the RECOVER utility is to recover
only clone table data in DBA90601.TLX9061A and recover the data to the last
image copy that was taken. The REUSE option specifies that RECOVER is to
logically reset and reuse DB2-managed data sets without deleting and redefining
them.
RECOVER TABLESPACE DBA90601.TLX9061A REUSE TOLASTCOPY

CLONE

Example 10: Recovering an image copy

The following control statement specifies that the RECOVER utility is to search for
an image copy with an RBA or LRSN value earlier than the specified
X'00000551BE7D' value to use in the RESTORE phase. Only specified dumps of the
database copy pool are used for the restore of the data sets.
RECOVER LIST RCVRLIST RESTOREBEFORE X’00000551BE7D’ PARALLEL(4)

FROMDUMP DUMPCLASS(dcname)

Chapter 23. RECOVER 497

498 Utility Guide and Reference

Chapter 24. REORG INDEX

The REORG INDEX online utility reorganizes an index space to improve access
performance and reclaim fragmented space. You can specify the degree of access to
your data during reorganization, and you can collect inline statistics by using the
STATISTICS keyword.

You can determine when to run REORG INDEX by using the LEAFDISTLIMIT
catalog query option. If you specify the REPORTONLY option, REORG INDEX
produces a report that indicates whether a REORG is recommended; in this case, a
REORG is not performed. These options are not available for indexes on the
directory.

Output

The following list summarizes REORG INDEX output:

REORG specified
Results

REORG INDEX
Reorganizes the entire index (all parts if partitioning).

REORG INDEX PART n
Reorganizes PART n of a partitioning index or of a data-partitioned
secondary index

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v REORG privilege for the database
v DBADM or DBCTRL authority for the database. If the object on which the utility

operates is in an implicitly created database, DBADM authority on the implicitly
created database or DSNDB04 is required.

v DATAACCESS authority
v SYSCTRL authority
v SYSADM authority

To execute this utility on an index space in the catalog or directory, you must use a
privilege set that includes one of the following authorities:
v REORG privilege for the DSNDB06 (catalog) database
v DBADM or DBCTRL authority for the DSNDB06 (catalog) database.
v Installation SYSOPR authority
v SYSCTRL authority
v SYSADM or Installation SYSADM authority
v STATS privilege for the database is required if STATISTICS keyword is specified.

While trying to reorganize an index space in the catalog or directory, a user with
authority other than installation SYSADM or installation SYSOPR might receive the
following message:
DSNT500I "resource unavailable"

© Copyright IBM Corp. 1983, 2013 499

This message is issued when the DSNDB06.SYSTSDBA, DSNDB06.SYSTSDBU, or
DSNDB06.SYSUSER catalog table space or one of the indexes is unavailable. If this
problem occurs, run the REORG INDEX utility again, using an authorization ID
with the installation SYSADM or installation SYSOPR authority.

An ID with installation SYSOPR authority can also execute REORG INDEX, but
only on an index in the DSNDB06 database.

If either the FLASHCOPY YES or FLASHCOPY CONSISTENT option is specified,
the batch user ID that invokes the REORG INDEX utility must have the authority
to execute the DFSMSdss COPY command.

To run REORG INDEX STATISTICS REPORT YES, ensure that the privilege set
includes the SELECT privilege on the catalog tables and on the tables for which
statistics are to be gathered.

Execution phases of REORG INDEX

The REORG INDEX utility operates in these phases:

UTILINIT
Performs initialization and setup

UNLOAD
Unloads index space and writes keys to a sequential data set.

BUILD
Builds indexes. Updates index statistics.

LOG Processes log iteratively. Used only if you specify SHRLEVEL CHANGE.

SWITCH
Switches access between original and new copy of index space or partition.
Used only if you specify SHRLEVEL REFERENCE or CHANGE.

UTILTERM
Performs cleanup. For DB2-managed data sets and either SHRLEVEL
CHANGE or SHRLEVEL REFERENCE, the utility deletes the original copy
of the table space or index space.

Syntax and options of the REORG INDEX control statement
The REORG INDEX utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

500 Utility Guide and Reference

|
|
|
|

Syntax diagram

�� REORG INDEX LIST listdef-name
index-name-spec REUSE CLONE

�

�
SHRLEVEL NONE

FASTSWITCH YES
SHRLEVEL REFERENCE deadline-spec drain-spec

CHANGE deadline-spec drain-spec change-spec FASTSWITCH NO

�

�
FORCE NONE

FORCE READERS
FORCE ALL

LEAFDISTLIMIT
integer REPORTONLY

UNLOAD CONTINUE

(1)
UNLOAD PAUSE

ONLY

�

�
(2)

stats-spec

WORKDDN (SYSUT1)

WORKDDN (ddname) PREFORMAT
�

�
NO

FLASHCOPY
YES FCCOPYDDN(ddname)
CONSISTENT

RBALRSN_CONVERSION NONE
BASIC
EXTENDED

��

Notes:

1 You cannot use UNLOAD PAUSE with the LIST option.

2 You cannot specify any options in stats-spec with the UNLOAD ONLY option.

index-name-spec

�� INDEX index-name
creator-id.

INDEXSPACE index-space-name
database-name.

PART integer
��

deadline-spec

��
DEADLINE NONE

DEADLINE timestamp
labeled-duration-expression

��

Chapter 24. REORG INDEX 501

||||

drain-spec

��
(1)

DRAIN_WAIT integer

(2)

RETRY integer

(3)

RETRY_DELAY integer
�

�
TIMEOUT TERM

TIMEOUT ABEND
��

Notes:

1 The default for DRAIN_WAIT is the value of the IRLMRWT subsystem parameter.

2 The default for RETRY is the value of the UTIMOUT subsystem parameter.

3 The default for RETRY_DELAY is the smaller of the following two values: DRAIN_WAIT value ×
RETRY value, DRAIN_WAIT value × 10

change-spec

��
(1)

MAXRO integer
DEFER

DRAIN ALL

DRAIN WRITERS

LONGLOG CONTINUE

LONGLOG TERM
DRAIN

DELAY 1200

DELAY integer
�

�
LOGRANGES YES

LOGRANGES NO

SWITCHTIME NONE

NEWMAXRO NONE
SWITCHTIME timestamp

labeled-duration-expression NEWMAXRO integer

��

Notes:

1 The default for MAXRO is the RETRY_DELAY default value.

502 Utility Guide and Reference

||||

|||||||||||||

labeled-duration-expression

�� CURRENT_DATE
CURRENT_TIMESTAMP

WITH TIME ZONE

� + constant YEAR
- YEARS

MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

��

stats-spec

�� STATISTICS
REPORT NO

REPORT YES correlation-stats-spec

UPDATE ALL

UPDATE ACCESSPATH
SPACE
NONE

�

�
HISTORY ALL

ACCESSPATH
SPACE
NONE

FORCEROLLUP YES
NO

��

Chapter 24. REORG INDEX 503

correlation-stats-spec

��

(1)
KEYCARD

�

FREQVAL NUMCOLS 1 COUNT 10

FREQVAL NUMCOLS integer COUNT integer
NUMCOLS 1 NUMQUANTILES 100

HISTOGRAM
NUMQUANTILES 100

NUMCOLS integer
NUMQUANTILES integer

�

�
SORTDEVT device-type SORTNUM integer

��

Notes:

1 The KEYCARD option is deprecated. The KEYCARD functionality is now built into the normal
execution of the RUNSTATS INDEX utility and cannot be disabled.

Option descriptions

INDEX creator-id.index-name
Specifies an index that is to be reorganized.

creator-id. specifies the creator of the index and is optional. If you omit the
qualifier creator ID, DB2 uses the user identifier for the utility job. index-name
is the qualified name of the index to copy. For an index, you can specify either
an index name or an index space name. Enclose the index name in quotation
marks if the name contains a blank.

INDEXSPACE database-name.index-space-name
Specifies the qualified name of the index space that is obtained from the
SYSIBM.SYSINDEXES table.

database-name specifies the name of the database that is associated with the
index and is optional.

The default value is DSNDB04.

index-space-name specifies the qualified name of the index space that is to be
reorganized; the name is obtained from the SYSIBM.SYSINDEXES table.

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. The INDEX
keyword is required to differentiate this REORG INDEX LIST from REORG
TABLESPACE LIST. The utility allows one LIST keyword for each control
statement of REORG INDEX. The list must not contain any table spaces.
REORG INDEX is invoked once for each item in the list. This utility will only
process clone data if the CLONE keyword is specified. The use of CLONED
YES on the LISTDEF statement is not sufficient.

Do not specify STATISTICS INDEX index-name with REORG INDEX LIST. If
you want to collect inline statistics for a list of indexes, just specify
STATISTICS.

504 Utility Guide and Reference

|||||||||||

You cannot specify DSNUM and PART with LIST on any utility.

The partitions or partition ranges can be specified in a list.

PART integer
Identifies a partition that is to be reorganized. You can reorganize a single
partition of a partitioning index. You cannot specify PART with LIST. integer
must be in the range from 1 to the number of partitions that are defined for
the partitioning index. The maximum value is 4096.

integer designates a single partition.

If you omit the PART keyword, the entire index is reorganized.

REUSE
When used with SHRLEVEL NONE, specifies that REORG is to logically reset
and reuse DB2-managed data sets without deleting and redefining them. If you
do not specify REUSE and SHRLEVEL NONE, DB2 deletes and redefines
DB2-managed data sets to reset them.

If a data set has multiple extents and you use the REUSE parameter, the
extents are not released.

If you specify SHRLEVEL REFERENCE or CHANGE with REUSE, REUSE
does not apply

CLONE
Indicates that REORG INDEX is to reorganize only the specified index spaces
and indexes that are defined on clone tables. This utility will only process
clone data if the CLONE keyword is specified. The use of CLONED YES on
the LISTDEF statement is not sufficient.

SHRLEVEL
Specifies the method for performing the reorganization. The parameter
following SHRLEVEL indicates the type of access that is to be allowed during
the RELOAD phase of REORG.

NONE
Specifies that reorganization is to operate by unloading from the area that
is being reorganized (while applications can read but cannot write to the
area), building into that area (while applications have no access), and then
allowing read-write access again.

If you specify NONE (explicitly or by default), you cannot specify the
following parameters:
v MAXRO
v LONGLOG
v DELAY
v DEADLINE
v DRAIN_WAIT
v RETRY
v RETRY_DELAY

REFERENCE
Specifies that reorganization is to operate as follows:
v Unload from the area that is being reorganized while applications can

read but cannot write to the area.
v Build into a shadow copy of that area while applications can read but

cannot write to the original copy.

Chapter 24. REORG INDEX 505

v Switch the future access of the applications from the original copy to the
shadow copy by exchanging the names of the data sets, and then
allowing read-write access again.

If you specify REFERENCE, you cannot specify the following parameters:
v UNLOAD (Reorganization with REFERENCE always performs

UNLOAD CONTINUE.)
v MAXRO
v LONGLOG
v DELAY

CHANGE
Specifies that reorganization is to operate as follows:
v Unload from the area that is being reorganized while applications can

read and write to the area.
v Build into a shadow copy of that area while applications can read and

write to the original copy.
v Apply the log of the original copy to the shadow copy while

applications can read and usually write to the original copy.
v Switch the future access of the applications from the original copy to the

shadow copy by exchanging the names of the data sets, and then
allowing read-write access again.

If you specify CHANGE, you cannot specify the UNLOAD parameter.
Reorganization with CHANGE always performs UNLOAD CONTINUE.

SHRLEVEL CHANGE cannot be specified if the table space has the NOT
LOGGED attribute.

DEADLINE
Specifies the deadline for the SWITCH phase to begin. If DB2 estimates that
the SWITCH phase does not begin by the deadline, DB2 issues the messages
that the DISPLAY UTILITY command issues and then terminates
reorganization.

The final result and all the timestamp calculation of DEADLINE will be in
TIMESTAMP(6).

NONE
Specifies that no deadline exists by which the switch phase of log
processing must begin.

timestamp
Specifies the deadline for the switch phase of log processing to begin. This
deadline must not have already occurred when REORG is executed.

labeled-duration-expression
Calculates the deadline for the switch phase of log processing to begin. The
calculation is based on either CURRENT TIMESTAMP or CURRENT
DATE. You can add or subtract one or more constant values to specify the
deadline. This deadline must not have already occurred when REORG is
executed. CURRENT TIMESTAMP and CURRENT DATE are evaluated
once, when the REORG statement is first processed. If a list of objects is
specified, the same value will be in effect for all objects in the list.

CURRENT_DATE
Specifies that the deadline is to be calculated based on the CURRENT
DATE.

506 Utility Guide and Reference

CURRENT_TIMESTAMP
Specifies that the deadline is to be calculated based on the CURRENT
TIMESTAMP.

WITH TIME ZONE
Specifies that the CURRENT TIMESTAMP is compared with the time
zone column. The timestamp precision of the special register
CURRENT TIMESTAMP should be the same as the column timestamp
precision. Otherwise the default timestamp precision is used. The time
zone of CURRENT TIMESTAMP is the value of special register
CURRENT TIMEZONE. The comparison is done by comparing the
UTC portion of the timestamp.

constant
Indicates a unit of time and is followed by one of the seven duration
keywords: YEARS, MONTHS, DAYS, HOURS, MINUTES, SECONDS,
or MICROSECONDS. The singular form of these words is also
acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
MICROSECOND.

If REORG SHRLEVEL REFERENCE or SHRLEVEL CHANGE terminates
because of a DEADLINE specification, DB2 issues message DSNU374I with
reason code 2 but does not set a restrictive status.

DRAIN_WAIT integer
Specifies the number of seconds that the utility waits when draining for SQL
statements (inserts, updates, deletes, and selects). The specified time is the
aggregate time for all partitions of the index that is to be reorganized. This
value overrides the values specified by IRLMRWT and UTIMOUT, for these
SQL statements only. For operations like commands, the IRLMRWT and
UTIMOUT values are used. Valid values for integer are from 0 to 1800. If the
keyword is omitted or if a value of 0 is specified, the utility uses the value of
the lock timeout system parameter IRLMRWT.

RETRY integer
Specifies the maximum number of retries that REORG is to attempt. Valid
values for integer are from 0 to 255.

Specifying RETRY can lead to increased processing costs and can result in
multiple or extended periods of read-only access.

The default value is the value of the UTIMOUT subsystem parameter.

RETRY_DELAY integer
Specifies the minimum duration, in seconds, between retries. Valid values
for integer are from 1 to 1800.

If you do not specify RETRY_DELAY, REORG INDEX uses the smaller of
the following two values:
v DRAIN_WAIT value × RETRY value
v DRAIN_WAIT value × 10

MAXRO integer
Specifies the maximum amount of time for the last iteration of log processing.
During that iteration, applications have read-only access.

The actual execution time of the last iteration might exceed the specified
MAXRO value.

The ALTER UTILITY command can change the value of MAXRO.

Chapter 24. REORG INDEX 507

The default value is the RETRY_DELAY default value.

integer
integer is the number of seconds. Specifying a small positive value reduces
the length of the period of read-only access, but it might increase the
elapsed time for REORG to complete. If you specify a huge positive value,
the second iteration of log processing is probably the last iteration.

The default value is 300 seconds.

DEFER
Specifies that the iterations of log processing with read-write access can
continue indefinitely. REORG never begins the final iteration with
read-only access, unless you change the MAXRO value by using the ALTER
UTILITY command.

If you specify DEFER, you should also specify LONGLOG CONTINUE.

If you specify DEFER, and DB2 determines that the actual time for an
iteration and the estimated time for the next iteration are both less than 5
seconds, DB2 adds a 5-second pause to the next iteration. This pause
reduces consumption of processor time. The first time this situation occurs
for a given execution of REORG, DB2 sends message DSNU362I to the
console. The message states that the number of log records that must be
processed is small and that the pause occurs. To change the MAXRO value
and thus cause REORG to finish, execute the ALTER UTILITY command.
DB2 adds the pause whenever the situation occurs; however, DB2 sends
the message only if 30 minutes have elapsed since the last message was
sent for a given execution of REORG.

DRAIN
Specifies drain behavior at the end of the log phase after the MAXRO
threshold is reached and when the last iteration of the log is to be applied.

WRITERS
Specifies that DB2 drains only the writers during the log phase after the
MAXRO threshold is reached and then issues DRAIN ALL on entering the
switch phase.

ALL
Specifies the current default action, in which DB2 is to drain all readers
and writers during the log phase, after the MAXRO threshold is reached.

Consider specifying DRAIN ALL if the following conditions are both true:
v SQL update activity is high during the log phase.
v The default behavior results in a large number of -911 SQL error

messages.

LONGLOG
Specifies the action that DB2 is to perform, after sending a message to the
console, if the number of records that the next iteration of log process is to
process is not sufficiently lower than the number that the previous iterations
processed. This situation means that REORG INDEX is not reading the
application log quickly enough to keep pace with the writing of the application
log.

CONTINUE
Specifies that until the time on the JOB statement expires, DB2 is to
continue performing reorganization, including iterations of log processing,
if the estimated time to perform an iteration exceeds the time that is
specified with MAXRO.

508 Utility Guide and Reference

|

A value of DEFER for MAXRO and a value of CONTINUE for LONGLOG
together mean that REORG INDEX is to continue allowing access to the
original copy of the area that is being reorganized and does not switch to
the shadow copy. The user can execute the ALTER UTILITY command with a
large value for MAXRO when the switching is wanted.

TERM
Specifies that DB2 is to terminate reorganization after the delay specified
by the DELAY parameter.

DRAIN
Specifies that DB2 is to drain the write claim class after the delay that is
specified by the DELAY parameter. This action forces the final iteration of
log processing to occur.

DELAY integer
Specifies the minimum interval between the time that REORG sends the
LONGLOG message to the console and the time REORG that performs the
action that is specified by the LONGLOG parameter.

integer is the number of seconds.

The default value is 1200.

TIMEOUT
Specifies the action that is to be taken if the REORG INDEX utility gets a
timeout condition while trying to drain objects in either the log or switch
phases.

TERM
Indicates that DB2 is to behave as follows if you specify the TERM option
and a time out condition occurs:
1. DB2 issues an implicit TERM UTILITY command, causing the utility to

end with a return code 8.
2. DB2 issues the DSNU590I and DSNU170I messages.
3. DB2 leaves the objects in a RW state.

ABEND
Indicates that if a timeout condition occurs, DB2 is to leave the objects in a
UTRO or UTUT state.

LOGRANGES
Specifies whether REORG is to use SYSLGRNX information for the LOG phase.

YES
REORG uses SYSLGRNX information for the LOG phase whenever
possible. This option is the default behavior.

NO REORG does not use SYSLGRNX information for the LOG phase. This
option can cause REORG to run much longer. In a data sharing
environment this option can result in the merging of all logs from all
members. This option is feasible when there is a known integrity issue
with SYSLGRNX entries and performance problems in accessing
SYSLGRNX for log read determination.

SWITCHTIME
Specifies the time for the final log iteration of the LOG phase to begin. The
final result and all of the time stamp calculations of SWITCHTIME are in
TIMESTAMP(6). This keyword can be specified with the MAXRO keyword. If
MAXRO DEFER is not specified, REORG enters the final log iteration of the
LOG phase before the specified SWITCHTIME value if the specified or

Chapter 24. REORG INDEX 509

|
|

|
|
|

||
|
|
|
|
|

|
|
|
|
|
|

defaulted MAXRO criteria is met. When MAXRO DEFER is specified, REORG
does not attempt to enterto the final log iteration until the specified
SWITCHTIME is met or affected by an external ALTER UTILITY command in
the changing of its MAXRO value.

NONE
Does not specify a time for the final log iteration of the LOG phase. This
option is the default behavior.

timestamp
Specifies the time that the final log iteration of the LOG phase is to begin.
This time must not have already occurred when REORG is run.

labeled-duration-expression
Calculates the time for the final log iteration of LOG phase is to begin. The
calculation is based on either CURRENT TIMESTAMP or CURRENT
DATE. You can add or subtract one or more constant values to specify the
switch time. This switch time must not have already occurred when
REORG is run. CURRENT TIMESTAMP and CURRENT DATE are
evaluated once, when the REORG statement is first processed. If a list of
objects is specified, the same value is in effect for all objects in the list.

CURRENT_DATE
Specifies that the deadline is to be calculated based on the CURRENT
DATE.

CURRENT_TIMESTAMP
Specifies that the deadline is to be calculated based on the CURRENT
TIMESTAMP.

WITH TIME ZONE
Specifies that the CURRENT TIMESTAMP is compared with the time
zone column. The time stamp precision of the special register
CURRENT TIMESTAMP should be the same as the column time stamp
precision. Otherwise, the default time stamp precision is used. The
time zone of CURRENT TIMESTAMP is the value of special register
CURRENT TIMEZONE. The comparison is done by comparing the
Coordinated Universal Time portion of the time stamp.

constant
Indicates a unit of time and is followed by one of the seven duration
keywords: YEARS, MONTHS, DAYS, HOURS, MINUTES, SECONDS,
or MICROSECONDS. The singular form of these words is also
acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
MICROSECOND.

NEWMAXRO
Specifies the maximum amount of time for the last log iteration after
SWITCHTIME is met. The SWITCHTIME keyword must also be specified. This
value overrides the existing MAXRO parameter that is specified. The default is
NONE.

NONE
Specifies that when the specified SWITCHTIME is met, REORG proceeds
to the last log iteration without taking log processing time in to
consideration. Specifying NONE results in REORG entering the last log
iteration almost immediately at or after the specified SWITCHTIME. This
option is the default.

integer
integer is the number of seconds. Specifying a small positive value reduces

510 Utility Guide and Reference

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

the length of the period of read-only access, but it might increase the
elapsed time for REORG to complete. Specifying a large positive value
probably ensures that REORG will enter the last log iteration almost
immediately at or after the specified SWITCHTIME.

FORCE
Specifies the action to be taken when the utility is draining the table space.

When REORG FORCE is canceling the threads, it performs a soft cancel similar
to the cancel that the CANCEL THREAD does.

NONE
Specifies that no action is taken when REORG performs drain. The REORG
utility waits for the claimers to commit. The utility will timeout or restart
when the drain fails, as determined by existing conditions.

READERS
Specifies that read claimers are canceled when REORG is requesting a
drain all on the last RETRY processing.

ALL
specifies that both read and write claimers are canceled when REORG is
requesting a drain all or drain writers on the last RETRY processing.

FASTSWITCH
Specifies which switch methodology is to be used for a reorganization.

When FASTSWITCH is specified with SHRLEVEL CHANGE or SHRLEVEL
REFERENCE, the UTILITY_OBJECT_CONVERSION subsystem parameter
setting NONE, BASIC, or EXTENDED is accepted.

YES
Enables the SWITCH phase to use the FASTSWITCH methodology. This
option is not allowed for the catalog (DSNDB06) or directory (DSNDB01).

NO Causes the SWITCH phase to use IDCAMS RENAME.

LEAFDISTLIMIT integer

The LEAFDISTLIMIT option is deprecated, and the alternative is running
DSNACCOX.Specifies that the value for integer is to be compared to the
LEAFDIST value for the specified partitions of the specified index in
SYSIBM.SYSINDEXPART. If any LEAFDIST value exceeds the specified
LEAFDISTLIMIT value, REORG is performed or, if you specify REPORTONLY,
recommended.

The default value is 200.

Because a node ID index , auxiliary index, hash index, or XML index has a
LEAFDIST value of -2, REORG is not performed for any of those indexes when
LEAFDISTLIMIT is specified.

REPORTONLY

The REPORTONLY option is deprecated, and the alternative is running
DSNACCOX.Specifies that REORG is only to be recommended, not performed.
REORG produces a report with one of the following return codes:
1 No limit met; no REORG performed or recommended.
2 REORG performed or recommended.

UNLOAD
Specifies whether the utility job is to continue processing or terminate after the
data is unloaded.

Chapter 24. REORG INDEX 511

|
|
|
|

|
|
|

|
|

|
|

CONTINUE
Specifies that, after the data has been unloaded, the utility is to continue
processing.

PAUSE

The UNLOAD PAUSE option has been deprecated. If you need to stop the
utility after the keys are unloaded, use DIAGNOSE in combination with
the REORG utility to stop the process (pause).Specifies that, after the data
has been unloaded, processing is to end. The utility stops and the
RELOAD status is stored in SYSIBM.SYSUTIL so that processing can be
restarted with RELOAD RESTART(PHASE).

This option is useful if you want to redefine data sets during
reorganization. For example, with a user-defined data set, you can:
v Run REORG with the UNLOAD PAUSE option.
v Redefine the data set using Access Method Services.
v Restart REORG by resubmitting the previous job and specifying

RESTART(PHASE).

If no records are unloaded during an UNLOAD PAUSE, when REORG is
restarted, the RELOAD and BUILD phases are bypassed.

You cannot use UNLOAD PAUSE if you specify the LIST option.

ONLY

The UNLOAD ONLY option has been deprecated. If you need to unload
the keys, use DIAGNOSE in combination with the REORG utility to stop
the process after the keys are unloaded, and TERM UTIL to terminate the
utility.Specifies that, after the data has been unloaded, the utility job ends
and the status in SYSIBM.SYSUTIL that corresponds to this utility ID is
removed.

STATISTICS
Specifies that statistics for the index are to be collected; the statistics are either
reported or stored in the DB2 catalog. You cannot collect inline statistics for
indexes on the catalog and directory tables.

Restrictions:

v If you specify STATISTICS for encrypted data, DB2 might not provide useful
information on this data.

v You cannot specify STATISTICS for clone objects.

If pending definition changes are materialized during REORG INDEX with
SHRLEVEL REFERENCE or SHRLEVEL CHANGE, index statistics are
collected and updated in the DB2 catalog by default.

If the STATISTICS keyword was not specified in the REORG INDEX with
SHRLEVEL REFERENCE or CHANGE statement when pending definition
changes are materialized, the following keywords are run by default:
STATISTICS UPDATE ALL HISTORY ALL. If you also specify the STATISTICS
keyword in the REORG INDEX with the SHRLEVEL REFERENCE or
SHRLEVEL CHANGE statement when pending definition changes are
materialized, the options specified overwrite the default options.

Recommendation: Some partition statistics can become obsolete due to the
materialization of pending definition changes. The partition statistics that can
become obsolete are COLGROUP statistics, statistics for key column values in

512 Utility Guide and Reference

|
|
|

|
|
|
|

indexes, HISTOGRAM statistics, frequency statistics with NUMCOLS > 1, and
statistics for extended indexes where applicable. Run the RUNSTATS utility to
collect the partition statistics again.

REPORT
Indicates whether a set of messages is to be generated to report the collected
statistics.

NO Indicates that the set of messages is not to be sent as output to SYSPRINT.

YES
Indicates that the set of messages is to be sent as output to SYSPRINT. The
generated messages are dependent on the combination of keywords (such
as TABLESPACE, INDEX, TABLE, and COLUMN) that are specified with
the RUNSTATS utility. However, these messages are not dependent on the
specification of the UPDATE option. REPORT YES always generates a
report of SPACE and ACCESSPATH statistics.

KEYCARD
The KEYCARD option is deprecated in the REORG INDEX control statement
and no longer needs to be specified to collect cardinality statistics on the
values in the key columns of an index.

When the STATISTICS option is specified, the REORG INDEX utility now
always collects all of the distinct values in all of the 1 to n key column
combinations for the indexes being rebuilt.n is the number of columns in the
index. With the deprecation of KEYCARD, this functionality cannot be
disabled.

The REORG INDEX utility tolerates the specification of the KEYCARD option.
The utility does not issue any messages if the control statement includes or
excludes the KEYCARD option when STATISTICS is specified.

FREQVAL
Specifies that frequent value statistics are to be collected. If you specify
FREQVAL, you must also specify NUMCOLS and COUNT.

NUMCOLS
Indicates the number of key columns to concatenate together when you
collect frequent values from the specified index. Specifying 3 means that
DB2 is to collect frequent values on the concatenation of the first three key
columns.

The default value is 1, which means DB2 is to collect frequent values on
the first key column of the index.

COUNT
Indicates the number of frequent values that are to be collected. Specifying
15 means that DB2 is to collect 15 frequent values from the specified key
columns.

The default value is 10.

HISTOGRAM
Indicates that histogram statistics are requested for the specified index.

NUMCOLS
The number of key columns that are to be concatenated when collecting
histogram statistics from the specified index.

Chapter 24. REORG INDEX 513

|
|

|
|
|

NUMQUANTILES
The integer values that follows NUMQUANTILES indicates the number
quantiles are requested. The integer value must be greater than or equal to
1.

Histogram statistics can be collected only on keys with the same order if the
specified key columns for histogram statistics are of mixed order, a DSNU633I
warning message is issued.

Related information:

Histogram statistics (DB2 Performance)
DSNU633I (DB2 Messages)

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically
allocated by the external sort program. For device-type, specify any disk device
that is valid on the DYNALLOC parameter of the SORT or OPTION options
for the sort program.

SORTNUM integer
Specifies the number of temporary data sets that are to be dynamically
allocated when collecting statistics for a data-partitioned secondary index. If
you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and omit
SORTNUM, no value is passed to the sort program; the sort program uses its
own default.

integer is the number of temporary data sets that can range from 2 to 255.

REORG INDEX does not sort index keys. Only one sort can be performed, and
that is if inline statistics are being collected for a DPSI.

Important: The SORTNUM keyword will not be considered if subsystem
parameter UTSORTAL is set to YES and IGNSORTN is set to YES.

UPDATE
Indicates whether the collected statistics are to be inserted into the catalog
tables. UPDATE also allows you to select statistics that are used for access path
selection or statistics that are used by database administrators.

ALL
Indicates that all collected statistics are to be updated in the catalog.

ACCESSPATH
Indicates that only the catalog table columns that provide statistics that are
used for access path selection are to be updated.

SPACE
Indicates that only the catalog table columns that provide statistics to help
the database administrator to assess the status of a particular table space or
index are to be updated.

NONE
Indicates that catalog tables are not to be updated with the collected
statistics. This option is valid only when REPORT YES is specified.

HISTORY
Indicates that all catalog table inserts or updates to the catalog history tables
are to be recorded.

The default is supplied by the specified value in STATISTICS HISTORY on
panel DSNTIP6.

514 Utility Guide and Reference

|
|
|
|

|
|
|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_histogramstatistics.htm#db2z_histogramstatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu633i.htm#dsnu633i

ALL
Indicates that all collected statistics are to be updated in the catalog history
tables.

ACCESSPATH
Indicates that only the catalog history table columns that provide statistics
used for access path selection are to be updated.

SPACE
Indicates that only space-related catalog statistics are to be updated in
catalog history tables.

NONE
Indicates that catalog history tables are not to be updated with the
collected statistics.

FORCEROLLUP
Specifies whether aggregation or rollup of statistics are to take place when
RUNSTATS is executed even when some parts are empty. This option enables
the optimizer to select the best access path.

YES
Indicates that forced aggregation or rollup processing is to be done, even
though some parts might not contain data.

NO Indicates that aggregation or rollup is to be done only if data is available
for all parts.

If data is not available for all parts and if the installation value for STATISTICS
ROLLUP on panel DSNTIP6 is set to NO, DSNU623I message is issued.

WORKDDN(ddname)
ddname specifies the DD statement for the unload data set.

ddname
Is the DD name of the temporary work file for build input.

The default value is SYSUT1.

The WORKDDN keyword specifies either a DD name or a TEMPLATE
name from a previous TEMPLATE control statement. If utility processing
detects that the specified name is both a DD name in the current job step
and a TEMPLATE name, the utility uses DD name.

Even though WORKDDN is an optional keyword, a DD statement for the
unload output data set is required in the JCL. If you do not specify
WORKDDN, or if you specify it without ddname, the JCL must have a DD
statement with the name SYSUT1. If ddname is given, you must provide a DD
statement or TEMPLATE that matches the DD name.

PREFORMAT
Specifies that the remaining pages are to be preformatted up to the
high-allocated RBA in the index space. The preformatting occurs after the
index is built.

PREFORMAT can operate on an entire index space, or on a partition of a
partitioned index space.

PREFORMAT is ignored if you specify UNLOAD ONLY.

FLASHCOPY
Specifies whether FlashCopy technology is used to create a copy of the object.

Chapter 24. REORG INDEX 515

Valid values are YES, NO, or CONSISTENT. When FlashCopy is used, a
separate data set is created for each partition or piece of the object.

The FlashCopy specifications on the utility control statement override any
specifications for FlashCopy that are defined by using the DB2 subsystem
parameters. If the FlashCopy subsystem parameters specify the use of
FlashCopy as the default behavior of this utility, the FLASHCOPY option can
be omitted from the utility control statement.

Important: If the input data set is less than one cylinder, FlashCopy
technology might not be used for copying the objects regardless of the
FLASHCOPY settings. The copy is performed by IDCAMS if FlashCopy is not
used.

NO Specifies that no FlashCopy is made. NO is the default value for
FLASHCOPY.

YES
Specifies that FlashCopy technology is used to copy the object.

Specify YES only if the DB2 data sets are on FlashCopy Version 2 disk
volumes.

Important: Under the following circumstances, the REORG INDEX utility
might not use FlashCopy even though YES is specified:
v FlashCopy Version 2 disk volumes are not available
v The source tracks are already the target of a FlashCopy operation
v The target tracks are the source of a FlashCopy operation
v The maximum number of relationships for the copy is exceeded

In the event that FlashCopy is not used, the REORG INDEX utility uses
traditional I/O methods to copy the object, which can result in longer than
expected execution time.

If SHRLEVEL REFERENCE or SHRLEVEL CHANGE is specified when the
copy operation is forced to use traditional I/O methods, an even longer
outage might occur, because the FlashCopy image copies are created
during the SWITCH phase of utility execution.

CONSISTENT
Specifies that FlashCopy technology is used to copy the object. Because the
copies created by the REORG INDEX utility are already consistent, the
utility treats a specification of CONSISTENT the same as a specification of
YES.

RBALRSN_CONVERSION
Specifies the RBA or LRSN format of the target object after the completion of
the REORG utility. If the keyword is not specified, the conversion specified in
the UTILITY_OBJECT_CONVERSION subsystem parameter is accepted.

NONE
Specifies that no conversion is performed.

The utility fails if RBALRSN_CONVERSION NONE is specified on a table
space that is in basic 6-byte format and the
UTILITY_OBJECT_CONVERSION subsystem parameter is set to
NOBASIC.

516 Utility Guide and Reference

|
|
|
|

|
|

|
|
|
|

BASIC
Specifies that if an object is found in extended 10-byte format, it is
converted to 6-byte basic format.

The utility fails if RBALRSN_CONVERSION BASIC is specified and the
UTILITY_OBJECT_CONVERSION subsystem parameter is set to
NOBASIC.

EXTENDED
Specifies that if an object is found in basic 6-byte format, it is converted to
10-byte extended format.

If a CLONE relationship exists, the page set conversion cannot be performed.
For clone relationships, you must drop the clone table, convert the base table
to extended 10-byte format, and then re-create the clone table.

FCCOPYDDN
Specifies the template to be used to create the FlashCopy image copy data set
names. If a value is not specified for FCCOPYDDN on the REORG INDEX
control statement when FlashCopy is used, the value specified on the
FCCOPYDDN subsystem parameter determines the template to be used.

(template-name)
The data set names for the FlashCopy image copy are allocated according
to the template specification. For table space or index space level
FlashCopy image copies, because a data set is allocated for each partition
or piece, ensure that the data set naming convention in the template
specification is unique enough. Use the &DSNUM variable, which resolves
to a partition number or piece number at execution time.

Related concepts:
“Improving performance with LOAD or REORG PREFORMAT” on page 317
Related reference:
Chapter 31, “TEMPLATE,” on page 775
Chapter 15, “LISTDEF,” on page 207

DB2 Sort
Related information:

DFSORT Application Programming Guide

Before running REORG INDEX
Certain activities might be required before you run the REORG INDEX utility,
depending on your situation.

Region size

The recommended minimum region size is 4096 KB.

Restart-pending status and SHRLEVEL CHANGE

If you specify SHRLEVEL CHANGE, REORG drains the write claim class near the
end of REORG processing. In a data sharing environment, if a data sharing
member fails and that member has restart-pending status for a target page set, the
drain can fail. You must postpone running REORG with SHRLEVEL CHANGE
until all restart-pending statuses have been removed. You can use the DISPLAY
GROUP command to determine whether a member's status is FAILED. You can use

Chapter 24. REORG INDEX 517

|
|
|

|
|
|

|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

the DISPLAY DATABASE command with the LOCKS option to determine if locks
are held.

Data sharing considerations for REORG

You must not execute REORG on an object if another DB2 subsystem holds
retained locks on the object or has long-running noncommitting applications that
use the object. You can use the DISPLAY GROUP command to determine whether
a member's status is "FAILED." You can use the DISPLAY DATABASE command
with the LOCKS option to determine if locks are held.

Fallback recovery considerations

Successful REORG INDEX processing inserts a SYSCOPY row with ICTYPE='W'
for an index that was defined with COPY YES. REORG also places a reorganized
index in informational COPY-pending status. You should take a full image copy of
the index after the REORG job completes to create a valid point of recovery.

RECOVER-pending and REBUILD-pending status

You cannot reorganize an index if any partition of the index is in the
RECOVER-pending status or in the REBUILD-pending status. Similarly, you cannot
reorganize a single index partition if it is in the RECOVER-pending status or in the
REBUILD-pending status.

The RECOVER-pending restrictive state is:

RECP The index space or partition is in a RECOVER-pending status. A single
logical partition in RECP does not restrict access to other logical partitions
that are not in RECP. You can reset RECP by recovering only the single
logical partition.

The REBUILD-pending restrictive states are:

RBDP REBUILD-pending status is set on a physical or logical index partition. The
individual physical or logical partition is inaccessible; you must rebuild the
object using the REBUILD INDEX utility.

PSRBD
Page set REBUILD-pending (PSRBD) is set for nonpartitioning indexes. The
entire index space is inaccessible; you must rebuild the object by using the
REBUILD INDEX utility.

RBDP*
A REBUILD-pending status is set only on logical partitions of
nonpartitioning indexes. The entire index is inaccessible, but it is made
available again when you rebuild the affected partitions by using the
REBUILD INDEX utility.

CHECK-pending status

You cannot reorganize an index when the data is in the CHECK-pending status.

Running REORG INDEX when the index has a VARBINARY
column

If you run REORG INDEX against an index with the following characteristics,
REORG INDEX fails:

518 Utility Guide and Reference

v The index was created on a VARBINARY column or a column with a distinct
type that is based on a VARBINARY data type.

v The index column has the DESC attribute.

To fix the problem, alter the column data type to BINARY, and then rebuild the
index.
Related reference:
“RECOVER-pending status” on page 1089
“REBUILD-pending status” on page 1088
Chapter 8, “CHECK DATA,” on page 65
Related information:

Data sets that REORG INDEX uses
The REORG INDEX utility uses a number of data sets during its operation.

The following table lists the data sets that REORG uses. The table lists the DD
name that is used to identify the data set, a description of the data set, and an
indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 67. Data sets that REORG INDEX uses

Data set Description Required?

SYSIN Input data set that contain the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

STPRIN01 A data set that contains messages from the
sort program (usually, SYSOUT or
DUMMY). This data set is used when
statistics are collected on at least one
data-partitioned secondary index.

No1

Work data set A temporary data set for unload output and
build input. Specify the DD or template
name with the WORKDDN option of the
utility control statement. The default DD
name is SYSUT1.

Yes

Sort work data sets Temporary data sets for sort input and
output when collecting inline statistics on at
least one data-partitioned secondary index.
The DD names have the form ST01WKnn.

No2,3,4

UTPRINT A data set that contains messages from the
sort program (usually, SYSOUT or
DUMMY).

Yes

FlashCopy image copy data
sets

For copies of the entire index space, a
separate VSAM data set for each partition or
piece that is contained in the index space.
For partition-level or piece-level copies, a
VSAM data set for each partition or piece
that is being copied.

No5

Chapter 24. REORG INDEX 519

Table 67. Data sets that REORG INDEX uses (continued)

Data set Description Required?

Note:
1. STPRIN01 is required if statistics are being collected on at least one data-partitioned

secondary index, but REORG INDEX dynamically allocates the STPRIN01 data set if
UTPRINT is allocated to SYSOUT.

2. Required when collecting inline statistics on at least one data-partitioned secondary
index.

3. If the DYNALLOC parm of the SORT program is not turned on, you need to allocate the
data set. Otherwise, the sort program dynamically allocates the temporary data set.

4. It is recommended that you use dynamic allocation by specifying SORTDEVT in the
utility statement because dynamic allocation reduces the maintenance required of the
utility job JCL.

5. Required if you specify the FLASHCOPY YES

The following objects are named in the utility control statement and do not require
DD statements in the JCL:

Index Object to be reorganized.

Calculating the size of the work data sets

When reorganizing an index space, you need a non-DB2 sequential work data set.
That data set is identified by the DD statement that is named in the WORKDDN
option. During the UNLOAD phase, the index keys and the data pointers are
unloaded to the work data set. This data set is used to build the index. It is
required only during the execution of REORG.

Use the following formula to calculate the approximate size (in bytes) of the
WORKDDN data set SYSUT1:
size = number of keys x (key length + 8)

Calculating the size of the sort work data sets

To calculate the approximate size (in bytes) of the ST01WKnn data set, use the
following formula:

2 ×(maximum record length × numcols × (count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length
Maximum record length of the SYSCOLDISTSTATS record that is processed
when collecting frequency statistics (You can obtain this value from the
RECLENGTH column in SYSTABLES.)

numcols
Number of key columns to concatenate when you collect frequent values
from the specified index.

count Number of frequent values that DB2 is to collect.

Sort work data sets cannot span volumes. Smaller volumes require more sort work
data sets to sort the same amount of data; therefore, large volume sizes can reduce
the number of needed sort work data sets. When you allocate sort work data sets
on disk, the recommended amount of space to allow provides at least 1.2 times the
amount of data that is to be sorted.

520 Utility Guide and Reference

Changing data set definitions

If the index space is defined by storage groups, space allocation is handled by DB2
and data set definitions cannot be altered during the reorganization process. DB2
deletes and redefines the necessary data sets to reorganize the object.

For REORG with SHRLEVEL REFERENCE or CHANGE, you can use the ALTER
STOGROUP command to change the characteristics of a DB2-managed data set.
You can effectively change the characteristics of a user-managed data set by
specifying the new characteristics when creating the shadow data set. In particular,
placing the original and shadow data sets on different disk volumes might reduce
contention and thus improve the performance of REORG and the performance of
applications during REORG execution.
Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

Shadow data sets
When you execute the REORG INDEX utility with SHRLEVEL REFERENCE or
SHRLEVEL CHANGE, the utility uses shadow data sets.

For user-managed data sets, you must preallocate the shadow data sets before you
execute REORG INDEX with SHRLEVEL REFERENCE or SHRLEVEL CHANGE. If
an index or partitioned index resides in DB2-managed data sets and shadow data
sets do not already exist when you execute REORG INDEX, DB2 creates the
shadow data sets. At the end of REORG processing, the DB2-managed shadow
data sets are deleted. You can create the shadows ahead of time for DB2-managed
data sets.

Shadow data set names

Each shadow data set must have the following name:

catname.DSNDBx.dbname.psname.y000z.Lnnn

In the preceding name, the variables have the following meanings:

variable
meaning

catname
The VSAM catalog name or alias

x C or D

dbname
Database name

psname
Table space name or index name

y I or J

z 1 or 2

Lnnn Partition identifier. Use one of the following values:
v A001 through A999 for partitions 1 through 999

Chapter 24. REORG INDEX 521

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

v B000 through B999 for partitions 1000 through 1999
v C000 through C999 for partitions 2000 through 2999
v D000 through D999 for partitions 3000 through 3999
v E000 through E996 for partitions 4000 through 4096

To determine the names of existing data sets, execute one of the following
queries against the SYSTABLEPART or SYSINDEXPART catalog tables:
SELECT DBNAME, TSNAME, IPREFIX

FROM SYSIBM.SYSTABLEPART
WHERE DBNAME = ’dbname’
AND TSNAME = ’psname’;

SELECT DBNAME, IXNAME, IPREFIX
FROM SYSIBM.SYSINDEXES X, SYSIBM.SYSINDEXPART Y
WHERE X.NAME = Y.IXNAME
AND X.CREATOR = Y.IXCREATOR
AND X.DBNAME = ’dbname’
AND X.INDEXSPACE = ’psname’;

Defining shadow data sets

Consider the following actions when you preallocate the data sets:
v Allocate the shadow data sets according to the rules for user-managed data sets.
v Define the shadow data sets as LINEAR.
v Use SHAREOPTIONS(3,3).
v Define the shadow data sets as EA-enabled if the original table space or index

space is EA-enabled.
v Allocate the shadow data sets on the volumes that are defined in the storage

group for the original table space or index space.

If you specify a secondary space quantity, DB2 does not use it. Instead, DB2 uses
the SECQTY value for the table space or index space.

Recommendation: Use the MODEL option, which causes the new shadow data set
to be created like the original data set. This method is shown in the following
example:
DEFINE CLUSTER +

(NAME(’catname.DSNDBC.dbname.psname.x0001.L001’) +
MODEL(’catname.DSNDBC.dbname.psname.y0001.L001’)) +
DATA +
(NAME(’catname.DSNDBD.dbname.psname.x0001.L001’) +
MODEL(’catname.DSNDBD.dbname.psname.y0001.L001’))

Creating shadow data sets for indexes

DB2 treats preallocated shadow data sets as DB2-managed data sets.

When you preallocate shadow data sets for indexes, create the data sets as follows:
v Create shadow data sets for the partition of the table space and the

corresponding partition in each partitioning index and data-partitioned
secondary index.

v Create a shadow data set for logical partitions of nonpartitioned secondary
indexes.

522 Utility Guide and Reference

Use the same naming scheme for these index data sets as you use for other data
sets that are associated with the base index, except use J0001 instead of I0001.

Estimating the size of shadow data sets

If you do not change the value of FREEPAGE or PCTFREE, the amount of space
that is required for a shadow data set is approximately comparable to the amount
of space that is required for the original data set.

Concurrency and compatibility for REORG INDEX
The REORG INDEX utility has certain concurrency and compatibility
characteristics associated with it.

DB2 treats individual index partitions as distinct target objects. Utilities that
operate on different partitions of the same index space are compatible.

Claims

The following table shows which claim classes REORG INDEX drains and any
restrictive state the utility sets on the target object. The target is an index or index
partition.

Table 68. Claim classes of REORG INDEX operations

Phase
REORG INDEX
SHRLEVEL NONE

REORG INDEX
SHRLEVEL
REFERENCE

REORG INDEX
SHRLEVEL CHANGE

UNLOAD DW/UTRO DW/UTRO CR/UTRW

BUILD DA/UTUT none none

Last iteration of
LOG

n/a DA/UTUT1 DW/UTRO

SWITCH n/a DA/UTUT DA/UTUT

Legend:
v CR: Claim the read claim class.
v DA: Drain all claim classes, no concurrent SQL access.
v DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers.
v DW: Drain the write claim class, concurrent access for SQL readers.
v UTRO: Utility restrictive state, read only access allowed.
v UTUT: Utility restrictive state, exclusive control.
v none: Any claim, drain, or restrictive state for this object does not change in this phase.

Note:

1. Applicable if you specified DRAIN ALL.

Compatibility

The following table shows which utilities can run concurrently with REORG
INDEX on the same target object. The target object can be an index space or a
partition. If compatibility depends on particular options of a utility, that is also
shown. REORG INDEX does not set a utility restrictive state if the target object is
an index on DSNDB01.SYSUTILX.

Chapter 24. REORG INDEX 523

Table 69. Compatibility of REORG INDEX with other utilities

Action
REORG INDEX SHRLEVEL
NONE, REFERENCE, or CHANGE

CHECK DATA No

CHECK INDEX No

CHECK LOB Yes

COPY INDEXSPACE No

COPY TABLESPACE Yes

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

MODIFY Yes

QUIESCE No

REBUILD INDEX No

RECOVER INDEX No

RECOVER INDEXSPACE No

RECOVER TABLESPACE (with no options) Yes

RECOVER TABLESPACE ERROR RANGE Yes

RECOVER TABLESPACE TOCOPY or TORBA No

REORG INDEX SHRLEVEL NONE, REFERENCE, or
CHANGE

No

REORG TABLESPACE SHRLEVEL NONE UNLOAD
CONTINUE or PAUSE, REORG SHRLEVEL
REFERENCE, or REORG SHRLEVEL CHANGE

No

REORG TABLESPACE SHRLEVEL NONE UNLOAD
ONLY or EXTERNAL with cluster index

No

REORG TABLESPACE SHRLEVEL NONE UNLOAD
ONLY or EXTERNAL without cluster index

Yes

REPAIR LOCATE INDEX PAGE REPLACE No

REPAIR LOCATE KEY No

REPAIR LOCATE RID DELETE No

REPAIR LOCATE RID DUMP, VERIFY, or REPLACE Yes

REPAIR LOCATE TABLESPACE PAGE REPLACE Yes

REPORT Yes

RUNSTATS INDEX No

RUNSTATS TABLESPACE Yes

STOSPACE Yes

UNLOAD Yes

To run on SYSIBM.DSNLUX01 or SYSIBM.DSNLUX02, REORG INDEX must be the
only utility in the job step and the only utility that is running in the DB2
subsystem.

524 Utility Guide and Reference

Determining which indexes require reorganization
Reorganizing indexes might improve performance. To determine which indexes to
reorganize to potentially gain such a performance improvement, you can analyze
certain data in the DB2 catalog. You can then reorganize these indexes by using the
REORG INDEX utility.

Procedure

To determine which indexes require reorganization:
1. Issue the following SQL statement to identify user-created indexes and DB2

catalog indexes to consider reorganizing with the REORG INDEX utility:
PSPI

EXEC SQL
SELECT IXNAME, IXCREATOR
FROM SYSIBM.SYSINDEXPART
WHERE LEAFDIST > 200
ENDEXEC

PSPI

Using a LEAFDIST value of more than 200 as an indicator of a disorganized
index is merely a rough guideline for general cases. This guidance is not
absolute. In some cases, 200 is an acceptable value for LEAFDIST. For example,
with FREEPAGE 0 and index page splitting, the LEAFDIST value can climb
sharply. In this case, a LEAFDIST value that exceeds 200 can be acceptable.

2. Issue the following SQL statement to determine the average distance
(multiplied by 100) between successive leaf pages during sequential access of

the index. PSPI

EXEC SQL
SELECT LEAFDIST
FROM SYSIBM.SYSINDEXPART
WHERE IXCREATOR = ’index_creator_name’
AND IXNAME = ’index_name’
ENDEXEC

PSPI

An increase in the LEAFDIST value over time probably indicates that the index
needs to be reorganized. The optimal value of the LEAFDIST catalog column is
zero. However, immediately after you run the REORG and RUNSTATS utilities,
LEAFDIST might be greater than zero as a result of empty pages for
FREEPAGE and non-leaf pages.

Using the LEAFDISTLIMIT and REPORTONLY options to determine
when reorganization is needed

You can determine when to run REORG for indexes by using the LEAFDISTLIMIT
and REPORTONLY options.

About this task

Procedure

To determine when reorganization is needed:

Chapter 24. REORG INDEX 525

1. Run the REORG INDEX utility and specify the LEAFDISTLIMIT option and the
REPORTONLY option. REORG produces a report with one of the following
return codes; but a REORG is not performed.
1 No limit met; no REORG performed or recommended.
2 REORG performed or recommended.

2. Optional: Alternatively, information from the SYSINDEXPART catalog table can
tell you which indexes qualify for reorganization.

Related tasks:

Maintaining data organization (DB2 Performance)

Determining when to reorganize indexes (DB2 Performance)
Related reference:

SYSIBM.SYSINDEXPART table (DB2 SQL)

Access with REORG INDEX SHRLEVEL
You can specify the level of access that you have to your data by using the
SHRLEVEL option.

For reorganizing an index or a partition of an index, the SHRLEVEL option lets
you choose the level of access that you have to your data during reorganization:
v REORG with SHRLEVEL NONE, the default, reloads the reorganized data into

the original area that is being reorganized. Applications have read-only access
during unloading and no access during reloading. SHRLEVEL NONE is the only
access level that resets REORG-pending status.

v REORG with SHRLEVEL REFERENCE reloads the reorganized data into a new
(shadow) copy of the area that is being reorganized. Near the end of
reorganization, DB2 switches applications' future access from the original to the
shadow copy. For SHRLEVEL REFERENCE, applications have read-only access
during unloading and reloading, and a brief period of no access during
switching.

v REORG with SHRLEVEL CHANGE reloads the reorganized data into a shadow
copy of the area that is being reorganized. Applications can read from and write
to the original area, and DB2 records the writing in the log. DB2 then reads the
log and applies it to the shadow copy to bring the shadow copy up to date. This
step executes iteratively, with each iteration processing a sequence of log records.
Near the end of reorganization, DB2 switches applications' future access from
the original to the shadow copy. Applications have read-write access during
unloading and reloading, a brief period of read-only access during the last
iteration of log processing, and a brief period of no access during switching.

Log processing with SHRLEVEL CHANGE

When you specify SHRLEVEL CHANGE, DB2 processes the log to update the
shadow copy. This step executes iteratively. The first iteration processes the log
records that accumulated during the previous iteration. The iterations continue
until one of these conditions is met:
v DB2 estimates that the time to perform the log processing in the next iteration

will be less than or equal to the time that is specified by MAXRO. If this
condition is met, the next iteration is the last.

v DB2 estimates that the switch phase will not start by the deadline specified by
DEADLINE. If this condition is met, DB2 terminates reorganization.

526 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reorgindextablespaces.htm#db2z_reorgindextablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reorgindexes.htm#db2z_reorgindexes
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysindexparttable.htm#db2z_sysibmsysindexparttable

v The number of log records that the next iteration will process is not sufficiently
lower than the number of log records that were processed in the previous
iteration. If this condition is met but the first two conditions are not, DB2 sends
message DSNU377I to the console. DB2 continues log processing for the length
of time that is specified by DELAY and then performs the action specified by
LONGLOG.

Operator actions

LONGLOG specifies the action that DB2 is to perform if log processing is not
occurring quickly enough. If the operator does not respond to the console message
DSNU377I, the LONGLOG option automatically goes into effect. You can take one
of the following actions:
v Execute the START DATABASE(db) SPACENAM(ts)... ACCESS(RO) command

and the QUIESCE utility to drain the write claim class. DB2 performs the last
iteration, if MAXRO is not DEFER. After the QUIESCE, you should also execute
the ALTER UTILITY command, even if you do not change any REORG
parameters.

v Execute the START DATABASE(db) SPACENAM(ts)... ACCESS(RO) command
and the QUIESCE utility to drain the write claim class. Then, after
reorganization has made some progress, execute the START DATABASE(db)
SPACENAM(ts)... ACCESS(RW) command. This action increases the likelihood
that log processing can improve. After the QUIESCE, you should also execute
the ALTER UTILITY command, even if you do not change any REORG
parameters.

v Execute the ALTER UTILITY command to change the value of MAXRO. Changing
it to a huge positive value, such as 9999999, causes the next iteration to be the
last iteration.

v Execute the ALTER UTILITY command to change the value of LONGLOG.
v Execute the TERM UTILITY command to terminate reorganization.
v Adjust the amount of buffer space that is allocated to reorganization and to

applications. This adjustment can increase the likelihood that log processing
improve after adjusting the space, you should also execute the ALTER UTILITY
command, even if you do not change any REORG parameters.

v Adjust the scheduling priorities of reorganization and applications. This
adjustment can increase the likelihood that log processing improve. After
adjusting the priorities, you should also execute the ALTER UTILITY command,
even if you do not change any REORG parameters.

DB2 does not take the action specified in the LONGLOG phrase if any one of these
events occurs before the delay expires:
v An ALTER UTILITY command is issued.
v A TERM UTILITY command is issued.
v DB2 estimates that the time to perform the next iteration is likely to be less than

or equal to the time specified on the MAXRO keyword.
v REORG terminates for any reason (including the deadline).

When REORG INDEX is used with SHRLEVEL REFERENCE or SHRLEVEL
CHANGE, pending definition changes are materialized for pending alterations on
the index. Pending changes are not materialized for pending alterations on the
table space. If pending alterations are involved only on the index, advisory-REORG
pending status (AREOR) is reset from the index. If REORG INDEX with

Chapter 24. REORG INDEX 527

SHRLEVEL REFERENCE or SHRLEVEL CHANGE is run at the partition level,
pending definition changes are not materialized.

REORG INDEX with SHRLEVEL NONE proceeds without materializing pending
definition changes if there were any on the index being reorganized.

Index statistics are collected and updated in the DB2 catalog when pending
definition changes are materialized during REORG INDEX with SHRLEVEL
REFERENCE or SHRLEVEL CHANGE.

Creating a FlashCopy image copy with REORG INDEX
As part of REORG INDEX processing, you can use FlashCopy technology to
quickly take image copies of the target objects.

About this task

Restriction: You cannot create FlashCopy image copies of indexes that are defined
with the COPY NO attribute.

Procedure

To create a FlashCopy image copy with REORG INDEX:

Specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT) in the REORG INDEX
utility control statement. Alternatively, you can set the
FLASHCOPY_REORG_INDEX subsystem parameter to YES, which specifies that
REORG INDEX is to use FLASHCOPY(YES) by default. The value that you specify
for the FLASHCOPY option in the REORG INDEX statement always overrides the
value for the FLASHCOPY_REORG_INDEX subsystem parameter.
Optionally, you can also specify FCCOPYDDN in the REORG INDEX statement.
Use this option to specify a template for the FlashCopy image copy. If you do not
specify the FCCOPYDDN option in the REORG INDEX statement, the utility uses
the value from the FCCOPYDDN subsystem parameter.

Restriction: The data sets that you specify for the FlashCopy image copy must be
on FlashCopy Version 2 disk volumes.
When you specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT), REORG
INDEX uses FlashCopy technology to create a consistent copy of the target objects.
The FlashCopy image copy fails if the FlashCopy Version 2 disk volumes are not
available or if any of the other FlashCopy operational restrictions exist. For a list of
those operational restrictions, see “FlashCopy image copies” on page 149.
Related concepts:
“FlashCopy image copies” on page 149
Related reference:

DEFAULT TEMPLATE field (FCCOPYDDN subsystem parameter) (DB2
Installation and Migration)

REORG INDEX field (FLASHCOPY_REORG_INDEX subsystem parameter)
(DB2 Installation and Migration)

Temporarily interrupting REORG
You can temporarily pause REORG.

528 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_fccopyddn.htm#db2z_ipf_fccopyddn
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_fccopyddn.htm#db2z_ipf_fccopyddn
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_flashcopyreorgindex.htm#db2z_ipf_flashcopyreorgindex
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_flashcopyreorgindex.htm#db2z_ipf_flashcopyreorgindex

If you specify UNLOAD PAUSE, REORG pauses after unloading the index space
into the work data set. The job completes with return code 4. You can restart
REORG by using the phase restart or current restart. The REORG statement must
not be altered.

The SYSIBM.SYSUTIL record for the REORG INDEX utility remains in "stopped"
status until REORG is restarted or terminated.

While REORG is interrupted by PAUSE, you can re-define the table space
attributes for user defined table spaces. PAUSE is not required for
STOGROUP-defined table spaces. Attribute changes are done automatically by a
REORG following an ALTER INDEX.

Improving performance with REORG INDEX
You can improve the performance of the REORG INDEX utility by taking certain
actions.

About this task

Recommendation: Run online REORG during light periods of activity on the table
space or index.

Procedure

To improve REORG performance:
v Run REORG concurrently on separate partitions of a partitioned index space.

The processor time for running REORG INDEX on partitions of a partitioned
index is approximately the same as the time for running a single REORG index
job. The elapsed time is a fraction of the time for running a single REORG job
on the entire index.

v Schedule REORG with SHRLEVEL CHANGE when the rate of writing is low
and transactions are short. Avoid scheduling REORG with SHRLEVEL CHANGE
when low-tolerance applications are executing.

v Run REORG with DRAIN_WAIT.
The DRAIN_WAIT option provides improved control over the time online
REORG waits for drains. Also, because the DRAIN_WAIT is the aggregate time
that online REORG is to wait to perform a drain on a table space and associated
indexes, the length of drains is more predictable than it is when each partition
and index has its own individual waiting-time limit.
By specifying a short delay time (less than the system timeout value,
IRLMRWT), you can reduce the impact on applications by reducing timeouts.
You can use the RETRY option to provide opportunities for the online REORG
INDEX utility to complete successfully. If you do not want to use RETRY
processing, you can still use DRAIN_WAIT to set a specific and more consistent
limit on the length of drains.
RETRY allows an online REORG that is unable to drain the objects it requires to
try again after a set period (RETRY_DELAY). If the drain fails in the SWITCH
phase, the objects remain in their original state (read-only mode for SHRLEVEL
REFERENCE or read-write mode for SHRLEVEL CHANGE). Likewise, objects
will remain in their original state if the drain fails in the LOG phase.
Because application SQL statements can queue behind any unsuccessful drain
that the online REORG has tried, define a reasonable delay before you try again
to allow this work to complete; the default is 5 minutes.

Chapter 24. REORG INDEX 529

When the default DRAIN WRITERS is used with SHRLEVEL CHANGE and
RETRY, multiple read-only log iterations can occur. Because online REORG can
have to do more work when RETRY is specified, multiple or extended periods of
restricted access might occur. Applications that run with REORG must perform
frequent commits. During the interval between retries, the utility is still active;
consequently, other utility activity against the table space and indexes is
restricted.

Termination of REORG INDEX
You can terminate the REORG INDEX utility.

If you terminate REORG with the TERM UTILITY command during the UNLOAD
phase, objects have not yet been changed, and you can rerun the job.

If you terminate REORG with the TERM UTILITY command during the build phase,
the behavior depends on the SHRLEVEL option:
v For SHRLEVEL NONE, the index is left in RECOVER-pending status. After you

recover the index, rerun the REORG job.
v For SHRLEVEL REFERENCE or CHANGE, the index keys are reloaded into a

shadow index, so the original index has not been affected by REORG. You can
rerun the job.

If you terminate REORG with the TERM UTILITY command during the log phase,
the index keys are reloaded into a shadow index, so the original index has not
been affected by REORG. You can rerun the job.

If you terminate REORG with the TERM UTILITY command during the switch
phase, all data sets that were renamed to their shadow counterparts are renamed
back, so the objects are left in their original state. You can rerun the job. If a
problem occurs in renaming to the original data sets, the objects are left in
RECOVER-pending status. You must recover the index.

The REORG-pending status is not reset until the UTILTERM execution phase. If the
REORG INDEX utility abnormally terminates or is terminated, the objects are left
in RECOVER-pending status.

The following table lists any restrictive states that are set based on the phase in
which REORG INDEX terminated.

Table 70. Restrictive states set based on the phase in which REORG INDEX terminated

Phase Effect on restrictive status

UNLOAD No effect.

BUILD Sets REBUILD-pending (RBDP) status at the beginning of the build
phase, and resets RBDP at the end of the phase. SHRLEVEL NONE
places an index that was defined with the COPY YES attribute in
RECOVER pending (RECP) status.

LOG No effect.

530 Utility Guide and Reference

Table 70. Restrictive states set based on the phase in which REORG INDEX
terminated (continued)

Phase Effect on restrictive status

SWITCH Under certain conditions, if TERM UTILITY is issued, it must complete
successfully; otherwise, objects might be placed in RECP status or RBDP
status. For SHRLEVEL REFERENCE or CHANGE, sets the RECP status
if the index was defined with the COPY YES attribute at the beginning
of the switch phase, and resets RECP at the end of the phase. If the
index was defined with COPY NO, this phase sets the index in RBDP
status at the beginning of the phase, and resets RBDP at the end of the
phase.

Related reference:
Appendix C, “Advisory or restrictive states,” on page 1083

Restart of REORG INDEX
You can restart a REORG INDEX utility job.

If you restart REORG in the outlined phase, it re-executes from the beginning of
the phase. DB2 always uses RESTART(PHASE) by default unless you restart the
job in the UNLOAD phase. In this case, DB2 uses RESTART(CURRENT) by
default.

If REORG abnormally terminates or a system failure occurs while it is in the
UTILTERM phase, you must restart the job with RESTART(PHASE).

The following table provides information about restarting REORG INDEX. For
each phase of REORG and for each type of REORG INDEX (with SHRLEVEL
NONE, with SHRLEVEL REFERENCE, and with SHRLEVEL CHANGE), the table
indicates the types of restart that are allowed (CURRENT and PHASE). None
indicates that no restart is allowed. The "Data sets required" column lists the data
sets that must exist to perform the specified type of restart in the specified phase.

Table 71. REORG INDEX utility restart information

Phase

Type of restart
allowed for
SHRLEVEL NONE

Type of restart
allowed for
SHRLEVEL
REFERENCE

Type of restart
allowed for
SHRLEVEL
CHANGE Data sets required Notes

UNLOAD CURRENT, PHASE CURRENT, PHASE None SYSUT1

BUILD CURRENT, PHASE CURRENT, PHASE None SYSUT1 1

LOG Phase does not occur Phase does not
occur

None None

SWITCH Phase does not occur CURRENT, PHASE CURRENT, PHASE originals and shadows 1

Note:

1. You can restart the utility with either RESTART or RESTART(PHASE). However, because this phase does not take
checkpoints, RESTART always re-executes from the beginning of the phase.

If you restart a REORG STATISTICS job that was stopped in the BUILD phase by
using RESTART CURRENT, inline statistics collection does not occur. To update
catalog statistics, run the RUNSTATS utility after the restarted job completes.
Restarting a REORG STATISTICS job with RESTART(PHASE) is conditional after
executing UNLOAD PAUSE. To determine if catalog table statistics are to be

Chapter 24. REORG INDEX 531

updated when you restart a REORG STATISTICS job, see the following table. This
table lists whether or not statistics are updated based on the execution phase and
whether the job is restarted with RESTART(CURRENT) or RESTART(PHASE).

Table 72. Whether statistics are updated when REORG INDEX STATISTICS jobs are restarted in certain phases

Phase RESTART CURRENT RESTART PHASE

UTILINIT No Yes

UNLOAD No Yes

BUILD No Yes

Related concepts:
“Restart of an online utility” on page 39
Related tasks:
“Restarting after the output data set is full” on page 43

Review of REORG INDEX output
The output from REORG INDEX consists of a reorganized index or index partition.

The following table summarizes the results of REORG INDEX based upon what
you specified.

Table 73. Summary of the results of REORG INDEX

Specification Results

REORG INDEX Entire index (all partitions of a partitioned index)

REORG INDEX PART n Part n of partitioned index

When reorganizing an index, REORG leaves free pages and free space on each
page in accordance with the current values of the FREEPAGE and PCTFREE
parameters. (You can set those values by using the CREATE INDEX or ALTER
INDEX statement.) REORG leaves one free page after reaching the FREEPAGE
limit for each table in the index space.

Catalog updates: REORG INDEX updates SYSINDEXPART OLDEST_VERSION
and SYSINDEXES OLDEST_VERSION (if applicable).

Effect of REORG INDEX on index version numbers
DB2 stores the range of used index version numbers in the OLDEST_VERSION
and CURRENT_VERSION columns of the SYSIBM.SYSINDEXES and
SYSIBM.SYSINDEXPART catalog tables.

The OLDEST_VERSION column contains the oldest used version number, and the
CURRENT_VERSION column contains the current version number.

When you run REORG INDEX, the utility updates this range of used version
numbers for indexes that are defined with the COPY NO attribute. REORG INDEX
sets the OLDEST_VERSION column to the current version number, which indicates
that only one version is active; DB2 can then reuse all of the other version
numbers.

532 Utility Guide and Reference

Recycling of version numbers is required when all of the version numbers are
being used. All version numbers are being used when one of the following
situations is true:
v The value in the CURRENT_VERSION column is one less than the value in the

OLDEST_VERSION column.
v The value in the CURRENT_VERSION column is 15 and the value in the

OLDEST_VERSION column is 0 or 1.

You can also run LOAD REPLACE, REBUILD INDEX, or REORG TABLESPACE to
recycle version numbers for indexes that are defined with the COPY NO attribute.
To recycle version numbers for indexes that are defined with the COPY YES
attribute or for table spaces, run MODIFY RECOVERY.
Related concepts:

Table space versions (DB2 Administration Guide)

Sample REORG INDEX control statements
Use the sample control statements as models for developing your own REORG
INDEX control statements.

Example 1: Reorganizing an index

The following control statement specifies that the REORG INDEX utility is to
reorganize index XMSGTXT1. The UNLOAD PAUSE option indicates that after the
data has been unloaded, the utility is to stop. Processing can be restarted in the
RELOAD phase. This option is useful if you want to redefine data sets during
reorganization.
REORG INDEX DSN8B10.XMSGTXT1
UNLOAD PAUSE

Example 2: Collecting inline statistics while reorganizing an
index.

The following control statement specifies that REORG INDEX is to collect statistics
for index XEMPL1 while reorganizing that index. The SHRLEVEL REFERENCE
option indicates that during this processing, only read access is allowed on the
areas that are being reorganized.
REORG INDEX DSN8B10.XEMPL1

SHRLEVEL REFERENCE STATISTICS

Example 3: Updating access path statistics in the catalog and
catalog history tables while reorganizing an index

The following control statement specifies that while reorganizing index IU0E0801,
REORG INDEX is to collect statistics and update access path statistics in the
catalog and catalog history tables. The utility is also to send any output, including
space and access path statistics, to SYSPRINT.
REORG INDEX IUOE0801

STATISTICS
REPORT YES
UPDATE ACCESSPATH
HISTORY ACCESSPATH

Chapter 24. REORG INDEX 533

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_tablespaceversions.htm#db2z_tablespaceversions

Example 4: Reorganizing a list of indexes

In the following control statement, the OPTIONS utility control statement specifies
that the subsequent TEMPLATE and LISTDEF utility control statements are to run
in PREVIEW mode. If the syntax of these statements is correct, DB2 expands the
REORG_INDX list and the data set names in the SREC, SUT1, and SOUT templates
and prints these results to the SYSPRINT data set. The second OPTIONS control
statement turns off the PREVIEW mode, and the subsequent REORG INDEX job
runs normally.

The REORG INDEX statement specifies that the utility is to reorganize the indexes
that are included in the REORG_INDX list. The SHRLEVEL CHANGE option
indicates that during this processing, read and write access is allowed on the areas
that are being reorganized, with the exception of a 100-second period during the
last iteration of log processing. During this time, which is specified by the MAXRO
option, applications have read-only access. The WORKDDN option indicates that
REORG INDEX is to use the data set that is defined by the SUT1 template. If the
SWITCH phase does not begin by the deadline that is specified on the DEADLINE
option, processing terminates.

Example 5: Reorganizing clone indexes

The following control statement specifies that REORG INDEX is to reorganize only
the specified index spaces that contain indexes on clone tables. The SHRLEVEL
CHANGE option indicates that during this processing, applications can read and
write to the area.
REORG INDEX ADMF001.IPJM0901 SHRLEVEL CHANGE CLONE

//STEP2 EXEC DSNUPROC,UID=’HUHRU257.REORGI’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’SSTR’,DB2LEV=DB2A
//SYSIN DD *

OPTIONS PREVIEW
TEMPLATE SREC

UNIT(SYSDA) DISP(NEW,CATLG,CATLG)
DSN(HUHRU257.REORG.&ST..SREC)

TEMPLATE SUT1
UNIT(SYSDA) DISP(NEW,DELETE,CATLG)
DSN(HUHRU257.REORG.&ST..SUT1)

TEMPLATE SOUT
UNIT(SYSDA) DISP(NEW,DELETE,CATLG)
DSN(HUHRU257.REORG.&ST..SOUT)

LISTDEF REORG_INDX INCLUDE INDEX ADMF001.IPHR5701
INCLUDE INDEX ADMF001.IXHR570*

OPTIONS OFF
REORG INDEX LIST REORG_INDX

PREFORMAT
SHRLEVEL CHANGE
DEADLINE 2010-2-4-23.10.12
MAXRO 100

WORKDDN (SUT1)
/*

Figure 66. Example statements for job that reorganizes a list of indexes

534 Utility Guide and Reference

Example 6: Creating a FlashCopy image copy with REORG
INDEX

The following REORG INDEX control statement reorganizes the index spaces
associated with table space DSN8S81E and creates a FlashCopy image copy of the
index.
//SYSADMA JOB (ACCOUNT),’NAME’,NOTIFY=&SYSUID
//*
//UTIL EXEC DSNUPROC,SYSTEM=VA1A,UID=’TEMP’,UTPROC=’’
//DSNUPROC.SYSREC DD DSN=SYSOPS.DSNAME,
// DISP=(NEW,DELETE),
// SPACE=(CYL,(20,20),RLSE),
// UNIT=SYSDA,VOL=SER=SCR03
//DSNUPROC.SYSUT1 DD DSN=SYSOPS.SYSUT1,
// DISP=(NEW,DELETE,DELETE),
// SPACE=(CYL,(9,90),RLSE),
// UNIT=SYSDA,VOL=SER=SCR03
//DSNUPROC.SYSIN DD *
LISTDEF COPY_LIST INCLUDE INDEXSPACES TABLESPACE DSN8D81A.DSN8S81E PARTLEVEL ALL
TEMPLATE SCOPY UNIT(SYSDA) DISP(NEW,CATLG,DELETE)
DSN(DSNT1.&DB..&TS..CPY1.D&TIME.)
TEMPLATE FCOPY UNIT(SYSDA) DISP(NEW,CATLG,DELETE)
DSN(DSNFC.&DB..&TS..P&PA..D&TIME.)
REORG INDEX LIST COPY_LIST SHRLEVEL REFERENCE FLASHCOPY YES
FCCOPYDDN(FCOPY) COPYDDN(SCOPY)

Chapter 24. REORG INDEX 535

536 Utility Guide and Reference

Chapter 25. REORG TABLESPACE

The REORG TABLESPACE online utility reorganizes a table space to improve
access performance and to reclaim fragmented space. In addition, the utility can
reorganize a single partition or range of partitions of a partitioned table space.

You can specify the degree of access to your data during reorganization, and you
can collect inline statistics by using the STATISTICS keyword. If you specify
REORG TABLESPACE UNLOAD EXTERNAL, the data is unloaded in a format
that is acceptable to the LOAD utility of any DB2 subsystem. You can also delete
rows during the REORG job by specifying the DISCARD option.

You can determine when to run REORG for non-LOB table spaces by using the
OFFPOSLIMIT or INDREFLIMIT catalog query options. If you specify the
REPORTONLY option, REORG produces a report that indicates whether a REORG
is recommended without actually performing the REORG. These options are not
applicable and are disregarded if the target object is a directory table space.

Run the REORG TABLESPACE utility on a LOB table space to help increase the
effectiveness of prefetch. For a LOB table space, REORG TABLESPACE performs
these actions:
v Removes embedded free space
v Attempts to make LOB pages contiguous

If you specify SHRLEVEL REFERENCE, a REORG of a LOB table space makes
LOB pages contiguous removes embedded free space, and reclaims physical space.

You can run REORG TABLESPACE SHRLEVEL CHANGE on a LOB table space.
REORG TABLESPACE SHRLEVEL CHANGE processes a LOB table space the same
as REORG SHRLEVEL REFERENCE except the mapping table is ignored. The
restriction for REORG TABLESPACE SHRLEVEL CHANGE on NOT LOGGED
table spaces applies to LOB table spaces. REORG TABLESPACE SHRLEVEL
CHANGE on a LOB table space uses shadow data sets and includes a LOG phase.

Do not execute REORG on an object if another DB2 holds retained locks on the
object or has long-running noncommitting applications that use the object. You can
use the DISPLAY GROUP command to determine whether a member status is failed.
You can use the DISPLAY DATABASE command with the LOCKS option to determine
whether locks are held.

You can execute the REORG TABLESPACE utility on the table spaces in the DB2
catalog database (DSNDB06) and on some table spaces in the directory database
(DSNDB01). It cannot be executed on any table space in the DSNDB07 database.

Output

The following table summaries the results of REORG TABLESPACE according to
the type of REORG specified.

Table 74. Summary of REORG TABLESPACE output

Type of REORG specified Results

REORG TABLESPACE Reorganizes all data and all indexes.

© Copyright IBM Corp. 1983, 2013 537

Table 74. Summary of REORG TABLESPACE output (continued)

Type of REORG specified Results

REORG TABLESPACE PART n Reorganizes data for PART n of the table space and
PART n of all partitioned indexes.

REORG TABLESPACE PART n:m Reorganizes data for PART n through PART m of the
table space and PART n through PART m of all
partitioned indexes.

Note: When SCOPE PENDING is also specified, the REORG TABLESPACE utility
reorganizes the specified table space only if it is in REORG-pending or advisory
REORG-pending status. For a partitioned table space, REORG TABLESPACE SCOPE
PENDING reorganizes only the partitions that are in REORG-pending or advisory
REORG-pending status.

If the table space or partition has the COMPRESS YES attribute, the data is
compressed when it is reloaded. If you specify the KEEPDICTIONARY option of
REORG, the current dictionary is used; otherwise a new dictionary is built. If a
table has DATA CAPTURE CHANGES active, any previously existing dictionary is
written to the log.

REORG TABLESPACE materializes pending limit key changes if you specify
SHRLEVEL REFERENCE or CHANGE.

Authorization required

To execute this utility on a user table space, you must use a privilege set that
includes one of the following authorities:
v REORG privilege for the database
v DBADM or DBCTRL authority for the database. If the object on which the utility

operates is in an implicitly created database, DBADM authority on the implicitly
created database or DSNDB04 is required.

v SYSCTRL authority
v SYSADM authority
v DATAACCESS authority

To execute this utility on a table space in the catalog or directory, you must use a
privilege set that includes one of the following authorities:
v REORG privilege for the DSNDB06 (catalog) database
v DBADM or DBCTRL authority for the DSNDB06 (catalog) database
v Installation SYSOPR authority
v SYSCTRL authority
v SYSADM or Installation SYSADM authority
v STATS privilege for the database is required if STATISTICS keyword is specified.

If you specify REORG TABLESPACE SHRLEVEL CHANGE and you create a
mapping table, you must use a privilege set that includes DELETE, INSERT, and
UPDATE privileges on the mapping table.

When REORG is implicitly creating the mapping objects, you must have the
authority to create or drop objects on the target database.

538 Utility Guide and Reference

|
|
|
|
|

|
|

|
|
|

|
|

If either the FLASHCOPY YES or FLASHCOPY CONSISTENT option is specified,
the batch user ID that invokes the REORG TABLESPACE utility must have the
authority to execute the DFSMSdss COPY command.

To run REORG TABLESPACE STATISTICS REPORT YES, you must use a privilege
set that includes the SELECT privilege on the catalog tables and tables for which
statistics are to be gathered.

An authority other than installation SYSADM or installation SYSOPR can receive
message DSNT500I resource unavailable, while trying to reorganize a table space
in the catalog or directory. This message can be issued when the
DSNDB06.SYSDBAUT or DSNDB06.SYSUSER catalog table space or one of the
indexes is unavailable. If this problem occurs, run the REORG TABLESPACE utility
again using an authorization ID with the installation SYSADM or installation
SYSOPR authority.

If you use RACF access control with multilevel security and REORG TABLESPACE
is to process a table space that contains a table that has multilevel security with
row-level granularity, you must be identified to RACF and have an accessible valid
security label. You must also meet the following authorization requirements: .
v For REORG statements that include the UNLOAD EXTERNAL option, each row

is unloaded only if your security label dominates the data security label. If your
security label does not dominate the data security label, the row is not unloaded,
but DB2 does not issue an error message.

v For REORG statements that include the DISCARD option, qualifying rows are
discarded only if one of the following situations are true:
– Write-down rules are in effect, you have write-down privilege, and your

security label dominates the data's security label.
– Write-down rules are not in effect and your security label dominates the

data's security label.
– Your security label is equivalent to the data security label.

Execution phases of REORG TABLESPACE

The REORG TABLESPACE utility operates in these phases:

UTILINIT
Performs initialization and setup.

UNLOAD
Unloads the table space and sorts data if a clustering index exists and the
utility job includes either the SORTDATA or SHRLEVEL CHANGE options.
If you specify NOSYSREC, the utility passes rows in memory to the
RELOAD phase; otherwise, it writes them to a sequential data set.

Nonpartitioned indexes are processed in one of two ways:
v If PART SHRLEVEL REFERENCE or PART SHRLEVEL CHANGE is

specified, during UNLOAD one or more subtasks unload nonpartitioned
indexes and build shadow nonpartitioned indexes.

v If PART SHRLEVEL REFERENCE or CHANGE is specified and
SORTNPSI YES or AUTO is specified or subsystem parameter
REORG_PART_SORT_NPSI is enabled, during UNLOAD one or more
subtasks processes nonpartitioned secondary index keys from parts that
are not within the scope of the REORG. These keys are routed to a sort
process to be sorted with the keys from parts within the scope of the
REORG. The shadow index is built from this sorted set of keys.

Chapter 25. REORG TABLESPACE 539

RELOAD
Reloads data from the sequential data set into the table space and creates
full image copies if you specify COPYDDN, RECOVERYDDN, SHRLEVEL
REFERENCE, or SHRLEVEL CHANGE. A subtask sorts the index keys.
The utility also updates table and table space statistics.

SORT Sorts index keys. The sorted keys are passed in memory to the BUILD
phase.

BUILD
Builds indexes and updates index statistics.

SORTBLD
If parallel index build occurs, all activities that normally occur in both the
SORT and BUILD phases occur in the SORTBLD phase instead.

LOG Processes the log iteratively and appends changed pages to the full image
copies. This phase occurs only if you specify SHRLEVEL CHANGE or
SHRLEVEL REFERENCE PART x.

SWITCH
Switches access to shadow copy of table space or partition. This phase
occurs only if you specify SHRLEVEL REFERENCE or CHANGE.

UTILTERM
Performs cleanup.

Execution phases of REORG TABLESPACE on a LOB table
space

The REORG TABLESPACE utility operates in these phases when you run it on a
LOB table space:

Phase Description

UTILINIT
Performs initialization and setup.

REORGLOB

For SHRLEVEL REFERENCE, the utility unloads LOBs to a shadow data
set. RECOVER-pending is not set on the LOB table space. Any error during
this phase leaves he original data set intact.

SWITCH
Switches access to shadow copy of table space or partition.

UTILTERM
Performs cleanup.

You cannot restart REORG TABLESPACE on a LOB table space in the REORGLOB
phase. Before executing REORG TABLESPACE SHRLEVEL NONE on a LOB table
space that is defined with LOG NO, you should take a full image copy to ensure
recoverability. For SHRLEVEL REFERENCE, an inline image copy is required to
ensure recoverability.

Syntax and options of the REORG TABLESPACE control statement
The REORG TABLESPACE utility control statement, with its multiple options,
defines the function that the utility job performs.

540 Utility Guide and Reference

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

Some of these options are not valid for LOB table spaces. For a list of those
options, see “Reorganization of a LOB table space” on page 622.

Syntax diagram

�� REORG TABLESPACE

�

LIST listdef-name
LISTPARTS n

table-space-name
database-name. ,

PART(integer)
integer1:integer2

CLONE REUSE
�

�
SCOPE ALL

SCOPE PENDING SORTCLUSTER NO
REBALANCE

SORTCLUSTER YES

LOG YES

LOG NO

SORTDATA

RECLUSTER YES
SORTDATA NO

RECLUSTER NO

NOSYSREC
�

� copy-spec
AUTOESTSPACE YES

AUTOESTSPACE NO
�

�
SHRLEVEL NONE

FASTSWITCH YES AUX NO
SHRLEVEL REFERENCE deadline-spec drain-spec

(1) FASTSWITCH NO AUX YES
change-spec

CHANGE deadline-spec drain-spec change-spec map-spec

�

�
FORCE NONE

FORCE READERS
FORCE ALL

SORTNPSI AUTO
SORTNPSI YES

(2)
SORTNPSI NO

10 10
OFFPOSLIMIT INDREFLIMIT

integer integer REPORTONLY

�

�

�

UNLOAD CONTINUE

(3) KEEPDICTIONARY statistics-spec
UNLOAD PAUSE

UNLOAD ONLY
YES

NOPAD
UNLOAD EXTERNAL

NOPAD NO

FROM-TABLE-spec

PUNCHDDN SYSPUNCH

PUNCHDDN ddname

DISCARDDN SYSDISC

DISCARDDN ddname
�

�
reorg tablespace options

�

YES
NOPAD

DISCARD FROM-TABLE-spec
NOPAD NO

PARALLEL 0

PARALLEL (num-subtasks)
��

Notes:

1 For SHRLEVEL REFERENCE, you can use the change-spec options only for a partition-level
REORG operation on a partitioned table space that has a non-partitioned index.

2 The default for SORTNPSI is the value of the REORG_PART_SORT_NPSI subsystem parameter.

3 You cannot use UNLOAD PAUSE with the LIST option.

Chapter 25. REORG TABLESPACE 541

||

||||||||

||||||

||

||||

copy-spec:

��

(1) (2)
COPYDDN(SYSCOPY)

COPYDDN(ddname1)
,ddname2

,ddname2

RECOVERYDDN(ddname3)
,ddname4

�

�
NO

FLASHCOPY
YES FCCOPYDDN(ddname)
CONSISTENT

��

Notes:

1 COPYDDN(SYSCOPY) is not the default if you specify SHRLEVEL NONE, and no partitions are
in REORG-pending status.

2 Either COPYDDN or FCCOPYDDN can be specified, or they can both be specified. At least one
of these options must be specified for SHRLEVEL NONE when a partition is in REORG-pending
status, or for SHRLEVEL CHANGE OR SHRLEVEL REFERENCE. If you specify FCCOPYDDN,
but do not specify COPYDDN or a SYSCOPY DD statement or TEMPLATE specification, for
SYSCOPY, only a FlashCopy image copy is taken.

deadline-spec:

��
DEADLINE NONE

DEADLINE timestamp
labeled-duration-expression

��

drain-spec:

542 Utility Guide and Reference

��
(1)

DRAIN_WAIT integer

(2)

RETRY integer

(3)

RETRY_DELAY integer
�

�
TIMEOUT TERM

TIMEOUT ABEND

LOGRANGES YES

LOGRANGES NO

DRAIN_ALLPARTS NO

DRAIN_ALLPARTS YES
�

�
SWITCHTIME NONE

NEWMAXRO NONE
SWITCHTIME timestamp

labeled-duration-expression NEWMAXRO integer

��

Notes:

1 The default for DRAIN_WAIT is the value of the IRLMRWT subsystem parameter.

2 The default for RETRY is the value of the UTIMOUT subsystem parameter.

3 The default for RETRY_DELAY is the smaller of the following two values: DRAIN_WAIT value ×
RETRY value, DRAIN_WAIT value × 10

change-spec:

For SHRLEVEL REFERENCE, you can use the change-spec options only for a
partition-level REORG operation on a partitioned table space that has a
non-partitioned index.

��

(1)
MAXRO

MAXRO integer
DEFER

DRAIN ALL

DRAIN WRITERS

LONGLOG CONTINUE

LONGLOG TERM
DRAIN

DELAY 1200

DELAY integer
��

Notes:

1 The default for MAXRO is the RETRY_DELAY default value.

map-spec:

��
MAPPINGTABLE table-name
MAPPINGDATABASE database-name

��

labeled-duration-expression:

Chapter 25. REORG TABLESPACE 543

||||||||

|||||||||

||||

||

�� CURRENT_DATE
CURRENT_TIMESTAMP

WITH TIME ZONE

� + constant YEAR
- YEARS

MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

��

statistics-spec:

�� STATISTICS �

�

�

�

TABLE (ALL)

SAMPLE integer

COLUMN ALL
TABLE (table-name)

SAMPLE integer , COLGROUP (column-name) colgroup-stats-spec

COLUMN (column-name)

�

�

�

INDEX (ALL)
correlation-stats-spec

,

INDEX (index-name correlation-stats-spec)

REPORT NO

REPORT YES

UPDATE ALL

UPDATE ACCESSPATH
SPACE
NONE

HISTORY ALL
ACCESSPATH
SPACE
NONE

�

�
FORCEROLLUP YES

NO

��

colgroup-stats-spec:

��
MOST

FREQVAL COUNT integer
BOTH
LEAST

NUMQUANTILES 100
HISTOGRAM

NUMQUANTILES integer

��

correlation-stats-spec:

544 Utility Guide and Reference

||||

|
|

||

|
||

��

(1)
KEYCARD

�

FREQVAL NUMCOLS 1 COUNT 10

FREQVAL NUMCOLS integer COUNT integer
NUMCOLS 1 NUMQUANTILES 100

HISTOGRAM
NUMQUANTILES 100

NUMCOLS integer
NUMQUANTILES integer

��

Notes:

1 The KEYCARD option is deprecated. The KEYCARD functionality is now built into the default
execution of the inline statistics and cannot be disabled.

FROM-TABLE-spec:

�� FROM TABLE table-name
WHEN (selection-condition-spec)

��

selection-condition-spec:

�� predicate
selection condition

�

AND predicate
OR selection condition

��

predicate:

�� basic predicate
BETWEEN predicate
IN predicate
LIKE predicate
NULL predicate

��

basic predicate:

Chapter 25. REORG TABLESPACE 545

|||||||||||

�� column-name
(1)

=
<>
>
<
>=
<=

constant
labeled-duration-expression

��

Notes:

1 The following forms of the comparison operators are also supported in basic and quantified
predicates: !=, !<, and !>. For details, see comparison operators.

BETWEEN predicate:

�� column-name
NOT

BETWEEN constant
labeled-duration-expression

AND �

� constant
labeled-duration-expression

��

IN predicate:

�� column-name
NOT

IN �

,

(constant) ��

LIKE predicate:

�� column-name
NOT

LIKE string-constant
ESCAPE string-constant

��

NULL predicate:

�� column-name IS
NOT

NULL ��

reorg tablespace options:

546 Utility Guide and Reference

��
UNLDDN SYSREC

UNLDDN ddname SORTDEVT device-type SORTNUM integer PREFORMAT
�

�
ROWFORMAT BRF

RRF
RBALRSN_CONVERSION NONE

BASIC
EXTENDED

��

Option descriptions

TABLESPACE database-name.table-space-name
Specifies the table space (and, optionally, the database to which it belongs) that
is to be reorganized.

If you reorganize a table space, its indexes are also reorganized.

database-name
Is the name of the database to which the table space belongs. The name
cannot be DSNDB07.

The default value is DSNDB04.

table-space-name
Is the name of the table space that is to be reorganized. The name cannot
be SYSUTILX if the specified database name is DSNDB01.

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. The utility
allows one LIST keyword for each control statement of REORG TABLESPACE.
The list must contain only table spaces.

Do not specify FROM TABLE, STATISTICS TABLE table-name, or STATISTICS
INDEX index-name with REORG TABLESPACE LIST. If you want to collect
inline statistics for a list of table spaces, specify STATISTICS TABLE (ALL). If
you want to collect inline statistics for a list of indexes, specify STATISTICS
INDEX (ALL). Do not specify PART with LIST.

REORG TABLESPACE is invoked once for each item in the list. This utility will
only process clone data if the CLONE keyword is specified. The use of
CLONED YES on the LISTDEF statement is not sufficient.

The partitions or partition ranges can be specified in a list.

LISTPARTS n
Specifies the maximum number of data partitions to be reorganized in a single
REORG on a LISTDEF that contains PARTLEVEL list items.

n Specifies an integer that represents the maximum number of data
partitions to be reorganized at once. Valid value is greater than 0. If
LISTPARTS is not specified, the default value is the setting of the
REORG_LIST_PROCESSING subsystem parameter.

PARALLEL(num-subtasks)

Specifies the maximum number of subtasks that are to be started in parallel to
reorganize a table space. If the PARALLEL keyword is omitted, the maximum
number of subtasks is limited by either the number of partitions that are being
unloaded or the number of indexes that are built.

Chapter 25. REORG TABLESPACE 547

||||

|
|
|

||
|
|
|

|

|
|
|
|

The value of num-subtasks must be an integer between 0 and 32767, inclusive. If
the specified value for num-subtasks is greater than 32767, the REORG
TABLESPACE statement fails. If 0 or no value is specified for num-subtasks, the
REORG TABLESPACE utility uses the optimal number of parallel subtasks. If
the specified value for num-subtasks is greater than the calculated optimal
number, the REORG TABLESPACE utility limits the number of parallel
subtasks to the optimal number with applied constraints.

The specified number of subtasks for PARALLEL always overrides the
specification of the PARAMDEG_UTIL subsystem parameter, so PARALLEL
can be smaller or larger than the value of PARAMDEG_UTIL.

REORG TABLESPACE uses sophisticated algorithms to allocate subtasks for
unloading partitions, reloading partitions, building indexes, applying log
changes, and gathering statistics. As a result, the number of subtasks that are
started might be less than the number specified on PARALLEL.

CLONE
Indicates that REORG TABLESPACE is to reorganize only clone tables from the
specified table spaces. This utility will only process clone data if the CLONE
keyword is specified. The use of CLONED YES on the LISTDEF statement is
not sufficient. Base tables in the specified table spaces are not reorganized. If
you specify CLONE, you cannot specify STATISTICS. Statistics are not
collected for clone tables.

REUSE
When used with SHRLEVEL NONE, specifies that REORG is to logically reset
and reuse DB2-managed data sets without deleting and redefining them. If you
do not specify REUSE and SHRLEVEL NONE, DB2 deletes and redefines
DB2-managed data sets to reset them.

If a data set has multiple extents, the extents are not released if you use the
REUSE parameter.

REUSE does not apply if you also specify SHRLEVEL REFERENCE or
CHANGE.

SCOPE
Indicates the scope of the reorganization of the specified table space or of one
or more specified partitions.

ALL
Indicates that you want the specified table space or one or more partitions
to be reorganized. The default is ALL.

PENDING
Indicates that you want the specified table space or one or more partitions
to be reorganized only if they are in REORG-pending (REORP, AREO*, or
AREOR) status.

PART(integer)
PART(integer1:integer2)
PART(integer,...integer,...integer1:integer2,...integer1:integer2)

Identifies the set of partitions that are to be reorganized. The set of partitions
must be enclosed in parentheses.

You can reorganize:
v One or more single partitions
v One or more ranges of partitions
v A combination of one or more single partitions and one or more ranges of

partitions

548 Utility Guide and Reference

|
|
|
|
|
|
|

|
|
|

|
|
|
|

The partitions do not need to be consecutive.

Each partition number must be in the range from 1 to the number of partitions
that are defined for the table space or partitioning index. The maximum is
4096.

integer
Designates a single partition.

integer1:integer2
Designates a range of existing table space partitions from integer1 through
integer2.integer2 must be greater than integer1.

If you omit the PART keyword, the entire table space is reorganized.

If you specify the PART keyword for a LOB table space, DB2 issues an error
message, and utility processing terminates with return code 8.

If you specify a partition range and the high or low partitions in the list are in
a REORG-pending state, the adjacent partition that is outside the specified
range must not be in REORG-pending state; otherwise, the utility terminates
with an error.

Restriction: You cannot run concurrent REORG TABLESPACE SHRLEVEL
CHANGE PART integer on the same table space with one or more
non-partitioned indexes defined in it. Instead of submitting multiple jobs, you
can merge the jobs into one job by specifying all the target partitions in the
same REORG job.

REBALANCE
Specifies that REORG TABLESPACE is to set new partition boundaries so that
rows are evenly distributed across the reorganized partitions. If the columns
that are used in defining the partition boundaries have many duplicate values
within the data rows, even balancing is not always possible. Specify
REBALANCE for more than one partition; if you specify a single partition for
rebalancing, REORG TABLESPACE ignores the specification.

You can specify REBALANCE with SHRLEVEL NONE, SHRLEVEL CHANGE,
or SHRLEVEL REFERENCE. You must specify SHRLEVEL REFERENCE if the
base table space has an associated auxiliary LOB table space. In this case, you
must also specify AUX YES, which is the default value if you specify
REBALANCE. When REBALANCE is specified with SHRLEVEL REFERENCE,
pending definition changes for conversion of a partitioned table space to a
range-partitioned universal table space are not materialized.

REBALANCE cannot be specified with SCOPE PENDING.

Restrictions: REBALANCE cannot be specified for the following objects:
v Partition-by-growth table spaces
v Base tables with XML columns
v XML table spaces
v An object that is involved in a clone relationship. (Because the base and

clone tables share catalog information, REBALANCE can change the
partition boundaries of the target table.)

v Table spaces with pending alter limit key changes

When you specify REBALANCE, you must create an inline copy by
performing one of the following actions:
v Provide a SYSCOPY DD statement in the JCL.

Chapter 25. REORG TABLESPACE 549

|
|

|

|

v Use the TEMPLATE utility to dynamically allocate the SYSCOPY data set.
v Specify a DD name with the COPYDDN option in the REORG control

statement and specify either a corresponding DD statement or TEMPLATE
statement.

At completion, DB2 invalidates packages and the dynamic cache.

SORTCLUSTER
Determines whether REBALANCE is to attempt to sort the data records into
clustering order. This option is ignored if no clustering index exists in the table,
or when the limit key columns are identical to or are a superset of the
clustering index columns.

NO Specifies that the data records are not to be explicitly sorted into clustering
order. This option is the default behavior.

If SORTCLUSTER NO is explicitly specified, REORG-pending advisory
(AREO*) status is not set on the affected data partitions upon REORG
REBALANCE completion. If SORTCLUSTER NO is not explicitly specified
and instead accepted by default, AREO* status can still be set on the
affected partitions.

YES
Specifies that the data records are to be explicitly sorted into clustering
order as needed.

LOG
Specifies whether records are to be logged during the RELOAD phase of
REORG. If the records are not logged, the table space is recoverable only after
an image copy is taken. If you specify COPYDDN, FCCOPYDDN,
RECOVERYDDN, SHRLEVEL REFERENCE, or SHRLEVEL CHANGE, an
image copy is taken during REORG execution.

YES
Specifies that log records are to be taken during the RELOAD phase. This
option is not allowed for any table space in DSNDB01 or DSNDB06, or if
the SHRLEVEL REFERENCE or CHANGE options are used.

If you specify SHRLEVEL NONE (explicitly or by default), the default
value is YES.

LOG YES is required for LOB REORG SHRLEVEL NONE. LOG NO is
required for LOB REORG SHRLEVEL REFERENCE.

If the table space has the NOT LOGGED attribute, and SHRLEVEL NONE
is specified, DB2 does the LOAD with LOG NO.

NO Specifies that records are not to be logged. This option puts the table space
in COPY-pending status if REORG is executed at the remote site, and
RECOVERYDDN is not specified.

You must specify LOG NO for REORG of a LOB table space if you specify
SHRLEVEL REFERENCE.

SORTDATA or SORTDATA NO
SORTDATA specifies that the data is to be unloaded by a table space scan, and
sorted in clustering order.

The default value is SORTDATA, unless you specify UNLOAD ONLY or
UNLOAD EXTERNAL. If you specify one of these options, the default is
SORTDATA NO.

550 Utility Guide and Reference

|
|
|
|
|

||
|

|
|
|
|
|

|
|
|

SORTDATA NO specifies that, when possible, the data is to be unloaded in the
order of the clustering index. Specify SORTDATA NO if one of the following
conditions is true:
v The data is in or near perfect clustering order, and the REORG utility is used

to reclaim space from dropped tables.
v The amount of data is very large, and an insufficient amount of disk space is

available for sorting.

For a partitioned table space, REORG does not unload the records by way of
the clustering index when the clustering index is not partitioning. The data
records must be unloaded by partition order first. In addition, when REORG
unload or reload partition parallelism is used, or when REORG is run on a
partition-by-growth table space, REORG always performs a table space scan to
unload the data records, when the clustering index is not used.

SORTDATA NO cannot be specified when the clustering index has the
EXCLUDE NULL KEYS attribute.

RECLUSTER
Specifies whether data records are to be reclustered by unloading them by way
of the clustering index. For SHRLEVEL CHANGE processing, RECLUSTER NO
is always enforced.

YES
Data records are to be reclustered and to be unloaded by the clustering
index if one exists. This option is the default behavior.

NO Data records are not to be reclustered and are not unloaded by way of the
clustering index.

NOSYSREC
Specifies that the output of sorting (if a clustering index exists) is the input to
reloading, without the REORG TABLESPACE utility using an unload data set.
You can specify this option only if the REORG TABLESPACE job includes
SHRLEVEL REFERENCE or SHRLEVEL NONE, and only if you do not specify
UNLOAD PAUSE or UNLOAD ONLY.

COPYDDN (ddname1,ddname2)
Specifies the DD statements for the primary (ddname1) and backup (ddname2)
copy data sets for the image copy.

ddname1 and ddname2 are the DD names.

The default value is SYSCOPY for the primary copy. A full image copy data
set is created when REORG executes. This copy is called an inline copy. The
table space does not remain in COPY-pending status regardless of which LOG
option you specify.

When an inline copy is performed, DB2 writes a record with ICTYPE='F' in the
SYSIBM.SYSCOPY catalog table. The name of the inline copy data set is listed
in that record. If an inline copy is performed when REORG is run on a range
of partitions, DB2 writes a record with ICTYPE='F' for each partition. The
inline copy data set name is the same in all of those records.

If you specify SHRLEVEL NONE (explicitly or by default) for REORG, and
COPYDDN is not specified, an image copy is not created at the local site.

COPYDDN(SYSCOPY) is assumed, and a DD statement for SYSCOPY is
required if either of the following conditions are true:
v You specify REORG SHRLEVEL REFERENCE or CHANGE, and you do not

specify COPYDDN.

Chapter 25. REORG TABLESPACE 551

|
|
|

|
|

|
|
|
|

|
|
|

||
|

v A table space or partition is in REORG-pending (REORP) status.
v You specify REBALANCE.

The COPYDDN keyword specifies either a DD name or a TEMPLATE name
specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name.

REORG can take inline copies of XML table spaces.

RECOVERYDDN (ddname3,ddname4)
Specifies the DD statements for the primary (ddname3) and backup (ddname4)
copy data sets for the image copy at the recovery site.

ddname3 and ddname4are the DD names.

You cannot have duplicate image copy data sets. The same rules apply for
RECOVERYDDN as for COPYDDN.

The RECOVERYDDN keyword specifies either a DD name or a TEMPLATE
name specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name.

REORG SHRLEVEL REFERENCE of a LOB table space supports inline copies,
but REORG SHRLEVEL NONE does not.

FLASHCOPY
Specifies whether FlashCopy technology is used to create a copy of the object.
Valid values are YES, NO, or CONSISTENT. When FlashCopy is used, a
separate data set is created for each partition or piece of the object.

The FlashCopy specifications on the utility control statement override any
specifications for FlashCopy that are defined by using the DB2 subsystem
parameters. If the FlashCopy subsystem parameters specify the use of
FlashCopy as the default behavior of this utility, the FLASHCOPY option can
be omitted from the utility control statement.

Important: If the input data set is less than one cylinder, FlashCopy
technology might not be used for copying the objects regardless of the
FLASHCOPY settings. The copy is performed by IDCAMS if FlashCopy is not
used.

NO Specifies that no FlashCopy is made. NO is the default value for
FLASHCOPY.

YES
Specifies that FlashCopy technology is used to copy the object.

Specify YES only if the DB2 data sets are on FlashCopy Version 2 disk
volumes.

Important: Under the following circumstances, the REORG TABLESPACE
utility might not use FlashCopy even though YES is specified:
v FlashCopy Version 2 disk volumes are not available
v The source tracks are already the target of a FlashCopy operation
v The target tracks are the source of a FlashCopy operation
v The maximum number of relationships for the copy is exceeded

552 Utility Guide and Reference

If FlashCopy is requested but not used, REORG TABLESPACE completes
with return code 8. If no sequential inline copy is requested on the same
job, the objects are left in COPY-pending status.

CONSISTENT
Specifies that FlashCopy technology is used to copy the object. Because the
copies created by the REORG TABLESPACE utility are already consistent,
the utility treats a specification of CONSISTENT the same as a specification
of YES.

FCCOPYDDN
Specifies the template to be used to create the FlashCopy image copy data set
names. If a value is not specified for FCCOPYDDN on the REORG
TABLESPACE control statement when FlashCopy is used, the value specified
on the FCCOPYDDN subsystem parameter determines the template to be used.

(template-name)
The data set names for the FlashCopy image copy are allocated according
to the template specification. For table space or index space level
FlashCopy image copies, because a data set is allocated for each partition
or piece, ensure that the data set naming convention in the template
specification is unique enough. Use the &DSNUM variable, which resolves
to a partition number or piece number at execution time.

AUTOESTSPACE
Specifies that REORG automatically calculates and formats the size of the fixed
hash space for hash-organized table spaces. The use of AUTOESTSPACE YES
might reduce the number of rows in the overflow area.

YES
Specifies that DB2 uses real-time statistics (RTS) values to adjust the size of
the hash space. User-specified HASH SPACE values stored in the
SYSIBM.SYSTABLESPACE and SYSIBM.SYSTABLEPART catalog tables are
not changed. YES is the default value for AUTOESTSPACE.

NO Specifies that DB2 uses the HASH SPACE value specified for CREATE
TABLE or ALTER TABLE. These values are stored in the
SYSIBM.SYSTABLESPACE and SYSIBM.SYSTABLEPART catalog tables.

SHRLEVEL
Specifies the method that is to be used for the reorganization. The parameter
following SHRLEVEL indicates the type of access that is to be allowed during
the RELOAD phase of REORG.

NONE
Specifies that reorganization is to operate as follows:
v Unloading from the area that is being reorganized (while applications

can read but cannot write to the area)
v Reloading into that area (while applications have no access), and then

allowing read-write access again

If you specify NONE (explicitly or by default), you cannot specify the
following parameters:
v MAPPINGTABLE
v MAXRO
v LONGLOG
v DELAY
v DEADLINE
v DRAIN_WAIT
v RETRY

Chapter 25. REORG TABLESPACE 553

v RETRY_DELAY

Restrictions:

v If you specify UNLOAD PAUSE or UNLOAD ONLY, you cannot specify
NOSYSREC. SHRLEVEL NONE cannot be specified for tables that are
defined with ORGANIZE BY HASH.

v You cannot specify SHRLEVEL NONE in a REORG TABLESPACE
control statement that completes the process of recovery to a point in
time prior to the materialization of pending definition changes.

When SHRLEVEL NONE is specified, pending definition changes are not
materialized and any associated restrictive states are not reset. For
example, pending limit key changes are not materialized and the
associated advisory REORG-pending status is not reset. (Immediate alter
limit key changes can be materialized by REORG SHRLEVEL NONE.)

Starting in DB2 Version 10 new-function mode, SHRLEVEL NONE is not
supported when REORG is run against a LOB table space.

REFERENCE
Specifies that reorganization is to operate as follows:
v Unloading from the area that is being reorganized (while applications

can read but cannot write to the area)
v Reloading into a shadow copy of that area (while applications can read

but cannot write to the original copy)
v Switching the future access of an application from the original copy to

the shadow copy by exchanging the names of the data sets, and then
allowing read-write access again

If you specify REFERENCE for a LOB table space, you must take an inline
copy during the reorganization.

To determine which data sets are required when you execute REORG
SHRLEVEL REFERENCE.

If you specify REFERENCE, you cannot specify the following parameters:
v LOG. Reorganization with REFERENCE always creates an image copy

and always refrains from logging records during reloading.
v UNLOAD PAUSE, UNLOAD ONLY, or UNLOAD EXTERNAL.

Reorganization with REFERENCE always uses UNLOAD CONTINUE,
which is the default value. (You can explicitly specify UNLOAD
CONTINUE or none of the UNLOAD options, but you cannot specify
UNLOAD PAUSE, UNLOAD ONLY, or UNLOAD EXTERNAL.)

v MAPPINGTABLE.

Specifying REORG TABLESPACE PART SHRLEVEL REFERENCE with the
REORG_PART_SORT_NPSI subsystem parameter enabled might require
larger sort work data sets because of the increased number of keys sorted
for nonpartitioned secondary indexes.

Specifying SHRLEVEL REFERENCE or CHANGE on an entire XML
partitioned table space converts the XML table space to extended 10-byte
format if one of the following is true:
v The UTILITY OBJECT CONVERSION subsystem parameter is set to

EXTENDED or NOBASIC.
v The RBALRSN_CONVERSION EXTENDED keywords are specified.

554 Utility Guide and Reference

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|

Restriction: You cannot specify SHRLEVEL REFERENCE when REORG
TABLESPACE with PART is run on a NOT LOGGED table space on which
nonpartitioned indexes are defined.

CHANGE
Specifies that reorganization is to operate as follows:
v By unloading from the area that is being reorganized (while applications

can read and write to the area)
v Reloading into a shadow copy of that area (while applications have

read-write access to the original copy of the area)
v Applying the log of the original copy to the shadow copy (while

applications can read and usually write to the original copy)
v Switching the future access of an application from the original copy to

the shadow copy by exchanging the names of the data sets, and then
allowing read-write access again

To determine which data sets are required when you execute REORG
SHRLEVEL CHANGE.

If you specify CHANGE, you cannot specify the following parameters:
v LOG. Reorganization with CHANGE always creates an image copy and

always refrains from logging records during reloading.
v UNLOAD PAUSE, UNLOAD ONLY, or UNLOAD EXTERNAL.

Reorganization with CHANGE always uses UNLOAD CONTINUE,
which is the default value. (You can explicitly specify UNLOAD
CONTINUE or none of the UNLOAD options, but you cannot specify
UNLOAD PAUSE, UNLOAD ONLY, or UNLOAD EXTERNAL.)

Performing REORG TABLESPACE PART SHRLEVEL CHANGE with the
REORG_PART_SORT_NPSI subsystem parameter enabled might require
larger sort work data sets because of the increased number of keys sorted
for nonpartitioned secondary indexes.

Specifying SHRLEVEL REFERENCE or CHANGE on an entire XML
partitioned table space converts the XML table space to extended 10-byte
format if one of the following is true:
v The UTILITY OBJECT CONVERSION subsystem parameter is set to

EXTENDED or NOBASIC.
v The RBALRSN_CONVERSION EXTENDED keywords are specified.

Restrictions:

v You cannot specify SHRLEVEL CHANGE if the table space has the NOT
LOGGED attribute, unless the table space is a LOB table space.

v If you specify SHRLEVEL CHANGE in a REORG TABLESPACE control
statement that completes the process of recovery to a point in time prior
to the materialization of pending definition changes, REORG issues a
message, and uses SHRLEVEL REFERENCE.

DEADLINE
Specifies the deadline for the SWITCH phase to begin. If DB2 estimates that
the SWITCH phase will not begin by the deadline, DB2 issues the messages
that the DISPLAY UTILITY command would issue and then terminates the
reorganization.

The final result and all the timestamp calculation of DEADLINE will be in
TIMESTAMP(6).

Chapter 25. REORG TABLESPACE 555

|
|
|
|

|
|
|

|
|

|

|
|

|
|
|
|

If REORG SHRLEVEL REFERENCE or SHRLEVEL CHANGE terminates
because of a DEADLINE specification, DB2 issues message DSNU374I with
reason code 2 but does not set a restrictive status.

NONE
Specifies that a deadline by which the SWITCH phase of log processing
must begin does not exist.

timestamp
Specifies the deadline for the SWITCH phase of log processing to begin.
This deadline must not have already occurred when REORG is executed.

labeled-duration-expression
Calculates the deadline for the SWITCH phase of log processing to begin.
The calculation is based on either CURRENT TIMESTAMP or CURRENT
DATE. You can add or subtract one or more constant value to specify the
deadline. This deadline must not have already occurred when REORG is
executed. CURRENT TIMESTAMP and CURRENT DATE are evaluated
once, when the REORG statement is first processed. If a list of objects is
specified, the same value will be in effect for all objects in the list.

CURRENT_DATE
Specifies that the deadline is to be calculated based on the CURRENT
DATE.

CURRENT_TIMESTAMP
Specifies that the deadline is to be calculated based on the CURRENT
TIMESTAMP.

WITH TIME ZONE
Specifies that the CURRENT TIMESTAMP is compared with the time
zone column. The timestamp precision of the special register
CURRENT TIMESTAMP should be the same as the column timestamp
precision. Otherwise the default timestamp precision is used. The time
zone of CURRENT TIMESTAMP is the value of special register
CURRENT TIMEZONE. The comparison is done by comparing the
UTC portion of the timestamp.

constant
Indicates a unit of time and is followed by one of the seven duration
keywords: YEARS, MONTHS, DAYS, HOURS, MINUTES, SECONDS,
or MICROSECONDS. The singular form of these words is also
acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
MICROSECOND.

DRAIN_WAIT integer
Specifies the number of seconds that the utility waits when draining the table
space or index. The specified time is the aggregate time for objects that are to
be reorganized. This value overrides the values that are specified by IRLMRWT
and UTIMOUT. Valid values for integer are from 0 to 1800. If the keyword is
omitted or if a value of 0 is specified, the utility uses the value of the lock
timeout system parameter IRLMRWT.

RETRY integer
Specifies the maximum number of retries that REORG is to attempt. Valid
values for integer are from 0 to 255.

Specifying RETRY can lead to increased processing costs and can result in
multiple or extended periods of read-only access. For example, when you
specify RETRY and SHRLEVEL CHANGE, the size of the copy that is taken by
REORG might increase.

556 Utility Guide and Reference

The default value is the value of the UTIMOUT subsystem parameter.

RETRY_DELAY integer
Specifies the minimum duration, in seconds, between retries. Valid values
for integer are from 1 to 1800.

If you do not specify RETRY_DELAY, REORG TABLESPACE uses the
smaller of the following two values:
v DRAIN_WAIT value × RETRY value
v DRAIN_WAIT value × 10

MAPPINGTABLE table-name
Specifies the name of the mapping table that REORG TABLESPACE is to use to
map between the RIDs of data records in the original copy of the area and the
corresponding RIDs in the shadow copy. Enclose the table name in quotation
marks if the name contains a blank. If a mapping table is required, and one is
not specified, REORG will create it.

MAPPINGDATABASE database-name
Specifies the database in which REORG implicitly creates the mapping table
and index objects. This keyword overrides the subsystem parameter value in
REORG_MAPPING_DATABASE. The value cannot be DSNDB01, DSNDB06,
DSNDB07, implicit database, and work file or temporary database.

MAXRO integer
Specifies the maximum amount of time for the last iteration of log processing.
During that iteration, applications have read-only access. MAXRO is a log
phase parameter. If MAXRO is specified when a log phase is not needed, an
error message is issued.

The actual execution time of the last iteration might exceed the specified value
for MAXRO.

The ALTER UTILITY command can change the value of MAXRO.

The default value is the RETRY_DELAY default value.

integer
integer is the number of seconds. Specifying a small positive value reduces
the length of the period of read-only access, but it might increase the
elapsed time for REORG to complete. If you specify a huge positive value,
the second iteration of log processing is probably the last iteration.

DEFER
Specifies that the iterations of log processing with read-write access can
continue indefinitely. REORG never begins the final iteration with
read-only access, unless you change the MAXRO value with ALTER
UTILITY.

If you specify DEFER, you should also specify LONGLOG CONTINUE.

If you specify DEFER, and DB2 determines that the actual time for an
iteration and the estimated time for the next iteration are both less than 5
seconds, DB2 adds a 5 second pause to the next iteration. This pause
reduces consumption of processor time. The first time this situation occurs
for a given execution of REORG, DB2 sends message DSNU362I to the
console. The message states that the number of log records that must be
processed is small and that the pause occurs. To change the MAXRO value
and thus cause REORG to finish, execute the ALTER UTILITY command.

Chapter 25. REORG TABLESPACE 557

|
|
|
|
|

DB2 adds the pause whenever the situation occurs; however, DB2 sends
the message only if 30 minutes have elapsed since the last message was
sent for a given execution of REORG.

DRAIN
Specifies drain behavior at the end of the log phase after the MAXRO
threshold is reached and when the last iteration of the log is to be applied.
DRAIN is a log phase parameter. If DRAIN is specified when a log phase is
not needed, an error message is issued.

WRITERS
Specifies that DB2 drains only the writers during the log phase after the
MAXRO threshold is reached and then issues DRAIN ALL on entering the
switch phase.

ALL
Specifies the current default action, in which DB2 is to drain all readers
and writers during the log phase, after the MAXRO threshold is reached.

Consider specifying DRAIN ALL if the following conditions are both true:
v SQL update activity is high during the log phase.
v The default behavior results in a large number of -911 SQL error

messages.

Related information:

“Claim classes that REORG TABLESPACE drains” on page 596

LONGLOG
Specifies the action that DB2 is to perform, after sending a message to the
console, if the number of records that the next iteration of logging is to process
is not sufficiently lower than the number that the previous iterations processed.
This situation means that the reading of the log by the REORG TABLESPACE
utility is not being done at the same time as the writing of the application
log.LONGLOG is a log phase parameter. If LONGLOG is specified when a log
phase is not needed, an error message is issued.

CONTINUE
Specifies that until the time on the JOB statement expires, DB2 is to
continue performing reorganization, including iterations of log processing,
if the estimated time to perform an iteration exceeds the time that is
specified for MAXRO.

A value of DEFER for MAXRO and a value of CONTINUE for LONGLOG
together mean that REORG is to continue allowing access to the original
copy of the area that is being reorganized and does not switch to the
shadow copy. The user can execute the ALTER UTILITY command with a
large value for MAXRO to initiate switching.

TERM
Specifies that DB2 is to terminate the reorganization after the delay that is
specified by the DELAY parameter.

DRAIN
Specifies that DB2 is to drain the write claim class after the delay that is
specified by the DELAY parameter. This action forces the final iteration of
log processing to occur. DRAIN is a log phase parameter. If DRAIN is
specified when a log phase is not needed, an error message is issued.

DELAY integer
Specifies the minimum interval between the time that REORG sends the

558 Utility Guide and Reference

|

LONGLOG message to the console and the time that REORG performs the
action that is specified by the LONGLOG parameter. DELAY is a log phase
parameter. If DELAY is specified when a log phase is not needed, an error
message is issued.

integer is the number of seconds.

The default value is 1200.

TIMEOUT
Specifies the action that is to be taken if the REORG utility gets a timeout
condition while trying to drain an object in either the log or switch phases.

TERM
Indicates that DB2 is to behave as follows if you specify the TERM option
and a timeout condition occurs:
1. DB2 issues an implicit TERM UTILITY command, causing the utility to

end with a return code 8.
2. DB2 issues the DSNU590I and DSNU170I messages.
3. DB2 leaves the object in a read-write state.

ABEND
Indicates that, if a timeout condition occurs, DB2 takes one of the following
actions:
v If DRAIN ALL is specified, DB2 leaves the object in a UTRW state.
v If DRAIN WRITERS is specified or used by default:

– If the failure occurs when there is a write drain lock on the object,
DB2 leaves the object in a UTRW state.

– If the failure occurs when there is a read drain lock on the object, DB2
leaves the object in a UTRO state.

LOGRANGES
Specifies whether REORG is to use SYSLGRNX information for the LOG phase.

YES
REORG uses SYSLGRNX information for the LOG phase whenever
possible. This option is the default behavior.

NO REORG does not use SYSLGRNX information for the LOG phase. This
option can cause REORG to run much longer. In a data sharing
environment this option can result in the merging of all logs from all
members. This option is feasible when there is a known integrity issue
with SYSLGRNX entries and performance problems in accessing
SYSLGRNX for log read determination.

DRAIN_ALLPARTS
Specifies the action to take during a part level REORG TABLESPACE
SHRLEVEL REFERENCE or CHANGE when a nonpartitioned secondary index
is defined on a partitioned table space.

NO REORG drains the target data partitions serially followed by the
nonpartitioned secondary indexes. This option is the default behavior.

YES
REORG obtains the table space level drain on the entire partitioned table
space first, before draining the target data partitions and the indexes. This
option can provide relief by eliminating drain timeout or deadlocks caused
by the reverse order of object-draining by REORG and object-claiming by
DML statements.

Chapter 25. REORG TABLESPACE 559

|
|

|
|
|

||
|
|
|
|
|

|
|
|
|

||
|

|
|
|
|
|
|

SWITCHTIME
Specifies the time for the final log iteration of the LOG phase to begin. The
final result and all of the time stamp calculations of SWITCHTIME are in
TIMESTAMP(6). This keyword can be specified with the MAXRO keyword. If
MAXRO DEFER is not specified, REORG enters the final log iteration of the
LOG phase before the specified SWITCHTIME value if the specified or
defaulted MAXRO criteria is met. When MAXRO DEFER is specified, REORG
does not attempt to enterto the final log iteration until the specified
SWITCHTIME is met or affected by an external ALTER UTILITY command in
the changing of its MAXRO value.

NONE
Does not specify a time for the final log iteration of the LOG phase. This
option is the default behavior.

timestamp
Specifies the time that the final log iteration of the LOG phase is to begin.
This time must not have already occurred when REORG is run.

labeled-duration-expression
Calculates the time for the final log iteration of LOG phase is to begin. The
calculation is based on either CURRENT TIMESTAMP or CURRENT
DATE. You can add or subtract one or more constant values to specify the
switch time. This switch time must not have already occurred when
REORG is run. CURRENT TIMESTAMP and CURRENT DATE are
evaluated once, when the REORG statement is first processed. If a list of
objects is specified, the same value is in effect for all objects in the list.

CURRENT_DATE
Specifies that the deadline is to be calculated based on the CURRENT
DATE.

CURRENT_TIMESTAMP
Specifies that the deadline is to be calculated based on the CURRENT
TIMESTAMP.

WITH TIME ZONE
Specifies that the CURRENT TIMESTAMP is compared with the time
zone column. The time stamp precision of the special register
CURRENT TIMESTAMP should be the same as the column time stamp
precision. Otherwise, the default time stamp precision is used. The
time zone of CURRENT TIMESTAMP is the value of special register
CURRENT TIMEZONE. The comparison is done by comparing the
Coordinated Universal Time portion of the time stamp.

constant
Indicates a unit of time and is followed by one of the seven duration
keywords: YEARS, MONTHS, DAYS, HOURS, MINUTES, SECONDS,
or MICROSECONDS. The singular form of these words is also
acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
MICROSECOND.

NEWMAXRO
Specifies the maximum amount of time for the last log iteration after
SWITCHTIME is met. The SWITCHTIME keyword must also be specified. This
value overrides the existing MAXRO parameter that is specified. The default is
NONE.

NONE
Specifies that when the specified SWITCHTIME is met, REORG proceeds

560 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

to the last log iteration without taking log processing time in to
consideration. Specifying NONE will result in REORG entering the last log
iteration almost immediately at or after the specified SWITCHTIME. This
option is the default.

integer
integer is the number of seconds. Specifying a small positive value reduces
the length of the period of read-only access, but it might increase the
elapsed time for REORG to complete. Specifying a large positive value
probably ensures that REORG will enter the last log iteration almost
immediately at or after the specified SWITCHTIME.

FORCE
Specifies the action to be taken when the utility is draining the table space.

When REORG FORCE is canceling the threads, it performs a soft cancel similar
to the cancel that the CANCEL THREAD does.

NONE
Specifies that no action is taken when REORG performs drain. The REORG
utility waits for the claimers to commit. The utility will timeout or restart
when the drain fails, as determined by existing conditions.

READERS
Specifies that read claimers are canceled when REORG is requesting a
drain all on the last RETRY processing.

ALL
Specifies that both read and write claimers are canceled when REORG is
requesting a drain all or drain writers on the last RETRY processing.

SORTNPSI
Specifies when REORG TABLESPACE PART is to sort all keys of a
non-partitioned secondary index. This keyword is ignored for a REORG that is
not partition-level or a REORG without non-partitioned secondary indexes. If
SORTNPSI is not specified, the value is determined by
REORG_PART_SORT_NPSI subsystem parameter. The benefit of sorting all
keys of a non-partitioned secondary index increases as the ratio of data that is
reorganized to total data in the table space increases.

The default value is the value of subsystem parameter
REORG_PART_SORT_NPSI.

AUTO
Specifies that if sorting all keys of the non-partitioned secondary indexes
improves the elapsed time and CPU performance, all keys are sorted.

YES
Specifies that if sorting all keys of the non-partitioned secondary indexes
improves the elapsed time, all keys are sorted.

NO Specifies that only keys of the non-partitioned secondary indexes that are
in the scope of the REORG are sorted.

AUX
Specifies that the LOB table spaces associated with the partitions of a
partitioned table space being reorganized by the REORG utility are also
reorganized.

NO Indicates that a reorganization is performed on the base table space, but
the associated LOB table spaces are not reorganized.

Chapter 25. REORG TABLESPACE 561

|
|
|
|

|
|
|
|
|
|

If the AUX keyword is omitted, AUX NO is the default unless one or more
of the cases described in AUX YES are true.

AUX NO is ignored when the target table space has pending definition
changes to convert it from a simple or segmented table space to a
partition-by-growth table space. In this case, AUX YES is in effect.

LOG NO cannot be specified for a REORG operation that completes
recovery to a point in time before pending definition changes were
materialized, if there were pending definition changes on the base table
space and on the LOB table space. REORG must be run on the LOB table
space first, and then run on the base table space. When REORG is run on
the base table space, AUX YES is in effect.

For a table with LOB columns that are affected by pending alter limit keys,
a REORG job with AUX NO does not materialize the limit key changes. In
this case, you need to specify AUX YES for those changes to be
materialized.

YES
Indicates that LOB table spaces associated with the base partitioned table
space are reorganized when the base table space is reorganized. Partitions
of the associated table spaces are also reorganized.

If the AUX keyword is omitted, in the following cases, AUX YES is the
default:
v REORG TABLESPACE of a partition-by-growth base table space with

one or more LOB columns, where REORG is reorganizing more than one
partition.

v REORG TABLESPACE SHRLEVEL REFERENCE REBALANCE of a
partitioned base table space with one or more LOB columns.

v REORG TABLESPACE is run against directory table space SPT01, and
SPT01 is in the REORP or AREOR state. In this case, AUX YES is always
used.

v REORG TABLESPACE of a partitioned base table space with one or
more LOB columns where one or more partition ranges are in REORG
pending state because an ALTER TABLE PARTITION command has
been issued to change the partition key boundaries.

v REORG TABLESPACE DISCARD of a table in a partitioned table space
with one or more LOB columns.

When AUX YES is implicitly or explicitly specified, and the COPYDDN
parameter specifies a TEMPLATE utility control statement with the &SN.
or &TS. variables, REORG takes the following actions for the LOB table
spaces:
v Creates inline image copies
v Resets COPY-pending status

When AUX YES is implicitly or explicitly specified, and FlashCopy image
copies are taken as part of REORG, REORG produces image copies for all
of the LOB table spaces that are being reorganized.

Restrictions: When REORG with AUX YES is run on a partition-by-growth
table space with LOB columns, the following restrictions apply:
v If REORG generates a new partition during the LOG phase, REORG

cannot create inline image copies for LOB table spaces for the newly

562 Utility Guide and Reference

|
|
|
|
|
|

|
|
|
|

created partition. REORG leaves the LOB tables space in COPY-pending
status and issues a warning message.

v If you specify that REORG is to create inline copies and use a template
for the copies, do not use the STACK YES option for the template. If you
do so, REORG fails, because the base and auxiliary table spaces cannot
be stacked on the same tape volume. If you need to use a template with
the STACK YES option, specify AUX NO on the REORG statement and
then reorganize and copy the auxiliary table spaces separately.

Recommendation: After running REORG with AUX YES on a
partition-by-growth table space with LOB columns, run COPY with SCOPE
PENDING and a LISTDEF utility control statement that includes the LOB
table spaces. Doing so creates a recovery base and removes COPY-pending
status for the LOB table spaces.

FASTSWITCH
Specifies which switch methodology is to be used for a given reorganization.

When FASTSWITCH is specified with SHRLEVEL CHANGE or SHRLEVEL
REFERENCE, the UTILITY_OBJECT_CONVERSION subsystem parameter
setting NONE, BASIC, or EXTENDED is accepted.

YES
Enables the SWITCH phase to use the FASTSWITCH methodology. This
option is not allowed for the catalog (DSNDB06) or directory (DSNDB01).

NO Causes the SWITCH phase to use IDCAMS RENAME.

When FASTSWITCH NO is specified with SHRLEVEL REFERENCE or
SHRLEVEL CHANGE, pending definition changes are not materialized.

OFFPOSLIMIT integer

The OFFPOSLIMIT option is deprecated, and the alternative is running
DSNACCOX.Indicates that the specified value is to be compared to the value
that DB2 calculates for the explicit clustering indexes of every table in the
specified partitions that are in SYSIBM.SYSINDEXPART. The calculation is
computed as follows:
(NEAROFFPOSF + FAROFFPOSF) × 100 / CARDF

Alternatively, DB2 checks the values in SYSINDEXPART for a single
nonpartitioned table space, or for each partition if you specified an entire
partitioned table space as the target object. If at least one calculated value
exceeds the OFFPOSLIMIT value, REORG is performed or recommended. This
option is valid for non-LOB table spaces only.

integer is the value that is to be compared and can range from 0 to 65535.

The default value is 10.

INDREFLIMIT integer

The INDREFLIMIT option is deprecated, and the alternative is running
DSNACCOX.Indicates that the specified value is to be compared to the value
that DB2 calculates for the specified partitions in SYSIBM.SYSTABLEPART for
the specified table space. The calculation is computed as follows:
(NEARINDREF + FARINDREF) × 100 / CARDF

Alternatively, DB2 checks the values in SYSTABLEPART for a single
nonpartitioned table space, or for each partition if you specified an entire
partitioned table space as the target object. If at least one calculated value

Chapter 25. REORG TABLESPACE 563

|
|
|

|
|

|
|

exceeds the calculated value exceeds the INDREFLIMIT value, REORG is
performed or recommended. This option is valid for non-LOB table spaces
only.

integer is the value that is to be compared and can range from 0 to 65535.

The default value is 10.

REPORTONLY

The REPORTONLY option is deprecated, and the alternative is running
DSNACCOX.Specifies that REORG is only to be recommended, not performed.
REORG produces a report with one of the following return codes:
1 No limit met; no REORG is to be performed or recommended.
2 REORG is to be performed or recommended.

UNLOAD
Specifies whether the utility job is to continue processing or end after the data
is unloaded. Unless you specify UNLOAD EXTERNAL, data can be reloaded
only into the same table and table space (as defined in the DB2 catalog) on the
same subsystem. (This does not preclude VSAM redefinition during UNLOAD
PAUSE.)

You must specify UNLOAD ONLY for the data set to be in a format that is
compatible with the FORMAT UNLOAD option of LOAD. However, with
LOAD, you can load the data only into the same object from which it is
unloaded.

This option is valid for non-LOB table spaces only.

You must specify UNLOAD EXTERNAL for the data set to be in a format that
is usable by LOAD without the FORMAT UNLOAD option. With UNLOAD
EXTERNAL, you can load the data into any table with compatible columns in
any table space on any DB2 subsystem.

CONTINUE
Specifies that, after the data has been unloaded, the utility is to continue
processing. An edit routine can be called to decode a previously encoded
data row if an index key requires extraction from that row.

If you specify DISCARD, rows are decompressed and edit routines are
decoded. If you also specify DISCARD to a file, rows are decoded by field
procedure, and the following columns are converted to DB2 external
format:
v SMALLINT
v INTEGER
v FLOAT
v DECIMAL
v TIME
v TIMESTAMP

Otherwise, edit routines or field procedures are bypassed on both the
UNLOAD and RELOAD phases for table spaces. Validation procedures are
not invoked during either phase.

PAUSE

The UNLOAD PAUSE option is deprecated, and the alternative is running
the UNLOAD utility.Specifies that, after the data has been unloaded,

564 Utility Guide and Reference

|
|

|
|

processing is to end. The utility stops and the RELOAD status is stored in
SYSIBM.SYSUTIL so that processing can be restarted with RELOAD
RESTART(PHASE).

This option is useful if you want to redefine data sets during
reorganization. For example, with a user-defined data set, you can:
v Run REORG with the UNLOAD PAUSE option.
v Redefine the data set by using Access Method Services.
v Restart REORG by resubmitting the previous job and specifying

RESTART(PHASE).

However, you cannot use UNLOAD PAUSE if you specify the LIST option.

ONLY

The UNLOAD ONLY option is deprecated, and the alternative is running
the UNLOAD utility.Specifies that, after the data has been unloaded, the
utility job ends and the status that corresponds to this utility ID is
removed from SYSIBM.SYSUTIL.

If you specify UNLOAD ONLY with REORG TABLESPACE, any edit
routine or field procedure is executed during record retrieval in the unload
phase.

This option is not allowed for any table space in DSNDB01 or DSNDB06.

The DISCARD and WHEN options are not allowed with UNLOAD ONLY.

EXTERNAL

The UNLOAD EXTERNAL option is deprecated, and the alternative is
running the UNLOAD utility.Specifies that, after the data has been
unloaded, the utility job is to end and the status that corresponds to this
utility ID is removed.

The UNLOAD utility has more functions. If you specify UNLOAD
EXTERNAL with REORG TABLESPACE, rows are decompressed, edit
routines are decoded, field procedures are decoded, and SMALLINT,
INTEGER, FLOAT, DECIMAL, DATE, TIME, and TIMESTAMP columns
are converted to DB2 external format. Validation procedures are not
invoked.

Do not specify the EXTERNAL keyword for:
v Table spaces in DSNDB01 or DSNDB06
v Base tables with XML columns
v XML table spaces

The DISCARD option is not allowed with UNLOAD EXTERNAL.

NOPAD

Specifies whether the variable-length columns in the unloaded or discarded
records are to occupy the actual data length without additional padding. The
unloaded records can have varying lengths.

YES
Specifies that the variable-length columns in the unloaded or discarded
records are to occupy the actual data length without additional padding.

NO Specifies that REORG processing pads variable-length columns in the
unloaded or discarded records to their maximum length; the unloaded or
discarded records have equal lengths for each table.

Chapter 25. REORG TABLESPACE 565

|
|

|
|

|
|
|

|
|
|

||
|
|

You can specify the NOPAD option only with UNLOAD EXTERNAL or with
UNLOAD DISCARD.

Although the LOAD utility processes records with variable-length columns that
were unloaded or discarded with the NOPAD option, these records cannot be
processed by applications that process only fields that are in fixed positions.

For the generated LOAD statement to provide a NULLIF condition for fields
that are not in a fixed position, DB2 generates an input field definition with a
name in the form of DSN_NULL_IND_nnnnn, where nnnnn is the number of
the associated column.

For example, the LOAD statement that is generated for the EMP sample table
looks similar to the LOAD statement that is in the following figure:
LOAD DATA INDDN SYSREC LOG NO RESUME YES
EBCDIC CCSID(00500,00000,00000)
INTO TABLE "DSN8B10 "."EMP "
WHEN(00004:00005 = X’0012’)
("EMPNO " POSITION(00007:00012) CHAR(006)
, "FIRSTNME " POSITION(00013) VARCHAR
, "MIDINIT " POSITION(*) CHAR(001)
, "LASTNAME " POSITION(*) VARCHAR
, DSN_NULL_IND_00005 POSITION(*) CHAR(1)
, "WORKDEPT " POSITION(*) CHAR(003)

NULLIF(DSN_NULL_IND_00005)=X’FF’
, DSN_NULL_IND_00006 POSITION(*) CHAR(1)
, "PHONENO " POSITION(*) CHAR(004)

NULLIF(DSN_NULL_IND_00006)=X’FF’
, DSN_NULL_IND_00007 POSITION(*) CHAR(1)
, "HIREDATE " POSITION(*) DATE EXTERNAL

NULLIF(DSN_NULL_IND_00007)=X’FF’
, DSN_NULL_IND_00008 POSITION(*) CHAR(1)
, "JOB " POSITION(*) CHAR(008)

NULLIF(DSN_NULL_IND_00008)=X’FF’
, DSN_NULL_IND_00009 POSITION(*) CHAR(1)
, "EDLEVEL " POSITION(*) SMALLINT

NULLIF(DSN_NULL_IND_00009)=X’FF’
, DSN_NULL_IND_00010 POSITION(*) CHAR(1)
, "SEX " POSITION(*) CHAR(001)

NULLIF(DSN_NULL_IND_00010)=X’FF’
, DSN_NULL_IND_00011 POSITION(*) CHAR(1)
, "BIRTHDATE " POSITION(*) DATE EXTERNAL

NULLIF(DSN_NULL_IND_00011)=X’FF’
, DSN_NULL_IND_00012 POSITION(*) CHAR(1)
, "SALARY " POSITION(*) DECIMAL

NULLIF(DSN_NULL_IND_00012)=X’FF’
, DSN_NULL_IND_00013 POSITION(*) CHAR(1)
, "BONUS " POSITION(*) DECIMAL

NULLIF(DSN_NULL_IND_00013)=X’FF’
, DSN_NULL_IND_00014 POSITION(*) CHAR(1)
, "COMM " POSITION(*) DECIMAL

NULLIF(DSN_NULL_IND_00014)=X’FF’
)

FROM TABLE
Specifies the tables that are to be reorganized. The table space that is specified
in REORG TABLESPACE can store more than one table. All tables that are
specified by FROM TABLE statements must be unique. All tables are unloaded
for UNLOAD EXTERNAL, and all tables might be subject to DISCARD. If you

Figure 67. Sample LOAD statement generated by REORG TABLESPACE with the NOPAD
keyword

566 Utility Guide and Reference

specify UNLOAD EXTERNAL and want to limit which tables and rows are
unloaded, specify FROM TABLE with the WHEN option. If you specify
DISCARD, you must qualify the rows that you want to discard by specifying
FROM TABLE with the WHEN option.

Do not specify FROM TABLE with REORG TABLESPACE LIST.

table-name
Specifies the name of the table that is to be qualified by the following
WHEN clause. The table must be described in the catalog and must not be
a catalog table. If the table name is not qualified by a schema name, the
authorization ID of the person who invokes the utility job step is used as
the schema qualifier of the table name. Enclose the table name in quotation
marks if the name contains a blank.

WHEN
Indicates which records in the table space are to be unloaded (for UNLOAD
EXTERNAL) or discarded (for DISCARD). If you do not specify a WHEN
clause for a table in the table space, all of the records are unloaded (for
UNLOAD EXTERNAL), or none of the records is discarded (for DISCARD).

The option following WHEN describes the conditions for UNLOAD or
DISCARD of records from a table and must be enclosed in parentheses.

selection condition
Specifies a condition that is true, false, or unknown about a specific row.
When the condition is true, the row qualifies for UNLOAD or DISCARD.
When the condition is false or unknown, the row does not qualify.

A selection condition consists of at least one predicate and any logical
operators (AND, OR, NOT). The result of a selection condition is derived by
applying the specified logical operators to the result of each specified
predicate. If logical operators are not specified, the result of the selection
condition is the result of the specified predicate.

Selection conditions within parentheses are evaluated first. If the order of
evaluation is not specified by parentheses, AND is applied before OR.

If the control statement is in the same encoding scheme as the input data,
you can code character constants in the control statement. Otherwise, if the
control statement is not in the same encoding scheme as the input data,
you must code the condition with hexadecimal constants. If the target table
is ASCII, any character constants must be specified in hexadecimal. For
example, if the table space is in EBCDIC and the control statement is in
UTF-8, use (1:1)=X'F1' in the condition rather than (1:1)='1'.

Restriction: REORG TABLESPACE cannot filter rows that contain
encrypted data.

predicate
A predicate specifies a condition that is true, false, or unknown about a
given row or group.

basic predicate
Specifies the comparison of a column with a constant. If the value of
the column is null, the result of the predicate is unknown. Otherwise,
the result of the predicate is true or false.

Predicate
Is true if and only if

Chapter 25. REORG TABLESPACE 567

column-name = constant
The column is equal to the constant or labeled duration
expression.

column-name < > constant
The column is not equal to the constant or labeled duration
expression.

column-name > constant
The column is greater than the constant or labeled duration
expression.

column-name < constant
The column is less than the constant or labeled duration
expression.

column-name > = constant
The column is greater than or equal to the constant or labeled
duration expression.

column-name < = constant
The column is less than or equal to the constant or labeled
duration expression.

Comparison operators: The following forms of the comparison
operators are also supported in basic and quantified predicates: !=, !<,
and !>, where ! means not. In addition, in code pages 437, 819, and
850, the forms ¬=, ¬<, and ¬> are supported. All these product-specific
forms of the comparison operators are intended only to support
existing REORG statements that use these operators and are not
recommended for use in new REORG statements.

A not sign (¬), or the character that must be used in its place in certain
countries, can cause parsing errors in statements that are passed from
one DBMS to another. The problem occurs if the statement undergoes
character conversion with certain combinations of source and target
CCSIDs. To avoid this problem, substitute an equivalent operator for
any operator that includes a not sign. For example, substitute '< >' for
'¬=', '<=' for '¬>', and '>=' for '¬<'.

BETWEEN predicate
Indicates whether a given value is between two other given values that
are specified in ascending order. Each of the predicate's two forms
(BETWEEN and NOT BETWEEN) has an equivalent search condition,
as shown in the following table. If relevant, the table also shows any
equivalent predicates.

Table 75. BETWEEN predicates and their equivalent search conditions

Predicate Equivalent predicate Equivalent search condition

column BETWEEN value1
AND value2

None
(column >= value1 AND
column <= value2)

column NOT BETWEEN
value1 AND value2

NOT(column BETWEEN value1
AND value2)

(column < value1 OR column >
value2)

Note: The values can be constants or labeled duration expressions.

For example, the following predicate is true for any row when salary is
greater than or equal to 10 000 and less than or equal to 20 000:
SALARY BETWEEN 10000 AND 20000

568 Utility Guide and Reference

labeled-duration-expression
Specifies an expression that begins with the following special register
values:
v CURRENT DATE (CURRENT_DATE is acceptable.)
v CURRENT TIMESTAMP (CURRENT_TIMESTAMP is acceptable.)

Optionally, the expression contains the arithmetic operations of
addition or subtraction, expressed by a number followed by one of the
seven duration keywords:
v YEARS (or YEAR)
v MONTHS (or MONTH)
v DAYS (or DAY)
v HOURS (or HOUR)
v MINUTES (or MINUTE)
v SECONDS (or SECOND)
v MICROSECONDS (or MICROSECOND)

Utilities evaluate a labeled-duration-expression as a timestamp and
implicitly perform a conversion to a date if the comparison is with a
date column.

Incrementing and decrementing CURRENT DATE: The result of
adding a duration to a date, or of subtracting a duration from a date, is
itself a date. (For the purposes of this operation, a month denotes the
equivalent of a calendar page. Adding months to a date, then, is like
turning the pages of a calendar, starting with the page on which the
date appears.) The result must fall between the dates January 1, 0001
and December 31, 9999 inclusive.

The following table describes the effects of adding and subtracting
years, months, days, and other dates.

Table 76. Effects of adding durations to and subtracting durations from CURRENT DATE

Value that is added or
subtracted Effect

Years
Adding or subtracting a duration of years affects only the year
portion of the date. The month is unchanged, as is the day unless
the result would be February 29 of a non-leap-year. In this case,
the day portion of the result is set to 28.

Months
Adding or subtracting a duration of months affects only months
and, if necessary, years. The day portion of the date is unchanged
unless that day does not exist in the resulting month. (September
31, for example). In this case the day is set to the last day of the
month.

Adding a month to a date gives the same day one month later
unless that day does not exist in the later month. In that case, the
day in the result is set to the last day of the later month. For
example, January 28 plus one month gives February 28; one
month added to January 29, 30, or 31 results in either February 28
or, for a leap year, February 29. If one or more months is added
to a given date and then the same number of months is
subtracted from the result, the final date is not necessarily the
same as the original date.

Chapter 25. REORG TABLESPACE 569

Table 76. Effects of adding durations to and subtracting durations from CURRENT
DATE (continued)

Value that is added or
subtracted Effect

Days Adding or subtracting a duration of days affects the day portion
of the date, and potentially the month and year.

Dates When a positive date duration is added to a date, or a negative
date duration is subtracted from a date, the date is incremented
by the specified number of years, months, and days.

When a positive date duration is subtracted from a date, or a
negative date duration is added to a date, the date is
decremented by the specified number of days, months, and years.

The order in which labeled date durations are added to and subtracted
from dates can affect the results. When you add labeled date durations
to a date, specify them in the order of YEARS + MONTHS + DAYS.
When you subtract labeled date durations from a date, specify them in
the order of DAYS - MONTHS - YEARS. For example, to add one year
and one day to a date, specify the following code:
CURRENT DATE + 1 YEAR + 1 DAY

To subtract one year, one month, and one day from a date, specify the
following code:
CURRENT DATE - 1 DAY - 1 MONTH - 1 YEAR

Incrementing and decrementing timestamps: The result of adding a
duration to a timestamp, or of subtracting a duration from a
timestamp, is itself a timestamp. Date and time arithmetic is performed
as previously defined, except that an overflow or underflow of hours is
carried into the date part of the result, which must be within the range
of valid dates. For example, if the current date is January 15 and the
current time is 20:00, CURRENT_TIMESTAMP+8 HOURS yields January 16,
04:00. Likewise, CURRENT_TIMESTAMP-22 HOURS yields January 14, 22:00.

IN predicate
Specifies that a value is to be compared with a set of values. In the IN
predicate, the second operand is a set of one or more values that are
specified by constants. Each of the predicate's two forms (IN and NOT
IN) has an equivalent search condition, as shown in the following
table.

Table 77. IN predicates and their equivalent search conditions

Predicate Equivalent search condition

value1 IN (value1, value2,..., valuen) (value1 = value2 OR ... OR value1 = valuen)

value1 NOT IN (value1, value2,..., valuen) value1 ¬= value2 AND ... AND value1 ¬= valuen)

Note: The values can be constants or labeled duration expressions.

For example, the following predicate is true for any row with an
employee in department D11, B01, or C01:
WORKDEPT IN (’D11’, ’B01’, ’C01’)

LIKE predicate
Qualifies strings that have a certain pattern. Specify the pattern by
using a string in which the underscore and percent sign characters can

570 Utility Guide and Reference

be used as wildcard characters. The underscore character (_) represents
a single, arbitrary character. The percent sign (%) represents a string of
zero or more arbitrary characters.

In this description, let x denote the column that is to be tested and y
denote the pattern in the string constant.

The following rules apply to predicates of the form “x LIKE y...”. If
NOT is specified, the result is reversed.
v When x or y is null, the result of the predicate is unknown.
v When y is empty and x is not empty, the result of the predicate is

false.
v When x is empty and y is not empty, the result of the predicate is

false unless y consists only of one or more percent signs.
v When x and y are both empty, the result of the predicate is true.
v When x and y are both not null, the result of the predicate is true if

x matches the pattern in y and false if x does not match the pattern
in y.

The pattern string and the string that is to be tested must be of the
same type; that is, both x and y must be character strings, or both x
and y must be graphic strings. When x and y are graphic strings, a
character is a DBCS character. When x and y are character strings and
x is not mixed data, a character is an SBCS character, and y is
interpreted as SBCS data regardless of is subtype.

Within the pattern, a percent sign (%) or underscore character (_) can
represent the literal occurrence of a percent sign or underscore
character. To have a literal meaning, each character must be preceded
by an escape character.

The ESCAPE clause designates a single character. You can use that
character, and only that character, multiple times within the pattern as
an escape character. When the ESCAPE clause is omitted, no character
serves as an escape character and percent signs and underscores in the
pattern can only be used to represent arbitrary characters; they cannot
represent their literal occurrences.

The following rules apply to the use of the ESCAPE clause:
v The ESCAPE clause cannot be used if x is mixed data.
v If x is a character string, the data type of the string constant must be

character string. If x is a graphic string, the data type of the string
constant must be graphic string. In both cases, the length of the
string constant must be 1.

v The pattern must not contain the escape character except when
followed by the escape character, '%', or '_'. For example, if '+' is the
escape character, any occurrences of '+' other than '++', '+_', or '+%'
in the pattern is an error.

When that pattern does not include escape characters, a simple
description of its meaning is:
v The underscore character (_) represents a single, arbitrary character.
v The percent sign (%) represents a string of zero or more arbitrary

characters.
v Any other character represents a single occurrence of itself.

Strings and patterns:

Chapter 25. REORG TABLESPACE 571

The string y is interpreted as a sequence of the minimum number of
substring specifiers, such that each character of y is part of exactly one
substring specifier. A substring specifier is an underscore, a percent
sign, or any non-empty sequence of characters other than an
underscore or percent sign.

The string x matches the pattern y if a partitioning of x into substrings
exists, such that:
v A substring of x is a sequence of zero or more contiguous characters,

and each character of x is part of exactly one substring.
v If the nth substring specifier is an underscore, the nth substring of x

is any single character.
v If the nth substring specifier is a percent sign, the nth substring of x

is any sequence of zero or more characters.
v If the nth substring specifier is neither an underscore nor a percent

sign, the nth substring of x is equal to that substring specifier and
has the same length as that substring specifier.

v The number of substrings of x is the same as the number of
substring specifiers.

When escape characters are present in the pattern string, an
underscore, percent sign, or escape character represents a single
occurrence of itself if and only if it is preceded by an odd number of
successive escape characters.

The way a pattern is matched to evaluate the LIKE predicate depends
on whether blanks at the end of fixed length strings are significant, or
if the blanks are ignored. When the LIKE_BLANK_INSIGNIFICANT
subsystem parameter is enabled, the LIKE predicate can produce
different results.

Mixed-data patterns:

If x is mixed data, the pattern is assumed to be mixed data, and its
special characters are interpreted as follows:
v A single-byte underscore refers to one single-byte character; a

double-byte underscore refers to one double-byte character.
v A percent sign, either single-byte or double-byte, refers to any

number of characters of any type, either single-byte or double-byte.
v Redundant shift bytes in x or y are ignored.

Related information:

LIKE predicate (DB2 SQL)

NULL predicate
Specifies a test for null values.

If the value of the column is null, the result is true. If the value is not
null, the result is false. If NOT is specified, the result is reversed.

KEEPDICTIONARY
Prevents REORG TABLESPACE from building a new compression dictionary
when unloading the rows. The REORG utility builds the compression
dictionary during the UNLOAD process. This dictionary is then used during
the RELOAD phase to compress the data.

572 Utility Guide and Reference

|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_likepredicate.htm#db2z_likepredicate

The efficiency of REORG increases with the KEEPDICTIONARY option for the
following reasons:
v The processing cost of building the compression dictionary is eliminated.
v Existing compressed rows do not need to be compressed again.
v Existing compressed rows do not need to be expanded, unless indexes

require it or SORTDATA is used.

Possible reasons for not specifying KEEPDICTIONARY are:
v If the data has changed significantly since the last dictionary was built,

rebuilding the dictionary might save a significant amount of space.
v If the current dictionary was built either by the LOAD utility or

automatically by DB2 based on records that have been inserted over time,
rebuilding the dictionary by using REORG might produce a better
compression dictionary.

v If the data is being converted from basic row format to reordered row
format, REORG will build a new dictionary for the new format. DB2 ignores
the KEEPDICTIONARY option if the REORG utility changes the table space
from basic row format to reordered row format.

KEEPDICTIONARY is valid only if a compression dictionary exists and the
table space or partition that is being reorganized has the COMPRESS YES
attribute. If a dictionary does not exist, one is built, a warning message is
issued, and all the records are compressed.

Messages DSNU234I and DSNU244I, which show compression statistics, are
not issued when you specify REORG UNLOAD CONTINUE
KEEPDICTIONARY or REORG UNLOAD PAUSE KEEPDICTIONARY.

REORG ignores the KEEPDICTIONARY option if a partition that is being
reorganized is in REORG-pending status.

Note: You must use KEEPDICTIONARY to ensure that the compression
dictionary is maintained.

STATISTICS
Specifies that statistics for the table space or associated index, or both, are to be
gathered; the statistics are reported or stored in the DB2 catalog. If statistics are
collected with the default options, only the statistics for the table space are
updated.

If you specify a table space partition or a range of partitions along with the
STATISTICS keyword, DB2 collects statistics only for the specified table space
partitions. This option is valid for non-LOB table spaces only.

If you specify a base table space with the STATISTICS keyword, DB2 does not
gather statistics for the related XML table space or its indexes.

Restrictions:

v If you specify STATISTICS for encrypted data, DB2 might not provide useful
statistics on this data.

v You cannot specify STATISTICS if you specify the CLONE keyword.

Statistics for both table space and associated indexes are collected and updated
in the DB2 catalog when:
v When pending definition changes are materialized during REORG

TABLESPACE with SHRLEVEL REFERENCE or CHANGE.

If the STATISTICS keyword in the REORG TABLESPACE statement are
specified, the options specified overwrite the default options.

Chapter 25. REORG TABLESPACE 573

Recommendation: Partition statistics can become obsolete. The partition
statistics that can be obsolete are COLGROUP statistics, statistics for key
column values in indexes, HISTOGRAM statistics, frequency statistics with
NUMCOLS > 1, and statistics for extended indexes where applicable. Run the
RUNSTATS utility to collect the partition statistics again.

If the STATISTICS keyword was not specified in the REORG TABLESPACE
statement, the following keywords are used by default:
v STATISTICS TABLE ALL
v INDEX ALL
v UPDATE ALL
v HISTORY ALL

TABLE
Specifies the table for which column information is to be gathered. All tables
must belong to the table space that is specified in the TABLESPACE option.

Do not specify STATISTICS TABLE table-name with REORG TABLESPACE LIST.
Instead, specify STATISTICS TABLE (ALL).

(ALL)
Specifies that information is to be gathered for all columns of all tables in
the table space.

(table-name)
Specifies the tables for which column information is to be gathered. If you
omit the qualifier, the user identifier for the utility job is used. Enclose the
table name in quotation marks if the name contains a blank.

If you specify more than one table, you must repeat the TABLE option.
Multiple TABLE options must be specified entirely before or after any
INDEX keyword that may also be specified. For example, the INDEX
keyword may not be specified between any two TABLE keywords.

SAMPLE integer
Indicates the percentage of rows to be sampled when collecting statistics on
non-leading-indexed columns of an index or non-indexed columns. You can
specify any value from 1 through 100.

The default value is 25. The SAMPLE option is not allowed for LOB table
spaces.

COLUMN
Specifies columns for which column information is to be gathered.

You can specify this option only if you specify a particular table for which
statistics are to be gathered (TABLE (table-name)). If you specify particular
tables and do not specify the COLUMN option, the default, COLUMN(ALL), is
used. If you do not specify a particular table when using the TABLE option,
you cannot specify the COLUMN option; however, COLUMN(ALL) is
assumed.

(ALL)
Specifies that statistics are to be gathered for all columns in the table.

(column-name, ...)
Specifies the columns for which statistics are to be gathered.

You can specify a list of column names; the maximum is 10. If you specify
more than one column, separate each name with a comma.

574 Utility Guide and Reference

INDEX
Specifies indexes for which information is to be gathered. Column information
is gathered for the first column of the index. All the indexes must be associated
with the same table space, which must be the table space that is specified in
the TABLESPACE option.

Do not specify STATISTICS INDEX index-name with REORG TABLESPACE
LIST. Instead, specify STATISTICS INDEX (ALL).

(ALL)
Specifies that the column information is to be gathered for all indexes that
are defined on tables that are contained in the table space.

(index-name)
Specifies the indexes for which information is to be gathered. Enclose the
index name in quotation marks if the name contains a blank.

COLGROUP (column-name, ...)
Indicates that the specified set of columns are treated as a group. This option
enables inline statistics to collect a cardinality value on the specified column
group. Inline statistics ignores COLGROUP when processing XML table spaces
and indexes.

When you specify the COLGROUP keyword, inline statistics collects
correlation statistics for the specified column group. If you want inline
statistics to also collect distribution statistics, specify the FREQVAL option with
COLGROUP.

(column-name, ...) specifies the names of the columns that are part of the
column group.

To specify more than one column group, repeat the COLGROUP option.

Restriction: The length of the COLGROUP value cannot exceed the maximum
length of the COLVALUE column in the SYSIBM.SYSCOLDIST catalog table.

FREQVAL
Indicates, when specified with the COLGROUP option, that frequency statistics
are also to be gathered for the specified group of columns. (COLGROUP
indicates that cardinality statistics are gathered.) One group of statistics is
gathered for each column. You must specify COUNT integer with COLGROUP
FREQVAL. The REORG TABLESPACE utility ignores FREQVAL
MOST/LEAST/BOTH when processing XML table spaces and indexes.

COUNT integer
Indicates the number of frequently occurring values to be collected from the
specified column group. For example, COUNT 20 means that DB2 collects 20
frequently occurring values from the column group. You must specify a value
for integer; no default value is assumed. Be careful when specifying a high
value for COUNT. Specifying a value of 1000 or more can increase the prepare
time for some SQL statements.

MOST
Indicates that the utility is to collect the most frequently occurring values for
the specified set of columns when COLGROUP is specified.

BOTH
Indicates that the utility is to collect the most and the least frequently
occurring values for the specified set of columns when COLGROUP is
specified.

Chapter 25. REORG TABLESPACE 575

|
|
|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

LEAST
Indicates that the utility is to collect the least frequently occurring values for
the specified set of columns when COLGROUP is specified.

HISTOGRAM
Indicates, when specified with the COLGROUP option, that histogram statistics
are to be gathered for the specified group of columns. Inline statistics ignore
HISTOGRAM when processing XML table spaces and indexes.

NUMQUANTILES integer
Indicates how many quantiles that the utility collects. The integer value must
be greater than or equal to one. The number of quantiles that you specify must
never exceed the total number of distinct values in the column or the column
group. The maximum number of quantiles is 100.

When the NUMQUANTILES keyword is omitted, NUMQUANTILES takes a
default value of 100. Based on the number of records in the table, the number
of quantiles is readjusted down to an optimal number.

KEYCARD
The KEYCARD option is deprecated in the REORG TABLESPACE control
statement and no longer needs to be specified to collect cardinality statistics on
the values in the key columns of an index.

When the STATISTICS and INDEX options are specified, the REORG
TABLESPACE utility always collects all of the distinct values in all of the 1 to n
key column combinations in an index.n is the number of columns in the index.
With the deprecation of KEYCARD, this functionality cannot be disabled.

The REORG TABLESPACE utility tolerates the specification of the KEYCARD
option. The utility does not issue any messages if the control statement
includes or excludes the KEYCARD option when STATISTICS and INDEX are
specified.

FREQVAL
Specifies that frequent-value statistics are to be collected. If you specify
FREQVAL, you must also specify NUMCOLS and COUNT.

NUMCOLS
Indicates the number of key columns to concatenate together when you
collect frequent values from the specified index. Specifying 3 means that
DB2 is to collect frequent values on the concatenation of the first three key
columns.

The default value is 1, which means DB2 is to collect frequent values on
the first key column of the index.

COUNT
Indicates the number of frequent values that are to be collected. For
example, specifying 15 means that DB2 is to collect 15 frequent values from
the specified key columns.

The default value is 10.

HISTOGRAM
Indicates that histogram statistics are requested for the specified index.

NUMCOLS
The number of key columns that are to be concatenated when collecting
histogram statistics from the specified index.

576 Utility Guide and Reference

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

NUMQUANTILES
The integer values that follows NUMQUANTILES indicates the number
quantiles are requested. The integer value must be greater than or equal to
1.

Histogram statistics can be collected only on keys with the same order if the
specified key columns for histogram statistics are of mixed order, a DSNU633I
warning message is issued.

Related information:

Histogram statistics (DB2 Performance)
DSNU633I (DB2 Messages)

REPORT
Specifies whether a set of messages is to be generated to report the collected
statistics.

NO Indicates that the set of messages is not to be sent as output to SYSPRINT.

YES
Indicates that the set of messages is to be sent as output to SYSPRINT. The
generated messages are dependent on the combination of keywords (such
as TABLESPACE, INDEX, TABLE, and COLUMN) that are specified with
the RUNSTATS utility. However, these messages are not dependent on the
specification of the UPDATE option. REPORT YES always generates a
report of SPACE and ACCESSPATH statistics.

UPDATE
Indicates whether the collected statistics are to be inserted into the catalog
tables. UPDATE also allows you to select statistics that are used for access path
selection or statistics that are used by database administrators.

ALL
Indicates that all collected statistics are to be updated in the catalog.

ACCESSPATH
Indicates that only the catalog table columns that provide statistics that are
used for access path selection are to be updated.

SPACE
Indicates that only the catalog table columns that provide statistics to help
database administrators assess the status of a particular table space or
index are to be updated.

NONE
Indicates that no catalog tables are to be updated with the collected
statistics. This option is valid only when REPORT YES is specified.

HISTORY
Specifies that all catalog table inserts or updates to the catalog history tables
are to be recorded.

The default value is whatever value is specified in the STATISTICS HISTORY
field on panel DSNTIP6.

ALL
Indicates that all collected statistics are to be updated in the catalog history
tables.

Chapter 25. REORG TABLESPACE 577

|
|
|
|

|
|
|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_histogramstatistics.htm#db2z_histogramstatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu633i.htm#dsnu633i

ACCESSPATH
Indicates that only the catalog history table columns that provide statistics
that are used for access path selection are to be updated.

SPACE
Indicates that only space-related catalog statistics are to be updated in
catalog history tables.

NONE
Indicates that no catalog history tables are to be updated with the collected
statistics.

FORCEROLLUP
Specifies whether aggregation or rollup of statistics is to take place when
RUNSTATS is executed even if statistics have not been gathered on some
partitions; for example, partitions have not had any data loaded. Aggregate
statistics are used by the optimizer to select the best access path.

YES
Indicates that forced aggregation or rollup processing is to be done, even
though some partitions might not contain data.

NO Indicates that aggregation or rollup is to be done only if data is available
for all partitions.

If data is not available for all partitions, DSNU623I message is issued if the
installation value for STATISTICS ROLLUP on panel DSNTIP6 is set to NO.

PUNCHDDN ddname
Specifies the DD statement for a data set that is to receive the LOAD utility
control statements that are generated by REORG TABLESPACE UNLOAD
EXTERNAL or REORG TABLESPACE DISCARD FROM TABLE ... WHEN.

ddname is the DD name.

The default value is SYSPUNCH.

PUNCHDDN is required if the limit key of the last partition of a partitioned
table space has been reduced.

PUNCHDDN is not valid for LOB table spaces.

The PUNCHDDN keyword specifies either a DD name or a TEMPLATE name
specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name.

DISCARDDN ddname
Specifies the DD statement for a discard data set, which contains copies of
records that meet the DISCARD FROM TABLE ... WHEN specification.

ddname is the DD name.

If you omit the DISCARDDN option, the utility saves discarded records only if
a SYSDISC DD statement is in the JCL input.

The default value is SYSDISC.

The DISCARDDN keyword specifies either a DD name or a TEMPLATE name
specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name.

578 Utility Guide and Reference

UNLDDN ddname
Specifies the name of the unload data set.

ddname is the DD name of the unload data set.

The default value is SYSREC.

The UNLDDN keyword specifies either a DD name or a TEMPLATE name
specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name.

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically
allocated by the external sort program.

device-type is the device type; it can be any disk device that is acceptable to the
DYNALLOC parameter of the SORT or OPTION control statement for the sort
program.

If you omit SORTDEVT and require a sort of the index keys, you must provide
the DD statements that the sort program needs for the temporary data sets.

SORTDEVT is ignored for the catalog and directory table spaces that are listed
in “Reorganizing the catalog and directory” on page 606.

SORTDEVT cannot be used for LOB table spaces.

The utility does not allow a TEMPLATE specification to dynamically allocate
sort work data sets. The SORTDEVT keyword controls dynamic allocation of
these data sets.

SORTNUM integer
Specifies the number of temporary data sets that are to be dynamically
allocated for all sorts that REORG performs.

integer is the number of temporary data sets that can range from 2 to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and
omit SORTNUM, no value is passed to the sort program. The sort program
uses its own default.

You need at least two sort work data sets for each sort. The SORTNUM value
applies to each sort invocation in the utility. For example, a total of 24 sort
work data sets would be allocated for a job, if the following criteria is true:
v There are three indexes.
v SORTKEYS is specified.
v There are no constraints limiting parallelism.
v SORTNUM is specified as 8.

Each sort work data set consumes both above the line and below the line
virtual storage. Therefore, if you specify a value for SORTNUM that is too
high, the utility might decrease the degree of parallelism due to virtual storage
constraints, and possibly decrease the degree down to one, which would mean
no parallelism.

Important: The SORTNUM keyword will not be considered if subsystem
parameter UTSORTAL is set to YES and IGNSORTN is set to YES.

SORTNUM is ignored for the catalog and directory table spaces listed in
“Reorganizing the catalog and directory” on page 606.

PREFORMAT
Specifies that the remaining pages are to be preformatted up to the

Chapter 25. REORG TABLESPACE 579

high-allocated RBA in the table space and index spaces that are associated with
the table space or partitions that are being reorganized. The preformatting
occurs after the data is loaded and the indexes are built.

PREFORMAT can operate on an entire table space and its index spaces, or on a
partition of a partitioned table space and its corresponding partitioning index
space. When AUX YES is specified or accepted as the default, the LOB table
spaces and auxiliary indexes that are associated with the base partitions that
are being reorganized are also preformatted at the end of the RELOAD phase.

PREFORMAT is ignored if you specify UNLOAD ONLY or UNLOAD
EXTERNAL.

ROWFORMAT
Specifies the output row format in the affected table space or partition. This
keyword overrides the existing RRF subsystem parameter setting when the
keyword is specified. This keyword has no effect on LOB, catalog, directory,
XML table spaces, and Universal table spaces that are participating in a
CLONE relationship.

BRF
Specifies that the table space or partition that is being reorganized or
replaced are to be converted to or remain in basic row format.

RRF
Specifies that the table space or partition that is being reorganized or
replaced are to be converted to or remain in reorder row format.

RBALRSN_CONVERSION
Specifies the RBA or LRSN format of the target object after the completion of
the REORG utility. If the keyword is not specified, the conversion specified in
the UTILITY_OBJECT_CONVERSION subsystem parameter is accepted.

NONE
Specifies that no conversion is performed.

The utility fails if RBALRSN_CONVERSION NONE is specified on a table
space that is in basic 6-byte format and the
UTILITY_OBJECT_CONVERSION subsystem parameter is set to
NOBASIC.

BASIC
Specifies that if an object is found in extended 10-byte format, it is
converted to 6-byte basic format.

The utility fails if RBALRSN_CONVERSION BASIC is specified and the
UTILITY_OBJECT_CONVERSION subsystem parameter is set to
NOBASIC.

EXTENDED
Specifies that if an object is found in basic 6-byte format, it is converted to
10-byte extended format.

If a CLONE relationship exists, the page set conversion cannot be performed.
For clone relationships, you must drop the clone table, convert the base table
to extended 10-byte format, and then re-create the clone table.

If AUX YES is also specified, the LOB table spaces and auxiliary indexes are
also converted.

Indexes that are rebuilt during REORG TABLESPACE are converted to the
same RBA or LRSN format as the indexed table space. REORG TABLESPACE

580 Utility Guide and Reference

|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

at the PART level converts corresponding partitions of partitioned indexes.
Non partitioned indexes are converted if SHRLEVEL CHANGE or
REFERENCE is also specified, or if the entire table space is reorganized with
SHRLEVEL NONE.

If the 6-byte RBA or LRSN limit has been reached, you might be unable to
perform the first insert or load into an XML table space that has XML
versioning and that was created with DEFINE NO and basic 6-byte page
format. You can run REORG TABLESPACE on the DEFINE NO XML table
space to convert its definition to extended 10-byte page format. The REORG
must be done on the entire table space.

DISCARD
Specifies that records that meet the specified WHEN conditions are to be
discarded during REORG TABLESPACE UNLOAD CONTINUE or UNLOAD
PAUSE. If you specify DISCARDDN or a SYSDISC DD statement in the JCL,
discarded records are saved in the associated data set. Otherwise, the utility
discards records without saving them in a data set.

You can specify any SHRLEVEL option with DISCARD. However, if you
specify SHRLEVEL CHANGE, modifications that are made during the
reorganization to data rows that match the discard criteria are not permitted.
In this case, REORG TABLESPACE terminates with an error.

If you specify DISCARD, rows are decompressed and edit routines are
decoded. If you also specify DISCARD to a file, rows are decoded by field
procedure, and the following columns are converted to DB2 external format:
v SMALLINT
v INTEGER
v FLOAT
v DECIMAL
v TIME
v TIMESTAMP

Otherwise, edit routines or field procedures are bypassed on both the
UNLOAD and RELOAD phases for table spaces. Validation procedures are not
invoked during either phase.

Restrictions: Do not specify DISCARD if any of the following conditions are
true:
v The REORG TABLESPACE statement includes the UNLOAD EXTERNAL or

UNLOAD ONLY option.
v The table space to be reorganized is any of the following objects:

– A base table with XML columns
– An XML table space
– A base table with LOB columns if the records to be discarded are more

than 32 KB and you want to save them in a data set.
– A system-period temporal table space

Chapter 25. REORG TABLESPACE 581

|
|
|
|

|
|
|
|
|
|

Related tasks:

Compressing your data (DB2 Performance)
Related reference:

-CANCEL THREAD (DB2) (DB2 Commands)
Chapter 15, “LISTDEF,” on page 207
Chapter 31, “TEMPLATE,” on page 775

DB2 Sort
Related information:

DFSORT Application Programming Guide

Before running REORG TABLESPACE
Certain activities might be required before you run the REORG TABLESPACE
utility, depending on your situation.

Catalog and directory table spaces

Before you run REORG on a catalog or directory table space, you must take an
image copy. For the DSNDB06.SYSTSCPY catalog table space and the
DSNDB01.DBD01 and DSNDB01.SYSDBDXA directory table spaces, REORG scans
logs to verify that an image copy is available. If the scan of the logs does not find
an image copy, DB2 requests archive logs.

Region size

The recommended minimum region size is 4096 KB. Region sizes greater than 32
MB enable increased parallelism for index builds. Data unload and reload
parallelism can also benefit from a greater region size value.

Mapping table and SHRLEVEL CHANGE

Before running REORG TABLESPACE with SHRLEVEL CHANGE on a table space
with non-LOB data, you can create a mapping table and index for the table space,
or allow REORG to create it for you. The table space that contains the mapping
table must be segmented or partition-by-growth and cannot be the table space to
be reorganized. To create a segmented table space for the mapping table, use a
CREATE TABLESPACE statement similar to the following statement:
CREATE TABLESPACE table-space-name SEGSIZE integer

To create a partition-by-growth table space for the mapping table, use a CREATE
TABLESPACE statement similar to the following statement:
CREATE TABLESPACE table-space-name MAXPARTITIONS integer

The mapping table must have only the columns and the index that are created by
the following SQL statements:
CREATE TABLE table-name1
(TYPE CHAR(1) NOT NULL,
SOURCE_RID CHAR(5) NOT NULL,
TARGET_XRID CHAR(9) NOT NULL,
LRSN CHAR(10) NOT NULL);
CREATE UNIQUE INDEX index-name1 ON table-name1
(SOURCE_RID ASC, TYPE, TARGET_XRID, LRSN);

582 Utility Guide and Reference

|
|
|
|
|

|
|
|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_compressdataperf.htm#db2z_compressdataperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_cancelthread.htm#db2z_cmd_cancelthread
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

The size of the table space for the mapping table can be as small as one track. Use
the following formula to estimate the minimum number of bytes to allocate for the
index on the mapping table:
1.1 * Number-of-rows-in-table-space * 27

When the LRSN column is CHAR(10):
1.1 * Number-of-rows-in-table-space * 31

The REORG utility removes all rows from the mapping table when the utility
completes.

You must specify the TARGET_XRID column as CHAR(9), even though the RIDs
are 5 bytes long.

You must have DELETE, INSERT, and UPDATE authorization on the mapping
table.

You can run more than one REORG SHRLEVEL CHANGE job concurrently on
separate table spaces. You can also run more than one REORG SHRLEVEL
CHANGE job concurrently on different partitions of the same table space, but only
if the table space does not have any NPIs. When you run concurrently with other
jobs, each REORG job must have a separate mapping table. The mapping tables do
not need to reside in separate table spaces. If only one mapping table exists, the
REORG jobs must be scheduled to run serially. If more than one REORG job tries
to access the same mapping table at the same time, one of the REORG jobs fails.

Recommendation: Consider the following approach to ensure that multiple
REORG jobs do not attempt to use the same mapping table concurrently. Assign
the same name to the mapping table and the utility ID. Because utility IDs must be
unique, this naming decision ensures that the mapping tables are not used by two
REORG jobs that run concurrently.

Restart-pending status and SHRLEVEL CHANGE

If you specify SHRLEVEL CHANGE, REORG drains the write claim class near the
end of REORG processing. In a data sharing environment, if a data sharing
member fails and that member has restart-pending status for a target page set, the
drain can fail. You must postpone running REORG with SHRLEVEL CHANGE
until all restart-pending statuses are removed. You can use the DISPLAY GROUP
command to determine whether a member's status is failed. You can use the
DISPLAY DATABASE command with the LOCKS option to determine if locks are
held.

RECOVER-pending and REBUILD-pending status

You cannot reorganize a table space if any partition or range of partitions of the
partitioned table space is in the RECOVER-pending status. Similarly, you cannot
reorganize a single table space partition if any of the following conditions are true:
v The partition is in the RECOVER-pending status.
v The corresponding partitioning index is in the REBUILD-pending or

RECOVER-pending status, and the data is unloaded by the cluster index
method.

v The specified partition or partitions are a subset of a range of partitions that are
in REORG-pending status; you must reorganize the entire range to reset the
restrictive status.

Chapter 25. REORG TABLESPACE 583

|

|

The only RECOVER-pending restrictive state is:

RECP The table space, index space, or partition of a table space or index space is
in a RECOVER-pending status. A single logical partition in RECP does not
restrict access to other logical partitions that are not in RECP. You can reset
RECP by recovering only the single logical partition.

The three REBUILD-pending restrictive states are:

RBDP REBUILD-pending status is set on a physical or logical index partition. The
individual physical or logical partition is inaccessible and must be rebuilt
by using the REBUILD INDEX utility.

PSRBD
Page set REBUILD-pending status is set for nonpartitioning indexes. The
entire index space is inaccessible and must be rebuilt by using the
REBUILD utility.

RBDP*
A REBUILD-pending status that is set only on logical partitions of
nonpartitioning indexes. The entire index is inaccessible, but it is made
available again when the affected partitions are rebuilt by using the
REBUILD INDEX utility.

CHECK-pending status

If a table space is in both REORG-pending and CHECK-pending status (or
auxiliary CHECK-pending status), run REORG first, and then run CHECK DATA
to clear the respective states. Otherwise, if a table space is not in REORG-pending
status, you cannot reorganize a table space or range of partitions if the table space
or any partition in the range is in CHECK-pending status until the
CHECK-pending status is removed.

REORG-pending status

You must allocate a discard data set (SYSDISC) or specify the DISCARDDN option
if the last partition of the table space is in REORG-pending status.

Fallback recovery considerations

If RECOVER cannot use the latest image copy or copies as a starting point for the
recovery, it attempts to use previous copies; if that attempt fails, RECOVER
restores the data from the log.

However, if you use REORG SHRLEVEL NONE LOG NO, RECOVER cannot
restore data from the log past the point at which the object was last reorganized
successfully. Therefore, you must take an image copy after running REORG with
LOG NO to establish a level of fallback recovery.

Recommendation:

Immediately following an ALTER INDEX operation that modifies key values,
create a new recovery point by taking one of the following actions:
v Run REORG and specify COPYDDN and SHRLEVEL NONE.
v Take a full image copy immediately after REORG completes.

584 Utility Guide and Reference

If you performed a REORG to reset REORG-pending status (REORP), you should
also take an inline image copy or run the COPY utility. Image copies that are taken
prior to resetting the REORG-pending status cannot be used for recovery to the
current RBA or LRSN.

Successful REORG LOG NO processing inserts a row into SYSIBM.SYSCOPY with
ICTYPE=W for each index that was defined with COPY YES. REORG also places a
reorganized index in informational COPY-pending (ICOPY) status. You should take
a full image copy of the index after the REORG job completes to create a valid
point of recovery.

Restrictions when running REORG TABLESPACE on encrypted
data

If you plan to run REORG TABLESPACE on encrypted data, do not use the WHEN
statement to filter encrypted fields; REORG TABLESPACE cannot filter rows that
contain encrypted data

Restriction for partitions with the COMPRESS YES attribute
when using REBALANCE

Do not run REORG REBALANCE on a partitioned table space where a subset of
partitions have the COMPRESS YES attribute and the remaining partitions have
the COMPRESS NO attribute.

Restriction when using REBALANCE and duplicate partitioning
key values exist

A REORG REBALANCE might distribute rows among the partitions that are being
rebalanced in such a way that one or more partitions do not have any rows. This
situation occurs when many rows with duplicate partitioning key values exist, and
not enough unique values exist to enable REORG to distribute them over all of the
partitions.

Restriction for unload parallelism when using REBALANCE

If you specify REORG REBALANCE, you cannot use unload parallelism.

Restrictions for XML table spaces with XML versioning

To REORG an XML table space, with XML versioning, that is in basic 6-byte page
format, and that has tables with 8-byte time stamp columns, to extended 10-byte
page format, you must REORG the entire table space. It cannot be done at the part
level.

Restriction when physical partition numbers do not match
logical partition numbers

A REORG REBALANCE might not be possible if the logical and physical partition
numbers for the specified table space do not match. This situation can be created
by a series of ALTER ROTATEs and ALTER ADD PARTs.

For example, assume that you create a table space with three partitions. The
following table shows the mapping that exists between the physical and logical
partition numbers.

Chapter 25. REORG TABLESPACE 585

|

|
|
|
|

Table 78. Mapping of physical and logical partition numbers when a table space with three
partitions is created.

Logical partition number Physical partition number

1 1

2 2

3 3

Then, assume that you request the following series of actions:
1. ALTER ROTATE FIRST TO LAST

The new mapping of partition numbers is shown in the following table.

Table 79. Mapping of physical and logical partition numbers after ALTER ROTATE FIRST TO
LAST.

Logical partition number Physical partition number

1 2

2 3

3 1

2. ALTER ADD PART
The new mapping of partition numbers is shown in the following table.

Table 80. Mapping of physical and logical partition numbers after ALTER ADD PART.

Logical partition number Physical partition number

1 2

2 3

3 1

4 4

3. ALTER ROTATE FIRST TO LAST
The new mapping of partition numbers is shown in the following table.

Table 81. Mapping of physical and logical partition numbers after second ALTER ROTATE
FIRST TO LAST.

Logical partition number Physical partition number

1 3

2 1

3 4

4 2

Assume that you then try to execute a REORG TABLESPACE REBALANCE PART
1:2. This statement requests a reorganization and rebalancing of physical partitions
1 and 2. Note that physical partition 1 is logical partition 2, and physical partition
2 is logical partition 4. Thus, the utility is processing logical partitions 2 and 4. If
during the course of rebalancing, the utility needs to move keys from logical
partition 2 to logical partition 3, the job fails, because logical partition 3 is not
within the specified physical partition range.

586 Utility Guide and Reference

Reorganizing a table space with an index that has a VARBINARY
column

If you run REORG against a table space, and that table space includes a table that
has an index with the following characteristics, REORG fails:
v The index was created on a VARBINARY column or a column with a distinct

type that is based on a VARBINARY data type.
v The index column has the DESC attribute.

To fix the problem, drop the index, or alter the column data type to BINARY, and
then rebuild the index
Related concepts:

Job DSNTEJ1 (DB2 Installation and Migration)
Related reference:
“CHECK-pending status” on page 1085
“REBUILD-pending status” on page 1088
“RECOVER-pending status” on page 1089

Data sets that REORG TABLESPACE uses
The REORG TABLESPACE utility uses a number of data sets during its operation.

The following table describes the data sets that REORG TABLESPACE uses. The
table lists the DD name that is used to identify the data set, a description of the
data set, and an indication of whether it is required. Include statements in your
JCL for each required data set, and any optional data sets that you want to use.

Table 82. Data sets that REORG TABLESPACE uses

Data set Description Required?

RNPRINnn A data set that contains messages from the
sort program (usually SYSOUT or
DUMMY). This data set is used when
distribution statistics are collected for
column groups. nn is a number from 01 to
the number of parallel subtasks.

No1

SYSIN Input data set that contains the utility
control statement.

Yes

SYSUT1 A temporary data set for sort input. No

SYSPRINT Output data set for messages. Yes

STPRIN01 A data set that contains messages from the
sort program (usually, SYSOUT or
DUMMY).

This data set is used when statistics are
collected on at least one data-partitioned
secondary index, or when COLGROUP and
FREQVAL keywords are specified.

Yes 1, 2, 14

SYSDISC Data set that contains discarded records
from REORG DISCARD. The default DD
name is SYSDISC.

No4

Chapter 25. REORG TABLESPACE 587

||
|
|
|
|
|

|

|
|
|
|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntej1.htm#db2z_dsntej1

Table 82. Data sets that REORG TABLESPACE uses (continued)

Data set Description Required?

SYSPUNCH Data set that contains a LOAD statement
that is generated by REORG, which loads
records that REORG DISCARD or REORG
UNLOAD EXTERNAL wrote to the
DISCARD or UNLOAD data sets. The
default DD name is SYSPUNCH.

No5

UTPRINT A data set that contains messages from the
sort program (usually, SYSOUT or
DUMMY).

Yes

Unload data set Data set that contains the unloaded data
that is to be reloaded during the RELOAD
phase. Specify its DD or template name with
the UNLDDN option or with the RECDSN
field on the DB2I Utilities panel. The data
set must be a sequential data set that is
readable by BSAM. The default DD name is
SYSREC.

The unload data set must be large enough to
contain all the unloaded records from all the
tables in the target table space.If at least one
table in the table space does not have an
index, REORG cannot use the SORTDATA
method with SHRLEVEL CHANGE. As a
result, you must unload the data in the
SYSREC data set.

Yes6

Sequential copies From one to four output data sets that are to
contain the image copies. Specify their DD
or template names with the COPYDDN and
RECOVERYDDN options of the utility
control statement.

No7

FlashCopy image copies For table space or index space level copies, a
VSAM data set for the output FlashCopy
image copy of each partition or piece.

For a partition level or piece level copy, a
VSAM data set for the output FlashCopy
image copy of the partition or piece.

No13

Work data sets Temporary data sets for sort input and
output. The DD names have the form
DATAWKnn.

No8

Work data sets Temporary data sets for sort input and
output when sorting keys, or for sorting
data when SORTDATA is specified but
NOSYSREC is not. If index build parallelism
is used, the DD names have the form
SWnnWKmm. If index build parallelism is
not used, the DD names have the form
SORTWKnn

Yes9

588 Utility Guide and Reference

Table 82. Data sets that REORG TABLESPACE uses (continued)

Data set Description Required?

Sort work data sets Temporary data sets for sort input and
output when collecting inline statistics on at
least one data-partitioned secondary index,
or when the COLGROUP option or the
COLGROUP and FREQVAL options are
specified. The DD names have the form
ST01WKnn.

No3,10,11

Sort work data sets Temporary data sets for unload parallelism.
The DD names have the form DAnnWKmm.

Yes11

Sort work data sets Temporary data sets for sort input and
output when collecting distribution statistics
for column groups.

The DD names have the form RNmmWKnn,
where mm is the subtask number, and nn is
a sequence number for the data set allocated
per task.

No1,10,11

Sort work data sets Temporary data sets for sort input and
output when collecting frequency statistics.

The DD names have the form SORTWK01.

No10,11

Print data sets Data sets for unload parallelism. The DD
names have the form DTPRINnn.

Every time you invoke REORG
TABLESPACE, new DTPRINnn data sets are
dynamically allocated. REORG
TABLESPACE does not reuse DTPRINnn
data sets from previous job steps. This
behavior might cause the available JES2 job
queue elements to be consumed more
quickly than expected.

Yes11,12

Note:
1. Required when collecting distribution statistics for column groups
2. STPRIN01 is required if statistics are being collected on at least one data-partitioned

secondary index, but REORG TABLESPACE dynamically allocates the STPRIN01 data
set if UTPRINT is allocated to SYSOUT.

3. Required when collecting inline statistics on at least one data-partitioned secondary
index.

4. Required if you specify DISCARDDN
5. Required you specify PUNCHDDN
6. Required unless NOSYSREC or SHRLEVEL CHANGE is specified.
7. Required if a partition is in REORG-pending status or REBALANCE, COPYDDN,

RECOVERYDDN, SHRLEVEL REFERENCE, or SHRLEVEL CHANGE is specified.
8. Required if NOSYSREC or SHRLEVEL CHANGE is specified, but SORTDEVT is not

specified.
9. Required if any indexes exist and SORTDEVT is not specified.

10. If the DYNALLOC parm of the SORT program is not turned on, you need to allocate
the data set. Otherwise, the sort program dynamically allocates the temporary data set.

11. If you specify the SORTDEVT keyword, the data sets are dynamically allocated. It is
recommended that you use dynamic allocation by specifying SORTDEVT in the utility
statement because dynamic allocation reduces the maintenance required of the utility
job JCL.

12. If UTPRINT is allocated to SYSOUT, the data sets are dynamically allocated.
13. Required if you specify either FLASHCOPY YES or FLASHCOPY CONSISTENT.
14. Required when the COLGROUP and FREQVAL options are specified.

Chapter 25. REORG TABLESPACE 589

|
|
|
|
|
|

|

||
|
|

|
|
|
|

|

||
|

|

|

|

|

The following objects are named in the utility control statement and do not require
DD statements in the JCL:

Table space
Object that is to be reorganized.

Calculating the size of the unload data set

The required size for the unload data set varies depending on the options that you
use for REORG.
1. If you use REORG with UNLOAD PAUSE or CONTINUE and you specify

KEEPDICTIONARY (assuming that a compression dictionary already exists),
the size of the unload data set, in bytes, is the VSAM high-allocated RBA for
the table space. You can obtain the high-allocated RBA from the associated
VSAM catalog.
For SHRLEVEL CHANGE, also add the result of the following calculation (in
bytes) to the VSAM high-used RBA:
number of records * 11

2. If you use REORG with UNLOAD ONLY, UNLOAD PAUSE, or CONTINUE
and you do not specify KEEPDICTIONARY, you can calculate the size of the
unload data set, in bytes, by using the following formula:
maximum row length * number of rows

The maximum row length is the row length, including the 6-byte record prefix,
plus the length of the longest clustering key. If multiple tables exist in the table
space, use the following formula to determine the maximum row length:
Sum over all tables ((row length + (2 * number of VARBIN

columns)) * number of rows)

For SHRLEVEL CHANGE, also add the result of the following formula to the
preceding result:
(21 * ((NEARINDREF + FARINDREF) * 1.1))

In the preceding formula:

NEARINDREF
Is the value that is obtained from the NEARINDREF column of the
SYSIBM.SYSTABLEPART catalog table. The accuracy of the data set size
calculation depends on recent information in the SYSTABLEPART
catalog table.

FARINDREF
Is the value that is obtained from the FARINDREF column of the
SYSIBM.SYSTABLEPART catalog table.

3. If you have variable-length fields, the calculation in step 2 might result in
excessive space. Use the average uncompressed row length, multiplied by the
number of rows.

4. If you use REORG with UNLOAD PAUSE or CONTINUE with the DISCARD
option, and the table has variable length fields, use the maximum row length in
the calculation. The DISCARD option without the NOPAD option pads the
variable length fields.

590 Utility Guide and Reference

For certain table spaces in the catalog and directory, the unload data set for the
table spaces have a different format. The calculation for the size of this data set is
as follows:
data set size in bytes = (28 + longrow) * numrows

In the preceding formula:

longrow
Is the length of the longest row in the table space.

numrows
Is the number of rows in the data set.

The length of the row is calculated as follows:
Sum of column lengths + 4 bytes for each link

The length of the column is calculated as follows:
Maximum length of the column + 1 (if nullable) + 2 (if varying length)

Calculating the size of the sort work data sets

Allocating twice the space that is used by the unload data sets is usually adequate
for the sort work data sets. For compressed data, double again the amount of space
that is allocated for the sort work data sets if you use either of the following
REORG options:
v UNLOAD PAUSE without KEEPDICTIONARY
v UNLOAD CONTINUE without KEEPDICTIONARY

Using two or three large SORTWKnn data sets is preferable to using several small
ones. If adequate space is not available, you cannot run REORG.

Sort work data sets cannot span volumes. Smaller volumes require more sort work
data sets to sort the same amount of data; therefore, large volume sizes can reduce
the number of needed sort work data sets. When you allocate sort work data sets
on disk, the recommended amount of space to allow provides at least 1.2 times the
amount of data that is to be sorted.

Specifying a destination for sort program messages

The REORG utility job step must contain a UTPRINT DD statement that defines a
destination for messages that are issued by the sort program during the SORT
phase of REORG. DB2I, the %DSNU CLIST command, and the DSNUPROC
procedure use the following default DD statement:
//UTPRINT DD SYSOUT=A

Calculating the size of the statistics sort work data sets:

To calculate the approximate size (in bytes) of the ST01WKnn data set, use the
following formula:

2 ×(maximum record length × numcols × (count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length
Maximum record length of the SYSCOLDISTSTATS record that is processed

Chapter 25. REORG TABLESPACE 591

when collecting frequency statistics (You can obtain this value from the
RECLENGTH column in SYSTABLES.)

numcols
Number of key columns to concatenate when you collect frequent values
from the specified index.

count Number of frequent values that DB2 is to collect.
Related concepts:
“Reorganizing the catalog and directory” on page 606
Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

Shadow data sets
When you execute the REORG utility with SHRLEVEL REFERENCE or SHRLEVEL
CHANGE, the utility uses shadow data sets.

For user-managed data sets, you must preallocate the shadow data sets before you
execute REORG with SHRLEVEL REFERENCE or SHRLEVEL CHANGE. If a table
space, partition, or index resides in DB2-managed data sets and shadow data sets
do not already exist when you execute REORG, DB2 creates the shadow data sets.
At the end of REORG processing, the DB2-managed shadow data sets are deleted.

Shadow data set names

Each shadow data set must have the following name:

catname.DSNDBx.dbname.psname.y000z.Lnnn

In the preceding name, the variables have the following meanings:

variable
meaning

catname
The VSAM catalog name or alias

x C or D

dbname
Database name

psname
Table space name or index name

y I or J

z 1 or 2

Lnnn Partition identifier. Use one of the following values:
v A001 through A999 for partitions 1 through 999
v B000 through B999 for partitions 1000 through 1999
v C000 through C999 for partitions 2000 through 2999
v D000 through D999 for partitions 3000 through 3999
v E000 through E996 for partitions 4000 through 4096

592 Utility Guide and Reference

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

To determine the names of existing data sets, execute one of the following queries

against the SYSTABLEPART or SYSINDEXPART catalog tables:
SELECT DBNAME, TSNAME, IPREFIX

FROM SYSIBM.SYSTABLEPART
WHERE DBNAME = ’dbname’
AND TSNAME = ’psname’;

SELECT DBNAME, IXNAME, IPREFIX
FROM SYSIBM.SYSINDEXES X, SYSIBM.SYSINDEXPART Y
WHERE X.NAME = Y.IXNAME
AND X.CREATOR = Y.IXCREATOR
AND X.DBNAME = ’dbname’
AND X.INDEXSPACE = ’psname’;

For a partitioned table space, DB2 returns rows from which you select the row for
the partitions that you want to reorganize.

For example, assume that you have a ten-partition table space and you want to
determine a naming convention for the data set in order to successfully execute the
REORG utility with the SHRLEVEL CHANGE PART 2:6 options. The following
queries of the DB2 catalog tables SYSTABLEPART and SYSINDEXPART provide
the required information:

SELECT DBNAME, TSNAME, PARTITION, IPREFIX FROM SYSIBM.SYSTABLEPART
WHERE DBNAME = ’DBDV0701’ AND TSNAME = ’TPDV0701’
ORDER BY PARTITION;

SELECT IXNAME, PARTITION, IPREFIX FROM SYSIBM.SYSINDEXPART
WHERE IXNAME = ’IXDV0701
ORDER BY PARTITION;

The preceding queries produce the information that is shown in the following
table.

The following table shows the results from the first query.

Table 83. Query results from the first preceding query

DBNAME TSNAME PARTITION IPREFIX

DBDV0701 TPDV0701 1 I

DBDV0701 TPDV0701 4 I

DBDV0701 TPDV0701 3 J

DBDV0701 TPDV0701 2 I

DBDV0701 TPDV0701 5 J

DBDV0701 TPDV0701 6 J

DBDV0701 TPDV0701 7 I

DBDV0701 TPDV0701 8 I

DBDV0701 TPDV0701 9 I

DBDV0701 TPDV0701 10 I

Chapter 25. REORG TABLESPACE 593

The following table shows the results from the second query.

Table 84. Query results from the second preceding query

IXNAME PARTITION IPREFIX

IXDV0701 10 I

IXDV0701 9 I

IXDV0701 8 I

IXDV0701 7 I

IXDV0701 6 J

IXDV0701 5 J

IXDV0701 4 I

IXDV0701 3 J

IXDV0701 2 I

IXDV0701 1 I

To execute REORG SHRLEVEL CHANGE PART 2:6, you need to preallocate the
following shadow objects. The naming convention for these objects use information
from the query results that are shown in the previous tables.
vcatnam.DSNDBC.DBDV0701.TPDV0701.J0001.A002
vcatnam.DSNDBC.DBDV0701.TPDV0701.I0001.A003
vcatnam.DSNDBC.DBDV0701.TPDV0701.J0001.A004
vcatnam.DSNDBC.DBDV0701.TPDV0701.I0001.A005
vcatnam.DSNDBC.DBDV0701.TPDV0701.I0001.A006
vcatnam.DSNDBC.DBDV0701.IXDV0701.J0001.A002
vcatnam.DSNDBC.DBDV0701.IXDV0701.I0001.A003
vcatnam.DSNDBC.DBDV0701.IXDV0701.J0001.A004
vcatnam.DSNDBC.DBDV0701.IXDV0701.I0001.A005
vcatnam.DSNDBC.DBDV0701.IXDV0701.I0001.A006

Defining shadow data sets

Consider the following actions when you preallocate the data sets:
v Allocate the shadow data sets according to the rules for user-managed data sets.
v Define the shadow data sets as LINEAR.
v Use SHAREOPTIONS(3,3).
v Define the shadow data sets as EA-enabled if the original table space or index

space is EA-enabled.
v Allocate the shadow data sets on the volumes that are defined in the storage

group for the original table space or index space.

If you specify a secondary space quantity, DB2 does not use it. Instead, DB2 uses
the SECQTY value for the table space or index space.

Recommendation: Use the MODEL option, which causes the new shadow data set
to be created like the original data set. This method is shown in the following
example:
DEFINE CLUSTER +

(NAME(’catname.DSNDBC.dbname.psname.x0001.L001’) +
MODEL(’catname.DSNDBC.dbname.psname.y0001.L001’)) +
DATA +
(NAME(’catname.DSNDBD.dbname.psname.x0001.L001’) +
MODEL(’catname.DSNDBD.dbname.psname.y0001.L001’))

594 Utility Guide and Reference

Creating shadow data sets for indexes:

When you preallocate data sets for indexes, create the shadow data sets as follows:
v Create shadow data sets for the partition of the table space and the

corresponding partition in each partitioning index and data-partitioned
secondary index.

v Create a shadow data set for each nonpartitioned secondary index.

Use the same naming scheme for these index data sets as you use for other data
sets that are associated with the base index, except use J0001 instead of I0001. For
more information about this naming scheme, see the information about the shadow
data set naming convention at the beginning of this topic.

Estimating the size of shadow data sets

If you have not changed the value of FREEPAGE or PCTFREE, the amount of
required space for a shadow data set is comparable to the amount of required
space for the original data set.

Preallocating shadow data sets for REORG PART

By creating the shadow data sets before executing REORG PART, even for
DB2-managed data sets, you prevent possible over-allocation of the disk space
during REORG processing. When reorganizing a partition, you must create the
shadow data sets for the partition of the table space and for the partition of the
partitioning index. In addition, before executing REORG PART with SHRLEVEL
REFERENCE or SHRLEVEL CHANGE on partition mmm of a partitioned table
space, you must create a shadow data set for each nonpartitioning index that
resides in user-defined data sets. Each shadow data set is to be used for a copy of
the index and must be as large as the entire original nonpartitioned index. The
name for this shadow data set has the form
catname.DSNDBx.dbname.psname.y0mmm.Annn.

Concurrency and compatibility for REORG TABLESPACE
The REORG TABLESPACE utility has certain concurrency and compatibility
characteristics associated with it.

DB2 treats individual data and index partitions, and individual logical partitions of
nonpartitioning indexes as distinct target objects. Utilities that operate on different
partitions of the same table space or index space are compatible. However, REORG
SHRLEVEL CHANGE or REFERENCE on a partition or range of partitions rebuild
entire nonpartitioned indexes; therefore, two REORG SHRLEVEL CHANGE or
REFERENCE PART jobs on different partitions of the same table space are not
compatible.

Restriction: You cannot run concurrent REORG TABLESPACE SHRLEVEL
CHANGE PART integer on the same table space. Instead of submitting multiple
jobs, you can merge the jobs into one job and specify a range using REORG
TABLESPACE SHRLEVEL CHANGE PART integer1:integer2, or specify REORG
TABLESPACE SHRLEVEL CHANGE SCOPE PENDING if multiple partitions are
in a REORG-pending state.

This information includes a series of tables that show which claim classes REORG
drains and any restrictive state that the utility sets on the target object.

Chapter 25. REORG TABLESPACE 595

For nonpartitioned indexes, if you specify SHRLEVEL NONE, REORG PART:
v Drains only the logical partition (and the repeatable read class for the entire

index)
v Does not set the page set REBUILD-pending status (PSRCP)
v Does not use PCTFREE or FREEPAGE attributes when inserting keys

Claim classes that REORG TABLESPACE drains

For SHRLEVEL NONE, the following table shows which claim classes REORG
drains and any restrictive state that the utility sets on the target object. For each
column, the table indicates the claim or drain that is acquired and the restrictive
state that is set in the corresponding phase. UNLOAD CONTINUE and UNLOAD
PAUSE, unlike UNLOAD ONLY, include the RELOAD phase and thus include the
drains and restrictive states of that phase.

Table 85. Claim classes of REORG TABLESPACE SHRLEVEL NONE operations

Target
UNLOAD phase of
REORG

RELOAD phase of
REORG if UNLOAD
CONTINUE or
PAUSE UNLOAD phase of

REORG PART

RELOAD phase of
REORG PART if
UNLOAD
CONTINUE or
PAUSE

Table space, partition,
or a range of
partitions of a table
space

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Partitioning index,
data-partitioned
secondary index, or
partition of either
type of index1

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Nonpartitioned index2 DW/UTRO DA/UTUT None DR

Logical partition of
nonpartitioning index3

None None DW/UTRO DA/UTUT

Legend:
v DA: Drain all claim classes, no concurrent SQL access.
v DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers.
v DW: Drain the write claim class, concurrent access for SQL readers.
v UTUT: Utility restrictive state, exclusive control.
v UTRO: Utility restrictive state, read-only access allowed.
v None: Any claim, drain, or restrictive state for this object does not change in this phase.

Note:

1. Includes document ID indexes and node ID indexes over partitioned XML table spaces.

2. Includes document ID indexes and node ID indexes over nonpartitioned XML table spaces and XML indexes.

3. Includes logical partitions of an XML index over partitioned XML table spaces.

For SHRLEVEL REFERENCE, the following table shows which claim classes
REORG drains and any restrictive state that the utility sets on the target object. For
each column, the table indicates the claim or drain that is acquired and the
restrictive state that is set in the corresponding phase.

596 Utility Guide and Reference

Table 86. Claim classes of REORG TABLESPACE SHRLEVEL REFERENCE operations

Target
UNLOAD phase of
REORG

SWITCH phase of
REORG

UNLOAD phase of
REORG PART

SWITCH phase of
REORG PART

Table space or
partition of table
space

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Partitioning index,
data-partitioned
secondary index, or
partition of either1

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Nonpartitioned
secondary index2

DW/UTRO DA/UTUT CR/UTRW DA/UTUT

Logical partition of
nonpartitioning index3

None None DW/UTRO DA/UTUT

Legend:
v DA: Drain all claim classes, no concurrent SQL access.
v DDR: Dedrain the read claim class, concurrent SQL access.
v DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers.
v DW: Drain the write claim class, concurrent access for SQL readers.
v UTUT: Utility restrictive state, exclusive control.
v UTRO: Utility restrictive state, read-only access allowed.
v None: Any claim, drain, or restrictive state for this object does not change in this phase.

Note:

1. Includes document ID indexes and node ID indexes over partitioned XML table spaces.

2. Includes document ID indexes and node ID indexes over nonpartitioned XML table spaces and XML indexes.

3. Includes logical partitions of an XML index over partitioned XML table spaces.

For REORG of an entire table space with SHRLEVEL CHANGE, the following
table shows which claim classes REORG drains and any restrictive state that the
utility sets on the target object.

Table 87. Claim classes of REORG TABLESPACE SHRLEVEL CHANGE operations

Target UNLOAD phase
Last iteration of LOG
phase SWITCH phase

Table space CR/UTRW1 DW/UTRO DA/UTUT

Index CR/UTRW1 DW/UTRO DA/UTUT

Legend:
v CR: Claim the read claim class.
v DA: Drain all claim classes, no concurrent SQL access.
v DW: Drain the write claim class, concurrent access for SQL readers.
v UTUT: Utility restrictive state, exclusive control.
v UTRO: Utility restrictive state, read-only access allowed.
v UTRW: Utility restrictive state, read-write access allowed.

For REORG of a partition with SHRLEVEL CHANGE, the following table shows
which claim classes REORG drains and any restrictive state that the utility sets on
the target object.

Table 88. Claim classes of REORG TABLESPACE SHRLEVEL CHANGE operations on a partition

Target UNLOAD phase
Last iteration of LOG
phase SWITCH phase

Partition of table space CR/UTRW DW/UTRO or DA/UTUT4 DA/UTUT

Chapter 25. REORG TABLESPACE 597

Table 88. Claim classes of REORG TABLESPACE SHRLEVEL CHANGE operations on a partition (continued)

Target UNLOAD phase
Last iteration of LOG
phase SWITCH phase

Partition of partitioning
index1

CR/UTRW DW/UTRO or DA/UTUT4 DA/UTUT

Nonpartitioning index2 None None DR

Logical partition of
nonpartitioning index3

CR/UTRW DW/UTRO or DA/UTUT4 DA/UTUT

Legend:
v CR: Claim the read claim class.
v DA: Drain all claim classes, no concurrent SQL access.
v DDR: Dedrain the read claim class, no concurrent access for SQL repeatable readers.
v DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers.
v DW: Drain the write claim class, concurrent access for SQL readers.
v UTUT: Utility restrictive state, exclusive control.
v UTRO: Utility restrictive state, read-only access allowed.
v UTRW: Utility restrictive state, read-write access allowed.
v None: Any claim, drain, or restrictive state for this object does not change in this phase.

Note:

1. Includes document ID indexes and node ID indexes over partitioned XML table spaces.

2. Includes document ID indexes and node ID indexes over nonpartitioned XML table spaces and XML indexes.

3. Includes logical partitions of an XML index over partitioned XML table spaces.

4. DA/UTUT applies if you specify DRAIN ALL.

Compatibility of REORG TABLESPACE with other utilities

The following table shows which utilities can run concurrently with REORG on the
same target object. The target object can be a table space, an index space, or a
partition of a table space or index space. If compatibility depends on particular
options of a utility, that information is also shown.

Table 89. Compatibility of REORG TABLESPACE with other utilities

Action

REORG SHRLEVEL
NONE UNLOAD
CONTINUE or PAUSE,
REORG SHRLEVEL
REFERENCE, or
REORG SHRLEVEL
CHANGE

REORG SHRLEVEL
NONE UNLOAD ONLY
without clustering index

REORG SHRLEVEL
NONE UNLOAD ONLY
with clustering index

CATMAINT No No No

CHECK DATA No No No

CHECK INDEX No Yes Yes

CHECK LOB No No No

COPY INDEXSPACE No Yes Yes

COPY TABLESPACE No Yes Yes

DIAGNOSE Yes Yes Yes

LOAD No No No

MERGECOPY No No No

MODIFY No No No

QUIESCE No Yes Yes

598 Utility Guide and Reference

Table 89. Compatibility of REORG TABLESPACE with other utilities (continued)

Action

REORG SHRLEVEL
NONE UNLOAD
CONTINUE or PAUSE,
REORG SHRLEVEL
REFERENCE, or
REORG SHRLEVEL
CHANGE

REORG SHRLEVEL
NONE UNLOAD ONLY
without clustering index

REORG SHRLEVEL
NONE UNLOAD ONLY
with clustering index

REBUILD INDEX No Yes No

RECOVER INDEX No Yes No

RECOVER INDEXSPACE No No No

RECOVER TABLESPACE No No No

REORG INDEX No Yes No

REORG TABLESPACE SHRLEVEL
NONE UNLOAD CONTINUE or
PAUSE, REORG SHRLEVEL
REFERENCE, or REORG SHRLEVEL
CHANGE

No No No

REORG TABLESPACE SHRLEVEL
NONE UNLOAD ONLY or
EXTERNAL

No Yes Yes

REPAIR DUMP or VERIFY No Yes Yes

REPAIR LOCATE KEY or RID
DELETE or REPLACE

No No No

REPAIR LOCATE INDEX PAGE
REPLACE

No Yes No

REPAIR LOCATE TABLESPACE
PAGE REPLACE

No No No

REPORT Yes Yes Yes

RUNSTATS No Yes Yes

STOSPACE No Yes Yes

UNLOAD No Yes Yes

The following table shows which DB2 operations can be affected when
reorganizing catalog table spaces.

Table 90. DB2 operations that are affected by reorganizing catalog table spaces

Catalog table space Actions that might not run concurrently

Any table space except SYSTSCPY,
SYSTSCHX, SYSTSCKD, SYSTSSRG, and
SYSTSCKS

CREATE, ALTER, and DROP statements

SYSTSCPY, SYSTSFAU, SYSTSCOL,
SYSTSTSP, SYSTSTPT, SYSTSTAB, SYSTSIXS,
SYSTSIXT, SYSTSIXR, SYSTSIPT, SYSTSREL,
SYSTSFOR, SYSTSSYN, SYSTSFLD,
SYSTSTAU, SYSTSDBA, SYSTSDBU,
SYSTSKEY, SYSTSDBA, SYSTSDBU,
SYSSTATS, SYSUSER, SYSHIST

Utilities

Chapter 25. REORG TABLESPACE 599

|
|
|

|

|
|
|
|
|
|
|

|

Table 90. DB2 operations that are affected by reorganizing catalog table spaces (continued)

Catalog table space Actions that might not run concurrently

SYSTSFAU, SYSTSCOL, SYSTSTSP,
SYSTSTPT, SYSTSTAB, SYSTSIXS, SYSTSIXT,
SYSTSIXR, SYSTSIPT, SYSTSREL, SYSTSFOR,
SYSTSSYN, SYSTSFLD, SYSTSTAU,
SYSTSDBA, SYSTSDBU, SYSTSKEY,
SYSTSDBA, SYSTSDBU, SYSGPAUT,
SYSTSPKL, SYSTSPLY, SYSTSPKG,
SYSTSPKS, SYSTSPKX, SYSTSPVR,
SYSTSPKY, SYSTSPKD, SYSTSPKA,
SYSTSPLN, SYSTSPLA, SYSTSDBR,
SYSTSPLD, SYSTSSTM, SYSUSER

GRANT and REVOKE statements

SYSTSFAU, SYSTSCOL, SYSTSTSP,
SYSTSTPT, SYSTSTAB, SYSTSIXS, SYSTSIXT,
SYSTSIXR, SYSTSIPT, SYSTSREL, SYSTSFOR,
SYSTSSYN, SYSTSFLD, SYSTSTAU,
SYSTSDBA, SYSTSDBU, SYSTSKEY,
SYSTSDBA, SYSTSDBU, SYSGPAUT,
SYSTSPKL, SYSTSPLY, SYSTSPKG,
SYSTSPKS, SYSTSPKX, SYSTSPVR,
SYSTSPKY, SYSTSPKD, SYSTSPKA,
SYSTSPLN, SYSTSPLA, SYSTSDBR,
SYSTSPLD, SYSTSSTM, SYSSTATS,
SYSUSER, SYSTSVEW, SYSTSVWT,
SYSTSVTR, SYSTSVWD

BIND and FREE commands

Determining whether an object requires reorganization
You must reorganize an object if it is in the REORG-pending (REORP) restrictive
status. Also, consider reorganizing an object if it is in an advisory REORG-pending
status (AREO* or AREOR) or if analysis shows that reorganization might improve
performance. Use the REORG INDEX or REORG TABLESPACE utility to
reorganize the object.

About this task

Recommendation: Run the RUNSTATS utility if the statistics are not current. If the
object should also be reorganized, run REORG with STATISTICS and take inline
copies. If you run REORG PART and nonpartitioning indexes exist, subsequently
run RUNSTATS for each nonpartitioning index.

Procedure

To determine whether an object requires reorganization, use any of the following
approaches:
v Reorganize table spaces or partitions that are in REORG-pending status. Use the

DISPLAY DATABASE RESTRICT command to display those table spaces and
partitions that require reorganization.

v Run the REORG TABLESPACE utility and specify the OFFPOSLIMIT and
INDREFLIMIT catalog query options with the REPORTONLY option. REORG
produces a report with one of the following return codes, but the object is not
reorganized.
1 No limit met; no reorganization is performed or recommended.
2 A reorganization is performed or recommended.

600 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

v Use the SYSTABLEPART and SYSINDEXPART catalog tables to find which table
spaces and indexes qualify for reorganization. The information in these catalog
tables can also be used to determine when the DB2 catalog table spaces require
reorganization.
Information from the SYSTABLEPART catalog table can also indicate how well
disk space is being used. If you want to find the number of varying-length rows
that were relocated to other pages because of an update, run RUNSTATS, and

then issue the following statement: PSPI

SELECT CARD, NEARINDREF, FARINDREF
FROM SYSIBM.SYSTABLEPART
WHERE DBNAME = ’XXX’
AND TSNAME = ’YYY’;

PSPI

A large number (relative to previous values that you received) for FARINDREF
indicates that I/O activity on the table space is high. If you find that this
number increases over a time, you probably need to reorganize the table space
to improve performance. You probably also need to increase PCTFREE or
FREEPAGE for the table space with the ALTER TABLESPACE statement.
The following statement returns the percentage of unused space in
nonsegmented table space YYY. In nonsegmented table spaces, the space that is
used by dropped tables is not reclaimed until you reorganize the table space.
PSPI

SELECT PERCDROP
FROM SYSIBM.SYSTABLEPART
WHERE DBNAME = ’XXX’
AND TSNAME = ’YYY’;

PSPI

Issue the following statement to determine whether the rows of a table are

stored in the same order as the entries of its clustering index: PSPI

SELECT NEAROFFPOSF, FAROFFPOSF
FROM SYSIBM.SYSINDEXPART
WHERE IXCREATOR = ’index_creator_name’
AND IXNAME = ’index_name’;

PSPI

Several indicators are available to signal a time for reorganizing table spaces. A
large value for FAROFFPOSF might indicate that clustering is deteriorating. In
this case, reorganize the table space to improve query performance.
A large value for NEAROFFPOSF might indicate also that reorganization might
improve performance. However, in general NEAROFFPOSF is not as critical a
factor as FAROFFPOSF.

What to do next

For any table, the REORG utility repositions rows into the sequence of the key of
the clustering index that is defined on that table.

For nonclustering indexes, the statistical information that is recorded by
RUNSTATS in SYSINDEXES and SYSINDEXPART might be even worse after the
clustering index is used to reorganize the data. This situation applies only to the

Chapter 25. REORG TABLESPACE 601

CLUSTERING and CLUSTERED columns in SYSINDEXES and to the
NEAROFFPOS and FAROFFPOS columns in SYSINDEXPART.
Related tasks:

Maintaining data organization and statistics (DB2 Performance)
Related reference:
Chapter 29, “RUNSTATS,” on page 721

SYSIBM.SYSTABLEPART table (DB2 SQL)

SYSIBM.SYSINDEXES table (DB2 SQL)

SYSIBM.SYSINDEXPART table (DB2 SQL)
“REORG-pending status” on page 1090

Access with REORG TABLESPACE SHRLEVEL
You can specify the level of access that you have to your data by using the
SHRLEVEL option.

For reorganizing a table space, or a partition of a table space, the SHRLEVEL
option lets you choose the level of access that you have to your data during
reorganization.
v REORG with SHRLEVEL NONE, the default, reloads the reorganized data into

the original area that is being reorganized. Applications have read-only access
during unloading and no access during reloading. For data-partitioned
secondary indexes, the option rebuilds the index parts during the BUILD phase.
(Rebuilding these indexes does not create contention between parallel REORG
PART jobs.) For nonpartitioned secondary indexes, the option corrects the
indexes.

v REORG with SHRLEVEL REFERENCE reloads the reorganized data into a new
(shadow) copy of the area that is being reorganized. Near the end of
reorganization, DB2 switches the future access of the application from the
original data to the shadow copy. For SHRLEVEL REFERENCE, applications
have read-only access during unloading and reloading, and a brief period of no
access during switching.

v REORG with SHRLEVEL CHANGE reloads the reorganized data into a shadow
copy of the area that is being reorganized. For REORG TABLESPACE
SHRLEVEL CHANGE, a mapping table correlates RIDs in the original copy of
the table space or partition with RIDs in the shadow copy. Applications can read
from and write to the original area, and DB2 records the writing in the log. DB2
then reads the log and applies it to the shadow copy to bring the shadow copy
up to date. This step executes iteratively, with each iteration processing a
sequence of log records. Near the end of reorganization, DB2 switches the future
access of the application from the original data to the shadow copy. Applications
have read-write access during unloading and reloading, a brief period of
read-only access during the last iteration of log processing, and a brief period of
no access during switching.

v REORG TABLESPACE SHRLEVEL CHANGE and COPY SHRLEVEL CHANGE
are compatible and can run concurrently except during the period when
exclusive control is needed to drain claimers of a target table space.

Restriction:

– COPY with the FLASHCOPY CONSISTENT option is not compatible with
REORG.

602 Utility Guide and Reference

|
|
|

|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_maintainstatsdataorg.htm#db2z_maintainstatsdataorg
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsystableparttable.htm#db2z_sysibmsystableparttable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysindexestable.htm#db2z_sysibmsysindexestable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysindexparttable.htm#db2z_sysibmsysindexparttable

– If REORG has drained the claimers of a table space or table space partition
and a COPY utility is submitted to access the same object, the COPY utility
terminates with a message that it is not compatible.

– If COPY and REORG are accessing the same table space or table space
partitions, REORG cannot drain claimers until COPY completes. The REORG
DRAIN options determine the actions taken.

– If COPY and REORG are accessing the same table space or table space
partitions and COPY abends, restart of the COPY is not allowed if REORG
completes.

v REORG TABLESPACE with SHRLEVEL REFERENCE or SHRLEVEL CHANGE
materializes pending definition changes for table spaces and indexes if pending
alterations are involved. Advisory-REORG pending status (AREOR) is reset for
the table space and associated indexes. REORG TABLESPACE with SHRLEVEL
REFERENCE or SHRLEVEL CHANGE at the partition level does not materialize
pending definition changes at the table space level.
REORG TABLESPACE with SHRLEVEL NONE proceeds without materializing
pending definition changes if there were any on the object being reorganized.
When pending definition changes are materialized during REORG TABLESPACE
with SHRLEVEL REFERENCE or SHRLEVEL CHANGE, statistics for both table
space and associated indexes are collected and updated in the DB2 catalog.

v REORG TABLESPACE with SHRLEVEL REFERENCE or SHRLEVEL CHANGE
does not drop empty partitions from a partition-by-growth universal table space.

v REORG TABLESPACE with the SHRLEVEL REFERENCE and REBALANCE
options does not materialize pending definition changes for conversion of a
partitioned table space to range-partitioned universal table space.

v REORG TABLESPACE with SHRLEVEL REFERENCE or SHRLEVEL CHANGE
and the FASTSWITCH NO option does not materialize pending definition
changes.

v When REORG TABLESPACE with SHRLEVEL REFERENCE or SHRLEVEL
CHANGE is run with the AUX YES option on an entire base table space of one
of the following types, the pending changes that are associated with the base
table space are materialized, but the pending changes that are associated with
the LOB table spaces are not materialized.
– Simple table space
– Segmented table space
– Range-partitioned universal table space
– Partition-by-growth universal table space

v When REORG TABLESPACE with SHRLEVEL REFERENCE or SHRLEVEL
CHANGE is run with the AUX YES option on a subset of partitions of a
partitioned table base table space, neither the pending changes that are
associated with the base table space nor the pending changes that are associated
with the LOB table spaces are materialized

v If large amounts of data are deleted from a partition-by-growth universal table
space, including XML table spaces, run the REORG TABLESPACE utility with
SHRLEVEL REFERENCE or SHRLEVEL CHANGE on the entire table space to
reclaim physical space from the partition-by-growth table space.

v After RECOVER is run to recover a table space to a point in time before the
materialization of pending definition changes, the entire table space or affected
partitions are placed in REORG-pending (REORP) status. REORG TABLESPACE
with SHRLEVEL REFERENCE must be run on the entire table space or affected
partitions to remove REORG-pending status and to complete the point-in-time
recovery process.

Chapter 25. REORG TABLESPACE 603

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|

Log processing with SHRLEVEL REFERENCE PART for
nonpartitioned indexes or SHRLEVEL CHANGE:

When you specify SHRLEVEL REFERENCE PART for nonpartitioned indexes or
SHRLEVEL CHANGE, DB2 processes the log to update the shadow copy. This step
executes iteratively. The first iteration processes the log records that accumulated
during the previous iteration. The iterations continue until one of these conditions
is met:
v DB2 estimates that the time to perform the log processing in the next iteration

will be less than or equal to the time that is specified for MAXRO. If this
condition is met, the next iteration is the last iteration.

v DB2 estimates that the SWITCH phase will not start by the deadline that is
specified for DEADLINE. If this condition is met, DB2 terminates reorganization.

v The number of log records that the next iteration is to process is not sufficiently
lower than the number of log records that were processed in the previous
iteration. If this condition is met but the first two conditions are not met, DB2
sends message DSNU377I to the console. DB2 continues log processing for the
length of time that is specified for DELAY and then performs the action that is
specified for LONGLOG.

Operator actions

LONGLOG specifies the action that DB2 performs if the pace of processing log
records between iterations is slow. If no action is taken after message DSNU377I is
sent to the console, the LONGLOG option automatically goes into effect. Some
examples of possible actions that you can take:
v Execute the START DATABASE(database) SPACENAM(tablespace) ... ACCESS(RO)

command and the QUIESCE utility to drain the write claim class. DB2 performs
the last iteration, if MAXRO is not DEFER. After the QUIESCE, you should also
execute the ALTER UTILITY command, even if you do not change any REORG
parameters.

v Execute the START DATABASE(database) SPACENAM(tablespace) ... ACCESS(RO)
command and the QUIESCE utility to drain the write claim class. Then, after
reorganization makes some progress, execute the START DATABASE(database)
SPACENAM(tablespace) ... ACCESS(RW) command. This increases the likelihood
that processing of log records between iterations can continue at an acceptable
rate. After the QUIESCE, you should also execute the ALTER UTILITY
command, even if you do not change any REORG parameters.

v Execute the ALTER UTILITY command to change the value of MAXRO.
Changing it to a huge positive value, such as 9999999, causes the next iteration
to be the last iteration.

v Execute the ALTER UTILITY command to change the value of LONGLOG.
v Execute the TERM UTILITY command to terminate reorganization.
v Adjust the amount of buffer space that is allocated to reorganization and to

applications. This adjustment can increase the likelihood that processing of log
records between iterations can continue at an acceptable rate. After adjusting the
space, you should also execute the ALTER UTILITY command, even if you do
not change any REORG parameters.

v Adjust the scheduling priorities of reorganization and applications. This
adjustment can increase the likelihood that processing of log records between
iterations can continue at an acceptable rate. After adjusting the priorities, you
should also execute the ALTER UTILITY command, even if you do not change
any REORG parameters.

604 Utility Guide and Reference

DB2 does not take the action specified in the LONGLOG phrase if any one of these
events occurs before the delay expires:
v An ALTER UTILITY command is issued.
v A TERM UTILITY command is issued.
v DB2 estimates that the time to perform the next iteration is likely to be less than

or equal to the time specified on the MAXRO keyword.
v REORG terminates for any reason (including the deadline).
Related concepts:
“Before running REORG TABLESPACE” on page 582

Omitting the output data set
For REORG TABLESPACE, you can use the NOSYSREC option to omit the unload
data set.

Procedure

To omit the output data set:

Specify the NOSYSREC option in the REORG TABLESPACE utility control
statement and do not specify the UNLOAD PAUSE or UNLOAD ONLY options.
This option provides a performance advantage. However, you should be aware of
the following facts:
v For REORG TABLESPACE SHRLEVEL CHANGE, REORG omits the unload data

set, even if you do not specify NOSYSREC.
v For REORG TABLESPACE SHRLEVEL REFERENCE, if you do not use the

NOSYSREC option and an error occurs during reloading, you can restart at the
RELOAD phase of REORG by using the contents of the unload data set.
However, if the REORG job includes both SORTDATA and NOSYSREC, you
must restart at the UNLOAD phase.

v For REORG TABLESPACE SHRLEVEL NONE with NOSYSREC, if an error
occurs during reloading, you must execute the RECOVER TABLESPACE utility,
starting from the most recent image copy. Therefore, if you specify NOSYSREC
with SHRLEVEL NONE, you must create an image copy before starting REORG
TABLESPACE.

Unloading without reloading
REORG can unload data without continuing and without creating a
SYSIBM.SYSUTIL record after the job ends.

If you specify UNLOAD ONLY, REORG unloads data from the table space and
then ends. You can reload the data at a later date with the LOAD utility, specifying
FORMAT UNLOAD.

Between unloading and reloading, you can add a validation routine to a table.
During reloading, all the rows are checked by the validation procedure.

Do not use REORG UNLOAD ONLY to propagate data. When you specify the
UNLOAD ONLY option, REORG unloads only the data that physically resides in
the base table space; LOB and XML columns are not unloaded. For purposes of
data propagation, you should use UNLOAD or REORG UNLOAD EXTERNAL
instead.

Chapter 25. REORG TABLESPACE 605

REORG UNLOAD ONLY and REORG UNLOAD EXTERNAL cannot be used to
unload inline LOBs.

Reclaiming space from dropped tables
Reorganization omits tables that were previously dropped, reclaiming the space
that they acquired. For partition-by-growth table spaces, you cannot use REORG to
reclaim the space.
Related tasks:
“Reclaiming space in the DBD” on page 375

Reorganizing the catalog and directory
You can run REORG TABLESPACE on the table spaces in the catalog database
(DSNDB06) and on the SCT02, SPT01, DBD01, SYSLGRNX, SYSDBDXA,
SYSSPUXA, and SYSSPUXB table spaces in the directory database (DSNDB01).

Important:

You must take a full image copy before and after reorganizing any catalog or
directory object. Otherwise, you cannot recover any catalog of directory objects
without the full image copies. When you reorganize the DSNDB06.SYSTSCPY table
space with the LOG NO option and omit the COPYDDN option, DB2 places the
table space in COPY-pending status. Take a full image copy of the table space to
remove the COPY-pending status before continuing to reorganize the catalog or
directory table spaces.

Running REORG LOG NO COPYDDN avoids the COPY-pending status, because
an inline copy is taken during the REORG.

The FASTSWITCH YES option is ignored for catalog and directory objects.

When to run REORG on the catalog and directory

You do not need to run REORG TABLESPACE on the catalog and directory table
spaces as often as you do on user table spaces. RUNSTATS collects statistics about
user table spaces which you use to determine if a REORG is necessary. You can use
the same statistics to determine if a REORG is needed for catalog table spaces.

Reorganize the whole catalog before a catalog migration or once every couple of
years. Reorganizing the catalog is useful for reducing the size of the catalog table
spaces. To improve query performance, reorganize the indexes on the catalog
tables.

When statistical information indicates that you need to reorganize any of the
catalog table spaces that are listed in the following table, you should also
reorganize the corresponding directory table space. If the inline LOB length has
changed, you should also reorganize any associated LOB directory table spaces.

606 Utility Guide and Reference

|
|
|
|
|
|
|

Table 91. Catalog table spaces and their corresponding directory table spaces

Catalog table space Corresponding directory table
space

Associated LOB directory table
spaces

DSNDB06.SYSTSFAU
DSNDB06.SYSTSCOL
DSNDB06.SYSTSFLD
DSNDB06.SYSTSFOR
DSNDB06.SYSTSIXS
DSNDB06.SYSTSIPT
DSNDB06.SYSTSKEY
DSNDB06.SYSTSREL
DSNDB06.SYSTSSYN
DSNDB06.SYSTSTAU
DSNDB06.SYSTSTPT
DSNDB06.SYSTSTAB
DSNDB06.SYSTSTSP

DSNDB01.DBD01 DSNDB01.SYSDBDXA

DSNDB06.SYSTSDBR
DSNDB06.SYSTSPLN
DSNDB06.SYSTSPLA
DSNDB06.SYSTSPLD
DSNDB06.SYSTSSTM

DSNDB01.SCT02 None

DSNDB06.SYSTSPKG
DSNDB06.SYSTSPKA
DSNDB06.SYSTSPKD
DSNDB06.SYSTSPKL
DSNDB06.SYSTSPKS
DSNDB06.SYSTSPLY

DSNDB01.SPT01 DSNDB01.SYSSPUXA
DSNDB01.SYSSPUXB

Associated directory table spaces

When certain catalog table spaces are reorganized, you should also reorganize the
associated directory table space. The associated directory table spaces are listed in
the previous table.

Limitations for reorganizing the catalog and directory
v You cannot reorganize DSNDB01.SYSUTILX.
v If SHRLEVEL NONE is specified, the UNLOAD ONLY or UNLOAD

EXTERNAL and LOG YES options are not allowed for catalog and directory
table spaces. However, LOG YES is required if SHRLEVEL NONE is specified
for the catalog LOB table spaces. If SHRLEVEL REFERENCE is specified, LOG
NO must be specified.

v The SORTDEVT and SORTNUM options are ignored for the following catalog
and directory table spaces:
– DSNDB06.SYSTSFAU
– DSNDB06.SYSTSCOL
– DSNDB06.SYSTSFLD
– DSNDB06.SYSTSFOR
– DSNDB06.SYSTSIXS
– DSNDB06.SYSTSIPT
– DSNDB06.SYSTSKEY
– DSNDB06.SYSTSREL
– DSNDB06.SYSTSSYN
– DSNDB06.SYSTSTAU
– DSNDB06.SYSTSTPT
– DSNDB06.SYSTSTAB

Chapter 25. REORG TABLESPACE 607

– DSNDB06.SYSTSTSP
– DSNDB06.SYSTSDBA
– DSNDB06.SYSTSDBU
– DSNDB06.SYSTSSTG
– DSNDB06.SYSTSVOL
– DSNDB06.SYSTSDBR
– DSNDB06.SYSTSPLN
– DSNDB06.SYSTSPLA
– DSNDB06.SYSTSPLD
– DSNDB06.SYSTSSTM
– DSNDB06.SYSTSVWD
– DSNDB06.SYSTSVEW
– DSNDB01.DBD01
– Any LOB table spaces, such as DSNDB01.SYSDBDXA (For more information

about restricted REORG options for LOB table spaces, see “Reorganization of
a LOB table space” on page 622.)

The COPYDDN and RECOVERYDDN options are valid for the preceding
catalog and directory tables if SHRLEVEL REFERENCE is also specified.

v REORG TABLESPACE with STATISTICS cannot collect inline statistics on the
following catalog and directory table spaces:
– DSNDB06.SYSTSFAU
– DSNDB06.SYSTSCOL
– DSNDB06.SYSTSFLD
– DSNDB06.SYSTSFOR
– DSNDB06.SYSTSIXS
– DSNDB06.SYSTSIPT
– DSNDB06.SYSTSKEY
– DSNDB06.SYSTSREL
– DSNDB06.SYSTSSYN
– DSNDB06.SYSTSTAU
– DSNDB06.SYSTSTPT
– DSNDB06.SYSTSTAB
– DSNDB06.SYSTSTSP
– DSNDB06.SYSTSDBA
– DSNDB06.SYSTSDBU
– DSNDB06.SYSTSSTG
– DSNDB06.SYSTSVOL
– DSNDB06.SYSTSDBR
– DSNDB06.SYSTSPLN
– DSNDB06.SYSTSPLA
– DSNDB06.SYSTSPLD
– DSNDB06.SYSTSSTM
– DSNDB06.SYSTSVWD
– DSNDB06.SYSTSVEW
– DSNDB06.SYSSTATS
– DSNDB06.SYSHIST
– DSNDB01.DBD01
– Any LOB table spaces, such as DSNDB01.SYSDBDXA (For more information

about restricted REORG options for LOB table spaces, see “Reorganization of
a LOB table space” on page 622.)

608 Utility Guide and Reference

Phases for reorganizing the catalog and directory

REORG TABLESPACE processes certain catalog and directory table spaces
differently from other table spaces; it does not execute the BUILD and SORT
phases for the following table spaces:
v DSNDB06.SYSTSFAU
v DSNDB06.SYSTSCOL
v DSNDB06.SYSTSFLD
v DSNDB06.SYSTSFOR
v DSNDB06.SYSTSIXS
v DSNDB06.SYSTSIPT
v DSNDB06.SYSTSKEY
v DSNDB06.SYSTSREL
v DSNDB06.SYSTSSYN
v DSNDB06.SYSTSTAU
v DSNDB06.SYSTSTPT
v DSNDB06.SYSTSTAB
v DSNDB06.SYSTSTSP
v DSNDB06.SYSTSDBA
v DSNDB06.SYSTSDBU
v DSNDB06.SYSTSSTG
v DSNDB06.SYSTSVOL
v DSNDB06.SYSTSDBR
v DSNDB06.SYSTSPLN
v DSNDB06.SYSTSPLA
v DSNDB06.SYSTSPLD
v DSNDB06.SYSTSSTM
v DSNDB06.SYSTSVWD
v DSNDB06.SYSTSVEW
v DSNDB01.DBD01

For these table spaces, REORG TABLESPACE reloads the indexes (in addition to
the table space) during the RELOAD phase, rather than storing the index keys in a
work data set for sorting.

For all other catalog and directory table spaces, DB2 uses index build parallelism.

Changing data set definitions
If the table space is defined by storage groups, DB2 allocates space, and you
cannot alter data set definitions while a REORG job is in process. DB2 deletes and
redefines the necessary data sets to reorganize the object.

About this task

For REORG with SHRLEVEL REFERENCE or CHANGE, you can use the ALTER
STOGROUP command to change the characteristics of a DB2-managed data set. To
change the characteristics of a user-managed data set, specify the new
characteristics when you create the shadow data set. For example, placing the
original and shadow data sets on different disk volumes might reduce contention
and improve the performance of REORG and the performance of applications
during REORG execution.

Chapter 25. REORG TABLESPACE 609

Related reference:
“Shadow data sets” on page 592

Temporarily interrupting REORG
You can temporarily pause REORG TABLESPACE.

If you specify UNLOAD PAUSE, REORG pauses after unloading the table space
into the unload data set. You cannot use NOSYSREC and PAUSE. The job
completes with return code 4. You can restart REORG by using the phase restart or
current restart. Do not alter the REORG statement.

The REORG utility remains in stopped status until REORG is restarted or
terminated.

While REORG is interrupted by PAUSE, you can redefine the table space attributes
for user-defined table spaces. PAUSE is not required for STOGROUP-defined table
spaces. Attribute changes are done automatically by a REORG following an ALTER
TABLESPACE.

How to override dynamic sort work data set allocation
DB2 estimates how many records are to be sorted. This information is used for
dynamic allocation of sort work space. Sort work space is allocated by DB2 or by
the sort program that is used.

If the table space contains rows with VARCHAR columns, DB2 might not be able
to accurately estimate the number of records. If the estimated number of records is
too high, if the requested sort work space is not available, or if the estimated
number of records is too low, which causes the sort to overflow, the utility might
fail and cause an abend.

Recommendation: To enable DB2 to calculate a more accurate estimate:
v For a table space that is partitioned (non-universal), run RUNSTATS UPDATE

ALL before REORG.
v For any other type of table space, run RUNSTATS UPDATE SPACE before

REORG.

When you run RUNSTATS with SHRLEVEL REFERENCE, real-time statistics
values are also updated.

You can override the dynamic allocation of sort work space in one of the following
ways:
v Allocate the sort work data sets with SORTWKnn DD statements in your JCL.
v If the number of rows in the affected table space in column TOTALROWS of

table SYSIBM.SYSTABLESPACESTATS is not available or is significantly
incorrect, you can update the value to a more appropriate value using an SQL
UPDATE statement. When REORG on the affected table space completes,
TOTALROWS is set to the number of rows in the associated table space.

v If the number of keys for an associated index in column TOTALENTRIES of
table SYSIBM.SYSINDEXSPACESTATS is not available or is significantly
incorrect, you can update the value to a more appropriate value using an SQL
UPDATE statement. The next time that REBUILD INDEX is run,
TOTALENTRIES is set to the number of keys for the affected index.

610 Utility Guide and Reference

Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

Redistributing data across partitions by using REORG
When data becomes skewed across partitions performance can be slower. You can
correct the problem by redistributing the data more evenly across partitions. One
way to redistribute the data is to let the REORG TABLESPACE utility determine
any limit key changes and redistribute the data accordingly.

About this task

Alternatively, you can explicitly specify limit key values. If you want to specify
your own limit key values, follow the instructions in Changing the boundary
between partitions (DB2 Administration Guide).

Procedure

To redistribute data across partitions by using REORG:

Run the REORG TABLESPACE utility with the REBALANCE option.
REBALANCE specifies that you want DB2 to determine the limit key changes for
the partitioned table space and redistribute the data accordingly. The data remains
available.

Restriction: REBALANCE is not allowed in any of the following situations:
v With the SCOPE PENDING option
v For partitioned-by-growth table spaces
v For table spaces with pending limit key changes

See the description of REBALANCE in the description of the REORG
TABLESPACE syntax for a complete list of restrictions.
If the table has a clustering index that does not match the partitioning key, you
must run REORG TABLESPACE twice. Running REORG twice ensures that the
data is rebalanced and all rows are in clustering order. The first utility execution
rebalances the data and the second utility execution sorts the data.
For example, assume that you have a table space that was created with the
following SQL:
--

SQL to create a table and index with
separate columns for partitioning
and clustering

--
CREATE TABLESPACE TS IN DB

USING STOGROUP SG
NUMPARTS 4 BUFFERPOOL BP0;

CREATE TABLE TB (C01 CHAR(5) NOT NULL,
C02 CHAR(5) NOT NULL,
C03 CHAR(5) NOT NULL)

IN DB.TS
PARTITION BY (C01)

(PART 1 VALUES (’00001’),

Chapter 25. REORG TABLESPACE 611

|

|

|

|

|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_changepartitionboundary.htm#db2z_changepartitionboundary
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_changepartitionboundary.htm#db2z_changepartitionboundary

PART 2 VALUES (’00002’),
PART 3 VALUES (’00003’),
PART 4 VALUES (’00004’));

CREATE INDEX IX ON TB(C02) CLUSTER;

To rebalance the data across the four partitions, use the following REORG
TABLESPACE control statement:
REORG TABLESPACE DB.TS REBALANCE

After this utility job completes, the table space is placed in advisory
REORG-pending (AREO*) status to indicate that a subsequent reorganization is
recommended to ensure that the rows are in clustering order. For this subsequent
reorganization, use the following REORG TABLESPACE control statement:
REORG TABLESPACE DB.TS

Related reference:
“Syntax and options of the REORG TABLESPACE control statement” on page 540
Appendix C, “Advisory or restrictive states,” on page 1083

How partitions can be unloaded and reloaded in parallel
In some situations, the REORG utility attempts to unload and reload partitions in
parallel. In other situations, parallel unloading and reloading does not occur.

REORG attempts to unload and reload table space partitions in parallel in the
following situations:
v If you specify the NOSYSREC keyword.
v If the NOSYSREC keyword is defaulted like it is for SHRLEVEL CHANGE
v If you specify the UNLDDN keyword with a template name, where the

template's data set name pattern includes a partition number.

REORG does not attempt to unload and reload table space partitions in parallel in
the following situations:
v If the DATAWKnn DD statements are coded in the JCL.
v If you do not specify the SORTDEVT keyword.
v If the UTPRINT data set is not allocated to SYSOUT.
v If you specify the REBALANCE keyword.
v If rows might move from one partition to another as a result of alter limit keys

or partition-by-growth table space.
v If you specify the UNLDDN keyword with a template name and specify

UNIT(TAPE) STACK(YES).).
v When the number of subtasks that are started in parallel exceeds the value of

the PARALLEL option or the PARAMDEG_UTIL subsystem parameter.

Using inline copy with REORG TABLESPACE
You can create a full image copy data set (SHRLEVEL REFERENCE) during
REORG TABLESPACE execution.

The new copy is an inline copy. The advantage to using an inline copy is that the
table space is not left in COPY-pending status, regardless of which LOG option is
specified for the utility. Thus, data availability is increased. You must take an inline
copy when you specify the REBALANCE option.

612 Utility Guide and Reference

|
|

To create an inline copy, use the COPYDDN and RECOVERYDDN keywords. You
can specify up to two primary copies and two secondary copies. Inline copies are
produced during the RELOAD phase of REORG processing.

The SYSCOPY record that is produced by an inline copy contains ICTYPE=F,
SHRLEVEL=R. The STYPE column contains an X if the image copy was produced
by REORG TABLESPACE LOG(YES), and a W if the image copy was produced by
REORG TABLESPACE LOG(NO). The data set that is produced by the inline copy
is logically equivalent to a full image copy with SHRLEVEL REFERENCE, but the
data within the data set differs in some respects:
v Data pages might be out of sequence and some might be repeated. If pages are

repeated, the last one is always the correct copy.
v Space map pages are out of sequence and might be repeated

The total number of duplicate pages is small, with a negligible effect on the
amount of space that is required for the data set. One exception to this guideline is
the case of running REORG SHRLEVEL CHANGE, in which the number of
duplicate pages varies with the number of records that are applied during the LOG
phase.

Creating a FlashCopy image copy with REORG TABLESPACE
As part of REORG TABLESPACE processing, you can use FlashCopy technology to
take image copies. This method is potentially faster than the traditional DB2 utility
methods for creating inline copies and thus reduces the time that data is
unavailable. FlashCopy image copies can also potentially reduce the time that is
required for recovery operations.

About this task

REORG TABLESPACE can also create one to four additional inline image copies by
using the traditional methods. Traditional inline image copies are output to a
non-VSAM sequential format data set. For more information about traditional
inline copies, see “Using inline copy with REORG TABLESPACE” on page 612.

Restriction: You cannot create FlashCopy image copies if you specify UNLOAD
ONLY or UNLOAD EXTERNAL in the REORG TABLESPACE utility control
statement.

Procedure

To create a FlashCopy image copy with REORG TABLESPACE:

Specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT) in the REORG
TABLESPACE utility control statement. Alternatively, you can set the
FLASHCOPY_REORG_TS subsystem parameter to YES, which specifies that
REORG TABLESPACE is to use FLASHCOPY(YES) by default. The value that you
specify for the FLASHCOPY option in the REORG TABLESPACE statement always
overrides the value for the FLASHCOPY_REORG_TS subsystem parameter.
Optionally, you can also specify FCCOPYDDN in the REORG TABLESPACE
statement. Use this option to specify a template for the FlashCopy image copy. If
you do not specify the FCCOPYDDN option in the REORG TABLESPACE
statement, the utility uses the value from the FCCOPYDDN subsystem parameter.

Chapter 25. REORG TABLESPACE 613

Restriction: The data sets that you specify for the FlashCopy image copy must be
on FlashCopy Version 2 disk volumes.
When you specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT), REORG
TABLESPACE uses FlashCopy technology to create a consistent copy of the target
objects. If you also requested one or more traditional inline copies in the REORG
TABLESPACE statement (by specifying COPYDDN or RECOVERYDDN), the utility
also creates those copies. REORG TABLESPACE does not use the FlashCopy image
copy to create those traditional inline copies.
When you request a FlashCopy image copy, but you do not specify the COPYDDN
option in the REORG TABLESPACE statement, and you do not include a SYSCOPY
DD statement or a TEMPLATE statement with a SYSCOPY data set specification,
REORG TABLESPACE does not create an inline image copy as well as a FlashCopy
image copy. The table space is not placed in the COPY-pending state. However,
when you request a FlashCopy image copy, and you do not specify the COPYDDN
option in a REORG TABLESPACE statement, but you include a SYSCOPY DD
statement or a TEMPLATE statement with a SYSCOPY data set specification,
REORG TABLESPACE creates an inline image copy as well as a FlashCopy image
copy.

Important: You should request a sequential image copy as well as a FlashCopy
image copy when either of the following conditions are true:
v Your environment and system setup for FlashCopy image copies is not yet stable

and predictable. If the FlashCopy process fails during the SWITCH phase,
COPY-pending status is set if a sequential image copy is not taken.

v You want the FlashCopy image copy for fast local recovery, but require a
sequential image copy to be shipped to a remote site for disaster recovery.

Related objects are copied if one of the following conditions is true:
v You specified REBALANCE in the REORG TABLESPACE statement.
v The partitioning key has changed since the last time the table space was

reorganized
v The base table space is a partition-by-growth table space.

Failures occur in the following situations:
v The FlashCopy image copy fails if the FlashCopy Version 2 disk volumes are not

available or if any of the other FlashCopy operational restrictions exist. For a list
of those operational restrictions, see “FlashCopy image copies” on page 149.

v REORG TABLESPACE terminates if the FlashCopy image copy for the target
table space fails, you specified SHRLEVEL REFERENCE or SHRLEVEL
CHANGE, and inline copies were not taken. (If the FlashCopy image copy fails
and you specified SHRLEVEL REFERENCE or SHRLEVEL CHANGE, but inline
copies were taken, the utility continues.)

614 Utility Guide and Reference

Related concepts:
“FlashCopy image copies” on page 149
Related reference:

DEFAULT TEMPLATE field (FCCOPYDDN subsystem parameter) (DB2
Installation and Migration)

REORG TABLESPACE field (FLASHCOPY_REORG_TS subsystem parameter)
(DB2 Installation and Migration)

Improving REORG TABLESPACE performance
You can improve the performance of the REORG TABLESPACE utility by taking
certain actions.

About this task

Recommendation: Run online REORG during light periods of activity on the table
space or index.

Procedure

To improve REORG TABLESPACE performance:
v Run REORG concurrently on separate partitions of a partitioned table space if

no nonpartitioned indexes exist. When you run REORG on partitions of a
partitioned table space, the sum of each job's processor usage is greater than for
a single REORG job on the entire table space. However, the elapsed time of
reorganizing the entire table in parallel can be significantly less than it would be
for a single REORG job.

v Use parallel index build for table spaces or partitions that have more than one
defined index.

v Specify NOSYSREC on your REORG statement.
v If you are not using NOSYSREC, use an UNLDDN template to enable unload

parallelism.
v If you are using 3990 caching, and you have the nonpartitioning indexes on

RAMAC, consider specifying YES on the UTILITY CACHE OPTION field of
installation panel DSNTIPE.
This option allows DB2 to use sequential prestaging when reading data from
RAMAC for the following utilities:
– LOAD PART integer RESUME
– REORG TABLESPACE PART
For LOAD PART and REORG TABLESPACE PART utility jobs, prefetch reads
remain in the cache longer, which can lead to possible improvements in the
performance of subsequent writes.
For REORG with SHRLEVEL CHANGE or SHRLEVEL REFERENCE, use inline
statistics only if you can afford the additional cost of collecting statistics inline.
Collecting statistics inline makes it unnecessary to run another RUNSTATS job
after the REORG job. However, collecting statistics inline might substantially
increase the length of time that the REORG job runs.

v Schedule REORG with SHRLEVEL CHANGE when the rate of writing is low
and transactions are short. Avoid scheduling REORG with SHRLEVEL CHANGE
when critical applications are executing.
Under certain circumstances, the log records that REORG SHRLEVEL CHANGE
uses contain additional information, as if DATA CAPTURE CHANGES were

Chapter 25. REORG TABLESPACE 615

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_fccopyddn.htm#db2z_ipf_fccopyddn
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_fccopyddn.htm#db2z_ipf_fccopyddn
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_flashcopyreorgts.htm#db2z_ipf_flashcopyreorgts
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_flashcopyreorgts.htm#db2z_ipf_flashcopyreorgts

used. Generation of the additional information can slow applications and
increase consumption of log space. The additional information is generated for
all the tables in the table space if at least one table satisfies all these conditions:
– The table has undergone ALTER TABLE ADD column.
– The table does not use DATA CAPTURE CHANGES.
– One of these conditions is true:

- The area that is being reorganized uses data compression.
- The area is a partitioned table space, and at least one partition uses data

compression.
v Run REORG with DRAIN_WAIT.

The DRAIN_WAIT option gives you greater control over the time that online
REORG is to wait for drains. Also because the DRAIN_WAIT is the aggregate
time that online REORG is to wait to perform a drain on a table space and
associated indexes, the length of drains is more predictable than if each partition
and index has its own individual waiting time limit.
By specifying a short delay time (less than the system timeout value,
IRLMRWT), you can reduce the impact on applications by reducing timeouts.
You can use the RETRY option to provide more opportunities for the online
REORG to complete successfully. If you do not want to use RETRY processing,
you can still use DRAIN_WAIT to set a specific and more consistent limit on the
length of drains.
RETRY allows an online REORG that is unable to drain the objects that it
requires so that DB2 can try again after a set period (RETRY_DELAY). During
the RETRY_DELAY period, all the objects are available for read-write access in
the case of SHRLEVEL CHANGE. For SHRLEVEL REFERENCE, the objects
remain with the access that existed prior to the attempted drain (that is if the
drain fails in the UNLOAD phase the object remains in read-write access; if the
drain fails in the SWITCH phase, objects remain in read-only access).
Because application SQL statements can queue behind any unsuccessful drain
that the online REORG has tried, define a reasonable delay before you try again
to allow this work to complete; the default is 5 minutes.
When you specify DRAIN WRITERS (the default) with SHRLEVEL CHANGE
and RETRY, multiple read-only log iterations can occur. Generally, online
REORG might need to do more work when RETRY is specified, and this might
result in multiple or extended periods of restricted access. Applications that run
alongside online REORG need to perform frequent commits. During the interval
between retries, the utility is still active, and consequently other utility activity
against the table space and indexes is restricted.

v Run the REORG TABLESPACE utility with the PART SHRLEVEL REFERENCE
or PART SHRLEVEL CHANGE option specified and the SORTNPSI YES or
SORTNPSI AUTO option specified or subsystem parameter
REORG_PART_SORT_NPSI enabled. When you run REORG TABLESPACE with
these options, REORG TABLESPACE sorts all keys of the nonpartitioned
secondary indexes and builds the shadow index from the sorted keys.

Parallel index building for REORG TABLESPACE
Parallel index building reduces the elapsed time for a REORG TABLESPACE job by
sorting the index keys and rebuilding multiple indexes in parallel, rather than
sequentially. Optimally, a pair of subtasks processes each index; one subtask sorts
extracted keys, whereas the other subtask builds the index.

616 Utility Guide and Reference

REORG TABLESPACE begins building each index as soon as the corresponding
sort emits its first sorted record. The following figure shows the flow of a REORG
TABLESPACE job that uses a parallel index build. DB2 starts multiple subtasks to
sort index keys and build indexes in parallel. If you specify STATISTICS, additional
subtasks collect the sorted keys and update the catalog table in parallel,
eliminating the need for a second scan of the index by a separate RUNSTATS job.

REORG TABLESPACE uses parallel index build if more than one index needs to be
built (including the mapping index for SHRLEVEL CHANGE). You can either let
the utility dynamically allocate the data sets that SORT needs for this parallel
index build or provide the necessary data sets yourself. The number of subtasks
must be less than or equal to the number that is specified by the PARALLEL
option. If you do not specify the PARALLEL option, the PARAMDEG_UTIL
subsystem parameter determines the maximum degree of parallelism for the utility.

Select one of the following methods to allocate sort work and message data sets:

Method 1:

REORG TABLESPACE determines the optimal number of sort work data sets and
message data sets.
1. Specify the SORTDEVT keyword in the utility statement.
2. Allow dynamic allocation of sort work data sets by not supplying SORTWKnn

DD statements in the REORG TABLESPACE utility JCL.
3. Allocate UTPRINT to SYSOUT.

Method 2:

Control allocation of sort work data sets, while REORG TABLESPACE allocates
message data sets.
1. Provide DD statements with DD names in the form SWnnWKmm.
2. Allocate UTPRINT to SYSOUT.

Method 3:

Exercise the most control over rebuild processing; specify both sort work data sets
and message data sets.

Figure 68. How indexes are built during a parallel index build

Chapter 25. REORG TABLESPACE 617

|
|
|
|

1. Provide DD statements with DD names in the form SWnnWKmm.
2. Provide DD statements with DD names in the form UTPRINnn.

Data sets used

If you select Method 2 or 3 in the preceding information, define the necessary data
sets by using the following information.

Each sort subtask must have its own group of sort work data sets and its own
print message data set. Possible reasons to allocate data sets in the utility job JCL
rather than using dynamic allocation are:
v To control the size and placement of the data sets
v To minimize device contention
v To optimally use free disk space
v To limit the number of utility subtasks that are used to build indexes

The DD name SWnnWKmm defines the sort work data sets that are used during
utility processing. nn identifies the subtask pair, and mm identifies one or more
data sets that are to be used by that subtask pair. For example:

SW01WK01
Is the first sort work data set that is used by the subtask that builds the
first index.

SW01WK02
Is the second sort work data set that is used by the subtask that builds the
first index.

SW02WK01
Is the first sort work data set that is used by the subtask that builds the
second index.

SW02WK02
Is the second sort work data set that is used by the subtask that builds the
second index.

The DD name UTPRINnn defines the sort work message data sets that are used by
the utility subtask pairs. nn identifies the subtask pair.

Every time you invoke REORG TABLESPACE, new UTPRINnn data sets are
dynamically allocated. REORG TABLESPACE does not reuse UTPRINnn data sets
from previous job steps. This behavior might cause the available JES2 job queue
elements to be consumed more quickly than expected.

Number of sort subtasks

The maximum number of utility subtask pairs that are started for parallel index
build is equal to the number of indexes that need to be built.

REORG TABLESPACE determines the number of subtask pairs according to the
following guidelines:
v The number of subtask pairs equals the number of allocated sort work data set

groups.
v The number of subtask pairs equals the number of allocated message data sets.
v If you allocate both sort work data sets and message data set groups, the

number of subtask pairs equals the smallest number of allocated data sets.

618 Utility Guide and Reference

Allocation of sort subtasks

REORG TABLESPACE attempts to assign one sort subtask pair for each index that
is to be built. If REORG TABLESPACE cannot start enough subtasks to build one
index per subtask pair, it allocates any excess indexes across the pairs; therefore
one or more subtask pairs might build more than one index.

During parallel index build processing, REORG distributes all indexes among the
subtask pairs according to the index creation date, assigning the first created index
to the first subtask pair. For SHRLEVEL CHANGE, the mapping index is assigned
last.

Estimating the sort work file size

If you choose to provide the data sets, you need to know the size and number of
keys that are present in all of the indexes that are being processed by the subtask
in order to calculate each sort work file size. After you determine which indexes
are assigned to which subtask pairs, use the following formula to calculate the
required space:

2 * (longest index key + c) * (number of extracted keys)

longest key
The length of the longest index key that is to be processed by the subtask.
If the index is of varying length, the longest key is the maximum possible
length of a key with all varying-length columns that are padded to their
maximum length, plus 2 bytes for each varying-length column in the
index. For example, if an index with three columns (A, B, and C) has
length values of CHAR(8) for A, VARCHAR(128) for B, and VARCHAR(50)
for C, the longest key is calculated as follows:
8 + 128 + 50 + 2 + 2 = 190

For SHRLEVEL CHANGE, the mapping index key length is 21.

c A value as follows:
v 10 if the indexes that are rebuilt are a mix of data-partitioned secondary

indexes and nonpartitioned indexes
v 8 if all indexes are partitioned or none of them are data-partitioned

secondary indexes.

number of extracted keys
The number of keys from all indexes that need to be sorted and that are to
be processed by the subtask.

When you calculate the sort work data set size, do not count keys that are not
sorted. Keys are not sorted when both of the following conditions are true:
v SORTDATA is in effect for REORG TABLESPACE, and the keys belong to a

partitioning, clustering index.
v The table space is a partitioned table space, and data partitions are not being

unloaded and reloaded in parallel.

The space estimation formula might indicate that 0 bytes are required, because the
only index that is processed is the partitioning, clustering index. In this case, if you
allocate your own groups of sort work data sets, you still need to allocate sort
work data sets, but you can use a minimal allocation, such as 1 track.

Chapter 25. REORG TABLESPACE 619

Related concepts:
“Improving performance with LOAD or REORG PREFORMAT” on page 317

How DB2 unloads data
DB2 unloads data by table space scan with sort, table space scan, or clustering
index.

DB2 unloads data by one of three methods:
v Table space scan with sort: If at least one table space has an index, DB2 uses a

table space scan with a sort.
v Table space scan: DB2 uses a table space scan for simple table spaces that contain

more than one table, or that contain one table but do not have an index.
v Clustering index: DB2 uses this option for simple table spaces that contain one

table and have an index, and for tables in a segmented table space that have an
index.

Encountering an error in the RELOAD phase
Failure during the RELOAD phase (after the data is unloaded and data sets are
deleted, but before the data is reloaded) results in an unusable table space.

If the error is on the table space data:
v If you have defined data sets, you can allocate new data sets.
v If STOGROUP has defined data sets, you can alter the new table space to change

the primary and secondary quantities.
v If you allocate new data sets, alter the table space, or add volumes to the storage

group, restart the REORG job at the beginning of the phase. Otherwise, you can
restart either at the last commit point or at the beginning of the phase.

If the error is on the unloaded data, or if you used the NOSYSREC option,
terminate REORG by using the TERM UTILITY command. Then recover the table
space, using RECOVER, and run the REORG job again.

Reorganization of partitioned table spaces
If you reorganize a single partition or a range of partitions, all indexes of the table
space are affected. Depending on how disorganized the nonpartitioning indexes
are, you might want to reorganize them.
Related tasks:
“Determining which indexes require reorganization” on page 525

Reorganization of partition-by-growth table spaces
You can reorganize an entire partition-by-growth table space that does not contain
LOB columns. In this case, the REORG TABLESPACE online utility condenses the
data into the minimum number of required partitions.

Because the REORG TABLESPACE utility cannot reclaim physical space, the excess
partition will be empty. If the data needs additional space, the REORG
TABLESPACE utility triggers the process to add additional partitions if the
maximum number of partitions has not been reached. If the maximum number of
partitions has been reached, the REORG TABLESPACE utility fails.

620 Utility Guide and Reference

If you specify REORG TABLESPACE PART for a partition-by-growth table space,
the utility will fail if the data does not fit back into its partition because of the
change in the free space parameter during the REORG. To prevent the utility from
failing, run REORG TABLESPACE on the entire table space or modify the free
space parameter to fit the data rows into the partition.

To ensure that the REORG utility is able to condense the data into the minimum
number of required partitions, parallelism for the REORG utility does not apply to
partition-by-growth table spaces.

If the partition-by-growth table space contains LOB columns, the REORG
TABLESPACE utility minimizes partitions by eliminating existing holes, but does
not move the data from one partition to another.

When you reorganize a partition-by-growth table space at the partition level, the
REORG TABLESPACE utility minimizes partitions by eliminating existing holes.

If there is a compression dictionary, the compression dictionary is copied to all
partitions even if the partition is empty.

By default, when you run REORG TABLESPACE against a partition-by-growth
table space, DB2 adds new partitions as necessary, to accommodate the growth in
size. In the following situations, the addition of new partitions might lead to
failure of the utility because of a lack of disk space:
v When REORG TABLESPACE is run against a subset of the partitions in a

partition-by-growth table space
v When REORG TABLESPACE AUX NO is run against a partition-by-growth table

space in which a table contains LOB columns

For these situations only, you can alleviate space problems by taking one of the
following actions:
v Execute ALTER TABLESPACE on the table space to change PCTFREE and

FREEPAGE to 0. This action is the preferred solution.
v Instead of running REORG TABLESPACE against a subset of the partitions in a

partition-by-growth table space, run REORG on the entire table space.
v Set the REORG_IGNORE_FREESPACE subsystem parameter to YES. Doing so

causes the REORG utility not to honor the PCTFREE and FREEPAGE values that
are defined for the table space. REORG uses 0 for the PCTFREE and FREEPAGE
values when it reloads data into the table space.

Related reference:

ALTER TABLESPACE (DB2 SQL)

DB2 utilities parameters panel 2: DSNTIP61 (DB2 Installation and Migration)

Reorganization of segmented table spaces
The REORG TABLESPACE utility reorganizes segmented table spaces.

If the target table space is segmented, REORG unloads and reloads by table.

If an index exists on a table in a segmented table space, that table is unloaded in
clustering sequence. If NO index exists, the table is unloaded in physical row and
segment order.

Chapter 25. REORG TABLESPACE 621

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertablespace.htm#db2z_sql_altertablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntip61.htm#db2z_dsntip61

For segmented table spaces, REORG does not normally need to reclaim space from
dropped tables. Space that is freed by dropping tables in a segmented table space
is immediately available if the table space can be accessed when DROP TABLE is
executed. If the table space cannot be accessed when DROP TABLE is executed (for
example, the disk device is offline), DB2 removes the table from the catalog, but
does not delete all table rows. In this case, the space for the dropped table is not
available until REORG reclaims it.

After you run REORG, the segments for each table are contiguous.

Comparison of the numbers of loaded and unloaded records
At the end of the RELOAD phase, REORG compares the number of records that
were actually loaded to the number of records that were unloaded.

If the counts do not match, the resulting actions depend on the UNLOAD option
that you specified on the original job:
v If you specify UNLOAD PAUSE, REORG sets return code 4 and continues

processing the job.
v If you specify UNLOAD CONTINUE, DB2 issues an error message and

abnormally terminates the job. The table space or partition remains in
RECOVER-pending status.

Reorganization of a LOB table space
You can reorganize a LOB table space separately from the base table space.
Alternatively, you can specify AUX YES when you reorganize the base table space
and the associated LOB table spaces are also reorganized.

For information about reorganizing the base and LOB table spaces together, see
AUX YES.

The rest of this topic refers to reorganizing a LOB table space separately from the
base table space.

The REORG utility statement syntax for a LOB table space is almost the same as
the syntax for running REORG on any other table space. The only difference is that
some options are not applicable to LOB table spaces, including the following
options:
v AUTOESTSPACE
v AUX YES
v DISCARD
v DISCARDDN
v INDREFLIMIT
v NOPAD
v NOSYSREC
v OFFPOSLIMIT
v PART
v PREFORMAT
v PUNCHDDN
v REBALANCE
v REPORTONLY

622 Utility Guide and Reference

v REUSE
v ROWFORMAT
v SAMPLE
v SHRLEVEL NONE
v SORTDATA
v SORTDEVT
v STATISTICS
v UNLOAD ONLY
v UNLOAD EXTERNAL
v UNLOAD PAUSE
v KEEPDICTIONARY

For SHRLEVEL REFERENCE or CHANGE, LOBs are unloaded to a shadow data
set and physical space is reclaimed. If you specify SHRLEVEL REFERENCE or
CHANGE, you must also specify LOG NO and take an inline image copy. In this
case, no updates are logged during the REORG.

Any attempt to run REORG SHRLEVEL NONE on a LOB table space results in a
return code of 8 and a utility failure.

Reorganization of a LOB table space and base table space to
complete recovery to a point in time before materialization of
pending definition changes

A REORG job fails if all of the following conditions are true:
v AUX NO is in effect.
v REORG TABLESPACE is being issued to complete the process of recovery to a

point in time prior to the materialization of pending definition changes.
v Pending definition changes exist on the base table space and on the associated

LOB table space.
v REORG is run on the base table space before being run on the LOB table space.

To correct the problem and complete the recovery process, you need to run
REORG on the LOB table space, and then run REORG again on the base table
space.

If the pending definition changes are only on the LOB table space, you can run
REORG only on the LOB table space to complete the point-in-time recovery
process.

Reorganization of an XML table space
Reorganizing an XML table space is a separate task from reorganizing the base
table space.

When you specify the name of the base table space in the REORG statement, DB2
reorganizes only that table space and not any related XML objects. If you want
DB2 to reorganize the XML objects, you must specify those object names. When
you specify that you want XML table spaces to be reorganized, you must also
specify the WORKDDN keyword and provide the specified temporary work file.
The default is SYSUT1.

Chapter 25. REORG TABLESPACE 623

|
|
|

|

|

|
|

|
|

|

|
|
|

|
|
|

When you run REORG on an XML table space that supports XML versions,
REORG discards rows for versions of an XML document that are no longer
needed.

For XML table spaces and base table spaces with XML columns, you cannot specify
the following options in the REORG statement:
v DISCARD
v REBALANCE
v UNLOAD EXTERNAL

In the following example, the REORG statement specifies that DB2 is reorganizing
table space BASETS01 and XML table spaces XML1TS01 and XML2TS01. During
this reorganization DB2 is to take an inline copy of the base table space and gather
statistics for all three table spaces.
//STEP1 EXEC DSNUPROC,UID=’HUHRU252.REORG1’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’DSN’,DB2LEV=DB2A
//SYSREC DD DSN=HUHRU252.REORG1.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSCOPY1 DD DSN=HUHRU252.REORG1.STEP1.SYSCOPY1,
// DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(4000,(20,20),,,ROUND)
//SYSUT1 DD DSN=IUJLU101.REORG.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSUT2 DD DSN=IUJLU101.REORG.STEP1.SYSUT2,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *
REORG TABLESPACE DBHR5201.BASETS01

SHRLEVEL CHANGE MAPPINGTABLE MAP1
COPYDDN(SYSCOPY1)
STATISTICS TABLE(ALL)

INDEX(ALL)
REORG TABLESPACE DBHR5201.XML1TS01

SHRLEVEL CHANGE MAPPINGTABLE MAP2
STATISTICS TABLE(ALL)

INDEX(ALL)
WORKDDN(SYSUT1)

REORG TABLESPACE DBHR5201.XML2TS01
SHRLEVEL CHANGE MAPPINGTABLE MAP3
STATISTICS TABLE(ALL)

INDEX(ALL)
WORKDDN(SYSUT2)

/*

Termination of REORG TABLESPACE
You can terminate the REORG TABLESPACE utility.

If you terminate REORG TABLESPACE with the TERM UTILITY command during
the UNLOAD phase, objects have not yet been changed, and you can rerun the
job.

If you terminate REORG TABLESPACE with the TERM UTILITY command during
the RELOAD phase, the behavior depends on the SHRLEVEL option:
v For SHRLEVEL NONE, the data records are not erased. The table space and

indexes remain in RECOVER-pending status. After you recover the table space,
rerun the REORG job.

624 Utility Guide and Reference

v For SHRLEVEL REFERENCE or CHANGE, the data records are reloaded into
shadow objects, so the original objects have not been affected by REORG. You
can rerun the job.

If you terminate REORG with the TERM UTILITY command during the SORT,
BUILD, or LOG phases, the behavior depends on the SHRLEVEL option:
v For SHRLEVEL NONE, the indexes that are not yet built remain in

RECOVER-pending status. You can run REORG with the SORTDATA option, or
you can run REBUILD INDEX to rebuild those indexes.

v For SHRLEVEL REFERENCE or CHANGE, the records are reloaded into shadow
objects, so the original objects have not been affected by REORG. You can rerun
the job.

If you terminate a stopped REORG utility with the TERM UTILITY command during
the SWITCH phase, the following conditions apply:
v All data sets that were renamed to their shadow counterparts are renamed to

their original names, so that the objects remain in their original state, and you
can rerun the job.

v If a problem occurs in renaming the data sets to the original names, the objects
remain in RECOVER-pending status, and you cannot rerun the job.

If the SWITCH phase does not complete, the image copy that REORG created is
not available for use by the RECOVER utility. If you terminate an active REORG
utility during the SWITCH phase with the TERM UTILITY command, during the
rename process, the renaming occurs, and the SWITCH phase completes. The
image copy that REORG created is available for use by the RECOVER utility.

The REORG-pending status is not reset until the UTILTERM execution phase. If the
REORG utility abnormally terminates or is terminated, the objects remain in
REORG-pending status and RECOVER-pending status, depending on the phase in
which the failure occurred.

The following table lists the restrictive states that REORG TABLESPACE sets
according to the phase in which the utility terminated.

Table 92. Restrictive states that REORG TABLESPACE sets.

Phase Effect on restrictive status

UNLOAD No effect.

RELOAD SHRLEVEL NONE:

v Places table space in RECOVER-pending status at the beginning of the
phase and resets the status at the end of the phase.

v Places indexes in RECOVER-pending status.

v Places the table space in COPY-pending status. If COPYDDN is
specified and SORTKEYS is ignored, the COPY-pending status is reset
at the end of the phase. SORTKEYS is ignored for several catalog and
directory table spaces

SHRLEVEL REFERENCE or CHANGE has no effect.

SORT No effect.

BUILD SHRLEVEL NONE resets RECOVER-pending status for indexes and, if
the utility job includes both COPYDDN and SORTKEYS, resets
COPY-pending status for table spaces at the end of the phase.
SHRLEVEL REFERENCE or CHANGE has no effect.

Chapter 25. REORG TABLESPACE 625

Table 92. Restrictive states that REORG TABLESPACE sets. (continued)

Phase Effect on restrictive status

SORTBLD No effect during the sort portion of the SORTBLD phase. During the
build portion of the SORTBLD phase, the effect is the same as for the
BUILD phase.

LOG No effect.

SWITCH No effect. Under certain conditions, if TERM UTILITY is issued, it must
complete successfully; otherwise, objects might be placed in
RECOVER-pending status.

Recovering a failed REORG job

If you terminate REORG SHRLEVEL NONE in the RELOAD phase, all SYSLGRNX
records associated with the reorganization are deleted. Use the RECOVER
TABLESPACE utility to recover to the current point in time. This action recovers
the table space to its state before the failed reorganization.
Related concepts:
“Termination of an online utility with the TERM UTILITY command” on page 36
“Reorganizing the catalog and directory” on page 606
Related reference:
Appendix C, “Advisory or restrictive states,” on page 1083

Restart of REORG TABLESPACE
You can restart a REORG TABLESPACE utility job.

By default, DB2 uses RESTART(CURRENT) when restarting REORG TABLESPACE
jobs, with the following exceptions:
v Jobs that are restarted in the SORT, BUILD, or SWITCH phase use

RESTART(PHASE) by default.
v Jobs with the SORTKEYS option that are restarted in the RELOAD, SORT,

BUILD, or SORTBLD phase always restart from the beginning of the RELOAD
phase.

v Jobs with the SHRLEVEL REFERENCE, NOSYSREC, and SORTDATA options
use RESTART(PHASE) to restart at the beginning of the UNLOAD phase.

v Jobs with unload parallelism for REORG TABLESPACE SHRLEVEL NONE use
RESTART(PHASE) to restart at the beginning of the UNLOAD and RELOAD
phases.

v Jobs that reorganize LOB table spaces use RESTART(PHASE).

If you restart a REORG job of one or more of the catalog or directory table spaces
in the preceding list, you cannot use RESTART(CURRENT).

If you restart REORG in the UTILINIT phase, it re-executes from the beginning of
the phase. If REORG abnormally terminates or system failure occurs while it is in
the UTILTERM phase, you must restart the job with RESTART(PHASE).

The following table provides information about restarting REORG TABLESPACE,
depending on the phase that REORG was in when the job stopped. For each phase
of REORG and for each type of REORG TABLESPACE (with SHRLEVEL NONE,
with SHRLEVEL REFERENCE, and with SHRLEVEL CHANGE), the following

626 Utility Guide and Reference

table indicates the types of restarts that are allowed (CURRENT and PHASE). A
value of None indicates that no restart is allowed. The “Data Sets Required”
column lists the data sets that must exist to perform the specified type of restart in
the specified phase.

Table 93. REORG TABLESPACE utility restart information for SHRLEVEL NONE, REFERENCE, and CHANGE

Phase

Type of
restart
allowed for
SHRLEVEL
NONE

Type of
restart
allowed for
SHRLEVEL
REFERENCE

Type of
restart
allowed for
SHRLEVEL
CHANGE Required data sets Notes

UNLOAD CURRENT,
PHASE

CURRENT,
PHASE6

None SYSREC

RELOAD CURRENT,
PHASE

CURRENT,
PHASE6

None SYSREC 1, 2

SORT CURRENT,
PHASE

CURRENT,
PHASE6

None None 2, 3

BUILD CURRENT,
PHASE

CURRENT,
PHASE6

None None 2, 3, 4

SORTBLD CURRENT,
PHASE

CURRENT,
PHASE6

None None 2

LOG Phase does
not occur

Phase does
not occur6

None None

SWITCH Phase does
not occur

CURRENT,
PHASE

CURRENT,
PHASE

Originals and shadows 3, 5

Note:
1. For None, if you specify NOSYSREC, restart is not possible, and you must execute the RECOVER TABLESPACE

utility for the table space or partition. For REFERENCE, if the REORG job includes both SORTDATA and
NOSYSREC, RESTART or RESTART(PHASE) restarts at the beginning of the UNLOAD phase.

2. If you specify SHRLEVEL NONE or SHRLEVEL REFERENCE, and the job includes the SORTKEYS option, use
RESTART or RESTART(PHASE) to restart at the beginning of the RELOAD phase.

3. You can restart the utility with RESTART or RESTART(PHASE). However, because this phase does not take
checkpoints, RESTART restarts from the beginning of the phase.

4. If you specify the PART option with REORG TABLESPACE, you cannot restart the utility at the beginning of the
BUILD phase if any nonpartitioning index is in a page set REBUILD-pending (PSRBD) status.

5. If you specify REORG TABLESPACE SHRLEVEL REFERENCE PART with one or more nonpartitioned indexes,
restart is allowed only in the SWITCH phase.

6. For REORG TABLESPACE with SHRLEVEL REFERENCE and PART, if a nonpartitioned index is defined on the
table space, REORG TABLESPACE cannot be restarted before the SWITCH phase.

If you restart a REORG STATISTICS job by using RESTART CURRENT, inline
statistics are not collected. To update catalog statistics, run the RUNSTATS utility
after the restarted job completes. Restarting a REORG STATISTICS job with
RESTART(PHASE) is conditional after executing UNLOAD PAUSE. To determine if
catalog table statistics are going to be updated, see the following table. This table
shows whether or not statistics are updated for REORG STATISTICS jobs according
to the phase in which the job terminated and the restart value that was used.

Table 94. Statistics collection for REORG TABLESPACE utility phase restart

Phase CURRENT PHASE

UTILINIT NO YES

UNLOAD NO YES

RELOAD NO YES

Chapter 25. REORG TABLESPACE 627

Table 94. Statistics collection for REORG TABLESPACE utility phase restart (continued)

Phase CURRENT PHASE

SORT NO NO

BUILD NO YES

SORTBLD NO YES

Related concepts:
“Restart of an online utility” on page 39
Related tasks:
“Restarting after the output data set is full” on page 43

Review of REORG TABLESPACE output
The output from the REORG TABLESPACE utility consists of a reorganized table
space, partition, or a range of partitions.

The following table summarizes the effect of REORG on a table space partition and
on the corresponding index partition.

Table 95. Summary of the results of REORG TABLESPACE according to the type of
specification.

Specification Results

REORG TABLESPACE All data + entire partitioning index + all nonpartitioning indexes

REORG TABLESPACE
PART n

Data for PART n + PART n of the partitioning index + index entries
for PART n in all nonpartitioning indexes

REORG TABLESPACE
PART n1:n2 Data for PART n1 through n2 + PART n1 through n2 of the

partitioning index + index entries for those partitions in all
nonpartitioning indexes

REORG TABLESPACE
SCOPE PENDING

Specified table space or partitions that are in REORG-pending
status.

REORG SHRLEVEL
CHANGE PART and
SHRLEVEL
REFERENCE PART

Unloads and builds entire NPIs, so that the NPI is largely
reorganized even though only a part of the data is actually
reorganized.

When reorganizing a segmented table space, REORG leaves free pages and free
space on each page in accordance with the current values of the FREEPAGE and
PCTFREE parameters. (You can set those values by using the CREATE
TABLESPACE, ALTER TABLESPACE, CREATE INDEX, or ALTER INDEX
statements). REORG leaves one free page after reaching the FREEPAGE limit for
each table in the table space. When reorganizing a nonsegmented table space,
REORG leaves one free page after reaching the FREEPAGE limit, regardless of
whether the loaded records belong to the same or different tables.

After running REORG TABLESPACE
Certain activities might be required after you run the REORG TABLESPACE utility,
depending on your situation.

After a reorganization is complete, perform the following actions:

628 Utility Guide and Reference

v If you have used LOG YES, consider taking an image copy of the reorganized
table space or partition to:
– Provide a full image copy for recovery. This action prevents the need to

process the log records that are written during reorganization.
– Permit making incremental image copies later.
You might not need to take an image copy of a table space for which all the
following statements are true:
– The table space is relatively small.
– The table space is used only in read-only applications.
– The table space can be easily loaded again in the event of failure.
In addition, you do not need to take an image copy if you used COPYDDN or
FCCOPYDDN to take an inline image copy when you ran REORG.

v Use the RUNSTATS utility on the table space and its indexes if inline statistics
were not collected, so that the DB2 catalog statistics take into account the newly
reorganized data, and SQL paths can be selected with accurate information. You
need to run RUNSTATS on nonpartitioning indexes only if you reorganized a
subset of the partitions.

v If you use REORG TABLESPACE SHRLEVEL CHANGE with a mapping table,
you can drop the mapping table and its index.

v If you use SHRLEVEL REFERENCE or CHANGE, and a table space, partition, or
index resides in user-managed data sets, you can delete the user-managed
shadow data sets.

v If you specify DISCARD on a REORG of a table that is involved in a referential
integrity set, you need to run CHECK DATA for any affected referentially
related objects that were placed in CHECK-pending status.

Related reference:
Chapter 11, “COPY,” on page 125

Effects of running REORG TABLESPACE
Running the REORG TABLESPACE utility can have effects on index version
numbers and the version of the data, control intervals, row formats, and NOT
LOGGED table spaces.

The effect of REORG TABLESPACE on index version numbers
and the version of the data

DB2 stores the range of used version numbers in the OLDEST_VERSION and
CURRENT_VERSION columns of one or more of the following catalog tables,
depending on the object:
v SYSIBM.SYSTABLESPACE
v SYSIBM.SYSTABLESPART
v SYSIBM.SYSINDEXES
v SYSIBM.SYSINDEXPART

The OLDEST_VERSION column contains the oldest used version number, and the
CURRENT_VERSION column contains the current version number.

When you run REORG TABLESPACE, the utility sets all of the rows in the table or
partition to the current object version. The utility also updates the range of used
version numbers for indexes that are defined with the COPY NO attribute. REORG
TABLESPACE sets the OLDEST_VERSION column equal to the

Chapter 25. REORG TABLESPACE 629

CURRENT_VERSION column in the appropriate catalog column. These updated
values indicate that only one version is active. DB2 can then reuse all of the other
version numbers.

Recycling of version numbers is required when all of the version numbers are
being used. All version numbers are being used when one of the following
situations is true:
v The value in the CURRENT_VERSION column is one less than the value in the

OLDEST_VERSION column.
v The value in the CURRENT_VERSION column is 255 for table spaces or 15 for

indexes, and the value in the OLDEST_VERSION column is 0 or 1.

You can also run LOAD REPLACE, REBUILD INDEX, or REORG INDEX to
recycle version numbers for indexes that are defined with the COPY NO attribute.
To recycle version numbers for indexes that are defined with the COPY YES
attribute or for table spaces, run MODIFY RECOVERY.

The effect of REORG TABLESPACE on the control interval

When you run REORG TABLESPACE without the REUSE option and the target
data set is managed by DB2, DB2 deletes this data set before REORG processing
begins. DB2 then redefines a new data set with a control interval that matches the
page size.

The effect of REORG TABLESPACE on row format

When you run REORG with the ROWFORMAT RRF option on a table space or
partition that is in basic row format, REORG converts that table space or partition
to reordered row format. If the ROWFORMAT BRF option is specified, existing
basic row format table spaces are not converted to reordered row format. If there is
a table in the table space with an EDITPROC or VALIDPROC, the table space or
partition remains in basic row format after the REORG.

If you run REORG on a catalog or directory table space, the catalog or directory
table space remains in basic row format.

You can run REORG TABLESPACE on table spaces that contain some partitions in
basic row format and some partitions in reordered row format. In this case, the
utility converts the partitions that are in basic row format to reordered row format.

The effect of REORG on NOT LOGGED table spaces

The following table shows the effect of REORG on NOT LOGGED table spaces.

Table 96. REORG parameters

LOAD REORG LOG
keyword

Table space logging
attribute Table space type What is logged

Table space status
after utility
completes

LOG YES NOT LOGGED Non-LOB LOG YES changes to
LOG NO

No pending status or
ICOPY-pending1

LOG YES NOT LOGGED LOB control information No pending status

LOG NO NOT LOGGED Non-LOB nothing No pending status or
ICOPY-pending1

LOG NO NOT LOGGED LOB nothing No pending status

630 Utility Guide and Reference

Table 96. REORG parameters (continued)

LOAD REORG LOG
keyword

Table space logging
attribute Table space type What is logged

Table space status
after utility
completes

Note:

1. The table space is set to ICOPY-pending status if the records are discarded and no pending status is the records
are not discarded.

Sample REORG TABLESPACE control statements
Use the sample control statements as models for developing your own REORG
TABLESPACE control statements.

Example 1: Reorganizing a table space.

The following control statement specifies that the REORG TABLESPACE utility is
to reorganize table space DSN8S11D in database DSN8D11A.
REORG TABLESPACE DSN8D11A.DSN8S11D

Example 2: Reorganizing a table space and specifying the
unload data set

The following control statement specifies that REORG TABLESPACE is to
reorganize table space DSN8D81A.DSN8S81D. The DD name for the unload data
set is UNLD, as specified by the UNLDDN option.

Example 3: Reorganizing a table space partition

The following control statement specifies that REORG TABLESPACE is to
reorganize partition 3 of table space DSN8D11A.DSN8S11E. The SORTDEVT option
indicates the device type for the temporary data sets that are to be dynamically
allocated by the sort program.
REORG TABLESPACE DSN8D11A.DSN8S11E

PART 3
SORTDEVT SYSDA

Example 4: Reorganizing a table and using parallel index build

The following control statement specifies that REORG TABLESPACE is to
reorganize table space DSNDB04.DSN8S81D and to use a parallel index build to

//STEP1 EXEC DSNUPROC,UID=’IUJLU101.REORG’,
// UTPROC=’’,
// SYSTEM=’DSN’
//UTPRINT DD SYSOUT=*
//UNLD DD DSN=IUJLU101.REORG.STEP1.UNLD,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTWK01 DD DSN=IUJLU101.REORG.STEP1.SORTWK01,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTWK02 DD DSN=IUJLU101.REORG.STEP1.SORTWK02,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
REORG TABLESPACE (DSN8D11A.DSN8S11D)

UNLDDN (UNLD)
//*

Figure 69. Example REORG TABLESPACE control statement with the UNLDDN option

Chapter 25. REORG TABLESPACE 631

rebuild the indexes. The indexes are built in parallel, because more than one index
needs to be built and the job allocates the data sets that the sort program needs.
Note that you no longer need to specify SORTKEYS; it is the default.

The job allocates the sort work data sets in two groups, which limits the number of
pairs of utility subtasks to two. This example does not require UTPRINnn DD
statements because it uses DSNUPROC to invoke utility processing. DSNUPROC
includes a DD statement that allocates UTPRINT to SYSOUT.

LOG NO specifies that records are not to be logged during the RELOAD phase.
This option puts the table space in COPY-pending status.

Example 5: Reorganizing a table while allowing read-write
access

The following control statement specifies that REORG TABLESPACE is to
reorganize table space DSNDB04.DSN8S81E and to use a parallel index build to
rebuild the indexes. The sort program dynamically allocates sort work data sets.
This example does not require UTPRINnn DD statements because it uses
DSNUPROC to invoke utility processing. DSNUPROC includes a DD statement
that allocates UTPRINT to SYSOUT. The SORTDEVT option indicates the device
type for the temporary data sets that are to be dynamically allocated by the sort
program. The SHRLEVEL CHANGE option specifies that while the table is being
reorganized, users have read-write access. The name of the mapping table is
DSN8MAP. This table is used to map the RIDs of data records in the original copy
of the area to the corresponding RIDs in the shadow copy.
//SAMPJOB JOB ...
//STEP1 EXEC DSNUPROC,UID=’SAMPJOB.REORG’,UTPROC=’’,SYSTEM=’DSN’
//SYSCOPY DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND),
// DSN=SAMPJOB,COPY,DISP=(NEW,CATLG,CATLG)
//SYSIN DD *
REORG TABLESPACE DSNDB04.DSN8S11E LOG NO SORTDEVT SYSDA SORTNUM 4

SHRLEVEL CHANGE MAPPINGTABLE DSN8MAP
/*

//SAMPJOB JOB ...
//STEP1 EXEC DSNUPROC,UID=’SAMPJOB.REORG’,UTPROC=’’,SYSTEM=’DSN’
//SYSREC DD DSN=SAMPJOB.REORG.STEP1.SYSREC,DISP=(NEW,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//* First group of sort work data sets for parallel index build
//SW01WK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW01WK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW01WK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//* Second group of sort work data sets for parallel index build
//SW02WK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW02WK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW02WK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//* Sort work data sets for use by SORTDATA
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SYSIN DD *
REORG TABLESPACE DSNDB04.DSN8S11D LOG NO
/*

Figure 70. Example REORG TABLESPACE control statement with LOG NO option

632 Utility Guide and Reference

Example 6: Specifying a deadline for the SWITCH phase while
reorganizing a table

The following control statement specifies that REORG TABLESPACE is to
reorganize table space DSN8D81A.DSN8S11D. The DEADLINE option indicates
that the deadline for start of the SWITCH phase is eight hours from the start of the
REORG job. The COPYDDN and RECOVERYDDN options indicate that the utility
is to take an image copy of the table space. DB2 is to write the primary image
copy at the local site to a data set that is defined by the MYCOPY1 DD statement
and to write the primary image copy at the recovery site to a data set that is
defined by the MYCOPY2 DD statement. SHRLEVEL REFERENCE indicates that
access is restricted during reorganization.
REORG TABLESPACE DSN8D11A.DSN8S11D COPYDDN(MYCOPY1)

RECOVERYDDN(MYCOPY2) SHRLEVEL REFERENCE
DEADLINE CURRENT TIMESTAMP + 8 HOURS

Example 7: Setting a deadline for a REORG TABLESPACE job

The following control statement specifies that REORG TABLESPACE is to
reorganize table space DSN8D11A.DSN8S11D. The DEADLINE option indicates
that the deadline for the start of the SWITCH phase is eight hours from the start of
the REORG job. The name of the mapping table is DSN8810.MAP_TBL. The
maximum amount of time for log processing in the read-only (last) iteration of log
processing is 240 seconds, as indicated by the MAXRO option. If DB2 is not
reading the log quickly enough after the applications write to the log, DB2 drains
the write claim class after sending the LONGLOG message to the operator. That
draining takes place at least 900 seconds after the LONGLOG message is sent, as
indicated by the DELAY option. DB2 is also to take inline image copies for the
local site and recovery site, as indicated by the COPYDDN and RECOVERYDDN
options.
REORG TABLESPACE DSN8D11A.DSN8S11D COPYDDN(MYCOPY1)

RECOVERYDDN(MYCOPY2) SHRLEVEL CHANGE
DEADLINE CURRENT TIMESTAMP + 8 HOURS
MAPPINGTABLE DSN8B10.MAP_TBL MAXRO 240 LONGLOG DRAIN DELAY 900

Example 8: Reorganizing a range of table space partitions

The following control statement specifies that REORG TABLESPACE is to
reorganize partitions 3 through 5 of table space DSN8D11A.DSN8S11E. The
SORTDEVT option indicates the device type for the temporary data sets that are to
be dynamically allocated by the sort program. The SHRLEVEL NONE option
indicates that while the data is being unloaded, applications can read but can't
write. While the data is being reloaded, applications can have read-write access.
SHRLEVEL NONE is the default. The COPYDDN option indicates that the utility
is to take an image copy of the table space and to write the primary image copy to
the data set that is defined by the SYSCOPY DD statement.
REORG TABLESPACE DSN8D11A.DSN8S11E

PART 3:5
SORTDEVT SYSDA
SHRLEVEL NONE
COPYDDN SYSCOPY

Example 9: Reorganizing a partition and updating the statistics

The following control statement specifies that REORG TABLESPACE is to
reorganize partition 3 of table space DSN8D11A. DSN8S11E. The STATISTICS

Chapter 25. REORG TABLESPACE 633

option indicates that the utility is also to update statistics in the catalog for that
partition. Note that the STATISTICS option is not valid for LOB table spaces.
REORG TABLESPACE DSN8D11A.DSN8S11E

STATISTICS PART 3

Example 10: Reorganizing a table space and reporting table
space and index statistics

The following control statement specifies that REORG TABLESPACE is to
reorganize table space DSN8D11A.DSN8S11E. The SORTDATA option indicates
that the data is to be unloaded and sorted in clustering order. This option is the
default and does not need to be specified. The STATISTICS, TABLE, INDEX, and
REPORT YES options indicate that the utility is also to report catalog statistics for
all tables in the table space and for all indexes that are defined on those tables. The
FREQVAL, NUMCOLS, and COUNT options indicate that DB2 is to collect 10
frequent values on the first key column of the index. UPDATE NONE indicates
that the catalog tables are not to be updated. This option requires that REPORT
YES also be specified. Because both STATISTICS and INDEX are specified, the
utility also collects statistics on the values in the key columns of indexes.
REORG TABLESPACE DSN8D11A.DSN8S11E SORTDATA STATISTICS

TABLE
INDEX(ALL) FREQVAL NUMCOLS 1
COUNT 10 REPORT YES UPDATE NONE

Example 11: Determining whether a table space should be
reorganized

The following control statement specifies that REORG TABLESPACE is to report if
the OFFPOSLIMIT and INDREFLIMIT values for partition 11 of table space
DBHR5201.TPHR5201 exceed the specified values (11 for OFFPOSLIMIT and 15 for
INDREFLIMIT).

On successful completion, DB2 returns output that is similar to the output in the
following sample output. This sample output shows that the limits have been met.

//STEP1 EXEC DSNUPROC,UID=’HUHRU252.REORG2’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSREC DD DSN=HUHRU252.REORG2.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSCOPY DD DSN=HUHRU252.REORG2.STEP1.SYSCOPY,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
// SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
REORG TABLESPACE DBHR5201.TPHR5201 PART 11

NOSYSREC
REPORTONLY
SHRLEVEL CHANGE MAPPINGTABLE ADMF001.MAP1
COPYDDN (SYSCOPY)
OFFPOSLIMIT 11 INDREFLIMIT 15

/*

Figure 71. Example REORG TABLESPACE statement with REPORTONLY, OFFPOSLIMIT,
and INDREFLIMIT options

634 Utility Guide and Reference

Example 12: Conditionally reorganizing a table space

In the following example, the RUNSTATS utility control statement specifies that
the utility is to update space statistics in the catalog for table space
DBHR5201.TPHR5201. This RUNSTATS job ensures that the space statistics for this
table space are current. The subsequent REORG TABLESPACE control statement
specifies that if any of the values for OFFPOSLIMIT or INDREFLIMIT exceed 9,
the utility is to reorganize the table space.

On successful completion, DB2 returns output for the REORG TABLESPACE job
that is similar to the output in the following sample output.

DSNU050I DSNUGUTC - REORG TABLESPACE DBHR5201.TPHR5201 SHRLEVEL CHANGE MAPPINGTABLE
MAP1 COPYDDN(SYSCOPY1)
OFFPOSLIMIT 9 INDREFLIMIT 9

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = HUHRU252.REORG2
DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I DSNUGUTC - REORG TABLESPACE DBHR5201.TPHR5201 PART 11 NOSYSREC REPORTONLY SHRLEVEL CHANGE
MAPPINGTABLE ADMF001.MAP1 COPYDDN(SYSCOPY) OFFPOSLIMIT 11 INDREFLIMIT 15
DSNU286I = DSNURLIM - REORG TABLESPACE DBHR5201.TPHR5201 OFFPOSLIMIT SYSINDEXPART ROWS
* CREATOR.IXNAME : ADMF001.IPHR5201

CREATOR.TBNAME : ADMF001.TBHR5201
PART: 1 CARDF: 6.758E+03 FAROFFPOSF: 2.892E+03 NEAROFFPOSF: 8.18E+02 STATSTIME: 2003-04-11

13.32.06
DSNU287I = DSNURLIM - REORG TABLESPACE DBHR5201.TPHR5201 INDREFLIMIT SYSTABLEPART ROWS

DBNAME .TSNAME PART CARD FARINDREF NEARINDREF STATSTIME
DBHR5201.TPHR5201 1 6758 0 0 2003-04-11-13.32.06

DSNU289I = DSNURLIM - REORG LIMITS HAVE BEEN MET
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 72. Sample output showing that REORG limits have been met

//**
//* COMMENT: UPDATE STATISTICS
//**
//STEP1 EXEC DSNUPROC,UID=’HUHRU252.REORG1’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSREC DD DSN=HUHRU252.REORG1.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
// SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
RUNSTATS TABLESPACE DBHR5201.TPHR5201

UPDATE SPACE
/*
//**
//* COMMENT: REORG THE TABLESPACE
//**
//STEP2 EXEC DSNUPROC,UID=’HUHRU252.REORG1’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSREC DD DSN=HUHRU252.REORG1.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSCOPY1 DD DSN=HUHRU252.REORG1.STEP1.SYSCOPY1,
// DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
REORG TABLESPACE DBHR5201.TPHR5201

SHRLEVEL CHANGE MAPPINGTABLE MAP1
COPYDDN(SYSCOPY1)
OFFPOSLIMIT 9 INDREFLIMIT 9

/*

Figure 73. Example of conditionally reorganizing a table

Chapter 25. REORG TABLESPACE 635

DSNU286I = DSNURLIM - REORG TABLESPACE DBHR5201.TPHR5201 OFFPOSLIMIT SYSINDEXPART ROWS
* CREATOR.IXNAME : ADMF001.IPHR5201
CREATOR.TBNAME : ADMF001.TBHR5201

PART: 1 CARDF: 3.6E+01 FAROFFPOSF: 0.0E0 NEAROFFPOSF: 1.2E+01
STATSTIME: 2002-05-28-16.22.18

CREATOR.IXNAME : ADMF001.IPHR5201
CREATOR.TBNAME : ADMF001.TBHR5201
PART: 2 CARDF: 5.0E+00 FAROFFPOSF: 0.0E0 NEAROFFPOSF: 0.0E0

STATSTIME: 2002-05-28-16.22.18
...
* CREATOR.IXNAME : ADMF001.IPHR5201

CREATOR.TBNAME : ADMF001.TBHR5201
PART: 11 CARDF: 6.758E+03 FAROFFPOSF: 2.892E+03 NEAROFFPOSF: 8.18E+02

STATSTIME: 2002-05-28-16.22.18
DSNU287I = DSNURLIM - REORG TABLESPACE DBHR5201.TPHR5201 INDREFLIMIT SYSTABLEPART ROWS

DBNAME .TSNAME PART CARD FARINDREF NEARINDREF STATSTIME
DBHR5201.TPHR5201 1 36 0 0 2002-05-28-16.22.18
DBHR5201.TPHR5201 2 5 0 0 2002-05-28-16.22.18
DBHR5201.TPHR5201 3 54 0 0 2002-05-28-16.22.18
DBHR5201.TPHR5201 4 30 0 0 2002-05-28-16.22.18
DBHR5201.TPHR5201 5 21 0 0 2002-05-28-16.22.18
DBHR5201.TPHR5201 6 5 0 0 2002-05-28-16.22.18
DBHR5201.TPHR5201 7 4 0 0 2002-05-28-16.22.18
DBHR5201.TPHR5201 8 35 0 0 2002-05-28-16.22.18
DBHR5201.TPHR5201 9 25 0 0 2002-05-28-16.22.18
DBHR5201.TPHR5201 10 1 0 0 2002-05-28-16.22.18
DBHR5201.TPHR5201 11 6758 0 0 2002-05-28-16.22.18

DSNU289I = DSNURLIM - REORG LIMITS HAVE BEEN MET
DSNU290I = DSNURLIM - REORG WILL BE PERFORMED
DSNU252I DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=6985 FOR
TABLESPACE DBHR5201.TPHR5201
DSNU250I DSNUGSRT - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:01
DSNU304I = DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=6985 FOR TABLE
ADMF001.TBHR5201
DSNU302I DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=6985
DSNU300I DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:29
DSNU042I DSNUGSOR - SORT PHASE STATISTICS -

NUMBER OF RECORDS=34925
ELAPSED TIME=00:00:00

DSNU348I = DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=36 FOR INDEX ADMF001.IPHR5201 PART 1
DSNU348I = DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=5 FOR INDEX ADMF001.IPHR5201 PART 2
...
DSNU349I = DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=6985 FOR INDEX ADMF001.IUHR5210
DSNU258I DSNURBXD - BUILD PHASE STATISTICS - NUMBER OF INDEXES=5
DSNU259I DSNURBXD - BUILD PHASE COMPLETE, ELAPSED TIME=00:00:18
DSNU386I DSNURLGD - LOG PHASE STATISTICS. NUMBER OF ITERATIONS = 1, NUMBER OF LOG
RECORDS = 194
DSNU385I DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:01:10
DSNU400I DSNURBID - COPY PROCESSED FOR TABLESPACE DBHR5201.TPHR5201

NUMBER OF PAGES=1073
AVERAGE PERCENT FREE SPACE PER PAGE = 14.72
PERCENT OF CHANGED PAGES =100.00
ELAPSED TIME=00:01:58

DSNU387I DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:01:05
DSNU428I DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DBHR5201.TPHR5201

Example 13: Reorganizing a table space after waiting for SQL
statements to complete.

The following control statement specifies that REORG TABLESPACE is to
reorganize the table space in the REORG_TBSP list, which is defined in the

Figure 74. Sample REORG output for conditional REORG

636 Utility Guide and Reference

preceding LISTDEF utility control statement. Before reorganizing the table space,
REORG TABLESPACE is to wait for 30 seconds for SQL statements to finish
adding or changing data. This interval is indicated by the DRAIN_WAIT option. If
the SQL statements do not finish, the utility is to try again up to four times, as
indicated by the RETRY option. The utility is to wait 10 seconds between retries, as
indicated by the RETRY_DELAY option.

The TEMPLATE utility control statements define the data set characteristics for the
data sets that are to be dynamically allocated during the REORG TABLESPACE
job. The OPTIONS utility control statement indicates that the TEMPLATE
statements and LISTDEF statement are to run in PREVIEW mode.

On successful completion, DB2 returns output similar to the output in the
following sample output.

DSNU000I 280 14:54:37.27 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = HUHRU257.REORG
DSNU1044I 280 14:54:37.43 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 280 14:54:37.45 DSNUGUTC - OPTIONS PREVIEW
DSNU1000I 280 14:54:37.45 DSNUZODR - PROCESSING CONTROL STATEMENTS IN PREVIEW MODE
DSNU1035I 280 14:54:37.45 DSNUZODR - OPTIONS STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.45 DSNUGUTC - TEMPLATE CPYTMP UNIT(SYSDA) DSN(HUHRU257.REORG.STEP12.SYSCOPY1)
DSNU1035I 280 14:54:37.45 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.46 DSNUGUTC - TEMPLATE SREC UNIT(SYSDA) DISP(NEW, CATLG, CATLG) DSN(
HUHRU257.REORG.&ST..SREC)
DSNU1035I 280 14:54:37.46 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.46 DSNUGUTC - TEMPLATE SDISC UNIT(SYSDA) DISP(NEW, CATLG, CATLG) DSN(
HUHRU257.REORG.&ST..SDISC)
DSNU1035I 280 14:54:37.46 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.46 DSNUGUTC - TEMPLATE SPUNCH UNIT(SYSDA) DISP(NEW, CATLG, CATLG) DSN(
HUHRU257.REORG.&ST..SPUNCH)
DSNU1035I 280 14:54:37.46 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.46 DSNUGUTC - TEMPLATE SUT1 UNIT(SYSDA) DISP(NEW, DELETE, CATLG) DSN(
HUHRU257.REORG.&ST..SUT1)

//STEP1 EXEC DSNUPROC,UID=’HUHRU257.REORG’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’DSN’
//UTPRINT DD SYSOUT=*
//SYSIN DD *

OPTIONS PREVIEW
TEMPLATE CPYTMP UNIT(SYSDA)

DSN(HUHRU257.REORG.T&TI..SYSCOPY1)
TEMPLATE SREC

UNIT(SYSDA) DISP(NEW,CATLG,CATLG)
DSN(HUHRU257.REORG.&ST..SREC)

TEMPLATE SDISC
UNIT(SYSDA) DISP(NEW,CATLG,CATLG)
DSN(HUHRU257.REORG.&ST..SDISC)

TEMPLATE SPUNCH
UNIT(SYSDA) DISP(NEW,CATLG,CATLG)

DSN(HUHRU257.REORG.&ST..SPUNCH)
LISTDEF REORG_TBSP INCLUDE TABLESPACE DBHR5701.TPHR5701
OPTIONS OFF
REORG TABLESPACE LIST REORG_TBSP

DRAIN_WAIT 30 RETRY 4 RETRY_DELAY 10
STATISTICS
TABLE (ALL) SAMPLE 60
INDEX (ALL FREQVAL NUMCOLS 2 COUNT 15)
SHRLEVEL CHANGE MAPPINGTABLE MAP5702
LONGLOG DRAIN MAXRO DEFER DELAY 30
COPYDDN (CPYTMP)
SORTDEVT SYSDA SORTNUM 8
PUNCHDDN SPUNCH
DISCARDDN SDISC

UNLDDN SREC

Figure 75. Example of reorganizing a table space by using DRAIN WAIT, RETRY, and
RETRY_DELAY

Chapter 25. REORG TABLESPACE 637

DSNU1035I 280 14:54:37.46 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.46 DSNUGUTC - TEMPLATE SOUT UNIT(SYSDA) DISP(NEW, DELETE, CATLG) DSN(
HUHRU257.REORG.&ST..SOUT)
DSNU1035I 280 14:54:37.46 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.46 DSNUGUTC - LISTDEF REORG_TBSP INCLUDE TABLESPACE DBHR5701.TPHR5701
DSNU1035I 280 14:54:37.47 DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
DSNU1020I @ 280 14:54:37.47 DSNUILSA - EXPANDING LISTDEF REORG_TBSP
DSNU1021I @ 280 14:54:37.47 DSNUILSA - PROCESSING INCLUDE CLAUSE TABLESPACE DBHR5701.TPHR5701
DSNU1022I @ 280 14:54:37.47 DSNUILSA - CLAUSE IDENTIFIES 1 OBJECTS
DSNU1023I @ 280 14:54:37.47 DSNUILSA - LISTDEF REORG_TBSP CONTAINS 1 OBJECTS
DSNU1010I 280 14:54:37.47 DSNUGPVV - LISTDEF REORG_TBSP EXPANDS TO THE FOLLOWING OBJECTS:

LISTDEF REORG_TBSP -- 00000001 OBJECTS
INCLUDE TABLESPACE DBHR5701.TPHR5701

DSNU050I 280 14:54:37.47 DSNUGUTC - OPTIONS OFF
DSNU1035I 280 14:54:37.47 DSNUZODR - OPTIONS STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.47 DSNUGUTC - REORG TABLESPACE LIST REORG_TBSP SHRLEVEL CHANGE MAPPINGTABLE MAP5702
LONGLOG DRAIN MAXRO DEFER DELAY 30 DRAIN_WAIT 30 RETRY 4 RETRY_DELAY 10 COPYDDN(CPYTMP) SORTKEYS SORTDEVT SYSDA
SORTNUM 8 PUNCHDDN SPUNCH DISCARDDN SDISC UNLDDN SREC WORKDDN(SUT1, SOUT) STATISTICS TABLE(ALL) SAMPLE 60 INDEX(ALL
KEYCARD FREQVAL NUMCOLS 2 COUNT 15)
DSNU1033I 280 14:54:37.48 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE DBHR5701.TPHR5701
DSNU1038I 280 14:54:42.97 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=CPYTMP

DDNAME=SYS00001
DSN=HUHRU257.REORG.STEP12.SYSCOPY1

DSNU397I 280 14:54:43.01 DSNURPCT - NUMBER OF TASKS CONSTRAINED BY VIRTUAL STORAGE
DSNU397I 280 14:54:43.01 DSNURPCT - NUMBER OF TASKS CONSTRAINED BY CPUS
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
DBHR5701.TPHR5701 PART 1
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
DBHR5701.TPHR5701 PART 2
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
DBHR5701.TPHR5701 PART 3
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
DBHR5701.TPHR5701 PART 4
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
DBHR5701.TPHR5701 PART 5
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
DBHR5701.TPHR5701 PART 6
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
DBHR5701.TPHR5701 PART 7
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
DBHR5701.TPHR5701 PART 8
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
DBHR5701.TPHR5701 PART 9
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
DBHR5701.TPHR5701 PART 10
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=2520 FOR TABLESPACE
DBHR5701.TPHR5701 PART 11
DSNU252I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=2520 FOR TABLESPACE
DBHR5701.TPHR5701
DSNU250I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
DSNU395I 280 14:54:43.95 DSNURPIB - INDEXES WILL BE BUILT IN PARALLEL, NUMBER OF TASKS = 6
DSNU397I 280 14:54:43.95 DSNURPIB - NUMBER OF TASKS CONSTRAINED BY VIRTUAL STORAGE
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE ADMF001.TBHR5701 PART=1
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE ADMF001.TBHR5701 PART=2
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE ADMF001.TBHR5701 PART=3
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE ADMF001.TBHR5701 PART=4
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE ADMF001.TBHR5701 PART=5
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE ADMF001.TBHR5701 PART=6
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE ADMF001.TBHR5701 PART=7
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE ADMF001.TBHR5701 PART=8
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE ADMF001.TBHR5701 PART=9
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE ADMF001.TBHR5701
PART=10
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=2520 FOR TABLE ADMF001.TBHR5701
PART=11
DSNU304I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=2520 FOR TABLE ADMF001.TBHR5701
DSNU302I 280 14:55:42.48 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=2520
DSNU300I 280 14:55:42.48 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:59
DSNU394I @ 280 14:55:42.69 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=2520 FOR INDEX ADMF001.IXHR5702
DSNU394I @ 280 14:55:42.77 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=2520 FOR INDEX ADMF001.IXHR5704
DSNU394I @ 280 14:55:42.83 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=2520 FOR INDEX ADMF001.IXHR5706
DSNU393I @ 280 14:55:42.63 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=2520 FOR INDEX ADMF001.IPHR5701 PART
11
DSNU394I @ 280 14:55:42.73 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=2520 FOR INDEX ADMF001.IUHR5710
DSNU394I @ 280 14:55:42.82 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=2520 FOR INDEX ADMF001.IXHR5703
DSNU394I @ 280 14:55:42.94 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=2520 FOR INDEX ADMF001.IXHR5705
DSNU391I 280 14:55:43.15 DSNURPTB - SORTBLD PHASE STATISTICS. NUMBER OF INDEXES = 7
DSNU392I 280 14:55:43.15 DSNURPTB - SORTBLD PHASE COMPLETE, ELAPSED TIME = 00:00:00
DSNU386I 280 14:57:33.94 DSNURLGD - LOG PHASE STATISTICS. NUMBER OF ITERATIONS = 23, NUMBER OF LOG RECORDS = 0

638 Utility Guide and Reference

DSNU385I 280 14:57:33.94 DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:01:50
DSNU400I 280 14:57:33.95 DSNURBID - COPY PROCESSED FOR TABLESPACE DBHR5701.TPHR5701

NUMBER OF PAGES=394
AVERAGE PERCENT FREE SPACE PER PAGE = 13.70
PERCENT OF CHANGED PAGES =100.00
ELAPSED TIME=00:02:50

DSNU387I 280 14:57:35.53 DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:01
DSNU428I 280 14:57:35.54 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DBHR5701.TPHR5701
DSNU610I @ 280 14:57:36.78 DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR DBHR5701.TPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:36.78 DSNUSUPT - SYSTABSTATS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:36.85 DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:36.85 DSNUSUTB - SYSTABLES CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:36.92 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:36.93 DSNUSUTS - SYSTABLESPACE CATALOG UPDATE FOR DBHR5701.TPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.42 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.44 DSNUSUPI - SYSINDEXSTATS CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.45 DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.45 DSNUSUPD - SYSCOLDISTSTATS CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.46 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL
DSNU610I @ 280 14:57:37.46 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL
DSNU610I @ 280 14:57:37.47 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL
SNU610I @ 280 14:57:37.47 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL
DSNU610I @ 280 14:57:37.48 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL
DSNU610I @ 280 14:57:37.48 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.48 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.54 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL
DSNU610I @ 280 14:57:37.54 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL
DSNU610I @ 280 14:57:37.57 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL
DSNU610I @ 280 14:57:37.57 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL
DSNU610I @ 280 14:57:37.60 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL
DSNU610I @ 280 14:57:37.60 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL
DSNU610I @ 280 14:57:37.63 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL
DSNU610I @ 280 14:57:37.63 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL
DSNU610I @ 280 14:57:37.66 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL
DSNU610I @ 280 14:57:37.66 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL
DSNU610I @ 280 14:57:37.71 DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.71 DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL
DSNU610I @ 280 14:57:37.72 DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL
DSNU610I @ 280 14:57:37.72 DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL
DSNU610I @ 280 14:57:37.73 DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL
DSNU610I @ 280 14:57:37.74 DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL
DSNU620I @ 280 14:57:37.74 DSNUSEOF - RUNSTATS CATALOG TIMESTAMP = 2010-10-07-14.54.43.844498
DSNU010I 280 14:57:42.23 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

DSNU394I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IXHR5706
DSNU394I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IXHR5705
DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL
DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL
DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL
DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL
DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL
DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL
DSNU620I = DSNURDRI - RUNSTATS CATALOG TIMESTAMP = 2002-08-05-16.25.21.292235
DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL
DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL
DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL
DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL
DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL
DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL
DSNU620I = DSNURDRI - RUNSTATS CATALOG TIMESTAMP = 2002-08-05-16.25.22.288665
DSNU393I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IPHR5701 PART 11
DSNU394I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IPHR5701
DSNU394I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IXHR5704
DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I = DSNUSUPI - SYSINDEXSTATS CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I = DSNUSUPD - SYSCOLDISTSTATS CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I = DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL
DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL
DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL
DSNU620I = DSNURDRI - RUNSTATS CATALOG TIMESTAMP = 2002-08-05-16.25.20.886803

Chapter 25. REORG TABLESPACE 639

DSNU391I DSNURPTB - SORTBLD PHASE STATISTICS. NUMBER OF INDEXES = 7
DSNU392I DSNURPTB - SORTBLD PHASE COMPLETE, ELAPSED TIME = 00:00:04
DSNU377I = DSNURLOG - IN REORG WITH SHRLEVEL CHANGE, THE LOG IS
BECOMING LONG, MEMBER= , UTILID=HUHRU257.REORG
DSNU377I = DSNURLOG - IN REORG WITH SHRLEVEL CHANGE, THE LOG IS
BECOMING LONG, MEMBER= , UTILID=HUHRU257.REORG
...
DSNU377I = DSNURLOG - IN REORG WITH SHRLEVEL CHANGE, THE LOG IS
BECOMING LONG, MEMBER= , UTILID=HUHRU257.REORG
DSNU1122I = DSNURLOG - JOB T3161108 PERFORMING REORG
WITH UTILID HUHRU257.REORG UNABLE TO DRAIN DBHR5701.TPHR5701.
RETRY 1 OF 4 WILL BE ATTEMPTED IN 10 SECONDS
DSNU1122I = DSNURLOG - JOB T3161108 PERFORMING REORG
WITH UTILID HUHRU257.REORG UNABLE TO DRAIN DBHR5701.TPHR5701.
RETRY 2 OF 4 WILL BE ATTEMPTED IN 10 SECONDS
DSNU386I DSNURLGD - LOG PHASE STATISTICS. NUMBER OF ITERATIONS = 32, NUMBER OF LOG RECORDS = 2288
DSNU385I DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:03:43
DSNU400I DSNURBID - COPY PROCESSED FOR TABLESPACE DBHR5701.TPHR5701

NUMBER OF PAGES=377
AVERAGE PERCENT FREE SPACE PER PAGE = 5.42
PERCENT OF CHANGED PAGES =100.00
ELAPSED TIME=00:04:02

DSNU387I DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:02
DSNU428I DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DBHR5701.TPHR5701
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 14: Using a mapping table

In the following example, a mapping table and mapping table index are created.
Then, a REORG TABLESPACE job uses the mapping table, and finally the mapping
table is dropped. Some parts of this job use the EXEC SQL utility to execute
dynamic SQL statements.

The first EXEC SQL control statement contains the SQL statements that create a
mapping table that is named MYMAPPING_TABLE. The second EXEC SQL control
statement contains the SQL statements that create mapping index
MYMAPPING_INDEX on the table MYMAPPING_TABLE.

The REORG TABLESPACE control statement then specifies that the REORG
TABLESPACE utility is to reorganize table space DSN8D81P.DSN8S81C and to use
mapping table MYMAPPING_TABLE.

Finally, the third EXEC SQL statement contains the SQL statements that drop
MYMAPPING_TABLE.

EXEC SQL
CREATE TABLE MYMAPPING_TABLE

(TYPE CHAR(01) NOT NULL,
SOURCE_RID CHAR(05) NOT NULL,
TARGET_XRID CHAR(09) NOT NULL,
LRSN CHAR(06) NOT NULL)

IN DSN8D81P.DSN8S81Q
CCSID EBCDIC

ENDEXEC
EXEC SQL

CREATE UNIQUE INDEX MYMAPPING_INDEX
ON MYMAPPING_TABLE
(SOURCE_RID ASC,
TYPE,
TARGET_XRID,
LRSN)

Figure 76. Sample output of REORG TABLESPACE job with DRAIN WAIT, RETRY, and RETRY_DELAY options

640 Utility Guide and Reference

USING STOGROUP DSN8G710
PRIQTY 120 SECQTY 20
ERASE NO
BUFFERPOOL BP0
CLOSE NO

ENDEXEC
REORG TABLESPACE DSN8D81P.DSN8S81C
COPYDDN(COPYDDN)
SHRLEVEL CHANGE
DEADLINE CURRENT_TIMESTAMP+8 HOURS
MAPPINGTABLE MYMAPPING_TABLE
MAXRO 240 LONGLOG DRAIN DELAY 900
SORTDEVT SYSDA SORTNUM 4
STATISTICS TABLE(ALL)

INDEX(ALL)
EXEC SQL

DROP TABLE MYMAPPING_TABLE
ENDEXEC

Example 15: Discarding records from one table while
reorganizing a table space

The following control statement specifies that REORG TABLESPACE is to
reorganize table space DSN8D51A.DSN8S51E. During reorganization, records in
table DSN8510.EMP are discarded if they have the value D11 in the WORKDEPT
field. This discard criteria is specified in the WHEN clause that follows the
DISCARD option. Because a SYSDISC DD statement is included in the JCL, any
discarded rows are to be written to the data set that is identified by this DD
statement.

The COPYDDN option specifies that during the REORG, DB2 is also to take an
inline copy of the table space. This image copy is to be written to the data set that
is identified by the SYSCOPY DD statement.

//REORGDIS EXEC DSNUPROC,TIME=1440,
// UTPROC=’’,
// SYSTEM=’DSN’,UID=’REORGDIS.EMP’
//SYSREC DD DISP=(NEW,CATLG,CATLG),
// DSN=SYSADM.REORGDIS.SYSREC,
// UNIT=SYSDA,SPACE=(TRK,(15,15))
//SYSDISC DD DISP=(NEW,CATLG,CATLG),
// DSN=SYSADM.REORGDIS.SYSDISC,
// UNIT=SYSDA,SPACE=(TRK,(15,15))
//SYSPUNCH DD DISP=(NEW,CATLG,CATLG),
// DSN=SYSADM.REORGDIS.SYSPUNCH,
// UNIT=SYSDA,SPACE=(TRK,(15,15))
//SYSCOPY DD DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(30,30)),
// DSN=SYSADM.DSN8D51A.DSN8S51E.COPY
//SYSIN DD *

REORG TABLESPACE
DSN8D81A.DSN8S81E
DISCARD
FROM TABLE DSN8810.EMP
WHEN (WORKDEPT = ’D11’)
SHRLEVEL NONE COPYDDN SYSCOPY

Figure 77. Example REORG statement that specifies discard criteria

Chapter 25. REORG TABLESPACE 641

Example 16: Discarding records from multiple tables while
reorganizing a table space

The following control statement specifies that REORG TABLESPACE is to
reorganize table space DBKC0501.TLKC0501. During reorganization, the following
records are discarded:
v Records in table TBKC0501 that have a value in the QT_INV_TRANSACTION

column that is less than or equal to 700, and a value in the NO_DEPT column
that is equal to X'33303230'.

v Records in table TBKC0502 that have a value in the NO_WORK_CENTER
column that is equal to either X'333031303120' or X'333032303620'.

This discard criteria is specified with the DISCARD option. Any discarded rows
are to be written to the SYSDISC data set, as specified by the DISCARDDN option.

Example 17: Reorganizing only those partitions that are in
REORG-pending status

The following control statement specifies that REORG TABLESPACE is to
reorganize only those partitions of table space DBKQAA01.TPKQAA01 that are in
the range from 2 to 10 and are in REORG-pending status.

//STEP1 EXEC DSNUPROC,UID=’IUKCU105.REORG2’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//UTPRINT DD SYSOUT=*
//SYSDISC DD DSN=IUKCU105.REORG2.STEP1.SYSDISC,
// DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(2000,(20,20),,,ROUND),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)
//SYSREC DD DSN=IUKCU105.REORG2.STEP1.SYSREC,
// DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSCOPY DD DSN=IUKCU105.REORG2.STEP1.SYSCOPY,
// DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//LOADSTMT DD DSN=IUKCU105.REORG2.STEP1.SYSPUNCH,
// DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *

REORG TABLESPACE DBKC0501.TLKC0501 SHRLEVEL REFERENCE
PUNCHDDN LOADSTMT DISCARDDN SYSDISC
UNLOAD CONTINUE
DISCARD
FROM TABLE TBKC0501

WHEN (QT_INV_TRANSACTION <= 700 AND
NO_DEPT = X’33303230’)

FROM TABLE TBKC0502
WHEN (NO_WORK_CENTER = X’333031303120’ OR

NO_WORK_CENTER = X’333032303620’)
/*

Figure 78. Example REORG statement that specifies discard criteria for several tables

642 Utility Guide and Reference

Example 18: Reorganizing only clone tables

The REORG TABLESPACE control statement indicates that REORG TABLESPACE
is to reorganize only clone tables from the specified table spaces.
REORG TABLESPACE DBKQBS01.TPKQBS01 CLONE

Example 19: Creating a FlashCopy image copy with REORG
TABLESPACE

The following REORG TABLESPACE utility control statement reorganizes table
space DSN8SA1D and creates a FlashCopy image copy.
//SYSADMA JOB (ACCOUNT),’NAME’,NOTIFY=&SYSUID
//*
//UTIL EXEC DSNUPROC,SYSTEM=VA1A,UID=’TEMP’,UTPROC=’’
//DSNUPROC.SYSREC DD DSN=SYSOPS.DSNAME,
// DISP=(NEW,DELETE),
// SPACE=(CYL,(20,20),RLSE),
// UNIT=SYSDA,VOL=SER=SCR03
//DSNUPROC.SYSUT1 DD DSN=SYSOPS.SYSUT1,
// DISP=(NEW,DELETE,DELETE),
// SPACE=(CYL,(9,90),RLSE),
// UNIT=SYSDA,VOL=SER=SCR03
//DSNUPROC.SYSIN DD *
LISTDEF COPY_LIST INCLUDE TABLESPACE DSN8DA1A.DSN8SA1D
TEMPLATE SCOPY UNIT(SYSDA) DISP(NEW,CATLG,DELETE)
DSN(DSNT1.&DB..&TS..CPY1.D&TIME.)
TEMPLATE FCOPY UNIT(SYSDA) DISP(NEW,CATLG,DELETE)
DSN(DSNFC.&DB..&TS..P&PA..D&TIME.)
REORG TABLESPACE LIST COPY_LIST SHRLEVEL REFERENCE FLASHCOPY YES
FCCOPYDDN(FCOPY) COPYDDN(SCOPY)

Related reference:

CREATE INDEX (DB2 SQL)

CREATE TABLE (DB2 SQL)

DROP (DB2 SQL)

DB2 Sort
Related information:

DFSORT Application Programming Guide

//STEP1 EXEC DSNUPROC,UID=’JUKQU1AA.REORG6’,
// UTPROC=’’,SYSTEM=’SSTR’
//SYSREC DD DSN=JUKQU1AA.REORG6.STEP1.SYSREC,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSCOPY DD DSN=JUKQU1AA.REORG6.STEP1.SYSCOPY,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSUT1 DD DSN=JUKQU1AA.REORG6.STEP1.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=JUKQU1AA.REORG6.STEP1.SORTOUT,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *

REORG TABLESPACE DBKQAA01.TPKQAA01 SCOPE PENDING PART 2:10
/*

Figure 79. Example REORG TABLESPACE statement with SCOPE PENDING

Chapter 25. REORG TABLESPACE 643

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createindex.htm#db2z_sql_createindex
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_drop.htm#db2z_sql_drop
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

644 Utility Guide and Reference

Chapter 26. REPAIR

The REPAIR online utility repairs data. The data can be your own data or data that
you would not normally access, such as space map pages and index entries.

You use REPAIR to replace invalid data with valid data. Be extremely careful when
using REPAIR. Improper use can damage the data even further.

You can use the REPAIR utility to:
v Test database definitions (DBDs)
v Repair DBDs
v Reset a pending status on a table space or index
v Verify the contents of data areas in table spaces and indexes
v Replace the contents of data areas in table spaces and indexes
v Delete a single row from a table space
v Produce a hexadecimal dump of an area in a table space or index
v Delete an entire LOB from a LOB table space
v Dump LOB pages
v Rebuild object descriptors (OBDs) for a LOB table space
v Manage version numbers
v Turn on or off Persistent Read Only (PRO) restricted status for table space

partitions
v Check for and fix any inconsistencies between the information in the catalog and

the data. (Specifically REPAIR can check the values for DBID, PSID, OBID,
SEGSIZE, PAGESIZE, table space type, table schema, record format, RBA format,
data version number, and the hash data page.)

Output

The output from the REPAIR utility can consist of one or more modified pages in
the specified DB2 table space or index and a dump of the contents.

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v REPAIR privilege for the database
v DBADM or DBCTRL authority for the database. If the object on which the utility

operates is in an implicitly created database, DBADM authority on the implicitly
created database or DSNDB04 is required.

v DATAACCESS authority
v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute REPAIR, but only on a
table space in the DSNDB01 or DSNDB06 database.

To execute REPAIR with the DBD option, you must use a privilege set that
includes SYSADM, SYSCTRL, or installation SYSOPR authority.

© Copyright IBM Corp. 1983, 2013 645

|
|
|
|

REPAIR should be used only by a person that is knowledgeable in DB2 and your
data. Grant REPAIR authorization only to the appropriate people.

Execution phases of REPAIR

The phases for REPAIR are:

Phase Description

UTILINIT
Performs initialization

REPAIR
Repairs data

UTILTERM
Performs cleanup

Syntax and options of the REPAIR control statement
The REPAIR utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

REPAIR syntax diagram

�� REPAIR

�
OBJECT LOG YES

set statement
LOG NO locate block

dbd-statement
level-id statement
versions statement
catalog statement

CLONE
��

level-id statement:

�� LEVELID TABLESPACE table-space-name
database-name.

index-name-spec
PART integer

��

versions statement:

646 Utility Guide and Reference

�� VERSIONS TABLESPACE table-space-name
database-name.

index-name-spec

��

catalog statement:

�� CATALOG TABLESPACE table-space-name
database-name. TEST

��

index-name-spec:

�� INDEX index-name
creator-id.

INDEXSPACE index-space-name
database-name.

��

REPAIR option descriptions

OBJECT
Indicates that an object is to be repaired. This keyword is optional.

LOG
Indicates whether the changes that REPAIR makes are to be logged. If the
changes are to be logged, they are applied again if the data is recovered.

YES
Indicates that the changes are to be logged.

REPAIR LOG YES cannot override the LOG NO attribute of a table space.

NO Indicates that the changes are not to be logged. You cannot use this option
with a DELETE statement.

REPAIR LOG NO can override the LOG YES attribute of a table space.

LEVELID
Indicates that the level identifier of the named table space, table space
partition, index, or index space partition is to be reset to a new identifier. Use
LEVELID to accept the use of a down-level data set. You cannot specify
multiple LEVELID keywords in the same REPAIR control statement.

You cannot use LEVELID with a table space, table space partition, index, or
index space partition that has outstanding indoubt log records or pages in the
logical page list (LPL).

Attention: Accepting the use of a down-level data set might cause data
inconsistencies. Problems with inconsistent data that result from resetting the
level identifier are the responsibility of the user.

Chapter 26. REPAIR 647

|

|

TABLESPACE database-name.table-space-name
Specifies the table space (and, optionally, the database to which it belongs)
whose level identifier is to be reset (if you specify LEVELID) or whose version
identifier is to be updated (if you specify VERSIONS).

database-name
Specifies the name of the database to which the table space belongs.

The default value is DSNDB04.

table-space-name
Specifies the name of the table space.

INDEX
Specifies the index whose level identifier is to be reset (if you specify
LEVELID) or whose version identifier is to be updated (if you specify
VERSIONS).

creator-id.
Specifies the creator of the index. Specifying this qualifier is optional.

index-name
Specifies the name of the index. Enclose the index name in quotation
marks if the name contains a blank.

You can specify either INDEX or INDEXSPACE to identify an index. To specify
multiple indexes, repeat the keyword.

INDEXSPACE
Specifies the index space for the index whose level identifier is to be reset (if
you specify LEVELID) or whose version identifier is to be updated (if you
specify VERSIONS). You can obtain the index space name for an index from
the SYSIBM.SYSINDEXES catalog table. The index space name must be
qualified.

database-name.
Specifies the name of the database to which the index space belongs.

index-space-name
Specifies the name of the index space.

You can specify either INDEX or INDEXSPACE to identify an index. To specify
multiple indexes, repeat the keyword.

PART
Identifies a partition of the table space or index (including a partition of a
data-partitioned secondary index).

integer is the number of the partition and must be in the range from one to the
number of partitions that are defined for the object. The maximum is 4096.

VERSIONS

The VERSIONS option is deprecated, and the alternative is running REPAIR
CATALOG.Updates the version information in the catalog and directory for the
specified table space or index with the version information from the system
pages of the object. Use REPAIR VERSIONS in the following situations:
v When you run the DSN1COPY utility with the OBIDXLAT option to move

objects from one system to another. .
v Run REPAIR VERSIONS only when moving objects.

648 Utility Guide and Reference

|
|

CATALOG
Indicates that REPAIR is to validate information in the catalog for the specified
table space.

When you specify REPAIR CATALOG, the utility performs the following two
actions:
1. Compares the following information in the catalog with the data:

v Row format (Row format can be either reordered row format or basic
row format.)

v RBA format (RBA format can be either 6-byte format or 10-byte format.)
v Data version information (This check is the same functionality that is

performed when you specify REPAIR VERSIONS.)
v Hash space value

For these items if the information in the catalog is different from the data,
REPAIR changes the values in the catalog to match the data.

2. Validates the following information:
v DBID, PSID, and OBID
v Table space type
v SEGSIZE
v PAGESIZE
v Table definition

For these items, if the information in the catalog is different from the data,
REPAIR does not correct the information in the catalog. Instead, REPAIR
fails and reports the mismatched information in a message. To correct the
mismatched information, take the action that is documented for the
message that you receive.

REPAIR CATALOG does not check limit key values.

REPAIR CATALOG does not make any corrections for indexes. If you or
REPAIR made corrections to the data or catalog as a result of running REPAIR
CATALOG, rebuild any indexes on the target tables.

You cannot specify CATALOG for LOB or XML table spaces.

TEST
Indicates that REPAIR is not to correct any mismatched information. The
utility checks all of the same information that it checks when you specify
REPAIR CATALOG. However, any information differences between the
data and catalog are only reported in messages. The utility does not take
any corrective actions.

CLONE
Indicates that REPAIR is to process only the specified objects that are table
spaces that contain clone tables, indexes on clone tables, or index spaces that
contain indexes on clone tables. If you specify CLONE, you cannot specify
VERSIONS because clone tables do not have versions. Clones cannot be
created for tables with active versions.

If you specify SET with CLONE, the status is changed for only the specified
table spaces and their indexes. The CLONE keyword applies to all SET
statements and LOCATE statements within the same REPAIR utility control
statement.

Chapter 26. REPAIR 649

|
|
|

|
|

|

|
|

|

|
|

|

|
|

|

|

|

|

|

|

|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|

SET statement syntax

The SET TABLESPACE statement resets the COPY-pending, RECOVER-pending,
CHECK-pending, auxiliary warning (AUXW), auxiliary CHECK-pending
(ACHKP), and advisory REORG-pending (AREO* and AREOR) statuses for a table
space or data set. The SET TABLESPACE statement also turns on and off Persistent
Read Only (PRO) restricted status for a table space partition. The SET INDEX
statement resets the informational COPY-pending (ICOPY), RECOVER-pending,
REBUILD-pending, CHECK-pending, and advisory REORG-pending (AREO* and
AREOR) statuses for an index.

If you do not specify a status to reset, REPAIR takes no action.

set statement:

�� SET table-space-spec
PART integer NOCOPYPEND

NORCVRPEND
NOCHECKPEND
NOAUXWARN
NOAUXCHKP
NOAREORPENDSTAR
NOAREORPEND
PRO
NOPRO

INDEX (index-name)
PART integer NOCOPYPEND

(ALL) table-space-spec NORCVRPEND
INDEXSPACE (index-space-name) NORBDPEND

database-name. PART integer NOCHECKPEND
(ALL) table-space-spec NOAREORPENDSTAR

NOAREORPEND
RBDPEND
PSRBDPEND

��

table-space-spec:

�� TABLESPACE table-space-name
database-name.

��

SET statement option descriptions

SET TABLESPACE database-name.table-space-name
Specifies the table space (and, optionally, the database to which it belongs)
whose pending status is to be reset.

database-name
Specifies the name of the database to which the table space belongs.

The default value is DSNDB04.

table-space-name
Specifies the name of the table space.

650 Utility Guide and Reference

SET INDEX
Specifies the index whose RECOVER-pending, CHECK-pending,
REBUILD-pending, or informational COPY-pending status is to be reset.

(index-name)
Specifies the index that is to be processed. Enclose the index name in
quotation marks if the name contains a blank.

(ALL)
Specifies that all indexes in the table space will be processed.

You can also repair all indexes by specifying INDEX(ALL) followed by a
table-space-spec.

SET INDEXSPACE
Specifies the index space for the index whose RECOVER-pending,
CHECK-pending, REBUILD-pending, or informational COPY-pending status is
to be reset.

(database-name.index-space-name)
Specifies the index space that is to be processed.

(ALL)
Specifies that all indexes in the table space will be processed.

PART integer
Specifies a particular partition whose COPY-pending, or RECOVER-pending
status is to be reset. If you do not specify PART, REPAIR resets the pending
status of the entire table space or index.

integer is the number of the partition and must be in the range from one to the
number of partitions that are defined for the

You can specify PART for NOCHECKPEND on a table space, and for
NORCVRPEND on indexes.

The PART keyword is not valid for a LOB table space or an index on the
auxiliary table.

The PART keyword is not valid when NOAREORPEND is specified because
the AREOR state can only be reset for the entire table space or index space.

NOCOPYPEND
Specifies that the COPY-pending status of the specified table space, or the
informational COPY-pending (ICOPY) status of the specified index is to be
reset.

NORCVRPEND
Specifies that the RECOVER-pending (RECP) status of the specified table space
or index is to be reset.

NORBDPEND
Specifies that the REBUILD-pending (RBDP) status, the page set
REBUILD-pending status (PSRBDP), or the RBDP* status of the specified index
is to be reset.

NOCHECKPEND
Specifies that the CHECK-pending (CHKP) status of the specified table space
or index is to be reset.

Chapter 26. REPAIR 651

NOAUXWARN
Specifies that the auxiliary warning (AUXW) status of the specified table space
is to be reset. The specified table space must be a base table space or a LOB
table space.

NOAUXCHKP
Specifies that the auxiliary CHECK-pending (ACHKP) status of the specified
table space is to be reset. The specified table space must be a base table space.

NOAREORPENDSTAR
Resets the advisory REORG-pending (AREO*) status of the specified table
space or index.

NOAREORPEND
Resets the advisory REORG-pending (AREOR) status of the specified table
space or index.

PRO
Turns on Persistent Read Only (PRO) restricted status for a table space
partition. The PART keyword is required for this option.

NOPRO
Turns off Persistent Read Only (PRO) restricted status for a table space
partition. The PART keyword is required for this option.

RBDPEND
Specifies that the REBUILD-pending (RBDP) status is to be set on the specified
index.

PSRBDPEND
Specifies that the PAGE SET REBUILD-pending (PSRBDP) status is to be set on
the specified index.

LOCATE block syntax

A LOCATE block is a set of statements, each with its own options, that begins with
a LOCATE statement and ends with the next LOCATE or SET statement, or with
the end of the job. You can include more than one LOCATE block in a REPAIR
utility statement.

In any LOCATE block, you can use VERIFY, REPLACE, or DUMP as often as you
like; you can use DELETE only once.

locate block:

�� LOCATE �table-space-spec verify statement
INDEX index-name index-options-spec replace statement SHRLEVEL CHANGE
INDEXSPACE index-space-name index-options-spec delete statement

dump statement
LOB-table-space-spec
xml-table-space-spec

��

table-space-spec:

652 Utility Guide and Reference

�� TABLESPACE table-space-name table-options spec
database-name.

��

LOB-table-space-spec:

�� TABLESPACE table-space-name
database-name.

ROWID X'byte-string' �

� VERSION X'byte-string' delete statement
dump statement

��

xml-table-space-spec:

�� TABLESPACE xml-table-space-name
database-name.

DOCID X'byte-string' �

� delete statement ��

table-options-spec:

�� PAGE X ' byte-string '
PAGE integer

PART integer
RID X ' byte-string '
KEY literal INDEX index-name

��

index-options-spec:

�� PAGE X ' byte-string '
PAGE integer

PART integer

��

LOCATE TABLESPACE statement option descriptions

The LOCATE TABLESPACE statement locates data that is to be repaired within a
table space.

One LOCATE statement is required for each unit of data that is to be repaired.
Several LOCATE statements can appear after each REPAIR statement.

Chapter 26. REPAIR 653

If a REPAIR statement is followed by more than one LOCATE statement, all
processing that is caused by VERIFY, REPLACE, and DUMP statements is
committed before the next LOCATE statement is processed.

TABLESPACE
Specifies the base table space or XML table space (and, optionally, the database
to which it belongs) in which data is to be located for repair.

database-name
The name of the database to which the base table space or XML table
space belongs. This is optional.

table-space-name
The name of the base table space that contains the data to be repaired.

xml-table-space-name
The name of the XML table space that contains the data to be repaired.

PAGE
Specifies the relative page number within the table space, partitioned table
space, or index that is to be operated on. The first page, in either case, is 0
(zero).

integer
integer is a decimal number from one to six digits in length.

X'byte-string'
Specifies that the data of interest is an entire page. The specified offsets in
byte-string and in subsequent statements are relative to the beginning of the
page. The first byte of the page is at offset 0.

byte-string is a hexadecimal value from one to eight characters in length.
You do not need to enter leading zeros. Enclose the byte-string between
apostrophes, and precede it with X.

PART integer
Specifies the partition that contains the page that is to be located. Part is valid
only for partitioned table spaces.

integer is the number of the partition.

RID X'byte-string'
Specifies that the data that is to be located is a single row. The specified offsets
in byte-string and in subsequent statements are relative to the beginning of the
row. The first byte of the stored row prefix is at offset 0.

byte-string can be a hexadecimal value from one to eight characters in length.
You do not need to enter leading zeros. Enclose the byte string between
apostrophes, and precede it with an X.

KEY literal
Specifies that the data that is to be located is a single row, identified by literal.
The specified offsets in subsequent statements are relative to the beginning of
the row. The first byte of the stored row prefix is at offset 0.

literal is any SQL constant that can be compared with the key values of the
named index.

Character constants that are specified within the LOCATE KEY option cannot
be specified as ASCII or Unicode character strings. No conversion of the values
is performed. To use this option when the table space is ASCII or Unicode, you
should specify the values as hexadecimal constants.

654 Utility Guide and Reference

If more than one row has the value literal in the key column, REPAIR returns a
list of record identifiers (RIDs) for records with that key value, but does not
perform any other operations (verify, replace, delete, or dump) until the next
LOCATE TABLESPACE statement is encountered. To repair the proper data,
write a LOCATE TABLESPACE statement that selects the row that you want,
using the RID option, the PAGE option, or a different KEY and INDEX option.
Then, execute REPAIR again.

SHRLEVEL
Indicates the type of access that is to be allowed for the index, table space, or
partition that is to be repaired during REPAIR processing.

If you do not specify SHRLEVEL and you do specify DUMP or VERIFY,
applications can read but not write the area.

If you do not specify SHRLEVEL and you do specify DELETE or REPLACE,
applications cannot read or write the area.

CHANGE
Specifies that applications can read and write during the VERIFY,
REPLACE, DELETE, and DUMP operation.

ROWID X'byte-string'
Specifies that the data that is to be located is a LOB in a LOB table space.

byte-string is the row ID that identifies the LOB column.

Use the ROWID keyword to repair an orphaned LOB row. You can find the
ROWID in the output from the CHECK LOB utility. If you specify the ROWID
keyword, the specified table space must be a LOB table space.

VERSION X'byte-string'
Specifies that the data that is to be located is a LOB in a LOB table space.

byte-string is the version number that identifies the version of the LOB column.

Use the VERSION keyword to repair an orphaned LOB column. You can find
the VERSION number in the output of the CHECK LOB utility or an
out-of-synch LOB that is reported by the CHECK DATA utility. If you specify
the VERSION keyword, the specified table space must be a LOB table space.

LOCATE INDEX statement and LOCATE INDEXSPACE statement
option descriptions

The LOCATE INDEX (or INDEXSPACE) statement locates data that is to be
repaired within an index. You can specify indexes by either their index name or
their index space name.

One LOCATE statement is required for each unit of data that is to be repaired.
Multiple LOCATE statements can appear after each REPAIR statement.

If a REPAIR statement is followed by multiple LOCATE statements, all processing
that is caused by VERIFY, REPLACE, and DUMP statements is committed before
the next LOCATE statement is processed.

INDEX index-name
Specifies a particular index that is to be used to find the row that contains the
key. When you are locating an index by key, the index that you specify must
be a single-column index.

Chapter 26. REPAIR 655

index-name is the qualified or unqualified name of the index. If you omit the
qualifier creator ID, the user identifier for the utility job is used. Enclose the
index name in quotation marks if the name contains a blank.

INDEXSPACE index-space-name
Specifies the index space for a particular index that is to be used to find the
row that contains the key. Look in the SYSIBM.SYSINDEXES catalog table to
find the index space name for an index. When you are locating an index by
key, the index that you specify must be a single-column index.

index-space-name is the qualified name of the index space, in the form
database-name.index-space-name.

PAGE integer
Specifies the relative page number within the index space that is to be
operated on. The first page is 0 (zero).

integer
integer is a decimal number from one to six digits in length.

X'byte-string'
Specifies that the data of interest is an entire page. The specified offsets in
byte-string and in subsequent statements are relative to the beginning of the
page. The first byte of the page is at offset 0.

byte-string is a hexadecimal value from one to eight characters in length.
You do not need to enter leading zeros. Enclose the byte-string between
apostrophes, and precede it with X.

PART integer
Specifies the partition number of the partitioning index that contains the page
that is to be located. The PART keyword is valid only for indexes of
partitioned table spaces.

integer is the number of the partitioning index.

VERIFY statement syntax

The VERIFY statement tests whether a particular data area contains a specified
value. Depending on the outcome of this test, the REPAIR utility performs the
following actions:
v If the data area does contain the value, subsequent operations in the same

LOCATE block are allowed to proceed.
v If any data area does not contain its specified value, all subsequent operations in

the same LOCATE block are inhibited.

verify statement:

�� VERIFY
OFFSET 0

OFFSET integer
X'byte-string'

DATA X'byte-string'
'character-string'

��

656 Utility Guide and Reference

VERIFY statement option descriptions

OFFSET
Locates the data that is to be tested by a relative byte address (RBA) within the
row or page.

integer
Identifies the offset as an integer.

The default value is 0, the first byte of the area that is identified by the
previous LOCATE statement.

X'byte-string'
Identifies the offset as one to four hexadecimal characters. You do not need
to enter leading zeros. Enclose the byte string between apostrophes, and
precede it with X.

DATA
Specifies what data must be present at the current location before a change is
made.

Character constants that are specified within the VERIFY DATA option cannot
be specified as ASCII or Unicode character strings. No conversion of the values
is performed. To use this option when the table space is ASCII or Unicode, you
should specify the values as hexadecimal constants.

X'byte-string'
Specifies an even number, from 2 to 32, of hexadecimal characters that
must be present. You do not need to enter leading zeros. Enclose the byte
string between apostrophes, and precede it with X.

'character-string'
Specifies any character string that must be present.

REPLACE statement syntax

The REPLACE statement replaces data at a particular location. The statement is
contained within a LOCATE block. If any VERIFY statement within that block
finds a data area that does not contain its specified data, the REPLACE operation
is inhibited.

replace statement:

�� REPLACE RESET
OFFSET 0

DATA X'byte-string'
OFFSET integer 'character-string'

X'byte-string'

��

REPLACE statement option descriptions

RESET
Specifies that the inconsistent data indicator is to be reset. A page for which
this indicator is on is considered in error, and the indicator must be reset
before you can access the page. Numbers of pages with inconsistent data are
reported at the time that they are encountered.

Chapter 26. REPAIR 657

The option also resets the PGCOMB flag bit in the first byte of the page to
agree with the bit code in the last byte of the page.

OFFSET
Indicates where data is to be replaced by a relative byte address (RBA) within
the row or page. Only one OFFSET and one DATA specification are acted on
for each REPLACE statement.

integer
Specifies the offset as an integer.

The default value is 0, the first byte of the area that is identified by the
previous LOCATE statement.

X'byte-string'
Specifies the offset as one to four hexadecimal characters. You do not need
to enter leading zeros. Enclose the byte string between apostrophes, and
precede it with X.

DATA
Specifies the new data that is to be entered. Only one OFFSET and one DATA
specification are acted on for each REPLACE statement.

Important: Do not run REPAIR with the REPLACE, OFFSET, and DATA
options on a compressed table space.

Character constants that are specified within the VERIFY DATA option cannot
be specified as ASCII or Unicode character strings. The values are not
converted. To use this option when the table space is ASCII or Unicode, specify
the values as hexadecimal constants.

X'byte-string'
Specifies an even number, from 2 to 32, of hexadecimal characters that are
to replace the current data. You do not need to enter leading zeros. Enclose
the byte string between apostrophes, and precede it with X.

'character-string'
Specifies any character string that is to replace the current data.

DELETE statement syntax

The DELETE statement deletes a single row of data that has been located by a RID
or KEY option. The statement is contained within a LOCATE block. If any VERIFY
statement within that block finds a data area that does not contain its specified
data, the DELETE operation is inhibited.

The DELETE statement operates without regard for referential constraints. If you
delete a parent row, its dependent rows remain unchanged in the table space.

In any LOCATE block, you can include no more than one DELETE option.

If you have coded any of the following options, you cannot use DELETE:
v The LOG NO option on the REPAIR statement
v A LOCATE INDEX statement to begin the LOCATE block
v The PAGE option on the LOCATE TABLESPACE statement in the same LOCATE

block
v A REPLACE statement for the same row of data

658 Utility Guide and Reference

When you specify LOCATE ROWID for a LOB table space, the LOB that is
specified by ROWID is deleted with its index entry. All pages that are occupied by
the LOB are converted to free space. The DELETE statement does not remove any
reference to the deleted LOB from the base table space.

When you specify LOCATE DOCID for an XML table space, the XML document
that is specified by DOCID is deleted with its NodeID index entries. All rows that
are occupied by the XML document are deleted from the XML table space. The
DELETE statement does not remove any reference to the deleted XML document
from the base table space. The LOCATE DOCID statement is generated by CHECK
DATA SHRLEVEL CHANGE in order to remove corrupted XML documents from
the XML table space.

REPAIR DELETE can delete the following data rows when the specified conditions
exists:
v A compressed row without an index defined on the table
v A compressed row with an index defined on the table and a valid dictionary

exists to decompress the row
v A compressed or uncompressed data row that is missing an index entry
v A compressed row with an index defined on the table, but the dictionary is

invalid
v An uncompressed row without an index
v An uncompressed row with valid Index

delete statement:

�� DELETE
DATAONLY

��

DELETE statement option descriptions

DATAONLY
Specifies that REPAIR should delete only the data record that is specified by
the LOCATE RID statement. Any associated indexes, LOB columns, XML
columns, or referential integrity constraints are not deleted.

You can specify the DATAONLY option only when REPAIR locates a single
row by using a RID.

If the table has indexes or LOB or XML columns, ensure that after you run the
DELETE DATAONLY statement, the data is consistent with the other
associated objects.

DUMP statement syntax

The DUMP statement produces a hexadecimal dump of data that is identified by
offset and length. DUMP statements have no effect on VERIFY or REPLACE
operations.

When you specify LOCATE ROWID for a LOB table space, one or more map or
data pages of the LOB are dumped. The DUMP statement dumps all of the LOB
column pages if you do not specify either the MAP or DATA keyword.

Chapter 26. REPAIR 659

dump statement:

�� DUMP
OFFSET 0

OFFSET integer LENGTH X'byte-string' PAGES X'byte-string'
X'byte-string' integer integer

*
MAP

pages
DATA

pages

��

DUMP statement option descriptions

OFFSET
Optionally, locates the data that is to be dumped by a relative byte address
(RBA) within the row or page.

integer
Specifies the offset as an integer.

The default value is 0, the first byte of the row or page.

X'byte-string'
Specifies the offset as one to four hexadecimal characters. You do not need
to enter leading zeros. Enclose the byte string between apostrophes, and
precede it with X.

LENGTH
Optionally, specifies the number of bytes of data that are to be dumped. If you
omit both LENGTH and PAGE, the dump begins at the specified OFFSET and
continues to the end of the row or page.

If you specify a number of bytes (with LENGTH) and a number of pages (with
PAGE), the dump contains the same relative bytes from each page. That is,
from each page you see the same number of bytes, beginning at the same
offset.

X'byte-string'
Specifies one to four hexadecimal characters. You do not need to enter
leading zeros. Enclose the byte string between apostrophes, and precede it
with X.

integer
Specifies the length as an integer.

PAGES
Optionally, specifies a number of pages that are to be dumped. You can use
this option only if you used PAGE in the preceding LOCATE TABLESPACE
control statement.

X'byte-string'
Specifies one to four hexadecimal characters. You do not need to enter
leading zeros. Enclose the byte string between apostrophes, and precede it
with X.

integer
Specifies the number of pages as an integer.

660 Utility Guide and Reference

* Specifies that all pages from the starting point to the end of the table space
or partition are to be dumped.

MAP pages
Specifies that only the LOB map pages are to be dumped.

pages specifies the number of LOB map pages that are to be dumped. If you do
not specify pages, all LOB map pages of the LOB that is specified by ROWID
and version are dumped.

DATA pages
Specifies that only the LOB data pages are to be dumped.

pages specifies the number of LOB data pages that are to be dumped. If you do
not specify pages, all LOB data pages of the LOB that is specified by ROWID
and version are dumped.

DBD statement syntax

Use the DBD statement to perform one or more of the following actions:
v Compare the database definition (DBD) in the DB2 catalog with its definition in

the DB2 directory
v Rebuild a database definition in the directory by using the information,

including LOB information, in the DB2 catalog
v Drop an inconsistent database definition from the DB2 catalog and the DB2

directory

For more information about how to use the DBD statement to perform these
actions, see “Repairing DBDs” on page 668.

dbd statement:

�� DBD DROP DATABASE database-name DBID X'dbid'
TEST DATABASE database-name
DIAGNOSE OUTDDN ddname
REBUILD

��

DBD statement option descriptions

DROP
Specifies that the named database is to be dropped from both the DB2 catalog
and the DB2 directory. When you specify this option, DB2 also drops databases
that contain tables that have been created with RESTRICT ON DROP. Use this
keyword if the SQL DROP DATABASE statement fails because the description
of the database is not in both the DB2 catalog and the DB2 directory. If you
cannot use the ALTER command to remove the with RESTRICT ON DROP
option on tables in a database that is badly damaged and you need to drop the
database, you can use this keyword to drop the database.

Attention: Use the DROP option with extreme care. Using DROP can cause
additional damage to your data. For more assistance, you can contact IBM
Software Support.

DATABASE database-name
Specifies the target database.

Chapter 26. REPAIR 661

database-name is the name of the target database, which cannot be DSNDB01
(the DB2 directory) or DSNDB06 (the DB2 catalog).

If you use TEST, DIAGNOSE, or REBUILD, database-name cannot be DSNDB07
(the work file database).

If you use DROP, database-name cannot be DSNDB04 (the default database).

DBID X'dbid'
Specifies the database descriptor identifier for the target database.

dbid is the database descriptor identifier.

TEST
Specifies that a DBD is to be built from information in the DB2 catalog, and is
to be compared with the DBD in the DB2 directory. If you specify TEST, DB2
reports significant differences between the two DBDs.

If the condition code is 0, the DBD in the DB2 directory is consistent with the
information in the DB2 catalog.

If the condition code is not 0, then the information in the DB2 catalog and the
DBD in the DB2 directory might be inconsistent. Run REPAIR DBD with the
DIAGNOSE option to gather information that is necessary for resolving any
possible inconsistency.

DIAGNOSE
Specifies that information that is necessary for resolving an inconsistent
database definition is to be generated. Like the TEST option, DIAGNOSE
builds a DBD that is based on the information in the DB2 catalog and
compares it with the DBD in the DB2 directory. In addition, DB2 reports any
differences between the two DBDs, and produces hexadecimal dumps of the
inconsistent DBDs.

If the condition code is 0, the information in the DB2 catalog and the DBD in
the DB2 directory is consistent.

If the condition code is 8, the information in the DB2 catalog and the DBD in
the DB2 directory might be inconsistent.

For further assistance in resolving any inconsistencies, you can contact IBM
Software Support.

REBUILD
Specifies that the DBD that is associated with the specified database is to be
rebuilt from the information in the DB2 catalog.

Attention: Use the REBUILD option with extreme care, as you can cause
more damage to your data. For more assistance, you can contact IBM Software
Support.

OUTDDN ddname
Specifies the DD statement for an optional output data set. This data set
contains copies of the DB2 catalog records that are used to rebuild the DBD.

ddname is the name of the DD statement.

662 Utility Guide and Reference

Related tasks:
“Updating version information when moving objects to another subsystem” on
page 670

Before running REPAIR
Certain activities might be required before you run the REPAIR utility, depending
on your situation.

Attention: Be extremely careful when using the REPAIR utility to replace data.
Changing data to invalid values by using REPLACE might produce unpredictable
results, particularly when changing page header information. Improper use of
REPAIR can result in damaged data, or in some cases, system failure.

Making a copy of the table space

Before starting to use REPAIR to change data, ensure that you have a copy (full
image copy or DSN1COPY generated copy) of the affected table space to enable
fallback.

Restoring damaged indexes

Because REPAIR can access index data only by referring to a page and an offset
within the page, identifying and correcting a problem can be difficult. Use
REBUILD INDEX or RECOVER INDEX to restore damaged index data.

Running REPAIR on encrypted data

Do not run REPAIR on encrypted data. REPAIR does not decrypt the data. The
utility reads the data in its encrypted form and then manipulates the data without
decrypting it.

Data sets that REPAIR uses
The REPAIR utility uses a number of data sets during its operation.

The following table lists the data sets that REPAIR uses. The table lists the DD
name that is used to identify the data set, a description of the data set, and an
indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 97. Data sets that REPAIR uses

Data set Data set Required?

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

Optional output data set Data set that contains copies of the DB2
catalog records that are used to rebuild the
DBD. You define the DD name.

No

The following objects are named in the utility control statement and do not require
a DD statement in the JCL:

Table space or index
Object that is to be repaired.

Chapter 26. REPAIR 663

Calculating output data set size

Use the following formula to estimate the size of the output data set:
SPACE = (4096,(n,n))

In this formula, n = the total number of DB2 catalog records that relate to the
database on which REPAIR DBD is being executed.

You can calculate an estimate for n by summing the results of SELECT COUNT(*)
from the following catalog tables, for catalog table rows whose database name
matches the name of the database on which REPAIR DBD is being executed.
v SYSCOLAUTH
v SYSCOLUMNS
v SYSFIELDS
v SYSFOREIGNKEYS
v SYSINDEXES
v SYSINDEXPART
v SYSKEYS
v SYSRELS
v SYSSYNONYMS
v SYSTABAUTH
v SYSTABLEPART
v SYSTABLES
v SYSTABLESPACE

Concurrency and compatibility for REPAIR
The REPAIR utility has certain concurrency and compatibility characteristics
associated with it.

DB2 treats individual data and index partitions as distinct target objects. Utilities
that operate on different partitions of the same table space or index space are
compatible.

Claims

The following table shows which claim classes REPAIR drains and any restrictive
state that the utility sets on the target object.

Table 98. Claim classes of REPAIR operations

Action
Table space or
partition

Index or partition

REPAIR LOCATE KEY DUMP or VERIFY DW/UTRO DW/UTRO

REPAIR LOCATE KEY DELETE or
REPLACE

DA/UTUT DA/UTUT

REPAIR LOCATE RID DUMP or VERIFY DW/UTRO None

REPAIR LOCATE RID DELETE DA/UTUT DA/UTUT

REPAIR LOCATE RID REPLACE DA/UTUT None

REPAIR LOCATE TABLESPACE DUMP or
VERIFY

DW/UTRO None

REPAIR LOCATE TABLESPACE REPLACE DA/UTUT None

REPAIR LOCATE INDEX PAGE DUMP or
VERIFY

None DW/UTRO

664 Utility Guide and Reference

|
|
|

Table 98. Claim classes of REPAIR operations (continued)

Action
Table space or
partition

Index or partition

REPAIR LOCATE INDEX PAGE DELETE None DA/UTUT

Legend:
v DA - Drain all claim classes - no concurrent SQL access.
v DW - Drain the write claim class - concurrent access for SQL readers.
v UTUT - Utility restrictive state - exclusive control.
v UTRO - Utility restrictive state - read-only access allowed.
v None - Object is not affected by this utility.

REPAIR does not set a utility restrictive state if the target object is
DSNDB01.SYSUTILX.

Compatibility

The following tables show which utilities can run concurrently with REPAIR on the
same target object. The target object can be a table space, an index space, or a
partition of a table space or index space. If compatibility depends on particular
options of a utility, that information is also shown in the table.

The following table shows which utilities can run concurrently with REPAIR
LOCATE by KEY or RID.

Table 99. Utility compatibility with REPAIR, LOCATE by KEY or RID

Utility DUMP or VERIFY DELETE or REPLACE

CHECK DATA No No

CHECK INDEX Yes No

CHECK LOB Yes No

COPY INDEXSPACE Yes No

COPY TABLESPACE Yes No

DIAGNOSE Yes Yes

LOAD No No

MERGECOPY Yes Yes

MODIFY Yes Yes

QUIESCE Yes No

REBUILD INDEX No No

RECOVER INDEX 1 No No

RECOVER TABLESPACE No No

REORG INDEX 2 No No

REORG TABLESPACE UNLOAD
CONTINUE or PAUSE

No No

REORG TABLESPACE UNLOAD
ONLY or EXTERNAL

Yes No

REPAIR DELETE or REPLACE 3 No No

REPAIR DUMP or VERIFY Yes No

REPORT Yes Yes

Chapter 26. REPAIR 665

Table 99. Utility compatibility with REPAIR, LOCATE by KEY or RID (continued)

Utility DUMP or VERIFY DELETE or REPLACE

RUNSTATS INDEX SHRLEVEL
CHANGE

Yes Yes

RUNSTATS INDEX SHRLEVEL
REFERENCE

Yes No

RUNSTATS TABLESPACE Yes No

STOSPACE Yes Yes

UNLOAD Yes No

Notes:

1. REORG INDEX is compatible with LOCATE by RID, DUMP, VERIFY, or REPLACE.

2. RECOVER INDEX is compatible with LOCATE by RID, DUMP, or VERIFY.

3. REPAIR LOCATE INDEX PAGE REPLACE is compatible with LOCATE by RID or
REPLACE.

The following table shows which utilities can run concurrently with REPAIR
LOCATE by PAGE.

Table 100. Utility compatibility with REPAIR, LOCATE by PAGE

Utility or action
TABLESPACE
DUMP or VERIFY

TABLESPACE
REPLACE

INDEX DUMP or
VERIFY INDEX REPLACE

SQL read Yes No Yes No

SQL write No No No No

CHECK DATA No No No No

CHECK INDEX Yes No Yes No

CHECK LOB Yes No Yes No

COPY INDEXSPACE Yes Yes Yes No

COPY TABLESPACE Yes No Yes No

DIAGNOSE Yes Yes Yes Yes

LOAD No No No No

MERGECOPY Yes Yes Yes Yes

MODIFY Yes Yes Yes Yes

QUIESCE Yes No Yes No

REBUILD INDEX Yes No No N/A

RECOVER INDEX Yes No No No

RECOVER TABLESPACE
(with no option)

No No Yes Yes

RECOVER TABLESPACE
ERROR RANGE

No No Yes Yes

RECOVER TABLESPACE
TOCOPY or TORBA

No No No No

REORG INDEX Yes Yes No No

REORG TABLESPACE
UNLOAD CONTINUE or
PAUSE

No No No No

666 Utility Guide and Reference

Table 100. Utility compatibility with REPAIR, LOCATE by PAGE (continued)

Utility or action
TABLESPACE
DUMP or VERIFY

TABLESPACE
REPLACE

INDEX DUMP or
VERIFY INDEX REPLACE

REORG TABLESPACE
UNLOAD ONLY or
EXTERNAL

Yes No Yes Yes

REPAIR DELETE or
REPLACE

No No No No

REPAIR DUMP or VERIFY1 Yes No Yes No

REPORT Yes Yes Yes Yes

RUNSTATS INDEX Yes Yes Yes No

RUNSTATS TABLESPACE Yes No Yes Yes

STOSPACE Yes Yes Yes Yes

UNLOAD Yes No Yes Yes

Note:

1. REPAIR LOCATE INDEX PAGE REPLACE is compatible with LOCATE TABLESPACE PAGE.

Resetting table space status
In most cases, resetting the COPY-pending restriction by taking a full image copy
is preferable to using REPAIR. This is because RECOVER cannot be executed
successfully until an image copy has been made.

Resetting the RECOVER-pending status by running RECOVER or LOAD is
preferable to using REPAIR. This is because RECOVER uses DB2-controlled
recovery information, whereas REPAIR SET TABLESPACE or INDEX resets the
RECOVER-pending status without considering the recoverability of the table space.
Recoverability issues include the availability of image copies, of rows in
SYSIBM.SYSCOPY, and of log data sets.

Verifying and possibly correcting referential integrity constraints by running
CHECK DATA are recommended. CHECK DATA performs a complete check of all
referential integrity constraints of the table space set, whereas with REPAIR, you
are responsible for checking all the referential integrity constraints violations.

To reset the CHECK-pending status for a LOB table space:
1. Run the CHECK DATA utility again with the AUXERROR INVALIDATE

keywords specified.
2. Update the invalid LOBs.

To reset the auxiliary warning (AUXW) status for a LOB table space:
1. Update or correct the invalid LOB columns, then
2. Run the CHECK LOB utility with the AUXERROR INVALIDATE option if

invalid LOB columns were corrected.

Resetting index space status
Running COPY INDEXSPACE to reset the informational COPY-pending status is
preferable to using the REPAIR utility to reset the status.

Chapter 26. REPAIR 667

Consider using the REBUILD INDEX or RECOVER INDEX utility on an index that
is in REBUILD-pending status, rather than running REPAIR SET INDEX
NORBDPEND. RECOVER uses DB2-controlled recovery information, whereas
REPAIR SET INDEX resets the REBUILD-pending status without considering the
recoverability of the index. Recoverability issues include the availability of image
copies, of rows in SYSIBM.SYSCOPY, and of log data sets.

Repairing a damaged page
You can use the REPAIR utility to repair a damaged page.

Procedure

To repair a damaged page:
1. Execute REPAIR with the LOG YES option and the DUMP control statement,

specifying the pages that you suspect are damaged. Then, verify that the dump
you received contains the pages that you want.

2. If you know which page is damaged and you can see how to resolve the error,
repair the page and reset the “inconsistent data” indicator. Run REPAIR with
the REPLACE RESET DATA control statement. Document your actions in case
you need to undo anything later.

3. If you determine that the page is not really damaged, but merely has the
“inconsistent data” indicator on, reset the indicator by running REPAIR with
the REPLACE RESET control statement.

Repairing DBDs
You can check and repair database definitions (DBDs) in the catalog and directory
by using the REPAIR utility with the DBD statement.

About this task

You can use REPAIR DBD on declared temporary tables, which must be created in
a database that is defined with the AS TEMP clause. No other DB2 utilities can be
used on a declared temporary table, its indexes, or its table spaces.

Procedure

To repair DBDs:
1. Run REPAIR DBD with the TEST option to determine whether the information

in the DB2 catalog is consistent with the DBD in the DB2 directory.
REPAIR DBD TEST obtains environment information, such as the character that
is used for the decimal point, from the application defaults load module that is
used by the subsystem. The application defaults load module is either the
default load module DSNHDECP or a user-specified application defaults load
module. If the return code is not 0, inconsistencies exist.

2. If inconsistencies exist, run REPAIR DBD with the DIAGNOSE and OUTDDN
options to produce diagnostic information.
REPAIR DBD DIAGNOSE obtains environment information, such as the
character that is used for the decimal point, from the application defaults load
module that is used by the subsystem.
Contact IBM Software Support for assistance in analyzing this information.

3. If IBM Software Support instructs you to do so, replace the existing DBD by
running REPAIR DBD with the REBUILD option.

668 Utility Guide and Reference

Attention: Do not use the REBUILD option if you suspect that information in
the catalog is causing the inconsistency. REBUILD uses information in the
catalog to rebuild the DBD; if the catalog is incorrect, the rebuilt DBD cannot be
correct.
REPAIR DBD REBUILD obtains environment information, such as the character
that is used for the decimal point, from the DSNHDECP module for the
subsystem.
DB2 starts the database for access by utilities only. After successful completion
of the REPAIR utility, the database continues to be started for utility access
only.
When REPAIR DBD REBUILD is running, an S-lock is acquired for the
appropriate catalog tables. If the S-lock fails, REPAIR DBD fails.
DB2 reads each table space in the database during the REBUILD process to
gather information. If the data sets for the table spaces do not exist or are not
accessible to DB2, the utility abnormally terminates.

4. If you suspect an inconsistency in the DBD of the work file database, consider
issuing the DROP DATABASE SQL statement or running REPAIR DBD DROP.
Then re-create the database.
Attention: Use REPAIR DBD DROP with extreme care. Using DROP can
cause additional damage to your data. For more assistance, contact IBM
Software Support.
If you receive errors when you drop the work file database, contact IBM
Software Support for assistance.

5. If you ran REPAIR DBD REBUILD, the database is started for utility-only
access, and you must restart the database for read/write access manually by
performing the following steps:
a. Issue the STOP DATABASE (database-name) command.
b. Issue the START DATABASE (database-name) ACCESS(RW) command to

allow full access to the database.
6. Rebind any trigger packages that were invalidated.

When you run REPAIR DBD REBUILD on a database, DB2 invalidates
packages for any triggers that are defined on tables in that database. To find
those triggers, use the following query:
SELECT T.NAME, T.SCHEMA FROM
SYSIBM.SYSTRIGGERS T,SYSIBM.SYSDATABASE D
WHERE T.DBID= D.DBID AND D.NAME = ’ your database name here’

After you run REPAIR DBD REBUILD, you must rebind those trigger packages.
The DB2 release on which you rebind the trigger packages must be the same as
the DB2 release on which you ran REPAIR DBD REBUILD.

Related reference:
“Syntax and options of the REPAIR control statement” on page 646

DROP (DB2 SQL)

-START DATABASE (DB2) (DB2 Commands)

-STOP DATABASE (DB2) (DB2 Commands)

Locating rows by key
If you use LOCATE TABLESPACE KEY, a number of rows might satisfy the
condition. In this case, REPAIR returns only the RIDs of the rows and does not
perform any VERIFY, REPLACE, DELETE, or DUMP actions which might be coded
in that LOCATE block.

Chapter 26. REPAIR 669

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_drop.htm#db2z_sql_drop
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_startdatabase.htm#db2z_cmd_startdatabase
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_stopdatabase.htm#db2z_cmd_stopdatabase

You can use the RID option of LOCATE TABLESPACE to identify a specific row.
Examples of the messages that are issued are shown in the following example:
DSNU658I - DSNUCBRL - MULTIPLE RECORDS FOUND WITH SPECIFIED KEY
DSNU660I - DSNUCBRL - POSSIBLE RID - X00000100B’
DSNU660I - DSNUCBRL - POSSIBLE RID - X000000C18’
DSNU660I - DSNUCBRL - POSSIBLE RID - X000000916’
DSNU660I - DSNUCBRL - POSSIBLE RID - X000000513’
DSNU650I - DSNUCBRP - DUMP
DSNU012I DSNUGBAC - UTILITY EXECUTION TERMINATED,

HIGHEST RETURN CODE=8

Multiple-column indexes

The KEY option supports only single-column indexes. The following message is
issued if you try to locate a row by using a multiple-column index.
DSNUCBRK - INDEX USED HAS MULTIPLE-FIELD KEY

Using VERIFY with REPLACE and DELETE operations
If any data area does not contain the value that is required by a VERIFY statement,
all REPLACE and DELETE operations in the same locate block are inhibited.
VERIFY and REPLACE statements that follow the next LOCATE statement are not
affected.

Repairing critical catalog table spaces and indexes
An ID with a granted authority receives message DSNT500I RESOURCE UNAVAILABLE,
while trying to repair a table space or index in the catalog or directory if table
space DSNDB06.SYSUSER is unavailable.

About this task

If you get this message, you must either make these table spaces available or run
the REPAIR utility on the catalog or directory by using an authorization ID with
the installation SYSADM or installation SYSOPR authority.
Related information:

DSNT500I (DB2 Messages)

Updating version information when moving objects to another
subsystem

You can move objects that contain system pages from one subsystem to another
subsystem. However, the version information on the target subsystem must match
the version information on the source subsystem. If the version information does
not match, you cannot access the data on the target subsystem.

Procedure

To move objects to another subsystem and ensure that the version information
matches:
1. Ensure that the object definitions on the source and target subsystems are the

same. For a table space, each table must have the same number of columns,
and each column must be the same data type.

670 Utility Guide and Reference

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnt500i.htm#dsnt500i

Recommendation: Use the same ALTER TABLE statement on both the source
and target objects.

2. If you are copying indexes that have not been altered in Version 8, check the
SYSIBM.SYSINDEXES catalog table on both subsystems to ensure that the value
in both the CURRENT_VERSION column and the OLDEST_VERSION column
is 0.

3. If the object has been altered since its creation and has never been reorganized,
take one of the following actions:
v Run the REORG utility on the object.

You can determine if an object has been altered but not reorganized by
checking the values of the OLDEST_VERSION and CURRENT_VERSION
columns in SYSIBM.SYSTABLESPACE or SYSIBM.SYSINDEXES. If
OLDEST_VERSION is 0 and CURRENT_VERSION is greater than 0, run
REORG.

v Do an INSERT or UPDATE after the last ALTER, to force the creation of a
system page.

4. Ensure that enough version numbers are available. For a table space, the
combined active number of versions for the object on both the source and
target subsystems must be less than 255. For an index, the combined active
number of versions must be less than 16. Use the following guidelines to
calculate the active number of versions for the object on both the source and
target subsystems:
v If the value in the CURRENT_VERSION column is less than the value in the

OLDEST_VERSION column, add the maximum number of versions (255 for
a table space or 16 for an index) to the value in the CURRENT_VERSION
column.

v Use the following formula to calculate the number of active versions:
number of active_versions =
MAX(target.CURRENT_VERSION,source.CURRENT_VERSION)
- MIN(target.OLDEST_VERSION,source.OLDEST_VERSION) + 1

If the number of active versions is too high, you must reduce the number of
active versions by running REORG on both the source and target objects. Then,
use the COPY utility to take a copy, and invoke the MODIFY RECOVERY
utility to recycle the version numbers.

5. Run the DSN1COPY utility with the OBIDXLAT option. On the control
statement, specify the proper mapping of table database object identifiers
(OBIDs) for the table space or index from the source to the target subsystem.

6. Run REPAIR VERSIONS on the object on the target subsystem. For table
spaces, the utility updates the following columns:
v OLDEST_VERSION in SYSTABLEPART
v VERSION in SYSTABLES
v OLDEST_VERSION and CURRENT_VERSION in SYSTABLESPACE

For indexes, the utility updates OLDEST_VERSION and CURRENT_VERSION
in SYSINDEXES. DB2 uses the following formulas to update these columns in
both SYSTABLEPART and SYSINDEXES:
CURRENT_VERSION = MAX(target.CURRENT_VERSION,source.CURRENT_VERSION)

OLDEST_VERSION = MIN(target.OLDEST_VERSION,source.OLDEST_VERSION)

Chapter 26. REPAIR 671

Related concepts:

Table space versions (DB2 Administration Guide)
Related reference:

SYSIBM.SYSINDEXES table (DB2 SQL)

SYSIBM.SYSTABLESPACE table (DB2 SQL)

ALTER TABLE (DB2 SQL)
Chapter 18, “MODIFY RECOVERY,” on page 367
Chapter 40, “DSN1COPY,” on page 933

Termination or restart of REPAIR
You can terminate the REPAIR utility, but you cannot restart the REPAIR utility.

You can terminate a REPAIR job with the TERM UTILITY command.

REPAIR cannot be restarted. If you attempt to restart REPAIR, you receive message
DSNU191I, which states that the utility cannot be restarted. You must terminate the
job with the TERM UTILITY command, and rerun REPAIR from the beginning.
Related reference:

-TERM UTILITY (DB2) (DB2 Commands)

Review of REPAIR output
The output from the REPAIR utility can consist of any modified pages in the
specified DB2 table space or index. Alternatively, the REPAIR utility can produce a
complete dump of the content of the table space.

Error messages

At each LOCATE statement, the last data page and the new page that are being
located are checked for a few common errors, and messages are issued.

Data checks

Although REPAIR enables you to manipulate both user and DB2 data by bypassing
SQL, it does perform some checking of data. For example, if REPAIR tries to write
a page with the wrong page number, DB2 abnormally terminates with a 04E code
and reason code C200B0. If the page is broken because the broken page bit is on or
the incomplete page flag is set, REPAIR issues the following message:
DSNU670I + DSNUCBRP - PAGE X’000004’ IS A BROKEN PAGE

After running REPAIR
Certain activities might be required after you run the REPAIR utility, depending on
your situation.

CHECK-pending status

You are responsible for violations of referential constraints that are a result of
running REPAIR. These violations cause the target table space to be placed in the
CHECK-pending status.

672 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_tablespaceversions.htm#db2z_tablespaceversions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysindexestable.htm#db2z_sysibmsysindexestable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsystablespacetable.htm#db2z_sysibmsystablespacetable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertable.htm#db2z_sql_altertable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_termutility.htm#db2z_cmd_termutility

After running REPAIR DBD REBUILD

Make sure that you rebind any invalidated trigger packages. See the information
about repairing DBDs.
Related tasks:
“Repairing DBDs” on page 668
Related reference:
Chapter 8, “CHECK DATA,” on page 65

Sample REPAIR control statements
Use the sample control statements as models for developing your own REPAIR
control statements.

Example: Replacing damaged data and verifying replacement

The following control statement specifies that the REPAIR utility is to perform the
following actions:
v Repair the specified page of table space DSN8D81A.DSN8S81D, as indicated by

the LOCATE clause.
v Verify that, at the specified offset (50), the damaged data (0A00) is found, as

indicated by the VERIFY clause.
v Replace the damaged data with the data that you want (0D11), as indicated by

the REPLACE clause.
v Initiate® a dump beginning at offset 50, for 4 bytes, as indicated by the DUMP

clause. You can use the generated dump to verify the replacement.
//STEP1 EXEC DSNUPROC,UID=’IUIQU1UH’,UTPROC=’’,SYSTEM=’DSN’
//SYSIN DD *
REPAIR OBJECT

LOCATE TABLESPACE DSN8D11A.DSN8S11D PAGE X’02’
VERIFY OFFSET 50 DATA X’0A00’
REPLACE OFFSET 50 DATA X’0D11’
DUMP OFFSET 50 LENGTH 4

Example: Removing a nonindexed row that is found by REORG

When reorganizing table space DSNDB04.TS1, assume that you received the
following message:
DSNU3401 DSNURBXA - ERROR LOADING INDEX, DUPLICATE KEY

INDEX = EMPINDEX
TABLE = EMP
RID OF INDEXED ROW = X’0000000201’
RID OF NONINDEXED ROW = X’0000000503’

To resolve this error condition, submit the following control statement, which
specifies that REPAIR is to delete the nonindexed row and log the change. (The
LOG keyword is not required; the change is logged by default.) The RID option
identifies the row that REPAIR is to delete.
REPAIR

LOCATE TABLESPACE DSNDB04.TS1 RID (X’0000000503’)
DELETE

Chapter 26. REPAIR 673

Example: Reporting whether catalog and directory DBDs differ

The following control statement specifies that REPAIR is to compare the DBD for
DSN8D2AP in the catalog with the DBD for DSN8D2AP in the directory.
REPAIR DBD TEST DATABASE DSN8D2AP

If the condition code is 0, the DBDs are consistent. If the condition code is not 0,
the DBDs might be inconsistent. In this case, run REPAIR DBD with the
DIAGNOSE option, as shown in example 4, to find out more detailed information
about any inconsistencies.

Example: Reporting differences between catalog and directory
DBDs

The following control statement specifies that the REPAIR utility is to report
information about the inconsistencies between the catalog and directory DBDs for
DSN8D2AP. Run this job after you run a REPAIR job with the TEST option (as
shown in example 3), and the condition code is not 0. In this example, SYSREC is
the output data set, as indicated by the OUTDDN option.
REPAIR DBD DIAGNOSE DATABASE DSN8D2AP OUTDDN SYSREC

Example: Resetting restrictive states

The control statement in this example specifies that the REPAIR utility is to reset
the following restrictive states for the indicated objects:
v For all indexes on table spaces DBNI1601.TSNI1601 and DBNI1601.TSNI1602,

reset RBDP, PSRBDP, or RBDP* status.
v For partition 1 of table space DBNI1601.TSNI1601 and partition 4 of table space

DBNI1601.TSNI1602, reset ACHKP status.
v For partitions 1 and 4 of table space DBNI1601.TSNI1601, reset CHKP status.

Example: Updating version information

The control statement in this example specifies that REPAIR is to update the
version information in the catalog and directory for table spaces TLKQAST1,
TSKQAST2, and TPKQAST3.

//STEP3 EXEC DSNUPROC,UID=’JUNIU116.RECV1’,
// UTPROC=’’,SYSTEM=’SSTR’
//SYSIN DD *

REPAIR OBJECT
SET INDEX (ALL) TABLESPACE DBNI1601.TSNI1601 NORBDPEND
SET INDEX (ALL) TABLESPACE DBNI1601.TSNI1602 NORBDPEND
SET TABLESPACE DBNI1601.TSNI1601 PART 1 NOAUXCHKP
SET TABLESPACE DBNI1601.TSNI1602 PART 4 NOAUXCHKP
SET TABLESPACE DBNI1601.TSNI1602 PART 1 NOCHECKPEND
SET TABLESPACE DBNI1601.TSNI1602 PART 4 NOCHECKPEND

/*

Figure 80. REPAIR SET example control statement

674 Utility Guide and Reference

Example: Repairing a table space with clones

The control statement specifies that REPAIR is to reset the auxiliary
CHECK-pending (ACHKP) status of the specified table space and process only the
specified objects that are table spaces that contain clone tables, indexes on clone
tables, or index spaces that contain indexes on clone tables.
REPAIR

SET TABLESPACE DBKQDB01.TPKQDB01
NOAUXCHKP CLONE

Example: Checking for incorrect information in the catalog

Assume that you ran the DSN1COPY utility and want to make sure that you did
not introduce any data integrity errors. DB2 automatically detects any data and
catalog inconsistencies the first time that the data set is physically open after being
populated by DSN1COPY. However, if you want to proactively check for these
inconsistencies, you can use REPAIR. In this case, suppose that one of the affected
table spaces is DBNAMET01.TSNAMET01. Issue the following REPAIR statement:
REPAIR CATALOG TABLESPACE DBNAMET01.TSNAMET01 TEST

This utility control statement specifies that REPAIR is to check for any
inconsistencies between the data and catalog. If any inconsistencies are found, DB2
returns messages for them but does not correct them.

If you want REPAIR to correct the catalog when possible, issue the statement
without the TEST option, as follows:
REPAIR CATALOG TABLESPACE DBNAMET01.TSNAMET01

For more information about which inconsistencies are automatically corrected and
which are reported through messages, see the description of CATALOG in “Syntax
and options of the REPAIR control statement” on page 646

//STEP1 EXEC DSNUPROC,UID=’JUKQU3AS.REPAIR’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’SSTR’
//SYSIN DD *

REPAIR VERSIONS TABLESPACE DBKQAST1.TLKQAST1
REPAIR VERSIONS TABLESPACE DBKQAST2.TSKQAST2
REPAIR VERSIONS TABLESPACE DBKQAST3.TPKQAST3

Figure 81. REPAIR VERSIONS example control statement

Chapter 26. REPAIR 675

|

|
|
|
|
|
|

|

|
|
|

|
|

|

|
|
|

676 Utility Guide and Reference

Chapter 27. REPORT

The REPORT utility provides information about table spaces, tables, and indexes.
You can use REPORT to find the names of related table spaces, such as
referentially related table spaces and LOB table spaces. You can also use REPORT
to find information that is necessary for recovery.

Output

The output from REPORT with the TABLESPACESET option consists of the names
of all table spaces in the table space set that you specify. It also lists all tables in
the table spaces and all tables that are dependent on those tables.

The output from REPORT with the RECOVERY option consists of the following
items:
v The recovery history from the SYSIBM.SYSCOPY catalog table
v Log ranges from the SYSIBM.SYSLGRNX directory table
v Volume serial numbers where archive log data sets from the BSDS exist.
v Information about any indexes on the table space that are in the informational

COPY-pending (ICOPY) status (This information affects the recoverability of an
index.)

v Information about any system-level backup copies that you can use for recovery
if the BACKUP SYSTEM utility is used on your system
If you use system-level backup copies as the base for object-level recoveries of
individual table spaces or index spaces, the REPORT output also lists the
system-level backup copies. These copies are listed in the SYSCOPY ROWS AND
SYSTEM-LEVEL BACKUPS section of the report.

If REPORT TABLESPACESET or REPORT RECOVERY is specified and the base
objects have been cloned, information for both base and clone objects are included
in the output.

In a data sharing environment, the REPORT output provides:
v The RBA of when DB2 was migrated to Version 11
v The high and low RBA values of the migrated member
v A list of any SYSLGRNX records from before data sharing was enabled that

cannot be used to recover to any point in time after data sharing was enabled
v For SYSCOPY, the member from which the image copy was deleted
v Information about system-level backup copies that are retrieved from the

bootstrap data sets of each member in the data sharing group
v The status of deactivated members, and of destroyed members whose member

IDs have not been reclaimed

In all migration modes, RBA and LRSN values are displayed in 10-byte format.
This 10-byte display is unrelated to migration of the catalog or directory,
conversion of individual objects to EXTENDED format, or BSDS conversion. For
recovery purposes, this 10-byte format is the preferred input format for DB2. When
10-byte RBA or LRSN values are specified as input to DB2, conversion to 6-byte
format is performed internally as needed.

© Copyright IBM Corp. 1983, 2013 677

|
|
|
|
|
|

Even before the BSDS is converted to Version 11 format on all data sharing
members or the catalog and directory are migrated, 10-byte LRSN values might be
displayed with non-zero digits in the low order 3 bytes. LRSN values captured
before the BSDS is converted continue to be displayed as they were saved until
they are no longer available for display (for example, deleted by MODIFY
RECOVERY). This behavior is normal and to be expected, given the many ways
LRSN values are generated, stored, and handled in DB2. If these LRSN values are
specified as input to DB2, specify them as shown. If the LRSN value contains
non-zero digits in the low order 3 bytes, do not remove them. Any conversion that
might be required takes place inside DB2.

Authorization required:

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v RECOVERDB privilege for the database
v DBADM or DBCTRL authority for the database. If the object on which the utility

operates is in an implicitly created database, DBADM authority on the implicitly
created database or DSNDB04 is required.

v System DBADM authority
v DATAACCESS authority
v SYSCTRL or SYSADM authority

Any of the following IDs can run the REPORT utility on any table space in
DSNDB01 (the directory) or DSNDB06 (the catalog)
v An ID with DBCTRL or DBADM authority over database DSNDB06
v Any ID with installation SYSOPR, SYSCTRL, or SYSADM authority.

Execution phases of REPORT

The REPORT utility operates in these phases:

Phase Description

UTILINIT
Performs initialization

REPORT
Collects information

UTILTERM
Performs cleanup

678 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|

Related concepts:
“Preparing for recovery by using the COPY utility” on page 161
Related tasks:

Deleting data sharing members (DB2 Data Sharing Planning and
Administration)

Restoring deactivated data sharing members (DB2 Data Sharing Planning and
Administration)
Related reference:
“Informational COPY-pending status” on page 1087

Syntax and options of the REPORT control statement
The REPORT utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After you
create it, save it in a sequential or partitioned data set. When you create the JCL
for running the job, use the SYSIN DD statement to specify the name of the data
set that contains the utility control statement.

Syntax diagram

�� REPORT �

�
INDEX NONE

RECOVERY TABLESPACE LIST listdef-name
table-space-name-spec INDEX ALL info options

index-list-spec
TABLESPACESET table-space-name-spec

TABLESPACE SHOWDSNS

��

index-list-spec:

�� INDEXSPACE index-space-name
database-name.

LIST listdef-name
INDEX index-name

creator-id.
LIST listdef-name

��

Chapter 27. REPORT 679

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_deletingdsmembers.htm#db2z_deletingdsmembers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_deletingdsmembers.htm#db2z_deletingdsmembers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_restoringdsmembers.htm#db2z_restoringdsmembers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_restoringdsmembers.htm#db2z_restoringdsmembers

info options:

��
DSNUM ALL

DSNUM integer CURRENT SUMMARY LOCALSITE RECOVERYSITE
�

�
ARCHLOG 1

ARCHLOG 2
ALL

��

table-space-name-spec:

��
database-name.

table-space-name ��

Option descriptions

RECOVERY
Indicates that recovery information for the specified table space or index is to
be reported.

TABLESPACE database-name.table-space-name
For REPORT RECOVERY, specifies the table space (and, optionally, the
database to which it belongs) that is being reported.

For REPORT TABLESPACESET, specifies a table space (and, optionally, the
database to which it belongs) in the table space set.

database-name
Optionally specifies the database to which the table space belongs.

table-space-name
Specifies the table space.

LISTlistdef-name

Specifies the name of a previously defined LISTDEF list name. The utility
allows one LIST keyword for each control statement of REPORT. The list
must contain only table spaces. Do not specify LIST with the
TABLESPACE...table-space-name specification. The TABLESPACE keyword is
required to validate the contents of the list. REPORT RECOVERY
TABLESPACE is invoked once per item in the list.

SHOWDSNS
Specifies that the VSAM data set names for each table space or index space
are to be included in the TABLESPACESET report. Data set names for base
objects are shown in the section titled TABLESPACE SET REPORT. Data set
names for CLONE objects are shown in the section titled CLONE
TABLESPACE SET REPORT. The later report is only prepared if the base
objects have been cloned.

INDEXSPACE database-name.index-space-name
Specifies the index space that is being reported.

680 Utility Guide and Reference

database-name
Optionally specifies the database to which the index space belongs.

index-space-name
Specifies the index space name for the index that is being reported.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name. The utility
allows one LIST keyword for each control statement of REPORT. The list
must contain only index spaces. Do not specify LIST with the
INDEXSPACE index-space-name specification. The INDEXSPACE keyword is
required in order to validate the contents of the list. REPORT RECOVERY
INDEXSPACE is invoked once for each item in the list.

INDEX creator-id.index-name
Specifies the index in the index space that is being reported.

creator-id
Optionally specifies the creator of the index.

index-name
Specifies the index name that is to be reported. Enclose the index name in
quotation marks if the name contains a blank.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name. The utility
allows one LIST keyword for each control statement of REPORT. The list
must contain only index spaces. Do not specify LIST with the
INDEX...index-name specification. The INDEX keyword is required to
validate the contents of the list. REPORT RECOVERY INDEX is invoked
once for each item in the list.

The partitions or partition ranges can be specified in a list.

The following REPORT keywords are optional:

INDEX NONE
Specifies that recovery information for index spaces that are associated
with the specified table space is not to be reported.

INDEX ALL
Specifies that recovery information for index spaces that are associated
with the specified table space is to be reported.

DSNUM
Identifies a partition or data set for which information is to be reported.
Alternatively, DSNUM specifies that information is to be reported for the
entire table space or index space.

ALL
Specifies that information is to be reported for the entire table space or
index space.

integer
Is the number of a partition or data set for which information is to be
reported. The maximum is 4096.

For a partitioned table space or partitioned index space, the integer is
its partition number.

Chapter 27. REPORT 681

For a nonpartitioned table space, find the integer at the end of the data
set name, as cataloged in the VSAM catalog. The data set name has the
following format:
catname.DSNDBx.dbname.tsname.y0001.Annn

In this format:

catname
Is the VSAM catalog name or alias.

x Is C or D.

dbname
Is the database name.

tsname Is the table space name.

y Is I or J.

nnn Is the data set integer.

CURRENT
Specifies that only the SYSCOPY entries that were written after the last
recovery point of the table space are to be reported. The last recovery point
is the last full image copy, LOAD REPLACE LOG YES image copy, or
REORG LOG YES image copy. If you specify DSNUM ALL, the last
recovery point is a full image copy that was taken for the entire table space
or index space. If you specify the CURRENT option, but the last recovery
point does not exist on the active log, DB2 prompts you to mount archive
tapes until this point is found.

CURRENT also reports only the SYSLGRNX rows and archive log volumes
that were created after the last incremental image copy entry. If no
incremental image copies were created, only the SYSLGRNX rows and
archive log volumes that were created after the last recovery point are
reported.

If you do not specify CURRENT or if no last recovery point exists, all
SYSCOPY and SYSLGRNX entries for that table space or index space are
reported. The report includes entries on archive logs. If you do not specify
CURRENT, the entries that were written after the last recovery point are
marked with an asterisk (*) in the report.

SUMMARY
Specifies that only a summary of volume serial numbers is to be reported.
It reports the following volume serial numbers:
v Where the archive log data sets from the BSDS exist
v Where the image copy data sets from SYSCOPY exist

If you do not specify SUMMARY, recovery information is reported, in
addition to the summary of volume serial numbers.

LOCALSITE
Specifies that all SYSCOPY records that were copied from a local site
system are to be reported.

RECOVERYSITE
Specifies that all SYSCOPY records that were copied from the recovery site
system are to be reported.

ARCHLOG
Specifies which archive log data sets are to be reported.

682 Utility Guide and Reference

1 Reports archive log data set 1 only.

2 Reports archive log data set 2 only.

ALL
Reports both archive log data sets 1 and 2.

TABLESPACESET
Indicates that the names of all table spaces in the table space set and the
names of all indexes on those tables are to be reported.

For more information about table space sets, see the description of the
TABLESPACESET option of the QUIESCE utility.

Related information:

“Syntax and options of the QUIESCE control statement” on page 398
Related reference:
Chapter 15, “LISTDEF,” on page 207

Data sets that REPORT uses
The REPORT utility uses a number of data sets during its operation.

The following table lists the data sets that REPORT uses. The table lists the DD
name that is used to identify the data set, a description of the data set, and an
indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 101. Data sets that REPORT uses

Data set Description Required?

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

The following object is named in the utility control statement and does not require
a DD statement in the JCL:

Table space
Object that is to be reported.

Concurrency and compatibility for REPORT
The REPORT utility has certain concurrency and compatibility characteristics
associated with it.

REPORT does not set a utility restrictive state on the target table space or partition.

REPORT can run concurrently on the same target object with any utility or SQL
operation.

Chapter 27. REPORT 683

Recovery information that REPORT provides
You can use the REPORT utility when planning for recovery. REPORT provides
information that is necessary for recovering a table space.

You can request report information for LOCALSITE, RECOVERYSITE, or both.

REPORT RECOVERY displays:
v Recovery information from the SYSIBM.SYSCOPY catalog table, including

QUIESCE, COPY, LOAD, REORG, RECOVER TOCOPY, and RECOVER TORBA
(or TOLOGPOINT) history. REPORT RECOVERY output also indicates the
device type and whether this is the primary or backup copy for LOCALSITE or
RECOVERYSITE.

v Information from the bootstrap data set about the system-level backup copies
that can be used for recovery and, if your DB2 for z/OS subsystem has been
configured to support object-level recoveries from system-level backup copies
(the subsystem parameter specifications include
SYSTEM_LEVEL_BACKUPS=YES), information about which system-level
backup copies can be used to recover each individual table space or index space.
Information about which system-level backup copies can be used to recover
individual table spaces and index spaces appears in the output in the section
with the other recovery information for the table space or index space.
Information about all available system-level backup copies appears at the end of
the report in a section that begins with the following message: DSNU598I -
csect-name REPORT RECOVERY SYSTEM-LEVEL BACKUPS

v Log ranges of the table space from the SYSIBM.SYSLGRNX directory.
v Archive log data sets ARCHLOG1, ARCHLOG2, or both from the bootstrap data

set.

You can use REPORT TABLESPACESET to find the names of all members of a
table space set.

You can also use REPORT to obtain recovery information about the catalog and
directory. When doing so, use the CURRENT option to avoid unnecessary
mounting of archive tapes.

REPORT uses asterisks to denote any non-COPY entries that it finds in the
SYSIBM.SYSCOPY catalog table. For example, an entry that is added by the
QUIESCE utility is marked with asterisks in the REPORT output.

REPORT uses pound signs to denote any changes found in the SYSIBM.SYSCOPY
catalog table that were created before any alteration was materialized. For the
SYSIBM.SYSCOPY catalog table entries inserted during the materialization of the
pending definition changes, REPORT uses asterisks to denote them as non-COPY
entries.

The following delimiters might be present around the ICTYPE value by REPORT:
v # # - SYSCOPY entry that was created before any alteration was materialized
v * * - Non image copy SYSCOPY entry
v < > - Image copy prior to rebalancing of table space partitions
v () - Image copy prior to LOG(NO) event. For image copies of indexes, the

LOG(NO) event may have occurred on its underlying table space.

684 Utility Guide and Reference

Recommendation: For image copies of partitioned table spaces that are taken with
the DSNUM ALL option, run REPORT RECOVERY DSNUM ALL. If you run
REPORT RECOVERY DSNUM ALL CURRENT, DB2 reports additional historical
information that dates back to the last full image copy that was taken for the entire
table space.

The REPORT RECOVERY utility output indicates whether any image copies are
unusable; image copies that were taken prior to REORG or LOAD events that reset
REORG-pending status are marked as unusable. In the REPORT RECOVERY
output, look at the IC TYPE and STYPE fields to help you determine which image
copies are unusable.

For example, in the sample REPORT RECOVERY output in the following figure,
the value in the first IC TYPE field, *R*, indicates that a LOAD REPLACE LOG
YES operation occurred. The value in the second IC TYPE field, <F> indicates that
a full image copy was taken.

After this image copy was taken, assume that an event occurred that put the table
space in REORG-pending status. The following figure shows the next several rows
of REPORT RECOVERY output for the same table space. The value in the first
ICTYPE field, *X* indicates that a REORG LOG YES event occurred. In the same
SYSCOPY record, the value in the STYPE field, A, indicates that this REORG job
reset the REORG-pending status. Any image copies that are taken before this status
was reset are unusable. (Thus, the full image copy in the REPORT output in the
previous figure is unusable.) The next record contains an F in the IC TYPE field
and an X in the STYPE field, which indicates that a full image copy was taken
during the REORG job. This image copy is usable.

DSNU582I) 271 15:02:09.92 DSNUPPCP - REPORT RECOVERY TABLESPACE DBKQAA01.TPKQAA01 SYSCOPY ROWS
TIMESTAMP = 2006-09-28-15.00.07.773906, IC TYPE = *C*, SHR LVL = , DSNUM = 0000,

START LRSN =000037940EEC
DEV TYPE = , IC BACK = , STYPE = L, FILE SEQ = 0000,

PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000,

LOGGED = Y, TTYPE =
JOBNAME = , AUTHID = , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DBKQAA01.TPKQAA01 , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-28-15.00.36.940517, IC TYPE = *R*, SHR LVL = , DSNUM = 0000,
START LRSN =000037A07DAC

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =

JOBNAME = TJI11004, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DBKQAA01.TPKQAA01 , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

Figure 82. Sample REPORT RECOVERY output before table space placed in REORG-pending status

Chapter 27. REPORT 685

Related reference:

SYSIBM.SYSCOPY table (DB2 SQL)

Running REPORT on the catalog and directory
REPORT RECOVERY shows the image copies for those table spaces that are not
included in SYSIBM.SYSCOPY: DSNDB01.SYSUTILX, DSNDB01.DBD01,
DSNDB06.SYSTSCPY, and DSNDB01.SYSDBDXA.

When you run REPORT RECOVERY on one of these table spaces, specify the
CURRENT option to avoid unnecessarily mounting archive tapes. If you do not
specify CURRENT, DB2 searches for and reports all SYSCOPY records in the log,
including those records on archive tapes. If you specify CURRENT, DB2 prompts
you to mount archive tapes only if the last recovery point does not exist on the
active log. You are prompted to mount tapes until the last recovery point is found.

You can use REPORT TABLESPACESET on the DB2 catalog and directory table
spaces.

Termination or restart of REPORT
You can terminate and restart the REPORT utility.

You can terminate a REPORT utility job with the TERM UTILITY command if you
have submitted the job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a REPORT utility job, but it starts from the beginning again.
Related concepts:
“Restart of an online utility” on page 39

Review of REPORT output
The output from the REPORT online utility depends on whether the
TABLESPACESET or RECOVERY option is specified.

TIMESTAMP = 2006-09-28-15.02.03.978248, IC TYPE = *X*, SHR LVL = , DSNUM = 0000,
START LRSN =000037B8F661

DEV TYPE = , IC BACK = , STYPE = A, FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0001, HIGH DSNUM = 0026, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =

JOBNAME = TJI11006, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DBKQAA01.TPKQAA01 , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-28-15.02.09.789597, IC TYPE = F, SHR LVL = R, DSNUM = 0000,
START LRSN =000037CD653E

DEV TYPE = 3390 , IC BACK = , STYPE = X,, FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0001, HIGH DSNUM = 0026, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =

JOBNAME = TJI11006, AUTHID = ADMF001 , COPYPAGESF = 1.89E+02
NPAGESF = 1.64E+02 , CPAGESF = 1.64E+02
DSNAME = JUKQU1AA.REORG1.STEP1.SYSCOPY , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M
DS VOLSER = SCR03 ,

Figure 83. Sample REPORT RECOVERY output after REORG-pending status is reset

686 Utility Guide and Reference

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsyscopytable.htm#db2z_sysibmsyscopytable

For the TABLESPACESET option, the output consists of the names of all table
spaces in the specified table space set. For the RECOVERY option, the output
includes information about the image copy data sets and archive log data set that
might be required during the recovery.

REPORT TABLESPACESET output

The output from REPORT TABLESPACESET consists of the names of all table
spaces in the table space set that you specify. It also identifies all tables in the table
spaces and all tables that are dependent on those tables, including LOB and XML
tables, history tables, and archive tables.

For example, the statement REPORT TABLESPACESET TABLESPACE
DSN8D81A.DSN8S81D generates the output that is shown in the following figure.
For the purposes of this example, an XML column was added to the sample table
DSN8910.DEPT

DSNU000I 270 14:18:14.71 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = REP94
DSNU1044I 270 14:18:14.91 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 270 14:18:14.92 DSNUGUTC - REPORT TABLESPACESET TABLESPACE DSN8D91A.DSN8S91D
DSNU587I) 270 14:18:14.94 DSNUPSET - REPORT TABLESPACE SET WITH TABLESPACE DSN8D91A.DSN8S91D

TABLESPACE SET REPORT:

TABLESPACE : DSN8D91A.DSN8S91D
TABLE : DSN8910.DEPT
INDEXSPACE : DSN8D91A.XDEPT1
INDEX : DSN8910.XDEPT11
INDEXSPACE : DSN8D91A.XDEPT2
INDEX : DSN8910.XDEPT22
INDEXSPACE : DSN8D91A.XDEPT3
INDEX : DSN8910.XDEPT33
INDEXSPACE : DSN8D91A.IRDOCIDD
INDEX : DSN8910.I_DOCIDDEPT
DEP TABLE : DSN8910.DEPT

DSN8910.EMP
DSN8910.PROJ

TABLESPACE : DSN8D91A.DSN8S91E
TABLE : DSN8910.EMP
INDEXSPACE : DSN8D91A.XEMP1
INDEX : DSN8910.XEMP11
INDEXSPACE : DSN8D91A.XEMP2
INDEX : DSN8910.XEMP22
DEP TABLE : DSN8910.DEPT

DSN8910.EMPPROJACT
DSN8910.PROJ

TABLESPACE : DSN8D91A.DSN8S91P
TABLE : DSN8910.ACT
INDEXSPACE : DSN8D91A.XACT1
INDEX : DSN8910.XACT11
INDEXSPACE : DSN8D91A.XACT2
INDEX : DSN8910.XACT22
DEP TABLE : DSN8910.PROJACT

TABLE : DSN8910.EMPPROJACT
INDEXSPACE : DSN8D91A.XEMPPROJ
INDEX : DSN8910.XEMPPROJACT1
INDEXSPACE : DSN8D91A.XEMP1AQJ
INDEX : DSN8910.XEMPPROJACT2

TABLE : DSN8910.PROJ
INDEXSPACE : DSN8D91A.XPROJ1
INDEX : DSN8910.XPROJ11

Chapter 27. REPORT 687

|
|
|
|

INDEXSPACE : DSN8D91A.XPROJ2
INDEX : DSN8910.XPROJ22
DEP TABLE : DSN8910.PROJ

DSN8910.PROJACT

TABLE : DSN8910.PROJACT
INDEXSPACE : DSN8D91A.XPROJAC1
INDEX : DSN8910.XPROJAC11
DEP TABLE : DSN8910.EMPPROJACT

XML TABLESPACE SET REPORT:

TABLESPACE : DSN8D91A.DSN8S91D

BASE TABLE : DSN8910.DEPT
COLUMN : XML1

XML TABLESPACE : DSN8D91A.XDEP0000
XML TABLE : DSN8910.XDEPT
XML NODEID INDEXSPACE: DSN8D91A.IRNODEID
XML NODEID INDEX : DSN8910.I_NODEIDXDEPT

DSNU580I 270 14:18:14.94 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I 270 14:18:14.97 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

REPORT TABLESPACESET output for tables spaces that are
included in versioning relationships

The output from REPORT TABLESPACESET identifies versioning relationships in
the system-period temporal table space or history table space. The report also
includes the related auxiliary LOB and XML table spaces on both the
system-period temporal table space and history table spaces.

TABLESPACE : DBSOL11.TS001L11
TABLE : ADMF001.TBWSOL11
INDEXSPACE : DBSOL11.IRDOCIDT
INDEX : ADMF001.I_DOCIDTBWSOL11

LOB TABLESPACE SET REPORT:

TABLESPACE : DBSOL11.TS001L11

BASE TABLE : ADMF001.TBWSOL11
COLUMN : BLOB1

LOB TABLESPACE : DBSOL11.TLWB1L11
AUX TABLE : ADMF001.TBAWLOBB1L11
AUX INDEXSPACE : DBSOL11.IXDLB1L1
AUX INDEX : ADMF001.IXDLB1L1

TABLESPACE : DBSOL11.TS001L11
BASE TABLE : ADMF001.TBWSOL11
COLUMN : XML1

XML TABLESPACE : DBSOL11.XTBW0000
XML TABLE : ADMF001.XTBWSOL11
XML NODEID INDEXSPACE : DBSOL11.IRNODEID
XML NODEID INDEX : ADMF001.I_NODEIDXTBWSOL11
XML INDEXSPACE : DBSOL11.IXW11SOL
XML INDEX : ADMF001.IXW11SOL11
XML INDEXSPACE : DBSOL11.IXW12SOL
XML INDEX : ADMF001.IXW12SOL11

Figure 84. Example of REPORT TABLESPACESET output

688 Utility Guide and Reference

XML INDEXSPACE : DBSOL11.IXW13SOL
XML INDEX : ADMF001.IXW13SOL11
XML INDEXSPACE : DBSOL11.IXW14SOL
XML INDEX : ADMF001.IXW14SOL11

HISTORY TABLESPACE SET REPORT:

BASE TABLE : ADMF001.TBWSOL11
HISTORY TABLESPACE : DBSOL11.HTS001L11
HISTORY TABLE : ADMF001.HTBWSOL11
HISTORY INDEXSPACE : DBSOL11.HIRDOCIDT
HISTORY INDEX : ADMF001.HI_DOCIDTBWSOL11

HISTORY LOB TABLESPACE SET REPORT:

HISTORY TABLESPACE : DBSOL11.HTS001L11

BASE TABLE : ADMF001.TBWSOL11
COLUMN : BLOB1

HISTORY LOB TABLESPACE : DBSOL11.HTLWB1L11
AUX TABLE : ADMF001.HTBAWLOBB1L11
AUX INDEXSPACE : DBSOL11.HIXDLB1L1
AUX INDEX : ADMF001.HIXDLB1L1

HISTORY XML TABLESPACE SET REPORT:

HISTORY TABLESPACE : DBSOL11.HTS001L11

BASE TABLE : ADMF001.TBWSOL11
COLUMN : XML1

HISTORY XML TABLESPACE : DBSOL11.HXTBW0000
XML TABLE : ADMF001.HXTBWSOL11
XML NODEID INDEXSPACE : DBSOL11.HIRNODEID
XML NODEID INDEX : ADMF001.HI_NODEIDXTBWSOL11
XML INDEXSPACE : DBSOL11.HIXW11SOL
XML INDEX : ADMF001.HIXW11SOL11
XML INDEXSPACE : DBSOL11.HIXW12SOL
XML INDEX : ADMF001.HIXW12SOL11
XML INDEXSPACE : DBSOL11.HIXW13SOL
XML INDEX : ADMF001.HIXW13SOL11
XML INDEXSPACE : DBSOL11.HHIXW14SOL
XML INDEX : ADMF001.HIXW14SOL11

REPORT TABLESPACESET output for tables spaces that are
included in archive relationships

The following portion of output from REPORT TABLESPACESET shows related
archive objects.

...
ARCHIVE TABLESPACE SET REPORT:

TABLESPACE : DB516803.TU516806
ARCHIVE TABLE : SC516801.TB_STOCK_PBR_ARCH
AR_ENABLED TABLE : SC516801.TB_STOCK_PART
INDEXSPACE : DB516803.IX01RARC
INDEX : SC516801.IX01_ARCH_STOCK_PBR
INDEXSPACE : DB516803.IU01RARC
INDEX : SC516801.IU01_ARCH_STOCK_PBR
INDEXSPACE : DB516803.IX02RARC
INDEX : SC516801.IX02_ARCH_STOCK_PBRT

Figure 85. Example of REPORT TABLESPACESET output for tables spaces that are included in versioning
relationships

Chapter 27. REPORT 689

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

TABLESPACE : DB516807.TU516808
ARCHIVE TABLE : SC516801.TB_ORDERLINE_PBR_ARCH
AR_ENABLED TABLE : SC516801.TB_ORDERLINE_PBG
INDEXSPACE : DB516807.IU01RARC
INDEX : SC516801.IU01_ARCH_ORDERLINE_PBR
INDEXSPACE : DB516807.IRDO1JOL
INDEX : SC516801.I_DOCIDTB_ORDERLINE_PBR_A
INDEXSPACE : DB516807.IX01RARC
INDEX : SC516801.IX01_ARCH_ORDERLINE_PBR
INDEXSPACE : DB516807.IX02RARC
INDEX : SC516801.IX02_ARCH_ORDERLINE_PBR

Related information:

Archive-enabled tables and archive tables (Introduction to DB2 for z/OS)

REPORT RECOVERY output

REPORT RECOVERY displays all information about the image copy data sets and
archive log data set that might be required during the recovery.

If the DSVOLSER column of SYSIBM.SYSCOPY is blank, REPORT RECOVERY
does not display volume serial numbers for image copy data sets.

The report contains four sections, which include the following types of
information:
v Recovery history from the SYSIBM.SYSCOPY catalog table, including

information about any system level backup copies that can be used for an object
level recovery.

v Log ranges from SYSIBM.SYSLGRNX.
v Volume serial numbers where archive log data sets from the BSDS exist.
v If your installation uses the BACKUP SYSTEM utility, information about the

system level backup copies that you can use for recovery.

If REPORT has no data to display for one or more of these sections, the
corresponding sections of the report contain the following message:
DSNU588I - NO DATA TO BE REPORTED

The following figure shows a sample of REPORT RECOVERY output in a data
sharing environment.

DSNU050I 277 11:56:29.12 DSNUGUTC - REPORT RECOVERY TABLESPACE DBUV0101.TPUV0101
DSNU581I) 277 11:56:29.13 DSNUPREC - REPORT RECOVERY TABLESPACE DBUV0101.TPUV0101
DSNU593I) 277 11:56:29.14 DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:

MINIMUM RBA: 000000000000
MAXIMUM RBA: FFFFFFFFFFFF
MIGRATING RBA: 000000000000

DSNU582I) 277 11:56:29.14 DSNUPPCP - REPORT RECOVERY TABLESPACE DBUV0101.TPUV0101
SYSCOPY ROWS AND SYSTEM-LEVEL BACKUPS

TIMESTAMP = 2006-10-04-11.54.18.812785, IC TYPE = *C*, SHR LVL = , DSNUM = 0000,
START LRSN =0000374F6154

DEV TYPE = , IC BACK = , STYPE = L, FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =

JOBNAME = , AUTHID = , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

Figure 86. Example of REPORT TABLESPACESET output for tables spaces that are included in archive relationships

690 Utility Guide and Reference

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_archivetables.htm#db2z_archivetables

DSNAME = DBUV0101.TPUV0101 , MEMBER NAME = ,
INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2009-05-14-06.49.53.121879, TYPE = SLB , RBLP = 000231F06000
TOKEN = E5C1F1C1C42D950789A533D31000001DAEB9 , MEMBER NAME = , DATA COMPLETE LRSN=0000375F6180

TIMESTAMP = 2006-10-04-11.55.49.489595, IC TYPE = *R*, SHR LVL = , DSNUM = 0000,
START LRSN =00003763616B

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE = RRF

JOBNAME = TJJ11008, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DBUV0101.TPUV0101 , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-10-04-11.56.24.997616, IC TYPE = F , SHR LVL = R, DSNUM = 0000,
START LRSN =000037775646

DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0001, HIGH DSNUM = 0016, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =

JOBNAME = TJJ11011, AUTHID = ADMF001 , COPYPAGESF = 1.49E+02
NPAGESF = 1.49E+02 , CPAGESF = 1.33E+02
DSNAME = KUUVT101.COPY.STEP1.SYSCOPY1 , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

DSNU586I) 277 11:56:29.14 DSNUPSUM - REPORT RECOVERY TABLESPACE DBUV0101.TPUV0101 SUMMARY
DSNU588I) 277 11:56:29.14 DSNUPSUM - NO DATA TO BE REPORTED

/DSNU583I) 277 11:56:29.14 DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY
FOR TABLESPACE DBUV0101.TPUV0101

UCDATE UCTIME START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID
100406 11541904 0000374F86EC 00003752195A BF8110CF0ADF BF8110D0EB95 0001 0000
100406 11541916 0000374FB0E1 00003752195A BF8110CF26BE BF8110D0EC6F 0002 0000
100406 11541929 0000374FDACA 00003752195A BF8110CF4606 BF8110D0ECEE 0003 0000
100406 11541940 000037500483 00003752195A BF8110CF6209 BF8110D0ED64 0004 0000
100406 11541952 000037502E23 00003752195A BF8110CF7F04 BF8110D0EE47 0005 0000
100406 11541964 00003750582E 00003752195A BF8110CF9AFD BF8110D0EED8 0006 0000
100406 11541975 0000375081E7 00003752195A BF8110CFB7D6 BF8110D0EF51 0007 0000
100406 11541987 00003750AB87 00003752195A BF8110CFD3C4 BF8110D0EFCC 0008 0000
100406 11541998 00003750D540 00003752195A BF8110CFEFD4 BF8110D0F052 0009 0000
100406 11542010 00003750FEE0 00003752195A BF8110D00D2F BF8110D0F0D6 0010 0000
100406 11542022 0000375128A2 00003752195A BF8110D02A7E BF8110D0F157 0011 0000
100406 11542035 00003751525B 00003752195A BF8110D04860 BF8110D0F204 0012 0000
100406 11542046 000037517BFB 00003752195A BF8110D06558 BF8110D0F350 0013 0000
100406 11542059 00003751A674 00003752195A BF8110D083D9 BF8110D0F413 0014 0000
100406 11542074 00003751D02D 00003752195A BF8110D0A7D6 BF8110D0F4DF 0015 0000
100406 11542087 00003751FA0B 00003752195A BF8110D0C759 BF8110D0F567 0016 0000
100406 11542199 00003752B0F9 0000375C2734 BF8110D1D925 BF8110F9EE17 0001 0000
100406 11542201 00003752B4C1 0000375C275E BF8110D1DDFD BF8110F9EF2E 0002 0000
100406 11542202 00003752B84D 0000375C27D2 BF8110D1E02B BF8110F9EFC8 0003 0000
100406 11542202 00003752BBD9 0000375C2846 BF8110D1E252 BF8110F9F050 0004 0000
100406 11542203 00003752BF65 0000375C28BA BF8110D1E495 BF8110F9F0DB 0005 0000
100406 11542205 00003752C31E 0000375C292E BF8110D1E75F BF8110F9F160 0006 0000
100406 11542205 00003752C6AA 0000375C29A2 BF8110D1E9C9 BF8110F9F1E2 0007 0000
100406 11542206 00003752CA36 0000375C2A16 BF8110D1EC01 BF8110F9F27D 0008 0000
100406 11542207 00003752CDC2 0000375C2A8A BF8110D1EE6B BF8110F9F2FF 0009 0000
100406 11542209 00003752D1A4 0000375C2AFE BF8110D1F14C BF8110F9F390 0010 0000
100406 11542210 00003752D530 0000375C2B72 BF8110D1F3C8 BF8110F9F469 0011 0000
100406 11542211 00003752D8BC 0000375C2BE6 BF8110D1F65D BF8110F9F4ED 0012 0000
100406 11542212 00003752DC48 0000375C2C5A BF8110D1F8B9 BF8110F9F58E 0013 0000
100406 11542213 00003752E000 0000375C2CCE BF8110D1FB35 BF8110F9F64A 0014 0000
100406 11542214 00003752E38C 0000375C2D42 BF8110D1FE1E BF8110F9F6DF 0015 0000
100406 11542215 00003752E718 0000375C2DB6 BF8110D20107 BF8110F9F7A1 0016 0000
100406 11555014 000037641512 000037666079 BF811125EB99 BF8111266663 0001 0000
100406 11555015 0000376434E7 0000376661A7 BF811125EDEB BF8111266709 0002 0000
100406 11555017 00003764A0F2 000037666303 BF811125F276 BF8111266796 0003 0000

Chapter 27. REPORT 691

100406 11555022 00003764C7F9 00003766645F BF811125FD5C BF811126682C 0004 0000
100406 11555025 00003764E702 0000376665BB BF8111260503 BF81112668A9 0005 0000
100406 11555027 00003765060B 000037666717 BF81112609DA BF8111266922 0006 0000
100406 11555028 000037652514 000037666873 BF8111260DA8 BF81112669F5 0007 0000
100406 11555031 00003765441D 0000376669CF BF8111261384 BF8111266A77 0008 0000
100406 11555032 000037656326 000037666B2B BF81112616B4 BF8111266B08 0009 0000
100406 11555033 00003765822F 000037666C87 BF81112619C9 BF8111266BA3 0010 0000
100406 11555035 00003765A138 000037666DE3 BF8111261D27 BF8111266C63 0011 0000
100406 11555036 00003765C041 000037666F3F BF811126207C BF8111266CE5 0012 0000
100406 11555037 00003765E033 0000376670E8 BF8111262398 BF8111266D5F 0013 0000
100406 11555039 000037660033 000037667244 BF811126281F BF8111266DD6 0014 0000
100406 11555041 000037662033 0000376673A0 BF8111262BA7 BF8111266E50 0015 0000
100406 11555042 000037664033 0000376674FC BF8111262F1D BF8111266F25 0016 0000
100406 11555264 00003767877D 0000376FB01E BF8111284DEB BF8111357B9B 0001 0000
100406 11555266 00003767C8C1 0000376FB452 BF8111285307 BF811135809D 0002 0000
100406 11555270 000037682610 0000376FB6C6 BF8111285B65 BF811135868A 0003 0000
100406 11555273 0000376856B9 0000376FB93A BF8111286213 BF8111358C26 0004 0000
100406 11555276 00003768D63D 0000376FBBAE BF8111286AB6 BF8111359150 0005 0000
100406 11555279 0000376936AB 0000376FBE22 BF81112870D0 BF811135970F 0006 0000
100406 11555282 00003769A5DE 0000376FC10C BF8111287812 BF8111359D87 0007 0000
100406 11555285 00003769F6C1 0000376FC380 BF811128800C BF811135A49D 0008 0000
100406 11555287 0000376A3819 0000376FC5F4 BF8111288438 BF811135AA33 0009 0000

100406 11555288 0000376A88FC 0000376FC868 BF811128887F BF811135AF57 0010 0000
100406 11555291 0000376B1487 0000376FCADC BF8111288E59 BF811135B50D 0011 0000
100406 11560588 0000376BB087 0000376FCD50 BF811134ED6F BF811135B990 0012 0000
100406 11560591 0000376C2F10 0000376FD000 BF811134F463 BF811135BFE2 0013 0000
100406 11560594 0000376C9EB8 0000376FD274 BF811134FC1B BF811135C5E9 0014 0000
100406 11560597 0000376D0CE6 0000376FD4E8 BF8111350379 BF811135CB34 0015 0000
100406 11560599 0000376D4ED1 0000376FD75C BF81113507F8 BF811135CF65 0016 0000

DSNU584I) 277 11:56:29.14 DSNUPPBS - REPORT RECOVERY TABLESPACE DBUV0101.TPUV0101 ARCHLOG1
BSDS VOLUMES

DSNU588I) 277 11:56:29.14 DSNUPPBS - NO DATA TO BE REPORTED

DSNU586I) 277 11:56:29.14 DSNUPSUM - REPORT RECOVERY TABLESPACE DBUV0101.TPUV0101 SUMMARY
DSNU588I) 277 11:56:29.14 DSNUPSUM - NO DATA TO BE REPORTED
DSNU589I) 277 11:56:29.14 DSNUPREC - REPORT RECOVERY TABLESPACE DBUV0101.TPUV0101 COMPLETE

DSNU598I @ 134 06:52:53.42 DSNUPPBK - REPORT RECOVERY SYSTEM-LEVEL BACKUPS

START STCK DATA COMPLETE DATA/LOG COMPLETE
DATA LOG RBLP LRSN DATE LTIME LOCATION NAME
---------------- ---------------- ------------ ------------ -------------------- ----------------
C42EFEE0E13F45D0 0000000000000000 100000470146 1000004AD112 2009/05/14 06:53:03 STLEC1
TOKEN = E5C1F1C1C42EFEE0E13F45D0100000470146 INCREMENTAL = Y, SUBSYSTEM ID = VA1A, MEMBER NAME = MEM1
Z/OS = 1.11, CAPTURE CATALOG INFO = N, LOG COPY POOL = N
C42D950789A533D3 0000000000000000 1000001DAEB9 100000231F06 2009/05/13 03:54:09 STLEC1
TOKEN = E5C1F1C1C42D950789A533D31000001DAEB9 INCREMENTAL = Y, SUBSYSTEM ID = VA1A, MEMBER NAME = MEM2
Z/OS = 1.11, CAPTURE CATALOG INFO = N, LOG COPY POOL = N

DSNU580I 277 11:56:29.14 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00

The following figure shows sample output for the statement REPORT RECOVERY
TABLESPACE ARCHLOG. Under message DSNU584I, the archive log entries after
the last recovery point are marked with an asterisk (*). If you specify the
CURRENT option, message DSNU584I includes only the archive logs after the last
recovery point and the asterisk (*) is not included in the report.

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = D7058005.RCVR3
DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I DSNUGUTC - REPORT RECOVERY TABLESPACE DB580501.TS580501 ARCHLOG ALL
DSNU581I = DSNUPREC - REPORT RECOVERY TABLESPACE DB580501.TS580501
DSNU593I = DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:
’ MINIMUM RBA: 000000000000

Figure 87. Example of REPORT RECOVERY in a data sharing environment

692 Utility Guide and Reference

’ MAXIMUM RBA: FFFFFFFFFFFF
’ MIGRATING RBA: 000000000000
DSNU582I = DSNUPPCP - REPORT RECOVERY TABLESPACE DB580501.TS580501 SYSCOPY ROWS
TIMESTAMP = 2002-09-17-10.03.16.784238, IC TYPE = *Q*, SHR LVL = , DSNUM = 0000,

START LRSN =00001E58E60D
DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = 0000,

PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 3648 ,

LOGGED = Y, TTYPE =
JOBNAME = T3951105, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DB580501.TS580501 , MEMBER NAME =

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2002-09-17-10.03.22.937931, IC TYPE = *Z*, SHR LVL = , DSNUM = 0000,
START LRSN =00001E5956A3

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000 ,
LOGGED = Y, TTYPE =

JOBNAME = T3951105, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DB580501.TS580501 , MEMBER NAME =

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2002-09-17-10.03.43.118193, IC TYPE = *Q*, SHR LVL = , DSNUM = 0000,
START LRSN =00001E5A7B9D

DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 3648 ,
LOGGED = Y, TTYPE =

JOBNAME = T3951106, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DB580501.TS580501 , MEMBER NAME =

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2002-09-17-10.03.53.881540, IC TYPE = *Z*, SHR LVL = , DSNUM = 0000,
START LRSN =00001E5ADC6E

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000 ,
LOGGED = Y, TTYPE =

JOBNAME = T3951106, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DB580501.TS580501 , MEMBER NAME =

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2002-09-17-10.04.02.955333, IC TYPE = *Q*, SHR LVL = , DSNUM = 0000,
START LRSN =00001E624A3C

DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 3648 ,
LOGGED = Y, TTYPE =

JOBNAME = T3951106, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DB580501.TS580501 , MEMBER NAME =

INSTANCE = 01, RELCREATED = M
DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DB580501.TS580501 SUMMARY
DSNU588I = DSNUPSUM - NO DATA TO BE REPORTED

DSNU583I = DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR TABLESPACE DB580501.TS580501
UCDATE UCTIME START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID
091702 10025977 00001E4FD319 00001E4FEB91 00001E4FD319 00001E4FEB91 0000 0000 *
091702 10030124 00001E505B93 00001E58BC23 00001E505B93 00001E58BC23 0000 0000 *
091702 10032302 00001E59A637 00001E5A5258 00001E59A637 00001E5A5258 0000 0000 *
091702 10035391 00001E5B26AB 00001E6222F3 00001E5B26AB 00001E6222F3 0000 0000 *

DSNU584I = DSNUPPBS - REPORT RECOVERY TABLESPACE DB580501.TS580501 ARCHLOG1 BSDS VOLUMES

Chapter 27. REPORT 693

START TIME END TIME START RBA END RBA UNIT VOLSER DATA SET NAME
20022601702454 20022601704156 00001E48B000 00001E629FFF SYSDA SCR03 DSNC810.ARCHLOG1.A0000005 *
DSNU584I = DSNUPPBS - REPORT RECOVERY TABLESPACE DB580501.TS580501 ARCHLOG2 BSDS VOLUMES
DSNU588I = DSNUPPBS - NO DATA TO BE REPORTED
DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DB580501.TS580501 SUMMARY

ARCHLOG1 BSDS VOLSER(S) SCR03 *
DSNU589I = DSNUPREC - REPORT RECOVERY TABLESPACE DB580501.TS580501 COMPLETE

DSNU580I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0
DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = D7058005.RCVR3
DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I DSNUGUTC - REPORT RECOVERY TABLESPACE DB580501.TS580501 CURRENT
DSNU581I = DSNUPREC - REPORT RECOVERY TABLESPACE DB580501.TS580501
DSNU585I = DSNUPREC - REPORT RECOVERY TABLESPACE DB580501.TS580501 CURRENT
DSNU593I = DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:
’ MINIMUM RBA: 000000000000
’ MAXIMUM RBA: FFFFFFFFFFFF
’ MIGRATING RBA: 000000000000

DSNU582I = DSNUPPCP - REPORT RECOVERY TABLESPACE DB580501.TS580501 SYSCOPY ROWS
TIMESTAMP = 2002-09-17-10.03.16.784238, IC TYPE = *Q*, SHR LVL = , DSNUM = 0000,

START LRSN =00001E58E60D
DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = 0000,

PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 3648 ,

LOGGED = Y, TTYPE =
JOBNAME = T3951105, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DB580501.TS580501 , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2002-09-17-10.03.22.937931, IC TYPE = *Z*, SHR LVL = , DSNUM = 0000,
START LRSN =00001E5956A3

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000 ,
LOGGED = Y, TTYPE =

JOBNAME = T3951105, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DB580501.TS580501 , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M
...

TIMESTAMP = 2002-09-17-10.04.02.955333, IC TYPE = *Q*, SHR LVL = , DSNUM = 0000,
START LRSN =00001E624A3C

DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 3648 ,
LOGGED = Y, TTYPE =

JOBNAME = T3951106, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DB580501.TS580501 , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DB580501.TS580501 SUMMARY
DSNU588I = DSNUPSUM - NO DATA TO BE REPORTED

DSNU583I = DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR TABLESPACE DB580501.TS580501
UCDATE UCTIME START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID
091702 10025977 00001E4FD319 00001E4FEB91 00001E4FD319 00001E4FEB91 0000 0000
091702 10030124 00001E505B93 00001E58BC23 00001E505B93 00001E58BC23 0000 0000
091702 10032302 00001E59A637 00001E5A5258 00001E59A637 00001E5A5258 0000 0000
091702 10035391 00001E5B26AB 00001E6222F3 00001E5B26AB 00001E6222F3 0000 0000

DSNU584I = DSNUPPBS - REPORT RECOVERY TABLESPACE DB580501.TS580501 ARCHLOG1 BSDS VOLUMES
START TIME END TIME START RBA END RBA UNIT VOLSER DATA SET NAME
20022601702454 20022601704156 00001E48B000 00001E629FFF SYSDA SCR03 DSNC810.ARCHLOG1.A0000005

694 Utility Guide and Reference

DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DB580501.TS580501 SUMMARY
ARCHLOG1 BSDS VOLSER(S) SCR03

DSNU589I = DSNUPREC - REPORT RECOVERY TABLESPACE DB580501.TS580501 COMPLETE
DSNU580I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00

Related reference:

SYSIBM.SYSCOPY table (DB2 SQL)

Sample REPORT control statements
Use the sample control statements as models for developing your own REPORT
control statements.

Example 1: Reporting recovery information for a table space

The following control statement specifies that the REPORT utility is to provide
recovery information for table space DSN8D81A.DSN8S81E.
//REORG EXEC DSNUPROC,SYSTEM=V91A,UID=’REP97’
//SYSIN DD *
REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E
/*

The preceding statement produces output similar to the following output :
DSNU000I 270 13:00:51.35 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = REP97
DSNU1044I 270 13:00:51.58 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 270 13:00:51.60 DSNUGUTC - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E
DSNU581I) 270 13:00:51.60 DSNUPREC - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E
DSNU593I) 270 13:00:51.61 DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:

MINIMUM RBA: 000000000000
MAXIMUM RBA: FFFFFFFFFFFF
MIGRATING RBA: 000000000000

DSNU582I) 270 13:00:51.61 DSNUPPCP - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E SYSCOPY ROWS
TIMESTAMP = 2006-09-27-11.40.56.074739, IC TYPE = *C*, SHR LVL = , DSNUM = 0000,

START LRSN =00003697A903
DEV TYPE = , IC BACK = , STYPE = L, FILE SEQ = 0000,

PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000,

LOGGED = Y, TTYPE =
JOBNAME = , AUTHID = , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.38.341008, IC TYPE = *Z*, SHR LVL = , DSNUM = 0004,
START LRSN =000036C8EA3E

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0004,
LOGGED = Y, TTYPE =

JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.38.341008, IC TYPE = *Z*, SHR LVL = , DSNUM = 0001,
START LRSN =000036C8EA3E

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,

Figure 88. Example of REPORT RECOVERY TABLESPACE ARCHLOG

Chapter 27. REPORT 695

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsyscopytable.htm#db2z_sysibmsyscopytable

PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0001,

LOGGED = Y, TTYPE =
JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.38.341008, IC TYPE = *Z*, SHR LVL = , DSNUM = 0002,
START LRSN =000036C8EA3E

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0002,
LOGGED = Y, TTYPE =

JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.38.341008, IC TYPE = *Z*, SHR LVL = , DSNUM = 0003,
START LRSN =000036C8EA3E

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0003,
LOGGED = Y, TTYPE =

JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

. . .

DSNU586I) 270 13:00:51.61 DSNUPSUM - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E SUMMARY
DSNU588I) 270 13:00:51.61 DSNUPSUM - NO DATA TO BE REPORTED

DSNU583I) 270 13:00:51.61 DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR TABLESPACE DSN8D91A.DSN8S91E
UCDATE UCTIME START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID
092706 11405634 00003697B82E 0000369855C3 BF7840C34BF3 BF7840C44D81 0001 0000
092706 11405670 00003697E223 0000369855C3 BF7840C3A2F9 BF7840C44E27 0002 0000
092706 11405707 000036980BC3 0000369855C3 BF7840C3FF60 BF7840C44E92 0003 0000
092706 11405732 000036983674 0000369855C3 BF7840C43C57 BF7840C44F03 0004 0000
092706 11410155 0000369E31B6 000036ADE99C BF7840C8436A BF7840D832E3 0001 0000
092706 11410156 0000369E3ABB 000036A03DB6 BF7840C84546 BF7840D83495 0002 0000
092706 11410156 0000369E3E51 000036A0E15C BF7840C84683 BF7840D8359B 0003 0000
092706 11410159 0000369E4224 000036A5F932 BF7840C84CAA BF7840D83704 0004 0000
092706 11413835 000036C98000 000036D0B672 BF7840EB5CF9 BF7840EBF7A3 0001 0000
092706 11413845 000036CA937C 000036D0B9B6 BF7840EB7562 BF7840EC0150 0002 0000
092706 11413861 000036CC1F1B 000036D0BC2A BF7840EB9B43 BF7840EC0983 0004 0000
092706 11422002 000036FC9A0B 000036FCBA50 BF7841131913 BF7841131F84 0003 0000
092706 11422074 000036FCEB37 000036FD2000 BF784113C93E BF784113E333 0003 0000
092706 11422688 00003701A7B0 000037029A20 BF784119A438 BF78411B9857 0003 0000
092706 11423828 000037091000 0000370930BF BF784124848C BF7841248A06 0005 0000
092706 11424418 0000370DC5B7 0000370E625D BF78412A23C8 BF78412A5DC6 0001 0000
092706 11424419 0000370DE4FC 0000370E63B9 BF78412A2786 BF78412A6101 0002 0000
092706 11424421 0000370E0405 0000370E6515 BF78412A2A82 BF78412A6191 0003 0000
092706 11424427 0000370E230E 0000370E6671 BF78412A39CD BF78412A6210 0004 0000
092706 11424428 0000370E4254 0000370E74C2 BF78412A3CFD BF78412A630C 0005 0000
092706 11424782 0000370F3DF8 0000371086F8 BF78412D9C67 BF78412DFDE7 0001 0000
092706 11424787 0000370F41BA 0000371089A8 BF78412DA8F9 BF78412E02FB 0002 0000
092706 11424791 0000370F44E6 000037108C1C BF78412DB256 BF78412E0B57 0003 0000
092706 11424794 0000370F4812 000037108E90 BF78412DBAC1 BF78412E106B 0004 0000
092706 11424798 0000370F4B3E 00003710919C BF78412DC398 BF78412E14AE 0005 0000
092706 11424871 000037111E5F 00003711222E BF78412E7581 BF78412E7A75 0001 0000
092706 11424880 000037112516 00003711287E BF78412E8CD5 BF78412E910F 0002 0000
092706 11424886 000037112B66 000037112ECE BF78412E9A46 BF78412E9EF3 0003 0000
092706 11424893 0000371131D0 000037113538 BF78412EAAFB BF78412EAF6F 0004 0000
092706 11424898 000037113820 000037113B88 BF78412EB8A5 BF78412EC1C4 0005 0000

696 Utility Guide and Reference

DSNU584I) 270 13:00:51.61 DSNUPPBS - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E ARCHLOG1 BSDS VOLUMES
DSNU588I) 270 13:00:51.61 DSNUPPBS - NO DATA TO BE REPORTED

DSNU586I) 270 13:00:51.61 DSNUPSUM - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E SUMMARY
DSNU588I) 270 13:00:51.61 DSNUPSUM - NO DATA TO BE REPORTED
DSNU589I) 270 13:00:51.61 DSNUPREC - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E COMPLETE

DSNU580I 270 13:00:51.61 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I 270 13:00:51.62 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 2: Reporting table spaces with LOB columns

The following control statement specifies that REPORT is to provide a list of all
table spaces related to TABLESPACE DSN8D91L.DSN8S91B which contains a table
with three LOB columns. The output includes a separate section titled LOB
TABLESPACE SET REPORT showing a list of related LOB table spaces and their
tables, indexes, and index spaces. The base table and column to which each LOB
object is related is also shown.
REPORT TABLESPACESET TABLESPACE DSN8D91L.DSN8S91B

The preceding statement produces output similar to the following output:
DSNU000I 277 11:19:09.40 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = REP98
DSNU1044I 277 11:19:09.59 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 277 11:19:09.59 DSNUGUTC - REPORT TABLESPACESET TABLESPACE DSN8D91L.DSN8S91B
DSNU587I) 277 11:19:09.62 DSNUPSET - REPORT TABLESPACE SET WITH TABLESPACE DSN8D91L.DSN8S91B

TABLESPACE SET REPORT:

TABLESPACE : DSN8D91L.DSN8S91B
TABLE : DSN8910.EMP_PHOTO_RESUME
INDEXSPACE : DSN8D91L.XEMPRPHO
INDEX : DSN8910.XEMP_PHOTO_RESUME

LOB TABLESPACE SET REPORT:

TABLESPACE : DSN8D91L.DSN8S91B

BASE TABLE : DSN8910.EMP_PHOTO_RESUME
COLUMN : PSEG_PHOTO

LOB TABLESPACE : DSN8D91L.DSN8S91L
AUX TABLE : DSN8910.AUX_PSEG_PHOTO
AUX INDEXSPACE : DSN8D91L.XAUXRPSE
AUX INDEX : DSN8910.XAUX_PSEG_PHOTO

COLUMN : BMP_PHOTO
LOB TABLESPACE : DSN8D91L.DSN8S91M

AUX TABLE : DSN8910.AUX_BMP_PHOTO
AUX INDEXSPACE : DSN8D91L.XAUXRBMP
AUX INDEX : DSN8910.XAUX_BMP_PHOTO

COLUMN : RESUME
LOB TABLESPACE : DSN8D91L.DSN8S91N

AUX TABLE : DSN8910.AUX_EMP_RESUME
AUX INDEXSPACE : DSN8D91L.XAUXREMP
AUX INDEX : DSN8910.XAUX_EMP_RESUME

DSNU580I 277 11:19:09.62 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I 277 11:19:09.62 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 89. Example output for REPORT RECOVERY

Chapter 27. REPORT 697

Example 3: Reporting recovery information for a partition of a
partitioned table space

The following control statement specifies that REPORT is to provide recovery
information for partition 4 of table space DSN8D91A.DSN8S91E. The partition
number is indicated by the DSNUM option.
REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E DSNUM 4

The preceding statement produces output similar to the following output:
DSNU000I 271 18:15:27.26 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = REP99
DSNU1044I 271 18:15:27.55 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 271 18:15:27.55 DSNUGUTC - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E DSNUM 4
DSNU581I) 271 18:15:27.62 DSNUPREC - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E
DSNU593I) 271 18:15:27.66 DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:

MINIMUM RBA: 000000000000
MAXIMUM RBA: FFFFFFFFFFFF
MIGRATING RBA: 000000000000

DSNU582I) 271 18:15:27.66 DSNUPPCP - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E SYSCOPY ROWS
TIMESTAMP = 2006-09-27-11.40.56.074739, IC TYPE = *C*, SHR LVL = , DSNUM = 0000,

START LRSN =00003697A903
DEV TYPE = , IC BACK = , STYPE = L, FILE SEQ = 0000,

PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000,

LOGGED = Y, TTYPE =
JOBNAME = , AUTHID = , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.38.341008, IC TYPE = *Z*, SHR LVL = , DSNUM = 0004,
START LRSN =000036C8EA3E

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0004,
LOGGED = Y, TTYPE =

JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.51.120054, IC TYPE = *Q*, SHR LVL = , DSNUM = 0000,
START LRSN =000036E2BA9E

DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =

JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.53.524797, IC TYPE = *F*, SHR LVL = R, DSNUM = 0000,
START LRSN =000036E883E4

DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0001, HIGH DSNUM = 0004, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =

JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = 5.7E+01
NPAGESF = 6.7E+01 , CPAGESF = 5.7E+01
DSNAME = DB2V91A.SYSCOPY.DSN8D91A.DSN8S91E , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

Figure 90. Example output for REPORT TABLESPACESET

698 Utility Guide and Reference

TIMESTAMP = 2006-09-27-11.41.55.631749, IC TYPE = *Q*, SHR LVL = , DSNUM = 0000,
START LRSN =000036EA809A

DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =

JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.42.48.167991, IC TYPE = *X*, SHR LVL = , DSNUM = 0000,
START LRSN =0000370CA39B

DEV TYPE = , IC BACK = , STYPE = A, FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0001, HIGH DSNUM = 0005, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =

JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.42.49.027488, IC TYPE = F , SHR LVL = R, DSNUM = 0000,
START LRSN =000037113E08

DEV TYPE = 3390 , IC BACK = , STYPE = X, FILE SEQ = 0000,
PIT LRSN = 000000000000

LOW DSNUM = 0001, HIGH DSNUM = 0005, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =

JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = 2.0E+01
NPAGESF = 1.6E+01 , CPAGESF = 1.6E+01
DSNAME = DB2V91A.DSN8D91A.DSN8S91E.REORGCPY , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

DSNU586I) 271 18:15:27.66 DSNUPSUM - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E SUMMARY
DSNU588I) 271 18:15:27.66 DSNUPSUM - NO DATA TO BE REPORTED

DSNU583I) 271 18:15:27.66 DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR TABLESPACE DSN8D91A.DSN8S91E
UCDATE UCTIME START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID
092706 11405732 000036983674 0000369855C3 BF7840C43C57 BF7840C44F03 0004 0000
092706 11410159 0000369E4224 000036A5F932 BF7840C84CAA BF7840D83704 0004 0000
092706 11413861 000036CC1F1B 000036D0BC2A BF7840EB9B43 BF7840EC0983 0004 0000
092706 11424427 0000370E230E 0000370E6671 BF78412A39CD BF78412A6210 0004 0000
092706 11424794 0000370F4812 000037108E90 BF78412DBAC1 BF78412E106B 0004 0000
092706 11424893 0000371131D0 000037113538 BF78412EAAFB BF78412EAF6F 0004 0000

DSNU584I) 271 18:15:27.66 DSNUPPBS - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E ARCHLOG1 BSDS VOLUMES
DSNU588I) 271 18:15:27.66 DSNUPPBS - NO DATA TO BE REPORTED

DSNU586I) 271 18:15:27.66 DSNUPSUM - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E SUMMARY
DSNU588I) 271 18:15:27.66 DSNUPSUM - NO DATA TO BE REPORTED
DSNU589I) 271 18:15:27.66 DSNUPREC - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E COMPLETE

DSNU580I 271 18:15:27.66 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I 271 18:15:27.67 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 4: Reporting recovery information for an index

The control statement specifies that REPORT is to provide recovery information for
index DSN8810.XDEPT1.

Figure 91. Example output for REPORT RECOVERY DSNUM

Chapter 27. REPORT 699

The preceding statement produces output similar to the following output:
DSNU000I 270 13:51:08.82 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = REP101
DSNU1044I 270 13:51:09.04 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 270 13:51:09.04 DSNUGUTC - REPORT RECOVERY INDEX DSN8910.XDEPT1
DSNU581I) 270 13:51:09.05 DSNUPREC - REPORT RECOVERY INDEX DSN8910.XDEPT1
DSNU593I) 270 13:51:09.05 DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:

MINIMUM RBA: 000000000000
MAXIMUM RBA: FFFFFFFFFFFF
MIGRATING RBA: 000000000000

DSNU582I) 270 13:51:09.05 DSNUPPCP - REPORT RECOVERY INDEX DSN8910.XDEPT1 SYSCOPY ROWS
TIMESTAMP = 2006-09-27-13.50.30.627880, IC TYPE = F , SHR LVL = R, DSNUM = 0000,

START LRSN =00003726ADE3
DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 0000,

PIT LRSN = 000000000000
LOW DSNUM = 0001, HIGH DSNUM = 0001, OLDEST VERSION = 0000, LOGICAL PART = 0000,

LOGGED = Y, TTYPE =
JOBNAME = REP101 , AUTHID = SYSADM , COPYPAGESF = 5.0E+00
NPAGESF = 5.0E+00 , CPAGESF = 0.0E0
DSNAME = DSN8D91A.XDEPT1.D2006270.T205030 , MEMBER NAME = ,

INSTANCE = 01, RELCREATED = M

DSNU586I) 270 13:51:09.05 DSNUPSUM - REPORT RECOVERY INDEX DSN8910.XDEPT1 SUMMARY
DSNU588I) 270 13:51:09.05 DSNUPSUM - NO DATA TO BE REPORTED

DSNU583I) 270 13:51:09.05 DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR INDEX DSN8910.XDEPT1
DSNU588I) 270 13:51:09.05 DSNUPPLR - NO DATA TO BE REPORTED

DSNU584I) 270 13:51:09.05 DSNUPPBS - REPORT RECOVERY INDEX DSN8910.XDEPT1 ARCHLOG1 BSDS VOLUMES
DSNU588I) 270 13:51:09.05 DSNUPPBS - NO DATA TO BE REPORTED

DSNU586I) 270 13:51:09.05 DSNUPSUM - REPORT RECOVERY INDEX DSN8910.XDEPT1 SUMMARY
DSNU588I) 270 13:51:09.05 DSNUPSUM - NO DATA TO BE REPORTED
DSNU589I) 270 13:51:09.05 DSNUPREC - REPORT RECOVERY INDEX DSN8910.XDEPT1 COMPLETE

DSNU580I 270 13:51:09.05 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I 270 13:51:09.06 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 5: Reporting table space set information with XML
columns

TABLESPACE SET REPORT:

TABLESPACE : DBKQAN01.TPKQAN01
TABLE : ADMF001.TBKQAN01
INDEXSPACE : DBKQAN01.IPKQAN11
INDEX : ADMF001.IPKQAN111
INDEXSPACE : DBKQAN01.IRDOCIDT
INDEX : ADMF001.I_DOCIDTBKQAN01
INDEXSPACE : DBKQAN01.IXKQAN12
INDEX : ADMF001.IXKQAN122

//REP101 EXEC DSNUPROC,SYSTEM=V91A,UID=’REP101’
//SYSIN DD *
REPORT RECOVERY INDEX DSN8910.XDEPT1
/*

Figure 92. Example REPORT RECOVERY statement for an index

Figure 93. Example output for REPORT RECOVERY INDEX

Figure 94. Example output for REPORT TABLESPACESET

700 Utility Guide and Reference

XML TABLESPACE SET REPORT:

TABLESPACE : DBKQAN01.TPKQAN01

BASE TABLE : ADMF001.TBKQAN01
COLUMN : XML1

XML TABLESPACE : DBKQAN01.XTBK0000
XML TABLE : ADMF001.XTBKQAN01
XML NODEID INDEXSPACE: DBKQAN01.IRNODEID
XML NODEID INDEX : ADMF001.I_NODEIDXTBKQAN01
XML INDEXSPACE : DBKQAN01.XVIXLC11
XML INDEX : ADMF001.XVIXLC11

COLUMN : XML2
XML TABLESPACE : DBKQAN01.XTBK0001

XML TABLE : ADMF001.XTBKQAN01000
XML NODEID INDEXSPACE: DBKQAN01.IRNO1MH2
XML NODEID INDEX : ADMF001.I_NODEIDXTBKQAN01000
XML INDEXSPACE : DBKQAN01.XVIXLC12
XML INDEX : ADMF001.XVIXLC12

Example 6: Reporting recovery information for a table space

The following control statement specifies that the REPORT utility is to provide
recovery information for table space DSN8D81A.DSN8S81E.
REPORT TABLESPACESET TABLESPACE DBKQBG01.TPKQBG01 SHOWDSNS

Example 7: Reporting versioning relationships for system-period
temporal table spaces

The following control statement specifies that REPORT TABLESPACESET is to
show all data base objects related to the base table space. The report shows the
data base objects that are involved in versioning relationships. The report also
includes related auxiliary LOB and XML table spaces on both the system-period
temporal table space and the history table spaces.

TABLESPACE SET REPORT:

TABLESPACE : DBSOL11.TS001L11
TABLE : ADMF001.TBWSOL11
INDEXSPACE : DBSOL11.IRDOCIDT
INDEX : ADMF001.I_DOCIDTBWSOL11

LOB TABLESPACE SET REPORT:

TABLESPACE : DBSOL11.TS001L11
BASE TABLE : ADMF001.TBWSOL11
COLUMN : BLOB1

LOB TABLESPACE : DBSOL11.TLWB1L11
AUX TABLE : ADMF001.TBAWLOBB1L11
AUX INDEXSPACE : DBSOL11.IXDLB1L1
AUX INDEX : ADMF001.IXDLB1L1

XML TABLESPACE SET REPORT:

TABLESPACE : DBSOL11.TS001L11
BASE TABLE : ADMF001.TBWSOL11
COLUMN : XML1

XML TABLESPACE : DBSOL11.XTBW0000
XML TABLE : ADMF001.XTBWSOL11
XML NODEID INDEXSPACE : DBSOL11.IRNODEID
XML NODEID INDEX : ADMF001.I_NODEIDXTBWSOL11
XML INDEXSPACE : DBSOL11.IXW11SOL
XML INDEX : ADMF001.IXW11SOL11
XML INDEXSPACE : DBSOL11.IXW12SOL

Chapter 27. REPORT 701

XML INDEX : ADMF001.IXW12SOL11
XML INDEXSPACE : DBSOL11.IXW13SOL
XML INDEX : ADMF001.IXW13SOL11
XML INDEXSPACE : DBSOL11.IXW14SOL
XML INDEX : ADMF001.IXW14SOL11

HISTORY TABLESPACE SET REPORT:

BASE TABLE : ADMF001.TBWSOL11
HISTORY TABLESPACE : DBSOL11.HTS001L11
HISTORY TABLE : ADMF001.HTBWSOL11
HISTORY INDEXSPACE : DBSOL11.HIRDOCIDT
HISTORY INDEX : ADMF001.HI_DOCIDTBWSOL11

HISTORY LOB TABLESPACE SET REPORT:

HISTORY TABLESPACE : DBSOL11.HTS001L11

BASE TABLE : ADMF001.TBWSOL11
COLUMN : BLOB1

HISTORY LOB TABLESPACE : DBSOL11.HTLWB1L11
AUX TABLE : ADMF001.HTBAWLOBB1L11
AUX INDEXSPACE : DBSOL11.HIXDLB1L1
AUX INDEX : ADMF001.HIXDLB1L1

HISTORY XML TABLESPACE SET REPORT:

HISTORY TABLESPACE : DBSOL11.HTS001L11

BASE TABLE : ADMF001.TBWSOL11
COLUMN : XML1

HISTORY XML TABLESPACE : DBSOL11.HXTBW0000
XML TABLE : ADMF001.HXTBWSOL11
XML NODEID INDEXSPACE : DBSOL11.HIRNODEID
XML NODEID INDEX : ADMF001.HI_NODEIDXTBWSOL11
XML INDEXSPACE : DBSOL11.HIXW11SOL
XML INDEX : ADMF001.HIXW11SOL11
XML INDEXSPACE : DBSOL11.HIXW12SOL
XML INDEX : ADMF001.HIXW12SOL11
XML INDEXSPACE : DBSOL11.HIXW13SOL
XML INDEX : ADMF001.HIXW13SOL11
XML INDEXSPACE : DBSOL11.HHIXW14SOL
XML INDEX : ADMF001.HIXW14SOL11

Example 8: Reporting related archive tables

Suppose that you have the following tables:

TB_WAREHOUSE_SEG
An application-period temporal table.

TB_DISTRICT_SEG
A regular table that has a referential constraint that is dependent on table
TB_WAREHOUSE_SEG.

TB_STOCK_PART
An archive-enabled table that has a referential constraint that is dependent
on table TB_WAREHOUSE_SEG.

TB_ORDER_PBR
A system-period temporal table that has a referential constraint that is
dependent on table TB_DISTRICT_SEG.

TB_ORDERLINE_PBG
An archive-enabled table that has referential constraints that are dependent
on tables TB_STOCK_PART and TB_ORDER_PBR.

702 Utility Guide and Reference

|

|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

These tables were created by the following SQL
* ---
* Table: SC516801.TB_WAREHOUSE_SEG
* Unique Index: SC516801.IU01_WAREHOUSE_SEG
* Index: SC516801.IX01_WAREHOUSE_SEG
* SC516801.IX02_WAREHOUSE_SEG
* SC516801.IX03_WAREHOUSE_SEG
* Index on Exp: SC516801.IX04_WAREHOUSE_SEG
* View: SC516801.VW_WAREHOUSE_SEG
* ---
CREATE TABLE SC516801.TB_WAREHOUSE_SEG

(WAREHOUSE_CREATE_XML1 XML,
WAREHOUSE_ID CHAR(10) NOT NULL WITH DEFAULT

CONSTRAINT CNST_WAREHOUSEID
CHECK (WAREHOUSE_ID IN(’0000000001’,’0000000002’,’0000000003’,

’0000000004’,’0000000005’,’0000000006’,
’0000000007’,’0000000008’,’0000000009’,
’0000000010’)),

WAREHOUSE_NAME CHAR(10) NOT NULL WITH DEFAULT,
WAREHOUSE_STREET_1 VARCHAR(40) NOT NULL WITH DEFAULT,
WAREHOUSE_STREET_2 VARCHAR(40) FIELDPROC FPCVD4,
WAREHOUSE_CITY VARCHAR(20) NOT NULL WITH DEFAULT,
WAREHOUSE_STATE CHAR(2) NOT NULL WITH DEFAULT,
WAREHOUSE_ZIP CHAR(9) NOT NULL

DEFAULT ’000000000’,
WAREHOUSE_TAX DECIMAL(5,4) NOT NULL WITH DEFAULT,
WAREHOUSE_YTD SC516801.US_DOLLAR NOT NULL WITH DEFAULT,
WAREHOUSE_CREATE_BIGINT1 BIGINT NOT NULL WITH DEFAULT,
WAREHOUSE_CREATE_BINARY1 BINARY(101) NOT NULL WITH DEFAULT,
WAREHOUSE_CREATE_VARBINARY1 VARBINARY(500) NOT NULL WITH DEFAULT,
WAREHOUSE_CREATE_DECFLOAT1 DECFLOAT(34) NOT NULL WITH DEFAULT,
BUS_START DATE NOT NULL ,
BUS_END DATE NOT NULL ,
PERIOD BUSINESS_TIME(BUS_START,BUS_END) ,
PRIMARY KEY(WAREHOUSE_ID)
)

IN DB516801.TS516801;
COMMIT;
...
* ---
* Table: SC516801.TB_DISTRICT_SEG
* Unique Index: SC516801.IU01_DISTRICT_SEG
* Index: SC516801.IX01_DISTRICT_SEG
* Index on Exp: SC516801.IX02_DISTRICT_SEG
* View: SC516801.VW_DISTRICT_SEG
* LOB table space: TA516801
* Auxiliary Table: SC516801.TX01_CLOB1_DISTRICT_SEG
* Auxiliary Index: SC516801.IA_CLOB1_DISTRICT_SEG
* ---
CREATE TABLE SC516801.TB_DISTRICT_SEG

(DISTRICT_ID CHAR(2) NOT NULL WITH DEFAULT
CONSTRAINT CNST_DISTRICTID
CHECK (DISTRICT_ID IN(’01’,’02’,’03’,’04’,’05’,

’06’,’07’,’08’,’09’,’10’)),
DISTRICT_WAREHOUSE_ID CHAR(10) NOT NULL WITH DEFAULT,
DISTRICT_NAME CHAR(20) NOT NULL WITH DEFAULT,
DISTRICT_TAX DECIMAL(5,4) NOT NULL WITH DEFAULT,
DISTRICT_YTD SC516801.US_DOLLAR NOT NULL WITH DEFAULT,
DISTRICT_NEXT_ORDER_ID INTEGER NOT NULL WITH DEFAULT,
DISTRICT_STATE CHAR(2) NOT NULL WITH DEFAULT,
DISTRICT_ZIP CHAR(9) NOT NULL WITH DEFAULT,
DISTRICT_STREET_1 VARCHAR(40) NOT NULL WITH DEFAULT,
DISTRICT_STREET_2 VARCHAR(40) ,
DISTRICT_CITY VARCHAR(20) NOT NULL WITH DEFAULT,
DISTRICT_CREATE_BIGINT1 BIGINT NOT NULL WITH DEFAULT,
DISTRICT_CREATE_BINARY1 BINARY(25) NOT NULL WITH DEFAULT,
DISTRICT_CREATE_DECFLOAT1 DECFLOAT(16) NOT NULL WITH DEFAULT,

Chapter 27. REPORT 703

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DISTRICT_CREATE_CLOB1 CLOB(2K) NOT NULL WITH DEFAULT,
PRIMARY KEY (DISTRICT_WAREHOUSE_ID, DISTRICT_ID),
FOREIGN KEY (DISTRICT_WAREHOUSE_ID)
REFERENCES SC516801.TB_WAREHOUSE_SEG(WAREHOUSE_ID)

ON DELETE CASCADE)
IN DB516801.TS516801;

COMMIT;
...
* ---
* Table: SC516801.TB_STOCK_PART
* Unique Index: SC516801.IU01_STOCK_PART
* Index: SC516801.IX01_STOCK_PART
* Index on Exp: SC516801.IX02_STOCK_PART
* View: SC516801.VW_STOCK_PART
* ---
CREATE TABLE SC516801.TB_STOCK_PART

(STOCK_ITEM_ID CHAR(6) NOT NULL WITH DEFAULT,
STOCK_WAREHOUSE_ID CHAR(10) NOT NULL WITH DEFAULT,
STOCK_QUANTITY INTEGER NOT NULL WITH DEFAULT,
STOCK_YTD INTEGER NOT NULL WITH DEFAULT,
STOCK_ORDER_CNT SMALLINT NOT NULL WITH DEFAULT,
STOCK_REMOTE_CNT SMALLINT NOT NULL WITH DEFAULT,
STOCK_DISTRICT_01 CHAR(24) NOT NULL WITH DEFAULT,
STOCK_DISTRICT_02 CHAR(24) NOT NULL WITH DEFAULT,
STOCK_DISTRICT_03 CHAR(24) NOT NULL WITH DEFAULT,
STOCK_DISTRICT_04 CHAR(24) NOT NULL WITH DEFAULT,
STOCK_DISTRICT_05 CHAR(24) NOT NULL WITH DEFAULT,
STOCK_DISTRICT_06 CHAR(24) NOT NULL WITH DEFAULT,
STOCK_DISTRICT_07 CHAR(24) NOT NULL WITH DEFAULT,
STOCK_DISTRICT_08 CHAR(24) NOT NULL WITH DEFAULT,
STOCK_DISTRICT_09 CHAR(24) NOT NULL WITH DEFAULT,
STOCK_DISTRICT_10 CHAR(24) NOT NULL WITH DEFAULT,
STOCK_DATA CHAR(50) ,
STOCK_CREATE_BIGINT1 BIGINT NOT NULL WITH DEFAULT,
STOCK_CREATE_BINARY1 BINARY(50) NOT NULL WITH DEFAULT,
STOCK_CREATE_VARBINARY1 VARBINARY(1000) NOT NULL WITH DEFAULT,
STOCK_CREATE_DECFLOAT1 DECFLOAT(34) NOT NULL WITH DEFAULT,
STOCK_CREATE_RCT1 TIMESTAMP NOT NULL

GENERATED BY DEFAULT FOR EACH ROW ON UPDATE
AS ROW CHANGE TIMESTAMP IMPLICITLY HIDDEN,

SYS_START TIMESTAMP(12) NOT NULL WITH DEFAULT ,
SYS_END TIMESTAMP(12) NOT NULL WITH DEFAULT ,
TRANS_ID TIMESTAMP(12) NOT NULL WITH DEFAULT ,
PRIMARY KEY (STOCK_WAREHOUSE_ID, STOCK_ITEM_ID),
FOREIGN KEY (STOCK_WAREHOUSE_ID)

REFERENCES SC516801.TB_WAREHOUSE_SEG(WAREHOUSE_ID)
ON DELETE CASCADE

)
PARTITION BY (STOCK_WAREHOUSE_ID,STOCK_ITEM_ID)

(PARTITION 1 ENDING (’0000000002’,’999999’) ,
PARTITION 2 ENDING (’0000000004’,’999999’) ,
PARTITION 3 ENDING (’0000000006’,’999999’) ,
PARTITION 4 ENDING (’0000000008’,’999999’) ,
PARTITION 5 ENDING (’0000000011’,’999999’))

IN DB516803.TP516805;
COMMIT;
...
ALTER TABLE TB_STOCK_PART

ENABLE ARCHIVE USE TB_STOCK_PBR_ARCH;
...
* ---
* Table: SC516801.TB_ORDER_PBR
* UNIQUE INDEX: SC516801.IU01_ORDER_PBR
* SC516801.IU02_ORDER_PBR
* SC516801.IU03_ORDER_PBR
* SC516801.IU04_ORDER_PBR
* Index on Exp: SC516801.IU05_ORDER_PBR

704 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* Index: SC516801.IX01_ORDER_PBR
* SC516801.IX02_ORDER_PBR
* View: SC516801.VW_ORDER_PBR
* ---
CREATE TABLE SC516801.TB_ORDER_PBR

(ORDER_ID INTEGER NOT NULL WITH DEFAULT,
ORDER_DISTRICT_ID CHAR(2) NOT NULL WITH DEFAULT,
ORDER_WAREHOUSE_ID CHAR(10) NOT NULL WITH DEFAULT,
ORDER_CUSTOMER_ID INTEGER GENERATED BY DEFAULT

AS IDENTITY (START WITH 1,INCREMENT BY 1) UNIQUE,
ORDER_CARRIER_ID CHAR(2),
ORDER_ORDERLINE_COUNT SMALLINT NOT NULL WITH DEFAULT,
ORDER_ALL_LOCAL SMALLINT NOT NULL WITH DEFAULT,
ORDER_ENTRY_DATE TIMESTAMP NOT NULL WITH DEFAULT

’2008-02-01-01.59.59.000000’,
ORDER_ESTIMATE_DATE DATE DEFAULT ’2008-01-01’,
ORDER_ESTIMATE_TIME TIME DEFAULT ’01.59.59’,
ORDER_SHIP_DATE DATE NOT NULL DEFAULT ’2008-01-01’,
ORDER_SHIP_TIME TIME NOT NULL DEFAULT ’01.59.59’,
ORDER_CREATE_VARBINARY1 VARBINARY(500) NOT NULL WITH DEFAULT,
ORDER_CREATE_BIGINT1 BIGINT NOT NULL WITH DEFAULT,
ORDER_CREATE_BINARY1 BINARY(80) NOT NULL WITH DEFAULT,
ORDER_CREATE_DECFLOAT1 DECFLOAT(34) NOT NULL WITH DEFAULT

IMPLICITLY HIDDEN,
ORDER_CREATE_CLOB1 CLOB(2K) NOT NULL WITH DEFAULT,
ORDER_CREATE_BLOB1 BLOB(2K) NOT NULL WITH DEFAULT,
ORDER_CREATE_XML XML ,
ORDER_CREATE_RCT1 TIMESTAMP NOT NULL

GENERATED ALWAYS FOR EACH ROW ON UPDATE
AS ROW CHANGE TIMESTAMP
IMPLICITLY HIDDEN,

SYS_START TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN ,
SYS_END TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END ,
TRANS_ID TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,
PERIOD SYSTEM_TIME(SYS_START, SYS_END) ,

PRIMARY KEY (ORDER_WAREHOUSE_ID,
ORDER_DISTRICT_ID,
ORDER_ID),

FOREIGN KEY (ORDER_WAREHOUSE_ID,
ORDER_DISTRICT_ID)

REFERENCES SC516801.TB_DISTRICT_SEG(DISTRICT_WAREHOUSE_ID,
DISTRICT_ID)

ON DELETE CASCADE)
PARTITION BY (ORDER_ID ASC)

(PARTITION 1 ENDING AT (03000) INCLUSIVE,
PARTITION 2 ENDING (06000) INCLUSIVE,
PARTITION 3 ENDING (2147483647) INCLUSIVE)

IN DB516803.TU516803;
...
ALTER TABLE SC516801.TB_ORDER_PBR

ADD VERSIONING USE HISTORY TABLE SC516801.TB_ORDER_SEG_HIST;
...
* ---
* Table: SC516801.TB_ORDERLINE_PBG bi-temporal table
* Unique Index: SC516801.IU01_ORDERLINE_PBG
* Index: SC516801.IX01_ORDERLINE_PBG
* Index on Exp: SC516801.IX02_ORDERLINE_PBG
* View: SC516801.VW_ORDERLINE_PBG
*---
CREATE TABLE SC516801.TB_ORDERLINE_PBG

(ORDERLINE_CREATE_XML1 XML,
ORDERLINE_CREATE_LOB CLOB(2K) ,
ORDERLINE_ORDER_ID INTEGER NOT NULL WITH DEFAULT,
ORDERLINE_DISTRICT_ID CHAR(2) NOT NULL WITH DEFAULT,
ORDERLINE_WAREHOUSE_ID CHAR(10) NOT NULL WITH DEFAULT,
ORDERLINE_CATEGORY SMALLINT NOT NULL WITH DEFAULT,
ORDERLINE_BARCODE1 DOUBLE,

Chapter 27. REPORT 705

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ORDERLINE_BARCODE2 REAL,
ORDERLINE_BARCODE3 DOUBLE NOT NULL WITH DEFAULT,
ORDERLINE_BARCODE4 REAL NOT NULL WITH DEFAULT,
ORDERLINE_HASH_ENTRY1 CHAR(50) FOR BIT DATA NOT NULL

WITH DEFAULT X’C1’,
ORDERLINE_HASH_ENTRY2 CHAR(50) FOR BIT DATA,
ORDERLINE_UPC01 VARCHAR(100) FOR BIT DATA,
ORDERLINE_UPC02 VARCHAR(100) FOR BIT DATA NOT NULL

DEFAULT ’<>’ ,
ORDERLINE_REMARKS VARCHAR(255) DEFAULT NULL,
ORDERLINE_ITEM_ID CHAR(6) NOT NULL WITH DEFAULT,
ORDERLINE_SUPPLY_WAREHOUSE_ID CHAR(10) NOT NULL WITH DEFAULT,
ORDERLINE_DELIVERY_DATE TIMESTAMP,
ORDERLINE_QUANTITY INTEGER NOT NULL WITH DEFAULT,
ORDERLINE_AMOUNT US_DOLLAR NOT NULL WITH DEFAULT,
ORDERLINE_DISTRICT_INFO CHAR(24) NOT NULL WITH DEFAULT,
ORDERLINE_CREATE_DECFLOAT1 DECFLOAT(16) NOT NULL WITH DEFAULT,
ORDERLINE_CREATE_VARBINARY1 VARBINARY(500) NOT NULL WITH DEFAULT,
ORDERLINE_CREATE_BIGINT1 BIGINT NOT NULL WITH DEFAULT,
ORDERLINE_CREATE_BINARY1 BINARY(30) NOT NULL WITH DEFAULT,
SYS_START TIMESTAMP(12) NOT NULL WITH DEFAULT ,
SYS_END TIMESTAMP(12) NOT NULL WITH DEFAULT ,
TRANS_ID TIMESTAMP(12) ,
BUS_START TIMESTAMP(6) NOT NULL ,
BUS_END TIMESTAMP(6) NOT NULL ,

CONSTRAINT PK#TB_ORDERLINE_DISTRICT_ID#ORDER_ID#CATEGORY
PRIMARY KEY (ORDERLINE_WAREHOUSE_ID,

ORDERLINE_DISTRICT_ID,
ORDERLINE_ORDER_ID,
ORDERLINE_CATEGORY),

CONSTRAINT FK#TB_ORDER#WAREHOUSE_ID#DISTRICT_ID#ORDER_ID#CASCADE
FOREIGN KEY (ORDERLINE_WAREHOUSE_ID,

ORDERLINE_DISTRICT_ID,
ORDERLINE_ORDER_ID)

REFERENCES SC516801.TB_ORDER_PBR
(ORDER_WAREHOUSE_ID,
ORDER_DISTRICT_ID,
ORDER_ID)

ON DELETE CASCADE,
CONSTRAINT FK#TB_STOCK_WAREHOUSE_ID#STOCK_ITEM_ID#CASCADE
FOREIGN KEY (ORDERLINE_SUPPLY_WAREHOUSE_ID,

ORDERLINE_ITEM_ID)
REFERENCES SC516801.TB_STOCK_PART

(STOCK_WAREHOUSE_ID,
STOCK_ITEM_ID)

ON DELETE CASCADE)
IN DB516807.TG516807
APPEND YES;

...
ALTER TABLE SC516801.TB_ORDERLINE_PBG

ENABLE ARCHIVE USE SC516801.TB_ORDERLINE_PBR_ARCH;

Suppose that you issue the following REPORT statement with the
TABLESPACESET option for table space TS516801, which contains tables
TB_DISTRICT_SEG and TB_WAREHOUSE_SEG.
REPORT TABLESPACESET TABLESPACE DB516801.TS516801

The resulting output lists referentially related objects, related LOB and XML tables,
and related history and archive tables.

TABLESPACE SET REPORT:

TABLESPACE : DB516801.TS516801
TABLE : SC516801.TB_DISTRICT_SEG
INDEXSPACE : DB516801.IU01RDIS
INDEX : SC516801.IU01_DISTRICT_SEG

706 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|
|
|
|
|

INDEXSPACE : DB516801.IX01RDIS
INDEX : SC516801.IX01_DISTRICT_SEG
INDEXSPACE : DB516801.IX02RDIS
INDEX : SC516801.IX02_DISTRICT_SEG
DEP TABLE : SC516801.TB_ORDER_PBR

TABLE : SC516801.TB_WAREHOUSE_SEG
INDEXSPACE : DB516801.IU01RWAR
INDEX : SC516801.IU01_WAREHOUSE_SEG
INDEXSPACE : DB516801.IRDOCIDT
INDEX : SC516801.I_DOCIDTB_WAREHOUSE_SEG
INDEXSPACE : DB516801.IX01RWAR
INDEX : SC516801.IX01_WAREHOUSE_SEG
INDEXSPACE : DB516801.IX02RWAR
INDEX : SC516801.IX02_WAREHOUSE_SEG
INDEXSPACE : DB516801.IX03RWAR
INDEX : SC516801.IX03_WAREHOUSE_SEG
INDEXSPACE : DB516801.IX04RWAR
INDEX : SC516801.IX04_WAREHOUSE_SEG
DEP TABLE : SC516801.TB_DISTRICT_SEG

SC516801.TB_STOCK_PART

TABLESPACE : DB516803.TP516805
TABLE : SC516801.TB_STOCK_PART
INDEXSPACE : DB516803.IX01RSTO
INDEX : SC516801.IX01_STOCK_PART
INDEXSPACE : DB516803.IU01RSTO
INDEX : SC516801.IU01_STOCK_PART
INDEXSPACE : DB516803.IX02RSTO
INDEX : SC516801.IX02_STOCK_PART
DEP TABLE : SC516801.TB_ORDERLINE_PBG

TABLESPACE : DB516803.TU516803
TABLE : SC516801.TB_ORDER_PBR
INDEXSPACE : DB516803.IU01RORD
INDEX : SC516801.IU01_ORDER_PBR
INDEXSPACE : DB516803.IRDOCIDT
INDEX : SC516801.I_DOCIDTB_ORDER_PBR
INDEXSPACE : DB516803.IU02RORD
INDEX : SC516801.IU02_ORDER_PBR
INDEXSPACE : DB516803.IU03RORD
INDEX : SC516801.IU03_ORDER_PBR
INDEXSPACE : DB516803.IU04RORD
INDEX : SC516801.IU04_ORDER_PBR
INDEXSPACE : DB516803.IX01RORD
INDEX : SC516801.IX01_ORDER_PBR
INDEXSPACE : DB516803.IX02RORD
INDEX : SC516801.IX02_ORDER_PBR
INDEXSPACE : DB516803.IU05RORD
INDEX : SC516801.IU05_ORDER_PBR
DEP TABLE : SC516801.TB_ORDERLINE_PBG

TABLESPACE : DB516807.TG516807
TABLE : SC516801.TB_ORDERLINE_PBG
INDEXSPACE : DB516807.IU01RORD
INDEX : SC516801.IU01_ORDERLINE_PBG
INDEXSPACE : DB516807.IRDOCIDT
INDEX : SC516801.I_DOCIDTB_ORDERLINE_PBG
INDEXSPACE : DB516807.IX01RORD
INDEX : SC516801.IX01_ORDERLINE_PBG
INDEXSPACE : DB516807.IX02RORD
INDEX : SC516801.IX02_ORDERLINE_PBG

LOB TABLESPACE SET REPORT:

TABLESPACE : DB516801.TS516801

Chapter 27. REPORT 707

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

BASE TABLE : SC516801.TB_DISTRICT_SEG
COLUMN : DISTRICT_CREATE_CLOB1

LOB TABLESPACE : DB516801.TA516801
AUX TABLE : SC516801.TX01_CLOB1_DISTRICT_SEG
AUX INDEXSPACE : DB516801.IARCLOB1
AUX INDEX : SC516801.IA_CLOB1_DISTRICT_SEG

TABLESPACE : DB516803.TU516803

BASE TABLE : SC516801.TB_ORDER_PBR
PART: 0001 COLUMN : ORDER_CREATE_CLOB1

LOB TABLESPACE : DB516803.TA516831
AUX TABLE : SC516801.TX31_CLOB_ORDER_PBR
AUX INDEXSPACE : DB516803.IA31RCLO
AUX INDEX : SC516801.IA31_CLOB_ORDER_PBR

PART: 0002 COLUMN : ORDER_CREATE_CLOB1
LOB TABLESPACE : DB516803.TA516832

AUX TABLE : SC516801.TX32_CLOB_ORDER_PBR
AUX INDEXSPACE : DB516803.IA32RCLO
AUX INDEX : SC516801.IA32_CLOB_ORDER_PBR

PART: 0003 COLUMN : ORDER_CREATE_CLOB1
LOB TABLESPACE : DB516803.TA516833

AUX TABLE : SC516801.TX33_CLOB_ORDER_PBR
AUX INDEXSPACE : DB516803.IA33RCLO
AUX INDEX : SC516801.IA33_CLOB_ORDER_PBR

PART: 0001 COLUMN : ORDER_CREATE_BLOB1
LOB TABLESPACE : DB516803.TA516834

AUX TABLE : SC516801.TX31_BLOB_ORDER_PBR
AUX INDEXSPACE : DB516803.IA31RBLO
AUX INDEX : SC516801.IA31_BLOB_ORDER_PBR

PART: 0002 COLUMN : ORDER_CREATE_BLOB1
LOB TABLESPACE : DB516803.TA516835

AUX TABLE : SC516801.TX32_BLOB_ORDER_PBR
AUX INDEXSPACE : DB516803.IA32RBLO
AUX INDEX : SC516801.IA32_BLOB_ORDER_PBR

PART: 0003 COLUMN : ORDER_CREATE_BLOB1
LOB TABLESPACE : DB516803.TA516836

AUX TABLE : SC516801.TX33_BLOB_ORDER_PBR
AUX INDEXSPACE : DB516803.IA33RBLO
AUX INDEX : SC516801.IA33_BLOB_ORDER_PBR

TABLESPACE : DB516807.TG516807

BASE TABLE : SC516801.TB_ORDERLINE_PBG
PART: 0001 COLUMN : ORDERLINE_CREATE_LOB

LOB TABLESPACE : DB516807.TA516871
AUX TABLE : SC516801.TX71_CLOB1_ORDERLINE_PBG
AUX INDEXSPACE : DB516807.IA71RCLO
AUX INDEX : SC516801.IA71_CLOB1_ORDERLINE_PBG

XML TABLESPACE SET REPORT:

TABLESPACE : DB516801.TS516801

BASE TABLE : SC516801.TB_WAREHOUSE_SEG
COLUMN : WAREHOUSE_CREATE_XML1

XML TABLESPACE : DB516801.XTBR0000
XML TABLE : SC516801.XTB_WAREHOUSE_SEG
XML NODEID INDEXSPACE: DB516801.IRNODEID
XML NODEID INDEX : SC516801.I_NODEIDXTB_WAREHOUSE_SEG

TABLESPACE : DB516803.TU516803

BASE TABLE : SC516801.TB_ORDER_PBR
COLUMN : ORDER_CREATE_XML

708 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

XML TABLESPACE : DB516803.XTBR0000
XML TABLE : SC516801.XTB_ORDER_PBR
XML NODEID INDEXSPACE: DB516803.IRNODEID
XML NODEID INDEX : SC516801.I_NODEIDXTB_ORDER_PBR

TABLESPACE : DB516807.TG516807

BASE TABLE : SC516801.TB_ORDERLINE_PBG
COLUMN : ORDERLINE_CREATE_XML1

XML TABLESPACE : DB516807.XTBR0000
XML TABLE : SC516801.XTB_ORDERLINE_PBG
XML NODEID INDEXSPACE: DB516807.IRNODEID
XML NODEID INDEX : SC516801.I_NODEIDXTB_ORDERLINE_PBG

HISTORY TABLESPACE SET REPORT:

TABLESPACE : DB516804.TS516804
HISTORY TABLE : SC516801.TB_ORDER_SEG_HIST
TEMPORAL TABLE : SC516801.TB_ORDER_PBR
INDEXSPACE : DB516804.IU01RORD
INDEX : SC516801.IU01_ORDER_SEG_HIST
INDEXSPACE : DB516804.IRDOCIDT
INDEX : SC516801.I_DOCIDTB_ORDER_SEG_HIST
INDEXSPACE : DB516804.IU02RORD
INDEX : SC516801.IU02_ORDER_SEG_HIST
INDEXSPACE : DB516804.IU03RORD
INDEX : SC516801.IU03_ORDER_SEG_HIST
INDEXSPACE : DB516804.IU04RORD
INDEX : SC516801.IU04_ORDER_SEG_HIST
INDEXSPACE : DB516804.IX01RORD
INDEX : SC516801.IX01_ORDER_SEG_HIST
INDEXSPACE : DB516804.IX02RORD
INDEX : SC516801.IX02_ORDER_SEG_HIST
INDEXSPACE : DB516804.IU05RORD
INDEX : SC516801.IU05_ORDER_SEG_HIST

HISTORY LOB TABLESPACE SET REPORT:

TABLESPACE : DB516804.TS516804

BASE TABLE : SC516801.TB_ORDER_SEG_HIST
COLUMN : ORDER_CREATE_CLOB1

LOB TABLESPACE : DB516804.TA516841
AUX TABLE : SC516801.TX41_CLOB_ORDER_SEG_HIST
AUX INDEXSPACE : DB516804.IA41RCLO
AUX INDEX : SC516801.IA41_CLOB_ORDER_SEG_HIST

COLUMN : ORDER_CREATE_BLOB1
LOB TABLESPACE : DB516804.TA516842

AUX TABLE : SC516801.TX42_BLOB_ORDER_SEG_HIST
AUX INDEXSPACE : DB516804.IA42RBLO
AUX INDEX : SC516801.IA42_BLOB_ORDER_SEG_HIST

HISTORY XML TABLESPACE SET REPORT:

TABLESPACE : DB516804.TS516804

BASE TABLE : SC516801.TB_ORDER_SEG_HIST
COLUMN : ORDER_CREATE_XML

XML TABLESPACE : DB516804.XTBR0000
XML TABLE : SC516801.XTB_ORDER_SEG_HIST
XML NODEID INDEXSPACE: DB516804.IRNODEID
XML NODEID INDEX : SC516801.I_NODEIDXTB_ORDER_SEG_HIST

Chapter 27. REPORT 709

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ARCHIVE TABLESPACE SET REPORT:

TABLESPACE : DB516803.TU516806
ARCHIVE TABLE : SC516801.TB_STOCK_PBR_ARCH
AR_ENABLED TABLE : SC516801.TB_STOCK_PART
INDEXSPACE : DB516803.IX01RARC
INDEX : SC516801.IX01_ARCH_STOCK_PBR
INDEXSPACE : DB516803.IU01RARC
INDEX : SC516801.IU01_ARCH_STOCK_PBR
INDEXSPACE : DB516803.IX02RARC
INDEX : SC516801.IX02_ARCH_STOCK_PBRT

TABLESPACE : DB516807.TU516808
ARCHIVE TABLE : SC516801.TB_ORDERLINE_PBR_ARCH
AR_ENABLED TABLE : SC516801.TB_ORDERLINE_PBG
INDEXSPACE : DB516807.IU01RARC
INDEX : SC516801.IU01_ARCH_ORDERLINE_PBR
INDEXSPACE : DB516807.IRDO1JOL
INDEX : SC516801.I_DOCIDTB_ORDERLINE_PBR_A
INDEXSPACE : DB516807.IX01RARC
INDEX : SC516801.IX01_ARCH_ORDERLINE_PBR
INDEXSPACE : DB516807.IX02RARC
INDEX : SC516801.IX02_ARCH_ORDERLINE_PBR

ARCHIVE LOB TABLESPACE SET REPORT:

TABLESPACE : DB516807.TU516808

BASE TABLE : SC516801.TB_ORDERLINE_PBR_ARCH
PART: 0001 COLUMN : ORDERLINE_CREATE_LOB

LOB TABLESPACE : DB516807.TA516881
AUX TABLE : SC516801.TX81_CLOB1_ORDERLINE_PBR_ARCH
AUX INDEXSPACE : DB516807.IA81RCLO
AUX INDEX : SC516801.IA81_CLOB1_ORDERLINE_PBR_ARCH

PART: 0002 COLUMN : ORDERLINE_CREATE_LOB
LOB TABLESPACE : DB516807.TA516882

AUX TABLE : SC516801.TX82_CLOB1_ORDERLINE_PBR_ARCH
AUX INDEXSPACE : DB516807.IA82RCLO
AUX INDEX : SC516801.IA82_CLOB1_ORDERLINE_PBR_ARCH

PART: 0003 COLUMN : ORDERLINE_CREATE_LOB
LOB TABLESPACE : DB516807.TA516883

AUX TABLE : SC516801.TX83_CLOB1_ORDERLINE_PBR_ARCH
AUX INDEXSPACE : DB516807.IA83RCLO
AUX INDEX : SC516801.IA83_CLOB1_ORDERLINE_PBR_ARCH

ARCHIVE XML TABLESPACE SET REPORT:

TABLESPACE : DB516807.TU516808

BASE TABLE : SC516801.TB_ORDERLINE_PBR_ARCH
COLUMN : ORDERLINE_CREATE_XML1

XML TABLESPACE : DB516807.XTBR0001
XML TABLE : SC516801.XTB_ORDERLINE_PBR_A
XML NODEID INDEXSPACE: DB516807.IRNO1LJL
XML NODEID INDEX : SC516801.I_NODEIDXTB_ORDERLINE_PBR_

710 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Chapter 28. RESTORE SYSTEM

The RESTORE SYSTEM online utility invokes z/OS DFSMShsm to recover a DB2
subsystem or a data sharing group to a previous point in time. To perform the
recovery, the utility uses data that is copied by the BACKUP SYSTEM utility.

Requirements:

v All data sets that are recovered with RESTORE SYSTEM must be SMS-managed.
v In general, RESTORE SYSTEM requires z/OS DFSMShsm Version 1 Release 7 or

later.
v RESTORE SYSTEM requires z/OS DFSMShsm Version 1 Release 8 or later for

restoring system-level backups that have been dumped to tape.

The RESTORE SYSTEM utility can be run from any member in a data sharing
group, even one that is normally quiesced when any backups are taken. Any
member in the data sharing group that is active at or beyond the log truncation
point must be restarted, and its logs are truncated to the SYSPITR LRSN point.

You can specify the SYSPITR LRSN point in the CRESTART control statement of
the DSNJU003 (Change Log Inventory) utility. Any data sharing group member
that is normally quiesced at the time the backups are taken and is not active at or
beyond the log truncation point does not need to be restarted.

By default, RESTORE SYSTEM recovers the data from the database copy pool
during the RESTORE phase and then applies logs to the point in time at which the
existing logs were truncated during the LOGAPPLY phase. The RESTORE utility
never restores logs from the log copy pool.

Restriction: RESTORE SYSTEM does not restore logs; the utility only applies the
logs. If you specified BACKUP SYSTEM FULL to create copies of both the data
and the logs, you can restore the logs by another method.

Output:

Output for RESTORE SYSTEM is the recovered copy of the data volume or
volumes.

In all migration modes, RBA and LRSN values are displayed in 10-byte format.
This 10-byte display is unrelated to migration of the catalog or directory,
conversion of individual objects to EXTENDED format, or BSDS conversion. For
recovery purposes, this 10-byte format is the preferred input format for DB2. When
10-byte RBA or LRSN values are specified as input to DB2, conversion to 6-byte
format is performed internally as needed.

Even before the BSDS is converted to Version 11 format on all data sharing
members or the catalog and directory are migrated, 10-byte LRSN values might be
displayed with non-zero digits in the low order 3 bytes. LRSN values captured
before the BSDS is converted continue to be displayed as they were saved until
they are no longer available for display (for example, deleted by MODIFY
RECOVERY). This behavior is normal and to be expected, given the many ways
LRSN values are generated, stored, and handled in DB2. If these LRSN values are
specified as input to DB2, specify them as shown. If the LRSN value contains

© Copyright IBM Corp. 1983, 2013 711

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

non-zero digits in the low order 3 bytes, do not remove them. Any conversion that
might be required takes place inside DB2.

Authorization required

To run this utility, you must use a privilege set that includes SYSADM authority.

The user who submits the job must also have certain RACF authorities if both of
the following conditions are true:
v A system-level backup on tape is the input for the RESTORE SYSTEM utility.
v The z/OS level is Version 1 Release 11 or earlier.

In this situation, the following two RACF authorities are required:
v Operations authority, as in ATTRIBUTES=OPERATIONS
v DASDVOL authority, which you can set in the following way:

SETROPTS GENERIC(DASDVOL)
REDEFINE DASDVOL * UACC(ALTER)
SETROPTS CLASSACT(DASDVOL)
SETROPTS GENERIC(DASDVOL) REFRESH

You can restrict this authority to specific user IDs.

This RACF authority is required, because the RESTORE SYSTEM utility invokes
DFSMSdss when tape is the input and the z/OS level is Version 1 Release 11 or
earlier. However, DFSMSdss is not invoked when you restore database copy pools
from tape when the z/OS level is Version 1 Release 12 or later or from a
FlashCopy on disk. In these situations, the RESTORE SYSTEM utility invokes
DFSMShsm, which does not require Operations or DASDVOL authority.

Execution phases of RESTORE SYSTEM

The RESTORE SYSTEM utility operates in the following phases:

Phase Description

UTILINIT
Performs initialization and setup

RESTORE
Locates and restores the volume copies if the LOGONLY option is not
specified

LOGAPPLY
Applies the outstanding log changes to the database

UTILTERM
Performs cleanup

Related concepts:

Point-in-time recovery with system-level backups (DB2 Administration Guide)
Related reference:
Chapter 5, “BACKUP SYSTEM,” on page 45

Syntax and options of the RESTORE SYSTEM control statement
The RESTORE SYSTEM utility control statement, with its multiple options, defines
the function that the utility job performs.

712 Utility Guide and Reference

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_recovertotimeusingbackupsystem.htm#db2z_recovertotimeusingbackupsystem

Use the ISPF/PDF edit function to create a control statement and to save it in a
sequential or partitioned data set. When you create the JCL for running the job, use
the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

When you specify RESTORE SYSTEM, you can specify only the following
statements in the same step:
v DIAGNOSE
v OPTIONS PREVIEW
v OPTIONS OFF
v OPTIONS KEY
v OPTIONS EVENT WARNING

In addition, RESTORE SYSTEM must be the last statement in SYSIN.

Syntax diagram

�� RESTORE SYSTEM
LOGONLY

SWITCH VCAT
SYSVALUEDDN(ddname)

FROMDUMP
DUMPCLASS (dcl) RSA ('key-label') TAPEUNITS

(num-tape-units)

��

Option descriptions

LOGONLY
Specifies that the database volumes have already been restored, so the
RESTORE phase is skipped. Use this option when the database volumes have
already been restored outside of DB2. If the subsystem is at a tracker site, you
must specify the LOGONLY option.

SWITCH VCAT
Indicates that the integrated catalog facility (ICF) alias (VCAT) names are
to be substituted with those names that are provided when the log is
processed. Every VCAT encountered in the log must be specified in the
SYSVALUEDDN data set. This option might be used in the process of
cloning a DB2 subsystem.

SYSVALUEDDN ('ddname')
Specifies that the DD statement for the control statements specifying
the integrated catalog facility (ICF) (VCAT) aliases used when
processing log records.ddname can be up to 8 characters, and must start
with an alphabetic or national character (for example: @, $, or #).

The default value is SYSVALUEDDN(SYSVALUE), where SYSVALUE
identifies the primary data set.

FROMDUMP
Indicates that you want to dump only the database copy pool to tape during
the restore.

DUMPCLASS (dcl)
Indicates what DFSMShsm dump class to use for the restore.

Chapter 28. RESTORE SYSTEM 713

||

|
|
|
|
|
|

|
|
|
|
|

|
|

RSA ('key-label')
Specifies that the key-label value in the utility control statement is passed to
DFSMShsm to override the key-label value that would normally be used to
read dump tapes. key-label can be up to 64 characters, and must start with
an alphabetic or national character (for example: @, $, or #). key-label must
be enclosed in single quotation marks.

The FROMDUMP and DUMPCLASS options that you specify for the RESTORE
SYSTEM utility override the RESTORE_ RECOVER_FROMDUMP and
UTILS_DUMP_CLASS_NAME subsystem parameter values.

TAPEUNITS
Specifies the limit on the number of tape drives that the utility dynamically
allocates during the restore of the database copy pool from dumps on tape.

The default is the option that you specified for subsystem parameter
RESTORE_TAPEUNITS. If no default is specified, then the RESTORE SYSTEM
utility tries to use all of the tape drives in your system.

The TAPEUNITS option does not apply and is ignored when the z/OS level is
Version 1 Release 12 or later.

(num-tape-units)
Specifies the maximum number of tape drives to allocate. If you specify
zero, or you do not specify a value, the utility determines the optimal
number of tape units to use. RESTORE SYSTEM TAPEUNITS has a
maximum value of 255.

Related tasks:

Recovering from disasters by using a tracker site (DB2 Administration Guide)

Before running RESTORE SYSTEM
Certain activities might be required before you run the RESTORE SYSTEM utility,
depending on your situation.

Complete the following steps prior to running RESTORE SYSTEM:
1. Stop DB2. If data sharing, stop all DB2 members in the group.
2. Run DSNJU003 (Change Log Inventory) to create a DB2 conditional restart

record with the CRESTART SYSPITR option. Specify the log truncation point
with the SYSPITR option that corresponds to the point in time to which the
system is to be recovered.
For data sharing, specify an LRSN value. For non data sharing, specify an RBA
value.
If you restored the log copy pool and the active log data sets are stripped or
the log copy pool is for a data sharing environment, you must specify the data
complete LRSN during the conditional restart in the following scenarios:
v You are cloning a DB2 system by using a system-level backup as the source.

In this case, conditionally restart DB2 with an ENDRBA or ENDLRSN that is
equal to the data complete LRSN of the system-level backup.

v You are performing a system-level point-in-time recovery. In this case,
conditionally restart DB2 with the log truncation point equal to or less than
the data complete LRSN of the system-level backup. Use the data complete
LRSN as the CRESTART ENDRBA, ENDLRSN, or SYSPITR log truncation
point.

You can determine the data complete LRSN from the following places:

714 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_recoverdisastertrackersite.htm#db2z_recoverdisastertrackersite

v Message DSNU1614I, which is generated when BACKUP SYSTEM completes
successfully

v The report generated by the print log map utility (DSNJU004)
3. Start DB2. When the DB2 restart processing for the conditional restart with the

SYSPITR option completes, DB2 enters system RECOVER-pending andaccess
maintenance mode. During system RECOVER-pending mode, you can run only
the RESTORE SYSTEM utility.

4. Ensure that the ICF catalogs for the DB2 data are not active and are not
allocated. The ICF catalog for the data must be on a separate volume than the
ICF catalog for the logs. The command to unallocate the catalog is F
CATALOG,UNALLOCATE(catalog-name). Alternatively, if you add the ICF catalog
names to the database copy pool definition by altering the copy pools, the
catalog is unallocated by HSM before doing the restore.

Related information:

Altering copy pool (DFSMSdfp Storage Administration)

How to determine which system-level backups DB2 restores

The RESTORE SYSTEM utility uses the most recent system-level backup of the
database copy pool that DB2 took prior to the SYSPITR log truncation point.

To determine whether the system level backup will be restored from disk or from
tape:
v If FROMDUMP was not specified and the system-level backup resides on disk,

DB2 uses it for the restore.
v If you specify YES in the RESTORE/RECOVER FROM DUMP field on

installation panel DSNTIP6 or you specify the FROMDUMP option in the
RESTORE utility statement, restore uses only the dumps on tape of the database
copy pool.

v If you specify a dump class name on the DUMP CLASS NAME field on
installation panel DSNTIP6 or you specify the DUMPCLASS option in the
RESTORE utility statement, DB2 restores the database copy pool from the
DFSMshsm dump class.

v If you do not specify a dump class name in the DUMP CLASS NAME field on
installation panel DSNTIP6 or you do not specify the DUMPCLASS option in
the RESTORE utility statement, RESTORE SYSTEM issues the DFSMShsm LIST
COPYPOOL command and uses the first dump class listed in the output.

The RESTORE SYSTEM utility invokes DFSMS to restore the database copy pool
volumes from a system-level backup on tape. If the z/OS level is Version 1 Release
11 or earlier, the utility invokes DFSMSdss. If the z/OS level is Version 1 Release
12 or later, the utility invokes DFSMShsm.

How to determine if RESTORE SYSTEM uses parallelism when
restoring from tapes

Parallelism occurs if the dumps of the volumes in the database copy pool reside on
different tape volumes. The degree of parallelism is limited by:
v The TAPEUNITS option, which limits the number of tape units that the utility

can allocate.
v The number of distinct tape volumes that the dump resides on.

Chapter 28. RESTORE SYSTEM 715

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2s2a1/13.4.6?ACTION=MATCHES&REQUEST=altering+copy+pool&TYPE=FUZZY&SHELF=&DT=20120126150025&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

Determining whether the system-level backups reside on disk or
tape

Restoring each volume in the database copy pool from a fast replication copy on
the disk occurs virtually instantaneously. Restoring the database copy pool from
dumps on tape volumes takes much longer.

To determine whether the system-level backups of the database copy pool reside
on the disk or tape:
1. Run the DFSMShsm LIST COPYPOOL command with the ALLVOLS option.
2. Run the DSNJU004 utility output. For data sharing, run the DSNJU004 utility

output on each member.
3. Review the output from the DFSMShsm LIST COPYPOOL command with the

ALLVOLS option.
4. Review the DB2 system-level backup information in the DSNJU004 utility

output.

If the system-level backup chosen as the recovery base for the database copy pool
no longer resides on DASD and the FROMDUMP option has not been specified,
then the RESTORE SYSTEM utility will fail. You can then specify the RESTORE
SYSTEM FROMDUMP option, or specify it on installation panel DSNTIP6, to direct
the utility to use the system-level backup that was dumped to tape.

Data sets that RESTORE SYSTEM uses
The RESTORE SYSTEM utility uses a number of data sets during its operation.

The following table lists the data sets that RESTORE SYSTEM uses. The table lists
the DD name that is used to identify the data set, a description of the data set, and
whether it is required. Include statements in your JCL for each required data set.

Table 102. Data sets that RESTORE SYSTEM uses

Data set Description Required?

SYSIN An input data set that contains the utility
control statement

Yes

SYSPRINT An output data set for messages Yes

auth-id.job-name.HSM A temporary data set that is automatically
allocated by the utility and deleted when the
utility completes

Yes

VCAT alias values data set An input data set that contains the values of
the integrated catalog facility (ICF) alias
(VCAT) names to be switched while
processing. Specify its DD name with the
SYSVALUEDDN option of the utility control
statement. The default DD name is
SYSVALUE.

No

Data set description

VCAT alias values data set
Defines a set of records which contain integrated catalog facility (ICF)
catalog (VCAT) alias names.

Each record must contain a pair of (VCAT) alias names separated by only a
comma. Blank characters are not allowed between each name. Each name

716 Utility Guide and Reference

||
|
|
|
|
|
|

|

|

|
|
|

|
|

is a valid z/OS alias of up to eight characters and composed of uppercase
alphabetic, numeric, or national characters. The first (VCAT) alias name is
the name used when the system level backup was created. The second
(VCAT) alias name is the current name after any renaming. All aliases
encountered in the log must be specified, even if the VCAT alias is the
same as when the system level backup was created. Sample data follows:
VCAT1,VCAT2
VCAT5,Z1234567
DSNC000,DSNC000

To obtain the names, keep a list of previously existing to current name
mappings when renaming an integrated catalog facility (ICF) catalog
(VCAT) alias.

Concurrency and compatibility for RESTORE SYSTEM
The RESTORE SYSTEM utility has certain concurrency and compatibility
characteristics associated with it.

While RESTORE SYSTEM is running, no other utilities can run.

Restoring data in a data sharing environment
Ensure that all data sharing members that were active at the SYSPITR log
truncation point (or restarted after this point) have been restarted with the same
SYSPITR LRSN value. You can stop the other members of the data group (with
MODE(QUIESCE)) after the SYSPITR restart.

Using DISPLAY UTILITY with RESTORE SYSTEM
You can use the DISPLAY UTILITY command with RESTORE SYSTEM.

About this task

To use the DISPLAY UTILITY command for RESTORE SYSTEM on a data sharing
group, you must issue the command from the member on which the RESTORE
SYSTEM utility is invoked.

Termination and restart of RESTORE SYSTEM
You can terminate and restart the RESTORE SYSTEM utility.

You cannot terminate RESTORE SYSTEM by using the TERM UTILITY command.

You can restart RESTORE SYSTEM at the beginning of a phase or at the current
system checkpoint. A current system checkpoint occurs during the LOGAPPLY
phase after log records are processed. By default, RESTORE SYSTEM restarts at the
current system checkpoint.

When you restart RESTORE SYSTEM for a data sharing group, the member on
which the restart is issued must be the same member on which the original
RESTORE SYSTEM was issued.

Chapter 28. RESTORE SYSTEM 717

|
|
|
|
|
|

|
|
|

|
|
|

Related concepts:
“Restart of an online utility” on page 39

Effects of running RESTORE SYSTEM
The effects of running the RESTORE SYSTEM utility vary depending on your
situation.

Recovering NOT LOGGED table spaces

If RESTORE SYSTEM utility determines that a NOT LOGGED table space was
updated after the point at which the system level copy was taken, the table space
or partition is marked RECOVER-pending.

Cases when indexes are placed in REBUILD-pending status

When you use the RESTORE SYSTEM utility to recover indexes, an index might be
left in REBUILD-pending status. In these rare cases, you must rebuild the index by
running the REBUILD INDEX utility.

Indexes are left in REBUILD-pending status, if on the DB2 subsystem that is being
recovered:
v Some indexes have gone through the two-pass group buffer pool recovery

pending (GRECP) or logical page list (LPL) recovery earlier
v Or the indexes are still in GRECP or LPL status, and the compensation log

records are written before the physical undo logs

After running RESTORE SYSTEM
Certain activities might be required after you run the RESTORE SYSTEM utility,
depending on your situation.

Complete the following steps after running RESTORE SYSTEM:
1. Stop and start each DB2 subsystem or member to remove it from access

maintenance mode.
2. Use the DISPLAY UTIL command to see if any utilities are running. If other

utilities are running, use the TERM UTIL command to end them.
3. Use the RECOVER utility to recover all objects in RECOVER-pending (RECP)

or REBUILD-pending (RBDP) status, or use the REBUILD INDEX utility to
rebuild objects. If a CREATE TABLESPACE, CREATE INDEX, or data set
extension has failed, you can also recover or rebuild any objects in the logical
page list (LPL).

Sample RESTORE SYSTEM control statements
Use the sample control statements as models for developing your own RESTORE
SYSTEM control statements.

RESTORE SYSTEM uses data that is copied by the BACKUP SYSTEM utility.

718 Utility Guide and Reference

|

|
|
|

|
|

|
|

|
|

Example 1: Recovering a backup system

The following control statement specifies that the RESTORE SYSTEM utility is to
recover a DB2 subsystem or a data sharing group to a previous point in time by
restoring volume copies and applying any outstanding log changes.
//STEP1 EXEC DSNUPROC,TIME=1440,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSIN DD *

RESTORE SYSTEM
/*

Example 2: Recovering a backup system after the database
volumes have already been restored

The LOGONLY keyword in the following control statement indicates that
RESTORE SYSTEM is to apply any outstanding log changes to the database. The
utility is not to restore the volume copies. In this example, the database volumes
have already been restored outside of DB2. Note that RESTORE SYSTEM applies
log changes; it never restores the log copy pool.
//STEP1 EXEC DSNUPROC,TIME=1440,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSIN DD *

RESTORE SYSTEM LOGONLY
/*

Example 3: Recovering a dump on tape of the database copy
pool

The following control statement specifies that the RESTORE SYSTEM utility is to
only consider dumps on tape of the database copy pool for restore. During the
restore, the utility will dynamically allocate a maximum of 4 tape units.
//SYSOPRB JOB (ACCOUNT),’NAME’,CLASS=K
//UTIL EXEC DSNUPROC,SYSTEM=V91A,UID=’TEMB’,UTPROC=’’
//*
//*
//DSNUPROC.SYSUT1 DD DSN=SYSOPR.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *

RESTORE SYSTEM FROMDUMP TAPEUNITS 4
//

Example 4: Recovering a backup system after the database
volumes have already been restored and VCAT aliases renamed

The LOGONLY keyword in the following control statement indicates that
RESTORE SYSTEM is to apply any outstanding log changes to the database. The
utility is not to restore the volume copies. In this example, the database volumes
have already been restored outside of DB2. Note that RESTORE SYSTEM applies
log changes; it never restores the log copy pool. The SWITCH VCAT
SYSVALUEDDN(SYSVALUE) keywords indicate that the SYSVALUE DD name
data set contains a list of pairs of integrated catalog facility (ICF) (VCAT) aliases.
The first (VCAT) alias is the name when the backup was created and the second
(VCAT) alias is the name after any renaming has completed. The (VCAT) alias
DSNC000 is specified as both the first and second alias since it was not renamed
and might be encountered in the log.

Chapter 28. RESTORE SYSTEM 719

|
|

|
|
|
|
|
|
|
|
|
|
|

//STEP1 EXEC DSNUPROC,TIME=1440,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSIN DD *

RESTORE SYSTEM LOGONLY SWITCH VCAT SYSVALUEDDN(SYSVALUE)
/*
//SYSVALUE DD *

VCAT1,VCAT2
VCAT5,Z1234567
DSNC000,DSNC000

/*

Related concepts:

Point-in-time recovery with system-level backups (DB2 Administration Guide)
Related reference:
Chapter 5, “BACKUP SYSTEM,” on page 45
Chapter 28, “RESTORE SYSTEM,” on page 711

720 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_recovertotimeusingbackupsystem.htm#db2z_recovertotimeusingbackupsystem

Chapter 29. RUNSTATS

The RUNSTATS online utility gathers summary information about the
characteristics of data in table spaces, indexes, and partitions. DB2 records these
statistics in the DB2 catalog and uses them to select access paths to data during the
bind process.

You can use these statistics to evaluate the database design and determine when
table spaces or indexes must be reorganized. To obtain the updated statistics, you
can query the catalog tables.

The two formats for the RUNSTATS utility are RUNSTATS TABLESPACE and
RUNSTATS INDEX. RUNSTATS TABLESPACE gathers statistics on a table space
and, optionally, on tables, indexes or columns; RUNSTATS INDEX gathers statistics
only on indexes. RUNSTATS does not collect statistics for clone tables or index
spaces.

RUNSTATS can collect statistics on any single column or set of columns.
RUNSTATS collects the following two types of distribution statistics:

Frequency
The percentage of rows in the table that contain a value for a column or
combination of values for a set of columns.

Cardinality
The number of distinct values in the column or set of columns.

When you run RUNSTATS TABLESPACE, you can use the COLGROUP option to
collect frequency and cardinality statistics on any column group. You can also
collect frequency and cardinality statistics on any single column. When you run
RUNSTATS INDEX, you can collect frequency statistics on the leading column of
an index and multi-column frequency and cardinality statistics on the leading
concatenated columns of an index.

When you run RUNSTATS TABLESPACE, you can use the HISTOGRAM option,
with the COLGROUP option, to indicate that histogram statistics are to be
gathered for the specified group of columns. RUNSTATS TABLESPACE does not
collect histogram statistics for LOB table spaces or XML table spaces. When you
run RUNSTATS INDEX, histogram statistics can only be collected on the prefix
columns with the same order. Key columns with a mixed order are not allowed for
histogram statistics. RUNSTATS INDEX does not collect histogram statistics for
XML node ID indexes or XML indexes.

Output

RUNSTATS updates the DB2 catalog with table space or index space statistics,
prints a report, or both.

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v STATS privilege for the database

© Copyright IBM Corp. 1983, 2013 721

v DBADM, DBCTRL, or DBMAINT authority for the database. If the object on
which the utility operates is in an implicitly created database, DBADM authority
on the implicitly created database or DSNDB04 is required.

v System DBADM authority
v SQLADM authority
v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute the RUNSTATS utility,
but only on a table space in the DSNDB06 database.

To use RUNSTATS with the REPORT YES option, you must have the SELECT
privilege on the reported tables. RUNSTATS does not report values from tables
that the user is not authorized to see.

To gather statistics on a LOB table space, you must have SYSADM or DBADM
authority for the LOB table space.

Execution phases of RUNSTATS

The RUNSTATS utility operates in the following phases:

Phase Description

UTILINIT
Performs initialization

RUNSTATS
Scans table space or index and updates catalog.

If you specify COLGROUP, RUNSTATS also performs a subtask that sorts
one or more column group's data. If you specify FREQVAL with
COLGROUP or are collecting frequency statistics for data-partitioned
secondary indexes, RUNSTATS also performs a subtask that sorts the
partition-level frequency data.

UTILTERM
Performs cleanup

Related tasks:

Automating statistics maintenance (DB2 Performance)
Related reference:

Case study: Stored procedure that runs RUNSTATS in parallel: Through the
CALL and Beyond)

Syntax and options of the RUNSTATS control statement
The RUNSTATS utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

722 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_automatestatistics.htm#db2z_automatestatistics
http://www.redbooks.ibm.com/redbooks/SG247604/22-3.htm
http://www.redbooks.ibm.com/redbooks/SG247604/22-3.htm

RUNSTATS TABLESPACE syntax diagram

�� RUNSTATS TABLESPACE LIST listdef-name
table-space-name

database-name.

statistics-spec

reset-spec
��

statistics-spec

��
FORCEROLLUP NO table-spec

PART integer
FORCEROLLUP YES

�

�

�

(1)
INDEX (ALL) correlation-stats-spec

(2)
INDEX (*) correlation-stats-spec

,

INDEX (index-name correlation-stats-spec)

SHRLEVEL CHANGE

SHRLEVEL REFERENCE

REPORT NO

REPORT YES
�

�
UPDATE ALL

UPDATE ACCESSPATH
SPACE
NONE

history-spec
SORTDEVT device-type

��

Notes:

1 You cannot specify INDEX if either USE PROFILE or DELETE PROFILE option is also specified.

2 INDEX(*) is an internal representation of INDEX(ALL) that DB2 uses only in the context of
RUNSTATS profiles, and is not valid when specified in any RUNSTATS control statement. When
you specify the INDEX(ALL) option in a RUNSTATS control statement that creates a profile, DB2
uses INDEX(*) in the PROFILE_TEXT column of the SYSIBM.SYSTABLES_PROFILES catalog
table. However, you must specify INDEX(*) instead of INDEX(ALL)) if you modify the profile by
updating the value of the PROFILE_TEXT column directly.

table-spec

Chapter 29. RUNSTATS 723

|
|

|||||||||||||||||||||||||||||||||||||||

|

��

�

(1) (ALL) (2) (3)
TABLE sample-spec USE PROFILE

INCLUDE (NPI)
NPI

DELETE PROFILE

(1) (4) (5)
TABLE (table-name) sample-spec column-spec

(6)
colgroup-spec

(3)
USE PROFILE

INCLUDE (NPI)
NPI

column-spec prof-spec
colgroup-spec

DELETE PROFILE

��

Notes:

1 The TABLE keyword is not valid for a LOB table space.

2 When USE PROFILE is specified and no profile exists for a target table, TABLE ALL INDEX ALL
is used for the profile specification.

3 When USE PROFILE is specified and no profile exists for a target table, COLUMN ALL INDEX
ALL is used for the profile specification.

4 The TABLESAMPLE keyword is only valid for single-table table spaces. Dropped tables are
included in this count until REORG, COPY, and MODIFY RECOVERY are run.

5 When using TABLESAMPLE to sample multi-table table spaces or table spaces that are
segmented and not partitioned, page sampling is not done and execution continues. The
TABLESAMPLE keyword is not valid for a LOB table space.

6 If one type of PROFILE function is specified on one TABLE clause the same type of PROFILE
function must be specified on all TABLE clauses.

sample-spec

��
25

SAMPLE
integer

AUTO
TABLESAMPLE SYSTEM numeric-literal

REPEATABLE-integer

��

column-spec:

724 Utility Guide and Reference

|
|

|
|

��

�

COLUMN (ALL)

,
(1)

COLUMN (column-name)

SORTNUM integer
��

Notes:

1 The same column name must not be specified more than once. If all columns are listed in the
COLUMN option, RUNSTAT will treat it as is, and will not replace it with the COLUMN(ALL)
option. Users have to state explicitly if they want the COLUMN(ALL) option.

colgroup-spec:

�� � �

,

COLGROUP (column-name) colgroup-stats-spec ��

colgroup-stats-spec:

��
MOST

FREQVAL COUNT integer
BOTH
LEAST

NUMQUANTILES 100
HISTOGRAM

NUMQUANTILES integer

��

correlation-stats-spec:

Chapter 29. RUNSTATS 725

��
(1)

KEYCARD

�
FREQVAL NUMCOLS 1 COUNT 10 MOST

MOST
FREQVAL NUMCOLS integer COUNT integer

BOTH
LEAST

�

� �

NUMCOLS 1 NUMQUANTILES 100
HISTOGRAM

NUMQUANTILES 100
NUMCOLS integer

NUMQUANTILES integer

��

Notes:

1 The KEYCARD option is deprecated. The KEYCARD functionality is now built into the normal
execution of the RUNSTATS INDEX utility and cannot be disabled.

prof-spec

��
SET PROFILE

(1)
FROM EXISTING STATS

UPDATE PROFILE

��

Notes:

1 The FROM EXISTING STATS clause is not valid if a column-spec, colgroup-spec, or INDEX
keyword has been specified

history-spec

��
(1) HISTORY NONE

HISTORY ALL
ACCESSPATH
SPACE

��

Notes:

1 You can change the default HISTORY value by modifying the STATISTICS HISTORY subsystem
parameter. By default, this value is NONE.

reset-spec

726 Utility Guide and Reference

|
|

��
RESET ACCESSPATH

HISTORY ACCESSPATH

��

RUNSTATS TABLESPACE option descriptions

TABLESPACE database-name.table-space-name
Specifies the table space (and, optionally, the database to which it belongs) on
which table space and table statistics are to be gathered. This keyword must
not identify a table space in DSNDB01 or work file databases, which consist of
DSNDB07 objects and user-defined work file objects.

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. You can
specify one LIST keyword for each RUNSTATS control statement. When
you specify this keyword with RUNSTATS TABLESPACE, the list must
contain only table spaces. Do not specify LIST with keywords from the
TABLE...(table-name) specification. Instead, specify LIST with TABLE (ALL).
Likewise, do not specify LIST with keywords from the
INDEX...(index-name) specification. You cannot specify index names with a
list. Use INDEX(ALL) instead.

If you specify LIST, you cannot specify the PART option. Instead, use the
PARTLEVEL option on the LISTDEF statement. The TABLESPACE
keyword is required in order to validate the contents of the list.
RUNSTATS TABLESPACE is invoked once for each item in the list.

The partitions or partition ranges can be specified in a list.

database-name
Identifies the name of the database to which the table space belongs.

The default value is DSNDB04.

table-space-name
Identifies the name of the table space on which statistics are to be
gathered.

If the table space that is specified by the TABLESPACE keyword is a LOB table
space, you can specify only the following additional keywords: SHRLEVEL
REFERENCE or CHANGE, REPORT YES or NO, and UPDATE ALL or NONE.

PART integer
Identifies a table space partition on which statistics are to be collected.

integer is the number of the partition and must be in the range from 1 to the
number of partitions that are defined for the table space. The maximum is
4096.

You cannot specify PART with LIST.

TABLE
Specifies the table on which column statistics are to be gathered. All tables
must belong to the table space that is specified in the TABLESPACE option.
You cannot specify the TABLE option for a LOB table space.

(ALL)
Specifies that column statistics are to be gathered on all columns of all
tables in the table space. The parentheses around ALL are optional.

Chapter 29. RUNSTATS 727

|||||||||||||||||

|

The TABLE option value cannot specify a LOB table. However, if
TABLE(ALL) is specified, and one or more of the tables in the table space
have a LOB column, no error is issued for the LOB tables. RUNSTATS
gathers table and column statistics only for the non-LOB tables.

(table-name)
Specifies the tables on which column statistics are to be gathered. If you
omit the qualifier, RUNSTATS uses the user identifier for the utility job as
the qualifier. Enclose the table name in quotation marks if the name
contains a blank.

If you specify more than one table, you must repeat the TABLE option.
Multiple TABLE options must be specified entirely before or after any
INDEX keyword that may also be specified. For example, the INDEX
keyword may not be specified between any two TABLE keywords.

SAMPLE integer
Indicates the percentage of rows that RUNSTATS is to sample when collecting
statistics on non-leading-indexed columns of an index or non-indexed columns.
You can specify any value from 1 through 100.

The default value is 25.

You cannot specify SAMPLE for LOB table spaces.

USE PROFILE
Specifies a stored statistics profile that is used to gather statistics for a table.
The statistics profile is created using the SET PROFILE option and is updated
using the UPDATE PROFILE option.

The column, column group, and index specifications are not allowed as part of
the control statement, but are used when stored in the statistics profile.

If no profile exists for the specified table, default statistics are collected:
v When a table name is not specified , TABLE ALL INDEX ALL is used for the

profile specification.
v When a table name is specified, COLUMN ALL INDEX ALL is used for the

profile specification.

INCLUDE NPI or INCLUDE (NPI)
Specifies that statistics are to be collected on the non-partitioned indexes
that listed in the profile for the table. The INCLUDE NPI clause is not
valid if the PART keyword is not specified at the RUNSTATS
TABLESPACE level. You must specify the INCLUDE and NPI keywords
together. The parentheses around NPI are optional.

DELETE PROFILE
Specifies an existing RUNSTATS profile that is to be deleted from the
SYSIBM.SYSTABLES_PROFILES catalog table.

Column, column group, and index specifications are not allowed as part of the
control statement when the DELETE PROFILE option is used. No statistics are
collected when you specify this option in the RUNSTATS control statement.

TABLESAMPLE SYSTEM
This option allows RUNSTATS to collect statistics on a sample of the data
pages from the table. System sampling considers each page individually,
including that page with probability P/100 (where P is the value of
numeric-literal) and excluding it with probability 1-P/100. Unless the optional
REPEATABLE clause is specified, each execution of RUNSTATS will usually
yield a different such sample of the table. The size of the sample is controlled

728 Utility Guide and Reference

|

|
|

|
|

by the integer parameter in parentheses, representing an approximate
percentage P of the table to be returned. Only a percentage of the data pages
as specified through the numeric-literal parameter will be retrieved and used
for the statistics collection. Only valid on single-table table spaces.

The TABLESAMPLE keyword is not valid for a LOB table space.

When TABLESAMPLE is specified, and the target table space is a multi-table
table space or a table space that is segmented but not partitioned, DB2 runs
RUNSTATS with SAMPLE 25, instead of the TABLESAMPLE option.

numeric-literal
Specifies the size of the sample to be obtained, as a percentage P. This
value must be a positive number that is less than or equal to 100 and
greater than 0. For example, a value of 0.01 represents one onehundredth
of a percent, such that 1 row in 10,000 would be sampled, on average. A
value greater than 100, zero, or less than zero will be treated by DB2 as an
error. The smallest allowable positive number for this option is 0.01
percent.

Depending on table space size and sampling rate used, it is possible that a
partition is not included in the sample. In this case, RUNSTATS does not
collect statistics for this partition, and may report warnings or errors for
aggregate statistics.

When numeric-literal is specified, and real-time statistics are not available,
RUNSTATS runs with TABLESAMPLE AUTO.

AUTO
When "AUTO" is specified RUNSTATS will determine a sampling rate
based on the size of the table when RUNSTATS is executed. The larger the
table the smaller the sampling rate. The threshold for sampling is when the
table has more than 500,000 rows, otherwise all pages will be read. The
same threshold is applicable for TABLESPACE sampling with PART option
specified. The number of rows is obtained from the real-time statistics
report.

When AUTO is specified, and real-time statistics are not available,
RUNSTATS sets the sampling rate to 100.

REPEATABLE integer
Adding the REPEATABLE clause to the TABLESAMPLE clause ensures
that repeated executions of RUNSTATS return the same sample. The
integer parameter is a non-negative integer representing the seed to be
used in sampling. Passing a negative seed will result in an error
(DSNU048I). The sample set might still vary between repeatable
RUNSTATS invocations if activity against the table or statistical view
resulted in changes to the table or statistical view data since the last time
TABLESAMPLE REPEATABLE was run.

SET PROFILE
Specifies that RUNSTATS generates a RUNSTATS profile for the specified table
from the options that are specified in the current RUNSTATS invocation, and
stores the profile in the SYSIBM.SYSTABLES_PROFILES catalog table. For more
information about the options that you can specify in a profile, and the syntax
for specifying the options, see: “The RUNSTATS profile syntax” on page 741.

FROM EXISTING STATS
Allows RUNSTATS to generate a RUNSTATS profile with options that are
based on analysis of the statistics that currently exist for the specified table.
This option can be specified only with the SET PROFILE option.

Chapter 29. RUNSTATS 729

UPDATE PROFILE
Allows RUNSTATS to update an existing statistics profile in the
SYSIBM.SYSTABLES_PROFILES catalog table with the options specified in the
current RUNSTATS invocation. No statistics are collected when you specify this
option in the RUNSTATS control statement. If the column or colgroup
specification already exists in the profile, the new specification will replace the
existing one.

COLUMN
Specifies columns on which column statistics are to be gathered.

You can specify this option only if you specify a particular table on which
statistics are to be gathered. (Use the TABLE (table-name) option to specify a
particular table.) If you specify particular tables and do not specify the
COLUMN option, RUNSTATS uses the default, COLUMN(ALL). If you do not
specify a particular table when using the TABLE option, you cannot specify the
COLUMN option; however, in this case, COLUMN(ALL) is assumed.

(ALL)
Specifies that statistics are to be gathered on all columns in the table.

The COLUMN (ALL) option is not allowed for LOB table spaces.

(column-name, ...)
Specifies the columns on which statistics are to be gathered. You can
specify a list of column names. If you specify more than one column,
separate each name with a comma.

The more columns that you specify, the longer the job takes to complete.

COLGROUP (column-name, ...)
Indicates that the specified set of columns are to be treated as a group. This
option enables RUNSTATS to collect a cardinality value on the specified
column group. RUNSTATS TABLESPACE will ignore COLGROUP when
processing XML table spaces and indexes.

When you specify the COLGROUP keyword, RUNSTATS collects correlation
statistics for the specified column group. If you want RUNSTATS to also collect
distribution statistics, specify the FREQVAL option with COLGROUP.

(column-name, ...) specifies the names of the columns that are part of the
column group.

To specify more than one column group, repeat the COLGROUP option.

Restriction: The length of a COLGROUP value cannot exceed the maximum
length of the COLVALUE column in the SYSIBM.SYSCOLDIST catalog table.

Restriction: A RUNSTATS control statement can contain a maximum of 255
COLGROUP specifications.

FREQVAL
Indicates, when specified with the COLGROUP option, that frequency statistics
are also to be gathered for the specified group of columns. (COLGROUP
indicates that cardinality statistics are to be gathered.) One group of statistics is
gathered for each column. You must specify COUNT integer with COLGROUP
FREQVAL. RUNSTATS TABLESPACE ignores FREQVAL MOST, FREQVAL
LEAST, or FREQVAL BOTH when it processes XML table spaces and indexes.

730 Utility Guide and Reference

COUNT integer
Specifies how many frequently occurring values are collected from the
specified column group. You must specify a value for integer. No default
value is assumed.

It is best to specify a COUNT value that is not greater than the value of
COLCARDF minus one, for the column group. For most situations, 10 is
usually a reasonable value. Greater COUNT values might be needed to
detect skewed data, especially in high cardinality cases. However, avoid
values greater than 100 in most cases. Specifying a value of 1000 or more
can increase the prepare time for some SQL statements.

MOST
Indicates that the utility collects the most frequently occurring values for
the specified set of columns when COLGROUP is specified. For example,
FREQVAL COUNT 10 MOST means that the 10 most frequently occurring values
are collected.

BOTH
Indicates that the utility collects the most and the least frequently
occurring values for the specified set of columns when COLGROUP is
specified. If COUNT is n, the utility collects the n least frequently
occurring values and the n most frequently occurring values.

LEAST
Indicates that the utility collects the least frequently occurring values for
the specified set of columns when COLGROUP is specified.

HISTOGRAM
Indicates, when specified with the COLGROUP (see colgroup-stats-spec) option
of RUNSTATS TABLESPACE, that histogram statistics are to be gathered for
the specified group of columns. RUNSTATS TABLESPACE will ignore
HISTOGRAM when processing XML table spaces and indexes.

NUMQUANTILES integer

Indicates how many quantiles that the utility is to collect. The integer value
must be greater than or equal to one. The number of quantiles that you
specify should never exceed the total number of distinct values in the
column or the column group. The maximum number of quantiles allowed
is 100.

When the NUMQUANTILES keyword is omitted, NUMQUANTILES takes
a default value of 100. Based on the number of records in the table, the
number of quantiles is readjusted down to an optimal number.

INDEX
Specifies indexes on which statistics are to be gathered. RUNSTATS gathers
column statistics for the first column of the index, and possibly additional
index columns depending on the options that you specify. All the indexes must
be associated with the same table space, which must be the table space that is
specified in the TABLESPACE option.

INDEX can be used on auxiliary tables to gather statistics on an index.

(ALL)
Specifies that column statistics are to be gathered for all indexes that are
defined on tables that are contained in the table space.

(*)
Specifies that statistics are to gathered for all indexes defined on the
specified table.

Chapter 29. RUNSTATS 731

(index-name, ...)
Specifies the indexes for which statistics are to be gathered. You can specify
a list of index names. If you specify more than one index, separate each
name with a comma. Enclose the index name in quotation marks if the
name contains a blank.

PART integer
Identifies an index partition on which statistics are to be collected.

integer is the number of the partition.

KEYCARD
The KEYCARD option is deprecated in the RUNSTATS TABLESPACE control
statement and no longer needs to be specified to collect statistics on the values
in the key columns of an index if INDEX is specified.

The RUNSTATS utility automatically collects all of the distinct values in all of
the 1 to n intermediate key column combinations for the specified indexes,
where n is the number of columns in the index. For example, suppose that you
have an index defined on three columns: A, B, and C. RUNSTATS collects
cardinality statistics for column A, column set A and B, and column set A, B,
and C. With the deprecation of KEYCARD, this functionality cannot be
disabled.

The RUNSTATS utility tolerates the specification of the KEYCARD option. The
utility does not issue any messages if the control statement includes or
excludes the KEYCARD option when INDEX is specified.

FREQVAL
Controls, when specified with the INDEX option, the collection of
frequent-value statistics. If you specify FREQVAL with INDEX, this keyword
must be followed by the NUMCOLS and COUNT keywords.

NUMCOLS integer
Indicates the number of columns in the index for which RUNSTATS is to
collect frequently occurring values. integer can be a number between 1 and
the number of indexed columns. If you specify a number greater than the
number of indexed columns, RUNSTATS uses the number of columns in
the index.

For example, suppose that you have an index defined on three columns: A,
B, and C. If you specify NUMCOLS 1, DB2 collects frequently occurring
values for column A. If you specify NUMCOLS 2, DB2 collects frequently
occurring values for the column set A and B. If you specify NUMCOLS 3,
DB2 collects frequently occurring values for the column set A, B, and C.

The default value is 1, which means that RUNSTATS is to collect
frequently occurring values on the first key column of the index.

COUNT integer
Indicates the number of frequently occurring values that are to be collected
from the specified key columns. For example, specifying 15 means that
RUNSTATS is to collect 15 frequently occurring values from the specified
key columns.

The default value is 10.

HISTOGRAM
Indicates, when specified with the INDEX option (correlation-stats-spec) for
RUNSTATS TABLE SPACE, that histogram statistics are to be gathered for the

732 Utility Guide and Reference

specified key columns. Histogram statistics can only be collected on the prefix
columns with the same order. Key columns for histogram statistics with a
mixed order are not allowed.

When RUNSTATS collects histogram statistics for partition table spaces, it will
aggregate them into SYSCOLDIST.

NUMQUANTILES integer

Indicates how many quantiles that the utility is to collect. The integer value
must be greater than or equal to one. The number of quantiles that you
specify should never exceed the total number of distinct values in the key
columns specified. The maximum number of quantiles allowed is 100.

When the NUMQUANTILES keyword is omitted, NUMQUANTILES takes
a default value of 100. Based on the number of keys in the index, the
number of quantiles is readjusted down to an optimal number.

SHRLEVEL
Indicates whether other programs that access the table space while RUNSTATS
is running must use read-only access or can change the table space.

CHANGE
Allows other programs to change the table space or index. With
SHRLEVEL CHANGE, RUNSTATS might collect statistics on uncommitted
data.

REFERENCE
Allows only read-only access by other programs.

REPORT
Specifies whether RUNSTATS is to generate a set of messages that report the
collected statistics.

NO Indicates that RUNSTATS is not to generate the set of messages.

YES
Indicates that the set of messages is to be sent as output to SYSPRINT. The
messages that RUNSTATS generates are dependent on the combination of
keywords in the utility control statement. However, these messages are not
dependent on the value of the UPDATE option. REPORT YES always
generates a report of space and access path statistics.

UPDATE
Indicates which collected statistics are to be inserted into the catalog tables.

ALL
Indicates that all collected statistics are to be updated in the catalog.

ACCESSPATH
Indicates that DB2 is to update the catalog with only those statistics that
are used for access path selection.

SPACE
Indicates that DB2 is to update the catalog with only space-related
statistics.

NONE
Indicates that no catalog tables are to be updated with the collected
statistics.

Executing RUNSTATS always invalidates the dynamic cache; however,
when you specify UPDATE NONE REPORT NO, RUNSTATS invalidates

Chapter 29. RUNSTATS 733

statements in the dynamic statement cache without collecting statistics,
updating catalogs tables, or generating reports.

HISTORY
Indicates which statistics are to be recorded in the catalog history tables. The
value that you specify for HISTORY does not depend on the value that you
specify for UPDATE.

The default is the value of the STATISTICS HISTORY subsystem parameter on
the DSNTIPO installation panel. By default, this parameter value is NONE.

ALL
Indicates that all collected statistics are to be updated in the catalog history
tables.

ACCESSPATH
Indicates that DB2 is to update the catalog history tables with only those
statistics that are used for access path selection.

SPACE
Indicates that DB2 is to update the catalog history tables with only
space-related statistics.

NONE
Indicates that no catalog history tables are to be updated with the collected
statistics.

SORTDEVT
Specifies the device type that the sort program uses to dynamically allocate the
sort work data sets that are required.

device-type
Specifies any device type that is acceptable for the DYNALLOC parameter
of the SORT or OPTIONS option of the external sort program.

If you omit SORTDEVT, a sort is required, and you have not provided the DD
statements that the sort program requires for the temporary data sets,
SORTDEVT will default to SYSALLDA and the temporary data sets will be
dynamically allocated.

If you specify SORTDEVT and omit SORTNUM, no value is passed to the sort
program; the sort program uses its own default.

SORTNUM
Specifies the number of required sort work data sets that the sort program is to
allocate.

integer is the number of temporary data sets that can range from 2 to 255.

You need at least two sort work data sets for each sort. The SORTNUM value
applies to each sort invocation in the utility. For example, if there are three
indexes, SORTKEYS is specified, there are no constraints limiting parallelism,
and SORTNUM is specified as 8, then a total of 24 sort work data sets will be
allocated for a job.

Each sort work data set consumes both above the line and below the line
virtual storage, so if you specify too high a value for SORTNUM, the utility
may decrease the degree of parallelism due to virtual storage constraints, and
possibly decreasing the degree down to one, meaning no parallelism.

Important: The SORTNUM keyword will not be considered if subsystem
parameter UTSORTAL is set to YES and IGNSORTN is set to YES.

734 Utility Guide and Reference

FORCEROLLUP
Specifies whether aggregation or rollup of statistics is to occur even if statistics
have not been gathered on some partitions. This option enables the optimizer
to select the best access path.

YES
Indicates that forced aggregation or rollup processing is to be done, even
though some partitions might not contain data.

NO Indicates that aggregation or rollup is to be done only if data is available
for all partitions.

If the value for STATISTICS ROLLUP on panel DSNTIPO is NO and data is
not available for all partitions, DB2 issues message DSNU623I.

RUNSTATS INDEX syntax diagram

�� RUNSTATS INDEX �

�

�

LIST listdef-name correlation-stats-spec
,

(index-name correlation-stats-spec)
PART integer

(ALL) TABLESPACE tablespace-name correlation-stats-spec
database-name.

�

�
SHRLEVEL CHANGE

SHRLEVEL REFERENCE

REPORT NO

REPORT YES

UPDATE ALL

UPDATE ACCESSPATH
SPACE
NONE

SORTDEVT device-type
�

�
SORTNUM integer

(1)
HISTORY NONE

HISTORY ALL
ACCESSPATH
SPACE

FORCEROLLUP NO

FORCEROLLUP YES
��

Notes:

1 You can change the default HISTORY value by modifying the STATISTICS HISTORY subsystem
parameter. By default, this value is NONE.

correlation-stats-spec:

Chapter 29. RUNSTATS 735

��

(1)
KEYCARD

�
FREQVAL NUMCOLS 1 COUNT 10 MOST

MOST
FREQVAL NUMCOLS integer COUNT integer

BOTH
LEAST

NUMCOLS 1 NUMQUANTILES 100
HISTOGRAM

NUMQUANTILES 100
NUMCOLS integer

NUMQUANTILES integer

��

Notes:

1 The KEYCARD option is deprecated. The KEYCARD functionality is now built into the normal
execution of the RUNSTATS INDEX utility and cannot be disabled.

RUNSTATS INDEX option descriptions

INDEX
Specifies the indexes on which statistics are to be gathered. Column statistics
are gathered on the first column of the index. All of the indexes must be
associated with the same table space.

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. You can specify
one LIST keyword for each RUNSTATS control statement. When you specify
LIST with RUNSTATS INDEX, the list must contain only index spaces. Do not
specify LIST with keywords from the INDEX...(index-name) specification; except
for the correlation-stats-spec.

RUNSTATS groups indexes by their related table space. RUNSTATS INDEX is
invoked once per table space. The INDEX keyword is required in order to
validate the contents of the LIST.

(index-name, ...)
Specifies the indexes on which statistics are to be gathered. You can specify a
list of index names. If you specify more than one index, separate each name
with a comma. Enclose the index name in quotation marks if the name
contains a blank.

PART integer
Identifies the index partition on which statistics are to be collected.

integer is the number of the partition.

(ALL)
Specifies that statistics are to be gathered on all indexes that are defined on all
tables in the specified table space.

TABLESPACE
Identifies the table space and, optionally, the database to which it belongs, for
which index statistics are to be gathered.

database-name
The name of the database to which the table space belongs.

The default value is DSNDB04.

736 Utility Guide and Reference

tablespace-name
The name of the table space for which index statistics are to be gathered.

KEYCARD
The KEYCARD option is deprecated in the RUNSTATS INDEX control
statement and no longer needs to be specified to collect statistics on the values
in the key columns of an index.

Except when processing XML NODEID or VALUES indexes, the RUNSTATS
utility automatically collects all of the distinct values in all of the 1 to n key
column combinations for the specified indexes, where n is the number of
columns in the index. For example, suppose that you have an index defined on
three columns: A, B, and C. RUNSTATS collects cardinality statistics for
column A, column set A and B, and column set A, B, and C. With the
deprecation of KEYCARD, this functionality cannot be disabled.

The RUNSTATS utility tolerates the specification of the KEYCARD option. The
utility does not issue any messages if the control statement includes or
excludes the KEYCARD option when INDEX is specified.

FREQVAL
Controls, when specified with the INDEX option, the collection of
frequent-value statistics. If you specify FREQVAL with INDEX, this keyword
must be followed by the NUMCOLS and COUNT keywords. RUNSTATS
INDEX will ignore FREQVAL MOST/LEAST/BOTH when processing XML
NODEID or VALUES indexes.

NUMCOLS integer
Indicates the number of columns in the index for which RUNSTATS is to
collect frequently occurring values. integer can be a number between 1 and
the number of indexed columns. If you specify a number greater than the
number of indexed columns, RUNSTATS uses the number of columns in
the index.

For example, suppose that you have an index defined on three columns: A,
B, and C. If you specify NUMCOLS 1, DB2 collects frequently occurring
values for column A. If you specify NUMCOLS 2, DB2 collects frequently
occurring values for the column set A and B. If you specify NUMCOLS 3,
DB2 collects frequently occurring values for the column set A, B, and C.

The default value is 1, which means that RUNSTATS is to collect
frequently occurring values on the first key column of the index.

COUNT integer
Indicates the number of frequently occurring values that are to be collected
from the specified key columns. For example, specifying 15 means that
RUNSTATS is to collect 15 frequently occurring values from the specified
key columns.

The default is 10.

MOST
Indicates that the utility is to collect the most frequently occurring values
for the specified set of key columns when FREQVAL NUMCOLS COUNT
MOST keywords are specified.

LEAST
Indicates that the utility is to collect the least frequently occurring values
for the specified set of key columns when FREQVAL NUMCOLS COUNT
LEAST keywords are specified.

Chapter 29. RUNSTATS 737

BOTH
Indicates that the utility is to collect the most and the least frequently
occurring values for the specified set of key columns when FREQVAL
NUMCOLS COUNT BOTH keywords are specified.

HISTOGRAM
Indicates, when specified with the INDEX option (see correlation-stats-spec) for
RUNSTATS INDEX, that histogram statistics are to be gathered for the
specified key columns. Histogram statistics can only be collected on the prefix
columns with the same order. Key columns for histogram statistics with a
mixed order are not allowed.

When RUNSTATS collects histogram statistics for partitioned indexes, it
aggregates them into SYSCOLDIST. RUNSTATS INDEX ignores the
HISTOGRAM keyword when processing XML NODEID or VALUES indexes.

NUMQUANTILES integer
Indicates how many quantiles that the utility is to collect. The integer value
must be greater than or equal to one. The number of quantiles that you
specify should never exceed the total number of distinct values in the
specified key columns. The maximum number of quantiles is 100.

When the NUMQUANTILES keyword is omitted, NUMQUANTILES takes
a default value of 100. Based on the number of keys in the index, the
number of quantiles is readjusted down to an optimal number.

SHRLEVEL
Indicates whether other programs that access the table space while RUNSTATS
is running must use read-only access or can change the table space.

CHANGE
Allows other programs to change the table space or index. With
SHRLEVEL CHANGE, RUNSTATS might collect statistics on uncommitted
data.

REFERENCE
Allows only read-only access by other programs.

REPORT
Specifies whether RUNSTATS is to generate a set of messages that report the
collected statistics.

NO Indicates that RUNSTATS is not to generate the set of messages.

YES
Indicates that the set of messages is to be sent as output to SYSPRINT. The
messages that RUNSTATS generates are dependent on the combination of
keywords in the utility control statement. However, these messages are not
dependent on the value of the UPDATE option. REPORT YES always
generates a report of space and access path statistics.

UPDATE
Indicates which collected statistics are to be inserted into the catalog tables.

ALL
Indicates that all collected statistics are to be updated in the catalog.

ACCESSPATH
Indicates that DB2 is to update the catalog with only those statistics that
are used for access path selection.

738 Utility Guide and Reference

SPACE
Indicates that DB2 is to update the catalog with only space-related
statistics.

NONE
Indicates that no catalog tables are to be updated with the collected
statistics.

Executing RUNSTATS always invalidates the dynamic cache; however,
when you specify UPDATE NONE REPORT NO, RUNSTATS invalidates
statements in the dynamic statement cache without collecting statistics,
updating catalogs tables, or generating reports.

SORTDEVT
Specifies the device type that the external sort program uses to dynamically
allocate the sort work data sets that are required.

device-type
Specifies any disk device type that is acceptable for the DYNALLOC
parameter of the SORT or OPTIONS option of the external sort program.

If you omit SORTDEVT, a sort is required, and you have not provided the DD
statements that the sort program requires for the temporary data sets,
SORTDEVT will default to SYSALLDA and the temporary data sets will be
dynamically allocated.

If you specify SORTDEVT and omit SORTNUM, no value is passed to the sort
program; the sort program uses its own default.

SORTNUM
Specifies the number of required sort work data sets that the sort program is to
allocate.

integer is the number of temporary data sets that can range from 2 to 255.

You need at least two sort work data sets for each sort. The SORTNUM value
applies to each sort invocation in the utility. For example, if there are three
indexes, SORTKEYS is specified, there are no constraints limiting parallelism,
and SORTNUM is specified as 8, then a total of 24 sort work data sets will be
allocated for a job.

Each sort work data set consumes both above the line and below the line
virtual storage, so if you specify too high a value for SORTNUM, the utility
may decrease the degree of parallelism due to virtual storage constraints, and
possibly decreasing the degree down to one, meaning no parallelism.

HISTORY
Indicates which statistics are to be recorded in the catalog history tables. The
value that you specify for HISTORY does not depend on the value that you
specify for UPDATE.

The default is the value of the STATISTICS HISTORY subsystem parameter on
the DSNTIPO installation panel. By default, this parameter value is NONE.

ALL
Indicates that all collected statistics are to be updated in the catalog history
tables.

ACCESSPATH
Indicates that DB2 is to update the catalog history tables with only those
statistics that are used for access path selection.

Chapter 29. RUNSTATS 739

SPACE
Indicates that DB2 is to update the catalog history tables with only
space-related statistics.

NONE
Indicates that no catalog history tables are to be updated with the collected
statistics.

FORCEROLLUP
Specifies whether aggregation or rollup of statistics is to occur even if statistics
have not been gathered on some partitions. This option enables the optimizer
to select the best access path.

YES
Indicates that forced aggregation or rollup processing is to be done, even
though some partitions might not contain data.

NO Indicates that aggregation or rollup is to be done only if data is available
for all partitions.

If the value for STATISTICS ROLLUP on panel DSNTIPO is NO and data is
not available for all partitions, DB2 issues message DSNU623I.

RESET ACCESSPATH
Resets access path statistics for all tables in the specified table space and
related indexes. Real-time statistics and space statistics in the catalog for the
target objects are not reset. For a complete list of the statistics that are reset or
deleted when you specify this option, see: “Resetting access path statistics” on
page 762.

Important: You cannot recover previous values after the RUNSTATS utility is
invoked with the RESET ACCESSPATH option, unless a statistics history is
maintained. Specifying the HISTORY_ACCESSPATH option only records when
the access path statistics were reset, and does not provide a method for
recovering the previous values. For more information about how to maintain a
statistics history, see “Collecting statistics history” on page 752.

Statements that refer to the objects for which statistics are reset are invalidated
in the dynamic statement cache.

This option cannot be specified for LOB table spaces.

When this RESET ACCESSPATH is used, other keywords that specify the
specific statistics to be collected within the table space cannot be specified.

HISTORY ACCESSPATH
Inserts rows into the following tables for each object for which the access path
statistics are reset when the RESET ACCESSPATH option is specified:
v SYSIBM.SYSTABLES_HIST for tables.
v SYSIBM.SYSINDEXES_HIST for indexes.

740 Utility Guide and Reference

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|

|
|
|

|

|

Related tasks:

Automating statistics maintenance (DB2 Performance)
Related reference:
Chapter 15, “LISTDEF,” on page 207

DB2 Sort
Related information:

DFSORT Application Programming Guide

The RUNSTATS profile syntax
The options of a RUNSTATS profile are stored within the PROFILE_TEXT column
of the SYSTABLES_PROFILES catalog table. These are existing RUNSTATS options
and normally have the same meanings as they do when specified directly in a
RUNSTATS utility control statement.

You can specify the following statistics collection options in a RUNSTATS profile:
v COLUMN
v COLGROUP
v FREQVAL
v COUNT
v MOST
v BOTH
v LEAST
v INDEX
v KEYCARD
v NUMCOLS
v COUNT
v MOST
v BOTH
v LEAST
v HISTOGRAM
v NUMQUANTILES

The profile contains the default values for any options that are not specified.

When you update an existing profile that contains a partitioned index, the PART
keyword must be specified on all index specifications for that index, or omitted
from the index specification for that index. RUNSTATS profile processing enforces
this requirement. Any profile modifications done through SQL statements must
follow the same restriction, or error messages result when the profile is used.

For a given partitioned index:
v Any new index specifications without the PART keyword replace all index

specifications in the profile regardless of the PART keyword specification.
v Any new index specification with the PART keyword replaces only the existing

index specification with the same PART specified, or a specification without the
PART keyword.

Chapter 29. RUNSTATS 741

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_automatestatistics.htm#db2z_automatestatistics
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

The PROFILE functions cannot be executed when there are syntax errors in the
statistics profile. Syntax errors can be corrected using RUNSTATS UPDATE
PROFILE or SQL UPDATE, or by deleting the profile with RUNSTATS DELETE
PROFILE or SQL DELETE.

�� column-spec
colgroup-spec index-spec

��

column-spec:

��

�

COLUMN (ALL)

,
(1)

COLUMN (column-name)

��

Notes:

1 The same column name must not be specified more than once. If all columns are listed in the
COLUMN option, RUNSTATS treats it as-is, and does not replace the list with the
COLUMN(ALL) option. You must specify the COLUMN(ALL) option explicitly.

colgroup-spec:

�� �

,

COLGROUP (column-name) colgroup-stats-spec ��

index-spec:

742 Utility Guide and Reference

��

�

INDEX (ALL) correlation-stats-spec
(1)

INDEX (*) correlation-stats-spec
,

INDEX (index-name correlation-stats-spec)

��

Notes:

1 INDEX(*) is an internal representation of INDEX(ALL) that DB2 uses only in the context of
RUNSTATS profiles, and is not valid when specified in any RUNSTATS control statement. When
you specify the INDEX(ALL) option in a RUNSTATS control statement that creates a profile, DB2
uses INDEX(*) in the PROFILE_TEXT column of the SYSIBM.SYSTABLES_PROFILES catalog
table. However, you must specify INDEX(*) instead of INDEX(ALL)) if you modify the profile by
updating the value of the PROFILE_TEXT column directly.

colgroup-stats-spec:

��
MOST NUMQUANTILES 100

FREQVAL COUNT integer HISTOGRAM
BOTH NUMQUANTILES integer
LEAST

��

correlation-stats-spec:

��

(1)
KEYCARD

�
FREQVAL NUMCOLS 1 COUNT 10 MOST

MOST
FREQVAL NUMCOLS integer COUNT integer

BOTH
LEAST

NUMCOLS 1 NUMQUANTILES 100
HISTOGRAM

NUMQUANTILES 100
NUMCOLS integer

NUMQUANTILES integer

��

Notes:

1 The KEYCARD option is deprecated. The KEYCARD functionality is now built into the normal
execution of the RUNSTATS utility and cannot be disabled.

Chapter 29. RUNSTATS 743

Related tasks:

Automating statistics maintenance (DB2 Performance)

Maintaining statistics in the catalog (DB2 Performance)
“Creating RUNSTATS profiles” on page 754
“Updating RUNSTATS profiles” on page 755

Before running RUNSTATS
Certain activities might be required before you run the RUNSTATS utility,
depending on your situation.

You can use SQL to manually update the catalog columns that RUNSTATS
updates. Use caution when running RUNSTATS after any user has manually
updated the statistic columns in the catalog. RUNSTATS replaces any values that
the user changed.

Restriction: RUNSTATS might not provide useful statistics on encrypted data.

Data sets that RUNSTATS uses
The RUNSTATS utility uses a number of data sets during its operation.

The following table lists the data sets that RUNSTATS uses. The table lists the DD
name that is used to identify the data set, a description of the data set, and an
indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 103. Data sets that RUNSTATS uses

Data set Description Required?

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

RNPRIN01 A data set that contains messages from the
sort program (usually, SYSOUT or
DUMMY). This data set is used when
distribution statistics are collected for
column groups.

No1

STPRIN01 A data set that contains messages from the
sort program (usually, SYSOUT or
DUMMY). This data set is used when
frequency statistics are collected on
data-partitioned secondary indexes, or when
TABLESPACE TABLE COLGROUP
FREQVAL is specified.

Yes1,2,5

Sort work data sets6 Temporary data sets for sort input and
output when collecting statistics on at least
one data-partitioned secondary index. This
data set is used when the COLGROUP
option is specified or the COLGROUP and
FREQVAL options are specified. The DD
names have the form ST01WKnn.

No3,4

744 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_automatestatistics.htm#db2z_automatestatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_maintaincatalogstatistics.htm#db2z_maintaincatalogstatistics

Table 103. Data sets that RUNSTATS uses (continued)

Data set Description Required?

Sort work data sets6 Temporary data sets for sort input and
output when collecting distribution statistics
for column groups. The DD names have the
form STATWK01.

No1,4

Sort work data sets6 Temporary data sets for sort input and
output when collecting frequency statistics.
The DD names have the form SORTWK01
and ST02WKnn.

No4

Note:
1. Required when collecting distribution statistics for column groups.
2. STPRIN01 is required if statistics are being collected on at least one data-partitioned

secondary index, but RUNSTATS dynamically allocates the STPRIN01 data set if
UTPRINT is allocated to SYSOUT.

3. Required when collecting statistics on at least one data-partitioned secondary index.
4. If the DYNALLOC parm of the SORT program is not turned on, you need to allocate the

data set. Otherwise, the sort program dynamically allocates the temporary data set.
5. Required when the COLGROUP with FREQVAL options are specified.
6. It is recommended that you use dynamic allocation by specifying SORTDEVT in the

utility statement because dynamic allocation reduces the maintenance required of the
utility job JCL.

The following objects are named in the utility control statement and do not require
DD statements in the JCL:

Table space or index
Object that is to be scanned.

Calculating the size of the sort work data sets

Depending on the type of statistics that RUNSTATS collects, the utility uses the
ST01WKnn data sets, the SORTWK01 data set, both types of data sets, or neither.

The ST01WKnn data sets are used when collecting statistics on at least one
data-partitioned secondary index. To calculate the approximate size (in bytes) of
the ST01WKnn data set, use the following formula:

2 ×(maximum record length × numcols × (count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length
Maximum record length of the SYSCOLDISTSTATS record that is processed
when collecting frequency statistics (You can obtain this value from the
RECLENGTH column in SYSTABLES.)

numcols
Number of key columns to concatenate when you collect frequent values
from the specified index.

count Number of frequent values that RUNSTATS is to collect.

The SORTWK01 data set is used when collecting distribution statistics. To calculate
the approximate size (in bytes) of the SORTWK01 data set, use the following
formula:

Chapter 29. RUNSTATS 745

(longest_record_length + prefix) × sum from 1 to N (#colgroupsn × #rows - n)

The variables in the preceding formula have the following values:

N Number of tables for which distribution statistics are collected

#colgroupsn

Number of column groups that are specified for the nth table

#rows Number of rows for the nth table

The ST02WKnn data sets are used when collecting frequency statistics on at least
one COLGROUP. To calculate the approximate size (in bytes) of the ST02WKnn
data set, use the following formula:

2 ×(maximum record length × (count + 2) × number of parts)

The variables in the preceding formula have the following values:

maximum record length
Maximum record length of the SYSCOLDISTSTATS record that is processed
when collecting frequency statistics (You can obtain this value from the
RECLENGTH column in SYSTABLES.)

count Number of frequent values that RUNSTATS is to collect.

Sort work data sets cannot span volumes. Smaller volumes require more sort work
data sets to sort the same amount of data; therefore, large volume sizes can reduce
the number of needed sort work data sets. When you allocate sort work data sets
on disk, the recommended amount of space to allow provides at least 1.2 times the
amount of data that is to be sorted.
Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

Concurrency and compatibility for RUNSTATS
The RUNSTATS utility has certain concurrency and compatibility characteristics
associated with it.

DB2 treats individual data and index partitions as distinct target objects. Utilities
operating on different partitions of the same table space or index space are
compatible.

Claims

The following table shows which claim classes RUNSTATS claims and drains and
any restrictive state that the utility sets on the target object.

Table 104. Claim classes of RUNSTATS operations

Target

RUNSTATS
TABLESPACE
SHRLEVEL
REFERENCE

RUNSTATS
TABLESPACE
SHRLEVEL
CHANGE

RUNSTATS
INDEX
SHRLEVEL
REFERENCE

RUNSTATS
INDEX
SHRLEVEL
CHANGE

Table space or
partition

DW/UTRO CR/UTRW1 None None

746 Utility Guide and Reference

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

Table 104. Claim classes of RUNSTATS operations (continued)

Target

RUNSTATS
TABLESPACE
SHRLEVEL
REFERENCE

RUNSTATS
TABLESPACE
SHRLEVEL
CHANGE

RUNSTATS
INDEX
SHRLEVEL
REFERENCE

RUNSTATS
INDEX
SHRLEVEL
CHANGE

Index or
partition

None None DW/UTRO CR/UTRW

Legend:
v DW - Drain the write claim class - concurrent access for SQL readers.
v CR - Claim the read claim class.
v UTRO - Utility restrictive state - read-only access allowed.
v UTRW - Utility restrictive state - read-write access allowed.
v None - Object is not affected by this utility.

Note:

1. If the target object is a segmented table space, SHRLEVEL CHANGE does not allow you
to concurrently execute an SQL searched DELETE without the WHERE clause.

Compatibility

The following table shows which utilities can run concurrently with RUNSTATS on
the same target object. The target object can be a table space, an index space, or a
partition of a table space or index space. If compatibility depends on particular
options of a utility, that information is also shown in the table.

Table 105. Compatibility of RUNSTATS with other utilities

Utility

RUNSTATS
TABLESPACE
SHRLEVEL
REFERENCE

RUNSTATS
TABLESPACE
SHRLEVEL
CHANGE

RUNSTATS
INDEX
SHRLEVEL
REFERENCE

RUNSTATS
INDEX
SHRLEVEL
CHANGE

CHECK DATA DELETE NO Yes Yes Yes Yes

CHECK DATA DELETE YES No No No No

CHECK INDEX Yes Yes Yes Yes

CHECK LOB Yes Yes Yes Yes

COPY INDEXSPACE Yes Yes Yes Yes

COPY TABLESPACE Yes Yes Yes Yes

DIAGNOSE Yes Yes Yes Yes

LOAD No No No No

LOAD SHRLEVEL CHANGE No Yes No Yes

MERGECOPY Yes Yes Yes Yes

MODIFY RECOVERY Yes Yes Yes Yes

QUIESCE Yes Yes Yes Yes

REBUILD INDEX Yes Yes No No

RECOVER ERROR RANGE No No Yes Yes

RECOVER INDEX Yes Yes No No

RECOVER INDEX TOCOPY or
TOLOGPOINT

No No No No

RECOVER TABLESPACE (no
options)

No No Yes Yes

Chapter 29. RUNSTATS 747

Table 105. Compatibility of RUNSTATS with other utilities (continued)

Utility

RUNSTATS
TABLESPACE
SHRLEVEL
REFERENCE

RUNSTATS
TABLESPACE
SHRLEVEL
CHANGE

RUNSTATS
INDEX
SHRLEVEL
REFERENCE

RUNSTATS
INDEX
SHRLEVEL
CHANGE

RECOVER TABLESPACE TOCOPY
or TORBA

No No No No

REORG INDEX Yes Yes No No

REORG TABLESPACE UNLOAD
CONTINUE or PAUSE

No No No No

REORG TABLESPACE UNLOAD
ONLY or EXTERNAL

Yes Yes Yes Yes

REPAIR DUMP or VERIFY Yes Yes Yes Yes

REPAIR LOCATE INDEX PAGE
REPLACE

Yes Yes No No

REPAIR LOCATE KEY or RID
DELETE or REPLACE

No No No Yes

REPAIR LOCATE TABLESPACE
PAGE REPLACE

No No Yes Yes

REPORT Yes Yes Yes Yes

RUNSTATS Yes Yes Yes Yes

STOSPACE Yes Yes Yes Yes

UNLOAD Yes Yes Yes Yes

When to use RUNSTATS
DB2 uses the statistics that RUNSTATS generates to determine access paths to data.
If no statistics are available, DB2 makes fixed default assumptions. You can also
use the RUNSTATS statistics to determine when to reorganize or redesign objects.

To ensure the effectiveness of the paths selected, run RUNSTATS at the following
times:
v After a table is loaded
v After an index is physically created
v After a table space is reorganized if inline statistics were not collected
v After running extensive updates, deletions, or insertions in a table space
v After running any of the following utilities without collecting inline statistics:

RECOVER TABLESPACE, REBUILD INDEX, or REORG INDEX
v Before running REORG with the OFFPOSLIMIT, INDREFLIMIT, or

LEAFDISTLIMIT options
v After running the ALTER TABLE ROTATE PARTITION statement run

RUNSTATS with REORG .

You should recollect frequency statistics when either of the following situations is
true:
v The distribution of the data changes
v The values over which the data is distributed change

748 Utility Guide and Reference

Determining when to gather statistics and what statistics to gather depends on a
number of factors. The preceding information is only a guideline. You should
determine your own statistic collection strategy.

One common situation in which old statistics can affect query performance is when
a table has columns that contain data or ranges that are constantly changing (for
example, dates and timestamps). These types of columns can result in old values in
the HIGH2KEY and LOW2KEY columns in the catalog. You should periodically
collect column statistics on these changing columns so that the values in
HIGH2KEY and LOW2KEY accurately reflect the true range of data, and range
predicates can obtain accurate filter factors.

You can also use statistics to assess the table space status. Changes to a table space
can change its space requirements and performance. You can use the RUNSTATS
utility to update the table space statistics. You can then use the statistics to assess
the current status of the table space and decide whether to reorganize or redesign
the table space.

Collecting distribution statistics for column groups
When RUNSTATS collects distribution statistics for columns groups, the utility
invokes a sort program to sort the distribution statistics. This sort requires its own
work data set. The DD name is STATWK01.

About this task

You can let this data set be dynamically allocated through the sort program, or you
can allocate the data set through a DD statement in the job JCL.

If you need to control the size or placement of the data sets, use the JCL
statements to allocate STATWK01.

Procedure

To collect distribution statistics for column groups:
v To let the work data set be dynamically allocated, remove the STATWK01 DD

statements from the job and allocate the UTPRINT statement to SYSOUT.
v To let the sort program dynamically allocate this data set, specify the SORTDEV

option in the RUNSTATS utility control statement.
Related reference:
“Data sets that RUNSTATS uses” on page 744

DB2 Sort
Related information:

DFSORT Application Programming Guide

Updating statistics for a partitioned table space
You can run RUNSTATS on one or more single partitions of one or more table
spaces or indexes (including data-partitioned secondary indexes). When you run
the utility on a single partition of an object, RUNSTATS uses the resulting
partition-level statistics to update the aggregate statistics for the entire object.

Chapter 29. RUNSTATS 749

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

For partition-by-growth table spaces, RUNSTATS waits to drain the table space or
index if necessary. If the object does not drain, RUNSTATS continues trying to
drain the object. However, RUNSTATS does not have its own options to control
this drain behavior as some other utilities do. (Other utilities have the
DRAIN_WAIT and RETRY options). Instead, RUNSTATS uses the IRLMRWT
subsystem parameter value for the drain wait time and the UTIMOUT subsystem
parameter value for the retry value. If RUNSTATS finds these values to be
excessive, it uses a lower value.
Related reference:

RESOURCE TIMEOUT field (IRLMRWT subsystem parameter) (DB2
Installation and Migration)

UTILITY TIMEOUT field (UTIMOUT subsystem parameter) (DB2 Installation
and Migration)

Running RUNSTATS on the DB2 catalog
You can run RUNSTATS on the DB2 catalog to gather index space and table space
statistics for various catalog tables. DB2 uses the collected statistics on the catalog
to determine the access path for user queries of the catalog.

The following sample shows part of the output from a RUNSTATS job on a catalog
table space and its indexes:

Improving RUNSTATS performance
Certain activities might improve the performance of the RUNSTATS utility.

You can improve the performance of RUNSTATS on table spaces that are defined
with the LARGE option by specifying the SAMPLE option, which reduces the
number of rows that are scanned for statistics.

Consider running several RUNSTATS jobs concurrently against different partitions
of a partitioned table space or index rather than running a single RUNSTATS job
on the entire table space or index. The sum of the processor time for the
concurrent jobs is roughly equivalent to the processor time for running the single
RUNSTATS job. However, the total elapsed time for the concurrent jobs can be
significantly less than when you run RUNSTATS on an entire table space or index.

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = DSNTEX
DSNU050I DSNUGUTC - RUNSTATS TABLESPACE DSNDB06.SYSDBASE INDEX(ALL)
DSNU610I # DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR DSNDB06.SYSDBASE SUCCESSFUL
DSNU610I # DSNUSUTS - SYSTABLESPACE CATALOG UPDATE FOR DSNDB06.SYSDBASE SUCCESSFUL
DSNU610I # DSNUSUTB - SYSTABLES CATALOG UPDATE FOR SYSIBM.SYSTABLESPACE SUCCESSFUL

DSNU610I # DSNUSUTB - SYSTABLES CATALOG UPDATE FOR SYSIBM.SYSSYNONYMS SUCCESSFUL
DSNU610I # DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR SYSIBM.DSNDSX01 SUCCESSFUL
DSNU610I # DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR SYSIBM.DSNDSX01 SUCCESSFUL
DSNU610I # DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR SYSIBM.DSNDSX01 SUCCESSFUL
DSNU610I # DSNUSUFL - SYSFIELDS CATALOG UPDATE FOR SYSIBM.DSNDSX01 SUCCESSFUL

DSNU610I # DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR SYSIBM.DSNDYX01 SUCCESSFUL
DSNU610I # DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR SYSIBM.DSNDYX01 SUCCESSFUL
DSNU610I # DSNUSUCO - SYSCOLUMN CATALOG UPDATE FOR SYSIBM.DSNDYX01 SUCCESSFUL
DSNU610I # DSNUSUFL - SYSFIELDS CATALOG UPDATE FOR SYSIBM.DSNDYX01 SUCCESSFUL
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 95. Example RUNSTATS output from a job on a catalog table space

750 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_irlmrwt.htm#db2z_dsntipi03
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_irlmrwt.htm#db2z_dsntipi03
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_utimout.htm#db2z_dsntip610
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_utimout.htm#db2z_dsntip610

Run RUNSTATS on only the columns or column groups that might be used as
search conditions in a WHERE clause of queries. Use the COLGROUP option to
identify the column groups. Collecting additional statistics on groups of columns
that are used as predicates improves the accuracy of the filter factor estimate and
leads to improved query performance. Collecting statistics on all columns of a table
is costly and might not be necessary.

In some cases, you can avoid running RUNSTATS by specifying the STATISTICS
keyword in LOAD, REBUILD INDEX, or REORG utility statements. When you
specify STATISTICS in one of these utility statements, DB2 updates the catalog
with table space or index space statistics for the objects on which the utility is run.
However, you cannot collect column group statistics with the STATISTICS
keyword. You can collect column group statistics only by running the RUNSTATS
utility. If you restart a LOAD or REBUILD INDEX job that uses the STATISTICS
keyword, DB2 does not collect inline statistics. For these cases, you need to run the
RUNSTATS utility after the restarted utility job completes.
Related concepts:
“Restart of REORG TABLESPACE” on page 626

Collecting frequency statistics for data-partitioned secondary indexes
When RUNSTATS collects frequency statistics on at least one data-partitioned
secondary index, the utility invokes a sort program to sort the statistics. This sort
requires temporary sort work data sets. The DD name is ST01WKnn.

About this task

You can let the ST01WKnn data sets be dynamically allocated through the SORT
program or allocate the data sets through DD statements in the job JCL. If you
need to control the size or placement of the data sets, use the JCL statements to
allocate ST01WKnn.

Procedure

To collect frequency statistics for data-partitioned secondary indexes:
v To let the sort work data sets be dynamically allocated, remove the ST01WKnn

DD statements from the job and allocate the UTPRINT statement to SYSOUT.
v To let the SORT program dynamically allocate these data sets, specify the

SORTDEV option in the RUNSTATS utility control statement to specify the
device type for the temporary data sets. Optionally, you can also use the
SORTNUM option to specify the number of temporary data sets to use.

Related reference:
“Data sets that RUNSTATS uses” on page 744

DB2 Sort
Related information:

DFSORT Application Programming Guide

Invalidating statements in the dynamic statement cache
DB2 invalidates statements in the dynamic statement cache when you run the
RUNSTATS utility on objects to which those statements refer. In a data sharing
environment, the relevant statements are also invalidated in the cache of other
members in the group.

Chapter 29. RUNSTATS 751

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

About this task

DB2 invalidates these cached statements to ensure that the next invocations of
those statements are fully prepared and use the latest access path changes. This
invalidation affects only future PREPARE operations. The next time that one of the
invalidated statements is prepared, a new statement is built for the dynamic
statement cache. However, any DB2 threads that already retrieved a copy of the
statement from the dynamic statement cache before RUNSTATS completes
continues to use that copy of the statement.

Important: If you received SQLCODE -904 with reason code 00E70081, this
procedure for invalidating statements in the dynamic statement cache does not
solve the problem.

Procedure

To invalidate statements in the dynamic statement cache:

Run RUNSTATS on the objects that are referenced by those statements. If you do
not want RUNSTATS to gather statistics and only invalidate statements in the
dynamic statement cache, specify the options UPDATE NONE and REPORT NO.
Related tasks:

Improving dynamic SQL performance by enabling the dynamic statement
cache (DB2 Application programming and SQL)

Capturing performance information for dynamic SQL statements (DB2
Application programming and SQL)
Related reference:
“Syntax and options of the RUNSTATS control statement” on page 722
Related information:

00E70081 (DB2 Codes)

Collecting statistics history
You can collect statistics history by using the RUNSTATS utility.

Procedure

To collect statistics history:

Specify the HISTORY option in the RUNSTATS utility control statement. When you
specify HISTORY with a value other than NONE, RUNSTATS updates the catalog
history tables with the access path statistics, space statistics, or both, depending on
the parameter that you specify with HISTORY. The HISTORY option does not
update the main catalog statistics that DB2 uses to select access paths. You can use
the HISTORY option to monitor how statistics change over time without updating
the main catalog statistics that DB2 uses to select access paths.

752 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_enabledynamicstmtcache.htm#db2z_enabledynamicstmtcache
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_enabledynamicstmtcache.htm#db2z_enabledynamicstmtcache
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_findinfostmtcache.htm#db2z_findinfostmtcache
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_findinfostmtcache.htm#db2z_findinfostmtcache
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/00e70081.htm#e70081

Related tasks:

Collecting history statistics (DB2 Performance)
Related reference:

History statistics (DB2 Performance)
Chapter 29, “RUNSTATS,” on page 721

STATISTICS HISTORY field (STATHIST subsystem parameter) (DB2 Installation
and Migration)

Collection of statistics on LOB table spaces
You can specify that RUNSTATS is to collect space statistics on a LOB table space.
You can use these statistics to determine when the LOB table space should be
reorganized. No statistics on the LOB table space affect access path selection.

Collection of statistics on XML objects
You can use separate RUNSTATS control statements to collect statistics on XML
table spaces, or on their associated base table spaces.

You can specify that RUNSTATS is to collect space statistics on an XML table
space. You can use those statistics to determine when the XML table space should
be reorganized. Statistics that are collected on the XML table space also affect
access path selection.

RUNSTATS ignores the following keywords for XML table spaces:
v COLGROUP
v FREQVAL MOST|LEAST|BOTH
v HISTOGRAM

XML indexes are related to XML tables, and not to the associated base tables. If
you specify a base table space and an XML index in the same RUNSTATS control
statement, DB2 generates an error. When you run RUNSTATS against a base table,
RUNSTATS collects statistics only for indexes on the base table, including the
document ID index.

RUNSTATS profiles
A RUNSTATS profile is a saved set of options for the RUNSTATS utility that apply
for a particular table. DB2 uses RUNSTATS profiles for autonomic statistics
maintenance. You can also use RUNSTATS profiles to quickly invoke the
RUNSTATS utility with a predefined set of options.

You can specify a complete set of RUNSTATS options in a profile, or specify only a
few options, or even only a single option. The options that you specify are stored
in the PROFILE_TEXT column of the SYSIBM.SYSTABLES_PROFILES catalog table.
If you do not specify values for the following options when you create the profile,
DB2 uses default values, as in any RUNSTATS invocation:
v COLUMN
v COLGROUP
v FREQVAL
v COUNT
v MOST

Chapter 29. RUNSTATS 753

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_collecthistorystatistics.htm#db2z_collecthistorystatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_historystatistics.htm#db2z_historystatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_stathist.htm#db2z_dsntip607
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_stathist.htm#db2z_dsntip607

v BOTH
v LEAST
v INDEX
v KEYCARD
v NUMCOLS
v COUNT
v HISTOGRAM
v NUMQUANTILES

RUNSTATS profiles are saved as a single row in the
SYSIBM.SYSTABLES_PROFILES catalog table. After your create a profile for a
table, you can specify that DB2 uses the same options that were specified in the
table when you invoke RUNSTATS again later. When you automate statistics
maintenance, DB2 creates or updates the single profile for each table that is not
excluded from autonomic maintenance. Because only a single RUNSTATS profile
can exist for each table, DB2 uses any options that you have specified in existing
profiles for a particular table when the ADMIN_UTL_MONITOR stored procedure
first executes for autonomic statistics monitoring.

Regardless of whether profiles exist, or whether autonomic statistics maintenance is
enabled, you can always invoke the RUNSTATS utility and specify customized
options without using the profile.

When you specify the use of RUNSTATS profiles and no profile exists for a target
table, a default profile is used:
v When a table name is not specified, TABLE ALL INDEX ALL is used for the

profile specification.
v When a table name is specified, COLUMN ALL INDEX ALL is used for the

profile specification.
Related tasks:

Automating statistics maintenance (DB2 Performance)
Related reference:

SYSIBM.SYSTABLES_PROFILES table (DB2 SQL)

Creating RUNSTATS profiles
You can create and use RUNSTATS profiles to invoke RUNSTATS for particular
tables with a consistent set of options, without the need to explicitly specify the
options each time. DB2 also uses the RUNSTATS profiles when you implement
autonomic statistics maintenance.

About this task

DB2 uses RUNSTATS profiles when you enable autonomic statistics maintenance.
When you first enable autonomic statistics maintenance, the
ADMIN_UTL_MONITOR stored procedure sets a profile for each monitored table
based on the existing statistics. However, if a profile is already exists for a table,
DB2 uses that existing profile.

Procedure

To set a RUNSTATS profile:

754 Utility Guide and Reference

|
|

|
|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_automatestatistics.htm#db2z_automatestatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsystablesprofilestable.htm#db2z_sysibmsystablesprofilestable

v Issue the following utility control statement to explicitly specify the collection
options in the profile:
RUNSTATS TABLESPACE ts-name TABLE table-name runstats-options SET PROFILE

DB2 records the values specified by runstats-options in the PROFILE_TEXT
column of the SYSIBM.SYSTABLES_PROFILES catalog table. DB2 uses the
default values for any options that are not specified.

v Issue the following utility control statement to automatically specify options in
the profile based on the existing statistics for the specified table:
RUNSTATS TABLESPACE ts-name TABLE table-name SET PROFILE FROM EXISTING STATS

Results

No statistics are collected when you invoke the RUNSTATS utility with the SET
PROFILE option. If a profile already exists for the specified table, that profile is
replaced with the new one and the existing profile is lost because only one profile
can exist for a particular table.
Related reference:
“The RUNSTATS profile syntax” on page 741

Using RUNSTATS profiles
You can use RUNSTATS profiles to invoke the RUNSTATS utility with a predefined
set of statistics collection options. DB2 also uses RUNSTATS profiles when you
enable autonomic statistics maintenance.

Procedure

To invoke RUNSTATS by using a profile:

Issue the following RUNSTATS control statement:
RUNSTATS TABLESPACE ts-name TABLE table-name USE PROFILE

DB2 collects statistics for the table specified by table-name according to the
collection options that are specified in the profile, and issues a message to indicate
that the profile was used.
If no profile exists for a target table, a default profile is used:
v When a table name is not specified , TABLE ALL INDEX ALL is used for the

profile specification.
v When a table name is specified, COLUMN ALL INDEX ALL is used for the

profile specification.
Related tasks:

Automating statistics maintenance (DB2 Performance)
“Creating RUNSTATS profiles” on page 754
Related information:

DSNU1382I (DB2 Messages)

Updating RUNSTATS profiles
You can modify options to change the statistics that are collected by existing
RUNSTATS profiles that you have created, or those that are created for autonomic
statistics monitoring by the ADMIN_UTL_MONITOR stored procedure.

Chapter 29. RUNSTATS 755

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_automatestatistics.htm#db2z_automatestatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu1382i.htm#dsnu1382i

Procedure

To modify an existing RUNSTATS profile:

Issue following RUNSTATS control statement:
RUNSTATS TABLESPACE ts-name TABLE table-name runstats-options UPDATE PROFILE

DB2 replaces any existing options that are specified in PROFILE_TEXT column of
the SYSIBM.SYSTABLES_PROFILES catalog table with values options that are
specified in runstats-options for the table that is specified by table-name. Any options
that are not specified remain unchanged in the existing profile. If no profile exists
for the specified table, DB2 issues an error message.
Related reference:
“The RUNSTATS profile syntax” on page 741
Related information:

DSNU1363I (DB2 Messages)

Deleting RUNSTATS profiles
You can delete an existing RUNSTATS profile.

Procedure

To delete existing RUNSTATS profiles:

Issue the following utility control statement:
RUNSTATS TABLESPACE ts-name TABLE options DELETE PROFILE

Any existing profile for the table or tables specified in options is removed. No
statistics are collected when you invoke the RUNSTATS utility with the DELETE
PROFILE option. If no profile exists for the specified table or tables DB2 issues an
error message.
Related reference:
“The RUNSTATS profile syntax” on page 741
Related information:

DSNU1363I (DB2 Messages)

Combining autonomic and manual statistics maintenance
When autonomic statistics maintenance is enabled, you can still invoke the
RUNSTATS utility to capture statistics manually.

About this task

When autonomic statistics monitoring and maintenance is enabled, DB2 uses
RUNSTATS profiles to maintain the statistics for each table that is not excluded
from autonomic maintenance. However, you can still explicitly invoke the
RUNSTATS utility at any time either in the traditional manner, or by using profiles
at any time.

Procedure

To effectively combine autonomic and manual statics maintenance activities, you
might follow the following recommendations:

756 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu1363i.htm#dsnu1363i
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu1363i.htm#dsnu1363i

v Before enabling autonomic statistics maintenance, consider whether to delete all
existing RUNSTATS profiles by issuing RUNSTATS control statements and
specifying the DELETE PROFILE option. By doing that, you enable DB2 to
create new RUNSTATS profiles based on analysis of your existing statistics.
However, this step is optional if you prefer that DB2 uses the settings of your
existing RUNSTATS profiles for autonomic maintenance.

v When you want to collect statistics with different settings than those that are
used for autonomic maintenance, use the traditional method for invoking the
RUNSTATS utility and explicitly specify the options that you want to use.
Invoking RUNSTATS in that manner has no impact on the options that are
specified in the profile, and periodic autonomic maintenance can continue
unchanged. However, because the manual invocation of RUNSTATS does not
change the RUNSTATS profile, the manually collected might be lost at the next
invocation of RUNSTATS that uses the profile. Consequently, you might want to
update the profile to use the new options that were specified in the manual
invocation.

v When you want to manually invoke the collection of statistics outside of the
autonomic maintenance windows, but with the usual settings, you can specify
the USE PROFILE option in the RUNSTATS control statement.

v When you want to modify the settings that are used for autonomic maintenance,
you can issue a RUNSTATS control statement with the UPDATE PROFILE
option and specify that options that you want to change. After you update the
profile, DB2 uses the new options for autonomic maintenance activities.

Related tasks:

Maintaining statistics in the catalog (DB2 Performance)

Automating statistics maintenance (DB2 Performance)
“Deleting RUNSTATS profiles” on page 756
Related reference:
“Syntax and options of the RUNSTATS control statement” on page 722

Termination or restart of RUNSTATS
You can terminate and restart the RUNSTATS utility.

You can terminate RUNSTATS with the TERM UTILITY command.

You can restart a RUNSTATS utility job, but it starts from the beginning again.
Related concepts:
“Restart of an online utility” on page 39

Review of RUNSTATS output
The RUNSTATS utility updates columns in the catalog tables. When you specify
REPORT YES, the RUNSTATS utility also generates a report of the statistics that it
gathered.

The following table shows the catalog tables that RUNSTATS updates depending
on the value of the UPDATE option, the value of the HISTORY option, and the
source of the statistics (table space, partition, index or LOB table space).

Chapter 29. RUNSTATS 757

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_maintaincatalogstatistics.htm#db2z_maintaincatalogstatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_automatestatistics.htm#db2z_automatestatistics

Table 106. Catalog tables that RUNSTATS updates

Keyword UPDATE option HISTORY option
Catalog table that RUNSTATS
updates

TABLESPACE UPDATE ALL HISTORY ALL 4 SYSTABLESPACE
SYSTABLEPART1

SYSTABLEPART_HIST1

SYSTABLES1

SYSTABLES_HIST1

SYSTABSTATS1,2

SYSTABSTATS_HIST1,2

SYSLOBSTATS3

SYSLOBSTATS_HIST3

TABLESPACE UPDATE ALL HISTORY ACCESSPATH SYSTABLESPACE
SYSTABLES1

SYSTABLES_HIST1

SYSTABSTATS1,2

SYSTABSTATS_HIST1,2

TABLESPACE UPDATE ALL HISTORY SPACE SYSTABLEPART1

SYSTABLEPART_HIST1

SYSLOBSTATS3

SYSLOBSTATS_HIST3

TABLESPACE UPDATE ACCESSPATH2 HISTORY ALL 4 SYSTABLESPACE
SYSTABLES
SYSTABLES_HIST
SYSTABSTATS2

SYSTABSTATS_HIST2

TABLESPACE UPDATE ACCESSPATH2 HISTORY ACCESSPATH SYSTABLESPACE
SYSTABLES
SYSTABLES_HIST
SYSTABSTATS2

SYSTABSTATS_HIST2

TABLESPACE UPDATE ACCESSPATH2 HISTORY SPACE none

TABLESPACE UPDATE SPACE2 HISTORY ALL 4 SYSTABLEPART
SYSTABLEPART_HIST
SYSLOBSTATS3

SYSLOBSTATS_HIST3

SYSTABLES
SYSTABLES_HIST

TABLESPACE UPDATE SPACE2 HISTORY ACCESSPATH none

TABLESPACE UPDATE SPACE2 HISTORY SPACE SYSTABLEPART
SYSTABLEPART_HIST
SYSLOBSTATS3

SYSLOBSTATS_HIST3

SYSTABLES SYSTABLES_HIST

TABLE UPDATE ALL HISTORY ALL 4 SYSCOLUMNS
SYSCOLSTATS2

TABLE UPDATE ALL HISTORY ACCESSPATH SYSCOLUMNS
SYSCOLSTATS2

TABLE UPDATE ALL HISTORY SPACE none

TABLE UPDATE ACCESSPATH HISTORY ALL 4 SYSCOLUMNS
SYSCOLSTATS2

TABLE UPDATE ACCESSPATH HISTORY ACCESSPATH SYSCOLUMNS
SYSCOLSTATS2

758 Utility Guide and Reference

Table 106. Catalog tables that RUNSTATS updates (continued)

Keyword UPDATE option HISTORY option
Catalog table that RUNSTATS
updates

TABLE UPDATE ACCESSPATH HISTORY SPACE none

INDEX UPDATE ALL HISTORY ALL 4 SYSCOLUMNS
SYSCOLUMNS_HIST
SYSCOLDIST
SYSCOLDIST_HIST
SYSCOLDISTSTATS2

SYSCOLSTATS2

SYSINDEXES
SYSINDEXES _HIST
SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXSTATS2

INDEX UPDATE ALL HISTORY ACCESSPATH SYSCOLUMNS
SYSCOLUMNS_HIST
SYSCOLDIST
SYSCOLDIST_HIST
SYSCOLDISTSTATS2

SYSCOLSTATS2

SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXSTATS2

INDEX UPDATE ALL HISTORY SPACE SYSINDEXES
SYSINDEXES_HIST

INDEX UPDATE ACCESSPATH HISTORY ALL 4 SYSCOLUMNS
SYSCOLUMNS_HIST

SYSCOLDIST
SYSCOLDIST_HIST
SYSCOLDISTSTATS2

SYSCOLSTATS
SYSINDEXES
SYSINDEXES _HIST
SYSINDEXSTATS2

INDEX UPDATE ACCESSPATH HISTORY ACCESSPATH SYSCOLUMNS
SYSCOLUMNS_HIST
SYSCOLDIST
SYSCOLDIST_HIST
SYSCOLDISTSTATS2

SYSCOLSTATS
SYSINDEXES
SYSINDEXES _HIST
SYSINDEXSTATS2

INDEX UPDATE ACCESSPATH HISTORY SPACE SYSINDEXES
SYSINDEXES_HIST

INDEX UPDATE SPACE HISTORY ALL 4 SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXES5

SYSINDEXES_HIST5

INDEX UPDATE SPACE HISTORY ACCESSPATH none

INDEX UPDATE SPACE HISTORY SPACE SYSINDEXPART
SYSINDEXES5

Chapter 29. RUNSTATS 759

Table 106. Catalog tables that RUNSTATS updates (continued)

Keyword UPDATE option HISTORY option
Catalog table that RUNSTATS
updates

INDEX6 UPDATE ALL HISTORY ALL4 SYSKEYTARGETS
SYSKEYTARGETS_HIST
SYSKEYTARGETSTATS2

SYSKEYTGTDISTSTATS2

SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXSTATS2

SYSINDEXSTATS_HIST2

SYSINDEXES
SYSINDEXES_HIST
SYSKEYTGTDIST
SYSKEYTGTDIST_HIST

INDEX6 UPDATE ALL HISTORY ACCESSPATH SYSKEYTARGETS
SYSKEYTARGETS_HIST
SYSKEYTARGETSTATS2

SYSKEYTGTDISTSTATS2

SYSINDEXPART
SYSINDEXSTATS2

SYSINDEXSTATS_HIST2

SYSINDEXES
SYSINDEXES_HIST
SYSKEYTGTDIST
SYSKEYTGTDIST_HIST

INDEX6 UPDATE ALL HISTORY SPACE SYSKEYTARGETS
SYSKEYTARGETSTATS2

SYSKEYTGTDISTSTATS2

SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXSTATS2

SYSINDEXES
SYSINDEXES_HIST
SYSKEYTGTDIST

INDEX6 UPDATE ACCESSPATH HISTORY ALL4 SYSKEYTARGETS
SYSKEYTARGETS_HIST
SYSKEYTARGETSTATS2

SYSKEYTGTDISTSTATS2

SYSINDEXPART
SYSINDEXSTATS2

SYSINDEXSTATS_HIST2

SYSINDEXES
SYSINDEXES_HIST
SYSKEYTGTDIST
SYSKEYTGTDIST_HIST

INDEX6 UPDATE ACCESSPATH HISTORY ACCESSPATH SYSKEYTARGETS
SYSKEYTARGETS_HIST
SYSKEYTARGETSTATS2

SYSKEYTGTDISTSTATS2

SYSINDEXPART
SYSINDEXSTATS2

SYSINDEXSTATS_HIST2

SYSINDEXES
SYSINDEXES_HIST
SYSKEYTGTDIST
SYSKEYTGTDIST_HIST

760 Utility Guide and Reference

Table 106. Catalog tables that RUNSTATS updates (continued)

Keyword UPDATE option HISTORY option
Catalog table that RUNSTATS
updates

INDEX6 UPDATE ACCESSPATH HISTORY SPACE SYSKEYTARGETS
SYSKEYTARGETSTATS2

SYSKEYTGTDISTSTATS2

SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXSTATS2

SYSINDEXES
SYSINDEXES_HIST
SYSKEYTGTDIST

INDEX6 UPDATE SPACE HISTORY ALL4 SYSKEYTARGETS_HIST
SYSINDEXPART
SYSINDEXSTATS_HIST2

SYSINDEXES
SYSINDEXES_HIST
SYSKEYTGTDIST_HIST

INDEX6 UPDATE SPACE HISTORY ACCESSPATH SYSINDEXPART
SYSINDEXES
SYSINDEXES_HIST

INDEX6 UPDATE SPACE HISTORY SPACE SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXES
SYSINDEXES_HIST

Note:

1. Not applicable if the specified table space is a LOB table space.

2. Only updated for partitioned objects. When you run RUNSTATS against single partitions of an object, RUNSTATS
uses the partition-level statistics to update the aggregate statistics for the entire object. These partition-level
statistics are contained in the following catalog tables:
v SYSCOLSTATS
v SYSCOLDISTSTATS
v SYSTABSTATS
v SYSINDEXSTATS

3. Applicable only when the specified table space is a LOB table space.

4. When HISTORY NONE is specified, none of the catalog history tables are updated.

5. Only the SPACEF and STATSTIME columns are updated.

6. Applicable only when the target object is an expression-based index.

RUNSTATS sets the following columns to -1 for universal table spaces and table
spaces that are defined as LARGE:
v CARD in SYSTABLES
v CARD in SYSINDEXPART
v FAROFFPOS in SYSINDEXPART
v NEAROFFPOS in SYSINDEXPART
v FIRSTKEYCARD in SYSINDEXES
v FULLKEYCARD in SYSINDEXES

Chapter 29. RUNSTATS 761

Related reference:

Statistics used for access path selection (DB2 Performance)

DB2 catalog tables (DB2 SQL)

Resetting access path statistics
You can use the RUNSTATS utility to remove old and out-of-date access path
statistics for DB2 objects.

About this task

When the RUNSTATS utility is invoked over a period of time, statistics are
collected incrementally for target objects. The combination of many changes to
target objects and many RUNSTATS invocations, perhaps with different options,
might result in some previously collected statistics becoming outdated. Such
out-of-date statistics might cause DB2 to choose inefficient access paths for SQL
statements. One solution is to invoke the RUNSTATS utility again to refresh the
statistics. However, the task of formulating RUNSTATS invocations to solve the
problem might prove difficult because of the complicated nature of the many
previous RUNSTATS invocations.

When this situation occurs, you can invoke the RUNSTATS utility to reset the
access path statistics for all tables and indexes in a specified table space. When you
reset the statistics, the default values are used. No statistics are gathered or
reported. Space statistics and real-time statistics are not reset for the specified
objects. After your reset access path statistics, the previous values cannot be
recovered if no statistics history is available.

Procedure

To reset access path statistics:

Invoke the RUNSTATS utility, and specify the following options:
1. Specify the RESET ACCESSPATH option.
2. Optional: Specify the HISTORY ACCESSPATH option to record that the access

path statistics were reset in rows in the SYSIBM.SYSTABLES_HIST and
SYSIBM.SYSINDEXES_HIST statistics tables. This option only records that the
reset occurred and does not save the access path statistics values that are reset.

For example, you might issue the following utility control statement:
RUNSTATS TABLESPACE db-name.ts-name
TABLE table-name RESET ACCESSPATH

Statistics are not collected. Instead, the RUNSTATS utility resets the access path
statistics.

Results

Certain catalog table rows are updated with default values, and rows are deleted
from other catalog tables. All updated rows in the catalog tables contain the same
timestamp value. Real-time statistics and space for the specified object are not
reset. However, the dynamic statement cache is invalidated.

The following statistics are reset to the specified values:

762 Utility Guide and Reference

|

|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|
|
|
|

|

|
|

|
|

|

|
|
|
|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_statistics4accesspathselection.htm#db2z_statistics4accesspathselection
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_catalogtablesintro.htm#db2z_catalogtablesintro

SYSIBM.SYSTABLESPACE
The following values are changed:

Column Changed value

NACTIVE -1

NACTIVEF -1

STATSTIME The TIMESTAMP value for the reset
operation

SYSIBM.SYSCOLUMNS
The following values are changed:

Column Changed value

COLCARD -1

COLCARDF -1

HIGH2KEY Zero-length blank

LOW2KEY Zero-length blank

STATSTIME The TIMESTAMP value for the reset
operation

STATS_FORMAT Blank

SYSIBM.SYSTABLES
The following values are changed:

Column Changed value

CARD -1

CARDF -1

NPAGES -1

NPAGESF -1

PCTPAGES -1

PCTROWCOMP -1

STATSTIME The TIMESTAMP value for the reset
operation

SYSIBM.SYSINDEXES
The following values are changed:

Column Changed value

CLUSTERED 'N'

NLEAF -1

NLEVELS -1

FIRSTKEYCARD -1

FULLKEYCARD -1

FIRSTKEYCARDF -1

FULLKEYCARDF -1

CLUSTERRATIO 0

CLSUTERRATIOF 0

Chapter 29. RUNSTATS 763

|
|

|||

||

||

||
|
|

|
|

|||

||

||

||

||

||
|

||
|

|
|

|||

||

||

||

||

||

||

||
|
|

|
|

|||

||

||

||

||

||

||

||

||

||

Column Changed value

DATAREPEATFACTORF -1

STATSTIME The TIMESTAMP value for the reset
operation

SYSIBM.SYSKEYTARGETS
The following values are changed:

Column Changed value

CARDF -1

HIGH2KEY Zero-length blank

LOW2KEY Zero-length blank

STATSTIME TIMESTAMP

STATS_FORMAT Blank

Applicable rows are deleted from the following catalog tables for the specified
objects:
v SYSIBM.SYSTABSTATS
v SYSIBM.SYSCOLSTATS
v SYSIBM.SYSINDEXSTATS
v SYSIBM.SYSCOLDIST
v SYSIBM.SYSCOLDISTSTATS
v SYSIBM.SYSKEYTARGETSTATS
v SYSIBM.SYSKEYTGTDIST
v SYSIBM.SYSKEYTGTDISTSTATS

What to do next

After resetting the statistics you might want to invoke the RUNSTATS utility again
with different options to capture new statistics.
Related concepts:

Filter factors and catalog statistics (DB2 Performance)
Related tasks:

Maintaining statistics in the catalog (DB2 Performance)

Collecting history statistics (DB2 Performance)
Related reference:

Statistics used for access path selection (DB2 Performance)

After running RUNSTATS
Certain activities might be required after you run the RUNSTATS utility,
depending on your situation.

After running RUNSTATS with the UPDATE ACCESSPATH option, the UPDATE
SPACE option, or the UPDATE ALL option, rebind any application plans that use
the tables or indexes so that they use the new statistics.

764 Utility Guide and Reference

||

||

||
|
|

|
|

|||

||

||

||

||

||
|

|
|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_filterfactorcatalogstats.htm#db2z_filterfactorcatalogstats
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_maintaincatalogstatistics.htm#db2z_maintaincatalogstatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_collecthistorystatistics.htm#db2z_collecthistorystatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_statistics4accesspathselection.htm#db2z_statistics4accesspathselection

Sample RUNSTATS control statements
Use the sample control statements as models for developing your own RUNSTATS
control statements.

Example 1: Updating catalog statistics for a table space while
allowing changes

The following control statement specifies that the RUNSTATS utility is to update
the catalog with statistics for table space DSN8D81A.DSN8S11E and all of its
associated tables and indexes. When updating the table statistics, RUNSTATS is to
sample 25% of the rows. Although SHRLEVEL CHANGE is not specified, by
default DB2 permits other processes to make changes to the table space while the
RUNSTATS utility is executing.
//STEP1 EXEC DSNUPROC,UID=’IUJQU225.RUNSTA’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’DSN’
//UTPRINT DD SYSOUT=*
//SYSIN DD *
RUNSTATS TABLESPACE DSN8D11A.DSN8S11E

TABLE(ALL) SAMPLE 25
INDEX(ALL)

Example 2: Updating index statistics

The following control statement specifies that RUNSTATS is to update the catalog
statistics for index DSN8810.XEMPL1.
RUNSTATS INDEX (DSN8B10.XEMPL1)

Example 3: Updating index statistics while prohibiting updates

The following control statement specifies that RUNSTATS is to update the catalog
statistics for indexes XEMPL1 and XEMPL2. DB2 does not permit other processes
to change the table space that is associated with XEMPL1 and XEMPL2 (table
space DSN8S11E) while this utility is executing. This restricted access is the default
behavior.
RUNSTATS INDEX (DSN8B10.XEMPL1,DSN8B10.XEMPL2)

Example 4: Updating statistics for columns in several tables

The following control statement specifies that RUNSTATS is to update the catalog
statistics for the following columns in table space DSN8D11P.DSN8S11C:
v All columns in the TCONA and TOPTVAL tables
v The LINENO and DSPLINE columns in the TDSPTXT table
RUNSTATS TABLESPACE(DSN8D11P.DSN8S11C)

TABLE (TCONA)
TABLE (TOPTVAL) COLUMN(ALL)
TABLE (TDSPTXT) COLUMN(LINENO,DSPLINE)

Example 5: Updating all statistics for a table space

The following control statement specifies that RUNSTATS is to update all catalog
statistics (table space, tables, columns, and indexes) for table space
DSN8D81P.DSN8S81C.
RUNSTATS TABLESPACE(DSN8D11P.DSN8S11C) TABLE INDEX

Chapter 29. RUNSTATS 765

Example 6: Updating statistics that are used for access path
selection and generating a report

The following control statement specifies that RUNSTATS is to update the catalog
with only the statistics that are collected for access path selection. The utility is to
report all statistics for the table space and route the report to SYSPRINT.
RUNSTATS TABLESPACE DSN8D11A.DSN8S11E

REPORT YES
UPDATE ACCESSPATH

Example 7: Updating all statistics and generating a report

The following control statement specifies that RUNSTATS is to update the catalog
with all statistics (access path and space) for table space DSN8D81A.DSN8S81E.
The utility is also to report the collected statistics and route the report to
SYSPRINT.
RUNSTATS TABLESPACE DSN8D11A.DSN8S11E

REPORT YES
UPDATE ALL

Example 8: Reporting statistics without updating the catalog

The following control statement specifies that RUNSTATS is to collect statistics for
table space DSN8D81A.DSN8S81E and route the report to SYSPRINT. The utility is
not to update the catalog with the collected statistics.
RUNSTATS TABLESPACE DSN8D11A.DSN8S11E

REPORT YES
UPDATE NONE

Example 9: Updating statistics for a partition

The following control statement specifies that RUNSTATS is to update the statistics
for the first partition of table space DSN8D81A.DSN8S81E and the first partition of
the DSN8810.XEMP1 index.
RUNSTATS TABLESPACE DSN8D11A.DSN8S11E PART 1 INDEX(DSN8B10.XEMP1 PART 1)

Example 10: Updating catalog and history tables and reporting
all statistics

The following control statement specifies that RUNSTATS is to update the catalog
tables and history catalog tables with all statistics for table space
DB0E0101.TL0E0101 (including related indexes and columns). The utility is to
report the collected statistics and route the statistics to SYSPRINT.
RUNSTATS TABLESPACE DBOE0101.TLOE0101

INDEX
TABLE
REPORT YES
UPDATE ALL
HISTORY ALL

Example 11: Updating statistics on frequently occurring values

Assume that the SYSADM.IXNP1 index is defined on four columns: NP1, NP2,
NP3, and NP4. The following control statement specifies that RUNSTATS is to
update the statistics for index SYSADM.IXNPI.

766 Utility Guide and Reference

The RUNSTATS utility collects cardinality statistics for column NP1, column set
NP1 and NP2, and column set NP1, NP2, and NP3, and column set NP1, NP2,
NP3, and NP4. The FREQVAL option and its associated parameters indicate that
RUNSTATS is also to collect the 5 most frequently occurring values on column
NP1 (the first key column of the index), and the 10 most frequently occurring
values on the column set NP1 and NP2 (the first two key columns of the index).
The utility is to report the collected statistics and route the statistics to SYSPRINT.
RUNSTATS INDEX (SYSADM.IXNPI)

FREQVAL NUMCOLS 1 COUNT 5
FREQVAL NUMCOLS 2 COUNT 10
REPORT YES

Example 12: Updating distribution statistics for a group of
specified columns in a table

The following control statement specifies that RUNSTATS is to update statistics for
the columns EMPLEVEL, EMPGRADE, and EMPSALARY in table DSN8810.DEPT
(in table space DSN8D81A.DSN8S81E). The statement uses the COLGROUP
keyword to group these columns. RUNSTATS is to collect the cardinality of this
column group and store the cardinality in the SYSCOLDIST catalog table.
RUNSTATS TABLESPACE DSN8D81A.DSN8S81E
TABLE(DSN8810.DEPT)
COLGROUP (EMPLEVEL,EMPGRADE,EMPSALARY)

Example 13: Updating distribution statistics for specific columns
and retrieving the most frequently occurring values

The following control statement specifies that RUNSTATS is to update statistics for
the columns EMPLEVEL, EMPGRADE, and EMPSALARY in table DSN8810.DEPT.
The FREQVAL and COUNT options indicate that RUNSTATS is to collect the 10
most frequently occurring values for each column. The values are to be stored in
the SYSCOLDIST and SYSCOLDISTSTATS catalog tables.
RUNSTATS TABLESPACE DSN8D81A.DSN8S81E
TABLE(DSN8810.DEPT)
COLGROUP(EMPLEVEL,EMPGRADE,EMPSALARY) FREQVAL COUNT 10

Example 14: Updating distribution statistics for specific columns
in a table and retrieving the least frequently occurring values

The following control statement specifies that RUNSTATS is to update statistics for
the columns EMPLEVEL, EMPGRADE, and EMPSALARY in table DSN8810.DEPT.
The FREQVAL and COUNT options indicate that RUNSTATS is to collect the 15
least frequently occurring values for each column. The values are to be stored in
the SYSCOLDIST and SYSCOLDISTSTATS catalog tables.
RUNSTATS TABLESPACE DSN8D81A.DSN8S81E
TABLE(DSN8810.DEPT)
COLGROUP(EMPLEVEL,EMPGRADE,EMPSALARY) FREQVAL COUNT 15 LEAST

Example 15: Updating distribution statistics for specific columns
in a table space and retrieving the most and least frequently
occurring values

The following control statement specifies that RUNSTATS is to update statistics for
the columns EMPLEVEL, EMPGRADE, and EMPSALARY in table DSN8810.DEPT.
The FREQVAL and COUNT options indicate that RUNSTATS is to collect the 10

Chapter 29. RUNSTATS 767

most frequently occurring values for each column and the 10 least frequently
occurring values for each column. The values are to be stored in the SYSCOLDIST
and SYSCOLDISTSTATS catalog tables.
RUNSTATS TABLESPACE DSN8D81A.DSN8S81E
TABLE(DSN8810.DEPT)
COLGROUP(EMPLEVEL,EMPGRADE,EMPSALARY) FREQVAL COUNT 10 BOTH

Example 16: Updating statistics for an index and retrieving the
most and least frequently occurring values

The following control statement specifies that RUNSTATS is to collect the 10 most
frequently occurring values and the 10 least frequently occurring values for the
first key column of index ADMF001.IXMA0101. By default, the utility collects all
the distinct values in all the key column combinations. A set of messages is sent to
SYSPRINT and all collected statistics are updated in the catalog.
RUNSTATS INDEX(ADMF001.IXMA0101)
FREQVAL NUMCOLS 1 COUNT 10 BOTH
REPORT YES UPDATE ALL

Example 17: Invalidating statements in the dynamic statement
cache for a table space without generating report statistics.

The following control statement specifies that RUNSTATS is to invalidate
statements in the dynamic statement cache for table space DSN8D81A.DSN8S81E.
However, RUNSTATS is not to collect or report statistics or update the catalog.
RUNSTATS TABLESPACE DSN8D81A.DSN8S81E
REPORT NO
UPDATE NONE

Example 18: RUNSTATS HISTOGRAM job statement.

The following control statement specifies that RUNSTATS is to gather histogram
statistics for the specified key columns. Histogram statistics can only be collected
on the prefix columns with the same order.
RUNSTATS TABLESPACE RVTDB01.RVTTS01
INDEX ALL
HISTOGRAM NUMCOLS 2 NUMQUANTILES 5
SHRLEVEL(CHANGE)
UPDATE ALL
REPORT YES

768 Utility Guide and Reference

Chapter 30. STOSPACE

The STOSPACE online utility updates DB2 catalog columns that indicate how
much space is allocated for storage groups and related table spaces and indexes.

For user-defined spaces, STOSPACE does not record any statistics.

Output

The output from STOSPACE consists of updated values in the columns and tables
in the following list. In each case, an amount of space is given in kilobytes (KB). If
the value is too large to fit in the SPACE column, the SPACEF column is updated.
v SPACE in SYSIBM.SYSINDEXES shows the amount of space that is allocated to

indexes. If the index is not defined using STOGROUP, or if STOSPACE has not
been executed, the value is zero.

v SPACE in SYSIBM.SYSTABLESPACE shows the amount of space that is allocated
to table spaces. If the table space is not defined using STOGROUP, or if
STOSPACE has not been executed, the value is zero.

v SPACE in SYSIBM.SYSINDEXPART shows the amount of space that is allocated
to index partitions. If the partition is not defined using STOGROUP, or if
STOSPACE has not been executed, the value is zero.

v SPACE in SYSIBM.SYSTABLEPART shows the amount of space that is allocated
to table partitions. If the partition is not defined using STOGROUP, or if
STOSPACE has not been executed, the value is zero.

v SPACE in SYSIBM.SYSSTOGROUP shows the amount of space that is allocated
to storage groups.

v STATSTIME in SYSIBM.SYSSTOGROUP shows the timestamp for the time at
which STOSPACE was last executed.

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v STOSPACE privilege
v SYSCTRL or SYSADM authority

Execution phases of STOSPACE

The STOSPACE utility operates in these phases:

Phase Description

UTILINIT
Performs initialization

STOSPACE
Gathers space information and updates catalog

UTILTERM
Performs cleanup

© Copyright IBM Corp. 1983, 2013 769

Syntax and options of the STOSPACE control statement
The STOSPACE utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

Syntax diagram

�� STOSPACE �

,

STOGROUP(stogroup-name)
*

��

Option descriptions

STOGROUP
Identifies the storage groups that are to be processed.

(stogroup-name, ...)
Specifies the name of a storage group. You can use a list of from one to 255
storage group names. Separate items in the list by commas, and enclose
them in parentheses.

* Indicates that all storage groups are to be processed.

Data sets that STOSPACE uses
The STOSPACE utility uses a number of data sets during its operation.

The following table lists the data sets that STOSPACE uses. The table lists the DD
name that is used to identify the data set, a description of the data set, and an
indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 107. Data sets that STOSPACE uses

Data set Description Required?

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

The following object is named in the utility control statement and does not require
a DD statement in the JCL:

Storage group
Object that is to be reported.

770 Utility Guide and Reference

Concurrency and compatibility for STOSPACE
The STOSPACE utility has certain concurrency and compatibility characteristics
associated with it.

STOSPACE does not set a utility restrictive state on the target object.

STOSPACE can run concurrently with any utility on the same target object.
However, because STOSPACE updates the catalog, concurrent STOSPACE utility
jobs or other concurrent applications that update the catalog might cause timeouts
and deadlocks.

You can use the STOSPACE utility on storage groups that have objects within
temporary databases.

How STOSPACE ensures availability of objects it STOSPACE requires
For each specified storage group, STOSPACE looks at the
SYSIBM.SYSTABLESPACE and SYSIBM.SYSINDEXES catalog tables to determine
which objects belong to that storage group.

For each object, the amount of allocated space is determined from an appropriate
VSAM catalog. Hence the table spaces and indexes do not need to be available to
DB2 when STOSPACE is running; only the DB2 catalog and appropriate VSAM
catalogs are required. However, to gain access to the VSAM catalog, the utility
must have available to it the database definition (DBD) for the objects that are
involved. This access requires that the appropriate database, table spaces, and
index spaces not be in the stopped state.

Obtaining statistical information with STOSPACE
When DB2 storage groups are used in the creation of table spaces and indexes,
DB2 defines the data sets for them. The STOSPACE utility permits a site to monitor
the disk space that is allocated for the storage group.

About this task

The following table lists statistical information that the STOSPACE utility records
and that is useful for making space allocation decisions.

Table 108. DB2 catalog data that STOSPACE collects

Catalog table Column name Column description

SYSTABLESPACE SPACEF Number of kilobytes of storage that are
allocated to the table space

SYSTABLEPART SPACEF Number of kilobytes of storage that are
allocated to the table space partition

SYSINDEXES SPACEF Number of kilobytes of storage that are
allocated to the index

SYSINDEXPART SPACEF Number of kilobytes of storage that are
allocated to the index partition

SYSSTOGROUP SPACEF Number of kilobytes of storage that are
allocated to the storage group

Chapter 30. STOSPACE 771

Table 108. DB2 catalog data that STOSPACE collects (continued)

Catalog table Column name Column description

SYSSTOGROUP STATSTIME Time when STOSPACE was last run on a
particular storage group

STOSPACE does not accumulate information for more than one storage group. If a
partitioned table space or index space has partitions in more than one storage
group, the information in the catalog about that space comes from only the group
for which STOSPACE was run.

When you run the STOSPACE utility, the SPACEF column of the catalog represents
the high-allocated RBA of the VSAM linear data set. Use the value in the SPACEF
column to project space requirements for table spaces, table space partitions, index
spaces, and index space partitions over time. Use the output from the Access
Method Services LISTCAT command to determine which table spaces and index
spaces have allocated secondary extents. When you find these, increase the
primary quantity value for the data set, and run the REORG utility.

Procedure
v For information about space utilization in the DSN8S11E table space in the

DSN8D11A database:
1. Run the STOSPACE utility

2. Execute the following SQL statement:
EXEC SQL

SELECT SPACE
FROM SYSIBM.SYSTABLESPACE
WHERE NAME = ’DSN8S11E
AND DBNAME = ’DSN8D11A’

ENDEXEC

Alternatively, you can use TSO to look at data set and pack descriptions.
v To update SYSIBM.SYSSTOGROUP for storage group DSN8G110, as well as

SYSIBM.SYSTABLESPACE and SYSIBM.SYSINDEXES, for every table space and
index that belongs to DSN8G110, use the following utility control statement:
STOSPACE STOGROUP DSN8G110

Analysis of the values in a SPACE or SPACEF column
The value in a SPACE or SPACEF column represents total allocated space, not only
the space that is allocated on the current list of volumes in the storage groups. If
the value is too large to fit in the SPACE column, the SPACEF column is used.

You can delete volumes from a storage group even though space on those volumes
is still allocated to DB2 table spaces or indexes. Deletion of a volume from a
storage group prevents future allocations; it does not withdraw a current
allocation.

772 Utility Guide and Reference

Termination or restart of STOSPACE
You can terminate and restart the STOSPACE utility.

You can terminate a STOSPACE utility job with the TERM UTILITY command if you
have submitted the job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a STOSPACE utility job, but it starts from the beginning again.
Related concepts:
“Restart of an online utility” on page 39

Sample STOSPACE control statement
Use the sample control statements as models for developing your own STOSPACE
control statements.

Example 1: Updating catalog SPACE columns for a particular
storage group

The following control statement specifies that the STOSPACE utility is to update
the catalog SPACE or SPACEF columns for storage group DSN8G110 and any
related table spaces and indexes.
//STEP1 EXEC DSNUPROC,UID=’FUAUU330.STOSPCE’,
// UTPROC=’’,
// SYSTEM=’DSN’
//SYSIN DD *
STOSPACE STOGROUP DSN8G110
//*

Example 2: Specifying a storage group name that contains
spaces

If the name of the storage group that you want STOSPACE to process contains
spaces, enclose the entire storage group name in single quotation marks.
Parentheses are optional. The following statements are correct ways to specify a
storage group with the name THIS IS STOGROUP.1.ON.E:
STOSPACE STOGROUP(’THIS IS STOGROUP.1.ONE’)

STOSPACE STOGROUP ’THIS IS STOGROUP.1.ONE’

Example 3: Updating catalog SPACE columns for all storage
groups

The following control statement specifies that the STOSPACE utility is to update
the catalog SPACE or SPACEF columns for all storage groups.
STOSPACE STOGROUP *

Example 4: Updating catalog SPACE columns for several storage
groups

The following control statement specifies that the STOSPACE utility is to update
the catalog SPACE or SPACEF columns for storage groups DSN8G110 and
DSN8G81U.
STOSPACE STOGROUP(DSN8G810, DSN8G81U)

Chapter 30. STOSPACE 773

774 Utility Guide and Reference

Chapter 31. TEMPLATE

The TEMPLATE online utility control statement lets you allocate data sets, without
using JCL DD statements, during the processing of a LISTDEF list. The TEMPLATE
control statement defines the data set naming convention. TEMPLATE control
statements can also be written to contain allocation parameters that define data set
size, location, and attributes.

Templates enable you to standardize data set names across the DB2 subsystem and
to easily identify the data set type when you use variables in the data set name.

The TEMPLATE control statement uses the z/OS DYNALLOC macro (SVC 99) to
perform data set allocation. Therefore, the facility is constrained by the limitations
of this macro and by the subset of DYNALLOC that is supported by TEMPLATE.
See z/OS MVS Programming: Authorized Assembler Services Guide for more
details.

Output

The TEMPLATE control statement generates a dynamic allocation template with an
assigned name for later reference.

Authorization required

No privileges are required to execute this control statement. When a TEMPLATE is
referenced by a specific utility, privileges are checked at that time.

Execution phases of TEMPLATE

The TEMPLATE control statement executes entirely in the UTILINIT phase, which
performs setup for the subsequent utility.

Syntax and options of the TEMPLATE control statement
The TEMPLATE utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

Syntax diagram

�� TEMPLATE template-name �

� DSN name-expression
common-options disk-options SUBSYS-spec

tape-options
path-expression

��

© Copyright IBM Corp. 1983, 2013 775

name-expression:

�� �

.

qualifier-expression
(1)

(parenthetical-expression)
��

Notes:

1 The entire name-expression represents one character string and cannot contain any blanks.

qualifier-expression:

�� � character-expression
(2)

&variable .
(1)

(start)
,length

��

Notes:

1 If you use substring notation, the entire DSN operand must be enclosed in single quotation
marks. For example, the DSN operand ’P&PA(4,2).’ uses substring notation, so it is enclosed in
single quotation marks.

2 The &PA. variable cannot be used more than once.

common-options:

776 Utility Guide and Reference

��
UNIT SYSALLDA

UNIT name MODELDCB dsname

BUFNO 30

BUFNO integer DATACLAS name
�

�
MGMTCLAS name STORCLAS name RETPD integer

EXPDL' date'
�

,

VOLUMES (volser)

�

�
VOLCNT integer UNCNT integer

GDGLIMIT 99

GDGLIMIT integer
�

�
DISP (NEW , DELETE , DELETE)

OLD KEEP KEEP
SHR CATLG CATLG
MOD UNCATLG UNCATLG

LIMIT(n CYL ,new_template)
GB
MB

�

�
TIME LOCAL

UTC

��

disk-options:

��
SPACE CYL

SPACE CYL
(primary,secondary) TRK

MB

PCTPRIME 100

PCTPRIME integer MAXPRIME integer
�

�
NBRSECND 10

NBRSECND integer DIR integer DSNTYPE LIBRARY
PDS
HFS
NULL
BASIC
LARGE
EXTREQ
EXTPREF

EATTR
��

tape-options:

Chapter 31. TEMPLATE 777

|||

||||

��
STACK NO

STACK YES

TRTCH NONE

TRTCH COMP
NOCOMP

��

SUBSYS-spec

�� SUBSYS name LRECL int RECFM F
FB
V
VB

��

path-expression

778 Utility Guide and Reference

�� PATH pathname
FILEDATA RECORD RECFM VB LRECL 32756

FILEDATA TEXT RECFM VB LRECL int
BINARY V

FB
F

�

�

�

(1)
PATHOPTS (ORDONLY)

(2)
OCREAT,OWRONLY

,
ORDONLY

PATHOPTS (OCREAT)
OWRONLY
ONONBLOCK

�

PATHMODE (SIRUSR)

,

PATHMODE (SIRUSR)
SIWUSR
SIXUSR
SIRWXU
SIRGRP
SIWGRP
SIXGRP
SIRWXG
SIROTH
SIWOTH
SIXOTH
SIRWXO

�

�
PATHDISP (KEEP,KEEP)

PATHDISP (KEEP , KEEP)
DELETE DELETE

��

Notes:

1 For LOAD, the default is PATHOPTS(ORDONLY).

2 For UNLOAD, the default is PATHOPTS(OCREAT,OWRONLY).

Option descriptions

TEMPLATE template-name
Defines a data set allocation template and assigns to the template a name,
template-name, for subsequent reference on a DB2 utility control statement. The
template-name can have up to eight alphanumeric characters and must begin
with an alphabetic character.

template-name cannot be UTPRINT or SORTLIB, and cannot begin with
SORTWK or SYS.

The template-name is followed by keywords that control the allocation of tape
and disk data sets. A single TEMPLATE statement cannot have both disk
options and tape options. The UNIT keyword specifies a generic unit name
that is defined on your system. This value is used to determine if a disk or

Chapter 31. TEMPLATE 779

tape data set is being allocated. All other keywords specified on the
TEMPLATE control statement must be consistent with the specified unit type.

DSN name-expression
Specifies the template for the z/OS data set name. You can specify the data set
name, name-expression, by using symbolic variables, non-variable alphanumeric,
or national characters, or any combination of these characters. The resulting
name must adhere to the z/OS data set naming rules, including those rules
about name length, valid characters, name structure and qualifier length. You
must specify a DSN expression that is unique for each data set allocated by the
utility and to each invocation of the utility.

Templates for FlashCopy image copies should specify only DSN
name-expression. DB2 does not use any other options in a TEMPLATE control
statement for FlashCopy image copies.

Data set names consists of a series of qualifiers, qualifier-expression, that are
separated by a period (.) and an optional parenthetical expression. No
imbedded blanks are allowed. A partitioned data set (PDS) cannot be defined
by TEMPLATE for use as an input data set.

If the DSN name operand contains any special characters, it must be enclosed
in single quotation marks. For example, in the following TEMPLATE
statement, the DSN operand contains the parentheses special character, so the
entire operand is enclosed in single quotation marks:
TEMPLATE X DSN ’A.GDG.VERSION(+1)’

Parentheses around the DSN name operand are optional. They are used in the
following DSN specification:
DSN(&DB..&TS..D&DATE.)

character-expression
Specifies the data set name or part of the data set name by using non-variable
alphanumeric or national characters.

parenthetical-expression
Specifies part of the data set name by using non-variable alphanumeric or
national characters that are enclosed in parentheses. For example, the
expressions Q1.Q2.Q3(member) and Q1.Q2.Q3(+1) use valid parenthetical
expressions. No variable substitution is performed within the parenthetical
expression.

&variable.
Specifies the data set name or part of the data set name by using symbolic
variables. See the following tables for a list of variables that can be used.

Each symbolic variable is substituted with its related value at execution time to
form a specific data set name. When used in a DSN expression, substitution
variables begin with an ampersand sign (&) and end with a period (.), as in
the following example:
DSN &DB..&TS..D&JDATE..COPY&ICTYPE.

Using numeric variables alone generates an invalid data set qualifier for all
numeric-type variables (all date or time-type variables, and others, such as
&SEQ. or &PART.). These variables must be preceded by character constants to
form valid DSN qualifiers. The following examples are valid specifications:
P&PART.

D&DATE.

780 Utility Guide and Reference

Some substitution variables are invalid if you use TEMPLATE with an
incompatible utility. For example, ICTYPE is not meaningful if the TEMPLATE
statement is used with LOAD SYSDISC. Other variables assume default values
when their values are not known. For example, &PART. becomes 00000 for
non-partitioned objects.

You can also use substring notation for data set name variables. This notation
can help you keep the data set name from exceeding the 44 character
maximum. If you use substring notation, the entire DSN operand must be
enclosed in single quotation marks. To specify a substring, use the form
&variable(start). or &variable(start,length).

start
Specifies the substring's starting byte location within the current variable
base value at the time of execution. start must be an integer from 1 to 128.

length
Specifies the length of the substring. If you specify start but do not specify
length, length, by default, is the number of characters from the start
character to the last character of the variable value at the time of execution.
For example, given a five-digit base value, &PART(4). specifies the fourth
and fifth digits of the value. length must be an integer that does not cause
the substring to extend beyond the end of the base value.

For UNLOAD on a partitioned table space, if you use substring notation for
the partition variable (&PART. or &PA.) in the DSN argument, the data set
name might not be unique for all partitions, so DB2 cannot do parallel
UNLOAD operations for the partitions. Therefore, DB2 sets the value of &PA
to '00000', and uses a single UNLDDN data set for all partitions. This action
might cause duplicate data set errors on subsequent UNLOAD jobs for other
partitions of the same table space.

The following table contains a list of JOB variables and their descriptions.

Table 109. JOB variables

Variable Description

&JOBNAME. or &JO. The z/OS job name.

&STEPNAME. or &ST. The z/OS step name. This variable might be needed if data
set names from two different job steps conflict.

&USERID. or &US. The user ID of the person that is running the utility. The
value is 1 to 8 characters long.

&UTILID. or &UT. The utility ID truncated to eight characters and checked for
invalid DSN characters.

&SSID. or &SS. Subsystem ID (non-data sharing), group attachment name,
or subgroup attachment name (data sharing).

The following table contains a list of UTILITY variables and their descriptions.

Table 110. UTILITY variables

Variable Description

&ICTYPE. or &IC. Single-character image copy type. This variable is valid only
for image copy templates. The substitution is governed by
whether a full image copy (F), an incremental image copy
(I), or a CHANGELIMIT image copy (C) is specified by the
user.

Chapter 31. TEMPLATE 781

Table 110. UTILITY variables (continued)

Variable Description

&UTILNAME. or &UN. Special values are assigned to some utilities: CHECKD for
CHECK DATA, CHECKI for CHECK INDEX, CHECKL for
CHECK LOB, REORGI for REORG INDEX, and REORGT for
REORG TABLESPACE. Utility names that are longer than
eight characters are truncated to eight characters.

&SEQ. or &SQ. Sequence number of the list item in the list.

&LOCREM. or &LR. Indicator of whether ddname is for the local site (COPYDDN)
or the recovery site (RECOVERYDDN). Single character L is
used when the utility defines a COPYDDN ddname. The
single character R is used when the utility defines a
RECOVERYDDN ddname. You can replicate the SYSCOPY
ICBACKUP column information by using both the
&LOCREM. and &PRIBAC. variables. This variable is valid
only for image copy templates.

&PRIBAC. or &PB. Indicator of whether ddname is for the primary (ddname1) or
backup (ddname2) copy data set. Single character P is used
when the utility defines a ddname1. The single character B is
used when the utility defines a ddname2. You can replicate
the SYSCOPY ICBACKUP column information by using both
the &LOCREM. and &PRIBAC. variables. This variable is
valid only for image copy templates.

The following table contains a list of OBJECT variables and their descriptions.

Table 111. OBJECT variables

Variable Description

&LIST. or &LI. The name of the list that is defined by using the LISTDEF
control statement and that is referenced on the same control
statement as this TEMPLATE. This variable is used with
COPY FILTERDDN templates. All objects in the list are
copied to one data set, which makes &TS. and &IS.
meaningless.

&DB. Database name.

&TS.1 Table space name.

&IS. 1 Index space name.

&SN.1 Space name (table space or index space).

&PART.3 or &PA.2 Five-digit partition number, padded with leading zeros.

&DSNUM3 Five-digit partition number for partitioned objects, or
five-digit piece number for linear objects, padded with
leading zeroes.

Note:

1. When you specify the &TS., &IS., or &SN. variables in a template that is used by an
UNLOAD statement with BLOBF, CLOBF, or DBCLOBF, DB2 substitutes the name of the
table space that stores the LOB column value, not the base table space name. This
substitution enables DB2 to generate unique data set names for each LOB column with
partitioned table spaces.

2. Use the &PA. variable when processing LISTDEF lists with the PARTLEVEL keyword or
data-partitioned secondary indexes. Otherwise, DB2 could generate duplicate data set
names.

3. Templates for FlashCopy image copies can contain either &PART or &DSNUM. If you
are copying both partitioned and linear objects, use &DSNUM.

782 Utility Guide and Reference

The following table contains a list of DATE and TIME variables. and their
descriptions.

Table 112. DATE and TIME variables

Variable Description

&DATE. or &DT. YYYYDDD

&TIME. or &TI. HHMMSS

&JDATE. or &JU. YYYYDDD

&YEAR. or &YE. YYYY portion of &DATE.

&MONTH. or &MO. MM

&DAY. or &DA. DD

&JDAY. or &JD. DDD portion of &DATE.

&HOUR. or &HO. HH portion of &TIME.

&MINUTE. or &MI. MM portion of &TIME.

&SECOND. or &SC. SS portion of &TIME.

&UNIQ. or &UQ. Unique eight characters that DB2 derives from the system
clock at the time of allocation. This set of characters begins
with an alphabetical character and is followed by seven
alphabetical or numeric characters.

Note: Date and time values are set with the STCK instruction. The value is in local time or
Coordinated Universal Time (UTC) depending on the TIME option or TEMPLATE_TIME
subsystem parameter. Except for the&UNIQ. and &UQ. variables, DATE and TIME values are
captured in the UTILINIT phase of each utility and remain constant until the utility
terminates. &UNIQ. and &UQ. are assigned a unique value for each allocation.

SUBSYS name
Specifies the MVS BATCHPIPES SUBSYSTEM name. The SUBSYS operand
must be a valid BATCHPIPES SUBSYSTEM name and must not exceed eight
characters in length. When SUBSYS is specified, LRECL and RECFM are
required. When SUBSYS is specified, TEMPLATE keywords that are not
compatible with SUBSYS (such as UNIT) are ignored.

Restriction: When using BATCHPIPES, TEMPLATE with the SUBSYS
keyword, the utility cannot be restarted and the LOAD DISCARDDN keyword
is not supported.

LRECL int
Specifies the record length of the MVS BATCHPIPES SUBSYSTEM file or z/OS
UNIX file. You must specify LRECL if you specify SUBSYS.

LRECL does not have a default value except in the following situation: If you
specify TEMPLATE PATH and accept the default value FILEDATA RECORD,
the default value for LRECL is 32756.

RECFM
Specifies the record format of the MVS BATCHPIPES SUBSYSTEM file or z/OS
UNIX file. You must specify RECFM if you specify SUBSYS.

Valid values for RECFM are F, FB, V, or VB

RECFM does not have a default value except in the following situation: If you
specify TEMPLATE PATH and accept the default value FILEDATA RECORD,
the default value for RECFM is VB.

Chapter 31. TEMPLATE 783

|
|
|
|
|

UNIT
Specifies the device-number, device-type (generic), or group-name for the data
set. All other TEMPLATE keywords are validated based on the specified type
of unit (disk or tape).

The default value is SYSALLDA.

MODELDCB dsname
Specifies the name of the data set on which the template is based. DCB
information is read from this model data set.

BUFNO integer
Specifies the number of BSAM buffers. The specified value must be in the
range from 0 to 99.

The default value is 30.

DATACLAS name
Specifies the SMS data class. The name value must be a valid SMS data class
and must not exceed eight characters in length.

The data set is cataloged if DATACLAS is specified. If this option is omitted,
no DATACLAS is specified to SMS.

MGMTCLAS name
Specifies the SMS management class. The name value must be a valid SMS
management class and must not exceed eight characters in length.

The data set is cataloged if MGMTCLAS is specified. If this option is omitted,
no MGMTCLAS is specified to SMS.

STORCLAS name
Specifies the SMS storage class. The name value must be a valid SMS storage
class and must not exceed eight characters in length.

The data set is cataloged if STORCLAS is specified. If this option is omitted, no
STORCLAS is specified to SMS.

RETPD integer
Specifies the retention period in days for the data set. The integer value must
be in the range from 0 to 9999.

If DATACLAS, MGMTCLAS, or STORCLAS is specified, the class definition
might control the retention. RETPD cannot be specified with EXPDL.

EXPDL 'date'
Specifies the expiration date for the data set, in the form YYYYDDD, where
YYYY is the four-digit year, and DDD is the three-digit Julian day. The 'date'
value must be enclosed by single quotation marks.

If DATACLAS, MGMTCLAS, or STORCLAS is specified, the class definition
might control the retention. EXPDL cannot be specified with RETPD.

VOLUMES (vol1,vol2,...)
Specifies a list of volume serial numbers for this allocation. If the data set is
not cataloged the list is truncated, if necessary, when it is stored in
SYSIBM.SYSCOPY. The specified number of volumes cannot exceed the
specified or default value of VOLCNT.

The first volume must contain enough space for the primary space allocation.

If an individual volume serial-number contains leading zeros, it must be
enclosed in single quotation marks.

784 Utility Guide and Reference

VOLCNT (integer)
Specifies the maximum number of volumes that an output data set might
require. The specified value must be between 0 and 255.

The default value for tape templates is 95. For disk templates, the utility does
not set a default value. Operating system defaults apply.

UNCNT integer
Specifies the number of devices that are to be allocated. The specified value
must in the range from 0 to 59.

If UNIT specifies a specific device number, the value of UNCNT must either be
1 or be omitted.

GDGLIMIT (integer)
Specifies the number of entries that are to be created in a GDG base if a GDG
DSN is specified and the base does not already exist. If a GDG base does not
already exist and you do not want to define one, specify a GDGLIMIT of zero
(0).

The default value is 99. The integer value must be in the range from 0 to 255.

DISP (status, normal-termination, abnormal-termination)
Specifies the data set disposition by using three positional parameters: status,
normal-termination, and abnormal-termination. All three parameters must be
specified.

status
Standard z/OS values are allowed: NEW, OLD, SHR, MOD.

normal-termination
Standard z/OS values are allowed: DELETE, KEEP, CATLG, UNCATLG.

abnormal-termination
Standard z/OS values are allowed: DELETE, KEEP, CATLG, UNCATLG.

Default values for DISP vary, depending on the utility and the data set that is
being allocated. Defaults for restarted utilities also differ from default values
for new utility executions. Default values are shown in the following tables.

The following table shows the data dispositions for dynamically allocated data
sets for new utility executions.

Note: It is possible that output from utilities that use piped data would not be
dynamically allocated for new utility executions.

Table 113. Data dispositions for dynamically allocated data sets for new utility executions

ddname
CHECK
DATA

CHECK
INDEX or
CHECK LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSREC Ignored Ignored Ignored Ignored OLD
KEEP
KEEP

Ignored Ignored Ignored NEW
CATLG
CATLG

NEW
CATLG
CATLG

SYSDISC Ignored Ignored Ignored Ignored NEW
CATLG
CATLG

Ignored Ignored Ignored NEW
CATLG
CATLG

Ignored

SYSPUNCH Ignored Ignored Ignored Ignored Ignored Ignored Ignored Ignored NEW
CATLG
CATLG

NEW
CATLG
CATLG

SYSCOPY Ignored Ignored NEW
CATLG
CATLG

Ignored NEW
CATLG
CATLG

NEW
CATLG
CATLG

Ignored Ignored NEW
CATLG
CATLG

Ignored

Chapter 31. TEMPLATE 785

Table 113. Data dispositions for dynamically allocated data sets for new utility executions (continued)

ddname
CHECK
DATA

CHECK
INDEX or
CHECK LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSCOPY2 Ignored Ignored NEW
CATLG
CATLG

Ignored NEW
CATLG
CATLG

NEW
CATLG
CATLG

Ignored Ignored NEW
CATLG
CATLG

Ignored

SYSRCPY1 Ignored Ignored NEW
CATLG
CATLG

Ignored NEW
CATLG
CATLG

NEW
CATLG
CATLG

Ignored Ignored NEW
CATLG
CATLG

Ignored

SYSRCPY2 Ignored Ignored NEW
CATLG
CATLG

Ignored NEW
CATLG
CATLG

NEW
CATLG
CATLG

Ignored Ignored NEW
CATLG
CATLG

Ignored

SYSUT1 NEW
DELETE
CATLG

NEW
DELETE
CATLG

Ignored Ignored NEW
DELETE
CATLG

Ignored NEW
DELETE
CATLG

NEW
CATLG
CATLG

NEW
DELETE
CATLG

Ignored

SORTOUT NEW
DELETE
CATLG

Ignored Ignored Ignored NEW
DELETE
CATLG

Ignored Ignored NEW
DELETE
CATLG

NEW
DELETE
CATLG

Ignored

SYSMAP Ignored Ignored Ignored Ignored NEW
CATLG
CATLG

Ignored Ignored Ignored Ignored Ignored

SYSERR NEW
CATLG
CATLG

Ignored Ignored Ignored NEW
CATLG
CATLG

Ignored Ignored Ignored Ignored Ignored

FILTERDDS Ignored Ignored NEW
DELETE
DELETE

Ignored Ignored Ignored Ignored Ignored Ignored Ignored

The following table shows data dispositions for dynamically allocated data sets
on RESTART.

Table 114. Data dispositions for dynamically allocated data sets on RESTART

ddname
CHECK
DATA

CHECK
INDEX or
CHECK LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSREC Ignored Ignored Ignored Ignored OLD
KEEP
KEEP

Ignored Ignored Ignored MOD
CATLG
CATLG

MOD CATLG
CATLG

SYSDISC Ignored Ignored Ignored Ignored MOD
CATLG
CATLG

Ignored Ignored Ignored MOD
CATLG
CATLG

Ignored

SYSPUNCH Ignored Ignored Ignored Ignored Ignored Ignored Ignored Ignored MOD
CATLG
CATLG

MOD CATLG
CATLG

SYSCOPY Ignored Ignored MOD
CATLG
CATLG

Ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

Ignored Ignored MOD
CATLG
CATLG

Ignored

SYSCOPY2 Ignored Ignored MOD
CATLG
CATLG

Ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

Ignored Ignored MOD
CATLG
CATLG

Ignored

SYSRCPY1 Ignored Ignored MOD
CATLG
CATLG

Ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

Ignored Ignored MOD
CATLG
CATLG

Ignored

SYSRCPY2 Ignored Ignored MOD
CATLG
CATLG

Ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

Ignored Ignored MOD
CATLG
CATLG

Ignored

SYSUT1 MOD
DELETE
CATLG

MOD
DELETE
CATLG

Ignored Ignored MOD
DELETE
CATLG

Ignored MOD
DELETE
CATLG

MOD
CATLG
CATLG

MOD
DELETE
CATLG

Ignored

SORTOUT MOD
DELETE
CATLG

Ignored Ignored Ignored MOD
DELETE
CATLG

Ignored Ignored MOD
DELETE
CATLG

MOD
DELETE
CATLG

Ignored

SYSMAP Ignored Ignored Ignored Ignored MOD
CATLG
CATLG

Ignored Ignored Ignored Ignored Ignored

786 Utility Guide and Reference

Table 114. Data dispositions for dynamically allocated data sets on RESTART (continued)

ddname
CHECK
DATA

CHECK
INDEX or
CHECK LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSERR MOD
CATLG
CATLG

Ignored Ignored Ignored MOD
CATLG
CATLG

Ignored Ignored Ignored Ignored Ignored

FILTERDDS Ignored Ignored NEW
DELETE
DELETE

Ignored Ignored Ignored Ignored Ignored Ignored Ignored

LIMIT
Specifies template switching.

n Specifies the maximum primary allocation quantity that is permitted using
this TEMPLATE.

CYL
Cylinders

GB Gigabytes

MB Megabytes

new_template
Specifies a character string that specifies the name of a TEMPLATE to use
if the size limit is exceeded.

DB2 supports the LIMIT keyword only on TEMPLATE control statements
reference by COPYDDN or RECOVERYDDN keywords on the following
utilities:
v COPY FULL YES|NO
v COPY CONCURRENT
v COPYTOCOPY
v MERGECOPY
v LOAD
v REORG

Restriction:

v You cannot switch to a DD card.
v The template control statement that LIMIT references must exist in SYSIN or

SYSTEMPL and it cannot refer to itself.
v Switching can only be performed a single time per allocation. Multiple

switching cannot take place.
v The utility PREVIEW function ignores the LIMIT keyword, only the original

TEMPLATE control statement is previewed. The LIMIT keyword is ignored
for new templates.

TIME
Specifies time used in expansion of date and time DSN variables. The default
TIME value is determined by the TEMPLATE_TIME subsystem parameter.

Tip: Set all DB2 data sharing members to the same value.

LOCAL
Use local time at the DB2 server in the expansion of date and time in DSN
variables.

Chapter 31. TEMPLATE 787

|
|
|

|

|
|
|

UTC
Use Coordinated Universal Time (UTC) in the expansion of date and time
in DSN variables.

SPACE (primary,secondary)
Specifies the z/OS disk space allocation parameters in the range from 1 to
1677215. If you specify (primary,secondary) value, these values are used instead
of the DB2-calculated values. When specifying primary and secondary
quantities, you must either specify both values or omit both values.

Use the MAXPRIME option to set an upper limit on the primary quantity.

CYL
Specifies that allocation quantities, if present, are to be expressed in
cylinders and that allocation is to occur in cylinders. If SPACE CYL is
specified, without (primary, secondary), the DB2-calculated quantities are
allocated in cylinders by using 3390 device capacities for byte conversion.
If TRK and MB are omitted, CYL is the default.

TRK
Specifies that allocation quantities, if present, are to be expressed in tracks
and that allocation is to occur in tracks. If SPACE TRK is specified, without
(primary,secondary), the DB2-calculated quantities are allocated in tracks by
using 3390 device capacities for byte conversion.

MB Specifies that allocation quantities, if present, are to be expressed in
megabytes, and that allocation is to occur in records. One megabyte is
1 048 576 bytes. If SPACE MB is specified, the (primary,secondary)
quantities that are specified, or the DB2-calculated quantities, might be
allocated in tracks or cylinders. Data sets with a primary or secondary
allocation quantity greater than 20 MB are allocated in cylinders. Smaller
data sets are allocated in tracks. The 3390 device capacities are used for
TRK or CYL conversion.

PCTPRIME integer
Specifies the percentage of the estimated required space that is to be obtained
as the primary quantity.

The default value is 100.

Use the MAXPRIME option to set the upper limit of this value for large
objects.

MAXPRIME integer
Specifies the maximum allowable primary space allocation, expressed in
cylinders (CYL). This value constrains the primary space value and the
PCTPRIME calculation, as well as the size of each secondary allocation.

NBRSECND integer
Specifies the division of secondary space allocations. After the primary space is
allocated, an amount of space equal to the estimated required space is divided
into the specified number of secondary allocations. Individual utilities might
request larger secondary extents to compensate for localized uncertainty in the
space estimations.

The integer value must be in the range from 1 to 10. The default value is 10.

DIR integer
Specifies the number of 256-byte records that are to be allocated for the
directory of a new partitioned data set. You must specify this operand if you
are allocating a new partitioned data set.

788 Utility Guide and Reference

|
|
|

If the template is being used in a UNLOAD statement with BLOBF, CLOBF, or
DBCLOBF and you specify a DSNTYPE of LIBRARY or PDS, but do not
specify DIR, DB2 calculates the number of 256-byte records to allocate by
dividing the estimated number of records by 20.

DSNTYPE

Specifies the type of data set to be allocated.

LIBRARY
Specifies that a partitioned data set extended (PDSE) is to be allocated.

PDS
Specifies that a partitioned data set (PDS) is to be allocated.

HFS
Specifies that a hierarchical file system (HFS) file is to be allocated.

NULL
Specifies a null file. Use this value for a template with UNLOAD CLOBF,
BLOBF, or DBCLOBF to unload a null LOB value. In this case, the unload
data set contains a null file name.

BASIC
Specifies a basic format data set. No more than 65535 tracks can be
allocated.

LARGE
Specifies a large format data set. Greater than 65535 tracks can be
allocated.

EXTREQ
Specifies an extended format data set is required.

EXTPREF
Specifies an extended format data set is preferred.

If you omit DSNTYPE, the type of data set is determined by other data set
attributes, the data class for the data set, or an installation default.

EATTR
Specifies that the data set can support extended attributes.

STACK
Specifies whether output data sets are to be stacked contiguously on the same
tape volumes.

NO Specifies that output data sets are not to be stacked contiguously on tape.

YES
Specifies that similar output data sets are to be stacked as successive files
on one logical tape volume, where a logical tape volume can consist of a
multi-volume aggregate. Within one utility execution, output data sets are
stacked on a logical tape volume of the same usage type. For example,
local primary image copies are stacked separately from local backup image
copies.

Related information:

“Guidelines for templates and tape data sets” on page 795

TRTCH
Specifies the track recording technique for magnetic tape drives that have
improved data recording capability.

Chapter 31. TEMPLATE 789

|
|
|

|
|
|

|
|

|
|

NONE
Specifies that the TRTCH specification is to be eliminated from dynamic
allocation.

COMP
Specifies that data is to be written in compacted format.

NOCOMP
Specifies that data is to be written in standard format.

PATH
Specifies a z/OS UNIX file path name, which can be the name of a Unix
System Services (USS) pipe, an HFS file, or a zFS file.

Restrictions:

v If you specify PATH for a template, the utility that uses that template cannot
be restarted.

v You can use a template with PATH only for input data sets for the LOAD
utility (as indicated by the INDDN option) and for output data sets for the
UNLOAD utility (as indicated by the UNLDDN option). You cannot use
these templates for DISCARDDN data sets for the LOAD and REORG
utilities.

When you specify PATH, adhere to the following requirements:
v Specify the path name in SBCS EBCDIC format.
v Do not specify a path name that is longer than 255 bytes.
v If the path name contains blanks, enclose it in single quotes.
v If you specify PATH and do not specify FILEDATA(RECORD), specify

values for LRECL and RECFM.

FILEDATA
Specifies the content type of the z/OS UNIX file that is specified for the
PATH option. Valid values are TEXT, BINARY, and RECORD. RECORD
indicates that the file contains both binary and text data.

The default value is RECORD.

PATHOPTS
Specifies the access and status for the z/OS UNIX file that is specified for
the PATH option.

You can specify one or more of the following z/OS options for PATHOPTS:
v ORDONLY
v OCREAT
v OWRONLY
v ONONBLOCK

For information about these options, see PATHOPTS Parameter (MVS JCL
Reference).

The default for LOAD is ORDONLY. The default for UNLOAD is
OCREAT, OWRONLY.

PATHMODE
Specifies the file mode of the HFS file that is specified in the PATH option.

You can specify one or more of the following z/OS options for
PATHMODE:
v SIRUSR

790 Utility Guide and Reference

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b6b1/12.51?ACTION=MATCHES&REQUEST=pathopts+parameter&TYPE=FUZZY&SHELF=&DT=20120814180937&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b6b1/12.51?ACTION=MATCHES&REQUEST=pathopts+parameter&TYPE=FUZZY&SHELF=&DT=20120814180937&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT

v SIWUSR
v SIXUSR
v SIRWXU
v SIRGRP
v SIWGRP
v SIXGRP
v SIRWXG
v SIROTH
v SIWOTH
v SIXOTH
v SIRWXO

For information about these options, see PATHMODE Parameter (MVS JCL
Reference).

The default value is SIRUSR.

PATHDISP
Specifies the disposition of the z/OS UNIX file that is specified for the
PATH option.

You must specify two parameters for the PATHDISP:
v The first parameter specifies whether the file is to be kept or deleted

when the job ends normally.
v The second parameter specifies whether the file is to be kept or deleted

when the job ends abnormally.

The valid values for each parameter are KEEP or DELETE.

The default value is KEEP, KEEP.
Related reference:

TEMPLATE TIME field (TEMPLATE_TIME subsystem parameter) (DB2
Installation and Migration)

DD statement (MVS JCL Reference)
Related information:

DSNTYPE Parameter (MVS JCL Reference)

EATTR Parameter (MVS JCL Reference)

Before running TEMPLATE
Some DB2 utilities produce data sets during execution. These data sets are
referenced in utility control statements by a set of DD name keywords and are
specified in the corresponding JCL. Alternatively, you can use the TEMPLATE
utility control statement to dynamically allocate utility data sets.

Options of the TEMPLATE utility allow you to specify the following information:
v The data set naming convention
v DFSMS parameters
v Disk or tape allocation parameters

You can specify a template in the SYSIN data set, immediately preceding the utility
control statement that references it, or in one or more TEMPLATE libraries.

Chapter 31. TEMPLATE 791

|
|

|

|

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b6b1/12.50?ACTION=MATCHES&REQUEST=pathmode+parameter&TYPE=FUZZY&SHELF=&DT=20120814180937&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b6b1/12.50?ACTION=MATCHES&REQUEST=pathmode+parameter&TYPE=FUZZY&SHELF=&DT=20120814180937&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_templatetime.htm#db2z_templatetime
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_templatetime.htm#db2z_templatetime
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b6b1/12.0?DN=SA22-7597-16&DT=20120814180937&SHELF=&CASE=&PATH=/bookmgr/
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b6b1/12.23?ACTION=MATCHES&REQUEST=dsntype&TYPE=FUZZY&SHELF=&DT=20120814180937&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b6b1/12.26?ACTION=MATCHES&REQUEST=eattr&TYPE=FUZZY&SHELF=&DT=20120814180937&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT

A TEMPLATE library is a data set that contains only TEMPLATE utility control
statements. You can specify a TEMPLATE data set DD name by using the
TEMPLATEDD option of the OPTIONS utility control statement. This specification
applies to all subsequent utility control statements until the end of input or until
DB2 encounters a new OPTIONS TEMPLATEDD(ddname) specification.

Any template that is defined within SYSIN overrides another template definition of
the same name in a TEMPLATE data set.

TEMPLATE utility control statements enable you to standardize data set allocation
and the utility control statements that reference those data sets, which reduces the
need to customize and alter utility job streams.

Concurrency and compatibility for TEMPLATE
The TEMPLATE utility has certain concurrency and compatibility characteristics
associated with it.

TEMPLATE is a control statement that is used to set up an environment for
another utility to follow. The template is stored until it is referenced by a specific
utility. The list is expanded when it is referenced by another utility. At that time,
the concurrency and compatibility restrictions of that utility apply, and the catalog
tables that are necessary to expand the list must be available for read-only access.

Key TEMPLATE operations
Like both LISTDEF and OPTIONS utility control statements, a TEMPLATE control
statement performs a setup operation in preparation for use by another utility.
When the control statement is processed, the information is saved under the
template name for the duration of the job step. You can reference it as though it
were an output data set DD name by substituting the template name for the DD
name on most utility control statements.

If a DD name and a TEMPLATE name conflict, the DD statement is used for
allocation, and the TEMPLATE is ignored. Minimally, a TEMPLATE statement
consists of a name (similar to a DD name) and a data set naming convention. If
nothing else is specified, DB2 calculates the required data set size and uses default
data set attributes that are appropriate to the data set that is being created. DB2
then allocates a disk data set with these defaults.

The required TEMPLATE statement might look something like the following
TEMPLATE statement:
TEMPLATE tmp1 DSN(DB2.&TS..D&JDATE..COPY&ICTYPE.&LOCREM.&PRIBAC.)

VOLUMES(vol1,vol2,vol3)
LISTDEF payroll INCLUDE TABLESPACE PAYROLL.*

INCLUDE INDEXSPACE PAYROLL.*IX
EXCLUDE TABLESPACE PAYROLL.TEMP*
EXCLUDE INDEXSPACE PAYROLL.TMPIX*

COPY LIST payroll COPYDDN(tmp1,tmp1) RECOVERYDDN(tmp1,tmp1)

Database administrators can check utility control statements without executing
them by using the PREVIEW function. In PREVIEW mode, DB2 expands all
TEMPLATE data set names in the SYSIN DD, in addition to any data set name
from the TEMPLATE DD that are referenced on a utility control statement. DB2
then prints the information to the SYSPRINT data set and halts execution. You can
specify PREVIEW in one of two ways, either as a JCL PARM or on the OPTIONS
PREVIEW utility control statement.

792 Utility Guide and Reference

Choosing data set names
The data set naming convention that is specified on the DSN option of each
TEMPLATE statement must be appropriate for the data set that is being created.
The data set naming convention must also be coordinated with the other templates
and DD statements in the same job step.

About this task

The data set name must be both unique and meaningful. DB2 does not check that
the data set names are unique until the execution of the utility that references the
template. Ensure that the data set names are unique when you define the data set
naming convention on the TEMPLATE control statement.

Procedure

To choose a data set name, apply the following guidelines:
v Use a combination of static characters, national characters, and the provided

variable names to form valid z/OS data set qualifiers. Normal z/OS rules apply.
Variables that produce numeric values must be preceded by either a static
character or a character variable. All qualifiers must start with an alphabetic
character. The qualifiers must consist of a maximum of eight characters and a
maximum of 44 characters for the entire data set name. To help comply with this
44 character limit, you can use variable substring notation.

v Use the two-character form of the DSN variables to save space.
v Use two consecutive periods following all variables that precede the last

qualifier (one to terminate the variable, followed by a second static period to
separate the qualifiers), as in the following example:
&DB..&TS.

v Use &DB. and &TS. to relate the data set to a database object.
v Use &PART. when executing PARTLEVEL lists. Preceed the variable with a static

character or a character variable to form a valid qualifier.
v Use &JO. and &ST. to eliminate conflicts with other jobs or job steps.
v Use &SS., &US., &UT., and &UN. if you have a need to know the subsystem,

member, user, utility ID, or name of the utility that produced the data set.
v Use &DATE. and &TIME. or the shorter substring variations to guarantee

uniqueness. Preceed the variable with a static character or a character variable to
form a valid qualifier.

v Use &IC., &LR., and &PB. to identify image copy data sets. For example, the
following template name would make a meaningful seven-character data set
qualifier:
COPY&IC.&LR.&PB.

v Use &DS for FlashCopy image copies for uniqueness when copying table spaces
or index spaces at the space level.

What to do next

You can check the data set names by using the PREVIEW function. In PREVIEW
mode, DB2 expands all TEMPLATE data set names in the SYSIN DD, in addition
to any data set name from the TEMPLATE DD that are referenced on a utility
control statement. DB2 then prints the information to the SYSPRINT data set and
halts execution. You can specify PREVIEW in one of two ways, either as a JCL
PARM or on the OPTIONS PREVIEW utility control statement.

Chapter 31. TEMPLATE 793

Related reference:
“Syntax and options of the TEMPLATE control statement” on page 775
“Syntax and options of the OPTIONS control statement” on page 389

Default space calculations for data set templates
DB2 calculates the space for data sets that are defined by the TEMPLATE utility
based on the utility that is using the template. For disk data sets, all of this space
is allocated as a primary quantity by default.

Data set size

For disk data sets, DB2 estimates the size of the data set based on formulas that
vary according to the utility and the data set. These space estimation formulas are
shown in the “Data sets that utility uses” topics for each online utility.
Alternatively, you can specify your own values for disk space by using the SPACE
option in the TEMPLATE utility control statement.

DB2 usually estimates the size of a data set based on the size of other existing data
sets. However, if any of the required data sets are on tape, DB2 is unable to
estimate the size.

When DB2 is able to calculate size, it calculates the maximum size. This action can
result in overly large data sets. DB2 always allocates data set size with the RLSE
(release) option so that unused space is released on deallocation. However in some
cases, the calculated size of required data sets is too large for the DYNALLOC
interface to handle. In this case, DB2 issues error message DSNU1034I, and you
must allocate the data set by a DD statement. If the object is part of a LISTDEF list,
you might need to remove it from the list and process it individually.

Recommendation: To improve the accuracy of the default space estimation, run
the RUNSTATS utility with the UPDATE SPACE or UPDATE ALL option before
you run any of the following utilities:
v CHECK DATA
v CHECK INDEX
v CHECK LOB
v REBUILD INDEX
v REORG INDEX
v REORG TABLESPACE
v UNLOAD

Extent allocation for disk data sets

By default, for data sets on disk, 100 percent of the required space that is estimated
by DB2 is allocated as a primary quantity. If this amount of space is typically not
available on a single volume, specify the PCTPRIME option with a value lower
than 100. Alternatively, if you want the upper limit of the primary quantity based
on size instead of percentage, use the MAXPRIME option.

After the primary space is allocated, a secondary quantity that is equal to the
estimated required space is divided into the specified number of secondary extents.
This number is identified by the NBRSECND option. Individual utilities might
request larger secondary extents to compensate for localized uncertainty in the
space estimations. If you specify either PCTPRIME or MAXPRIME, any secondary

794 Utility Guide and Reference

allocation requests are limited to the size of the primary allocation.
Related reference:
“Syntax and options of the TEMPLATE control statement” on page 775
Chapter 29, “RUNSTATS,” on page 721
Related information:

DSNU1034I (DB2 Messages)

Guidelines for templates and tape data sets
When you use the TEMPLATE utility to allocate tape data sets, use the STACK
option to control tape processing.

STACK NO specifies traditional, single-file processing. The data set is written, and
the tape is rewound and repositioned or even remounted. STACK YES specifies
that successive files are to be written on a single logical tape without repositioning
or remounting.

When you specify STACK YES, DB2 has the following behavior:
v DB2 stacks files only within a single utility invocation. When that utility ends,

the stack is terminated, which means that the tape is rewound and unloaded. To
allow more stacking, use the LISTDEF utility to define a list and then specify
that list in another utility control statement. Using a LISTDEF list forces multiple
objects to be processed under a single utility invocation.

v To preserve parallel processing, parallel tasks are written to different tape
volumes. The specific volume to which the data set is written can vary,
depending on the following factors:
– The number of output data sets that are being produced
– The number of parallel processes that are requested
– The number of tape units that are available to the job step

If you specify STACK YES, take the following actions as needed:
v To avoid issues with mounting a tape volume on the wrong drive, specify

UNCNT 1.
v To prevent conflicts between parallel processes, use a single process to write a

file to a stack. (Parallel processing can complicate stacking.)
v Ensure that only files of the same type are stacked on the same tape. For

example, one tape might contain local primary image copies whereas another
tape might contain remote primary image copies. The file types cannot be
mixed.

Restrictions: Do not use the STACK YES option in the following situations:
v For concurrent copies (copies that are made by the COPY utility with the

CONCURRENT option)
v For inline image copies that are created by REORG TABLESPACE on a

partition-by-growth base table space with one or more LOB columns

The data sets and utilities for which the STACK YES option are supported are
listed in the following table. “Yes” indicates that the specified utility supports tape
stacking for the specified data set. “No” indicates that the specified utility does not
support tape stacking for the specified data set. “Ignored” indicates that the
specified data set does not apply to the specified utility.

Chapter 31. TEMPLATE 795

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu1034i.htm#dsnu1034i

Table 115. Supported data sets for tape stacking

ddname
CHECK
DATA

CHECK
INDEX or
CHECK
LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSREC Ignored Ignored Ignored Ignored No Ignored Ignored Ignored Yes Yes

SYSDISC Ignored Ignored Ignored Ignored No Ignored Ignored Ignored Yes Ignored

SYSPUNCH Ignored Ignored Ignored Ignored Ignored Ignored Ignored Ignored Yes Yes

SYSCOPY Ignored Ignored Yes Yes No Yes Ignored Ignored Yes Ignored

SYSCOPY2 Ignored Ignored Yes Yes No Yes Ignored Ignored Yes Ignored

SYSRCPY1 Ignored Ignored Yes Yes No Yes Ignored Ignored Yes Ignored

SYSRCPY2 Ignored Ignored Yes Yes No Yes Ignored Ignored Yes Ignored

SYSUT1 No No Ignored Ignored No Ignored No No No Ignored

SORTOUT No Ignored Ignored Ignored No Ignored Ignored No No Ignored

SYSMAP Ignored Ignored Ignored Ignored No Ignored Ignored Ignored Ignored Ignored

SYSERR No Ignored Ignored Ignored No Ignored Ignored Ignored Ignored Ignored

FILTERDDS Ignored Ignored No Ignored Ignored Ignored Ignored Ignored Ignored Ignored

Related reference:
“Syntax and options of the TEMPLATE control statement” on page 775
Chapter 15, “LISTDEF,” on page 207

How TEMPLATE supports GDG data sets
When you use the TEMPLATE utility, you can specify both absolute version
references and relative references to generation data groups (GDGs) in the DSN
name operand.

The first time that the data set is referenced, DB2 detects the absence of a GDG
base. When (+1) or some other parenthetical relative expression is used, DB2
creates the GDG base. By default, the new base has a limit of 99 entries. Use the
GDGLIMIT keyword to alter this value or prohibit this action.

After the base is created, you can specify either the absolute version G0000V00 or a
relative version. If you use the PREVIEW function on the OPTIONS utility control
statement, DB2 displays the GDG relative version references. GDG names are
restricted to 35 characters.

A model data set, as defined in the MODELDCB option, might be required to
allocate GDG data sets in your environment.
Related reference:
“Syntax and options of the TEMPLATE control statement” on page 775
“Syntax and options of the OPTIONS control statement” on page 389

Template switching
Template switching is most commonly used to direct small data sets to disk and
large data sets to tape, but it can also be used to switch to templates that differ in
DSNs or in HSN classes. The decision to switch is made based on the estimated
output data set size, which may differ from the actual final size of the output data
set. This difference is particularly true for incremental image copies that are
estimated at 10% of the space required for a full image copy.

796 Utility Guide and Reference

Termination or restart of TEMPLATE
You can terminate and restart a TEMPLATE utility job.

You can terminate a TEMPLATE utility job by using the TERM UTILITY command if
you submitted the job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a TEMPLATE utility job, but it starts from the beginning again. If
you are restarting this utility as part of a larger job in which TEMPLATE
completed successfully, but a later utility failed, do not change the TEMPLATE
utility control statement, if possible. If you must change the TEMPLATE utility
control statement, use caution; any changes can cause the restart processing to fail.
For example, if you change the template name of a temporary work data set that
was opened in an earlier phase and closed but is to be used later, the job fails.

Restriction: When a TEMPLATE utility control statement includes the PATH
keyword, the utility that uses that template cannot be restarted.
Related concepts:
“Restart of an online utility” on page 39

Sample TEMPLATE control statements
Use the sample control statements as models for developing your own TEMPLATE
control statements.

Example 1: Specifying a basic template for an image copy on
disk

The following TEMPLATE utility control statement defines a basic template that
can be used to allocate an image copy data set. The name of the template is
COPYDS. Any subsequent COPY jobs that specify this template for dynamically
allocated data sets use the data set naming convention that is defined by the DSN
option.
TEMPLATE COPYDS DSN &DB..&TS..COPY&IC.&LR.&PB..D&DATE..T&TIME.

Example 2: Using variable substring notation to specify data set
names

The following control statement defines template CP2. Variable substring notation
is used in the DSN option to define the data set naming convention.

Assume that in the year 2003 you make a full image copy of partition 00004 of
table space DSN8S81D. Assume that you specify the template CP2 for the data set
for the local primary copy. DB2 gives the following name to the image copy data
set: DH173001.DSN8S81D.Y03.COPYLP.P004

Notice that every variable in the DSN option begins with an ampersand (&) and
ends with a period (.). These ampersands and periods are not included in the data
set name. Only periods that do not signal the end of a variable are included in the
data set name.
TEMPLATE CP2 DSN ’DH173001.&SN..Y&YEAR(3)..COPY&LR.&PB..P&PART(3,3).’

UNIT(SYSDA)

Chapter 31. TEMPLATE 797

Example 3: Using COPY with TEMPLATE with variable substring
notation

The following TEMPLATE utility control statement defines template SYSCOPY.
Variable substring notation is used in the DSN option to define the data set
naming convention. The subsequent COPY utility control statement specifies that
DB2 is to make a local primary copy of the first partition of table space
DSN8D81A.DSN8S81E. COPY is to write this image copy to a data set that is
dynamically allocated according to the SYSCOPY template. In this case, the
resulting data set name is DSN8D81A.DSN8S81E.P001
TEMPLATE SYSCOPY DSN ’&DB..&TS..P&PA(3).’

COPY TABLESPACE DSN8D81A.DSN8S81E DSNUM 1 COPYDDN(SYSCOPY)

Notice that you can change the part variable in the DSN operand from P&PA(3). to
P&PA(3,3). The resulting data set name is the same, because the length value of 3
is implied in the first specification.

Example 4: Specifying a template for tape data sets with an
expiration date

The following control statement defines the TAPEDS template. Any data sets that
are defined with this template are to be allocated on device number 3590-1, as
indicated by the UNIT option, and are to expire on 1 January 2100, as indicated by
the EXPDL option. The DSN option indicates that these data set names are to have
the following three parts: database name, table space name, and date.
TEMPLATE TAPEDS DSN(&DB..&TS..D&DATE.)

UNIT 3590-1 EXPDL ’2100001’

Example 5: Specifying a disk template that gives space
allocation parameters.

The following control statement defines the DISK template. Any data sets that are
defined with this template are to have 100 cylinders of primary disk space and 10
cylinders of secondary disk space, as indicated by the SPACE and CYL options.
The DSN option indicates that the data set names are to have the following three
parts: database name, table space name, and time.
TEMPLATE DISK DSN &DB..&TS..T&TIME.

SPACE(100,10) CYL

Example 6: Specifying a disk template that uses a default size
with constraints

The following control statement defines the DISK template. Because the SPACE
option does not specify quantities for primary and secondary space allocation, DB2
calculates these values with the following constraint: the maximum allowable
primary space allocation is 1000 cylinders. This constraint is indicated by the
MAXPRIME option. The DSN option indicates that the data set names are to have
the following three parts: database name, table space name, and time.
TEMPLATE DISK DSN(&DB..&TS..T&TIME.)

SPACE CYL MAXPRIME 1000

Example 7: Using TEMPLATE with LISTDEF and COPY

In the following example, the LISTDEF utility control statement defines the CPY1
list. The TEMPLATE control statement then defines the TMP1 template. The COPY

798 Utility Guide and Reference

utility control statement then specifies that DB2 is to make local copies of the
objects in the CPY1 list. DB2 is to write these copies to data sets that are
dynamically allocated according to the characteristics that are defined in the TMP1
template.
LISTDEF CPY1 INCLUDE TABLESPACES TABLESPACE DBA906*.T*A906*

INCLUDE INDEXSPACES COPY YES INDEXSPACE ADMF001.I?A906*
TEMPLATE TMP1 UNIT SYSDA

DSN (DH109006.&STEPNAME..&SN..T&TIME.)
DISP (MOD,CATLG,CATLG)

COPY LIST CPY1 COPYDDN (TMP1) PARALLEL (2) SHRLEVEL REFERENCE

Parentheses for the DSN name-expression are optional.

Example 8: Use TEMPLATE to create a GDG data set

In this example, the TEMPLATE control statement defines the COPYTEMP
template. The COPY utility control statement specifies that DB2 is to write a local
image copy of the table space DBLT2501.TPLT2501 to a data set that is dynamically
allocated according to the characteristics that are defined in the COPYTEMP
template. According to the COPYTEMP template, this data set is to be named
JULTU225.GDG(+1) (as indicated by the DSN option) and is to have six entries
created in the GDG base (as indicated by the GDGLIMIT option). The control block
information is to be the same as that in the JULTU225.MODEL data set, as
indicated by the MODELDCB option.

Example 9: Using a template to copy a GDG data set to tape

In this example, the OPTIONS utility control statement causes the subsequent
TEMPLATE statement to run in PREVIEW mode. In this mode, DB2 checks the
syntax of the TEMPLATE statement. If DB2 determines that the syntax is valid, it
expands the data set names. The OPTIONS OFF statement ends PREVIEW mode
processing. The subsequent COPY utility control statement executes normally. The
COPY statement specifies that DB2 is to write a local image copy of the table space

//**
//* COMMENT: Define a model data set. *
//**
//STEP1 EXEC PGM=IEFBR14
//SYSCOPX DD DSN=JULTU225.MODEL,DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20)),VOL=SER=SCR03,
// DCB=(RECFM=FB,BLKSIZE=4000,LRECL=100)
//***
//* COMMENT: GDGLIMIT(6)
//***
//STEP2 EXEC DSNUPROC,UID=’JULTU225.GDG’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//SYSIN DD *

TEMPLATE COPYTEMP
UNIT SYSDA
DSN ’JULTU225.GDG(+1)’
MODELDCB JULTU225.MODEL
GDGLIMIT(6)

COPY TABLESPACE DBLT2501.TPLT2501
FULL YES
COPYDDN (COPYTEMP)
SHRLEVEL REFERENCE

/*

Figure 96. Example TEMPLATE and COPY statements for writing a local copy to a data set
that is dynamically allocated according to the characteristics of the template.

Chapter 31. TEMPLATE 799

DBLT4301.TPLT4301 to a data set that is dynamically allocated according to the
characteristics that are defined in the COPYTEMP template. According to the
COPYTEMP template, this data set is to be named JULTU243.GDG(+1) (as
indicated by the DSN option) and is to be stacked on the tape volume 99543 (as
indicated by the UNIT, STACK, and VOLUMES options). The data set dispositions
are specified by the DISP option. The GDGLIMIT option specifies that 50 entries
are to be created in a GDG base.

Example 10: Creating a template that can be used for unloading
LOB objects

The TEMPLATE control statement in this example defines a template called
LOBFRV. The subsequent UNLOAD statement specifies that each CLOB in the
RESUME column is to be unloaded to files that are dynamically allocated
according to the characteristics defined for the LOBFRV template. In this case,
those files are to be partitioned data sets, as specified by the DSNTYPE option.
Each data set is to have the name UNLODTEST.database-name.LOB-table-space-
name.RESUME, as specified by the DSN option. The names of each CLOB PDS is
written to the unload data set. By default, the unload data set is defined by the
SYSREC DD statement or template.

Example 11: Using template switching.

The following TEMPLATE control statement assumes that tables space SMALL.TS
occupies 10 cylinders and table space LARGE.TS occupies 100 cylinders. Both

/*
//***
//* COMMENT: COPY GDG DATA SET TO TAPE
//***
//STEP1 EXEC DSNUPROC,UID=’JULTU243.GDG’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//SYSIN DD *

OPTIONS PREVIEW
TEMPLATE COPYTEMP

UNIT TAPE
DSN ’JULTU243.GDG(+1)’
VOLUMES (99543)
GDGLIMIT(50)
DISP(NEW,CATLG,CATLG)
STACK YES

OPTIONS OFF
COPY TABLESPACE DBLT4301.TPLT4301

FULL YES
COPYDDN (COPYTEMP)
SHRLEVEL REFERENCE

/*

Figure 97. Example job that uses OPTIONS, TEMPLATE, and COPY statements to copy a
GDG data set to tape.

TEMPLATE LOBFRV DSN ’UNLDTEST.&DB..&TS..RESUME’
DSNTYPE(PDS) UNIT(SYSDA)

UNLOAD DATA
FROM TABLE DSN8910.EMP_PHOTO_RESUME
(EMPNO CHAR(6),
RESUME VARCHAR(255) CLOBF LOBFRV)

SHRLEVEL CHANGE

Figure 98. Example job that creates a template that can be used for unloading LOB objects.

800 Utility Guide and Reference

COPY statements use the SMALLTP template which specifies a limit of 20
cylinders. Table space SMALL.TS is smaller than this limit so no switching is
performed. The output data set for table space SMALL.TS will be allocated on
UNIT=SYSALLDA. Table space LARGE.TS is larger than this limit so the template
is switched to the LARGETP template. The output data set for table space
LARGE.TS will be allocated on UNIT=TAPE.
TEMPLATE LARGETP DSN &DB..&TS..D&DA..T&TI. UNIT=TAPE
TEMPLATE SMALLTP DSN &DB..&TS..D&DA..T&TI. UNIT=SYSALLDA LIMIT(20 CYL, LARGETP)
COPY TABLESPACE SMALL.TS COPYDDN(SMALLTP)
COPY TABLESPACE LARGE.TS COPYDDN(SMALLTP)

Chapter 31. TEMPLATE 801

802 Utility Guide and Reference

Chapter 32. UNLOAD

The UNLOAD online utility unloads data from one or more source objects to one
or more BSAM sequential data sets in external formats. The source can be DB2
table spaces or DB2 image copy data sets. The source cannot be a concurrent copy
or a FlashCopy image copy.

UNLOAD is an enhancement of the REORG UNLOAD EXTERNAL function. With
UNLOAD, you can unload rows from an entire table space or select specific
partitions or tables to unload. You can also select columns by using the field
specification list. If a table space is partitioned, you can unload all of the selected
partitions into a single data set, or you can unload each partition in parallel into
physically distinct data sets.

UNLOAD must be run on the system where the definitions of the table space and
the table exist.

The output records that the UNLOAD utility writes are compatible as input to the
LOAD utility; as a result, you can reload the original table or different tables.

Output

UNLOAD generates an unloaded table space or partition.

Authorization required

To execute this utility, you must use a privilege set that includes one of the
following authorities:
v Ownership of the tables
v SELECT privilege on the tables
v DBADM authority for the database. If the object on which the utility operates is

in an implicitly created database, DBADM authority on DSNDB04 or the
implicitly created database is sufficient.

v DATAACCESS authority
v SYSADM authority
v SYSCTRL authority (catalog tables only)
v SQLADM authority (catalog tables only)
v System DBADM authority (catalog tables only)
v ACCESSCTRL authority (catalog tables only)
v SECADM authority (catalog tables only)

If you use RACF access control with multilevel security and UNLOAD is to
process a table space that contains a table that has multilevel security with
row-level granularity, you must be identified to RACF and have an accessible valid
security label. Each row is unloaded only if your security label dominates the data
security label. If your security label does not dominate the data security label, the
row is not unloaded, but DB2 does not issue an error message.

Restrictions on running UNLOAD
v UNLOAD cannot be run on a table space during the period after RECOVER is

run to a point in time before materialization of pending definition changes and
before REORG is run to complete the point-in-time recovery process.

© Copyright IBM Corp. 1983, 2013 803

|
|
|

Execution phases of UNLOAD

The UNLOAD utility operates in these phases:

Phase Description

UTILINIT
Performs initialization.

UNLOAD
Unloads records to sequential data sets. One pass through the input data
set is made. If UNLOAD is processing a table space or partition, DB2 takes
internal commits. These commits provide commit points at which the
utility can be restarted in case operation should halt in this phase.

UTILTERM
Performs cleanup.

Related concepts:

Multilevel security (Managing Security)

Syntax and options of the UNLOAD control statement
The UNLOAD utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating
it, save it in a sequential or partitioned data set. When you create the JCL for
running the job, use the SYSIN DD statement to specify the name of the data set
that contains the utility control statement.

Syntax diagram

�� UNLOAD �

�

DATA from-table-spec
from-table-spec

source-spec
from-table-spec

LIST listdef-name

�

� unload-spec
CLONE

��

source-spec:

804 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_mls.htm#db2z_mls

�� TABLESPACE tablespace-name
database-name. PART integer

int1 : int2

�

�
FROMCOPY data-set-name

FROMVOLUME CATALOG
vol-ser

(1)
FROMSEQNO n

FROMCOPYDDN ddname

��

Notes:

1 The FROMSEQNO option is required if you are unloading an image copy from a tape data set
that is not cataloged.

unload-spec:

Chapter 32. UNLOAD 805

��
PUNCHDDN SYSPUNCH

PUNCHDDN ddname
template-name

UNLDDN SYSREC

UNLDDN ddname
template-name

EBCDIC
ASCII
UNICODE

�

�

�

,

CCSID(integer)

NOSUBS NOPAD

SPANNED NO

SPANNED YES FORMAT INTERNAL
�

�
COLDEL ',' CHARDEL '"' DECPT '.'

DELIMITED
COLDEL coldel CHARDEL chardel DECPT decpt

FLOAT S390

FLOAT IEEE
�

�
MAXERR 1

MAXERR integer

SHRLEVEL CHANGE ISOLATION CS
SKIP LOCKED DATA

SHRLEVEL CHANGE ISOLATION UR
REFERENCE

�

�
DECFLOAT_ROUNDMODE ROUND_CEILING

ROUND_DOWN
ROUND_FLOOR
ROUND_HALF_DOWN
ROUND_HALF_EVEN
ROUND_HALF_UP
ROUND_UP

IMPLICIT_TZ 'timezone-string'
�

�
PARALLEL 0

PARALLEL num-subtasks
��

FROM-TABLE-spec:

The syntax diagram and option descriptions for the FROM-TABLE-spec are
presented in the section “FROM-TABLE-spec syntax diagram and option
descriptions” on page 816.

Option descriptions

DATA
Identifies the data that is to be selected for unloading with table-name in the
from-table-spec. The DATA keyword is mutually exclusive with TABLESPACE,
PART, and LIST keywords.

When you specify the DATA keyword, or you omit either the TABLESPACE or
the LIST keyword, you must also specify at least one FROM TABLE clause.

806 Utility Guide and Reference

||||

TABLESPACE
Specifies the table space (and, optionally, the database to which it belongs)
from which the data is to be unloaded.

database-name
The name of the database to which the table space belongs. The name
cannot be DSNDB01 or DSNDB07.

The default value is DSNDB04.

tablespace-name
The name of the table space from which the data is to be unloaded. The
specified table space must not be a LOB or XML table space.

PART
Identifies a partition or a range of partitions from which the data is to be
unloaded. This keyword applies only if the specified table space is
partitioned. You cannot specify PART with LIST. The maximum is 4096.

integer
Designates a single partition. integer must identify an existing partition
number within the table space.

int1:int2
Designates a range of partitions from int1 to int2. int1 must be a
positive integer that is less than the highest partition number within
the table space. int2 must be an integer that is greater than int1 and
less than or equal to the highest partition number.

If no PART keyword is specified in an UNLOAD control statement, the
data from the entire table space is unloaded into a single unload data set.

FROMCOPY data-set-name
Indicates that data is to be unloaded from an image copy data set. When you
specify FROMCOPY, the UNLOAD utility processes only the specified image
copy data set. Alternatively, you can use the FROMCOPYDDN keyword where
multiple image copy data sets can be concatenated under a single DD name.

data-set-name
Specifies the name of a single image copy data set.

Related information:

“Unloading data from image copy data sets” on page 849

FROMVOLUME
Identifies the volume where the image copy data set resides.

CATALOG
Indicates that the data set is cataloged. Use this option only for an image
copy that was created as a cataloged data set (which means that its volume
serial is not recorded in SYSIBM.SYSCOPY).

vol-ser
Identifies the data set by an alphanumeric volume serial identifier of its
first volume. Use this option only for an image copy that was created as a
non-cataloged data set. To specify a data set that is stored on multiple tape
volumes, identify the first vol-ser in the SYSCOPY record.

FROMSEQNO n
Identifies the image copy data set by its file sequence number. The
FROMSEQNO option is required if you are unloading an image copy
from a tape data set that is not cataloged.

Chapter 32. UNLOAD 807

n Specifies the file sequence number.

FROMCOPYDDN ddname
Indicates that data is to be unloaded from one or more image copy data sets
that are associated with the specified ddname. Multiple image copy data sets
(primarily for the copy of pieces) can be concatenated under a single DD
name.

ddname
Identifies a DD name with which one or more image copy data sets are
associated.

Related information:

“Unloading data from image copy data sets” on page 849

LIST listdef-name
Identifies the name of a list of objects that are defined by a LISTDEF utility
control statement. The list can include table spaces, index spaces, databases, a
tables, an index, and partitions. The list cannot include index spaces, LOB table
spaces, and directory objects. You cannot use the LIST option to specify image
copy data sets.

When you specify the LIST option, the referenced LISTDEF identifies:
v The table spaces from which the data is to be unloaded. You can use the

pattern-matching feature of LISTDEF.
v The partitions (if a table space is partitioned) from which the data is to be

unloaded (defined by the INCLUDE, EXCLUDE, and PARTLEVEL keywords
in the LISTDEF statement).

The UNLOAD utility associates a single table space with one output data set,
except when partition-parallelism is activated. When you use the LIST option
with a LISTDEF that represents multiple table spaces, you must also define a
data set TEMPLATE that corresponds to all of the table spaces and specify the
template-name in the UNLDDN option.

If you want to generate the LOAD statements, you must define another
TEMPLATE for the PUNCHDDN data set that is similar to UNLDDN. DB2
then generates a LOAD statement for each table space. This utility will only
process clone data if the CLONE keyword is specified. The use of CLONED
YES on the LISTDEF statement is not sufficient.

The partitions or partition ranges can be specified in a list.

PUNCHDDN
Specifies the DD name for a data set or a template name that defines one or
more data set names that are to receive the LOAD utility control statements
that the UNLOAD utility generates.

ddname
Specifies the DD name.

The default value is SYSPUNCH.

template-name
Identifies the name of a data set template that is defined by a TEMPLATE
utility control statement.

If the specified name is defined both as a DD name (in the JCL) and as a
template name (in a TEMPLATE statement), it is treated as the DD name.

When you run the UNLOAD utility for multiple table spaces and you want to
generate corresponding LOAD statements, you must have multiple output data

808 Utility Guide and Reference

sets that correspond to the table spaces so that DB2 retains all of the generated
LOAD statements. In this case, you must specify an appropriate template name
to PUNCHDDN. If you omit the PUNCHDDN specification, the LOAD
statements are not generated.

If the partition variable (&PART. or &PA.) is included in a TEMPLATE for
PUNCHDDN, DB2 replaces the &PART. or &PA variable with the lowest
partition number in the list of partitions to be unloaded. The partition number
is in the form nnnnn.

UNLDDN
Specifies the DD name for a data set or a template name that defines one or
more data set names into which the data is to be unloaded.

ddname
Specifies the DD name.

The default value is SYSREC.

template-name
Identifies the name of a data set template that is defined by a TEMPLATE
utility control statement.

If the specified name is defined both as a DD name (in the JCL) and as a
template name (in a TEMPLATE statement), it is treated as the DD name.

When you run the UNLOAD utility for a partitioned table space, the selected
partitions are unloaded in parallel if the following conditions are true:
1. You specify a template name for UNLDDN.
2. The template data set name contains the partition as a variable (&PART. or

&PA.) without substring notation. This template name is expanded into
multiple data sets that correspond to the selected partitions.

3. The TEMPLATE control statement does not contain all of the following
options:
v STACK(YES)
v UNIT(TAPE)
v An UNCNT value that is less than or equal to one.

If conditions 1 and 2 are true, but condition 3 is false, partition parallelism is
not activated and all output data sets are stacked on one tape.

DB2 cannot do parallel UNLOAD operations for partitions if you use substring
notation for the partition variable (&PART. or &PA.) in the DSN argument,
because the data set name might not be unique for all partitions. Therefore,
DB2 sets the value of &PA to '00000', and uses a single UNLDDN data set for
all partitions. This action might cause duplicate data set errors on subsequent
UNLOAD jobs for other partitions of the same table space.

When you run the UNLOAD utility for multiple table spaces, the output
records are placed in data sets that correspond to the respective table spaces.
Therefore the output data sets must be physically distinctive, and you must
specify an appropriate template name to UNLDDN. If you omit the UNLDDN
specification, the SYSREC DD name is not used, and an error occurs.

If the partition variable (&PART. or &PA.) is included in the TEMPLATE DSN
statement when partition parallelism is not applicable (when the source is a
non-partitioned table space or an image copy), the variable is replaced by
'00000' in the actual data set name. In this case, warning message DSNU1252I
is issued, and the UNLOAD utility issues return code 4.

Chapter 32. UNLOAD 809

EBCDIC
Specifies that all output data of the character type is to be in EBCDIC. If a
different encoding scheme is used for the source data, the data (except for bit
strings) is converted into EBCDIC.

If you do not specify EBCDIC, ASCII, UNICODE, or CCSID, the encoding
scheme of the source data is preserved.

See the description of the CCSID option for this utility.

ASCII
Specifies that all output data of the character type is to be in ASCII. If a
different encoding scheme is used for the source data, the data (except for bit
strings) is converted into ASCII.

If you do not specify EBCDIC, ASCII, UNICODE, or CCSID, the encoding
scheme of the source data is preserved.

See the description of the CCSID option for this utility.

UNICODE
Specifies that all output data of the character type (except for bit strings) is to
be in Unicode. If a different encoding scheme is used for the source data, the
data is converted into Unicode.

If you do not specify EBCDIC, ASCII, UNICODE, or CCSID, the encoding
scheme of the source data is preserved.

See the description of the CCSID option of this utility.

CCSID(integer1,integer2,integer3)
Specifies up to three coded character set identifiers (CCSIDs) that are to be
used for the data of character type in the output records, including data that is
unloaded in the external character formats.

integer1 specifies the CCSID for SBCS data. integer2 specifies the CCSID for
mixed data. integer3 specifies the CCSID for DBCS data. This option is not
applied to data with a subtype of BIT.

If you specify both FORMAT DELIMITED and UNICODE, all output data is in
CCSID 1208, UTF-8; any other specified CCSID is ignored.

The following specifications are also valid:

CCSID(integer1)
Indicates that only an SBCS CCSID is specified.

CCSID(integer1,integer2)
Indicates that an SBCS CCSID and a mixed CCSID are specified.

integer
Specifies either a valid CCSID or 0.

If you specify a value of 0 for one of the arguments or omit a value, the
encoding scheme that is specified by EBCDIC, ASCII, or UNICODE is assumed
for the corresponding data type (SBCS, MIXED, or DBCS).

If you do not specify EBCDIC, ASCII, or UNICODE:
v If the source data is of character type, the original encoding scheme is

preserved.
v For character strings that are converted from numeric, date, time, or

timestamp data, the default encoding scheme of the table is used. For more
information, see the CCSID option of the CREATE TABLE statement in

810 Utility Guide and Reference

If you specify EBCDIC, ASCII, or UNICODE, the CCSIDs specified for SBCS,
DBCS, and MIXED must be valid CCSIDs for the specified encoding scheme,
or 0.

When a CCSID conversion is requested, CCSID character substitutions can
occur in the output string. Use the NOSUBS option to prevent possible
character substitutions during CCSID conversion.

NOSUBS
Specifies that CCSID code substitution is not to be performed during unload
processing.

When a string is converted from one CCSID to another (including EBCDIC,
ASCII, and Unicode), a substitution character is sometimes placed in the
output string. For example, this substitution occurs when a character (referred
to as a code point) that exists in the source CCSID does not exist in the target
CCSID. You can use the NOSUBS keyword to prevent the UNLOAD utility
from allowing this substitution.

If you specify the NOSUBS keyword and character substitution is attempted
while data is being unloaded, this action is treated as a conversion error. The
record with the error is not unloaded, and the process continues until the total
error count reaches the number that is specified by MAXERR.

NOPAD
Specifies that the variable-length columns in the unloaded records are to
occupy the actual data length without additional padding. As a result, the
unloaded or discarded records might have varying lengths. If XML columns
are unloaded without the use of file reference variables, NOPAD is the default.

When you do not specify NOPAD:
v Default UNLOAD processing pads variable-length columns in the unloaded

records to their maximum length, and the unloaded records have the same
length for each table.

v The padded data fields are preceded by the length fields that indicate the
size of the actual data without the padding.

v When the output records are reloaded with the LOAD utility, padded data
fields are treated as varying-length data.

If you specify DELIMITED, the NOPAD option is the default for
variable-length columns. For fixed-length columns, the normal padding rules
apply.

Although LOAD processes records with variable-length columns that are
unloaded or discarded by using the NOPAD option, these records cannot be
processed by applications that process only fields in fixed positions. For
example, the LOAD statement that is generated for the EMP sample table
would look similar to the LOAD statement in Figure 67 on page 566.

SPANNED
Indicates whether records are to be unloaded into a VBS data set in spanned
record format. For more information about spanned record format, see
“Unloading data in spanned record format” on page 847.

YES
Indicates that the UNLOAD utility is to unload records in spanned record
format.

Chapter 32. UNLOAD 811

For this function to work, you must specify in the field specification list
that all LOB and XML data are to be at the end of the record. In that field
specification list, do not specify length and POSITION for LOB and XML
columns.

Specifying SPANNED YES also has the following effects:
v The UNLOAD utility ignores the RECFM attribute of the data set.
v The UNLOAD utility uses the NOPAD option.
v The TRUNCATE option has no effect.

If you specify SPANNED YES and DELIMITED, the SPANNED YES option
is ignored.

If you specify SPANNED YES and PUNCHDDN, the generated LOAD
statement lists the LOB and XML data in a field specification list in the
corresponding order.

NO Indicates that the UNLOAD utility is not to unload records in spanned
record format.

FORMAT INTERNAL
Specifies that the output record format is DB2 internal format. UNLOAD does
no field procedure processing, data conversion, or CCSID conversion on the
data. If the UNLOAD control statement contains a field specification, it is
ignored.

When FORMAT INTERNAL is specified:
v UNLOAD does not unload data for LOB or XML columns. UNLOAD issues

a warning message that indicates that LOB or XML data was not unloaded.
v UNLOAD does not add trailing blanks to output from variable-length

columns.
v UNLOAD decompresses the data and does decoding that is specified by edit

procedures.
v UNLOAD ignores any field specifications in the UNLOAD utility control

statement.

Restrictions:

v Data that is unloaded with FORMAT INTERNAL should be loaded only into
the same table, or into a table that exactly matches the unloaded table
definition, including having the same field procedures.

v FORMAT INTERNAL cannot be specified with any of the following options:
– ASCII
– CCSID
– DECFLOAT_ROUNDMODE
– DELIMITED
– EBCDIC
– FLOAT
– HEADER
– NOPAD
– NOSUBS
– UNICODE

DELIMITED
Specifies that the output data file is in a delimited format. When data is in a
delimited format, all fields in the output data set are character strings or
external numeric values. In addition, each column in a delimited file is
separated from the next column by a column delimiter character.

812 Utility Guide and Reference

For each of the delimiter types that you can specify, you must ensure that the
delimiter character is specified in the code page of the target data. The
delimiter character can be specified as either a character or hex constant. For
example, to specify # as the delimiter, you can specify either COLDEL '#' or
COLDEL X'23'. If the utility statement is coded in a character type that is
different from the output file, such as a utility statement that is coded in
EBCDIC and output data that is in Unicode, specify the delimiter character in
the utility statement as a hex constant, or the result is unpredictable.

You cannot specify the same character for more than one type of delimiter
(COLDEL, CHARDEL, and DECPT).

If you specify the FORMAT DELIMITED option, you cannot specify HEADER
CONST or use any of the multiple FROM TABLE statements. Also, UNLOAD
ignores any specified POSITION statements within the UNLOAD utility
control statement.

For delimited output, UNLOAD does not add trailing padded blanks to
variable-length columns, even if you do not specify the NOPAD option. For
fixed-length columns, the normal padding rules apply. For example, if a
VARCHAR(10) field contains ABC, UNLOAD DELIMITED unloads the field as
"ABC". However, for a CHAR(10) field that contains ABC, UNLOAD DELIMITED
unloads it as "ABC ". For information about using delimited output and
delimiter restrictions, see “Unloading delimited files” on page 857. For more
information about delimited files see Appendix H, “Delimited file format,” on
page 1133.

COLDEL
Specifies the column delimiter that is used in the output file. The default is
a comma (,). For most ASCII and UTF-8 data, this value is X'2C', and for
most EBCDIC data, this value is a X'6B'.

CHARDEL
Specifies the character string delimiter that is used in the output file. The
default is a double quotation mark ("). For most ASCII and UTF-8 data,
this value is X'22', and for most EBCDIC data, this value is X'7F'.

The UNLOAD utility adds the CHARDEL character before and after every
character string. To delimit character strings that contain the character
string delimiter, the UNLOAD utility repeats the character string delimiter
where it used in the character string. The LOAD utility then interprets any
pair of character delimiters that are found between the enclosing character
delimiters as a single character. For example, the phrase what a “nice
warm” day is unloaded as “what a ““nice warm”” day”, and LOAD
interprets it as what a “nice warm” day. The UNLOAD utility recognizes
these character pairs for only CHAR, VARCHAR, and CLOB fields.

DECPT
Specifies the decimal point character that is used in the output file. The
default is a period (.). For most ASCII and UTF-8 data, this value is X'2E',
and for most EBCDIC data, this value is X'4B'.

FLOAT
Specifies the output format of the numeric floating-point data. This option
applies to the binary output format only.

S390
Indicates that the binary floating point data is written to the output records
in the S/390® internal format (also known as the hexadecimal floating
point, or HFP).

Chapter 32. UNLOAD 813

IEEE
Indicates that the binary floating-point data is written to the output records
in the IEEE format (also known as the binary floating point, or BFP).

MAXERR integer
Specifies the maximum number of records in error that are to be allowed; the
unloading process terminates when this value is reached.

integer
Specifies the number of records in error that are allowed. When the error
count reaches this number, the UNLOAD utility issues message DSNU1219
and terminates with return code 8.

The default value is 1, which indicates that UNLOAD stops when the first
error is encountered. If you specify 0 or any negative number, execution
continues regardless of the number of records that are in error.

If multiple table spaces are being processed, the number of records in error is
counted for each table space. If the LIST option is used, you can add OPTION
utility control statement (EVENT option with ITEMERROR) before the
UNLOAD statement to specify that the table space in error is to be skipped
and the subsequent table spaces are to be processed.

The MAXERR option is ignored when the UNLOAD utility encounters errors
that prevent it from continuing to process data. For example, if you receive
message DSNU283I, SQLCODE -452, and reason code 7 when unloading LOB
or XML data using file reference variables, the UNLOAD utility terminates
regardless of what you specified for MAXERR.

SHRLEVEL
Specifies whether other processes can access or update the table space or
partitions while the data is being unloaded.

UNLOAD ignores the SHRLEVEL specification when the source object is an
image copy data set.

The default value is SHRLEVEL CHANGE ISOLATION CS.

CHANGE
Specifies that rows can be read, inserted, updated, and deleted from the
table space or partition while the data is being unloaded.

ISOLATION
Specifies the isolation level with SHRLEVEL CHANGE.

CS Indicates that the UNLOAD utility is to read rows in cursor
stability mode. With CS, the UNLOAD utility assumes
CURRENTDATA(NO).

UR Indicates that uncommitted rows, if they exist, are to be unloaded.
The unload operation is performed with minimal interference from
the other DB2 operations that are applied to the objects from which
the data is being unloaded.

SKIP LOCKED DATA
Specifies that the UNLOAD utility is to skip rows on which incompatible
locks are held by other transactions. This option applies to row level or
page level lock.

REFERENCE
Specifies that during the unload operation, rows of the tables can be read,
but cannot be inserted, updated, nor deleted by other DB2 threads.

814 Utility Guide and Reference

When you specify SHRLEVEL REFERENCE, the UNLOAD utility drains
writers on the table space from which the data is to be unloaded. When
data is unloaded from multiple partitions, the drain lock is obtained for all
of the selected partitions in the UTILINIT phase.

DECFLOAT_ROUNDMODE
Specifies the rounding mode to be used when DECFLOATs are manipulated.
The following rounding modes are supported:

ROUND_CEILING
Round toward +infinity. The discarded digits are removed if they are all
zero or if the sign is negative. Otherwise, the result coefficient should be
incremented by 1 (rounded up).

ROUND_DOWN
Round toward 0 (truncation). The discarded digits are ignored.

ROUND_FLOOR
Round toward -infinity. The discarded digits are removed if they are all
zero or positive. Otherwise, the sign is negative and the result coefficient
should be incremented by 1 (rounded up).

ROUND_HALF_DOWN
Round to the nearest number. If equidistant, round down. If the discarded
digits are greater than 0.5, the result coefficient should be incremented by 1
(rounded up). The discarded digits are ignored if they are 0.5 or less.

ROUND_HALF_EVEN
Round to the nearest number. If equidistant, round so that the final digit is
even. If the discarded digits are greater than .05, the result coefficient
should be incremented by 1 (rounded up). The discarded digits are ignored
if they are less than 0.5. If the result coefficient is .05 and the rightmost
digit is even, the result coefficient is not altered. If the result coefficient is
.05 and the rightmost digit is odd, the result coefficient should be
incremented by 1 (rounded up).

ROUND_HALF_UP
Round to nearest. If equidistant, round up. If the discarded digits are
greater than or equal to 0.5, the result coefficient should be incremented by
1 (rounded up). Otherwise the discarded digits are ignored.

ROUND_UP
Round away from 0. If all of the discarded digits are 0, the result is
unchanged. Otherwise, the result coefficient should be incremented by 1
(rounded up).

If the user does not specify DECFLOAT_ROUNDMODE, the default value of
the DECFLOAT_ROUNDMODE option is DECFLOAT ROUNDING MODE
from the DECP.

IMPLICIT_TZ
Specifies the implicit time zone to use when timestamp values are being
unloaded from a TIMESTAMP column with no time zone, and the field
specification for the column is TIMESTAMP WITH TIME ZONE EXTERNAL.

'timezone-string'
Specifies the implicit time zone value. The time zone is the difference (in
hours and minutes) between local time and UTC. The range of the hour
component is -12 to 14, and the minute component is 00 to 59. The time
zone is specified in the form ±th:tm, with values ranging from -12:59 to
+14:00.

Chapter 32. UNLOAD 815

IMPLICIT_TZ is a required keyword when the unload timestamp without
time zone column to a timestamp with time zone column is used.

PARALLEL

Specifies the maximum number of subtasks that are to be used in parallel to
process the unloading of a partitioned table space. If the PARALLEL keyword
is omitted, the maximum number of subtasks is limited by the number of
partitions being unloaded.

(num-subtasks)

Specifies the maximum number of subtasks that are to be processed in
parallel. The value must be an integer between 0 and 32767, inclusive. If
the specified value for num-subtasks is greater than 32767, the UNLOAD
statement fails. If 0 or no value is specified for num-subtasks, the UNLOAD
utility uses the optimal number of parallel subtasks after applying
constraints. If the specified value for num-subtasks is greater than the
calculated optimal number, the UNLOAD utility limits the number of
parallel subtasks to the optimal number.

The specified number of subtasks for PARALLEL always overrides the
specification of the PARAMDEG_UTIL subsystem parameter, so
PARALLEL can be smaller or larger than the value of PARAMDEG_UTIL.

CLONE
Indicates that UNLOAD is to unload data from only clone tables in the
specified table spaces. This utility will only process clone data if the CLONE
keyword is specified. The use of CLONED YES on the LISTDEF statement is
not sufficient. If you specify the name of the clone table in the FROM TABLE
clause, you do not need to specify the CLONE keyword.

FROM-TABLE-spec syntax diagram and option descriptions

More than one table or partition for each table space can be unloaded with a single
invocation of the UNLOAD utility. One FROM TABLE statement for each table that
is to be unloaded is required to identify:
v A table name from which the rows are to be unloaded
v A field to identify the table that is associated with the rows that are to be

unloaded from the table by using the HEADER option
v Sampling options for the table rows
v A list of field specifications for the table that is to be used to select columns that

are to be unloaded
v Selection conditions, specified in the WHEN clause, that are to be used to

qualify rows that are to be unloaded from the table

All tables that are specified by FROM TABLE statements must belong to the same
table space. If rows from specific tables are to be unloaded, a FROM TABLE clause
must be specified for each source table. If you do not specify a FROM TABLE
clause for a table space, all the rows of the table space are unloaded.

Use a list of field specifications to specify the following characteristics:
v Column selection. Specifies the column names of a table that is to be unloaded.

If a list of field specifications is given, only the listed columns are unloaded.
v Column ordering. Specifies the order of fields that are to be placed in the output

records. If a list of field specifications is given, data of the listed columns is
unloaded in the order of listed column names.

816 Utility Guide and Reference

|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

v Output field attributes and format. Specifies the data type, length, and format of
the data in the output records.

If you omit a list of field specifications, all columns of the source table are
unloaded in the defined column order for the table. The default output field types
that correspond to the data types of the columns are used.

When unloading XML or LOB columns to a VBS data set, the LOB and XML
values are written at the end of the record in their column definition order, as
specified by the required field specification list. This order is the same order that
the LOAD utility uses when reading XML and LOB values from a VBS data set.

In a FROM TABLE clause, you can use parentheses in only two situations: to
enclose the entire field selection list, and in a WHEN selection clause. This usage
avoids potential conflict between the keywords and field-names that are used in
the field selection list. A valid sample of a FROM TABLE clause specification
follows:
UNLOAD ...

FROM TABLE tablename SAMPLE x (c1,c2) WHEN (c3>0)

You cannot specify FROM TABLE if the LIST option is already specified.

FROM-TABLE-spec

�� FROM TABLE table-name
HEADER OBID

HEADER NONE
CONST 'string'

X'hex-string'

SAMPLE decimal
�

�
LIMIT integer

�

,

(field-specification)

WHEN (selection-condition)
��

field-specification:

Chapter 32. UNLOAD 817

�� field-name
POSITION(*)

POSITION(start)
�

�
CHAR

(length) TRUNCATE
DBCLOBF template-name
CLOBF BINARYXML
BLOBF

VARCHAR
(length) strip-spec

DBCLOBF template-name
CLOBF BINARYXML
BLOBF

GRAPHIC
EXTERNAL (length) TRUNCATE

VARGRAPHIC strip-spec
(length)

SMALLINT
INTEGER

EXTERNAL
(length)

BIGINT
BINARY

(length) TRUNCATE
VARBINARY
BINARY VARYING

strip-spec
PACKED

DECIMAL
ZONED ,0
EXTERNAL (length)

,scale
FLOAT

EXTERNAL (length)
DOUBLE
REAL
DATE EXTERNAL

(length)
TIME EXTERNAL

(length)
TIMESTAMP EXTERNAL

(length)
timestamp with time zone-spec
CONSTANT 'string'

X'hex-string'
ROWID
BLOB

(length) TRUNCATE
CLOB

(length) TRUNCATE
DBCLOB

(length) TRUNCATE
decfloat-spec
XML

BINARYXML

��

818 Utility Guide and Reference

strip spec:

��
BOTH

STRIP
TRAILING (1)
LEADING 'strip-char'

X'strip-char'

TRUNCATE
��

Notes:

1 If you specify VARGRAPHIC, BINARY, or VARBINARY, you cannot specify 'strip-char'. You can
specify only X'strip-char'.

timestamp with time zone spec:

�� TIMESTAMP WITH TIME ZONE EXTERNAL
(length)

��

decfloat spec:

��
(34)

DECFLOAT
(16)
EXTERNAL

(length)

��

selection condition:

�� predicate
(selection-condition)

� AND
OR predicate

(selection-condition)

��

predicate:

Chapter 32. UNLOAD 819

�� basic predicate
BETWEEN predicate
IN predicate
LIKE predicate
NULL predicate

��

basic predicate:

�� column-name =
<>
>
<
>=
<=

constant
labeled-duration-expression

��

BETWEEN predicate:

�� column-name
NOT

BETWEEN constant
labeled-duration-expression

AND �

� constant
labeled-duration-expression

��

IN predicate:

�� column-name
NOT

IN �

,

(constant) ��

LIKE predicate:

�� column-name
NOT

LIKE string-constant
ESCAPE string-constant

��

NULL predicate:

820 Utility Guide and Reference

�� column-name IS NULL
NOT

��

labeled-duration-expression:

�� CURRENT_DATE
CURRENT_TIMESTAMP

WITH TIME ZONE

� + constant YEAR
- YEARS

MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

��

Option descriptions for FROM TABLE

table-name
Identifies a DB2 table from which the rows are to be unloaded and to which
the options in the FROM TABLE clause are to be applied.

If the table name is not qualified by a schema name, the authorization ID of
the invoker of the utility job step is used as the schema qualifier of the table
name. Enclose the table name in quotation marks if the name contains a blank.

If you specify a dropped table on the FROM TABLE option, the UNLOAD
utility terminates with return code 4.

HEADER
Specifies a constant header field, at the beginning of the output records, that
can be used to associate an output record with the table from which it was
unloaded.

If you specify a header field, it is used as the field selection criterion of the
WHEN clause (a part of the INTO-TABLE specification) in the LOAD
statement that is generated.

OBID
Specifies that the object identifier (OBID) for the table (a 2-byte binary
value) is to be placed in the first 2 bytes of the output records that are
unloaded from the table.

If you omit the HEADER option, HEADER OBID is the default, except for
delimited files.

With HEADER OBID, the first 2 bytes of the output record cannot be used
by the unloaded data. For example, consider the following UNLOAD
statement:

Chapter 32. UNLOAD 821

UNLOAD ...
FROM TABLE table-name HEADER OBID ...

The preceding UNLOAD statement generates a LOAD statement that is
similar to the following example:
LOAD ...

INTO TABLE table-name WHEN (1:2)=X’hh’ ...

In this example, X'hh' is the hexadecimal notation of the OBID of table
table-name.

NONE
Indicates that no record header field is to be created. HEADER NONE is
the default value for a delimited file.

If HEADER NONE is specified in a FROM TABLE clause, the
corresponding INTO TABLE clause in the generated LOAD statement does
not have a WHEN specification. Therefore, if rows from multiple tables are
unloaded and HEADER NONE is specified in one or more FROM TABLE
clauses, rows that are unloaded from those tables are not able to be
reloaded until you edit the generated LOAD statement. If you use the
generated statement directly with the LOAD utility, the results might be
unpredictable.

CONST
Specifies that a constant string is to be used as the record header. The
given string operand determines the length of the header field. The string
value must be enclosed by a pair of single quote characters.

For example, consider the following UNLOAD statement:
UNLOAD ...

FROM TABLE table-name HEADER CONST ’abc’ ...

The preceding UNLOAD statement generates a LOAD statement that is
similar to the following example:
LOAD ...

INTO TABLE table-name WHEN (1:3)=’abc’ ...

In this example, the given string is assumed to be in SBCS EBCDIC format.
The output string of the HEADER field is in the specified or the default
encoding scheme. If the encoding scheme that is used for output is not
EBCDIC, the SBCS CCSID conversion is applied to the given string before
it is placed in the output records. If the output SBCS encoding scheme is
not EBCDIC, the WHEN condition in the generated LOAD statement
contains a hexadecimal string.

You can also use the hexadecimal form, X'hex-string', to represent a string
constant. If you want to specify a CONST string value in an encoding
scheme other than SBCS EBCDIC, use the hexadecimal form. No CCSID
conversion is performed if the hexadecimal form is used.

SAMPLE decimal
Indicates that only sampled rows of the table are to be unloaded. If selection
conditions are specified by a WHEN clause within the same FROM TABLE
clause, sampling is applied to the rows that are qualified by the WHEN
selection conditions.

822 Utility Guide and Reference

decimal
Specifies the percentage of the rows that are to be sampled in the decimal
format. The precision is ddd.dddd, and the valid range is 0 <= decimal <=
100.

If the number of rows to which the sampling is to be applied is N:
v decimal × N / 100 rows are unloaded. (The fraction might be rounded to

the nearest whole number.)
v If decimal > 0 and N > 0, at least one row is unloaded.
v If decimal = 100, all rows from the table are unloaded.
v If the given decimal = 0 or N = 0, no row is unloaded from the table.

The sampling is applied for each individual table. If the rows from multiple
tables are unloaded with sampling enabled, the referential integrity between
the tables might be lost.

LIMIT integer
Specifies the maximum number of rows that are to be unloaded from a table. If
the number of unloaded rows reaches the specified limit, message DSNU1201
is issued for the table, and no more rows are unloaded from the table. The
process continues to unload qualified rows from the other tables.

When partition parallelism is activated, the LIMIT option is applied to each
partition instead of to the entire table.

integer
Indicates the maximum number of rows that are to be unloaded from a
table. If the specified number is less than or equal to zero, no row is
unloaded from the table.

Like the SAMPLE option, if multiple tables are unloaded with the LIMIT
option, the referential integrity between the tables might be lost.

field-name
Identifies a column name that must exist in the source table.

POSITION(start)
Specifies the field position in the output record. You can specify

the position parameter as follows:

* An asterisk, indicating that the field starts at the first byte after the last
position of the previous field.

start A positive integer that indicates the start column of the data field.

The default value is POSITION(*).

The first column (byte position) of an output record corresponds to
POSITION(1). If you specify HEADER NONE in the FROM TABLE clause, the
item that is specified by the HEADER option is placed at the beginning of all
the records that are unloaded from the table. You must account for the space
for the record header:
v HEADER OBID (the default case): 2 bytes from position 1.
v HEADER CONST 'string' or X'hex-string' case: The length of the given string

from position 1.

If the source table column can be null, the utility places a NULL indicator byte
at the beginning of the data field in the output record. For BLOBF, CLOBF, or
DBCLOBF columns, null values are indicated by a byte at the beginning of the
file name. The start parameter (or *) points to the position of the NULL

Chapter 32. UNLOAD 823

indicator byte. In the generated LOAD statement, start is shifted by 1 byte to
the right (as start+1) so that, in the LOAD statement, the start parameter of the
POSITION option points to the next byte past the NULL indicator byte.

For a varying-length field, a length field precedes the actual data field (after
the NULL indicator byte, if applicable). For BLOBF, CLOBF, or DBCLOBF
columns, the length of the file name is indicated by two bytes at the beginning
of the file name. If the value cannot be null, the start parameter (or *) points to
the first byte of the length field. The size of the length field is either 4 bytes
(BLOB, CLOB, or DBCLOB) or 2 bytes (VARCHAR or VARGRAPHIC).

When you explicitly specify the output field positions by using start
parameters (or using the * format) of the POSITION option, you must consider
the following items as a part of the output field:
v For a field whose value can be null, a space for the NULL indicator byte
v For varying-length data, a space for the length field (either 2 bytes or 4

bytes)

“Layout of output fields” on page 854 illustrates the field layout in conjunction
with the POSITION option, NULL indicator byte, the length field for a
varying-length field, the length parameter, and the actual data length.

The POSITION option is useful when the output fields must be placed at
specific positions in the output records. The use of the POSITION parameters,
however, can restrict the size of the output data fields. Use care when explicitly
specifying start parameters for nullable and varying-length fields. The
TRUNCATE option might be required, if applicable, to fit a data item in a
shorter space in an output record.

If you omit the POSITION option for the first field, the field starts from
position 1 if HEADER NONE is specified. Otherwise, the field starts from the
next byte position past the record header field. If POSITION is omitted for a
subsequent field, the field is placed next to the last position of the previous
field without any gap.

If NOPAD is specified and POSITION parameters are given for certain fields,
the effect of the NOPAD option might be lost because the fields with start
parameters (other than the default *) always start at the fixed positions in the
output records.

The POSITION option is ignored for delimited output files.

CHAR
Indicates that the output field is a character type with fixed length. You can
use CHARACTER in place of CHAR. If the source table column can be null, a
NULL indicator byte is placed at the beginning of the output field for a
non-delimited output file.

If you specify the EBCDIC, ASCII, UNICODE, or CCSID options, the output
data that corresponds to the specified option, is encoded in the CCSID,
depending on the subtype of the source data (SBCS or MIXED). If the subtype
is BIT, no conversion is applied.

(length)
Specifies the size of the output data in bytes.

If followed by BLOBF, CLOBF, or DBCLOBF, the length specifies the size of
the expanded template name in bytes.

If the length parameter is omitted, the default is the maximum length that
is defined on the source table column or the length in bytes of the

824 Utility Guide and Reference

expanded template name if BLOBF, CLOBF, or DBCLOBF follows the
CHAR keyword. When the length parameter is specified:
v If the length is less than the size of the table column, the data is

truncated to the length if the TRUNCATE keyword is present; otherwise,
a conversion error occurs.

v For the case where BLOBF, CLOBF, or DBCLOBF immediately follows,
an error will occur if the length is less than the size of the expanded
template name.

v If the length is larger than the size of the table column, the output field is
padded by the default pad characters to the specified length.

BLOBF
Specifies that the output field is to contain the name of the file to which
the BLOB or XML is to be unloaded without CCSID conversion.

BINARYXML Specifies that the XML document is to be unloaded using file
reference variables in Extensible Dynamic Binary XML DB2 Client/Server
Binary XML Format (binary XML) format. This option is only supported
when unloading an XML column.

CLOBF
Specifies that the output field is to contain the name of the file to which
the CLOB or XML is to be unloaded with any required CCSID conversion.

DBCLOBF
Specifies that the output field is to contain the name of the file to which
the DBCLOBF or XML is to be unloaded with any required CCSID
conversion.

TRUNCATE
Indicates that a character string (encoded for output) is to be truncated
from the right, if the data does not fit in the available space for the field in
the output record. Truncation occurs at the character boundary. See
“Specifying TRUNCATE and STRIP options for output data” on page 860
for the truncation rules that are used in the UNLOAD utility. Without
TRUNCATE, an error occurs when the output field size is too small for the
data.

VARCHAR
Specifies that the output field type is character of varying length. A 2-byte
binary field indicating the length of data in bytes is prepended to the data
field. If the table column can be null, a NULL indicator byte is placed before
this length field for a non-delimited output file.

If you specify the EBCDIC, ASCII, UNICODE, or CCSID options, the output
data is encoded in the CCSID corresponding to the specified option, depending
on the subtype of the source data (SBCS or MIXED). If the subtype is BIT, no
conversion is applied.

(length)
Specifies the maximum length of the actual data field in bytes. If you also
specify NOPAD, it indicates the maximum allowable space for the data in
the output records; otherwise, the space of the specified length is reserved
for the data.

If followed by BLOBF, CLOBF, or DBCLOBF, length specifies the size of the
expanded template name in bytes. If the length is less than the size of the
expanded template name an error will occur.

Chapter 32. UNLOAD 825

If the length parameter is omitted, the default is the smaller of 255 and the
maximum length that is defined on the source table column.

BLOBF
Specifies that the output field is to contain the name of the file to which
the BLOB or XML is to be unloaded without CCSID conversion.

BINARYXML Specifies that the XML document is to be unloaded using file
reference variables in binary XML format. This option is only supported
when unloading an XML column.

CLOBF
Specifies that the output field is to contain the name of the file to which
the CLOB or XML is to be unloaded with any required CCSID conversion.

DBCLOBF
Specifies that the output field is to contain the name of the file to which
the DBCLOBF or XML is to be unloaded with any required CCSID
conversion.

STRIP
Specifies that UNLOAD is to remove binary zeroes (the default) or the
specified string from the beginning, the end, or both ends of the data.
UNLOAD adjusts the VARCHAR length field (for the output field) to the
length of the stripped data.

The STRIP option is applicable if the subtype of the source data is BIT. In
this case, no CCSID conversion is performed on the specified strip
character (even if it is given in the form 'strip-char').

The effect of the STRIP option is the same as the SQL STRIP scalar
function.

BOTH
Indicates that UNLOAD is to remove occurrences of blank or the
specified strip character from the beginning and end of the data. The
default is BOTH.

TRAILING
Indicates that UNLOAD is to remove occurrences of blank or the
specified strip character from the end of the data.

LEADING
Indicates that UNLOAD is to remove occurrences of blank or the
specified strip character from the beginning of the data.

'strip-char'
Specifies a single-byte character that is to be stripped. Specify this
character value in EBCDIC. Depending on the output encoding
scheme, UNLOAD applies SBCS CCSID conversion to the strip-char
value before it is used in the strip operation. If you want to specify a
strip-char value in an encoding scheme other than EBCDIC, use the
hexadecimal form. UNLOAD does not perform CCSID conversion if
the hexadecimal form is used.

X'strip-char'
Specifies a single-byte character that is to be stripped. It can be
specified in the hexadecimal form, X'hex-string', where hex-string is two
hexadecimal characters that represent a single SBCS character. If the
strip-char operand is omitted, the default is the blank character, which
is coded as follows:
v X'40', for the EBCDIC-encoded output case

826 Utility Guide and Reference

v X'20' for the ASCII-encoded output case
v X'20' the Unicode-encoded output case

The strip operation is applied after the character code conversion, if
the output character encoding scheme is different from the one that is
defined on the source data. Therefore, if a strip character is specified in
the hexadecimal format, you must specify the character in the encoding
scheme that is used for output.

TRUNCATE
Indicates that a character string (encoded for output) is to be truncated
from the right, if the data does not fit in the available space for the field in
the output records. Truncation occurs at a character boundary. See
“Specifying TRUNCATE and STRIP options for output data” on page 860
for the truncation rules that are used in the UNLOAD utility. Without
TRUNCATE, an error occurs when the output field size is too small for the
data.

GRAPHIC
Specifies that the output field is of the fixed-length graphic type. If the table
column can be null, a NULL indicator byte is placed before the actual data
field for any non-delimited output file.

If the output is in EBCDIC, the shift-in and shift-out characters are not
included at the beginning and at the end of the data.

(length)
Specifies the number of DBCS characters (the size of the output data in
bytes is twice the given length). If the given length is larger than the source
data length, the output field is padded with the default pad character.

TRUNCATE
Indicates that a graphic character string (encoded for output) is to be
truncated from the right, if the data does not fit in the available space for
the field in the output records. Truncation occurs at a character (DBCS)
boundary. Without TRUNCATE, an error occurs when the output field size
is too small for the data.

GRAPHIC EXTERNAL
Specifies that the data is to be written in the output records as a fixed-length
field of the graphic type with the external format; that is, the shift-out (SO)
character is placed at the starting position, and the shift-in (SI) character is
placed at the ending position. The byte count of the output field is always an
even number.

GRAPHIC EXTERNAL is supported only in the EBCDIC output mode (by
default or when the EBCDIC keyword is specified).

If the start parameter of the POSITION option is used to specify the output
column position, it points to the (inserted) shift-out character at the beginning
of the field. The shift-in character is placed at the next byte position past the
last double-byte character of the data.

(length)
Specifies a number of DBCS characters, excluding the shift characters (as in
the graphic type column definition that is used in a CREATE TABLE
statement) nor the NULL indicator byte if the source column can be null. If
the length parameter is omitted, the default output field size is the length
that is defined on the corresponding table column, plus two bytes
(shift-out and shift-in characters).

Chapter 32. UNLOAD 827

If the specified length is larger than the size of the data, the field is padded
on the right with the default DBCS padding character.

TRUNCATE
Indicates that a graphic character string is to be truncated from the right
by the DBCS characters, if the data does not fit in the available space for
the field in the output records. Without TRUNCATE, an error occurs when
the output field size is too small for the data. An error can also occur with
the TRUNCATE option if the available space is less than 4 bytes (4 bytes is
the minimum size for a GRAPHIC EXTERNAL field; shift-out character,
one DBCS, and shift-in character); or fewer than 5 bytes if the field is can
be null (the 4 bytes plus the NULL indicator byte).

VARGRAPHIC
Specifies that the output field is to be of the varying-length graphic type. A
2-byte binary length field is prepended to the actual data field. If the table
column can be null, a NULL indicator byte is placed before this length field for
any non-delimited output file.

(length)
Specifies the maximum length of the actual data field in the number of
DBCS characters. If you also specify NOPAD, it indicates the maximum
allowable space for the data in the output records; otherwise, the space of
the specified length is reserved for the data.

If the length parameter is omitted, the default is the smaller of 127 and the
maximum defined length of the source table column.

STRIP
Indicates that UNLOAD is to remove binary zeroes (the default) or the
specified string from the unloaded data. UNLOAD adjusts the
VARGRAPHIC length field (for the output field) to the length of the
stripped data (the number of DBCS characters).

The effect of the STRIP option is the same as the SQL STRIP scalar
function.

BOTH
Indicates that UNLOAD is to remove occurrences of blank or the
specified strip character from the beginning and end of the data. The
default is BOTH.

TRAILING
Indicates that UNLOAD is to remove occurrences of blank or the
specified strip character from the end of the data.

LEADING
Indicates that UNLOAD is to remove occurrences of blank or the
specified strip character from the beginning of the data.

X'strip-char'
Specifies a DBCS character that is to be stripped in the hexadecimal
format, X'hhhh', where hhhh is four hexadecimal characters that
represent a DBCS character. If this operand is omitted, the default is a
DBCS blank in the output encoding scheme (for example, X'4040' for
the EBCDIC-encoded output or X'8140' for CCSID 301).

The strip operation is applied after the character code conversion, if
the output character encoding scheme is different from the one that is
defined on the source data. Therefore, if you specify a strip character, it
must be in the encoding scheme that is used for the output.

828 Utility Guide and Reference

TRUNCATE
Indicates that a graphic character string (encoded for output) is to be
truncated from the right, if the data does not fit in the available space for
the field in the output records. Truncation occurs at a DBCS character
boundary. Without TRUNCATE, an error occurs when the output field size
is too small for the data.

SMALLINT
Specifies that the output field is a 2-byte binary integer (a negative number is
in two's complement notation). To use the external format, specify INTEGER
EXTERNAL.

If the source data type is INTEGER, DECIMAL, FLOAT, BIGINT, or
DECFLOAT (either 4-byte or 8-byte format), an error occurs when the data is
greater than 32 767 or less than -32 768.

A SMALLINT output field requires 2 bytes, and the length option is not
available.

INTEGER
Specifies that the output field is a 4-byte binary integer (a negative number is
in two's complement notation).

If the original data type is DECIMAL, FLOAT, BIGINT, or DECFLOAT (either
4-byte or 8-byte format), an error occurs when the original data is greater than
2 147 483 647 or less than -2 147 483 648.

An INTEGER output field requires 4 bytes, and the length option is not
available.

INTEGER EXTERNAL
Specifies that the output field is to contain a character string that represents an
integer number.

(length)
Indicates the size of the output data in bytes, including a space for the sign
character. When the length is given and the character notation does not fit
in the space, an error occurs. The default is 20 characters (including a
space for the sign).

If the value is negative, a minus sign precedes the numeric digits. If the output
field size is larger than the length of the data, the output data is left justified
and blanks are padded on the right.

If the source data type is DECIMAL, FLOAT (either 4-byte or 8-byte format), or
DECFLOAT (either 8-byte or 16-byte format), an error occurs when the original
data is greater than 9 223 372 036 854 775 807 or less than
-9 223 372 036 854 775 808.

BIGINT
Specifies that the output field is an 8-byte binary integer (a negative number is
in two's complement notation). To use the external format, specify INTEGER
EXTERNAL.

If the original data type is DECIMAL, FLOAT, or DECFLOAT (either 4-byte or
8-byte format), an error occurs when the original data is greater than
9 223 372 036 854 775 807 or less than -9 223 372 036 854 775 808.

BINARY(length)
Indicates that the output field is a binary string type with a fixed length. If the
source table column can be null, a NULL indicator byte is placed at the

Chapter 32. UNLOAD 829

beginning of the output field for a nondelimited output file. No data
conversion is applied to the field. The default for X'strip-char' is hexadecimal
zero (X'00').

TRUNCATE
Indicates that the output binary string (encoded for output) is to be
truncated from the right, if the data does not fit in the available space for
the field in the output records. Without TRUNCATE, an error occurs when
the output field size is too small for the data.

VARBINARY
Indicates that the output field is a binary string type with varying length. A
2-byte binary field indicating the length of data in bytes is prepended to the
data field. If the table column can be null, a NULL indicator byte is placed
before the length field for a non-delimited output file. No data conversion is
applied to the field. The default for X'strip-char' is hexadecimal zero (X'00').

STRIP
Specifies that UNLOAD is to remove binary zeroes (the default) or the
specified string from the beginning, the end, or both ends of the data.
UNLOAD adjusts the VARBINARY length field (for the output field) to the
length of the stripped data.

BOTH
Indicates that UNLOAD is to remove occurrences of binary zeroes or
the specified strip character from the beginning and end of the data.
The default is BOTH.

TRAILING
Indicates that UNLOAD is to remove occurrences of binary zeroes or
the specified strip character from the end of the data.

LEADING
Indicates that UNLOAD is to remove occurrences of binary zeroes or
the specified strip character from the beginning of the data.

X'strip-char'
Specifies a single-byte character that is to be stripped. It can be
specified only in the hexadecimal form, X'hex-string', where hex-string is
two hexadecimal characters that represent a single SBCS character.

TRUNCATE
Indicates that a binary string (encoded for output) is to be truncated from
the right, if the data does not fit in the available space for the field in the
output records. Without TRUNCATE, an error occurs when the output
field size is too small for the data.

DECIMAL
Specifies that the output data is a number that is represented by the indicated
decimal format (either PACKED, ZONED, or EXTERNAL). If you specify the
keyword DECIMAL by itself, packed-decimal format is assumed.

PACKED
Specifies that the output data is a number that is represented by the
packed-decimal format. You can use DEC or DEC PACKED as an
abbreviated form of the keyword.

The packed-decimal representation of a number is of the form ddd...ds,
where d is a decimal digit that is represented by 4 bits, and s is a 4-bit sign
character (hexadecimal A, C, E, or F for a positive number, and
hexadecimal B or D for a negative number).

830 Utility Guide and Reference

length
Specifies the number of digits (not including the sign digit) that are to
be placed in the output field. The length must be between 1 and 31. If
the length is odd, the size of the output data field is (length+1) / 2
bytes; if even, (length / 2)+1 byte.

If the source data type is DECIMAL and the length parameter is
omitted, the default length is determined by the column attribute
defined on the table. Otherwise, the default length is 31 digits (16
bytes).

scale
Specifies the number of digits to the right of the decimal point. (Note
that, in this case, a decimal point is not included in the output field.)
The number must be an integer that is greater than or equal to zero
and less than or equal to the length.

The default depends on the column attribute that is defined on the
table. If the source data type is DECIMAL, the defined scale value is
the default value; otherwise, the default value is 0.

If you specify the output field size as less than the length of the data, an
error occurs. If the specified field size is greater than the length of data,
X'0' is padded on the left.

ZONED
Specifies that the output data is a number that is represented by the
zoned-decimal format. You can use DEC ZONED as an abbreviated form
of the keyword.

The zoned-decimal representation of a number is of the form znznzn...z/sn,
where n denotes a 4 bit decimal digit (called the numeric bits); z is the
digit's zone (left 4 bits of a byte); s is the right-most operand that can be a
zone (z) or can be a sign value (hexadecimal A, C, E, or F for a positive
number, and hexadecimal B or D for a negative number).

length
Specifies the number of bytes (that is the number of decimal digits)
that are placed in the output field. The length must be between 1 and
31.

If the source data type is DECIMAL and the length parameter is
omitted, the default length is determined by the column attribute that
is defined on the table. Otherwise, the default length is 31 bytes.

scale
Specifies the number of digits to the right of the decimal point. (Note
that, in this case, a decimal point is not included in the output field.)
The number must be an integer greater than or equal to zero and less
than or equal to the length.

The default depends on the column attribute that is defined on the
table. If the source data type is DECIMAL, the defined scale value is
the default value; otherwise, the default value is 0.

If you specify the output field size as less than the length of the data, an
error occurs. If the specified field size is greater than the length of data,
X'F0' is padded on the left.

Chapter 32. UNLOAD 831

EXTERNAL
Specifies that the output data is a character string that represents a number
in the form of ±dd...d.ddd...d, where d is a numeric character 0-9. (The plus
sign for a positive value is omitted.)

length
Specifies the overall length of the output data (the number of
characters including a sign, and a decimal point if scale is specified).

If the source data type is DECIMAL and the length parameter is
omitted, the default length is determined by the column attribute that
is defined on the table. Otherwise, the default length is 33 (31 numeric
digits, plus a sign and a decimal point). The minimum value of length
is 3 to accommodate the sign, one digit, and the decimal point.

scale
Specifies the number of digits to the right of the decimal point. The
number must be an integer that is greater than or equal to zero and
less than or equal to length - 2 (to allow for the sign character and the
decimal point).

If the source data type is DECIMAL and the length parameter is
omitted, the default scale is determined by the column attribute that is
defined on the table. Otherwise, the default value is 0.

An error occurs if the character representation of a value does not fit in
the given or default field size (precision). If the source data type is
floating point and a data item is too small for the precision that is
defined by scale, the value of zero (not an error) is returned.

FLOAT(length)
Specifies that the output data is a binary floating-point number (32-bit or
single-precision FLOAT if the length is between one and 21 inclusive; 64-bit or
double-precision FLOAT if the length is between 22 and 53 inclusive). If the
length parameter is omitted, the 64-bit format is assumed (output field size is 8
bytes). Note that the length parameter for the FLOAT type does not represent
the field size in bytes.

The format of the binary floating-point output is controlled by the global
FLOAT option. The default is S/390 format (Hexadecimal Floating Point or
HFP). If you specify FLOAT(IEEE), all the binary floating-point output is in
IEEE format (Binary Floating Point or BFP). When you specify FLOAT(IEEE)
and the source data type DOUBLE is unloaded as REAL, an error occurs if the
source data cannot be expressed by the IEEE (BFP) 32-bit notation.

EXTERNAL(length)
Specifies that the output data is a number that is represented by a
character string in floating-point notation, ±d.ddd...dddE±nn, where d is a
numeric character (0-9) for the significant digits; nn after the character E,
and the sign consists of two numeric characters for the exponent.

(length)
Specifies the total field length in bytes, including the first sign
character, the decimal point, the E character, the second sign character,
and the two-digit exponent. If the number of characters in the result is
less than the specified or the default length, the result is padded to the
right with blanks. The length, if specified, must be greater than or
equal to 8.

The default output field size is 14 if the source data type is the 32-bit
FLOAT; otherwise, the default is 24.

832 Utility Guide and Reference

A FLOAT EXTERNAL output field requires a space of at least seven
characters in the output record to accommodate the minimal floating point
notation. Otherwise, an error occurs.

DOUBLE
Specifies that the output data is in 64-bit floating point notation. If DOUBLE is
used, the length parameter must not be specified.

REAL
Specifies that the output data is in 32-bit floating point notation. If REAL is
used, the length parameter must not be specified.

DATE EXTERNAL
Specifies that the output field is for a character string representation of a date.
The output format of date depends on the DB2 installation.

(length)
Specifies the size of the data field in bytes in the output record. A DATE
EXTERNAL field requires a space of at least 10 characters. If the space is
not available, an error occurs. If the specified length is larger than the size
of the data, blanks are padded on the right.

TIME EXTERNAL
Specifies that the output field is for a character string representation of a time.
The output format of time depends on the DB2 installation.

(length)
Specifies the size of the data field in bytes in the output record. A TIME
EXTERNAL field requires a space of at least eight characters. If the space is
not available, a conversion error occurs. If the specified length is larger than
the size of the data, blanks are padded on the right.

TIMESTAMP EXTERNAL
Specifies that the output field is for a character string representation of a
timestamp.

(length)
Specifies the size of the data field in bytes in the output record. A
TIMESTAMP EXTERNAL field requires a space of at least 19 characters. If
the space is not available, an error occurs. The length parameter, if
specified, determines the output format of the TIMESTAMP. If the specified
length is larger than the size of the data, the field is padded on the right
with the default padding character.

TIMESTAMP WITH TIMEZONE EXTERNAL
Specifies that the output field is for a character string representation of a
timestamp.

(length)
Specifies the size of the data field in bytes in the output record. A
TIMESTAMP WITH TIME ZONE EXTERNAL field requires a space of at
least 26 characters. If the space is not available, an error occurs. The length
parameter, if specified, determines the output format of the TIMESTAMP
WITH TIME ZONE. If the specified length is larger than the size of the
data, the field is padded on the right with the default padding character.

CONSTANT
Specifies that the output records are to have an extra field containing a
constant value. The field name that is associated with the CONSTANT
keyword must not coincide with a table column name (the field name is for

Chapter 32. UNLOAD 833

clarification purposes only). A CONSTANT field always has a fixed length that
is equal to the length of the given string.

'string'
Specifies the character string that is to be inserted in the output records at
the specified or default position. A string is the required operand of the
CONSTANT option. If the given string is in the form 'string', it is assumed
to be an EBCDIC SBCS string. However, the output string for a
CONSTANT field is in the specified or default encoding scheme. (That is, if
the encoding scheme used for output is not EBCDIC, the SBCS CCSID
conversion is applied to the given string before it is placed in output
records.)

X'hex-string'
Specifies the character string in hexadecimal form, X'hex-string', that is to
be inserted in the output records at the specified or default position. If you
want to specify a CONSTANT string value in an encoding scheme other
than SBCS EBCDIC, use the hexadecimal form. No CCSID conversion is
performed if the hexadecimal form is used.

For a CONSTANT field, no other field selection list options should be
specified.

If a CONSTANT field is inserted, it will not be included in the generated
LOAD statement (the LOAD statement is generated so that the CONSTANT
field is skipped).

If you specify both FORMAT DELIMITED and CONSTANT, the generated
LOAD statement is not usable.

ROWID
Specifies that the output data is of type ROWID. The field type ROWID can be
specified if and only if the column that is to be unloaded is of type ROWID.
The keyword is provided for consistency purposes.

ROWID fields have varying length and a 2-byte binary length field is
prepended to the actual data field.

For the ROWID type, no data conversion nor truncation is applied. If the
output field size is too small to unload ROWID data, an error occurs.

If the source is an image copy and a ROWID column is selected, and if the
page set header page is missing in the specified data set, the UNLOAD utility
terminates with the error message DSNU1228I. This situation can occur when
the source is an image copy data set of DSNUM that is greater than one for a
nonpartitioned table space that is defined on multiple data sets.

BLOB
Indicates that the column is to be unloaded as a binary large object (BLOB). No
data conversion is applied to the field.

When you specify the BLOB field type, a 4-byte binary length field is placed in
the output record prior to the actual data field. If the source table column can
be null, a NULL indicator byte is placed before the length field.

(length)
Specifies the maximum length of the actual data field in bytes. If you
specify NOPAD, it indicates the maximum allowable space for the data in
the output records; otherwise, the space of the specified length is reserved
for the data.

834 Utility Guide and Reference

The default is the maximum length that is defined on the source table
column.

TRUNCATE
Indicates that a BLOB string is to be truncated from the right, if the data
does not fit in the available space for the field in the output record. For
BLOB data, truncation occurs at a byte boundary. Without TRUNCATE, an
error occurs when the output field size is too small for the data.

CLOB
Indicates that the column is to be unloaded as a character large object (CLOB).

When you specify the CLOB field type, a 4-byte binary length field is placed in
the output record prior to the actual data field. If the source table column can
be null, a NULL indicator byte is placed before the length field.

If you specify the EBCDIC, ASCII, UNICODE, or CCSID options, the output
data is encoded in the CCSID corresponding to the specified option, depending
on the subtype of the source data (SBCS or MIXED). No conversion is applied
if the subtype is BIT.

(length)
Specifies the maximum length of the actual data field in bytes. If you
specify NOPAD, it indicates the maximum allowable space for the data in
the output records; otherwise, the space of the specified length is reserved
for the data.

The default is the maximum length that is defined on the source table
column.

TRUNCATE
Indicates that a CLOB string (encoded for output) is to be truncated from
the right, if the data does not fit in the available space for the field in the
output record. For CLOB data, truncation occurs at a character boundary.
See “Specifying TRUNCATE and STRIP options for output data” on page
860 for the truncation rules that are used in the UNLOAD utility. Without
TRUNCATE, an error occurs when the output field size is too small for the
data.

DBCLOB
Indicates that the column is to be unloaded as a double-byte character large
object (DBCLOB).

If you specify the DBCLOB field type, a 4-byte binary length field is placed in
the output record prior to the actual data field. If the source table column can
be null, a NULL indicator byte is placed before the length field.

If you specify the EBCDIC, ASCII, UNICODE, or CCSID options, the output
data is encoded in the CCSID corresponding to the specified option; DBCS
CCSID is used.

(length)
Specifies the maximum length of the actual data field in the number of
DBCS characters. If you specify NOPAD, it indicates the maximum
allowable space for the data in the output records; otherwise, the space of
the specified length is reserved for the data.

The default is the maximum length that is defined on the source table
column.

TRUNCATE
Indicates that a DBCS string (encoded for output) is to be truncated from

Chapter 32. UNLOAD 835

the right, if the data does not fit in the available space for the field in the
output record. For a DBCLOB data, truncation occurs at a character (DBCS)
boundary. See “Specifying TRUNCATE and STRIP options for output data”
on page 860 for the truncation rules that are used in the UNLOAD utility.
Without TRUNCATE, an error occurs when the output field size is too
small for the data.

DECFLOAT (length)
Specifies either a 128-bit decimal floating-point number or a 64-bit decimal
floating-point number. The value of the length must be either 16 or 34. If the
length is 16, the number is in 64 bit decimal floating-point number format. If
the length is 34, the number is in 128 bit decimal floating-point format. The
default length is determined by the column attribute defined on the table.
Otherwise, the default length is 34 (16 bytes).

DECFLOAT EXTERNAL
Specifies a string of characters that represent a number. The format is an SQL
numeric constant.

(length)
Specifies the total field length in bytes. This length includes the first sign
character, the decimal point, the E character, the second sign character, and
the exponent if in the string. If the number of characters in the result is
less than the specified or the default length, the result is padded to the
right with blanks. The character representation of a value must fit in the
given or default field size.

The default output field size is 23 if the source data type is the
DECFLOAT(16). Otherwise, the default is 42.

XML
Specifies that an XML column is being unloaded directly to the output record.

BINARYXML Specifies that the XML document is to be unloaded in binary
XML format.

WHEN
Indicates which records in the table space are to be unloaded. If no WHEN
clause is specified for a table in the table space, all of the records are unloaded.

The option following WHEN describes the conditions for unloading records
from a table.

Data in the table can be in EBCDIC, ASCII, or Unicode. If the target table is in
Unicode and the character constants are specified in the utility control
statement as EBCDIC, the UNLOAD utility converts these constants to
Unicode. To use a constant when the target table is ASCII, specify the
hexadecimal form of the constant (instead of the character string form) in the
condition for the WHEN clause.

selection condition
Specifies a condition that is true, false, or unknown about a given row. When
the condition is true, the row qualifies for UNLOAD. When the condition is
false or unknown, the row does not qualify.

The result of a selection condition is derived by application of the specified
logical operators (AND and OR) to the result of each specified predicate. If
logical operators are not specified, the result of the selection condition is the
result of the specified predicate.

Selection conditions within parentheses are evaluated first. If the order of
evaluation is not specified by parentheses, AND is applied before OR.

836 Utility Guide and Reference

If the control statement is in the same encoding scheme as the input data, you
can code character constants in the control statement. Otherwise, if the control
statement is not in the same encoding scheme as the input data, you must code
the condition with hexadecimal constants. For example, if the table space is in
EBCDIC and the control statement is in UTF-8, use (1:1) = X'31' in the
condition rather than (1:1) = '1'.

Restriction: UNLOAD cannot filter rows that contain encrypted data.

predicate
Specifies a condition that is true, false, or unknown about a row.

In the predicate, you cannot specify a DECFLOAT constant or a column of any
of the following types:

DECFLOAT
VARCHAR
LONG VARCHAR
VARGRAPHIC
LONG VARGRAPHIC
ROWID
CLOB
BLOB
DBCLOB

You can specify an XML column only with IS NULL or IS NOT NULL.

Column names in the predicate are case-sensitive. For example, if a column in
the source table is named SALARY, SALARY=20000 is a valid predicate, but
salary=20000 is not a valid predicate.

basic predicate
Specifies the comparison of a column with a constant. If the value of the
column is null, the result of the predicate is unknown. Otherwise, the
result of the predicate is true or false.

column = constant
The column is equal to the constant or labeled duration expression.

column < > constant
The column is not equal to the constant or labeled duration
expression.

column > constant
The column is greater than the constant or labeled duration
expression.

column < constant
The column is less than the constant or labeled duration
expression.

column > = constant
The column is greater than or equal to the constant or labeled
duration expression.

column < = constant
The column is less than or equal to the constant or labeled
duration expression.

Note: The following alternative comparison operators are available:

Chapter 32. UNLOAD 837

!= or ¬= for not equal.
!> or ¬> for not greater than.
!< or ¬< for not less than.

The symbol ¬ representing “not” is supported for compatibility purposes.
Use ! where possible.

BETWEEN predicate
Indicates whether a given value is between two other given values that are
specified in ascending order. The values can be constants or labeled
duration expressions. Each of the predicate's two forms (BETWEEN and
NOT BETWEEN) has an equivalent search condition, as shown in the
following table. When relevant, the table also shows any equivalent
predicates.

Table 116. BETWEEN predicates and their equivalent search conditions

Predicate Equivalent predicate Equivalent search condition

column BETWEEN value1
AND value2

None
(column >= value1 AND
column <= value2)

column NOT BETWEEN value1
AND value2

NOT(column BETWEEN
value1 AND value2)

(column < value1 OR column >
value2)

Note: The values can be constants or labeled duration expressions.

For example, the following predicate is true for any row when salary is
greater than or equal 10000 and less than or equal to 20000:
SALARY BETWEEN 10000 AND 20000

IN predicate
Specifies that a value is to be compared with a set of values. In the IN
predicate, the second operand is a set of one or more values that are
specified by constants. Each of the predicate's two forms (IN and NOT IN)
has an equivalent search condition, as shown in the following table.

Table 117. IN predicates and their equivalent search conditions

Predicate Equivalent search condition

value1 IN (value1, value2,..., valuen) (value1 = value2 OR ... OR value1 = valuen)

value1 NOT IN (value1, value2,..., valuen) value1 ¬= value2 AND ... AND value1 ¬= valuen)

Note: The values can be constants.

For example, the following predicate is true for any row whose employee
is in department D11, B01, or C01:
WORKDEPT IN (’D11’, ’B01’, ’C01’)

LIKE predicate
Specifies the qualification of strings that have a certain pattern.

Within the pattern, a percent sign or underscore can have a special
meaning, or it can represent the literal occurrence of a percent sign or
underscore. To have its literal meaning, it must be preceded by an escape
character. If it is not preceded by an escape character, it has its special
meaning. The underscore character (_) represents a single, arbitrary
character. The percent sign (%) represents a string of zero or more arbitrary
characters.

The ESCAPE clause designates a single character. That character, and only
that character, can be used multiple times within the pattern as an escape

838 Utility Guide and Reference

character. When the ESCAPE clause is omitted, no character serves as an
escape character, so that percent signs and underscores in the pattern
always have their special meanings.

The following rules apply to the use of the ESCAPE clause:
v The ESCAPE clause cannot be used if x is mixed data.
v If x is a character string, the data type of the string constant must be

character string. If x is a graphic string, the data type of the string
constant must be graphic string. In both cases, the length of the string
constant must be 1.

v The pattern must not contain the escape character except when followed
by the escape character, '%' or '_'. For example, if '+' is the escape
character, any occurrence of '+' other than '++', '+_', or '+%' in the
pattern is an error.

When the pattern does not include escape characters, a simple description
of its meaning is:
v The underscore sign (_) represents a single arbitrary character.
v The percent sign (%) represents a string of zero or more arbitrary

characters.
v Any other character represents a single occurrence of itself.

Let x denote the column that is to be tested and y the pattern in the string
constant. The following rules apply to predicates of the form "x LIKE y...".
If NOT is specified, the result is reversed.
v When x and y are both neither empty nor null, the result of the

predicate is true if x matches the pattern in y and false if x does not
match the pattern in y.

v When x or y is null, the result of the predicate is unknown.
v When y is empty and x is not empty, the result of the predicate is false.
v When x is empty and y is not empty, the result of the predicate is false

unless y consists only of one or more percent signs.
v When x and y are both empty, the result of the predicate is true.

The pattern string and the string that is to be tested must be of the same
type. That is, both x and y must be character strings, or both x and y must
be graphic strings. When x and y are graphic strings, a character is a DBCS
character. When x and y are character strings and x is not mixed data, a
character is an SBCS character and y is interpreted as SBCS data regardless
of its subtype.

Strings and patterns

The string y is interpreted as a sequence of the minimum number of
substring specifiers such that each character of y is part of exactly one
substring specifier. A substring specifier is an underscore, a percent sign, or
any non-empty sequence of characters other than an underscore or percent
sign.

The string x matches the pattern y if a partitioning of x into substrings
exists, such that:
v A substring of x is a sequence of zero or more contiguous characters,

and each character of x is part of exactly one substring.
v If the nth substring specifier is an underscore, the nth substring of x is

any single character.

Chapter 32. UNLOAD 839

v If the nth substring specifier is a percent sign, the nth substring of x is
any sequence of zero or more characters.

v If the nth substring specifier is neither an underscore nor a percent sign,
the nth substring of x is equal to that substring specifier and has the
same length as that substring specifier.

v The number of substrings of x is the same as the number of substring
specifiers.

When escape characters are present in the pattern string, an underscore,
percent sign, or escape character represents a single occurrence of itself if
and only if it is preceded by an odd number of successive escape
characters.

The way a pattern is matched to evaluate the LIKE predicate depends on
whether blanks at the end of fixed length strings are significant, or if the
blanks are ignored. When the LIKE_BLANK_INSIGNIFICANT subsystem
parameter is enabled, the LIKE predicate can produce different results.

Mixed data patterns: If x is mixed data, the pattern is assumed to be
mixed data, and its special characters are interpreted as follows:
v A single-byte underscore refers to one single-byte character; a

double-byte underscore refers to one double-byte character.
v A percent sign, either single-byte or double-byte, refers to any number of

characters of any type, either single-byte or double-byte.
v Redundant shift bytes in x or y are ignored.

Related information:

LIKE predicate (DB2 SQL)

NULL predicate
Specifies a test for null values.

If the value of the column is null, the result is true. If the value is not null,
the result is false. If NOT is specified, the result is reversed. (That is, if the
value is null, the result is false, and if the value is not null, the result is
true.)

labeled duration expression
Specifies an expression that begins with special register CURRENT DATE
or special register CURRENT TIMESTAMP (the forms CURRENT_DATE
and CURRENT_TIMESTAMP are also acceptable). For CURRENT
TIMESTAMP, if the comparison is with a timestamp column, the
timestamp precision of the special register will be the same as the column
timestamp precision. Otherwise default timestamp precision will be used.
This special register can be followed by arithmetic operations of addition
or subtraction. These operations are expressed by using numbers that are
followed by one of the seven duration keywords: YEARS, MONTHS,
DAYS, HOURS, MINUTES, SECONDS, or MICROSECONDS. (The singular
form of these keywords is also acceptable: YEAR, MONTH, DAY, HOUR,
MINUTE, SECOND, and MICROSECOND.)

Utilities always evaluate a labeled duration expression as a timestamp and
implicitly convert to a date if the comparison is with a date column.

Incrementing and decrementing CURRENT DATE: The result of adding a
duration to a date, or of subtracting a duration from a date, is itself a date.
(For the purposes of this operation, a month denotes the equivalent of a
calendar page. Adding months to a date, then, is like turning the pages of

840 Utility Guide and Reference

|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_likepredicate.htm#db2z_likepredicate

a calendar, starting with the page on which the date appears.) The result
must fall between the dates January 1, 0001 and December 31, 9999
inclusive. If a duration of years is added or subtracted, only the year
portion of the date is affected. The month is unchanged, as is the day,
unless the result would be February 29 of a non-leap-year. In this situation,
the day portion of the result is set to 28.

Similarly, if a duration of months is added or subtracted, only months and,
if necessary, years are affected. The day portion of the date is unchanged
unless the result would be invalid (September 31, for example). In this case
the day is set to the last day of the month.

Adding or subtracting a duration of days affects the day portion of the
date, and potentially the month and year.

Date durations, whether positive or negative, can also be added to and
subtracted from dates. As with labeled durations, the result is a valid date.

When a positive date duration is added to a date, or a negative date
duration is subtracted from a date, the date is incremented by the specified
number of years, months, and days.

When a positive date duration is subtracted from a date, or a negative date
duration is added to a date, the date is decremented by the specified
number of days, months, and years.

Adding a month to a date gives the same day one month later, unless that
day does not exist in the later month. In that case, the day in the result is
set to the last day of the later month. For example, January 28 plus one
month gives February 28; one month added to January 29, 30, or 31 results
in either February 28 or, for a leap year, February 29. If one or more
months is added to a given date and then the same number of months is
subtracted from the result, the final date is not necessarily the same as the
original date.

The order in which labeled date durations are added to and subtracted
from dates can affect the results. When you add labeled date durations to a
date, specify them in the order of YEARS + MONTHS + DAYS. When you
subtract labeled date durations from a date, specify them in the order of
DAYS - MONTHS - YEARS. For example, to add one year and one day to
a date, specify the following code:

When the labeled duration expression begins with special register
CURRENT TIMESTAMP, the CURRENT TIMESTAMP is compared with
the time zone column. The timestamp precision of the special register will
be the same as the column timestamp precision. Otherwise the default
timestamp precision will be used. The time zone of CURRENT
TIMESTAMP is the value of special register CURRENT TIMEZONE. The
comparison is done by comparing the UTC portion.
CURRENT DATE + 1 YEAR + 1 DAY

To subtract one year, one month, and one day from a date, specify the
following code:
CURRENT DATE - 1 DAY - 1 MONTH - 1 YEAR

Incrementing and decrementing timestamps: The result of adding a duration to
a timestamp, or of subtracting a duration from a timestamp, is itself a
timestamp. Date and time arithmetic is performed as previously defined,
except that an overflow or underflow of hours is carried into the date part
of the result, which must be within the range of valid dates.

Chapter 32. UNLOAD 841

Related reference:

EDITPROCs and VALIDPROCs for handling basic and reordered row formats
(DB2 Administration Guide)

CREATE TABLE (DB2 SQL)
Related information:

Converting basic row format table spaces with edit and validation routines to
reordered row format (DB2 Administration Guide)

Before running UNLOAD
Certain activities might be required before you run the UNLOAD utility,
depending on your situation.

If you plan to run UNLOAD on encrypted data, do not use the WHEN statement
to filter encrypted fields; UNLOAD cannot filter rows that contain encrypted data

Loading data into a table with an index that has a VARBINARY
column

If the table into which you are loading data has an index with these characteristics,
LOAD fails:
v The index was created on a VARBINARY column or a column with a distinct

type that is based on a VARBINARY data type.
v The index column has the DESC attribute.

To fix the problem, drop the index, or alter the column data type to BINARY, and
then rebuild the index.

Data sets that UNLOAD uses
The UNLOAD utility uses a number of data sets during its operation.

The following table lists the data sets that UNLOAD uses. The table lists the DD
name that is used to identify the data set, a description of the data set, and an
indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 118. Data sets that UNLOAD uses

Data set Description Required?

SYSIN Input data set that contains the utility
control statement.

Yes

SYSPRINT Output data set for messages. Yes

SYSPUNCH One or more work data sets that contain the
generated LOAD statements for
subsequently reloading the data. The default
DD name is PUNCHDDN.

No1

Unload data set One or more work data sets that contain the
unloaded table rows. The default DD name
is SYSREC.

Yes

Note:
1. Required if you request that UNLOAD generate LOAD statements by specifying

PUNCHDDN in the utility control statement.

842 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_procs4rfmttype.htm#db2z_procs4rfmttype
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_procs4rfmttype.htm#db2z_procs4rfmttype
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_convertrowformattable.htm#db2z_convertrowformattable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_convertrowformattable.htm#db2z_convertrowformattable

The following object is named in the utility control statement and does not require
a DD statement in the JCL:

Table space
Table space that is to be unloaded. (If you want to unload only one
partition of a table space, you must specify the PART option in the control
statement.)

Concurrency and compatibility for UNLOAD
The UNLOAD utility has certain concurrency and compatibility characteristics
associated with it.

DB2 treats Individual data partitions as distinct source objects. Utilities that operate
on different partitions of the same table space are compatible.

Claims and drains:

The following table shows which claim classes UNLOAD drains and the restrictive
states that the utility sets.

Table 119. Claim classes of UNLOAD operations

Target UNLOAD UNLOAD PART

Table space or physical partition of a table
space with SHRLEVEL REFERENCE

DW/UTRO DW/UTRO

Table space or physical partition of a table
space with SHRLEVEL CHANGE

CR/UTRW CR/UTRW

Image copy* CR/UTRW CR/UTRW

Legend:
v DW: Drain the write claim class, concurrent access for SQL readers
v UTRO: Utility restrictive state, read-only access allowed
v CR: Claim read, concurrent access for SQL writers and readers
v UTRW: Utility restrictive state; read-write access allowed

Note: * If the target object is an image copy, the UNLOAD utility applies CR/UTRW to the
corresponding table space or physical partitions to prevent the table space from being
dropped while data is being unloaded from the image copy, even though the UNLOAD
utility does not access the data in the table space.

Compatibility

The compatibility of the UNLOAD utility and the other utilities on the same target
objects are shown in the following table. If the SHRLEVEL REFERENCE option is
specified, only SQL read operations are allowed on the same target objects;
otherwise SQL INSERT, DELETE, and UPDATE are also allowed. If the target
object is an image copy, INSERT, DELETE, and UPDATE are always allowed on
the corresponding table space. In any case, DROP or ALTER cannot be applied to
the target object while the UNLOAD utility is running.

Table 120. Compatibility of UNLOAD with other utilities

Action

UNLOAD
SHRLEVEL
REFERENCE

UNLOAD
SHRLEVEL
CHANGE

FROM IMAGE
COPY

CHECK DATA
DELETE NO

Yes Yes Yes

Chapter 32. UNLOAD 843

Table 120. Compatibility of UNLOAD with other utilities (continued)

Action

UNLOAD
SHRLEVEL
REFERENCE

UNLOAD
SHRLEVEL
CHANGE

FROM IMAGE
COPY

CHECK DATA
DELETE YES

No No No

CHECK INDEX Yes Yes Yes

CHECK LOB Yes Yes Yes

COPY INDEXSPACE Yes Yes Yes

COPY TABLESPACE Yes Yes Yes*

DIAGNOSE Yes Yes Yes

LOAD SHRLEVEL
CHANGE

No Yes Yes

LOAD SHRLEVEL
NONE

No No No

MERGECOPY Yes Yes No

MODIFY RECOVERY Yes Yes No

MODIFY STATISTICS Yes Yes Yes

QUIESCE Yes Yes Yes

REBUILD INDEX Yes Yes Yes

RECOVER (no
options)

No No No

RECOVER ERROR
RANGE

No No No

RECOVER TOCOPY
or TORBA

No No No

REORG INDEX Yes Yes Yes

REORG
TABLESPACE
UNLOAD
CONTINUE or
PAUSE

No No No

REORG
TABLESPACE
UNLOAD ONLY or
EXTERNAL

Yes Yes Yes

REPAIR DUMP or
VERIFY

Yes Yes Yes

REPAIR LOCATE
INDEX PAGE
REPLACE

Yes Yes Yes

REPAIR LOCATE
KEY or RID DELETE
or REPLACE

No No No

REPAIR LOCATE
TABLESPACE PAGE
REPLACE

No No No

REPORT Yes Yes Yes

RUNSTATS INDEX Yes Yes Yes

844 Utility Guide and Reference

Table 120. Compatibility of UNLOAD with other utilities (continued)

Action

UNLOAD
SHRLEVEL
REFERENCE

UNLOAD
SHRLEVEL
CHANGE

FROM IMAGE
COPY

RUNSTATS
TABLESPACE

Yes Yes Yes

STOSPACE Yes Yes Yes

Note: If the same data set is used as the output from the COPY utility and as the input data
set of the UNLOAD utility, unexpected results can occur.

Unloading partitions
You can unload partitions in one of two ways.

About this task

Regardless of the method, the unloaded data can be stored in a single data set for
all selected partitions or in one data set for each selected partition. If you want to
unload to a single output data set, specify a DD name to UNLDDN. If you want to
unload into multiple output data sets, specify a template name that is associated
with the partitions. You can process multiple partitions in parallel if the
TEMPLATE definition contains the partition as a variable, for example &PA.

You cannot specify multiple output data sets with the FROMCOPY or the
FROMCOPYDDN option.

Procedure

If the source table space is partitioned, use only one of the following methods to
select the partitions to unload:
v Use the LIST keyword with a LISTDEF that contains PARTLEVEL specifications.

Partitions can be either included or excluded by the use of the INCLUDE and
the EXCLUDE features of LISTDEF.

v Specify the PART keyword to select a single partition or a range of partitions.

Unloading XML data
You can unload XML data in one of two ways.

About this task

XML columns can be unloaded with either of the following methods:
v The XML column can be unloaded to the output records. XML column value can

be placed in the OUTPUT record with or without any other unloading column
values. The output record can be in delimited or non-delimited format. For a
non-delimited format, the XML column is handled like a variable character with
a 2-byte length preceding the XML value. For a delimited format there are no
length bytes present. If the total output record length is more than 32 KB,
unload the record in spanned record format by specifying the SPANNED YES
option.

v The XML column can be unloaded to a separate file whether the XML column
length is less than 32K or not.

Chapter 32. UNLOAD 845

To unload XML data directly to output record:

Specify XML as the output field type. If the output is a non-delimited format, a
2-byte length will precede the value of the XML. For delimited output, no length
field is present. XML is the only acceptable field type when unloading the XML
directly to the output record. No data type conversion applies and you cannot
specify FROMCOPY.

If the input data is in Extensible Dynamic Binary XML DB2 Client/Server Binary
XML Format (binary XML format), you need to specify BLOBF BINARYXML.

To unload XML data to a separate file:
v In the UNLOAD utility control statement, specify BLOBF, CLOBF or DBCLOBF.

These keywords indicate that the output column contains the name of a file to
which the XML value is to be unloaded. Also specify either CHAR or
VARCHAR instead of XML. Do not specify FROMCOPY.

Example: The following UNLOAD statement specifies that the data from the
XML column ORDER_CREATE_XML1 is to be unloaded to the file that is
defined by template BLOBFC1.
UNLOAD DATA FROM TABLE SCQA0000.TB_ORDER_PBR

(ORDER_CREATE_XML1 POSITION(*) VARCHAR BLOBF BLOBFC1
,ORDER_ALL_LOCAL POSITION(*) INTEGER
)

v Use the template control statement to create the XML output file and filename. If
data sets are not created and the DSN type is not specified on the template,
UNLOAD will use PDS as the data set type. PDS has a limit of single volume.
The output file uses multiple volumes, so you must specify HFS as the DSN
type. See “Data sets that UNLOAD uses” on page 842.

Unloading LOB data
You can unload LOB data in one of two ways.

About this task

LOB columns can be unloaded with either of the following methods:
v The LOB column can be unloaded to the output records. The LOB column value

can be placed in the OUTPUT record with or without any other unloading
column values. The output record can be in delimited or non-delimited format.
For a non-delimited format, the LOB column is handled like a variable character
with a 2-byte length preceding the LOB value. For a delimited format there are
no length bytes present. If the total output record length is more than 32 KB,
unload the record in spanned record format by specifying the SPANNED YES
option.

v The LOB column can be unloaded to a separate file whether the LOB column
length is less than 32K or not.

Procedure

To unload LOB data, use one of the following methods:
v To unload LOB data directly to output record:

Specify LOB as the output field type. If the output is a non-delimited format, a
2-byte length will precede the value of the LOB. For delimited output, no length

846 Utility Guide and Reference

field is present. LOB is the only acceptable field type when unloading the LOB
data directly to the output record. No data type conversion applies and you
cannot specify FROMCOPY.

v To unload LOB data to a separate file:
– Create an UNLOAD utility control statement. Specify BLOBF, CLOBF or

DBCLOBF to indicate that the output column contains a filename which the
LOB value is to be unloaded. You cannot specify FROMCOPY.

– Use the template control statement to create the LOB output file and filename.
If data sets are not created and the DSN type is not specified on the template,
UNLOAD will use PDS as the data set type. PDS has a limit of single volume.
The output file uses multiple volumes, so you must specify HFS as the DSN
type. See “Data sets that UNLOAD uses” on page 842.

If you unload data to a separate file, and the LOB column from which you
unload is empty, the data set that is specified by UNLDDN contains one of the
following items:
– A blank file name if the source column is specified as CHAR CLOBF, CHAR

BLOBF, or CHAR DBCLOBF
– A file name with length 0 if the source column is specified as VARCHAR

CLOBF, VARCHAR BLOBF, or VARCHAR DBCLOBF

The UNLOAD utility does not create a data set or file for the empty LOB.

Unloading data in spanned record format
If you want to unload data from a table that has large LOB or XML fields, consider
unloading the data in spanned record format to improve performance of read-write
operations.

About this task

When you unload data in spanned record format, all LOB and XML data for a
given table space or table space partition can be written to an individual sequential
file. This file can reside on DASD and can span multiple volumes. Having such a
single sequential file can improve the performance of read-write operations.

Procedure

To unload data in spanned record format:

Specify the SPANNED YES option. Specify in the field specification list that all
LOB and XML data are to be at the end of the record.

Example: The following UNLOAD statement specifies that the data from table TB1
is to be unloaded in spanned record format. Notice that in the field specification
list, the CLOB columns are listed at the end and POSITION is not specified.
UNLOAD TABLESPACE TESTDB1.CLOBBASE SPANNED YES

FROM TABLE TB1
(ID
,C1 INTEGER
,C2 INTEGER
,C3 CHAR(100)
,C4 CHAR(100)
,C5 INTEGER
,C6 CHAR(100)
,C7 CHAR(100)

Chapter 32. UNLOAD 847

,C8 CHAR(100)
,CLOB1 CLOB
,CLOB2 CLOB
,CLOB3 CLOB)

Results

Example of spanned record format: The following figure shows a conceptual
example of a spanned record that has been unloaded.

What to do next

When you run LOAD on data that was unloaded in spanned record format, you
need to use the LOAD statements that are in the SYSPUNCH data sets after
UNLOAD runs. Those LOAD statements include SORTKEYS parameters with
accurate values. During LOAD, DB2 cannot estimate the size of the sort work data
sets by checking the contents of the SYSREC data sets that are produced during
UNLOAD with SPANNED YES.

Selecting tables and rows to unload
If a table space contains multiple tables, you can select specific tables to unload.

About this task

To select tables and rows to unload:

Procedure

In the UNLOAD utility control statement, use the FROM TABLE specification
clause. Use one instance of the FROM TABLE clause for each table that is to be
unloaded.
Within a FROM TABLE clause, you can specify one or more of the following
criteria:
v Row and column selection criteria by using the field specification list
v Row selection conditions by using the WHEN specification clause
v Row sampling specifications

If you do not specify at least one FROM TABLE clause, the rows from all the tables
in the table space are unloaded.
If you specify one or more FROM TABLE clauses for a table space, only the
qualified rows from the specified tables are unloaded.

.----------------.------------------.-------------------------------------.
| Column 1 | Column 2 | Start of LOB 1 |
+----------------+------------------+------------.------------------------+
| The rest of LOB 1 | Start of LOB 2 |
+--+------------------------+
| more of LOB 2 |
+----------------------.--+
| the rest of LOB 2 |
+----------------------+----------------------
| The next row........................
+---

848 Utility Guide and Reference

Related information:
“FROM-TABLE-spec syntax diagram and option descriptions” on page 816

Selecting and ordering columns to unload
Use a field specification list in a FROM TABLE clause to unload specified columns
in the listed order. If you omit a field specification list, all the columns in the row
are unloaded in the order of the columns that are defined on the table.

About this task

You can specify a format conversion option for each field in the field specification
list.

If you select a LOB column in a list of field specifications or select a LOB column
by default (by omitting a list of field specifications), LOB data is materialized in
the output. However, you cannot select LOB columns from image copy data sets.

Unloading data from image copy data sets
In addition to unloading data from table spaces and partitions, you can also
unload data from one or more image copy data sets. The UNLOAD utility accepts
full image copies, incremental image copies, and copies of pieces as valid input
sources.

Before you begin

Ensure that the image copy data set that you want to unload from meets the
following requirements:
v The source image copy data set must be created by one of the following utilities:

– COPY
– COPYTOCOPY
– LOAD inline image copy
– MERGECOPY
– REORG TABLESPACE inline image copy
– DSN1COPY

v The image copy data set must be for a single table space.
v If you want to unload a ROWID column, the image copy must contain the page

set header page.
v If you want to use UNLOAD to process image copies from different versions,

the copy must be created with the SYSTEMPAGES YES option.
v If you want to unload compressed records, the image copy can be a full image

copy or an incremental image copy. In either case, the copy must be created with
the SYSTEMPAGES YES option. If the image copy data set is an incremental
image copy or a copy of a partition or partitions, the same data set must contain
the dictionary pages for decompression. If an image copy data set contains a
compressed row and a dictionary is not available, DB2 issues an error message.

v The copy cannot be a VSAM FlashCopy image copy. Instead, you can use the
COPY utility or COPYTOCOPY utility to create a sequential format image copy
from the FlashCopy image copy. Then, use the sequential format image copy as
input for UNLOAD.

v If an image copy contains data for columns that no longer exist in the catalog
because the columns were dropped, UNLOAD cannot unload from this image
copy. UNLOAD issues message DSNU1227I with return code 8.

Chapter 32. UNLOAD 849

|
|
|

About this task

Restriction: You cannot unload LOB data or XML data from copies.

Procedure

To unload data from image copy data sets:

Specify either the FROMCOPY or FROMCOPYDDN option in the UNLOAD utility
control statement as follows:

FROMCOPY
Use the FROMCOPY option to unload rows from a single image copy data
set.

You can use the FROMCOPY option to specify a full or incremental copy
of partitions of a segmented table space that consists of multiple data sets.
However, if a mass delete operation occurred for a table in the table space
before you created the copy, the utility might not unload the deleted rows.
The utility unloads deleted rows only if the space map pages that indicate
the mass delete are not included in the data set that corresponds to the
specified copy. Therefore, where possible, use the FROMCOPYDDN option
to concatenate the copy of table space partitions.

FROMCOPYDDN
Use the FROMCOPYDDN option to unload data from one or more image
copy data sets that are associated with the specified DD name.

You can use this option to concatenate the copy of table space partitions
under a DD name to form a single input data set image. When you use the
FROMCOPYDDN option, concatenate the data sets in the order of the data
set number; the first data set must be concatenated first. If the data sets are
concatenated in the wrong order or if different generations of image copies
are concatenated, the results might be unpredictable. For example, if the
most recent image copy data sets and older image copies are intermixed,
the results might be unpredictable.

You can also use the FROMCOPYDDN option to concatenate a full image
copy and incremental image copies for a table space, a partition, or a piece.
However, duplicate rows are also unloaded. Instead, consider using the
MERGECOPY utility to generate an updated full image copy as the input
to UNLOAD.

When you specify the FROMCOPY or the FROMCOPYDDN option, you can
specify only one output data set.
You can select specific rows and columns to unload just as you would for a table
space. You can specify the selection criteria with either the PART keyword, the
FROM TABLE clause, or both, to qualify tables and rows that are to be unloaded.
However, do not include LOB columns in the field specification list. You can
unload rows that contain LOB columns only when the LOB columns are excluded.
Specify the table space name in the TABLESPACE option. The specified table space
must exist when you run UNLOAD. (The table space cannot have been dropped
since the image copy was taken.) If an image copy contains rows from dropped
tables, UNLOAD ignores these rows.
After you run UNLOAD, the image copy data is unloaded to the output data set.
However, certain situations can affect the output as follows:

850 Utility Guide and Reference

v Suppose that the image copy contains a table to which ALTER ADD COLUMN
was applied after the image copy was taken. In this case, UNLOAD sets the
system or user-specified default value for the added column when the data is
unloaded from such an image copy.

v If an image copy was created by an inline copy operation, the image copy can
contain duplicate pages. If duplicate pages exist, UNLOAD issues a warning
message, and all the qualified rows in duplicate pages are unloaded into the
output data set.

v If the image copy was taken with the SHRLEVEL CHANGE option specified,
rows might be updated or moved. As a result, data that is unloaded from such a
copy might contain duplicates of these rows.

The later two situations can be prevented by using an image copy was taken from
a consistent FlashCopy.
Related reference:
“Syntax and options of the COPY control statement” on page 127
“Syntax and options of the COPYTOCOPY control statement” on page 178
“Syntax and options of the MERGECOPY control statement” on page 356
“Syntax and options of the UNLOAD control statement” on page 804
“Sample UNLOAD control statements” on page 862

Data conversion with the UNLOAD utility
You can convert one data type to another compatible data type by using the
UNLOAD utility. The source type is used for user-defined distinct types.

For example, you can convert columns of a numeric type (SMALLINT, INTEGER,
FLOAT, DOUBLE, REAL, and DECIMAL) from the DB2 internal format to the
S/390 or an external format.

When you unload a floating-point type column, you can specify the binary form of
the output to either the S/390 format (hexadecimal floating point, or HFP), or the
IEEE format (binary floating point, or BFP).

You can also convert a varying-length column to a fixed-length output field, with
or without padding characters. In either case, unless you explicitly specify a
fixed-length data type for the field, the data itself is treated as a varying-length
data, and a length field is appended to the data.

For certain data types, you can unload data into fields with a smaller length by
using the TRUNCATE or STRIP options. In this situation, if a character code
conversion is applied, the length of the data in bytes might change due to the code
conversion. The truncation operation is applied after the code conversion.

You can perform character code conversion on a character type field, including
converting numeric columns to the external format and the CLOB type. Be aware
that when you apply a character code conversion for mixed-data fields, the length
of the result string in bytes can be shorter or longer than the length of the source
string. Character type data is always converted if you specify any of the character
code conversion options (EBCDIC, ASCII, UNICODE, or CCSID).

DATE, TIME, or TIMESTAMP column types are always converted into the external
formats based on the DATE, TIME, and TIMESTAMP formats of your installation.

Chapter 32. UNLOAD 851

Output field types
An output field can have a different data type from the one that is defined on a
source table column if the data types are compatible. The UNLOAD utility follows
the general DB2 rules and conventions for the data type attributes and the
compatibility among the data types.

If you specify a data type in the UNLOAD control statement, the field type
information is included in the generated LOAD utility statement. For specific data
type compatibility information, refer to the following table. These tables show the
compatibility of the data type of the source column (input data type) with the data
type of the output field (output data type). A Y indicates that the input data type
can be converted to the output data type.

The following table shows the compatibility of converting numeric data types.

Table 121. Compatibility of converting numeric data types

Input data types

Output data types

SMALLINT
INTEGER
(external) BIGINT

DECIMAL
(external)

FLOAT
(external)

DOUBLE or
REAL FLOAT/REAL

SMALLINT Y Y1 Y Y1 Y1 Y Y

INTEGER Y2 Y1 Y Y1 Y1 Y Y

BIGINT Y2 Y2 Y2 Y Y N Y

DECIMAL Y2 Y1, 2 Y2 Y1 Y1 Y Y

FLOAT, DOUBLE, or
REAL

Y2 Y1, 2 Y2 Y1, 2 Y1 Y Y

DECFLOAT Y2 Y1, 2 Y2 Y1, 2 Y1, 2 N2 Y3

Note:

1. Subject to the CCSID conversion, if specified (EXTERNAL case).

2. Potential overflow (conversion error).

3. When converting from DECFLOAT(34) to DECFLOAT(16), you might encounter overflow, underflow, subnormal number, or
inexact. However, there will be no conversion error.

The following table shows the compatibility of converting character data types.

Table 122. Compatibility of converting character data types

Input data
types

Output data types

BLOB CHAR
VAR-
CHAR CLOB GRAPHIC

GRAPHIC
EXTER-
NAL

VAR-
GRAPHIC

DB-
CLOB BINARY

VAR-
BINARY

BLOB Y N N N N N N N N N

CLOB N Y1, 2 Y1, 2 Y N N N N N N

DBCLOB N N N N Y1, 2 Y1, 2, 3 Y1, 2 Y1 N N

CHAR N Y1 Y1 Y1, 4 N N N N Y Y

VARCHAR
or
LONG
VARCHAR

N Y1,2 Y1 Y1, 4 N N N N Y Y

GRAPHIC N N N N Y1 Y1, 3 Y1 Y1 N N

VAR-
GRAPHIC or
LONG VAR-
GRAPHIC

N N N N Y1, 2 Y1, 2, 3 Y1 Y1 N N

BINARY Y N N N N N N N Y Y

852 Utility Guide and Reference

Table 122. Compatibility of converting character data types (continued)

Input data
types

Output data types

BLOB CHAR
VAR-
CHAR CLOB GRAPHIC

GRAPHIC
EXTER-
NAL

VAR-
GRAPHIC

DB-
CLOB BINARY

VAR-
BINARY

VARBINARY Y N N N N N N N Y Y

Note:

1. Subject to the CCSID conversion, if specified.

2. Results in an error if the field length is too small for the data unless you specify the TRUNCATE option. Note that a LOB has a
4-byte length field; any other varying-length type has a 2-byte length field.

3. Only in the EBCDIC output mode.

4. Not applicable to BIT subtype data.

The following table shows the compatibility of converting time data types.

Table 123. Compatibility of converting time data types

Input data types

Output data types

DATE EXTERNAL TIME EXTERNAL
TIMESTAMP
EXTERNAL

TIMESTAMP WITH
TIME ZONE
EXTERNAL

DATE Y1 N Y1, 2 Y1,2

TIME N Y1 N N

TIMESTAMP Y1, 3 Y1, 3 Y1 Y1,2

TIMESTAMP WITH
TIME ZONE

Y1,4 Y1,4 Y1,4 Y1

Note:

1. Subject to the CCSID conversion, if specified.

2. Zeros in the time portion. IMPLICIT_TZ in time zone portion if the output data type is
TIMESTAMP WITH TIME ZONE.

3. DATE or TIME portion of the timestamp.

4. DATE, TIME or TIMESTAMP portion of the timestamp with time zone.

Related concepts:

Data types (DB2 SQL)
Related reference:
“Syntax and options of the UNLOAD control statement” on page 804

Output field positioning and size
By default, output data is always placed in an output record in the order of the
defined columns over the selected tables. You can choose to specify the order of
the output fields by using a list of field specifications.

Use the POSITION option to specify field position in the output records. You can
also specify the size of the output data field by using the length parameter for a
particular data type. The length parameter must indicate the size of the actual data
field. The start parameter of the POSITION option indicates the starting position of
a field, including the NULL indicator byte (if the field can be null) and the length
field (if the field is varying length).

Chapter 32. UNLOAD 853

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_datatypesintro.htm#db2z_datatypesintro

Using the POSITION parameter, the length parameter, or both can restrict the size
of the data field in the output records. Use care when specifying the POSITION
and length parameters, especially for nullable fields and varying length fields. If a
conflict exists between the length parameter and the size of the field in the output
record that is specified by the POSITION parameters, DB2 issues an error message,
and the UNLOAD utility terminates. If an error occurs, the count of the number of
records in error is incremented. See the description of the MAXERR option of
UNLOAD for more information.

If you specify a length parameter for a varying-length field and you also specify
the NOPAD option, length indicates the maximum length of data that is to be
unloaded. Without the NOPAD option, UNLOAD reserves a space of the given
length instead of the maximum data size.

If you explicitly specify start parameters for certain fields, they must be listed in
ascending order in the field selection list. Unless you specify HEADER NONE for
the table, a fixed-length record header is placed at the beginning of each record for
the table, and the start parameter must not overlap the record header area.

The TRUNCATE option is available for certain output field types. For the output
field types where the TRUNCATE option is not applicable, enough space must be
provided in the output record for each field.
Related concepts:
“Field specification errors” on page 862
“Layout of output fields”
“Specifying TRUNCATE and STRIP options for output data” on page 860
Related reference:
“Syntax and options of the UNLOAD control statement” on page 804

Layout of output fields
Output fields have various layouts: fixed-length, nullable fixed-length,
varying-length field, varying-length field without the NOPAD option, nullable
varying-length field with the NOPAD option, and nullable varying-length field
without the NOPAD option

The following figure shows the layout of a fixed-length field that cannot be null.
This diagram shows that the data field begins at a specified position, or at the next
byte position past the end of the previous data field. The data field then continues
for the specified length or the length of the column in the table definition. For
GRAPHIC EXTERNAL data, shift-in and shift-out characters are inserted before
and after the data.

854 Utility Guide and Reference

The following figure shows the layout of a fixed-length field that can be null. This
diagram shows that a null indicator byte is stored before the data field, which
begins at the specified position or at the next byte position past the end of the
previous data field.

If you are running UNLOAD with the NOPAD option and need to determine the
layout of a varying-length field that cannot be null, see the layout diagram in the
following figure. The length field begins at the specified position or at the next
byte position past the end of the previous data field.

For UNLOAD without the NOPAD option, the layout of a varying-length field that
cannot be null is depicted in the following figure.

Data field

Length

Specified position, or the next byte position
past the end of the previous data field

Specified length, or the length
of the column in the table definition.
For GRAPHIC EXTERNAL (EBCDIC only),
shift-out and shift-in characters are inserted
before and after the data.

Default position of the next field

Figure 99. Layout of a fixed-length field (NOT NULL)

Data field

Length

Specified position, or the next byte position
past the end of the previous data field

Specified length, or the length
of the column in the table definition.
For GRAPHIC EXTERNAL (EBCDIC only),
shift-out and shift-in characters are inserted
before and after the data.

Default position of the next field

Null indicator byte

Figure 100. Layout of a nullable fixed-length field

Data field

Maximum
length

Specified position, or the next byte position
past the end of the previous data field

Specified length, or the length
of the column in the table definition

Default position of the next field

Length field, which contains the actual data length.
The size of the length field is 4 bytes for LOBs, or
2 bytes for other data types.

Length Actual length, up to maximum length

Figure 101. Layout of a varying-length field (NOT NULL) with the NOPAD option

Chapter 32. UNLOAD 855

For UNLOAD with the NOPAD option, the layout of a varying-length field that
can be null is depicted in the following figure. The length field begins at the
specified position or at the next byte position past the end of the previous data
field.

For UNLOAD without the NOPAD option, the layout of a varying-length field that
can be null is depicted in the following figure. The length field begins at the
specified position or at the next byte position past the end of the previous data
field.

Data field

Maximum
length

Specified position, or the next byte position
past the end of the previous data field

Specified length, or the length
of the column in the table definition

Default position of the next field

Length field, which contains the actual data length.
The size of the length field is 4 bytes for LOBs, or
2 bytes for other data types.

Length Actual length, up to maximum length

Pad

Figure 102. Layout of a varying-length field (NOT NULL) without the NOPAD option

Data field

Maximum
length

Specified position, or the next byte position
past the end of the previous data field

Specified length, or the length
of the column in the table definition

Default position of the next field

Length field, which contains the actual data length.
The size of the length field is 4 bytes for LOBs, or
2 bytes for other data types.

Length Actual length, up to maximum length

Null indicator byte

Figure 103. Layout of a nullable varying-length field with the NOPAD option

856 Utility Guide and Reference

Output for special values Infinity, sNaN, or NaN
When you run UNLOAD against a DECFLOAT column that contains the special
values Infinity, sNaN, or NaN, the output is in uppercase.

Infinity, sNaN, and NaN are unloaded as INFINITY, SNAN, and NAN,
respectively.

Unloading delimited files
You can use the DELIMITED option to specify that UNLOAD is to produce an
output file in delimited format. All fields in the output data set are either in
character string or numeric external format. Each column is separated from the
next by a column delimiter, and character strings are marked by character string
delimiters.

Recommendation: If a delimited file is to be transferred to or from a platform
other than z/OS or between DB2 for z/OS systems that use different EBCDIC or
ASCII CCSIDs, use Unicode as the encoding scheme for the delimited file. Using
Unicode avoids possible CCSID translation problems.

You are responsible for ensuring that the chosen delimiters are not part of the data
in the file. If the delimiters are part of the file's data, unexpected errors can occur.

Restrictions: The following general restrictions apply to the use of delimiters:
v You cannot specify the same character for more than one type of delimiter

(COLDEL, CHARDEL, and DECPT).
v You can specify a character constant for a delimiter if the utility control

statement is coded in the same encoding scheme as the output file. For example,
the utility control statement is coded in Unicode and the output data is also
coded in Unicode.

v Use the hex representation for non-default delimiters if the utility control
statement is coded in a different encoding scheme than the output file. For
example, the utility control statement is coded in Unicode and the output file is

Data field

Maximum
length

Specified position, or the next byte position
past the end of the previous data field

Specified length, or the length
of the column in the table definition

Default position of the next field

Length field, which contains the actual data length.
The size of the length field is 4 bytes for LOBs, or
2 bytes for other data types.

Length Actual length, up to maximum length

Pad

Null indicator byte

Figure 104. Layout of a nullable varying-length field without the NOPAD option

Chapter 32. UNLOAD 857

coded in EBCDIC. In this case, if you do not use the hex representation for the
non-default delimiters, the results can be unpredictable.

v You cannot specify HEADER OBID and ROWID for output fields in delimited
output format. Because a header is not allowed, output must be from a single
table.

v When you specify the DELIMITED option, the utility ignores the POSITION
keyword. The utility overrides field data type specifications according to the
specifications of the delimited format. (For example, length values for CHAR,
VARCHAR, GRAPHIC, VARGRAPHIC, CLOB, DBCLOB, and BLOB data are the
delimited lengths of each field in the output data set, and the utility unloads all
numeric types in external format.)

v You cannot specify a binary 0 (zero) for any delimiter.
v No null byte is present for a delimited output file. A null value is indicated by

the absence of a cell value where one would normally occur. For example, two
successive column delimiters or a missing column at the end of a record indicate
a null value.

v You cannot use the default decimal point as a character string delimiter
(CHARDEL) or a column string delimiter (COLDEL).

v Shift-in and shift-out characters cannot be specified as EBCDIC MBCS delimiters.
v In the DBCS environment, the pipe character (|) is not supported.
v If the output is coded in ASCII or Unicode, you cannot specify any of the

following values for any delimiter: X'0A', X'0D', X'2E'.
v If the output is coded in EBCDIC, you cannot specify any of the following

values for any delimiter: X'15', X'0D', X'25'.
v If the output is coded in EBCDIC DBCS or MBCS, you cannot specify any of the

following values for character string delimiters: X'0D', X'15', X'25', X'4B'.

The following table lists by encoding scheme the default hex values for the
delimiter characters.

Table 124. Default delimiter values for different encoding schemes

Character EBCDIC SBCS
EBCDIC
DBCS/MBCS

ASCII/Unicode
SBCS

ASCII/Unicode
MBCS

Character string
delimiter

X'7F' X'7F' X'22' X'22'

Decimal point
character

X'4B' X'4B' X'2E' X'2E'

Column
delimiter

X'6B' X'6B' X'2C' X'2C'

In most EBCDIC code pages, the hex values in the previous table represent a
double quotation mark(") for the character string delimiter, a period(.) for the
decimal point character, and a comma(,) for the column delimiter.

The following table lists by encoding scheme the maximum allowable hex values
for any delimiter character.

Table 125. Maximum delimiter values for different encoding schemes

Encoding scheme Maximum allowable value

EBCDIC SBCS None

EBCDIC DBCS/MBCS X'3F'

858 Utility Guide and Reference

Table 125. Maximum delimiter values for different encoding schemes (continued)

Encoding scheme Maximum allowable value

ASCII/Unicode SBCS None

ASCII/Unicode MBCS X'7F'

The following table identifies the acceptable data type forms for the delimited file
format that the LOAD and UNLOAD utilities use.

Table 126. Acceptable data type forms for delimited files

Data type
Acceptable form for loading a
delimited file

Form that is created by unloading a
delimited file

CHAR, VARCHAR A delimited or non-delimited
character string

Character data that is enclosed by
character delimiters. For VARCHAR,
length bytes do not precede the data
in the string.

GRAPHIC (any type) A delimited or non-delimited
character stream

Data that is unloaded as a delimited
character string. For VARGRAPHIC,
length bytes do not precede the data
in the string.

INTEGER (any type) A stream of characters that represents
a number in EXTERNAL format

Numeric data in external format.

Decimal (any type) A character stream that represents a
number in EXTERNAL format

A string of characters that represents
a number.

FLOAT Representation of a number in the
range -7.2E + 75 to 7.2E + 75in
EXTERNAL format

A string of characters that represents
a number in floating-point notation.

BLOB, CLOB A delimited or non-delimited
character string

Character data that is enclosed by
character delimiters. Length bytes do
not precede the data in the string.

DBCLOB A delimited or non-delimited
character string

Character data that is enclosed by
character delimiters. Length bytes do
not precede the data in the string.

DATE A delimited or non-delimited
character string that contains a date
value in EXTERNAL format

A string of characters that represents
a date.

TIME A delimited or non-delimited
character string that contains a time
value in EXTERNAL format

A string of characters that represents
a time.

TIMESTAMP A delimited or non-delimited
character string that contains a
timestamp value in EXTERNAL
format

A string of characters that represents
a timestamp.

XML A delimited or non-delimited XML
character string

A string of characters that represents
an XML document.

Chapter 32. UNLOAD 859

Related concepts:
“Loading delimited files” on page 304
Related reference:
Appendix H, “Delimited file format,” on page 1133

Specifying TRUNCATE and STRIP options for output data
You can unload certain types of data into output fields that are shorter than the
length of the output data. This data truncation occurs only when you explicitly
specify the TRUNCATE option. Any CCSID conversion is applied first, and then
truncation is applied to encoded data for output.

For bit strings, truncation occurs at a byte boundary. For character type data,
truncation occurs at a character boundary (a multi-byte character is not split). If a
mixed-character type data is truncated in an output field of fixed size, the
truncated string can be shorter than the specified field size. In this case, blanks in
the output CCSID are padded to the right. If the output data is in EBCDIC for a
mixed-character type field, truncation preserves the SO (shift-out) and the SI
(shift-in) characters around a DBCS substring.

The TRUNCATE option of the UNLOAD utility truncates string data, and it has a
different purpose than the SQL TRUNCATE scalar function.

For VARCHAR and VARGRAPHIC, and VARBINARY output fields, in addition to
the TRUNCATE option, the STRIP option is provided to remove the specified
characters, or the leading blanks, the trailing blanks, or both. The strip operation is
applied on the encoded data for output. If both the TRUNCATE and STRIP options
are specified, the truncation operation is applied first, and then strip is applied. For
example, the output for an UNLOAD job in which you specify both the
TRUNCATE and STRIP options for a VARCHAR(5) output field is shown in the
following table. In this table, an underscore represents a character that is to be
stripped. In all cases, the source string is first truncated to ’_ABC_’ (a five-character
string to fit in the VARCHAR(5) field), and then the strip operation is applied.

Table 127. Results of specifying both the TRUNCATE and STRIP options for UNLOAD

Specified STRIP
option Source string Truncated string Output string

Specified
length

STRIP BOTH ’_ABC_DEF’ ’_ABC_’ ’ABC’ 3

STRIP LEADING ’_ABC_DEF’ ’_ABC_’ ’ABC_’ 4

STRIP TRAILING ’_ABC_DEF’ ’_ABC_’ ’_ABC’ 4

The following control statement shows an example of using the STRIP option.

In the example, STRIP TRAILING ’_’ is included in the field specification for the
TEXT column. The TEXT column contains variable character data with a maximum
length of 8 characters, as specified by VARCHAR(8). When the UNLOAD utility
unloads the table, all occurrences of the '_' (underscore) character at the end of the
data from the TEXT column are stripped from the data.

UNLOAD TABLESPACE DB.TS
PUNCHDDN SYSPUNCH
UNLDDN UNLDD2
FROM TABLE TB

(EMPNO POSITION(*) CHAR(6),

860 Utility Guide and Reference

TEXT POSITION(*) VARCHAR(8) STRIP TRAILING ’_’,
DEPTNO POSITION(*) CLOB(4),
ROWID POSITION(*) ROWID,
LAST_UPDATE POSITION(*) TIME EXTERNAL)

The following table further illustrates the STRIP option.

Table 128. Example of the results of specifying the STRIP option for UNLOAD

Original data STRIP specification Data after stripping Final length

’_ABC_’ STRIP LEADING ’_’ ’ABC_’ 4

’_ABC_’ STRIP TRAILING ’_’ ’_ABC’ 4

’_ABC_’ STRIP BOTH ’_’ ’ABC’ 3

Generating LOAD statements
To enable reloading the unloaded data into either the original table or different
tables, a LOAD utility statement is generated and written to the SYSPUNCH DD
name or to the DD name that is specified by PUNCHDDN.

About this task

The generated LOAD statement includes WHEN and INTO TABLE specifications
that identify the table where the rows are to be reloaded, unless the HEADER
NONE option was specified in the UNLOAD control statement. You need to edit
the generated LOAD statement if you intend to load the UNLOAD output data
into different tables than the original ones.

If multiple table spaces are to be unloaded and you want UNLOAD to generate
LOAD statements, you must specify a physically distinct data set for each table
space to PUNCHDDN by using a template that contains the table space as a
variable (&TS.).

If PUNCHDDN is not specified and the SYSPUNCH DD name does not exist, the
LOAD statement is not generated.

Unloading compressed data
You can unload compressed rows from an image copy data set only when the
dictionary for decompression has been retrieved. If a row is compressed and the
dictionary pages have not been read when the row is encountered, the UNLOAD
utility ignores this row, issues a warning message, and increments the error count.

About this task

If the error count reaches the limit that is specified by the MAXERR option,
UNLOAD terminates with an error message.

If the image copy data set is an incremental copy or a copy of pieces that does not
contain a dictionary, the FROMCOPYDDN option can be used for a DD name to
concatenate the data set with the corresponding full image copy that contains the
dictionary. If SYSTEMPAGES YES is used, a dictionary will always be available in
the incremental copies or pieces.

Chapter 32. UNLOAD 861

Field specification errors
If the UNLOAD utility detects any inconsistency relating to the field specification,
DB2 issues an error message. For example, the UNLOAD utility might detect a
data conversion problem or an encoding problem that occurs during the unloading
of a row.

If the MAXERR option specifies a number that is greater than zero, the UNLOAD
utility continues processing until the total number of the records in error reaches
the specified MAXERR number. DB2 issues one message for each record in error
and does not unload the record.

Termination or restart of UNLOAD
You can terminate and restart an UNLOAD utility job.

If you terminate UNLOAD by using the TERM UTILITY command during the
unload phase, the output records are not erased. The output data set remains
incomplete until you either delete it or restart the utility job.

When the source is one or more table spaces, you can restart the UNLOAD job at
the partition level or at the table space level when data is unloaded from multiple
table spaces by using the LIST option. When you restart a terminated UNLOAD
job, processing begins with the table spaces or partitions that had not yet been
completed. For a table space or partitions that were being processed at termination,
UNLOAD resets the output data sets and processes those table space or partitions
again.

When the source is one or more image copy data sets (when FROMCOPY or
FROMCOPYDDN is specified), UNLOAD always starts processing from the
beginning.
Related concepts:
“Restart of an online utility” on page 39

Sample UNLOAD control statements
Use the sample control statements as models for developing your own UNLOAD
control statements.

Example 1: Unloading all columns of specified rows

The control statement specifies that all columns of rows that meet the following
criteria are to be unloaded from table DSN8810.EMP in table space
DSN8D11A.DSN8S71E:
v The value in the WORKDEPT column is D11.
v The value in the SALARY column is greater than 25 000.

862 Utility Guide and Reference

Example 2: Unloading specific columns by using a field
specification list

The following control statement specifies that columns EMPNO, LASTNAME, and
SALARY are to be unloaded, in that order, for all rows that meet the specified
conditions. These conditions are specified in the WHEN clause and are the same as
those conditions in example 1. The SALARY column is to be unloaded as type
DECIMAL EXTERNAL. The NOPAD option indicates that variable-length fields are
to be unloaded without any padding.
UNLOAD TABLESPACE DSN8D11A.DSN8S81E NOPAD

FROM TABLE DSN8B10.EMP
(EMPNO, LASTNAME, SALARY DECIMAL EXTERNAL)

WHEN (WORKDEPT = ’D11’ AND SALARY > 25000)

The output from this example might look similar to the following output:
000060@@STERN# 32250.00
000150@@ADAMSON# 25280.00
000200@@BROWN# 27740.00
000220@@LUTZ# 29840.00
200220@@JOHN# 29840.00

In this output:
v '@@' before the last name represents the 2-byte binary field that contains the

length of the VARCHAR field LASTNAME (for example, X'0005' for STERN).
v '#' represents the NULL indicator byte for the nullable SALARY field.
v Because the SALARY column is declared as DECIMAL (9,2) on the table, the

default output length of the SALARY field is 11 (9 digits + sign + decimal point),
not including the NULL indicator byte.

v LASTNAME is unloaded as a variable-length field because the NOPAD option is
specified.

Example 3: Unloading data from an image copy

The FROMCOPY option in the following control statement specifies that data is to
be unloaded from a single image copy data set,
JUKWU111.FCOPY1.STEP1.FCOPY1.

PUNCHDDN SYSPUNCH specifies that the UNLOAD utility is to generate LOAD
utility control statements and write them to the data set that is defined by the
SYSPUNCH DD statement; SYSPUNCH is the default. UNLDDN SYSREC specifies
that the data is to be unloaded to the data set that is defined by the SYSREC DD
statement; SYSREC is the default.

//STEP1 EXEC DSNUPROC,UID=’SMPLUNLD’,UTPROC=’’,SYSTEM=’DSN’
//SYSREC DD DSN=USERID.SMPLUNLD.SYSREC,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(2,1))
//SYSPUNCH DD DSN=USERID.SMPLUNLD.SYSPUNCH,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

UNLOAD TABLESPACE DSN8D11A.DSN8S81E
FROM TABLE DSN8B10.EMP
WHEN (WORKDEPT = ’D11’ AND SALARY > 25000)

Figure 105. Example of unloading all columns of specified rows

Chapter 32. UNLOAD 863

UNLOAD TABLESPACE DBKW1101.TPKW1101
FROMCOPY JUKWU111.FCOPY1.STEP1.FCOPY1
PUNCHDDN SYSPUNCH UNLDDN SYSREC

Example 4: Unloading a sample of rows and specifying a header.

The following control statement specifies that a sample of rows is to be unloaded
from table ADMF001.TBKW1605. Unloading a sample of rows is useful for
building a test system. The SAMPLE option indicates that 75% of the rows are to
be sampled. The HEADER option indicates that the string 'sample' is to be used as
the header field in the output file. The PUNCHDDN option indicates that
UNLOAD is to generate LOAD utility control statements and write them to the
SYSPUNCH data set, which is the default. UNLOAD specifies the header field as a
criterion in the WHEN clause of these LOAD statements.
UNLOAD TABLESPACE DBKW1603.TPKW1603

PUNCHDDN SYSPUNCH UNLDDN SYSREC
FROM TABLE ADMF001.TBKW1605

HEADER CONST ’sample’
SAMPLE 75

Example 5: Unloading data from two tables in a segmented table
space

The following control statement specifies that data from table
ADMF001.TBKW1504 and table ADMF001.TBKW1505 is to be unloaded from the
segmented table space DBKW1502.TSKW1502. The PUNCHDDN option indicates
that UNLOAD is to generate LOAD utility control statements and write them to
the SYSPUNCH data set, which is the default. The UNLDDN option specifies that
the data is to be unloaded to the data set that is defined by the SYSREC DD
statement, which is also the default.
UNLOAD TABLESPACE DBKW1502.TSKW1502

PUNCHDDN SYSPUNCH UNLDDN SYSREC
FROM TABLE ADMF001.TBKW1504
FROM TABLE ADMF001.TBKW1505

Example 6: Unloading data in parallel from a partitioned table
space

The UNLOAD control statement specifies that data from table TCRT.TTBL is to be
unloaded to data sets that are defined by the UNLDDS template. These data sets
are to be dynamically allocated and named according to the naming convention
that is defined by the DSN option of the TEMPLATE utility control statement. This
naming convention indicates that a data set is to be allocated for each table space
partition.

Assume that table space TDB1.TSP1, which contains table TCRT.TTBL, has three
partitions. Because the table space is partitioned and each partition is associated
with an output data set that is defined by the UNLDDS template, the UNLOAD
job runs in parallel in a multi-processor environment. The number of parallel tasks
are determined by the number of available processors.

864 Utility Guide and Reference

Assume that the user ID is USERID. This UNLOAD job creates the following three
data sets to store the unloaded data:
v USERID.SMPLUNLD.TSP1.P00001 ... contains rows from partition 1.
v USERID.SMPLUNLD.TSP1.P00002 ... contains rows from partition 2.
v USERID.SMPLUNLD.TSP1.P00003 ... contains rows from partition 3.

Example 7: Using a LISTDEF utility statement to specify
partitions to unload

The UNLOAD control statement specifies that data that is included in the
UNLDLIST list is to be unloaded. UNLDLIST is defined in the LISTDEF utility
control statement and contains partitions one and three of table space TDB1.TSP1.
The LIST option of the UNLOAD statement specifies that the UNLOAD utility is
to use this list.

The data is to be unloaded to data sets that are defined by the UNLDDS template.

Assume that the user ID is USERID. This UNLOAD job creates the following two
data sets to store the unloaded data:
v USERID.SMPLUNLD.TSP1.P00001 ... contains rows from partition 1.
v USERID.SMPLUNLD.TSP1.P00003 ... contains rows from partition 3.

Example 8: Unloading multiple table spaces by using LISTDEF

The UNLOAD control statement specifies that data from multiple table spaces is to
be unloaded. These table spaces are specified in the LISTDEF utility control
statement. Assume that the database TDB1 contains two table spaces that can be
expressed by the pattern-matching string 'TSP*', (for example, TSP1 and TSP2).
These table spaces are both included in the list named UNLDLIST, which is

//STEP1 EXEC DSNUPROC,UID=’SMPLUNLD’,UTPROC=’’,SYSTEM=’DSN’
//SYSPUNCH DD DSN=USERID.SMPLUNLD.SYSPUNCH,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

TEMPLATE UNLDDS DSN &USERID..SMPLUNLD.&TS..P&PART.
UNIT SYSDA DISP (NEW,CATLG,CATLG) SPACE (2,1) CYL

UNLOAD TABLESPACE TDB1.TSP1
UNLDDN UNLDDS
FROM TABLE TCRT.TTBL

Figure 106. Example of unloading data in parallel from a partitioned table space

//SAMPJOB JOB ...
//STEP1 EXEC DSNUPROC,UID=’SMPLUNLD’,UTPROC=’’,SYSTEM=’DSN’
//SYSPUNCH DD DSN=USERID.SMPLUNLD.SYSPUNCH,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

LISTDEF UNLDLIST
INCLUDE TABLESPACE TDB1.TSP1 PARTLEVEL(1)
INCLUDE TABLESPACE TDB1.TSP1 PARTLEVEL(3)

TEMPLATE UNLDDS DSN &USERID..SMPLUNLD.&TS..P&PART.
UNIT SYSDA DISP (NEW,CATLG,CATLG) SPACE (2,1) CYL

UNLOAD LIST UNLDLIST -- LIST name
UNLDDN UNLDDS -- TEMPLATE name

Figure 107. Example of using a LISTDEF utility statement to specify partitions to unload

Chapter 32. UNLOAD 865

defined in the LISTDEF statement. The LIST option of the UNLOAD statement
specifies that the UNLOAD utility is to use this list.

The UNLDDN option specifies that the data is to be unloaded to data sets that are
defined by the UNLDDS template. The PUNCHDDN option specifies that
UNLOAD is to generate LOAD utility control statements and write them to the
data sets that are defined by the PUNCHDS template.

Assume that the user ID is USERID. This UNLOAD job creates the following two
data sets to store the unloaded data:
v USERID.SMPLUNLD.TSP1 ... contains rows from table space TDB1.TSP1.
v USERID.SMPLUNLD.TSP2 ... contains rows from table space TDB1.TSP2.

Example 9: Unloading data into a delimited file.

The control statement specifies that data from the specified columns (RECID,
CHAR7SBCS, CHAR7BIT, VCHAR20, VCHAR20SBCS, VCHAR20BIT) in table
TBQB0501 is to be unloaded into a delimited file. This output format is indicated
by the DELIMITED option. The POSITION(*) option indicates that each field in the
output file is to start at the first byte after the last position of the previous field.

The column delimiter is specified by the COLDEL option as a semicolon (;), the
character string delimiter is specified by the CHARDEL option as a pound sign (#),
and the decimal point character is specified by the DECPT option as an
exclamation point (!).

PUNCHDDN SYSPUNCH specifies that UNLOAD is to generate LOAD utility
control statements and store them in the SYSPUNCH data set, which is the default.
UNLDDN SYSREC indicates that the data is to be unloaded to the SYSREC data
set, which is the default.

The EBCDIC option indicates that all output character data is to be in EBCDIC.

//SAMPJOB JOB ...
//STEP1 EXEC DSNUPROC,UID=’SMPLUNLD’,UTPROC=’’,SYSTEM=’DSN’
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

LISTDEF UNLDLIST
INCLUDE TABLESPACE TDB1.TSP*

TEMPLATE UNLDDS DSN &USERID..SMPLUNLD.&TS.
UNIT SYSDA DISP (NEW,CATLG,CATLG) SPACE (2,1) CYL

TEMPLATE PUNCHDS DSN &USERID..SMPLPUNC.&TS.
UNIT SYSDA DISP (NEW,CATLG,CATLG) SPACE (1,1) CYL

UNLOAD LIST UNLDLIST
PUNCHDDN PUNCHDS -- TEMPLATE name
UNLDDN UNLDDS -- TEMPLATE name

Figure 108. Example of unloading multiple table spaces

866 Utility Guide and Reference

Example 10: Converting character data

For this example, assume that table DSN8810.DEMO_UNICODE contains character
data in Unicode. The UNLOAD control statement specifies that the utility is to
unload the data in this table as EBCDIC data.

Example 11: Unloading LOB data to a file

The UNLOAD control statement specifies that the utility is to unload data from
table DSN8910.EMP_PHOTO_RESUME into the data set that is identified by the
SYSREC DD statement. Data in the EMPNO field is six bytes of character data, as
indicated by the CHAR(6) option, and is unloaded directly into the SYSREC data
set. Data in the RESUME column is CLOB data as indicated by the CLOBF option.
This CLOB data is to be unloaded to the files identified by the LOBFRV template,
which is defined in the preceding TEMPLATE statement. If these files do not
already exist, DB2 creates them. The names of these files are stored in the SYSREC
data set. The length of the file name to be stored in this data set can be up to 255
bytes as specified by the VARCHAR option.

//*
//STEP3 EXEC DSNUPROC,UID=’JUQBU105.UNLD1’,
// UTPROC=’’,
// SYSTEM=’SSTR’
//UTPRINT DD SYSOUT=*
//SYSREC DD DSN=JUQBU105.UNLD1.STEP3.TBQB0501,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSPUNCH DD DSN=JUQBU105.UNLD1.STEP3.SYSPUNCH
// DISP=(MOD,CATLG,CATLG)
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD*

UNLOAD TABLESPACE DBQB0501.TSQB0501
DELIMITED CHARDEL ’#’ COLDEL ’;’ DECPT ’!’
PUNCHDDN SYSPUNCH
UNLDDN SYSREC EBCDIC
FROM TABLE ADMF001.TBQB0501
(RECID POSITION(*) CHAR,

CHAR7SBCS POSITION(*) CHAR,
CHAR7SBIT POSITION(*) CHAR(7),
VCHAR20 POSITION(*) VARCHAR,
VCHAR20SBCS POSITION(*) VARCHAR,
VCHAR20BIT POSITION(*) VARCHAR)

/*

Figure 109. Example of unloading data into a delimited file.

UNLOAD
EBCDIC
TABLESPACE DSN8D81E.DSN8S81U
FROM TABLE DSN8810.DEMO_UNICODE

Figure 110. Example of unloading Unicode table data into EBCDIC

TEMPLATE LOBFRV DSN ’UNLDTEST.&DB..&TS..RESUME’
DSNTYPE(PDS) UNIT(SYSDA)

UNLOAD DATA
FROM TABLE DSN8910.EMP_PHOTO_RESUME
(EMPNO CHAR(6),
RESUME VARCHAR(255) CLOBF LOBFRV)

SHRLEVEL CHANGE

Figure 111. Example of unloading LOB data into a file

Chapter 32. UNLOAD 867

Example 12: Unloading data from clone tables

The UNLOAD control statement specifies that the utility is to unload data from
only clone tables in the specified table spaces. The PUNCHDDN option specifies
that the SYSPUNCH data set is to receive the LOAD utility control statements that
the UNLOAD utility generates.
UNLOAD TABLESPACE DBKQRE01.TPKQRE01

FROM TABLE ADMF001.TBKQRE01_CLONE
PUNCHDDN SYSPUNCH UNLDDN SYSREC
CLONE

868 Utility Guide and Reference

Part 3. DB2 stand-alone utilities

The stand-alone utilities run as batch jobs that are independent of DB2. The only
way to run these utilities is to use JCL.

© Copyright IBM Corp. 1983, 2013 869

870 Utility Guide and Reference

Chapter 33. Invoking stand-alone utilities

You can create utility control statements and EXEC PARM parameters for invoking
the stand-alone utilities.

Utility control statements and parameters define the function that a utility job
performs. Some stand-alone utilities read the control statements from an input
stream, and others obtain the function definitions from JCL EXEC PARM
parameters.

Stand-alone utility control statements
You can create the utility control statements with the ISPF/PDF edit function.

After you create the control statements, save them in a sequential or partitioned
data set.

The following utilities read control statements from the input stream file of the
specified DD name:

Utility DD name

DSNJU003 (change log inventory)
SYSIN

DSNJU004 (print log map)
SYSIN (optional)

DSN1LOGP
SYSIN

DSN1SDMP
SDMPIN

Utility control statements are read from the DD name input stream. The statements
in that stream must conform to the following rules:
v The logical record length (LRECL) must be 80 characters. Columns 73 through

80 are ignored.
v The records are concatenated into a single stream before they are parsed. No

concatenation character is necessary.
v The SYSIN stream can contain multiple utility control statements.

Specifying options by using the JCL EXEC PARM parameter
Use the EXEC PARM parameter to specify function options for the following
stand-alone utilities: DSN1COMP, DSN1COPY, and DSN1PRNT.

Ensure that the parameters that you specify obey the following JCL EXEC PARM
parameter specification rules:
v Enclose multiple subparameters in single quotation marks or parentheses and

separate the subparameters with commas, as in the following example:
//name EXEC PARM=’ABC,...,XYZ’

v Do not let the total length exceed 100 characters.

© Copyright IBM Corp. 1983, 2013 871

v Do not use blanks within the parameter specification.

To specify the parameter across multiple lines:
1. Enclose it in parentheses.
2. End the first line with a subparameter, followed by a comma.
3. Continue the subparameters on the next line, beginning before column 17.

The following example shows a parameter that spans multiple lines:
//stepname EXEC PARM=(ABC,...LMN,

OPQ,...,XYZ)

Effects of invoking stand-alone utilities on tables that have multilevel
security with row-level granularity

If you use RACF access control with multilevel security, you do not need any
additional authorizations to run stand-alone utilities. When processing tables that
have multilevel security with row-level granularity, stand-alone utilities ignore
row-level granularity. They check only for authorization to operate on the table
space; they do not check row-level authorizations.
Related concepts:

Multilevel security (Managing Security)

872 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_mls.htm#db2z_mls

Chapter 34. DSNJCNVB

The DSNJCNVB stand-alone conversion utility converts the bootstrap data set
(BSDS) so that it can support up to 10,000 archive log volumes and 93 active log
data sets per log copy.

Running DSNJCNVB is mandatory when migrating from Version 8. DB2 11 for
z/OS will not start if the BSDS is in the old format. DSNJCNVB can be run any
time after a Version 8 system has migrated to new function mode. Prior to
converting the BSDS to the new format, it can manage only 1 000 archive log
volumes and 31 active log data sets per log copy. Converting the BSDS is optional
up until the migration to DB2 11 for z/OS. DB2 must be stopped when running
DSNJCNVB..

Environment

Execute the DSNJCNVB utility as a batch job only when DB2 is not running.

Your DB2 subsystem must be in new-function mode to convert the BSDS.

Authorization required

The authorization ID of the DSNJCNVB job must have the requisite RACF
authorization.

Prerequisite actions

If you have migrated to a new version of DB2, you need to create a larger BSDS
before converting it. For a new installation, you do not need to create a larger
BSDS. DB2 provides a larger BSDS definition in installation job DSNTIJIN;
however, if you want to convert the BSDS, you must still run DSNJCNVB.

Required and optional data sets

DSNJCNVB recognizes DD statements with the following DD names:

SYSUT1
Specifies the BSDS copy 1 data set that DSNJCNVB is to use as input. This
statement is required.

SYSUT2
Specifies the BSDS copy 2 data set that DSNJCNVB is to use as input. This
statement is optional.

Specify this statement if you are using dual BSDSs and you want to convert
both with a single execution of DSNJCNVB. You can run DSNJCNVB
separately for each copy.

SYSPRINT
Specifies a data set or print spool class for print output. This statement is
required. The logical record length (LRECL) is 125.

© Copyright IBM Corp. 1983, 2013 873

Running DSNJCNVB

Use the following EXEC statement to execute this utility:
//EXEC PGM=DSNJCNVB

Sample DSNJCNVB control statement

The following statements specify that DSNJCNVB is to convert the BSDS so that it
can manage up to 10 000 archive log volumes and 93 active log data sets per log
copy. The SYSUT1 and SYSUT2 statements identify the bootstrap data sets. Only
the SYSUT1 statement is required. The SYSUT2 statement is optional. Specify
SYSUT2 only if you are using dual BSDSs and you want to convert both with a
single execution of DSNJCNVB.
//DSNJCNVB EXEC PGM=DSNJCNVB
//STEPLIB DD DISP=SHR,DSN=DSNC810.SDSNEXIT
// DD DISP=SHR,DSN=DSNC810.SDSNLOAD
//SYSUT1 DD DISP=OLD,DSN=DSNC810.BSDS01
//SYSUT2 DD DISP=OLD,DSN=DSNC810.BSDS02
//SYSPRINT DD SYSOUT=*

DSNJCNVB output

The following example shows sample DSNJCNVB output:
CONVERSION OF BSDS DATA SET - COPY 1, DSN=DSNC810.BSDS01

SYSTEM TIMESTAMP - DATE=2003.199 LTIME= 9:40:58.74
UTILITY TIMESTAMP - DATE=2003.216 LTIME=14:26:02.21
PREVIOUS HIKEY - 04000053
NEW HIKEY - 040002F0
RECORDS ADDED - 669

DSNJ260I DSNJCNVB BSDS CONVERSION FOR DDNAME=SYSUT1 COMPLETED SUCCESSFULLY
DSNJ200I DSNJCNVB CONVERT BSDS UTILITY PROCESSING COMPLETED SUCCESSFULLY

Related tasks:

Add a second BSDS (DB2 Installation and Migration)

874 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_add2ndbsds.htm#db2z_add2ndbsds

Chapter 35. DSNJCNVT

The DSNJCNVT stand-alone conversion utility converts the bootstrap data set
(BSDS) records that are necessary to support 10-byte RBA and LRSN fields.

Running DSNJCNVT is optional and can be done any time after migrating to
Version 11 new-function mode. Conversion is required during installation if the
RBA or LRSN is approaching the end of the range. For a data-sharing installation,
if the LRSN is approaching the end of the range, the BSDS of each member can be
converted one at a time. If the RBA or LRSN is approaching the end of the range,
the database objects also need to be converted; otherwise, they become read-only
when the end of the range is reached.

Environment

Run the DSNJCNVT utility as a batch job only when DB2 is not running.

Your DB2 subsystem must be in new-function mode to convert the BSDS.

Authorization required

The authorization ID of the DSNJCNVT job must have the required RACF
authorization and read/write access to the new BSDSs and read access to the old
BSDSs.

Required and optional data sets

DSNJCNVT recognizes DD statements with the following DD names:

SYSUT1
Specifies the old BSDS that is to be converted. This statement is required.

SYSUT2
Specifies the second copy of the old BSDS that is to be converted. This
statement is optional.

SYSUT3
Specifies the new, converted BSDS. This statement is required.

SYSUT4
Specifies the second copy of the converted BSDS. This statement is required if
the installation uses dual BSDSs; otherwise, it is optional.

SYSPRINT
Contains the output messages from the conversion utility. This statement is
required.

Running DSNJCNVT

Use the following EXEC statement to run this utility:
//EXEC PGM=DSNJCNVT

Considerations for running DSNJCNVT
v The DB2 subsystem that owns the BSDSs that are to be converted must be

stopped. DSNJCNVT is a stand-alone utility.

© Copyright IBM Corp. 1983, 2013 875

|

|

|
|

|
|
|
|
|
|
|

|

|

|

|

|
|
|

|

|

|
|

|
|
|

|
|

|
|
|

|
|
|

|

|

|

|

|
|

v In a data-sharing environment, allow DB2 utilities that read the logs of peer
members to finish before converting the BSDSs.

v In a data-sharing environment, stop data replication products before the
conversion to ensure that the old BSDSs can be successfully renamed and
replaced by the converted BSDSs. The recommended procedure is to stop the
replication product first and then stop the DB2 system that is to have its BSDSs
converted. This procedure allows sharing systems to deallocate the BSDSs when
the state of the member changes to inactive.

v The RACF user ID that is running DSNJCNVT must have read/write access to
the new BSDSs and read access to the old BSDSs.

v The DB2 subsystem that owns the BSDS that is to be converted must start after
the data sharing group was migrated to Version 11 new-function mode.

v Conversion to the new BSDS format is required to write new format log records
and remove the 6-byte RBA and LRSN limits.

Sample DSNJCNVT control statement

The following statements specify that DSNJCNVT is to convert the BSDS that is
needed to support 10-byte RBA and LRSN fields.
//CONVERT EXEC PGM=DSNJCNVT,REGION=64M
//SYSUT1 DD DSN=DB2A.OLD.BSDS01,DISP=SHR
//SYSUT2 DD DSN=DB2A.OLD.BSDS02,DISP=SHR
//SYSUT3 DD DSN=DB2A.BSDS01,DISP=OLD
//SYSUT4 DD DSN=DB2A.BSDS02,DISP=OLD
//SYSPRINT DD SYSOUT=*

You can view another example of using DSNJCNVT in job DSNTIJCB in
prefix.SDSNSAMP.

DSNJCNVT output

The following example shows sample DSNJCNVT output:
CRCR convert started
DSNJ200I DSNJCNVT CONVERT UTILITY PROCESSING COMPLETED SUCCESSFULLY
FOR MEMBER ’xxxxxxxx’

876 Utility Guide and Reference

|
|

|
|
|
|
|
|

|
|

|
|

|
|

|

|
|

|
|
|
|
|
|

|
|

|

|

|
|
|

Chapter 36. DSNJLOGF (preformat active log)

When writing to an active log data set for the first time, DB2 must preformat a
VSAM control area before writing the log records. The DSNJLOGF stand-alone
utility avoids this delay by preformatting the active log data sets before bringing
them online to DB2.

The following EXEC statement is used to invoke DSNJLOGF:
//stepname EXEC PGM=DSNJLOGF

Environment

Run DSNJLOGF as a z/OS job.

Required and optional data sets

All SYSUTx DD statements are optional, but at least one must be specified.

DSNJLOGF recognizes DD statements with the following DD names.

SYSUT0
Defines the newly defined active log data set that is to be preformatted. The
data set must be an empty VSAM linear data set and less than four gigabytes
in size.

SYSUT1
Defines a newly defined active log data set that is to be preformatted. This
statement is optional.

SYSUT2
Defines a newly defined active log data set that is to be preformatted. This
statement is optional.

SYSUT3
Defines a newly defined active log data set that is to be preformatted. This
statement is optional.

SYSUT4
Defines a newly defined active log data set that is to be preformatted. This
statement is optional.

SYSUT5
Defines a newly defined active log data set that is to be preformatted. This
statement is optional.

SYSUT6
Defines a newly defined active log data set that is to be preformatted. This
statement is optional.

SYSUT7
Defines a newly defined active log data set that is to be preformatted. This
statement is optional.

SYSUT8
Defines a newly defined active log data set that is to be preformatted. This
statement is optional.

© Copyright IBM Corp. 1983, 2013 877

|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

SYSUT9
Defines a newly defined active log data set that is to be preformatted. This
statement is optional.

SYSPRINT
Defines the print spool class or data set for print output. The logical record
length (LRECL) is 132.

Sample DSNJLOGF control statement

The control statements in the following figure specify that DSNJLOGF is to
preformat the active log data sets that are identified by the DD statements.

DSNJLOGF output

The following sample shows the DSNJLOGF output for the second data set in the
previous sample control statement shown above.
DSNJ991I DSNJLOGF START OF LOG DATASET PREFORMAT FOR JOB LOGFRMT STEP1
DSNJ992I DSNJLOGF LOG DATA SET NAME = DSNC110.LOGCOPY1.DS01
DSNJ996I DSNJLOGF LOG PREFORMAT COMPLETED SUCCESSFULLY, 00015000

RECORDS FORMATTED

//MULTFMT EXEC PGM=DSNJLOGF,REGION=64M
//SYSPRINT DD SYSOUT=*
//SYSUT0 DD DSN=DSNTEMP.LOGCOPY1.DS00,DISP=SHR
//SYSUT1 DD DSN=DSNTEMP.LOGCOPY1.DS01,DISP=SHR
//SYSUT2 DD DSN=DSNTEMP.LOGCOPY1.DS02,DISP=SHR
//SYSUT3 DD DSN=DSNTEMP.LOGCOPY1.DS03,DISP=SHR
//SYSUT4 DD DSN=DSNTEMP.LOGCOPY1.DS04,DISP=SHR
//SYSUT5 DD DSN=DSNTEMP.LOGCOPY1.DS05,DISP=SHR
//SYSUT6 DD DSN=DSNTEMP.LOGCOPY1.DS06,DISP=SHR
//SYSUT7 DD DSN=DSNTEMP.LOGCOPY1.DS07,DISP=SHR
//SYSUT8 DD DSN=DSNTEMP.LOGCOPY1.DS08,DISP=SHR
//SYSUT9 DD DSN=DSNTEMP.LOGCOPY1.DS09,DISP=SHR

Figure 112. Sample DSNJLOGF control statement

878 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|

Chapter 37. DSNJU003 (change log inventory)

The DSNJU003 stand-alone utility changes the bootstrap data sets (BSDSs).

You can use the utility to:
v Add or delete active or archive log data sets
v Add or delete checkpoint records
v Create a conditional restart control record to control the next start of the DB2

subsystem
v Change the VSAM catalog name entry in the BSDS
v Modify the communication record in the BSDS
v Modify the value for the highest-written log RBA value (relative byte address

within the log) or the highest-offloaded RBA value
v Deactivate a member of a data sharing group
v Destroy a member from a data sharing group
v Reactivate a deactivated member of a data sharing group

Environment

Execute the change log inventory utility only as a batch job when DB2 is not
running. Changing a BSDS for a data-sharing member by using DSNJU003 might
cause a log read request from another data-sharing member to fail. The failure
occurs only if the second member tries to access the changed BSDS before the first
member is started.

Authorization required

The authorization ID of the DSNJU003 job must have the requisite RACF
authorization.

Required and optional data sets

DSNJU003 recognizes DD statements with the following DD names:

SYSUT1
Specifies and allocates the bootstrap data set. This statement is required.

SYSUT2
Specifies and allocates a second copy of the bootstrap data set. This statement
is required if you use dual BSDSs.

Dual BSDSs and DSNJU003: With each execution of DSNJU003, the BSDS
timestamp field is updated with the current system time. If you run DSNJU003
separately for each copy of a dual copy BSDS, the timestamp fields are not
synchronized, and DB2 fails at startup. If you change the contents of the BSDS
copy by running DSNJU003, DB2 issues error message DSNJ122I. Therefore, if
you use DSNJU003 to update dual copy BSDSs, update both BSDSs within a
single execution of DSNJU003.

SYSPRINT
Specifies a data set for print output. This statement is required. The logical
record length (LRECL) is 125.

© Copyright IBM Corp. 1983, 2013 879

SYSIN
Specifies the input data set for statements. This statement is required. The
logical record length (LRECL) is 80.

Running DSNJU003

Execute the utility with the following statement, which can be included only in a
batch job:
//EXEC PGM=DSNJU003

Syntax and options of the DSNJU003 control statement
The DSNJU003 utility control statement, with its multiple options, defines the
function that the utility job performs.

DSNJU003 uses multiple statements that you submit in separate jobs. The
statements are:
v NEWLOG
v DELETE
v CRESTART
v NEWCAT
v DDF
v CHECKPT
v HIGHRBA
v DELMBR
v RSTMBR

DSNJU003 (change log inventory) syntax diagram

NEWLOG statement

�� NEWLOG DSNAME=data-set-name new active log
new archive log STARTIME=startime,ENDTIME=endtime

��

new active log:

�� ,COPY1
,COPY2 ,STARTRBA=startrba,ENDRBA=endrba

��

new archive log:

880 Utility Guide and Reference

�� ,COPY1VOL=vol-id ,STARTRBA=startrba,ENDRBA=endrba,UNIT=unit-id
,COPY2VOL=vol-id

,CATALOG=NO

,CATALOG=YES
�

�
STRTLRSN=startlrsn,ENDLRSN=endlrsn

��

DELETE statement

�� DELETE DSNAME=data-set-name
,COPY1VOL=vol-id
,COPY2VOL=vol-id

CCSIDS

��

CRESTART statement

�� CRESTART CREATE create-spec
CANCEL

��

create-spec:

��
,STARTRBA=startrba ,ENDRBA=endrba

,ENDLRSN=endlrsn
,SYSPITR=log-truncation-point
,ENDTIME=log-truncation-timestamp
,SYSPITRT=log-truncation-timestamp

,CHKPTRBA=chkptrba
�

�
,FORWARD=YES ,BACKOUT=YES

,FORWARD=NO ,BACKOUT=NO
,CSRONLY

��

NEWCAT statement

�� NEWCAT VSAMCAT=catalog-name ��

Chapter 37. DSNJU003 (change log inventory) 881

DDF statement

�� DDF ip-spec
lu-spec
no-spec

��

ip-spec:

�� �

�

�

,

LOCATION=locname
PORT=port
RESPORT=resport
SECPORT=secport

,

ALIAS= alias-name
: alias-port
: alias-secport
: alias-port-:alias-secport

IPNAME=ipname
,

IPV4=IPV4-address
,GRPIPV4=group-ipv4-addr

IPV6=IPV6-address
,GRPIPV6=group-ipv6-addr

��

lu-spec:

�� �

�

,

LOCATION=locname
LUNAME=luname
PASSWORD=password
GENERIC=gluname
PORT=port
RESPORT=resport

,

ALIAS= alias-name
:alias-port

��

no-spec:

882 Utility Guide and Reference

�� NOPASSWD
NGENERIC
NOALIAS
NOIPV4 , NGRPIPV4
NOIPV6 , NGRPIPV6
NGRPIPV4
NGRPIPV6
NOIPNAME
NOLUNAME

��

CHECKPT statement

�� CHECKPT STARTRBA=startrba ,ENDRBA=endrba ,TIME=time
,ENDLRSN=endlrsn

,CANCEL

��

HIGHRBA statement

�� HIGHRBA STARTRBA=startrba ,TIME=time
,OFFLRBA=offlrba

OFFLRBA=offlrba

��

DELMBR statement

�� DELMBR DEACTIV
DESTROY

MEMBERID=member-id ��

RSTMBR statement

�� RSTMBR MEMBERID=member-id ��

Option descriptions

NEWLOG
Declares one of the following data sets:
v A VSAM data set that is available for use as an active log data set.

Use only the keywords DSNAME=, COPY1, and COPY2.
v An active log data set that is replacing one that encountered an I/O error.

Chapter 37. DSNJU003 (change log inventory) 883

Use only the keywords DSNAME=, COPY1, COPY2, STARTRBA=, and
ENDRBA=.

v An archive log data set volume.
Use only the keywords DSNAME=,COPY1VOL=, COPY2VOL=,
STARTRBA=, ENDRBA=, UNIT=, CATALOG=, STRTLRSN=, and
ENDLRSN=.
If you create an archive log data set and add it to the BSDS with this utility,
you can specify a name that DB2 might also generate. DB2 generates archive
log data set names of the form DSNCAT.ARCHLOGx.Annnnnnn where:
– DSNCAT and ARCHLOG are parts of the data set prefix that you

specified on installation panels DSNTIPA2 and DSNTIPH.
– x is 1 for the first copy of the logs, and 2 is for the second copy.
– Annnnnnn represents the series of low-level qualifiers that DB2 generates

for archive log data set names, beginning with A0000001, and
incrementing to A0000002, A0000003, and so forth.

For data sharing, the naming convention is DSNCAT.ARCHLOG1 or
DSNCAT.DSN1.ARCLG1.
If you do specify a name by using the same naming convention as DB2, you
receive a dynamic allocation error when DB2 generates that name. The error
message, DSNJ103I, is issued once. DB2 then increments the low-level
qualifier to generate the next data set name in the series and offloads to it
the next time DB2 archives. (The active log that previously was not
offloaded is offloaded to this data set.)
The newly defined active logs cannot specify a start and end LRSN. When
DB2 starts, it reads the new active log data sets with an RBA range to
determine the LRSN range, and updates the start and end LRSN in the
BSDS for the new log data sets. The start and end LRSN for new active logs
that contain active log data are read at DB2 start-up time from the new
active log data sets that are specified in the change log inventory NEWLOG
statements. For new archive logs that are defined with change log inventory,
the user must specify the start and end RBAs. For data sharing, the user
must also specify the start and end LRSNs. DB2 startup does not attempt to
find these values from the new archive log data sets.

DSNAME= data-set-name
Specifies a log data set.

data-set-name can be up to 44 characters long.

COPY1
Makes the data set an active log copy-1 data set.

COPY2
Makes the data set an active log copy-2 data set.

STARTRBA= startrba

Identifies a hexadecimal number of up to 20 characters. If you use fewer than
20 characters, leading zeros are added. startrba must end with '000'; otherwise
DB2 returns a DSNJ4381 error message. You can obtain the RBA from messages
or by printing the log map.

On the NEWLOG statement, startrba gives the log RBA of the beginning of the
replacement active log data set or the archive log data set volume that is
specified by DSNAME.

884 Utility Guide and Reference

|
|
|
|

On the CRESTART statement, startrba is the earliest RBA of the log that is to
be used during restart. If you omit STARTRBA, DB2 determines the beginning
of the log range.

On the CHECKPT statement, startrba indicates the start checkpoint log record.

STARTRBA is required when STARTIME is specified.

On the HIGHRBA statement, startrba denotes the log RBA of the
highest-written log record in the active log data sets.

ENDRBA= endrba

endrba is a hexadecimal number of up to 20 characters. If you use fewer than
20 characters, leading zeros are added. endrba must end with '000' or DB2
returns a DSNJ4381 error message.

On the NEWLOG statement, endrba gives the log RBA (relative byte address
within the log) of the end of the replacement active log data set or the archive
log data set volume that is specified by DSNAME.

On the CRESTART statement, endrba is the last RBA of the log that is to be
used during restart, and it is also the starting RBA of the next active log that is
written after restart. Any log information in the bootstrap data set, the active
logs, and the archive logs with an RBA that is greater than endrba is discarded.
If you omit ENDRBA, DB2 determines the end of the log range.

The value of ENDRBA must be a multiple of 4096. (The hexadecimal value
must end in 000.) Also, the value must be greater than or equal to the value of
STARTRBA. If STARTRBA and ENDRBA are equal, the next restart is a cold
start; that is, no log records are processed during restart. The specified RBA
becomes the beginning RBA of the new log.

On the CHECKPT statement, endrba indicates the end checkpoint log record
that corresponds to the start checkpoint log record.

COPY1VOL= vol-id
vol-id is the volume serial of the copy-1 archive log data set that is specified
after DSNAME.

COPY2VOL=vol-id
vol-id is the volume serial of the copy-2 archive log data set that is specified
after DSNAME.

UNIT=unit-id
unit-id is the device type of the archive log data set that is named after
DSNAME.

CATALOG
Indicates whether the archive log data set is to be cataloged.

NO Indicates that the archive log data set is not to be cataloged. All subsequent
allocations of the data set are made using the unit and volume information
that is specified on the statement.

YES
Indicates that the archive log data set is to be cataloged. All subsequent
allocations of the data set are made using the catalog.

DB2 requires that all archive log data sets on disk be cataloged. Select
CATALOG=YES if the archive log data set is on disk.

STRTLRSN= startlrsn
On the NEWLOG statement, startlrsn identifies the LRSN in the log record

Chapter 37. DSNJU003 (change log inventory) 885

|
|
|

|

header of the first complete log record on the new archive data set. startlrsn is
a hexadecimal number of up to 20 characters. If you use fewer than 20
characters, leading zeros are added. In a data sharing environment, run the
print log map utility to find an archive log data set and start and end RBAs
and LRSNs.

ENDLRSN=endlrsn

endlrsn is a hexadecimal number of up to 20 characters. If you use fewer than
20 characters, leading zeros are added. In a data sharing environment, run the
print log map utility to find an archive log data set and start and end RBAs
and LRSNs.

For the NEWLOG and CHECKPT statements, the ENDLRSN option is valid
only in a data sharing environment. For the CRESTART statement, the
ENDLRSN option is valid in both data sharing and non-data sharing
environments. This option cannot be specified with STARTRBA or ENDRBA.

On the NEWLOG statement, endlrsn is the LRSN in the log record header of
the last log record on the new archive data set.

On the CRESTART statement, in a data sharing environment, endlrsn is an
LRSN value that is to be used as the log truncation point. A valid log
truncation point is any LRSN value for which there exists a log record with an
LRSN that is greater than or equal to the specified LRSN value. Any log
information in the bootstrap data set, the active logs, and the archive logs with
an LRSN greater than endlrsn is discarded. If you omit ENDLRSN, DB2
determines the end of the log range.

In a non-data sharing environment, endlrsn is the RBA value that matches the
start of the last log record that is to be used during restart. Any log
information in the bootstrap data set, the active logs, and the archive logs with
an RBA that is greater than endlrsn is discarded. If the endlrsn RBA value does
not match the start of a log record, DB2 restart fails. If you omit ENDLRSN,
DB2 determines the end of the log range.

On the CHECKPT statement, endlrsn is the LRSN of the end checkpoint log
record.

STARTIME=startime
Enables you to record the start time of the RBA in the BSDS. This field is
optional.

startime specifies the start time in the following timestamp format:
yyyydddhhmmsst

In this format:
yyyy Indicates the year (1989-2099).
ddd Indicates the day of the year (0-365; 366 in leap years).
hh Indicates the hour (0-23).
mm Indicates the minutes (0-59).
ss Indicates the seconds (0-59).
t Indicates tenths of a second.

If fewer than 14 digits are specified for the STARTIME or ENDTIME
parameter, trailing zeros are added.

If STARTIME is specified, the ENDTIME, STARTRBA, and ENDRBA options
must also be specified.

886 Utility Guide and Reference

|
|
|
|
|

|
|
|
|

ENDTIME= endtime
Enables you to record the end time of the RBA in the BSDS. This field is
optional.

endtime specifies the end time in the same timestamp format as the STARTIME
option. The ENDTIME value must be greater than or equal to the value of
STARTIME.

DELETE
Deletes either CCSID information or log data set information from the
bootstrap data sets. To delete CCSID information, specify the CCSIDS option.
To delete all information for a specified log data set or volume, specify the
DSNAME option.

CCSIDS
Deletes CCSID information from the BSDS. CCSID information is stored in the
BSDS to ensure that you do not accidentally change the CCSID values.

Use this option under the direction of IBM Software Support when the CCSID
information in the BSDS is incorrect. After you run a DSNJU003 job with the
DELETE CCSIDS option, the CCSID values from the application defaults load
module are recorded in the BSDS the next time DB2 is started.

CRESTART
Controls the next restart of DB2, either by creating a new conditional restart
control record or by canceling the one that is currently active.

CREATE
Creates a new conditional restart control record. When the new record is
created, the previous control record becomes inactive.

SYSPITR=log-truncation-point
Specifies the log RBA (non-data sharing system) or the log LRSN (data sharing
system) that represents the log truncation point for the point-in-time for system
recovery. Before you run the RESTORE SYSTEM utility to recover system data,
you must use the SYSPITR option of DSNJU003. This option enables you to
create a conditional restart control record to truncate the logs for system
point-in-time recovery. You can also specify a value of FFFFFFFFFFFF to cause
a point-in-time recovery to occur without log truncation.

log-truncation-point specifies the log RBA, log LRSN, or log FFFFFFFFFFFF. In a
non-data sharing environment, log-truncation point is the RBA value that
matches the start of the last log record that is to be used during restart. If the
RBA value does not match the start of a log record, DB2 restart fails. In a data
sharing environment, log-truncation point is an LRSN value that is a valid log
truncation point. A valid log truncation point is any LRSN value for which
there exists a log record with an LRSN that is greater than or equal to the
specified LRSN value. Use the same LRSN value for all members of the data
sharing group that require log truncation.

You cannot specify any other option with CREATE, SYSPITR. You can run this
option of the utility only after new-function mode is enabled.

ENDTIME= log-truncation-timestamp
Specifies an end time value that is to be used as the log truncation point. A
valid truncation point is any system time-of-day clock timestamp for which
there exists a log record with a timestamp that is greater than or equal to the
specified timestamp value. Any log information in the bootstrap data set, the
active logs, and the archive logs with a timestamp greater than the ENDTIME
is discarded. If you do not specify ENDTIME, DB2 determines the end of the
log range.

Chapter 37. DSNJU003 (change log inventory) 887

You cannot specify any other option with CREATE, ENDTIME. You can run
this option of the utility only after new-function mode is enabled.

SYSPITRT= log-truncation-timestamp
Specifies the timestamp value that represents the point-in-time log truncation
point for system recovery. Before you run the RESTORE SYSTEM utility to
recover system data, you must use the SYSPITR or SYSPITRT option of
DSNJU003. The options enable you to create a conditional restart control record
to truncate the logs for system point-in-time recovery.

Log-truncation-timestamp specifies a timestamp value that is to be used as the
log truncation point. A valid log truncation point is any system time-of-day
clock timestamp for which there exists a log record with a timestamp that is
greater than or equal to the specified timestamp value. Any log information in
the bootstrap data set, the active logs, and the archive logs with a timestamp
greater than SYSPITRT is discarded. If you omit SYSPITRT, DB2 determined
the end of the log range. Use the same timestamp value for all members of the
data sharing group that require log truncation.

You cannot specify any other option with CREATE, SYSPITRT. You can run this
option of the utility only after new-function mode is enabled.

Note: The startime keyword specifies the start time in the yyyydddhhmmsst
timestamp format. See the STARTIME option for details about the timestamp.

CANCEL
On the CRESTART statement, deactivates the currently active conditional
restart control record. The record remains in the BSDS as historical information.

No other keyword can be used with CANCEL on the CRESTART statement.

On the CHECKPT statement, deletes the checkpoint queue entry that contains
a starting RBA that matches the parameter that is specified by the STARTRBA
keyword.

Attention: This statement can override DB2's efforts to maintain data in a
consistent state. Do not use this statement without understanding the
conditional restart process.

CHKPTRBA= chkptrba
Identifies the log RBA of the start of the checkpoint record that is to be used
during restart.

If you use STARTRBA or ENDRBA, and you do not use CHKPTRBA, the
DSNJU003 utility selects the RBA of an appropriate checkpoint record. If you
do use CHKPTRBA, you override the value that is selected by the utility.

chkptrba must be in the range that is determined by startrba and endrba or their
default values.

If possible, do not use CHKPTRBA; let the utility determine the RBA of the
checkpoint record.

CHKPTRBA=0 overrides any selection by the utility; at restart, DB2 attempts to
use the most recent checkpoint record.

FORWARD=
Indicates whether to use the forward-log-recovery phase of DB2 restart, which
reads the log in a forward direction to recover any units of recovery that were
in one of the following two states when DB2 was last stopped:
v Indoubt (the units of recovery had finished the first phase of commit, but

had not started the second phase)

888 Utility Guide and Reference

v In-commit (had started but had not finished the second phase of commit)

YES
Allows forward-log recovery.

If you specify a cold start (by using the same value for STARTRBA and
ENDRBA), no recovery processing is performed.

NO Terminates forward-log recovery before log records are processed. When
you specify, FORWARD=NO, DB2 does not go back in the log to the
beginning of any indoubt or in-commit units of recovery to complete
forward recovery for these units. Choose this option if a very old indoubt
unit of recovery exists to avoid a lengthy restart. The in-commit and
indoubt units of recovery are marked as bypassed and complete in the log.
However, any database writes that are pending at the end of the log,
including updates from other units of recovery, are still written out during
the forward phase of restart. Any updates that must be rolled-back, such as
for an inflight or in-abort unit of recovery, are done during the backout
phase of restart.

BACKOUT=
Indicates whether to use the backward-log-recovery phase of DB2 restart,
which rolls back any units of recovery that were in one of the following two
states when DB2 was last stopped:
v Inflight (did not complete the first phase of commit)
v In-abort (had started but not finished an abort)

YES
Allows backward-log recovery.

If you specify a cold start (by using the same value for STARTRBA and
ENDRBA), no recovery processing is performed.

NO Terminates backward-log recovery before log records are processed.

CSRONLY
Performs only the first and second phases of restart processing (log
initialization and current-status rebuild). After these phases, the system status
is displayed, and restart terminates. Some parts of the log initialization are not
performed, including any updating of the log and display of STARTRBA and
ENDRBA information.

When DB2 is restarted with this option in effect, the conditional restart control
record is not deactivated. To prevent the control record from remaining active,
use the DSNJU003 utility again with CRESTART CANCEL, or with CRESTART
CREATE to create a new active control record.

NEWCAT
Changes the VSAM catalog name in the BSDS.

VSAMCAT= catalog-name
Changes the VSAM catalog name entry in the BSDS.

catalog-name can be up to eight characters long. The first character must be
alphabetic, and the remaining characters can be alphanumeric.

DDF
Updates the LOCATION, LUNAME, and other DDF related information values
in the BSDS. If you use this statement to insert new values into the BSDS, you
must include at least the LOCATION in the DDF statement. To update an

Chapter 37. DSNJU003 (change log inventory) 889

existing set of values, you need to include only those values that you want to
change. The DDF record cannot be deleted from the BSDS after it has been
added; it can only be modified.

LOCATION= location-name
Changes the LOCATION value in the BSDS.

location-name specifies the name of your local DB2 site.

PORT
Identifies the TCP/IP port number that is used by DDF to accept incoming
connection requests. This value must be a decimal number between 0 and
65535, including 65535; zero indicates that DDF's TCP/IP support is to be
deactivated.

If DB2 is part of a data sharing group, all the members of the DB2 data sharing
group must have the same value for PORT.

RESPORT
Identifies the TCP/IP port number that is used by DDF to accept incoming
DRDA two-phase commit resynchronization requests. This value must be a
decimal number between 0 and 65535, including 65535; zero indicates that
DDF's TCP/IP support is to be deactivated. If RESPORT is non-zero, RESPORT
must not be the same as the value that is supplied on PORT.

For data sharing DB2 systems, RESPORT must be uniquely assigned to each
DB2 member, so that no two DB2 members use the same TCP/IP port for
two-phase commit resynchronization.

SECPORT
Identifies the TCP/IP port number that is used by DDF to accept inbound
secure DRDA connection requests. This value must be a decimal number
between 0 and 65535, including 65535; zero indicates that DDF's secure
connection support for TCP/IP is deactivated.

ALIAS= alias-name :alias-port :alias-secport
Specifies one or more alias names for the location. An alias name is a name
besides the location name that connect processing can accept. Specifying an
alias name does not change the location identifier for a database object.

Important: ALIAS applies to DRDA connections only.

alias-name specifies from 1 to 16 characters for the location name. alias-name
cannot be one of the valid DSNJU003 keywords.

:alias-port specifies a TCP/IP port number for the alias that can be used by
DDF to accept distributed requests. This value must be a decimal number
between 1 and 65535, including 65535. The value must be different than the
values for the PORT, RESPORT, and SECPORT options and any value that was
specified for alias-port or alias-secport of any other defined alias. Specify a value
for alias-port when you want to identify a subset of data sharing members to
which a distributed request can go.

:alias-secport specifies a secure TCP/IP port number for the alias that can be
used by DDF to accept secure distributed requests using SSL. This value must
be a decimal number between 1 and 65535, including 65535. The value must be
different than the values for the SECPORT, PORT, and RESPORT options, and
any value that was specified for alias-port or alias-secport of any other defined
alias. Specify a value for alias-secport when you want to identify a subset of
data sharing members to which a secure distributed request can go. When you
specify a value for alias-secport, the :alias-port value is optional.

890 Utility Guide and Reference

You can add or replace aliases by respecifying the ALIAS option. The new list
of names replaces the existing list.

IPNAME= ipname
Changed the IPNAME values in the BSDS.

ipname specifies the IPNAME value. The value can be up to 8-bytes in length
and must be an alphanumeric character beginning with an alphabetic character.
When you specify this option, the DDF will activate only its TCP/IP
communications support, regardless of whether or not there is a value for
LUNAME. Only inbound and outbound DRDA protocol communications over
TCP/IP is allowed and there is no attempt to activate SNA/APPC
communications support.

The value specified must be either unique to this DB2 subsystem with an
enterprise, or if the DB2 subsystem is configured to be a member of a data
sharing group, unique to the data sharing group for which this DB2 subsystem
is a member. All members of a data sharing group must be defined with the
same IPNAME value if all the members are to activate only their TCP/IP
communications support. If some members of a data sharing group activate
their SNA/APPC (as well as TCP/IP communications support), then the
IPNAME value chosen for the TCP/IP only members must match the
GENERIC value specified for the members which activate their SNA/APPC as
well as their TCP/IP communications support.

The value given to IPNAME will be used by DB2 as the network-id portion of
a unit-of-work identifier. A unit-of-work identifier has traditionally been made
up of a network-id, a LU name, a 6-byte unique identifier created from a
timestamp, and a 2-byte current commit count value. When running with an
IPNAME value, the LU name portion of the unit-of-work identifier will be
created from a 4-byte character representation of the hexadecimal notation of
the value specified for the TCP/IP resync port (RESPORT). This support for
activating only TCP/IP communications will occur only if the DB2 is running
in V9 New Function Mode.

Do not confuse IPNAME with a TCP/IP external such as hostname or domain
name. The value you give IPNAME is only used internally by DB2 or in a
DRDA exchange with another DRDA server. It cannot be referenced by any
TCP/IP external, such as ping. Also, the hostname of the system upon which
the DB2 is running is a poor choice for IPNAME because more than one DB2
could run on the same system, and the IPNAME value given to any DB2 or
DB2 data sharing group must be unique within an enterprise.

IPV4= ipv4-address
Identifies and associates a constant IPv4 IP address with DDF to accept
incoming connection requests to this specific subsystem only. This address
must be entered in dotted decimal form. If an IP address is not specified, DB2
will automatically determine the IP address from TCP/IP.

When DB2 is a member of a data sharing group, it is strongly recommended
that you refer to a dynamic virtual IP address (DVIP). A group IP address,
GRPIPV4, should also be specified.

IPV6= ipv6-address
Identifies and associates a constant IPv6 IP address with DDF to accept
incoming connection requests to this specific subsystem only. This address
must be entered in colon hexadecimal form. If an IP address is not specified,
DB2 will automatically determine the IP address from TCP/IP.

Chapter 37. DSNJU003 (change log inventory) 891

When DB2 is a member of a data sharing group, it is strongly recommended
that you refer to a dynamic virtual IP address (DVIP). A group IP address,
GRPIPV6, should also be specified.

GRPIPV4
Identifies and associates a constant IPv4 IP address with the data sharing
group for which this DDF is a member. The IP address is used to accept
incoming connection requests that can be serviced by any member of the data
sharing group. This address must be entered in dotted decimal form. An
associated IPv4 subsystem/member address must also be specified in order to
identify the IP address associated with this specific member of the group. If an
IP address is not specified, DB2 will automatically determine the IP address
from TCP/IP.

It is strongly recommended that you refer to a sysplex distributor owned
distributing dynamic virtual IP address (DVIPA).

GRPIPV6
Identifies and associates a constant IPv6 IP address with the data sharing
group for which this DDF is a member. The IP address is used to accept
incoming connection requests that can be serviced by any member of the data
sharing group. This address must be entered in colon hexadecimal form. An
associated IPv6 subsystem/member address must also be specified in order to
identify the IP address associated to this specific member of the group. If an IP
address is not specified, DB2 will automatically determine the IP address from
TCP/IP.

It is strongly recommended that you refer to a sysplex distributor owned
distributing dynamic virtual IP address (DVIPA).

LUNAME= luname
Changes the LUNAME value in the BSDS.

luname specifies the LUNAME value. The LUNAME in the BSDS must always
contain the value that identifies your local DB2 subsystem to the VTAM®

network.

PASSWORD=
The DDF password follows VTAM convention, but DB2 restricts it to one to
eight alphanumeric characters. The first character must be either a capital letter
or an alphabetic extender. The remaining characters can consist of
alphanumeric characters and alphabetic extenders.

password
Optionally assigns a password to the distributed data facility
communication record that establishes communications for a distributed
data environment. The PRTCT=password option on the APPL definition
statement is used to define DB2 to VTAM.

GENERIC= gluname
Replaces the value of the DB2 GENERIC LUNAME subsystem parameter in
the BSDS.

gluname specifies the GENERIC LUNAME value.

NOPASSWD
Removes the archive password protection for all archives that are created after
this operation. It also removes a previously existing password from the DDF
record. No other keyword can be used with NOPASSWD.

892 Utility Guide and Reference

NGENERIC
Changes the DB2 GENERIC LUNAME to binary zeros in the BSDS, indicating
that no VTAM generic LU name support is requested.

NOALIAS
Indicates that no alias names exist for the specified location. Any alias names
that were specified in a previous DSNJU003 utility job are removed.

NOIPV4
Removes the constant IPv4 address from the BSDS. The NGRPIPV4 keyword
must also be specified to ensure that the associated group address, if any, is
also removed.

NOIPV6
Removes the constant IPv6 address from the BSDS. The NGRPIPV6 keyword
must also be specified to ensure that the associated group address, if any, is
also removed.

NGRPIPV4
Removes the constant data sharing group IPv4 address from the BSDS.

NGRPIPV6
Removes the constant data sharing group IPv6 address from the BSDS.

NOIPNAME
Removes the IPNAME value from the DDF record. No other keyword can be
used with NOIPNAME.

NOLUNAME
Removes the LUNAME value from the DDF record. No other keyword can be
used with NOLUNAME.

CHECKPT
Allows updating of the checkpoint queue with the start checkpoint and end
checkpoint log records.

Attention: This statement can override DB2's efforts to maintain data in a
consistent state. Do not use the statement without understanding the
conditional restart and checkpoint processing processes.

TIME= time
On the CHECKPT statement, specifies the time that the start checkpoint
record was written.

On the HIGHRBA statement, TIME specifies when the log record with the
highest RBA was written to the log.

time specifies the time value. For timestamp format, see the STARTIME option
description.

HIGHRBA
Updates the highest-written log RBA in either the active or archive log data
sets.

Attention: This statement can override DB2's efforts to maintain data in a
consistent state. Do not use the statement without understanding the
conditional restart process.

OFFLRBA= offlrba
Specifies the highest-offloaded RBA in the archive log.

Chapter 37. DSNJU003 (change log inventory) 893

offlrba is a hexadecimal number of up to 20 characters. If you use fewer than 20
characters, leading zeros are added. The value must end with hexadecimal
X'FFF'.

DELMBR
Deactivates or destroys a member of a data sharing group.

DEACTIV
Marks a member of a data sharing group for deactivation. Deactivation is the
first step in deletion of a member from a data sharing group.

Before the member can be deactivated, it must be quiesced and have no
outstanding work. The logs and BSDS must exist.

DESTROY
Completes the deletion of a member from a data sharing group.

After a member is destroyed, its member ID can be reused, and the logs and
BSDS can be deleted.

RSTMBR
Restores a deactivated member of a data sharing group to the quiesced state.

MEMBERID= member-id
Specifies the data sharing group member that is to be deactivated, destroyed,
or restored.

member-id is a number in the range 1 - 32. This number is the member ID that
shown in the output from the DISPLAY GROUP command or the DSNJU004
(print log map) utility.

Related concepts:

Member-specific access (DB2 Data Sharing Planning and Administration)

Phase 3: Forward log recovery (DB2 Administration Guide)

Timestamp (DB2 SQL)
Related tasks:

Deleting data sharing members (DB2 Data Sharing Planning and
Administration)

Performing conditional restart (DB2 Administration Guide)

Restoring deactivated data sharing members (DB2 Data Sharing Planning and
Administration)
Related information:

PRTCT (VTAM Resource Definition Reference)

Making changes for active logs
You can add, delete, record, and enlarge active logs.

Adding: If an active log is in stopped status, it is not reused for output logging;
however, it continues to be used for reading. To add a new active log:
1. Use the Access Method Services DEFINE command to define new active log

data sets.
2. Use DSNJLOGF to preformat the new active log data sets.

894 Utility Guide and Reference

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_memberspecaccessds.htm#db2z_memberspecaccessds
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_restartforwardlogrecovery.htm#db2z_restartforwardlogrecovery
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_timestampvalues.htm#db2z_timestampvalues
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_deletingdsmembers.htm#db2z_deletingdsmembers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_deletingdsmembers.htm#db2z_deletingdsmembers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_performconditionalrestart.htm#db2z_performconditionalrestart
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_restoringdsmembers.htm#db2z_restoringdsmembers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_restoringdsmembers.htm#db2z_restoringdsmembers
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/isth1002/2.3.6.40

Restriction: If you do not preformat these logs with the DSNJLOGF utility,
DB2 needs to preformat them the first time they are used. Otherwise,
performance might be impacted. This restriction applies to empty data sets and
data sets with residual data.

3. Use DSNJU003 to register the new data sets in the BSDS.

For example, specify the following statements:
NEWLOG DSNAME=DSNC110.LOGCOPY1.DS04,COPY1
NEWLOG DSNAME=DSNC110.LOGCOPY2.DS04,COPY2

To copy the contents of an old active log data set to the new one, you can also give
the RBA range and the starting and ending timestamp on the NEWLOG statement.

To archive to disk when the size of your active logs has increased, you might find
it necessary to increase the size of your archive data set primary and secondary
space quantities in DSNZPARM.

Deleting: To delete information about an active log data set from the BSDS, you
might specify the following statements:
DELETE DSNAME=DSNC110.LOGCOPY1.DS01
DELETE DSNAME=DSNC110.LOGCOPY2.DS01

Recording: To record information about an existing active log data set in the BSDS,
you might specify the following statement:
NEWLOG DSNAME=DSNC110.LOGCOPY2.DS05,COPY2,STARTIME=19910212205198,

ENDTIME=19910412205200,STARTRBA=43F8000,ENDRBA=65F3FFF

You can insert a record of that information into the BSDS for any of these reasons:
v The data set has been deleted and is needed again.
v You are copying the contents of one active log data set to another data set (copy

1 to copy 2).
v You are recovering the BSDS from a backup copy.

Enlarging: When DB2 is inactive (down), use one of the following procedures.

If you can use the Access Method Services REPRO command, follow these steps:
1. Stop DB2. This step is required because DB2 allocates all active log data sets

when it is active.
2. Use the Access Method Services ALTER command with the NEWNAME option

to rename your active log data sets.
3. Use the Access Method Services DEFINE command to define larger active log

data sets. Refer to installation job DSNTIJIN to see the definitions that create
the original active log data sets.
By reusing the old data set names, you don't need to run the change log
inventory utility to establish new names in the BSDSs. The old data set names
and the correct RBA ranges are already in the BSDSs.

4. Use the Access Method Services REPRO command to copy the old (renamed)
data sets into their respective new data sets.

5. Start DB2.

If you cannot use the Access Method Services REPRO command, follow this
procedure:

Chapter 37. DSNJU003 (change log inventory) 895

1. Ensure that all active log data sets except the current active log data sets have
been archived. Active log data sets that have been archived are marked
REUSABLE in print log map utility (DSNJU004) output.

2. Stop DB2.
3. Rename or delete the reusable active logs. Allocate new, larger active log data

sets with the same names as the old active log data sets.
4. Run the DSNJLOGF utility to preformat the new log data sets.
5. Run the change log inventory utility (DSNJU003) with the DELETE statement

to delete all active logs except the current active logs from the BSDS.
6. Run the change log inventory utility with the NEWLOG statement to add to

the BSDS the active logs that you just deleted. So that the logs are added as
empty, do not specify an RBA range.

7. Start DB2.
8. Issue the ARCHIVE LOG command to cause DB2 to truncate the current active

logs and switch to one of the new sets of active logs.
9. Repeat steps 2 through 7 to enlarge the active logs that were just archived.

Although all log data sets do not need to be the same size, from an operational
standpoint using the same size is more consistent and efficient. If the log data sets
are not the same size, tracking your system's logs can be more difficult. Space can
be wasted if you are using dual data sets of different sizes because they fill only to
the size of the smallest, not using the remaining space on the larger one.

If you are archiving to disk and the size of your active logs has increased, you
might need to increase the size of your archive log data sets. However, because of
DFSMS disk management limits, you must specify less than 64 000 tracks for the
primary space quantity. See the PRIMARY QUANTITY and SECONDARY QTY
fields on installation panel DSNTIPA to modify the primary and secondary
allocation space quantities.

Making changes for archive logs
You can add and delete archive logs.

Adding: When the recovery of an object depends on reading an existing archive log
data set, the BSDS must contain information about that data set, so that the
recovery job can find it. To register information about an existing archive log data
set in the BSDS, you might specify the following statement:
NEWLOG DSNAME=DSNC110.ARCHLOG1.D89021.T2205197.A0000015,COPY1VOL=DSNV04,
UNIT=TAPE,STARTRBA=3A190000,ENDRBA=3A1F0FFF,CATALOG=NO

Deleting: To delete an entire archive log data set from one or more volumes, you
might specify the following statement:
DELETE DSNAME=DSNC110.ARCHLOG1.D89021.T2205197.A0000015,COPY1VOL=DSNV04

A conditional restart control record
You can create a conditional restart control record in the BSDS.

To create a new conditional restart control record in the BSDS, you must execute
the change log inventory utility and use the CRESTART control statement. For
example, to truncate the log, to specify the earliest log RBA, and to bypass
backout, use a statement similar to the following statement:

896 Utility Guide and Reference

CRESTART CREATE,STARTRBA=28000,ENDRBA=58000,BACKOUT=NO

To specify a cold start, make the values of STARTRBA and ENDRBA equal with a
statement similar to the following statement:
CRESTART CREATE,STARTRBA=4A000,ENDRBA=4A000

In most cases when doing a cold start, you should make sure that the STARTRBA
and ENDRBA are set to an RBA value that is greater than the highest used RBA.

To truncate the DB2 logs via conditional restart by specifying a timestamp rather
than an RBA value, use a statement similar to the following statement:
CRESTART CREATE,ENDTIME=20051402030068

An existing conditional restart control record governs any START DB2 operation
until one of these events occurs:
v A restart operation completes.
v A CRESTART CANCEL statement is issued.
v A new conditional restart control record is created.

Deleting log data sets with errors
If an active log data set encounters an I/O error, use the DSNJU003 (change log
inventory) utility to delete the log data sets with errors.

Procedure

To delete log data sets with errors:
1. If you use dual active log data sets, check if the data from the bad active log

data set is saved in the other active log. If it is, you can use the other active
log.

2. If you cannot use the other active log or if the active log is in the STOPPED
status, fix the problem manually by taking the following steps
a. Check whether the data set was offloaded. For example, check the list of

archive log data sets to see whether one has the same RBA range as the
active log data set. This list can be created by using the DSNJU004 (print
log map) utility.

b. If the data set was not offloaded, copy the data to a new VSAM data set. If
the data set was offloaded, create a new VSAM data set that is to be used
as an active log data set.

c. Run the change log inventory utility with the DELETE and NEWLOG
statements.

Important: If misused, the change log inventory utility can compromise the
viability and integrity of the DB2 subsystem. Only highly skilled people,
such as the DB2 system administrator, should use this utility, and then only
after careful consideration.
The DELETE statement removes information about the bad data set from
the BSDS. The NEWLOG statement identifies the new data set as the new
active log. The DELETE and NEWLOG operations can be performed by the
same job step. The DELETE statement precedes the NEWLOG statement in
the SYSIN input data set.
To ensure consistent results, run the change log inventory utility on the
same z/OS system on which the DB2 online subsystem runs.

Chapter 37. DSNJU003 (change log inventory) 897

Use the print log map utility before and after you run the change log
inventory utility to ensure correct execution and to document changes.
When you use dual active logs, choose a naming convention that
distinguishes primary and secondary active log data set. The naming
convention should also identify the log data sets within the series of
primary or secondary active log data sets. For example, the default naming
convention that is established at DB2 installation time is as follows:
prefix.LOGCOPYn.DSmm

In this convention, n=1 for all primary log data sets, n=2 for all secondary
log data sets, and mm is the data set number within each series.
If a naming convention such as the default convention is used, pairs of data
sets with equal mm values are usually used together. For example,
DSNC120.LOGCOPY1.DS02 and DSNC120.LOGCOPY2.DS02 are used
together.
However, after you run the change log inventory utility with the DELETE
and NEWLOG statements, the primary and secondary series can become
unsynchronized. This situation can occur even if the NEWLOG data set
name that you specify is the same as the old data set name. To avoid this
situation, always do maintenance on both data sets of a pair in the same
change log inventory execution:
v Delete both data sets together.
v Define both data sets together with NEWLOG statements.
The data sets themselves do not require deletion and redefinition.

3. Delete the bad data set by using VSAM Access Method Services.

What to do next

Before you initiate a conditional restart or cold restart, consider making backup
copies of all disk volumes that contain any DB2 data sets. These backup copies
enable a possible fallback. The backup data sets must be generated when DB2 is
not active.
Related reference:
Chapter 38, “DSNJU004 (print log map),” on page 903
“Syntax and options of the DSNJU003 control statement” on page 880

Altering references to log data sets in the BSDS
You can add or delete active or archive log data sets in the bootstrap data set
(BSDS) by using the DSNJU003 utility.

About this task

When you alter references to log data sets in the BSDS, the log data sets are not
changed. And you do not need to make any changes to the referenced log data
sets.

Procedure

To alter references to log data sets in the BSDS:
v To add a reference to a data set in the BSDS, use the NEWLOG statement of the

DSNJU003 utility.
v To delete a reference to a data set in the BSDS, use the DELETE statement of the

DSNJU003 utility.

898 Utility Guide and Reference

Related concepts:

Bootstrap data set (Introduction to DB2 for z/OS)
Related reference:
“Syntax and options of the DSNJU003 control statement” on page 880

Defining the high-level qualifier for catalog and directory objects
You can define the high-level qualifier for catalog and directory objects.

Procedure

Use the NEWCAT statement to define the high-level qualifier that is to be used for
the following objects:
v Catalog table spaces and index spaces
v Directory table spaces and index spaces

At startup, the DB2 system checks that the name that is recorded with NEWCAT in
the BSDS is the high-level qualifier of the DB2 system table spaces that are defined
in the load module for subsystem parameters.
NEWCAT is normally used only at installation time.
When you change the high-level qualifier by using the NEWCAT statement, you
might specify the following statements:
//S2 EXEC PGM=DSNJU003
//SYSUT1 DD DSN=DSNC120.BSDS01,DISP=OLD
//SYSUT2 DD DSN=DSNC120.BSDS02,DISP=OLD
//SYSPRINT DD SYSOUT=*

NEWCAT VSAMCAT=DBP1

After you run the change log inventory utility with the NEWCAT statement, the
utility generates output similar to the following output:
NEWCAT VSAMCAT=DBP1
DSNJ210I OLD VASAM CATALOG NAME=DSNC120, NEW CATALOG NAME=DBP1
DSNJ225I NEWCAT OPERATION COMPLETED SUCCESSFULLY
DSNJ200I DSNJU003 CHANGE LOG INVENTORY UTILITY

PROCESSING COMPLETED SUCCESSFULLY

Related tasks:
“Renaming DB2 system data sets”

Renaming DB2 system data sets
Occasionally, you might want to rename the DB2 system table spaces

Procedure

To rename DB2 system data sets:
1. Stop DB2 in a consistent state.
2. Create a full system backup so that you can recover from operational errors.
3. Execute the change log inventory utility with NEWCAT.
4. Rename the BSDS and all DB2 directory and catalog table spaces and index

spaces with IDCAMS.
5. Reassemble DSNZPARM to redefine the high-level qualifier for the system table

spaces.
6. Update the BSDS name in the DB2 startup procedure.
7. Start DB2.

Chapter 37. DSNJU003 (change log inventory) 899

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_bootstrapdataset.htm#db2z_bootstrapdataset

8. Drop and re-create the work file database.
9. Optionally use the ALTER command for table spaces in DSNDB04 and user

databases.

Renaming DB2 active log data sets
When you rename system data sets, you might also want to rename the log data
sets.

About this task

To rename DB2 active log data sets:

Procedure
1. Stop DB2 in a consistent state.
2. Create a full system backup so that you can recover from operational errors.
3. Delete the reusable active log data sets with IDCAMS, but keep the current

active log.
4. Define a new set of active log data sets with IDCAMS.
5. Execute the change log inventory utility to remove names of deleted active log

data sets and to define the new active log data set names in the BSDS.
6. Start and use DB2 normally.

Results

When the current active log is archived and becomes reusable, you can delete it.

Renaming DB2 archive log data sets
You do not need to rename archive log data sets because old archive logs are
replaced as a part of the normal maintenance cycle and the RECOVER utility
works with archive logs that contain different high-level qualifiers.

To modify the high-level qualifier for archive log data sets, you need to reassemble
DSNZPARM.

Sample DSNJU003 control statements
Use the sample control statements as models for developing your own DSNJU003
control statements.

Example 1: Adding a new archive log data set

The following control statement specifies that the DSNJU003 utility is to add the
data set DSNREPAL.A0001187 to the BSDS. The volume serial number for the data
set is DSNV04, as indicated by the COPY1VOL option. The device type is SYSDA,
and the data set is not to be cataloged. The RBA of the beginning of the archive log
data set volume is 3A190000, and the end RBA is 3A1F0FFF.
//STEP5 EXEC PGM=DSNJU003,COND=EVEN
//SYSUT1 DD DSN=DSNCAT.BSDS01,DISP=SHR
//SYSUT2 DD DSN=DSNCAT.BSDS02,DISP=SHR
//SYSPRINT DD SYSOUT=A

900 Utility Guide and Reference

//SYSIN DD *
NEWLOG DSNAME=DSNREPAL.A0001187,COPY1VOL=DSNV04,UNIT=SYSDA,
STARTRBA=3A190000,ENDRBA=3A1F0FFF,CATALOG=NO
/*

Example 2: Deleting a data set

The following control statement specifies that DSNJU003 is to delete data set
DSNREPAL.A0001187 from the BSDS. The volume serial number for the data set is
DSNV04, as indicated by the COPY1VOL option.
DELETE DSNAME=DSNREPAL.A0001187,COPY1VOL=DSNV04

Example 3: Creating a new conditional restart control record

The following statement specifies that DSNJU003 is to create a new conditional
restart control record, which controls the next restart of DB2. BACKOUT=NO
indicates that DB2 is not to execute the backward-log-recovery phase when it
restarts. The ENDRBA option indicates that 000000010000 is the last RBA of the log
that is to be used during restart. Any log information in the bootstrap data set, the
active logs, and the archive logs with an RBA that is greater than this RBA is
discarded.
CRESTART CREATE,BACKOUT=NO,ENDRBA=000000010000

Example 4: Adding a communication record to the BSDS

The following control statement specifies that DSNJU003 is to add a new
communication record to the BSDS. The location, LU name, and password values
are all provided.
DDF LOCATION=USIBMSTODB22,LUNAME=STL#M08,PASSWORD=$STL@290

Example 5: Updating a communication record with a secure
TCP/IP port number in the BSDS

The following control statement specifies that DSNJU003 is to update the
communication record in the BSDS to specify a secure TCP/IP port.
DDF LOCATION=XYZ,SECPORT=448

Example 6: Adding a communication record with an alias to the
BSDS

The following control statement specifies that DSNJU003 is to add a
communication record to the BSDS. The location, alias, LU name, and password
values are all provided.
DDF LOCATION=USIBMSTODB22,ALIAS=STL715A1,STL715A2,LUNAME=STL#M08,PASSWORD=$STL@290

Note: The alias is an SQL identifier and should follow the rules of SQL identifiers.
The identifier can not include special characters when you are naming a location
alias.

Example 7: Adding multiple aliases and alias ports to the BSDS

The following control statement specifies five alias names for the communication
record in the BSDS (MYALIAS1, MYALIAS2, MYALIAS3, MYALIAS4, and
MYALIAS5). Only MYALIAS2 and MYALIAS5 support subsets of a data sharing
group. Any alias names that were specified in a previous DSNJU003 utility job are
removed.

Chapter 37. DSNJU003 (change log inventory) 901

DDF ALIAS=MYALIAS1,MYALIAS2:8002,MYALIAS3,MYALIAS4,MYALIAS5:10001

Example 8: Specifying a point in time for system recovery

The following control statement specifies that DSNJU003 is to create a new
conditional restart control record. The SYSPITR option specifies an end RBA value
as the point in time for system recovery for a non-data sharing system. For a data
sharing system, use an end LRSN value instead of an end RBA value. This point in
time is used by the RESTORE SYSTEM utility.
//JOBLIB DD DSN=USER.TESTLIB,DISP=SHR
// DD DSN=DSN910.SDSNLOAD,DISP=SHR
//STEP01 EXEC PGM=DSNJU003
//SYSUT1 DD DSN=DSNC910.BSDS01,DISP=OLD
//SYSUT2 DD DSN=DSNC910.BSDS02,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

CRESTART CREATE,SYSPITR=04891665D000
/*

To indicate that a SYSPITR restart is to be done without log truncation, specify a
SYSPITR value of all 'FFs in the DSNJU003 job with the CRESTART parameter.
//STEP1 EXEC PGM=DSNJU003
//SYSUT1 DD DSN=DSNC910.BSDS01,DISP=OLD
//SYSUT2 DD DSN=DSNC910.BSDS02,DISP=OLD
//SYSPRINT DD SYSOUT=
//SYSIN DD
CRESTART CREATE,SYSPITR=FFFFFFFFFFFF
/*

During the subsequent restart, the user will be asked to confirm the conditional
restart with the following:
DSNJ256I) DSNJW6 CONDITIONAL RESTART RECORD INDICATES SYSPITR

RESTART WITH NO LOG TRUNCATION
DSNJ11I) CONDITIONAL RESTART RECORD 1 CREATED AT 7.214 7:56

WAS FOUND. REPLY Y TO USE, N TO CANCEL

Example 9: Removing aliases from a communication record

The following control statement specifies that no alias names apply. Any alias
names that were specified in a previous DSNJU003 utility job are removed.
DDF NOALIAS

902 Utility Guide and Reference

Chapter 38. DSNJU004 (print log map)

The DSNJU004 (print log map) stand-alone utility generates a variety of
information that can be useful in backup and recovery situations.

The print log map (DSNJU004) utility lists the following information:
v Log data set name, log RBA association, and log LRSN for both copy 1 and copy

2 of all active and archive log data sets
v Active log data sets that are available for new log data
v Status of all conditional restart control records in the bootstrap data set
v Contents of the queue of checkpoint records in the bootstrap data set
v The communication record of the BSDS, if one exists
v Contents of the quiesce history record
v System and utility timestamps
v Contents of the checkpoint queue
v Archive log command history
v BACKUP SYSTEM utility history
v System CCSID information
v System-level backup information
v Information about deactivated and destroyed data sharing members

In a data sharing environment, the DSNJU004 utility can list information from any
or all BSDSs of a data sharing group.

Environment

The DSNJU004 program runs as a batch job.

This utility can be executed either when DB2 is running and when it is not
running. However, to ensure consistent results from the utility job, the utility and
the DB2 online subsystem must both be executing under the control of the same
operating system.

Output

In all migration modes, formatted RBA and LRSN values are displayed in 10-byte
format. The 10-byte formatted display is unrelated to migration of the catalog or
directory, conversion of individual objects to EXTENDED format, or BSDS
conversion.

For recovery purposes, the 10-byte format is the preferred input format for DB2.
When 10-byte RBA or LRSN values are specified as input to DB2, conversion to
6-byte format is performed internally as needed.

Even before the BSDS is converted to Version 11 format on all data sharing
members or the catalog and directory are migrated, 10-byte LRSN values might be
displayed with non-zero digits in the low order 3 bytes. LRSN values captured
before the BSDS is converted continue to be displayed as they were saved until
they are no longer available for display (for example, deleted by MODIFY
RECOVERY). This behavior is normal and to be expected, given the many ways
LRSN values are generated, stored, and handled in DB2. If these LRSN values are
specified as input to DB2, specify them as shown. If the LRSN value contains

© Copyright IBM Corp. 1983, 2013 903

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

non-zero digits in the low order 3 bytes, do not remove them. Any conversion that
might be required takes place inside DB2.

Authorization required

The user ID of the DSNJU004 job must have requisite RACF authorization.

Required and optional data sets

DSNJU004 recognizes DD statements with the following DD names:

SYSUT1
Specifies and allocates the bootstrap data set. This statement is required. It
allocates the BSDS. If the BSDS must be shared with a concurrently executing
DB2 online subsystem, use DISP=SHR on the DD statement.

SYSPRINT
Specifies a data set or print spool class for print output. This statement is
required. The logical record length (LRECL) is 125.

SYSIN (optional)
Contains the control statement. If you do not specify the SYSIN DD statement,
BSDS information is printed only from the BSDS data set that is identified by
the SYSUT1 DD statement.

GROUP
Names a single BSDS. DB2 can use this BSDS to find the names of all BSDSs in
the group. Ensure that the BSDS name that you specify is not the BSDS of a
member that has been quiesced since before new members joined the group.
This statement is required if the control statement specifies either of these
options:
v MEMBER *
v MEMBER(member-name)

MnnBSDS
Names the BSDS data set of a group member whose information is to be listed.
You must specify one such DD statement for each member. The statements are
required if the control statement specifies MEMBER DDNAME. nn represents a
two-digit number. You must use consecutive two-digit numbers from 01 to the
total number of required members. If a break occurs in the sequence of
numbers, any number after the break is ignored.

Running the DSNJU004 utility

Use the following EXEC statement to execute this utility:
// EXEC PGM=DSNJU004

Recommendations
v For dual BSDSs, execute the print log map utility twice, once for each BSDS, to

compare their contents.
v To ensure consistent results for this utility, execute the utility job on the same

z/OS system on which the DB2 online subsystem executes.
v Execute the print log map utility regularly, possibly daily, to keep a record of

recovery log data set usage.
v Use the print log map utility to document changes that are made by the change

log inventory utility.

904 Utility Guide and Reference

|
|

Related concepts:

Management of the bootstrap data set (DB2 Administration Guide)

Conditional restart (DB2 Administration Guide)
Related tasks:

Deleting data sharing members (DB2 Data Sharing Planning and
Administration)

Restoring deactivated data sharing members (DB2 Data Sharing Planning and
Administration)

Syntax and options of the DSNJU004 control statement
Using the SYSIN data set allows you to list information from any or all BSDSs of a
data sharing group.

DSNJU004 (print log map) syntax diagram

��

�

MEMBER *

MEMBER DDNAME
,

(member-name)

��

Option descriptions

The following keywords can be used in an optional control statement on the SYSIN
data set:

MEMBER
Specifies which member's BSDS information to print.

* Prints the information from the BSDS of each member in the data sharing
group.

DDNAME
Prints information from only those BSDSs that are pointed to by the
MxxBSDS DD statements.

(member-name)
Prints information for only the named group members.

Sample DSNJU004 control statement
Use the sample control statements as models for developing your own DSNJU004
control statements.

The following statement specifies that DSNJU004 is to print information from the
BSDS for each member in the data sharing group:

Chapter 38. DSNJU004 (print log map) 905

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_bsdsmanagement.htm#db2z_bsdsmanagement
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_conditionalrestart.htm#db2z_conditionalrestart
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_deletingdsmembers.htm#db2z_deletingdsmembers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_deletingdsmembers.htm#db2z_deletingdsmembers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_restoringdsmembers.htm#db2z_restoringdsmembers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_restoringdsmembers.htm#db2z_restoringdsmembers

//PLM EXEC PGM=DSNJU004
//GROUP DD DSN=DBD1.BSDS01,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

MEMBER *

DSNJU004 (print log map) output
The output of DSNJU004 (print log map) utility lists a variety of information.

The following figures show example output from the print log map utility. This
output includes the following information:
v The data set name (DSN) of the BSDS.
v The system date and time (SYSTEM TIMESTAMP), which is set at the time that

the subsystem stops.
v The date and time that the BSDS was last changed by the change log inventory

utility (listed as the UTILITY TIMESTAMP).
v The integrated catalog facility catalog name that is associated with the BSDS.
v The highest-written RBA. The value is updated each time the log buffers are

physically written to disk.
v The highest RBA that was offloaded.
v Log RBA ranges (STARTRBA and ENDRBA) and data set information for active

and archive log data sets. The last active log data set shown is the current active
log.

v Information about each active log data set. This information includes the starting
and ending RBAs within the data set, the date and time the data set was
created, and the data set's name (DSN), and status. You might see consecutive
active or archive log data sets with an end LRSN value that is the same as the
beginning LRSN value of the next data set.

v Information about each archive log data set. This information includes the
starting and ending RBAs within the data set, the date and time the data set was
created, and the data set's name (DSN), unit and volume of storage, and status.
You might see consecutive active or archive log data sets with an end LRSN
value that is the same as the beginning LRSN value of the next data set.

v Conditional restart control records. For a description of these records and the
format of this part of the output from the print log map utility, see “DSNJU004
(print log map) output.”

v The contents of the checkpoint description queue. For a description of this
output, see Figure 118 on page 917.

v Archive log command history. For a description of this output, see Figure 117 on
page 916.

v The distributed data facility (DDF) communication record. This record contains
the DB2-defined location name, any alias names for the location name, and the
VTAM-defined LU name. DB2 uses this information to establish the distributed
database environment.

v The tokens for all BACKUP SYSTEM utility records. The token identifies each
backup version that has been created.

v The RBA or LRSN when the subsystem was converted to enabling-new-function
mode.

v Information about members of a data sharing group, including deactivated
members, and destroyed members whose slots were reclaimed.

906 Utility Guide and Reference

The sample print log map utility output in the following figure is for a
non-data-sharing subsystem.

* *
* LOG MAP OF THE BSDS DATA SET BELONGING TO MEMBER ’NO NAME ’ OF GROUP ’NO NAME ’. *
* *

DSNJCNVB CONVERSION PROGRAM HAS RUN DDNAME=SYSUT1
DSNJCNVT CONVERSION PROGRAM HAS NOT RUN DDNAME=SYSUT1

LOG MAP OF BSDS DATA SET COPY 1, DSN=DSNC000.DB2A.BSDS01
LTIME INDICATES LOCAL TIME, ALL OTHER TIMES ARE GMT.

DATA SHARING MODE IS OFF
SYSTEM TIMESTAMP - DATE=2012.256 LTIME=13:50:24.23
UTILITY TIMESTAMP - DATE=2012.256 LTIME=11:50:58.15
VSAM CATALOG NAME=DSNC000
HIGHEST RBA WRITTEN 0000000000007FA798CE 2012.256 20:50:57.4
HIGHEST RBA OFFLOADED 0000000000007FA6AFFF
RBA WHEN CONVERTED TO V4 00000000000069957FFF

THIS BSDS HAS MEMBER RECORDS FOR THE FOLLOWING MEMBERS:
HOST MEMBER NAME:

MEMBER ID: 0
GROUP NAME:
BSDS COPY 1 DATA SET NAME:
BSDS COPY 2 DATA SET NAME:
ENFM START RBA/LRSN: 00000000000000000000

**** DISTRIBUTED DATA FACILITY ****
COMMUNICATION RECORD

20:51:19 SEPTEMBER 12, 2012
LOCATION=STLEC1 IPNAME=(NULL) PORT=NULL SPORT=NULL RPORT=NULL
ALIAS=(NULL)
IPV4=NULL IPV6=NULL
GRPIPV4=NULL GRPIPV6=NULL
LUNAME=SYEC1DB2 PASSWORD=DB2PW1 GENERICLU=(NULL)

ACTIVE LOG COPY 1 DATA SETS
START RBA/TIME END RBA/TIME DATE/LTIME DATA SET INFORMATION
---------------------- ---------------------- ---------- --------------------
0000000000007FA6B000 0000000000007FA6FFFF 2011.110 DSN=DSNC000.DB2A.LOGCOPY1.DS02

2012.256 20:50:44.8 2012.256 20:50:49.3 9:17 PASSWORD=(NULL) STATUS=TRUNCATED, REUSABLE
0000000000007FA70000 0000000000007FA73FFF 2011.110 DSN=DSNC000.DB2A.LOGCOPY1.DS03

2012.256 20:50:49.3 2012.256 20:50:57.4 9:17 PASSWORD=(NULL) STATUS=TRUNCATED, REUSABLE
0000000000007FA74000 00000000000080E23FFF 2011.110 DSN=DSNC000.DB2A.LOGCOPY1.DS01

2012.256 20:50:57.4 9:17 PASSWORD=(NULL) STATUS=REUSABLE
ARCHIVE LOG COPY 1 DATA SETS
NO ARCHIVE DATA SETS DEFINED FOR THIS COPY
ACTIVE LOG COPY 2 DATA SETS
NO ACTIVE DATA SETS DEFINED FOR THIS COPY
ARCHIVE LOG COPY 2 DATA SETS
NO ARCHIVE DATA SETS DEFINED FOR THIS COPY

CONDITIONAL RESTART CONTROL RECORD
20:51:19 SEPTEMBER 12, 2012

**** ACTIVE CRCR RECORD ****
NO CRCR RECORDS ARE ACTIVE

CRCR IDENTIFIER 0002

USE COUNT 1
RECORD STATUS

CRCR NOT ACTIVE
PROCESSING STATUS

COLD START (STARTRBA = ENDRBA)
FORWARD = NO
BACKOUT = NO

STARTRBA 000000000000000FE000
ENDRBA 000000000000000FE000
ENDLRSN NOT SPECIFIED
ENDTIME NOT SPECIFIED
EARLIEST REQUESTED RBA 00000000000000000000

Chapter 38. DSNJU004 (print log map) 907

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FIRST LOG RECORD RBA 00000000000000000000
ORIGINAL CHECKPOINT RBA 00000000000000000000
NEW CHECKPOINT RBA (CHKPTRBA) NOT SPECIFIED
CRCR CREATED 19:51:36 SEPTEMBER 12, 2012
BEGIN RESTART 20:49:12 SEPTEMBER 12, 2012
RESTART PROGRESS STARTED ENDED

======= =====
CURRENT STATUS REBUILD NO NO
FORWARD RECOVERY PHASE NO NO
BACKOUT RECOVERY PHASE NO NO

CRCR IDENTIFIER 0001
USE COUNT 1
RECORD STATUS

CRCR NOT ACTIVE
SUCCESSFUL RESTART

PROCESSING STATUS
COLD START (STARTRBA = ENDRBA)
FORWARD = NO
BACKOUT = NO

STARTRBA 00000000000069958000
ENDRBA 00000000000069958000
ENDLRSN NOT SPECIFIED
ENDTIME NOT SPECIFIED
EARLIEST REQUESTED RBA 00000000000000000000
FIRST LOG RECORD RBA 00000000000000000000
ORIGINAL CHECKPOINT RBA 00000000000000000000
NEW CHECKPOINT RBA (CHKPTRBA) NOT SPECIFIED
CRCR CREATED 16:17:06 APRIL 20, 2011
BEGIN RESTART 16:19:39 APRIL 20, 2011
END RESTART 16:19:48 APRIL 20, 2011
RESTART PROGRESS STARTED ENDED

======= =====
CURRENT STATUS REBUILD YES YES
FORWARD RECOVERY PHASE YES YES
BACKOUT RECOVERY PHASE YES YES

CHECKPOINT QUEUE
20:51:19 SEPTEMBER 12, 2012

....

TIME OF CHECKPOINT 14:10:13 JUNE 22, 2012
BEGIN CHECKPOINT RBA 0000000000007AD2C562
END CHECKPOINT RBA 0000000000007AD2ECBE
END CHECKPOINT STCK 00C9C2079978DA000000
TIME OF CHECKPOINT 17:06:49 JUNE 13, 2012
BEGIN CHECKPOINT RBA 0000000000007AD1FE4B
END CHECKPOINT RBA 0000000000007AD2B2BE
END CHECKPOINT STCK 00C9B6DE530C48000000
SHUTDOWN CHECKPOINT
TIME OF CHECKPOINT 22:46:33 JUNE 12, 2012
BEGIN CHECKPOINT RBA 0000000000007ACFBB93
END CHECKPOINT RBA 0000000000007AD02A9E
END CHECKPOINT STCK 00C9B5E85C1961000000
TIME OF CHECKPOINT 22:46:29 JUNE 12, 2012
BEGIN CHECKPOINT RBA 0000000000007AC0F000
END CHECKPOINT RBA 0000000000007AC6D6B4
END CHECKPOINT STCK 00C9B5E8582489000000

ARCHIVE LOG COMMAND HISTORY
20:51:19 SEPTEMBER 12, 2012

DATE TIME RBA MODE WAIT TIME
------------ ---------- -------------------- ------- ---- -----
SEP 12, 2012 20:50:57.4 0000000000007FA73A2E QUIESCE YES 5 D
SEP 12, 2012 20:50:49.3 0000000000007FA6F35E
SEP 12, 2012 20:50:44.8 0000000000007FA6ACC2 QUIESCE NO 5 D
SEP 12, 2012 20:50:39.9 0000000000007FA66543
DSNJ401I DSNUPBHR BACKUP SYSTEM UTILITY HISTORY RECORD NOT FOUND

SYSTEM CCSIDS
20:51:19 SEPTEMBER 12, 2012

SYSTEM CCSIDS

908 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ASCII SBCS = 1252
ASCII MIXED = 65534
ASCII DBCS = 65534
EBCDIC SBCS = 37
EBCDIC MBCS = 65534
EBCDIC DBCS = 65534
UNICODE SBCS = 367
UNICODE MBCS = 1208
UNICODE DBCS = 1200

DSNJ200I DSNJU004 PRINT LOG UTILITY PROCESSING COMPLETED SUCCESSFULLY

The sample print log map utility output in the following figure is for a member of
a data sharing group.

**
* *
* LOG MAP OF THE BSDS DATA SET BELONGING TO MEMBER ’DL51 ’ OF GROUP ’DSNL5 ’. *
* *
**
DSNJCNVT CONVERSION PROGRAM HAS RUN DDNAME=GROUP

LOG MAP OF BSDS DATA SET COPY 1, DSN=DSNL5LOG.DL51.BSDS01
LTIME INDICATES LOCAL TIME, ALL OTHER TIMES ARE GMT.

DATA SHARING MODE IS ON
SYSTEM TIMESTAMP - DATE=2013.164 LTIME=13:17:24.34
UTILITY TIMESTAMP - DATE=2013.098 LTIME= 1:06:04.02
VSAM CATALOG NAME=DSNL5SYS
HIGHEST RBA WRITTEN 000000004C45C60F9E9E 2013.164 20:17:47.3
HIGHEST RBA OFFLOADED 000000004C45ACB5CFFF
RBA WHEN CONVERTED TO V4 00000000000000000000
MAX RBA FOR TORBA 00000000000000000000
MIN RBA FOR TORBA 00000000000000000000
STCK TO LRSN DELTA 00000000000000000000

THIS BSDS HAS MEMBER RECORDS FOR THE FOLLOWING MEMBERS:
HOST MEMBER NAME: DL51

MEMBER ID: 1
GROUP NAME: DSNL5
BSDS COPY 1 DATA SET NAME: DSNL5LOG.DL51.BSDS01
BSDS COPY 2 DATA SET NAME: DSNL5LOG.DL51.BSDS02
ENFM START RBA/LRSN: 00C72DC5B25477000000

MEMBER NAME: DL53
MEMBER ID: 2
GROUP NAME: DSNL5
BSDS COPY 1 DATA SET NAME: DSNL5LOG.DL53.BSDS01
BSDS COPY 2 DATA SET NAME: DSNL5LOG.DL53.BSDS02

MEMBER NAME: DL52
MEMBER ID: 3
GROUP NAME: DSNL5
BSDS COPY 1 DATA SET NAME: DSNL5LOG.DL52.BSDS01
BSDS COPY 2 DATA SET NAME: DSNL5LOG.DL52.BSDS02

MEMBER NAME: DL54
MEMBER ID: 4
GROUP NAME: DSNL5
BSDS COPY 1 DATA SET NAME: DSNL5LOG.DL54.BSDS01
BSDS COPY 2 DATA SET NAME: DSNL5LOG.DL54.BSDS02

MEMBER NAME: DL55
MEMBER ID: 5
GROUP NAME: DSNL5
BSDS COPY 1 DATA SET NAME: DSNL5LOG.DL55.BSDS01
BSDS COPY 2 DATA SET NAME: DSNL5LOG.DL55.BSDS02
THIS MEMBER WAS QUIESCED ON 2013.161 AT 14:23:22.9

MEMBER NAME: DL56
MEMBER ID: 6

Figure 113. Sample print log map utility output for a non-data-sharing subsystem

Chapter 38. DSNJU004 (print log map) 909

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

GROUP NAME: DSNL5
BSDS COPY 1 DATA SET NAME: DSNL5LOG.DL56.BSDS01
BSDS COPY 2 DATA SET NAME: DSNL5LOG.DL56.BSDS02
THIS MEMBER WAS QUIESCED ON 2013.133 AT 18:30:06.9

MEMBER NAME: DESTROYED
MEMBER ID: 7
GROUP NAME: DSNL5
BSDS COPY 1 DATA SET NAME:
BSDS COPY 2 DATA SET NAME:
THIS MEMBER WAS DESTROYED ON 2012.150 AT 17:54:09.5
THIS MEMBER ID IS AVAILABLE FOR REUSE

**** DISTRIBUTED DATA FACILITY ****
COMMUNICATION RECORD

20:17:49 JUNE 13, 2013
LOCATION=DSNL5 IPNAME=(NULL) PORT=50200 SPORT=50290 RPORT=50201
ALIAS=DSNL5NETT01,DSNL5NETT02,DSNL5NETT03,

DSNL5NETT04,DSNL5NETT05
IPV4=9.30.178.71 IPV6=ABCD::91E:B247
GRPIPV4=9.30.178.50 GRPIPV6=ABCD::91E:B232
LUNAME=STBDL51 PASSWORD=(NULL) GENERICLU=STBDL5G

ACTIVE LOG COPY 1 DATA SETS
START RBA/LRSN/TIME END RBA/LRSN/TIME DATE/LTIME DATA SET INFORMATION
---------------------- ---------------------- ---------- --------------------
000000004C444BBDD000 000000004C44A455CFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY1.DS03

00CB81C00D9C43400400 00CB81C3CE783A060000 9:41 STATUS=REUSABLE
2013.164 16:35:33.3 2013.164 16:52:20.9

000000004C44A455D000 000000004C44FC39CFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY1.DS05
00CB81C3CE783A060000 00CB81C962BC23D21200 9:41 STATUS=TRUNCATED, REUSABLE
2013.164 16:52:20.9 2013.164 17:17:18.5

000000004C44FC39D000 000000004C45541DCFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY1.DS04
00CB81C962BC23D21200 00CB81CE3D7E49E72400 10:16 STATUS=REUSABLE
2013.164 17:17:18.5 2013.164 17:39:01.6

000000004C45541DD000 000000004C45ACB5CFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY1.DS01
00CB81CE3D7E49E72400 00CB81D320A86B598000 9:41 STATUS=REUSABLE
2013.164 17:39:01.6 2013.164 18:00:53.6

000000004C45ACB5D000 000000004C46054DCFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY1.DS02
00CB81D320A86B598000 9:41 STATUS=NOTREUSABLE
2013.164 18:00:53.6

ARCHIVE LOG COPY 1 DATA SETS
START RBA/LRSN/TIME END RBA/LRSN/TIME DATE/LTIME DATA SET INFORMATION
---------------------- ---------------------- ---------- --------------------
000000003ECDEE9AE000 000000003ECE4732DFFF 2013.074 DSN=DSNL5AR1.DL51.D13074.T0753360.A0165898

00CB108020450A8B8600 00CB10817DEBA05B8000 7:54 VOL=ARX081 UNIT=SYSDA
2013.074 14:47:52.2 2013.074 14:53:58.8

CATALOGUED
000000003ECE4732E000 000000003ECE9FCADFFF 2013.074 DSN=DSNL5AR1.DL51.D13074.T0800383.A0165899

00CB10817DEBA05B8000 00CB10831082B6008800 8:01 VOL=ARX030 UNIT=SYSDA
2013.074 14:53:58.8 2013.074 15:01:01.0

CATALOGUED
...
000000004C44A455D000 000000004C44FC39CFFF 2013.164 DSN=DSNL5AR1.DL51.D13164.T1016560.A0176325

00CB81C3CE783A060000 00CB81C962BC23D21200 10:17 VOL=ARX054 UNIT=SYSDA
2013.164 16:52:20.9 2013.164 17:17:18.5

CATALOGUED
000000004C44FC39D000 000000004C45541DCFFF 2013.164 DSN=DSNL5AR1.DL51.D13164.T1038388.A0176326

00CB81C962BC23D21200 00CB81CE3D7E49E72400 10:39 VOL=ARX755 UNIT=SYSDA
2013.164 17:17:18.5 2013.164 17:39:01.6

CATALOGUED
000000004C45541DD000 000000004C45ACB5CFFF 2013.164 DSN=DSNL5AR1.DL51.D13164.T1100310.A0176327

00CB81CE3D7E49E72400 00CB81D320A86B598000 11:01 VOL=ARX224 UNIT=SYSDA
2013.164 17:39:01.6 2013.164 18:00:53.6

CATALOGUED
ACTIVE LOG COPY 2 DATA SETS
START RBA/LRSN/TIME END RBA/LRSN/TIME DATE/LTIME DATA SET INFORMATION
---------------------- ---------------------- ---------- --------------------
000000004C444BBDD000 000000004C44A455CFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY2.DS03

00CB81C00D9C43400400 00CB81C3CE783A060000 9:41 STATUS=REUSABLE

910 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

2013.164 16:35:33.3 2013.164 16:52:20.9
000000004C44A455D000 000000004C44FC39CFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY2.DS05

00CB81C3CE783A060000 00CB81C962BC23D21200 9:41 STATUS=REUSABLE
2013.164 16:52:20.9 2013.164 17:17:18.5

000000004C44FC39D000 000000004C45541DCFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY2.DS04
00CB81C962BC23D21200 00CB81CE3D7E49E72400 10:16 STATUS=REUSABLE
2013.164 17:17:18.5 2013.164 17:39:01.6

000000004C45541DD000 000000004C45ACB5CFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY2.DS01
00CB81CE3D7E49E72400 00CB81D320A86B598000 9:41 STATUS=REUSABLE
2013.164 17:39:01.6 2013.164 18:00:53.6

000000004C45ACB5D000 000000004C46054DCFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY2.DS02
00CB81D320A86B598000 9:41 STATUS=NOTREUSABLE
2013.164 18:00:53.6

ARCHIVE LOG COPY 2 DATA SETS
NO ARCHIVE DATA SETS DEFINED FOR THIS COPY

CONDITIONAL RESTART CONTROL RECORD
20:17:51 JUNE 13, 2013

**** ACTIVE CRCR RECORD ****
NO CRCR RECORDS ARE ACTIVE

CRCR IDENTIFIER 0003

USE COUNT 1
RECORD STATUS

CRCR NOT ACTIVE
SUCCESSFUL RESTART

PROCESSING STATUS
FORWARD = YES
BACKOUT = NO

STARTRBA NOT SPECIFIED
ENDRBA NOT SPECIFIED
ENDLRSN NOT SPECIFIED
ENDTIME NOT SPECIFIED
EARLIEST REQUESTED RBA 00000000000000000000
FIRST LOG RECORD RBA 00000000000000000000
ORIGINAL CHECKPOINT RBA 00000000000000000000
NEW CHECKPOINT RBA (CHKPTRBA) NOT SPECIFIED
CRCR CREATED 14:55:09 JANUARY 04, 2012
BEGIN RESTART 14:55:38 JANUARY 04, 2012
END RESTART 14:56:37 JANUARY 04, 2012
RESTART PROGRESS STARTED ENDED

======= =====
CURRENT STATUS REBUILD YES YES
FORWARD RECOVERY PHASE YES YES
BACKOUT RECOVERY PHASE YES YES

CRCR IDENTIFIER 0002
USE COUNT 1
RECORD STATUS

CRCR NOT ACTIVE
SUCCESSFUL RESTART

PROCESSING STATUS
COLD START (STARTRBA = ENDRBA)
FORWARD = NO
BACKOUT = NO

STARTRBA 0000000011BE80000000
ENDRBA 0000000011BE80000000
ENDLRSN NOT SPECIFIED
ENDTIME NOT SPECIFIED
EARLIEST REQUESTED RBA 00000000000000000000
FIRST LOG RECORD RBA 00000000000000000000
ORIGINAL CHECKPOINT RBA 00000000000000000000
NEW CHECKPOINT RBA (CHKPTRBA) NOT SPECIFIED
CRCR CREATED 21:24:13 OCTOBER 16, 2011
BEGIN RESTART 21:51:25 OCTOBER 16, 2011
END RESTART 21:59:35 OCTOBER 16, 2011
RESTART PROGRESS STARTED ENDED

======= =====
CURRENT STATUS REBUILD YES YES

Chapter 38. DSNJU004 (print log map) 911

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FORWARD RECOVERY PHASE YES YES
BACKOUT RECOVERY PHASE YES YES

CRCR IDENTIFIER 0001
USE COUNT 1
RECORD STATUS

CRCR NOT ACTIVE
SUCCESSFUL RESTART

PROCESSING STATUS
FORWARD = NO
BACKOUT = YES

STARTRBA NOT SPECIFIED
ENDRBA NOT SPECIFIED
ENDLRSN NOT SPECIFIED
ENDTIME NOT SPECIFIED
EARLIEST REQUESTED RBA 00000000000000000000
FIRST LOG RECORD RBA 00000000000000000000
ORIGINAL CHECKPOINT RBA 00000000000000000000
NEW CHECKPOINT RBA (CHKPTRBA) NOT SPECIFIED
CRCR CREATED 17:48:37 MARCH 23, 2010
BEGIN RESTART 17:49:57 MARCH 23, 2010
END RESTART 17:51:28 MARCH 23, 2010
RESTART PROGRESS STARTED ENDED

======= =====
CURRENT STATUS REBUILD YES YES
FORWARD RECOVERY PHASE YES YES
BACKOUT RECOVERY PHASE YES YES

CHECKPOINT QUEUE
20:17:51 JUNE 13, 2013

TIME OF CHECKPOINT 20:16:43 JUNE 13, 2013
BEGIN CHECKPOINT RBA 000000004C45C2CE07F2
END CHECKPOINT RBA 000000004C45C2D9AA15
END CHECKPOINT LRSN 00CB81F17D7369468E00
TIME OF CHECKPOINT 20:14:43 JUNE 13, 2013
BEGIN CHECKPOINT RBA 000000004C45BF6B54F0
END CHECKPOINT RBA 000000004C45BF781379
END CHECKPOINT LRSN 00CB81F10AEDE3280400
TIME OF CHECKPOINT 20:12:43 JUNE 13, 2013
BEGIN CHECKPOINT RBA 000000004C45B97FCACF
END CHECKPOINT RBA 000000004C45B98AFE56
END CHECKPOINT LRSN 00CB81F0984E2858AC00

....

TIME OF CHECKPOINT 17:02:21 JUNE 13, 2013
BEGIN CHECKPOINT RBA 000000004C44CCDE6D2F
END CHECKPOINT RBA 000000004C44CCE8B409
END CHECKPOINT LRSN 00CB81C60AC5C633A600
TIME OF CHECKPOINT 17:00:21 JUNE 13, 2013
BEGIN CHECKPOINT RBA 000000004C44C50572CF
END CHECKPOINT RBA 000000004C44C50FB946
END CHECKPOINT LRSN 00CB81C598549EB09000
TIME OF CHECKPOINT 16:58:21 JUNE 13, 2013
BEGIN CHECKPOINT RBA 000000004C44BBDF62C0
END CHECKPOINT RBA 000000004C44BBE9CC54
END CHECKPOINT LRSN 00CB81C525E39E4CAE00
TIME OF CHECKPOINT 16:56:21 JUNE 13, 2013
BEGIN CHECKPOINT RBA 000000004C44B36E23A6
END CHECKPOINT RBA 000000004C44B3787B59
END CHECKPOINT LRSN 00CB81C4B372E7DD0400
TIME OF CHECKPOINT 16:54:21 JUNE 13, 2013
BEGIN CHECKPOINT RBA 000000004C44ACA3882B
END CHECKPOINT RBA 000000004C44ACB70485
END CHECKPOINT LRSN 00CB81C441338C1B2600

ARCHIVE LOG COMMAND HISTORY
MEMBER DL51

DATA SHARING GROUP DSNL5 CONTAINS 7 MEMBERS
20:17:51 JUNE 13, 2013

DATE/SDATE TIME/STIME RBA MODE WAIT TIME SCOPE CMD ORIGIN STATUS ACTIVE
------------ ---------- -------------------- ------- ---- ----- ----- ---------- ------ ------

912 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

JUN 10, 2013 13:25:41.9 000000004B744729CE22 QUIESCE NO 5 D G DL51 ORIGINATOR 5
JUN 03, 2013 15:12:07.0 000000004A22F3390BE4 QUIESCE NO 5 D G DL51 ORIGINATOR 5
MAY 20, 2013 15:54:03.1 00000000485391AC2858 QUIESCE NO 5 D G DL51 ORIGINATOR 5
MAY 13, 2013 16:20:31.7 0000000047B36F159850 QUIESCE NO 5 D G DL51 ORIGINATOR 5
MAY 06, 2013 13:25:22.9 000000004666B2D550FF QUIESCE NO 5 D G DL51 ORIGINATOR 5
APR 29, 2013 16:26:52.2 000000004576BE7884CA QUIESCE NO 5 D G DL51 ORIGINATOR 5
APR 22, 2013 14:12:22.4 00000000445250177700 QUIESCE NO 5 D G DL51 ORIGINATOR 5
APR 15, 2013 13:25:32.3 00000000435BF4740EC7 QUIESCE NO 5 D G DL51 ORIGINATOR 5
APR 08, 2013 13:25:58.9 00000000422B9CEA328A QUIESCE NO 5 D G DL51 ORIGINATOR 5
APR 01, 2013 19:04:21.2 0000000040CD3F8A2AA1 QUIESCE NO 5 D G DL51 PARTICIPANT 5
MAR 24, 2013 18:31:45.1 000000003F805C3E4A6C QUIESCE NO 5 D G DL51 PARTICIPANT 5
MAR 11, 2013 13:25:27.1 000000003DD42CA2D062 QUIESCE NO 5 D G DL51 ORIGINATOR 5
DSNJ401I DSNUPBHR BACKUP SYSTEM UTILITY HISTORY RECORD NOT FOUND

SYSTEM CCSIDS
20:17:51 JUNE 13, 2013

SYSTEM CCSIDS

ASCII SBCS = 1252
ASCII MIXED = 65534
ASCII DBCS = 65534
EBCDIC SBCS = 37
EBCDIC MBCS = 65534
EBCDIC DBCS = 65534
UNICODE SBCS = 367
UNICODE MBCS = 1208
UNICODE DBCS = 1200

DSNJ200I DSNJU004 PRINT LOG UTILITY PROCESSING COMPLETED SUCCESSFULLY

The sample print log map utility output in the following figure is for a deactivated
member and a destroyed member of a data sharing group.

DSNJCNVB CONVERSION PROGRAM HAS RUN DDNAME=SYSUT1
DSNJCNVT CONVERSION PROGRAM HAS NOT RUN DDNAME=SYSUT1

LOG MAP OF BSDS DATA SET COPY 1, DSN=DSNC000.DB2B.BSDS01
LTIME INDICATES LOCAL TIME, ALL OTHER TIMES ARE GMT.

DATA SHARING MODE IS ON
SYSTEM TIMESTAMP - DATE=2012.256 LTIME=11:35:42.52
UTILITY TIMESTAMP - DATE=2012.256 LTIME=10:40:27.07
VSAM CATALOG NAME=DSNC000
HIGHEST RBA WRITTEN 0000000000000000682A 0000.000 00:00:00.0
HIGHEST RBA OFFLOADED 00000000000010000FFF
RBA WHEN CONVERTED TO V4 00000000000012F04FFF
MAX RBA FOR TORBA 00000000000012F04FFF
MIN RBA FOR TORBA 00000000000000000000
STCK TO LRSN DELTA 00000000000000000000

THIS BSDS HAS MEMBER RECORDS FOR THE FOLLOWING MEMBERS:
HOST MEMBER NAME: DB2B

MEMBER ID: 2
GROUP NAME: DSNCAT
BSDS COPY 1 DATA SET NAME: DSNC000.DB2B.BSDS01
BSDS COPY 2 DATA SET NAME: DSNC000.DB2B.BSDS02
ENFM START RBA/LRSN: 00000000000000000000

MEMBER NAME: DB2A
MEMBER ID: 1
GROUP NAME: DSNCAT
BSDS COPY 1 DATA SET NAME: DSNC000.DB2A.BSDS01
BSDS COPY 2 DATA SET NAME: DSNC000.DB2A.BSDS02

MEMBER NAME: DESTROYED
MEMBER ID: 3
GROUP NAME: DSNCAT
BSDS COPY 1 DATA SET NAME:
BSDS COPY 2 DATA SET NAME:
THIS MEMBER WAS DESTROYED ON 2012.109 AT 04:12:30.2

Figure 114. Sample print log map utility output for members of a data sharing group

Chapter 38. DSNJU004 (print log map) 913

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

THIS MEMBER ID IS AVAILABLE FOR REUSE
MEMBER NAME: DB2D

MEMBER ID: 4
GROUP NAME: DSNCAT
BSDS COPY 1 DATA SET NAME: DSNC000.DB2D.BSDS01
BSDS COPY 2 DATA SET NAME: DSNC000.DB2D.BSDS02
THIS MEMBER WAS DEACTIVATED ON 2012.109 AT 01:46:52.4

Timestamps in the BSDS

The output of the print log map utility reveals that many timestamps are recorded
in the BSDS. Those timestamps record the date and time of various system events.

Timestamps in the output column LTIME are in local time. All other timestamps
are in Coordinated Universal Time (UTC).

Figure 113 on page 909 and Figure 114 on page 913 show example output from the
print log map utility. The following timestamps are included in the header section
of the reports:

System timestamp
Reflects the date and time that the BSDS was last updated. The BSDS can
be updated by several events:
v DB2 startup.
v During log write activities, whenever the write threshold is reached.

Depending on the number of output buffers that you have specified and
the system activity rate, the BSDS might be updated several times a
second, or it might not be updated for several seconds, minutes, or even
hours.

v Due to an error, DB2 might drop into single-BSDS mode from its normal
dual BSDS mode. This action might occur when a request to get, insert,
point to, update, or delete a BSDS record is unsuccessful. When this
error occurs, DB2 updates the timestamp in the remaining BSDS to force
a timestamp mismatch with the disabled BSDS.

Utility timestamp
The date and time that the contents of the BSDS were altered by the
change log inventory utility (DSNJU003).

The following timestamps are included in the active and archive log data sets
portion of the reports:

Active log date
The date on which the active log data set was originally allocated on the
DB2 subsystem.

Active log time
The time at which the active log data set was originally allocated on the
DB2 subsystem.

Archive log date
The date of creation (not allocation) of the archive log data set.

Archive log time
The time of creation (not allocation) of the archive log data set.

Figure 115. Sample print log map utility output for deactivated and destroyed members of a data sharing group

914 Utility Guide and Reference

|
|
|
|
|
|
|

The following timestamps are included in the conditional restart control record
portion of the report that is shown in Figure 119 on page 918:

Conditional restart control record
The current time and date. This data is reported for information only and
is not kept in the BSDS.

CRCR created
The time and date of creation of the CRCR by the CRESTART option in the
change log inventory utility.

Begin restart
The time and date that the conditional restart was attempted.

End restart
The time and date that the conditional restart ended.

STARTRBA (timestamp)
The time at which the control interval was written.

ENDRBA (timestamp)
The time at which the last control interval was written.

Time of checkpoint
The time and date that are associated with the checkpoint record that was
used during the conditional restart process.

The following timestamps are included in the checkpoint queue and the DDF
communication record sections of the report that is shown in Figure 118 on page
917:

Checkpoint queue
The current time and date. This data is reported for information only and
is not kept in the BSDS.

Time of checkpoint
The time and date that the checkpoint was taken.

DDF communication record (heading)
The current time and date. This data is reported for information only, and
is not kept in the BSDS.

Active log data set status

The BSDS records the status of an active log data set as one of the status values
that are listed in the following table. This table lists each status value and its
meaning.

Table 129. Statuses of active log data sets

Status Meaning

NEW The data set has been defined but never used by DB2, or the log is truncated at a point
before the data set was created. In either case, the data set starting and ending RBA values
are reset to zero.

REUSABLE Either the data set is new and has no records, or the data set has been offloaded. In the print
log map output, the start RBA value for the last REUSABLE data set is equal to the start
RBA value of the last archive log data set.

NOT REUSABLE The data set contains records that have not been offloaded.

STOPPED The offload processor encountered an error while reading a record, and that record could
not be obtained from the other copy of the active log. Alternatively, an error occurred during
truncation of the data set following a write I/O error.

Chapter 38. DSNJU004 (print log map) 915

Table 129. Statuses of active log data sets (continued)

Status Meaning

TRUNCATED One of these conditions exists:

v An I/O error occurred, and DB2 has stopped writing to this data set. The active log data
set is offloaded, beginning with the starting RBA and continuing up to the last valid
record segment in the truncated active log data set. (The RBA of the last valid record
segment is less than the ending RBA of the active log data set.) Logging is switched to the
next available active log data set and continues uninterrupted.

v The log was truncated by a conditional restart at a point within the data set RBA range.

v The DB2 ARCHIVE LOG command was issued while this data set was the current active
log data set.

The status value for each active log data set is displayed in the print log map
utility output. The sample print log map output in the following figure shows how
the status is displayed.

Archive log command history

The print log map utility output also displays the archive log command history, as
shown in the following figure.

The values in the TIME column of the ARCHIVE LOG COMMAND HISTORY
section of the report in the previous figure represent the time that the ARCHIVE
LOG command was issued. This time value is saved in the BSDS and is converted
to printable format at the time that the print log map utility is run. Therefore this
value, when printed, can differ from other time values that were recorded
concurrently. Some time values are converted to printable format when they are
recorded, and then they are saved in the BSDS. These printed values remain the
same when the printed report is run.

ACTIVE LOG COPY 1 DATA SETS
START RBA/LRSN/TIME END RBA/LRSN/TIME DATE/LTIME DATA SET INFORMATION
---------------------- ---------------------- ---------- --------------------
00000000000026A05000 00000000000027DB4FFF 2011.122 DSN=DSNC000.DB2A.LOGCOPY1.DS02

00C9FAE422D486000000 00C9FAE427BF40000000 16:49 STATUS=REUSABLE
2012.219 19:35:03.9 2012.219 19:35:09.0

00000000000027DB5000 00000000000028B65FFF 2011.122 DSN=DSNC000.DB2A.LOGCOPY1.DS03
00C9FAE427BF40000000 00CA28653CDD94000000 16:49 STATUS=TRUNCATED, REUSABLE
2012.219 19:35:09.0 0000.000 00:00:00.0

00000000000028B66000 00000000000029F15FFF 2011.122 DSN=DSNC000.DB2A.LOGCOPY1.DS01
00CA28653CDD94000000 16:49 STATUS=REUSABLE
2012.256 00:12:15.8

Figure 116. Portion of print log map utility output that shows active log data set status

ARCHIVE LOG COMMAND HISTORY
20:51:19 SEPTEMBER 12, 2012

DATE TIME RBA MODE WAIT TIME
------------ ---------- -------------------- ------- ---- -----
SEP 12, 2012 20:50:57.4 0000000000007FA73A2E QUIESCE YES 5 D
SEP 12, 2012 20:50:49.3 0000000000007FA6F35E
SEP 12, 2012 20:50:44.8 0000000000007FA6ACC2 QUIESCE NO 5 D
SEP 12, 2012 20:50:39.9 0000000000007FA66543

Figure 117. Portion of print log map utility output that shows archive log command history

916 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

Reading conditional restart control records

In addition to listing information about log records, the print log map utility lists
information about each conditional restart control record and each checkpoint. A
sample description of a checkpoint record in the queue is shown in the following
figure.

A sample description of a conditional restart control record is shown in the
following figure.

CHECKPOINT QUEUE
19:31:37 SEPTEMBER 12, 2012

TIME OF CHECKPOINT 19:31:26 SEPTEMBER 12, 2012
BEGIN CHECKPOINT RBA 00000000000028C12842
END CHECKPOINT RBA 00000000000028C16B7A
END CHECKPOINT LRSN 00CA296855DA8EB58000
TIME OF CHECKPOINT 19:31:20 SEPTEMBER 12, 2012
BEGIN CHECKPOINT RBA 00000000000028C0C280
END CHECKPOINT RBA 00000000000028C1057A
END CHECKPOINT LRSN 00CA29684FE13EFAC000
TIME OF CHECKPOINT 19:31:06 SEPTEMBER 12, 2012
BEGIN CHECKPOINT RBA 00000000000028C059FE
END CHECKPOINT RBA 00000000000028C09C7A
END CHECKPOINT LRSN 00CA29684275C34C4000
...
TIME OF CHECKPOINT 19:34:52 AUGUST 06, 2012
BEGIN CHECKPOINT RBA 000000000000243F3D36
END CHECKPOINT RBA 000000000000243F8C26
END CHECKPOINT LRSN 00C9FAE41852F2000000

Figure 118. Sample print log map description of checkpoints

Chapter 38. DSNJU004 (print log map) 917

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

System-level backup information

The print log map utility also displays information about system-level backup
copies that are created by the BACKUP SYSTEM utility. An example of
system-level backup information is shown in the following figure.

CRCR IDENTIFIER 0001
USE COUNT 0
RECORD STATUS

CRCR NOT ACTIVE
CRCR NOT USED

PROCESSING STATUS
FORWARD = YES
BACKOUT = YES

STARTRBA NOT SPECIFIED
ENDRBA NOT SPECIFIED
ENDLRSN NOT SPECIFIED
ENDTIME NOT SPECIFIED
EARLIEST REQUESTED RBA 00000000000000000000
FIRST LOG RECORD RBA 00000000000000000000
ORIGINAL CHECKPOINT RBA 00000000000000000000
NEW CHECKPOINT RBA (CHKPTRBA) 00000FF00000000FF000
CRCR CREATED 18:13:54 SEPTEMBER 12, 2012
RESTART PROGRESS STARTED ENDED

======= =====
CURRENT STATUS REBUILD NO NO
FORWARD RECOVERY PHASE NO NO
BACKOUT RECOVERY PHASE NO NO

CRCR IDENTIFIER 0002
USE COUNT 1
RECORD STATUS

CRCR NOT ACTIVE
SUCCESSFUL RESTART

PROCESSING STATUS
COLD START (STARTRBA = ENDRBA)
FORWARD = NO
BACKOUT = NO

STARTRBA 00000000000012F05000
ENDRBA 00000000000012F05000
ENDLRSN NOT SPECIFIED
ENDTIME NOT SPECIFIED
EARLIEST REQUESTED RBA 00000000000000000000
FIRST LOG RECORD RBA 00000000000000000000
ORIGINAL CHECKPOINT RBA 00000000000000000000
NEW CHECKPOINT RBA (CHKPTRBA) NOT SPECIFIED
CRCR CREATED 23:49:14 MAY 02, 2011
BEGIN RESTART 23:51:43 MAY 02, 2011
END RESTART 23:52:04 MAY 02, 2011
RESTART PROGRESS STARTED ENDED

======= =====
CURRENT STATUS REBUILD YES YES
FORWARD RECOVERY PHASE YES YES
BACKOUT RECOVERY PHASE YES YES

Figure 119. Sample print log map description of a CRCR

918 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

When a log copy pool is restored, accurate date and time values are not displayed
for the system-level backup that is used to restore the copy pool. Instead, the
DATA/LOG DATE value is displayed as 0000/00/00, and the COMPLETE LTIME
value is displayed as 00:00:00. The reason is that this information is not recorded in
the BSDS until after the system-level backup is complete. Therefore, this
information is not available at the time that the backup copy of the BSDS is made.

An example of system-level backup information as an incremental copy is shown
in the following figure. TYPE applies only to the database copy pool history
entries.

BACKUP SYSTEM UTILITY HISTORY
SUBSYSTEM ID DB2A

00:05:08 SEPTEMBER 14, 2012
START STCK DATA COMPLETE DATA/LOG COMPLETE

DATA LOG RBLP LRSN DATE LTIME
---------------- ---------------- -------------------- -------------------- --------------------
CA2AC09F0F4456A0 0000000000000000 0000000000007FADA6AC 0000000000007FB42C2C 2012/09/13 14:11:46

TOKEN = C4C2F2C1CA2AC09F0F4456A000007FADA6AC
Z/OS 1.13 CAT=YES
LOCATION NAME = STLEC1

CA2AC09B25879868 0000000000000000 0000000000007FAB97E2 0000000000007FB0B9B4 2012/09/13 14:11:42
TOKEN = C4C2F2C1CA2AC09B2587986800007FAB97E2
Z/OS 1.13 CAT=YES
LOCATION NAME = STLEC1

CA2AC096C479E0E8 0000000000000000 0000000000007FA5C090 0000000000007FAD1A28 2012/09/13 14:11:39
TOKEN = C4C2F2C1CA2AC096C479E0E800007FA5C090
Z/OS 1.13 CAT=YES
LOCATION NAME = STLEC1

Figure 120. System-level backup information

BACKUP SYSTEM UTILITY HISTORY
SUBSYSTEM ID DB2A

00:05:08 SEPTEMBER 14, 2012
START STCK DATA COMPLETE

DATA LOG RBLP LRSN
---------------- ---------------- -------------------- --------------------
CA2AC09F0F4456A0 0000000000000000 0000000000007FADA6AC 0000000000007FB42C2C

TOKEN = C4C2F2C1CA2AC09F0F4456A000007FADA6AC
Z/OS 1.13 CAT=YES
LOCATION NAME = STLEC1

CA2AC09B25879868 0000000000000000 0000000000007FAB97E2 0000000000007FB0B9B4
TOKEN = C4C2F2C1CA2AC09B2587986800007FAB97E2
Z/OS 1.13 CAT=YES
LOCATION NAME = STLEC1

CA2AC096C479E0E8 0000000000000000 0000000000007FA5C090 0000000000007FAD1A28
TOKEN = C4C2F2C1CA2AC096C479E0E800007FA5C090 TYPE=I
Z/OS 1.13 CAT=YES
LOCATION NAME = STLEC1

Figure 121. System-level backup information as an incremental copy

Chapter 38. DSNJU004 (print log map) 919

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related concepts:

Management of the bootstrap data set (DB2 Administration Guide)

Conditional restart (DB2 Administration Guide)
Related tasks:

Deleting data sharing members (DB2 Data Sharing Planning and
Administration)

Restoring deactivated data sharing members (DB2 Data Sharing Planning and
Administration)
Related reference:
Chapter 5, “BACKUP SYSTEM,” on page 45

920 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_bsdsmanagement.htm#db2z_bsdsmanagement
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_conditionalrestart.htm#db2z_conditionalrestart
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_deletingdsmembers.htm#db2z_deletingdsmembers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_deletingdsmembers.htm#db2z_deletingdsmembers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_restoringdsmembers.htm#db2z_restoringdsmembers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_restoringdsmembers.htm#db2z_restoringdsmembers

Chapter 39. DSN1COMP

The DSN1COMP stand-alone utility estimates space savings that are to be achieved
by DB2 data compression in table spaces and indexes.

You can run this utility on the following types of data sets that contain
uncompressed data:
v DB2 full image copy data sets
v VSAM data sets that contain DB2 table spaces
v Sequential data sets that contain DB2 table spaces (for example, DSN1COPY

output)

Restrictions:

You cannot run DSN1COMP on concurrent copies.

DSN1COMP does not estimate savings for data sets that contain LOB table spaces.

If you run DSN1COMP on a table space in which the data is the same for all rows,
message DSN1941I is issued. In this case, DSN1COMP does not compute any
statistics.

Environment

Run DSN1COMP as a z/OS job.

You can run DSN1COMP even when the DB2 subsystem is not operational. Before
you use DSN1COMP when the DB2 subsystem is operational, issue the DB2 STOP
DATABASE command. Issuing the STOP DATABASE command ensures that DB2
has not allocated the DB2 data sets.

Do not run DSN1COMP on table spaces in DSNDB01, DSNDB06, or DSNDB07.

Authorization required

DSN1COMP does not require authorization. However, if any of the data sets is
RACF-protected, the authorization ID of the job must have RACF authority.

Required data sets

DSN1COMP uses the following data definition (DD) statements:

SYSPRINT
Defines the data set that contains output messages from DSN1COMP and
all hexadecimal dump output.

SYSUT1
Defines the input data set, which can be a sequential data set or a VSAM
data set.

Specify the disposition for this data set as OLD (DISP=OLD) to ensure that
it is not in use by DB2. Specify the disposition for this data set as SHR
(DISP=SHR) only in circumstances where the DB2 STOP DATABASE
command does not work.

© Copyright IBM Corp. 1983, 2013 921

The requested operation takes place only for the specified data set. In the
following situations, you must specify the correct data set.
v The input data set belongs to a linear table space.
v The index space is larger than 2 GB.
v The table space or index space is a partitioned space.

If you are running the online REORG utility with FASTSWITCH behavior,
verify the data set name before running the DSN1COMP utility. The
fifth-level qualifier in the data set name alternates between 'I0001' and
'J0001' when using FASTSWITCH. If the table space has cloning, the
fifth-level qualifier can be 'n0002.' You cannot specify FASTSWITCH YES if
the table space has cloning; however, a FASTSWITCH YES REORG might
have been done before the clone was created so you might still have a
mixture of 'I' and 'J' data sets. Specify the correct fifth-level qualifier in the
data set name to successfully execute the DSN1COMP utility. To determine
the correct fifth-level qualifier, query the IPREFIX column of
SYSIBM.SYSTABLEPART for each data partition or the IPREFIX column of
SYSIBM.SYSINDEXPART for each index partition. If the object is not
partitioned, use zero as the value for the PARTITION column in your
query.

DSN1DICT
DSN1DICT is required only if you specify the EXTNDICT parameter, to
create an external copy of the compression dictionary that DSN1COMP
produces.

DSN1DICT defines the output data set to which the external copy of the
compression dictionary is written. This data set must:
v Be a sequential data set or a member of a partitioned data set
v Have fixed record format with a record length of 80

The data set or data set member that is produced is an object module that
can be link-edited into a program.

Recommendation

Before using DSN1COMP, be sure that you know the page size and data set size
(DSSIZE) for the table space. Use the following query on the DB2 catalog to get the
information you need, in this example for table 'DEPT':
SELECT T.CREATOR,T.NAME,S.NAME AS TABLESPACE,S.PARTITIONS,S.PGSIZE,

CASE S.DSSIZE
WHEN 0 THEN

CASE WHEN S.TYPE = ’G’ THEN 4194304
WHEN S.TYPE = ’O’ THEN 4194304
WHEN S.TYPE = ’P’ THEN 4194304
WHEN S.TYPE = ’R’ THEN 4194304

ELSE
CASE WHEN S.PARTITIONS > 254 THEN

CASE WHEN S.PGSIZE = 4 THEN 4194304
WHEN S.PGSIZE = 8 THEN 8388608
WHEN S.PGSIZE = 16 THEN 16777216
WHEN S.PGSIZE = 32 THEN 33554432

ELSE NULL
END
WHEN S.PARTITIONS > 64 THEN 4194304
WHEN S.PARTITIONS > 32 THEN 1048576
WHEN S.PARTITIONS > 16 THEN 2097152
WHEN S.PARTITIONS > 0 THEN 4194304

ELSE 2097152
END

END

922 Utility Guide and Reference

ELSE S.DSSIZE
END
AS DSSIZE
FROM SYSIBM.SYSTABLES T,

SYSIBM.SYSTABLESPACE S
WHERE

T.NAME = ’DEPT’ AND
T.TSNAME = S.NAME;

Related concepts:

Contents of the log (DB2 Administration Guide)

Syntax and options of the DSN1COMP control statement
The DSN1COMP utility control statement, with its multiple options, defines the
function that the utility job performs.

DSN1COMP syntax diagram

For table spaces:

�� DSN1COMP
32K
PAGESIZE (4K)

8K
16K
32K

DSSIZE (integer G)
LARGE

NUMPARTS(integer)
�

�
FREEPAGE(integer) PCTFREE(integer) FULLCOPY REORG ROWLIMIT(integer)

�

�
MAXROWS(integer) EXTNDICT(dictionary-name)

��

For indexes:

�� DSN1COMP
LEAFLIM(integer)

��

Option descriptions

To run DSN1COMP, specify one or more of the following parameters on the EXEC
statement to run DSN1COMP. If you specify more than one parameter, separate
each parameter by a comma. You can specify parameters in any order.

32K
Specifies that the input data set, SYSUT1, has a 32-KB page size. If you specify
this option and the SYSUT1 data set does not have a 32-KB page size,
DSN1COMP might produce unpredictable results.

The recommended option for performance is PAGESIZE(32K).

Chapter 39. DSN1COMP 923

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_logcontent.htm#db2z_logcontent

PAGESIZE
Specifies the page size of the input data set that is defined by SYSUT1.
Available page size values are 4K, 8K, 16K, or 32K. If you specify an incorrect
page size, DSN1COMP might produce unpredictable results.

If you omit PAGESIZE, DSN1COMP tries to determine the page size from the
input data set. DB2 issues an error message if DSN1COMP cannot determine
the input page size. This might happen if the header page is not in the input
data set, or if the page size field in the header page contains an invalid page
size.

If information on this value is available in the input data set header page, the
header page information is the default.

DSSIZE(integer G)
Specifies the data set size, in gigabytes, for the input data set. If you omit
DSSIZE, DB2 obtains the data set size from the data set header page.

If you specify DSSIZE, integer must match the DSSIZE value that was specified
when the table space was defined.

LARGE
Specifies that the input data set is a table space that was defined with the
LARGE option. If you specify LARGE, DB2 assumes that the data set has a
4-GB boundary.

The recommended method of specifying a table space defined with LARGE is
DSSIZE(4G).

If you omit the LARGE or DSSIZE(4G) option when it is needed, or if you
specify LARGE for a table space that was not defined with the LARGE option,
the results from DSN1COMP are unpredictable.

If information on this value is available in the input data set header page, the
header page information is the default.

NUMPARTS(integer)
Specifies the number of partitions that are associated with the input data set.
Valid specifications range from 1 to 4096. If you omit NUMPARTS or specify it
as 0, DSN1COMP assumes that your input file is not partitioned. If you specify
a number greater than 64, DSN1COMP assumes that the data set is for a
partitioned table space that was defined with the LARGE option, even if the
LARGE keyword is not specified.

DSN1COMP cannot always validate the NUMPARTS parameter. If you specify
it incorrectly, DSN1COMP might produce unpredictable results.

DSN1COMP terminates and issues message DSN1946I when it encounters an
image copy that contains multiple partitions; a compression report is issued for
the first partition.

This parameter is not used if the target table space is a universal table space.
DSSIZE is used instead.

This parameter is deprecated.

FREEPAGE(integer)
Specifies how often to leave a page of free space when calculating the
percentage of saved pages. You must specify an integer in the range 0 to 255. If
you specify 0, no pages are included as free space when DSN1COMP reports
the percentage of pages saved. Otherwise, one free page is included after every
n pages, where n is the specified integer.

924 Utility Guide and Reference

The default value is 0.

Specify the same value that you specify for the FREEPAGE option of the SQL
statement CREATE TABLESPACE or ALTER TABLESPACE.

PCTFREE(integer)
Indicates what percentage of each page to leave as free space when calculating
the percentage of pages saved. You must specify an integer in the range 0 to
99. When calculating the savings, DSN1COMP allows for at least n percent of
free space for each page, where n is the specified integer.

The default value is 5.

Specify the same value that you specify for the PCTFREE option of the SQL
statement CREATE TABLESPACE or ALTER TABLESPACE.

FULLCOPY
Specifies that a DB2 full image copy (not a DFSMSdss concurrent copy) of your
data is to be used as input. Omitting this parameter when the input is a full
image copy can cause error messages or unpredictable results. If this data is
partitioned, also specify the NUMPARTS parameter to identify the number of
partitions.

REORG
Provides an estimate of compression savings that are comparable to the
savings that the REORG utility would achieve. If this keyword is not specified,
the results are similar to the compression savings that the LOAD utility would
achieve.

ROWLIMIT(integer)
Specifies the maximum number of rows to evaluate in order to provide the
compression estimate. This option prevents DSN1COMP from examining every
row in the input data set. Valid specifications range from 1 to 99000000.

Use this option to limit the elapsed time and processor time that DSN1COMP
requires. An analysis of the first 5 to 10 MB of a table space provides a fairly
representative sample of the table space for estimating compression savings.
Therefore, specify a ROWLIMIT value that restricts DSN1COMP to the first 5
to 10 MB of the table space. For example, if the row length of the table space is
200 bytes, specifying ROWLIMIT(50000) causes DSN1COMP to analyze
approximately 10 MB of the table space.

MAXROWS(integer)
Specifies the maximum number of rows that DSN1COMP is to consider when
calculating the percentage of pages saved. You must specify an integer in the
range 1 to 255.

The default value is 255.

Specify the same value that you specify for the MAXROWS option of the SQL
statement CREATE TABLESPACE or ALTER TABLESPACE.

EXTNDICT(dictionary-name)
Specifies the name of an external copy of the compression dictionary that
DSN1COMP produces. dictionary-name must:
v Be eight bytes
v Contain only uppercase alphanumeric characters
v Begin with an alphabetic character

The external copy of the compression dictionary is primarily for use by the
IBM Data Encryption for IMS and DB2 tool.

Chapter 39. DSN1COMP 925

When EXTNDICT is specified, a DSN1DICT DD statement must be included in
the JCL for running DSN1COMP.

LEAFLIM(integer)
Specifies how many index leaf pages should be evaluated to determine the
compression estimate. This option prevents DSN1COMP from processing all
index leaf pages in the input data set. Valid specifications range from 1 to
99000000.

If the LEAFLIM parameter is not specified, the entire index will be scanned
and all leaf pages will be examined.

In a compressed index, only leaf pages are compressed. All other page types
remain uncompressed.

Related reference:

Data Encryption for IMS and DB2 Databases

Before running DSN1COMP
Certain activities might be required before you run the DSN1COMP utility,
depending on your situation.

If you run DSN1COMP on a segmented table space, you must first query the
SYSTABLEPART catalog table to determine the current instance qualifier, which is
stored in the IPREFIX column. You can then use the current instance qualifier to
code the data set name in the JCL. The following sample shows an example of
such a query.
SELECT DBNAME, TSNAME, PARTITION, IPREFIX

FROM SYSIBM.SYSTABLEPART
WHERE DBNAME = ’DBMC0731’ AND TSNAME = ’TPMC0731’
ORDER BY TSNAME, PARTITION;

The preceding query produces the following result:

The preceding output provides the current instance qualifier (J), which can be used
to code the data set name in the DSN1COMP JCL as follows.
//STEP1 EXEC PGM=DSN1COMP
//SYSUT1 DD DSN=vcatname.DSNDBC.DBMC0731.J0001.A001,DISP=SHR
//SYSPRINT DD AYAOUT=*
//SYSUDUMP DD AYAOUT=*

+---+
| DBNAME | TSNAME | PARTITION | IPREFIX |
+---+

1_| DBMC0731 | TPMC0731 | 1 | J |
2_| DBMC0731 | TPMC0731 | 2 | J |
3_| DBMC0731 | TPMC0731 | 3 | J |
4_| DBMC0731 | TPMC0731 | 4 | J |
5_| DBMC0731 | TPMC0731 | 5 | J |

+---+

Figure 122. Result from query on the SYSTABLEPART catalog table to determine the value
in the IPREFIX column

926 Utility Guide and Reference

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.imstools.deu.doc.ug/decuhome.htm

Estimating compression savings achieved with option REORG
If you run DSN1COMP with the REORG option on small data sets, the resulting
estimates might vary greatly from the estimates that are produced without the
default REORG option. Alternatively, if you run DSN1COMP and specify a small
number (n) for ROWLIMIT, the estimates might vary greatly from the estimates
that are produced without REORG.

DSN1COMP does not try to convert data to the latest version before it compresses
rows and derives a savings estimate.

Without the REORG option, DSN1COMP uses the first n rows to fill the
compression dictionary. DSN1COMP processes the remaining rows to provide the
compression estimate. If the number of rows that are used to build the dictionary
is a significant percentage of the data set rows, little savings result. With the
REORG option, DSN1COMP processes all the rows, including those that are used
to build the dictionary, which results in greater compression.

The DSN1COMP utility determines possible saving estimates at the data set level
for a unique partition only. Therefore, if DSN1COMP is run against an image copy
data set that contains several partitions or against a single partition of
partition-by-growth table spaces (PBGs), the results will be different from what the
REORG utility would produce.

Free space in compression calculations on table space
The DSN1COMP utility makes compression estimates, which take into account the
PCTFREE and FREEPAGE options.

If you use different PCTFREE or FREEPAGE values than those that were created
with the input table space, you get a different value for noncmppages.
DSN1COMP reports this value in message DSN1940I, as shown in the example
output in the following figure.
DSN1999I START OF DSN1COMP FOR JOB TST512A STEP1
DSN1998I INPUT DSNAME = FUFOU237.TSP32K , SEQ
DSN1944I DSN1COMP INPUT PARAMETERS

512 DICTIONARY SIZE USED
30 FREEPAGE VALUE USED
45 PCTFREE VALUE USED

NO ROWLIMIT WAS REQUESTED
ESTIMATE BASED ON DB2 LOAD METHOD

DSN1940I DSN1COMP COMPRESSION REPORT
1,289 KB WITHOUT COMPRESSION

717 KB WITH COMPRESSION
44 PERCENT OF THE BYTES WOULD BE SAVED

176 ROWS SCANNED TO BUILD DICTIONARY
20,000 ROWS SCANNED TO PROVIDE COMPRESSION ESTIMATE

512 DICTIONARY ENTRIES

1 DICTIONARY PAGES REQUIRED
147 PAGES REQUIRED WITHOUT COMPRESSION
148 PAGES REQUIRED WITH COMPRESSION

0 PERCENT OF THE DB2 DATA PAGES WOULD BE SAVED

*** DETAIL REPORT OF FREQUENCIES AND AVERAGES ***

1 CHILD CHARACTER WAS COMPARED 566,764 TIMES
2 CHILD CHARACTERS WERE COMPARED 182,026 TIMES

Chapter 39. DSN1COMP 927

3 CHILD CHARACTERS WERE COMPARED 10,300 TIMES
5 CHILD CHARACTERS WERE COMPARED 1,129 TIMES
TOTAL ALPHABET NODE COMPARISONS 528,139 TIMES

967,361 CHILD COMPARISONS IN THE SIBLING LISTS
760,219 SEARCHES IN THE SIBLING LISTS

1.2 AVERAGE NUMBER OF COMPARISONS PER SEARCH
60 BYTES FOR AVERAGE UNCOMPRESSED ROW LENGTH
39 BYTES FOR AVERAGE COMPRESSED ROW LENGTH

263 IS THE DATABASE ID (DBID)
2 IS THE PAGESET ID (PSID)

Sample DSN1COMP control statements
Use the sample control statements as models for developing your own
DSN1COMP control statements.

Example 1: Estimating space savings from data compression for
a full image copy

The following statement specifies that the DSN1COMP utility is to report the
estimated space savings that are to be achieved by compressing the full image
copy that is identified by the SYSUT1 DD statement. In this statement, the DSN
option specifies the data set name of the image copy that is to be used as input.
The fifth qualifier in the data set name can be either I0001 or J0001. This example
uses I0001. Note that because the input is a full image copy, the FULLCOPY option
must be specified.
//jobname JOB acct information
//COMPEST EXEC PGM=DSN1COMP,PARM=’FULLCOPY’
//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBC.DB254A.TS254A.I0001.A001,DISP=SHR

Example 2: Providing intended free space when estimating
space savings

In the following sample statement, STEP1 specifies that DSN1COMP is to report
the estimated space savings that are to be achieved by compressing the data in the
data set that is identified by the SYSUT1 DD statement,
DSNC810.DSNDBD.DB254SP4.TS254SP4.I0001.A00. When calculating these
estimates, DSN1COMP considers the values passed by the PCTFREE and
FREEPAGE options. The PCTFREE value indicates that 20% of each page is to be
left as free space. The FREEPAGE value indicates that every fifth page is to be left
as free space. This value must be the same value that you specified for the
FREEPAGE option of the SQL statement CREATE TABLESPACE or ALTER
TABLESPACE.

STEP2 specifies that DSN1COMP is to report the estimated space savings that are
to achieved by compressing the data in the data set that is identified by the
SYSUT1 DD statement, DSNC810.DSNDBD.DB254SP4.TS254SP4.I0001.A0001. When
providing the compression estimate, DSN1COMP is to evaluate no more than
20 000 rows, as indicated by the ROWLIMIT option. Specifying the maximum
number of rows to evaluate limits the elapsed time and processor time that

Figure 123. Example DSN1COMP output

928 Utility Guide and Reference

DSN1COMP requires.

Example 3: Estimating space savings that are comparable to
what the REORG utility would achieve.

The following statement specifies that DSN1COMP is to report the estimated space
savings that are to be achieved by compressing the data in the data set that is
identified by the SYSUT1 DD statement,
DSNCAT.DSNDBD.DBJT0201.TPJTO201.I0001.A254. This input data set is a table
space that was defined with the LARGE option and has 254 partitions, as indicated
by the DSN1COMP options LARGE and NUMPARTS.

The REORG option indicates that DSN1COMP is to provide an estimate of
compression savings that is comparable to the savings that the REORG utility
would achieve, rather than what the LOAD utility would achieve.

When calculating these estimates, DSN1COMP considers the values passed by the
PCTFREE and FREEPAGE options. The PCTFREE value indicates that 30% of each
page is to be left as free space. The FREEPAGE value indicates that every thirtieth
page is to be left as free space. This value must be the same value that you
specified for the FREEPAGE option of the SQL statement CREATE TABLESPACE
or ALTER TABLESPACE. DSN1COMP is to evaluate no more than 20 000 rows, as
indicated by the ROWLIMIT option.

//DSN1COMP JOB MSGLEVEL=(1,1),CLASS=A,MSGCLASS=A,REGION=3000K,
// USER=SYSADM,PASSWORD=SYSADM
/*ROUTE PRINT STLXXXX.USERID
//STEP1 EXEC PGM=DSN1COMP,PARM=’PCTFREE(20),FREEPAGE(5)’
//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=DSNC110.DSNDBD.DB254SP4.TS254SP4.I0001.A001,DISP=SHR
/*
//STEP2 EXEC PGM=DSN1COMP,PARM=’ROWLIMIT(20000)’
//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=DSNC110.DSNDBD.DB254SP4.TS254SP4.I0001.A001,DISP=SHR
/*
//

Figure 124. Example DSN1COMP statements with PCTFREE, FREEPAGE, and ROWLIMIT
options

//STEP2 EXEC PGM=DSN1COMP,
// PARM=’LARGE,PCTFREE(30),FREEPAGE(30),NUMPARTS(254),
// REORG,ROWLIMIT(1000)’
//STEPLIB DD DSN=’USER.TESTLIB’,DISP=SHR
// DD DSN=’DB2A.SDSNLOAD’,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBD.DBJT0201.TPJT0201.I0001.A254,DISP=SHR
//SYSUT2 DD SYSOUT=A
/*

Figure 125. Example DSN1COMP statement with the LARGE, PCTFREE, FREEPAGE,
NUMPARTS, REORG, and ROWLIMIT options.

Chapter 39. DSN1COMP 929

Example 4: Building an Object Module from the DSN1COMP
generated dictionary.

In the sample statement, BUILD specifies that DSN1COMP is to externalize the
compression dictionary that it generated. This behavior is indicated by the
EXTNDICT option, which requires that a DSN1DICT DD statement be provided.
DSN1DICT identifies the output data set to which the generated object module is
written and stored for additional processing.

DSN1COMP output
The output of the DSN1COMP utility lists a variety of information.

Message DSN1941

If you receive this message, use a data set with more rows as input, or specify a
larger ROWLIMIT.

Sample DSN1COMP report

The following figure shows a sample of the output that DSN1COMP generates.

Example of DSN1COMP on an index

The following figure shows an example of the output that DSN1COMP on an
index generates.
DSN1999I START OF DSN1COMP FOR JOB DSN1COMP STEP2
DSN1998I INPUT DSNAME = TESTCAT.DSNDBD.DB1COMPR.I1.I0001.A001 , VSAM

DSN1944I DSN1COMP INPUT PARAMETERS
PROCESSING PARMS FOR INDEX DATASET:

//BUILD EXEC PGM=DSN1COMP,
// PARM=’DSSIZE(4G),EXTNDICT(dictname)’
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBD.DBIA2401.TPIA2401.I0001.A254,
// DISP=SHR
//DSN1DICT DD DSN=&&OBJ,
// DISP=(,PASS),
// UNIT=SYSALLDA,SPACE=(TRK,(8,4)),
// DCB=(LRECL=80,BLKSIZE=4000,RECFM=FB)

Figure 126. Example DSN1COMP statement with the EXTNDICT option.

DSN1940I DSN1COMP COMPRESSION REPORT
301 KB WITHOUT COMPRESSION
224 KB WITH COMPRESSION
25 PERCENT OF THE BYTES WOULD BE SAVED

1,975 ROWS SCANNED TO BUILD DICTIONARY
4,665 ROWS SCANNED TO PROVIDE COMPRESSION ESTIMATE
4,096 DICTIONARY ENTRIES

81 BYTES FOR AVERAGE UNCOMPRESSED ROW LENGTH
52 BYTES FOR AVERAGE COMPRESSED ROW LENGTH

16 DICTIONARY PAGES REQUIRED
110 PAGES REQUIRED WITHOUT COMPRESSION
99 PAGES REQUIRED WITH COMPRESSION
10 PERCENT OF THE DB2 DATA PAGES WOULD BE SAVED

Figure 127. Sample DSN1COMP report

930 Utility Guide and Reference

NO LEAFLIM WAS REQUESTED

DSN1940I DSN1COMP COMPRESSION REPORT

38 Index Leaf Pages Processed
3,000 Keys Processed
3,000 Rids Processed

401 KB of Key Data Processed
106 KB of Compressed Keys Produced

EVALUATION OF COMPRESSION WITH DIFFERENT INDEX PAGE SIZES:

--
8 K Page Buffer Size yields a
51 % Reduction in Index Leaf Page Space

The Resulting Index would have approximately
49 % of the original index’s Leaf Page Space

No Bufferpool Space would be unused
--

--
16 K Page Buffer Size yields a
74 % Reduction in Index Leaf Page Space

The Resulting Index would have approximately
26 % of the original index’s Leaf Page Space
3 % of Bufferpool Space would be unused to

ensure keys fit into compressed buffers
--

DSN1994I DSN1COMP COMPLETED SUCCESSFULLY, 38 PAGES PROCESSED

Figure 128. Sample DSN1COMP output

Chapter 39. DSN1COMP 931

932 Utility Guide and Reference

Chapter 40. DSN1COPY

You can use the DSN1COPY stand-alone utility to copy DB2 VSAM data sets.

With the DSN1COPY stand-alone utility, you can copy:
v DB2 VSAM data sets to sequential data sets
v DSN1COPY sequential data sets to DB2 VSAM data sets
v DB2 image copy data sets to DB2 VSAM data sets
v DB2 VSAM data sets to other DB2 VSAM data sets
v DSN1COPY sequential data sets to other sequential data sets

A DB2 VSAM data set is one of the following items:
v a single piece of a nonpartitioned table space or index
v a single partition of a partitioned table space or index
v a FlashCopy image copy data set

The input must be a single z/OS sequential or VSAM data set. Concatenation of
input data sets is not supported.

You can also use DSN1COPY to perform the following actions:
v Print hexadecimal dumps of DB2 data sets and databases
v Check the validity of data or index pages (including dictionary pages for

compressed data)
v Translate database object identifiers (OBIDs) to enable moving data sets between

different systems
v Reset to 0 the log RBA that is recorded in each index page or data page.

You cannot run DSN1COPY on concurrent copies.

DSN1COPY can operate on both base and clone objects.

You can use the DSN1COPY utility on LOB table spaces by specifying the LOB
keyword and omitting the SEGMENT and INLCOPY keywords.

DB2 managed data sets can be moved from HDD to SSD by using DSN1COPY.

Output

One intended use of this utility is to aid in determining and correcting system
problems. When diagnosing DB2, you might need to refer to licensed
documentation to interpret output from this utility.

After a data set is populated by DSN1COPY, the first time that it is physically
opened by an operation other than a utility, DB2 checks for any data and catalog
inconsistencies for the following items:
v DBID, PSID, and OBID
v SEGSIZE and PAGESIZE
v Table space type
v Table schema (DB2 checks this item if the table space contains only one table,

and an OBDREC is stored in the system page.)

© Copyright IBM Corp. 1983, 2013 933

|
|
|

|

|

|

|
|

DB2 reports any inconsistencies with a -904 SQL code, and you cannot access the
data.

DB2 does not check these items for LOB or XML table spaces. DB2 also does not
validate record row format or RBA format.

Also, several exception situations exist. DB2 does not check for data and catalog
inconsistencies during the following situations:
v The data set is physically opened by a utility, including the REPAIR utility.
v DB2 is restarting.
v The header page is not formatted yet.
v The REPAIR utility is operating on the header page. (The REPAIR utility closes

the page set when it is finished. Therefore, validation can be done the next time
that the data set is physically opened.)

v The LOGAPPLY phase of the RECOVER utility is processing.

By not checking for inconsistencies during these situations, DB2 limits any
performance impact.

If any inconsistencies are reported, you can correct them by using the REPAIR
utility with the CATALOG option.

Related information:

Types of DB2 table spaces (Introduction to DB2 for z/OS)
“Syntax and options of the REPAIR control statement” on page 646

Environment

Run DSN1COPY as a z/OS job when the DB2 subsystem is either active or not
active.

If you run DSN1COPY when DB2 is active, use the following procedure:
1. Start the table space as read-only by using START DATABASE.
2. Run the QUIESCE utility with the WRITE (YES) option to externalize all data

pages and index pages.
3. Run DSN1COPY with DISP=SHR on the data definition (DD) statement.
4. Start the table space as read/write by using START DATABASE to return to

normal operations.

Authorization required

DSN1COPY does not require authorization. However, if any of the data sets is
protected by RACF, the authorization ID of the job must have RACF authority.

Restrictions

DSN1COPY does not alter data set structure. For example, DSN1COPY does not
copy a partitioned or segmented table space into a simple table space. The output
data set is a page-for-page copy of the input data set. If the intended use of
DSN1COPY is to move or restore data, ensure that definitions for the source and
target table spaces, tables, and indexes are identical. Otherwise, unpredictable
results can occur.

934 Utility Guide and Reference

|
|

|
|

|
|

|

|

|

|
|
|

|

|
|

|
|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_typesofdb2tablespaces.htm#db2z_typesofdb2tablespaces

DSN1COPY cannot copy DB2 recovery log data sets. The format of a DB2 log page
is different from the format of a table or index page. If you try to use DSN1COPY
to recover log data sets, DSN1COPY abnormally terminates.

For a compressed table space, DSN1COPY does not reset the dictionary version for
the following items:
v an inline image copy
v an incremental image copy that was created with the SYSTEMPAGES=YES

COPY utility option

To reset the dictionary version for an inline image copy, use the inline image copy
as input to DSN1COPY with a VSAM intermediate data set as output. This
intermediate data set can then be used as input to DSN1COPY RESET to copy the
intermediate data set to the real target data set.

All the target data sets must exist. You can use Access Method Services to define
them.

DSN1COPY issues an error and terminates in the following situations:
v DSN1COPY can verify that the LOB option is specified, but the data set is not a

LOB data set.
v The LOB option is omitted for a data set that is a LOB data set.

To avoid problems, always specify the LOB option if the input data set SYSUT1 is
a LOB table space, and make sure that the LOB option is not specified for non
LOB table spaces.

DSN1COPY cannot copy a source object of 4 GB or greater in size when it is full
unless the target object is EA-enabled. For example, the source is full when it is not
the last piece of a multi-piece non-partitioned object with a DSSIZE of 4 GB or
greater. To avoid VSAM errors and limit each piece to 2 GB so that the target
object has more pieces than the original source:
v Define the target data set as EA-enabled and use DSN1COPY to copy the data,

one piece at a time, from the source that is not EA-enabled to the target.
v If it is not possible to define the target data set as EA-enabled:

1. Take a full image copy of the entire source object by running the COPY
utility and specifying DSNUM ALL.

2. Create the target object by specifying DSSIZE 2GB for table spaces and
PIECESIZE 2GB for indexes. See “Copying tables from one subsystem to
another” on page 952.

3. Define the partition number data sets (2 GB each) with the IDCAMS
command. Define enough pieces to hold the entire source.

4. Run the DSN1COPY utility with the image copy as the source (SYSUT1), the
target object as SYSUT2, and specify DSSIZE 2G.

DSN1COPY cannot be used to restore data to a point in time before materialization
of pending definition changes.

For partition-by-growth table spaces, DSN1COPY can be used only if the number
of active or existing partitions of the source and the target table space are the
same. Otherwise, use the UNLOAD utility to unload the data from the source table
space and the LOAD utility to reload the data into the target table space.

Chapter 40. DSN1COPY 935

|
|

Syntax and options of the DSN1COPY control statement
The DSN1COPY utility control statement, with its multiple options, defines the
function that the utility job performs.

DSN1COPY syntax diagram

�� DSN1COPY
CHECK 32K

PAGESIZE(4K)
8K
16K
32K

FULLCOPY
INCRCOPY
SEGMENT
INLCOPY

LARGE
LOB

�

�
DSSIZE (integer G) PIECESIZ(integer K)

M
G

NUMPARTS(integer)
�

�
(1)

EBCDIC
PRINT

(hexadecimal-constant,hexadecimal-constant) ASCII
UNICODE

�

�
VALUE(string)

hexadecimal-constant
OBIDXLAT RESET

��

Notes:

1 EBCDIC is not necessarily the default if the first page of the input data set is a header page. If
the first page is a header page, DSN1COPY uses the format information in the header page as the
default format.

Option descriptions

To run DSN1COPY with invocation parameters, specify one or more of the
following parameters on the EXEC statement. If you specify more than one
parameter, separate each parameter by a comma. You can specify parameters in
any order.

Default settings for DSN1COPY options are taken from the input data set header
page. This default processing is recommended when running DSN1COPY because
incorrect parameter settings can result in unpredictable results.

When non-default user values are specified, DSN1COPY compares the input data
set header page settings against user-specified values whenever possible. If a
mismatch is detected, message DSN1930I is issued. The processing is performed
with the user-specified values

CHECK
Checks each page from the SYSUT1 data set for validity. The validity checking
operates on one page at a time and does not include any cross-page checking.

936 Utility Guide and Reference

If an error is found, a message is issued describing the type of error, and a
dump of the page is sent to the SYSPRINT data set. If an unexpected page
number is encountered, validity checking continues to the end and a report
will be printed of all unexpected page numbers. If you do not receive any
messages, no errors were found. If more than one error exists in a given page,
the check identifies only the first of the errors. However, the entire page is
dumped. DSN1COPY does not check system pages for validity.

An index with BUSINESS_TIME period columns appended to the key for
BUSINESS TIME WITHOUT OVERLAPS bypasses checking for orderly keys.

32K
Specifies that the SYSUT1 data set has a 32-KB page size. If you specify this
option and the SYSUT1 data set does not have a 32-KB page size, DSN1COPY
might produce unpredictable results that might be undetected until later.

PAGESIZE
Specifies the page size of the input data set that is defined by SYSUT1.
Available page size values are 4K, 8K, 16K, or 32K. If you specify an incorrect
page size, DSN1COPY might produce unpredictable results.

If you do not specify the page size, DSN1COPY tries to determine the page
size from the input data set if the first page of the input data set is a header
page. DB2 issues an error message if DSN1COPY cannot determine the input
page size. This might happen if the header page is not in the input data set, or
if the page size field in the header page contains an invalid page size.

FULLCOPY
Specifies that a DB2 full image copy (not a DFSMSdss concurrent copy) of your
data is to be used as input. If this data is partitioned, specify NUMPARTS to
identify the total number of partitions. If you specify FULLCOPY without
NUMPARTS, DSN1COPY determines the NUMPARTS value from the header
page if possible; otherwise, DSN1COPY assumes that your input file is not
partitioned.

Specify FULLCOPY when using a full image copy as input. Omitting the
parameter can cause error messages or unpredictable results.

Do not specify FULLCOPY if you are using a FlashCopy image copy data set
as input.

The FULLCOPY parameter requires SYSUT2 (output data set) to be either a
DB2 VSAM data set or a DUMMY data set.

INCRCOPY
Specifies that an incremental image copy of the data is to be used as input.
DSN1COPY with the INCRCOPY parameter updates existing data sets; do not
redefine the existing data sets. INCRCOPY requires that the output data set
(SYSUT2) be a DB2 VSAM data set.

Before you apply an incremental image copy to your data set, you must first
apply a full image copy to the data set by using the FULLCOPY parameter.
Make sure that you apply the full image copy in a separate execution step
because you receive an error message if you specify both the FULLCOPY and
the INCRCOPY parameters in the same step. Then, apply each incremental
image copy in a separate step, starting with the oldest incremental image copy.

Specifying neither FULLCOPY nor INCRCOPY implies that the input is not an
image copy data set. Therefore, only a single output data set is used.

SEGMENT
Specifies that you want to use a segmented table space as input to DSN1COPY.

Chapter 40. DSN1COPY 937

Pages with all zeros in the table space are copied, but no error messages are
issued. You cannot specify FULLCOPY or INCRCOPY if you specify
SEGMENT.

If you are using DSN1COPY with the OBIDXLAT to copy a DB2 data set to
another DB2 data set, the source and target table spaces must have the same
SEGSIZE attribute.

You cannot specify the SEGMENT option with the LOB parameter.

INLCOPY
Specifies that the input data is an inline copy data set. The INLCOPY
parameter requires SYSUT2 (output data set) to be either a VSAM data set or a
DUMMY data set.

You cannot specify the INLCOPY option with the LOB parameter.

DSSIZE(integer G)
Specifies the data set size, in gigabytes, for the input data set. If you omit
DSSIZE, DB2 obtains the data set size from the data set header page.

If you specify DSSIZE, integer must match the DSSIZE value that was specified
when the table space was defined.

LARGE
Specifies that the input data set is a table space that was defined with the
LARGE option, or an index on such a table space. If you specify the LARGE
keyword, DB2 assumes that the data set has a 4-GB boundary. The
recommended method of specifying a table space that was defined with the
LARGE option is DSSIZE(4G).

If you omit the LARGE or DSSIZE(4G) option when it is needed, or if you
specify LARGE for a table space that was not defined with the LARGE option,
the results from DSN1COPY are unpredictable.

If you specify LARGE, you cannot specify LOB or DSSIZE.

LOB
Specifies that SYSUT1 data set is a LOB table space. Empty pages in the table
space are copied, but no error messages are issued. You cannot specify the
SEGMENT and INLCOPY options with the LOB parameter.

DSN1COPY attempts to determine if the input data set is a LOB data set. If it
can be clearly verified that the LOB option is specified, but the data set is not a
LOB data set, or that the LOB option is omitted for a data set that is a LOB
data set, DSN1COPY issues an error message and terminates. Otherwise, if the
LOB option isn't specified or omitted correctly the results of DSN1COPY are
unpredictable.

If you specify LOB, you cannot specify LARGE.

NUMPARTS(integer)
Specifies the number of partitions that are associated with the input data set.
Valid specifications range from 1 to 4096. If you omit NUMPARTS or specify it
as 0, DSN1COPY assumes that your input file is not partitioned. If you specify
a number greater than 64, DSN1COPY assumes that the data set is for a
partitioned table space that was defined with the LARGE option, even if the
LARGE keyword is not specified.

DSN1COPY cannot always validate the NUMPARTS parameter. If you specify
it incorrectly, DSN1COPY might produce unpredictable results.

938 Utility Guide and Reference

DSN1COPY terminates and issues message DSN1946I when it encounters an
image copy that contains multiple partitions; a compression report is issued for
the first partition.

This parameter is not used if the target table space is a universal table space.
DSSIZE is used instead.

This parameter is deprecated.

NUMPARTS(integer)
T

PRINT(hexadecimal-constant,hexadecimal-constant)
Causes the SYSUT1 data set to be printed in hexadecimal format on the
SYSPRINT data set. You can specify the PRINT parameter with or without the
page range specifications (hexadecimal-constant,hexadecimal-constant). If you do
not specify a range, all pages of the SYSUT1 are printed. If you want to limit
the range of pages that are printed, indicate the beginning and ending page. If
you want to print a single page, supply only that page number. In either case,
your range specifications must be from one to eight hexadecimal characters in
length.

The following example shows how you code the PRINT parameter if you want
to begin printing at page X'2F0' and stop at page X'35C':
PRINT(2F0,35C)

Because the CHECK and RESET options and the copy function run
independently of the PRINT range, these options apply to the entire input file,
regardless of whether a range of pages is being printed.

You can indicate the format of the row data in the PRINT output by specifying
EBCDIC, ASCII, or UNICODE.

EBCDIC
Indicates that the row data in the PRINT output is to be displayed in
EBCDIC. The default value is EBCDIC if the first page of the input data
set is not a header page.

If the first page is a header page, DSN1COPY uses the format information
in the header page as the default format. However, if you specify EBCDIC,
ASCII, or UNICODE, that format overrides the format information in the
header page. The unformatted header page dump is always displayed in
EBCDIC, because most of the fields are in EBCDIC.

ASCII
Indicates that the row data in the PRINT output is to be displayed in
ASCII. Specify ASCII when printing table spaces that contain ASCII data.

UNICODE
Indicates that the row data in the PRINT output is to be displayed in
Unicode. Specify UNICODE when printing table spaces that contain
Unicode data.

PIECESIZ(integer)
Specifies the maximum piece size (data set size) for nonpartitioned indexes.
The value that you specify must match the value that was specified when the
nonpartitioning index was created or altered. The defaults for PIECESIZ are 2G
(2 GB) for indexes that are backed by non-large table spaces and 4G (4 GB) for
indexes that are backed by table spaces that were defined with the LARGE
option. This option is required if the piece size is not one of the default values.

Chapter 40. DSN1COPY 939

If PIECESIZ is omitted and the index is backed by a table space that was
defined with the LARGE option, the LARGE option is required for
DSN1COPY.

The subsequent keyword K, M, or G indicates the unit of the value that is
specified in integer.

K Indicates that the integer value is to be multiplied by 1 KB to specify
the maximum piece size in bytes. integer must be either 256 or 512.

M Indicates that the integer value is to be multiplied by 1 MB to specify
the maximum piece size in bytes. integer must be a power of two,
between 1 and 512.

G Indicates that the integer value is to be multiplied by 1 GB to specify
the maximum piece size in bytes. integer must be a power of two,
between 1 and 256.

Valid values for piece size are:
v 1 MB or 1 GB
v 2 MB or 2 GB
v 4 MB or 4 GB
v 8 MB or 8 GB
v 16 MB or 16 GB
v 32 MB or 32 GB
v 64 MB or 64 FB
v 128 MB or 128 GB
v 256 KB, 256 MB, or 256 GB
v 512 KB or 512 MB

VALUE
Causes each page of the SYSUT1 input data set to be scanned for the character
string that you specify in parentheses following the VALUE parameter. Each
page that contains that character string is printed in the SYSPRINT data set.
You can specify the VALUE parameter in conjunction with any of the other
DSN1COPY parameters.

string can consist of 1 to 20 alphanumeric characters.

hexadecimal-constant can consist of 2 to 40 hexadecimal characters. Specify two
apostrophe characters before and after the hexadecimal character string.

If you want to search your input file for the string '12345', your JCL should
look similar to the following JCL:
//STEP1 EXEC PGM=DSN1COPY,PARM=’VALUE(12345)’

Alternatively, you might want to search for the equivalent hexadecimal
character string. If you are processing Unicode or ASCII input files, you must
specify the string in hexadecimal. Your JCL should look similar to the
following JCL:
//STEP1 EXEC PGM=DSN1COPY,PARM=’VALUE(’’3132333435’’)’

OBIDXLAT
Specifies that OBID translation must be done before the DB2 data set is copied.
OBID translation is needed when the source and target OBIDs do not match.

This parameter requires additional input from the SYSXLAT file by using the
DD statements. DSN1COPY can translate only up to 10000 record OBIDs.

If you specify OBIDXLAT, CHECK processing is performed, regardless of
whether you specify the CHECK option.

940 Utility Guide and Reference

Related information:

“The effects of not specifying the OBIDXLAT option” on page 948

RESET
Causes the log RBAs in each index page or data page and the high-formatted
page number in the header page to be reset to 0. If you specify this option,
CHECK processing is performed, regardless of whether you specify the
CHECK option.

Use RESET when the output file is used to build a DB2 table space that is to
be processed on a DB2 subsystem with a different recovery log than the source
subsystem. Failure to specify RESET in such a case can result in an abend
during subsequent update activity. The abend reason code of 00C200C1
indicates that the specified RBA value is outside the valid range of the
recovery log. A condition code of 0 indicates successful completion.

Do not specify the RESET parameter for page sets that are in group buffer pool
RECOVER-pending (GRECP) status.

For a compressed table space, DSN1COPY does not reset the dictionary version
for an inline image copy, or for an incremental image copy that was created
with the SYSTEMPAGES=YES COPY utility option.

If you do not specify RESET when copying a table space from one DB2 system
to another, a down-level ID check might result in abend reason code 00C2010D
when the table space is accessed.

Related information:

Recovering from a down-level page set problem (DB2 Administration Guide)

Before running DSN1COPY
Certain activities might be required before you run the DSN1COPY utility,
depending on your situation.

Attention: Do not use DSN1COPY in place of COPY for both backup and
recovery. Improper use of DSN1COPY can result in unrecoverable damage and loss
of data.

Recommendations

Printing with DSN1PRNT instead of DSN1COPY
If you require only a printed hexadecimal dump of a data set, use
DSN1PRNT rather than DSN1COPY.

Copying a table space with DSN1COPY with row formats

When you use a DSN1COPY of a table space to populate another table
space, the row formats of the two table spaces must match. If the row
formats do not match, the results are unpredictable and could cause
integrity problems.

To determine the source table space and target table space row format, run
the following query against your DB2 catalog:
SELECT DBNAME, TSNAME, PARTITION, FORMAT

FROM SYSIBM.SYSTABLEPART
WHERE (DBNAME = ’source-database-name’
AND TSNAME=’source-table-space-name’)
OR (DBNAME = ’target-database-name’
AND TSNAME=’target-table-space-name’)

Chapter 40. DSN1COPY 941

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_recoverdownlevelpageset.htm#db2z_recoverdownlevelpageset

If the FORMAT column has a value of 'R', then the table space or partition
is in RRF (reordered row format). If the FORMAT column has a blank
value, then the table space or partition is in BRF (basic row format).

Determining page size and DSSIZE

Before using DSN1COPY, ensure that you know the page size and data set
size (DSSIZE) for the page set. Use the following query on the DB2 catalog
to get the information you need in this example for table 'DEPT':

Using the OBIDXLAT option with DSN1COPY

When you use DSN1COPY with the OBIDXLAT option to move objects
from one system to another system, ensure that the version information on
the target system matches the version information on the source version.

Copying a partition-by-range or partition-by-growth table space

When you use DSN1COPY on a partition-by-range or partition-by-growth
table space, use the SEGMENT and NUMPARTS options to process the
table space. For partition-by-growth table spaces, the NUMPART value
specified should be the MAXPARTITIONS value that the table space was
created with.

Copying when pending alterations exist
Before you use DSN1COPY, ensure that the schema of the source and
target objects match.

You might also need to run the REORG TABLESPACE utility to materialize
pending alterations depending on the following conditions:

SELECT T.CREATOR,T.NAME,S.NAME AS TABLESPACE,S.PARTITIONS,S.PGSIZE,
CASE S.DSSIZE
WHEN 0 THEN

CASE WHEN S.TYPE = ’G’ THEN 4194304
WHEN S.TYPE = ’O’ THEN 4194304
WHEN S.TYPE = ’P’ THEN 4194304
WHEN S.TYPE = ’R’ THEN 4194304

ELSE
CASE WHEN S.PARTITIONS > 254 THEN

CASE WHEN S.PGSIZE = 4 THEN 4194304
WHEN S.PGSIZE = 8 THEN 8388608
WHEN S.PGSIZE = 16 THEN 16777216
WHEN S.PGSIZE = 32 THEN 33554432

ELSE NULL
END
WHEN S.PARTITIONS > 64 THEN 4194304
WHEN S.PARTITIONS > 32 THEN 1048576
WHEN S.PARTITIONS > 16 THEN 2097152
WHEN S.PARTITIONS > 0 THEN 4194304

ELSE 2097152
END

END
ELSE S.DSSIZE
END
AS DSSIZE
FROM SYSIBM.SYSTABLES T,

SYSIBM.SYSTABLESPACE S
WHERE

T.NAME = ’DEPT’ AND
T.TSNAME = S.NAME;

Figure 129. Example catalog query that returns the page set size and data set size for the
page set.

942 Utility Guide and Reference

v If the pending alterations are for an added or dropped column, run
REORG TABLESPACE.

v If the pending alteration are for a changed data type, you need to either
insert or update at least one row or run REORG TABLESPACE.

After you run DSN1COPY, run REPAIR CATALOG.

Related information:

“Syntax and options of the REPAIR control statement” on page 646

Copying a versioned XML table space

Before using DSN1COPY to copy a versioned XML table space, ensure that
the definitions of the XML columns START_TS and END_TS match.

Altering a table

When you use ALTER TABLE ADD COLUMN, the table does not change;
only the description of the table changes. Before you run DSN1COPY on
the table space, run REORG on the table space (so that the data matches its
description).

Related concepts:

Table space versions (DB2 Administration Guide)
Related tasks:
“Updating version information when moving objects to another subsystem” on
page 670

Data sets that DSN1COPY uses
The DSN1COPY utility uses a number of data sets during its operation.

Required data sets

DSN1COPY uses the following data sets:

Input data set
Input to DSN1COPY. The DD name is SYSUT1.

Output data set
Output from DSN1COPY. The DD name is SYSUT2. Optional.

Message data set
Data set for output messages. The DD name is SYSPRINT.

OBIDXLAT data set
Data set that defines the OBID translation values. The DD name is
SYSXLAT.

DSN1COPY uses the following DD statements:

SYSPRINT
Defines the data set that contains output messages from the DSN1COPY
program and all hexadecimal dump output.

SYSUT1

Defines the input data set. This data set can be a sequential data set that is
created by the DSN1COPY or COPY utilities, or a VSAM data set,
including a FlashCopy image copy data set.

Chapter 40. DSN1COPY 943

|
|

|

|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_tablespaceversions.htm#db2z_tablespaceversions

Specify the data set's disposition as DISP=OLD to ensure that it is not in
use by DB2. Specify the data set's disposition as DISP=SHR only when the
DB2 STOP DATABASE command does not work.

The requested operation takes place only for the specified data set. If the
input data set is a partitioned table space or index, ensure that you specify
the NUMPARTS parameter and the correct data set. For example, to print a
page range in the second partition of a four-partition table space, specify
NUMPARTS(4) and the data set name of the second data set. This second
data set is in the group of VSAM data sets, and the VSAM data set name
is DSNCAT.DSNDBD.TESTDB.TS01.I0001.A002. The last qualifier (A002)
represents the partition number 2.

To copy the data sets for a segmented table space that consists of multiple
data sets, you need to run multiple DSN1COPY jobs. Run one job for each
data set in the table space.

If running the online REORG utility with the FASTSWITCH option, verify
the data set name before running the DSN1COPY utility. The fifth-level
qualifier in the data set name alternates between I0001 and J0001 when
using FASTSWITCH. If the table space has cloning or ever had cloning, the
fifth-level qualifier can be I0002 or J0002. You cannot specify FASTSWITCH
YES if the table space has cloning; however, a FASTSWITCH YES REORG
might have been done before the clone was created so you might still have
a mixture of 'I' and 'J' data sets. Specify the correct fifth-level qualifier in
the data set name to successfully execute the DSN1COPY utility. To
determine the correct fifth-level qualifier, query the IPREFIX column of
SYSIBM.SYSTABLEPART for each data partition or the IPREFIX column of
SYSIBM.SYSINDEXPART for each index partition. If the object is not
partitioned, use zero as the value for the PARTITION column in your
query.

To determine the instance number to use for a fifth-level qualifier, query
the INSTANCE column of SYSIBM.SYSTABLESPACE. The returned value
is the instance number that represents the current base objects. The clone
objects would be represented by the other instance number. If a query of
SYSTABLESPACE.INSTANCE returns a value of 2, then the base objects are
represented by instance number 2 data sets and the clone objects by
instance number 1 data sets. This process can be used to determine the
instance number even if there is no active cloning.

SYSUT2
Defines the output data set. This data set can be a sequential data set, a
VSAM data set, or a DUMMY data set.

What you specify for SYSUT2 is restricted if both of the following
conditions are true:
v SYSUT1 is an image copy of an entire partitioned table space or an

image copy of all data sets of a multi-piece object
v The data is to be copied to a DB2 table space or DB2 index space

In this case, SYSUT2 must be the name of first data set (of the first
partition or of the first piece) for the table space or index space. The names
of those data sets must follow the format that is defined in Data set
naming conventions (DB2 Administration Guide). For example, the last
part of the name must identify the data set number A001.

DSN1COPY identifies the appropriate output data set by the page number
and allocates other data sets for additional partitions. The names of these

944 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_datasetnamingconventions.htm#db2z_datasetnamingconventions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_datasetnamingconventions.htm#db2z_datasetnamingconventions

data sets also follow the DB2 data set naming conventions. For example,
these data set names end with A002, A003, and so on.

All target data sets must be defined. To define the data sets for a
multi-piece object, create first the table space or index with DEFINE YES
and specify appropriate primary and secondary quantities. If -1 is specified
for primary and/or secondary quantity DSN1COPY may run out of extents
because DB2 defines the first data set with small primary and/or
secondary extents in this case. DB2 then defines the first data set. The
subsequent data sets can be defined by using Access Method Services. See
“Copying tables from one subsystem to another” on page 952 for more
information.

DSN1COPY assumes that the output data sets are empty (that is, the
program adds the blocks) except when you specify INCRCOPY. Before you
run DSN1COPY, define your VSAM output data sets as REUSE. If you
have not defined the data sets, you must redefine all VSAM output data
sets you are restoring by using Access Method Services. Ensure that these
data sets are empty before you run DSN1COPY.

You might want to specify a DUMMY SYSUT2 DD statement if you are
dumping or checking pages.

To enable DB2 to obtain necessary information from the integrated catalog
facility catalog when using VSAM data sets, do not code the unit-serial
parameter and volume-serial parameter.

If running the online REORG utility with the FASTSWITCH option, verify
the data set name before running the DSN1COPY utility. The fifth-level
qualifier in the data set name alternates between I0001 and J0001 when
using FASTSWITCH. Specify the correct fifth-level qualifier in the data set
name to successfully execute the DSN1COPY utility.

SYSXLAT
Defines for translation the DBIDs, OBIDs, data page set identifiers (PSIDs),
or index page set identifiers (ISOBIDs).

If you have dropped a table without a subsequent REORG of the table
space, you must reorganize the source table space before running
DSN1COPY with the OBIDXLAT option. This action removes any
previously dropped records from the table space.

A non-numeric character must separate each record in the SYSXLAT file,
and each record must contain a pair of decimal integers. The first integer
of each record pertains to the source, and the second integer pertains to the
target. The first record in the SYSXLAT file contains the source DBIDs and
the target DBIDs; the values can range from -32767 to 65535. The second
record contains the source and target PSIDs or ISOBIDs; the values can
range from 0 to 32767. All subsequent records in the SYSXLAT data set are
for table OBIDs. For an index, the SYSXLAT data set must contain the
index fan set OBID, in addition to the DBID and ISOBID. Sample data in a
SYSXLAT file follows (with an indication of how each record translates
shown in parentheses):
260,280 (source DBID 260 translates to target DBID 280)
2,10 (source PSID 2 translates to target PSID 10)
3,55 (source table OBID 3 translates to target table OBID 55)
6,56 (source table OBID 6 translates to target table OBID 56)
7,57 (source table OBID 7 translates to target table OBID 57

Chapter 40. DSN1COPY 945

To obtain the names, DBIDs, PSIDs, ISOBIDs, and OBIDs, run the
DSNTEP2 sample application on both the source and target systems. The
following SQL statements yield the preceding information.

The example for indexes yields output that is similar to the preceding
example, but with an additional column of data.

PSPI For table spaces use the following statements:
SELECT DBID, PSID FROM SYSIBM.SYSTABLESPACE

WHERE NAME=’tablespace_name’
AND DBNAME=’database_name’;

SELECT NAME, OBID FROM SYSIBM.SYSTABLES
WHERE TSNAME=’tablespace_name’

AND CREATOR=’creator_name’;

For index spaces use the following statement:
SELECT DBID, ISOBID, OBID FROM SYSIBM.SYSINDEXES

WHERE NAME=’index_name’
AND CREATOR=’creator_name’;

PSPI

Several examples of using DSN1COPY follow:
v Create a backup copy of a DB2 data set:

– SYSUT1: DB2-VSAM
– SYSUT2: Sequential data set

v Restore a backup copy of a DB2 data set:
– SYSUT1: DSN1COPY sequential data set
– SYSUT2: DB2-VSAM

v Move a DB2 data set to another DB2 data set:
– SYSUT1: DB2-VSAM
– SYSUT2: DB2-VSAM
– Parameters: OBIDXLAT, RESET

v Perform validity checking on a DB2 data set:
– SYSUT1: DB2-VSAM
– SYSUT2: DUMMY
– Parameter: CHECK

v Perform validity checking on and print a DB2 data set:
– SYSUT1: DB2-VSAM
– SYSUT2: DUMMY
– Parameters: CHECK, PRINT

v Restore a table space from a nonpartitioned image copy data set or page set:
– SYSUT1: DB2 full image copy
– SYSUT2: DB2-VSAM
– Parameter: FULLCOPY

v Restore a table space from a partitioned image copy data or page set:
– SYSUT1: DB2 full image copy
– SYSUT2: DB2-VSAM
– Parameters: FULLCOPY, NUMPARTS(nn)

v Perform RBA RESET on a DB2 data set:
– SYSUT1: DB2-VSAM or DSN1COPY sequential data set
– SYSUT2: DB2-VSAM
– Parameter: RESET

946 Utility Guide and Reference

Defining the input data set

The SYSUT1 data set can be any of the following types:
v A DB2 table space data set
v A DB2 index space data set
v A sequential full image copy
v An incremental image copy
v An inline image copy
v A sequential data set that was previously created by DSN1COPY
v A FlashCopy image copy data set

Define SYSUT1 with DISP=OLD to ensure that DSN1COPY uses it exclusively. If
SYSUT1 is a table space or index space, use the following procedure before using
DSN1COPY:

1. Issue the following command to determine if the object is stopped:
-DISPLAY DATABASE (database_name) SPACENAM(space_name) RESTRICT

2. If DB2 has not stopped the object, issue the following command to stop the
object:
-STOP DATABASE (database_name) SPACENAME(space_name)

DB2 allows input of only one DSN1COPY data set. DB2 does not permit the input
of concatenated data sets. For a table space that consists of multiple data sets,
ensure that you specify the correct data set. For example, if you specify the
CHECK option to validate pages of a partitioned table space's second partition,
code the second data set of the table space for SYSUT1.

Defining the output data set

The SYSUT2 data set can be any of the following types:
v A sequential data set
v A DB2 table space data set
v A DB2 index space data set
v A DUMMY data set

Specify a DUMMY SYSUT2 DD statement if you are using DSN1COPY to check or
dump a page. The table spaces and index spaces must either be empty or defined
with VSAM REUSE. STOGROUP-defined table spaces and index spaces have the
REUSE attribute, except when you are applying the INCRCOPY option.

When you use the RESET option to reset page log RBAs, you need to ensure that
the output data set for the RESET operation has the same name as the original DB2
data set. Use either of the following techniques to do that:
v Method 1:

1. Make a backup copy of your original DB2 data set by using DSN1COPY to
copy the original data set to a sequential data set.

2. If you defined your original DB2 data set without the REUSE parameter,
delete and redefine the original data set.

3. Run DSN1COPY with the RESET option. Specify the output data set from
step 1 as the input data set for the RESET operation.

Chapter 40. DSN1COPY 947

Use your original DB2 data set or the redefined version of the original data
set as the output data set for the RESET operation.

v Method 2:
1. Run DSN1COPY with the RESET option. Use your original DB2 data set as

the input data set. Define a new VSAM data set as the output data set. The
output data set must have the same data set characteristics as the input data
set.

2. Delete the input data set from step 1.
3. Rename the output data set from step 1 to the same name as the input data

set.

Adding additional volumes for SYSUT2

When you create a table space or index space by using STOGROUP, the ICF
catalog entry has only one volume in the volume list. If the SYSUT2 data set that
DSN1COPY restores requires more than one volume, use the IDCAMS command,
ALTER ADDVOLUMES, to add additional volume IDs to the integrated catalog
entry. The extension to new volumes uses the primary size on each new volume.
This is the normal VSAM extension process. If you want the data set to use the
secondary size on the candidate volumes, follow these steps:
1. Run DSN1COPY.
2. Run REORG, or make a full image copy and recover the table space.

Performing these steps resets the data set and causes normal extensions through
DB2.

Inconsistent data checks
When critical data is involved, use the CHECK option of DSN1COPY to prevent
the undetected copying of inconsistent data to the output data set. The CHECK
option performs validity checking on one page at a time.

You must run a CHECK utility job on the table space that is involved to ensure
that no inconsistencies exist between data and indexes on that data:
v Before using DSN1COPY to save critical data that is indexed
v After using DSN1COPY to restore critical data that is indexed

The CHECK utility performs validity checking between pages.

The effects of not specifying the OBIDXLAT option
If you use DSN1COPY to load data into a table space or index without specifying
the OBIDXLAT option, be careful not to invalidate embedded DB2 internal
identifiers.

Those OBIDs can become invalid in the following circumstances:
v When you drop and re-create tables after the input data set to DSN1COPY was

created.
v When a difference exists among the following attributes between the target

subsystem and the source subsystem:
– Table space attributes of BUFFERPOOL or NUMPARTS
– Table attributes other than table name, table space name, and database name
– The order of the table spaces, indexes, and tables that the user defined or

dropped in the source and target databases

948 Utility Guide and Reference

To protect against invalidating the OBIDs, specify the OBIDXLAT parameter for
DSN1COPY. The OBIDXLAT parameter translates OBID, DBID, PSID, or ISOBID
before DSN1COPY copies the data.

Requirements for using an image copy as input to DSN1COPY
To use image copies (full sequential or incremental) as input to DSN1COPY, you
must use the COPY utility with SHRLEVEL REFERENCE to produce those image
copies.

Using the FULLCOPY parameter ensures that the data that is contained in your
image copies is consistent. DSN1COPY accepts an index image copy as input when
you specify the FULLCOPY option. If you want to use inline image copies as input
to DSN1COPY, you must produce those image copies by using the REORG utility
or LOAD utility.

If you want to use a FlashCopy image copy data set as input, do not specify the
FULLCOPY option.

Copying from an image copy
You can use DSN1COPY to copy data from an image copy of the data sets of a
table space to the data sets of a table space on the same subsystem or another
subsystem.

Procedure

To copy from a specific image copy data set, specify the following SYSUT2 data
sets:
v If SYSUT1 is an image copy of a single partition, ensure that the SYSUT2 DD

statement refers to the first data set of the table space. DSN1COPY determines
the correct target data set. Code the NUMPARTS(nn) parameter, where nn is the
number of partitions in the entire table space. However, if the partitioned table
space is defined with more than one VCAT name (for example, a unique VCAT
for different partitions), use SYSUT2 as the name of the data set for that
partition.

v If SYSUT1 is an image copy of an entire partitioned table space, ensure that
the SYSUT2 DD statement refers to the first data set of the table space. In this
case, DSN1COPY allocates all of the target data sets. However, you must have
previously defined the target data sets either by creating the partitioned table
space with DEFINE YES or by using Access Method Services. Code the
NUMPARTS parameter as described in the first bullet when the table space is
partitioned. When multiple VCAT names are used for different partitions of a
partitioned table space, DSN1COPY cannot restore the entire table space by
using as input a single full image copy of the table space. In this case, when you
use DSN1COPY, you must restore individual copies of each partition by using
the name of the data sets for that partition. Code the NUMPARTS(nn) parameter,
where nn is the number of partitions in the entire table space.

v If SYSUT1 is an image copy of a single data set of a multiple data set linear
table space, ensure that the SYSUT2 DD statement refers to the actual (not the
first) output data set of the table space. Do not specify NUMPARTS because this
parameter is only for partitioned table spaces.

v If SYSUT1 is an image copy of an entire multiple data set linear table space,
ensure that the SYSUT2 DD statement refers to the first data set of the table
space. DSN1COPY allocates all target data sets. However, you must have

Chapter 40. DSN1COPY 949

previously defined the target data sets by using Access Method Services. If the
source data sets are less than the target data sets it is recommended to either
delete all rows from the target table space or to do a LOAD REPLACE with DD
DUMMY on the target table space first, before running DSN1COPY.

v If SYSUT1 is an image copy of a single data set of a multiple data set LOB
table space, ensure that the SYSUT2 DD statement refers to the actual (not the
first) data set of the table space. Do not specify NUMPARTS because this
parameter is only for partitioned table spaces.

v If SYSUT1 is an image copy of an entire multiple data set LOB table space,
ensure that the SYSUT2 DD statement refers to the first data set of the table
space. DSN1COPY allocates all target data sets. However, you must have
previously defined the target data sets by using Access Method Services.

What to do next

Important: After you use DSN1COPY to copy data from an image copy, you need
to ensure that the version information in the source and target table spaces
matches. To do that, run REPAIR VERSIONS on the target table space immediately
after you run DSN1COPY.
Related tasks:
“Updating version information when moving objects to another subsystem” on
page 670

Restoring indexes with DSN1COPY
When a table space is restored using either the TOCOPY option of RECOVER or
the DSN1COPY utility, restore the indexes.

Procedure

To restore indexes with DSN1COPY, use one of the following methods:
v Use the RECOVER utility, if you have a full image copy available, and the index

was defined with the COPY YES option.
v Use DSN1COPY on the indexes, if a copy is available. If you specified the

OBIDXLAT option for the data, you must also specify the OBIDXLAT option for
the indexes. Also, the indexes must all have been copied at the same time as the
data; otherwise, inconsistencies might exist.

v If you do not have an image copy of the index, use the REBUILD INDEX utility,
which reconstructs the indexes from the data.

Related concepts:
“The effects of not specifying the OBIDXLAT option” on page 948
Related reference:
Chapter 22, “REBUILD INDEX,” on page 409
Chapter 23, “RECOVER,” on page 441

Restoring table spaces with DSN1COPY
In certain cases, you cannot use the RECOVER utility for an image copy data set.
In these cases, consider using the DSN1COPY utility to restore the table space or
data set instead.

950 Utility Guide and Reference

About this task

You cannot use RECOVER TOCOPY for an image copy data set that is not
referenced by SYSIBM.SYSCOPY for that table space or data set. An attempt to do
so results in message DSNU519I "TOCOPY DATASET NOT FOUND". The MODIFY utility
might have removed the row in SYSIBM.SYSCOPY. If the row was removed and
the image copy is a full image copy with SHRLEVEL REFERENCE, use
DSN1COPY to restore the table space or data set.

Restriction: If you use DSN1COPY for point-in-time recovery, the table space is
not recoverable with the RECOVER utility. Because DSN1COPY runs outside of the
control of DB2, DB2 is not aware that you recovered to a point in time. If possible,
use DSN1COPY to recover the affected table space after a point-in-time recovery.
Then perform the following steps:
1. Remove old image copies by using the MODIFY RECOVERY utility with the

AGE option.
2. Create one or more full image copies by using the COPY utility with the

SHRLEVEL REFERENCE option.

Procedure

To restore table spaces with DSN1COPY:
1. Delete data in any excess partitions from the table space before you apply the

DSN1COPY utility.
You can use the DSN1COPY utility to restore a partition or an entire table
space for a partition-by-growth table space. The total number of partitions in
the DSN1COPY input data set might not be consistent with the number of
partitions that are defined on the current table space. To avoid residual data,
delete data in the excess partitions from the table space before you apply the
DSN1COPY utility.

2. If the table space is organized by hash, ensure that the following values are the
same in the source and target tables spaces:
v SYSTABLESPACE.HASHDATAPAGES (IF PBG)
v SYSTABLEPART.HASHDATAPAGES (IF PBR-UTS)

3. If you are restoring an XML table space by using a data set that was generated
by DSN1COPY before Version 10 new-function mode, complete the following
steps before you run DSN1COPY:
a. Alter the target XML table space so that the SEGSIZE value matches the

SEGSIZE value of the original XML table space. Use the following
statement:
ALTER TABLESPACE mytablespace SEGSIZE 4

b. Run the REORG TABLESPACE utility on the target XML table space.
4. Run the DSN1COPY utility. Make sure that you provide the correct sequence of

image copies to DSN1COPY.
DSN1COPY can restore the object to an incremental image copy, but it must
first restore the previous full image copy and any intermediate incremental
image copies. These actions ensure data integrity. You are responsible for
providing the correct sequence of image copies. DB2 cannot ensure the
appropriate sequence.

5. Ensure that the associated indexes are also rebuilt or restored. This action
applies to all user-defined indexes and all indexes that are generated by DB2.
For example, this action applies to the document ID index of a table with XML
columns or the overflow index of a hash access table space.

Chapter 40. DSN1COPY 951

Related reference:
“Syntax and options of the DSN1COPY control statement” on page 936
Chapter 18, “MODIFY RECOVERY,” on page 367
“Syntax and options of the COPY control statement” on page 127
“Syntax and options of the REORG TABLESPACE control statement” on page 540

SYSIBM.SYSCOPY table (DB2 SQL)

SYSIBM.SYSTABLESPACE table (DB2 SQL)

SYSIBM.SYSTABLEPART table (DB2 SQL)

ALTER TABLESPACE (DB2 SQL)
Related information:

DSNU519I (DB2 Messages)

Printing with DSN1COPY
If you want to print one or more pages without invoking the utility’s copy
function, use DSN1PRNT to avoid unnecessary reading of the input file.

About this task

When you use DSN1COPY for printing, you must specify the PRINT parameter.
The requested operation takes place only for the specified data set. If the input
data set belongs to a linear table space or index space that is larger than 2 GB,
specify the correct data set. Alternatively, if it is a partitioned table space or
partitioned index, specify the correct data set. For example, DSN1COPY prints a
page range in the second partition of a four-partition table space. DSN1COPY does
this by specifying NUMPARTS(4) and the data set name of the second data set in
the VSAM group (DSN=...A002).

To print a full image copy data set (rather than recovering a table space), specify a
DUMMY SYSUT2 DD statement, and specify the FULLCOPY parameter.

Copying tables from one subsystem to another
You can copy tables from one subsystem to another by using the DSN1COPY
utility. When you copy these tables, ensure that the object metadata on the target
subsystem matches the object metadata on the source subsystem. Object metadata
includes items such as the number of columns, column type and table space type.

About this task

Recommendation: Do not use DSN1COPY to copy XML table spaces from one
subsystem to another. Documents in XML table spaces have dependencies on DB2
catalog tables and on tables in the XML schema repository database (DSNXSR). In
particular, XML documents in XML table spaces have unique strings IDs that must
match values in catalog table SYSIBM.SYSXMLSTRINGS. Documents might also
have XSR object IDs that must match values in XML schema repository table
SYSIBM.XSROBJECTS. If you copy XML table spaces to from one subsystem to
another, the string IDs and XSR object IDs in the XML documents will not match
the values in SYSIBM.SYSXMLSTRINGS or SYSIBM.XSROBJECTS on the target
subsystem.

952 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsyscopytable.htm#db2z_sysibmsyscopytable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsystablespacetable.htm#db2z_sysibmsystablespacetable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsystableparttable.htm#db2z_sysibmsystableparttable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertablespace.htm#db2z_sql_altertablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu519i.htm#dsnu519i

Procedure

To copy tables from one subsystem to another:
1. Stop the table space on the source subsystem.
2. If you are copying a table that contains an identity column, determine the

correct values for the identity column on the target subsystem by taking the
following actions:
a. Issue a SELECT statement to query the SYSIBM.SYSSEQUENCES entry that

corresponds to the identity column for the table on the source subsystem.
b. Add the INCREMENT value to the MAXASSIGNEDVAL value to determine

the next value (nv) for the identity column.
3. If the table does not exist on the target subsystem, create it. If the table has an

identity column, specify that column as follows:
v Specify nv for the START WITH value.
v Ensure that all of the other identity column attributes are the same as the

source table.
4. Query the DBID, PSID, and OBID of the object in the target subsystem. If the

values are not the same as the source object, specify the DBID, PSID, and OBID
as part of the OBIDXLAT data set for DSN1COPY.

5. Stop the table space on the target subsystem.
6. Copy the data by using DSN1COPY.
7. Start the table space on the source subsystem for read/write access.
8. Start the table space on the target subsystem for read/write access.
9. Run REPAIR CATALOG on the table space on the target subsystem to fix the

catalog information. Alternatively, you can run REPAIR CATALOG TEST to
check for any data and catalog inconsistencies but not correct them.

Related tasks:
“Updating version information when moving objects to another subsystem” on
page 670
Related reference:
“Syntax and options of the REPAIR control statement” on page 646
“Data sets that DSN1COPY uses” on page 943

Sample DSN1COPY control statements
Use the sample control statements as models for developing your own DSN1COPY
control statements.

If you run online REORG with FASTSWITCH behavior, the fifth-level qualifier in
the data set name can be either I0001 or J0001. For clone tables, the data set can
also be I0002 or J0002. These examples use I0001.

Example 1: Checking input data set before copying

The following statement specifies that the DSN1COPY utility is to copy the data
set that is identified by the SYSUT1 DD statement to the data set that is identified
by the SYSUT2 DD statement. Before DSN1COPY copies this data, the utility is to
check the validity of the input data set.
//RUNCOPY EXEC PGM=DSN1COPY,PARM=’CHECK’
//* COPY VSAM TO SEQUENTIAL AND CHECK PAGES
//STEPLIB DD DSN=PDS CONTAINING DSN1COPY

Chapter 40. DSN1COPY 953

|
|
|

//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBC.DSNDB01.SYSUTILX.I0001.A001,DISP=OLD
//SYSUT2 DD DSN=TAPE.DS,UNIT=TAPE,DISP=(NEW,KEEP),VOL=SER=UTLBAK

Example 2: Translating the DB2 internal identifiers

The statement in this example specifies that DSN1COPY is to copy the data set that
is identified by the SYSUT1 DD statement to the data set that is identified by the
SYSUT2 DD statement. The OBIDXLAT option specifies that DSN1COPY is to
translate the OBIDs before the data set is copied. The OBIDs are provided as input
on the SYSXLAT DD statement. Because the OBIDXLAT option is specified,
DSN1COPY also checks the validity of the input data set, even though the CHECK
option is not specified.

Example 3: Printing a single page of a partitioned table space

The following statement specifies that DSN1COPY is to print page 2002A1 of the
table space in the data set that is identified by the SYSUT1 DD statement. This
table space has eight partitions, as indicated by the NUMPARTS option.
//PRINT EXEC PGM=DSN1COPY,PARM=’PRINT(2002A1),NUMPARTS(8)’
//* PRINT A PAGE IN THE THIRD PARTITION OF A TABLE SPACE CONSISTING
//* OF 8 PARTITIONS.
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DUMMY
//SYSUT1 DD DSN=DSNCAT.DSNDBD.MMRDB.PARTEMP1.I0001.A003,DISP=OLD

Example 4: Printing 16 pages of a nonpartitioning index

The following statement specifies that DSN1COPY is to print 16 pages of a
nonpartitioning index in the data set that is identified by the SYSUT1 DD
statement. The pages range from page F0000 to page F000F, as indicated by the
PRINT option. The maximum data set size is 64 MB, as indicated by the PIECESIZ
option.
//PRINT2 EXEC PGM=DSN1COPY,PARM=(PRINT(F0000,F000F),PIECESIZ(64M))
//* PRINT THE FIRST 16 PAGES IN THE 61ST PIECE OF AN NPI WITH PIECE SIZE OF 64M
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DUMMY
//SYSUT1 DD DISP=OLD,DSN=DSNCAT.DSTDBD.MMRDB.NPI1.I0001.A061

//EXECUTE EXEC PGM=DSN1COPY,PARM=’OBIDXLAT’
//STEPLIB DD DSN=PDS CONTAINING DSN1COPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=DSNC110.DSNDBC.DSN8D11P.DSN8S11C.I0001.A001,
// DISP=OLD
//SYSUT2 DD DSN=DSNC910.DSNDBC.DSN8D11P.DSN8S11C.I0001.A001,
// DISP=OLD
//SYSXLAT DD *
260,280
2,10
3,55
6,56
7,57
/*

Figure 130. Example DSN1COPY statement with the OBIDXLAT option.

954 Utility Guide and Reference

Example 5: Copying individual partitions of a partitioned table
space

In the example in the following figure, the two job steps specify that DSN1COPY is
to copy partitions 1501 and partition 1502 from image copy data sets into a
partitioned table space. In the two SYSUT2 DD statements, the fifth-level qualifier
in the data set names can differ, because each job step lists an individual partition.
The FULLCOPY option is used in both steps to indicate that the input data set is a
full image copy. The NUMPARTS option indicates that the input data set has 1600
partitions. The RESET option resets to 0 the high-formatted page number in the
header page. Because this option is specified, DSN1COPY checks the validity of the
input data, even though the CHECK option is not specified.

Example 6: Copying all partitions of a partitioned table space

The following statement specifies that DSN1COPY is to copy data into all
partitions of a partitioned table space by using a full image copy of the table space
as input. The input image copy has 16 partitions, as indicated by the NUMPARTS
option. You must ensure that the fifth-level qualifier in the data set name is the
same, either I0001 or J0001, for all partitions of the output table space before
running this type of job stream.
//DSN1COPY EXEC PGM=DSN1COPY,
// PARM=’NUMPARTS(16),RESET,FULLCOPY’
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=SHR,DSN=PROD.IMAGE.COPY.DSNUMALL
//SYSUT2 DD DISP=OLD,DSN=DSNCAT.DSNDBD.TESTDB.TS01.I0001.A001

Example 7: Using DSN1COPY with UTS table spaces

The following statements specify that DSN1COPY is to copy a UTS table space
vsam data set to a sequential data set.
//**
//* COMMENT: RUN DSN1COPY FOR THE TABLESPACE Part 1
//**
//STEP1 EXEC PGM=DSN1COPY,
// PARM=’SEGMENT,RESET’
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBD.DBKQBG01.TPKQBG01.I0001.A001,DISP=SHR
//SYSUT2 DD DSN=JUKQU2BG.DSN1COPY.D1P1,DISP=(NEW,CATLG,CATLG),
// VOL=SER=SCR03,UNIT=SYSDA,SPACE=(TRK,(55,1))
/*
//**

//STEP1 EXEC PGM=DSN1COPY,
// PARM=’NUMPARTS(1600),RESET,FULLCOPY’
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=SHR,DSN=PROD.IMAGE.COPY.PART1501
//SYSUT2 DD DISP=OLD,DSN=DSNCAT.DSNDBD.TESTDB.TS01.I0001.B501
//STEP2 EXEC PGM=DSN1COPY,
// PARM=’NUMPARTS(1600),RESET,FULLCOPY’
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=SHR,DSN=PROD.IMAGE.COPY.PART1502
//SYSUT2 DD DISP=OLD,DSN=DSNCAT.DSNDBD.TESTDB.TS01.J0001.B502

Figure 131. Example DSN1COPY job for partitions

Chapter 40. DSN1COPY 955

//* COMMENT: RUN DSN1COPY FOR THE TABLESPACE Part 2
//**
//STEP2 EXEC PGM=DSN1COPY,
// PARM=’SEGMENT,RESET’
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBD.DBKQBG01.TPKQBG01.I0001.A002,DISP=SHR
//SYSUT2 DD DSN=JUKQU2BG.DSN1COPY.D1P2,DISP=(NEW,CATLG,CATLG),
// VOL=SER=SCR03,UNIT=SYSDA,SPACE=(TRK,(55,1))
/*

Example 8: Specifying Unicode output for DSN1COPY

When you specify the UNICODE option for DSN1COPY, you are not going to see
non-Latin Unicode characters, such as Japanese characters, in your output. When
you specify the UNICODE option, DSN1COPY takes the hexadecimal data and
formats it as ASCII instead of the default EBCDIC.

A problem might arise when the data that you want DSN1COPY to handle is in
UTF-16. In the case of UTF-16 data, DSN1COPY takes only the second byte of the
data and formats that part of the data as ASCII. Thus, the output might not be
correct. For example, the UTF-16 hexadecimal values X'0030' and X'1130' are both
output as 0, because the first byte of each ("00" and "11" respectively) is ignored.
The remaining part ("30") is interpreted as an ASCII 0. In UTF-16, X'0030' is the
hexadecimal value for 0, but X'1130' is the hexadecimal value for a Hangul
character. For more information about UTF-16 format, see UTFs (DB2
Internationalization Guide).

In the following DSN1COPY example, notice the three bold hexadecimal values:
X'0041', X'0141', and X'0241'. The output for all three of these values is A.A.A, even
though they each correspond to different characters in UTF-16. (X'0041' is A,
X'0141' is �, and X'0241' is the Latin capital character for glottal stop.)

//STEP1 EXEC PGM=DSN1COPY,
// PARM=’CHECK,PRINT(002),UNICODE’
//STEPLIB DD DSN=DB2A.DSNLOAD,DISP=SHR
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=TESTCAT.DSNDBC.DBED2101.TPED2101.I0001.A001,DISP=SHR
//SYSUT2 DD DSN=DUMMY
/*

DSN1999I START OF DSN1COPY FOR JOB RUNCPYI1 RUNCPYI1
DSN1989I DSN1COPY IS PROCESSED WITH THE FOLLOWING OPTIONS:
CHECK/ PRINT/ 4K/NO IMAGECOPY/NON-SEGMENT/NUMPARTS= 0/NO OBIDXLAT/NO VALUE/NO RESET/ / / /
DSSIZE= /PIECESIZ= /UNICODE/
DSN1998I INPUT DSNAME = TESTCAT.DSNDBC.DBED2101.TPED2101.I0001.A001 , VSAM
DSN1997I OUTPUT DSNAME = NULLFILE , SEQ

Contents of the input data set in hexadecimal:
0000 10000075 8C945500 00000200 0FC90033 00000101 02001F00 03018000 00010000
0020 41014102 41002000 20002000 20002000 20002000 00000000 00000000 00000000
.... LINES ARE ALL ZERO.
0FE0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 001400D5

Contents of the input data set in ASCII:

956 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.char/src/tpc/db2z_utf.htm#db2z_utf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.char/src/tpc/db2z_utf.htm#db2z_utf

...u..U........3................
A.A.A.
.... LINES ARE ALL ZERO.
................................

Example 9: Defining output data sets for multi-piece linear table
spaces

The following statements specify that DSN1COPY is to copy data into all pieces of
a segmented table space by using a full image copy of another segmented table
space as input.
1. Create the target segmented table space by specifying appropriate primary and

secondary quantities.
2. Define data sets for all subsequent pieces.

In the following example, the data set for the second piece is
'DSNCAT.DSNDBC.TESTDB.TS01.I0001.A002'. Use the MODEL option, which
causes the new data set to be created like the first data set.
//ALCVSAM EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER +
(NAME(’DSNCAT.DSNDBC.TESTDB.TS01.I0001.A002’) +
MODEL(’DSNCAT.DSNDBC.TESTDB.TS01.I0001.A001’)) +

DATA +
(NAME(’DSNCAT.DSNDBD.TESTDB.TS01.I0001.A002’) +
MODEL(’DSNCAT.DSNDBD.TESTDB.TS01.I0001.A001’))

/*

3. Run DSN1COPY.
//DSN1COPY EXEC PGM=DSN1COPY,
// PARM=’FULLCOPY’
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=SHR,DSN=PROD.IMAGE.COPY.DSNUMALL
//SYSUT2 DD DISP=OLD,DSN=DSNCAT.DSNDBD.TESTDB.TS01.I0001.A001

Chapter 40. DSN1COPY 957

958 Utility Guide and Reference

Chapter 41. DSN1LOGP

The DSN1LOGP stand-alone utility formats the contents of the recovery log for
display.

The two recovery log report formats are:
v A detail report of individual log records. This information helps IBM Software

Support personnel analyze the log in detail. (This information does not include a
full description of the detail report.)

v A summary report, which helps you:
– Perform a conditional restart
– Resolve indoubt threads with a remote site
– Detect problems with data propagation

You can specify the range of the log to process and select criteria within the range
to limit the records in the detail report. For example, you can specify:
v One or more units of recovery that are identified by URID
v A single database

By specifying a URID and a database, you can display recovery log records that
correspond to the use of one database by a single unit of recovery.

DSN1LOGP can print the log records for both base and clone table objects.

DSN1LOGP cannot read logs that have been compressed by DFSMS. (This
compression requires extended format data sets.)

Environment

DSN1LOGP runs as a batch z/OS job.

DSN1LOGP runs on archive data sets, but not active data sets, when DB2 is
running.

Output

In all migration modes, formatted RBA and LRSN values are displayed in 10-byte
format. The 10-byte formatted display is unrelated to migration of the catalog or
directory, conversion of individual objects to EXTENDED format, or BSDS
conversion. Dump format data, which might contain RBA or LRSN values, might
show the 6-byte format of an RBA or LRSN in those cases where the value is
displayed in the format in which it is stored. The format of the display represents
the actual data at the time of the utility run, and is shown without conversion.

For recovery purposes, the 10-byte format is the preferred input format for DB2.
When 10-byte RBA or LRSN values are specified as input to DB2, conversion to
6-byte format is performed internally as needed.

Even before the BSDS is converted to Version 11 format on all data sharing
members or the catalog and directory are migrated, 10-byte LRSN values might be
displayed with non-zero digits in the low order 3 bytes. LRSN values captured
before the BSDS is converted continue to be displayed as they were saved until

© Copyright IBM Corp. 1983, 2013 959

|
|
|
|
|
|
|

|
|
|

|
|
|
|

they are no longer available for display (for example, deleted by MODIFY
RECOVERY). This behavior is normal and to be expected, given the many ways
LRSN values are generated, stored, and handled in DB2. If these LRSN values are
specified as input to DB2, specify them as shown. If the LRSN value contains
non-zero digits in the low order 3 bytes, do not remove them. Any conversion that
might be required takes place inside DB2.

Authorization required

DSN1LOGP does not require authorization. However, if any of the data sets is
RACF-protected, the authorization ID of the job must have RACF authority.

Required data sets

When you execute DSN1LOGP, provide the following data definition (DD)
statements:

SYSPRINT
DSN1LOGP writes all error messages, exception conditions, and the detail
report to the SYSPRINT file. The logical record length (LRECL) is 131.

SYSIN
DSN1LOGP specifies keywords in this file. The LRECL must be 80.
Keywords and values must appear in characters 1 through 72. DSN1LOGP
allows specification of as many as 50 control statements for a given job.
DSN1LOGP concatenates all records into a single string.

SYSSUMRY
DSN1LOGP writes the formatted output of a summary report to the
SYSSUMRY file. The LRECL is 131.

DSN1LOGP identifies the recovery log by DD statements that are described in the
stand-alone log services.

Identifying log data sets

You must identify to DSN1LOGP the log data sets that are to be processed by
including at least one of the following DD statements.

BSDS The BSDS identifies and provides information about all active log data sets
and archive log data sets that exist in your DB2 subsystem. When you
identify the BSDS to DSN1LOGP, you must provide the beginning and
ending RBAs for the range of the recovery log that you want displayed.
DSN1LOGP then associates the beginning RBA specifications and the
ending RBA specifications with the appropriate data set names.

ACTIVEn
If the BSDS is not available, and if the active log data sets that are involved
were copied and sent to you, use ACTIVE DD statements. Use one or more
ACTIVE DD statements to specify the set of active log data sets that are to
be processed by DSN1LOGP. If you used the REPRO command of Access
Method Services for copying the active log, you must identify this data set
in an ARCHIVE DD statement.

Each DD statement that you include identifies another active log data set.
If you identify more than one active log data set, you must list the
ACTIVEn DD statements in ascending log RBA sequence. For example,
ACTIVE1 must identify a portion of the log that is less than ACTIVE2, and
ACTIVE2 must identify a portion of the log that is less than ACTIVE3. If

960 Utility Guide and Reference

|
|
|
|
|
|

you do not specify these DD statements correctly, errors that DSN1LOGP
does not detect can occur. You can specify up to 16 of these active log data
sets.

When you identify active log data sets, you do not need to use the
RBASTART and RBAEND keywords (as you do when you identify the
BSDS). DSN1LOGP scans all active log data sets that the job indicates only
when the data sets are in the correct log RBA sequence.

ARCHIVE
If the BSDS is not available (as previously described under ACTIVEn), you
can specify which archive log data sets are to be processed by specifying
one ARCHIVE DD statement, concatenated with one or more DD
statements.

Each DD statement that you include identifies another archive log data set.
If you identify more than one archive log data set, you must list the DD
statements that correspond to the multiple archive log data sets in
ascending log RBA sequence. If you do not specify this correctly, errors
that DSN1LOGP does not detect can occur.

When you identify archive log data sets, you do not need to use the
RBASTART and RBAEND keywords. DSN1LOGP scans all archive log data
sets that are indicated by the job only when the data sets are in the correct
log RBA sequence.

Data sharing requirements

When selecting log records from more than one DB2 subsystem, you must use all
or one of the following DD statements to locate the log data sets:

GROUP
MxxBSDS
MxxARCHV
MxxACTn

If you use GROUP or MxxBSDSs to locate the log data sets, you must use
LRSNSTART to define the selection range.
Related tasks:

Reading log records with OPEN, GET, and CLOSE (DB2 Administration Guide)
Related information:

DB2 Diagnosis Guide and Reference

Syntax and options of the DSN1LOGP control statement
The DSN1LOGP utility control statement, with its multiple options, defines the
function that the utility job performs.

Chapter 41. DSN1LOGP 961

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_readlogrecordopengetclose.htm#db2z_readlogrecordopengetclose
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.digref/src/digref/db2z_digref.htm

DSN1LOGP syntax diagram

��
RBAEND (FFFFFFFFFFFFFFFFFFFF)

RBASTART(hex-constant) RBAEND (hex-constant)
LRSNEND (FFFFFFFFFFFFFFFFFFFF)

LRSNSTART(hex-constant)
LRSNEND (hex-constant)

DATAONLY (NO)

DATAONLY (YES)
�

�
SYSCOPY (NO)

SYSCOPY (YES) DBID(hex-constant)

�

OBID(hex-constant)
�

� �

PAGE(hex-constant)

�

RID(hex-constant)

�

URID(hex-constant)
�

� �

LUWID(luwid) TYPE (hex-constant)
SUBTYPE (hex-constant)

value/offset statement

�

�
SUMMARY (NO)

SUMMARY (YES)
ONLY FILTER

CHECK(DATA)
��

value/offset statement:

�� VALUE/OFFSET
VALUE(hex-constant) OFFSET(hex-constant)

��

Option descriptions

To execute DSN1LOGP, construct a batch job. The utility name, DSN1LOGP, should
appear on the EXEC statement.

Specify keywords in up to 50 control statements in the SYSIN file. Each control
statement can have up to 72 characters. To specify no keywords, either use a
SYSIN file with no keywords following it, or omit the SYSIN file from the job JCL.

If you specify more than one keyword, separate them by commas. You can specify
the keywords in any order. You can include blanks between keywords, and also
between the keywords and the corresponding values.

962 Utility Guide and Reference

||

RBASTART(hex-constant)
Specifies the hexadecimal log RBA from which to begin reading. If the value
does not match the beginning RBA of one of the log records, DSN1LOGP
begins reading at the beginning RBA of the next record. For any given job,
specify this keyword only once. Alternative spellings: STARTRBA, ST.

hex-constant is a hexadecimal value that consists of 1 - 12 characters (6 bytes) or
1 - 20 characters (10 bytes) if the BSDS was converted by using the DSNJCNVT
conversion program. Leading zeros are not required.

The default value is 0.

DB2 issues a warning if the value is not within the range of log records that is
covered by the input log record information.

RBAEND(hex-constant)
Specifies the last valid hexadecimal log RBA to extract. If the specified RBA is
in the middle of a log record, DSN1LOGP continues reading the log in an
attempt to return a complete log record.

To read to the last valid RBA in the log up to the point of the 6 byte
maximum, specify RBAEND(FFFFFFFFFFFF). To read to the last valid RBA in
the log, specify RBAEND(FFFFFFFFFFFFFFFFFFFF). For any given job, specify
this keyword only once. Alternative spellings: ENDRBA, EN.

hex-constant is a hexadecimal value that consists of 1 - 12 characters (6 bytes) or
1 - 20 characters (10 bytes) if the BSDS was converted by using the DSNJCNVT
conversion program. Leading zeros are not required.

The default value is FFFFFFFFFFFFFFFFFFFF.

DB2 issues a warning if the value is not within the range of log records that is
covered by the input log record information.

RBAEND can be specified only if RBASTART is specified.

LRSNSTART(hex-constant)
Specifies the log record sequence number (LRSN) from which to begin the log
scan. DSN1LOGP starts its processing on the first log record that contains an
LRSN value that is greater than or equal to the LRSN value that is specified on
LRSNSTART. The default LRSN is the LRSN at the beginning of the data set.
Alternative spellings: STARTLRSN, STRTLRSN, and LRSNSTRT.

For any given job, specify this keyword only once.

You must specify this keyword to search the member BSDSs and to locate the
log data sets from more than one DB2 subsystem. You can specify either the
LRSNSTART keyword or the RBASTART keyword to search the BSDS of a
single DB2 subsystem and to locate the log data sets.

If you specify both LRSNSTART and LRSNEND, values greater than 12
characters must be the same length.

DB2 issues a warning if the value is not within the range of log records that is
covered by the input log record information.

LRSNEND(hex-constant)
Specifies the LRSN value of the last log record that is to be scanned if
LRSNSTART is also specified. If LRSNEND is not specified, the LRSNEND
value is either current end of the log (X'FFFFFFFFFFFFFFFFFFFF') or the LRSN
value for the end of the data set.

Chapter 41. DSN1LOGP 963

|
|
|

|
|
|
|

|
|
|

|

|
|

DSN1LOGP ends its processing on the last log record that contains an LRSN
value that is greater than or equal to the LRSN value that is specified on
LRSNEND.

An alternative spelling for LRSNEND is ENDLRSN.

For any given job, specify this keyword only once.

If you specify both LRSNSTART and LRSNEND, values greater than 12
characters must be the same length.

DB2 issues a warning if the value is not within the range of log records that is
covered by the input log record information.

DATAONLY
Limits the log records in the detail report to those that represent data changes
(insert, page repair, update space map, and so on).

The default value is DATAONLY(NO).

(YES)
Extracts log records for data changes only. For example, DATAONLY(YES),
together with a DBID and OBID, reads only the log records that modified
data for that DBID and OBID.

(NO)
Extracts all record types.

SYSCOPY
Limits the detail report to SYSCOPY log records.

The default value is SYSCOPY(NO).

(YES)
Includes only SYSCOPY log records in the detail report.

(NO)
Does not limit records to SYSCOPY records only.

DBID(hex-constant)
Specifies a hexadecimal database identifier (DBID). DSN1LOGP extracts only
the records that are associated with that DBID. For any given job, specify this
keyword only once.

hex-constant is a hexadecimal value consisting of one to four characters.
Leading zeros are not required.

You can find the DBID in any of the following ways:
v The DBID is displayed in many DB2 messages.
v You can find the DBID in the DB2 catalog for a specific object (for example,

in the column named DBID of the SYSIBM.SYSTABLESPACE catalog table).
v When you select a DBID from a catalog table, the value is displayed in

decimal format. Use the SQL HEX function in a SELECT statement to
convert a DBID to hexadecimal format. The following SQL statements show
this use of the HEX function:
SELECT NAME, DBNAME, HEX(DBID), HEX(PSID)
FROM SYSIBM.SYSTABLESPACE
WHERE NAME =’table space name’

SELECT NAME, DBNAME, HEX(DBID), HEX(ISOBID)
FROM SYSIBM.SYSINDEXES
WHERE NAME =’index name’

964 Utility Guide and Reference

|
|

v You can use the DSN1PRNT utility to format the data sets for tables or
indexes, and find the DBID in first two bytes of HPGOBID.

OBID(hex-constant)
Specifies a hexadecimal database object identifier, either a data page set
identifier (PSID) or an index page set identifier (ISOBID). DSN1LOGP extracts
only the records that are associated with that identifier.

hex-constant is a hexadecimal value consisting of one to four characters.
Leading zeros are not required.

Whenever DB2 makes a change to data, the log record that describes the
change identifies the database by DBID and the table space by page set ID
(PSID). You can find the PSID column in the SYSIBM.SYSTABLESPACE catalog
table.

You can also find a column named OBID in the SYSIBM.SYSTABLESPACE
catalog table. That column actually contains the OBID of a file descriptor; do
not confuse this with the PSID, which is the information that you must include
when you execute DSN1LOGP.

Whenever DB2 makes a change to an index, the log record that describes the
change identifies the database (by DBID) and the index space (by index space
OBID or ISOBID). You can find the ISOBID for an index space in the column
named ISOBID in the SYSIBM.SYSINDEXES catalog table.

You can also find a column named OBID in the SYSIBM.SYSINDEXES catalog
table. This column actually contains the identifier of a fan set descriptor; do
not confuse this with the ISOBID, which is the information that you must
include when you execute DSN1LOGP.

When you select either the PSID or the ISOBID from a catalog table, the value
is displayed in decimal format. Use the SQL HEX function in your select
statement to convert them to hexadecimal.

Alternatively, you can use the DSN1PRNT utility to format the data sets for
tables or indexes, and find the PSID or ISOBID in the last two bytes of
HPGOBID.

For any given DSN1LOGP job, you can specify the OBID keyword up to 10
times. If you specify OBID, you must also specify DBID.

PAGE(hex-constant)
Specifies a hexadecimal page number. When data or an index is changed, a
recovery log record is written to the log, identifying the object identifier and
the page number of the changed data page or index page. Specifying a page
number limits the search to a single page; otherwise, all pages for a given
combination of DBID and OBID are extracted. The log output also contains
page set control log records for the specified DBID and OBID, and system
event log records, unless DATAONLY(YES) is also specified.

hex-constant is a hexadecimal value consisting of a maximum of eight
characters.

You can specify a maximum of 100 PAGE keywords in any given DSN1LOGP
job. You must also specify the DBID and OBID keywords that correspond to
those pages.

The PAGE and RID keywords are mutually exclusive.

RID(hex-constant)
Specifies a record identifier, which is a hexadecimal value consisting of 10
characters, with the first eight characters representing the page number and the

Chapter 41. DSN1LOGP 965

last two characters representing the page ID map entry number. The option
limits the log records that are extracted to those that are associated with that
particular record. The log records that are extracted include not only those that
are directly associated with the RID, such as insert and delete, but also the
control records that are associated with the DBID and OBID specifications,
such as page set open, page set close, set write, reset write, page set write, data
set open, and data set close.

You can specify a maximum of 40 RID keywords in any given DSN1LOGP job.
You must also specify the DBID and OBID keywords that correspond to the
specified records.

The PAGE and RID keywords are mutually exclusive.

URID(hex-constant)
Specifies a hexadecimal unit of recovery identifier (URID). Changes to data
and indexes occur in the context of a DB2 unit of recovery, which is identified
on the log by a BEGIN UR record. In the summary DSN1LOGP report, the
URID is listed in the STARTRBA field in message DSN1162I. In the detail
DSN1LOGP report, look for the subtype of BEGIN UR; the URID is listed in
the URID field. Using the log RBA of that record as the URID value limits the
extraction of information from the DB2 log to that unit of recovery.

hex-constant is a hexadecimal value that consists of 1 - 12 characters (6 bytes) or
1 - 20 characters (10 bytes) if the BSDS was converted by using the DSNJCNVT
conversion program. Leading zeros are not required.

You can specify a maximum of 10 URID keywords in any given DSN1LOGP
job.

LUWID(luwid)
Specifies up to 10 LUWIDs that DSN1LOGP is to include information about in
the summary report.

luwid consists of three parts: an LU network name, an LUW instance number,
and a commit sequence number. If you supply the first two parts, the
summary report includes an entry for each commit that is performed in the
logical unit of work (within the search range). If you supply all three parts, the
summary report includes an entry for only that LUWID.

The LU network name consists of a one- to eight-character network ID, a
period, and a one- to eight-character network LU name. The LUW instance
number consists of a period, followed by 12 hexadecimal characters. The last
element of the LUWID is the commit sequence number of 4 hexadecimal
characters, preceded by a period.

TYPE(hex-constant)
Limits the log records that are extracted to records of a specified type. The
TYPE and SUBTYPE options are mutually exclusive.

hex-constant indicates the type, as follows:

Constant
Description

2 Page set control record

4 SYSCOPY utility record

10 System event record

20 UR control record

100 Checkpoint record

966 Utility Guide and Reference

|
|
|

200 UR-UNDO record

400 UR-REDO record

800 Archive quiesce record

1000 to 8000
Assigned by the resource manager

SUBTYPE(hex-constant)
Restricts formatting to a particular subtype of unit of recovery undo and redo
log records (types 200 and 400). The TYPE and SUBTYPE options are mutually
exclusive.

hex-constant indicates the subtype, as follows:

Constant
Description

1 Update data page

2 Format page or update space map

3 Update space map bits

4 Update to index space map

5 Update to index page

6 DBA table update log record

7 Checkpoint DBA table log record

9 DBD virtual memory copy

A Exclusive lock on page set partition or DBD

B Format file page set

C Format index page set

F Update by repair (first half if 32 KB)

10 Update by repair (second half if 32 KB)

11 Allocate or deallocate a segment entry

12 Undo/redo log record for modified page or redo log record for
formatted page

14 Savepoint

15 Other DB2 component log records that are written for RMID 14

17 Checkpoint record of modified page set

19 Type 2 index update

1A Type 2 index undo/redo or redo log record

1B Type 2 index change notification log record

1C Type 2 index space map update

1D DBET log record with exception data

1E DBET log record with LPL/GRECP data

65 Change Data Capture diagnostic log

81 Index dummy compensation log record

Chapter 41. DSN1LOGP 967

82 START DATABASE ACCESS (FORCE) log record

The VALUE and OFFSET options must be used together. You can specify a
maximum of 10 VALUE-OFFSET pairs. The SUBTYPE parameter is required
when using the VALUE and OFFSET options.

VALUE(hex-constant)
Specifies a value that must appear in a log record that is to be extracted.

hex-constant is a hexadecimal value consisting of a maximum of 64
characters and must be an even number of characters.

The SUBTYPE keyword must be specified before the VALUE option.

OFFSET(hex-constant)
Specifies an offset from the log record header at which the value that is
specified in the VALUE option must appear.

hex-constant is a hexadecimal value consisting of a maximum of eight
characters.

The SUBTYPE keyword must be specified before specifying the OFFSET
option.

SUMMARY
Summarizes all recovery information within the RBASTART and RBAEND
specifications. You can use summary information to determine what work is
incomplete when DB2 starts. You cannot limit the output of the summary
report with any of the other options, except by using the FILTER option with a
URID or LUWID specification.

The default value is SUMMARY(NO).

(YES)
Generates both a detail and summary report.

(NO)
Generates only a detail report.

(ONLY)
Generates only a summary report.

FILTER
Restricts the summary report to include messages for only the specified URIDs
and LUWIDs. Specify this option only once.

The SUMMARY keyword must be specified before FILTER.

CHECK(DATA)
Specifies that DSN1LOGP is to check the specified range of data pages for
page regression. Any page regression errors are displayed in the detail and
summary reports.

Related concepts:
“DSN1LOGP output” on page 973
Related reference:
“Sample DSN1LOGP control statements” on page 970

Determining the PSID for base and clone objects
You can determine the PSID for base and clone objects by querying the
SYSIBM.SYSTABLESPACE catalog table. You can specify the PSID on the DBID and
OBID keywords of the DSN1LOGP utility control statement.

968 Utility Guide and Reference

Procedure

To determine the PSID to specify for base or clone objects:
1. Determine the PSID by querying the SYSIBM.SYSTABLESPACE catalog table.

The value is displayed in decimal format. Use the SQL HEX function in your
select statement to convert the value to hexadecimal.

2. Determine the instance number of the clone or base object. You can determine
the instance number in two ways:
v Look at the TYPE column in the DISPLAY DATABASE command output. The

output indicates the base and clone objects with a 'B' or a 'C' character
respectively along with the data set instance number.

v Look at the DB2 catalog. The SYSIBM.SYSTABLESPACE catalog table
INSTANCE column indicates the current instance number of the base table.

3. Determine whether to alter the PSID value or leave the PSID value the same.
For example, if the PSID value of the base or clone is '0009'X and the instance
number is 1, specify a PSID value of '0009'X to DSN1LOGP. If the PSID of the
base or clone is '0009'X and the instance number is 2, specify a PSID value of
'8009'X to DSN1LOGP.

Related reference:

-DISPLAY DATABASE (DB2) (DB2 Commands)

SYSIBM.SYSTABLESPACE table (DB2 SQL)

Archive log data sets on tape
If you store your archive logs on tape, the offload task constructs two files on tape
during the archiving process. The first file is the BSDS, and the second file is a
dump of the active log that the offload task is currently archiving.

If a failure occurs during the time that the offload task is archiving the BSDS, DB2
might omit the BSDS. In this case, the first file contains the active log.

If you perform archiving on tape, the first letter of the lowest-level qualifier varies
for both the first and second data sets. The first letter of the first data set is B (for
BSDS), and the first letter of the second data set is A (for archive). Hence, the
archive log data set names all end in Axxxxxxx, and the DD statement identifies
each of them as the second data set on the corresponding tape:
LABEL=(2,SL)

When reading archive log data sets on tape (or copies of active log data sets on
tape), add one or more of the following Job Entry Subsystem (JES) statements:

For the JES3 environment:

JES3 environment JCL
Description

//*MAIN SETUP=JOB
Alert the z/OS operator to mount the initial volumes before the job
executes.

//*MAIN HOLD=YES
Place the job in HOLD status until the operator is ready to release the job.

Chapter 41. DSN1LOGP 969

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_displaydatabase.htm#db2z_cmd_displaydatabase
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsystablespacetable.htm#db2z_sysibmsystablespacetable

TYPRUN=HOLD
Perform the same function as //*MAIN HOLD=YES. The system places
the JCL on the JOB statement.

For the JES2 environment:

JES2 environment JCL
Description

/*SETUP
Alert the z/OS operator to prepare to mount a specified list of tapes.

/*HOLD
Place the job in HOLD status until the operator has located the tapes and
is ready to release the job.

TYPRUN=HOLD
Perform the same function as /*HOLD. The system places the JCL on the
JOB statement.

Alternatively, submit the job to a z/OS initiator that your operations center has
established for exclusive use by jobs that require tape mounts. Specify the initiator
class by using the CLASS parameter on the JOB statement, in both JES2 and JES3
environments.
Related reference:

MVS JCL Reference

Sample DSN1LOGP control statements
Use the sample control statements as models for developing your own DSN1LOGP
control statements.

Example 1: Extracting information from the recovery log with an
available BSDS

The following example shows how to extract information from the recovery log
when you have the BSDS available. The extraction starts at the log RBA of
X'00000FC000000000A000' and ends at the log RBA of X'00000FC000000000B000'.
The DSN1LOGP utility identifies the table or index space by the DBID of X'10A'
(266 decimal) and the OBID of X'1F' (31 decimal).
//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//BSDS DD DSN=DSNCAT.BSDS01,DISP=SHR
//SYSIN DD *

RBASTART (00000FC000000000A000)
RBAEND (00000FC000000000B000)
DBID (10A) OBID(1F)

/*

You can think of the DB2 recovery log as a large sequential file. When recovery log
records are written, they are written to the end of the log. A log RBA is the address
of a byte on the log. Because the recovery log is larger than a single data set, the
recovery log is physically stored on many data sets. DB2 records the RBA ranges
and their corresponding data sets in the BSDS. To determine which data set
contains a specific RBA, read the information about the DSNJU004 utility. During

970 Utility Guide and Reference

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/IEA2B6B1/CCONTENTS?DT=20120814180937

normal DB2 operation, messages are issued that include information about log
RBAs.

Example 2: Extracting information from the active log when the
BSDS is not available

The following example shows how to extract the information from the active log
when the BSDS is not available. The extraction includes log records that apply to
the table space or index space that is identified by the DBID of X'10A' and the
OBID of X'1F'. The only information that is extracted is information that relates to
page numbers X'3B' and X'8C', as identified by the PAGE options. You can omit
beginning and ending RBA values for ACTIVEn or ARCHIVE DD statements
because the DSN1LOGP search includes all specified ACTIVEn DD statements. The
DD statements ACTIVE1, ACTIVE2, and ACTIVE3 specify the log data sets in
ascending log RBA range. Use the DSNJU004 utility to determine what the log
RBA range is for each active log data set. If the BSDS is not available and you
cannot determine the ascending log RBA order of the data sets, you must run each
log data set individually.
//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//ACTIVE1 DD DSN=DSNCAT.LOGCOPY1.DS02,DISP=SHR RBA X’A000’ - X’BFFF’
//ACTIVE2 DD DSN=DSNCAT.LOGCOPY1.DS03,DISP=SHR RBA X’C000’ - X’EFFF’
//ACTIVE3 DD DSN=DSNCAT.LOGCOPY1.DS01,DISP=SHR RBA X’F000’ - X’12FFF’
//SYSIN DD *

DBID (10A) OBID(1F) PAGE(3B) PAGE(8C)
/*

Example 3: Extracting information from the archive log when the
BSDS is not available

The example in the following figure shows how to extract the information from
archive logs when the BSDS is not available. The extraction includes log records
that apply to a single unit of recovery (whose URID is X'61F321'). Because the
BEGIN UR is the first record for the unit of recovery and is at X'61F321', the
beginning RBA is specified to indicate that it is the first RBA in the range from
which to extract recovery log records. Also, because no ending RBA value is
specified, all specified archive logs are scanned for qualifying log records. The
specification of DBID(4) limits the scan to changes that the specified unit of
recovery made to all table spaces and index spaces in the database whose DBID is
X'4'.

//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//ARCHIVE DD DSN=DSNCAT.ARCHLOG1.A0000037,UNIT=TAPE,VOL=SER=T10067,
// DISP=(OLD,KEEP),LABEL=(2,SL)
// DD DSN=DSNCAT.ARCHLOG1.A0000039,UNIT=TAPE,VOL=SER=T30897,
// DISP=(OLD,KEEP),LABEL=(2,SL)
// DD DSN=DSNCAT.ARCHLOG1.A0000041,UNIT=TAPE,VOL=SER=T06573,
// DISP=(OLD,KEEP),LABEL=(2,SL)
//SYSIN DD *

RBASTART (61F321)
URID (61F321) DBID(4)

/*

Figure 132. Example DSN1LOGP statement with RBASTART and URID options

Chapter 41. DSN1LOGP 971

Example 4: Use DSN1LOGP with the SUMMARY option

The DSN1LOGP SUMMARY option allows you to scan the recovery log to
determine what work is incomplete at restart time. You can specify this option
either by itself or when you use DSN1LOGP to produce a detail report of log data.
Summary log results appear in SYSSUMRY; therefore, you must include a
SYSSUMRY DD statement as part of the JCL with which you execute DSN1LOGP.

The following example produces both a detail and a summary report that uses the
BSDS to identify the log data sets. The summary report summarizes all recovery
log information within the RBASTART and RBAEND specifications. You cannot
limit the output of the summary report with any of the other options, except by
using the FILTER option with a URID or LUWID specification. RBASTART and
RBAEND specification use depends on whether a BSDS is used.

This example is similar to Example 1, in that it shows how to extract the
information from the recovery log when you have the BSDS available. However,
this example also shows you how to specify a summary report of all logged
information between the log RBA of X'AF000' and the log RBA of X'B3000'. This
summary is generated with a detail report, but it is printed to SYSSUMRY
separately.
//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT DD SYSOUT=A
//SYSSUMRY DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//BSDS DD DSN=DSNCAT.BSDS01,DISP=SHR
//SYSIN DD *

RBASTART (AF000) RBAEND (B3000)
DBID (10A) OBID(1F) SUMMARY(YES)

/*

Example 5: Use DSN1LOGP on all members of a data sharing
group

The following example shows how to extract log information that pertains to the
table space that is identified by DBID X'112' and OBID X'1D' from all members of a
data sharing group.
//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT SYSOUT=A
//SYSABEND SYSOUT=A
//GROUP DD DSN=DSNDB0G.BSDS01,DISP=SHR
//SYSIN DD *

DATAONLY (YES)
LRSNSTART (00CA21F57927B1D48000)
LRSNEND (00CA21F57927B2BBB000)
DBID (112) OBID(1D)

/*

Example 6: Use DSN1LOGP on a single member of a data
sharing group

The following example shows how to extract log information that pertains to the
table space that is identified by DBID X'112' and OBID X'1D' from a single member
of a data sharing group.
//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT SYSOUT=A

972 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|

//SYSABEND SYSOUT=A
//M01BSDS DD DSN=DSNDB0G.DB1G.BSDS01,DISP=SHR
//SYSIN DD *

DATAONLY (YES)
LRSNSTART (A7951A001AD5) LRSNEND (A7951A003B6A)
DBID (112) OBID(1D)

/*

Example 5: Use DSN1LOGP on all members of a data sharing
group

The following example shows how to extract log information that pertains all log
records matching DBID X'112' and OBID X'1D' from the data sharing group after
the LRSN X'00CAFFFFFFFFF1D48000'.
//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT SYSOUT=A
//SYSABEND SYSOUT=A
//GROUP DD DSN=DSNDB0G.BSDS01,DISP=SHR
//SYSIN DD *

DATAONLY (YES)
LRSNSTART (00CAFFFFFFFFF1D48000)
LRSNEND (FFFFFFFFFFFFFFFFFFFF)
DBID (112) OBID(1D)

/*

Related tasks:

Resetting the log RBA (DB2 Administration Guide)
Related reference:
Chapter 38, “DSNJU004 (print log map),” on page 903

DSN1LOGP output
One intended use of this utility is to aid in determining and correcting system
problems. When diagnosing DB2 problems, you might need to refer to licensed
documentation to interpret output from this utility.

Reviewing DSN1LOGP output

With the SUMMARY option, you can produce a summary report, a detail report, or
both. You can also use the CHECK(DATA) option to produce a summary and
detail report of page regression errors.

For data sharing, you might see multiple log records with the same LRSN value on
a single DB2 data sharing member.

Description of the summary report

The summary report in the following figure contains a summary of completed
events, consisting of an entry for each completed unit of work. Each entry shows,
among other information, the start time, user, and all page sets that were modified.
When possible, the report shows whether an object is LOGGED or NOT LOGGED.

The summary report is divided into two distinct sections:
v The first section is headed by the following message:

DSN1150I SUMMARY OF COMPLETED EVENTS

v The second section is headed by the following message:

Chapter 41. DSN1LOGP 973

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_resttinglogrba.htm#db2z_resttinglogrba

DSN1157I RESTART SUMMARY

The first section lists all completed units of recovery (URs) and checkpoints within
the range of the log that is scanned. Events are listed chronologically, with URs
listed according to when they were completed and checkpoints listed according to
when the end of the checkpoint was processed. The page sets that are changed by
each completed UR are listed. If a log record that is associated with a UR is
unavailable, the attribute INFO=PARTIAL is displayed for the UR. Otherwise, the
UR is marked INFO=COMPLETE. A log record that is associated with a UR is
unavailable if the range of the scanned log is not large enough to contain all
records for a given UR.

The DISP attribute can be one of the following values: COMMITTED, ABORTED,
INFLIGHT, IN-COMMIT, IN-ABORT, POSTPONED ABORT, or INDOUBT. The
DISP attributes COMMITTED and ABORTED are used in the first section; the
remaining attributes are used in the second section.

The list in the second section shows the work that is required of DB2 at restart as
it is recorded in the log that you specified. If the log is available, the checkpoint
that is to be used is identified, as is each outstanding UR, together with the page
sets it changed. Each page set with pending writes is also identified, as is the
earliest log record that is required to complete those writes. If a log record that is
associated with a UR is unavailable, the attribute INFO=PARTIAL is displayed,
and the identification of modified page sets is incomplete for that UR.

DSN1212I DSN1LGRD FIRST LOG LRSN ENCOUNTERED 00CA21F57927B1D48000

==
DSN1150I SUMMARY OF COMPLETED EVENTS

DSN1151I DSN1LPRT MEMBER=DB2A UR CONNID=DB2A CORRID=021.OPNLGR00 AUTHID=SYSOPR PLAN=SYSTEM
START DATE=00.161 TIME=11:27:30 DISP=COMMITTED INFO=COMPLETE
STARTRBA=0000000000002BB36475 ENDRBA=0000000000002BB37024
STARTLRSN=00CA21F57945B9AE2000 ENDLRSN=00CA21F57953A83EC000
NID=* LUWID=DSNCAT.SYEC1DB2.CA21F5792E8A.0001
COORDINATOR=* PARTICIPANTS=*
DATA MODIFIED:

DATABASE=0001=DSNDB01 PAGE SET=00CF=SYSLGRNX
DATABASE=0001=DSNDB01 PAGE SET=0087=DSNLLX01
DATABASE=0001=DSNDB01 PAGE SET=0086=DSNLLX02

DSN1151I DSN1LPRT MEMBER=DB2A UR CONNID=DB2A CORRID=021.OPNLGR00 AUTHID=SYSOPR PLAN=SYSTEM
START DATE=00.161 TIME=11:27:30 DISP=COMMITTED INFO=COMPLETE
STARTRBA=0000000000002BB374EF ENDRBA=0000000000002BB37C81
STARTLRSN=00CA21F57956411DE000 ENDLRSN=00CA21F5795841E68000
NID=* LUWID=DSNCAT.SYEC1DB2.CA21F5795571.0001
COORDINATOR=* PARTICIPANTS=*
DATA MODIFIED:

DATABASE=0001=DSNDB01 PAGE SET=00CF=SYSLGRNX
DATABASE=0001=DSNDB01 PAGE SET=0087=DSNLLX01
DATABASE=0001=DSNDB01 PAGE SET=0086=DSNLLX02

....
DSN1213I DSN1LGRD LAST LOG RBA ENCOUNTERED 0000000000002BBC97A6

DSN1213I DSN1LGRD LAST LOG LRSN ENCOUNTERED 00CA21F5849F250A8000

DSN1224I SPECIFIED LOG LRSNEND 00CA21F586A6D2000000 COULD NOT BE LOCATED FOR MEMBER DB2A

DSN1214I NUMBER OF LOG RECORDS READ 0000000000002571

==
DSN1157I RESTART SUMMARY

DSN1153I DSN1LSIT CHECKPOINT MEMBER=DB2A
STARTRBA=0000000000002BBB8CAC ENDRBA=0000000000002BBC59E8
STARTLRSN=00CA21F58479D042C000 ENDLRSN=00CA21F58480E67E4000
DATE=12.250 TIME=14:20:29

DSN1162I DSN1LPRT MEMBER=DB2A UR CONNID=BATCH CORRID=ARCHIVE AUTHID=SYSADM PLAN=ARCHIVE

974 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

START DATE=00.161 TIME=11:27:30 DISP=INFLIGHT INFO=COMPLETE
STARTRBA=0000000000002BBC888E STARTLRSN=00CA21F5849D6B88E000 NID=*
LUWID=DSNCAT.SYEC1DB2.CA21F58084CF.0003 COORDINATOR=*
PARTICIPANTS=*
DATA MODIFIED:

DATABASE=0119=JACKDB PAGE SET=0002=JACKTS
DATABASE=0119=JACKDB PAGE SET=0005=TESTIX

DSN1160I DATABASE WRITES PENDING:
DATABASE=0001=DSNDB01 PAGE SET=0008=DSNDB01X START=0000000000002BB8BC60
DATABASE=0001=DSNDB01 PAGE SET=001F=DBD01 START=0000000000002BB8BED8
DATABASE=0006=DSNDB06 PAGE SET=006C=DSNADX01 START=0000000000002BB8EE55
DATABASE=0006=DSNDB06 PAGE SET=0787=DSNADH02 START=0000000000002BB8E858
DATABASE=0006=DSNDB06 PAGE SET=0076=DSNUCX01

....

Description of the detail report

The detail report in the following figure includes the following records:
v Redo and undo log records
v System events log records, including begin and end checkpoint records, begin

current status rebuild records, and begin forward and backward recovery
records

v Page set control log records, including open and close page set log records, open
and close data set log records, set write, reset write, and page set write log
records

v UR control log records for the complete or incomplete unit of recovery

You can reduce the volume of the detail log records by specifying one or more of
the optional keywords in the DSN1LOGP utility control statement.
00000000000023C9EAF6 MEMBER(DB2A) TYPE(DBE TABLE CHECKPOINT - DBGC READ)

LRSN(00C9C1231139FA000000) DBID(002B) OBID(0000)
SUBTYPE(DBE TABLE WITH EXCEPTION DATA)

LRH 007A007A 4100001D 0E800000 00000000 000023C9 EA7C0826 000023C9 EA7CC9C1
231139FA 0001

0000 00000054 03100000 00000000 00000000 00000000 00000000 00000000 0EC7C4C2
0020 C5E3002B 00000000 00000000 00000000 C7000000 00C9B6DE A8263200 00000000
0040 00000000 00000000 00000000 002B0000 00C80000

HASH RECORD - CHAIN: 43, LRSN: 00C9B6DEA82632000000

00000000000023C9EB70 MEMBER(DB2A) TYPE(DBE TABLE CHECKPOINT - DBGC READ)
LRSN(00C9C1231139FB000000) DBID(002C) OBID(0000)
SUBTYPE(DBE TABLE WITH EXCEPTION DATA)

LRH 007A007A 4100001D 0E800000 00000000 000023C9 EAF60826 000023C9 EAF6C9C1
231139FB 0001

0000 00000054 03100000 00000000 00000000 00000000 00000000 00000000 0EC7C4C2
0020 C5E3002C 00000000 00000000 00000000 C7000000 00C9B6DE A8268A00 00000000
0040 00000000 00000000 00000000 002C0000 00C80000

HASH RECORD - CHAIN: 44, LRSN: 00C9B6DEA8268A000000
0000000000023C9EBEA MEMBER(DB2A) TYPE(DBE TABLE CHECKPOINT - DBGC READ)

LRSN(00C9C1231139FC000000) DBID(002D) OBID(0000)
SUBTYPE(DBE TABLE WITH EXCEPTION DATA)

LRH 007A007A 4100001D 0E800000 00000000 000023C9 EB700826 000023C9 EB70C9C1
231139FC 0001

0000 00000054 03100000 00000000 00000000 00000000 00000000 00000000 0EC7C4C2
0020 C5E3002D 00000000 00000000 00000000 C7000000 00C9B6DE A826BC00 00000000

0040 00000000 00000000 00000000 002D0000 00C80000

Figure 133. Sample DSN1LOGP summary report

Chapter 41. DSN1LOGP 975

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Description of data propagation information in the summary
report

The sample output in the following figure shows information from the DSN1LOGP
summary report about log records of changes to DB2 tables that were defined with
DATA CAPTURE CHANGES.

The fields show the following information:
v START RBA and END RBA show the first and last RBAs that are captured for

the unit of recovery that was not retrieved. The range that the start and end
RBA encompass can include one or all of the SQL statements within the scope of
the unit of recovery.

v TABLE LIST OVERFLOW indicates whether more than 10 distinct data capture
table IDs were updated by this unit of recovery. This example indicates that no
overflow occurred.

v LR WRITTEN shows the number of written log records that represented changes
to tables that were defined for data capture and were available to the
DB2CDCEX routine. Recursive SQL changes from DB2CDCEX and changes from
other attachments that are not associated with DB2CDCEX are not included. If
you receive a value of 2147483647, an overflow occurred and the count is not
valid.

v LR RETRIEVED is the number of captured RBAs that were retrieved by
DB2CDCEX. If you receive a value of 2147483647, an overflow occurred and the
count is not valid.

v LR NOT RETRIEVED is the difference between the number of written log
records (LR WRITTEN) and the number of retrieved log records (LR
RETRIEVED). The following example output shows that four log records were
written, and none were retrieved.

Description of the report on page regression errors

DSN1LOGP reports page regression errors when you specify the CHECK(DATA)
option. The value of the SUMMARY option determines whether the utility creates
a detail report, a summary report, or both.

A detail report contains the following information for each page regression error:
v DBID
v OBID
v Page number
v Current LRSN or RBA
v Member name
v Previous level
v Previous update

Figure 134. Sample DSN1LOGP detail report

DATA PROPAGATION INFORMATION:
START RBA=000004A107F4 END RBA=000004A10A5C TABLE LIST OVERFLOW=NO
LR WRITTEN=0000000000000004 LR RETRIEVED=0000000000000000 LR NOT RETRIEVED=0000000000000004
DATABASE=0112=DBCS1701 PAGESET=0002=TSCS1701 TABLE OBID=0005

Figure 135. Sample data propagation information from the summary report

976 Utility Guide and Reference

v Date
v Time

A summary report contains the total number of page regressions that the utility
found as well as the following information for each table space in which it found
page regression errors:
v Database name
v Table space name
v DBID
v OBID

If no page regression errors are found, DSN1LOGP outputs a single message that
no page regression errors were found.

The sample output in the following figure shows the detail report when page
regression errors are found.

Page regression detected:
DBID(0001) OBID(001F) PAGE(00000003)
Current LRSN = C93AA29FC3D1
Previous level from current log record = C93AA290845E
Previous update to data page found on log = C93AA29FC3D0

Page regression detected:
DBID(0001) OBID(001F) PAGE(00000002)
Current LRSN = C93AA2E1EDEA
Previous level from current log record = C93AA2D380F7
Previous update to data page found on log = C93AA2E1EDE9

Page regression detected:
DBID(0001) OBID(001F) PAGE(00000002)
Current LRSN = C93BBD7CD15E
Previous level from current log record = C93BBD7CCA7C
Previous update to data page found on log = C93BBD7CD15B

Command text in DSN1LOGP output

Command text is logged automatically. When you run DSN1LOGP with
TYPE(0010), the output includes records for commands. Command record output
has TYPE(SYSTEM EVENT) and SUBTYPE(TRACE RECORD). The data is in the
form of an IFCID 0090 trace record. For example, the following output from
DSN1LOGP shows a -STOP DB2 command:

00006BFBE999 LRSN(C6CD403EB3AF) TYPE(SYSTEM EVENT)
SUBTYPE(TRACE RECORD)

LRH 01400034 00100041 10800000 00000000 00000000 00000726 00000000 00000000 0000C6CD * F
403EB3AF 0000 *

0000 011A0000 00000028 00F20001 00000014 00130001 000B60E2 E3D6D740 E3D6D740 C4C2F216 * 2 -STOP DB2
0020 81AB2000 00000040 00560117 005A02A1 16180930 C4E2D5C1 C6CD403E C6CD403E B392DDEE *a ! DSNAF k
0040 00000006 00000006 00000000 E2E3D3C5 C3F14040 40404040 40404040 40404040 C4E2D5C1 * STLEC1 DSNA
0060 40404040 E2E8C5C3 F1C4C2F2 C6CD403E B3770001 00000000 0000F3F0 0000F3F0 F9F0009C * SYEC1DB2F 3090
0080 0200E2E8 E2D6D7D9 4040F0F2 F34BC7C3 E2C3D5F6 F0F2E5C1 F1C14040 F1C14040 40404040 * SYSOPR 023.GCSCN602VA1A
00A0 40404040 4040E2E8 E2D6D7D9 40400000 00000000 00000000 00000000 00000000 00000000 * SYSOPR
00C0 00000000 00000000 00004040 40404040 40404040 40404040 40404040 40404040 40404040 *
00E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 *
0100 40404040 40404040 40404040 00000000 00000000 00000000 0000

Interpreting error codes

When an error occurs, DSN1LOGP formats a reason code from the DB2
stand-alone log service in the SYSPRINT output.

DSN1LOGP can abnormally terminate with a user abend code of X'099'.
DSN1LOGP finds the corresponding abend reason code in register 15 (at the time

Chapter 41. DSN1LOGP 977

of error). If the specified RBA or LRSN range was not found in the input data sets
DSN1LOGP will terminate with return code 4.
Related reference:

Registers and return codes (DB2 Administration Guide)

978 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_logrecordregister.htm#db2z_logrecordregister

Chapter 42. DSN1PRNT

With the DSN1PRNT stand-alone utility, you can print DB2 VSAM data sets. These
data sets can contain table spaces or index spaces, image copy data sets, and
sequential data sets that contain DB2 table spaces or index spaces.

A DB2 VSAM data set is a single piece of a nonpartitioned table space or index, a
single partition of a partitioned table space or index, or a FlashCopy image copy
data set. The input must be a single z/OS sequential or VSAM data set.
Concatenation of input data sets is not supported.

Using DSN1PRNT, you can print hexadecimal dumps of DB2 data sets and
databases. If you specify the FORMAT option, DSN1PRNT formats the data and
indexes for any page that does not contain an error that would prevent formatting.
If DSN1PRNT detects such an error, it prints an error message just before the page
and dumps the page without formatting. Formatting resumes with the next page.

Compressed records (including the compressed data of dictionary pages) are
printed in compressed format.

DSN1PRNT is especially useful when you want to identify the contents of a table
space or index. You can run DSN1PRNT on image copy data sets and on table
spaces and indexes. DSN1PRNT accepts an index image copy as input when you
specify the FULLCOPY option.

You cannot run DSN1PRNT on concurrent copies.

DSN1PRNT is compatible with LOB table spaces, when you specify the LOB
keyword and omit the INLCOPY keyword.

DSN1PRNT does not decrypt any encrypted data; the utility displays the data as
is.

Output

One intended use of this utility is to aid in determining and correcting system
problems. When diagnosing DB2, you might need to refer to licensed
documentation to interpret output from this utility.

Environment

Run DSN1PRNT as a z/OS job.

You can run DSN1PRNT even when the DB2 subsystem is not operational. If you
choose to use DSN1PRNT when the DB2 subsystem is operational, ensure that the
DB2 data sets that are to be printed are not currently allocated to DB2.

To make sure that a data set is not currently allocated to DB2, issue the DB2 STOP
DATABASE command, specifying the table spaces and indexes that you want to
print.

© Copyright IBM Corp. 1983, 2013 979

Authorization required

No special authorization is required. However, if any of the data sets is RACF
protected, the authorization ID of the job must have RACF authority.

Required data sets

DSN1PRNT uses the following DD statements:

SYSPRINT
Defines the data set that contains output messages from DSN1PRNT and
all hexadecimal dump output.

SYSUT1
Defines the input data set. That data set can be a sequential data set or a
VSAM data set.

Disposition for this data set must be specified as OLD (DISP=OLD) to
ensure that it is not in use by DB2. Specify the disposition for this data set
as SHR (DISP=SHR) only in circumstances where the DB2 STOP
DATABASE command does not work.

The requested operation takes place only for the specified data set. If the
input data set belongs to a linear table space or index space that is larger
than 2 GB, or if it is a partitioned table space or index space, you must
ensure the correct data set is specified. For example, to print a page range
in the second partition of a four-partition table space, specify
NUMPARTS(4) and the data set name of the data set in the group of
VSAM data sets comprising the table space. The following code shows the
data set name:
DSN=...A002

If you run the online REORG utility with FASTSWITCH behavior, verify
the data set name before running the DSN1PRNT utility. The fifth-level
qualifier in the data set name alternates between I0001 and J0001 when
using FASTSWITCH. If the table space has cloning, the fifth-level qualifier
can be I0002 or J0002. Specify the correct fifth-level qualifier in the data set
name to successfully execute the DSN1PRNT utility. To determine the
correct fifth-level qualifier, query the IPREFIX column of
SYSIBM.SYSTABLEPART for each data partition or the IPREFIX column of
SYSIBM.SYSINDEXPART for each index partition. If the object is not
partitioned, use zero as the value for the PARTITION column in your
query.

Related information:

DB2 Diagnosis Guide and Reference

Syntax and options of the DSN1PRNT control statement
The DSN1PRNT utility control statement, with its multiple options, defines the
function that the utility job performs.

980 Utility Guide and Reference

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.digref/src/digref/db2z_digref.htm

DSN1PRNT syntax diagram

��
32K
PAGESIZE (4K)

8K
16K
32K

FULLCOPY
INCRCOPY
INLCOPY

LARGE
LOB

DSSIZE (integer G)
�

�
PIECESIZ(integer K)

M
G

NUMPARTS(integer)
�

�

(1)
PRINT EBCDIC

(1)
EBCDIC

PRINT
(hexadecimal-constant,hexadecimal-constant) ASCII

UNICODE

�

�
VALUE(string)

hexadecimal-constant
FORMAT

EXPAND NODATA
NODATPGS

��

Notes:

1 EBCDIC is not necessarily the default if the first page of the input data set is a header page. If
the first page is a header page, DSN1PRNT uses the format information in the header page as the
default format.

Option descriptions

If you have the need to run DSN1PRNT with invocation parameters specify one or
more of the following options on the EXEC statement.

Important: If you specify more than one parameter:
v Separate them by commas (no blanks).
v Specify them in any order.

Default settings for DSN1PRNT options are taken from the input data set header
page. This default processing is recommended when running DSN1PRNT because
incorrect parameter settings can result in unpredictable results.

Chapter 42. DSN1PRNT 981

When non-default user values are specified, DSN1PRNT compares the input data
set header page settings against the user-specified values whenever possible. If a
mismatch is detected, message DSN1930I is issued. The processing is performed
with the user-specified values

32K
Specifies that the SYSUT1 data set has a 32-KB page size. If you specify this
option and the SYSUT1 data set does not have a 32-KB page size, DSN1COPY
might produce unpredictable results.

PAGESIZE
Specifies the page size of the input data set that is defined by SYSUT1.
Available page size values are 4K, 8K, 16K, or 32K. If you specify an incorrect
page size, DSN1PRNT might produce unpredictable results.

If you do not specify the page size, DSN1PRNT tries to determine the page
size from the input data set if the first page of the input data set is a header
page. DB2 issues an error message if DSN1PRNT cannot determine the input
page size. This might happen if the header page is not in the input data set, or
if the page size field in the header page contains an invalid page size.

Related information:

“Determining the page size and data set size for DSN1PRNT” on page 986

FULLCOPY
Specifies that a DB2 full image copy (not a DFSMSdss concurrent copy) of your
data is to be used as input. If this data is partitioned, you also need to specify
the NUMPARTS parameter to identify the number and length of the partitions.
If you specify FULLCOPY without including a NUMPARTS specification,
DSN1PRNT assumes that the input file is not partitioned.

The FULLCOPY parameter must be specified when you use an image copy as
input to DSN1PRNT. Omitting the parameter can cause error messages or
unpredictable results.

Do not specify FULLCOPY if the input image copy is a FlashCopy image copy
data set.

INCRCOPY
Specifies that an incremental image copy of the data is to be used as input. If
the data is partitioned, also specify NUMPARTS to identify the number and
length of the partitions. If you specify INCRCOPY without NUMPARTS,
DSN1PRNT assumes that the input file is not partitioned.

The INCRCOPY parameter must be specified when you use an incremental
image copy as input to DSN1PRNT. Omitting the parameter can cause error
messages or unpredictable results.

INLCOPY
Specifies that the input data is to be an inline copy data set.

When DSN1PRNT is used to print a page or a page range from an inline copy
that is produced by LOAD or REORG, DSN1PRNT prints all instances of the
pages. The last instance of the printed page or pages is the last one that is
created by the utility.

The INLCOPY parameter must be specified when an inline image copy is used
as input to DSN1PRNT. Omitting the INLCOPY parameter can cause error
messages or unpredictable results.

LARGE
Specifies that the input data set is a table space that was defined with the

982 Utility Guide and Reference

LARGE option, or an index on such a table space. If you specify LARGE, DB2
assumes that the data set has a 4-GB boundary. The recommended method of
specifying a table space that was defined with the LARGE option is
DSSIZE(4G).

If you omit the LARGE or DSSIZE(4G) option when it is needed, or if you
specify LARGE for a table space that was not defined with the LARGE option,
the results from DSN1PRNT are unpredictable.

If you specify LARGE, you cannot specify LOB or DSSIZE.

LOB
Specifies that the SYSUT1 data set is a LOB table space. You cannot specify the
INLCOPY option with the LOB parameter.

DB2 attempts to determine if the input data set is a LOB data set. If you
specify the LOB option but the data set is not a LOB data set, or if you omit
the LOB option but the data set is a LOB data set, DB2 issues an error message
and DSN1PRNT terminates.

If you specify LOB, you cannot specify LARGE.

DSSIZE(integer G)
Specifies the data set size, in gigabytes, for the input data set. If you omit
DSSIZE, DB2 obtains the data set size from the data set header page.

If you specify DSSIZE, integer must match the DSSIZE value that was specified
when the table space was defined.

Related information:

“Determining the page size and data set size for DSN1PRNT” on page 986

PIECESIZ(integer)
Specifies the maximum piece size (data set size) for nonpartitioned indexes.
The value that you specify must match the value that is specified when the
secondary index was created or altered.

The defaults for PIECESIZ are 2G (2 GB) for indexes that are backed by
non-large table spaces and 4G (4 GB) for indexes that are backed by table
spaces that were defined with the LARGE option. This option is required if a
print range is specified and the piece size is not one of the default values. If
PIECESIZ is omitted and the index is backed by a table space that was defined
with the LARGE option, the LARGE keyword is required for DSN1PRNT.

The subsequent keyword K, M, or G, indicates the units of the value that is
specified in integer.

K Indicates that the integer value is to be multiplied by 1 KB to specify
the maximum piece size in bytes. integer must be either 256 or 512.

M Indicates that the integer value is to be multiplied by 1 MB to specify
the maximum piece size in bytes. integer must be a power of 2,
between 1 and 512.

G Indicates that the integer value is to be multiplied by 1 GB to specify
the maximum piece size in bytes. integer must be a power of two,
between 1 and 256.

Valid values for piece size are:
v 1 MB or 1 GB
v 2 MB or 2 GB
v 4 MB or 4 GB
v 8 MB or 8 GB

Chapter 42. DSN1PRNT 983

v 16 MB or 16 GB
v 32 MB or 32 GB
v 64 MB or 64 FB
v 128 MB or 128 GB
v 256 KB, 256 MB, or 256 GB
v 512 KB or 512 MB

NUMPARTS(integer)
This parameter is not used if the target table space is a universal table space.
DSSIZE is used instead.

PRINT(hexadecimal-constant,hexadecimal-constant)
Causes the SYSUT1 data set to be printed in hexadecimal format on the
SYSPRINT data set. This option is the default for DSN1PRNT.

You can specify the PRINT parameter with or without page range
specifications. If you do not specify a range, all pages of the SYSUT1 are
printed. If you want to limit the range of pages that are printed, you can do so
by indicating the beginning and ending page numbers with the PRINT
parameter or, if you want to print a single page, by indicating only the
beginning page. In either case, your range specifications must be from one to
eight hexadecimal characters in length.

The following example shows how to code the PRINT parameter if you want
to begin printing at page X'2F0' and to stop at page X'35C':
PRINT(2F0,35C)

The relationship between the page size and the number of pages in a 4-GB
data set is shown in the following table.

Table 130. Relationship between page size and the number of pages in a 4-GB data set

Page size Number of pages

4 KB X'100000'

8 KB X'80000'

16 KB X'40000'

32 KB X'20000'

For example, if PAGESIZE is 4 KB, the page number of the first page of the
third data set is 2*X'100000' = X'200000'.

To print only the header page for a nonpartitioned table space, specify
PRINT(0).

You can indicate the format of the row data in the PRINT output by specifying
EBCDIC, ASCII, or UNICODE. The part of the output that is affected by these
options is in bold in the following figure.

RECORD: XOFFSET=’0014’X PGSFLAGS=’00’X PGSLTH=65 PGSLTH=’0041’X PGSOBD=’0003’X PGSBID=’01’X
C5C5F0F6 C1404040 40404040 F1F34040 40C1E2D6 F1F3F5E7 40404040 40404040 EE06A 13 ASO135X
C1C6F3F1 C587C6F0 01800000 14199002 01174522 00000080 000000 AF31E.F0...................

RECORD: XOFFSET=’0055’X PGSFLAGS=’00’X PGSLTH=65 PGSLTH=’0041’X PGSOBD=’0003’X PGSBID=’02’X
C5C5F0F6 C1404040 40404040 F1F34040 40C1E2D6 F1F3F5E7 40404040 40404040 EE06A 13 ASO135X
C1C6F5F2 D487C5F0 09800000 78199002 01174522 00000080 000000 AF52M.E0...................

Figure 136. The part of the DSN1PRNT FORMAT output that is affected by the EBCDIC, ASCII, and UNICODE
options

984 Utility Guide and Reference

EBCDIC
Indicates that the row data in the PRINT output is to be displayed in
EBCDIC.

The default value is EBCDIC if the first page of the input data set is not a
header page.

If the first page is a header page, DSN1PRNT uses the format information
in the header page as the default format. However, if you specify EBCDIC,
ASCII, or UNICODE, that format overrides the format information in the
header page. The unformatted header page dump is always displayed in
EBCDIC, because most of the fields are in EBCDIC.

ASCII
Indicates that the row data in the PRINT output is to be displayed in
ASCII. Specify ASCII when printing table spaces that contain ASCII data.

UNICODE
Indicates that the row data in the PRINT output is to be displayed in
Unicode. Specify UNICODE when printing table spaces that contain
Unicode data.

VALUE
Causes each page of the input data set SYSUT1 to be scanned for the character
string that you specify in parentheses following the VALUE parameter. Each
page that contains that character string is then printed in SYSPRINT. You can
specify the VALUE parameter in conjunction with any of the other DSN1PRNT
parameters.

(string)
Can consist of from 1 to 20 alphanumeric EBCDIC characters. For
non-EBCDIC characters, use hexadecimal characters.

(hexadecimal-constant)
Consists of from 2 to 40 hexadecimal characters. You must specify two
apostrophe characters before and after the hexadecimal character string.

If, for example, you want to search your input file for the string '12345', your
JCL should look like the following JCL:
//STEP1 EXEC PGM=DSN1PRNT,PARM=’VALUE(12345)’

Alternatively, you might want to search for the equivalent hexadecimal
character string. If you are processing Unicode or ASCII input files, you must
specify the string in hexadecimal. Your JCL should look like the following JCL:
//STEP1 EXEC PGM=DSN1PRNT,PARM=’VALUE(’’3132333435’’)’

FORMAT
Causes the printed output to be formatted. Page control fields are identified,
and individual records are printed. Empty fields are not displayed.

EXPAND
Specifies that the data is compressed and causes DSN1PRNT to expand it
before formatting. This option is intended to be used only under the
direction of IBM Software Support.

When DSN1PRNT is run with the FORMAT EXPAND option, and the
input data sets constitute a full image copy, the input data sets need to
contain all pages of the original table space, including all dictionary pages.

FORMAT EXPAND cannot be specified if the INCRCOPY or INLCOPY
options are specified.

Chapter 42. DSN1PRNT 985

NODATA
Suppresses printing of table row data. The row headers are formatted and
printed. Specify NODATA to reduce the volume of the output when the
contents of the rows are not important.

NODATPGS
Suppresses all data pages of a table space. Specify NODATPGS to format
and print only non-data pages to reduce the volume of the output when
only certain page types are of interest (for example, LOB space map
pages). Alternatively, you can specify NODHDR.

DSN1PRNT cannot format a leaf or nonleaf page for an index page set that
contains keys with altered columns. When it encounters this situation,
DSN1PRNT generates the following message:
KEY WITH ALTERED COLUMN HAS BEEN DETECTED-UNABLE TO FORMAT PAGE

DSN1PRNT generates unformatted output for the page.

FORMAT attempts to format a broken page and dumps the unformatted
version of the page following the formatted version.

Related concepts:
“Using VERIFY with REPLACE and DELETE operations” on page 670

Printing with DSN1PRNT instead of DSN1COPY
If you want to print information about a data set, use the DSN1PRNT utility rather
than the DSN1COPY utility. DSN1COPY scans the entire SYSUT1 data set, but
DSN1PRNT might be able to stop scanning before the end of the data set. Also, the
DSN1PRNT utility can write a formatted dump.

Determining the page size and data set size for DSN1PRNT
Before you run the DSN1PRNT utility, you must determine the page size and data
set size (DSSIZE) for the page set.

Procedure

To determine the page size and data set size:

Issue a query against the DB2 catalog. For example, the query that is shown in the
following figure returns this information for the DEPT table:
SELECT T.CREATOR,T.NAME,S.NAME AS TABLESPACE,S.PARTITIONS,S.PGSIZE,

CASE S.DSSIZE
WHEN 0 THEN

CASE WHEN S.TYPE = ’G’ THEN 4194304
WHEN S.TYPE = ’L’ THEN 4194304
WHEN S.TYPE = ’O’ THEN 4194304
WHEN S.TYPE = ’P’ THEN 4194304
WHEN S.TYPE = ’R’ THEN 4194304

ELSE
CASE WHEN S.PARTITIONS > 254 THEN

CASE WHEN S.PGSIZE = 4 THEN 4194304
WHEN S.PGSIZE = 8 THEN 8388608
WHEN S.PGSIZE = 16 THEN 16777216
WHEN S.PGSIZE = 32 THEN 33554432

ELSE NULL
END
WHEN S.PARTITIONS > 64 THEN 4194304
WHEN S.PARTITIONS > 32 THEN 1048576

986 Utility Guide and Reference

WHEN S.PARTITIONS > 16 THEN 2097152
WHEN S.PARTITIONS > 0 THEN 4194304

ELSE 2097152
END

END
ELSE S.DSSIZE
END
AS DSSIZE
FROM SYSIBM.SYSTABLES T,

SYSIBM.SYSTABLESPACE S
WHERE

T.NAME = ’DEPT’ AND
T.TSNAME = S.NAME;

Related reference:
“Data sets that REORG INDEX uses” on page 519

Sample DSN1PRNT control statements
Use the sample control statements as models for developing your own DSN1PRNT
control statements.

Example 1: Printing a data set and formatting the output

The following example specifies that the DSN1PRNT utility is to print the data set
that is identified by the SYSUT1 DD statement and the output is to be formatted.
This data set is to be printed on the data set that is identified by the SYSPRINT
DD statement. The fifth-level qualifier in the data set name can be either I0001 or
J0001. This example uses I0001.
//jobname JOB acct info
//RUNPRNT EXEC PGM=DSN1PRNT,PARM=’PRINT,FORMAT’
//STEPLIB DD DSN=prefix.SDSNLOAD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBC.DSNDB01.SYSUTILX.I0001.A001,DISP=SHR

Example 2: Printing a nonpartitioning index with a 64-MB piece
size

The following example specifies that DSN1PRNT is to print the first 16 pages of
the 61st piece of an nonpartitioned index with a piece size of 64 MB. The pages
that are to be printed are identified by the PRINT option. These page values are
determined as follows: A data set of size 64 MB contains X'4000' 4-KB pages.
Decimal 61 is X'3D'. The page number of the first page of the 61st piece is
4000*(3D-1) = 4000*3C = F0000. To print the last 16 pages of the 61st piece, specify
PARM=(PRINT(F3FF0,F3FFF), ...).

The fifth-level qualifier in the data set name can be either I0001 or J0001. This
example uses I0001.
//PRINT2 EXEC PGM=DSN1PRNT,
// PARM=(PRINT(F0000,F000F),FORMAT,PIECESIZ(64M))
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=OLD,DSN=DSNCAT.DSNDBD.MMRDB.NPI1.I0001.A061

Example 3: Printing a single page of an image copy

The following example specifies that DSN1PRNT is to print one page of an image
copy. The image copy is identified by the SYSUT1 DD statement. The PRINT
option specifies that the only page to be printed is X'1'.

Chapter 42. DSN1PRNT 987

//STEP2 EXEC PGM=DSN1PRNT,
// PARM=’PRINT(1),FORMAT,INLCOPY’
//STEPLIB DD DSN=DB2A.SDSNLOAD,DISP=SHR
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=HUHYU205.L1.STEP1.DD2,DISP=SHR

Example 4: Printing a partitioned data set

The following example specifies that DSN1PRNT is to print the data set that is
identified by the SYSUT1 DD statement. Because this data set is a table space that
was defined with the LARGE option, the DSSIZE(4G) option is specified in the
parameter list for DSN1PRNT. You could specify the LARGE option in this list
instead, but specifying DSSIZE(4G) is recommended. This input table space has 260
partitions, as indicated by the NUMPARTS option.
//RUNPRNT1 EXEC PGM=DSN1PRNT,
// PARM=’DSSIZE(4G),PRINT,NUMPARTS(260),FORMAT’
//STEPLIB DD DSN=DB2A.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBC.DBOM0301.TPOM0301.I0001.A259,DISP=SHR
/*

Example 5: Printing a page range of a specific partition

It is difficult to determine page numbers for a specific partition of a partitioned
table space.

This example describes a simple way of using DSN1PRNT without needing to
calculate page numbers.
1. Run DSN1PRNT on the partition you want to process without specifying a

PRINT range. Set the FORMAT option to NODATPGS. Data pages are not
printed reducing the use of spool space.
// EXEC PGM=DSN1PRNT,
// PARM=’FORMAT,NODATPGS,NUMPARTS(8)’
//SYSUT1 DD DSN=DSNT6USR.DSNDBC.V9DS306.XV9D0000.I0001.A008,DISP=SHR

The printout includes page numbers. Use these page numbers to setup another
DSN1PRNT job using the appropriate page numbers.

2. Run DSN1PRNT on partition 8 specifying your PRINT range
// EXEC PGM=DSN1PRNT,
// PARM=’PRINT(xx000000,xx000020),FORMAT,NUMPARTS(8)’
//SYSUT1 DD DSN=DSNT6USR.DSNDBC.V9DS306.XV9D0000.I0001.A008,DISP=SHR

The page range must be specified in hexadecimal format.

Example 6: Specifying Unicode output for DSN1PRNT

When you specify the UNICODE option for DSN1PRNT, you are not going to see
non-Latin Unicode characters, such as Japanese characters, in your output. When
you specify the UNICODE option, DSN1PRNT takes the hexadecimal data and
formats it as ASCII instead of the default EBCDIC.

A problem might arise when the data that you want DSN1PRNT to handle is in
UTF-16. In the case of UTF-16 data, DSN1PRNT takes only the second byte of the
data and formats that part of the data as ASCII. Thus, the output might not be
correct. For example, the UTF-16 hexadecimal values X'0030' and X'1130' are both
output as 0, because the first byte of each ("00" and "11" respectively) is ignored.
The remaining part ("30") is interpreted as an ASCII 0. In UTF-16, X'0030' is the

988 Utility Guide and Reference

hexadecimal value for 0, but X'1130' is the hexadecimal value for a Hangul
character. For more information about UTF-16 format, see UTFs (DB2
Internationalization Guide).

In the following DSN1PRNT example, notice the three bold hexadecimal values:
X'0041', X'0141', and X'0241'. The output for all three of these values is A.A.A, even
though they each correspond to different characters in UTF-16. (X'0041' is A,
X'0141' is �, and X'0241' is the Latin capital character for glottal stop.)

//STEP1 EXEC PGM=DSN1PRNT,
// PARM=’FORMAT,PRINT(002),UNICODE’
//STEPLIB DD DSN=DB2A.DSNLOAD,DISP=SHR
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=TESTCAT.DSNDBC.DBED2101.TPED2101.I0001.A001,DISP=SHR
/*

DSN1999I START OF DSN1PRNT FOR JOB DSN1PRNT RUNPRNT9
DSN1989I DSN1PRNT IS PROCESSED WITH THE FOLLOWING OPTIONS:
4K/NO IMAGECOPY/NUMPARTS = 0/ FORMAT/NO EXPAND/ PRINT/NO VALUE/ / /
DSSIZE= /PIECESIZ= /UNICODE/
DSN1998I INPUT DSNAME = TESTCAT.DSNDBC.DBED2101.TPED2101.I0001.A001 , VSAM

PAGE: # 00000002 --
DATA PAGE: PGCOMB=’10’X PGLOGRBA=’0000758C9455’X PGNUM=’00000002’X PGFLAGS=’00’X PGFREE=4041
PGFREE=’0FC9’X PGFREEP=51 PGFREEP=’0033’X PGHOLE1=’0000’X PGMAXID=’01’X PGNANCH=1
PGTAIL: PGIDFREE=’00’X PGEND=’N’

ID-MAP FOLLOWS:
01 0014
RECORD: XOFFSET=’0014’X PGSFLAGS=’02’X PGSLTH=31 PGSLTH=’001F’X PGSOBD=’0003’X PGSBID=’01’X
80000001 00004101 41024100 20002000 20002000 20002000 20A.A.A.

DSN1994I DSN1PRNT COMPLETED SUCCESSFULLY, 00000001 PAGES PROCESSED

Chapter 42. DSN1PRNT 989

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.char/src/tpc/db2z_utf.htm#db2z_utf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.char/src/tpc/db2z_utf.htm#db2z_utf

990 Utility Guide and Reference

Chapter 43. DSN1SDMP

IBM Software Support might advise you to use the IFS selective dump
(DSN1SDMP) stand-alone utility. DSN1SDMP enables you to force dumps when
selected DB2 trace events occur, write DB2 trace records to user-defined z/OS data
sets, or start another DB2 trace.

To ensure that you do not take action on an IFCID 4 or IFCID 5 start or stop trace
record, it is good practice to add
P4,00
DR,04,X’hhhh’

to your control statement, where hhhh is the hex representation of the IFCID that
you are trying to trigger on.

Output

One intended use of this utility is to aid in determining and correcting system
problems. When diagnosing DB2, you might need to refer to licensed
documentation to interpret output from this utility.

Environment

Run DSN1SDMP as a z/OS job, and execute it with the DSN TSO command
processor. To execute DSN1SDMP, the DB2 subsystem must be running.

The z/OS job completes only under one of the following conditions:
v The TRACE and any additional selection criteria that are started by DSN1SDMP

meet the criteria specified in the FOR parameter.
v The TRACE that is started by DSN1SDMP is stopped by using the STOP TRACE

command.
v The job is canceled by the operator.

If you must stop DSN1SDMP, use the STOP TRACE command.

Authorization required

To execute this utility, the privilege set of the process must include one of the
following privileges or authorities:
v TRACE system privilege
v SYSOPR authority
v SYSADM authority
v MONITOR1 or MONITOR2 privileges (if you are using user-defined data sets)
v SQLADM authority
v System DBADM authority
v SECADM authority

The user who executes DSN1SDMP must have EXECUTE authority on the plan
that is specified in the trace-parameters of the START TRACE keyword.

© Copyright IBM Corp. 1983, 2013 991

Required data sets

DSN1SDMP uses the following DD statements:

SDMPIN
Defines the control data set that specifies the input parameters to
DSN1SDMP. This DD statement is required. The LRECL is 80. Only the
first 72 columns are checked by DSN1SDMP.

SDMPPRNT
Defines the sequential message data set that is used for DSN1SDMP
messages. If the SDMPPRNT DD statement is omitted, no messages are
written. The LRECL is 131.

SYSABEND
Defines the data set that is to contain an ABEND dump in case
DSN1SDMP abends. This DD statement is optional.

SDMPTRAC
Defines the sequential DB2 trace record data set that DB2 returns to
DSN1SDMP. The DD statement is required only if trace data is written to
an OPX trace destination. If the destination is anything other than an OPX
buffer, SDMPTRAC is ignored.

Trace records that DB2 writes to SDMPTRAC are of the same format as
SMF or GTF records except that the SDMPTRAC trace record headers
contain the monitor header (that is mapped by DSNDQWIW). The The
DCB parameters are VB, BLKSIZE=32760, LRECL=32756.

SYSTSIN
Defines the DSN commands to connect to DB2 and to execute an IFC
selective dump:
DSN SYSTEM(subsystem name)
RUN PROG(DSN1SDMP) LIB(’prefix.SDSNLOAD’) PLAN(DSNEDCL)

The DB2 subsystem name must be filled in by the user. The DSN RUN
command must specify a plan for which the user has execute authority.
DSN1SDMP dump does not execute the specified plan; the plan is used
only to connect to DB2.

When no plan name is specified on the DSN RUN command, the default
plan name is the program name. When DSN1SDMP is executed without a
plan, DSN generates an error if no DSN1SDMP plan exists for which the
user has execute authority.

Related reference:

Trace data record format (DB2 Performance)
Related information:

DB2 Diagnosis Guide and Reference

Syntax and options of the DSN1SDMP control statement
The DSN1SDMP utility control statement, with its multiple options, defines the
function that the utility job performs.

992 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_ifitracedatarecordformat.htm#db2z_ifitracedatarecordformat
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.digref/src/digref/db2z_digref.htm

DSN1SDMP syntax diagram

�� START TRACE (trace-parameters)

�SELECT function,offset,data-specification

�

�
(X'00E60100')

ACTION (action)
(abend-code)

(1)
(STTRACE) second-trace-spec

(X'00E60100')
,action

(abend-code)

�

�
AFTER (1)

AFTER (integer)

FOR (1)

FOR (integer)
��

Notes:

1 The options in the second-trace-spec do not have to be specified immediately following the
STTRACE option. However, they can be specified only if the STTRACE option is also specified.

second-trace-spec:

��
(X'00E60100')

ACTION2(action)
(abend-code)

FILTER(ACE)
EB

COMMAND command
�

�
AFTER2 (1)

AFTER2 (integer)

FOR2 (1)

FOR2 (integer)

�SELECT2 function,offset,data-specification

��

Option descriptions

START TRACE (trace-parameters)
Indicates the start of a DSN1SDMP job. START TRACE is a required keyword
and must be the first keyword that is specified in the SDMPIN input stream.

If the START TRACE command in the SDMPIN input stream is not valid, or if
the user is not properly authorized, the IFI (instrumentation facility interface)
returns an error code and START TRACE does not take effect. DSN1SDMP
writes the error message to the SDMPPRNT data set.

Chapter 43. DSN1SDMP 993

Trace Destination: If DB2 trace data is to be written to the SDMPTRAC data set,
the trace destination must be an IFI online performance (OP) buffer. OP buffer
destinations are specified in the DEST keyword of START TRACE. Eight OP buffer
destinations exist, OP1 to OP8. The OPX trace destination assigns the next
available OP buffer. Any record destined for the exclusive internal trace table (RES)
is not eligible to be evaluated. For example, if you start IFCID(0) DEST(RES), this
will not execute DSN1SDMP logic and cannot be acted upon.

The DB2 output text from the START TRACE command is written to SDMPPRNT.

START TRACE and its associated keywords must be specified first. Specify the
remaining selective dump keywords in any order following the START TRACE
command.

SELECT function,offset,data-specification
Specifies selection criteria in addition to those that are specified on the START
TRACE command. SELECT expands the data that is available for selection in a
trace record and allows more specific selection of data in the trace record than
using START TRACE alone. You can specify a maximum of eight SELECT
criteria.

The selection criteria use the concept of the current-record pointer. DB2
initializes the current-record pointer to zero, that is, at the beginning of the
trace record. For this instance of the DSN1SDMP trace, the trace record begins
with the self-defining section. The current-record pointer can be modified by
Px and LN functions, which are described in the list of functions below.

You can specify the selection criteria with the following parameters:

function
Specifies the type of search that is to be performed on the trace record. The
specified value must be two characters. The possible values are:

DR Specifies a direct comparison of data from the specified offset. The
offset is always calculated from the current-record pointer.

GE Specifies a comparison of data that is greater than or equal to the value
of the specified offset. The offset is always calculated from the
current-record pointer. The test succeeds if the data from the specified
offset is greater than or equal to data-specification, which you can
specify on the SELECT option.

LE Specifies a comparison of data that is less than or equal to the value of
the specified offset. The offset is always calculated from the
current-record pointer. The test succeeds if the data from the specified
offset is less than or equal to data-specification, which you specify on the
SELECT option.

P1, P2, or P4
Selects the 1-, 2-, or 4-byte field that is located offset bytes past the start
of the record. The function then moves the current-record pointer that
number of bytes into the record. P1, P2, and P4 always start from the
beginning of the record (plus the offset that you specify).

This offset is saved as the current-record pointer that is to be used on
subsequent DR, LE, GR, and LN requests.

For example, suppose that the user knows that the offset to the
standard header is 4 bytes long and is located in the first 4 bytes of the
record. P4,00 reads that offset and moves the current-record pointer to
the start of the standard header.

994 Utility Guide and Reference

LN Advances the current-record pointer by the number of bytes that are
indicated in the 2-byte field that is located offset bytes from the
previous current-record pointer.

This offset is saved as the current-record pointer that is to be used on
subsequent DR, LE, GR, and LN requests.

offset
Specifies the number (in decimal) of bytes into the trace record where the
comparison with the data-specification field begins. The offset starts from the
beginning of the trace record after a P1, P2, or P4, and from the
current-record pointer after a GE, LE, LN, or DR.

The format of the DB2 trace record at data-specification comparison time is
shown in the following figure.

v The format of the self-defining section depends on the trace type.
v The format and content of the data sections depend on the IFCID that is

being recorded. Each record can have one or more data sections. Each
data section can have multiple repeating groups.

v The format and content of the trace header section depends on the trace
type.

data-specification
Specifies that the data can be hexadecimal (for example, X'9FECBA10') or
character (C'FIELD').

ACTION
Specifies the action to perform when a trace record passes the selection criteria
of the START TRACE and SELECT keywords.

Attention: The purpose of the ACTION keyword is to facilitate problem
analysis. You should use it with extreme caution because you might damage
existing data. Not all abends are recoverable, even if the ABENDRET
parameter is specified. Some abends might force the DB2 subsystem to
terminate, particularly those abends that occur during end-of-task or
end-of-memory processing due to the agent having experienced a previous
abend.

action(abend-code)
Specifies a particular action to perform. Possible values for action are:

ABENDRET
ABEND and retry the agent.

ABENDTER
ABEND and terminate the agent.

An abend reason code can also be specified on this parameter. The codes
must be in the range X'00E60100' to X'00E60199'. The default value is
X'00E60100'.

STTRACE
Specifies that a second trace is to be started when a trace record passes the
selection criteria.

Self defining
section Data sections

Product
section

Figure 137. Format of the DB2 trace record at data specification comparison time

Chapter 43. DSN1SDMP 995

If you do not specify action or STTRACE, the record is written and no action is
performed.

AFTER(integer)
Specifies that the ACTION is to be performed after the trace point is reached
integer times.

integer must be between 1 and 32767.

The default value is AFTER(1).

FOR(integer)
Specifies the number of times that the ACTION is to take place when the
specified trace point is reached. After integer times, the trace is stopped, and
DSN1SDMP terminates.

integer must be between 1 and 32767 and includes the first action. If no
SELECT criteria are specified, use an integer greater than 1; the START TRACE
command automatically causes the action to take place one time.

The default value is FOR(1).

ACTION2
Specifies the action to perform when a trace record passes the selection criteria
of the START TRACE, SELECT, and SELECT2 keywords.

Attention: The ACTION2 keyword, like the ACTION keyword, should be
used with extreme caution, because you might damage existing data. Not all
abends are recoverable, even if the ABENDRET parameter is specified. Some
abends might force the DB2 subsystem to terminate, particularly those that
occur during end-of-task or end-of-memory processing due to the agent having
experienced a previous abend.

action(abend-code)
Specifies a particular action to perform. Possible values for action are:

ABENDRET
ABEND and retry the agent.

ABENDTER
ABEND and terminate the agent.

An abend reason code can also be specified on this parameter. The codes
must be in the range X'00E60100-00E60199'. If no abend code is specified,
X'00E60100' is used.

If you do not specify action, the record is written and no action is performed.

FILTER
Specifies that DSN1SDMP is to filter the output of the second trace based on
either an ACE or an EB.

(ACE)
Specifies that DSN1SDMP is to include trace records only for the agent
control element (ACE) that is associated with the agent when the first
action is triggered and the second trace is started.

(EB)
Specifies that DSN1SDMP is to include trace records only for the execution
block (EB) that is associated with the agent when the first action is
triggered and the second trace is started.

996 Utility Guide and Reference

COMMAND
Indicates that the specified command is to be issued when a trace record
passes the selection criteria for the first trace and a second trace is started. You
can start a second trace by specifying the STTRACE option.

command
Specifies a specific command to be issued.

FOR2(integer)
Specifies the number of times that the ACTION2 is to take place when the
specified second trace point is reached. After integer times, the second trace is
stopped, and DSN1SDMP terminates.

integer must be between 1 and 32767 and includes the first action. If no
SELECT2 criteria are specified, use an integer greater than 1; the STTRACE
option automatically causes the action to take place one time.

The default value is FOR2(1).

AFTER2(integer)
Specifies that the ACTION2 is to be performed after the second trace point is
reached integer times.

integer must be between 1 and 32767.

The default value is AFTER2(1).

SELECT2 function,offset,data-specification
Specifies selection criteria for the second trace. This option functions like the
SELECT option, except that it pertains to the second trace only. You can start a
second trace by specifying the STTRACE option.

Related reference:

-START TRACE (DB2) (DB2 Commands)

Trace field descriptions (DB2 Performance)

Assigning buffers
You must specify the OPX destination for all traces that are being recorded to an
OPn buffer for the DSN1SDMP utility to use. By specifying the OPX destination,
you avoid the possibility of starting a trace to a buffer that is already assigned.

If a trace is started to an OPn buffer that has already been assigned, DSN1SDMP
waits indefinitely until the trace is manually stopped. The default for
MONITOR-type traces is the OPX destination (the next available OP buffer). Other
trace types must be explicitly directed to OP destinations via the DEST keyword of
the START TRACE command. DSN1SDMP interrogates the IFCAOPN field after the
START TRACE COMMAND call to determine if the trace was started to an OP
buffer.

Trace Destination: If DB2 trace data is to be written to the SDMPTRAC data set,
the trace destination must be an IFI online performance (OP) buffer. OP buffer
destinations are specified in the DEST keyword of START TRACE. Eight OP buffer
destinations exist, OP1 to OP8. The OPX trace destination assigns the next
available OP buffer. Any record destined for the exclusive internal trace table (RES)
is not eligible to be evaluated. For example, if you start IFCID(0) DEST(RES), this
will not execute DSN1SDMP logic and cannot be acted upon.

Chapter 43. DSN1SDMP 997

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_starttrace.htm#db2z_cmd_starttrace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tracefields.htm#db2z_tracefields

Trace records are written to the SDMPTRAC data set when the trace destination is
an OP buffer. The instrumentation facilities component (IFC) writes trace records to
the buffer and posts DSN1SDMP to read the buffer when it fills to half of the
buffer size.

You can specify the buffer size on the BUFSIZE keyword of the START TRACE
command. All returned records are written to SDMPTRAC.

If the number of generated trace records requires a larger buffer size than was
specified, you can lose some trace records. If this happens, error message
DSN2724I is issued.

Conditions for generating a dump
DSN1SDMP generates a DB2 dump when certain events occur.

DSN1SDMP generates a DB2 dump when all of the following events occur:
v DB2 produces a trace record that satisfies all of the selection criteria.
v You specify an abend action (ABENDRET or ABENDTER).
v The AFTER and FOR conditions for the trace are satisfied.

If all three events occur, an 00E601xx abend occurs. xx is an integer between 1 and
99 that DB2 obtains from the user-specified value on the ACTION keyword.

Stopping or modifying DSN1SDMP traces
You can stop and modify DSN1SDMP traces.

Procedure

To stop the DSN1SDMP utility:

Issue a STOP TRACE command. For example, if the DSN1SDMP utility does not
finish, you can might stop it by issuing the following command:
-STOP TRACE=P CLASS(32)

DSN1SDMP executes as a stand-alone batch utility without requiring external
intervention from the console operator or other programs. During execution,
DSN1SDMP issues an IFI READA request to obtain the data from the OPn buffer
and a STOP TRACE command to terminate the original trace that is started by
DSN1SDMP.
A STOP TRACE or MODIFY TRACE command that is entered from a console for
the trace that is started by DSN1SDMP causes immediate abnormal termination of
DSN1SDMP processing. The IFI READA function terminates with an appropriate
IFI termination message and reason code. Additional error messages and reason
codes that are associated with the DSN1SDMP STOP TRACE command vary
depending on the specific trace command that is entered by the console operator.
If the console operator terminates the original trace by using the STOP TRACE
command, the subsequent STOP TRACE command that is issued by DSN1SDMP
fails.
If the console operator enters a MODIFY TRACE command and processing of this
command completes before the STOP TRACE command is issued by DSN1SDMP,
the modified trace is also terminated.

998 Utility Guide and Reference

Related reference:

-STOP TRACE (DB2) (DB2 Commands)

-MODIFY TRACE (DB2) (DB2 Commands)

Sample DSN1SDMP control statements
Use the sample control statements as models for developing your own DSN1SDMP
control statements.

Example 1: Creating the JCL for DSN1SDMP

This example shows the skeleton JCL for a DSN1SDMP job.
//DSN1J018 JOB ’IFC SD’,CLASS=A,
// MSGLEVEL=(1,1),USER=SYSADM,PASSWORD=SYSADM,REGION=1024K
//**
//*
//* THIS IS A SKELETON OF THE JCL USED TO RUN DSN1SDMP.
//* YOU MUST INSERT SDMPIN DD.
//*
//**
//IFCSD EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//STEPLIB DD DISP=SHR,DSN=prefix.SDSNLOAD
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SDMPPRNT DD SYSOUT=*
//SDMPTRAC DD DISP=(NEW,CATLG,CATLG),DSN=IFCSD.TRACE,
// UNIT=SYSDA,SPACE=(8192,(100,100)),DCB=(DSORG=PS,
// LRECL=32756,RECFM=VB,BLKSIZE=32760)
//SDMPIN DD *
//**
//*
//* INSERT SDMPIN DD HERE. IT MUST BEGIN WITH A VALID
//* START TRACE COMMAND (WITHOUT THE SUBSYSTEM RECOGNITION CHAR)
//*
//**

(VALID SDMPIN GOES HERE)

/*
//**
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROG(DSN1SDMP) PLAN(DSNEDCL)
END
//*

Example 2: Abending and retrying agent on -904 SQL CODE

This example specifies that DB2 is to start a performance trace (which is indicated
by the letter A) and activate IFCID 53, 58. To start only those IFCIDs that are
specified in the IFCID option, use trace classes 30-32. In this example, trace class 32
is specified. The IFCID 53 and 58 are started and inspected to see if they match the
SELECT criteria.

The SELECT option indicates additional criteria for data in the trace record. In this
example, the P4,00 positions the current record pointer to the product section. The

Figure 138. Skeleton JCL for DSN1SDMP

Chapter 43. DSN1SDMP 999

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_stoptrace.htm#db2z_cmd_stoptrace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_modifytrace.htm#db2z_cmd_modifytrace

GE, 04,X'0005' ensures that the IFCID being traced is either an IFCID 53 or 58 and
is not an IFCID4 which is automatically generated via the START TRACE
command. The P4,08 positions the current record pointer to data section 1 of the
IFCID 53 or 58. A direct comparison is then made at decimal offset 74 for SQL code
X''FFFFFC78''.

When a trace record passes the selection criteria of the START TRACE command
and SELECT keywords, DSN1SDMP is to perform the action that is specified by
the ACTION keyword. In this example, the job is to abend and try again with
reason code 00E60188. This action is to take place only once, as indicated by the
FOR option. FOR(1) is the default, and is therefore not required to be explicitly
specified.

Example 3: Abending and retrying on RMID 20

This example specifies that DB2 is to start a performance trace (which is indicated
by the letter P) and activate all IFCIDs in classes 3 and 8. The trace output is to be
recorded in a generic destination that uses the first free OPn slot, as indicated by
the DEST option. The TDATA (TRA) option specifies that a CPU header is to be
placed into the product section of each trace record.

The SELECT option indicates additional criteria for data in the trace record. In this
example, the SELECT option first specifies that the current-record pointer is to be
placed at the 4-byte field that is located at the start of the record. The current
record pointer is then to be advanced the number of bytes that are indicated in the
2-byte field that is located at the current record pointer. The utility is then to
directly compare the data that is 4 bytes from the current-record pointer with the
value X'0025'.

When a trace record passes the selection criteria of the START TRACE command
and SELECT keywords, DSN1SDMP is to perform the action that is specified by
the ACTION keyword. In this example, the job is to abend and retry the agent.

//SDMPIN DD *
START TRACE=A CLASS(32) IFCID(53,58) DEST(OPX)
FOR(1)
AFTER(1)
ACTION(ABENDRET(00E60188))
SELECT
* Position to the product section
P4,00
* Ensure QWHSIID = 58 or 53 (not IFCID 4)
GE,04,X’0005’
* Position to the data section 1
P4,08
* Compare SQLCODE in QW0058SQ or QW0053SQ
DR,74,X’FFFFFC78’
/*

Figure 139. Example job that abends and terminates agent on -904 SQL code

1000 Utility Guide and Reference

Example 4: Generating a dump on SQLCODE -811 RMID16 IFCID
5

This example specifies that DB2 is to start a performance trace (which is indicated
by the letter P) and activate all IFCIDs in class 3. The trace output is to be recorded
in the system management facility (SMF). The TDATA (COR,TRA) option specifies
that a trace header and a CPU header are to be placed into the product section of
each trace record.

The SELECT option indicates additional criteria for data in the trace record. In this
example, the SELECT option first specifies that the current-record pointer is to be
placed at the 4-byte field that is located at the start of the record. The utility is then
to directly compare the data that is 2 bytes from the current-record pointer with
the value X'0116003A'. The current record pointer is then to be moved to the 4-byte
field that is located 8 bytes past the start of the current record. The utility is then
to directly compare the data that is 74 bytes from the current-record pointer with
the value X'FFFFFCD5'.

When a trace record passes the selection criteria of the START TRACE command
and SELECT keywords, DSN1SDMP is to perform the action that is specified by
the ACTION keyword. In this example, the job is to abend with reason code
00E60188 and retry the agent. This action is to take place only once, as indicated
by the FOR option. FOR(1) is the default, and is therefore not required to be
explicitly specified. AFTER(1) indicates that this action is to be performed the first
time the trace point is reached. AFTER(1) is also the default.

//* ABEND AND RETRY AN AGENT WHEN EVENT ID X’0025’
//* (AGENT ALLOCATION) IS RECORDED BY RMID 20 (SERVICE
//* CONTROLLER).
//*
//SDMPIN DD *
* ENSURE ONLY THE TRACE HEADER IS APPENDED WITH THE STANDARD HEADER
* VIA THE TDATA KEYWORD ON START TRACE
START TRACE=P CLASS(3,8) RMID(20) DEST(OPX) TDATA(TRA)
* ABEND AND RETRY THE AGENT WITH THE DEFAULT ABEND CODE (00E60100)
ACTION(ABENDRET)
* SPECIFY THE SELECT CRITERIA FOR RMID.EID
SELECT
* OFFSET TO THE STANDARD HEADER
P4,00
* ADD LENGTH OF STANDARD HEADER TO GET TO TRACE HEADER
LN,00
* LOOK FOR EID 37 AT OFFSET 4 IN THE TRACE HEADER
DR,04,X’0025’
/*

Figure 140. Example job that abends and retries on RMID 20

Chapter 43. DSN1SDMP 1001

Example 5: Starting a second trace

This example job starts a trace on IFC 196 records. An IFC 196 record is written
when a lock timeout occurs. In this example, when a lock timeout occurs,
DSN1SDMP is to start a second trace, as indicated by the ACTION(STTRACE)
option. This second trace is to be an accounting trace, as indicated by the
COMMAND START TRACE(ACCTG) option. This trace is to include records only
for the ACE that is associated with the agent that timed out, as indicated by the
FILTER(ACE) option. When the qualifying accounting record is found, DSN1SDMP
generates a dump.

Related reference:

-STOP TRACE (DB2) (DB2 Commands)

//SDMPIN DD *
START TRACE=P CLASS(3) RMID(22) DEST(SMF) TDATA(COR,TRA)
AFTER(1)
FOR(1)
SELECT
* POSITION TO HEADERS (QWHS IS ALWAYS FIRST)

P4,00
* CHECK QWHS 01, FOR RMID 16, IFCID 58

DR,02,X’0116003A’
* POSITION TO SECOND SECTION (1ST DATA SECTION)

P4,08
* COMPARE SQLCODE FOR 811

DR,74,X’FFFFFCD5’
ACTION(ABENDRET(00E60188))
/*

Figure 141. Example job that generates a dump on SQL code -811 RMID16 IFCID

//SDMPIN DD *
* START ONLY IFCID 196, TIMEOUT
START TRACE=P CLASS(32) IFCID(196) DEST(SMF)
AFTER(1)
* ACTION = START ACCOUNTING TRACE
ACTION(STTRACE)
* FILTER ON JUST 196 RECORDS...
SELECT
P4,00
DR,04,X’00C4’
* WHEN ACCOUNTING IS CUT, ABEND
ACTION2(ABENDRET(00E60188))
* START THE ACCOUNTING TRACE FILTER ON THE ACE OF THE AGENT
* THAT TIMED OUT
COMMAND
START TRACE(ACCTG) CLASS(32) IFCID(3) DEST(SMF)
* Filter can be for ACE or EB
FILTER(ACE)
/*

Figure 142. Example job that starts a second trace.

1002 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_stoptrace.htm#db2z_cmd_stoptrace

Part 4. Appendixes

© Copyright IBM Corp. 1983, 2013 1003

1004 Utility Guide and Reference

Appendix A. Limits in DB2 for z/OS

DB2 for z/OS has system limits, object and SQL limits, length limits for identifiers
and strings, and limits for certain data type values.

System storage limits might preclude the limits specified in this section. The limit
for items not that are not specified below is limited by system storage.

The following table shows the length limits for identifiers.

Table 131. Identifier length limits. The term byte(s) in this table means the number of bytes for the UTF-8
representation unless noted otherwise.

Item Limit

External-java-routine-name 1305 bytes

Name of an alias 1, auxiliary table, collection, clone table,
constraint, correlation, cursor (except for DECLARE
CURSOR WITH RETURN or the EXEC SQL utility),
distinct type (both parts of two-part name), function
(both parts of two-part name), host identifier, index,
JARs, parameter, procedure, role, schema, sequence,
specific, statement, storage group, savepoint, SQL
condition, SQL label, SQL parameter, SQL variable,
synonym, table, trigger, view, XML attribute name, XML
element name

128 bytes

Name of an authorization ID or name of a security label. 8 bytes

Routine version identifier 64 EBCDIC bytes, and the UTF-8 representation of the
name must not exceed 122 bytes.

Name of a column 30 bytes 1

Name of cursor that is created with DECLARE CURSOR
WITH RETURN

30 bytes

Name of cursor that is created with the EXEC SQL utility 8 bytes

Name of a location 16 bytes

Name of buffer pool name, catalog, database, plan,
program, table space

8 bytes

Name of package 8 bytes (Only 8 EBCDIC characters are used for packages
that are created with the BIND PACKAGE command. 128
bytes can be used for packages that are created as a result
of the CREATE FUNCTION (SQL scalar) statement, the
CREATE PROCEDURE (SQL - native) statement, the
CREATE TRIGGER statement, or a BIND command that
specifies a zFS file as DBRM library.)

Name of a profile that is created with CREATE
TRUSTED CONTEXT or ALTER TRUSTED CONTEXT

127 bytes

Notes:

1. If the column name length or the distinct type schema or name length is greater than 30 Unicode bytes,
truncation occurs in the sqlname field of the SQLDA when those objects are described in an application.

Table 132 on page 1006 shows the minimum and maximum limits for numeric
values.

© Copyright IBM Corp. 1983, 2013 1005

|
|
|
|
|
|

Table 132. Numeric limits

Item Limit

Smallest SMALLINT value -32768

Largest SMALLINT value 32767

Smallest INTEGER value -2147483648

Largest INTEGER value 2147483647

Smallest BIGINT value -9223372036854775808

Largest BIGINT value 9223372036854775807

Smallest REAL value About -7.2x1075

Largest REAL value About 7.2x1075

Smallest positive REAL value About 5.4x10-79

Largest negative REAL value About -5.4x10-79

Smallest FLOAT value About -7.2x1075

Largest FLOAT value About 7.2x1075

Smallest positive FLOAT value About 5.4x10-79

Largest negative FLOAT value About -5.4x10-79

Smallest DECIMAL value 1 - 1031

Largest DECIMAL value 1031 - 1

Largest decimal precision 31

Smallest DECFLOAT(16) value1 -9.999999999999999x10384

Largest DECFLOAT(16) value1 9.999999999999999x10384

Smallest positive DECFLOAT(16) value1 1.000000000000000x10-383

Largest negative DECFLOAT(16) value1 -1.000000000000000x10-383

Smallest DECFLOAT(34) value1 -9.999999999999999999999999999999999x106144.

Largest DECFLOAT(34) value1 9.999999999999999999999999999999999x106144.

Smallest positive DECFLOAT(34) value1 1.000000000000000000000000000000000x10-6143

Largest negative DECFLOAT(34) value1 -1.000000000000000000000000000000000x10-6143

Coefficient length for DECFLOAT values DECFLOAT(16) is 16 digits; DECFLOAT(34) is 34 digits

Maximum Exponent (Emax) for DECFLOAT values DECFLOAT(16) is 384; DECFLOAT(34) is 6144

Minimum Exponent (Emin) for DECFLOAT values DECFLOAT(16) is -383; DECFLOAT(34) is -6143

Bias for DECFLOAT values DECFLOAT(16) is 398; DECFLOAT(34) is 6176

Note:

1. These are the limits for normal numbers in DECFLOAT. DECFLOAT also contains special values such as NaN
and Infinity that are also valid. DECFLOAT also supports subnormal numbers that are outside of the documented
range.

The following table shows the length limits for strings.

Table 133. String length limits

Item Limit

Maximum length of CHAR 255 bytes

Maximum length of GRAPHIC 127 double-byte characters

Maximum length of BINARY 255 bytes

1006 Utility Guide and Reference

Table 133. String length limits (continued)

Item Limit

Maximum length1 of VARCHAR 4046 bytes for 4 KB pages
8128 bytes for 8 KB pages
16320 bytes for 16 KB pages
32704 bytes for 32 KB pages

Maximum length of VARCHAR that can be indexed by
an XML index

1000 bytes after conversion to UTF-8

Maximum length1 of VARGRAPHIC 2023 double-byte characters for 4 KB pages
4064 double-byte characters for 8 KB pages
8160 double-byte characters for 16 KB pages
16352 double-byte characters for 32 KB pages

Maximum length of VARBINARY 32704 bytes

Maximum length of CLOB 2 147 483 647 bytes (2 GB - 1 byte)

Maximum length of DBCLOB 1 073 741 823 double-byte characters

Maximum length of BLOB 2 147 483 647 bytes (2 GB - 1 byte)

Maximum length of a character constant 32704 UTF-8 bytes

Maximum length of a hexadecimal character constant 32704 hexadecimal digits

Maximum length of a graphic string constant 16352 double-byte characters (32704 bytes when
expressed in UTF-8)

Maximum length of a hexadecimal graphic string
constant

32704 hexadecimal digits

Maximum length of a text string used for a scalar
expression

4000 UTF-8 bytes

Maximum length of a concatenated character string 2 147 483 647 bytes (2 GB - 1 byte)

Maximum length of a concatenated graphic string 1 073 741 824 double-byte characters

Maximum length of a concatenated binary string 2 147 483 647 bytes (2 GB - 1 byte)

Maximum length of XML pattern text 4000 bytes after conversion to UTF-8

Maximum length of an XML element or attribute name in
an XML document

1000 bytes

Maximum length of a namespace uri 1000 bytes

Maximum length of a namespace prefix 998 bytes

Largest depth of an internal XML tree 128 levels

Note:

1. The maximum length can be achieved only if the column is the only column in the table. Otherwise, the
maximum length depends on the amount of space remaining on a page.

The following table shows the minimum and maximum limits for datetime values.

Table 134. Datetime limits

Item Limit

Smallest DATE value (shown in ISO format) 0001-01-01

Largest DATE value (shown in ISO format) 9999-12-31

Smallest TIME value (shown in ISO format) 00.00.00

Largest TIME value (shown in ISO format) 24.00.00

Smallest TIMESTAMP WITHOUT TIME ZONE value 0001-01-01-00.00.00.000000000000

Appendix A. Limits in DB2 for z/OS 1007

Table 134. Datetime limits (continued)

Item Limit

Largest TIMESTAMP WITHOUT TIME ZONE value 9999-12-31-24.00.00.000000000000 1

Smallest TIMESTAMP WITH TIME ZONE value 0001-01-01-00.00.00.000000000000 +00:00

Largest TIMESTAMP WITH TIME ZONE value 9999-12-31-24.00.00.000000000000 +00:00 1

TIMESTAMP precision range 0 to 12

TIME ZONE hour range -12 to 14

TIME ZONE minute range 0 to 59

Note:

1. The maximum value is stated as a UTC value. When a timestamp without a time zone is compared to a
timestamp with time zone, a necessary adjustment is made using the implicit time zone. During that adjustment,
the timestamp without time zone could be converted to a value that is greater than the maximum value for a
timestamp with time zone value (this could occur on operations such as comparison and assignment). This
situation can be avoided by using '9999-12-30-00.00.00.000000000000' as the maximum value for timestamp
without time zone and '9999-12-30-00.00.00.000000000000 +00:00' as the maximum value for timestamp with time
zone columns.

The following table shows the DB2 limits on SQL statements.

Table 135. DB2 limits on SQL statements

Item Limit

Maximum number of columns that are in a table or view
(the value depends on the complexity of the CREATE
VIEW statement) or columns returned by a table function.

750 or fewer (including hidden columns)
749 if the table is a dependent

Maximum number of base tables in a view, SELECT,
UPDATE, INSERT, MERGE, or DELETE

225

Maximum number of rows that can be inserted with a
single INSERT or MERGE statement

32767

Maximum row and record sizes for a table See the maximum record size table under CREATE
TABLE.

Maximum number of volume IDs in a storage group 133

Maximum number of partitions in a partitioned table
space or partitioned index

64 for table spaces that are not defined with LARGE or a
DSSIZE greater than 2 GB.

4096, depending on what is specified for DSSIZE or
LARGE and the page size.

Maximum sum of the lengths of limit key values of a
partition boundary

765 UTF-8 bytes

1008 Utility Guide and Reference

Table 135. DB2 limits on SQL statements (continued)

Item Limit

Maximum size of a partition (table space or index) For table spaces that are not defined with LARGE or a
DSSIZE greater than 2 GB:

4 GB, for 1 to 16 partitions
2 GB, for 17 to 32 partitions
1 GB, for 33 to 64 partitions

For table spaces that are defined with LARGE or a
DSSIZE of 4 GB:

4 GB, for 1 to 4096 partitions

For table spaces that are defined with a DSSIZE greater
than 4 GB:

256 GB, depending on the page size (for 1 to 64
partitions for 4 KB pages, for 1 to 128 partitions for 8
KB pages, for 1 to 256 partitions for 16 KB pages, and
1 to 512 partitions for 32 KB pages)

Maximum size of a non-partitioned index for a
partitioned table space

For 5-byte EA table spaces:
16 TB for 4 KB pages
32 TB for 8 KB pages
64 TB for 16 KB pages
128 TB for 32 KB pages

For table spaces that are defined with LARGE:
16 TB

Maximum length of an index key Partitioning index: 255-n
Nonpartitioning index that is padded: 2000-n
Nonpartitioning index that is not padded: 2000-n-2m

Where n is the number of columns in the key that allow
nulls and m is the number of varying-length columns in
the key

Maximum number of bytes used in the partitioning of a
partitioned index

255 (This maximum limit is subject to additional
limitations, depending on the number of partitions in the
table space. The number of partitions * (106 + limit key
size) must be less than 65394.)

Maximum number of columns in an index key 64

Maximum number of expressions in an index key 64

Maximum number of tables in a FROM clause 225 or fewer, depending on the complexity of the
statement

Maximum number of subqueries in a statement 224

Maximum total length of host and indicator variables
pointed to in an SQLDA

32767 bytes

2 147 483 647 bytes (2 GB - 1 byte) for a LOB, subject to
the limitations that are imposed by the application
environment and host language

Maximum size of application SQLDA for any statement
that references host variables or parameter markers

99016 bytes

Maximum length of host variable used for insert or
update operation

32704 bytes for a non-LOB

2 147 483 647 bytes (2 GB - 1 byte) for a LOB, subject to
the limitations that are imposed by the application
environment and host language

Maximum length of an SQL statement 2 097 152 bytes

Appendix A. Limits in DB2 for z/OS 1009

Table 135. DB2 limits on SQL statements (continued)

Item Limit

Maximum number of elements in a select list 750 or fewer, depending on whether the select list is for
the result table of static scrollable cursor1

Maximum number of predicates in a WHERE or
HAVING clause

Limited by storage

Maximum total length of columns of a query operation
requiring a sort key (SELECT DISTINCT, ORDER BY,
UNION, EXCEPT, and INTERSECT, without the ALL
keyword, and the DISTINCT keyword for aggregate
functions)

4032 bytes

Maximum total length of columns of a query operation
requiring sort and evaluating column functions
(MULTIPLE DISTINCT and GROUP BY)

65529 bytes

Maximum length of a sort key 16000 bytes

Maximum length of a check constraint 3800 bytes

Maximum number of bytes that can be passed in a single
parameter of an SQL CALL statement

32765 bytes for a non-LOB

2 147 483 647 bytes (2 GB - 1 byte) for a LOB, subject to
the limitations imposed by the application environment
and host language

Maximum number of stored procedures, triggers, and
user-defined functions that an SQL statement can
implicitly or explicitly reference

64 nesting levels

Maximum length of the SQL path 2048 bytes

Maximum length of a WLM environment name in a
CREATE PROCEDURE, CREATE FUNCTION, ALTER
PROCEDURE, or ALTER FUNCTION statement.

32 bytes

Maximum number of XPath level in the XMLPATTERN
clause of the CREATE INDEX statement.

50 nesting levels

Note:

1. If the scrollable cursor is read-only, the maximum number is 749 less the number of columns in the ORDER BY
that are not in the select list. If the scrollable cursor is not read-only, the maximum number is 747.

The following table shows the DB2 system limits.

Table 136. DB2 system limits

Item Limit

Maximum number of concurrent DB2 or application
agents

Limited by the EDM pool size, buffer pool size, and the
amount of storage that is used by each DB2 or
application agent

Maximum size of a non-LOB table or table space 128 terabytes (TB)

Maximum size of a simple or segmented table space 64 GB

Maximum size of a log space 6-byte format: 248 bytes

10-byte format: 280 bytes

Maximum size of an active log data set 4 GB -1 byte

Maximum size of an archive log data set 4 GB -1 byte

Maximum number of active log copies 2

Maximum number of archive log copies 2

1010 Utility Guide and Reference

|

|

Table 136. DB2 system limits (continued)

Item Limit

Maximum number of active log data sets (each copy) 93

Maximum number of archive log volumes (each copy) 10000

Maximum number of databases accessible to an
application or user

Limited by system storage and EDM pool size

Maximum number of databases 65217

Maximum number of implicitly created databases Maximum value of the sequence
SYSIBM.DSNSEQ_IMPLICITDB, with a default of 10000

Maximum number of internal objects for each database 1 32767

Maximum number of indexes on declared global
temporary tables

10000

Maximum size of an EDM pool The installation parameter maximum depends on
available space

Maximum number of rows per page 255 for all table spaces except catalog and directory tables
spaces, which have a maximum of 127

Maximum simple or segmented data set size 2 GB

Maximum partitioned data set size See item “maximum size of a partition” in Table 135 on
page 1008

Maximum LOB data set size 64 GB

Maximum number of table spaces that can be defined in
a work file database

500

Maximum number of tables and triggers that can be
defined in a work file database

11767

Note:

1. The number of internal object descriptors (OBDs) for external objects are as follows:

v Table space: 2

v Table: 1

v Index: 2

v Check constraint: 1

v Referential integrity relationship: 2

v Auxiliary relationship for each LOB column: 1

v XML relationship for each XML column: 1

v Trigger: 1

v View that has an INSTEAD OF trigger: 1

Appendix A. Limits in DB2 for z/OS 1011

1012 Utility Guide and Reference

Appendix B. DB2-supplied stored procedures for utility
operations

DB2 provides some stored procedures that you can call in your application
programs to perform a number of utility functions. Typically, these procedures are
created during installation or migration.

DSNUTILS stored procedure (deprecated)
The DSNUTILS stored procedure enables you use the SQL CALL statement to
execute DB2 utilities from a DB2 application program that specifies EBCDIC input.

Restriction: DSNUTILS has been deprecated in favor of DSNUTILU.

Recommendation: Convert existing callers of SYSIBM.SYSUTILS to use the
SYSIBM.SYSUTILU stored procedure.

DSNUTILS must run in a WLM environment. The DSNWLM_UTILS environment
is created for DB2 utilities stored procedures DSNUTILS and DSNUTILU only.
Stored procedures require special data set allocations. If you plan to run other
applications in this environment other than DSNUTILS or DSNUTILU, add the
procedure and add the DCB information for SYSIN. For example,
//SYSIN DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND),
// DCB=(RECFM=V,LRECL=32708)

When called, DSNUTILS performs the following actions:
v Dynamically allocates the specified data sets
v Creates the utility input (SYSIN) stream
v Invokes DB2 utilities (program DSNUTILB)
v Deletes all the rows that are currently in the created temporary table

(SYSIBM.SYSPRINT)
v Captures the utility output stream (SYSPRINT) into a created temporary table

(SYSIBM.SYSPRINT)
v Declares a cursor to select from SYSPRINT:

DECLARE SYSPRINT CURSOR WITH RETURN FOR
SELECT SEQNO, TEXT FROM SYSPRINT
ORDER BY SEQNO;

v Opens the SYSPRINT cursor and returns.

The calling program then fetches from the returned result set to obtain the
captured utility output.

Environment for DSNUTILS

DSNUTILS must run in a WLM environment. The DSNWLM_UTILS environment
is created for DB2 utilities stored procedures. Stored procedures require special DD
allocations.

Table 137. DSNWLM_UTILS environment

Property Description

© Copyright IBM Corp. 1983, 2013 1013

|
|
|
|
|

|
|

Table 137. DSNWLM_UTILS environment (continued)

NUMTCB 1

APF authorized Yes

Special DDs These DDs are required:

v SYSIN Allocates a work file for temporarily storing utility input
statements.

v SYSPRINT Allocates a work file for temporarily storing utility
output messages.

v RNPRIN01 Allocates a data set for messages from the sort
program. Required only if you plan to invoke RUNSTATS and
collect distribution statistics.

v UTPRINT Allocates a data set for messages from the sort program.

v DSSPRINT Allocates a data set for messages when making
concurrent copies.

Example:

//UTPRINT DD SYSOUT=*
//RNPRIN01 DD SYSOUT=*
//DSSPRINT DD SYSOUT=*
//SYSIN DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSPRINT DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

Other
considerations

The STEPLIB needs to include DSN=prefix.SDSNEXIT or other
library where the authorization exit modules (DSN3@ATH and
DSN3@SGN) reside.

Installation job DSNTIJMV creates an address space proc called DSNWLMU for
DSNWLM_UTILS. When the installation CLIST is customized, the name and
library name of this proc are changed according to the DB2 subsystem name you
specified on panel DSNTIPM in the field SUBSYSTEM NAME. For example, if you
specified a subsystem name of VA1A then this proc will be named VA1AWLMU.

Authorization required for DSNUTILS

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNUTILS
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

Then, to execute the utility, you must use a privilege set that includes the
authorization to run the specified utility.

Control statement for DSNUTILS

DSNUTILS dynamically allocates the specified data sets. Any utility that requires a
sort must include the SORTDEVT keyword in the utility control statement, and
optionally, the SORTNUM keyword.

If the DSNUTILS stored procedure invokes a new utility, refer to Table 138 on page
1015 for information about the default data dispositions that are specified for

1014 Utility Guide and Reference

dynamically allocated data sets. This table lists the DD name that is used to
identify the data set and the default dispositions for the data set by utility.

Table 138. Data dispositions for dynamically allocated data sets

DD name
CHECK
DATA

CHECK
INDEX or
CHECK
LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSREC ignored ignored ignored ignored OLD KEEP
KEEP

ignored ignored ignored NEW
CATLG
CATLG

NEW CATLG
CATLG

SYSDISC ignored ignored ignored ignored NEW
CATLG
CATLG

ignored ignored ignored NEW
CATLG
CATLG

ignored

SYSPUNCH ignored ignored ignored ignored ignored ignored ignored ignored NEW
CATLG
CATLG

NEW CATLG
CATLG

SYSCOPY ignored ignored NEW
CATLG
CATLG

ignored NEW
CATLG
CATLG

NEW
CATLG
CATLG

ignored ignored NEW
CATLG
CATLG

ignored

SYSCOPY2 ignored ignored NEW
CATLG
CATLG

NEW
CATLG
CATLG

NEW
CATLG
CATLG

NEW
CATLG
CATLG

ignored ignored NEW
CATLG
CATLG

ignored

SYSRCPY1 ignored ignored NEW
CATLG
CATLG

NEW
CATLG
CATLG

NEW
CATLG
CATLG

NEW
CATLG
CATLG

ignored ignored NEW
CATLG
CATLG

ignored

SYSRCPY2 ignored ignored NEW
CATLG
CATLG

NEW
CATLG
CATLG

NEW
CATLG
CATLG

NEW
CATLG
CATLG

ignored ignored NEW
CATLG
CATLG

ignored

SYSUT1 NEW
DELETE
CATLG

NEW
DELETE
CATLG

ignored ignored NEW
DELETE
CATLG

ignored NEW
DELETE
CATLG

NEW
CATLG
CATLG

NEW
DELETE
CATLG

ignored

SORTOUT NEW
DELETE
CATLG

ignored ignored ignored NEW
DELETE
CATLG

ignored ignored ignored NEW
DELETE
CATLG

ignored

SYSMAP ignored ignored ignored ignored NEW
CATLG
CATLG

ignored ignored ignored ignored ignored

SYSERR NEW
CATLG
CATLG

ignored ignored ignored NEW
CATLG
CATLG

ignored ignored ignored ignored ignored

FILTER ignored ignored NEW
DELETE
CATLG

ignored ignored ignored ignored ignored ignored ignored

If the DSNUTILS stored procedure restarts a current utility, refer to Table 139 for
information about the default data dispositions that are specified for
dynamically-allocated data sets on RESTART. This table lists the DD name that is
used to identify the data set and the default dispositions for the data set by utility.

Table 139. Data dispositions for dynamically allocated data sets on RESTART

DD name
CHECK
DATA

CHECK
INDEX or
CHECK
LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSREC ignored ignored ignored ignored OLD
KEEP
KEEP

ignored ignored ignored MOD
CATLG
CATLG

MOD CATLG
CATLG

SYSDISC ignored ignored ignored ignored MOD
CATLG
CATLG

ignored ignored ignored MOD
CATLG
CATLG

ignored

SYSPUNCH ignored ignored ignored ignored ignored ignored ignored ignored MOD
CATLG
CATLG

MOD CATLG
CATLG

Appendix B. DB2-supplied stored procedures for utility operations 1015

Table 139. Data dispositions for dynamically allocated data sets on RESTART (continued)

DD name
CHECK
DATA

CHECK
INDEX or
CHECK
LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSCOPY ignored ignored MOD
CATLG
CATLG

ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

ignored ignored MOD
CATLG
CATLG

ignored

SYSCOPY2 ignored ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD
CATLG
CATLG

ignored ignored MOD
CATLG
CATLG

ignored

SYSRCPY1 ignored ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD
CATLG
CATLG

ignored ignored MOD
CATLG
CATLG

ignored

SYSRCPY2 ignored ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD
CATLG
CATLG

ignored ignored MOD
CATLG
CATLG

ignored

SYSUT1 MOD
DELETE
CATLG

MOD
DELETE
CATLG

ignored ignored MOD
DELETE
CATLG

ignored MOD
DELETE
CATLG

MOD
CATLG
CATLG

MOD
DELETE
CATLG

ignored

SORTOUT MOD
DELETE
CATLG

ignored ignored ignored MOD
DELETE
CATLG

ignored ignored ignored MOD
DELETE
CATLG

ignored

SYSMAP ignored ignored ignored ignored MOD
CATLG
CATLG

ignored ignored ignored ignored ignored

SYSERR MOD
CATLG
CATLG

ignored ignored ignored MOD
CATLG
CATLG

ignored ignored ignored ignored ignored

FILTER ignored ignored MOD
DELETE
CATLG

ignored ignored ignored ignored ignored ignored ignored

DSNUTILS stored procedure syntax diagram

The following syntax diagram shows the SQL CALL statement for invoking
utilities as a stored procedure. Because the linkage convention for DSNUTILS is
GENERAL, you cannot pass null values for input parameters. For character
parameters that you are not using, specify an empty string ('').

�� CALL DSNUTILS (utility-id,restart,utstmt,retcode , utility-name �

� ,recdsn,recdevt,recspace ,discdsn,discdevt,discspace ,pnchdsn,pnchdevt,pnchspace �

� ,copydsn1,copydevt1,copyspace1 ,copydsn2,copydevt2,copyspace2 ,rcpydsn1,rcpydevt1,rcpyspace1 �

� ,rcpydsn2,rcpydevt2,rcpyspace2 ,workdsn1,workdevt1,workspace1 ,workdsn2,workdevt2,workspace2 �

� ,mapdsn,mapdevt,mapspace ,errdsn,errdevt,errspace ,filtrdsn,filtrdevt,filtrspace) ��

DSNUTILS option descriptions

utility-id
Specifies a unique identifier for this utility within DB2.

This is an input parameter of type VARCHAR(16) in EBCDIC.

1016 Utility Guide and Reference

restart
Specifies whether DB2 is to restart a current utility, and, if so, at what point the
utility is to be restarted.

restart is an input parameter of type VARCHAR(8) in Unicode UTF-8, which
must be translatable to allowable EBCDIC characters. Specify one of the
following values for this parameter:

NO or null
Indicates that the utility job is new, not a restart. No other utility with the
same utility identifier (UID) can exist.

The default is null.

CURRENT
Restarts the utility at the last commit point.

PHASE
Restarts the utility at the beginning of the currently stopped phase. Use the
DISPLAY UTILITY to determine the currently stopped phase.

PREVIEW
Executes in PREVIEW mode the utility control statements that follow.
While in PREVIEW mode, DB2 parses all utility control statements for
syntax errors, but normal utility execution does not take place. If the
syntax is valid, DB2 expands all LISTDEF lists and TEMPLATE data set
name expressions that appear in SYSIN and prints the results to the
SYSPRINT data set. DB2 evaluates and expands all LISTDEF definitions
into an actual list of table spaces or index spaces. DB2 also evaluates
TEMPLATE data set name expressions into actual data set names through
variable substitution. DB2 also expands lists from the SYSLISTD DD and
TEMPLATE data set name expressions from the SYSTEMPL DD that is
referenced by a utility invocation.

Absence of the PREVIEW keyword turns off preview processing with one
exception. The absence of this keyword does not override the PREVIEW
JCL parameter which, if specified, remains in effect for the entire job step.

This option is identical to the PREVIEW JCL parameter.

utstmt
Specifies the utility control statements.

This is an input parameter of type VARCHAR(32704) in EBCDIC.

retcode
Specifies the utility highest return code.

This is an output parameter of type INTEGER.

utility-name
Specifies the utility that you want to invoke.

This is an input parameter of type VARCHAR(20) in EBCDIC.

Because DSNUTILS allows only a single utility here, dynamic support of data
set allocation is limited. Specify only a single utility that requires data set
allocation in the utstmt parameter.

Select the utility name from the following list:
ANY1

CHECK DATA
CHECK INDEX

Appendix B. DB2-supplied stored procedures for utility operations 1017

CHECK LOB
COPY
COPYTOCOPY
DIAGNOSE
LOAD
MERGECOPY
MODIFY RECOVERY
MODIFY STATISTICS
QUIESCE
REBUILD INDEX
RECOVER
REORG INDEX
REORG LOB
REORG TABLESPACE
REPAIR
REPORT RECOVERY
REPORT TABLESPACESET
RUNSTATS INDEX
RUNSTATS TABLESPACE
STOSPACE
UNLOAD

1. Use ANY to indicate that TEMPLATE dynamic allocation is to be used. This
value suppresses the dynamic allocation that is normally performed by
DSNUTILS.

Recommendation: Invoke DSNUTILS with a utility-name of ANY and omit all
of the xxxdsn, xxxdevt, and xxxspace parameters. Use TEMPLATE statements
to allocate the data sets.

When you use TEMPLATE, utilities attempt to close and deallocate data sets
when the utilities complete. However, under some circumstances, utilities
cannot deallocate data sets. Under those circumstances, take one of the
following sets of actions:
v If you want to terminate a utility after a failure:

1. Use the TERM UTIL command to terminate the failing utility.
2. Refresh the WLM environment in one of the following ways:

– Submit the VARY command:
VARY WLM,APPLENV=xxx,REFRESH

– Call the WLM_REFRESH stored procedure.
When you terminate the utility, DB2 deletes the data sets that are needed by
the utility.

v If you want to restart a utility after a failure:
1. Specify DISP (NEW,CATLG,CATLG) in your template for data sets that

are needed by the utility.
2. When the utility fails, refresh the WLM environment, but do not

terminate the utility.
You need to delete the allocated data sets manually after the utility
completes.

1018 Utility Guide and Reference

recdsn
Specifies the cataloged data set name that is required by LOAD for input, or
by REORG TABLESPACE as the unload data set. recdsn is required for LOAD.
It is also required for REORG TABLESPACE unless you also specified
NOSYSREC or SHRLEVEL CHANGE. If you specify recdsn, the data set is
allocated to the SYSREC DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specified the INDDN parameter for LOAD, the specified ddname value
must be SYSREC.

If you specify the UNLDDN parameter for REORG TABLESPACE, the
specified ddname value must be SYSREC.

recdevt
Specifies a unit address, a generic device type, or a user-assigned group name
for a device on which the recdsn data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

recspace
Specifies the number of cylinders to use as the primary space allocation for the
recdsn data set. The secondary space allocation is 10% of the primary space
allocation.

This is an input parameter of type SMALLINT.

discdsn
Specifies the cataloged data set name that is used by LOAD as a discard data
set to hold records not loaded, and by REORG TABLESPACE as a discard data
set to hold records that are not reloaded. If you specify discdsn, the data set is
allocated to the SYSDISC DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the DISCARDDN parameter for LOAD or REORG
TABLESPACE, the specified ddname value must be SYSDISC.

discdevt
Specifies a unit address, a generic device type, or a user-assigned group name
for a device on which the discdsn data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

discspace
Specifies the number of cylinders to use as the primary space allocation for the
discdsn data set. The secondary space allocation is 10% of the primary space
allocation.

This is an input parameter of type SMALLINT.

pnchdsn
Specifies the cataloged data set name that REORG TABLESPACE UNLOAD
EXTERNAL or REORG TABLESPACE DISCARD uses to hold the generated
LOAD utility control statements. If you specify a value for pnchdsn, the data set
is allocated to the SYSPUNCH DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the PUNCHDDN parameter for REORG TABLESPACE, the
specified ddname value must be SYSPUNCH.

Appendix B. DB2-supplied stored procedures for utility operations 1019

pnchdevt
Specifies a unit address, a generic device type, or a user-assigned group name
for a device on which the pnchdsn data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

pnchspace
Specifies the number of cylinders to use as the primary space allocation for the
pnchdsn data set. The secondary space allocation is 10% of the primary space
allocation.

This is an input parameter of type SMALLINT.

copydsn1
Specifies the name of the required target (output) data set, which is needed
when you specify the COPY, COPYTOCOPY, or MERGECOPY utilities. It is
optional for LOAD and REORG TABLESPACE. If you specify copydsn1, the
data set is allocated to the SYSCOPY DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the COPYDDN parameter for COPY, COPYTOCOPY,
MERGECOPY, LOAD, or REORG TABLESPACE, the specified ddname1 value
must be SYSCOPY.

copydevt1
Specifies a unit address, a generic device type, or a user-assigned group name
for a device on which the copydsn1 data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

copyspace1
Specifies the number of cylinders to use as the primary space allocation for the
copydsn1 data set. The secondary space allocation is 10% of the primary space
allocation.

This is an input parameter of type SMALLINT.

copydsn2
Specifies the name of the cataloged data set that is used as a target (output)
data set for the backup copy. It is optional for COPY, COPYTOCOPY,
MERGECOPY, LOAD, and REORG TABLESPACE. If you specify copydsn2, the
data set is allocated to the SYSCOPY2 DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the COPYDDN parameter for COPY, COPYTOCOPY,
MERGECOPY, LOAD, or REORG TABLESPACE, the specified ddname2 value
must be SYSCOPY2.

copydevt2
Specifies a unit address, a generic device type, or a user-assigned group name
for a device on which the copydsn2 data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

copyspace2
Specifies the number of cylinders to use as the primary space allocation for the
copydsn2 data set. The secondary space allocation is 10% of the primary space
allocation.

This is an input parameter of type SMALLINT.

rcpydsn1
Specifies the name of the cataloged data set that is required as a target (output)

1020 Utility Guide and Reference

data set for the remote site primary copy. It is optional for COPY,
COPYTOCOPY, LOAD, and REORG TABLESPACE. If you specifyrcpydsn1, the
data set is allocated to the SYSRCPY1 DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specified the RECOVERYDDN parameter for COPY, COPYTOCOPY,
MERGECOPY, LOAD, or REORG TABLESPACE, the specified ddname1 value
must be SYSRCPY1.

rcpydevt1
Specifies a unit address, a generic device type, or a user-assigned group name
for a device on which the rcpydsn1 data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

rcpyspace1
Specifies the number of cylinders to use as the primary space allocation for the
rcpydsn1 data set. The secondary space allocation is 10% of the primary space
allocation.

This is an input parameter of type SMALLINT.

rcpydsn2
Specifies the name of the cataloged data set that is required as a target (output)
data set for the remote site backup copy. It is optional for COPY,
COPYTOCOPY, LOAD, and REORG TABLESPACE. If you specify rcpydsn2, the
data set is allocated to the SYSRCPY2 DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the RECOVERYDDN parameter for COPY, COPYTOCOPY,
MERGECOPY, LOAD, or REORG TABLESPACE, the specified ddname2 value
must be SYSRCPY2.

rcpydevt2
Specifies a unit address, a generic device type, or a user-assigned group name
for a device on which the rcpydsn2 data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

rcpyspace2
Specifies the number of cylinders to use as the primary space allocation for the
rcpydsn2 data set. The secondary space allocation is 10% of the primary space
allocation

This is an input parameter of type SMALLINT.

workdsn1
Specifies the name of the cataloged data set that is required as a work data set
for sort input and output. It is required for CHECK DATA, CHECK INDEX
and REORG INDEX. It is also required for LOAD and REORG TABLESPACE
unless you also specify the SORTKEYS keyword. It is optional for REBUILD
INDEX. If you specify workdsn1, the data set is allocated to the SYSUT1 DD
name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the WORKDDN parameter for CHECK DATA, CHECK INDEX,
LOAD, REORG INDEX, REORG TABLESPACE, or REBUILD INDEX, the
specified ddname value must be SYSUT1.

Appendix B. DB2-supplied stored procedures for utility operations 1021

workdevt1
Specifies a unit address, a generic device type, or a user-assigned group name
for a device on which the workdsn1 data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

workspace1
Specifies the number of cylinders to use as the primary space allocation for the
workdsn1 data set. The secondary space allocation is 10% of the primary space
allocation.

This is an input parameter of type SMALLINT.

workdsn2
Specifies the name of the cataloged data set that is required as a work data set
for sort input and output. It is required for CHECK DATA. It is also required if
you use REORG INDEX to reorganize non-unique type 1 indexes. It is required
for LOAD or REORG TABLESPACE unless you also specify the SORTKEYS
keyword. If you specify workdsn2, the data set is allocated to the SORTOUT
DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the WORKDDN parameter for CHECK DATA, LOAD, REORG
INDEX, or REORG TABLESPACE, the specified ddname value must be
SORTOUT.

workdevt2
Specifies a unit address, a generic device type, or a user-assigned group name
for a device on which the workdsn2 data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

workspace2
Specifies the number of cylinders to use as the primary space allocation for the
workdsn2 data set. The secondary space allocation is 10% of the primary space
allocation.

This is an input parameter of type SMALLINT.

mapdsn
Specifies the name of the cataloged data set that is required as a work data set
for error processing during LOAD with ENFORCE CONSTRAINTS. It is
optional for LOAD. If you specify mapdsn, the data set is allocated to the
SYSMAP DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the MAPDDN parameter for LOAD, the specified ddname value
must be SYSMAP.

mapdevt
Specifies a unit address, a generic device type, or a user-assigned group name
for a device on which the mapdsn data set resides.

This is an input parameter of type CHAR(8).

mapspace
Specifies the number of cylinders to use as the primary space allocation for the
mapdsn data set. The secondary space allocation is 10% of the primary space
allocation.

This is an input parameter of type SMALLINT.

1022 Utility Guide and Reference

errdsn
Specifies the name of the cataloged data set that is required as a work data set
for error processing. It is required for CHECK DATA, and it is optional for
LOAD. If you specify errdsn, the data set is allocated to the SYSERR DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the ERRDDN parameter for CHECK DATA or LOAD, the
specified ddname value must be SYSERR.

errdevt
Specifies a unit address, a generic device type, or a user-assigned group name
for a device on which the errdsn data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

errspace
Specifies the number of cylinders to use as the primary space allocation for the
errdsn data set. The secondary space allocation is 10% of the primary space
allocation.

This is an input parameter of type SMALLINT.

filtrdsn
Specifies the name of the cataloged data set that is required as a work data set
for error processing. It is optional for COPY CONCURRENT. If you specify
filtrdsn, the data set is allocated to the FILTER DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the FILTERDDN parameter for COPY, the specified ddname value
must be FILTER.

filtrdevt
Specifies a unit address, a generic device type, or a user-assigned group name
for a device on which the filtrdsn data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

filtrspace
Specifies the number of cylinders to use as the primary space allocation for the
filtrdsn data set. The secondary space allocation is 10% of the primary space
allocation.

This is an input parameter of type SMALLINT.

Modifying the WLM-established address space for DSNUTILS

Add DSSPRINT, SYSIN, and SYSPRINT to the JCL procedure for starting the
WLM-established address space in which DSNUTILS runs.

Requirement: You must allocate SYSIN and SYSPRINT in the procedure to
temporarily store utility input statements and utility output messages. If you plan
to invoke RUNSTATS and collect distribution statistics, you also need to allocate
RNPRIN01.

Use JCL similar to the following sample PROC:
//***
//* JCL FOR RUNNING THE WLM-ESTABLISHED STORED PROCEDURES
//* ADDRESS SPACE
//* RGN -- THE MVS REGION SIZE FOR THE ADDRESS SPACE.
//* DB2SSN -- THE DB2 SUBSYSTEM NAME.
//* APPLENV -- THE MVS WLM APPLICATION ENVIRONMENT

Appendix B. DB2-supplied stored procedures for utility operations 1023

//* SUPPORTED BY THIS JCL PROCEDURE.
//*
//* IMPORTANT: You must use the value 1 in this EXEC card:
//* IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
//* PARM=’&DB2SSN,1,&APPLENV’
//*
//***
//DSNWLM PROC RGN=0K,APPLENV=WLMENV1,DB2SSN=DSN
//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM=’&DB2SSN,1,&APPLENV’
//STEPLIB DD DISP=SHR,DSN=CEE.V!R!M!.SCEERUN
// DD DISP=SHR,DSN=DSN!!0.SDSNLOAD
//UTPRINT DD SYSOUT=*
//RNPRIN01 DD SYSOUT=*
//DSSPRINT DD SYSOUT=*
//SYSIN DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSPRINT DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

Sample program for calling DSNUTILS

Three example programs calling DSNUTILS are shipped in SDSNSAMP.
v DSNTEJ6U: A DSNUTILS caller that uses PL/I. Job DSNTEJ6U compiles,

link-edits, binds, and runs sample PL/I program DSN8EPU, which invokes the
DSNUTILS stored procedure to execute an utility.

v DSNTEJ6V: A DSNUTILS caller that uses C++. Job DSNTEJ6V compiles,
link-edits, binds, and runs sample C++ program DSN8EE1, which invokes the
DSNUTILS stored procedure to execute an utility.

v DSNTEJ80: A DSNUTILS caller that uses C and ODBC. You can use this sample
to compile, pre-link, link-edit, and execute the sample application DSN8OIVP,
which you can use to verify that your DB2 ODBC installation is correct.

DSNUTILS output

DB2 creates the result set according to the DECLARE statement that is shown
under Example of declaring a cursor to select from SYSPRINT.

Output from a successful execution of the DSNTEJ6U sample job or an equivalent
job lists the specified parameters followed by the messages that are generated by
the DB2 DIAGNOSE DISPLAY MEPL utility.

If DSNUTILB abends, the abend codes are returned as DSNUTILS return codes.
Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

DSNUTILU stored procedure
The DSNUTILU stored procedure enables you to provide control statements in
Unicode UTF-8 characters instead of EBCDIC characters to execute DB2 utilities
from a DB2 application program.

DSNUTILU must run in a WLM environment. The DSNWLM_UTILS environment
is created for DB2 utilities stored procedures DSNUTILS and DSNUTILU only.
Stored procedures require special data set allocations. If you plan to run other

1024 Utility Guide and Reference

|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

applications in this environment other than DSNUTILS or DSNUTILU, add the
procedure and add the DCB information for SYSIN. For example,
//SYSIN DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND),
// DCB=(RECFM=V,LRECL=32708)

To use the stored procedure DSNUTILU, input data sets for the utility control
statements can begin with the following Unicode characters:
v A Unicode UTF-8 blank (X'20')
v A Unicode UTF-8 dash (X'2D')
v Upper case Unicode UTF-8 "A" through "Z" (X'41' through X'5A')

When called, DSNUTILU performs the following actions:
v Translates the values that are specified for utility-id and restart to EBCDIC
v Creates the utility input (SYSIN) stream for control statements that use Unicode

characters
v Invokes DB2 utilities (Program DSNUTILB)
v Deletes all the rows that are currently in the created temporary table

(SYSIBM.SYSPRINT)
v Captures the utility output stream (SYSPRINT) into a created temporary table

(SYSIBM.SYSPRINT)
v Declares a cursor to select from SYSPRINT:

DECLARE SYSPRINT CURSOR WITH RETURN FOR
SELECT SEQNO, TEXT FROM SYSPRINT
ORDER BY SEQNO;

v Opens the SYSPRINT cursor and returns

The calling program then performs fetches from the returned result set to obtain
the captured utility output.

The BIND PACKAGE statement for the DSNUTILU stored procedure determines
the character set of the resulting utility SYSPRINT output that is placed in the
SYSIBM.SYSPRINT table. If ENCODING(EBCDIC) is specified, the SYSPRINT
contents are in EBCDIC. If ENCODING(UNICODE) is specified, the SYSPRINT
contents are in Unicode. The default installation job, DSNTIJRT, is shipped with
ENCODING(EBCDIC).

Environment for DSNUTILU

DSNUTILU must run in a WLM environment. The DSNWLM_UTILS environment
is created for DB2 utilities stored procedures. Stored procedures require special DD
allocations.

Table 140. DSNWLM_UTILS environment

Property Description

NUMTCB 1

APF authorized Yes

Appendix B. DB2-supplied stored procedures for utility operations 1025

|
|

|
|

Table 140. DSNWLM_UTILS environment (continued)

Special DDs These DDs are required:

v SYSIN Allocates a work file for temporarily storing utility input
statements.

v SYSPRINT Allocates a work file for temporarily storing utility
output messages.

v RNPRIN01 Allocates a data set for messages from the sort
program. Required only if you plan to invoke RUNSTATS and
collect distribution statistics.

v UTPRINT Allocates a data set for messages from the sort program.

v DSSPRINT Allocates a data set for messages when making
concurrent copies.

Example:

//UTPRINT DD SYSOUT=*
//RNPRIN01 DD SYSOUT=*
//DSSPRINT DD SYSOUT=*
//SYSIN DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSPRINT DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

Other
considerations

The STEPLIB needs to include DSN=prefix.SDSNEXIT or other
library where the authorization exit modules (DSN3@ATH and
DSN3@SGN) reside.

Installation job DSNTIJMV creates an address space procedure called DSNWLMU
for DSNWLM_UTILS. When the installation CLIST is customized, the name and
library name of this procedure are changed according to the DB2 subsystem name
that you specified on panel DSNTIPM in the field SUBSYSTEM NAME. For
example, if you specified a subsystem name of VA1A then this procedure will be
named VA1AWLMU.

Authorization required for DSNUTILU

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNUTILU
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

Then, to execute the utility, you must use a privilege set that includes the
authorization to run the specified utility.

Control statement for DSNUTILU

DSNUTILU does not dynamically allocate data sets. The TEMPLATE utility control
statement must be used to dynamically allocate data sets. Any utility that requires
a sort must include the SORTDEVT keyword in the utility control statement. Use
of the SORTNUM keyword is optional.

1026 Utility Guide and Reference

DSNUTILU stored procedure syntax diagram

The following syntax diagram shows the SQL CALL statement for invoking
utilities as a stored procedure.

�� CALL DSNUTILU (utility-id,restart,utstmt,retcode) ��

DSNUTILU option descriptions

utility-id
Specifies a unique identifier for this utility within DB2.

This is an input parameter of type VARCHAR(16) in Unicode UTF-8, which
must be translatable to the following allowable EBCDIC characters:
v A - Z (upper and lower case)
v 0 - 9
v #, $, @, ¢, !, ^, or period (.)

restart
Specifies whether DB2 is to restart a current utility, and, if so, at what point the
utility is to be restarted.

restart is an input parameter of type VARCHAR(8) in Unicode UTF-8, which
must be translatable to allowable EBCDIC characters. Specify one of the
following values for this parameter:

NO or null
Indicates that the utility job is new, not a restart. No other utility with the
same utility identifier (UID) can exist.

The default is null.

CURRENT
Restarts the utility at the last commit point.

PHASE
Restarts the utility at the beginning of the currently stopped phase. Use the
DISPLAY UTILITY to determine the currently stopped phase.

PREVIEW
Executes in PREVIEW mode the utility control statements that follow.
While in PREVIEW mode, DB2 parses all utility control statements for
syntax errors, but normal utility execution does not take place. If the
syntax is valid, DB2 expands all LISTDEF lists and TEMPLATE data set
name expressions that appear in SYSIN and prints the results to the
SYSPRINT data set. DB2 evaluates and expands all LISTDEFs into an
actual list of table spaces or index spaces. DB2 also evaluates TEMPLATE
data set name expressions into actual data set names through variable
substitution. DB2 also expands lists from the SYSLISTD DD and
TEMPLATE data set name expressions from the SYSTEMPL DD that is
referenced by a utility invocation.

Absence of the PREVIEW keyword turns off preview processing with one
exception. The absence of this keyword does not override the PREVIEW
JCL parameter which, if specified, remains in effect for the entire job step.

This option is identical to the PREVIEW JCL parameter.

Appendix B. DB2-supplied stored procedures for utility operations 1027

utstmt
Specifies the utility control statements.

utstmt is an input parameter of type VARCHAR(32704) in UNICODE UTF-8.

retcode
Specifies the utility highest return code.

retcode is an output parameter of type INTEGER.

Modifying the WLM-established address space for DSNUTILU

Add DSSPRINT, SYSIN, and SYSPRINT to the JCL procedure for starting the
WLM-established address space, in which DSNUTILU runs. You must allocate
SYSIN and SYSPRINT in the procedure to temporarily store utility input
statements and utility output messages. If you plan to invoke RUNSTATS and
collect distribution statistics, you also need to allocate RNPRIN01.

Use JCL similar to the following sample PROC .
//***
//* JCL FOR RUNNING THE WLM-ESTABLISHED STORED PROCEDURES
//* ADDRESS SPACE
//* RGN -- THE MVS REGION SIZE FOR THE ADDRESS SPACE.
//* DB2SSN -- THE DB2 SUBSYSTEM NAME.
//* APPLENV -- THE MVS WLM APPLICATION ENVIRONMENT
//* SUPPORTED BY THIS JCL PROCEDURE.
//*
//***
//DSNWLM PROC RGN=0K,APPLENV=WLMENV1,DB2SSN=DSN
//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM=’&DB2SSN,1,&APPLENV’
//STEPLIB DD DISP=SHR,DSN=CEE.V!R!M!.SCEERUN
// DD DISP=SHR,DSN=DSN!!0.SDSNLOAD
//UTPRINT DD SYSOUT=*
//RNPRIN01 DD SYSOUT=*
//DSSPRINT DD SYSOUT=*
//SYSIN DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSPRINT DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

Terminating or restarting a utility with DSNUTILU

If you do not want to restart a utility after a failure:
1. Use the TERM UTIL command to terminate the failing utility.
2. Refresh the WLM environment in one of the following ways:

v Submit the VARY command:
VARY WLM,APPLENV=xxx,REFRESH

v Call the WLM_REFRESH stored procedure.

When you terminate the utility, DB2 deletes the data sets that are needed by the
utility.

If you want to restart a utility after a failure:
1. Use a TEMPLATE utility control statement, and specify DISP

(NEW,CATLG,CATLG) in your template for data sets that are needed by the
utility.

2. When the utility fails, refresh the WLM environment, but do not terminate the
utility.

You need to delete the allocated data sets manually after the utility completes.

1028 Utility Guide and Reference

Sample program for calling DSNUTILU

The following sample program calls DSNUTILU and is shipped in SDSNSAMP:
Job DSNTEJ6R compiles, link-edits, binds, and runs sample C-language caller
program DSN8ED8, which invokes the DSNUTILU stored procedure to execute
a utility.

DSNUTILU output

DB2 creates the result set according to the DECLARE statement shown on Example
of declaring a cursor to select from SYSPRINT

Output from a successful execution of the DSNTEJ6R sample job or an equivalent
job lists the specified parameters, followed by the messages that are generated by
the DB2 DIAGNOSE DISPLAY MEPL utility.
Related reference:

DB2 Sort
Related information:

DFSORT Application Programming Guide

DSNACCOR stored procedure (deprecated)
The DB2 real-time statistics stored procedure (DSNACCOR) is a sample stored
procedure that makes recommendations to help you maintain your DB2 databases.
The DSNACCOX stored procedure replaces the DSNACCOR stored procedure,
which is deprecated, and provides improved recommendations. You can continue
to use the DSNACCOR stored procedure. However, DSNACCOR is not enhanced
with new fields, improved formulas, and other enhancements in found in the
DSNACCOX stored procedure, including the option to select the formula that is
used for making recommendations.

PSPI

In particular, DSNACCOR performs the following actions:
v Recommends when you should reorganize, image copy, or update statistics for

table spaces or index spaces
v Indicates when a data set has exceeded a specified threshold for the number of

extents that it occupies.
v Indicates whether objects are in a restricted state

DSNACCOR uses data from the SYSIBM.SYSTABLESPACESTATS and
SYSIBM.SYSSYSINDEXSPACESTATS real-time statistics tables to make its
recommendations. DSNACCOR provides its recommendations in a result set.

DSNACCOR uses the set of criteria that are shown in “DSNACCOR formulas for
recommending actions” on page 1039 to evaluate table spaces and index spaces. By
default, DSNACCOR evaluates all table spaces and index spaces in the subsystem
that have entries in the real-time statistics tables. However, you can override this
default through input parameters.

Important information about DSNACCOR recommendations:

Appendix B. DB2-supplied stored procedures for utility operations 1029

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

v DSNACCOR makes recommendations based on general formulas that require
input from the user about the maintenance policies for a subsystem. These
recommendations might not be accurate for every installation.

v If the real-time statistics tables contain information for only a small percentage
of your DB2 subsystem, the recommendations that DSNACCOR makes might
not be accurate for the entire subsystem.

v Before you perform any action that DSNACCOR recommends, ensure that the
object for which DSNACCOR makes the recommendation is available, and that
the recommended action can be performed on that object. For example, before
you can perform an image copy on an index, the index must have the COPY
YES attribute.

Environment

DSNACCOR must run in a WLM-established stored procedure address space. The
DSNWLM_GENERAL core WLM environment is a suitable environment for this
stored procedure.

DSNACCOR is installed and configured by installation job DSNTIJRT, which binds
the package for DSNACCOR with isolation UR to avoid lock contention.

Authorization required

To execute the CALL DSNACCOR statement, the owner of the package or plan
that contains the CALL statement must have one or more of the following
privileges on each package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNACCOR
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

The owner of the package or plan that contains the CALL statement must also
have:
v SELECT authority on the real-time statistics tables
v Select authority on catalog tables
v The DISPLAY system privilege

Syntax diagram

The following syntax diagram shows the CALL statement for invoking
DSNACCOR. Because the linkage convention for DSNACCOR is GENERAL WITH
NULLS, if you pass parameters in host variables, you need to include a null
indicator with every host variable. Null indicators for input host variables must be
initialized before you execute the CALL statement.

1030 Utility Guide and Reference

�� CALL DSNACCOR (QueryType ,
NULL

ObjectType ,
NULL

ICType ,
NULL

StatsSchema ,
NULL

�

� CatlgSchema ,
NULL

LocalSchema ,
NULL

ChkLvl ,
NULL

Criteria ,
NULL

Restricted ,
NULL

�

� CRUpdatedPagesPct ,
NULL

CRChangesPct ,
NULL

CRDaySncLastCopy ,
NULL

ICRUpdatedPagesPct ,
NULL

�

� ICRChangesPct ,
NULL

CRIndexSize ,
NULL

RRTInsDelUpdPct ,
NULL

RRTUnclustInsPct ,
NULL

�

� RRTDisorgLOBPct ,
NULL

RRTMassDelLimit ,
NULL

RRTIndRefLimit ,
NULL

RRIInsertDeletePct ,
NULL

�

� RRIAppendInsertPct ,
NULL

RRIPseudoDeletePct ,
NULL

RRIMassDelLimit ,
NULL

RRILeafLimit ,
NULL

�

� RRINumLevelsLimit ,
NULL

SRTInsDelUpdPct ,
NULL

SRTInsDelUpdAbs ,
NULL

SRTMassDelLimit ,
NULL

�

� SRIInsDelUpdPct ,
NULL

SRIInsDelUpdAbs ,
NULL

SRIMassDelLimit ,
NULL

ExtentLimit ,
NULL

�

� LastStatement, ReturnCode, ErrorMsg, IFCARetCode, IFCAResCode, ExcessBytes) ��

Option descriptions

In the following option descriptions, the default value for an input parameter is
the value that DSNACCOR uses if you specify a null value.

QueryType
Specifies the types of actions that DSNACCOR recommends. This field
contains one or more of the following values. Each value is enclosed in single
quotation marks and separated from other values by a space.

ALL Makes recommendations for all of the following actions.

COPY Makes a recommendation on whether to perform an image copy.

RUNSTATS
Makes a recommendation on whether to perform RUNSTATS.

REORG
Makes a recommendation on whether to perform REORG. Choosing
this value causes DSNACCOR to process the EXTENTS value also.

EXTENTS
Indicates when data sets have exceeded a user-specified extents limit.

RESTRICT
Indicates which objects are in a restricted state.

QueryType is an input parameter of type VARCHAR(40). The default is ALL.

ObjectType
Specifies the types of objects for which DSNACCOR recommends actions:

ALL Table spaces and index spaces.

TS Table spaces only.

Appendix B. DB2-supplied stored procedures for utility operations 1031

IX Index spaces only.

ObjectType is an input parameter of type VARCHAR(3). The default is ALL.

ICType
Specifies the types of image copies for which DSNACCOR is to make
recommendations:

F Full image copy.

I Incremental image copy. This value is valid for table spaces only.

B Full image copy or incremental image copy.

ICType is an input parameter of type VARCHAR(1). The default is B.

StatsSchema
Specifies the qualifier for the real-time statistics table names. StatsSchema is an
input parameter of type VARCHAR(128). The default is SYSIBM.

CatlgSchema
Specifies the qualifier for DB2 catalog table names. CatlgSchema is an input
parameter of type VARCHAR(128). The default is SYSIBM.

LocalSchema
Specifies the qualifier for the names of tables that DSNACCOR creates.
LocalSchema is an input parameter of type VARCHAR(128). The default is
DSNACC.

ChkLvl
Specifies the types of checking that DSNACCOR performs, and indicates
whether to include objects that fail those checks in the DSNACCOR
recommendations result set. This value is the sum of any combination of the
following values:

0 DSNACCOR performs none of the following actions.

1 For objects that are listed in the recommendations result set, check the
SYSTABLESPACE or SYSINDEXES catalog tables to ensure that those
objects have not been deleted. If value 16 is not also chosen, exclude
rows for the deleted objects from the recommendations result set.

DSNACCOR excludes objects from the recommendations result set if
those objects are not in the SYSTABLESPACE or SYSINDEXES catalog
tables.

When this setting is specified, DSNACCOR does not use
EXTENTS>ExtentLimit to determine whether a LOB table space should
be reorganized.

2 For index spaces that are listed in the recommendations result set,
check the SYSTABLES, SYSTABLESPACE, and SYSINDEXES catalog
tables to determine the name of the table space that is associated with
each index space.

Choosing this value causes DSNACCOR to also check for rows in the
recommendations result set for objects that have been deleted but have
entries in the real-time statistics tables (value 1). This means that if
value 16 is not also chosen, rows for deleted objects are excluded from
the recommendations result set.

4 Check whether rows that are in the DSNACCOR recommendations
result set refer to objects that are in the exception table. For
recommendations result set rows that have corresponding exception

1032 Utility Guide and Reference

table rows, copy the contents of the QUERYTYPE column of the
exception table to the INEXCEPTTABLE column of the
recommendations result set.

8 Check whether objects that have rows in the recommendations result
set are restricted. Indicate the restricted status in the OBJECTSTATUS
column of the result set. A row is added to the result set for each
object that has a restricted state, even if a row for the same object is
already included in the result set because utility operations are
recommended. So, the result set might contain duplicate rows for the
same object when you specify this option.

16 For objects that are listed in the recommendations result set, check the
SYSTABLESPACE or SYSINDEXES catalog tables to ensure that those
objects have not been deleted (value 1). In result set rows for deleted
objects, specify the word ORPHANED in the OBJECTSTATUS column.

32 Exclude rows from the DSNACCOR recommendations result set for
index spaces for which the related table spaces have been
recommended for REORG. Choosing this value causes DSNACCOR to
perform the actions for values 1 and 2.

64 For index spaces that are listed in the DSNACCOR recommendations
result set, check whether the related table spaces are listed in the
exception table. For recommendations result set rows that have
corresponding exception table rows, copy the contents of the
QUERYTYPE column of the exception table to the INEXCEPTTABLE
column of the recommendations result set.

ChkLvl is an input parameter of type INTEGER. The default is 7 (values
1+2+4).

Criteria
Narrows the set of objects for which DSNACCOR makes recommendations.
This value is the search condition of an SQL WHERE clause. Criteria is an
input parameter of type VARCHAR(4096). The default is that DSNACCOR
makes recommendations for all table spaces and index spaces in the
subsystem. The search condition can use any column in the result set and
wildcards are allowed.

Restricted
A parameter that is reserved for future use. Specify the null value for this
parameter. Restricted is an input parameter of type VARCHAR(80).

CRUpdatedPagesPct
Specifies a criterion for recommending a full image copy on a table space or
index space. If the following condition is true for a table space, DSNACCOR
recommends an image copy:

The total number of distinct updated pages, divided by the total number of
preformatted pages (expressed as a percentage) is greater than
CRUpdatedPagesPct.

See item 2 in Figure 143 on page 1039. If both of the following conditions are
true for an index space, DSNACCOR recommends an image copy:
v The total number of distinct updated pages, divided by the total number of

preformatted pages (expressed as a percentage) is greater than
CRUpdatedPagesPct.

v The number of active pages in the index space or partition is greater than
CRIndexSize. See items 2 and 3 in Figure 144 on page 1040.

Appendix B. DB2-supplied stored procedures for utility operations 1033

CRUpdatedPagesPct is an input parameter of type INTEGER. The default is 20.

CRChangesPct
Specifies a criterion for recommending a full image copy on a table space or
index space. If the following condition is true for a table space, DSNACCOR
recommends an image copy:

The total number of insert, update, and delete operations since the last
image copy, divided by the total number of rows or LOBs in a table space
or partition (expressed as a percentage) is greater than CRChangesPct.

See item 3 in Figure 143 on page 1039. If both of the following conditions are
true for an index table space, DSNACCOR recommends an image copy:
v The total number of insert and delete operations since the last image copy,

divided by the total number of entries in the index space or partition
(expressed as a percentage) is greater than CRChangesPct.

v The number of active pages in the index space or partition is greater than
CRIndexSize.

See items 2 and 4 in Figure 144 on page 1040. CRChangesPct is an input
parameter of type INTEGER. The default is 10.

CRDaySncLastCopy
Specifies a criterion for recommending a full image copy on a table space or
index space. If the number of days since the last image copy is greater than
this value, DSNACCOR recommends an image copy. (See item 1 in Figure 143
on page 1039 and item 1 in Figure 144 on page 1040.) CRDaySncLastCopy is an
input parameter of type INTEGER. The default is 7.

ICRUpdatedPagesPct
Specifies a criterion for recommending an incremental image copy on a table
space. If the following condition is true, DSNACCOR recommends an
incremental image copy:

The number of distinct pages that were updated since the last image copy,
divided by the total number of active pages in the table space or partition
(expressed as a percentage) is greater than CRUpdatedPagesPct.

(See item 1 in Figure 145 on page 1040.) ICRUpdatedPagesPct is an input
parameter of type INTEGER. The default is 1.

ICRChangesPct
Specifies a criterion for recommending an incremental image copy on a table
space. If the following condition is true, DSNACCOR recommends an
incremental image copy:

The ratio of the number of insert, update, or delete operations since the last
image copy, to the total number of rows or LOBs in a table space or
partition (expressed as a percentage) is greater than ICRChangesPct.

(See item 2 in Figure 145 on page 1040.) ICRChangesPct is an input parameter
of type INTEGER. The default is 1.

CRIndexSize
Specifies, when combined with CRUpdatedPagesPct or CRChangesPct, a criterion
for recommending a full image copy on an index space. (See items 2, 3, and 4
in Figure 144 on page 1040.) CRIndexSize is an input parameter of type
INTEGER. The default is 50.

RRTInsDelUpdPct
Specifies a criterion for recommending that the REORG utility is to be run on a
table space. If the following condition is true, DSNACCOR recommends
running REORG:

1034 Utility Guide and Reference

The sum of insert, update, and delete operations since the last REORG,
divided by the total number of rows or LOBs in the table space or partition
(expressed as a percentage) is greater than RRTInsDelUpdPct

(See item 1 in Figure 146 on page 1040.) RRTInsDelUpdPct is an input
parameter of type INTEGER. The default is 20.

RRTUnclustInsPct
Specifies a criterion for recommending that the REORG utility is to be run on a
table space. If the following condition is true, DSNACCOR recommends
running REORG:

The number of unclustered insert operations, divided by the total number
of rows or LOBs in the table space or partition (expressed as a percentage)
is greater than RRTUnclustInsPct.

(See item 2 in Figure 146 on page 1040.) RRTUnclustInsPct is an input
parameter of type INTEGER. The default is 10.

RRTDisorgLOBPct
Specifies a criterion for recommending that the REORG utility is to be run on a
table space. If the following condition is true, DSNACCOR recommends
running REORG:

The number of imperfectly chunked LOBs, divided by the total number of
rows or LOBs in the table space or partition (expressed as a percentage) is
greater than RRTDisorgLOBPct.

(See item 3 in Figure 146 on page 1040.) RRTDisorgLOBPct is an input
parameter of type INTEGER. The default is 10.

RRTMassDelLimit
Specifies a criterion for recommending that the REORG utility is to be run on a
table space. If one of the following values is greater than RRTMassDelLimit,
DSNACCOR recommends running REORG:
v The number of mass deletes from a segmented or LOB table space since the

last REORG or LOAD REPLACE
v The number of dropped tables from a nonsegmented table space since the

last REORG or LOAD REPLACE

(See item 5 in Figure 146 on page 1040.) RRTMassDelLimit is an input
parameter of type INTEGER. The default is 0.

RRTIndRefLimit
Specifies a criterion for recommending that the REORG utility is to be run on a
table space. If the following value is greater than RRTIndRefLimit, DSNACCOR
recommends running REORG:

The total number of overflow records that were created since the last
REORG or LOAD REPLACE, divided by the total number of rows or LOBs
in the table space or partition (expressed as a percentage)

(See item 4 in Figure 146 on page 1040.) RRTIndRefLimit is an input parameter
of type INTEGER. The default is 10.

RRIInsertDeletePct
Specifies a criterion for recommending that the REORG utility is to be run on
an index space. If the following value is greater than RRIInsertDeletePct,
DSNACCOR recommends running REORG:

The sum of the number of index entries that were inserted and deleted
since the last REORG, divided by the total number of index entries in the
index space or partition (expressed as a percentage)

Appendix B. DB2-supplied stored procedures for utility operations 1035

(See item 1 in Figure 147 on page 1041.) This is an input parameter of type
INTEGER. The default is 20.

RRIAppendInsertPct
Specifies a criterion for recommending that the REORG utility is to be run on
an index space. If the following value is greater than RRIAppendInsertPct,
DSNACCOR recommends running REORG:

The number of index entries that were inserted since the last REORG,
REBUILD INDEX, or LOAD REPLACE with a key value greater than the
maximum key value in the index space or partition, divided by the number
of index entries in the index space or partition (expressed as a percentage)

(See item 2 in Figure 147 on page 1041.) RRIInsertDeletePct is an input
parameter of type INTEGER. The default is 10.

RRIPseudoDeletePct
Specifies a criterion for recommending that the REORG utility is to be run on
an index space. If the following value is greater than RRIPseudoDeletePct,
DSNACCOR recommends running REORG:

The number of index entries that were pseudo-deleted since the last
REORG, REBUILD INDEX, or LOAD REPLACE, divided by the number of
index entries in the index space or partition (expressed as a percentage)

(See item 3 in Figure 147 on page 1041.) RRIPseudoDeletePct is an input
parameter of type INTEGER. The default is 10.

RRIMassDelLimit
Specifies a criterion for recommending that the REORG utility is to be run on
an index space. If the number of mass deletes from an index space or partition
since the last REORG, REBUILD, or LOAD REPLACE is greater than this
value, DSNACCOR recommends running REORG.

(See item 4 in Figure 147 on page 1041.) RRIMassDelLimit is an input parameter
of type INTEGER. The default is 0.

RRILeafLimit
Specifies a criterion for recommending that the REORG utility is to be run on
an index space. If the following value is greater than RRILeafLimit,
DSNACCOR recommends running REORG:

The number of index page splits that occurred since the last REORG,
REBUILD INDEX, or LOAD REPLACE that resulted in a large separation
between the parts of the original page, divided by the total number of
active pages in the index space or partition (expressed as a percentage)

(See item 5 in Figure 147 on page 1041.) RRILeafLimit is an input parameter of
type INTEGER. The default is 10.

RRINumLevelsLimit
Specifies a criterion for recommending that the REORG utility is to be run on
an index space. If the following value is greater than RRINumLevelsLimit,
DSNACCOR recommends running REORG:

The number of levels in the index tree that were added or removed since
the last REORG, REBUILD INDEX, or LOAD REPLACE

(See item 6 in Figure 147 on page 1041.) RRINumLevelsLimit is an input
parameter of type INTEGER. The default is 0.

SRTInsDelUpdPct
Specifies, when combined with SRTInsDelUpdAbs, a criterion for

1036 Utility Guide and Reference

recommending that the RUNSTATS utility is to be run on a table space. If both
of the following conditions are true, DSNACCOR recommends running
RUNSTATS:
v The number of insert, update, or delete operations since the last RUNSTATS

on a table space or partition, divided by the total number of rows or LOBs
in table space or partition (expressed as a percentage) is greater than
SRTInsDelUpdPct.

v The sum of the number of inserted and deleted index entries since the last
RUNSTATS on an index space or partition is greater than SRTInsDelUpdAbs.

(See items 1 and 2 in Figure 148 on page 1041.) SRTInsDelUpdPct is an input
parameter of type INTEGER. The default is 20.

SRTInsDelUpdAbs
Specifies, when combined with SRTInsDelUpdPct, a criterion for recommending
that the RUNSTATS utility is to be run on a table space. If both of the
following conditions are true, DSNACCOR recommends running RUNSTATS:
v The number of insert, update, and delete operations since the last

RUNSTATS on a table space or partition, divided by the total number of
rows or LOBs in table space or partition (expressed as a percentage) is
greater than SRTInsDelUpdPct.

v The sum of the number of inserted and deleted index entries since the last
RUNSTATS on an index space or partition is greater than SRTInsDelUpdAbs.

(See items 1 and 2 in Figure 148 on page 1041.) SRTInsDelUpdAbs is an input
parameter of type INTEGER. The default is 0.

SRTMassDelLimit
Specifies a criterion for recommending that the RUNSTATS utility is to be run
on a table space. If the following condition is true, DSNACCOR recommends
running RUNSTATS:
v The number of mass deletes from a table space or partition since the last

REORG or LOAD REPLACE is greater than SRTMassDelLimit.

(See item 3 in Figure 148 on page 1041.) SRTMassDelLimit is an input parameter
of type INTEGER. The default is 0.

SRIInsDelUpdPct
Specifies, when combined with SRIInsDelUpdAbs, a criterion for recommending
that the RUNSTATS utility is to be run on an index space. If both of the
following conditions are true, DSNACCOR recommends running RUNSTATS:
v The number of inserted and deleted index entries since the last RUNSTATS

on an index space or partition, divided by the total number of index entries
in the index space or partition (expressed as a percentage) is greater than
SRIInsDelUpdPct.

v The sum of the number of inserted and deleted index entries since the last
RUNSTATS on an index space or partition is greater than SRIInsDelUpdAbs.

(See items 1 and 2 in Figure 149 on page 1041.) SRIInsDelUpdPct is an input
parameter of type INTEGER. The default is 20.

SRIInsDelUpdAbs
Specifies, when combined with SRIInsDelUpdPct, a criterion for recommending
that the RUNSTATS utility is to be run on an index space. If the following
condition is true, DSNACCOR recommends running RUNSTATS:

Appendix B. DB2-supplied stored procedures for utility operations 1037

v The number of inserted and deleted index entries since the last RUNSTATS
on an index space or partition, divided by the total number of index entries
in the index space or partition (expressed as a percentage) is greater than
SRIInsDelUpdPct.

v The sum of the number of inserted and deleted index entries since the last
RUNSTATS on an index space or partition is greater than SRIInsDelUpdAbs,

(See items 1 and 2 in Figure 149 on page 1041.) SRIInsDelUpdAbs is an input
parameter of type INTEGER. The default is 0.

SRIMassDelLimit
Specifies a criterion for recommending that the RUNSTATS utility is to be run
on an index space. If the number of mass deletes from an index space or
partition since the last REORG, REBUILD INDEX, or LOAD REPLACE is
greater than this value, DSNACCOR recommends running RUNSTATS.

(See item 3 in Figure 149 on page 1041.) SRIMassDelLimit is an input parameter
of type INTEGER. The default is 0.

ExtentLimit
Specifies a criterion for recommending that the REORG utility is to be run on a
table space or index space. Also specifies that DSNACCOR is to warn the user
that the table space or index space has used too many extents. DSNACCOR
recommends running REORG, and altering data set allocations if the following
condition is true:
v The number of physical extents in the index space, table space, or partition

is greater than ExtentLimit.

(See Figure 150 on page 1041.) ExtentLimit is an input parameter of type
INTEGER. The default is 50.

LastStatement
When DSNACCOR returns a severe error (return code 12), this field contains
the SQL statement that was executing when the error occurred. LastStatement is
an output parameter of type VARCHAR(8012).

ReturnCode
The return code from DSNACCOR execution. Possible values are:

0 DSNACCOR executed successfully. The ErrorMsg parameter contains
the approximate percentage of the total number of objects in the
subsystem that have information in the real-time statistics tables.

4 DSNACCOR completed, but one or more input parameters might be
incompatible. The ErrorMsg parameter contains the input parameters
that might be incompatible.

8 DSNACCOR terminated with errors. The ErrorMsg parameter contains
a message that describes the error.

12 DSNACCOR terminated with severe errors. The ErrorMsg parameter
contains a message that describes the error. The LastStatement
parameter contains the SQL statement that was executing when the
error occurred.

14 DSNACCOR terminated because it could not access one or more of the
real-time statistics tables. The ErrorMsg parameter contains the names
of the tables that DSNACCOR could not access.

15 DSNACCOR terminated because it encountered a problem with one of
the declared temporary tables that it defines and uses.

1038 Utility Guide and Reference

16 DSNACCOR terminated because it could not define a declared
temporary table. No table spaces were defined in the TEMP database.

NULL DSNACCOR terminated but could not set a return code.

ReturnCode is an output parameter of type INTEGER.

ErrorMsg
Contains information about DSNACCOR execution. If DSNACCOR runs
successfully (ReturnCode=0), this field contains the approximate percentage of
objects in the subsystem that are in the real-time statistics tables. Otherwise,
this field contains error messages. ErrorMsg is an output parameter of type
VARCHAR(1331).

IFCARetCode
Contains the return code from an IFI COMMAND call. DSNACCOR issues
commands through the IFI interface to determine the status of objects.
IFCARetCode is an output parameter of type INTEGER.

IFCAResCode
Contains the reason code from an IFI COMMAND call. IFCAResCode is an
output parameter of type INTEGER.

ExcessBytes
Contains the number of bytes of information that did not fit in the IFI return
area after an IFI COMMAND call. ExcessBytes is an output parameter of type
INTEGER.

DSNACCOR formulas for recommending actions

The following formulas specify the criteria that DSNACCOR uses for its
recommendations and warnings. The variables in italics are DSNACCOR input
parameters. The capitalized variables are columns of the
SYSIBM.SYSTABLESPACESTATS or SYSIBM.SYSINDEXSPACESTATS tables. The
numbers to the right of selected items are reference numbers for the option
descriptions in “Option descriptions” on page 1031.

The figure below shows the formula that DSNACCOR uses to recommend a full
image copy on a table space.

The figure below shows the formula that DSNACCOR uses to recommend a full
image copy on an index space.

((QueryType=’COPY’ OR QueryType=’ALL’) AND
(ObjectType=’TS’ OR ObjectType=’ALL’) AND
ICType=’F’) AND
(COPYLASTTIME IS NULL OR
REORGLASTTIME>COPYLASTTIME OR
LOADRLASTTIME>COPYLASTTIME OR
(CURRENT DATE-COPYLASTTIME)>CRDaySncLastCopy OR �1�
(COPYUPDATEDPAGES*100)/NACTIVE>CRUpdatedPagesPct OR �2�
(COPYCHANGES*100)/TOTALROWS>CRChangesPct) �3�

Figure 143. DSNACCOR formula for recommending a full image copy on a table space

Appendix B. DB2-supplied stored procedures for utility operations 1039

The figure below shows the formula that DSNACCOR uses to recommend an
incremental image copy on a table space.

The figure below shows the formula that DSNACCOR uses to recommend a
REORG on a table space. If the table space is a LOB table space, and CHCKLVL=1,
the formula does not include EXTENTS>ExtentLimit.

The figure below shows the formula that DSNACCOR uses to recommend a
REORG on an index space.

((QueryType=’COPY’ OR QueryType=’ALL’) AND
(ObjectType=’IX’ OR ObjectType=’ALL’) AND
(ICType=’F’ OR ICType=’B’)) AND
(COPYLASTTIME IS NULL OR
REORGLASTTIME>COPYLASTTIME OR
LOADRLASTTIME>COPYLASTTIME OR
REBUILDLASTTIME>COPYLASTTIME OR
(CURRENT DATE-COPYLASTTIME)>CRDaySncLastCopy OR �1�
(NACTIVE>CRIndexSize AND �2�
((COPYUPDATEDPAGES*100)/NACTIVE>CRUpdatedPagesPct OR �3�
(COPYCHANGES*100)/TOTALENTRIES>CRChangesPct))) �4�

Figure 144. DSNACCOR formula for recommending a full image copy on an index space

((QueryType=’COPY’ OR QueryType=’ALL’) AND
(ObjectType=’TS’ OR ObjectType=’ALL’) AND
ICType=’I’ AND
COPYLASTTIME IS NOT NULL) AND
(LOADRLASTTIME>COPYLASTTIME OR
REORGLASTTIME>COPYLASTTIME OR
(COPYUPDATEDPAGES*100)/NACTIVE>ICRUpdatedPagesPct OR �1�
(COPYCHANGES*100)/TOTALROWS>ICRChangesPct)) �2�

Figure 145. DSNACCOR formula for recommending an incremental image copy on a table space

((QueryType=’REORG’ OR QueryType=’ALL’) AND
(ObjectType=’TS’ OR ObjectType=’ALL’)) AND
(REORGLASTTIME IS NULL OR
((REORGINSERTS+REORGDELETES+REORGUPDATES)*100)/TOTALROWS>RRTInsDelUpdPct OR �1�
(REORGUNCLUSTINS*100)/TOTALROWS>RRTUnclustInsPct OR �2�
(REORGDISORGLOB*100)/TOTALROWS>RRTDisorgLOBPct OR �3�
((REORGNEARINDREF+REORGFARINDREF)*100)/TOTALROWS>RRTIndRefLimit OR �4�
REORGMASSDELETE>RRTMassDelLimit OR �5�
EXTENTS>ExtentLimit) �6�

Figure 146. DSNACCOR formula for recommending a REORG on a table space

1040 Utility Guide and Reference

The figure below shows the formula that DSNACCOR uses to recommend
RUNSTATS on a table space.

The figure below shows the formula that DSNACCOR uses to recommend
RUNSTATS on an index space.

The figure below shows the formula that DSNACCOR uses to that too many index
space or table space extents have been used.

Using an exception table

An exception table is an optional, user-created DB2 table that you can use to place
information in the INEXCEPTTABLE column of the recommendations result set.
You can put any information in the INEXCEPTTABLE column, but the most
common use of this column is to filter the recommendations result set. Each row in
the exception table represents an object for which you want to provide information
for the recommendations result set.

((QueryType=’REORG’ OR QueryType=’ALL’) AND
(ObjectType=’IX’ OR ObjectType=’ALL’)) AND
(REORGLASTTIME IS NULL OR
((REORGINSERTS+REORGDELETES)*100)/TOTALENTRIES>RRIInsertDeletePct OR �1�
(REORGAPPENDINSERT*100)/TOTALENTRIES>RRIAppendInsertPct OR �2�
(REORGPSEUDODELETES*100)/TOTALENTRIES>RRIPseudoDeletePct OR �3�
REORGMASSDELETE>RRIMassDeleteLimit OR �4�
(REORGLEAFFAR*100)/NACTIVE>RRILeafLimit OR �5�
REORGNUMLEVELS>RRINumLevelsLimit OR �6�
EXTENTS>ExtentLimit) �7�

Figure 147. DSNACCOR formula for recommending a REORG on an index space

((QueryType=’RUNSTATS’ OR QueryType=’ALL’) AND
(ObjectType=’TS’ OR ObjectType=’ALL’)) AND
(STATSLASTTIME IS NULL OR
(((STATSINSERTS+STATSDELETES+STATSUPDATES)*100)/TOTALROWS>SRTInsDelUpdPct AND �1�
(STATSINSERTS+STATSDELETES+STATSUPDATES)>SRTInsDelUpdAbs) OR �2�
STATSMASSDELETE>SRTMassDeleteLimit) �3�

Figure 148. DSNACCOR formula for recommending RUNSTATS on a table space

((QueryType=’RUNSTATS’ OR QueryType=’ALL’) AND
(ObjectType=’IX’ OR ObjectType=’ALL’)) AND
(STATSLASTTIME IS NULL OR
(((STATSINSERTS+STATSDELETES)*100)/TOTALENTRIES>SRIInsDelUpdPct AND �1�
(STATSINSERTS+STATSDELETES)>SRIInsDelUpdPct) OR �2�
STATSMASSDELETE>SRIInsDelUpdAbs) �3�

Figure 149. DSNACCOR formula for recommending RUNSTATS on an index space

EXTENTS>ExtentLimit

Figure 150. DSNACCOR formula for warning that too many data set extents for a table space or index space are used

Appendix B. DB2-supplied stored procedures for utility operations 1041

To create the exception table, execute a CREATE TABLE statement similar to the
following one. You can include other columns in the exception table, but you must
include at least the columns that are shown.
CREATE TABLE DSNACC.EXCEPT_TBL
(DBNAME CHAR(8) NOT NULL,
NAME CHAR(8) NOT NULL,
QUERYTYPE CHAR(40))
CCSID EBCDIC;

The meanings of the columns are:

DBNAME
The database name for an object in the exception table.

NAME
The table space name or index space name for an object in the exception table.

QUERYTYPE
The information that you want to place in the INEXCEPTTABLE column of the
recommendations result set.

If you put a null value in this column, DSNACCOR puts the value YES in the
INEXCEPTTABLE column of the recommendations result set row for the object
that matches the DBNAME and NAME values.

Recommendation: If you plan to put many rows in the exception table, create a
nonunique index on DBNAME, NAME, and QUERYTYPE.

After you create the exception table, insert a row for each object for which you
want to include information in the INEXCEPTTABLE column.

Example: Suppose that you want the INEXCEPTTABLE column to contain the
string 'IRRELEVANT' for table space STAFF in database DSNDB04. You also want
the INEXCEPTTABLE column to contain 'CURRENT' for table space DSN8S11D in
database DSN8D11A. Execute these INSERT statements:
INSERT INTO DSNACC.EXCEPT_TBL VALUES(’DSNDB04 ’, ’STAFF ’, ’IRRELEVANT’);
INSERT INTO DSNACC.EXCEPT_TBL VALUES(’DSN8D11A’, ’DSN8S11D’, ’CURRENT’);

To use the contents of INEXCEPTTABLE for filtering, include a condition that
involves the INEXCEPTTABLE column in the search condition that you specify in
your Criteria input parameter.

Example: Suppose that you want to include all rows for database DSNDB04 in
the recommendations result set, except for those rows that contain the string
'IRRELEVANT' in the INEXCEPTTABLE column. You might include the following
search condition in your Criteria input parameter:
DBNAME=’DSNDB04’ AND INEXCEPTTABLE<>’IRRELEVANT’

Example

The following COBOL example that shows variable declarations and an SQL CALL
for obtaining recommendations for objects in databases DSN8D11A and
DSN8D11L. This example also outlines the steps that you need to perform to
retrieve the two result sets that DSNACCOR returns.
WORKING-STORAGE SECTION....

* DSNACCOR PARAMETERS *

1042 Utility Guide and Reference

01 QUERYTYPE.
49 QUERYTYPE-LN PICTURE S9(4) COMP VALUE 40.
49 QUERYTYPE-DTA PICTURE X(40) VALUE ’ALL’.

01 OBJECTTYPE.
49 OBJECTTYPE-LN PICTURE S9(4) COMP VALUE 3.
49 OBJECTTYPE-DTA PICTURE X(3) VALUE ’ALL’.

01 ICTYPE.
49 ICTYPE-LN PICTURE S9(4) COMP VALUE 1.
49 ICTYPE-DTA PICTURE X(1) VALUE ’B’.

01 STATSSCHEMA.
49 STATSSCHEMA-LN PICTURE S9(4) COMP VALUE 128.
49 STATSSCHEMA-DTA PICTURE X(128) VALUE ’SYSIBM’.

01 CATLGSCHEMA.
49 CATLGSCHEMA-LN PICTURE S9(4) COMP VALUE 128.

49 CATLGSCHEMA-DTA PICTURE X(128) VALUE ’SYSIBM’.
01 LOCALSCHEMA.

49 LOCALSCHEMA-LN PICTURE S9(4) COMP VALUE 128.
49 LOCALSCHEMA-DTA PICTURE X(128) VALUE ’DSNACC’.

01 CHKLVL PICTURE S9(9) COMP VALUE +3.
01 CRITERIA.

49 CRITERIA-LN PICTURE S9(4) COMP VALUE 4096.
49 CRITERIA-DTA PICTURE X(4096) VALUE SPACES.

01 RESTRICTED.
49 RESTRICTED-LN PICTURE S9(4) COMP VALUE 80.
49 RESTRICTED-DTA PICTURE X(80) VALUE SPACES.

01 CRUPDATEDPAGESPCT PICTURE S9(9) COMP VALUE +0.
01 CRCHANGESPCT PICTURE S9(9) COMP VALUE +0.
01 CRDAYSNCLASTCOPY PICTURE S9(9) COMP VALUE +0.
01 ICRUPDATEDPAGESPCT PICTURE S9(9) COMP VALUE +0.
01 ICRCHANGESPCT PICTURE S9(9) COMP VALUE +0.
01 CRINDEXSIZE PICTURE S9(9) COMP VALUE +0.
01 RRTINSDELUPDPCT PICTURE S9(9) COMP VALUE +0.
01 RRTUNCLUSTINSPCT PICTURE S9(9) COMP VALUE +0.
01 RRTDISORGLOBPCT PICTURE S9(9) COMP VALUE +0.
01 RRTMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRTINDREFLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRIINSERTDELETEPCT PICTURE S9(9) COMP VALUE +0.
01 RRIAPPENDINSERTPCT PICTURE S9(9) COMP VALUE +0.
01 RRIPSEUDODELETEPCT PICTURE S9(9) COMP VALUE +0.
01 RRIMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRILEAFLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRINUMLEVELSLIMIT PICTURE S9(9) COMP VALUE +0.
01 SRTINSDELUPDPCT PICTURE S9(9) COMP VALUE +0.
01 SRTINSDELUPDABS PICTURE S9(9) COMP VALUE +0.
01 SRTMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 SRIINSDELUPDPCT PICTURE S9(9) COMP VALUE +0.
01 SRIINSDELUPDABS PICTURE S9(9) COMP VALUE +0.
01 SRIMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 EXTENTLIMIT PICTURE S9(9) COMP VALUE +0.
01 LASTSTATEMENT.

49 LASTSTATEMENT-LN PICTURE S9(4) COMP VALUE 8012.
49 LASTSTATEMENT-DTA PICTURE X(8012) VALUE SPACES.

01 RETURNCODE PICTURE S9(9) COMP VALUE +0.
01 ERRORMSG.

49 ERRORMSG-LN PICTURE S9(4) COMP VALUE 1331.
49 ERRORMSG-DTA PICTURE X(1331) VALUE SPACES.

01 IFCARETCODE PICTURE S9(9) COMP VALUE +0.
01 IFCARESCODE PICTURE S9(9) COMP VALUE +0.
01 EXCESSBYTES PICTURE S9(9) COMP VALUE +0.

* INDICATOR VARIABLES. *
* INITIALIZE ALL NON-ESSENTIAL INPUT *
* VARIABLES TO -1, TO INDICATE THAT THE *
* INPUT VALUE IS NULL. *

01 QUERYTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 OBJECTTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.

Appendix B. DB2-supplied stored procedures for utility operations 1043

01 ICTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 STATSSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CATLGSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 LOCALSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CHKLVL-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRITERIA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RESTRICTED-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRUPDATEDPAGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRCHANGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRDAYSNCLASTCOPY-IND PICTURE S9(4) COMP-4 VALUE -1.
01 ICRUPDATEDPAGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 ICRCHANGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRINDEXSIZE-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTINSDELUPDPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTUNCLUSTINSPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTDISORGLOBPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTINDREFLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIINSERTDELETEPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIAPPENDINSERTPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIPSEUDODELETEPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRILEAFLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRINUMLEVELSLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRTINSDELUPDPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRTINSDELUPDABS-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRTMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRIINSDELUPDPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRIINSDELUPDABS-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRIMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 EXTENTLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 LASTSTATEMENT-IND PICTURE S9(4) COMP-4 VALUE +0.
01 RETURNCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 ERRORMSG-IND PICTURE S9(4) COMP-4 VALUE +0.
01 IFCARETCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 IFCARESCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 EXCESSBYTES-IND PICTURE S9(4) COMP-4 VALUE +0.

PROCEDURE DIVISION....

* SET VALUES FOR DSNACCOR INPUT PARAMETERS: *
* - USE THE CHKLVL PARAMETER TO CAUSE DSNACCOR TO CHECK *
* FOR ORPHANED OBJECTS AND INDEX SPACES WITHOUT *
* TABLE SPACES, BUT INCLUDE THOSE OBJECTS IN THE *
* RECOMMENDATIONS RESULT SET (CHKLVL=1+2+16=19) *
* - USE THE CRITERIA PARAMETER TO CAUSE DSNACCOR TO *
* MAKE RECOMMENDATIONS ONLY FOR OBJECTS IN DATABASES *
* DSN8D11A AND DSN8D11L. *

* - FOR THE FOLLOWING PARAMETERS, SET THESE VALUES, *
* WHICH ARE LOWER THAN THE DEFAULTS: *
* CRUPDATEDPAGESPCT 4 *
* CRCHANGESPCT 2 *
* RRTINSDELUPDPCT 2 *
* RRTUNCLUSTINSPCT 5 *
* RRTDISORGLOBPCT 5 *
* RRIAPPENDINSERTPCT 5 *
* SRTINSDELUPDPCT 5 *
* SRIINSDELUPDPCT 5 *
* EXTENTLIMIT 3 *

MOVE 19 TO CHKLVL.
MOVE SPACES TO CRITERIA-DTA.
MOVE ’DBNAME = ’’DSN8D11A’’ OR DBNAME = ’’DSN8D11L’’’

TO CRITERIA-DTA.
MOVE 46 TO CRITERIA-LN.
MOVE 4 TO CRUPDATEDPAGESPCT.

1044 Utility Guide and Reference

MOVE 2 TO CRCHANGESPCT.
MOVE 2 TO RRTINSDELUPDPCT.
MOVE 5 TO RRTUNCLUSTINSPCT.
MOVE 5 TO RRTDISORGLOBPCT.
MOVE 5 TO RRIAPPENDINSERTPCT.
MOVE 5 TO SRTINSDELUPDPCT.
MOVE 5 TO SRIINSDELUPDPCT.
MOVE 3 TO EXTENTLIMIT.

* INITIALIZE OUTPUT PARAMETERS *

MOVE SPACES TO LASTSTATEMENT-DTA.
MOVE 1 TO LASTSTATEMENT-LN.
MOVE 0 TO RETURNCODE-O2.
MOVE SPACES TO ERRORMSG-DTA.
MOVE 1 TO ERRORMSG-LN.
MOVE 0 TO IFCARETCODE.
MOVE 0 TO IFCARESCODE.
MOVE 0 TO EXCESSBYTES.

* SET THE INDICATOR VARIABLES TO 0 FOR NON-NULL INPUT *
* PARAMETERS (PARAMETERS FOR WHICH YOU DO NOT WANT *
* DSNACCOR TO USE DEFAULT VALUES) AND FOR OUTPUT *
* PARAMETERS. *

MOVE 0 TO CHKLVL-IND.
MOVE 0 TO CRITERIA-IND.
MOVE 0 TO CRUPDATEDPAGESPCT-IND.
MOVE 0 TO CRCHANGESPCT-IND.
MOVE 0 TO RRTINSDELUPDPCT-IND.
MOVE 0 TO RRTUNCLUSTINSPCT-IND.
MOVE 0 TO RRTDISORGLOBPCT-IND.
MOVE 0 TO RRIAPPENDINSERTPCT-IND.
MOVE 0 TO SRTINSDELUPDPCT-IND.
MOVE 0 TO SRIINSDELUPDPCT-IND.
MOVE 0 TO EXTENTLIMIT-IND.
MOVE 0 TO LASTSTATEMENT-IND.
MOVE 0 TO RETURNCODE-IND.
MOVE 0 TO ERRORMSG-IND.
MOVE 0 TO IFCARETCODE-IND.
MOVE 0 TO IFCARESCODE-IND.
MOVE 0 TO EXCESSBYTES-IND....

* CALL DSNACCOR *

EXEC SQL
CALL SYSPROC.DSNACCOR
(:QUERYTYPE :QUERYTYPE-IND,
:OBJECTTYPE :OBJECTTYPE-IND,
:ICTYPE :ICTYPE-IND,
:STATSSCHEMA :STATSSCHEMA-IND,
:CATLGSCHEMA :CATLGSCHEMA-IND,
:LOCALSCHEMA :LOCALSCHEMA-IND,
:CHKLVL :CHKLVL-IND,
:CRITERIA :CRITERIA-IND,
:RESTRICTED :RESTRICTED-IND,
:CRUPDATEDPAGESPCT :CRUPDATEDPAGESPCT-IND,
:CRCHANGESPCT :CRCHANGESPCT-IND,
:CRDAYSNCLASTCOPY :CRDAYSNCLASTCOPY-IND,
:ICRUPDATEDPAGESPCT :ICRUPDATEDPAGESPCT-IND,
:ICRCHANGESPCT :ICRCHANGESPCT-IND,
:CRINDEXSIZE :CRINDEXSIZE-IND,
:RRTINSDELUPDPCT :RRTINSDELUPDPCT-IND,
:RRTUNCLUSTINSPCT :RRTUNCLUSTINSPCT-IND,
:RRTDISORGLOBPCT :RRTDISORGLOBPCT-IND,
:RRTMASSDELLIMIT :RRTMASSDELLIMIT-IND,

Appendix B. DB2-supplied stored procedures for utility operations 1045

:RRTINDREFLIMIT :RRTINDREFLIMIT-IND,
:RRIINSERTDELETEPCT :RRIINSERTDELETEPCT-IND,
:RRIAPPENDINSERTPCT :RRIAPPENDINSERTPCT-IND,
:RRIPSEUDODELETEPCT :RRIPSEUDODELETEPCT-IND,
:RRIMASSDELLIMIT :RRIMASSDELLIMIT-IND,
:RRILEAFLIMIT :RRILEAFLIMIT-IND,
:RRINUMLEVELSLIMIT :RRINUMLEVELSLIMIT-IND,
:SRTINSDELUPDPCT :SRTINSDELUPDPCT-IND,
:SRTINSDELUPDABS :SRTINSDELUPDABS-IND,
:SRTMASSDELLIMIT :SRTMASSDELLIMIT-IND,
:SRIINSDELUPDPCT :SRIINSDELUPDPCT-IND,
:SRIINSDELUPDABS :SRIINSDELUPDABS-IND,
:SRIMASSDELLIMIT :SRIMASSDELLIMIT-IND,
:EXTENTLIMIT :EXTENTLIMIT-IND,
:LASTSTATEMENT :LASTSTATEMENT-IND,
:RETURNCODE :RETURNCODE-IND,
:ERRORMSG :ERRORMSG-IND,
:IFCARETCODE :IFCARETCODE-IND,
:IFCARESCODE :IFCARESCODE-IND,
:EXCESSBYTES :EXCESSBYTES-IND)

END-EXEC.

* ASSUME THAT THE SQL CALL RETURNED +466, WHICH MEANS THAT *
* RESULT SETS WERE RETURNED. RETRIEVE RESULT SETS. *

* LINK EACH RESULT SET TO A LOCATOR VARIABLE

EXEC SQL ASSOCIATE LOCATORS (:LOC1, :LOC2)
WITH PROCEDURE SYSPROC.DSNACCOR

END-EXEC.
* LINK A CURSOR TO EACH RESULT SET

EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :LOC1
END-EXEC.
EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :LOC2
END-EXEC.

* PERFORM FETCHES USING C1 TO RETRIEVE ALL ROWS FROM FIRST RESULT SET
* PERFORM FETCHES USING C2 TO RETRIEVE ALL ROWS FROM SECOND RESULT SET

Output

If DSNACCOR executes successfully, in addition to the output parameters
described in “Option descriptions” on page 1031, DSNACCOR returns two result
sets.

The first result set contains the results from IFI COMMAND calls that DSNACCOR
makes. The following table shows the format of the first result set.

Table 141. Result set row for first DSNACCOR result set

Column name Data type Contents

RS_SEQUENCE INTEGER Sequence number of the output line

RS_DATA CHAR(80) A line of command output

The result set contains rows for table spaces, index spaces, or partitions, if both of
the following conditions are true for the object:
v If the Criteria input parameter contains a search condition, and the search

condition is true for the table space, index space, or partition.
v DSNACCOR recommends at least one action for the table space, index space, or

partition.

Figure 151. Example of DSNACCOR invocation

1046 Utility Guide and Reference

The result set contains one row for each nonpartitioned table space or
nonpartitioning index space. For partitioned table spaces or partitioning indexes,
the result set contains one row for each partition. If ChkLvl 8 is specified, the result
set might contain additional rows, including duplicate rows for the same object.

The following table shows the columns of a result set row.

Table 142. Result set row for second DSNACCOR result set

Column name Data type Description

DBNAME CHAR(8) Name of the database that contains the object.

NAME CHAR(8) Table space or index space name.

PARTITION INTEGER Data set number or partition number.

OBJECTTYPE CHAR(2) DB2 object type:

v TS for a table space

v IX for an index space

OBJECTSTATUS CHAR(36) Status of the object:

v ORPHANED, if the object is an index space with no
corresponding table space, or if the object does not exist

v If the object is in a restricted state, one of the following
values:

– TS=restricted-state, if OBJECTTYPE is TS

– IX=restricted-state, if OBJECTTYPE is IX

restricted-state is one of the status codes that appear in
DISPLAY DATABASE output.
Related information:

DSNT362I (DB2 Messages)

-DISPLAY DATABASE (DB2) (DB2 Commands)

v A, if the object is in an advisory state.

v L, if the object is a logical partition, but not in an advisory
state.

v AL, if the object is a logical partition and in an advisory
state.

IMAGECOPY CHAR(3) COPY recommendation:
v If OBJECTTYPE is TS: FUL (full image copy), INC

(incremental image copy), or NO
v If OBJECTTYPE is IX: YES or NO

RUNSTATS CHAR(3) RUNSTATS recommendation: YES or NO.

EXTENTS CHAR(3) Indicates whether the data sets for the object have exceeded
ExtentLimit: YES or NO.

REORG CHAR(3) REORG recommendation: YES or NO.

INEXCEPTTABLE CHAR(40) A string that contains one of the following values:

v Text that you specify in the QUERYTYPE column of the
exception table.

v YES, if you put a row in the exception table for the object
that this result set row represents, but you specify NULL in
the QUERYTYPE column.

v NO, if the exception table exists but does not have a row for
the object that this result set row represents.

v Null, if the exception table does not exist, or if the ChkLvl
input parameter does not include the value 4.

Appendix B. DB2-supplied stored procedures for utility operations 1047

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnt362i.htm#dsnt362i
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_displaydatabase.htm#db2z_cmd_displaydatabase

Table 142. Result set row for second DSNACCOR result set (continued)

Column name Data type Description

ASSOCIATEDTS CHAR(8) If OBJECTTYPE is IX and the ChkLvl input parameter includes
the value 2, this value is the name of the table space that is
associated with the index space. Otherwise null.

COPYLASTTIME TIMESTAMP Timestamp of the last full or incremental image copy on the
object. Null if COPY was never run, or if the last COPY
execution was terminated.

LOADRLASTTIME TIMESTAMP Timestamp of the last LOAD REPLACE on the object. Null if
LOAD REPLACE was never run, or if the last LOAD
REPLACE execution was terminated.

REBUILDLASTTIME TIMESTAMP Timestamp of the last REBUILD INDEX on the object. Null if
REBUILD INDEX was never run, or if the last REBUILD
INDEX execution was terminated.

CRUPDPGSPCT INTEGER If OBJECTTYPE is TS or IX and IMAGECOPY is YES, the ratio
of distinct updated pages to preformatted pages, expressed as
a percentage. Otherwise null.

CRCPYCHGPCT INTEGER If OBJECTTYPE is TS and IMAGECOPY is YES, the ratio of
the total number insert, update, and delete operations since
the last image copy to the total number of rows or LOBs in the
table space or partition, expressed as a percentage. If
OBJECTTYPE is IX and IMAGECOPY is YES, the ratio of the
total number of insert and delete operations since the last
image copy to the total number of entries in the index space or
partition, expressed as a percentage. Otherwise null.

CRDAYSCELSTCPY INTEGER If OBJECTTYPE is TS or IX and IMAGECOPY is YES, the
number of days since the last image copy. Otherwise null.

CRINDEXSIZE INTEGER If OBJECTTYPE is IX and IMAGECOPY is YES, the number of
active pages in the index space or partition. Otherwise null.

REORGLASTTIME TIMESTAMP Timestamp of the last REORG on the object. Null if REORG
was never run, or if the last REORG execution was terminated.

RRTINSDELUPDPCT INTEGER If OBJECTTYPE is TS and REORG is YES, the ratio of the sum
of insert, update, and delete operations since the last REORG
to the total number of rows or LOBs in the table space or
partition, expressed as a percentage. Otherwise null.

RRTUNCINSPCT INTEGER If OBJECTTYPE is TS and REORG is YES, the ratio of the
number of unclustered insert operations to the total number of
rows or LOBs in the table space or partition, expressed as a
percentage. Otherwise null.

RRTDISORGLOBPCT INTEGER If OBJECTTYPE is TS and REORG is YES, the ratio of the
number of imperfectly chunked LOBs to the total number of
rows or LOBs in the table space or partition, expressed as a
percentage. Otherwise null.

RRTMASSDELETE INTEGER If OBJECTTYPE is TS, REORG is YES, and the table space is a
segmented table space or LOB table space, the number of mass
deletes since the last REORG or LOAD REPLACE. If
OBJECTTYPE is TS, REORG is YES, and the table space is
nonsegmented, the number of dropped tables since the last
REORG or LOAD REPLACE. Otherwise null.

RRTINDREF INTEGER If OBJECTTYPE is TS, REORG is YES, the ratio of the total
number of overflow records that were created since the last
REORG or LOAD REPLACE to the total number of rows or
LOBs in the table space or partition, expressed as a percentage.
Otherwise null.

1048 Utility Guide and Reference

Table 142. Result set row for second DSNACCOR result set (continued)

Column name Data type Description

RRIINSDELPCT INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the total
number of insert and delete operations since the last REORG
to the total number of index entries in the index space or
partition, expressed as a percentage. Otherwise null.

RRIAPPINSPCT INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the
number of index entries that were inserted since the last
REORG, REBUILD INDEX, or LOAD REPLACE that had a key
value greater than the maximum key value in the index space
or partition, to the number of index entries in the index space
or partition, expressed as a percentage. Otherwise null.

RRIPSDDELPCT INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the
number of index entries that were pseudo-deleted (the RID
entry was marked as deleted) since the last REORG, REBUILD
INDEX, or LOAD REPLACE to the number of index entries in
the index space or partition, expressed as a percentage.
Otherwise null.

RRIMASSDELETE INTEGER If OBJECTTYPE is IX and REORG is YES, the number of mass
deletes from the index space or partition since the last REORG,
REBUILD, or LOAD REPLACE. Otherwise null.

RRILEAF INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the
number of index page splits that occurred since the last
REORG, REBUILD INDEX, or LOAD REPLACE in which the
higher part of the split page was far from the location of the
original page, to the total number of active pages in the index
space or partition, expressed as a percentage. Otherwise null.

RRINUMLEVELS INTEGER If OBJECTTYPE is IX and REORG is YES, the number of levels
in the index tree that were added or removed since the last
REORG, REBUILD INDEX, or LOAD REPLACE. Otherwise
null.

STATSLASTTIME TIMESTAMP Timestamp of the last RUNSTATS on the object. Null if
RUNSTATS was never run, or if the last RUNSTATS execution
was terminated.

SRTINSDELUPDPCT INTEGER If OBJECTTYPE is TS and RUNSTATS is YES, the ratio of the
total number of insert, update, and delete operations since the
last RUNSTATS on a table space or partition, to the total
number of rows or LOBs in the table space or partition,
expressed as a percentage. Otherwise null.

SRTINSDELUPDABS INTEGER If OBJECTTYPE is TS and RUNSTATS is YES, the total number
of insert, update, and delete operations since the last
RUNSTATS on a table space or partition. Otherwise null.

SRTMASSDELETE INTEGER If OBJECTTYPE is TS and RUNSTATS is YES, the number of
mass deletes from the table space or partition since the last
REORG or LOAD REPLACE. Otherwise null.

SRIINSDELPCT INTEGER If OBJECTTYPE is IX and RUNSTATS is YES, the ratio of the
total number of insert and delete operations since the last
RUNSTATS on the index space or partition, to the total
number of index entries in the index space or partition,
expressed as a percentage. Otherwise null.

SRIINSDELABS INTEGER If OBJECTTYPE is IX and RUNSTATS is YES, the number
insert and delete operations since the last RUNSTATS on the
index space or partition. Otherwise null.

Appendix B. DB2-supplied stored procedures for utility operations 1049

Table 142. Result set row for second DSNACCOR result set (continued)

Column name Data type Description

SRIMASSDELETE INTEGER If OBJECTTYPE is IX and RUNSTATS is YES, the number of
mass deletes from the index space or partition since the last
REORG, REBUILD INDEX, or LOAD REPLACE. Otherwise,
this value is null.

TOTALEXTENTS SMALLINT If EXTENTS is YES, the number of physical extents in the table
space, index space, or partition. Otherwise, this value is null.

PSPI

Related reference:

CREATE DATABASE (DB2 SQL)

CREATE TABLESPACE (DB2 SQL)

DSNACCOX stored procedure
The DB2 real-time statistics stored procedure (DSNACCOX) is a sample stored
procedure that makes recommendations to help you maintain your DB2 databases.

PSPI

The DSNACCOX stored procedure represents an enhancement to the DSNACCOR
stored procedure and provides the following improvements:
v Improved recommendations
v New fields
v New formulas
v The option to choose the formula for making recommendations

You can call the DSNACCOX stored procedure to accomplish the following actions:
v Get recommendations for when to reorganize, image copy, or update statistics

for table spaces or index spaces
v Identify when a data set has exceeded a specified threshold for the number of

extents that it occupies.
v Identify whether objects are in restricted states

DSNACCOX uses data from catalog tables, including real-time statistics tables, to
make its recommendations. DSNACCOX provides its recommendations in a result
set.

DSNACCOX uses the set of criteria that are shown in “DSNACCOX formulas for
recommending actions” on page 1064 to evaluate table spaces and index spaces. By
default, DSNACCOX evaluates all table spaces and index spaces in the subsystem
that have entries in the real-time statistics tables. However, you can override this
default through input parameters.

About DSNACCOX recommendations
v You can improve the quality of DSNACCOX recommendations, especially for

frequently changed objects, by externalizing in-memory statistics to the real-time
statistics tables immediately before calling the stored procedure.

Related information:

1050 Utility Guide and Reference

|
|
|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createdatabase.htm#db2z_sql_createdatabase
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace

Updating real-time statistics immediately (DB2 Performance)
When DB2 externalizes real-time statistics (DB2 Performance)
-ACCESS DATABASE (DB2) (DB2 Commands)

v DSNACCOX makes recommendations based on general formulas that require
input from the user about the maintenance policies for a subsystem. These
recommendations might not be accurate for every installation.

v If the real-time statistics tables contain information for only a small percentage
of your DB2 subsystem, the recommendations that DSNACCOX makes might
not be accurate for the entire subsystem.

v Before you perform any action that DSNACCOX recommends, ensure that the
object for which DSNACCOX makes the recommendation is available, and that
the recommended action can be performed on that object. For example, REORG
might be recommended for an object, but the object might be stopped.

Environment

DSNACCOX must run in a WLM-established stored procedure address space.The
DSNWLM_GENERAL core WLM environment is a suitable environment for this
stored procedure.

DSNACCOX is installed and configured by installation job DSNTIJRT, which binds
the package for DSNACCOX with isolation UR to avoid lock contention.

Authorization required

To execute the CALL DSNACCOX statement, the owner of the package or plan
that contains the CALL statement must have one or more of the following
privileges on each package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNACCOX
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

The owner of the package or plan that contains the CALL statement must also
have:
v SELECT authority on catalog tables
v The DISPLAY system privilege

Syntax diagram

The following syntax diagram shows the CALL statement for invoking
DSNACCOX. Because the linkage convention for DSNACCOX is GENERAL WITH
NULLS, if you pass parameters in host variables, you need to include a null
indicator with every host variable. Null indicators for input host variables must be
initialized before you execute the CALL statement.

Related information:

Indicator variables, arrays, and structures (DB2 Application programming and
SQL)
Linkage conventions for external stored procedures (DB2 Application
programming and SQL)

Appendix B. DB2-supplied stored procedures for utility operations 1051

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_rtsupdateimmediate.htm#db2z_rtsupdateimmediate
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_whendb2externalizerts.htm#db2z_whendb2externalizerts
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_accessdatabase.htm#db2z_cmd_accessdatabase
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_indicatorvariablearray.htm#db2z_indicatorvariablearray
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_indicatorvariablearray.htm#db2z_indicatorvariablearray
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_linkageconventionssp.htm#linkageconventionsforstoredprocedures
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_linkageconventionssp.htm#linkageconventionsforstoredprocedures

�� CALL DSNACCOX (QueryType ,
NULL

ObjectType ,
NULL

ICType ,
NULL

CatlgSchema ,
NULL

�

� LocalSchema ,
NULL

ChkLvl ,
NULL

Criteria ,
NULL

SpecialParm ,
NULL

CRUpdatedPagesPct ,
NULL
-1

�

� CRUpdatedPagesAbs ,
NULL

CRChangesPct ,
NULL
-1

CRDaySncLastCopy ,
NULL
-1

ICRUpdatedPagesPct ,
NULL
-1

�

� ICRUpdatedPagesAbs ,
NULL

ICRChangesPct ,
NULL
-1

CRIndexSize ,
NULL
-1

RRTInsertsPct ,
NULL
-1

�

� RRTInsertsAbs ,
NULL

RRTDeletesPct ,
NULL
-1

RRTDeletesAbs ,
NULL

RRTUnclustInsPct ,
NULL
-1

�

� RRTDisorgLOBPct ,
NULL
-1

RRTDataSpaceRat ,
NULL
-1

RRTMassDelLimit ,
NULL
-1

RRTIndRefLimit ,
NULL
-1

�

� RRIInsertsPct ,
NULL
-1

RRIInsertsAbs ,
NULL
-1

RRIDeletesPct ,
NULL
-1

RRIDeletesAbs ,
NULL

�

� RRIAppendInsertPct ,
NULL
-1

RRIPseudoDeletePct ,
NULL
-1

RRIMassDelLimit ,
NULL
-1

RRILeafLimit ,
NULL
-1

�

� RRINumLevelsLimit ,
NULL
-1

SRTInsDelUpdPct ,
NULL
-1

SRTInsDelUpdAbs ,
NULL

SRTMassDelLimit ,
NULL
-1

�

� SRIInsDelUpdPct ,
NULL
-1

SRIInsDelUpdAbs ,
NULL

SRIMassDelLimit ,
NULL
-1

ExtentLimit ,
NULL
-1

�

� LastStatement, ReturnCode, ErrorMsg, IFCARetCode, IFCAResCode, ExcessBytes) ��

SpecialParm:

' ' ' '
RRIEmptyLimit RRTHashOvrFlwRatio
-1 -1

Option descriptions

In the following option descriptions, the default value for an input parameter is
the value that DSNACCOX uses if you specify a null value.

QueryType
Specifies the types of actions that DSNACCOX recommends. This field
contains one or more of the following values. Each value is enclosed in single
quotation marks and separated from other values by a space.

1052 Utility Guide and Reference

ALL Makes recommendations for all of the following actions.

COPY Makes a recommendation on whether run an image copy.

RUNSTATS
Makes a recommendation on whether to run RUNSTATS.

REORG
Makes a recommendation on whether to run REORG. Choosing this
value causes DSNACCOX to process the EXTENTS value also.

EXTENTS
Indicates when data sets have exceeded a user-specified extents limit.

RESTRICT
Indicates which objects are in a restricted state.

DSNACCOX recommends REORG on the table space when one of the
following conditions is true, and REORG (or ALL) is also specified for
the value of QUERYTYPE:
v The table space is in REORG-pending status.
v The table space is in advisory REORG-pending status as the result of

an ALTER TABLE statement.

DSNACCOX recommends REORG on the index when on the following
conditions is true and REORG (or ALL) is also specified for the value
of QUERYTYPE::
v The index is in REORG-pending status.
v The index is in advisory REORG-pending as the result of an ALTER

TABLE statement.

DSNACCOX recommends FULL COPY on the table space when on the
following conditions is true and COPY (or ALL) is also specified for
the value of QUERYTYPE::
v The table space is in COPY-pending status.
v The table space is in informational COPY-pending status.

DSNACCOX recommends FULL COPY on the index when on the
following conditions is true and COPY (or ALL) is also specified for
the value of QUERYTYPE: and SYSINDEX.COPY='Y':
v The index is in COPY-pending status.
v The index is in informational COPY-pending status.

QueryType is an input parameter of type VARCHAR(40). The default value is
ALL.

ObjectType
Specifies the types of objects for which DSNACCOX recommends actions:

ALL Table spaces and index spaces.

TS Table spaces only.

IX Index spaces only.

ObjectType is an input parameter of type VARCHAR(3). The default value is
ALL.

ICType
Specifies the types of image copies for which DSNACCOX is to make
recommendations:

Appendix B. DB2-supplied stored procedures for utility operations 1053

F Full image copy.

I Incremental image copy. This value is valid for table spaces only.

B Full image copy or incremental image copy.

ICType is an input parameter of type VARCHAR(1). The default is B.

CatlgSchema
Specifies the qualifier for DB2 catalog table names. CatlgSchema is an input
parameter of type VARCHAR(128). The default value is SYSIBM.

LocalSchema
Specifies the qualifier for the names of local tables that DSNACCOX references.
LocalSchema is an input parameter of type VARCHAR(128). The default value is
DSNACC.

ChkLvl
Specifies the types of checking that DSNACCOX performs, and indicates
whether to include objects that fail those checks in the DSNACCOX
recommendations result set. This value is the sum of any combination of the
following values:

0 DSNACCOX performs none of the following actions.

1 Exclude rows from the DSNACCOX recommendations result set for
RUNSTATS on:
v Index spaces that are related to tables that are defined as VOLATILE.
v Table spaces for which all of the tables are defined as VOLATILE.

2 Choosing this value causes DSNACCOX to over-ride the default
SSDMultiplier when making a REORG recommendation for a table
space or table space partition. The default value is 2 times
RRTUnclustInsPct. If CHKLVL 2 is specified RRTUnclustInsPct * 5 is
used.

4 Check whether rows that are in the DSNACCOX recommendations
result set refer to objects that are in the exception table. For
recommendations result set rows that have corresponding exception
table rows, copy the contents of the QUERYTYPE column of the
exception table to the INEXCEPTTABLE column of the
recommendations result set.

8 Check for objects that have restricted states. The value of the QueryType
option must be ALL or contain RESTRICTED when this value is
specified. The OBJECTSTATUS column of the result set indicates the
restricted state of the object. A row is added to the result set for each
object that has a restricted state.

16 Reserved for future use.

32 Exclude rows from the DSNACCOX recommendations result set for
index spaces for which the related table spaces have been
recommended for REORG or RUNSTATS.

64 For index spaces that are listed in the DSNACCOX recommendations
result set, check whether the related table spaces are listed in the
exception table. For recommendations result set rows that have
corresponding exception table rows, copy the contents of the
QUERYTYPE column of the exception table to the INEXCEPTTABLE
column of the recommendations result set. Selecting CHKLVL64 also
activates CHKLVLs 32 and 4.

1054 Utility Guide and Reference

ChkLvl is an input parameter of type INTEGER. The default is 5 (values 1+4).

Criteria
Narrows the set of objects for which DSNACCOX makes recommendations.
This value is the search condition of an SQL WHERE clause.Criteria is an input
parameter of type VARCHAR(4096). The default is that DSNACCOX makes
recommendations for all table spaces and index spaces in the subsystem. The
search condition can use any column in the result set and wildcards are
allowed.

DSNACCOX can optimize the retrieval of recommendations if the criteria
references only the following columns in the real-time statistics tables:
v DBNAME
v NAME
v PARTITION
v DBID
v PSID

SpecialParm
SpecialParm is an input of type CHAR(160), broken into 4 byte sections to
accommodate new options. An empty 4 bytes of EBCDIC blanks indicates that
the default is used for the option. An EBCDIC character string of '-1', indicates
that this option is not used.

RRIEmptyLimit
Is the ratio of pseudo-empty pages to the total number of leaf pages.
Specifies a criterion for recommending that the REORG utility is to be run
on an index space. If the following value is greater than RRIEmptyLimit,
DSNACCOX recommends running REORG: The number of pseudo-empty
leaf pages that were created since the last CREATE, REORG, REBUILD
INDEX, or LOAD REPLACE, divided by the total number of leaf pages in
the index space or partition, expressed as a percentage.

RRIEmptyLimit is an input parameter of type CHAR 4. The default value is
' 10'. A plus sign (+) preceding the value indicates that the DSNACCOX
stored procedure returns the value in the result set. A negative value turns
off this criterion.

The ratio of pseudo-empty pages to the total number of leaf pages is
returned in column RRIEMPTYLIMIT of the result set.

RRTHashOvrFlwRatio
The ratio of hash access overflow index entries to the total number of
rows. Specifies a criterion for recommending that the REORG utility is to
be run on a table space. If the following condition is true, DSNACCOX
recommends running REORG: The hash access overflow index is being
used for access, and the ratio of hash access overflow index entries divided
by the total number of rows (expressed as a percentage) is greater than
RRTHashOvrFlwRatio.

RRTHashOvrFlwRatio is an input parameter of type CHAR 4. The default
value is ' 15'. A plus sign (+) preceding or after the value or by itself
indicates that the DSNACCOX stored procedure returns the calculated
ratio value in the result set. The value of the ObjectType parameter must be
ALL, or contain both TS and IX, for this criterion to be used. A negative
value turns off this criterion.

Appendix B. DB2-supplied stored procedures for utility operations 1055

|
|

|

|

|

|

|

|

|
|

The ratio of Hash Access overflow index entries to the total number of
rows is returned in the RRTHASHOVRFLWRATPCT column of the result
set.

CRUpdatedPagesPct
Is the ratio of the total number of distinct updated pages to the total number
of preformatted pages. Specifies, when combined with CRUpdatedPagesAbs, a
criterion for recommending a full image copy on a table space or index space.
If both of the following conditions are true for a table space, DSNACCOX
recommends an image copy:
v The total number of distinct updated pages, divided by the total number of

preformatted pages (expressed as a percentage) is greater than
CRUpdatedPagesPct.

v The total number of distinct updates pages is greater than
CRUpdatedPagesABS.

If all of the following conditions are true for an index space, DSNACCOX
recommends an image copy:
v The total number of distinct updated pages, divided by the total number of

preformatted pages (expressed as a percentage) is greater than
CRUpdatedPagesPct.

v The total number of distinct updates pages is greater than
CRUpdatedPagesABS.

v The number of active pages in the index space or partition is greater than
CRIndexSize.

CRUpdatedPagesPct is an input parameter of type DOUBLE. The default is 20.0.
A negative value turns off both this criteria and CRUpdatedPagesABS.

CRUpdatedPagesABS
Is the total number of distinct updated pages. Specifies, when combined with
CRUpdatedPagesPct, a criterion for recommending a full image copy on a table
space or index space. If both of the following conditions are true for a table
space, DSNACCOX recommends an image copy:
v The total number of distinct updated pages, divided by the total number of

preformatted pages (expressed as a percentage) is greater than
CRUpdatedPagesPct.

v The total number of distinct updated pages is greater than
CRUpdatedPagesAbs.

If all of the following conditions are true for an index space, DSNACCOX
recommends an image copy:
v The total number of distinct updated pages, divided by the total number of

preformatted pages (expressed as a percentage) is greater than
CRUpdatedPagesPct.

v The total number of distinct updates pages is greater than
CRUpdatedPagesAbs.

v The number of active pages in the index space or partition is greater than
CRIndexSize.

CRUpdatedPagesAbs is an input parameter of type INTEGER. The default value
is 0.

CRChangesPct
Is the ratio of the total number of insert, update, and delete operations to the
total number of rows. Specifies a criterion for recommending a full image copy

1056 Utility Guide and Reference

|
|

|

|
|

on a table space or index space. If the following condition is true for a table
space, DSNACCOX recommends an image copy:

The total number of insert, update, and delete operations since the last
image copy, divided by the total number of rows or LOBs in a table space
or partition (expressed as a percentage) is greater than CRChangesPct.

If both of the following conditions are true for an index table space,
DSNACCOX recommends an image copy:
v The total number of insert and delete operations since the last image copy,

divided by the total number of entries in the index space or partition
(expressed as a percentage) is greater than CRChangesPct.

v The number of active pages in the index space or partition is greater than
CRIndexSize.

CRChangesPct is an input parameter of type DOUBLE. The default is 10.0. A
negative value turns off this criterion.

CRDaySncLastCopy
Is the number of days since the last image copy. Specifies a criterion for
recommending a full image copy on a table space or index space. If the
number of days since the last image copy is greater than this value,
DSNACCOX recommends an image copy.

CRDaySncLastCopy is an input parameter of type INTEGER. The default is 7. A
negative value turns off this criterion.

ICRUpdatedPagesPct
Is the ratio of the total number of distinct updated pages to the total number
of preformatted pages. Specifies a criterion for recommending an incremental
image copy on a table space. If both of the following conditions are true,
DSNACCOX recommends an incremental image copy:
v The number of distinct pages that were updated since the last image copy,

divided by the total number of active pages in the table space or partition
(expressed as a percentage) is greater than ICRUpdatedPagesPct..

v The number of distinct pages that were updated since last image copy is
greater than ICRUpdatedPagesAbs.

ICRUpdatedPagesPct is an input parameter of type DOUBLE. The default value
is 1.0. A negative value turns off this criterion and ICRUpdatedPagesAbs.

ICRUpdatedPagesAbs
Is the total number of distinct updated pages. Specifies, when combined with
ICRUpdatedPagesPct, a criterion for recommending an incremental image copy
on a table space. If both of the following conditions are true, DSNACCOX
recommends an incremental image copy:
v The number of distinct pages that were updated since the last image copy,

divided by the total number of active pages in the table space or partition
(expressed as a percentage) is greater than ICRUpdatedPagesPct.

v The number of distinct pages that were updated since last image copy is
greater than ICRUpdatedPagesAbs.

ICRUpdatedPagesAbs is an input parameter of type INTEGER. The default is 0.

ICRChangesPct
Is the ratio of the total number of insert, update, or delete operations to the
total number of rows. Specifies a criterion for recommending an incremental
image copy on a table space. If the following condition is true, DSNACCOX
recommends an incremental image copy:

Appendix B. DB2-supplied stored procedures for utility operations 1057

|

|
|

|

|
|

The ratio of the number of insert, update, or delete operations since the last
image copy, to the total number of rows or LOBs in a table space or
partition (expressed as a percentage) is greater than ICRChangesPct.

ICRChangesPct is an input parameter of type DOUBLE. The default is 1.0. A
negative value turns off this criterion.

CRIndexSize
Is the minimum index size. Specifies the minimum index size before checking
the CRUpdatedPagesPct or CRChangesPct criteria for recommending a full image
copy on an index space.

CRIndexSize is an input parameter of type INTEGER. The default is 50. A
negative value turns of this criterion and ICRChangesPct.

RRTInsertsPct
Is the ratio of total number of insert operations to the total number of rows.
Specifies, when combined with RRTInsertsAbs, a criterion for recommending
that the REORG utility is to be run on a table space. If both of the following
condition are true, DSNACCOX recommends running REORG:
v The sum of insert, update, and delete operations since the last REORG,

divided by the total number of rows or LOBs in the table space or partition
(expressed as a percentage) is greater than RRTInsertsPct

v The sum of insert operations since the last REORG is greater than
RRTInsertsAbs.

RRTInsertsPct is an input parameter of type DOUBLE. The default value is 25.0.
A negative value turns off this criterion and RRTInsertsAbs.

RRTInsertsAbs
Is the total number of insert operations. Specifies, when combined with
RRTInsertsPct, a criterion for recommending that the REORG utility is to be run
on a table space. If both of the following condition are true, DSNACCOX
recommends running REORG:
v The sum of insert operations since the last REORG, divided by the total

number of rows or in the table space or partition (expressed as a percentage)
is greater than RRTInsertsPct

v The sum of insert operations since the last REORG is greater than
RRTInsertsAbs.

RRTInsertsAbs is an input parameter of type INTEGER. The default value is 0.

RRTDeletesPct
Is the ratio of the total number of delete operations to the total number of
rows. Specifies, when combined with RRTDeletesAbs, a criterion for
recommending that the REORG utility is to be run on a table space. If both of
the following condition are true, DSNACCOX recommends running REORG:
v The sum of delete operations since the last REORG, divided by the total

number of rows or in the table space or partition (expressed as a percentage)
is greater than RRTDeletesPct

v The sum of delete operations since the last REORG is greater than
RRTDeletesAbs.

RRTInsertsPct is an input parameter of type DOUBLE. The default value is 25.0.
A negative value turns off this criterion and RRTDeletesAbs.

RRTDeletesAbs
Is the total number of delete operations. Specifies, when combined with

1058 Utility Guide and Reference

|

|

|

|
|

|

RRTDeletesPct, a criterion for recommending that the REORG utility is to be
run on a table space. If both of the following condition are true, DSNACCOX
recommends running REORG:
v The sum of delete operations since the last REORG, divided by the total

number of rows or in the table space or partition (expressed as a percentage)
is greater than RRTDeletesPct

v The sum of delete operations since the last REORG is greater than
RRTDeletesAbs.

RRTDeletesAbs is an input parameter of type INTEGER. The default value is 0.

RRTUnclustInsPct
Is the ratio of the total number of unclustered insert operations to the total
number of rows. Specifies a criterion for recommending that the REORG utility
is to be run on a table space. If the following condition is true, DSNACCOX
recommends running REORG:

The number of unclustered insert operations, divided by the total number
of rows or LOBs in the table space or partition (expressed as a percentage)
is greater than RRTUnclustInsPct.

RRTUnclustInsPct is an input parameter of type DOUBLE. The default is 10.0.
A negative value will turn off this criterion.

RRTDisorgLOBPct
Is the ratio of the number of imperfectly chunked LOBs to the total number of
rows. Specifies a criterion for recommending that the REORG utility is to be
run on a table space. If the following condition is true, DSNACCOX
recommends running REORG:

The number of imperfectly chunked LOBs, divided by the total number of
rows or LOBs in the table space or partition (expressed as a percentage) is
greater than RRTDisorgLOBPct.

RRTDisorgLOBPct is an input parameter of type DOUBLE. The default is 50.0.
A negative value will turn off this criterion.

RRTDataSpaceRat
Is the ratio of the space allocated to the actual space used. Specifies a criterion
for recommending that the REORG utility is to be run on table space for space
reclamation. If the following condition is true, DSNACCOX recommends
running REORG:

The object is not using hash organization.
The SPACE allocated is greater than RRTDataSpaceRat multiplied by the
actual space used. (SPACE > RRTDataSpaceRat × (DATASIZE/1024))

RRTDataSpaceRat is an input parameter of type DOUBLE. The default value is
-1. A negative value turns off this criterion.

RRTMassDelLimit
Is the sum of the number of mass deletes. Specifies a criterion for
recommending that the REORG utility is to be run on a table space. If one of
the following values is greater than RRTMassDelLimit, DSNACCOX
recommends running REORG:
v The sum of mass deletes from a segmented or LOB table space since the last

REORG or LOAD REPLACE
v The number of dropped tables from a nonsegmented table space since the

last REORG or LOAD REPLACE

RRTMassDelLimit is an input parameter of type INTEGER. The default is 0.

Appendix B. DB2-supplied stored procedures for utility operations 1059

|
|

|
|

|

|
|

|

RRTIndRefLimit
Is the ratio of the total number of overflow records that were created to the
total number of rows. Specifies a criterion for recommending that the REORG
utility is to be run on a table space. If the following value is greater than
RRTIndRefLimit, DSNACCOX recommends running REORG:

The total number of overflow records that were created since the last
REORG or LOAD REPLACE, divided by the total number of rows or LOBs
in the table space or partition (expressed as a percentage)

RRTIndRefLimit is an input parameter of type DOUBLE. The default is 5.0 in
data sharing environment and 10.0 in a non-data sharing environment.

RRIInsertsPct
Is the ratio of the total number of index entries that were inserted to the total
number of index entries. Specifies a criterion for recommending that the
REORG utility is to be run on an index space. If the both of the following
conditions are true, DSNACCOX recommends running REORG:
v The sum of the number of index entries that were inserted since the last

REORG, divided by the total number of index entries in the index space or
partition (expressed as a percentage) is greater than RRIInsertsPct.

v The sum of the number of index entries that were inserted since the last
REORG is greater than RRIInsertsAbs.

RRIInsertsPct is an input parameter of type DOUBLE. The default is 30.0. A
negative value turns off this criterion.

RRIInsertsAbs
Is the sum of the number of index entries that were inserted. Specifies a
criterion for recommending that the REORG utility is to be run on an index
space. If both of the following conditions are true, DSNACCOX recommends
running REORG:
v The sum of the number of index entries that were inserted since the last

REORG, divided by the total number of index entries in the index space or
partition (expressed as a percentage) is greater than RRIInsertsPct.

v The sum of the number of index entries that were inserted since the last
REORG is greater than RRIInsertsAbs.

RRIInsertsAbs is an input parameter of type INTEGER. The default is 0. A
negative value turns off this criterion.

RRIDeletesPct
Is the ratio of the sum of the number of index entries that were deleted to the
total number of index entries. Specifies a criterion for recommending that the
REORG utility is to be run on an index space. If the following value is greater
than RRIDeletesPct, DSNACCOX recommends running REORG:
v The sum of the number of index entries that were deleted since the last

REORG, divided by the total number of index entries in the index space or
partition (expressed as a percentage) is greater than RRIDeletesPct.

v The sum of the number of index entries that were deleted since the last
REORG is greater than RRIDeletesAbs.

RRIDeletesPct is an input parameter of type DOUBLE. The default is 30.0. A
negative value turns off this criterion.

RRIDeletesAbs
Is the sum of the number of index entries that were deleted. Specifies a

1060 Utility Guide and Reference

|
|

|
|

|

|
|

|

criterion for recommending that the REORG utility is to be run on an index
space. If the following value is greater than RRIDeletesPct, DSNACCOX
recommends running REORG:
v The sum of the number of index entries that were deleted since the last

REORG, divided by the total number of index entries in the index space or
partition (expressed as a percentage) is greater than RRIDeletesPct.

v The sum of the number of index entries that were deleted since the last
REORG is greater than RRIDeletesAbs.

RRIDeletesAbs is an input parameter of type INTEGER. The default is 0. A
negative value turns off this criterion.

RRIAppendInsertPct
Is the ratio of the number of index entries that were inserted with a key value
greater than the maximum key value in the index space or partition to the
number of index entries. Specifies a criterion for recommending that the
REORG utility is to be run on an index space. If the following value is greater
than RRIAppendInsertPct, DSNACCOX recommends running REORG:

The number of index entries that were inserted since the last REORG,
REBUILD INDEX, or LOAD REPLACE with a key value greater than the
maximum key value in the index space or partition, divided by the number
of index entries in the index space or partition (expressed as a percentage)

RRIInsertDeletePct is an input parameter of type DOUBLE. The default is 20.0.
A negative value turns off this criterion.

RRIPseudoDeletePct
Is the ratio of the number of index entries that were pseudo-deleted to the
number of index entries. Specifies a criterion for recommending that the
REORG utility is to be run on an index space. If the following value is greater
than RRIPseudoDeletePct, DSNACCOX recommends running REORG:

The number of index entries that were pseudo-deleted since the last
REORG, REBUILD INDEX, or LOAD REPLACE, divided by the number of
index entries in the index space or partition (expressed as a percentage)

RRIPseudoDeletePct is an input parameter of type DOUBLE. The default is 5.0
in data sharing and 10.0 in non-data sharing environments. A negative value
turns off this criterion.

RRIMassDelLimit
Is the sum of the number of mass deletes of index entries. Specifies a criterion
for recommending that the REORG utility is to be run on an index space. If the
number of mass deletes from an index space or partition since the last REORG,
REBUILD, or LOAD REPLACE is greater than this value, DSNACCOX
recommends running REORG.

RRIMassDelLimit is an input parameter of type INTEGER. The default is 0. A
negative value turns off this criterion.

RRILeafLimit
Is the ratio of the number of index page splits in which the higher part of the
split page was far from the location of the original page to the total number of
active pages. Specifies a criterion for recommending that the REORG utility is
to be run on an index space. If the following value is greater than RRILeafLimit,
DSNACCOX recommends running REORG:

The number of index page splits that occurred since the last REORG,
REBUILD INDEX, or LOAD REPLACE in which the higher part of the split

Appendix B. DB2-supplied stored procedures for utility operations 1061

|
|
|

|
|

|

|
|
|

page was far from the location of the original page, divided by the total
number of active pages in the index space or partition (expressed as a
percentage)

RRILeafLimit is an input parameter of type DOUBLE. The default is 10.0. A
negative value turns off this criterion.

RRINumLevelsLimit
Is the number of levels in the index tree that were added or removed. Specifies
a criterion for recommending that the REORG utility is to be run on an index
space. If the following value is greater than RRINumLevelsLimit, DSNACCOX
recommends running REORG:

The number of levels in the index tree that were added or removed since
the last REORG, REBUILD INDEX, or LOAD REPLACE

RRINumLevelsLimit is an input parameter of type INTEGER. The default is 0. A
negative value turns off this criterion.

SRTInsDelUpdPct
Is the ratio of the total number of insert, update, or delete operations to the
total number of rows. Specifies, when combined with SRTInsDelUpdAbs, a
criterion for recommending that the RUNSTATS utility is to be run on a table
space. If both of the following conditions are true, DSNACCOX recommends
running RUNSTATS:
v The number of insert, update, or delete operations since the last RUNSTATS

on a table space or partition, divided by the total number of rows or LOBs
in table space or partition (expressed as a percentage) is greater than
SRTInsDelUpdPct.

v The sum of the number of inserted and deleted index entries since the last
RUNSTATS on an index space or partition is greater than SRTInsDelUpdAbs.

SRTInsDelUpdPct is an input parameter of type DOUBLE. The default is 20.0. A
negative value turns off this criterion.

SRTInsDelUpdAbs
Is the number of insert, update, and delete operations. Specifies, when
combined with SRTInsDelUpdPct, a criterion for recommending that the
RUNSTATS utility is to be run on a table space. If both of the following
conditions are true, DSNACCOX recommends running RUNSTATS:
v The number of insert, update, and delete operations since the last

RUNSTATS on a table space or partition, divided by the total number of
rows or LOBs in table space or partition (expressed as a percentage) is
greater than SRTInsDelUpdPct.

v The sum of the number of inserted and deleted index entries since the last
RUNSTATS on an index space or partition is greater than SRTInsDelUpdAbs.

SRTInsDelUpdAbs is an input parameter of type INTEGER. The default is 0.

SRTMassDelLimit
Is the sum of the number of mass deletes. Specifies a criterion for
recommending that the RUNSTATS utility is to be run on a table space. If the
following condition is true, DSNACCOX recommends running RUNSTATS:
v The number of mass deletes from a table space or partition since the last

REORG or LOAD REPLACE is greater than SRTMassDelLimit.

SRTMassDelLimit is an input parameter of type INTEGER. The default is 0.0. A
negative value turns off this criterion.

1062 Utility Guide and Reference

|

|
|

|

|

SRIInsDelPct
Is the ratio of the total number of inserted and deleted index entries to the
total number of index entries. Specifies, when combined with SRIInsDelAbs, a
criterion for recommending that the RUNSTATS utility is to be run on an index
space. If both of the following conditions are true, DSNACCOX recommends
running RUNSTATS:
v The number of inserted and deleted index entries since the last RUNSTATS

on an index space or partition, divided by the total number of index entries
in the index space or partition (expressed as a percentage) is greater than
SRIInsDelPct

v The sum of the number of inserted and deleted index entries since the last
RUNSTATS on an index space or partition is greater than SRIInsDelAbs

SRIInsDelPct is an input parameter of type DOUBLE. The default is 20.0. A
negative value turns off this criterion.

SRIInsDelAbs
Is the total number of inserted and deleted index entries. Specifies, when
combined with SRIInsDelPct, a criterion for recommending that the RUNSTATS
utility is to be run on an index space. If the following condition is true,
DSNACCOX recommends running RUNSTATS:
v The number of inserted and deleted index entries since the last RUNSTATS

on an index space or partition, divided by the total number of index entries
in the index space or partition (expressed as a percentage) is greater than
SRIInsDelPct

v The sum of the number of inserted and deleted index entries since the last
RUNSTATS on an index space or partition is greater than SRIInsDelAbs,

SRIInsDelAbs is an input parameter of type INTEGER. The default is 0.

SRIMassDelLimit
Is the sum of the number of mass deletes. Specifies a criterion for
recommending that the RUNSTATS utility is to be run on an index space. If the
number of mass deletes from an index space or partition since the last REORG,
REBUILD INDEX, or LOAD REPLACE is greater than this value, DSNACCOX
recommends running RUNSTATS.

SRIMassDelLimit is an input parameter of type INTEGER. The default value is
0. A negative value turns off this criterion.

ExtentLimit
Is the number of physical extents. Specifies a criterion for recommending that
the REORG utility is to be run on a table space or index space. Also specifies
that DSNACCOX is to warn the user that the table space or index space has
used too many extents. DSNACCOX recommends running REORG, and
altering data set allocations if the following condition is true:
v The number of physical extents in the index space, table space, or partition

is greater than ExtentLimit.

ExtentLimit is an input parameter of type INTEGER. The default value is 254.
A negative value turns off this criterion.

LastStatement
When DSNACCOX returns a severe error (return code 12), this field contains
the SQL statement that was executing when the error occurred. LastStatement is
an output parameter of type VARCHAR(8012).

ReturnCode
The return code from DSNACCOX execution. Possible values are:

Appendix B. DB2-supplied stored procedures for utility operations 1063

|
|

|

|

|

0 DSNACCOX executed successfully.

4 DSNACCOX completed with a warning. The ErrorMsg parameter
contains the input parameters that might be incompatible.

8 DSNACCOX terminated with errors. The ErrorMsg parameter contains
a message that describes the error.

12 DSNACCOX terminated with severe errors. The ErrorMsg parameter
contains a message that describes the error. The LastStatement
parameter contains the SQL statement that was executing when the
error occurred.

14 DSNACCOX terminated because the real-time statistics table were not
yet migrated to the catalog.

15 DSNACCOX terminated because it encountered a problem with one of
the declared temporary tables that it defines and uses.

16 DSNACCOX terminated because it could not define a declared
temporary table.

NULL DSNACCOX terminated but could not set a return code.

ReturnCode is an output parameter of type INTEGER.

ErrorMsg
Contains information about DSNACCOX execution when DSNACCOX
terminates with a non-zero value for ReturnCode.

IFCARetCode
Contains the return code from an IFI COMMAND call. DSNACCOX issues
commands through the IFI interface to determine the status of objects.
IFCARetCode is an output parameter of type INTEGER.

IFCAResCode
Contains the reason code from an IFI COMMAND call. IFCAResCode is an
output parameter of type INTEGER.

XsBytes
Contains the number of bytes of information that did not fit in the IFI return
area after an IFI COMMAND call. XsBytes is an output parameter of type
INTEGER.

DSNACCOX formulas for recommending actions

The following formulas specify the criteria that DSNACCOX uses for its
recommendations and warnings. The variables in italics are DSNACCOX input
parameters. The capitalized variables are columns of the
SYSIBM.SYSTABLESPACESTATS or SYSIBM.SYSINDEXSPACESTATS catalog
tables.

The following figure shows the formula that DSNACCOX uses to recommend a
full image copy on a table space.

1064 Utility Guide and Reference

The following figure shows the formula that DSNACCOX uses to recommend a
full image copy on an index space.

The following figure shows the formula that DSNACCOX uses to recommend an
incremental image copy on a table space.

The following figure shows the formula that DSNACCOX uses to recommend a
REORG on a table space. If the table space is a LOB table space, and CHKLVL=1,
the formula does not include EXTENTS>ExtentLimit.

(((QueryType=’COPY’ OR QueryType=’ALL’) AND
(ObjectType=’TS’ OR ObjectType=’ALL’) AND
(ICType=’F’ OR ICType=’B’)) AND
(COPYLASTTIME IS NULL OR
REORGLASTTIME>COPYLASTTIME OR
LOADRLASTTIME>COPYLASTTIME OR
(CURRENT DATE-COPYLASTTIME)>CRDaySncLastCopy OR
((COPYUPDATEDPAGES×100)/NACTIVE>CRUpdatedPagesPct AND
(COPYUPDATEDPAGES>CRupdatedPagesAbs)) OR
(COPYCHANGES×100)/TOTALROWS>ICRChangesPct) ((QueryType=’RESTRICT’ OR QueryType=’ALL’ OR
QueryType=’COPY’) AND

(ObjectType=’TS’ OR ObjectType=’ALL’) AND
The table space is in COPY-pending status or informational COPY-pending status))

Figure 152. DSNACCOX formula for recommending a full image copy on a table space

(((QueryType=’COPY’ OR QueryType=’ALL’) AND
(ObjectType=’IX’ OR ObjectType=’ALL’) AND
(ICType=’F’ OR ICType=’B’)) AND
(SYSINDEXES.COPY = ’Y’)) AND
(COPYLASTTIME IS NULL OR
REORGLASTTIME>COPYLASTTIME OR
LOADRLASTTIME>COPYLASTTIME OR
REBUILDLASTTIME>COPYLASTTIME OR
(CURRENT DATE-COPYLASTTIME)>CRDaySncLastCopy OR
(NACTIVE>CRIndexSize AND
(((COPYUPDATEDPAGES×100)/NACTIVE>CRUpdatedPagesPct) AND
(COPYUPDATEDPAGES>CRUpdatedPagesAbs)) OR

(COPYCHANGES×100)/TOTALENTRIES>CRChangesPct)) OR
((QueryType=’RESTRICT’ OR QueryType=’ALL’ OR QueryType=’COPY’) AND

(ObjectType=’IX’ OR ObjectType=’ALL’) AND
The index space is in COPY-pending status or informational COPY-pending status))

Figure 153. DSNACCOX formula for recommending a full image copy on an index space

((QueryType=’COPY’ OR QueryType=’ALL’) AND
(ObjectType=’TS’ OR ObjectType=’ALL’) AND
(ICType=’I’) AND
COPYLASTTIME IS NOT NULL) AND
(LOADRLASTTIME>COPYLASTTIME OR
REORGLASTTIME>COPYLASTTIME OR
((COPYUPDATEDPAGES×100)/NACTIVE>ICRUpdatedPagesPct) AND
(COPYUPDATEDPAGES>ICRUpdatedPagesAbs)) OR
(COPYCHANGES×100)/TOTALROWS>ICRChangesPct)

Figure 154. DSNACCOX formula for recommending an incremental image copy on a table space

Appendix B. DB2-supplied stored procedures for utility operations 1065

|
|

|

The following figure shows the formula that DSNACCOX uses to recommend a
REORG on an index space.

The following figure shows the formula that DSNACCOX uses to recommend
RUNSTATS on a table space.

(((QueryType=’REORG’ OR QueryType=’ALL’) AND
(ObjectType=’TS’ OR ObjectType=’ALL’)) AND

(REORGLASTTIME IS NULL AND LOADRLASTTIME IS NULL) OR
(NACTIVE IS NULL OR NACTIVE > 5) AND
((((REORGINSERTS×100)/TOTALROWS>RRTInsertsPct) AND

REORGINSERTS>RRTInsertsAbs) OR
(((REORGDELETE×100)/TOTALROWS>RRTDeletesPct) AND
REORGDELETE>RRTDeletesAbs) OR
(REORGCLUSTERSENS > 0 AND (REORGUNCLUSTINS×100)/TOTALROWS>RRTUnclustInsPct) OR
(REORGDISORGLOB×100)/TOTALROWS>RRTDisorgLOBPct OR
(SPACE×1024)/DATASIZE>RRTDataSpaceRat OR
((REORGNEARINDREF+REORGFARINDREF)×100)/TOTALROWS>RRTIndRefLimit OR
REORGMASSDELETE>RRTMassDelLimit OR
EXTENTS>ExtentLimit)) OR

((QueryType=’REORG’ OR QueryType=’ALL’) AND
ObjectType=’ALL’1 AND
overflow index for hash access is used2, and
(overflow index TOTALENTRY x 100) / TOTALROWS > RRTHashOvrFlwRatio)) OR

((QueryType=’RESTRICT’ OR QueryType=’ALL’ OR QueryType=’REORG’) AND
(ObjectType=’TS’ OR ObjectType=’ALL’) AND
The table space is in advisory or informational reorg pending status)

Notes:

1. Both IX and TS must be selected, thus ObjectType=ALL must be specified to use this criteria. If only TS or IX is
specified, and the value of the special parameter contains a plus sign (+) to indicate that the
RRTHASHOVRFLWRATIO column is to be included in the result set, an error message is issued. Otherwise, this
criteria is does not apply when only TS or IX is specified.

2. The overflow index is used when SYSINDEXES.HASH = 'Y' AND
SYSINDEXSPACESTATS.REORGINDEXACCESS > 0.

Figure 155. DSNACCOX formula for recommending a REORG on a table space

(((QueryType=’REORG’ OR QueryType=’ALL’) AND
(ObjectType=’IX’ OR ObjectType=’ALL’) AND
(REORGLASTTIME IS NULL AND REBUILDLASTTIME IS NULL) OR
(NACTIVE IS NULL OR NACTIVE > 5) AND
((((REORGINSERTS×100)/TOTALENTRIES>RRIInsertsPct) AND
REORGINSERTS>RRIInsertsAbs) OR
(((REORGDELETE×100)/TOTALENTRIES>RRIDeletesPct) AND
REORGDELETE>RRIDeletesAbs) OR
(REORGAPPENDINSERT×100)/TOTALENTRIES>RRIAppendInsertPct OR
(REORGPSEUDODELETES×100)/TOTALENTRIES>RRIPseudoDeletePct OR
REORGMASSDELETE>RRIMassDeleteLimit OR
(REORGLEAFFAR×100)/NACTIVE>RRILeafLimit OR
REORGNUMLEVELS>RRINumLevelsLimit OR

(NPAGES>5 AND
(NPAGES*100)/NLEAF>RRIEmptyLimit) OR

EXTENTS>ExtentLimit)) OR
((QueryType=’RESTRICT’ OR QueryType=’ALL’ OR QueryType=’REORG’) AND
(ObjectType=’IX’ OR ObjectType=’ALL’) AND
An index is in advisory-REBUILD-pending stats (ARBDP)))

Figure 156. DSNACCOX formula for recommending a REORG on an index space

1066 Utility Guide and Reference

|

|

Notes:

1. PROFILE_UPDATE is a table-level timestamp column in the
SYSIBM.SYSTABLES_PROFILES catalog table. It is updated by RUNSTATS SET
or UPDATE. The PROFILE_UPDATE value is not returned as a column in the
DSNACCOX result set.

The following figure shows the formula that DSNACCOX uses to recommend
RUNSTATS on an index space.

Using an exception table

An exception table is an optional, user-created DB2 table that you can use to place
information in the INEXCEPTTABLE column of the recommendations result set.
You can put any information in the INEXCEPTTABLE column, but the most
common use of this column is to filter the recommendations result set. Each row in
the exception table represents an object for which you want to provide information
for the recommendations result set.

To create the exception table, execute a CREATE TABLE statement similar to the
following one. You can include other columns in the exception table, but you must
include at least the columns that are shown.
CREATE TABLE DSNACC.EXCEPT_TBL
(DBNAME CHAR(8) NOT NULL,
NAME CHAR(8) NOT NULL,
QUERYTYPE CHAR(40))
CCSID EBCDIC;

The meanings of the columns are:

DBNAME
The database name for an object in the exception table.

((QueryType=’RUNSTATS’ OR QueryType=’ALL’) AND
(ObjectType=’TS’ OR ObjectType=’ALL’) AND
Table Space is not cloned) AND
(STATSLASTTIME IS NULL OR
STATSLASTTIME<LOADRLASTTIME OR
STATSLASTTIME<REORGLASTTIME OR
STATSLASTTIME< latest PROFILE_UPDATE for the table space1 OR
(((STATSINSERTS+STATSDELETES+STATSUPDATES)×100)/TOTALROWS>SRTInsDelUpdPct AND

(STATSINSERTS+STATSDELETES+STATSUPDATES)>SRTInsDelUpdAbs) OR
STATSMASSDELETE>SRTMassDeleteLimit)))

Figure 157. DSNACCOX formula for recommending RUNSTATS on a table space

((QueryType=’RUNSTATS’ OR QueryType=’ALL’) AND
(ObjectType=’IX’ OR ObjectType=’ALL’)
Table Space for the index is not cloned) AND
(STATSLASTTIME IS NULL OR
STATSLASTTIME<LOADRLASTTIME OR
STATSLASTTIME<REORGLASTTIME OR
(((STATSINSERTS+STATSDELETES)×100)/TOTALENTRIES>SRIInsDelPct AND

(STATSINSERTS+STATSDELETES)>SRIInsDelAbs) OR
STATSMASSDELETE>SRIInsDelAbs)))

Figure 158. DSNACCOX formula for recommending RUNSTATS on an index space

Appendix B. DB2-supplied stored procedures for utility operations 1067

|
|
|
|

NAME
The table space name or index space name for an object in the exception table.

QUERYTYPE
The information that you want to place in the INEXCEPTTABLE column of the
recommendations result set.

If you put a null value in this column, DSNACCOX puts the value YES in the
INEXCEPTTABLE column of the recommendations result set row for the object
that matches the DBNAME and NAME values.

Recommendation: If you plan to put many rows in the exception table, create a
nonunique index on DBNAME, NAME, and QUERYTYPE.

After you create the exception table, insert a row for each object for which you
want to include information in the INEXCEPTTABLE column.

Example: Suppose that you want the INEXCEPTTABLE column to contain the
string 'IRRELEVANT' for table space STAFF in database DSNDB04. You also want
the INEXCEPTTABLE column to contain 'CURRENT' for table space DSN8S11D in
database DSN8D11A. Execute these INSERT statements:
INSERT INTO DSNACC.EXCEPT_TBL VALUES(’DSNDB04 ’, ’STAFF ’, ’IRRELEVANT’);
INSERT INTO DSNACC.EXCEPT_TBL VALUES(’DSN8D11A’, ’DSN8S11D’, ’CURRENT’);

To use the contents of INEXCEPTTABLE for filtering, include a condition that
involves the INEXCEPTTABLE column in the search condition that you specify in
your Criteria input parameter.

Example: Suppose that you want to include all rows for database DSNDB04 in the
recommendations result set, except for those rows that contain the string
'IRRELEVANT' in the INEXCEPTTABLE column. You might include the following
search condition in your Criteria input parameter:
DBNAME=’DSNDB04’ AND INEXCEPTTABLE<>’IRRELEVANT’

Example

The following figure is a COBOL example that shows variable declarations and an
SQL CALL for obtaining recommendations for objects in databases DSN8D11A and
DSN8D11L. This example also outlines the steps that you need to perform to
retrieve the two result sets that DSNACCOX returns. These result sets are
described in “DSNACCOX output” on page 1072
WORKING-STORAGE SECTION.

* DSNACCOX PARAMETERS *

01 QUERYTYPE.

49 QUERYTYPE-LN PICTURE S9(4) COMP VALUE 40.
49 QUERYTYPE-DTA PICTURE X(40) VALUE ’ALL’.

01 OBJECTTYPE.
49 OBJECTTYPE-LN PICTURE S9(4) COMP VALUE 3.
49 OBJECTTYPE-DTA PICTURE X(3) VALUE ’ALL’.

01 ICTYPE.
49 ICTYPE-LN PICTURE S9(4) COMP VALUE 1.
49 ICTYPE-DTA PICTURE X(1) VALUE ’B’.

01 CATLGSCHEMA.
49 CATLGSCHEMA-LN PICTURE S9(4) COMP VALUE 128.

49 CATLGSCHEMA-DTA PICTURE X(128) VALUE ’SYSIBM’.
01 LOCALSCHEMA.

49 LOCALSCHEMA-LN PICTURE S9(4) COMP VALUE 128.
49 LOCALSCHEMA-DTA PICTURE X(128) VALUE ’DSNACC’.

1068 Utility Guide and Reference

01 CHKLVL PICTURE S9(9) COMP VALUE +3.
01 CRITERIA.

49 CRITERIA-LN PICTURE S9(4) COMP VALUE 4096.
49 CRITERIA-DTA PICTURE X(4096) VALUE SPACES.

01 SPECIALPARM.
49 SPECIALPARM-LN PICTURE S9(4) COMP VALUE 80.
49 SPECIALPARM-DTA PICTURE X(80) VALUE SPACES.

01 CRUPDATEDPAGESPCT USAGE COMP-2 VALUE +0.
01 CRUPDATEDPAGESABS PICTURE S9(9) COMP VALUE +0.
01 CRCHANGESPCT USAGE COMP-2 VALUE +0.
01 CRDAYSNCLASTCOPY PICTURE S9(9) COMP VALUE +0.
01 ICRUPDATEDPAGESPCT USAGE COMP-2 VALUE +0.
01 ICRUPDATEDPAGESABS PICTURE S9(9) COMP VALUE +0.
01 ICRCHANGESPCT PICTURE S9(9) COMP VALUE +0.
01 CRINDEXSIZE PICTURE S9(9) COMP VALUE +0.
01 RRTINSERTSPCT USAGE COMP-2 VALUE +0.
01 RRTINSERTSABS PICTURE S9(9) COMP VALUE +0.
01 RRTDELETESPCT USAGE COMP-2 VALUE +0.
01 RRTDELETESABS PICTURE S9(9) COMP VALUE +0.
01 RRTUNCLUSTINSPCT USAGE COMP-2 VALUE +0.
01 RRTDISORGLOBPCT USAGE COMP-2 VALUE +0.
01 RRTDATASPACERAT PICTURE S9(9) COMP VALUE +0.
01 RRTMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRTINDREFLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRIINSERTSPCT USAGE COMP-2 VALUE +0.
01 RRIINSERTSABS PICTURE S9(9) COMP VALUE +0.
01 RRIDELETESPCT USAGE COMP-2 VALUE +0.
01 RRIDELETESABS PICTURE S9(9) COMP VALUE +0.
01 RRIAPPENDINSERTPCT USAGE COMP-2 VALUE +0.
01 RRIPSEUDODELETEPCT USAGE COMP-2 VALUE +0.
01 RRIMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRILEAFLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRINUMLEVELSLIMIT PICTURE S9(9) COMP VALUE +0.
01 SRTINSDELUPDPCT PICTURE S9(9) COMP VALUE +0.
01 SRTINSDELUPDABS PICTURE S9(9) COMP VALUE +0.
01 SRTMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 SRIINSDELPCT USAGE COMP-2 VALUE +0.
01 SRIINSDELABS PICTURE S9(9) COMP VALUE +0.
01 SRIMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 EXTENTLIMIT PICTURE S9(9) COMP VALUE +0.
01 LASTSTATEMENT.

49 LASTSTATEMENT-LN PICTURE S9(4) COMP VALUE 8012.
49 LASTSTATEMENT-DTA PICTURE X(8012) VALUE SPACES.

01 RETURNCODE PICTURE S9(9) COMP VALUE +0.
01 ERRORMSG.

49 ERRORMSG-LN PICTURE S9(4) COMP VALUE 1331.
49 ERRORMSG-DTA PICTURE X(1331) VALUE SPACES.

01 IFCARETCODE PICTURE S9(9) COMP VALUE +0.
01 IFCARESCODE PICTURE S9(9) COMP VALUE +0.
01 XSBYTES PICTURE S9(9) COMP VALUE +0.

* INDICATOR VARIABLES. *
* INITIALIZE ALL NON-ESSENTIAL INPUT *
* VARIABLES TO -1, TO INDICATE THAT THE *
* INPUT VALUE IS NULL. *

01 QUERYTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 OBJECTTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 ICTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 CATLGSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 LOCALSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CHKLVL-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRITERIA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SPECIALPARM-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRUPDATEDPAGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRUPDATEDPAGESABS-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRCHANGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.

Appendix B. DB2-supplied stored procedures for utility operations 1069

01 CRDAYSNCLASTCOPY-IND PICTURE S9(4) COMP-4 VALUE -1.
01 ICRUPDATEDPAGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 ICRUPDATEDPAGESABS-IND PICTURE S9(4) COMP-4 VALUE -1.
01 ICRCHANGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRINDEXSIZE-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTINSERTSPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTINSERTSABS-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTDELETESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTDELETESABS-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTUNCLUSTINSPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTDISORGLOBPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTDATASPACERAT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTINDREFLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIINSERTSPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIINSERTSABS-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIDELETESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIDELETESABS-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIAPPENDINSERTPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIPSEUDODELETEPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRILEAFLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRINUMLEVELSLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRTINSDELUPDPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRTINSDELUPDABS-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRTMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRIINSDELPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRIINSDELABS-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRIMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 EXTENTLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 LASTSTATEMENT-IND PICTURE S9(4) COMP-4 VALUE +0.
01 RETURNCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 ERRORMSG-IND PICTURE S9(4) COMP-4 VALUE +0.
01 IFCARETCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 IFCARESCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 XSBYTES-IND PICTURE S9(4) COMP-4 VALUE +0

PROCEDURE DIVISION.

* SET VALUES FOR DSNACCOX INPUT PARAMETERS: *
* - USE THE CHKLVL PARAMETER TO CAUSE DSNACCOX TO CHECK *
* FOR RELATED TABLE SPACES WHEN PROCESSING INDEX *
* SPACES, AND DELETE RECOMMENDATION FOR INDEXSPACES *
* WHEN AN ACTION (SUCH AS REORG) ON THE TABLE SPACE *
* WILL ALSO CAUSE THE ACTION TO BE DONE ON THE INDEX *
* SPACE. (CHKLVL=64) *
* - USE THE CRITERIA PARAMETER TO CAUSE DSNACCOX TO *
* MAKE RECOMMENDATIONS ONLY FOR OBJECTS IN DATABASES *
* DSN8D91A AND DSN8D91L. *
* - FOR THE FOLLOWING PARAMETERS, SET THESE VALUES, *
* WHICH ARE LOWER THAN THE DEFAULTS: *
* CRUPDATEDPAGESPCT 4 *
* CRCHANGESPCT 2 *
* RRTINSDELUPDPCT 2 *
* RRTUNCLUSTINSPCT 5 *
* RRTDISORGLOBPCT 5 *
* RRIAPPENDINSERTPCT 5 *
* SRTINSDELUPDPCT 5 *
* SRIINSDELPCT 5 *
* EXTENTLIMIT 3 *
* - EXCLUDE CHECKING FOR THESE CRITERIA BY SET THE *
* FOLLOWING VALUES TO A NEGATIVE VALUE. *
* RRTMASSDELLIMIT -1 *
* RRIMASSDELLIMIT -1 *

MOVE 64 TO CHKLVL.
MOVE SPACES TO CRITERIA-DTA.
MOVE ’DBNAME = ’’DSN8D91A’’ OR DBNAME = ’’DSN8D91L’’’

1070 Utility Guide and Reference

TO CRITERIA-DTA.
MOVE 46 TO CRITERIA-LN.
MOVE 4 TO CRUPDATEDPAGESPCT.
MOVE 2 TO CRCHANGESPCT.
MOVE 2 TO RRTINSERTSPCT.
MOVE 5 TO RRTUNCLUSTINSPCT.
MOVE 5 TO RRTDISORGLOBPCT.
MOVE 5 TO RRIAPPENDINSERTPCT.
MOVE 5 TO SRTINSDELUPDPCT.
MOVE 5 TO SRIINSDELPCT
MOVE 3 TO EXTENTLIMIT.
MOVE -1 TO RRTMASSDELLIMIT.
MOVE -1 TO RRIMASSDELLIMIT.

* INITIALIZE OUTPUT PARAMETERS *

MOVE SPACES TO LASTSTATEMENT-DTA.
MOVE 1 TO LASTSTATEMENT-LN.
MOVE 0 TO RETURNCODE-O2.
MOVE SPACES TO ERRORMSG-DTA.
MOVE 1 TO ERRORMSG-LN.
MOVE 0 TO IFCARETCODE.
MOVE 0 TO IFCARESCODE.
MOVE 0 TO XSBYTES.

* SET THE INDICATOR VARIABLES TO 0 FOR NON-NULL INPUT *
* PARAMETERS (PARAMETERS FOR WHICH YOU DO NOT WANT *
* DSNACCOX TO USE DEFAULT VALUES) AND FOR OUTPUT *
* PARAMETERS. *

MOVE 0 TO CHKLVL-IND.
MOVE 0 TO CRITERIA-IND.
MOVE 0 TO CRUPDATEDPAGESPCT-IND.
MOVE 0 TO CRCHANGESPCT-IND.
MOVE 0 TO RRTINSERTSPCT-IND.
MOVE 0 TO RRTUNCLUSTINSPCT-IND.
MOVE 0 TO RRTDISORGLOBPCT-IND.
MOVE 0 TO RRIAPPENDINSERTPCT-IND.
MOVE 0 TO SRTINSDELUPDPCT-IND.
MOVE 0 TO SRIINSDELPCT-IND.
MOVE 0 TO EXTENTLIMIT-IND.
MOVE 0 TO LASTSTATEMENT-IND.
MOVE 0 TO RETURNCODE-IND.
MOVE 0 TO ERRORMSG-IND.
MOVE 0 TO IFCARETCODE-IND.
MOVE 0 TO IFCARESCODE-IND.
MOVE 0 TO XSBYTES-IND.
MOVE 0 TO RRTMASSDELLIMIT-IND.
MOVE 0 TO RRIMASSDELLIMIT-IND.

* CALL DSNACCOX *

EXEC SQL
CALL SYSPROC.DSNACCOX
(:QUERYTYPE :QUERYTYPE-IND,
:OBJECTTYPE :OBJECTTYPE-IND,
:ICTYPE :ICTYPE-IND,
:CATLGSCHEMA :CATLGSCHEMA-IND,
:LOCALSCHEMA :LOCALSCHEMA-IND,
:CHKLVL :CHKLVL-IND,
:CRITERIA :CRITERIA-IND,
:SPECIALPARM :SPECIALPARM-IND,
:CRUPDATEDPAGESPCT :CRUPDATEDPAGESPCT-IND,
:CRUPDATEDPAGESABS :CRUPDATEDPAGESABS-IND,
:CRCHANGESPCT :CRCHANGESPCT-IND,
:CRDAYSNCLASTCOPY :CRDAYSNCLASTCOPY-IND,
:ICRUPDATEDPAGESPCT :ICRUPDATEDPAGESPCT-IND,

Appendix B. DB2-supplied stored procedures for utility operations 1071

:ICRUPDATEDPAGESABS :ICRUPDATEDPAGESABS-IND,
:ICRCHANGESPCT :ICRCHANGESPCT-IND,
:CRINDEXSIZE :CRINDEXSIZE-IND,
:RRTINSERTSPCT :RRTINSERTSPCT-IND,
:RRTINSERTSABS :RRTINSERSTSABS-IND,
:RRTDELETESPCT :RRTDELETESPCT-IND,
:RRTDELETESABS :RRTDELETESABS-IND,
:RRTUNCLUSTINSPCT :RRTUNCLUSTINSPCT-IND,
:RRTDISORGLOBPCT :RRTDISORGLOBPCT-IND,
:RRTDATASPACERAT :RRTDATASPACERAT-IND,
:RRTMASSDELLIMIT :RRTMASSDELLIMIT-IND,
:RRTINDREFLIMIT :RRTINDREFLIMIT-IND,
:RRIINSERTSPCT :RRIINSERTSPCT-IND,
:RRIINSERTSABS :RRIINSERTSABS-IND,
:RRIDELETESPCT :RRIDELETESPCT-IND,
:RRIDELETESABS :RRIDELETESABS-IND,
:RRIAPPENDINSERTPCT :RRIAPPENDINSERTPCT-IND,
:RRIPSEUDODELETEPCT :RRIPSEUDODELETEPCT-IND,
:RRIMASSDELLIMIT :RRIMASSDELLIMIT-IND,
:RRILEAFLIMIT :RRILEAFLIMIT-IND,
:RRINUMLEVELSLIMIT :RRINUMLEVELSLIMIT-IND,
:SRTINSDELUPDPCT :SRTINSDELUPDPCT-IND,
:SRTINSDELUPDABS :SRTINSDELUPDABS-IND,
:SRTMASSDELLIMIT :SRTMASSDELLIMIT-IND,
:SRIINSDELPCT :SRIINSDELPCT-IND,
:SRIINSDELABS :SRIINSDELABS-IND,
:SRIMASSDELLIMIT :SRIMASSDELLIMIT-IND,
:EXTENTLIMIT :EXTENTLIMIT-IND,
:LASTSTATEMENT :LASTSTATEMENT-IND,
:RETURNCODE :RETURNCODE-IND,
:ERRORMSG :ERRORMSG-IND,
:IFCARETCODE :IFCARETCODE-IND,
:IFCARESCODE :IFCARESCODE-IND,
:XSBYTES :XSBYTES-IND)

END-EXEC.

* ASSUME THAT THE SQL CALL RETURNED +466, WHICH MEANS THAT *
* RESULT SETS WERE RETURNED. RETRIEVE RESULT SETS. *

* LINK EACH RESULT SET TO A LOCATOR VARIABLE

EXEC SQL ASSOCIATE LOCATORS (:LOC1, :LOC2)
WITH PROCEDURE SYSPROC.DSNACCOX

END-EXEC.
* LINK A CURSOR TO EACH RESULT SET

EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :LOC1
END-EXEC.
EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :LOC2
END-EXEC.

* PERFORM FETCHES USING C1 TO RETRIEVE ALL ROWS FROM FIRST RESULT SET
* PERFORM FETCHES USING C2 TO RETRIEVE ALL ROWS FROM SECOND RESULT SET

DSNACCOX output

If DSNACCOX executes successfully, in addition to the output parameters
described in “Option descriptions” on page 1052, DSNACCOX returns two result
sets.

The first result set contains the results from IFI COMMAND calls that DSNACCOX
makes. The following table shows the format of the first result set.

Table 143. Result set row for first DSNACCOX result set

Column name Data type Contents

RS_SEQUENCE INTEGER Sequence number of the output line

1072 Utility Guide and Reference

Table 143. Result set row for first DSNACCOX result set (continued)

Column name Data type Contents

RS_DATA CHAR(80) A line of command output

The result set contains rows for table spaces, index spaces, or partitions, if both of
the following conditions are true for the object:
v If the Criteria input parameter contains a search condition, and the search

condition is true for the table space, index space, or partition.
v DSNACCOR recommends at least one action for the table space, index space, or

partition.

The result set contains one row for each nonpartitioned table space or
nonpartitioning index space. For partitioned table spaces or partitioning indexes,
the result set contains one row for each partition.

The following table shows the columns of a result set row.

Table 144. Result set row for second DSNACCOX result set

Column name Data type Description

DBNAME VARCHAR(24) Name of the database that contains the object.

NAME VARCHAR(128) Table space name, index name, or index space
name. Index space name is used if the row is
added as a result of checking a restricted state and
the index name is not available at the time.

PARTITION INTEGER Data set number or partition number.

INSTANCE SMALLINT Indicates whether the object is associated with a
data set instance.

CLONE CHAR(1) 'Y' or 'N', 'Y' indicates a cloned object.

OBJECTTYPE CHAR(2) DB2 object type:

v 'TS' for a table space

v 'IX' for an index space

v 'LS' for an LOB table space

v 'XS' for an XML table space

INDEXSPACE VARCHAR(24) Index space name.

CREATOR VARCHAR(128) Index creator name.

Appendix B. DB2-supplied stored procedures for utility operations 1073

|

|

Table 144. Result set row for second DSNACCOX result set (continued)

Column name Data type Description

OBJECTSTATUS CHAR(40) Status of the object:

v ORPHANED, if the object is an index space with
no corresponding table space, or if the object
does not exist

v If the object is in a restricted state, one of the
following values:

– TS=restricted-state, if OBJECTTYPE is TS

– IX=restricted-state, if OBJECTTYPE is IX

– LS=restricted-state, if OBJECTTYPE is LS

– LX=restricted-state, if OBJECTTYPE is XS

restricted-state is one of the status codes that
appear in the output of the DISPLAY
DATABASE command.
Related information:

DSNT362I (DB2 Messages)

-DISPLAY DATABASE (DB2) (DB2
Commands)

v A, if the object is in an advisory state.

v L, if the object is a logical partition, but not in an
advisory state.

v AL, if the object is a logical partition and in an
advisory state.

IMAGECOPY CHAR(4) COPY recommendation:
v If the object is a table space, one of the following

values:
FULL Full image copy is recommended
INC Incremental image copy is

recommended
NO Image copy is not recommended.

v If the object is an index, whether image copy is
recommended: YES or NO

RUNSTATS CHAR(3) RUNSTATS recommendation: YES, NO, or Y**.

Y** indicates that the table space contains volatile
and non-volatile tables.

EXTENTS CHAR(3) Indicates whether the data sets for the object have
exceeded ExtentLimit: YES or NO.

REORG CHAR(3) REORG recommendation: YES or NO.

INEXCEPTTABLE CHAR(40) A string that contains one of the following values:

v Text that you specify in the QUERYTYPE column
of the exception table.

v YES, if you put a row in the exception table for
the object that this result set row represents, but
you specify NULL in the QUERYTYPE column.

v NO, if the exception table exists but does not
have a row for the object that this result set row
represents.

v Null, if the exception table does not exist, or if
the ChkLvl input parameter does not include the
value 4.

1074 Utility Guide and Reference

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnt362i.htm#dsnt362i
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_displaydatabase.htm#db2z_cmd_displaydatabase
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_displaydatabase.htm#db2z_cmd_displaydatabase

Table 144. Result set row for second DSNACCOX result set (continued)

Column name Data type Description

ASSOCIATEDTS VARCHAR(128) If OBJECTTYPE is IX this value is the name of the
table space that is associated with the index space.
Otherwise null.

COPYLASTTIME TIMESTAMP Timestamp of the last full or incremental image
copy on the object. Null if COPY was never run, or
if the last COPY execution is unknown.

LOADRLASTTIME TIMESTAMP Timestamp of the last LOAD REPLACE on the
object. Null if LOAD REPLACE was never run, or
if the last LOAD REPLACE execution is unknown.

REBUILDLASTTIME TIMESTAMP Timestamp of the last REBUILD INDEX on the
object. Null if REBUILD INDEX was never run, or
if the last REBUILD INDEX execution is unknown.

CRUPDPGSPCT DOUBLE If IMAGECOPY contains a value other than NO,
the ratio of distinct updated pages to pre-formatted
pages, expressed as a percentage. Otherwise null.

If the ratio of distinct updated pages to
pre-formatted pages, does not exceed the
CRUpdatedPagesPct or ICRUpdatedPagesPct (for
tables spaces only, when incremental copy is
recommended), this value is null.

CRUPDPGSABS INTEGER If IMAGECOPY contains a value other than NO,
the ratio of distinct updated pages to pre-formatted
pages. Otherwise null.

If the ratio of distinct updated pages to
pre-formatted pages, does not exceed the value
specified forCRUpdatedPagesAbs or
ICRUpdatedPagesAbs (for tables spaces only, when
incremental copy is recommended), this value is
null.

CRCPYCHGPCT DOUBLE If the object is a table space and the value of
IMAGECOPY is any value other than NO, the ratio
of the total number insert, update, and delete
operations since the last image copy to the total
number of rows or LOBs in the table space or
partition, expressed as a percentage.

If the object is an index and IMAGECOPY is YES,
the ratio of the total number of insert and delete
operations since the last image copy to the total
number of entries in the index space or partition,
expressed as a percentage. Otherwise null.

If the ratio of the total number insert, update, and
delete operations since the last image copy to the
total number of rows or LOBs in the table space or
partition does not exceed the value specified
forCRChangesPct or ICRChangesPct (incremental
copy is recommended), this value is null.

Appendix B. DB2-supplied stored procedures for utility operations 1075

Table 144. Result set row for second DSNACCOX result set (continued)

Column name Data type Description

CRDAYSCELSTCPY INTEGER If IMAGECOPY is YES, the number of days since
the last image copy. Otherwise null.

If the number of days since the last image copy
does not exceed the value specified for
CrDaySncLastCopy, this value is null.

CRINDEXSIZE INTEGER If IMAGECOPY is YES, the number of active pages
in the index space or partition. Otherwise null.

If the number of active pages in the index space or
partition does not exceed the value specified for
CRIndexSize, this value is null.

REORGLASTTIME TIMESTAMP Timestamp of the last REORG on the object. Null if
REORG was never run, or if the last REORG
execution was terminated.

RRTINSERTSPCT DOUBLE If REORG is YES, the ratio of the sum of insert
operations since the last REORG to the total
number of rows or LOBs in the table space or
partition, expressed as a percentage. Otherwise
null.

If the ratio of the sum of insert operations since the
last REORG to the total number of rows or LOBs in
the table space or partition does not exceed the
value specified for RRTInsertsPct, this value is null.

RRTINSERTSABS INTEGER If REORG is YES, the sum of insert operations
since the last REORG to the total number of rows
in the table space or partition. Otherwise null.

If the sum of insert operations since the last
REORG to the total number of rows in the table
space or partition does not exceed the value
specified for RRTInsertsAbs, this value is null.

RRTDELETESPCT DOUBLE If REORG is YES, the ratio of the sum of delete
operations since the last REORG to the total
number of rows in the table space or partition,
expressed as a percentage. Otherwise null.

If the ratio of the sum of delete operations since the
last REORG to the total number of rows in the
table space or partition does not exceed the value
specified for RRTDeletesPct, this value is null.

RRTDELETESABS INTEGER If REORG is YES, the total number of delete
operations since the last REORG on a table space
or partition. Otherwise null.

If the total number of delete operations since the
last REORG does not exceed the value specified for
RRTDeletesAbs, this value is null.

1076 Utility Guide and Reference

Table 144. Result set row for second DSNACCOX result set (continued)

Column name Data type Description

RRTUNCINSPCT DOUBLE If REORG is YES, the ratio of the number of
unclustered insert operations to the total number of
rows or LOBs in the table space or partition,
expressed as a percentage. Otherwise null.

If the ratio of the number of unclustered insert
operations to the total number of rows or LOBs
does not exceed the value specified for
RRTUnclustInsPct, this value is null.

RRTDISORGLOBPCT DOUBLE If REORG is YES, the ratio of the number of
imperfectly chunked LOBs to the total number of
rows or LOBs in the table space or partition,
expressed as a percentage. Otherwise null.

If the ratio of the number of imperfectly chunked
LOBs to the total number of rows or LOBs in the
table space or partition does not exceed the value
of RRTDisorgLOBPct, this value is null

RRTDATSPRAT DOUBLE If REORG is YES, the ratio of the number of SPACE
allocated and the space used, exceed the value
specified by the RRTDataSpaceRat threshold.
Otherwise null.

RRTMASSDELETE INTEGER If REORG is YES, and the table space is a
segmented table space or LOB table space, the
number of mass deletes since the last REORG or
LOAD REPLACE. If REORG is YES, and the table
space is nonsegmented, the number of dropped
tables since the last REORG or LOAD REPLACE.
Otherwise null.

If the number of dropped tables since the last
REORG or LOAD REPLACE does not exceed the
value specified for RRTMassDelLimit, this value is
null.

RRTINDREF DOUBLE If REORG is YES, the ratio of the total number of
overflow records that were created since the last
REORG or LOAD REPLACE to the total number of
rows or LOBs in the table space or partition,
expressed as a percentage. Otherwise null.

If the ratio of the total number of overflow records
that were created since the last REORG or LOAD
REPLACE to the total number of rows or LOBs
does not exceed the value specified for RRTIndRef,
this value is null.

RRIINSERTSPCT DOUBLE If REORG is YES, the ratio of the total number of
insert operations since the last REORG to the total
number of index entries in the index space or
partition, expressed as a percentage. Otherwise
null.

If the ratio of the total number of insert operations
since the last REORG to the total number of index
entries does not exceed the value specified for
RRIInsertsPct, this value is null.

Appendix B. DB2-supplied stored procedures for utility operations 1077

Table 144. Result set row for second DSNACCOX result set (continued)

Column name Data type Description

RRIINSERTSABS INTEGER If REORG is YES, the total number of insert
operations since the last REORG. Otherwise null.

If the total number of insert operations since the
last REORG does not exceed the value specified for
RRTInsertsAbs, this value is null.

RRIDELETESPCT DOUBLE If REORG is YES, the ratio of the total number of
delete operations since the last REORG to the total
number of index entries in the index space or
partition, expressed as a percentage. Otherwise
null.

If the ratio of the total number of delete operations
since the last REORG to the total number of index
entries does not exceed the value specified for
RRIDeletesPct, this value is null.

RRIDELETABS INTEGER If REORG is YES, the total number of delete
operations since the last REORG. Otherwise null.

If the total number of delete operations since the
last REORG does not exceed the value specified for
RRTDeletesAbs, this value is null.

RRIAPPINSPCT DOUBLE If REORG is YES, the ratio of the number of index
entries that were inserted since the last REORG,
REBUILD INDEX, or LOAD REPLACE that had a
key value greater than the maximum key value in
the index space or partition, to the number of index
entries in the index space or partition, expressed as
a percentage. Otherwise null.

If the ratio of the number of index entries that were
inserted, which had a key value greater than the
maximum key value, to the number of index
entries does not exceed the value specified for
RRIAppendInsertPct, this value is null.

RRIPSDDELPCT DOUBLE If REORG is YES, the ratio of the number of index
entries that were pseudo-deleted (the RID entry
was marked as deleted) since the last REORG,
REBUILD INDEX, or LOAD REPLACE to the
number of index entries in the index space or
partition, expressed as a percentage. Otherwise
null.

If the ratio of the number of index entries that were
pseudo-deleted since the last REORG, REBUILD
INDEX, or LOAD REPLACE to the number of
index entries does not exceed the value specified
for RRIPseudoDeletePct, this value is null.

RRIMASSDELETE INTEGER If REORG is YES, the number of mass deletes from
the index space or partition since the last REORG,
REBUILD, or LOAD REPLACE. Otherwise null.

If the number of mass deletes from the index space
or partition since the last REORG, REBUILD, or
LOAD REPLACE does not exceed the value
specified for RRIMassDelLimit, this value is null.

1078 Utility Guide and Reference

Table 144. Result set row for second DSNACCOX result set (continued)

Column name Data type Description

RRILEAF DOUBLE If REORG is YES, the ratio of the number of index
page splits that occurred since the last REORG,
REBUILD INDEX, or LOAD REPLACE in which
the higher part of the split page was far from the
location of the original page, to the total number of
active pages in the index space or partition,
expressed as a percentage. Otherwise null.

If the ratio of the number of index page splits that
occurred since the last REORG, REBUILD INDEX,
or LOAD REPLACE to the total number of active
pages does not exceed the value specified for
RRILeafLimit, this value is null.

RRINUMLEVELS INTEGER If REORG is YES, the number of levels in the index
tree that were added or removed since the last
REORG, REBUILD INDEX, or LOAD REPLACE.
Otherwise null.

If the number of levels in the index tree that were
added or removed does not exceed the value
specified for RRINumLevelsLimit, this value is null.

STATSLASTTIME TIMESTAMP Timestamp of the last RUNSTATS on the object.
Null if RUNSTATS was never run, or if the last
RUNSTATS execution was unknown.

SRTINSDELUPDPCT DOUBLE If RUNSTATS is YES, the ratio of the total number
of insert, update, and delete operations since the
last RUNSTATS on a table space or partition, to the
total number of rows or LOBs in the table space or
partition, expressed as a percentage. Otherwise
null.

If the ratio of the total number of insert, update,
and delete operations since the last RUNSTATS to
the total number of rows or LOBs does not exceed
the value specified for SRTInsDelUpdPct, this value
is null.

SRTINSDELUPDABS INTEGER If RUNSTATS is YES, the total number of insert,
update, and delete operations since the last
RUNSTATS on a table space or partition. Otherwise
null.

If the total number of insert, update, and delete
operations since the last RUNSTATS does not
exceed the value specified for SRTInsDelUpdAbs,
this value is null.

SRTMASSDELETE INTEGER If RUNSTATS is YES, the number of mass deletes
from the table space or partition since the last
REORG or LOAD REPLACE. Otherwise null.

If the number of mass deletes from the table space
or partition since the last REORG or LOAD
REPLACE does not exceed the value specified for
SRTMassDelLimit, this value is null.

Appendix B. DB2-supplied stored procedures for utility operations 1079

Table 144. Result set row for second DSNACCOX result set (continued)

Column name Data type Description

SRIINSDELPCT DOUBLE If RUNSTATS is YES, the ratio of the total number
of insert and delete operations since the last
RUNSTATS on the index space or partition, to the
total number of index entries in the index space or
partition, expressed as a percentage. Otherwise
null.

If the ratio of the total number of insert and delete
operations since the last RUNSTATS, to the total
number of index entries does not exceed the value
specified for SRIInsDelPct, this value is null.

SRIINSDELABS INTEGER If RUNSTATS is YES, the number insert and delete
operations since the last RUNSTATS on the index
space or partition. Otherwise null.

If the total number of insert, update, and delete
operations since the last RUNSTATS does not
exceed the value specified for , this value is null.

SRIMASSDELETE INTEGER If RUNSTATS is YES, the number of mass deletes
from the index space or partition since the last
REORG, REBUILD INDEX, or LOAD REPLACE.
Otherwise, this value is null.

If the number of mass deletes does not exceed the
value specified for SRIMassDelete, this value is null.

TOTALEXTENTS SMALLINT If EXTENTS is YES, the number of physical extents
in the table space, index space, or partition.
Otherwise, this value is null.

If the number of physical extents does not exceed
the value specified for ExtentLimit, this value is
null.

RRIPEMPTYLIMIT DOUBLE This is column is returned only when the value of
RRIEmptyLimit contains a plus (+) sign.

If ObjectType is IX and REORG is YES, the ratio of
the total number of leaf pages since the last
REORG to the total number of pseudo-empty pages
in the index space or partition, expressed as a
percentage. Otherwise null.

If the ratio of the total number leaf pages since the
last REORG to the total number of pseudo-empty
pages does not exceed the value specified for the
RRIEmptyLimit input parameter, this value is null.

RRTHASHOVRFLWRATPCT DOUBLE This is column is returned only when the value of
RRTHashOvrFlwRatio contains a plus (+) sign.

If REORG is YES, the ratio of Hash Access
overflow index entries to the total number of rows,
expressed as a percentage. Otherwise null.

If the ratio of Hash Access overflow index entries
to the total number of rows does not exceed the
value specified for RRTHashOvrFlwRatio or meet
the criteria requirement, this value is null.

1080 Utility Guide and Reference

PSPI

Maintaining data organization and statistics (DB2 Performance)

Setting up your system for real-time statistics (DB2 Performance)
Chapter 25, “REORG TABLESPACE,” on page 537
Chapter 24, “REORG INDEX,” on page 499
Chapter 29, “RUNSTATS,” on page 721

Implementing DB2 stored procedures (DB2 Administration Guide)

CREATE DATABASE (DB2 SQL)

CREATE TABLESPACE (DB2 SQL)

SYSIBM.SYSTABLESPACESTATS table (DB2 SQL)

SYSIBM.SYSINDEXSPACESTATS table (DB2 SQL)

SYSIBM.SYSTABLES_PROFILES table (DB2 SQL)

Appendix B. DB2-supplied stored procedures for utility operations 1081

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_maintainstatsdataorg.htm#db2z_maintainstatsdataorg
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_setup4realtimestatistics.htm#db2z_setup4realtimestatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_implementstoredprocedure.htm#db2z_implementstoredprocedure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createdatabase.htm#db2z_sql_createdatabase
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsystablespacestatstable.htm#db2z_sysibmsystablespacestatstable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysindexspacestatstable.htm#db2z_sysibmsysindexspacestatstable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsystablesprofilestable.htm#db2z_sysibmsystablesprofilestable

1082 Utility Guide and Reference

Appendix C. Advisory or restrictive states

To control access and help ensure data integrity, DB2 sets a restrictive or
nonrestrictive (advisory) status on certain objects. However, you can take steps to
correct each status.

Use the DISPLAY DATABASE command to display the current status for an object.

In addition to the states mentioned in this topic, the output from the DISPLAY
DATABASE command might also indicate that an object is in logical page list (LPL)
status. This state means that the pages that are listed in the LPL PAGES column
are logically in error and are unavailable for access. DB2 writes entries for these
pages in an LPL.
Related tasks:

Removing pages from the logical page list (DB2 Administration Guide)
Related reference:

-DISPLAY DATABASE (DB2) (DB2 Commands)

Auxiliary CHECK-pending status
When the auxiliary CHECK-pending status is set on a base table space, that base
table space is unavailable for processing by SQL.

The auxiliary CHECK-pending (ACHKP) restrictive status is set on when at least
one base table LOB column error is detected and not invalidated as a result of
running CHECK DATA AUXERROR REPORT. A base table space with the NOT
LOGGED attribute and its LOB table spaces, which also have the NOT LOGGED
attribute, are recovered to the current point in time in the same RECOVER utility
invocation. The base table space is put in the auxiliary CHECK-pending state.

An XML table space is set to auxiliary CHECK-pending when CHECK DATA is
run with the XMLERROR REPORT option, and CHECK DATA finds an error in an
XML table space, the corresponding base table space, or an index space for the
node ID.

Refer to the following table for information about resetting the auxiliary
CHECK-pending status. This table lists the status name, abbreviation, affected
object, and any corrective actions.

Table 145. Resetting auxiliary CHECK-pending status

Status Abbreviation Object affected Corrective action Notes

Auxiliary
CHECK-
pending

ACHKP Base table space 1. Update or delete invalid LOBs and XML
objects using SQL.

2. Run the CHECK DATA utility with the
appropriate SCOPE option to verify the
validity of LOBs and XML objects and reset
ACHKP status.

You can use the REPAIR utility, followed by
CHECK DATA, to reset the ACHKP status, but
use caution.

1

© Copyright IBM Corp. 1983, 2013 1083

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_removepagesfromlogicalpagelist.htm#db2z_removepagesfromlogicalpagelist
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_displaydatabase.htm#db2z_cmd_displaydatabase

Table 145. Resetting auxiliary CHECK-pending status (continued)

Status Abbreviation Object affected Corrective action Notes

Note:

1. A base table space in the ACHKP status is unavailable for processing by SQL.

Auxiliary warning status
A base table space or LOB table space in the auxiliary warning status remains
available for processing by SQL.

The auxiliary warning (AUXW) status is set when at least one base table LOB
column has an invalidated LOB as a result of running CHECK DATA AUXERROR
INVALIDATE. An attempt to retrieve an invalidated LOB results in a -904 SQL
return code.

A base table space with the NOT LOGGED attribute and its LOB table spaces,
which also have the NOT LOGGED attribute, are recovered to the current point in
time in the same RECOVER utility invocation. The LOB table spaces are put in the
auxiliary warning state if there were updates to the LOB table spaces after the
recoverable point.

The RECOVER utility also sets AUXW status if it finds an invalid LOB column.
Invalid LOB columns might result from a situation in which all the following
actions occur:
1. LOB table space was defined with LOG NO.
2. LOB table space was recovered.
3. LOB was updated since the last image copy.

Refer to the following table for information about resetting the auxiliary warning
status. This table lists the status name, abbreviation, affected objects, and any
corrective actions.

Table 146. Resetting auxiliary warning status

Status Abbreviation Object affected Corrective action Notes

Auxiliary
warning

AUXW Base table space 1. Update or delete invalid LOBs and XML
objects using SQL.

2. If an orphan LOB exists or a version
mismatch exists between the base table and
the auxiliary index, use REPAIR to delete the
LOB from the LOB table space.

3. Run CHECK DATA utility to verify the
validity of LOBs and XML objects and reset
AUXW status.

1,2,3

Auxiliary
warning

AUXW LOB table space 1. Update or delete invalid LOBs and XML
objects using SQL.

2. If an orphan LOB exists or a version
mismatch exists between the base table and
the auxiliary index, use REPAIR to delete the
LOB from the LOB table space.

3. Run CHECK LOB utility to verify the
validity of LOBs and XML objects and reset
AUXW status.

1

1084 Utility Guide and Reference

Table 146. Resetting auxiliary warning status (continued)

Status Abbreviation Object affected Corrective action Notes

Note:

1. A base table space or LOB table space in the AUXW status is available for processing by SQL, even though it
contains invalid LOBs. However, an attempt to retrieve an invalid LOB results in a -904 SQL return code.

2. DB2 can access all rows of a base table space that are in the AUXW status. SQL can update the invalid LOB
column and delete base table rows, but the value of the LOB column cannot be retrieved. If DB2 attempts to
access an invalid LOB column, a -904 SQL code is returned. The AUXW status remains on the base table space
even when SQL deletes or updates the last invalid LOB column.

3. If CHECK DATA AUXERROR REPORT encounters only invalid LOB columns and no other LOB column errors,
the base table space is set to the auxiliary warning status.

CHECK-pending status
The CHECK-pending (CHKP) restrictive status indicates that an object might be in
an inconsistent state and must be checked.

The following utilities set the CHECK-pending status on a table space if referential
integrity constraints are encountered:
v LOAD with ENFORCE NO
v RECOVER to a point in time
v CHECK LOB

The CHECK-pending status can also affect a base table space or a LOB table space.
CHECK-pending status for an XML table space is set only if a new XML schema
for an XML type modifier was added or removed.

DB2 ignores informational referential integrity constraints and does not set
CHECK-pending status for them.

Refer to the following table for information about resetting the CHECK-pending
status. This table lists the status name, abbreviation, affected objects, and any
corrective actions.

Table 147. Resetting CHECK-pending status

Status Abbreviation Object affected Corrective action Notes

CHECK-
pending

CHKP Table space, base table
space

Check and correct referential integrity
constraints using the CHECK DATA utility.

If a table space is in both REORG-pending and
CHECK-pending status (or auxiliary
CHECK-pending status), run REORG first and
then use CHECK DATA to clear the respective
states.

CHECK-
pending

CHKP Partitioning index,
nonpartitioning index,
index, XML index on the
auxiliary table

1. Run CHECK INDEX on the index.

2. If any errors are found, use the REBUILD
INDEX utility to rebuild the index from
existing data.

1

Appendix C. Advisory or restrictive states 1085

Table 147. Resetting CHECK-pending status (continued)

Status Abbreviation Object affected Corrective action Notes

CHECK-
pending

CHKP LOB table space Use the CHECK LOB utility to check the LOB
table space. If any errors are found:

1. Correct any defects that are found in the
LOB table space by using the REPAIR utility.

2. Run CHECK LOB again to reset the
CHECK-pending status.

3. See Table 146 on page 1084 if an AUXW
status exists.

CHECK-
pending

CHKP XML table space Use the CHECK DATA utility to check the XML
table space. If any errors are found:

1. Correct any defects that are found in the
XML table space by using the REPAIR
utility.

2. Run CHECK XML again to reset the
CHECK-pending status.

Note:

1. An index might be placed in the CHECK-pending status if you recovered an index to a specific RBA or LRSN
from a copy and applied the log records, but you did not recover the table space in the same list. The
CHECK-pending status can also be placed on an index if you specified the table space and the index, but the
RECOVER point in time was not a QUIESCE or COPY SHRLEVEL REFERENCE point.

COPY-pending status
The COPY-pending (COPY) restrictive status indicates that the affected object must
be copied.

DB2 ignores informational referential integrity constraints and does not set
CHECK-pending status for them.

Refer to the following table for information about resetting the COPY-pending
status. This table lists the status name, abbreviation, affected objects, and any
corrective actions.

Table 148. Resetting COPY-pending status

Status Abbreviation Object affected Corrective action Notes

COPY-
pending

COPY Table space, table space
partition

Take an image copy of the affected object.

DBETE status
An object is a table space, table space partition, index space, index partition, or
logical index partition. The DBETE status identifies the objects that need special
attention by the user.

To reduce outages caused by certain DBET abends or page set access error abends
during restart or RESTORE SYSTEM, DB2 tolerates such abends and puts objects
into advisory status DBETE, as well as a restrictive exception status that requires
objects to be recovered. Depending on the type of object, either a table space or an
index space, the restrictive exception status can be RECP, RBDP, or PSRBD.

1086 Utility Guide and Reference

Refer to the following table for information about resetting the error status. This
table lists the status name, abbreviation, affected objects, and any corrective
actions.

Table 149. Resetting OBJECT error status

Status Abbreviation Object affected Corrective action Notes

OBJECT
error

DBETE Table space, table space
partition, index space,
index partition, or logical
index partition

Issue -DISPLAY command to see the status of
the object. If the object is in DBETE along with
restrictive states such as RECP, RBDP, PSRBD,
use one of the following utilities to recover or
rebuild the object:

v RECOVER utility

v LOAD utility with the REPLACE option

v REBUILD utility

The DBETE status is reset when RECP, RBDP, or
PSRBD status is reset by the utility.

If a table space or index space that contains
partitions has a status of DBETE and RECP and
is also listed as being of type UN (unknown
type), you can still use the utilities in the
preceding list to recover or rebuild the entire
space.

DBETE, RECP, RBDP, and PSRBD status can
also be reset by issuing the following command,
-START DB(db name) SP(space name)
ACCESS(FORCE).

Contact IBM Software Support to report the
problem. DB2 log records need to be analyzed
to diagnose the cause of the problem and
determine further actions.

Group buffer pool RECOVER-pending status
The group buffer pool RECOVER-pending (GRECP) status is set on when a
coupling facility fails with pages that were not externalized. The affected object
must be recovered.

Refer to the following table for information about resetting the group buffer pool
RECOVER-pending status. This table lists the status name, abbreviation, affected
objects, and any corrective actions.

Table 150. Resetting group buffer pool RECOVER-pending status

Status Abbreviation Object affected Corrective action Notes

Group buffer
pool
RECOVER-
pending

GRECP Object Recover the object, or use START DATABASE to
recover the object.

Informational COPY-pending status
The informational COPY-pending (ICOPY) advisory status indicates that the
affected object should be copied.

Appendix C. Advisory or restrictive states 1087

Refer to the following table for information about resetting the informational
COPY-pending status. This table lists the status name, abbreviation, affected
objects, and any corrective actions.

Table 151. Resetting informational COPY-pending status

Status Abbreviation Object affected Corrective action Notes

Informational
COPY-
pending

ICOPY NOT LOGGED table
spaces

Copy the affected table space.

Informational
COPY-
pending

ICOPY Partitioning index,
nonpartitioning index,
index on the auxiliary
table

Copy the affected index.

PRO restricted status
The Persistent Read Only (PRO) restricted status indicates that read access by SQL
or utilities is allowed, but all updates to the table space partition are prohibited.

SQL updates or utilities that attempt to update a table space partition that is in
PRO restricted status receive a resource unavailable error. When one or more table
space partitions are in PRO restricted status, run utilities that update data at the
partition level.

PRO restricted status is turned on to prohibit all updates by the system
administrator or database administrator, or by a product that runs with DB2 for
z/OS. The REPAIR SET utility sets the PRO restricted status. Do not turn off PRO
restricted status without the consent of the system administrator or database
administrator because updates to the partition might cause data loss.

Table 152. Resetting PRO restricted status

Status Abbreviation Object affected Corrective action Notes

Persistent
Read Only

PRO Table space partition None 1, 2

Note:

1. MODIFY RECOVERY TABLESPACE DSNUM(n) forces the retention of the last two full image copies.

2. COPY TABLESPACE DSNUM(n) does not create a new full image copy of the partition.

REBUILD-pending status
A REBUILD-pending restrictive status indicates that the affected index or index
partition is broken and must be rebuilt from the data.

REBUILD-pending (RBDP) status indicates that the physical or logical partition is
inaccessible and must be rebuilt. RBDP status is set on a data-partitioned
secondary index if you create the index after performing the following actions:
v Create a partitioned table space.
v Create a partitioning index.
v Insert a row into a table.

In this situation, the last partition of the table space is set to REORG-pending
(REORP) restrictive status.

1088 Utility Guide and Reference

REBUILD-pending star (RBDP*) status indicates that a logical partition of a
nonpartitioned secondary index is unavailable for read-write access and the entire
index is unavailable for read access.

Page set REBUILD-pending (PSRBD) status indicates that an entire nonpartitioned
secondary index or index on the auxiliary table is unavailable for read-write access.

Rebuilding an index and thereby resetting the REBUILD-pending status invalidates
the dynamic statement cache for the related table.

If you alter the data type of a column to a numeric data type, RECOVER INDEX
cannot complete. You must rebuild the index.

Refer to the following table for information about resetting a REBUILD-pending
status. This table lists the status name, abbreviation, affected objects, and any
corrective actions.

Table 153. Resetting REBUILD-pending status

Status Abbreviation Object affected Corrective action Notes

REBUILD-
pending

RBDP Physical or logical index
partition

Run the REBUILD utility on the affected index
partition.

REBUILD-
pending star

RBDP* Logical partitions of
nonpartitioned secondary
indexes

Run REBUILD INDEX PART or RECOVER
utility on the affected logical partitions.

Page set
REBUILD-
pending

PSRBD Nonpartitioned
secondary index, index
on the auxiliary table

Run REBUILD INDEX ALL, the RECOVER
utility, or run REBUILD INDEX listing all
indexes in the affected index space.

REBUILD-
pending

RBDP, RBDP*,
or PSRBD

all The following actions also reset the
REBUILD-pending status:

v Use LOAD REPLACE for the table space or
partition.

v Use REPAIR SET INDEX with NORBDPEND
on the index partition. Be aware that this
does not correct the data inconsistency in the
index partition. Use CHECK INDEX instead
of REPAIR to verify referential integrity
constraints.

v Start the database that contains the index
space with ACCESS FORCE. Be aware that
this does not correct the data inconsistency in
the index partition.

v Run REORG INDEX SORTDATA on the
affected index.

RECOVER-pending status
The RECOVER-pending (RECP) restrictive status indicates that a table space or
table space partition is broken and must be recovered.

Refer to the following table for information about resetting the RECOVER-pending
status. This table lists the status name, abbreviation, affected objects, and any
corrective actions.

Appendix C. Advisory or restrictive states 1089

Table 154. Resetting RECOVER-pending status

Status Abbreviation Object affected Corrective action Notes

RECOVER-
pending

RECP Table space Run the RECOVER utility on the affected object.

RECOVER-
pending

RECP Table space partition Recover the partition.

RECOVER-
pending

RECP Index on the auxiliary
table

Correct the RECOVER-pending status by using
one of the following utilities:
v REBUILD INDEX
v RECOVER INDEX
v REORG INDEX SORTDATA

RECOVER-
pending

RECP Index space Run one of the following utilities on the affected
index space to reset RECP, RBDP, RBDP*, or
PSRBDP status:
v REBUILD INDEX
v RECOVER INDEX
v REORG INDEX SORTDATA

RECOVER-
pending

RECP Any The following actions also reset the
RECOVER-pending status:

v Use LOAD REPLACE for the table space or
partition.

v Use REPAIR SET TABLESPACE or INDEX
with NORCVRPEND on the table space or
partition. Be aware that this does not correct
the data inconsistency in the table space or
partition.

v Start the database that contains the table
space or index space with ACCESS FORCE.
Be aware that this does not correct the data
inconsistency in the table space or partition.

REFRESH-pending status
Whenever DB2 marks an object in refresh-pending (REFP) status, it also puts the
object in RECOVER-pending (RECP) or REBUILD-pending (RBDP or PSRBD)
status.

If a user-defined table space is in refresh-pending (REFP) status, you can replace
the data by using LOAD REPLACE. At the successful completion of the RECOVER
and LOAD REPLACE jobs, both (REFP and RECP or REFP and RBDP or PSRBD)
statuses are reset.

REORG-pending status
The REORG-pending (REORP) restrictive status indicates that a table space
partition definition has changed and the affected partitions must be reorganized
before the data is accessible.

The REORG-pending (AREO*) advisory status indicates that a table space, index,
or partition needs to be reorganized for optimal performance.

The advisory REORG-pending (AREOR) status indicates that a table space or index
needs to be reorganized for optimal performance and to apply pending definition
changes.

1090 Utility Guide and Reference

Refer to the following table for information about resetting the REORG-pending
status. This table lists the status name, abbreviation, affected objects, and any
corrective actions.

Table 155. Resetting REORG-pending status

Status Abbreviation Object affected Corrective action Notes

REORG-
pending

REORP Table space Perform one of the following actions:

v Use LOAD REPLACE for the entire table
space.

v Run the REORG TABLESPACE utility with
any value of SHRLEVEL.

If a table space is in both REORG-pending
and CHECK-pending status (or auxiliary
CHECK-pending status), run REORG first
and then run CHECK DATA to clear the
respective states.

REORG-
pending

REORP Partitioned table space For row lengths <= 32 KB:

1. Run REORG TABLESPACE with any value
of SHRLEVEL and SORTDATA.

For row lengths > 32 KB:

1. Run REORG TABLESPACE UNLOAD
ONLY.

2. Run LOAD TABLE FORMAT UNLOAD.

Advisory
REORG-
pending

AREO* Table space Run one of the following utilities:

v REORG TABLESPACE

v LOAD REPLACE

v REPAIR TABLESPACE

Alternatively you can use the UPDATE
statement according to the conditions
documented for Using UPDATE to reset AREO*
status on a table.

1

Advisory
REORG-
pending

AREO* Index space Run one of the following utilities:

v REORG TABLESPACE

v LOAD REPLACE

v REORG INDEX

v REPAIR INDEX

1

Advisory
REORG-
pending

AREOR Table space Run one of the following utilities:

v REORG TABLESPACE

v REPAIR TABLESPACE

If you want to drop any pending definition
changes, use the ALTER TABLESPACE
statement with the DROP PENDING
CHANGES clause. This statement removes the
pending changes and resets the AREOR status.

2

Advisory
REORG-
pending

AREOR Index space Run one of the following utilities:

v REORG TABLESPACE

v REORG INDEX

v REPAIR INDEX

2

Appendix C. Advisory or restrictive states 1091

|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_update.htm#db2z_sql_update
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_update.htm#db2z_sql_update

Table 155. Resetting REORG-pending status (continued)

Status Abbreviation Object affected Corrective action Notes

Note:

1. You can reset AREO* for a specific partition without being restricted by another AREO* for an adjacent partition.
When you run REPAIR VERSIONS, the utility resets the status and updates the version information in
SYSTABLEPART for table spaces and SYSINDEXES for indexes.

2. The AREOR state needs to be reset or repaired for the entire table space or index space. Running REORG on the
partition level does not reset the AREOR state. The PART keyword is not allowed during REPAIR SET.

Related reference:

ALTER TABLESPACE (DB2 SQL)
Chapter 25, “REORG TABLESPACE,” on page 537
Chapter 24, “REORG INDEX,” on page 499
Chapter 26, “REPAIR,” on page 645
Chapter 16, “LOAD,” on page 231

Restart-pending status
If an object has backout work pending at the end of DB2 restart, the object is
placed in restart-pending (RESTP) status.

Refer to the following table for information about resetting the restart-pending
status. This table lists the status name, abbreviation, affected objects, and any
corrective actions.

Table 156. Resetting restart-pending status

Status Abbreviation Object affected Corrective action Notes

Restart-
pending

RESTP Table space, table space
partitions, index spaces,
and physical index space
partitions

Objects in the RESTP status remain unavailable
until backout work is complete, or until restart
is canceled and a conditional restart or cold
start is performed in its place.

1,2,3

Note:

1. Delay running REORG TABLESPACE SHRLEVEL CHANGE until all RESTP statuses are reset.

2. You cannot use LOAD REPLACE on an object that is in the RESTP status.

3. Utility activity against page sets or partitions with RESTP status is not allowed. Any attempt to access a page set
or partition with RESTP status terminates with return code 8.

Related tasks:

Starting a table space or index space that has restrictions (DB2 Administration
Guide)

1092 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertablespace.htm#db2z_sql_altertablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_starttableorspacewithrestrictions.htm#db2z_starttableorspacewithrestrictions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_starttableorspacewithrestrictions.htm#db2z_starttableorspacewithrestrictions

Appendix D. Productivity-aid sample programs

DB2 provides four sample programs that many users find helpful as productivity
aids. These programs are shipped as source code so that you can modify them to
meet your needs.

DSNTIAUL
The sample unload program. This program, which is written in assembler
language, is a simple alternative to the UNLOAD utility. It unloads some
or all rows from up to 100 DB2 tables. With DSNTIAUL, you can unload
data of any DB2 built-in data type or distinct type. DSNTIAUL unloads the
rows in a form that is compatible with the LOAD utility and generates
utility control statements for LOAD. DSNTIAUL also lets you execute any
SQL non-SELECT statement that can be executed dynamically..

DSNTIAD
A sample dynamic SQL program that is written in assembler language.
With this program, you can execute any SQL statement that can be
executed dynamically, except a SELECT statement.

DSNTEP2
A sample dynamic SQL program that is written in the PL/I language. With
this program, you can execute any SQL statement that can be executed
dynamically. You can use the source version of DSNTEP2 and modify it to
meet your needs, or, if you do not have a PL/I compiler at your
installation, you can use the object code version of DSNTEP2.

DSNTEP4
A sample dynamic SQL program that is written in the PL/I language. This
program is identical to DSNTEP2 except DSNTEP4 uses multi-row fetch for
increased performance. You can use the source version of DSNTEP4 and
modify it to meet your needs, or, if you do not have a PL/I compiler at
your installation, you can use the object code version of DSNTEP4.

Because these four programs also accept the static SQL statements CONNECT, SET
CONNECTION, and RELEASE, you can use the programs to access DB2 tables at
remote locations.

Retrieval of UTF-16 Unicode data: You can use DSNTEP2, DSNTEP4, and
DSNTIAUL to retrieve Unicode UTF-16 graphic data. However, these programs
might not be able to display some characters, if those characters have no mapping
in the target SBCS EBCDIC CCSID.

DSNTIAUL and DSNTIAD are shipped only as source code, so you must
precompile, assemble, link, and bind them before you can use them. If you want to
use the source code version of DSNTEP2 or DSNTEP4, you must precompile,
compile, link, and bind it. You need to bind the object code version of DSNTEP2 or
DSNTEP4 before you can use it. Usually a system administrator prepares the
programs as part of the installation process. The following table indicates which
installation job prepares each sample program. All installation jobs are in data set
DSNB10.SDSNSAMP.

© Copyright IBM Corp. 1983, 2013 1093

Table 157. Jobs that prepare DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

Program name Program preparation job

DSNTIAUL DSNTEJ2A

DSNTIAD DSNTIJTM

DSNTEP2 (source) DSNTEJ1P

DSNTEP2 (object) DSNTEJ1L

DSNTEP4 (source) DSNTEJ1P

DSNTEP4 (object) DSNTEJ1L

To run the sample programs, use the DSN RUN command.

The following table lists the load module name and plan name that you must
specify, and the parameters that you can specify when you run each program.

Table 158. DSN RUN option values for DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

Program name Load module Plan Parameters

DSNTIAUL DSNTIAUL DSNTIB11 SQL
number of rows per fetch
TOLWARN(NO|YES)

DSNTIAD DSNTIAD DSNTIA11 RC0
SQLTERM(termchar)

DSNTEP2 DSNTEP2 DSNTEP11 ALIGN(MID)
or ALIGN(LHS)

NOMIXED or MIXED
SQLTERM(termchar)
TOLWARN(NO|YES)
PREPWARN

DSNTEP4 DSNTEP4 DSNTP491 ALIGN(MID)
or ALIGN(LHS)

NOMIXED or MIXED
SQLTERM(termchar)
TOLWARN(NO|YES)
PREPWARN

Related reference:

RUN (DSN) (DB2 Commands)

DSNTIAUL
Use the DSNTIAUL program to unload data from DB2 tables into sequential data
sets.

When multi-row fetch is used, parallelism might be disabled in the last parallel
group in the top-level query block for a query. For very simple queries, parallelism
might be disabled for the entire query when multi-row fetch is used. To obtain full
parallelism when running DSNTIAUL, switch DSNTIAUL to single-row fetch
mode by specifying 1 for the number of rows per fetch parameter.

DSNTIAUL uses SQL to access DB2. Operations on a row-level or column-level
access control enforced table are subject to the rules specified for the access control.
If the table is row-level access control enforced, DSNTIAUL receives and returns
only the rows of the table that satisfy the row permissions for the user. If the table

1094 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_run.htm#db2z_cmd_run

is column-level access control enforced, DSNTIAUL receives and returns the values
in the column values as modified by the column masks for the user.

DSNTIAUL parameters:

SQL
Specify SQL to indicate that your input data set contains one or more complete
SQL statements, each of which ends with a semicolon. You can include any
SQL statement that can be executed dynamically in your input data set. In
addition, you can include the static SQL statements CONNECT, SET
CONNECTION, or RELEASE. Static SQL statements must be uppercase.

DSNTIAUL uses the SELECT statements to determine which tables to unload
and dynamically executes all other statements except CONNECT, SET
CONNECTION, and RELEASE. DSNTIAUL executes CONNECT, SET
CONNECTION, and RELEASE statically to connect to remote locations.

number of rows per fetch
Specify a number from 1 to 32767 to specify the number of rows per fetch that
DSNTIAUL retrieves. If you do not specify this number, DSNTIAUL retrieves
100 rows per fetch. This parameter can be specified with the SQL parameter.

TOLWARN
Specify NO (the default) or YES to indicate whether DSNTIAUL continues to
retrieve rows after receiving an SQL warning:

(NO) If a warning occurs when DSNTIAUL executes an OPEN or FETCH to
retrieve rows, DSNTIAUL stops retrieving rows. If the SQLWARN1,
SQLWARN2, SQLWARN6, or SQLWARN7 flag is set when DSNTIAUL
executes a FETCH to retrieve rows, DSNTIAUL continues to retrieve
rows.

(YES) If a warning occurs when DSNTIAUL executes an OPEN or FETCH to
retrieve rows, DSNTIAUL continues to retrieve rows.

LOBFILE(prefix)
Specify LOBFILE to indicate that you want DSNTIAUL to dynamically allocate
data sets, each to receive the full content of a LOB cell. (A LOB cell is the
intersection of a row and a LOB column.) If you do not specify the LOBFILE
option, you can unload up to only 32 KB of data from a LOB column.

prefix
Specify a high-level qualifier for these dynamically allocated data sets. You
can specify up to 17 characters. The qualifier must conform with the rules
for TSO data set names.

DSNTIAUL uses a naming convention for these dynamically allocated data sets
of prefix.Qiiiiiii.Cjjjjjjj.Rkkkkkkk, where these qualifiers have the following
values:

prefix
The high-level qualifier that you specify in the LOBFILE option.

Qiiiiiii
The sequence number (starting from 0) of a query that returns one or more
LOB columns

Cjjjjjjj
The sequence number (starting from 0) of a column in a query that returns
one or more LOB columns

Appendix D. Productivity-aid sample programs 1095

Rkkkkkkk
The sequence number (starting from 0) of a row of a result set that has one
or more LOB columns.

The generated LOAD statement contains LOB file reference variables that can
be used to load data from these dynamically allocated data sets.

If you do not specify the SQL parameter, your input data set must contain one or
more single-line statements (without a semicolon) that use the following syntax:
table or view name [WHERE conditions] [ORDER BY columns]

Each input statement must be a valid SQL SELECT statement with the clause
SELECT * FROM omitted and with no ending semicolon. DSNTIAUL generates a
SELECT statement for each input statement by appending your input line to
SELECT * FROM, then uses the result to determine which tables to unload. For this
input format, the text for each table specification can be a maximum of 72 bytes
and must not span multiple lines.

You can use the input statements to specify SELECT statements that join two or
more tables or select specific columns from a table. If you specify columns, you
need to modify the LOAD statement that DSNTIAUL generates.

DSNTIAUL data sets:

Data set
Description

SYSIN
Input data set.

You cannot enter comments in DSNTIAUL input.

The record length for the input data set must be at least 72 bytes.
DSNTIAUL reads only the first 72 bytes of each record.

SYSPRINT
Output data set. DSNTIAUL writes informational and error messages in
this data set.

The record length for the SYSPRINT data set is 121 bytes.

SYSPUNCH
Output data set. DSNTIAUL writes the LOAD utility control statements in
this data set.

SYSRECnn
Output data sets. The value nn ranges from 00 to 99. You can have a
maximum of 100 output data sets for a single execution of DSNTIAUL.
Each data set contains the data that is unloaded when DSNTIAUL
processes a SELECT statement from the input data set. Therefore, the
number of output data sets must match the number of SELECT statements
(if you specify parameter SQL) or table specifications in your input data
set.

Define all data sets as sequential data sets. You can specify the record length and
block size of the SYSPUNCH and SYSRECnn data sets. The maximum record
length for the SYSPUNCH and SYSRECnn data sets is 32760 bytes.

1096 Utility Guide and Reference

DSNTIAUL return codes:

Table 159. DSNTIAUL return codes

Return code Meaning

0 Successful completion.

4 An SQL statement received a warning code.

v If TOLWARN(YES) is specified, and the warning occurred on a FETCH
or OPEN during the processing of a SELECT statement, DB2 performs
the unload operation.

v Otherwise if the SQL statement was a SELECT statement, DB2 did not
perform the associated unload operation.

If DB2 returns a +394, which indicates that it is using optimization hints,
or a +395, which indicates one or more invalid optimization hints, DB2
performs the unload operation.

8 An SQL statement received an error code. If the SQL statement was a
SELECT statement, DB2 did not perform the associated unload operation
or did not complete it.

12 DSNTIAUL could not open a data set, an SQL statement returned a
severe error code (-144, -302, -804, -805, -818, -902, -906, -911, -913, -922,
-923, -924, or -927), or an error occurred in the SQL message formatting
routine.

Example of using DSNTIAUL to unload a subset of rows in a
table:

Suppose that you want to unload the rows for department D01 from the project
table. Because you can fit the table specification on one line, and you do not want
to execute any non-SELECT statements, you do not need the SQL parameter. Your
invocation looks like the one that is shown in the following figure:
//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB11) -

LIB(’DSNB10.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSREC00 DD DSN=DSN8UNLD.SYSREC00,
// UNIT=SYSDA,SPACE=(32760,(1000,500)),DISP=(,CATLG),
// VOL=SER=SCR03
//SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,
// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),
// VOL=SER=SCR03,RECFM=FB,LRECL=120,BLKSIZE=1200
//SYSIN DD *DSN8B10
.PROJ WHERE DEPTNO=’D01’

Example of using DSNTIAUL to unload rows in more than one
table:

Suppose that you also want to use DSNTIAUL to perform the following actions:
v Unload all rows from the project table
v Unload only rows from the employee table for employees in departments with

department numbers that begin with D, and order the unloaded rows by
employee number

v Lock both tables in share mode before you unload them

Appendix D. Productivity-aid sample programs 1097

v Retrieve 250 rows per fetch

For these activities, you must specify the SQL parameter and specify the number of
rows per fetch when you run DSNTIAUL. Your DSNTIAUL invocation is shown in
the following figure:
//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB11) PARMS(’SQL,250’) -

LIB(’DSNB10.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSREC00 DD DSN=DSN8UNLD.SYSREC00,
// UNIT=SYSDA,SPACE=(32760,(1000,500)),DISP=(,CATLG),
// VOL=SER=SCR03
//SYSREC01 DD DSN=DSN8UNLD.SYSREC01,
// UNIT=SYSDA,SPACE=(32760,(1000,500)),DISP=(,CATLG),
// VOL=SER=SCR03
//SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,
// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),
// VOL=SER=SCR03,RECFM=FB,LRECL=120,BLKSIZE=1200
//SYSIN DD *
LOCK TABLE DSN8B10.EMP IN SHARE MODE;
LOCK TABLE DSN8B10.PROJ IN SHARE MODE;
SELECT * FROM DSN8B10.PROJ;
SELECT * FROM DSN8B10.EMP

WHERE WORKDEPT LIKE ’D%’
ORDER BY EMPNO;

Example of using DSNTIAUL to obtain LOAD utility control
statements:

If you want to obtain the LOAD utility control statements for loading rows into a
table, but you do not want to unload the rows, you can set the data set names for
the SYSRECnn data sets to DUMMY. For example, to obtain the utility control
statements for loading rows into the department table, you invoke DSNTIAUL as
shown in the following figure:
//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB11) -

LIB(’DSNB10.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSREC00 DD DUMMY
//SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,
// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),
// VOL=SER=SCR03,RECFM=FB,LRECL=120,BLKSIZE=1200
//SYSIN DD *DSN8B10
.DEPT

Example of using DSNTIAUL to unload LOB data:

This example uses the sample LOB table with the following structure:
CREATE TABLE DSN8910.EMP_PHOTO_RESUME
(EMPNO CHAR(06) NOT NULL,
EMP_ROWID ROWID NOT NULL GENERATED ALWAYS,
PSEG_PHOTO BLOB(500K),
BMP_PHOTO BLOB(100K),

1098 Utility Guide and Reference

RESUME CLOB(5K),
PRIMARY KEY (EMPNO))
IN DSN8D91L.DSN8S91B
CCSID EBCDIC;

The following call to DSNTIAUL unloads the sample LOB table. The parameters
for DSNTIAUL indicate the following options:
v The input data set (SYSIN) contains SQL.
v DSNTIAUL is to retrieve 2 rows per fetch.
v DSNTIAUL places the LOB data in data sets with a high-level qualifier of

DSN8UNLD.
//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *

DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB91) -
PARMS(’SQL,2,LOBFILE(DSN8UNLD)’) -
LIB(’DSN910.RUNLIB.LOAD’)

//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSREC00 DD DSN=DSN8UNLD.SYSREC00,
// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),
// VOL=SER=SCR03,RECFM=FB
//SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,
// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),
// VOL=SER=SCR03,RECFM=FB
//SYSIN DD *

SELECT * FROM DSN8910.EMP_PHOTO_RESUME;

Given that the sample LOB table has 4 rows of data, DSNTIAUL produces the
following output:
v Data for columns EMPNO and EMP_ROWID are placed in the data set that is

allocated according to the SYSREC00 DD statement. The data set name is
DSN8UNLD.SYSREC00

v A generated LOAD statement is placed in the data set that is allocated according
to the SYSPUNCH DD statement. The data set name is DSN8UNLD.SYSPUNCH

v The following data sets are dynamically created to store LOB data:
– DSN8UNLD.Q0000000.C0000002.R0000000
– DSN8UNLD.Q0000000.C0000002.R0000001
– DSN8UNLD.Q0000000.C0000002.R0000002
– DSN8UNLD.Q0000000.C0000002.R0000003
– DSN8UNLD.Q0000000.C0000003.R0000000
– DSN8UNLD.Q0000000.C0000003.R0000001
– DSN8UNLD.Q0000000.C0000003.R0000002
– DSN8UNLD.Q0000000.C0000003.R0000003
– DSN8UNLD.Q0000000.C0000004.R0000000
– DSN8UNLD.Q0000000.C0000004.R0000001
– DSN8UNLD.Q0000000.C0000004.R0000002
– DSN8UNLD.Q0000000.C0000004.R0000003

For example, DSN8UNLD.Q0000000.C0000004.R0000001 means that the data set
contains data that is unloaded from the second row (R0000001) and the fifth
column (C0000004) of the result set for the first query (Q0000000).

Appendix D. Productivity-aid sample programs 1099

DSNTIAD
Use the DSNTIAD program to execute SQL statements other than SELECT
statements dynamically.

DSNTIAD parameters:

RC0
If you specify this parameter, DSNTIAD ends with return code 0, even if the
program encounters SQL errors. If you do not specify RC0, DSNTIAD ends
with a return code that reflects the severity of the errors that occur. Without
RC0, DSNTIAD terminates if more than 10 SQL errors occur during a single
execution.

SQLTERM(termchar)
Specify this parameter to indicate the character that you use to end each SQL
statement. You can use any special character except one of those listed in the
following table. SQLTERM(;) is the default.

Table 160. Invalid special characters for the SQL terminator

Name Character Hexadecimal representation

blank X'40'

comma , X'6B'

double quotation mark " X'7F'

left parenthesis (X'4D'

right parenthesis) X'5D'

single quotation mark ' X'7D'

underscore _ X'6D'

Use a character other than a semicolon if you plan to execute a statement that
contains embedded semicolons.

example:

Suppose that you specify the parameter SQLTERM(#) to indicate that the
character # is the statement terminator. Then a CREATE TRIGGER statement
with embedded semicolons looks like this:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

A CREATE PROCEDURE statement with embedded semicolons looks like the
following statement:
CREATE PROCEDURE PROC1 (IN PARM1 INT, OUT SCODE INT)

LANGUAGE SQL
BEGIN

DECLARE SQLCODE INT;
DECLARE EXIT HANDLER FOR SQLEXCEPTION

SET SCODE = SQLCODE;
UPDATE TBL1 SET COL1 = PARM1;

END #

1100 Utility Guide and Reference

Be careful to choose a character for the statement terminator that is not used
within the statement.

DSNTIAD data sets:

Data set
Description

SYSIN
Input data set. In this data set, you can enter any number of non-SELECT
SQL statements, each terminated with a semicolon. A statement can span
multiple lines, but DSNTIAD reads only the first 72 bytes of each line.

You cannot enter comments in DSNTIAD input.

SYSPRINT
Output data set. DSNTIAD writes informational and error messages in this
data set. DSNTIAD sets the record length of this data set to 121 bytes and
the block size to 1210 bytes.

Define all data sets as sequential data sets.

DSNTIAD return codes:

Table 161. DSNTIAD return codes

Return code Meaning

0 Successful completion, or the user-specified parameter RC0.

4 An SQL statement received a warning code.

8 An SQL statement received an error code.

12 DSNTIAD could not open a data set, the length of an SQL statement was
more than 2 MB, an SQL statement returned a severe error code (-8nn or
-9nn), or an error occurred in the SQL message formatting routine.

Example of DSNTIAD invocation:

Suppose that you want to execute 20 UPDATE statements, and you do not want
DSNTIAD to terminate if more than 10 errors occur. Your invocation looks like the
one that is shown in the following figure:
//RUNTIAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA11) PARMS(’RC0’) -

LIB(’DSNB10.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
UPDATE DSN8B10.PROJ SET DEPTNO=’J01’ WHERE DEPTNO=’A01’;
UPDATE DSN8B10.PROJ SET DEPTNO=’J02’ WHERE DEPTNO=’A02’;...
UPDATE DSN8B10.PROJ SET DEPTNO=’J20’ WHERE DEPTNO=’A20’;

DSNTEP2 and DSNTEP4
Use the DSNTEP2 or DSNTEP4 programs to execute SQL statements dynamically.

Appendix D. Productivity-aid sample programs 1101

DSNTEP4 is identical to DSNTEP2 except that it uses multi-row fetch for increased
performance. When multi-row fetch is used, parallelism might be disabled in the
last parallel group in the top-level query block for a query. For very simple
queries, parallelism might be disabled for the entire query when multi-row fetch is
used. To obtain full parallelism, either use DSNTEP2 or specify the control option
SET MULT_FETCH 1 for DSNTEP4.

DSNTEP2 and DSNTEP4 write their results to the data set that is defined by the
SYSPRINT DD statement. SYSPRINT data must have a logical record length of 133
bytes (LRECL=133). Otherwise, the program issues return code 12 with abend
U4038 and reason code 1. This abend occurs due to the PL/I file exception error
IBM0201S ONCODE=81. The following error message is issued:
The UNDEFINEDFILE condition was raised because of conflicting DECLARE
and OPEN attributes (FILE= SYSPRINT).

Important: When you allocate a new data set with the SYSPRINT DD statement,
either specify a DCB with RECFM=FBA and LRECL=133, or do not specify the
DCB parameter.

DSNTEP2 and DSNTEP4 parameters:

ALIGN(MID) or ALIGN(LHS)
Specifies the alignment.

ALIGN(MID)
Specifies that DSNTEP2 or DSNTEP4 output should be centered.
ALIGN(MID) is the default.

ALIGN(LHS)
Specifies that the DSNTEP2 or DSNTEP4 output should be left-justified.

NOMIXED or MIXED
Specifies whether DSNTEP2 or DSNTEP4 contains any DBCS characters.

NOMIXED
Specifies that the DSNTEP2 or DSNTEP4 input contains no DBCS
characters. NOMIXED is the default.

MIXED
Specifies that the DSNTEP2 or DSNTEP4 input contains some DBCS
characters.

PREPWARN
Specifies that DSNTEP2 or DSNTEP4 is to display details about any SQL
warnings that are encountered at PREPARE time.

Regardless of whether you specify PREPWARN, when an SQL warning is
encountered at PREPARE time, the program displays the message SQLWARNING
ON PREPARE and sets the return code to 4. When you specify PREPWARN, the
program also displays the details about any SQL warnings.

SQLFORMAT
Specifies how DSNTEP2 or DSNTEP4 pre-processes SQL statements before
passing them to DB2. Select one of the following options:

SQL This is the preferred mode for SQL statements other than SQL
procedural language. When you use this option, which is the default,
DSNTEP2 or DSNTEP4 collapses each line of an SQL statement into a
single line before passing the statement to DB2. DSNTEP2 or DSNTEP4
also discards all SQL comments.

1102 Utility Guide and Reference

SQLCOMNT
This mode is suitable for all SQL, but it is intended primarily for SQL
procedural language processing. When this option is in effect, behavior
is similar to SQL mode, except that DSNTEP2 or DSNTEP4 does not
discard SQL comments. Instead, it automatically terminates each SQL
comment with a line feed character (hex 25), unless the comment is
already terminated by one or more line formatting characters. Use this
option to process SQL procedural language with minimal modification
by DSNTEP2 or DSNTEP4.

SQLPL
This mode is suitable for all SQL, but it is intended primarily for SQL
procedural language processing. When this option is in effect,
DSNTEP2 or DSNTEP4 retains SQL comments and terminates each line
of an SQL statement with a line feed character (hex 25) before passing
the statement to DB2. Lines that end with a split token are not
terminated with a line feed character. Use this mode to obtain
improved diagnostics and debugging of SQL procedural language.

SQLTERM(termchar)
Specifies the character that you use to end each SQL statement. You can use
any character except one of those that are listed in Table 160 on page 1100.
SQLTERM(;) is the default.

Use a character other than a semicolon if you plan to execute a statement that
contains embedded semicolons.

Example: Suppose that you specify the parameter SQLTERM(#) to indicate that
the character # is the statement terminator. Then a CREATE TRIGGER
statement with embedded semicolons looks like this:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

A CREATE PROCEDURE statement with embedded semicolons looks like the
following statement:
CREATE PROCEDURE PROC1 (IN PARM1 INT, OUT SCODE INT)

LANGUAGE SQL
BEGIN

DECLARE SQLCODE INT;
DECLARE EXIT HANDLER FOR SQLEXCEPTION

SET SCODE = SQLCODE;
UPDATE TBL1 SET COL1 = PARM1;

END #

Be careful to choose a character for the statement terminator that is not used
within the statement.

If you want to change the SQL terminator within a series of SQL statements,
you can use the --#SET TERMINATOR control statement.

Example: Suppose that you have an existing set of SQL statements to which
you want to add a CREATE TRIGGER statement that has embedded
semicolons. You can use the default SQLTERM value, which is a semicolon, for
all of the existing SQL statements. Before you execute the CREATE TRIGGER
statement, include the --#SET TERMINATOR # control statement to change the
SQL terminator to the character #:

Appendix D. Productivity-aid sample programs 1103

SELECT * FROM DEPT;
SELECT * FROM ACT;
SELECT * FROM EMPPROJACT;
SELECT * FROM PROJ;
SELECT * FROM PROJACT;
--#SET TERMINATOR #
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

See the following discussion of the SYSIN data set for more information about
the --#SET control statement.

TOLWARN
Indicates whether DSNTEP2 or DSNTEP4 continues to process SQL SELECT
statements after receiving an SQL warning. You can specify one of the
following values:

NO Indicates that the program stops processing the SELECT statement if a
warning occurs when the program executes an OPEN or FETCH for a
SELECT statement. NO is the default value for TOLWARN.

The following exceptions exist:
v If SQLCODE +445 or SQLCODE +595 occurs when DSNTEP2 or

DSNTEP4 executes a FETCH for a SELECT statement, the program
continues to process the SELECT statement.

v If SQLCODE +802 occurs when DSNTEP2 or DSNTEP4 executes a
FETCH for a SELECT statement, the program continues to process the
SELECT statement if the TOLARTHWRN control statement is set to YES.

YES
Indicates that the program continues to process the SELECT statement if a
warning occurs when the program executes an OPEN or FETCH for a
SELECT statement.

DSNTEP2 and DSNTEP4 data sets:

The following data sets are used by DSNTEP2 and DSNTEP4:

SYSIN
Input data set. In this data set, you can enter any number of SQL
statements, each terminated with a semicolon. A statement can span
multiple lines, but DSNTEP2 or DSNTEP4 reads only the first 72 bytes of
each line. You must explicitly commit any SQL statements except the last
one.

You can enter comments in DSNTEP2 or DSNTEP4 input with an asterisk
(*) in column 1 or two hyphens (--) anywhere on a line. Text that follows
the asterisk is considered to be comment text. Text that follows two
hyphens can be comment text or a control statement.Comments are not
considered in dynamic statement caching. Comments and control
statements cannot span lines.

You can enter control statements of the following form in the DSNTEP2
and DSNTEP4 input data set:
--#SET control-option value

1104 Utility Guide and Reference

You can specify the following control options. If you specify a value of NO
for any of the options in this list, the program behaves as if you did not
specify the parameter.

TERMINATOR
The SQL statement terminator. value is any single-byte character other
than one of those that are listed in Table 160 on page 1100. The default
is the value of the SQLTERM parameter.

ROWS_FETCH
The number of rows that are to be fetched from the result table. value
is a numeric literal between -1 and the number of rows in the result
table. -1 means that all rows are to be fetched. The default is -1.

ROWS_OUT
The number of fetched rows that are to be sent to the output data set.
value is a numeric literal between -1 and the number of fetched rows.
-1 means that all fetched rows are to be sent to the output data set. The
default is -1.

MULT_FETCH
This option is valid only for DSNTEP4. Use MULT_FETCH to specify
the number of rows that are to be fetched at one time from the result
table. The default fetch amount for DSNTEP4 is 100 rows, but you can
specify from 1 to 32676 rows.

TOLWARN
Indicates whether DSNTEP2 or DSNTEP4 continues to process SQL
SELECT statements after receiving an SQL warning. You can specify
one of the following values:

NO Indicates that the program stops processing the SELECT statement
if a warning occurs when the program executes an OPEN or
FETCH for a SELECT statement. NO is the default value for
TOLWARN.

The following exceptions exist:
v If SQLCODE +445 or SQLCODE +595 occurs when DSNTEP2 or

DSNTEP4 executes a FETCH for a SELECT statement, the
program continues to process the SELECT statement.

v If SQLCODE +802 occurs when DSNTEP2 or DSNTEP4 executes
a FETCH for a SELECT statement, the program continues to
process the SELECT statement if the TOLARTHWRN control
statement is set to YES.

YES
Indicates that the program continues to process the SELECT
statement if a warning occurs when the program executes an
OPEN or FETCH for a SELECT statement.

TOLARTHWRN
Indicates whether DSNTEP2 and DSNTEP4 continue to process an SQL
SELECT statement after an arithmetic SQL warning (SQLCODE +802)
is returned. value is either NO (the default) or YES.

PREPWARN
Specifies that DSNTEP2 or DSNTEP4 is to display details about any
SQL warnings that are encountered at PREPARE time.

Regardless of whether you specify PREPWARN, when an SQL warning
is encountered at PREPARE time, the program displays the message

Appendix D. Productivity-aid sample programs 1105

SQLWARNING ON PREPARE and sets the return code to 4. When you
specify PREPWARN, the program also displays the details about any
SQL warnings.

SQLFORMAT
Specifies how DSNTEP2 or DSNTEP4 pre-processes SQL statements
before passing them to DB2. Select one of the following options:

SQL This is the preferred mode for SQL statements other than SQL
procedural language. When you use this option, which is the
default, DSNTEP2 or DSNTEP4 collapses each line of an SQL
statement into a single line before passing the statement to
DB2. DSNTEP2 or DSNTEP4 also discards all SQL comments.

SQLCOMNT
This mode is suitable for all SQL, but it is intended primarily
for SQL procedural language processing. When this option is in
effect, behavior is similar to SQL mode, except that DSNTEP2
or DSNTEP4 does not discard SQL comments. Instead, it
automatically terminates each SQL comment with a line feed
character (hex 25), unless the comment is already terminated
by one or more line formatting characters. Use this option to
process SQL procedural language with minimal modification
by DSNTEP2 or DSNTEP4.

SQLPL
This mode is suitable for all SQL, but it is intended primarily
for SQL procedural language processing. When this option is in
effect, DSNTEP2 or DSNTEP4 retains SQL comments and
terminates each line of an SQL statement with a line feed
character (hex 25) before passing the statement to DB2. Lines
that end with a split token are not terminated with a line feed
character. Use this mode to obtain improved diagnostics and
debugging of SQL procedural language.

MAXERRORS
Specifies that number of errors that DSNTEP2 and DSNTEP4 handle
before processing stops. The default is 10.

SYSPRINT
Output data set. DSNTEP2 and DSNTEP4 write informational and error
messages in this data set. DSNTEP2 and DSNTEP4 write output records of
no more than 133 bytes.

Define all data sets as sequential data sets.

DSNTEP2 and DSNTEP4 return codes

Table 162. DSNTEP2 and DSNTEP4 return codes

Return code Meaning

0 Successful completion.

4 An SQL statement received a warning code.

8 An SQL statement received an error code.

12 The length of an SQL statement was more than 32760 bytes, an SQL
statement returned a severe error code (-8nn or -9nn), or an error
occurred in the SQL message formatting routine.

1106 Utility Guide and Reference

Example of DSNTEP2 invocation

Suppose that you want to use DSNTEP2 to execute SQL SELECT statements that
might contain DBCS characters. You also want left-aligned output. Your invocation
looks like the one in the following figure.
//RUNTEP2 EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTEP2) PLAN(DSNTEP11) PARMS(’/ALIGN(LHS) MIXED TOLWARN(YES)’) -

LIB(’DSNB10.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
SELECT * FROM DSN8B10.PROJ;

Example of DSNTEP4 invocation

Suppose that you want to use DSNTEP4 to execute SQL SELECT statements that
might contain DBCS characters, and you want center-aligned output. You also
want DSNTEP4 to fetch 250 rows at a time. Your invocation looks like the one in
the following figure:
//RUNTEP2 EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTEP4) PLAN(DSNTEP11) PARMS(’/ALIGN(MID) MIXED’) -

LIB(’DSNB10.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
--#SET MULT_FETCH 250
SELECT * FROM DSN8B10.EMP;

Appendix D. Productivity-aid sample programs 1107

1108 Utility Guide and Reference

Appendix E. DSNADMSB

The DSNADMSB program collects information about a DB2 subsystem and its
objects and applications.

IBM Software Support can use the information that DSNADMSB gathers to
duplicate a customer environment to diagnose and resolve problems. This
capability is especially useful for re-creating performance problems.

Output

Output from the DSNADMSB program consists of files that contain one or more of
the following items:
v Data definition statements for re-creating user objects
v Statistics from the DB2 catalog
v INSERT statements for inserting rows into tables:

– DSN_PROFILE_ATTRIBUTES
– DSN_PROFILE_TABLE
– PLAN_TABLE
– SYSACCELERATEDTABLES
– SYSACCELERATORS
– SYSACCELIPLIST

v Output from:
– DSN_DETCOST_TABLE
– DSN_PREDICAT_TABLE
– DSN_PROFILE_TABLE
– DSN_PROFILE_ATTRIBUTES
– PLAN_TABLE
– SYSACCELERATEDTABLES
– SYSACCELERATORS
– SYSACCELIPLIST

v Subsystem parameter settings and module entry point list (MEPL) information
v Module entry point list (MEPL) information that relates to query processing
v Status information from stored procedure ADMIN_INFO_SQL

Authorization required

To execute DSNADMSB, you must have the following DB2 privileges or
authorities:
v EXECUTE authority on plan DSNADMSB
v One of the following privileges or authorities:

– The EXECUTE privilege on the ADMIN_INFO_SQL stored procedure
– Ownership of the ADMIN_INFO_SQL stored procedure
– SYSADM authority

In addition, if you direct DSNADMSB to write its output to data sets, you need to
be authorized to perform either of the following tasks:
v Create data sets
v Write to already existing data sets

© Copyright IBM Corp. 1983, 2013 1109

Parameters of the DSNADMSB program
The parameters of the DSNADMSB program determine the types of information
that the program gathers, and the destination to which the information is written.

All parameters are positional and required, and no parameter value can be NULL.
Specify parameters in a data set that is associated with the INPUTP DD statement,
with one parameter value in each record. A single parameter can span multiple
records. Indicate continuation of the text for a parameter with a plus sign (+) in
column one of all records after the first one. DSNADMSB trims blanks at the end
of all lines. DSNADMSB does not trim blanks within the parameter text.

Parameter descriptions

table-creator
The qualifier for the table, table list table (LIST_TABLE-list-table), or
PLAN_TABLE for which DSNADMSB gathers information. The maximum
length of table-creator is 128 bytes. table-creator cannot be null.

table-name
One of the following values:
v The name of a single user object that has table-creator as its qualifier. The

name must identify one of the following types of objects:
– Base table
– View
– Alias
– Clone table
– Created temporary table
– History table
– Materialized query table
– Implicitly created table for an XML column

v LIST_TABLE-list-table

list-table identifies a DB2 table on the local subsystem that has table-creator as
the qualifier. The table must contain two columns, named CREATOR and
TABLE. Each row of list-table identifies a table or view for which
DSNADMSB is to gather information. The types of tables that are specified
in LIST_TABLE-list-table are the same as the types of tables that can be
specified by table-name.

v PLAN_TABLE
Specifies that DSNADMSB uses table-creator.PLAN_TABLE and the plan-info
parameter to determine the tables about which information is gathered. The
referenced PLAN_TABLE must be a base table.

Recommendation: When you specify PLAN_TABLE, ensure that the view
reference table, DSN_VIEWREF_TABLE, exists before you execute EXPLAIN.
The existence of DSN_VIEWREF_TABLE is especially important if the
queries about which you are collecting information contain views. If
DSN_VIEWREF_TABLE exists and has been populated by EXPLAIN, you
can use DSNADMSB to collect view data that is specific to the queries of
interest, instead of collecting data on all view dependencies. The
DSN_VIEWREF_TABLE must have the same qualifier as the plan table. This
qualifier is the first DSNADMSB input parameter, table-creator.

The maximum length of table-name is 128 bytes.

If the table name is a delimited identifier, do not include the delimiters in
table-name.

1110 Utility Guide and Reference

catalog-creator
The qualifier for the DB2 catalog, or DEFAULT, which indicates that the
catalog qualifier is SYSIBM.

The maximum length of catalog-creator is 128 bytes.

plan-info
If the table that is specified by table-name is PLAN_TABLE, plan-info is a value
of the following form, or NONE:
program-begin-queryno-end-queryno

The meanings of these variables are:

program
A value from the PROGNAME column of the PLAN_TABLE, or a
pattern that specifies a set of PROGNAME values in the
PLAN_TABLE. Any pattern that is valid in a LIKE predicate can be
specified. program represents programs or packages for which
DSNADMSB collects PLAN_TABLE information.

begin-queryno
A value from the QUERYNO column of the PLAN_TABLE. The value
represents the lowest statement number for which DSNADMSB collects
PLAN_TABLE information.

end-queryno
A value from the QUERYNO column of the PLAN_TABLE. The value
represents the highest statement number for which DSNADMSB
collects PLAN_TABLE information.

If table-name does not specify PLAN_TABLE, the plan-info value must be
NONE.

The maximum length of plan-info is 150 bytes.

collect-ddl
Specifies whether DSNADMSB returns the data definition language statements
that were used to create the input tables or views that are specified by
table-name, and data definition language statements for related objects. The
length of collect-ddl is 1 byte.

When the input table is not PLAN_TABLE, possible values are:

N Do not return the data definition language statements that created the
objects.

Y Return the data definition language statements that created:
v The input objects
v Foreign keys that reference the input objects
v Views on the input objects

0 Return the data definition language statements that created:
v The input objects. Statements that create views on the input objects

or foreign keys that reference the input objects are not collected.

1 Return the data definition language statements that created:
v The input objects
v Views on the input objects

2 Return the data definition language statements that created:
v The input objects

Appendix E. DSNADMSB 1111

v Foreign keys that reference the input objects

3 Return the data definition language statements that created:
v The input objects
v Foreign keys that reference the input objects
v Views on the input objects
v Other objects that depend on the input objects, such as materialized

query tables

This option can result in a large amount of data. Do not use this option
for data collection that is requested by IBM Software Support.

4 Return the same data definition language statements that are returned
when option Y is specified.

When the input table is PLAN_TABLE, possible values are:

N Do not return the data definition language statements that created the
objects.

Y Return the data definition language statements that created:
v The objects that are identified by plan-info

v Foreign keys that reference the objects that are identified by plan-info

v If DSN_VIEWREF_TABLE exists and is populated, views or
materialized query tables that are used to process the queries that
are identified by plan-info.

v If DSN_VIEWREF_TABLE does not exist, views on objects that are
identified by plan-info. DSNADMSB requires more time to gather
data if DSN_VIEWREF_TABLE is not available than if
DSN_VIEWREF_TABLE is available.

0 Return the data definition language statements that created:
v The objects that are identified by plan-info only. Statements that

create views on the objects or foreign keys that reference the objects
that are identified by plan-info are not collected.

1 Return the data definition language statements that created:
v The objects that are identified by plan-info

v If DSN_VIEWREF_TABLE exists and is populated, views or
materialized query tables that are used to process the queries that
are identified by plan-info.

v If DSN_VIEWREF_TABLE does not exist, views on objects that are
identified by plan-info. DSNADMSB requires more time to gather
data if DSN_VIEWREF_TABLE is not available than if
DSN_VIEWREF_TABLE is available.

2 Return the data definition language statements that created:
v Foreign keys that reference the objects that are identified by plan-info

3 Return the data definition language statements that created:
v The objects that are identified by plan-info

v Foreign keys that reference the objects that are identified by plan-info

v Views on objects that are identified by plan-info

v Other objects that depend on the objects that are identified by
plan-info, such as materialized query tables

1112 Utility Guide and Reference

This option can result in a large amount of data. Do not use this option
for data collection that is requested by IBM Software Support.

4 Return the data definition language statements that created:
v The objects that are identified by plan-info

v Foreign keys that reference the objects that are identified by plan-info

v Views on objects that are identified by plan-info

This option does not use information from DSN_VIEWREF_TABLE.
DSNADMSB requires more time to gather data if you choose option 4
than if you choose option Y, and DSN_VIEWREF_TABLE is available.

collect-stats
Specifies whether DSNADMSB returns statistical information from DB2 catalog
tables about the tables that are specified by table-name and related objects.
Possible values are:

Y Return statistical information about tables from the DB2 catalog.

N Do not return statistical information about tables from the DB2 catalog.

Important: Setting a collect-stats value of Y might generate large amounts of
data. Set collect-stats to N unless you specifically need statistical information
from DB2 catalog tables.

The length of collect-stats is 1 byte.

collect-colstats
Specifies whether DSNADMSB returns statistical information from DB2 catalog
tables about the columns in tables that are specified by table-name and related
objects. Possible values are:

Y Return statistical information about columns from the DB2 catalog.

N Do not return statistical information about columns from the DB2
catalog.

Important: Setting a collect-colstats value of Y might generate large amounts of
data. Set collect-colstats to N unless you specifically need statistical information
from DB2 catalog tables.

The length of collect-colstats is 1 byte.

edit-ddl
Specifies whether DSNADMSB modifies the data definition language
statements that it generates so that the data definition language statements can
be more easily executed by IBM Software Support. Examples of changes that
DSNADMSB makes are:
v Setting the STOGROUP to SYSDEFLT
v Setting PRIQTY and SECQTY to their minimum values
v Setting DEFINE to NO
v Commenting out foreign key definitions

Possible values are:

Y Edit the data definition language statements that DSNADMSB
produces.

Y is the recommended value if you do not send data to populate the
tables that are specified by table-name to IBM Software Support.

Appendix E. DSNADMSB 1113

N Do not edit the data definition language statements that DSNADMSB
produces.

The length of edit-ddl is 1 byte.

edit-version-mode
Specifies whether DSNADMSB modifies the output so that it runs on a
different version of DB2 than the version of the subsystem from which the data
was collected. Possible values are:

9-C Modify the output for DB2 Version 9.1 for z/OS conversion mode.

9-N Modify the output for DB2 Version 9.1 for z/OS new-function mode.

10-C Modify the output for DB2 10 for z/OS conversion mode.

10-N Modify the output for DB2 10 for z/OS new-function mode.

NONE
Do not modify the output.

The maximum length of edit-version-mode is 4 bytes.

partition-rotation
Specifies whether DSNADMSB checks the amount of rotation that a partitioned
table has undergone. DSNADMSB determines the number of partition rotations
that are needed to synchronize logical partitions with physical partitions.
Possible values are:

Y Check for the amount of partition rotation.

Y is valid only for partitioned tables.

N Do not check for the amount of partition rotation.

The length of partition-rotation is 1 byte.

output-method
Specifies the type of destination for DSNADMSB output. Possible values are:

R Output is returned in the job stream. In most cases, R should be used.

Q Output is returned in data sets that DSNADMSB creates. You supply
the qualifier name and primary and secondary allocation quantities for
those data sets in the output-info parameter.

Important: The data sets are temporary data sets that are created on
scratch packs. Depending on how the z/OS system is configured, the
data sets might be deleted after a short time.

N Output is returned in existing data sets that are allocated by the WLM
environment startup procedure. You supply the data set names in the
output-info parameter.

D Output is returned in data sets that DSNADMSB creates. You supply
the data set names and primary and secondary allocation quantities for
those data sets in the output-info parameter.

The length of output-method is 1 byte.

output-info
Specifies output data set information. The information depends on the value of
output-method:

1114 Utility Guide and Reference

output-method value output-info value

R NONE

Q A string of this form:

qualifier-primary-secondary

qualifier A string of up to 29 bytes, or DEFAULT. DSNADMSB appends a string that
defines the type of output data set. If qualifier is not DEFAULT, qualifier
must conform to the rules for z/OS data set names. If qualifier is DEFAULT,
DSNADMSB generates a qualifier value of the following form:

PMnnnnn.Dyymmdd.Thhmmss

nnnnn is the PMR number. yymmdd and hhmmss are the date and time when
DSNADMSB ran.

The strings that DSNADMSB appends to qualifier are:

v .DDL for the data set that contains data definition statements for user
tables or the PLAN_TABLE

v .SQL for the data set that contains SQL statements that populate
PLAN_TABLE, DSN_PROFILE_TABLE, DSN_PROFILE_ATTRIBUTES,
SYSACCELERATORS and SYSACCELIPLIST

v .STATS for the data set that contains SQL statements that populate DB2
catalog tables with statistical information about tables

v .COLST for the data set that contains SQL statements that populate DB2
catalog tables with statistical information about columns

v .EXPL for the data set that contains output from tables PLAN_TABLE,
DSN_PREDICAT_TABLE, DSN_DETCOST_TABLE,
DSN_PROFILE_TABLE, DSN_PROFILE_ATTRIBUTES,
SYSACCELERATORS and SYSACCELIPLIST

v .PARM for the data set that contains subsystem parameter settings

primary The primary allocation quantity for the output data sets, or DEFLT. If you
specify DEFLT, the primary allocation quantity is 200 tracks.

secondary
The secondary allocation quantity for the output data sets, or DEFLT. If you
specify DEFLT, the secondary allocation quantity is 200 tracks.

N A string of this form:

ddldd-sqldd-statsdd-colstdd-colstdd-parmdd

Each part of the string is the DD name for a data set that is defined in the WLM
startup procedure for the WLM environment in which the ADMIN_INFO_SQL
stored procedure runs. The DD names are:

v ddldd for the data set that contains data definition statements for user tables or the
PLAN_TABLE

v sqldd for the data set that contains SQL statements that populate PLAN_TABLE,
DSN_PROFILE_TABLE, DSN_PROFILE_ATTRIBUTES, SYSACCELERATORS and
SYSACCELIPLIST

v statsdd for the data set that contains SQL statements that populate DB2 catalog
tables with statistical information about tables

v colstdd for the data set that contains SQL statements that populate DB2 catalog
tables with statistical information about columns

v expldd for the data set that contains output from tables PLAN_TABLE,
DSN_PREDICAT_TABLE, DSN_DETCOST_TABLE, DSN_PROFILE_TABLE,
DSN_PROFILE_ATTRIBUTES, SYSACCELERATORS and SYSACCELIPLIST

v parmdd for the data set that contains subsystem parameter settings

Appendix E. DSNADMSB 1115

output-method value output-info value

D A string of this form:

DDL;dsname;volser;allocunits;primary;secondary-
SQL;dsname;volser;allocunits;primary;secondary-
STATS;dsname;volser;allocunits;primary;secondary-
COLST;dsname;volser;allocunits;primary;secondary-
EXPL;dsname;volser;allocunits;primary;secondary-
PARM;dsname;volser;allocunits;primary;secondary

The meanings of the items in the string are:

DDL, SQL, STATS, COLST, EXPL, PARM
Identifies the type of output that DSNADMSB puts in the data set:

v DDL for the data set that contains data definition statements for user
tables or the PLAN_TABLE

v SQL for the data set that contains SQL statements that populate
PLAN_TABLE, DSN_PROFILE_TABLE, DSN_PROFILE_ATTRIBUTES,
SYSACCELERATORS and SYSACCELIPLIST

v STATS for the data set that contains SQL statements that populate DB2
catalog tables with statistical information about tables

v COLST for the data set that contains SQL statements that populate DB2
catalog tables with statistical information about columns

v EXPL for the data set that contains output from tables PLAN_TABLE,
DSN_PREDICAT_TABLE, DSN_DETCOST_TABLE,
DSN_PROFILE_TABLE, DSN_PROFILE_ATTRIBUTES,
SYSACCELERATORS and SYSACCELIPLIST

v PARM for the data set that contains subsystem parameter settings

dsname The fully qualified name of the data set that DSNADMSB allocates, or
DEFAULT. If you specify DEFAULT, the data set names have this form:

PMnnnnn.Dyymmdd.Thhmmss.Vn.COLST
PMnnnnn.Dyymmdd.Thhmmss.Vn.DDL
PMnnnnn.Dyymmdd.Thhmmss.Vn.EXPL
PMnnnnn.Dyymmdd.Thhmmss.Vn.PARM
PMnnnnn.Dyymmdd.Thhmmss.Vn.SQL
PMnnnnn.Dyymmdd.Thhmmss.Vn.STATS

nnnnn is the PMR number, without the branch code or country code.

yymmdd is the date and hhmmss is the time when DSNADMSB ran.

n is a release indicator.

volser The volume serial on which the data set is created.

allocunits
Valid values are TRK or CYL.

primary The primary allocation quantity for the output data set.

secondary
The secondary allocation quantity for the output data set.

The maximum length of output-info is 1024 bytes.

pmr-info
The number of the PMR for which the data is being collected, in this form:
number.branch-code.country-code

1116 Utility Guide and Reference

Related reference:
“Examples of DSNADMSB invocation” on page 1119
“Data sets that DSNADMSB uses”

PLAN_TABLE (DB2 Performance)

Before running DSNADMSB
Certain activities might be required before you run the DSNADMSB program.

Before you run DSNADMSB, perform the following actions:
v Check that the SYSPROC.ADMIN_INFO_SQL stored procedure that is supplied

by DB2 is installed. In general, this activity is performed during the installation
process.
Installation job DSNTIJRT installs all DB2-supplied routines and sets up the
WLM environments for them.

v Check that the plan for DSNADMSB is bound. In general, this activity is
performed during the installation process. Installation job DSNTIJSG binds the
package and plan for DSNADMSB.

v Ensure that enough space is available for the output. DSNADMSB might
generate large amounts of data. The average is 2 - 3 MB of space, but larger
workloads might generate up to 20 MB of data.

v Prepare a job for running DSNADMSB. The easiest way to do that is to
customize a copy of sample job DSNTEJ6I, which is in data set
prefix.SDSNSAMP. The job prolog has detailed instructions on how to customize
the job.

v

Recommendation: If you are running DSNADMSB to collect information from
the plan table, PLAN_TABLE, ensure that the view reference table,
DSN_VIEWREF_TABLE, also exists before you execute EXPLAIN. The existence
of DSN_VIEWREF_TABLE is especially important if the queries about which you
are collecting information contain views. If DSN_VIEWREF_TABLE exists and
has been populated by EXPLAIN, you can use DSNADMSB to collect view data
that is specific to the queries of interest, instead of collecting data on all view
dependencies. The DSN_VIEWREF_TABLE must have the same qualifier as the
plan table. This qualifier is the first DSNADMSB input parameter, table-creator.

Related concepts:

Job DSNTIJRT (DB2 Installation and Migration)
Related reference:
“Data sets that DSNADMSB uses”
“Parameters of the DSNADMSB program” on page 1110

Job DSNTIJSG (DB2 Installation and Migration)

ADMIN_INFO_SQL stored procedure (DB2 Administration Guide)

DSN_VIEWREF_TABLE (DB2 Performance)

Data sets that DSNADMSB uses
The DSNADMSB utility uses a number of data sets during its operation.

Appendix E. DSNADMSB 1117

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_plantable.htm#db2z_plantable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_jobdsntijrt.htm#db2z_jobdsntijrt
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_jobdsntijsg.htm#db2z_jobdsntijsg
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_sp_admininfosql.htm#db2z_sp_admininfosql
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_dsnviewreftable.htm#db2z_dsnviewreftable

DSNADMSB runs under the DSN DB2 command processor. The following table
lists the data sets that DSNADMSB uses, in addition to the standard data sets that
are required for running an application under DSN.

Table 163. Data sets that DSNADMSB uses

Data set type DD name Description Required?

Input INPUTP Contains the DSNADMSB
parameters. The INPUTP data
set must have a logical record
length of 80. Only bytes 1
through 71 can contain input
data.

Yes

Output None Up to six data sets that contain
the diagnostic data that
DSNADMSB generates. The data
set names and characteristics are
determined by the values that
you specify for the output-method
and output-info input parameter
values.

Yes

Copying the data that DSNADMSB and ADMIN_INFO_SQL collect to
another subsystem

The jobs that DSNADMSB and ADMIN_INFO_SQL produce are primarily
intended for the use of IBM Software Support. However, you can modify those
jobs so that you can run them on your own test systems to reproduce a problem
environment.

Procedure
1. Ensure that your test system does not contain data that conflicts with the data

that DSNADMSB or ADMIN_INFO_SQL collects.

Recommendation: Use a newly installed DB2 subsystem for testing.
2. Customize the jobs:

a. Modify the JOB statement for your test system.
b. Change the subsystem name to the subsystem name for your test system.
c. Change the steps that run TSOBATCH so that they run IKJEFT01. For

example, suppose that the original code looks like this:
//SETUP EXEC TSOBATCH,DB2LEV=DB2A

You need to change the code to something like this:
//SETUP EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *

d. Change the steps that run DSNTEP3 so that they run DSNTEP2. For
example, suppose that the original code looks like this:
//SYSTSIN DD *
DSN S(SSTR) R(1) T(1)
RUN PROGRAM(DSNTEP3)
END

You need to change the code to something like this:

1118 Utility Guide and Reference

//SYSTSIN DD *
DSN S(SSTR) R(1) T(1)
RUN PROGRAM(DSNTEP2) PLAN(DSNTEPB1) +

LIB(’DSNB10.RUNLIB.LOAD’)
END

3. Set the subsystem parameters on the test system as indicated in the output file
that contains subsystem parameter values (PARM file).
If DSNADMSB or ADMIN_INFO_SQL output is returned in a single job stream
(output-method is R), the subsystem parameter output is at the end of the job
output.

4. In the data definition language job (the job that contains ** DDL
Information **), make these changes:
a. Modify the -ALTER BUFFERPOOL statements at the end of the job to

contain settings that are appropriate for your test system.
b. Remove the asterisks (**) in front of the -ALTER BUFFERPOOL statements.
c. Move the -ALTER BUFFERPOOL statements to the place in the job that

says:
**BUFFERPOOL INFORMATION GOES HERE

5. Run the remainder of the jobs, in the following order:
a. Data definition language job (contains ** DDL

Information **)
b. Statistics INSERTs job (contains ** Stats

inserts **)
c. Column statistics INSERTs job (contains ** Column Stats

inserts **)
d. Plan, profile and accelerator INSERTs job (contains ** Plan, Profile and

Accelerator Inserts **)

Examples of DSNADMSB invocation
Use the DSNADMSB invocation examples as models for generating your own
DSNADMSB output.

Example: Collecting data from a PLAN_TABLE

Suppose that you want DSNADMSB to retrieve data from plan table
SYSADM.PLAN_TABLE rows for which PROGNAME is APROGRAM and
1<=QUERYNO<=12345. You want DSNADMSB to create the output in data sets
whose names and characteristics you specify. The parameter values that you
specify are:

Parameter Value Explanation

table-creator SYSADM These two parameters direct
DSNADMSB to collect data from
SYSADM.PLAN_TABLE.

table-name PLAN_TABLE

catalog-creator DEFAULT For catalog queries, directs
DSNADMSB to use the default
catalog table qualifier of SYSIBM.

plan-info APROGRAM-1-12345 Directs DSNADMSB to collect
data only for rows for which
PROGNAME is 'APROGRAM'
and QUERYNO is between 1 and
12345, inclusive.

Appendix E. DSNADMSB 1119

Parameter Value Explanation

collect-ddl Y Directs DSNADMSB to collect
the data definition statements
that created
SYSADM.PLAN_TABLE and
associated objects.

collect-stats Y Directs DSNADBMSB to collect
statistics about tables from the
DB2 catalog.

collect-colstats N Directs DSNADBMSB not to
collect statistics about table
columns from the DB2 catalog.

edit-ddl Y Directs DSNADMSB to modify
the data definition language
statements that it generates so
that the data definition language
statements can be more easily
executed by IBM Software
Support.

edit-version-mode NONE Directs DSNADMSB not to
modify its output to run on a
different DB2 version from the
version for which the data was
collected.

partition-rotation N Directs DSNADMSB not to check
partition rotation.

output-method D These two parameters direct
DSNADMSB to write data to
output data sets that
DSNADMSB allocates on volume
EDSDMP, with the specified data
set names and space allocations.

output-info DDL;SYSADM.DDL.P12345;EDSDMP;TRK;200;200-
+SQL;SYSADM.SQL.P12345;EDSDMP;TRK;200;200-
+STATS;SYSADM.STATS.P12345;EDSDMP;TRK;200;200-
+COLST;DEFAULT;EDSDMP;TRK;50;50-
+EXPL;SYSADM.EXPL.P12345;EDSDMP;TRK;200;200-
+PARM;SYSADM.PARM.P12345;EDSDMP;TRK;200;200

pmr-info 12345.000.000 This is the PMR number for the
problem that requires data
collection.

The JCL for the step that executes DSNADMSB looks like this:
//DSNADMSB EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=4096)
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *

DSN SYSTEM(DSN)
RUN PROGRAM(DSNADMSB) PLAN(DSNADMSB)

//INPUTP DD *
SYSADM
PLAN_TABLE
DEFAULT
APROGRAM-1-12345
Y
Y
N
Y
NONE
N
D

1120 Utility Guide and Reference

DDL;SYSADM.DDL.P12345;EDSDMP;TRK;200;200-
+SQL;SYSADM.SQL.P12345;EDSDMP;TRK;200;200-
+STATS;SYSADM.STATS.P12345;EDSDMP;TRK;200;200-
+COLST;DEFAULT;EDSDMP;TRK;50;50-
+EXPL;SYSADM.EXPL.P12345;EDSDMP;TRK;200;200-
+PARM;SYSADM.PARM.P12345;EDSDMP;TRK;200;200
12345.000.000

Example: Collecting data for all rows in a PLAN_TABLE

Suppose that you want DSNADMSB to retrieve data about all rows in a
PLAN_TABLE. You want DSNADMSB to generate the names for the output data
sets. The generated names are:
v PM11111.Dyymmdd.Dhhmmss.COLST
v PM11111.Dyymmdd.Dhhmmss.DDL
v PM11111.Dyymmdd.Dhhmmss.EXPL
v PM11111.Dyymmdd.Dhhmmss.PARM
v PM11111.Dyymmdd.Dhhmmss.SQL
v PM11111.Dyymmdd.Dhhmmss.STATS

11111 is the PMR number. yymmdd and hhmmss are the date and time when
DSNADMSB ran.

The parameter values that you specify are:

Parameter Value Explanation

table-creator SYSADM These two parameters direct
DSNADMSB to collect data about
SYSADM.PLAN_TABLE.

table-name PLAN_TABLE

catalog-creator DEFAULT For catalog queries, directs
DSNADMSB to use the default
catalog table qualifier of SYSIBM.

plan-info %-0-999999 This parameter tells DSNADMSB
to collect data for all rows in
SYSADM.PLAN_TABLE by
requesting all rows for which
PROGNAME='%' and
0<=QUERYNO<=999999.

collect-ddl Y Directs DSNADMSB to collect
the data definition statements
that created
SYSADM.PLAN_TABLE and
associated objects.

collect-stats Y Directs DSNADBMSB to collect
statistics about tables from the
DB2 catalog.

collect-colstats N Directs DSNADBMSB not to
collect statistics about table
columns from the DB2 catalog.

edit-ddl Y Directs DSNADMSB to modify
the data definition language
statements that it generates so
that the data definition language
statements can be more easily
executed by IBM Software
Support.

Appendix E. DSNADMSB 1121

Parameter Value Explanation

edit-version-mode NONE Directs DSNADMSB not to
modify its output to run on a
different DB2 version from the
version for which the data was
collected.

partition-rotation N Directs DSNADMSB not to check
partition rotation.

output-method Q Q directs DSNADMSB to write
output data to data sets that
DSNADMSB creates. All output
data sets have a data set qualifier
of SYSADM, a primary allocation
quantity of 200, and a secondary
allocation quantity of 200.

output-info DEFAULT-200-200

pmr-info 11111.000.000 This is the PMR number for the
problem that requires data
collection.

The JCL for the step that executes DSNADMSB looks like this:
//DSNADMSB EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=4096)
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *

DSN SYSTEM(DSN)
RUN PROGRAM(DSNADMSB) PLAN(DSNADMSB)

//INPUTP DD *
SYSADM
PLAN_TABLE
DEFAULT
%-0-999999
Y
Y
N
Y
NONE
N
Q
DEFAULT-200-200
11111.000.000

Example: Collecting data using a table list as input

Suppose that you want DSNADMSB to retrieve data about the DSN8B10.EMP table
and the DSN8B10.VDEPT view. You want DSNADMSB to send the output to the
job stream.

Before you run DSNADMSB, you need to create a DB2 table with a CREATOR and
a TABLE column, and insert rows that contain the qualifiers and names of the
tables or views for which you want DSNADMSB to collect data. Use SQL
statements like these:
CREATE TABLE TL1 (CREATOR VARCHAR(128),

TABLE VARCHAR(128));
INSERT INTO TL1 VALUES (’DSN8B10’,’EMP’);
INSERT INTO TL1 VALUES (’DSN8B10’,’VDEPT’);

The parameter values that you specify are:

1122 Utility Guide and Reference

Parameter Value Explanation

table-creator SYSADM These two parameters direct
DSNADMSB to collect data about
the tables whose names are in
table SYSADM.LIST_TABLE-TL1.

table-name LIST_TABLE-TL1

catalog-creator DEFAULT For catalog queries, directs
DSNADMSB to use the default
catalog table qualifier of SYSIBM.

plan-info NONE This value must be NONE,
because PLAN_TABLE data is
not being collected.

collect-ddl Y Directs DSNADMSB to collect
the data definition statements
that created
SYSADM.PLAN_TABLE and
associated objects.

collect-stats Y Directs DSNADBMSB to collect
statistics about tables from the
DB2 catalog.

collect-colstats N Directs DSNADBMSB not to
collect statistics about table
columns from the DB2 catalog.

edit-ddl Y Directs DSNADMSB to modify
the data definition language
statements that it generates so
that the data definition language
statements can be more easily
executed by IBM Software
Support.

edit-version-mode NONE Directs DSNADMSB not to
modify its output to run on a
different DB2 version from the
version for which the data was
collected.

partition-rotation N Directs DSNADMSB not to check
partition rotation.

output-method R R directs DSNADMSB to write
output data to the job stream.
When output-method is R,
output-info must be NONE.

output-info NONE

pmr-info 12345.000.000 This is the PMR number for the
problem that requires data
collection.

The JCL for the step that executes DSNADMSB looks like this:
//DSNADMSB EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=4096)
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *

DSN SYSTEM(DSN)
RUN PROGRAM(DSNADMSB) PLAN(DSNADMSB)

//INPUTP DD *
SYSADM
LIST_TABLE-TL1

Appendix E. DSNADMSB 1123

DEFAULT
NONE
Y
Y
N
Y
NONE
N
R
NONE
12345.000.000

Example: Collecting environment data

Suppose that you want DSNADMSB to retrieve environment data about the
ASCHEMA.ATABLE user table. You want DSNADMSB to send the output to the
job stream.

The parameter values that you specify are:

Parameter Value Explanation

table-creator ASCHEMA These two parameters direct
DSNADMSB to collect data about
table ASCHEMA.ANAME.

table-name ATABLE

catalog-creator DEFAULT For catalog queries, directs
DSNADMSB to use the default
catalog table qualifier of SYSIBM.

plan-info NONE This value must be NONE,
because PLAN_TABLE data is
not being collected.

collect-ddl Y Directs DSNADMSB to collect
the data definition statements
that created ASCHEMA.ANAME
and associated objects.

collect-stats Y Directs DSNADBMSB to collect
statistics about tables from the
DB2 catalog.

collect-colstats N Directs DSNADBMSB to collect
statistics about table columns
from the DB2 catalog.

edit-ddl Y Directs DSNADMSB to modify
the data definition language
statements that it generates so
that the data definition language
statements can be more easily
executed by IBM Software
Support.

edit-version-mode NONE Directs DSNADMSB not to
modify its output to run on a
different DB2 version from the
version for which the data was
collected.

partition-rotation N Directs DSNADMSB not to check
partition rotation.

1124 Utility Guide and Reference

Parameter Value Explanation

output-method R R directs DSNADMSB to write
output data to the job stream.
When output-method is R,
output-info must be NONE.

output-info NONE

pmr-info 12345.000.000 This is the PMR number for the
problem that requires data
collection.

The JCL for the step that executes DSNADMSB looks like this:
//DSNADMSB EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=4096)
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *

DSN SYSTEM(DSN)
RUN PROGRAM(DSNADMSB) PLAN(DSNADMSB)

//INPUTP DD *
ASCHEMA
ATABLE
DEFAULT
NONE
Y
Y
N
Y
NONE
N
R
NONE
12345.000.000

Collecting data for a table with a long table name with embedded
blanks

Suppose that you want to collect the same data as in the previous example for a
table with the schema name SYSADM, and the following name, which is 85 bytes
long:
A234567891 234567892 234567893 234567894 234567895 234567896 234567897-
234567898 2345

The record length of the INPUTP data set is 80 bytes, but only the first 71 bytes
can contain input data, so you need to split the schema name and table name
across input records. You can split the table name after any non-blank character in
the record. DSNADMSB trims blanks at the end of each record.

The INPUTP data set might look like this. The table name is split across three
records, after positions 50 and 65.
SYSADM
A234567891 234567892 234567893 234567894 234567895
+ 234567896 2345
+67897 234567898 2345
DEFAULT
NONE
Y
Y
N
Y
NONE

Appendix E. DSNADMSB 1125

N
R
NONE
12345.000.000

The first continued line must contain a blank after the plus sign, because the
character at position 51 of the table name is a blank. The second continued line
must not contain a blank after the plus sign, because the character at position 66 of
the table name is not a blank.

1126 Utility Guide and Reference

Appendix F. DSNTSMFD

The DSNTSMFD program decompresses DB2 trace records that were compressed
when they were written to SMF.

Trace records are compressed when subsystem parameter SMFCOMP is set to ON.

Authorization required

You need no special authorization is needed to run DSNTSMFD.

Input

Input to the DSNTSMFD program is one or more data sets that contain DB2 trace
records in standard SMF format. The data sets can contain SMF records of all
types, but DSNTSMFD decompresses only SMF type 100, 101, or 102 records.

The input data sets are allocated to DD name SMFINDD.

Output

The DSNTSMFD program produces the following output:
v A data set that contains all of the DB2 trace records that are in the input data

set. SMF type 100, 101, or 102 records are decompressed in the output data set.
If DSNTSMFD cannot decompress the SMF type 100, 101, or 102 records,
DSNTSMFD writes the compressed records to the output data set and issues a
warning.
This output data set is allocated to DD name SMFOUTDD.

v A data set that contains details about decompression, such as the number of
records that were decompressed, and the amount of space that was saved
through compression.
This output data set is allocated to DD name SYSPRINT.

Before running DSNTSMFD
Certain activities might be required before you run the DSNTSMFD program.

Before running DSNTSMFD:
v Prepare DSNTSMFD for execution.

Customize and run job DSNTEJDS to do that. The job prolog contains
instructions for customization.

v Dump SMF data to sequential data sets.
Use a utility such as IFASMFDP to do that.

© Copyright IBM Corp. 1983, 2013 1127

Data sets that DSNTSMFD uses
The DSNTSMFD utility uses a number of data sets during its operation.

The following table lists the data sets that DSNTSMFD uses.

Table 164. Data sets that DSNTSMFD uses

Data set type DD name Description Required?

Input SMFINDD One or more data sets that
contain DB2 trace records in
standard SMF format. The data
sets are sequential data sets that
contain the output of an SMF
dump utility, such as IFASMFDP.

Yes

Output SMFOUTDD A data set into which
DSNTSMFD writes the trace
records that are in the input data
sets, with SMF type 100, 101,
and 102 records decompressed.
This data set must have the
same data set characteristics as
the input data set, but must be
larger than the total size of all
input data sets, to accommodate
the decompressed records.

Yes

Output SYSPRINT A data set into which
DSNTSMFD writes a report
about SMF record
decompression, such as the
number of records that were
decompressed, and the amount
of space that was saved through
compression.

Yes

Examples of DSNTSMFD invocation
Use the DSNTSMFD invocation examples as models for generating your own
DSNTSMFD output.

Example: Decompression of DB2 trace records

Suppose that an SMF data set contains compressed DB2 trace records of SMF type
100, 101, or 102. You have dumped the data into sequential data set
DSNB10.SMFDATA. You want to write all of the SMF data to data set
DSNB10.SMFOUT, and you want any compressed SMF type 100, 101, or 102
records to be decompressed in DSNB10.SMFOUT.

The JCL for the step that executes DSNTSMFD looks like this:
//RUNSMFD EXEC PGM=DSNTSMFD
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SMFINDD DD DSN=DSNB10.SMFDATA,
// DISP=SHR
//SMFOUTDD DD DSN=DSNB10.SMFOUT,

1128 Utility Guide and Reference

// LIKE=DSNB10.SMFDATA,
// DISP=(,CATLG),
// UNIT=SYSDA,
// SPACE=(TRK,(1200,200))

The output looks like this:
*** DSNTSMFD *** STARTING 2011/06/27 15:55:39
--
Total records read:................................. 146232

Total DB2 records read:........................... 146183
Total DB2 compressed records read:.............. 146183
Total DB2 compressed records decompressed:...... 146183

Total non-DB2 records read:....................... 49

Aggregate size of all input records:................ 60334251 57M
Aggregate size of all input DB2 records:.......... 60323008 57M

Aggregate size of all DB2 compressed records:... 60323008 57M
Aggregate size of all output DB2 records:......... 102449084 97M

Aggregate size of all DB2 expanded records:..... 102449084 97M
Aggregate size of all non-DB2 input records:...... 11243 10K

Percentage saved using compression.............. 41%

Details by DB2 subsystem
Subsystem ID: DB2A

Number of records:.......................... 146183
Number of compressed records:............... 146183
Aggregate size of DB2 records:.............. 60323008 57M
Aggregate size of DB2 compressed records:... 60323008 57M
Aggregate size of DB2 expanded records:..... 102449084 97M
Percentage saved using compression.......... 41%

--

Appendix F. DSNTSMFD 1129

1130 Utility Guide and Reference

Appendix G. How real-time statistics are used by DB2 utilities

DB2 utilities use real-time statistics to optimize data processing and operations.

Utilities can use real-time statistics to calculate how data processing is done. This is
more efficient than using statistics typically gathered by the RUNSTATS utility or
stored in catalogs.

The use of real-time statistics eliminates some of the dependency on regularly
running the RUNSTATS utility, which is processing intensive and time consuming.

Using third-party vendor solutions that do not correctly manage real-time statistics
can cause unexpected errors.

If real-time statistics are available and the system parameter UTSORTAL is set to
YES, the following utilities use real-time statistics to help determine how data is
processed:
v CHECK DATA
v CHECK INDEX
v REBUILD INDEX
v REORG TABLESPACE
v RUNSTATS

The REORG TABLESPACE utility also uses real-time statistics to determine the size
of a hash space when reorganizing a hash table space and AUTOESTSPACE YES is
specified.

Additionally, the RUNSTATS utility uses real-time statistics when determining the
number of records to include when collecting a sampling of statistics.

DB2 issues message DSNU3343I if there are no real-time statistics available. This
message can be issued for either table spaces or indexes. When message
DSNU3343I is returned, DB2 tries to gather real-time statistics either from
associated indexes or table spaces, depending on what kind of real-time statistics
were not available. If no real-time statistics are available, DB2 uses RUNSTATS
based estimations.

When real-time statistics are not available, and a RUNSTATS control statement
with TABLESAMPLE SYSTEM n is run, RUNSTATS issues a message, and
continues with TABLESAMPLE SYSTEM AUTO behavior. If real-time statistics are
not available when RUNSTATS is run with TABLESAMPLE SYSTEM AUTO,
RUNSTATS sets the sampling rate to 100 and continues to run.

Table space and index characteristics

Utilities regularly gather information about table space or index characteristics. The
information is used to calculate statistics that help determine how a utility
processes data.

Utilities read the totals number of rows from the column TOTALROWS in the table
SYSIBM.SYSTABLESPACESTATS and the number of associated index keys from
column TOTALENTRIES in the table SYSIBM.SYSINDEXSPACESTATS. The

© Copyright IBM Corp. 1983, 2013 1131

statistics that are calculated from this information are used to estimate the number
of records that need to be sorted and the size of the required sort work data sets.

Recommendation: To prevent utilities from using incorrect values when table
spaces are replaced by utilities such as DSN1COPY or other utilities that are not
controlled by DB2, column information can be set to NULL. When information for
the columns is set to NULL, the number of records is estimated based on statistics
that are gathered by RUNSTATS. The columns are then re-initialized the next time
REORG TABLESPACE, LOAD REPLACE, or REBUILD INDEX runs. Alternatively,
running RUNSTATS with SHRLEVEL REFERENCE re-initializes the real-time
statistics column values.
Related tasks:

Setting up your system for real-time statistics (DB2 Performance)

1132 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_setup4realtimestatistics.htm#db2z_setup4realtimestatistics

Appendix H. Delimited file format

A delimited file is a sequential file with column delimiters. Each delimited file is a
stream of records, which consists of fields that are ordered by column.

Each record contains fields for one row. Within each row, individual fields are
separated by column delimiters. All fields must be delimited character strings,
non-delimited character strings, or external numeric values. Delimited character
strings can contain column delimiters and can also contain character string
delimiters when two successive character string delimiters are used to represent
one character.

All characters in all records are in the same CCSID. If EBCDIC or ASCII data
contains DBCS characters, the data must be in an appropriate mixed CCSID. If the
data is Unicode it must be in CCSID 1208.

The following figure describes the format of delimited files that can be loaded into
or unloaded from tables by using the LOAD and UNLOAD utilities.
Delimited file ::= Row 1 data ||

Row 2 data ||
.
.
.
Row n data

Row i data ::= Cell value(i,1) || Column delimiter ||
Cell value(i,2) || Column delimiter ||
.
.
.
Cell value(i,m)

Column delimiter ::= Character specified by COLDEL option;
the default value is a comma (,)

Cell value(i,j) ::= Leading spaces ||
External numeric values ||
Delimited character string ||
Non-delimited character string ||
Trailing spaces

Non-delimited character string ::= A set of any characters except
a column delimiter

Delimited character string ::= A character string delimiter ||
A set of any characters except a

character string delimiter unless
the character string delimiter is
part of two successive character
string delimiters ||

A character string delimiter ||
Trailing garbage

Character string delimiter ::= Character specified by CHARDEL option; the default
value is a double quotation mark (")

Trailing garbage ::= A set of any characters except a column delimiter

© Copyright IBM Corp. 1983, 2013 1133

Related concepts:
“Loading delimited files” on page 304
“Unloading delimited files” on page 857

Data types in delimited files
The LOAD and UNLOAD utilities can process delimited files. When you load a
delimited file, LOAD requires that the data in the file be in a certain form
depending on the data type. Similarly, when you unload data to a delimited file,
UNLOAD writes the data in a certain form depending on the data type.

The following table identifies the acceptable data type forms for the delimited file
format that the LOAD and UNLOAD utilities use.

Table 165. Acceptable data type forms for delimited files

Data type
Acceptable form for loading
a delimited file

Form that is created by
unloading a delimited file

CHAR, VARCHAR A delimited or non-delimited
character string

Character data that is
enclosed by character
delimiters. For VARCHAR,
length bytes do not precede
the data in the string.

GRAPHIC (any type)4 A delimited or non-delimited
character stream

Data that is unloaded as a
delimited character string.
For VARGRAPHIC, length
bytes do not precede the data
in the string.

INTEGER (any type)1 A stream of characters that
represents a number in
EXTERNAL format

Numeric data in external
format.

DECIMAL (any type) 2 A character string that
represents a number in
EXTERNAL format

A string of characters that
represents a number.

DECFLOAT EXTERNAL A character string that
represents

A SQL numeric constant.

FLOAT 3 A representation of a number
in the range -7.2E+75 to
7.2E+75 in EXTERNAL
format

A string of characters that
represents a number in
floating-point notation.

BLOB, CLOB A delimited or non-delimited
character string

Character data that is
enclosed by character
delimiters. Length bytes do
not precede the data in the
string.

DBCLOB A delimited or non-delimited
character string

Character data that is
enclosed by character
delimiters. Length bytes do
not precede the data in the
string.

Figure 159. Format of delimited files

1134 Utility Guide and Reference

Table 165. Acceptable data type forms for delimited files (continued)

Data type
Acceptable form for loading
a delimited file

Form that is created by
unloading a delimited file

DATE A delimited or non-delimited
character string that contains
a date value in EXTERNAL
format

Character string
representation of a date.

TIME A delimited or non-delimited
character string that contains
a time value in EXTERNAL
format

Character string
representation of a time.

TIMESTAMP A delimited or non-delimited
character string that contains
a timestamp value in
EXTERNAL format

Character string
representation of a
timestamp.

TIMESTAMP WITH TIME
ZONE

A delimited or non-delimited
character string that contains
a timestamp with time zone
value in EXTERNAL format

Character string
representation of a timestamp
with time zone.

Note:

1. Field specifications of INTEGER or SMALLINT are treated as INTEGER EXTERNAL.

2. Field specifications of DECIMAL, DECIMAL PACKED, or DECIMAL ZONED are treated
as DECIMAL EXTERNAL.

3. Field specifications of FLOAT, REAL, or DOUBLE are treated as FLOAT EXTERNAL.

4. EBCID graphic data must be enclosed in shift-out and shift-in characters.

Examples of delimited files
Use the examples as models to specify your own delimited files.

Example 1: Delimited file with delimited character strings

The following figure shows an example of a delimited file with delimited character
strings. In this example, the column delimiter is a comma (,). Because the character
strings contain the column delimiter character, they must be delimited with
character string delimiters. In this example, the character string delimiter is a
double quotation mark (").

Example 2: Delimited file with non-delimited character strings

The following figure shows an example of a delimited file with non-delimited
character strings. In this example, the column delimiter is a semicolon (;). Because
the character strings do not contain the column delimiter character, they do not
need to be delimited with character string delimiters.

"Smith, Bob",4973,15.46
"Jones, Bill",12345,16.34
"Williams, Sam",452,193.78

Figure 160. Example of a delimited file with delimited character strings

Appendix H. Delimited file format 1135

1136 Utility Guide and Reference

Information resources for DB2 for z/OS and related products

Information about DB2 for z/OS and products that you might use in conjunction
with DB2 for z/OS is available in online information centers or on library websites.

Obtaining DB2 for z/OS publications

The current DB2 for z/OS publications are available from the following website:

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/
alltoc/db2z_lib.htm

Links to the information center version and the PDF version of each publication
are provided.

DB2 for z/OS publications are also available for download from the IBM
Publications Center (http://www.ibm.com/shop/publications/order).

In addition, books for DB2 for z/OS are available on a CD-ROM that is included
with your product shipment:
v DB2 11 for z/OS Licensed Library Collection, LK5T-8882, in English. The

CD-ROM contains the collection of books for DB2 11 for z/OS in PDF format.
Periodically, IBM refreshes the books on subsequent editions of this CD-ROM.

Installable information center

You can download or order an installable version of the Information Management
Software for z/OS Solutions Information Center, which includes information about
DB2 for z/OS, QMF™, IMS, and many DB2 and IMS Tools products. You can install
this information center on a local system or on an intranet server. For more
information, see http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/
com.ibm.dzic.doc/installabledzic.htm.

Smith, Bob;4973;15.46
Jones, Bill;12345;16.34
Williams, Sam;452;193.78

Figure 161. Example of a delimited file with non-delimited character strings

© Copyright IBM Corp. 1983, 2013 1137

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://www.ibm.com/shop/publications/order
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm

1138 Utility Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1983, 2013 1139

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information
This information is intended to help you to use DB2 for z/OS utilities. This
information also documents General-use Programming Interface and Associated
Guidance Information and Product-sensitive Programming Interface and
Associated Guidance Information provided by DB2 11 for z/OS.

General-use Programming Interface and Associated Guidance
Information

General-use Programming Interfaces allow the customer to write programs that
obtain the services of DB2 11 for z/OS.

1140 Utility Guide and Reference

General-use Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

General-use Programming Interface and Associated Guidance Information...

Product-sensitive Programming Interface and Associated
Guidance Information

Product-sensitive Programming Interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this IBM software product. Use of such interfaces creates dependencies
on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces may
need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

PSPI Product-sensitive Programming Interface and Associated Guidance

Information... PSPI

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at http://www.ibm.com/
legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software

Notices 1141

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

1142 Utility Guide and Reference

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Glossary

The glossary is available in the Information Management Software for z/OS
Solutions Information Center.

See the Glossary topic for definitions of DB2 for z/OS terms.

© Copyright IBM Corp. 1983, 2013 1143

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z.doc.gloss/src/gloss/db2z_gloss.htm

1144 Utility Guide and Reference

Index

Numerics
32K

option of DSN1COMP utility 923
option of DSN1COPY utility 936
option of DSN1PRNT utility 981

A
abend, forcing 200
ABEND, option of DIAGNOSE utility 197
abnormal-termination, option of TEMPLATE statement 779
Access Method Services, new active log definition 894
access paths

resetting 762
accessibility

keyboard xvi
shortcut keys xvi

ACCESSPATH
option of MODIFY STATISTICS utility 382
option of REORG TABLESPACE utility 547

ACHKP 68
ACTION, option of DSN1SDMP utility 993
ACTION2

option of DSN1SDMP utility 993
active log

adding 894
data set with I/O error, deleting 897
defining in BSDS 894
deleting from BSDS 894
enlarging 894
recording from BSDS 894

active status, of a utility 33
AFTER, option of DSN1SDMP utility 993
AFTER2, option of DSN1SDMP utility 993
ALIAS, option of DSNJU003 utility 883
ALL

option of LISTDEF utility 209
option of REBUILD INDEX utility 413
option of RUNSTATS utility 736

ALLDUMPS, option of DIAGNOSE utility 197
ARCHIVE

option of LISTDEF utility 209
archive log

adding to BSDS 896
deleting from BSDS 896

ARCHLOG, option of REPORT utility 680
ASCII

option of LOAD utility 237
option of UNLOAD utility 806

authorization ID
naming convention xvii
primary 3
secondary 3
SQL 3

autonomic statistics
combining with manual statistics 756
profiles 753, 756

AUXERROR INVALIDATE, option of CHECK DATA
utility 88

AUXERROR REPORT, option of CHECK DATA utility 88

AUXERROR, option of CHECK DATA utility 68
auxiliary CHECK-pending (ACHKP) status

description 1083
resetting

for a LOB table space 1083
for a table space 1083

set by CHECK DATA utility 68
auxiliary CHECK-pending (ACHKP) status, CHECK DATA

utility 68, 90
auxiliary index, reorganizing after loading data 339
auxiliary warning (AUXW) status

description 1084
resetting 1084
set by CHECK DATA utility 68, 88

AUXW 68

B
backout

point-in-time 479
RECOVERY utility 479

BACKOUT, option of DSNJU003 utility 883
BACKUP SYSTEM utility

authorization 45
before running 49
compatibility 50
data sets needed 50
description 45
dumping 51
examples 52

data-only backup 52
dump to tape 53
force 53
full backup 52

execution phases 45
history, printing 903
log copy pools, 51
option descriptions 47
output 45
restarting 52
syntax diagram 46
terminating 52

BASE, option of LISTDEF utility 209
basic predicate 547, 821
before running

COPY 139
DSNADMSB 1117
DSNTSMFD 1127

BETWEEN predicate 547, 821
BIGINT

option of LOAD utility 264
option of UNLOAD utility 821

BINARY
option of LOAD utility 264
option of UNLOAD utility 821

BIT
option of LOAD utility for CHAR 264

BLOB
option of LOAD utility 264
option of UNLOAD utility 821

© Copyright IBM Corp. 1983, 2013 1145

BLOBF
option of LOAD utility for CHAR 264

BOTH, option of RUNSTATS utility 727, 736
BSDS

active log data set status 915
communication records, printing 903
converting 873
data set references, adding and deleting 898
GENERIC LUNAME parameter, updating 883
LOCATION value, updating 883
LUNAME value, updating 883
PASSWORD value, updating 883
updating 879
VSAM catalog name, changing 883

BUFNO, option of TEMPLATE statement 779

C
CANCEL, option of DSNJU003 utility 883
catalog

updating 59
catalog and directory

creating recovery point of consistency 476
reorganizing 606
REPORT utility 686

catalog indexes, rebuilding 434
catalog name

changing 63
catalog table spaces, corresponding directory table spaces 606
catalog tables

loading data into 285
order of recovering objects 468
outdated information, removing 367
RUNSTATS utility 750
statistics history, clearing outdated information 381
statistics, deleting 385
SYSCOPY

deleting rows 373
SYSCOPY, removing outdated information 367
SYSINDEXES

data collected by STOSPACE utility 771
updating space information 771

SYSINDEXPART
data collected by STOSPACE utility 771
example of query 525

SYSLGRNX
deleting rows 373
outdated information, removing 367

SYSSTOGROUP, data collected by STOSPACE utility 771
SYSTABLEPART

data collected by STOSPACE utility 771
example of query 600

SYSTABLESPACE
data collected by STOSPACE utility 771
updating space information 771

updating 62
CATALOG, option of DSNJU003 utility 883
CATALOG, option of UNLOAD utility 806
catalog, repairing 670
CATENFM utility

authorization 55
compatibility 57
data sets needed 56
description 55
execution phases 55
instructions 56
option descriptions 56

CATENFM utility (continued)
syntax diagram 55
terminating 58

CATMAINT utility
authorization 59
compatibility 62
data sets needed 61
description 59
option descriptions 60
restarting 64
running 56, 61
syntax diagram 59
terminating 64

CCSID
option of LOAD utility 237
option of UNLOAD utility 806

CCSID information, deleting from BSDS 883
CCSIDS, option of DSNJU003 utility 883
change log inventory utility 879
CHANGELIMIT, option of COPY utility 130, 160
CHAR

option of LOAD utility 264
option of UNLOAD utility 821

CHARDEL
option of LOAD utility 237
option of UNLOAD utility 806

CHECK DATA utility
after checking 87
authorization 65
claims and drains 82
compatibility 82
correct constraint violations 86
data sets

shadow 80
data sets needed 78
description 65
examples 91

AUXERROR 92
checking multiple table spaces 93
CLONE 93
creating exception tables 91
deleting invalid data 91
exception tables 91
EXCEPTIONS 93
LOBs 92
maximum number of exceptions 93
PART 93
SCOPE ALL 92
SHRLEVEL CHANGE 93
use after LOAD RESUME 335
using exception tables 335
violation messages 86

exception table, creating 84
execution phases 65
finding violations 86
LOB column errors 88
LOB columns 77
option descriptions 68
output 65
restarting 90
specifying scope 85
syntax diagram 66
table spaces, multiple 93
terminating 90
use after LOAD REPLACE 335

CHECK DATAXML errors 87

1146 Utility Guide and Reference

CHECK INDEX utility
after checking 110
authorization 95
claims and drains 103
compatibility 103
data sets

shadow 101
data sets needed 100
description 95
examples 111

ALL 111
checking all indexes 111
checking clone tables 112
checking more than one index 111
checking one index 111
checking partitions 111
LIST 111
LISTDEF 111
PART 111
SORTDEVT 111

execution phases 95
option descriptions 97
output 95, 109
parallel checking 105
physical or logical partitions 97
restarting 110
single logical partition 104
syntax diagram 96
terminating 110
use after loading table with indexes 337

CHECK LOB
before running 117

CHECK LOB utility
authorization 113
claims and drains 120
compatibility 120
data sets

shadow 118
data sets needed 117
description 113
example 122
execution phases 113
LOB violations, resolving 121
option descriptions 115
output 113
restarting 122
syntax diagram 114
terminating 122

CHECK-pending (CHECKP) status
resetting

for a LOB table space 121
CHECK-pending (CHKP) status

CHECK DATA utility 65, 88
description 1085
indoubt referential integrity 335
resetting 1085

for a table space 335
CHECK, option of DSN1COPY utility 936
CHECKPAGE, option of COPY utility 130
checkpoint queue

printing contents 903
updating 883

CHECKPT, option of DSNJU003 utility 883
CHKP 65
CHKPTRBA, option of DSNJU003 utility 883
CLOB

option of LOAD utility 264

CLOB (continued)
option of UNLOAD utility 821

CLOBF
option of LOAD utility for CHAR 264

CLONE
option of CHECK DATA utility 68
option of CHECK INDEX utility 97
option of COPY utility 130
option of DIAGNOSE utility 197
option of MERGECOPY utility 357
option of MODIFY RECOVERY utility 369
option of QUIESCE utility 399
option of REBUILD INDEX 413
option of RECOVER utility 447
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547

clone objects
recovering a table space 479

CLONED, option of LISTDEF utility 209
CMON, option of CATENFM utility 56
cold start

example, creating a conditional restart control record 896
specifying for conditional restart 883

COLDEL
option of LOAD utility 237
option of UNLOAD utility 806

COLGROUP, option of RUNSTATS utility 727
collecting DB2 subsystem information

DSNADMSB 1109
COLUMN

option of LOAD STATISTICS 237
option of RUNSTATS utility 727

COMMAND, option of DSN1SDMP utility 993
commit point

DSNU command 21
REPAIR utility LOCATE statement 653
restarting after out-of-space condition 43

comparison operators 547
compatibility

CATENFM utility 57
CATMAINT utility 62
CHECK DATA utility 82
CHECK INDEX utility 103
CHECK LOB utility 120
COPY utility 142
COPYTOCOPY utility 185
declared temporary table 4
DEFINE NO objects 4
DIAGNOSE utility 199
EXEC SQL utility 205
LISTDEF utility 218
LOAD utility 292
MERGECOPY utility 360
MODIFY RECOVERY utility 373
MODIFY STATISTICS utility 384
OPTIONS utility 392
QUIESCE utility 401
REBUILD INDEX utility 424
RECOVER utility 456
REORG INDEX utility 523
REORG TABLESPACE utility 595
REPAIR utility 664
REPORT utility 683
RESTORE SYSTEM utility 717
RUNSTATS utility 746
STOSPACE utility 771
TEMPLATE utility 792

Index 1147

compatibility (continued)
UNLOAD utility 843
utilities access description 33

COMPLETE, option of CATENFM utility 56
compression

data, UNLOAD utility description 861
estimating disk savings 921

concurrency
BACKUP SYSTEM utility 50
utilities access description 33
utility jobs 35

concurrent copies
COPYTOCOPY utility restriction 177
invoking 130
making 158

CONCURRENT, option of COPY utility 130, 158
conditional restart control record

creating 883, 896
reading 917
sample 917
status printed by print log map utility 903

connection-name, naming convention xvii
CONSTANT, option of UNLOAD utility 821
constraint violations, checking 65
CONTINUE, option of RECOVER utility 465
CONTINUEIF, option of LOAD utility 237
continuous operation, recovering an error range 466
control interval

LOAD REPLACE, effect of 295, 339
RECOVER utility

effects 494
REORG TABLESPACE, effect of 629

control statement 13
CONTROL, option of DSNU CLIST command 21
conversion of data, LOAD utility 319
CONVERT, option of CATENFM utility 56
copies

merging 355
online, merging 361, 362

copy
catalog and directory objects 157
XML schema repository objects 157

copy pool 45
COPY SCOPE PENDING

COPY-pending 153
COPY statement, using more than one 155
COPY utility

adding conditional code 160
allowing other programs to access data 130
authorization 125
block size, specifying 139
catalog table, copying 145
checking pages 130
claims and drains 142
compatibility 142
consistency 147
COPY-pending status, resetting 125
copying a list of objects 153
data sets needed 139
description 125
directory, copying 145
examples 164

allowing updates 171
CHANGELIMIT 172
CLONE 175
conditional copies 172
COPYDDN 165

COPY utility (continued)
examples (continued)

copying LOB table spaces 173
DFSMSdss concurrent copy 172, 173
filter data sets 173
FILTERDDN 173
full image copy 165, 174
incremental image copy 146, 171
JCL-defined and template-defined data sets 170
list of objects, making full image copy of 165
LISTDEF 171
lists 171
local site and recovery site copies 165
multiple image copies 147
PARALLEL 165, 168
parallel processing 168
RECOVERYDDN 165
reporting information 172
REPORTONLY 172
SCOPE PENDING 175
SHRLEVEL 165
TAPEUNITS 168
templates 171

execution phases 125
FlashCopy image copies, overview 149
full image copy, making 145
informational COPY-pending status, resetting 125
JCL parameters 139
MERGECOPY utility, when to use 362
multiple image copies 147
naming data sets 147
option descriptions 130
output 125
partition, copying 146
performance recommendations 162
processing in parallel

description 130, 153
number of threads 125, 153

recovery, preparing for 161
restart current 163
restarting

description 164
new data set 164
out-of-space condition 164

restricted states 142
restrictions 146
separate jobs 156
syntax diagram 127
table spaces 156
TERM UTILITY command 163
terminating

DD statements 163
description 163

using more than one COPY statement 155
COPY-pending status

COPY utility 130
description 1086
LOAD utility 334
resetting

by taking a copy 1086
by using COPY 142
by using LOAD 334

copy, consistency 147
COPY, option of LISTDEF utility 209
COPY1, option of DSNJU003 utility 883
COPY1VOL, option of DSNJU003 utility 883
COPY2, option of DSNJU003 utility 883

1148 Utility Guide and Reference

COPY2VOL, option of DSNJU003 utility 883
COPYDDN

option of COPY utility 130
option of COPYTOCOPY utility 180
option of LOAD utility 237, 313
option of MERGECOPY utility 357
option of REORG TABLESPACE utility 547, 612

COPYDSN, option of DSNU CLIST command 21
COPYDSN2, option of DSNU CLIST command 21
copying

FlashCopy image copies, overview 149
COPYTOCOPY statements, using multiple 187
COPYTOCOPY utility

authorization 177
block size, specifying 183
claims 185
compatibility 185
copying from a specific image copy 187
data sets needed 183
description 177
examples

cataloged copy data set, specifying 192
CLONE 194
copying from a specific image copy 187
copying objects from tape 189
FROMCOPY 187, 192
FROMLASTCOPY 191
FROMLASTFULLCOPY 192
FROMVOLUME 192
full image copy 186
incremental image copy 186
input copy data set, specifying 192
list of objects, processing 193
LISTDEF 193, 194
local backup copies, making 191
TEMPLATE 193, 194
uncataloged data set, specifying 192

execution phases 177
FlashCopy 187
generation data groups, defining 189
input copy, determining which to use 188
JCL parameters 183
lists, copying 180
making copies 186
multiple statements, using 187
objects, copying from tape 189
option descriptions 180
output 177
output data sets

size 183
specifying 180

partitions, copying 180
syntax diagram 179
SYSIBM.SYSCOPY records, updating 188
tape mounts, retaining 183
terminating 190
using TEMPLATE 188

correlation ID, naming convention xvii
COUNT

option of LOAD STATISTICS 237
option of REBUILD INDEX utility 413
option of REORG INDEX utility 504
option of RUNSTATS utility 727

COUNT option
option of RUNSTATS utility 727, 736

CREATE option of DSNJU003 utility 883
CRESTART, option of DSNJU003 utility 883

cross loader 311
cross loader function 203
CSRONLY, option of DSNJU003 utility 883
CURRENT DATE, incrementing and decrementing value 821
CURRENT option of REPORT utility 680
current restart, description 39
CURRENTCOPYONLY option of RECOVER utility 447
cursor

naming convention xvii
CYL, option of TEMPLATE statement 779

D
data

adding 300
compressing 309
converting 310
converting with LOAD utility 319
deleting 300

DATA
option of CHECK DATA utility 68
option of LOAD utility 237
option of REPAIR DUMP 660
option of REPAIR REPLACE 657
option of REPAIR VERIFY 657
option of UNLOAD utility 806

data compression
dictionary

building 309
number of records needed 309
using again 309

LOAD utility
description 309
KEEPDICTIONARY option 237, 309

REORG TABLESPACE utility, KEEPDICTIONARY
option 547

DATA ONLY, option of BACKUP SYSTEM utility 47
data set

name format in ICF catalog 130
name limitations 793

data set templates
extent allocations 794
space calculations 794

data sets
BACKUP SYSTEM utility 50
CATENFM utility 56
CATMAINT utility 61
change log inventory utility (DSNJU003) 879
CHECK DATA utility 78
CHECK INDEX utility 100
CHECK LOB utility 117
concatenating 12, 17
COPY utility 139
copying partition-by-growth table spaces 156
copying table space in separate jobs 156
COPYTOCOPY utility 183
definitions, changing during REORG 609
DIAGNOSE utility 199
disposition

defaults for dynamically allocated data sets 779
defaults for dynamically allocated data sets on

RESTART 779
disposition, controlling 12
DSNADMSB 1118
DSNJCNVB utility 873
DSNJCNVT utility 875
DSNTSMFD 1128

Index 1149

data sets (continued)
for copies, naming 147
input, using 12
LOAD utility 287
MERGECOPY utility 359
MODIFY RECOVERY utility 372
MODIFY STATISTICS utility 384
naming convention xvii
output, using 12
QUIESCE utility 401
REBUILD INDEX utility 422
RECOVER utility 455
recovering, partition 462
REORG INDEX utility 519
REORG TABLESPACE utility 587
REPAIR utility 663
REPORT utility 683
RESTORE SYSTEM utility 716
RUNSTATS utility 744
security 12
space parameter, changing 519
space parameter, changing during REORG 609
specifying 12
STOSPACE utility 770
UNLOAD utility 842

data sharing
backing up group 45
restoring data 717
running online utilities 36

data type, specifying with LOAD utility 264
data-only backup

example 52
explanation 47

database
limits 1005
naming convention xvii

DATABASE
option of LISTDEF utility 209
option of REPAIR utility 661

DATACLAS, option of TEMPLATE statement 779
DATAONLY

option of REPAIR utility 659
DATAONLY, option of DSN1LOGP utility 962
DataRefresher 310
DATE EXTERNAL

option of LOAD utility 264
option of UNLOAD utility 821

DB2 data compression, estimating disk savings 921
DB2 internal format

LOAD utility 294
DB2 subsystem information, collecting

DSNADMSB 1109
DB2-supplied stored procedures 1013
DB2I

option of DSNU CLIST command 21
using to invoke online utilities 17

DBCLOB
option of LOAD utility 264
option of UNLOAD utility 821

DBCLOBF
option of LOAD utility for CHAR 264

DBD statement of REPAIR utility 130, 661
DBD, reclaiming space in 375
DBD01 directory table space

MERGECOPY restrictions 355, 357
order of recovering 468

DBETE status
description 1086
resetting

by using START DATABASE command 1086
DBID

option of DSN1LOGP utility 962
option of REPAIR utility 661

DBRM (database request module)
member naming convention xvii
partitioned data set naming convention xvii

DD name, naming convention xvii
DDF (distributed data facility), option of DSNJU003

utility 883
DDNAME, option of DSNJU004 utility 905
DEACTIV, option of DSNJU003 utility 883
DEADLINE

option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547

DECFLOAT
option of LOAD utility 264
option of UNLOAD utility 821

DECFLOAT EXTERNAL
option of UNLOAD utility 821

DECFLOAT_ROUNDMODE
option of LOAD utility 237
option of UNLOAD utility 806

DECIMAL EXTERNAL
option of LOAD utility 264
option of UNLOAD utility 821

DECIMAL PACKED
option of the LOAD utility 264
option of UNLOAD utility 821

DECIMAL ZONED
option of the LOAD utility 264
option of UNLOAD utility 821

DECIMAL, option of UNLOAD utility 821
declared temporary table

REPAIR utility 661
utility compatibility 4

decompressing DB2 SMF trace records
DSNTSMFD 1127

DECPT
option of LOAD utility 237
option of UNLOAD utility 806

DEFAULTIF, option of LOAD utility 264
defects, calculating, LOAD utility 287
DEFINE NO objects

populating 4
utility compatibility 4

DEFINE NO table space, loading data 301
defining work data sets

CHECK DATA utility 79
DELAY

option of REBUILD INDEX utility 413
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547

DELETE
option of CHECK DATA utility 68
option of DSNJU003 utility 883
option of MODIFY RECOVERY utility 369
option of MODIFY STATISTICS utility 382
option of the CHECK DATA utility 86
statement of REPAIR utility, used in LOCATE block 652

DELETE statement of REPAIR utility 658
deleting 756

active log from BSDS 894
log data sets with errors 897

1150 Utility Guide and Reference

DELIMITED
option of LOAD utility 237
option of UNLOAD utility 806

delimited file format
acceptable data types 304, 1134
default delimiter values 304, 857
description 1133
examples 1135
loading 237, 304
maximum delimiter values 304
restrictions 304

delimited files
acceptable data type forms for LOAD and UNLOAD

utilities 857
unloading 857

delimiters
column 1133
default values 304, 857
maximum values 304
restrictions 857
string 1133
using 304

DELMBR, option of DSNJU003 utility 883
DESTROY, option of DSNJU003 utility 883
determining input copies 361
DFSMS (Data Facility Storage Management Subsystem)

concurrent copy
invoking with COPY utility 130, 158
requirements for using 158
restrictions 158

products, using with DB2 163, 189
DFSMSdss COPY operation with utilities

refining with subsystem parameters 37
DIAGNOSE utility

ABEND statement
description 197
syntax diagram 195

authorization 195
compatibility 199
concurrency 199
data sets needed 199
description 195
DISPLAY statement

description 197
syntax diagram 195

examples 200
ABEND 201
ALLDUMPS 201
CLONE 202
diagnosis of a specific type 201
displaying MEPLs 200
forcing a dump 201
forcing an abend 201
service level, finding 200
suspending utility execution 202
TYPE 201
WAIT 202

forcing an abend 200
instructions 200
option descriptions 197
restarting 200
syntax diagram 195
terminating 200
WAIT statement

description 197
syntax diagram 195

DIAGNOSE, option of REPAIR utility 661

DIR, option of TEMPLATE statement 779
directory

MERGECOPY utility, restrictions 355
order of recovering objects 468

disability xvi
discard data set, specifying DD statement for LOAD

utility 237
DISCARD, option of REORG TABLESPACE utility 547
DISCARDDN

option of LOAD PART 264
option of LOAD utility 237
option of REORG TABLESPACE utility 547

DISCARDS, option of LOAD utility 237
DISCDSN, option of DSNU CLIST command 21
DISP, option of TEMPLATE statement 779
DISPLAY DATABASE command, displaying range of pages in

error 466
DISPLAY UTILITY command

description 33
using with RESTORE SYSTEM utility on a data sharing

group 717
DISPLAY, option of DIAGNOSE utility 197
displaying status of DB2 utilities 33
disposition, data sets, controlling 12
DL/I, loading data 310
DOUBLE, option of UNLOAD utility 821
DRAIN

option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547

DRAIN_WAIT
option of CHECK DATA utility 68
option of CHECK INDEX utility 97
option of CHECK LOB utility 115
option of REBUILD INDEX utility 413
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547

DROP, option of REPAIR utility 661
DSN, option of TEMPLATE statement 779
DSN1COMP utility

authorization required 921
data set size, specifying 923
data sets required 921
DD statements

SYSPRINT 921
SYSUT1 921

description 921
environment 921
examples

EXTNDICT 930
free space 928
FREEPAGE 928
full image copy 928
FULLCOPY 928
LARGE 929
NUMPARTS 929
PCTFREE 928
REORG 929, 930
ROWLIMIT 928

free pages, specifying 923
free space

including in compression calculations 927
specifying 923

FREEPAGE 927
full image copy as input, specifying 923
LARGE data sets, specifying 923
maximum number of rows to evaluate, specifying 923
message DSN1941 930

Index 1151

DSN1COMP utility (continued)
option descriptions 923
output

example 930
interpreting 930
sample 927, 930

page size of input data set, specifying 923
partitions, specifying number 923
PCTFREE 927
prerequisite actions 926
recommendations 921
REORG 927
running 921
savings comparable to REORG 923
savings estimate 927
syntax diagram 923

DSN1COPY utility
additional volumes, for SYSUT2 943
altering a table before running 941
authorization required 933
checking validity of input 936
comparing to DSN1PRNT 941
copying a table space 941
copying identity column tables 952
copying tables to other subsystems 952
data set size, determining 941
data set size, specifying 936
data sets

input 943
message 943
OBIDXLAT 943
output 943
required 943

DD statements
SYSPRINT 943
SYSUT1 943
SYSUT2 943
SYSXLAT 943

description 933
environment 933
example 943
examples 953

checking input data 953
copying partitions 955
printing 16 pages 954
printing one page 954
translating internal identifiers 954

full image copy, specifying 936
image copy, using as input 949
inconsistent data, checking for 948
incremental copy, specifying 936
inline copy, specifying 936
internal identifiers, translating 948
LARGE input data set, specifying 936
LOB table space, specifying 936
maximum piece size, specifying 936
multiple data set table spaces 949
OBID translation 936
OBIDXLAT 941
option descriptions 936
page size of input data set, specifying 936
page size, determining 941
partitions, specifying number 936
preventing inconsistent data 948
printing data sets 952
printing in hexadecimal format 936
resetting log RBAs 936

DSN1COPY utility (continued)
restoring indexes 950
restoring table spaces 951
restrictions 933
scanning input data set for value 936
segmented table space, specifying 936
subsystem, copying tables from one to another 952
syntax diagram 936
translating internal identifiers 948

DSN1LOGP utility
archive log data sets on tape, reading 969
authorization 959
data changes, limiting report to 962
data sets required 960
data sharing example 970
data sharing requirements 961
database identifier, using to limit report 962
DBID, using to limit report 962
DD statements

ACTIVE 960
ARCHIVE 960
BSDS 960
SYSIN 960
SYSPRINT 960
SYSSUMRY 960

description 959
detail report

description 973
sample 973

environment 959
error codes, interpreting 973
examples

data sharing 970
extracting information from the active log without the

BSDS 970
extracting information from the archive log without the

BSDS 970
extracting information from the recovery log with the

BSDS 970
SUMMARY option 970

JCL, requirements 960
log data sets, identifying 960
log range, specifying 962
LUWIDs, reporting on 962
option descriptions 962
output

description 973
reviewing 973
sample 973

page regression report
description 973

page, limiting report to 962
RID, using to limit report 962
running 959
summary report

description 973
description of data propagation information 973
sample 973
sample of data propagation information 973

summary report, specifying 962
syntax diagram 962
SYSCOPY log records, limiting report to 962
type of log records, limiting report by 962
unit of recovery identifier, using to limit report 962
value in log record, limiting report by 962

DSN1PRNT utility
authorization required 979

1152 Utility Guide and Reference

DSN1PRNT utility (continued)
comparison with DSN1COPY utility 986
data set size, determining 986
data set size, specifying 981
data sets required 979
DD statements

SYSPRINT 979
SYSUT1 979

description 979
environment 979
examples 987

printing a data set in hexadecimal format 987
printing a nonpartitioning index 987
printing a page range of a specific partition 988
printing a partitioned data set 988
printing a single page of an image copy 987

filtering pages by value 981
formatting output 981
full image copy, specifying 981
incremental copy, specifying 981
inline copy, specifying 981
LARGE data set, specifying 981
LOB table space, specifying 981
number of partitions, specifying 981
option descriptions 981
page size, determining 986
page size, specifying 981
piece size, specifying 981
processing encrypted data 979
recommendations 986
running 979
syntax diagram 981
SYSUT1 data set, printing on SYSPRINT data set 981

DSN1SDMP utility
action, specifying 993
authorization required 991
buffers, assigning 997
DD statements

SDMPIN 991
SDMPPRNT 991
SDMPTRAC 991
SYSABEND 991
SYSTSIN 991

description 991
dump, generating 998
environment 991
examples

abend 999, 1000
dump 1001
second trace 1002
skeleton JCL 999

option descriptions 993
output 991
required data sets 991
running 991
selection criteria, specifying 993
syntax diagram 993
trace destination 993
traces

modifying 998
stopping 998

DSN8G810, updating space information 771
DSN8S81E table space, finding information about space

utilization 771
DSNACCOR stored procedure

description 1029
option descriptions 1031

DSNACCOR stored procedure (continued)
output 1046
syntax diagram 1030

DSNACCOX stored procedure
description 1050
option descriptions 1052
output 1072
syntax diagram 1051

DSNADMSB
data sets needed 1118
description 1109
examples 1119
syntax diagram 1110
using the collected data 1118

DSNADMSB utility
examples

collecting data for all rows in a PLAN_TABLE 1121
collecting environment data 1124
PLAN_TABLE data 1119
table list 1122

DSNAME, option of DSNJU003 utility 883
DSNDB01.DBD01

copying restrictions 146
recovery information 686

DSNDB01.SYSCOPYs
copying restrictions 146

DSNDB01.SYSUTILX 477
copying restrictions 146
recovery information 686

DSNDB06.SYSTSCPY
recovery information 686

DSNJCNVB utility
authorization required 873
control statement 873
data sets used 873
description 873
dual BSDSs, converting 873
environment 873
example 874
output 874
prerequisite actions 873
running 873
SYSPRINT DD name 873
SYSUT1 DD name 873
SYSUT2 DD name 873

DSNJCNVT utility
authorization required 875
control statement 875
data sets used 875
description 875
environment 875
example 876
output 876
prerequisite actions 875
running 875
SYSPRINT DD name 875
SYSUT1 DD name 875
SYSUT2 DD name 875
SYSUT3 DD name 875
SYSUT4 DD name 875

DSNJLOGF utility
data sets required 877
description 877
example 878
output 878
SYSPRINT DD name 877
SYSUT1 DD name 877

Index 1153

DSNJU003 utility
active logs

adding 894
changing 894
deleting 894
enlarging 894
recording 894

altering references 898
archive logs

adding 896
changing 896
deleting 896

authorization required 879
BSDS timestamp field, updating 879
data sets

cataloging 883
declaring 883

data sets needed 879
DELETE statement 898
description 879
environment 879
examples 900

adding a communication record to BSDS 901
adding a communication record with an alias to

BSDS 901
adding active log 894
adding archive log 896
adding archive log data set 900
alias ports 901
changing high-level qualifier 899
creating conditional restart control record 901
deleting a data set 901
deleting active log 894
deleting archive log 896
recording active log 894
removing aliases from a communication record 902
specifying a point in time for system recovery 902
SYSPITR 902
Updating a communication record with a secure

TCP/IP port number in the BSDS 901
invoking 879
NEWCAT statement

example output 899
using 899

NEWLOG statement 898
option descriptions 883
renaming log data sets 900
renaming system data sets 899
syntax diagram 880
SYSIN DD name 879
SYSPRINT DD name 879
SYSUT1 DD name 879
SYSUT2 DD name 879
updating dual copy BSDSs 879

DSNJU004 utility
authorization required 903
BSDS timestamps 914
checkpoints, sample output description of 917
data sets needed 903
description 903
environment 903
example 905
GROUP DD name 903
MnnBSDS DD name 903
option descriptions 905
output

description 906

DSNJU004 utility (continued)
output (continued)

sample 916
recommendations 903
running 903
syntax diagram 905
SYSIN DD name 903
SYSPRINT DD name 903
SYSUT1 DD name 903

DSNTEJ1 sample 582
DSNTEP2 and DSNTEP4 sample program

specifying SQL terminator 1094, 1102
DSNTEP2 sample program

how to run 1093
parameters 1093
program preparation 1093

DSNTEP4 sample program
how to run 1093
parameters 1093
program preparation 1093

DSNTIAD sample program
how to run 1093
parameters 1093
program preparation 1093
specifying SQL terminator 1100

DSNTIAUL sample program
how to run 1093
parameters 1093
program preparation 1093

DSNTIJIC utility
copy catalog and directory objects 157

DSNTSMFD
data sets needed 1128
description 1127
examples 1128

DSNTSMFD utility
examples

PLAN_TABLE data 1128
DSNTYPE, option of TEMPLATE statement 779
DSNU CLIST command

editing generated JCL 26
examples 26
invoking utilities 20
option descriptions 21
output 25
syntax 21

DSNU473I 405
DSNUM

option of COPY utility 130
option of COPYTOCOPY utility 180
option of MERGECOPY utility 357
option of MODIFY RECOVERY utility 369, 373
option of RECOVER utility 447
option of REPORT utility 680

DSNUPROC JCL procedure
description 27
option descriptions 27
sample 29

DSNUTILS stored procedure
authorization required 1014
data sets 1014, 1015
description 1013
option descriptions 1016
output 1024
restarting a utility 1013
sample JCL 1024
syntax diagram 1016

1154 Utility Guide and Reference

DSNUTILS stored procedure (continued)
terminating a utility 1013

DSNUTILU stored procedure
authorization required 1026
data sets 1026
description 1024
option descriptions 1027
output 1029
restarting a utility 1024
sample JCL 1029
syntax diagram 1027

DSSIZE
option of DSN1COMP utility 923
option of DSN1COPY utility 936
option of DSN1PRNT utility 981

dump
example 53

DUMP
statement of REPAIR utility 659

used in LOCATE block 652
DUMP, option of BACKUP SYSTEM utility 47
DUMPCLASS, option of BACKUP SYSTEM utility 47
dumping

utilities
BACKUP SYSTEM 51

DUMPONLY, option of BACKUP SYSTEM utility 47

E
EBCDIC

option of LOAD utility 237
option of UNLOAD utility 806

edit routine
LOAD utility 231
REORG TABLESPACE utility 547

EDIT, option of DSNU CLIST command 21
embedded semicolon

embedded 1100
enabling-new-function mode processing, stopping 58
encrypted data

running DSN1PRNT on 979
running REORG TABLESPACE on 582
running REPAIR on 663
running UNLOAD on 842
running utilities on 5

encryption
DSN1PRNT utility effect on 979
REORG TABLESPACE utility effect on 582
REPAIR utility effect on 663
UNLOAD utility effect on 842
utilities effect on 5

END FCINCREMENTAL
explanation 47

END FCINCREMENTAL, option of BACKUP SYSTEM
utility 47

END, option of DIAGNOSE utility 197
ENDLRSN, option of DSNJU003 utility 883
ENDRBA, option of DSNJU003 utility 883
ENDTIME, option of DSNJU003 utility 883
ENFMON, option of CATENFM utility 56
ENFORCE, option of LOAD utility 237, 307
ERRDDN

option of CHECK DATA utility 68
option of LOAD utility 237

error data set
CHECK DATA utility 68, 78

error range recovery 466

ERROR RANGE, option of RECOVER utility 447
error, calculating, LOAD utility 287
ESCAPE clause 547, 821
ESTABLISH FCINCREMENTAL

explanation 47
ESTABLISH FCINCREMENTAL, option of BACKUP SYSTEM

utility 47
EVENT, option of OPTIONS statement 390
exception table

columns 84
creating 84
definition 78
example 91
with auxiliary columns 85
with LOB columns 77

EXCEPTIONS
option of CHECK DATA utility 68
option of CHECK LOB utility 115

exceptions, specifying the maximum number
CHECK DATA utility 68
CHECK LOB utility 115

EXCLUDE
option of LISTDEF 219

EXCLUDE, option of LISTDEF utility 209
EXEC SQL utility

authorization 203
compatibility 205
cursors 204
declare cursor statement

description 204
syntax diagram 203

description 203
dynamic SQL statements 204
examples 205

creating a table 205
declaring a cursor 206
inserting rows into a table 206
using a mapping table 640

execution phase 203
output 203
restarting 205
syntax diagram 203
terminating 205

EXEC statement
built by CLIST 25
description 30

executing
utilities, creating JCL 30
utilities, DB2I 17
utilities, JCL procedure (DSNUPROC) 27

exit procedure, LOAD utility 326
EXPDL, option of TEMPLATE statement 779
extracted key, calculating, LOAD utility 287

F
fallback recovery considerations 582
FAROFFPOSF column of SYSINDEXPART catalog table

catalog query to retrieve value for 600
field procedure, LOAD utility 326
filter data set, determining size 139
FILTER, option of DSN1LOGP utility 962
FILTER, option of DSN1SDMP utility 993
FILTERDDN, option of COPY utility 130
FlashCopy

copying 187
COPYTOCOPY 187

Index 1155

FlashCopy (continued)
creating with LOAD 314
creating with REBUILD INDEX 435
creating with REORG INDEX 528
creating with REORG TABLESPACE 613
image copies, overview 149
recovering from 463
utilities that support FlashCopy 149

FLASHCOPY
option of COPY utility 130
option of REBUILD INDEX utility 413

FlashCopy image copies
examples

REBUILD TABLESPACE control statement 643
REORG INDEX control statement 535

FLOAT
option of LOAD utility 237
option of UNLOAD utility 806, 821

FLOAT EXTERNAL, option of LOAD utility 264
FLOAT, option of LOAD utility 264
FOR EXCEPTION, option of CHECK DATA utility 68
FOR, option of DSN1SDMP utility 993
FOR2, option of DSN1SDMP utility 993
force

example 53
FORCE, option of BACKUP SYSTEM utility 47
FORCEROLLUP

option of LOAD STATISTICS 237
option of REBUILD INDEX utility 413
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547
option of RUNSTATS utility 727, 736

foreign key, calculating, LOAD utility 287
FORMAT

option of DSN1PRNT utility 981
option of LOAD utility 237

FORMAT INTERNAL
LOAD utility 294
option of UNLOAD utility 806

FORMAT INTERNAL, option of LOAD utility 237
FORMAT SQL/DS, option of LOAD utility 237
FORMAT UNLOAD, option of LOAD utility 237
FORWARD, option of DSNJU003 utility 883
free space

REORG INDEX utility 532
FREEPAGE, option of DSN1COMP utility 923
FREQVAL

option of LOAD STATISTICS 237
option of REBUILD INDEX utility 413
option of REORG INDEX utility 504
option of RUNSTATS utility 727, 736

FROM TABLE
option of UNLOAD utility 816, 862

FROMCOPY
option of COPYTOCOPY utility 180
option of the COPYTOCOPY utility 187
option of UNLOAD utility 806, 849

FROMCOPYDDN, option of UNLOAD utility 806, 849
FROMLASTCOPY, option of COPYTOCOPY utility 180
FROMLASTFULLCOPY, option of COPYTOCOPY utility 180
FROMLASTINCRCOPY, option of COPYTOCOPY utility 180
FROMSEQNO, option of the UNLOAD utility 806
FROMVOLUME

option of COPYTOCOPY utility 180
option of UNLOAD utility 806

FULL
option of BACKUP SYSTEM utility 47

FULL (continued)
option of COPY utility 130

full backup
description 47
example 52

FULLCOPY
option of DSN1COMP utility 923
option of DSN1COPY utility 936
option of DSN1PRNT utility 981

function
maximum number in select 1005

G
GDGLIMIT

option of MODIFY RECOVERY utility 369
GDGLIMIT, option of TEMPLATE statement 779
GDGs 162
general-use programming information, described 1140
generation data groups

defining 162, 189
using with conditional copy 160

GENERIC, option of DSNJU003 utility 883
GRAPHIC

option of LOAD utility 264
option of UNLOAD utility 821

GRAPHIC EXTERNAL
option of LOAD utility 264
option of UNLOAD utility 821

GRECP 1087
group buffer pool RECOVER-pending (GRECP) status

description 1087
resetting 1087

GUPI symbols 1141

H
HALT, option of OPTIONS statement 390
HEADER, option of UNLOAD utility 821
hexadecimal-constant, naming convention xvii
hexadecimal-string, naming convention xvii
HIGHRBA, option of DSNJU003 utility 883
HISTOGRAM

option of RUNSTATS utility 727, 736
HISTORY

option of LOAD STATISTICS 237
option of REBUILD INDEX utility 413
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547
option of RUNSTATS utility 727, 736

I
ICBACKUP column in SYSIBM.SYSCOPY 147
ICOPY status 125
ICUNIT column

SYSIBM.SYSCOPY 147
identity columns, loading 298
IDENTITYOVERRIDE

option of LOAD PART 264
IGNOREFIELDS, option of LOAD utility 264
image copy

cataloging 139, 183
conditional, specifying 160
COPY utility 125
copying 177

1156 Utility Guide and Reference

image copy (continued)
COPYTOCOPY utility 177
data set, finding size 139
deleting all 373
FlashCopy 149
full

description 125
making 130, 145

incremental
conditions 147
copying 186
description 125
making 146
merging 355
performance advantage 146

list of objects 153
making after loading a table 334
making in parallel 125
multiple, making 147
obtaining information about 160
putting on tape 163, 189

IMS DPROP 310
IN predicate 547, 821
in-abort state 883
in-commit state 883
INCLUDE, option of LISTDEF utility 209, 219
inconsistent data indicator, resetting 657
INCRCOPY

option of DSN1COPY utility 936
option of DSN1PRNT utility 981

INCURSOR
option of LOAD PART 264
option of LOAD utility 237

INDDN
option of LOAD PART 264
option of LOAD utility 237

INDEREFLIMIT option of REORG TABLESPACE utility 547
index

building during LOAD 321
checking 95, 337
determining when to reorganize 525
naming convention xvii
organization 525
REBUILD INDEX utility 409
rebuilding in parallel 429
rebuilt, recoverability 435
version numbers, recycling 339

INDEX
option of CHECK INDEX utility 97
option of COPY utility 130
option of COPYTOCOPY utility 180
option of LISTDEF utility 209
option of MODIFY STATISTICS utility 382
option of REORG INDEX utility 504
option of REPAIR utility

LEVELID statement 647
LOCATE statement 655
SET statement 650

option of REPORT utility 680
option of RUNSTATS utility 727, 736

INDEX ALL, option of REPORT utility 680
INDEX NONE, option of REPORT utility 680
index partitions, rebuilding 427
index space

recovering 409
index space status, resetting 668

INDEX
option of RECOVER utility 447
option of REORG TABLESPACE utility 547

INDEXDEFER
option of LOAD utility 237

indexes
copying 158

INDEXSPACE
option of COPY utility 130
option of COPYTOCOPY utility 180
option of LISTDEF utility 209
option of MODIFY STATISTICS utility 382
option of REBUILD INDEX utility 413
option of RECOVER utility 447
option of REORG INDEX utility 504
option of REPAIR utility

SET statement 650
option of REPAIR utility for LEVELID statement 647
option of REPORT utility 680

INDEXSPACES, option of LISTDEF utility 209
indoubt state 883
INDSN, option of DSNU CLIST command 21
inflight state 883
informational COPY-pending (ICOPY) status

COPY utility 130
description 1088
resetting 125, 161, 1088

informational referential constraints, LOAD utility 231
INLCOPY

option of DSN1COPY utility 936
option of DSN1PRNT utility 981

inline COPY
base table space 331
creating with LOAD utility 313
creating with REORG TABLESPACE utility 612

inline statistics
collecting during LOAD 330
using in place of RUNSTATS 750

input fields, specifying 321
INPUT, option of CATENFM utility 56
INSTANCE, option of DIAGNOSE utility 197, 200
INTEGER

option of LOAD utility 264
option of UNLOAD utility 821

INTEGER EXTERNAL
option of LOAD utility 264
option of UNLOAD utility 821

Interactive System Productivity Facility (ISPF) 17
INTO TABLE, option of LOAD utility 261
invalid LOB 88
invalid SQL terminator characters 1100
invalidated packages

identifying 969
invalidated plans and packages

identifying 63
invalidating statements

dynamic statement cache 752
ISPF (Interactive System Productivity Facility), utilities

panels 17
ITEMERROR, option of OPTIONS statement 390

J
JCL (job control language)

COPYTOCOPY utility 186
DSNUPROC utility 20

JCL PARM statement 390

Index 1157

job control language 145
JOB statement, built by CLIST 25

K
KEEPDICTIONARY

option of LOAD PART 264
option of LOAD utility 237, 309
option of REORG TABLESPACE utility 309, 547

key
calculating, LOAD utility 287
foreign, LOAD operation 307
length

maximum 1005
primary, LOAD operation 307

KEY
option of OPTIONS utility 390
option of REPAIR utility on LOCATE statement 653

KEYCARD
option of LOAD STATISTICS 237
option of REBUILD INDEX utility 413
option of REORG INDEX utility 504
option of RUNSTATS utility 727, 736

L
labeled-duration expression 547
LARGE

option of DSN1COMP utility 923
option of DSN1COPY utility 936
option of DSN1PRNT utility 981

large partitioned table spaces, RUNSTATS utility 757
LAST

option of MODIFY RECOVERY utility 369
LEAFDISTLIMIT, option of REORG INDEX utility 504
LEAFLIM, option of DSN1COMP utility 923
LEAST, option of RUNSTATS utility 727, 736
LENGTH, option of REPAIR utility 660
level identifier, resetting 647
LEVELID, option of REPAIR utility 647
LIB, option of DSNU CLIST command 21
LIB, option of DSNUPROC utility 27
library of LISTDEF statements 223
LIKE predicate 547, 821
limit

option of TEMPLATE statement 779
LIMIT, option of UNLOAD utility 821
limits, DB2 1005
LIST

option of CHECK INDEX utility 97
option of COPY utility 130
option of COPYTOCOPY utility 180
option of LISTDEF utility 209
option of MERGECOPY utility 357
option of MODIFY RECOVERY utility 369
option of MODIFY STATISTICS utility 382
option of QUIESCE utility 399
option of REBUILD INDEX utility 413
option of RECOVER utility 447
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547
option of REPORT utility 680
option of REPORT with INDEXSPACE option 680
option of REPORT with TABLESPACE option 680
option of RUNSTATS INDEX utility 736
option of RUNSTATS TABLESPACE utility 727

LIST (continued)
option of UNLOAD utility 806

list of objects, copying 125
LISTDEF

EXCLUDE option 219
INCLUDE option 219
objects, excluding 219
objects, including 219

LISTDEF library, specifying 393
LISTDEF utility

authorization 207
catalog and directory objects, specifying 219
compatibility 218
concurrency 218
control statement

creating 218
description 218
placement 223
processing 219

COPY NO indexes, specifying 209
COPY YES indexes, specifying 209
description 207
examples 226

all objects in a database 227
ARCHIVE 230
CLONED 230
COPY YES 228
excluding objects 228
including all but one partition 228
including COPY YES indexes 228
library data set 228
lists that reference other lists 228
matching name patterns 227
partition-level lists 227
pattern-matching characters 227
related objects, including 230
RI option 230
simple list 226
using LIST 223
using with QUIESCE utility 228

execution phases 207
indexes, specifying 209
LOB indicator keywords 209
LOB objects, including 209
option descriptions 209
OPTIONS, using 226
output 207
partitions, specifying 209
pattern-matching expressions

characters 219
description 219
restriction 219
using 219

previewing 222
restarting 226
restrictions 207, 219
statement library 223
syntax diagram 207
TEMPLATE, using 225
terminating 226

LISTDEFDD, option of OPTIONS statement 390
lists

objects
excluding 219
including 219

previewing 222
processing order 223

1158 Utility Guide and Reference

lists (continued)
using with other utilities 223

LOAD INTO PART 301
LOAD REPLACE LOG YES 295
LOAD utility

adding more data 300
after loading 334
appending to data 237
authorization 231
auxiliary index, reorganizing after LOAD 339
BINARYXML 264
building indexes

in parallel 322
sequentially 321

catalog tables, loading 285
CHECK DATA

after LOAD RESUME 335
data sets used 335
error data sets 335
running 335
sort data sets 335

compatibility 292
compressing data 309
concatenating records 237
concurrent access to data, setting 237
cross loader 311
cursors

identifying 237, 264
preparing to use 285

data conversion 319
data sets needed 287
data type compatibility 319
data type, specifying 264
data with referential constraints 307
default values, setting criteria for 264
defects, calculating number 287
DEFINE NO table space, consequences 301
deleting all data 300
delimited file format

acceptable data types 304
restrictions 304
specifying 237

delimited files 304
delimiters 304
description 231
discard data set

declaring 237
maximum number of records 237

discarded rows, inline statistics 330
duplicate keys, effects 295
dynamic SQL 311
ENFORCE NO

actions to take 335
consequences 307

enforcing constraints 237
error work data set, specifying 237
error, calculating 287
examples 340

CHECK DATA 335
CHECK DATA after LOAD RESUME 335
concatenating records 344
CONTINUEIF 344
COPYDDN 347
CURSOR 351
data 341, 342, 350
declared cursors 351
default values, loading 344

LOAD utility (continued)
examples (continued)

DEFAULTIF 344
DELIMITED 343
delimited files 343
ENFORCE CONSTRAINTS 345
ENFORCE NO 345
field positions, specifying 340
inline copies, creating 347
KEEPDICTIONARY 309
loading 352, 353
loading by partition 301
LOBs 352
null values, loading 344
NULLIF 344
NUMRECS, specifying for multiple tables 341
NUMRECS, specifying for partitions 351
PARALLEL 353
parallel index build 346
PART 341
partition parallelism 350, 351
POSITION 340
referential constraints 345
REPLACE 341
replace table in single-table table space 295
replace tables in multi-table table space 295
replacing data in a given partition 341
selected records, loading 341
SORTKEYS 346
STATISTICS 348
statistics, collecting 348
Unicode input, loading 349
UNICODE option 349

EXEC SQL statements 311
exit procedure 326
extracted keys, calculating number 287
failed job, recovering 338
field length

defaults 264
determining 264

field names, specifying 264
field position, specifying 264
field specifications 264
FlashCopy 314
FlashCopy image copies, overview 149
foreign keys

calculating 287
invalid values 307

format, specifying 237
free space 325
identity columns 298
improving parallel processing 316
improving performance 317
informational referential constraints 231
inline copy 331
inline COPY 313
inline statistics, collecting 330
input data set, specifying 237
input data, preparing 285
input fields, specifying 321
into-table spec 261
KEEPDICTIONARY option 309
keys

calculating 287
estimating number 317

LOAD INTO TABLE options 264
loading data from DL/I 310

Index 1159

LOAD utility (continued)
LOB column 327
LOG, using on LOB table space 328
LOG, using on XML table space 329
logging 237
map, calculating 287
multilevel security restriction on REPLACE option 231
multiple tables, loading 261
null values, setting criteria for 264
option descriptions 237, 264
ordering records 295
output 231
parallel index build

data sets used 322
sort subtasks 322
sort work file, estimating size 322

partitions
copying 334
loading 264, 301

performance recommendations 315
preprocessing 285
primary key

duplicate values 307
missing values 307

REBUILD-pending status 325
resetting 335

RECOVER-pending status 325
recovering failed job 338
recycling version numbers 339
referential constraints 307
REORG-pending status

loading data in 325
REPLACE option 295
replacing data 237
restarting 332
restrictive states, compatibility 295
RESUME YES SHRLEVEL CHANGE, without logging 329
reusing data sets 237
row change timestamp columns 298
row selection criteria 264
ROWID columns 298, 326
skipping fields 264
sort program data sets, device type 237
sort work file, specifying 237
SORTKEYS NO 294
statistics, gathering 237
syntax diagram 233
table space, copying 334
temporal table columns 298
terminating 331
Unicode data 237
variable-length data 295
work data sets

declaring 237
estimating size 287

XML column 328
LOAD utilitymaterialization 319
loading

catalog tables 285
data

DL/I 310
dynamic SQL 311
generated by REORG UNLOAD EXTERNAL 298
generated by UNLOAD 298
large amounts 231, 301
referential constraints 307
using a cursor, preparations 285

loading (continued)
partition-by-growth 303
partitions 301
variable-length data 295
XML data 303

LOB
option of CHECK LOB utility 115
option of DSN1COPY utility 936
violations, resolving 121

LOB (large object)
checking 68
invalid 88
missing 88
option of DSN1PRNT utility 981
option of LISTDEF utility 209
orphan 88
out-of-synch 88
recovering 478

LOB column
checking data 77
definitions, completing 77
errors 88
loading 327

LOB table space
copying 177
LOAD LOG 328
REORG LOG 328
reorganizing 622

LOBERROR INVALIDATE, option of CHECK DATA
utility 88

LOBERROR REPORT, option of CHECK DATA utility 88
LOBERROR, option of CHECK DATA utility 68
LOCALSITE

option of RECOVER utility 447
option of REPORT utility 680

LOCATE INDEX statement of REPAIR utility 655
LOCATE INDEXSPACE statement of REPAIR utility 655
LOCATE statement of REPAIR utility 652
LOCATE TABLESPACE statement of REPAIR utility 653
location name, naming convention xvii
LOCATION, option of DSNJU003 utility 883
locking

BACKUP SYSTEM utility 50
CATENFM utility 57
CATMAINT utility 62
CHECK DATA utility 82
CHECK INDEX utility 103
CHECK LOB utility 120
COPY utility 142
COPYTOCOPY utility 185
DIAGNOSE utility 199
EXEC SQL utility 205
LISTDEF utility 218
LOAD utility 292
MERGECOPY utility 360
MODIFY RECOVERY utility 373
MODIFY STATISTICS utility 384
OPTIONS utility 392
QUIESCE utility 401
REBUILD INDEX utility 424
RECOVER utility 456
REORG INDEX utility 523
REORG TABLESPACE utility 595
REPAIR utility 664
REPORT utility 683
RUNSTATS utility 746
STOSPACE utility 771

1160 Utility Guide and Reference

locking (continued)
TEMPLATE utility 792
UNLOAD utility 843
utilities access description 33

log
active

data set status 915
printing available data sets 903

backward recovery 883
command history, printing 903
data set

active, renaming 900
archive, renaming 900
printing map 903
printing names 903

forward recovery 883
record structure, types 962
truncation 901
utilities

DSNJU003 (change log inventory) 879
DSNJU004 (print log map) 903

LOG
option of LOAD utility 237
option of REPAIR utility 647

log copy pools
system-level backups 51

log data sets with errors, deleting 897
logical partition, checking 104
logical unit name, naming convention xvii
LOGLIMIT

option of MODIFY RECOVERY utility 369
LOGONLY

option of RECOVER utility 447
option of RESTORE SYSTEM utility 713

LOGRANGES, option of RECOVER utility 447
logs

log copy pools, backups 51
LONGLOG

option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547

LPL status 1083
LRSNEND option of DSN1LOGP utility 962
LRSNSTART, option of DSN1LOGP utility 962
LUNAME, option of DSNJU003 utility 883
LUWID option of DSN1LOGP utility 962

M
MAP

option of REPAIR utility 660
map, calculating, LOAD utility 287
MAPDDN, option of LOAD utility 237
MAPPINGTABLE, option of REORG TABLESPACE

utility 547
materializationavoiding 319
MAXERR, option of UNLOAD utility 806
MAXPRIME, option of TEMPLATE statement 779
MAXRO

option of REBUILD INDEX utility 413
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547

MAXROWS, option of DSN1COMP utility 923
MB, option of TEMPLATE statement 779
media failure

resolving 122
member name, naming convention xvii
MEMBER option of DSNJU004 utility 905

MEMBERID, option of DSNJU003 utility 883
MERGECOPY utility

authorization 355
compatibility 360
COPY utility, when to use 362
data sets needed 359
DBD01 355, 357
description 355
different types, merging restrictions 362
directory table spaces 355
examples

merged full image copy 364, 365
merged incremental copy 363, 364
NEWCOPY NO 363, 364
NEWCOPY YES 364, 365
TEMPLATE 364

full image copy, merging with increment image
copies 357

individual data sets 362
lists, using 357
LOG information, deleting 362
LOG RBA inconsistencies, avoiding 362
NEWCOPY option 361
online copies, merging 361, 362
option descriptions 357
output 355
output data set

local, specifying 357, 359
remote, specifying 357, 359

partitions, merging copies 357
phases of execution 355
restarting 363
restrictions 355
syntax diagram 356
SYSCOPY 355, 357
SYSUTILX 355, 357
temporary data set, specifying 357, 359
terminating 363
type of copy, specifying 361
work data set, specifying 359

message
DSNU command 25
MERGECOPY utility 357
MODIFY RECOVERY utility 367
QUIESCE utility 397
RECOVER utility 441
REORG INDEX utility 499

MESSAGE, option of DIAGNOSE utility 197
MGMTCLAS, option of TEMPLATE statement 779
missing LOB 88
MIXED

option of LOAD utility 264
option of LOAD utility for CHAR 264

mixed volume IDs
copying 130

MIXED, option of LOAD utility for VARCHAR 264
MODELDCB, option of TEMPLATE statement 779
MODIFY RECOVERY utility

age criteria 369
authorization 367
compatibility 373
copies, deleting 373
data sets needed 372
date criteria 369
DBD, reclaiming space 375
description 367
examples 377

Index 1161

MODIFY RECOVERY utility (continued)
AGE 377
CLONE 378
DATE 377
DELETE 377, 378
deleting all SYSCOPY records 378
deleting SYSCOPY records by age 377
deleting SYSCOPY records by date 377
DSNUM 377
partitions 377
RETAIN 379

GDG limit 369
lists, using 369
log limit 369
option descriptions 369
partitions, processing 369
phases of execution 367
recent records 369
records, deleting 369
records, retaining 369
RECOVER-pending status, restriction 372
recovery index rows, deleting 373
REORG after adding column, improving performance 375
restarting 376
syntax diagram 369
SYSCOPY records, viewing 372
SYSCOPY, deleting rows 373
SYSLGRNX 372
SYSLGRNX, deleting rows 373
terminating 376
version numbers, recycling 376

MODIFY STATISTICS utility
authorization 381
compatibility 384
data sets needed 384
description 381
examples 386

ACCESSPATH 386
AGE 386
DATE 386
deleting access path records by date 386
deleting history records by age 386
deleting index statistics 387
deleting space statistics records by age 386
SPACE 386

lists, using 382
option descriptions 382
output 381
restarting 385
statistics history, deleting 385
syntax diagram 382
terminating 385

monitoring
index organization 525
table space organization 525, 600
utility status 33

MOST, option of RUNSTATS utility 727, 736
multilevel security with row-level granularity

authorization restrictions for online utilities 17
authorization restrictions for stand-alone utilities 872
LOAD REPLACE authorization restrictions 231
REORG TABLESPACE authorization restrictions 537
UNLOAD authorization restrictions 803

N
naming convention, variables in command syntax xvii
NBRSECND, option of TEMPLATE statement 779
NEAROFFPOSF column of SYSINDEXPART catalog table

catalog query to retrieve value for 600
new-function mode, converting to 57
NEWCAT, option of DSNJU003 utility 883
NEWCOPY, option of MERGECOPY utility 357
NEWLOG

option of DSNJU003 utility 883
statement 894

NGENERIC, option of DSNJU003 utility 883
NOALIAS, option of DSNJU003 utility 883
NOAREORPENDSTAR, option of REPAIR utility 650
NOAUXCHKP, option of REPAIR utility 650
NOAUXWARN, option of REPAIR utility 650
NOCHECKPEND, option of REPAIR utility 650
NOCOPYPEND

option of LOAD utility 237
option of REPAIR utility 650

NODUMPS, option of DIAGNOSE utility 197
NOPAD

option of REORG TABLESPACE utility 547
option of UNLOAD utility 806

NOPASSWD, option of DSNJU003 utility 883
NOPRO

option of REPAIR utility 650
NORBDPEND, option of REPAIR utility 650
NORCVRPEND, option of REPAIR utility 650
normal-termination, option of TEMPLATE utility 779
NOSUBS

option of LOAD utility 237
option of UNLOAD utility 806

NOSYSREC, option of REORG TABLESPACE utility
LOG

option of REORG TABLESPACE utility 547
REORG TABLESPACE utility

logging, specifying 547
not sign, problems with 547
NULL predicate 547, 821
NULLIF, option of LOAD utility 264
NUMCOLS

option of LOAD STATISTICS 237
option of REBUILD INDEX utility 413
option of REORG INDEX utility 504
option of RUNSTATS utility 727, 736

NUMPARTS
option of DSN1COMP utility 923
option of DSN1COPY utility 936
option of DSN1PRNT utility 981

NUMQUANTILES
option of RUNSTATS utility 727, 736

O
OBID, option of DSN1LOGP utility 962
OBIDXLAT, option of DSN1COPY utility 936
object lists

adding related objects 219
creating 207

object status
advisory, resetting 1083
restrictive, resetting 1083

OBJECT, option of REPAIR utility 647
OFF, option of OPTIONS statement 390
OFFLRBA, option of DSNJU003 utility 883

1162 Utility Guide and Reference

OFFPOSLIMIT, option of REORG TABLESPACE utility 547
OFFSET

option of DSN1LOGP utility 962
option of REPAIR utility

DUMP statement 660
REPLACE statement 657
VERIFY statement 657

OLDEST_VERSION column, updating 376
online copies, merging 362
online utilities 11

description 3
invoking 11

option description, example 13
option of LOAD utility

FLASHCOPY 237
OPTIONS utility

altering return codes 394
authorization 389
compatibility 392
concurrency 392
description 389
errors, handling 390
examples 394

checking syntax 394
COPY 395
EVENT 395
forcing return code 0 395
ITEMERROR 395
LISTDEF 394
LISTDEF definition libraries 395
LISTDEFDD 395
MODIFY RECOVERY 395
PREVIEW 394
SKIP 395
TEMPLATE 394
TEMPLATE definition libraries 395
TEMPLATEDD 395

execution phases 389
LISTDEF definition library, specifying 390
option descriptions 390
output 389
PREVIEW with LISTDEF 390
PREVIEW with TEMPLATE 390
restarting 394
syntax diagram 389
TEMPLATE definition library, specifying 390
terminating 394

orphan LOB 88
out-of-synch LOB 88
OUTDDN, option of REPAIR utility 661
owner, creator, and schema

renaming 62
ownership of objects

changing from an authorization ID to a role 63

P
page

checking 130
damaged, repairing 668
recovering 465
size, relationship to number of pages 981

PAGE
option of DSN1LOGP utility 962
option of RECOVER utility 447
option of REPAIR utility on LOCATE statement 653

PAGE option
RECOVER utility 465
REPAIR utility 655

page set REBUILD-pending (PSRBD) status
description 433, 1088
resetting 433, 1088

PAGES, option of REPAIR utility 660
PAGESIZE

option of DSN1COMP utility 923
option of DSN1COPY utility 936
option of DSN1PRNT utility 981

panel
Control Statement Data Set Names 17
Data Set Names 17
DB2 Utilities 17

PARALLEL
option of COPY utility 125, 130
option of LOAD utility 237
option of RECOVER utility 447

parallel index build 429
parsing rules, utility control statements 13, 871
PART

option of CHECK DATA utility 68
option of CHECK INDEX utility 97
option of LOAD utility 264, 301
option of QUIESCE utility 399
option of REBUILD INDEX utility 413
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547
option of REPAIR utility

LOCATE INDEX and LOCATE INDEXSPACE
statements 655

LOCATE TABLESPACE statement 653
SET TABLESPACE and SETINDEX options 650

option of REPAIR utility for LEVELID 647
option of RUNSTATS utility 727, 736
option of UNLOAD utility 806, 845

partition-by-growth table space
loading 303

partition-by-growth table spaces, rebuilding 428
partition-by-growth table spaces, reorganizing 620
partition, copying 146
partitioned table space

loading 301
replacing a partition 301
unloading 845

partitioned table spaces, reorganizing 620
partitions

concatenating copies with UNLOAD utility 849
rebalancing with REORG 611
redistributing 611

PARTLEVEL, option of LISTDEF utility 209
PASSWORD, option of DSNJU003 utility 883
pattern-matching characters, LISTDEF 219
patterns

advanced information 547, 821
PCTFREE, option of DSN1COMP utility 923
PCTPRIME, option of TEMPLATE statement 779
pending status, resetting 1083
performance

affected by
I/O activity 600
table space organization 600

COPY utility 162
LOAD utility, improving 315
monitoring with the STOSPACE utility 771
RECOVER utility 488

Index 1163

performance (continued)
REORG INDEX utility, improving 529
REORG TABLESPACE utility, improving 615
RUNSTATS utility 750

Persistent Read Only (PRO) restricted status
description 1088
resetting

for a table space partition 1088
phase restart, description 39
phases of execution

BACKUP SYSTEM utility 45
CHECK DATA utility 65
CHECK INDEX utility 95
CHECK LOB utility 113
COPY utility 125
COPYTOCOPY utility 177
description 33
EXEC SQL utility 203
LISTDEF utility 207
LOAD utility 231
MERGECOPY utility 355
MODIFY RECOVERY utility 367
MODIFY STATISTICS utility 381
OPTIONS utility 389
QUIESCE utility 397
REBUILD INDEX utility 409
RECOVER utility 441
REORG INDEX utility 499
REORG TABLESPACE utility 537
REPAIR utility 645
REPORT utility 677
RESTORE SYSTEM utility 711
RUNSTATS utility 721
STOSPACE utility 769
TEMPLATE utility 775
UNLOAD utility 803
utilities

CATENFM 55
PIECESIZ

option of DSN1COPY utility 936
option of DSN1PRNT utility 981

point-in-time recovery
backout 479
for catalog and directory objects 475
options 447
performing 479

PORT, option of DSNJU003 utility 883
POSITION

option of LOAD utility 264
option of UNLOAD utility 821

predicate
basic 547
BETWEEN 547
IN 547
LIKE 547
NULL 547
overview 547

predicates
basic 821
BETWEEN 821
IN 821
LIKE 821
NULL 821

PREFORMAT
option of LOAD PART 264
option of LOAD utility 237, 317
option of REORG INDEX utility 504

PREFORMAT (continued)
option of REORG TABLESPACE utility 547
option of REORG utility 317

preformatting active logs
data sets required 877
description 877
example 878
output 878

PRESERVE WHITESPACE
option of LOAD utility 264

PRESORTED
option of LOAD utility 237

PREVIEW
option of OPTIONS utility 390
using with LISTDEF utility 222

preview mode 393
PREVIEW mode, executing utilities in 792, 793
PRINT

option of DSN1COPY utility 936
option of DSN1PRNT utility 981

print log map utility (DSNJU004)
JCL requirements 903
SYSIN stream parsing 903

privilege
description 3
granting 3
revoking 3

privilege set of a process 3
PRO

option of REPAIR utility 650
process, privilege set of 3
product-sensitive programming information, described 1141
profiles

RUNSTATS utility 754
programming interface information, described 1140, 1141
PSPI symbols 1141
PUNCHDDN

option of CHECK DATA utility 68
option of CHECK LOB utility 115
option of REORG TABLESPACE utility 547
option of UNLOAD utility 806

PUNCHDSN, option of DSNU CLIST command 21

Q
qualifier-name, naming convention xvii
QUIESCE

before running 401
quiesce point, establishing 397
QUIESCE utility

authorization 397
catalog and directory objects 403
compatibility 401
creating point of consistency for the catalog and

directory 476
data sets needed 401
description 397
examples

CLONE 407
list 406
quiesce point for three table spaces 405
table space set 406
WRITE NO 407

history record, printing 903
lists, using 399
option descriptions 399
output 397

1164 Utility Guide and Reference

QUIESCE utility (continued)
partitions 399
phases of execution 397
quiesce point, establishing 403
recovery preparations 397
restarting 405
restrictive states, compatibility 404
syntax diagram 398
table space set 399
table space, specifying 399
terminating 405
write to disk, failure 405
writing changed pages to disk 399

R
RBA (relative byte address), range printed by print log

map 906
RBAEND, option of DSN1LOGP utility 962
RBASTART, option of DSN1LOGP utility 962
RBDP 1088
RBDP (REBUILD-pending) status

description 433, 490
resetting 490

RBDP* (REBUILD-pending star) status, resetting 433
RC0, option of OPTIONS statement 390
RC4, option of OPTIONS statement 390
RC8, option of OPTIONS statement 390
RCPYDSN1, option of DSNU CLIST command 21
RCPYDSN2, option of DSNU CLIST command 21
real-time statistics

data processing 1131
stored procedure 1029, 1050
used by utilities 1131

REAL, option of UNLOAD utility 821
REBALANCE, option of REORG TABLESPACE utility 547
rebinding, recommended after LOAD 330
REBUILD INDEX utility

access, specifying 426
authorization 409
Before running 422
building indexes in parallel 429
catalog indexes 434
compatibility 424
data sets needed 422
description 409
DRAIN_WAIT, when to use 428
dynamic sort and SORTDATA allocation, overriding 429
effects 436
examples 437

all indexes in a table space, rebuilding 438
CLONE 439
index partitions, rebuilding 437
inline statistics 439
multiple partitions, rebuilding 437
partitions, rebuilding all 438
restrictive states, condition 439
SHRLEVEL CHANGE 439
single index, rebuilding 437

FlashCopy 435
FlashCopy image copies, overview 149
index partitions 427
option descriptions 413
partition-by-growth table spaces 428
performance recommendations 428
phases of execution 409
REBUILD-pending status, resetting 433

REBUILD INDEX utility (continued)
recoverability of rebuilt index 435
recycling version numbers 436
restarting 436
several indexes

performance 428
SHRLEVEL CHANGE

log processing 426
when to use 428

SHRLEVEL option 426
slow log processing, operator actions 426
sort subtasks for parallel build 429
sort subtasks for parallel index build, determining

number 429
sort work file size 429
syntax diagram 410
terminating 436
work data sets, calculating size 422

REBUILD-pending (RBDP) status
description 433, 1088
resetting 490, 1088
set by LOAD utility 335

REBUILD-pending star (RBDP*) status, resetting 433
REBUILD, option of REPAIR utility 661
RECDS, option of DSNU CLIST command 21
records, loaded, ordering 295
RECOVER

before running 455
effects 466

RECOVER utility
authorization 441
backout

point-in-time recovery 479
catalog and directory objects 468
catalog table spaces, recovering 468
CHECK-pending status, resetting 479
compatibility 456
compressed data, recovering 479
concurrent copies, improving recovery performance 447
damaged media, avoiding 492
data sets needed 455
description 441
DFSMShsm data sets 489
effects of running 494
error range, recovering 466
examples 494

CLONE 497
concurrent copies 495
CURRENTCOPYONLY 495
different tape devices 496
DSNUM 461, 495
error range 466
index image copy, recovering to 495
last image copy, recovering to 495
LIST 496
list of objects, recovering in parallel 496
list of objects, recovering to point in time 496
LRSN, recovering to 495
multiple table spaces 461
PARALLEL 496
partition, recovering 495
partitions 461
point-in-time recovery 495
RESTOREBEFORE 497
single table space 461
table space, recovering 494
TAPEUNITS 496

Index 1165

RECOVER utility (continued)
examples (continued)

TOLASTCOPY 495
TOLASTFULLCOPY 495
TOLOGPOINT 495
TORBA 461

fallback 491
FlashCopy 463
hierarchy of dependencies 473
incremental image copies 463
indexes

REBUILD-pending status 494
input data sets 455
JES3 environment 490
lists of objects 461
lists, using 447
LOB data 478
LOGAPPLY phase, optimizing 489
mixed volume IDs 441
non-DB2 data sets 467
objects accessed 473
option descriptions 447
order of recovery 468
output 441
pages, recovering 447, 465
parallel recovery 447, 461
partitions, recovering 447, 462
performance recommendations 488
phases of execution 441
point-in-time recovery

backout 479
for catalog and directory objects 475
planning for 479

RBA, recovering to 447
rebalancing partitions with REORG 479
REBUILD-pending status 441
recovery status 479
restarting 493
restriction 441
skipping SYSLGRNX during LOGAPPLY phase 447
specific data set, skipping 487
syntax diagram 444
table space sets 441
TABLESPACE option 161
tape mounts, retaining 492
terminating 493

RECOVER-pending (RECP) status
description 490, 1089
resetting 335, 490, 1089

recovery
backout 479
catalog objects 468
compressed data 479
consistency, ensuring 479
data set, partition 462
database

FlashCopy image copies 149
LOB table space 161
REBUILD INDEX utility 409
RECOVER utility 441
REORG makes image copies invalid 145

directory objects 468
error range 466
FlashCopy image copies 463
image copies 491
JES3 environment 490
log copy pool backups 51

recovery (continued)
page 465
partial 479
preparing for with copies 161
reporting information 684
table space

description 461
multiple spaces 461

recovery base 460
recovery information

where it is stored 473
recovery information, reporting 680
recovery log

backward 883
forward 883

recovery point of consistency
creating for the catalog and directory 476

RECOVERY, option of REPORT utility 680
RECOVERYDDN

option of COPY utility 130
option of COPYTOCOPY utility 180
option of LOAD utility 237, 313
option of MERGECOPY utility 357
option of REORG TABLESPACE utility 547, 612

RECOVERYSITE
option of RECOVER utility 447
option of REPORT utility 680

RECP 335, 1089
referential constraint

loading data 307
violations, correcting 309

REFP 1090
REFRESH-pending (REFP) status

description 1090
resetting 1090

remote site recovery 147
REORG INDEX

before running 517
REORG INDEX utility

access, allowing 504
access, specifying 526
authorization 499
catalog updates 532
CHECK-pending status, compatibility 517
compatibility 523
data set

shadow, determining name 521
data sets

definitions, changing 519
needed 519
shadow, estimating size 521
unload, specifying 504
user-managed 521

data-sharing considerations 517
description 499
drain behavior, specifying 504
DRAIN_WAIT, when to use 529
examples 533

CLONE 534
FlashCopy 535
HISTORY 533
LIST 534
MAXRO 534
OPTIONS 534
REPORT 533
SHRLEVEL 533
single index 533

1166 Utility Guide and Reference

REORG INDEX utility (continued)
examples (continued)

STATISTICS 533
TEMPLATE 534
UNLOAD PAUSE 533
UPDATE 533
WORKDDN 534

fallback recovery, considerations 517
FlashCopy 528
FlashCopy image copies, overview 149
inline statistics

gathering 504
reporting 504

interrupting 529
lists, using 504
long logs, actions for 504
no action 504
option descriptions 504
output 499, 532
partitions, specifying 504
performance 529
phases of execution 499
preformatting pages 504
REBUILD-pending status, compatibility 517
RECOVER-pending status, compatibility 517
region size 517
report only 504
restart-pending status, compatibility with SHRELEVEL

CHANGE 517
restarting 531
retries, specifying maximum number 504
shadow data sets, defining 521
shadow objects 521
SHRLEVEL CHANGE

log processing 526
when to use 529

SHRLEVEL option 526
slow log processing, operator actions 526
SWITCH phase deadline, specifying 504
syntax diagram 500
terminating 530
time for log processing, specifying 504
timeout condition, actions for 504
unloading data, action after 504
version numbers, recycling 532
versions, effect on 532
waiting time when draining for SQL 504

REORG TABLESPACE utility
access, specifying 547, 602
actions after running 628
authorization 537
building indexes in parallel 617
catalog and directory

considerations 582
determining when to reorganize 606
limitations for reorganizing 606
phases for reorganizing 606
reorganizing 606

compatibility
with all other utilities 595
with CHECK-pending status 582
with REBUILD-pending status 582
with RECOVER-pending status 582
with REORG-pending status 582

compression dictionary
not building new 547

REORG TABLESPACE utility (continued)
CURRENT DATE option

decrementing 547
incrementing 547

data set
copy, specifying 547
discard, specifying 547
shadow, determining name 592
unload 605

data sets
shadow 592
unload 587
unload, specifying name 547
work 587

data sets needed 587
deadline for SWITCH phase, specifying 547
description 537
drain behavior, specifying 547
DRAIN_WAIT, when to use 615
DSNDB07 database, restriction 537
dynamic sort work data set allocation, overriding 610
effects 629
error in RELOAD phase 620
examples 631

CLONE 643
conditional reorganization 635
DEADLINE 633
deadline for SWITCH phase, specifying 633
determining whether to reorganize 634
discarding records 641, 642
DRAIN_WAIT 636
draining table space 636
FlashCopy image copy 643
LONGLOG 633
mapping table, using 640
maximum processing time, specifying 633
parallel index build 631
partition, reorganizing 631
range of partitions, reorganizing 633
read-write access, allowing 632
rebalancing partitions 611
RETRY 636
RETRY_DELAY 636
sample REORG output for conditional REORG 635
sample REORG output for draining table space 636
sample REORG output that shows if REORG limits

have been met 634
SCOPE PENDING 642
SHRLEVEL CHANGE 632
sort input data set, specifying 631
statistics, updating 633, 634
table space, reorganizing 631
unload data set, specifying 631

failed job, recovering 624
fallback recovery considerations 582
FlashCopy 613
FlashCopy image copies, overview 149
indexes, building in parallel 617
inline copy 612
interrupting temporarily 610
lists, using 547
LOB table space

reorganizing 622
restriction 537

log processing, specifying max time 547
long logs, action taken 547
LONGLOG action, specifying interval 547

Index 1167

REORG TABLESPACE utility (continued)
mapping table

example 582
preventing concurrent use 582
specifying name 547
using 582

multilevel security restrictions 537
option descriptions 547
output 537, 628
partition-by-growth table spaces, reorganizing 620
partitioned table spaces, reorganizing 620
partitions in parallel 612
performance recommendations

after adding column 375
general 615

phases of execution
BUILD phase 537
LOG phase 537
RELOAD phase, description 537
RELOAD phase, error 620
SORT phase 537
SORTBLD phase 537
SWITCH phase 537
UNLOAD phase 537
UTILINIT phase 537
UTILTERM phase 537

preformatting pages 547
processing encrypted data 582
REBALANCE

restrictions 582
rebalancing partitions 611
reclaiming space from dropped tables 606
records, discarding 547
recycling version numbers 629
redistributing partitions 611
region size recommendation 582
RELOAD phase

counting records loaded 622
RELOAD phase, encountering an error in 620
reload, skipping 605
restarting 626
restriction 537
sample generated LOAD statement 547
scope, specifying 547
segmented table spaces, reorganizing 621
selection condition 547
shadow data sets, defining 592
shadow objects 592
SHRLEVEL

specifying 602
user-managed data sets with 592

SHRLEVEL CHANGE
compatibility with restart-pending status 582
log processing 602
performance implications 615
when to use 615

slow processing, operator actions 602
sort device type, specifying 547
sort program messages, specifying destination 587
sort subtasks

allocation 617
determining number 617

sort work file, estimating size 617
statistics, specifying 547
syntax diagram 541
temporary data sets, specifying number 547
time to wait for drain, specifying 547

REORG TABLESPACE utility (continued)
timeout, specifying action 547
timestamps

decrementing 547
incrementing 547

unload, specifying action 547
unloading data, methods of 620
versions, effect on 629
XML table space

reorganizing 623
REORG utility 309

compressing data 309
KEEPDICTIONARY option 309

REORG-pending (REORP) status
description 1090
resetting 1090

REORG, option of DSN1COMP utility 923
reorganizing

indexes 525
table spaces 525
table spaces, determining when to reorganize 600

REORP 1090
REPAIR

before running 663
REPAIR utility 650

authorization 645
before running

copying table space 663
restoring indexes 663

catalog, repairing 670
CHECK-pending status 672
commit point for LOCATE statement 653
compatibility 664
damaged page, repairing 668
data sets needed 663
DBD statement

declared temporary table 661
description 661
option descriptions 661
syntax diagram 661
using 668

declared temporary table compatibility 4, 661
DELETE statement

description 658
option descriptions 659
syntax diagram 658

DELETE statement, using with VERIFY 670
description 645
DUMP statement

description 659
option descriptions 660
syntax diagram 659

examples 673
CATALOG 675
CLONE 675
damaged data, replacing 673
DBDs 674
nonindexed row, removing 673
restrictive states, resetting 674
versions, updating 674

LOCATE INDEX statement 655
LOCATE INDEXSPACE statement 655
LOCATE statement

description 652
syntax diagram 652

LOCATE TABLESPACE KEY
example messages 670

1168 Utility Guide and Reference

REPAIR utility (continued)
LOCATE TABLESPACE KEY (continued)

restriction for multiple-column indexes 670
LOCATE TABLESPACE statement 653
logging, specifying 647
option descriptions 647
output 645, 672
output data sets

calculating size 663
description 663

partitions 647
phases of execution 645
processing encrypted data 663
REPLACE statement

description 657
option descriptions 657
syntax diagram 657

REPLACE statement, using with VERIFY 670
resetting states, options 650
restarting 672
rows, locating by key 670
SET INDEX statement

description 650
option descriptions 650

SET INDEXSPACE statement
description 650
option descriptions 650

SET TABLESPACE statement
description 650
option descriptions 650

status, resetting 667, 668
syntax diagram 646
terminating 672
VERIFY statement

description 656
option descriptions 657
syntax diagram 656

VERIFY statement, using with REPLACE and
DELETE 670

version information
updating on the same system 647

version information, updating when moving to another
system 670

warning 663
REPLACE

option of LOAD PART 264
option of LOAD utility 237
statement of REPAIR utility

description 657
used in LOCATE block 652

replacing data in a table space 295
REPORT

option of LOAD STATISTICS 237
option of REBUILD INDEX utility 413
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547
option of RUNSTATS utility 727, 736

REPORT utility
authorization 677
catalog and directory 686
compatibility 683
data sets needed 683
description 677
examples 695

archive tables 702
recovery information for index 699
recovery information for partition 698, 700

REPORT utility (continued)
examples (continued)

recovery information for table space 695
referential relationships 697
SHOWDSNS 701
TABLESPACESET 697
temporal tables 701
versioning relationships 701

option descriptions 680
output 677
phases of execution 677
RECOVERY

output 687
sample output 684, 687

recovery information, reporting 680
restarting 686
syntax diagram 679
table space recovery information 684
TABLESPACESET

output 687
sample output 687

terminating 686
REPORTONLY

option of COPY utility 130
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547

REPORTONLY, option of COPY utility 160
RESET

option of DSN1COPY utility 936
option of REPAIR utility 657

resetting
DBETE status

DBET error 1086
pending status

advisory 1083
auxiliary CHECK-pending (ACHKP) 1083
CHECK-pending (CHKP) 1085
COPY-pending 1086
group buffer pool RECOVER-pending (GRECP) 1087
informational COPY-pending (ICOPY) 161, 1088
page set REBUILD-pending (PSRBD) 1088
REBUILD-pending (RBDP) 433
REBUILD-pending (RBDP), for the RECOVER

utility 490
REBUILD-pending (RBDP), summary 1088
RECOVER-pending (RECP), for the RECOVER

utility 490
RECOVER-pending (RECP), summary 1089
REORG-pending (REORP) 1090
restart-pending 1092

Persistent Read Only (PRO) restricted status 1088
refresh status, REFRESH-pending (REFP) 1090
warning status, auxiliary warning (AUXW) 1084

RESPORT, option of DSNJU003 utility 883
restart

conditional control record
reading 917
sample 917

restart-pending (RESTP) status
description 1092
resetting 1092

RESTART, option of DSNU CLIST command 21
restarting

performing first two phases only 883
problems

cannot restart REPAIR 672
cannot restart REPORT 686

Index 1169

restarting (continued)
utilities

BACKUP SYSTEM 52
CATMAINT 64
CHECK DATA 90
CHECK INDEX 110
CHECK LOB 122
COPY 164
creating your own JCL 41
current restart 39
data set name 39
data sharing 36
DIAGNOSE 200
EXEC SQL 205
EXEC statement 30
JCL, updating 41
LISTDEF 226
lists 44
LOAD 332
MERGECOPY 363
methods of restart 41
MODIFY RECOVERY utility 376
MODIFY STATISTICS 385
OPTIONS 394
out-of-space condition 43
phase restart 39
QUIESCE 405
REBUILD INDEX 436
RECOVER 493
REORG INDEX 530, 531
REORG TABLESPACE 624, 626
RESTORE SYSTEM 717
RUNSTATS 757
STATISTICS keyword 39
STOSPACE 773
TEMPLATE 797
templates 43
UNLOAD 862
using DB2I 41
using the DSNU CLIST command 41
utility statements 42, 43
UTPROC 27
volume serial 39

restarting a utility
DSNUTILS 1013
DSNUTILU 1024

RESTORE SYSTEM utility
actions after running 718
authorization 711
compatibility 717
creating system point in time for 883
data sets needed 716
data sharing environment 717
description 711
DISPLAY UTILITY command 717
effects of running 718
examples 718

FROMDUMP 719
LOGONLY 719
LOGONLY SWITCH VCAT 719
recovering a system 719

indexes
REBUILD-pending status 718

option descriptions 713
output 711
phases of execution 711
preparation 714

RESTORE SYSTEM utility (continued)
restarting 717
syntax diagram 713
terminating 717

RESTOREBEFORE
option of RECOVER utility 447

RESTP 1092
restrictive status

resetting 667, 668, 1083
RESUME, option of LOAD PART 264
RESUME, option of LOAD utility 237
RETAIN

option of MODIFY RECOVERY utility 369
RETPD, option of TEMPLATE statement 779
RETRY

option of CHECK DATA utility 68
option of CHECK INDEX utility 97
option of CHECK LOB utility 115
option of REBUILD INDEX utility 413
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547

RETRY_DELAY
option of CHECK DATA utility 68
option of CHECK INDEX utility 97
option of CHECK LOB utility 115
option of REBUILD INDEX utility 413

return code, altering 394
return code, CHANGELIMIT 160
REUSE

option of LOAD PART 264
option of LOAD utility 237
option of REBUILD INDEX 413
option of RECOVER utility 447
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547

RI, option of LISTDEF utility 209
RID

option of DSN1LOGP utility 962
option of REPAIR utility on LOCATE statement 653

row change timestamp columns, loading 298
row format

REORG TABLESPACE, effect of 629
ROWID

option of LOAD utility 264
option of REPAIR utility on LOCATE statement 653
option of UNLOAD utility 821

ROWID columns
generating 326
loading 298, 326

ROWLIMIT, option of DSN1COMP utility 923
RSTMBR, option of DSNJU003 utility 883
running online utilities

data sharing environment 36
JCL 30

RUNSTATS
profiles 753

RUNSTATS profiles 756
deleting 756
setting 754
updating 756
use by autonomic statistics 756
using 755

RUNSTATS utility
access, specifying 727, 736
actions after running 764
after LOAD 330
aggregation of statistics, specifying 727, 736

1170 Utility Guide and Reference

RUNSTATS utility (continued)
authorization 721
catalog table spaces

processing 750
sample output 750

catalog table updates 757
COLGROUP option 721
column frequency statistics, gathering 727
column information, gathering 727
compatibility 746
data sets needed 744
deciding when to run 748
description 721
device type for sort program, specifying 727, 736
distribution statistics for column groups 749
examples 765

collecting distribution statistics 767
gather histogram statistics 768
generating a report 766
invalidating statements in the dynamic statement

cache 768
reporting statistics only 766
updating access path statistics 766
updating all statistics 766
updating catalog and history statistics 766
updating frequency statistics 766
updating index statistics 765
updating key column statistics 766
updating statistics for a partition 766
updating statistics for a table space 765
updating statistics for several tables 765
updating statistics while allowing changes 765
updating statistics while not allowing changes 765

grouping columns 727
HISTOGRAM option 721
HISTORY option 752
index frequency statistics, gathering 727
INDEX option 721
index partitions, gathering statistics 727
index partitions, specifying 736
INDEX syntax diagram 735
invoking manually 756
key column combinations, gathering information 727
large partitioned table spaces 757
lists, using 727, 736
LOB table space, space statistics 753
option descriptions

options for RUNSTATS INDEX 736
output 721, 757
partitioned table space, updating statistics 750
performance recommendations 750
phases of execution 721
preparation 744
profile syntax diagram 741
reporting information 727, 736
restarting 757
sample of columns, gathering statistics 727
SAMPLE option 727
SET PROFILE option 754
sort work data sets, specifying number 727, 736
table space partitions, gathering statistics 727
TABLESPACE option 721
TABLESPACE syntax diagram 722
terminating 757
UPDATE PROFILE option 756
updating catalog information 727, 736
USE PROFILE option 755

RUNSTATS utility (continued)
work data sets

using for frequency statistics 751
XML table space, space statistics 753

RUNTSTATS
RESET ACCESSPATH option 762

S
SAMPLE

option of LOAD STATISTICS 237
option of REORG TABLESPACE utility 547
option of RUNSTATS utility 727
option of UNLOAD utility 821

scanning rules, utility control statements 13, 871
SCOPE

option of CHECK DATA utility 68, 85
option of COPY utility

ALL 130
PENDING 130

option of REBUILD INDEX utility 413
option of REORG TABLESPACE utility 547

SCOPE PENDING, CHECK DATA after LOAD utility 335
SECPORT, option of DSNJU003 utility 883
security

multilevel with row-level granularity
authorization restrictions for online utilities 17
authorization restrictions for stand-alone utilities 872

security, data sets 12
SEGMENT, option of DSN1COPY utility 936
segmented table space

copying 130
segmented table spaces, reorganizing 621
SELECT statement

list
maximum number of elements 1005

SYSIBM.SYSTABLESPACE, example 771
select-statement, option of EXEC SQL utility 204
SELECT, option of DSN1SDMP utility 993
SELECT2, option of DSN1SDMP utility 993
semicolon

embedded 1100
SET INDEX statement 650
SET INDEX statement of REPAIR utility 650
SET INDEXSPACE statement 650
SET INDEXSPACE statement of REPAIR utility 650
SET TABLESPACE statement 650
SET TABLESPACE statement of REPAIR utility 650
setting SQL terminator

DSNTIAD 1100
shadow data sets

CHECK DATA utility 80
CHECK INDEX utility 101
CHECK LOB utility 118
defining

REORG INDEX utility 521
REORG TABLESPACE utility 592

estimating size, REORG INDEX utility 521
shift-in character, LOAD utility 264
shift-out character, LOAD utility 264
shortcut keys

keyboard xvi
SHRLEVEL

option of CHECK DATA utility 68
option of CHECK INDEX utility 97
option of CHECK LOB utility 115

Index 1171

SHRLEVEL (continued)
option of COPY utility

CHANGE 130, 153
REFERENCE 130, 153

option of LOAD utility 237
option of REBUILD INDEX utility 413
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547
option of REPAIR utility on LOCATE statement 653
option of RUNSTATS utility 727, 736
option of UNLOAD utility 806

SHRLEVEL CHANGE
option of REPAIR utility on LOCATE statement 653

SIZE, option of DSNUPROC utility 27
SKIP, option of OPTIONS statement 390
SMALLINT

option of LOAD utility 264
option of UNLOAD utility 821

SMF trace records, compressing
DSNTSMFD 1127

sort program
data sets for REORG TABLESPACE, specifying device

type 547
messages from REORG TABLESPACE, specifying

destination 587
SORTDATA, option of REORG TABLESPACE utility 547
SORTDEVT

option of CHECK DATA utility 68
option of CHECK INDEX utility 97
option of CHECK LOB utility 115
option of LOAD utility 237
option of REBUILD INDEX 413
option of REORG INDEX 504
option of REORG TABLESPACE utility 547
option of RUNSTATS utility 727, 736

SORTKEYS
option of LOAD utility 237, 317

SORTNUM
option of CHECK DATA utility 68
option of CHECK INDEX utility 97
option of CHECK LOB utility 115
option of LOAD utility 237
option of REBUILD INDEX 413
option of REORG INDEX 504
option of REORG TABLESPACE utility 547
option of RUNSTATS utility 727, 736

SORTOUT
data set of LOAD utility, estimating size 287

space
DBD, reclaiming 375
unused, finding for nonsegmented table space 600

SPACE
AGE option of MODIFY STATISTICS utility 382
DATE, option of MODIFY STATISTICS utility 382
option of MODIFY STATISTICS utility 382
option of REORG TABLESPACE utility 547
option of TEMPLATE utility 779

SPACE column
analyzing values 772

spanned record format 847
SQL (Structured Query Language)

limits 1005
statement terminator 1100

SQL statement terminator
modifying in DSNTEP2 and DSNTEP4 1094, 1102
modifying in DSNTIAD 1100

SQL terminator, specifying in DSNTEP2 and DSNTEP4 1094,
1102

SQL terminator, specifying in DSNTIAD 1100
STACK, option of TEMPLATE statement 779
stand-alone utilities 871

control statement, creating 871
description 3
invoking 871
JCL EXEC PARM, using to specify options 871
multilevel security with row-level granularity, effects 872
specifying options 871

START TRACE command, option of DSN1SDMP utility 993
START, option of CATENFM utility 56
STARTIME, option of DSNJU003 utility 883
STARTRBA, option of DSNJU003 utility 883
state, utility execution 33
statistics

deciding when to gather 748
gathering 721
profiles 753
real-time

stored procedure 1029, 1050
Statistics 762
STATISTICS

option of LOAD utility 237
option of REBUILD INDEX 413
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547

statistics history
deleting specific entries 385
reasons to delete 385

statistics, space utilization and the REORG INDEX utility 525
status

CHECK-pending, resetting 335
COPY-pending, resetting 334
displaying 1083
option of TEMPLATE statement 779
page set REBUILD-pending (PSRBD) 433
REBUILD-pending (RBDP) 433
REBUILD-pending star (RBDP*) 433

status of utility
active 33
stopped 33
terminated 33

STOGROUP, option of STOSPACE utility 770
stopped status, of a utility 33
stopping, state of utility execution 33
storage group, DB2

disk space 771
storage allocated 771

STORCLAS, option of TEMPLATE statement 779
stored procedure

DSNACCOR 1029
DSNUTILS 1013
DSNUTILU 1024
real-time statistics 1029

stored procedures
DB2-supplied 1013
DSNACCOX 1013, 1050
DSNUTILS 1013
DSNUTILU 1013
real-time statistics 1050

STOSPACE utility
authorization 769
availability of objects, ensuring 771
catalog updates 771
compatibility 771

1172 Utility Guide and Reference

STOSPACE utility (continued)
data sets needed 770
description 769
examples

all storage groups, updating space values 773
one storage group, updating space values 773
several storage groups, updating space values 773
stogroup names 773

monitoring disk space for a storage group 771
option descriptions 770
output 769
phases of execution 769
restarting 773
statistical information, obtaining 771
syntax diagram 770
terminating 773

string, naming convention xvii
strings

advanced information 547, 821
STRIP

option of LOAD utility
BINARY data type 264
CHAR data type 264, 321
GRAPHIC data type 264, 321
GRAPHIC EXTERNAL data type 264
VARBINARY data type 264
VARCHAR data type 264, 321
VARGRAPHIC data type 264, 321

STRIP, option of UNLOAD utility 821
STRTLRSN, option of DSNJU003 utility 883
STTRACE, option of DSN1SDMP utility 993
SUBMIT, option of DSNU CLIST command 21
substring notation, TEMPLATE utility 779
subsystem

backing up 45
restoring 711

subsystem parameters
DFSMSdss COPY operation with utilities 37

subsystem, naming convention xvii
SUBTYPE, option of DSN1LOGP utility 962
SUMMARY

option of DSN1LOGP utility 962
option of REPORT utility 680

switching
templates

TEMPLATE 797
syntax diagram 650

BACKUP SYSTEM utility 46
CATENFM utility 55
CATMAINT utility 59
change log inventory utility (DSNJU003) 880
CHECK DATA utility 66
CHECK INDEX utility 96
CHECK LOB utility 114
COPY utility 127
COPYTOCOPY utility 179
DIAGNOSE utility 195
DSN1COMP utility 923
DSN1COPY utility 936
DSN1LOGP utility 962
DSN1PRNT utility 981
DSN1SDMP utility 993
DSNADMSB 1110
DSNJU003 utility 880
DSNJU004 utility 905
DSNU CLIST command 21
DSNUTILS stored procedure 1016

syntax diagram (continued)
DSNUTILU stored procedure 1027
EXEC SQL utility 203
how to read xx
LISTDEF utility 207
LOAD utility 233
MERGECOPY utility 356
MODIFY RECOVERY utility 369
MODIFY STATISTICS utility 382
OPTIONS statement 389
print log map utility 905
QUIESCE utility 398
REBUILD INDEX utility 410
RECOVER utility 444
REORG INDEX utility 500
REORG TABLESPACE utility 541
REPAIR utility 646
REPORT utility 679
RESTORE SYSTEM utility 713
RUNSTATS INDEX 735
RUNSTATS profile 741
RUNSTATS TABLESPACE 722
STOSPACE utility 770
TEMPLATE statement 775
UNLOAD utility 804

SYSCOPY
catalog table, information from REPORT utility 684
directory table space, MERGECOPY restrictions 355, 357
option of DSN1LOGP utility 962

SYSCOPY, deleting rows 373
SYSDISC data set

LOAD utility, estimating size 287
SYSERR data set

LOAD utility, estimating size 287
SYSIBM.SYSCOPY

ICBACKUP column 147
ICUNIT column 147

SYSIBM.SYSLGRNX
objects recorded 475

SYSIN DD statement, built by CLIST 25
SYSLGRNX directory table, information from REPORT

utility 684
SYSLGRNX, deleting rows 373
SYSMAP data set

estimating size 287
SYSPITR, option of DSNJU003 utility 883
SYSPITRT, option of DSNJU003 utility 883
SYSPRINT DD statement, built by CLIST 25
SYSPUNCH

using to LOAD data 298
SYSTEM

option of DSNU CLIST command 21
option of DSNUPROC utility 27

system data sets, renaming 899
system monitoring

index organization 525
table space organization 525, 600

system point in time, creating 883
system-level

backup 917
system-level backups

recovering from 458
system-level-backup 460
system, limits 1005
SYSTEMPAGES, option of COPY utility 130
SYSUT1 data set for LOAD utility, estimating size 287

Index 1173

SYSUTILX directory table space
MERGECOPY restrictions 355, 357
order of recovering 468

T
table

dropping, reclaiming space 606
exception, creating 84
multiple, loading 261
replacing 295
replacing data 295

TABLE
option of LISTDEF utility 209
option of LOAD STATISTICS 237
option of REORG TABLESPACE utility 547
option of RUNSTATS utility 727

table name, naming convention xvii
table space

checking 65
checking multiple 93
determining when to reorganize 525, 600
LOAD LOG 339
merging copies 355
naming convention xvii
nonsegmented, finding unused space 600
partitioned, updating statistics 750
REORG LOG 629
reorganizing

determining when to reorganize 600
using SORTDATA option of REORG utility 600
utilization 525

segmented
LOAD utility 295

status, resetting 667
table spaces

LOAD on NOT LOGGED, effect of 339, 629
TABLESPACE

option of CHECK DATA utility 68
option of CHECK INDEX utility 97
option of CHECK LOB utility 115
option of COPY utility 130
option of COPYTOCOPY utility 180
option of LISTDEF utility 209
option of MERGECOPY utility 357
option of MODIFY RECOVERY utility 369
option of MODIFY STATISTICS utility 382
option of QUIESCE utility 399
option of REBUILD INDEX utility 413
option of RECOVER utility 447
option of REORG TABLESPACE utility 547
option of REPAIR utility

general description 647
on LOCATE TABLESPACE statement 653
on SET TABLESPACE and SET INDEX statements 650

option of REPORT utility 680
option of RUNSTATS utility 727, 736
option of UNLOAD utility 806

TABLESPACES, option of LISTDEF utility 209
TABLESPACESET

option of QUIESCE utility 399
option of REPORT utility 680

TAPEUNITS
option of COPY utility 130
option of RECOVER utility 447

TEMPLATE library 791
TEMPLATE library, specifying 393

TEMPLATE utility
authorization 775
BSAM buffers, specifying number 779
compatibility 792
data set names

convention for specifying 779
creating 793
guidelines 793

data set size
controlling 794
DB2 estimates 794
default space calculations 794
extent allocations 794

DD name for tape, specifying 779
description 775
devices

specifying 779
specifying number 779

disposition of data set
defaults for dynamically allocated data sets for new

utility executions 779
defaults for dynamically allocated data sets on

RESTART 779
specifying 779

examples
basic template 797
COPY job with LISTDEF and TEMPLATE 792
COPY job with TEMPLATE and LISTDEF 798
creating a GDG data set 799
GDG data set, copying to tape 799
LOB objects, unloading 800
specifying an expiration date 798
specifying disposition 798
specifying space parameters 798
template switching 168, 800
using default size 798
variable substring notation 797, 798

expiration date for data set, specifying 779
GDG base, specifying number of entries 779
GDGs, working with 796
instructions 775, 791
model data set, specifying 779
operations 792
option descriptions 779

LRECL 779
RECFM 779
SUBSYS 779

output 775
phases of execution 775
PREVIEW mode, executing in 792, 793
previewing data set names 792, 793
restarting 797
retention period for data set, specifying 779
scope of control statement 792
SMS data class, specifying 779
SMS management class, specifying 779
SMS storage class, specifying 779
space parameters, specifying 779
substring notation 779
switching 797
syntax diagram 775
tape, working with 795
terminating 797
track recording technique, specifying 779
variables

DATE 779
example meaningful data set name 793

1174 Utility Guide and Reference

TEMPLATE utility (continued)
variables (continued)

JOB 779
OBJECT 779
TIME 779
using in the data set name 779
UTILITY 779

volume serial numbers, specifying 779
volumes, specifying maximum number 779

TEMPLATEDD, option of OPTIONS statement 390
temporal table columns, loading 298
TERM UTILITY command

COPY utility 163
description 36
effect on

RECOVER utility 493
rerunning UNLOAD 862

LOAD 331
terminated status, of a utility 33
terminating

MERGECOPY 363
state of utility execution 33
utilities

BACKUP SYSTEM 52
CATENFM 58
CATMAINT 64
CHECK DATA 90
CHECK INDEX 110
CHECK LOB 122
COPY 163
COPYTOCOPY 190
data sharing 36
description 36
DIAGNOSE 200
EXEC SQL 205
LISTDEF 226
LOAD 331
MODIFY RECOVERY 376
MODIFY STATISTICS 385
OPTIONS 394
QUIESCE 405
REBUILD INDEX 436
RECOVER 493
REORG INDEX 530
REORG TABLESPACE 624
REPAIR 672
REPORT 686
RESTORE SYSTEM 717
RUNSTATS 757
STOSPACE 773
TEMPLATE 797
UNLOAD 862

terminating a utility
DSNUTILS 1013

TEST, option of REPAIR utility 661
TIME EXTERNAL

option of LOAD utility 264
option of UNLOAD utility 821

TIME, option of DSNJU003 utility 883
TIMEOUT

option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547

TIMESTAMP EXTERNAL
option of LOAD utility 264
option of UNLOAD utility 821

timestamp, BSDS 914
timestamp, incrementing and decrementing value 821

timestamps, printing system and utility 903
TOCOPY, option of RECOVER utility 447
TOKEN, option of BACKUP SYSTEM utility 47
TOLASTCOPY, option of RECOVER utility 447
TOLASTFULLCOPY option of RECOVER utility 447
TOLOGPOINT, option of RECOVER utility 447
TORBA option of RECOVER utility 447
TOSEQNO, option of RECOVER utility 447
TOVOLUME, option of RECOVER utility 447
TRACEID, option of DIAGNOSE utility 197, 200
tracing

processor use by utilities 35
TRK, option of TEMPLATE statement 779
TRTCH, option of TEMPLATE statement 779
TRUNCATE

option of LOAD utility
BINARY data type 264
CHAR data type 264, 321
GRAPHIC data type 264, 321
GRAPHIC EXTERNAL data type 264
VARBINARY data type 264
VARCHAR data type 264, 321
VARGRAPHIC data type 264, 321

TYPE
option of DIAGNOSE utility 197
option of DSN1LOGP utility 962

U
UID

option of DSNU command 21
option of DSNUPROC utility 27

UNCNT, option of TEMPLATE statement 779
UNICODE

option of LOAD utility 237
option of UNLOAD utility 806

UNIT
option of DSNJU003 utility 883
option of DSNU CLIST command 21
option of TEMPLATE statement 779

unit of recovery
in-abort 883
inflight 883

unit of work
in-commit 883
indoubt, conditional restart 883

UNLDDN
option of REORG TABLESPACE utility 547
option of UNLOAD utility 806

UNLOAD
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547

UNLOAD utility
64-bit floating point notation, specifying 821
access, specifying 806
ASCII format, specifying 806
authorization required 803
binary floating-point number format, specifying 821
blanks in VARBINARY fields, removing 821
blanks in VARCHAR fields, removing 821
blanks in VARGRAPHIC fields, removing 821
BLOB data type, specifying 821
BLOB strings, truncating 821
CCSID format, specifying 806
CHAR data type, specifying 821
character string representation of date, specifying 821
character string representation of time, specifying 821

Index 1175

UNLOAD utility (continued)
character strings, truncating 821
CLOB data type, specifying 821
CLOB strings, truncating 821
compatibility 843
compressed data 861
constant field, specifying 821
converting data types 851
copies, concatenating 849
data sets used 842
data type compatibility 852
data, identifying 806
DBCLOB format, specifying 821
DBCS string, truncating 821
DD name of unload data set, specifying 806
DD statement for image copy, specifying 806
decimal format, specifying 821
decimal point character, specifying for delimited

formats 806
delimited files 857
delimited format, specifying 806
delimiters

column 806
string 806

description 803
EBCDIC format, specifying 806
examples 862

CLONE 868
delimited file format 866
FROMCOPY option 863
HEADER option 864
LOBs 867
partitioned table space 864
SAMPLE option 864
specifying a header 864
unloading a sample of rows 864
unloading all columns 862
unloading data from an image copy 863
unloading data in parallel 864
unloading from two tables 864
unloading LOBs 867
unloading multiple table spaces 865
unloading specific columns 863
unloading specified partitions 865, 867
using a field specification list 863
using LISTDEF 865, 867
using TEMPLATE 864

field position, specifying 821
field specification errors, interpreting 862
field specifications 816
floating-point data, specifying format 806
FROM TABLE clause 848

compatibility with LIST 816
parentheses 816

FROM TABLE option descriptions 821
FROM TABLE syntax diagram 817
graphic type, specifying 821
graphic type, truncating 821
header field, specifying 821
image copies, unloading 849
image copy, specifying 806
integer format, specifying 821
internal format, specifying 806
labeled duration expression 821
lists, specifying 806
LOAD statements, generating 861
LOAD statements, specifying data set for 806

UNLOAD utility (continued)
LOB data 846, 847
maximum errors allowed, specifying 806
maximum number of rows to unload, specifying 821
multilevel security restrictions 803
multiple tables, unloading 816
option descriptions 806
output 803
output columns

ordering 849
selecting 849

output field position, specifying 853
output field size, specifying 853
output field types, specifying 852
output fields, determining layout 854
padding for variable length data, not using 806
partitions, identifying 806, 845
phases of execution 803
preparation 842
processing encrypted data 842
real format, specifying 821
restarting 862
ROWID type, specifying for output data 821
sampling rows 821
selection condition 821
small integer, specifying 821
source partitions, selecting 845
source tables, selecting 848
special values Infinity, sNaN, or NaN 857
STRIP option 860
substitutions, not using 806
syntax diagram 804
table space, specifying 806
terminating 862
TRUNCATE option 860
Unicode format, specifying 806
varying-length data format, specifying 821
varying-length graphic type, specifying 821
WHEN clause 821
XML data 845, 847

unloading LOB data 846
unloading partitions 845
unloading XML data 845
UPDATE

option of CATMAINT utility 60
option of LOAD STATISTICS 237
option of REBUILD INDEX utility 413
option of REORG INDEX utility 504
option of REORG TABLESPACE utility 547
option of RUNSTATS utility 727, 736

UPDATE PROFILE option
RUNSTATS utility 756

URID (unit of recovery ID), option of DSN1LOGP utility 962
USE PROFILE option

RUNSTATS utility 755
utilities

BACKUP SYSTEM
log copy pools 51

controlling 33
data set disposition 12
executing

DB2I 17
DSNU CLIST command 20
JCL 27, 30
problems during 33
restart 39

failure, determining cause 33

1176 Utility Guide and Reference

utilities (continued)
loading 7
MERGECOPY 363
mixed-release data sharing environment, operating in 8
monitoring 33
online 30

description 3
invoking 11

packaging 7
phase, determining 33
real-time statistics 1131
running concurrently 35
SMP/E jobs 7
stand-alone

description 3
invoking 871

suite
installing 7

target objects, declared temporary table 4
types

BACKUP SYSTEM 45
CATENFM 55
CATMAINT 59
change log inventory (DSNJU003) 879
CHECK DATA 65
CHECK INDEX 95
CHECK LOB 113
COPY 125
COPYTOCOPY 177
DIAGNOSE 195
DSN1COMP 921
DSN1COPY 933
DSN1LOGP 959
DSN1PRNT 979
DSN1SDMP 991
DSNJCNVB 873
DSNJCNVT 875
EXEC SQL 203
LISTDEF 207
LOAD 231
MERGECOPY 355
MODIFY RECOVERY 367
MODIFY STATISTICS 381
OPTIONS 389
preformat active log (DSNJLOGF) 877
print log map (DSNJU004) 903
QUIESCE 397
REBUILD INDEX 409
RECOVER 441
REORG 523
REORG INDEX 499
REORG TABLESPACE 537
REPAIR 645
REPORT 677
RESTORE SYSTEM 711
RUNSTATS 721
STOSPACE 769
TEMPLATE 775
UNLOAD 803

UTILITIES panel, DB2 17
utilities, processor use

tracing 35
utility control statements

creating 13
parsing rules 13
scanning rules 13

utility-id naming convention xvii

UTILITY, option of DSNU CLIST command 21
UTPRINT DD statement, built by CLIST 25
UTPROC, option of DSNUPROC utility 27

V
validation routine

LOAD utility 231
REORG TABLESPACE utility 547

VALUE
option of DSN1COPY utility 936
option of DSN1LOGP utility 962
option of DSN1PRNT utility 981

VARBINARY
option of the LOAD utility 264

VARCHAR
data type, loading 295
option of LOAD utility 264
option of UNLOAD utility 821

VARGRAPHIC
data type, loading 295
option of LOAD utility 264
option of UNLOAD utility 821

varying-length rows, relocated to other pages, finding number
of 600

VERIFY, statement of REPAIR utility 652, 656
version information

updating when moving to another system 670
version number management 376

LOAD utility 339
REBUILD INDEX utility 436
REORG INDEX utility 532
REORG TABLESPACE utility 629

version numbers, recycling 376
VERSION, option of REPAIR utility on LOCATE

statement 653
VERSIONS, option of REPAIR utility 647
versions, REORG TABLESPACE effect on 629
violation messages 86
violations

correct 86
finding 86

VOLCNT, option of TEMPLATE statement 779
VOLUME, option of DSNU CLIST command 21
VOLUMES, option of TEMPLATE statement 779
VSAM (Virtual Storage Access Method)

used by REORG TABLESPACE 587
used by STOSPACE 771

VSAMCAT, option of DSNJU003 utility 883

W
WAIT, option of DIAGNOSE utility 197
WARNING, option of OPTIONS statement 390
WHEN

option of LOAD utility 264
option of REORG TABLESPACE utility 547
option of UNLOAD utility 821

work data sets
CHECK DATA utility 68, 78
LOAD utility 287

WORKDDN
option of CHECK DATA utility 68
option of CHECK INDEX utility 97
option of CHECK LOB utility 117
option of LOAD utility 237

Index 1177

WORKDDN (continued)
option of MERGECOPY utility 357
option of REORG INDEX utility 504

WRITE, option of QUIESCE utility 399

X
XML

option of LISTDEF utility 209
option of LOAD utility 264

XML column
loading 328

XML columns
loading 303

XML data
loading 303

XML table space
copying 156, 177
LOAD LOG 329
reorganizing 623

XMLCHECK DATA 87
XMLERROR, option of CHECK DATA utility 68

1178 Utility Guide and Reference

����

Product Number: 5615-DB2
5697-P43

Printed in USA

SC19-4067-00

Sp
in
e
in
fo
rm
at
io
n:

DB
2

11
fo

rz
/O

S
Ut

ili
ty

Gu
id

e
an

d
Re

fe
re

nc
e

�
�

�

	Contents
	About this information
	Who should read this information
	DB2 Utilities Suite
	Terminology and citations
	Accessibility features for DB2 11 for z/OS
	How to send your comments
	Naming conventions used in this information
	How to read syntax diagrams

	Part 1. Introduction to the DB2 utilities
	Chapter 1. Basic information about the DB2 utilities
	Types of DB2 utilities
	Privileges and authorization IDs
	Utilities that can be run on declared temporary objects
	Effect of utilities on objects that have the DEFINE NO attribute
	Effect of utilities on data that is encrypted through built-in functions

	Chapter 2. DB2 utilities packaging
	SMP/E jobs for DB2 utility products
	Operation of DB2 utilities in a mixed-release data sharing environment

	Part 2. DB2 online utilities
	Chapter 3. Invoking DB2 online utilities
	Data sets that online utilities use
	Utility control statements
	Required authorizations for invoking online utilities on tables that have multilevel security with row-level granularity
	Invoking DB2 online utilities in a trusted connection
	Using the DB2 Utilities panel in DB2I
	Invoking a DB2 utility by using the DSNU CLIST command in TSO
	DSNU CLIST command

	Invoking a DB2 utility by using the supplied JCL procedure (DSNUPROC)
	Invoking a DB2 utility by creating the JCL data set yourself

	Chapter 4. Monitoring and controlling online utilities
	Monitoring utilities with the DISPLAY UTILITY command
	Traces for monitoring processor use by utilities
	Running utilities concurrently
	Online utilities in a data sharing environment
	Termination of an online utility with the TERM UTILITY command
	Subsystem parameters for refining DFSMSdss COPY operation with utilities
	Restart of an online utility
	Using the RESTART parameter
	Adding or deleting utility statements
	Modifying utility control statements
	Restarting after the output data set is full
	Restarting with templates
	How utilities restart with lists

	Chapter 5. BACKUP SYSTEM
	Syntax and options of the BACKUP SYSTEM control statement
	Before running BACKUP SYSTEM
	Data sets that BACKUP SYSTEM uses
	Concurrency and compatibility for BACKUP SYSTEM

	Dumping a fast replication copy to tape
	Backups of log copy pools
	Termination or restart of BACKUP SYSTEM
	Sample BACKUP SYSTEM control statements

	Chapter 6. CATENFM
	Syntax and options of the CATENFM control statement
	Before converting the catalog
	Data sets that CATENFM uses when converting the catalog
	Concurrency and compatibility for CATENFM

	Converting to new-function mode
	Termination or halt of CATENFM

	Chapter 7. CATMAINT
	Syntax and options of the CATMAINT control statement
	Before running CATMAINT
	Data sets that CATMAINT uses
	Concurrency and compatibility for CATMAINT

	Updating the catalog for a new release
	Renaming the owner, creator, and schema of database objects
	Changing the ownership of objects from an authorization ID to a role
	Changing the catalog name used by storage groups or index spaces and table spaces
	Identifying invalidated packages after the owner, creator, or schema name of an object is renamed
	Termination or restart of CATMAINT

	Chapter 8. CHECK DATA
	Syntax and options of the CHECK DATA control statement
	Before running CHECK DATA
	Data sets that CHECK DATA uses
	Defining work data sets
	Shadow data sets

	Concurrency and compatibility for CHECK DATA

	Exception tables for the CHECK DATA utility
	Exception processing for tables with auxiliary columns
	Specifying the scope of CHECK DATA
	How violations are identified
	Detection and correction of constraint violations
	CHECK DATA XML error detection
	Correcting XML data after running CHECK DATA
	Resetting CHECK-pending status
	LOB column errors
	Resetting auxiliary CHECK-pending status
	Termination and restart of CHECK DATA
	Sample CHECK DATA control statements

	Chapter 9. CHECK INDEX
	Syntax and options of the CHECK INDEX control statement
	Data sets that CHECK INDEX uses
	Shadow data sets

	Concurrency and compatibility for CHECK INDEX
	Single logical partitions
	Indexes in parallel
	Reviewing CHECK INDEX output
	Termination or restart of CHECK INDEX
	Correcting XML data after running CHECK INDEX
	Sample CHECK INDEX control statements

	Chapter 10. CHECK LOB
	Syntax and options of the CHECK LOB control statement
	Before running CHECK LOB
	Data sets that CHECK LOB uses
	Shadow data sets

	Concurrency and compatibility for CHECK LOB

	How CHECK LOB identifies violations
	Removing CHECK-pending status for a LOB table space
	Resolving media failure
	Termination or restart of CHECK LOB
	Sample CHECK LOB control statements

	Chapter 11. COPY
	Syntax and options of the COPY control statement
	Before running COPY
	Data sets that COPY uses
	Concurrency and compatibility for COPY

	Full image copies
	Incremental image copies
	Multiple image copies
	FlashCopy image copies
	Copies of lists of objects
	Using more than one COPY statement
	Copying partitions or data sets simultaneously
	Copies of partition-by-growth table spaces
	Copies of XML table spaces
	Copying catalog and directory objects
	Make copies of XML schema repository objects
	Copies of Indexes
	Using DFSMSdss concurrent copy
	Specifying conditional image copies
	Preparing for recovery by using the COPY utility
	Improving performance
	Generation data group definitions for the COPY utility
	Using DB2 with DFSMS products
	Image copies on tape
	Termination of COPY
	Restart of COPY
	Sample COPY control statements

	Chapter 12. COPYTOCOPY
	Syntax and options of the COPYTOCOPY control statement
	Data sets that COPYTOCOPY uses
	Concurrency and compatibility for COPYTOCOPY
	Full or incremental image copies with COPYTOCOPY
	Incremental image copies with COPYTOCOPY
	Using more than one COPYTOCOPY statement
	Copying from a specific image copy
	Copying a FlashCopy image copy by using COPYTOCOPY
	Using TEMPLATE with COPYTOCOPY
	Updating SYSCOPY records
	How COPYTOCOPY determines which input copy to use
	Generation data group definitions for the COPYTOCOPY utility
	Using DB2 with DFSMS products
	Image copies on tape
	Copies of lists of objects from tape
	Termination or restart of COPYTOCOPY
	Sample COPYTOCOPY control statements

	Chapter 13. DIAGNOSE
	Syntax and options of the DIAGNOSE control statement
	Data sets that DIAGNOSE uses
	Concurrency and compatibility for DIAGNOSE
	Forcing a utility abend
	Termination or restart of DIAGNOSE
	Sample DIAGNOSE control statements

	Chapter 14. EXEC SQL
	Syntax and options of the EXEC SQL control statement
	Concurrency and compatibility for EXEC SQL
	Termination or restart of EXEC SQL
	Sample EXEC SQL control statements

	Chapter 15. LISTDEF
	Syntax and options of the LISTDEF control statement
	Concurrency and compatibility for LISTDEF
	Creating the LISTDEF control statement
	Including objects in a list
	Previewing the contents of a list
	Creating LISTDEF libraries
	Referencing LISTDEF lists in other utility jobs
	Using the TEMPLATE utility with LISTDEF
	Using the OPTIONS utility with LISTDEF
	Termination or restart of LISTDEF
	Sample LISTDEF control statements

	Chapter 16. LOAD
	Syntax and options of the LOAD control statement
	Before running LOAD
	Data sets that LOAD uses
	Concurrency and compatibility for LOAD
	Preparing DB2 internal format input records that are not generated by UNLOAD for LOAD

	When to use SORTKEYS NO
	Loading variable-length data
	How LOAD orders loaded records
	Replacing data with LOAD
	Loading tables with special column types by using generated LOAD statements
	Adding more data to a table or partition
	Deleting all the data in a table space
	Loading partitions
	Partition-by-growth table spaces
	Loading data containing XML columns
	Loading delimited files
	Loading data with referential constraints
	Referential constraint violations
	Data compression
	Loading data from DL/I
	Loading data by using the cross-loader function
	Using inline COPY with LOAD
	Creating a FlashCopy image copy with LOAD
	Improving LOAD performance
	Improving performance for parallel processing
	Improved performance with SORTKEYS
	Improving performance with LOAD or REORG PREFORMAT
	Improving performance with LOAD by avoiding LOB and XML materialization

	Conversion of input data
	Specifying input fields
	Specifying the TRUNCATE and STRIP options
	How LOAD builds indexes while loading data
	Building indexes in parallel for LOAD
	How LOAD leaves free space
	Loading with RECOVER-pending, REBUILD-pending, or REORG-pending status
	Exit procedures
	Loading ROWID columns
	Loading a LOB column
	LOAD LOG on a LOB table space
	Loading an XML column
	LOAD LOG on an XML table space
	Running LOAD RESUME YES SHRLEVEL CHANGE without logging
	Collecting inline statistics while loading a table
	Inline COPY for a base table space
	Termination of LOAD
	Restart of LOAD
	After running LOAD
	Copying the loaded table space or partition
	Resetting COPY-pending status
	Resetting REBUILD-pending status
	Resetting the CHECK-pending status
	Running CHECK INDEX after loading a table that has indexes
	Recovering data after a failed LOAD job
	Reorganization of an auxiliary index after LOAD

	Effects of running LOAD
	Sample LOAD control statements

	Chapter 17. MERGECOPY
	Syntax and options of the MERGECOPY control statement
	Data sets that MERGECOPY uses
	Concurrency and compatibility for MERGECOPY
	Full or incremental image copy
	How MERGECOPY determines which input copy to use
	Merging online copies
	Using MERGECOPY with individual data sets
	Using MERGECOPY or COPY
	Avoiding MERGECOPY LOG RBA inconsistencies
	Termination or restart of MERGECOPY
	Sample MERGECOPY control statements

	Chapter 18. MODIFY RECOVERY
	Syntax and options of the MODIFY RECOVERY control statement
	Before running MODIFY RECOVERY
	Data sets that MODIFY RECOVERY uses
	Concurrency and compatibility for MODIFY RECOVERY

	How MODIFY RECOVERY deletes rows
	Reclaiming space in the DBD
	Improving REORG performance after adding a column
	Termination or restart of MODIFY RECOVERY
	The effect of MODIFY RECOVERY on version numbers
	Sample MODIFY RECOVERY control statements

	Chapter 19. MODIFY STATISTICS
	Syntax and options of the MODIFY STATISTICS control statement
	Data sets that MODIFY STATISTICS uses
	Concurrency and compatibility for MODIFY STATISTICS
	Guidelines for deciding which statistics history rows to delete
	Deletion of specific statistics history rows
	Termination or restart of MODIFY STATISTICS
	Sample MODIFY STATISTICS control statements

	Chapter 20. OPTIONS
	Syntax and options of the OPTIONS control statement
	Concurrency and compatibility for OPTIONS
	Executing statements in preview mode
	Specifying LISTDEF and TEMPLATE libraries
	Overriding standard utility processing behavior
	Termination or restart of OPTIONS
	Sample OPTIONS control statements

	Chapter 21. QUIESCE
	Syntax and options of the QUIESCE control statement
	Before running QUIESCE
	Data sets that QUIESCE uses
	Concurrency and compatibility for QUIESCE

	Using QUIESCE on catalog and directory objects
	Common quiesce points
	Running QUIESCE on a table space in pending status
	Reasons why QUIESCE fails to write to disk
	Termination and restart of QUIESCE
	Sample QUIESCE control statements

	Chapter 22. REBUILD INDEX
	Syntax and options of the REBUILD INDEX control statement
	Before running REBUILD INDEX
	Data sets that REBUILD INDEX uses
	Concurrency and compatibility for REBUILD INDEX

	Access with REBUILD INDEX SHRLEVEL
	Rebuilding index partitions
	Rebuilding indexes on partition-by-growth table spaces
	Improving performance when rebuilding index partitions
	Rebuilding multiple indexes
	Resetting the REBUILD-pending status
	Rebuilding critical catalog indexes
	Recoverability of a rebuilt index
	Creating a FlashCopy image copy with REBUILD INDEX
	Termination or restart of REBUILD INDEX
	The effect of REBUILD INDEX on index version numbers
	Sample REBUILD INDEX control statements

	Chapter 23. RECOVER
	Syntax and options of the RECOVER control statement
	Before running RECOVER
	Data sets that RECOVER uses
	Concurrency and compatibility for RECOVER

	Recovering with a system-level backup
	How to determine which system-level backups DB2 recovers
	Determining which recovery base DB2 uses
	Determining whether the system-level backups reside on disk or tape
	Recovering a table space
	Recovering a list of objects
	Recovering a data set or partition
	Recovering with incremental copies
	Recovering with FlashCopy image copies
	Recovering a page
	Recovering an error range
	Effect on RECOVER of the NOT LOGGED or LOGGED table space attributes
	Recovering with a data set copy that is not made by DB2
	Recovering catalog and directory objects
	Objects that contain recovery information
	Point-in-time recovery of the catalog, directory, and all user objects
	Creating a point of consistency for catalog and directory objects

	Reinitializing DSNDB01.SYSUTILX
	Recovering a table space that contains LOB or XML data
	Recovering a table space that contains clone objects
	Point-in-time recovery
	Avoiding specific image copy data sets during a recovery
	Improving RECOVER performance
	Optimizing the LOGAPPLY phase
	Recovering image copies in a JES3 environment
	Resetting RECOVER-pending or REBUILD-pending status
	How the RECOVER utility allocates incremental image copies
	How the RECOVER utility performs fallback recovery
	How the RECOVER utility retains tape mounts
	Avoiding damaged media
	Termination or restart of RECOVER
	Effects of running RECOVER
	Sample RECOVER control statements

	Chapter 24. REORG INDEX
	Syntax and options of the REORG INDEX control statement
	Before running REORG INDEX
	Data sets that REORG INDEX uses
	Shadow data sets

	Concurrency and compatibility for REORG INDEX

	Determining which indexes require reorganization
	Using the LEAFDISTLIMIT and REPORTONLY options to determine when reorganization is needed
	Access with REORG INDEX SHRLEVEL
	Creating a FlashCopy image copy with REORG INDEX
	Temporarily interrupting REORG
	Improving performance with REORG INDEX
	Termination of REORG INDEX
	Restart of REORG INDEX
	Review of REORG INDEX output
	Effect of REORG INDEX on index version numbers
	Sample REORG INDEX control statements

	Chapter 25. REORG TABLESPACE
	Syntax and options of the REORG TABLESPACE control statement
	Before running REORG TABLESPACE
	Data sets that REORG TABLESPACE uses
	Shadow data sets

	Concurrency and compatibility for REORG TABLESPACE

	Determining whether an object requires reorganization
	Access with REORG TABLESPACE SHRLEVEL
	Omitting the output data set
	Unloading without reloading
	Reclaiming space from dropped tables
	Reorganizing the catalog and directory
	Changing data set definitions
	Temporarily interrupting REORG
	How to override dynamic sort work data set allocation
	Redistributing data across partitions by using REORG
	How partitions can be unloaded and reloaded in parallel
	Using inline copy with REORG TABLESPACE
	Creating a FlashCopy image copy with REORG TABLESPACE
	Improving REORG TABLESPACE performance
	Parallel index building for REORG TABLESPACE
	How DB2 unloads data
	Encountering an error in the RELOAD phase
	Reorganization of partitioned table spaces
	Reorganization of partition-by-growth table spaces
	Reorganization of segmented table spaces
	Comparison of the numbers of loaded and unloaded records
	Reorganization of a LOB table space
	Reorganization of an XML table space
	Termination of REORG TABLESPACE
	Restart of REORG TABLESPACE
	Review of REORG TABLESPACE output
	After running REORG TABLESPACE
	Effects of running REORG TABLESPACE
	Sample REORG TABLESPACE control statements

	Chapter 26. REPAIR
	Syntax and options of the REPAIR control statement
	Before running REPAIR
	Data sets that REPAIR uses
	Concurrency and compatibility for REPAIR

	Resetting table space status
	Resetting index space status
	Repairing a damaged page
	Repairing DBDs
	Locating rows by key
	Using VERIFY with REPLACE and DELETE operations
	Repairing critical catalog table spaces and indexes
	Updating version information when moving objects to another subsystem
	Termination or restart of REPAIR
	Review of REPAIR output
	After running REPAIR
	Sample REPAIR control statements

	Chapter 27. REPORT
	Syntax and options of the REPORT control statement
	Data sets that REPORT uses
	Concurrency and compatibility for REPORT
	Recovery information that REPORT provides
	Running REPORT on the catalog and directory
	Termination or restart of REPORT
	Review of REPORT output
	Sample REPORT control statements

	Chapter 28. RESTORE SYSTEM
	Syntax and options of the RESTORE SYSTEM control statement
	Before running RESTORE SYSTEM
	Data sets that RESTORE SYSTEM uses
	Concurrency and compatibility for RESTORE SYSTEM

	Restoring data in a data sharing environment
	Using DISPLAY UTILITY with RESTORE SYSTEM
	Termination and restart of RESTORE SYSTEM
	Effects of running RESTORE SYSTEM
	After running RESTORE SYSTEM
	Sample RESTORE SYSTEM control statements

	Chapter 29. RUNSTATS
	Syntax and options of the RUNSTATS control statement
	The RUNSTATS profile syntax

	Before running RUNSTATS
	Data sets that RUNSTATS uses
	Concurrency and compatibility for RUNSTATS

	When to use RUNSTATS
	Collecting distribution statistics for column groups
	Updating statistics for a partitioned table space
	Running RUNSTATS on the DB2 catalog
	Improving RUNSTATS performance
	Collecting frequency statistics for data-partitioned secondary indexes
	Invalidating statements in the dynamic statement cache
	Collecting statistics history
	Collection of statistics on LOB table spaces
	Collection of statistics on XML objects
	RUNSTATS profiles
	Creating RUNSTATS profiles
	Using RUNSTATS profiles
	Updating RUNSTATS profiles
	Deleting RUNSTATS profiles
	Combining autonomic and manual statistics maintenance

	Termination or restart of RUNSTATS
	Review of RUNSTATS output
	Resetting access path statistics
	After running RUNSTATS
	Sample RUNSTATS control statements

	Chapter 30. STOSPACE
	Syntax and options of the STOSPACE control statement
	Data sets that STOSPACE uses
	Concurrency and compatibility for STOSPACE
	How STOSPACE ensures availability of objects it STOSPACE requires
	Obtaining statistical information with STOSPACE
	Analysis of the values in a SPACE or SPACEF column
	Termination or restart of STOSPACE
	Sample STOSPACE control statement

	Chapter 31. TEMPLATE
	Syntax and options of the TEMPLATE control statement
	Before running TEMPLATE
	Concurrency and compatibility for TEMPLATE

	Key TEMPLATE operations
	Choosing data set names
	Default space calculations for data set templates
	Guidelines for templates and tape data sets
	How TEMPLATE supports GDG data sets
	Template switching
	Termination or restart of TEMPLATE
	Sample TEMPLATE control statements

	Chapter 32. UNLOAD
	Syntax and options of the UNLOAD control statement
	Before running UNLOAD
	Data sets that UNLOAD uses
	Concurrency and compatibility for UNLOAD

	Unloading partitions
	Unloading XML data
	Unloading LOB data
	Unloading data in spanned record format
	Selecting tables and rows to unload
	Selecting and ordering columns to unload
	Unloading data from image copy data sets
	Data conversion with the UNLOAD utility
	Output field types
	Output field positioning and size
	Layout of output fields
	Output for special values Infinity, sNaN, or NaN
	Unloading delimited files
	Specifying TRUNCATE and STRIP options for output data
	Generating LOAD statements
	Unloading compressed data
	Field specification errors
	Termination or restart of UNLOAD
	Sample UNLOAD control statements

	Part 3. DB2 stand-alone utilities
	Chapter 33. Invoking stand-alone utilities
	Stand-alone utility control statements
	Specifying options by using the JCL EXEC PARM parameter
	Effects of invoking stand-alone utilities on tables that have multilevel security with row-level granularity

	Chapter 34. DSNJCNVB
	Chapter 35. DSNJCNVT
	Chapter 36. DSNJLOGF (preformat active log)
	Chapter 37. DSNJU003 (change log inventory)
	Syntax and options of the DSNJU003 control statement
	Making changes for active logs
	Making changes for archive logs
	A conditional restart control record
	Deleting log data sets with errors
	Altering references to log data sets in the BSDS
	Defining the high-level qualifier for catalog and directory objects
	Renaming DB2 system data sets
	Renaming DB2 active log data sets
	Renaming DB2 archive log data sets
	Sample DSNJU003 control statements

	Chapter 38. DSNJU004 (print log map)
	Syntax and options of the DSNJU004 control statement
	Sample DSNJU004 control statement
	DSNJU004 (print log map) output

	Chapter 39. DSN1COMP
	Syntax and options of the DSN1COMP control statement
	Before running DSN1COMP
	Estimating compression savings achieved with option REORG
	Free space in compression calculations on table space
	Sample DSN1COMP control statements
	DSN1COMP output

	Chapter 40. DSN1COPY
	Syntax and options of the DSN1COPY control statement
	Before running DSN1COPY
	Data sets that DSN1COPY uses

	Inconsistent data checks
	The effects of not specifying the OBIDXLAT option
	Requirements for using an image copy as input to DSN1COPY
	Copying from an image copy
	Restoring indexes with DSN1COPY
	Restoring table spaces with DSN1COPY
	Printing with DSN1COPY
	Copying tables from one subsystem to another
	Sample DSN1COPY control statements

	Chapter 41. DSN1LOGP
	Syntax and options of the DSN1LOGP control statement
	Determining the PSID for base and clone objects
	Archive log data sets on tape
	Sample DSN1LOGP control statements
	DSN1LOGP output

	Chapter 42. DSN1PRNT
	Syntax and options of the DSN1PRNT control statement
	Printing with DSN1PRNT instead of DSN1COPY
	Determining the page size and data set size for DSN1PRNT
	Sample DSN1PRNT control statements

	Chapter 43. DSN1SDMP
	Syntax and options of the DSN1SDMP control statement
	Assigning buffers
	Conditions for generating a dump
	Stopping or modifying DSN1SDMP traces
	Sample DSN1SDMP control statements

	Part 4. Appendixes
	Appendix A. Limits in DB2 for z/OS
	Appendix B. DB2-supplied stored procedures for utility operations
	DSNUTILS stored procedure (deprecated)
	DSNUTILU stored procedure
	DSNACCOR stored procedure (deprecated)
	DSNACCOX stored procedure

	Appendix C. Advisory or restrictive states
	Auxiliary CHECK-pending status
	Auxiliary warning status
	CHECK-pending status
	COPY-pending status
	DBETE status
	Group buffer pool RECOVER-pending status
	Informational COPY-pending status
	PRO restricted status
	REBUILD-pending status
	RECOVER-pending status
	REFRESH-pending status
	REORG-pending status
	Restart-pending status

	Appendix D. Productivity-aid sample programs
	DSNTIAUL
	DSNTIAD
	DSNTEP2 and DSNTEP4

	Appendix E. DSNADMSB
	Parameters of the DSNADMSB program
	Before running DSNADMSB
	Data sets that DSNADMSB uses
	Copying the data that DSNADMSB and ADMIN_INFO_SQL collect to another subsystem
	Examples of DSNADMSB invocation

	Appendix F. DSNTSMFD
	Before running DSNTSMFD
	Data sets that DSNTSMFD uses
	Examples of DSNTSMFD invocation

	Appendix G. How real-time statistics are used by DB2 utilities
	Appendix H. Delimited file format
	Data types in delimited files
	Examples of delimited files

	Information resources for DB2 for z/OS and related products
	Notices
	Programming interface information
	Trademarks
	Privacy policy considerations

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

