DB2 11 for z/0S

Utility Guide and Reference

<||IH

DB2 11 for z/0S

Utility Guide and Reference

..lli

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

First edition (October 2013)

This edition applies to DB2 11 for z/OS (product number 5615-DB2), DB2 11 for z/OS Value Unit Edition (product
number 5697-P43), DB2 Utilities Suite for z/OS, Version 11 (product number 5655-W87), and to any subsequent
releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the
product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright IBM Corporation 1983, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information. s et e h e e e e e e . . XV

Who should read this information. .xv
DB2 Utilities Suiteo oxY
Terminology and citations . . S 4 4
Accessibility features for DB2 11 for z / OS e 8%
How to send your comments gt
Naming conventions used in this 1nformat10n D 4 4 1
How to read syntax diagramsLXxx

Part 1. Introduction to the DB2 utilities.1

Chapter 1. Basic information about the DB2 utilities.
Types of DB2 utilities

Privileges and authorization IDs .

Utilities that can be run on declared temporary ob]ects .

Effect of utilities on objects that have the DEFINE NO attribute
Effect of utilities on data that is encrypted through built-in functions

Tl o W W

Chapter 2. DB2 utilities packaging
SMP/E jobs for DB2 utility products .
Operation of DB2 utilities in a mixed-release data sharmg env1r0nment.

o 3 N

Part 2. DB2 online utilities.9

Chapter 3. Invoking DB2 online utilities.MN

Data sets that online utilitiesuse .. .1
Utility control statements.13
Required authorizations for 1nvok1ng onhne ut1ht1es on tables that have multrlevel securlty w1th row-level
granularity . . . e V4
Invoking DB2 online utlhtles in a trusted connectlon e 4
Using the DB2 Utilities panel in DB2I . . . e V4
Invoking a DB2 utility by using the DSNU CLIST command in TSO e e sl
DSNU CLIST command . . e |
Invoking a DB2 utility by using the supphed]CL procedure (DSNUPROC) e e 27
Invoking a DB2 utility by creating the JCL data set yourself30

Chapter 4. Monitoring and controlling online utilities.33

Monitoring utilities with the DISPLAY UTILITY command33
Traces for monitoring processor use by utilities .35
Running utilities concurrently .3
Online utilities in a data sharing environment. . . N 1)
Termination of an online utility with the TERM UTILITY command S ..o .36
Subsystem parameters for refining DFSMSdss COPY operation with utilities37
Restart of an online utility . L . .23
Using the RESTART parameter .«4
Adding or deleting utility statements. L L L 42
Modifying utility control statements L L42
Restarting after the output data setisfull .43
Restarting with templates.43
How utilities restart with lists .4
Chapter 5. BACKUP SYSTEM R |
Syntax and options of the BACKUP SYSTEM control statement46

© Copyright IBM Corp. 1983, 2013 iii

Before running BACKUP SYSTEM.

Data sets that BACKUP SYSTEM uses

Concurrency and compatibility for BACKUP SYSTEM
Dumping a fast replication copy to tape . .
Backups of log copy pools .
Termination or restart of BACKUP SYSTEM
Sample BACKUP SYSTEM control statements .

Chapter 6. CATENFM. . .

Syntax and options of the CATENFM control statement

Before converting the catalog .
Data sets that CATENFM uses when convertmg the catalog .
Concurrency and compatibility for CATENFM.

Converting to new-function mode . .

Termination or halt of CATENFM .

Chapter 7. CATMAINT . .
Syntax and options of the CATMAINT Control statement .
Before running CATMAINT .
Data sets that CATMAINT uses
Concurrency and compatibility for CATMAINT
Updating the catalog for a new release .
Renaming the owner, creator, and schema of database ob]ects
Changing the ownership of objects from an authorization ID to a role. .
Changing the catalog name used by storage groups or index spaces and table spaces

Identifying invalidated packages after the owner, creator, or schema name of an object is renamed .

Termination or restart of CATMAINT.

Chapter 8. CHECK DATA .
Syntax and options of the CHECK DATA control statement
Before running CHECK DATA . Lo
Data sets that CHECK DATA uses.
Concurrency and compatibility for CHECK DATA
Exception tables for the CHECK DATA utility .
Exception processing for tables with auxiliary columns.
Specifying the scope of CHECK DATA .
How violations are identified .
Detection and correction of constraint Vlolatlons .
CHECK DATA XML error detection . .
Correcting XML data after running CHECK DATA .
Resetting CHECK-pending status . .
LOB column errors . .
Resetting auxiliary CHECK—pendmg status
Termination and restart of CHECK DATA .
Sample CHECK DATA control statements .

Chapter 9. CHECK INDEX. .

Syntax and options of the CHECK INDEX control statement .

Data sets that CHECK INDEX uses . L
Shadow data sets .

Concurrency and compatlblhty for CHECK INDEX

Single logical partitions . Coe

Indexes in parallel.

Reviewing CHECK INDEX output .

Termination or restart of CHECK INDEX . .

Correcting XML data after running CHECK INDEX

Sample CHECK INDEX control statements

Chapter 10. CHECK LOB . .
Syntax and options of the CHECK LOB control statement

iv Utility Guide and Reference

. 49
. 49
. 50
. 50
. 51
. 52
. 52

. 95

. 55
. 56
. 56
. 57
. 57
. 57

. 59

. 59
. 61
. 61
. 62
. 62
. 62
. 62
. 63
. 63
. 64

. 65

. 66
.77
. 78
. 82
. 84
. 85
. 85
. 86
. 86
. 87
. 87
. 88
. 88
. 90
.90
.91

. 95

. 96

. 100
. 101
. 103
. 104
. 105
. 109
. 110
. 110
. 110

. 113
. 114

Before running CHECK LOB .

Data sets that CHECK LOB uses .

Concurrency and compatibility for CHECK LOB
How CHECK LOB identifies violations.
Removing CHECK-pending status for a LOB table space
Resolving media failure . e
Termination or restart of CHECK LOB
Sample CHECK LOB control statements

Chapter 11. COPY

Syntax and options of the COPY control statement .
Before running COPY

Data sets that COPY uses

Concurrency and compatlblhty for COPY
Full image copies . . o
Incremental image copies
Multiple image copies
FlashCopy image copies.
Copies of lists of objects . .
Using more than one COPY statement .
Copying partitions or data sets simultaneously .
Copies of partition-by-growth table spaces
Copies of XML table spaces .
Copying catalog and directory ob]ects . .
Make copies of XML schema rep051tory objects .
Copies of Indexes . e
Using DFSMSdss concurrent Copy
Specifying conditional image copies . .
Preparing for recovery by using the COPY ut111ty
Improving performance . .
Generation data group deflnltlons for the COPY ut1hty
Using DB2 with DFSMS products .
Image copies on tape. .
Termination of COPY.
Restart of COPY
Sample COPY control statements

Chapter 12. COPYTOCOPY

Syntax and options of the COPYTOCOPY control statement.
Data sets that COPYTOCOPY uses . .
Concurrency and compatibility for COPYTOCOPY

Full or incremental image copies with COPYTOCOPY.
Incremental image copies with COPYTOCOPY .

Using more than one COPYTOCOPY statement .

Copying from a specific image copy.

Copying a FlashCopy image copy by usmg COPYTOCOPY
Using TEMPLATE with COPYTOCOPY .o
Updating SYSCOPY records

How COPYTOCOPY determines Wthh mput copy to use
Generation data group definitions for the COPYTOCOPY utlhty
Using DB2 with DFSMS products e
Image copies on tape. .

Copies of lists of objects from tape . .

Termination or restart of COPYTOCOPY .

Sample COPYTOCOPY control statements.

Chapter 13. DIAGNOSE .

Syntax and options of the DIAGNOSE control statement .
Data sets that DIAGNOSE uses

Concurrency and compatibility for DIAGNOSE

. 117
. 117
. 120
. 121
. 121
. 121
. 122
. 122

. 125
. 127
. 139
. 139
. 142
. 145
. 146
. 147
. 149
. 153
. 155
. 155
. 156
. 156
. 157
. 157
. 158
. 158
. 160
. 161
. 162
. 162
. 163
. 163
. 163
. 164
. 164

. 177
. 178
. 183
. 185
. 186
. 186
. 186
. 187
. 187
. 188
. 188
. 188
. 189
. 189
. 189
. 189
. 190
. 191

. 195
. 195
. 199
. 199

Contents V

Forcing a utility abend .
Termination or restart of DIAGNOSE
Sample DIAGNOSE control statements .

Chapter 14. EXEC SQL

Syntax and options of the EXEC SQL control statement
Concurrency and compatibility for EXEC SQL
Termination or restart of EXEC SQL .

Sample EXEC SQL control statements .

Chapter 15. LISTDEF

Syntax and options of the LISTDEF Control statement .
Concurrency and compatibility for LISTDEF .
Creating the LISTDEF control statement
Including objects in a list

Previewing the contents of a list .

Creating LISTDEEF libraries .

Referencing LISTDEEF lists in other ut111ty]obs
Using the TEMPLATE utility with LISTDEF .
Using the OPTIONS utility with LISTDEF .
Termination or restart of LISTDEF

Sample LISTDEF control statements .

Chapter 16. LOAD . .
Syntax and options of the LOAD control statement.
Before running LOAD

Data sets that LOAD uses . .

Concurrency and compatibility for LOAD

Preparing DB2 internal format input records that are not generated by UNLOAD for LOAD .

When to use SORTKEYS NO .
Loading variable-length data .
How LOAD orders loaded records .
Replacing data with LOAD.
Loading tables with special column types by us1ng generated LOAD statements
Adding more data to a table or partition . e
Deleting all the data in a table space
Loading partitions. .
Partition-by-growth table spaces .
Loading data containing XML columns.
Loading delimited files . . .
Loading data with referential constralnts .
Referential constraint violations
Data compression . .
Loading data from DL/I
Loading data by using the cross-loader functlon
Using inline COPY with LOAD
Creating a FlashCopy image copy with LOAD
Improving LOAD performance .
Improving performance for parallel processmg .
Improved performance with SORTKEYS
Improving performance with LOAD or REORG PREFORMAT . .
Improving performance with LOAD by aV01d1ng LOB and XML materlahzatlon .
Conversion of input data . . e
Specifying input fields .
Specifying the TRUNCATE and STRIP optlons .
How LOAD builds indexes while loading data .
Building indexes in parallel for LOAD .
How LOAD leaves free space . .
Loading with RECOVER—pendlng, REBUILD—pendlng, or REORG-pendlng status
Exit procedures. e

vi Utility Guide and Reference

. 200
. 200
. 200

. 203
. 203
. 205
. 205
. 205

. 207
. 207
. 218
. 218
. 219
. 222
. 223
. 223
. 225
. 226
. 226
. 226

. 231
. 233
. 285
. 286
. 291
. 294
. 294
. 295
. 295
. 295
. 298
. 300
. 300
. 301
. 303
. 303
. 304
. 307
. 308
. 309
. 310
. 311
. 313
. 313
. 315
. 316
. 316
. 317
. 319
. 319
. 321
. 321
. 321
. 322
. 325
. 325
. 326

Loading ROWID columns .
Loading a LOB column .

LOAD LOG on a LOB table space
Loading an XML column

LOAD LOG on an XML table space

Running LOAD RESUME YES SHRLEVEL CHANGE w1thout loggmg .

Collecting inline statistics while loading a table .
Inline COPY for a base table space .
Termination of LOAD .

Restart of LOAD .

After running LOAD . .
Copying the loaded table space or partltlon .
Resetting COPY-pending status
Resetting REBUILD-pending status .
Resetting the CHECK-pending status

Running CHECK INDEX after loading a table that has mdexes.

Recovering data after a failed LOAD job
Reorganization of an auxiliary index after LOAD
Effects of running LOAD
Sample LOAD control statements.

Chapter 17. MERGECOPY . .
Syntax and options of the MERGECOPY control statement .
Data sets that MERGECOPY uses .o
Concurrency and compatibility for MERGECOPY .

Full or incremental image copy .

How MERGECOPY determines which mput copy to use .
Merging online copies . . .
Using MERGECOPY with 1nd1v1dua1 data sets

Using MERGECOPY or COPY. .
Avoiding MERGECOPY LOG RBA 1ncon81stenc1es .
Termination or restart of MERGECOPY.

Sample MERGECOPY control statements .

Chapter 18. MODIFY RECOVERY .

Syntax and options of the MODIFY RECOVERY control statement

Before running MODIFY RECOVERY

Data sets that MODIFY RECOVERY uses .

Concurrency and compatibility for MODIFY RECOVERY
How MODIFY RECOVERY deletes rows Lo
Reclaiming space in the DBD .

Improving REORG performance after addmg a column
Termination or restart of MODIFY RECOVERY .

The effect of MODIFY RECOVERY on version numbers .
Sample MODIFY RECOVERY control statements

Chapter 19. MODIFY STATISTICS .

Syntax and options of the MODIFY STATISTICS control statement

Data sets that MODIFY STATISTICS uses .

Concurrency and compatibility for MODIFY STATISTICS
Guidelines for deciding which statistics history rows to delete .
Deletion of specific statistics history rows . .

Termination or restart of MODIFY STATISTICS .

Sample MODIFY STATISTICS control statements

Chapter 20. OPTIONS .

Syntax and options of the OPTIONS control statement
Concurrency and compatibility for OPTIONS.
Executing statements in preview mode . .
Specifying LISTDEF and TEMPLATE libraries

. 326
. 327
. 328
. 328
. 329
. 329
. 330
. 331
. 331
. 332
. 334
. 334
. 334
. 335
. 335
. 337
. 338
. 339
. 339
. 340

. 355

. 356
. 359
. 360
. 361
. 361
. 361
. 362
. 362
. 362
. 363
. 363

. 367

. 369
. 372
. 372
. 373
. 373
. 375
. 375
. 376
. 376
. 377

. 381

. 382
. 384
. 384
. 385
. 385
. 385
. 386

. 389

Contents

. 389
. 392
. 393
. 393

vii

Overriding standard utility processing behavior .
Termination or restart of OPTIONS .
Sample OPTIONS control statements

Chapter 21. QUIESCE . .
Syntax and options of the QUIESCE control statement.
Before running QUIESCE

Data sets that QUIESCE uses . .

Concurrency and compatibility for QUIESCE
Using QUIESCE on catalog and dlrectory objects
Common quiesce points . .

Running QUIESCE on a table space in pendmg status
Reasons why QUIESCE fails to write to disk .
Termination and restart of QUIESCE

Sample QUIESCE control statements

Chapter 22. REBUILD INDEX .
Syntax and options of the REBUILD INDEX control statement .
Before running REBUILD INDEX. e
Data sets that REBUILD INDEX uses
Concurrency and compatibility for REBUILD INDEX
Access with REBUILD INDEX SHRLEVEL
Rebuilding index partitions. .
Rebuilding indexes on partition-by- growth table spaces .
Improving performance when rebulldmg index partitions
Rebuilding multiple indexes .
Resetting the REBUILD-pending status
Rebuilding critical catalog indexes
Recoverability of a rebuilt index .
Creating a FlashCopy image copy with REBUILD INDEX
Termination or restart of REBUILD INDEX
The effect of REBUILD INDEX on index version numbers
Sample REBUILD INDEX control statements .

Chapter 23. RECOVER .
Syntax and options of the RECOVER control statement
Before running RECOVER .
Data sets that RECOVER uses .
Concurrency and compatibility for RECOVER
Recovering with a system-level backup. .
How to determine which system-level backups DBZ recovers
Determining which recovery base DB2 uses .
Determining whether the system-level backups res1de on d1sk or tape
Recovering a table space
Recovering a list of objects .
Recovering a data set or partition
Recovering with incremental copies .
Recovering with FlashCopy image copies .
Recovering a page.
Recovering an error range .

Effect on RECOVER of the NOT LOGGED or LOGGED table space attr1butes.

Recovering with a data set copy that is not made by DB2
Recovering catalog and directory objects
Objects that contain recovery information .
Point-in-time recovery of the catalog, directory, and all user ob]ects
Reinitializing DSNDB01.SYSUTILX .
Recovering a table space that contains LOB or XML data
Recovering a table space that contains clone ob]ects
Point-in-time recovery e
Avoiding specific image copy data sets durmg a recovery

viii Utility Guide and Reference

. 393
. 394
. 394

. 397
. 398
. 401
. 401
. 401
. 403
. 403
. 404
. 405
. 405
. 405

. 409
. 410
. 421
. 422
. 424
. 426
. 427
. 427
. 428
. 429
. 433
. 434
. 435
. 435
. 436
. 436
. 437

. 441
. 444
. 455
. 455
. 456
. 458
. 459
. 460
. 460
. 461
. 461
. 462
. 463
. 463
. 465
. 466
. 466
. 467
. 468
. 473
. 475
. 477
. 478
. 479
. 479
. 487

Improving RECOVER performance .

Optimizing the LOGAPPLY phase .
Recovering image copies in a JES3 env1r0nment

Resetting RECOVER-pending or REBUILD-pending status
How the RECOVER utility allocates incremental image copies .
How the RECOVER utility performs fallback recovery.
How the RECOVER utility retains tape mounts .
Avoiding damaged media . . .

Termination or restart of RECOVER

Effects of running RECOVER .

Sample RECOVER control statements

Chapter 24. REORG INDEX . .
Syntax and options of the REORG INDEX control statement
Before running REORG INDEX o
Data sets that REORG INDEX uses . .
Concurrency and compatibility for REORG INDEX
Determining which indexes require reorganization .

Using the LEAFDISTLIMIT and REPORTONLY options to deterrnlne When reorganlzatron is needed .

Access with REORG INDEX SHRLEVEL .
Creating a FlashCopy image copy with REORG INDEX .
Temporarily interrupting REORG. .o
Improving performance with REORG INDEX
Termination of REORG INDEX

Restart of REORG INDEX .

Review of REORG INDEX output .

Effect of REORG INDEX on index version numbers
Sample REORG INDEX control statements

Chapter 25. REORG TABLESPACE
Syntax and options of the REORG TABLESPACE control statement
Before running REORG TABLESPACE . e

Data sets that REORG TABLESPACE uses .

Concurrency and compatibility for REORG TABLESPACE
Determining whether an object requires reorganization
Access with REORG TABLESPACE SHRLEVEL .
Omitting the output data set
Unloading without reloading . .o
Reclaiming space from dropped tables .
Reorganizing the catalog and directory .
Changing data set definitions .
Temporarily interrupting REORG. .
How to override dynamic sort work data set allocatlon
Redistributing data across partitions by using REORG.
How partitions can be unloaded and reloaded in parallel.
Using inline copy with REORG TABLESPACE .
Creating a FlashCopy image copy with REORG TABLESPACE .
Improving REORG TABLESPACE performance . .o
Parallel index building for REORG TABLESPACE .
How DB2 unloads data . .
Encountering an error in the RELOAD phase
Reorganization of partitioned table spaces.
Reorganization of partition-by-growth table spaces
Reorganization of segmented table spaces .
Comparison of the numbers of loaded and unloaded records
Reorganization of a LOB table space.
Reorganization of an XML table space .
Termination of REORG TABLESPACE .
Restart of REORG TABLESPACE .
Review of REORG TABLESPACE output .

. 488
. 488
. 490
. 490
. 491
. 491
. 492
. 492
. 493
. 494
. 494

. 499

. 500
. 517
. 519
. 523
. 525
. 525
. 526
. 528
. 528
. 529
. 530
. 531
. 532
. 532
. 533

. 537

Contents

. 540
. 582
. 587
. 595
. 600
. 602
. 605
. 605
. 606
. 606
. 609
. 610
. 610
. 611
. 612
. 612
. 613
. 615
. 616
. 620
. 620
. 620
. 620
. 621
. 622
. 622
. 623
. 624
. 626
. 628

ix

After running REORG TABLESPACE
Effects of running REORG TABLESPACE .
Sample REORG TABLESPACE control statements

Chapter 26. REPAIR. . .
Syntax and options of the REPAIR control statement .
Before running REPAIR .

Data sets that REPAIR uses.

Concurrency and compatibility for REPAIR
Resetting table space status. o
Resetting index space status
Repairing a damaged page .
Repairing DBDs .o
Locating rows by key. .
Using VERIFY with REPLACE and DELETE operatlons .
Repairing critical catalog table spaces and indexes .

Updating version information when moving objects to another subsystem .

Termination or restart of REPAIR.
Review of REPAIR output .

After running REPAIR .
Sample REPAIR control statements .

Chapter 27. REPORT . .

Syntax and options of the REPORT control statement .
Data sets that REPORT uses

Concurrency and compatibility for REPORT
Recovery information that REPORT provides.
Running REPORT on the catalog and directory .
Termination or restart of REPORT .
Review of REPORT output .

Sample REPORT control statements .

Chapter 28. RESTORE SYSTEM
Syntax and options of the RESTORE SYSTEM control statement
Before running RESTORE SYSTEM . Lo

Data sets that RESTORE SYSTEM uses .

Concurrency and compatibility for RESTORE SYSTEM
Restoring data in a data sharing environment .
Using DISPLAY UTILITY with RESTORE SYSTEM .
Termination and restart of RESTORE SYSTEM
Effects of running RESTORE SYSTEM .

After running RESTORE SYSTEM
Sample RESTORE SYSTEM control statements

Chapter 29. RUNSTATS .
Syntax and options of the RUNSTATS control statement .
The RUNSTATS profile syntax.
Before running RUNSTATS.
Data sets that RUNSTATS uses .
Concurrency and compatibility for RUNSTATS .
When to use RUNSTATS . .
Collecting distribution statistics for column groups
Updating statistics for a partitioned table space .
Running RUNSTATS on the DB2 catalog
Improving RUNSTATS performance .

Collecting frequency statistics for data—part1t10ned secondary mdexes

Invalidating statements in the dynamlc statement cache .
Collecting statistics history .

Collection of statistics on LOB table spaces

Collection of statistics on XML objects .

X Utility Guide and Reference

. 628
. 629
. 631

. 645
. 646
. 663
. 663
. 664
. 667
. 667
. 668
. 668
. 669
. 670
. 670
. 670
. 672
. 672
. 672
. 673

. 677
. 679
. 683
. 683
. 684
. 686
. 686
. 686
. 695

. TN
. 712
. 714
. 716
. 717
. 717
. 717
. 717
. 718
. 718
. 718

. 721
. 722
. 741
. 744
. 744
. 746
. 748
. 749
. 749
. 750
. 750
. 751
. 751
. 752
. 753
. 753

RUNSTATS profiles .
Creating RUNSTATS proﬁles .
Using RUNSTATS profiles .
Updating RUNSTATS profiles .
Deleting RUNSTATS profiles . S
Combining autonomic and manual statlstlcs mamtenance
Termination or restart of RUNSTATS
Review of RUNSTATS output .
Resetting access path statistics.
After running RUNSTATS . .
Sample RUNSTATS control statements .

Chapter 30. STOSPACE . .

Syntax and options of the STOSPACE control statement .

Data sets that STOSPACE uses

Concurrency and compatibility for STOSPACE .

How STOSPACE ensures availability of objects it STOSPACE requlres
Obtaining statistical information with STOSPACE Lo
Analysis of the values in a SPACE or SPACEF column

Termination or restart of STOSPACE. .

Sample STOSPACE control statement

Chapter 31. TEMPLATE .
Syntax and options of the TEMPLATE Control statement .
Before running TEMPLATE.

Concurrency and compatibility for TEMPLATE
Key TEMPLATE operations o
Choosing data set names
Default space calculations for data set templates
Guidelines for templates and tape data sets
How TEMPLATE supports GDG data sets.
Template switching .
Termination or restart of TEMPLATE
Sample TEMPLATE control statements .

Chapter 32. UNLOAD .
Syntax and options of the UNLOAD control statement
Before running UNLOAD .

Data sets that UNLOAD uses .

Concurrency and compatlblhty for UNLOAD
Unloading partitions . . e
Unloading XML data .
Unloading LOB data .
Unloading data in spanned record format
Selecting tables and rows to unload .
Selecting and ordering columns to unload.
Unloading data from image copy data sets
Data conversion with the UNLOAD utility
Output field types. e
Output field positioning and size.
Layout of output fields . .
Output for special values Infinity, sNaN or NaN
Unloading delimited files .
Specifying TRUNCATE and STRIP optlons for output data .
Generating LOAD statements . .
Unloading compressed data
Field specification errors.
Termination or restart of UNLOAD
Sample UNLOAD control statements

. 753
. 754
. 755
. 755
. 756
. 756
. 757
. 757
. 762
. 764
. 765

. 769

. 770
. 770
. 771
. 771
. 771
. 772
. 773
. 773

. 775

. 775
. 791
. 792
. 792
. 793
. 794
. 795
. 796
. 796
. 797
. 797

. 803

Contents

. 804
. 842
. 842
. 843
. 845
. 845
. 846
. 847
. 848
. 849
. 849
. 851
. 852
. 853
. 854
. 857
. 857
. 860
. 861
. 861
. 862
. 862
. 862

xi

Part 3. DB2 stand-alone utilities .

Chapter 33. Invoking stand-alone utilities
Stand-alone utility control statements .
Specifying options by using the JCL EXEC PARM parameter

Effects of invoking stand-alone utilities on tables that have multilevel securlty w1th row-level granularlty

Chapter 34. DSNJCNVB .
Chapter 35. DSNJCNVT .
Chapter 36. DSNJLOGF (preformat active log)

Chapter 37. DSNJUO003 (change log inventory) .
Syntax and options of the DSNJUO003 control statement
Making changes for active logs

Making changes for archive logs .

A conditional restart control record .

Deleting log data sets with errors.

Altering references to log data sets in the BSDS

Defining the high-level qualifier for Catalog and dlrectory ob]ects .

Renaming DB2 system data sets .

Renaming DB2 active log data sets .
Renaming DB2 archive log data sets.
Sample DSNJUO03 control statements

Chapter 38. DSNJUO004 (print log map)
Syntax and options of the DSNJU004 control statement
Sample DSNJU004 control statement

DSNJU004 (print log map) output

Chapter 39. DSN1COMP . .
Syntax and options of the DSN1COMP control statement.

Before running DSN1COMP . .

Estimating compression savings achieved w1th optlon REORG .

Free space in compression calculations on table space .

Sample DSN1COMP control statements

DSN1COMP output .

Chapter 40. DSN1COPY .
Syntax and options of the DSN1COPY control statement .
Before running DSN1COPY
Data sets that DSN1COPY uses
Inconsistent data checks .
The effects of not specifying the OBIDXLAT optlon .
Requirements for using an image copy as mput to DSNlCOPY.
Copying from an image copy . . .
Restoring indexes with DSNlCOPY
Restoring table spaces with DSN1COPY
Printing with DSN1COPY . .
Copying tables from one subsystem to another .
Sample DSN1COPY control statements .

Chapter 41. DSN1LOGP . .
Syntax and options of the DSN1LOGP control statement .
Determining the PSID for base and clone objects

Archive log data sets on tape . .

Sample DSN1LOGP control statements .

xii Utility Guide and Reference

. 869

. 871

. 871
. 871
. 872

. 873

. 875

. 877

. 879

. 880
. 894
. 896
. 896
. 897
. 898
. 899
. 899
. 900
. 900
. 900

. 903

. 905
. 905
. 906

. 921

. 923
. 926
. 927
. 927
. 928
. 930

. 933

. 936
. 941
. 943
. 948
. 948
. 949
. 949
. 950
. 950
. 952
. 952
. 953

. 959

. 961
. 968
. 969
. 970

DSN1LOGP output .97

Chapter 42. DSN1PRNT T £
Syntax and options of the DSN1PRNT control statement .90
Printing with DSN1PRNT instead of DSN1COPY .986
Determining the page size and data set size for DSN1PRNT.986
Sample DSN1PRNT control statements. .987
Chapter 43. DSN1SDMP e e e e e e e e e e e e e e e e e w991
Syntax and options of the DSN1SDMP control statement. 0 0992
Assigning buffers o7
Conditions for generating a dump . C e oo o99s
Stopping or modifying DSN1SDMP traces C oo e 998
Sample DSN1SDMP control statements. .99

Part4. Appendixes i i i v 4 4 e 1003
Appendix A. Limits inDB2forzOS1005

Appendix B. DB2-supplied stored procedures for utility operations 1013

DSNUTILS stored procedure (deprecated) .1013
DSNUTILU stored procedure. . . e 0027
DSNACCOR stored procedure (deprecated) e (0%
DSNACCOX stored procedure . . . T (0sT0)

Appendix C. Advisory or restrictivestates1083

Auxiliary CHECK-pending status .1083
Auxiliary warning status Lo o104
CHECK-pending status. .108
COPY-pending status .1086
DBETE status . . . P 10+ 14)
Group buffer pool RECOVER—pendmg status e 04
Informational COPY-pending status .1087
PRO restricted status .1088
REBUILD-pending status .1088
RECOVER-pending status. .108
REFRESH-pending status .10%
REORG-pending status. .10
Restart-pending status o L 0 00001092

Appendix D. Productivity-aid sample programs c e e e e e e e e e e e e .. . 1093

DSNTIAUL.o e [0
DSNTIAD . . . e W (00}
DSNTEP2 and DSNTEP4 e 0 (0

Appendix EEDSNADMSB v v v v v v w1109

Parameters of the DSNADMSB program .10
Before running DSNADMSB .. oo 0. 117
Data sets that DSNADMSB uses. . . B V4
Copying the data that DSNADMSB and ADMIN INFO SQL collect to another subsystem N N A £
Examples of DSNADMSB invocation .19

Appendix FDSNTSMFD « « . v v v v v v v v v w1127

Before running DSNTSMFD12
Data sets that DSNTSMFD uses .128
Examples of DSNTSMFD invocation .1l28

Contents Xiii

Appendix G. How real-time statistics are used by DB2 utilities.

Appendix H. Delimited file format
Data types in delimited files . .
Examples of delimited files

Information resources for DB2 for z/OS and related products .
Notices e

Programming interface information.

Trademarks. e

Privacy policy considerations.

Glossary .

Index

xiv Utility Guide and Reference

. 1131

. 1133
. 1134
. 1135

. 1137

. 1139
. 1140
1141
1141

. 1143

. 1145

About this information

This information contains usage information for the tasks of system administration,
database administration, and operation. It presents detailed information about
using utilities, specifying syntax (including keyword and parameter descriptions),
and starting, stopping, and restarting utilities. This book also includes job control
language (JCL) and control statements for each utility.

This information assumes that your DB2® subsystem is running in Version 11
new-function mode. Generally, new functions that are described, including changes
to existing functions, statements, and limits, are available only in new-function
mode, unless explicitly stated otherwise. Exceptions to this general statement
include optimization and virtual storage enhancements, which are also available in
conversion mode unless stated otherwise.

Who should read this information

This information is intended for system administrators, database administrators,
system operators, and application programmers of DB2 online and stand-alone
utilities.

Recommendation: Familiarize yourself with DB2 for z/ 0os® prior to using this
book.

DB2 Utilities Suite

Important: In this version of DB2 for z/OS, the DB2 Utilities Suite is available as
an optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not intended
to otherwise imply that you have a license to them.

The DB2 Utilities Suite can work with DB2 Sort and the DFSORT program. You are
licensed to use DFSORT in support of the DB2 utilities even if you do not
otherwise license DFSORT for general use. If your primary sort product is not
DFSORT, consider the following informational APARs mandatory reading;

e 1114047/1114213: USE OF DFSORT BY DB2 UTILITIES
 1113495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL
ARCHITECTURE
These informational APARs are periodically updated.
Related information
[DB2 utilities packaging (Utility Guide)|

Terminology and citations

When referring to a DB2 product other than DB2 for z/OS, this information uses
the product's full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

© Copyright IBM Corp. 1983, 2013 XV

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utlpackaging.htm

OMEGAMON®
Refers to any of the following products:
+ IBM® Tivoli® OMEGAMON XE for DB2 Performance Expert on z/0OS
* IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/0OS
* IBM DB2 Performance Expert for Multiplatforms and Workgroups
 IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS.
IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®
Represents the functions that are provided by the RACF component of the
z/0OS Security Server.

Accessibility features for DB2 11 for z/0S

xvi

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 11 for z/OS. These features support:

* Keyboard-only operation.

¢ Interfaces that are commonly used by screen readers and screen magnifiers.

* Customization of display attributes such as color, contrast, and font size

Tip: The Information Management Software for z/OS Solutions Information
Center (which includes information for DB2 11 for z/OS) and its related
publications are accessibility-enabled for the IBM Home Page Reader. You can
operate all features using the keyboard instead of the mouse.

Keyboard navigation

You can access DB2 11 for z/OS ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the DB2 11 for z/OS ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User’s Guide, and the z/OS
ISPF User’s Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

Related accessibility information
Online documentation for DB2 11 for z/OS is available in the Information

Management Software for z/OS Solutions Information Center, which is available at
the following website: [http:/ /pic.dhe.ibm.com/infocenter /dzichelp /v2r2 /index.jsp|

Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

IBM and accessibility

See the IBM Accessibility Center at|http://www.ibm.com/abld for more information
about the commitment that IBM has to accessibility.

How to send your comments

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.
You can use the following methods to provide comments:

* Send your comments by email to [db2zinfo@us.ibm.com|and include the name of
the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

* You can also send comments by using the Feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at |http:/ /pic.dhe.ibm.com/infocenter /dzichelp /v2r2/index.jsp}

Naming conventions used in this information

When you use DB2 commands and utilities, be aware of the applicable naming
conventions

When you use a parameter for an object that is created by SQL statements (for
example, tables, table spaces, and indexes), identify the object by following the
SQL syntactical naming conventions.

In this information, characters are classified as letters, digits, or special characters.

* A letter is any one of the uppercase characters A through Z (including the three
characters that are reserved in the United States as alphabetic extenders for
national languages, #, @, and $.).

* A digit is any one of the characters 0 through 9.
A special character is any character other than a letter or a digit.
authorization-id

A short identifier of one to eight letters, digits, or the underscore that identifies
a set of privileges. An authorization ID must begin with a letter.

connection-name
An identifier of one to eight characters that identifies an address space
connection to DB2. A connection identifier is one of the following values:

* TSO (for DSN processes that run in TSO foreground).

¢ BATCH (for DSN processes that run in TSO batch).

* DB2CALL (for the call attachment facility (CAF)).

* The system identification name (for IMS and CICS processes).

Related information:

[Managing connection requests from local applications (Managing Security)|

correlation-id
An identifier of 1 to 12 characters that identifies a process within an address
space connection. A correlation ID must begin with a letter.

A correlation ID can be one of the following values:

About this information ~ XVii

http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_localrequest.htm#db2z_localrequest

¢ The TSO logon identifier (for DSN processes that run in TSO foreground
and for CAF processes).

* The job name (for DSN processes that run in TSO batch).
e The PST#PSBNAME (for IMS processes).

* The entry identifier.thread_number.transaction_identifier (for CICS
processes).

cursor-name
An identifier that designates a result set. Cursor names that are specified with
the EXEC SQL and LOAD utilities cannot be longer than eight characters.

database-name
A short identifier that identifies a database. The identifier must start with a
letter and must not include special characters.

data-set-name
An identifier of 1 to 44 characters that identifies a data set.

dbrm-member-name
An identifier of one to eight letters or digits that identifies a member of a
partitioned data set.

A DBRM member name should not begin with DSN because of a potential
conflict with DB2-provided DBRM member names. If you specify a DBRM
member name that begins with DSN, DB2 issues a warning message.

dbrm-pds-name
An identifier of 1 to 44 characters that identifies a partitioned data set.

ddname
An identifier of one to eight characters that identifies the name of a DD
statement.

hexadecimal-constant
A sequence of digits or any of the letters from A to F (uppercase or lowercase).

hexadecimal-string
An X followed by a sequence of characters that begins and ends with the
string delimiter, an apostrophe. The characters between the string delimiters
must be a hexadecimal number.

index-name
A qualified or unqualified name that identifies an index.

A qualified index name is a schema name followed by a period and an
identifier.

An unqualified index name is an identifier with an implicit schema name
qualifier. The implicit schema is determined by the SQL rules for unqualified
types, functions, procedures, global variables, and specific names.

If the index name contains a blank character, the name must be enclosed in
quotation marks when specified in a utility control statement.

Related information:

Unqualified type, function, procedure, global variable, and specific namesg|
DB2 SQL)|

location-name
A location identifier of 1 to 16 letters (but excluding the alphabetic extenders),
digits, or the underscore that identifies an instance of a database management
system. A location name must begin with a letter.

xviii Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_unqualifiedroutinenames.htm#db2z_unqualifiedroutinenames
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_unqualifiedroutinenames.htm#db2z_unqualifiedroutinenames

Luname
An SQL short identifier of one to eight characters that identifies a logical unit
name. A LU name must begin with a letter.

member-name
An identifier of one to eight letters (including the three alphabetic extenders)
or digits that identifies a member of a partitioned data set.

A member name should not begin with DSN because of a potential conflict
with DB2-provided member names. If you specify a member name that begins
with DSN, DB2 issues a warning message.

qualifier-name
An SQL short identifier of one to eight letters, digits, or the underscore that
identifies the implicit qualifier for unqualified table names, views, indexes, and
aliases.

string
A sequence of characters that begins and ends with an apostrophe.

subsystem-name
An identifier that specifies the DB2 subsystem as it is known to the operating
system.

table-name
A qualified or unqualified name that designates a table.

A fully qualified table name is a three-part name. The first part is a location
name that designates the DBMS at which the table is stored. The second part is
a schema name. The third part is an SQL identifier. A period must separate
each of the parts.

A two-part table name is implicitly qualified by the location name of the
current server. The first part is a schema name. The second part is an SQL
identifier. A period must separate the two parts.

A one-part or unqualified table name is an SQL identifier with two implicit
qualifiers. The first implicit qualifier is the location name of the current server.
The second is a schema name, which is determined by the SQL rules for
unqualified types, functions, procedures, global variables, and specific names.

If the table name contains a blank, the name must be enclosed in quotation
marks when specified in a utility control statement.

Related information:

Unqualified type, function, procedure, global variable, and specific namesg|
DB2 SQL)

table-space-name
A short identifier that identifies a table space of an identified database. The
identifier must start with a letter and must not include special characters. If a
database is not identified, a table space name specifies a table space of
database DSNDB04.

utility-id
An identifier of 1 to 16 characters that uniquely identifies a utility process
within DB2. A utility ID must begin with a letter. The remaining characters can
be uppercase and lowercase letters, numbers 0 through 9, and the following
characters: #, $, ., ¢, !, =, and @.

About this information ~ XiX

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_unqualifiedroutinenames.htm#db2z_unqualifiedroutinenames
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_unqualifiedroutinenames.htm#db2z_unqualifiedroutinenames

Related concepts:
[[Naming conventions (DB2 SQL)]
[[SQL identifiers (DB2 SQL)|

How to read syntax diagrams

Certain conventions apply to the syntax diagrams that are used in IBM
documentation.

Apply the following rules when reading the syntax diagrams that are used in DB2
for z/OS documentation:

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The »»—— symbol indicates the beginning of a statement.

The —> symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.
* Required items appear on the horizontal line (the main path).

»>—required_item >

* Optional items appear below the main path.

»>—required item ><
|—optional_i ltemJ

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

v
A

ptional item
»>—required_item |_0 —l

* If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

»>—required i tem—[requ ired choicel ><
requi red_choiceZJ

If choosing one of the items is optional, the entire stack appears below the main
path.

v
A

»>—required_item
i:gptional_choicel:‘
ptional_choice2

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

XX Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_namingconventions.htm#db2z_namingconventions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlidentifiers.htm#db2z_sqlidentifiers

default_choice
»>—required_item rizz _l

ptional_choice:l
ptional choice

An arrow returning to the left, above the main line, indicates an item that can be
repeated.

»—required_item— —repeatable_item ><

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

»—required _item——repeatable_item ><

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

»>—required item fragment-name | »><
- [

fragment-name:

—required_item }
|—opt iona Z_name—|

With the exception of XPath keywords, keywords appear in uppercase (for
example, FROM). Keywords must be spelled exactly as shown. XPath keywords
are defined as lowercase names, and must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent
user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

About this information ~ XX1

xxii Utility Guide and Reference

Part 1. Introduction to the DB2 utilities

Individual DB2 utilities have utility-specific characteristics. However, certain
characteristics apply to most or all DB2 utilities.

© Copyright IBM Corp. 1983, 2013

2 Utility Guide and Reference

Chapter 1. Basic information about the DB2 utilities

DB2 online and stand-alone utilities have specific authorization rules for coding
utility control statements and the data sets that the utilities use.

Types of DB2 utilities

DB2 offers two types of utilities: online utilities and stand-alone utilities.

DB2 online utilities run as standard batch jobs or stored procedures, and they
require DB2 to be running. They do not run under control of the terminal monitor
program (TMP); they have their own attachment mechanism and they invoke DB2
control facility services directly.

The stand-alone utilities run as batch jobs that are independent of DB2. The only
way to run these utilities is to use JCL. See the topics on the individual utilities for
information about the ways to run these utilities.

Related concepts:

[Chapter 33, “Invoking stand-alone utilities,” on page 871
Related tasks:
(Chapter 3, “Invoking DB2 online utilities,” on page 11

Privileges and authorization IDs

A command or a utility job can be issued by an individual user, by a program that
runs in batch mode, or by an IMS or CICS transaction.

The term process describes any of these initiators.

A process is represented to DB2 by a set of identifiers (IDs). What the process can
do with DB2 is determined by privileges and privileges that can be held by its
identifiers. The phrase “privilege set of a process” means the entire set of privileges
and authorities that can be used by the process in a specific situation.

Three types of identifiers exist: primary authorization IDs, secondary authorization
IDs, and SQL authorization IDs.

* Generally, the primary authorization ID identifies a specific process. For example,
in the process that is initiated through the TSO attachment facility, the primary
authorization ID is identical to the TSO logon ID. A trace record identifies the
process by that ID.

e Secondary authorization IDs, which are optional, can hold additional privileges
that are available to the process. A secondary authorization ID is often a
SecureWay Security Server Resource Access Control Facility (RACF) group ID.
For example, a process can belong to a RACF group that holds the LOAD
privilege on a particular database. Any member of the group can run the LOAD
utility to load table spaces in the database.

DB2 commands that are entered from a z/OS console are not associated with
any secondary authorization IDs.

e An SQL authorization ID (SQL ID) holds the privileges that are exercised when
issuing certain dynamic SQL statements. Generally, this topic does not discuss
the SQL ID.

© Copyright IBM Corp. 1983, 2013 3

Within DB2, a process can be represented by a primary authorization ID and
possibly one or more secondary IDs. For DB2 online utilities, the process can be
represented by a primary authorization ID, possibly one or more secondary IDs,
and role, if running in a trusted connection with an associated role.

An administrator can grant or revoke a privilege or authority for an identifier by
executing an SQL GRANT or a REVOKE statement.

If you use the access control authorization exit routine, that exit routine might
control the authorization rules, rather than the exit routines that are documented
for each utility.

Related reference:

[[Processing of sign-on requests (Managing Security)|

Utilities that can be run on declared temporary objects

The REPAIR DBD utility and the STOSPACE utility can be run on declared
temporary objects.

* You can use the REPAIR DBD utility on declared temporary tables, which must
be created in a database that is defined with the AS TEMP clause.

* You can use the STOSPACE utility on storage groups that have objects within
temporary databases.

No other DB2 utilities can be used on a declared temporary table, its indexes, or its
table spaces.

Related reference:

[“Concurrency and compatibility for REPAIR” on page 664]

[“Concurrency and compatibility for STOSPACE” on page 771

Effect of utilities on objects that have the DEFINE NO attribute

With DB2 Version 7 or above, you can run certain online utilities on table spaces or
index spaces that were defined with the DEFINE NO attribute. When you specify
this attribute, the table space or index space is defined, but DB2 does not allocate
the associated data sets until a row is inserted or loaded into a table in that table
space.

You can populate table spaces whose data sets are not yet defined by using the
LOAD utility with either the RESUME keyword, the REPLACE keyword, or both.
Using LOAD to populate these table spaces results in the following actions:

1. DB2 allocates the data sets.

2. DB2 updates the SPACE column in the catalog table to show that data sets
exist.

3. DB2 loads the specified table space.

For a partitioned table space, all partitions are allocated even if the LOAD utility is
loading only one partition. Avoid attempting to populate a partitioned table space
with concurrent LOAD PART jobs until after one of the jobs has caused all the data
sets to be created.

Online utilities that encounter an undefined target object might issue informational
message DSNU185I, but processing continues.

4 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_signonreqprocess.htm#db2z_signonreqprocess

The following online utilities issue informational message DSNU1851 when a table
space or index space with the DEFINE NO attribute is encountered. The object is
not processed.

* CHECK DATA

» CHECK INDEX

+ COPY

* MERGECOPY

¢ MODIFY RECOVERY

* QUIESCE

* REBUILD INDEX

* RECOVER

* REORG INDEX

* REORG TABLESPACE

* REPAIR, but not REPAIR DBD

+ RUNSTATS TABLESPACE INDEX(ALL)

+ RUNSTATS INDEX '

 UNLOAD

Note:

1. RUNSTATS recognizes DEFINE NO objects and updates the catalog's access
path statistics to reflect the empty objects.

You cannot use stand-alone utilities on objects whose data sets have not been
defined.

Effect of utilities on data that is encrypted through built-in functions

You can copy and recover encrypted data. You can also move encrypted data
between systems. Data remains encrypted throughout these processes.

However, running any of the following utilities on encrypted data might produce
unexpected results:

* CHECK DATA

« LOAD

* REBUILD INDEX

* REORG TABLESPACE
* REPAIR

* RUNSTATS

- UNLOAD

e DSNI1PRNT

Chapter 1. Basic information about the DB2 utilities 5

6 Utility Guide and Reference

Chapter 2. DB2 utilities packaging

Several utilities are included with DB2 at no extra charge. Other utilities are
available as a separate product.

The following utilities are core utilities, which are included (at no extra charge)
with Version 11 of DB2 for z/OS:
« CATENFM

« CATMAINT

* DIAGNOSE

» LISTDEF

* OPTIONS

* QUIESCE

* REPAIR

* REPORT

« TEMPLATE

* All DSN stand-alone utilities

All other utilities are available as a separate product called the DB2 Utilities Suite
for z/OS (5655-W87, FMID JDBBB1K), which includes the following utilities:
* BACKUP SYSTEM

* CHECK DATA

» CHECK INDEX

+ CHECK LOB

+ COPY

* COPYTOCOPY

+ EXEC SQL

+ LOAD

* MERGECOPY

* MODIFY RECOVERY
* MODIFY STATISTICS
* REBUILD INDEX

+ RECOVER

* REORG INDEX

¢ REORG TABLESPACE
* RESTORE SYSTEM

* RUNSTATS

* STOSPACE

+ UNLOAD

All DB2 utilities operate on catalog, directory, and sample objects, without
requiring any additional products.

SMP/E jobs for DB2 utility products

To load the DB2 utility products, use System Modification Program Extended
(SMP/E). SMP/E processes the installation cartridges and creates DB2 distribution
target libraries.

DB2 provides several jobs that invoke SMP/E. These jobs are on the cartridge that
you received with the utility product. The job prologues in these jobs contain
directions on how to tailor the job for your site. Follow these directions carefully to
ensure that your DB2 Utilities Suite SMP/E process works correctly.

© Copyright IBM Corp. 1983, 2013 7

The SMP/E RECEIVE job, DSNRECVK, loads the DB2 Utilities Suite Version 11
program modules, macros, and procedures into temporary data sets (SMPTLIBs). If
these jobs fail or abnormally terminate, correct the problem and rerun the jobs.

The SMP/E APPLY job, DSNAPPLK, copies and link-edits the program modules,
macros, and procedures for the DB2 Utilities Suite Version 11 into the DB2 target
libraries.

The SMP/E ACCEPT job, DSNACCPK, copies the program modules, macros, and
procedures for the DB2 Utilities Suite Version 11 into the DB2 distributed libraries.

Related information:

[[DB2 for z/OS Program Directories|

Operation of DB2 utilities in a mixed-release data sharing environment

The utilities batch module, DSNUTILB, is split into multiple parts: a
release-independent module called DSNUTILB, a release-dependent module
DSNUTT111, and utility-dependent load modules.

To operate in a mixed-release data sharing environment, you must have the
release-dependent modules from both releases and all applicable utility-dependent
modules available to the utility jobs that operate across the data sharing group.

Related reference:

[[Load module names for running purchased utilities in coexistence (DB2)|
[[Installation and Migration)|

8 Utility Guide and Reference

https://www-304.ibm.com/support/docview.wss?uid=swg27019288
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_loadnamesincoexmode.htm#db2z_loadnamesincoexmode
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_loadnamesincoexmode.htm#db2z_loadnamesincoexmode

Part 2. DB2 online utilities

DB2 online utilities run as standard batch jobs or stored procedures, and they
require DB2 to be running. They do not run under control of the terminal monitor
program (TMP); they have their own attachment mechanism and they invoke DB2
control facility services directly.

© Copyright IBM Corp. 1983, 2013

10 Utility Guide and Reference

Chapter 3. Invoking DB2 online utilities

You can invoke DB2 online utilities by using any of a variety of methods.

About this task

Requirement: In the JCL for all utility jobs, specify a load library that is at a
maintenance level that is compatible with the DB2 subsystem. Otherwise, errors
can occur.

Procedure

To run DB2 online utilities:

1.
2.

Prepare the necessary data sets.

Create a utility control statement using the syntax, option descriptions, and
samples.

Check for any concurrency and compatibility restrictions.

Plan for a restart in case the utility job does not complete.
Invoke the online utilities using one of the following methods:
* Use the DB2 Utilities panel in DB2I.

This method involves little involvement with JCL. You can edit the generated

JCL to alter or add necessary fields on the JOB or ROUTE cards before you
submit the job.

Requirement: To use this method you must have TSO and access to the DB2

Utilities Panel in DB2 Interactive (DB2I).
* Use the DSNU CLIST command in TSO.

This method involves little involvement with JCL. You can edit the generated

JCL to alter or add necessary fields on the JOB or ROUTE cards before you
submit the job.

Requirement: To use this method you must have TSO.
* Use the supplied JCL procedure (DSNUPROC).

This method involves working with or creating your own JCL.
¢ Use the EXEC statement to create the JCL data set yourself.

This method involves working with or creating your own JCL.
* Use the DSNUTILS or DSNUTILT stored procedure.

This method involves invoking online utilities from a DB2 application
program.

Related reference:

Chapter 14, “EXEC SQL,” on page 203|

“DSNUTILS stored procedure (deprecated)” on page 1013|

“DSNUTILU stored procedure” on page 1024

Data sets that online utilities use

Every online utility job requires a SYSIN DD statement to describe an input data
set; some utilities also require other data sets.

© Copyright IBM Corp. 1983, 2013

11

For input data sets

The online utilities use the logical record length (LRECL), the record
format (RECFM) and the block size (BLKSIZE) with which the data set was
created. Variable-spanned (VS) or variable-blocked-spanned (VBS) record
formats are not allowed for utility input data sets. The only exceptions are
for the LOAD and UNLOAD utilities. These utilities use VBS data sets for
SPANNED YES, and LOAD accepts VBS data sets for FORMAT SQL/DS.

For output data sets

The online utilities determine both the logical record length and the record
format. Any specified values for LRECL or RECFM are ignored. If you
supply block size, that size is used; otherwise, the utility lets the system
determine the optimal block size for the storage device.

DB2 supports the large block interface (LBI) that allows block sizes that are
greater than 32 KB on certain tape drives. LBI is supported in new function
mode (NFM) only.

Partitioned data sets (PDS) are not allowed for output data sets. The
TAPEBLKSZLIM parameter of the DEVSUPxx member of SYS1.PARMLIB
controls the block size limit for tapes. See the z/OS MVS Initialization and
Tuning Guide for more details.

For output data sets for FlashCopy® image copies

The online utilities determine the data set names based on the template
provided. The output VSAM data sets are allocated during the processing
of the DFSMSdss COPY command. The output data sets for FlashCopy
image copies are always cataloged.

For both input and output data sets

The online utilities use the value that you supply for the number of buffers
(BUFNO), with a maximum of 99 buffers. The default number of buffers is
20. The utilities set the number of channel programs equal to the number
of buffers. The parameters that specify the buffer size (BUFSIZE) and the
number of channel programs (NCP) are ignored. If you omit any DCB
parameters, the utilities choose default values.

Increasing the number of buffers (BUFNO) can result in an increase in real
storage utilization and page fixing below the 16-MB line.

Restriction: DB2 does not support the undefined record format (RECFM=U) for
any data set.

Extended addressing support by DB2 utilities

DB2 utilities support the use of extended address volumes (EAV) for VSAM data
sets and extended format (EF) sequential data sets.

Data set concatenation

DB2 utilities let you concatenate unlike input data sets. Therefore, the data sets in a
concatenation list can have different block sizes, logical record lengths, and record
formats. If you want to concatenate variable and fixed-blocked data sets, the logical
record length must be 8 bytes smaller than the block size.

You cannot concatenate output data sets.

12 Utility Guide and Reference

Controlling data set disposition

Most data sets need to exist only during utility execution (for example, during
reorganization). However, you must retain several data sets in certain
circumstances:

* Retain the image copy data sets until you no longer need them for recovery.

* Retain the unload data sets if you specify UNLOAD PAUSE, UNLOAD ONLY,
UNLOAD EXTERNAL, or DISCARD for the REORG utility.

* Retain the SYSPUNCH data set if you specify UNLOAD EXTERNAL or
DISCARD for the REORG utility until you no longer need the contents for
subsequent loads.

* Retain the discard data set until you no longer need the contents for subsequent
loads.

Because you might need to restart a utility, take the following precautions when
defining the disposition of data sets:

* Use DISP=(NEW,CATLG,CATLG) or DISP=(MOD,CATLG) for data sets that you
want to retain.

* Use DISP=(MOD,DELETE,CATLG) for data sets that you want to discard after
utility execution.

* Use DISP=(NEW,DELETE) for the SORTWKnn data sets for your sort program,
or refer to the documentation for your sort program for alternatives.

* Do not use temporary data set names.
Preventing unauthorized access to data sets

To prevent unauthorized access to data sets (for example, image copies), you can
protect the data sets with the Resource Access Control Facility (RACF) licensed
program. To use a utility with a data set that is protected by RACF, you must be
authorized to access the data set.

Related concepts:

[[Extended Address Volumes (z/OS DESMS Using Data Sets)|
Related reference:

[#* [DB2 Sort

Related information:

[[DFSORT Application Programming Guide|

Utility control statements

Utility control statements define the function that the utility job performs.

Create the utility control statements with the ISPF/PDF edit function and use the
control statement coding rules that are listed. After the utility control statements
are created, save them in a sequential or partitioned data set.

Control statement coding rules
DB2 typically reads utility control statements from the SYSIN data set. DB2 can
read LISTDEF control statements from the SYSLISTD data set and TEMPLATE

control statements from the SYSTEMPL data set. The statements in these data sets
must obey the following rules:

Chapter 3. Invoking DB2 online utilities 13

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d4a0/1.3.9?ACTION=MATCHES&REQUEST=extended+address+volumes&TYPE=FUZZY&SHELF=&DT=20110606092005&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

e If the records are 80-character fixed-length records, DB2 ignores columns 73
through 80.

* The records are concatenated before they are parsed; therefore, a statement or
any of its syntactical constructs can span more than one record. No continuation
character is necessary.

However, if the input data set contains variable-length records, DB2 might
interpret the part of a statement that is in column 1 as the continuation of the
statement from the previous record. To avoid syntax errors, ensure that all
syntactical constructs in utility control statements are properly delimited. Doing
so is especially important for the first character in each record of a data set with
variable-length records.

 All control statements in a data set must be written entirely in a single character
set. The following two character sets are supported: EBCDIC (code page 500)
and Unicode UTEF-8 (code page 1208). DB2 automatically detects and processes
Unicode UTE-8 control statements if the first character of the data set is one of
the following characters:

— A Unicode UTF-8 blank (x'20")
— A Unicode UTF-8 dash (x2D')
— A Unicode UTF-8 uppercase A through Z (x'41' through x'5A")

In all other cases, the control statement data set is processed as EBCDIC. An
informational message is issued to identify the character set that is being
processed.

The following EBCDIC characters have the same hexadecimal code point value
as the Unicode UTF-8 characters J to P:

¢.<(+]a

If any of these characters are the first character in the input data set, the control
statement can be misinterpreted as Unicode. This error is a utility syntax error.
However, these characters might cause Unicode to EBCDIC translation errors
and abends before the syntax error is detected. After the syntax error is detected,

message DSNUOOS5I might contain indecipherable statements and message
DSNUO082I might identify an indecipherable keyword.

* The utility statement must start with the syntax for a utility.

* Other syntactical constructs in the utility control statement describe options; you
can separate these constructs with an arbitrary number of blanks.

e The SYSIN stream can contain multiple utility control statements.

The options that you can specify after the online utility name depend on which
online utility you use. To specify a utility option, specify the option keyword,
followed by its associated parameter or parameters, if any. The parameter value
can be a keyword. You need to enclose the values of some parameters in
parentheses. The syntax diagrams for utility control statements show parentheses
where they are required.

You can specify more than one utility control statement in the SYSIN stream.
However, if any of the control statements returns a return code of 8 or greater, the
subsequent statements in the job step are not executed.

In a utility control statement, when you specify multiple numeric values that are
meant to be delimited, you must delimit these values with a comma (","). You must
use this delimiter regardless of the definition of DECIMAL in the application

defaults load module (either DSNHDECP or a user-specified application defaults

14 Utility Guide and Reference

load module). Likewise, when you specify a decimal number in a utility control
statement, you must use a period ("."), regardless of the definition of DECIMAL in
the application defaults load module.

You can enter comments within the SYSIN stream. Comments must begin with two
hyphens (--) and are subject to the following rules:

* You must use two hyphens on the same line with no space between them.

* You can start comments wherever a space is valid, except within a delimiter
token.

¢ The end of a line terminates a comment.

Two comments are shown in the following statement:
// SYSIN DD *
RUNSTATS TABLESPACE DSNDBO6.SYSDDF -- COMMENT HERE
-- COMMENT HERE
/*
Related information:
[DSNUO005I (DB2 Messages)|
[DSNU082I (DB2 Messages)|
[Code pages and CCSIDs (DB2 Internationalization Guide)
[EBCDIC (DB2 Internationalization Guide)|
[Unicode (DB2 Internationalization Guide)|

Tips for using multi-byte character sets

Multi-byte character sets can be difficult to work with in fixed 80-byte SYSIN data
sets. Long object names and long character literals might not fit on a single line.

Where possible, avoid having to break object names or character literals:
* Use a SYSIN with variable length records or sufficiently large record length.

* Use shorter object names. The longer the name, the more likely continuation
issues arise.

* If possible, process the object by space name (table space or index space) and
avoid specifying long multi-byte table and index names in utility syntax.

If necessary, use a continuation technique:

e Shift the starting point of the string left or right within the input record such
that a complete multi-byte character ends in column 72. Continue with the next
character in column 1 of the next input record.

* Separate qualified object names into two parts following the dot ".", which
separates the qualifiers. Separating long names into multiple parts makes it
easier to follow the continuation rules. This technique cannot be used in the
EXEC SQL utility, which must follow both utility and SQL syntax rules.

* Use the | | concatenation operator to divide long identifiers into two or more
parts that fit properly into each SYSIN record. Place the | | concatenation
operator between two delimited character strings or between two non-delimited
character strings. Delimited character strings are enclosed in double quotation
marks. The | | concatenation operator must be preceded and followed by at
least one blank space. An example of the | | concatenation operator is shown in
the following statement:

Chapter 3. Invoking DB2 online utilities 15

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu005i.htm#dsnu005i
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu082i.htm#dsnu082i
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.char/src/tpc/db2z_codepageccsid.htm#db2z_codepageccsid
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.char/src/tpc/db2z_ebcdic.htm#db2z_ebcdic
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.char/src/tpc/db2z_unicode.htm#db2z_unicode

LOAD INTO TABLE

CREA ||

TOR.

"TABL" ||

"ENAME"

In this example, the strings CREA and TOR are non-delimited, and the strings
TABL and ENAME are delimited by double quotation marks. The processed
output of this example is equivalent to the following statement:

LOAD INTO TABLE CREATOR."TABLENAME"

The utility | | operator is ignored in an EXEC SQL control statement by utility
processing since the operator has an existing SQL meaning. The operators
remain part of the SQL statement for subsequent processing by SQL.

The concatenation operator

Utility control statements support the | | concatenation operator. The operator is
allowed between two non-delimited character strings or two quoted character
strings. The result is a character string that consists of the string that is after the
operator concatenated to the string that precedes the operator. The operation is
shown in the following statement:

stringl || string2

Both stringl and string2 must be syntactically correct within each SYSIN input
record. Quotation marks must be balanced within each string. If DBCS characters
are used, shift-out and shift-in characters must be balanced within each string. Any
one multi-byte character must be contained entirely within a single SYSIN record.

The | | operator must be entered as a stand-alone token, with one or more blanks
before and after it. It can be entered on the same input record as “stringl”, alone or
on an input record, or on the same input record with “string2”. This operator
functions at the token level before any context is detected or semantic meaning is
applied. An example utility statement is shown in the following statement:

COPY INDEX
npn ||
ugn

results in:

COPY INDEX "AB"

The utility | | operator is ignored in an EXEC SQL control statement by utility
processing since the operator has an existing SQL meaning. The operators remain
part of the SQL statement for subsequent processing by SQL.

Descriptions of utility options

Where the syntax of each utility control statement is described, parameters are
indented under the option keyword that they must follow. The following option is
a typical example:

WORKDDN ddname
Specifies a temporary work file.

ddname is the data set name of the temporary file.
The default value is SYSUT1.
In the example, WORKDDN is an option keyword, and ddname is a variable

parameter. As noted previously, you can enclose parameter values in parentheses,
but parentheses are not always required. You can specify the temporary work file

16 Utility Guide and Reference

as either WORKDDN SYSUT1 or WORKDDN (SYSUT1).

Required authorizations for invoking online utilities on tables that have
multilevel security with row-level granularity

If you use RACF access control with multilevel security, you need additional
authorizations to run certain utility jobs. Each utility has its own authorization
requirements.

All other utilities ignore the row-level granularity. They check only for
authorization to operate on the table space; they do not check row-level
authorization. On tables that have multilevel security with row-level granularity,
additional authorizations are needed to run the following utility jobs:

« LOAD
« UNLOAD
* REORG TABLESPACE

Related concepts:

[[Multilevel security (Managing Security)

Invoking DB2 online utilities in a trusted connection

The DB2 online utilities can run in a trusted connection if a matching trusted
context is defined where the primary authorization ID matches the trusted context
SYSTEM AUTHID and the job name matches the JOBNAME attribute defined for
the identified trusted context. The primary authorization ID can acquire special set
of privileges in a trusted context, by roles.

Using the DB2 Utilities panel in DB2I

If you do not have much JCL knowledge, using the DB2 Ultilities panel is probably
the best way to execute the DB2 online utilities.

About this task

Restriction: You cannot use the DB2 Utilities panel in DB2I to submit a BACKUP
SYSTEM job, a COPYTOCOPY job, a RESTORE SYSTEM job, or a COPY job for a
list of objects.

If your site does not have default JOB and ROUTE statements, you must edit the
JCL to define them. If you edit the utility job before submitting it, you must use
the ISPF editor and submit your job directly from the editor.

Procedure

To use the DB2 Utilities panel in DB2I:

1. Create the utility control statement for the online utility that you intend to
execute, and save it in a sequential or partitioned data set. For example, the
following utility control statement specifies that the COPY utility is to make
an incremental image copy of table space DSN8D11A.DSN8511D with a
SHRLEVEL value of CHANGE:

COPY TABLESPACE DSN8D11A.DSN8S11D

FULL NO
SHRLEVEL CHANGE

Chapter 3. Invoking DB2 online utilities 17

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_mls.htm#db2z_mls

For the rest of this example, suppose that you save the statement in the
default data set, UTIL.

2. From the ISPF Primary Option menu, select the DB2I menu.

3. On the DB2I Utilities panel, select the UTILITIES option. Items that you must
specify are highlighted on the DB2 Ultilities panel, as shown in the following

figure.
/ N
DSNEUPO1 DB2 UTILITIES
===>
Select from the following:
1 FUNCTION ===> EDITJCL (SUBMIT job, EDITJCL, DISPLAY, TERMINATE)
2 JOB ID ===> TEMP (A unique job identifier string)
3 UTILITY ===> COPY (CHECK DATA, CHECK INDEX, CHECK LOB,
COPY, DIAGNOSE, LOAD, MERGE, MODIFY,
QUIESCE, REBUILD, RECOVER, REORG INDEX,
REORG LOB, REORG TABLESPACE, REPORT,
REPAIR, RUNSTATS, STOSPACE, UNLOAD.)
4 STATEMENT DATA SET ===> UTIL
Specify restart or preview option, otherwise specify NO.
5 RESTART ===> NO (NO, CURRENT, PHASE or PREVIEW)
6 LISTDEF? (YES|NO) ===> TEMPLATE? (YES|NO) ===>
7 LIB ==> (BLANK or DB2 LIB NAME)
* The data set names panel will be displayed when required by a utility.
\\PRESS: ENTER to process END to exit HELP for more information Y

Figure 1. DB2 Utilities panel

4. Complete field 1 with the function that you want to execute. In this example,
you want to submit the utility job, but you want to edit the JCL first, so
specify EDITJCL. After you edit the JCL, you do not need to return to this
panel to submit the job. Instead, type SUBMIT on the editor command line.

5. Ensure that Field 2 is a unique identifier for your utility job. The default value
is TEMP. In this example, that value is satisfactory; leave it as is.

6. Complete field 3 with the utility that you want to run. In this example, specify
COPY.

7. Complete field 4 if you want to use an input data set other than the default
data set. Unless you enclose the data set name between apostrophes, TSO
adds your user identifier as a prefix. In this example, specify UTIL, which is
the default data set.

8. Change field 5 if this job restarts a stopped utility or if you want to execute a
utility in PREVIEW mode. In this example, leave the default value, NO.

9. Specify in field 6 whether you are using LISTDEF statements or TEMPLATE
statements in this utility. If you specify YES for LISTDEF or TEMPLATE, DB2
displays the Control Statement Data Set Names panel, but the field entries are
optional.

10. Complete field 7 with the data set name of the DB2 subsystem library when
you want the generated JCL to use the default DB2 subsystem library.

11. Press Enter.

18 Utility Guide and Reference

¢ If you specified COPY, LOAD, MERGECOPY, REORG TABLESPACE, or
UNLOAD as the utility in field 3, you must complete the fields on the Data
Set Names panel, as shown in the following figure.

I N\
DSNEUPO2 DATA SET NAMES

S==53

Enter data set name for LOAD or REORG TABLESPACE:
1 RECDSN ==>

Enter data set name for
LOAD, REORG TABLESPACE or UNLOAD:
2 DISCDSN ==>

Enter output data sets for Tocal/current site for COPY, MERGECOPY,
LOAD, or REORG:
3 COPYDSN ==> ABC
4 COPYDSN2 >

Enter output data sets for recovery site for COPY, LOAD, or REORG:
5 RCPYDSN1 ==> ABC1
6 RCPYDSN2 ==>
Enter output data sets for REORG or UNLOAD:
7 PUNCHDSN ==>
PRESS: ENTER to process END to exit HELP for more information

Figure 2. Data Set Names panel

a. Complete field 1 if you are running LOAD, REORG, or UNLOAD. For
LOAD, you must specify the data set name that contains the records that
are to be loaded. For REORG or UNLOAD, you must specify the unload
data set. In this example, you do not need to complete field 1, because
you are running COPY.

b. Complete field 2 if you are running LOAD or REORG with discard
processing, in which case you must specify a discard data set. In this
example, you do not need to complete field 2, because you are running
COPrY.

c. Complete field 3 with the primary output data set name for the local site
if you are running COPY, LOAD, or REORG, or with the current site if
you are running MERGECOPY. The DD name that the panel generates
for this field is SYSCOPY. This is an optional field for LOAD and for
REORG with SHRLEVEL NONE; this field is required for COPY, for
MERGECOPY, and for REORG with SHRLEVEL REFERENCE or
CHANGE. In this example, the primary output data set name for the
local site is ABC.

d. Complete field 4 with the backup output data set name for the local site
if you are running COPY, LOAD, or REORG, or the current site if you
are running MERGECOPY. The DD name that the panel generates for
this field is SYSCOPY2. This is an optional field. In this example, you do
not need to complete field 4.

e. Complete field 5 with the primary output data set for the recovery site if
you are running COPY, LOAD, or REORG. The DD name that the panel
generates for this field is SYSRCOPY1. This is an optional field. In this
example, the primary output data set name for the recovery site is
ABC1.

f. Complete field 6 with the backup output data set for the recovery site if
you are running COPY, LOAD, or REORG. The DD name that the panel
generates for this field is SYSRCOPY2. This field is optional. In this
example, you do not need to complete field 6.

Chapter 3. Invoking DB2 online utilities 19

g. Complete field 7 with the output data set for the generated LOAD
utility control statements if you are running REORG UNLOAD
EXTERNAL, REORG DISCARD, or UNLOAD. The DD name that the
panel generates for this field is SYSPUNCH. In this example, you do not
need to complete field 7.

h. Press Enter.

* If you specified LISTDEF YES or TEMPLATE YES in field 6, you must
complete the fields on the Control Set Data Set Names panel, as shown in
the following figure.

e N
DSNEUPO3 CONTROL STATEMENT DATA SET NAMES SSID:
===>

Enter the data set name for the LISTDEF data set (SYSLISTD DD):
1 LISTDEF DSN ===>
OPTIONAL or IGNORED

Enter the data set name for the TEMPLATE data set (SYSTEMPL DD):
2 TEMPLATE DSN ===>
OPTIONAL or IGNORED

\PRESS: ENTER to process END to exit HELP for more information

Figure 3. Control Statement Data Set Names panel

a. Complete field 1 to specify the data set that contains a LISTDEF control
statement. The default is the SYSIN data set. This field is ignored if you
specified NO in the LISTDEF? field in the DB2 Utilities panel.

b. Complete field 2 to specify the data set that contains a TEMPLATE. The
default is the SYSIN data set. This field is ignored if you specified NO in
the TEMPLATE? field in the DB2 Ultilities panel.

Related reference:
(Chapter 15, “LISTDEF,” on page 207|
(Chapter 31, “TEMPLATE,” on page 775|

Invoking a DB2 utility by using the DSNU CLIST command in TSO

You can initiate a DB2 online utility by invoking the DSNU CLIST command under
TSO, without being concerned about details of the JCL data set. The CLIST
command generates the JCL data set that is required to execute the DSNUPROC
procedure and to execute online utilities as batch jobs.

About this task

Restriction: You cannot use the DSNU CLIST command to submit a COPY job for
a list of objects.

The CLIST command creates a job that performs only one utility operation.
However, you can invoke the CLIST command for each utility operation that you
need, and then edit and merge the outputs into one job or step.

Procedure

To use the DSNU CLIST command:

20 Utility Guide and Reference

1. Create a file containing the required utility control statements. DB2 uses the file
to create the SYSIN data set in the generated job stream. Do not include
double-byte character set (DBCS) data in this file.

2. Ensure that the DB2 CLIST library is allocated to the DD name SYSPROC.
Execute the command procedure by using the DSNU CLIST command syntax.

4. Optional: Edit the generated JCL data set to alter or add DD statements as
needed.

DSNU CLIST command

You can execute the DSNU CLIST command from the TSO command processor or
from the DB2I Utilities panel.

w

Syntax
»—L—_I—DSNU—UTILITY(utiZity-name)—INDSN(data-set-name |_ _|) >
% (member-name)
|—CONTROL—(—NONE—)— |—DBZI—(—N0—)
\\ —_— |—DBZI—(—YES—)—| |—DISCDSN(dm&a-set-name)—|
CONTROL— (—Y—control-option——)—
|—COPYDSN(|

data-set-name)
|—COPYDSNZ (data—set‘—name)—|

\
4

|—RCPYDSNl (data-set-name) | |—RECDSN (data—set—name)—|
l—RC PYDSN2 (data-set—name)—I

EDIT—(—NO—)——— |—RESTART—(—NO—)
I—PUNCHDSN—(—data-set-name—)—l LEDIT—(—ESPFj—)— |—RESTART—(CURRENT——) —
TS0 EPHASE%F
PREVIEW
—SUBMIT— (—NO—)——— |—SYSTEM—(—DSN—)

LSUBMIT—(YES)— |—SYSTEM—(subsystem-name)— I—UID(utiZity—id)—l
|:PROMPT:| |:gr‘oup-attach——l_

—UNIT—(—SYSDA—)———

y
v
A

“UNIT—(—unit-name—)— |—VOLUME(voZ-ser)—| |—LIB(dmta-set-name)—|

DSNU CLIST option descriptions

The parentheses that are shown in the following descriptions are required. If you
make syntax errors or omit parameter values, TSO prompts you for the correct
parameter spelling and omitted values.

Chapter 3. Invoking DB2 online utilities 21

% Identifies DSNU as a member of a command procedure library. Specifying this
parameter is optional; however, it does improve performance.

UTILITY (utility-name)
Specifies the utility that you want to execute.

DB2 places the JCL in a data set that is named DSNUxxx.CNTL, where
DSNUxxx is a control file name. The control file contains the statements that
are necessary to invoke the DSNUPROC procedure which, in turn, executes the
utility. If you execute another job with the same utility name, the first job is
deleted. See the table below for a list of the online utilities and the control file
name that is associated with each utility.

INDSN (data-set-name (member-name))

Specifies the data set that contains the utility statements and control
statements. Do not specify a data set that contains double-byte character set

data.

(data-set-name)
Specifies the name of the data set. If you do not specify a data set name,
the default command procedure prompts you for the data set name.

(member-name)
Specifies the member name. You must specify the member name if the data
set is partitioned.

CONTROL(control-option: ...)
Specifies whether to trace the CLIST command execution.

NONE
Omits tracing.

control-option
Lists one or more of the following options. Separate items in the list by
colons (:). To abbreviate, specify only the first letter of the option.

LIST Displays TSO commands after symbolic substitution and before
command execution.
CONLIST
Displays CLIST commands after symbolic substitution and before
command execution.
SYMLIST
Displays all executable statements (TSO commands and CLIST
statements) before the scan for symbolic substitution.
NONE
Generates a CONTROL statement with the options NOLIST,
NOCONLIST, and NOSYMLIST.
DB2I
Indicates the environment from which the DSNU CLIST command is called.
(N0)
Indicates that DSNU CLIST command is not being called from the DB2I
environment.
(YES)
Indicates that DSNU CLIST command is called from the DB2I

environment. Only the utility panels should execute the CLIST command
with DB2I(YES).

22 Utility Guide and Reference

DISCDSN (data-set-name)
The name of the cataloged data set that LOAD and REORG use for a discard
data set. For LOAD, this data set holds records that are not loaded; for
REORG, it holds records that are not reloaded.

COPYDSN (data-set-name)
The name of the cataloged data set that DB2 utilities use as a target (output)
data set. If you do not supply this information, the CLIST command prompts
you for it. This keyword is optional for LOAD and for REORG with
SHRLEVEL NONE; it is required for COPY, for MERGECOPY, and for REORG
with SHRLEVEL REFERENCE or CHANGE.

COPYDSN2 (data-set-name)
The name of the cataloged data set that DB2 utilities use as a target (output)

data set for the backup copy. This keyword is optional for COPY,
MERGECOPY, LOAD, and REORG.

RCPYDSN1 (data-set-name)
The name of the cataloged data set that DB2 utilities use as a target (output)

data set for the remote-site primary copy. This keyword is optional for COPY,
LOAD, and REORG.

RCPYDSN2 (data-set-name)
The name of the cataloged data set that DB2 utilities use as a target (output)

data set for the remote-site backup copy. This keyword is optional for COPY,
LOAD, and REORG.

RECDSN (data-set-name)
The name of the cataloged data set that LOAD uses for input or that REORG
TABLESPACE or UNLOAD use as the unload data set. If you do not supply
this information, the CLIST command prompts you for it. This keyword is
required for LOAD and REORG TABLESPACE only.

PUNCHDSN (data-set-name)
The name of the cataloged data set that REORG or UNLOAD use to hold the
generated LOAD utility control statements for UNLOAD EXTERNAL or
DISCARD.

EDIT
Specifies whether to invoke an editor to edit the temporary file that the CLIST
command generates.

(N0)
Does not invoke an editor.

(SPF)
Invokes the ISPF editor.

(TS0)
Invokes the TSO editor.

RESTART
Specifies whether this job restarts a current utility job, and, if so, at what point
it is to be restarted.

(N0)
Indicates that the utility is a new job, not a restarted job. The utility
identifier (UID) must be unique for each utility job step.

(CURRENT)
Restarts the utility at the most recent commit point.

Chapter 3. Invoking DB2 online utilities 23

(PHASE)
Restarts the utility at the beginning of the current stopped phase. You can
determine the current stopped phase by issuing the DISPLAY UTILITY
command.

(PREVIEW)
Restarts the utility in PREVIEW mode. While in PREVIEW mode, the
utility checks for syntax errors in all utility control statements, but normal
utility execution does not take place.

SUBMIT
Specifies whether to submit the generated JCL for processing.

(NO)
Does not submit the JCL data set for processing.

(YES)
Submits the JCL data set for background processing, using the TSO
SUBMIT command.

(PROMPT)
Prompts you, after the data set is processed, to specify whether to submit
the JCL data set for batch processing. You cannot use PROMPT when the
CLIST command is executed in the TSO batch environment.

SYSTEM (subsystem-name)
Specifies the DB2 subsystem or group attachment name or subgroup
attachment name. The default value is DSN.

UID (utility-id)
Provides a unique identifier for this utility job within DB2. Do not reuse the
utility ID of a stopped utility that has not yet been terminated, unless you
want to restart that utility. If you do use the same utility ID to invoke a
different utility, DB2 tries to restart the original stopped utility with the
information that is stored in the SYSUTIL directory table.

The default value is tso-userid.control-file-name, where control-file-name for each
of the utilities is listed in the following table.

Table 1. Control-file name for each utility

Utility control-file-name
CHECK INDEX DSNUCHI
CHECK DATA DSNUCHD
CHECK LOB DSNUCHL
COPY DSNUCOP
DIAGNOSE DSNUDIA
LOAD DSNULOA
MERGECOPY DSNUMER
MODIFY DSNUMOD
QUIESCE DSNUQUI
REBUILD INDEX DSNUREB
RECOVER DSNUREC
REORG INDEX DSNURGI
REORG LOB DSNURGL
REORG TABLESPACE DSNURGT

24 Utility Guide and Reference

Table 1. Control-file name for each utility (continued)

Utility control-file-name
REPAIR DSNUREP
REPORT DSNURPT
RUNSTATS DSNURUN
STOSPACE DSNUSTO
UNLOAD DSNUUNL

UNIT (unit-name)
Assigns a unit address, a generic device type, or a user-assigned group name
for a device on which a new temporary or permanent data set resides. When
the CLIST command generates the JCL, it places unit-name after the UNIT
clause of the generated DD statement.

The default value is SYSDA.

VOLUME (vol-ser)
Assigns the serial number of the volume on which a new temporary or
permanent data set resides. When the CLIST command generates the JCL, it
places vol-ser after the VOL=SER clause of the generated DD statement. If you
omit VOLUME, the VOL=SER clause is omitted from the generated DD
statement.

LIB (data-set-name)
Specifies the data set name of the DB2 subsystem library. The value that you
specify is used as the LIB parameter value when the DSNUPROC JCL
procedure is invoked.

DSNU CLIST command output

DSNU builds a one-step job stream. The JCL data set consists of a JOB statement,
an EXEC statement that executes the DB2 utility processor, and the required DD
statements. This JOB statement also includes the SYSIN DD * job stream, as shown
in the following figure. You can edit any of these statements.

//DSNUCOP JOB your-job-statement-parameters

// USER=userid,PASSWORD=password

//*ROUTE PRINT routing-information

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID=TEMP,UTPROC="

//SYSCOPY DD DSN=MYCOPIES.DSN8D11A.JAN1,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(CYL, (1,1))

//SYSIN DD *
COPY TABLESPACE DSN8D11A.DSN8S11D
FULL NO
SHRLEVEL CHANGE
/*
Figure 4. Control file DSNUCOP.CNTL. This is an example of the JCL data set before editing.

The following list describes the required JCL data set statements:

Statement
Description

JOB The CLIST command uses any JOB statements that you saved when using
DB2I. If no JOB statements exist, DB2 produces a skeleton JOB statement
that you can modify. The job name is DSNU, followed by the first three
letters of the name of the utility that you are using.

Chapter 3. Invoking DB2 online utilities 25

EXEC The CLIST command builds the EXEC statement. The values that you
specified for SYSTEM (DSN, by default), UID(TEMP), and RESTART (none)
become the values of SYSTEM, UID, and UTPROC for the DSNUPROC.

The CLIST command builds the necessary JCL DD statements. Those statements
vary depending on the utility that you execute. The following DD statements are
generated by the CLIST command:

SYSPRINT DD SYSOUT=A
Defines OUTPUT, SYSPRINT as SYSOUT=A. Utility messages are sent to the
SYSPRINT data set. You can use the TSO ALLOCATE command to control the
disposition of the SYSPRINT data set. For example, you can send the data set
to your terminal.

UTPRINT DD SYSOUT=A
Defines UTPRINT as SYSOUT=A. If any utility requires a sort, it executes the
sort program. Messages from that program are sent to UTPRINT.

SYSIN DD *
Defines SYSIN. To build the SYSIN DD * job stream, DSNU copies the data set
that is named by the INDSN parameter. The INDSN data set does not change,
and you can reuse it when the DSNU procedure has finished running.

Editing the generated JCL data set

You can edit the data set before you process it by using the EDIT parameter on the
command procedure. Use the editor to add a JCL statement to the job stream, to
change JCL parameters (such as ddnames), or to change utility control statements.

If you use a ddname that is not the default on a utility statement that you use, you
must change the ddname in the JCL that is generated by the DSNU procedure. For
example, in the REORG TABLESPACE utility, the default option for UNLDDN is
SYSREC, and DSNU builds a SYSREC DD statement for REORG TABLESPACE. If
you use a different value for UNLDDN, you must edit the JCL data set and change
SYSREC to the ddname that you used.

When you finish editing the data set, you can either save changes to the data set
(by issuing SAVE), or instruct the editor to ignore all changes.

The SUBMIT parameter specifies whether to submit the data set statement as a
background job. The temporary data set that holds the JCL statement is reused. If
you want to submit more than one job that executes the same utility, you must
rename the JCL data sets and submit them separately.

Example 1: Generating a data set

The following CLIST command statement generates a data set that is called
authorization-id DSNURGT.CNTL and that contains JCL statements that invoke the
DSNUPROC procedure.

%DSNU UTILITY(REORG TABLESPACE) INDSN(MYREOR.DATA)

RECDSN (MYREOR.WORK) RESTART(NO)
EDIT(TSO) SUBMIT(YES)

The DSNUPROC procedure invokes the REORG TABLESPACE utility. The
MYREOR.DATA data set is merged into the JCL data set as SYSIN input.
MYREOR.WORK is a temporary data set that is required by REORG
TABLESPACE. The TSO editor is invoked to allow editing of the JCL data set,
authorization-id. DSNURGT.CNTL. The TSO editor then submits the JCL data set as

26 Utility Guide and Reference

a batch job. This JCL data set is not modified by this CLIST command statement
until a new request is made to execute the REORG TABLESPACE utility.

Example 2: Invoking the CLIST command for the COPY utility

The following example shows how to invoke the CLIST command for the COPY
utility.
%DSNU

UTILITY (COPY)

INDSN ('MYCOPY (STATEMNT) ')

COPYDSN ('MYCOPIES.DSN8D11A.JAN1")

EDIT (TSO)

SUBMIT (YES)

UID (TEMP)

RESTART (NO)

Related reference:

[[DB2 Sort

[+ [ALLOCATE command (TSO/E Command Reference)|
Related information:

(& [DFSORT Application Programming Guide

Invoking a DB2 utility by using the supplied JCL procedure
(DSNUPROC)

Another method of invoking a DB2 online utility uses the supplied JCL procedure,
DSNUPROC, which is shown in the figure below. This procedure uses the
parameters that you supply to build an appropriate EXEC statement that executes
an online utility.

To execute the DSNUPROC procedure, write and submit a JCL data set like the
one that the DSNU CLIST command builds (An example is shown in
) In your JCL, the EXEC statement executes the DSNUPROC procedure.

DSNUPROC syntax

|—LIB=prefix.SSPGM— |—,SIZE=0M— |—,SYSTEM=DSN
»»—DSNUPROC >
I—LIB=DBZZibrary-name— l—,SIZE=region-$ize— l—,SYSTEM=subsystem-name—
|—,UID=' —_ l—,UTPROC=' !

"RESTART (CURRENT) ' —
'"RESTART (PHASE) ' —
'"PREVIEW'

l—,UID=uti lity-qualifier— L,UTPROC=—E' RESTART'

DSNUPROC option descriptions

The following list describes all the parameters. For example, in [Figure 4 on page]
you need to use only one parameter, UID=TEMP; for all others, you can use the
default values.

Chapter 3. Invoking DB2 online utilities 27

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c5c0/1.7?ACTION=MATCHES&REQUEST=allocate+command&TYPE=FUZZY&SHELF=&DT=20110621113414&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

LIB=
Specifies the data set name of the DB2 subsystem library.

The default value is prefix.SSPGM.

SIZE=
Specifies the region size of the utility execution area; that is, the value
represents the number of bytes of virtual storage that are allocated to this
utility job.

The default value is OM.

SYSTEM=
Specifies the DB2 subsystem or group attachment name or subgroup
attachment name.

The default value is DSN.

UID=
Specifies the unique identifier for your utility job. The maximum name length
is 16 characters. If the name contains special characters, enclose the entire
name between apostrophes (for example, PETERS.JOB'). Do not reuse the
utility ID of a stopped utility that has not yet been terminated. If you do use
the same utility ID to invoke a different utility, DB2 tries to restart the original
stopped utility with the information that is stored in the SYSUTIL directory
table.

The default is an empty string. If you do not specify UID, or you specify
UID=", DB2 assigns a utility ID of the form user-id.job-name to the utility job.
user-id is the user ID. job-name is the job name in the JCL in which DSNUPROC
is executed. If the total length of the generated utility ID is longer than 16
bytes, the user ID is truncated to seven bytes.

UTPROC=
Controls restart processing. The default is an empty string. Use the default if
you want to allow DB2 to perform default restart processing as documented in
[‘Restart of an online utility” on page 39

To override the default restart behavior, specify:

'RESTART'
To restart at the most recent commit point. This option has the same
meaning as 'RESTART(CURRENT).'

'RESTART(CURRENT)'
To restart at the most recent commit point. This option has the same
meaning as 'RESTART.'

'RESTART(PHASE)'
To restart at the beginning of the phase that executed most recently.

'PREVIEW'
To restart in preview mode. While in PREVIEW mode, the utility
checks for syntax errors in all utility control statements, but normal
utility execution does not take place.

The DSNUPROC procedure provides the SYSPRINT and UTPRINT DD statements
for printed output. You must provide DD statements for SYSIN and other data sets
that your job needs. See [‘Data sets that online utilities use” on page 11|for a
description of data sets that you might need.

28 Utility Guide and Reference

Sample DSNUPROC listing

The following figure is the DSNUPROC procedure that was executed by the JCL

example in |[Figure 4 on page 25|
//DSNUPROC PROC LIB='DSN!!0.SDSNLOAD',

// SYSTEM=DSN,

// SIZE=0K,UID="",UTPROC=""

[] xkkkhxkdkhkkhkhkkhkkkkhkkdk ok ko k ok ok k ok ok ok ok k ok ok ko ko kR L L R R Lt
//* PROCEDURE-NAME: DSNUPROC *
//* *
//* DESCRIPTIVE-NAME: UTILITY PROCEDURE *
//* *
//* FUNCTION: THIS PROCEDURE INVOKES THE ADMF UTILITIES IN THE *
/1* BATCH ENVIRONMENT *
//* *
//* PROCEDURE-OWNER: UTILITY COMPONENT *
//* *
//* COMPONENT-INVOKED: ADMF UTILITIES (ENTRY POINT DSNUTILB). *
//* *
//* ENVIRONMENT: BATCH *
//* *
//* INPUT: *
/1% PARAMETERS : *
//* LIB = THE DATA SET NAME OF THE DB2 PROGRAM LIBRARY. =
//* THE DEFAULT LIBRARY NAME IS PREFIX.SDSNLOAD, *
/1* WITH PREFIX SET DURING INSTALLATION. *
/1* SIZE = THE REGION SIZE OF THE UTILITIES EXECUTION AREA.=*
/1* THE DEFAULT REGION SIZE IS 2048K. *
/1* SYSTEM = THE SUBSYSTEM NAME USED TO IDENTIFY THIS JOB *
/1% TO DB2. THE DEFAULT IS "DSN". *
/1* UID = THE IDENTIFIER WHICH WILL DEFINE THIS UTILITY *
/1* JOB TO DB2. IF THE PARAMETER IS DEFAULTED OR *
//* SET TO A NULL STRING, THE UTILITY FUNCTION WILL =
/1* USE ITS DEFAULT, USERID.JOBNAME. EACH UTILITY =
/1% WHICH HAS STARTED AND IS NOT YET TERMINATED *
/1* (MAY NOT BE RUNNING) MUST HAVE A UNIQUE UID. *
/1* UTPROC = AN OPTIONAL INDICATOR USED TO DETERMINE WHETHER =*
//* THE USER WANTS TO INITIALLY START THE REQUESTED=*
/1* UTILITY OR TO RESTART A PREVIOUS EXECUTION OF *
//* THE UTILITY. IF OMITTED, THE UTILITY WILL *
/1/* BE INITIALLY STARTED. OTHERWISE, THE UTILITY *
/1% WILL BE RESTARTED BY ENTERING THE FOLLOWING *
/1* VALUES: *
/1* RESTART(PHASE) = RESTART THE UTILITY AT THE =*
/1% BEGINNING OF THE PHASE EXECUTED *
//* LAST. *
/1% RESTART = RESTART THE UTILITY AT THE LAST =
//* OR CURRENT COMMIT POINT. *
//* *
//* OUTPUT: NONE. *
//* *
//* EXTERNAL-REFERENCES: NONE. *
//* *
//* CHANGE-ACTIVITY: *
//* *

[] %3k s ek ok ok ok ok ok ok ok ok ok ok ke ok ke ok ke ok ko ok ko ok ok ok ok ok ok ok ok ok ok ok ok ke ok ko ok ko ok ko
//DSNUPROC EXEC PGM=DSNUTILB,REGION=8SIZE,

// PARM="&SYSTEM, &UID,&UTPROC'

//STEPLIB DD DSN=&LIB,DISP=SHR

//*** """""""""""

//* *
//* THE FOLLOWING DEFINE THE UTILITIES' PRINT DATA SETS *
//* *
R R R AR e T T TS T
/1%

//SYSPRINT DD SYSOUT=x

Chapter 3. Invoking DB2 online utilities

29

//UTPRINT DD SYSOUT==
//SYSUDUMP DD SYSOUT=*
//*DSNUPROC PEND REMOVE = FOR USE AS INSTREAM PROCEDURE

Figure 5. Sample listing of supplied JCL procedure DSNUPROC

Invoking a DB2 utility by creating the JCL data set yourself

DB2 online utilities execute as standard z/OS jobs.

To execute the utility, you must supply the JOB statement that is required by your
installation and the JOBLIB or STEPLIB DD statements that are required to access
DB2. You must also include an EXEC statement and a set of DD statements. The
EXEC statement and the DD statements that you might need are described in
[“Data sets that online utilities use” on page 11}

Recommendation: Use DSNUPROC to invoke a DB2 online utility, rather than
creating the JCL yourself.

The EXEC statement can be a procedure that contains the required JCL, or it can be
of the following form:

//stepname EXEC PGM=DSNUTILB,PARM='system,[uid], [utproc]'

The brackets, [], indicate optional parameters. The parameters have the following
meanings:

DSNUTILB
Specifies the utility control program. The program must reside in an
APF-authorized library.

system
Specifies the DB2 subsystem.

uid
The unique identifier for your utility job. Do not reuse the utility ID of a
stopped utility that has not yet been terminated. If you do use the same utility
ID to invoke a different utility, DB2 tries to restart the original stopped utility
with the information that is stored in the SYSUTIL directory table.

utproc
The value of the UTPROC parameter in the DSNUPROC procedure. Specify
this option only when you want to restart the utility job. Specify:

'RESTART'
To restart at the most recent commit point. This option has the same
meaning as 'RESTART(CURRENT).'

'RESTART(CURRENT)'
To restart the utility at the most recent commit point. This option has
the same meaning as 'RESTART.'

'RESTART(PHASE)'
To restart at the beginning of the phase that executed most recently.

'RESTART(PREVIEW)'
To restart the utility in preview mode. While in PREVIEW mode, the
utility checks for syntax errors in all utility control statements, but
normal utility execution does not take place.

30 Utility Guide and Reference

For the example in [Figure 5 on page 30| you can use the following EXEC statement:

//stepname
EXEC PGM=DSNUTILB,PARM='DSN,TEMP'

Chapter 3. Invoking DB2 online utilities 31

32 Utility Guide and Reference

Chapter 4. Monitoring and controlling online utilities

You can monitor utilities, run utilities concurrently, terminate utilities, and restart
utilities.

Monitoring utilities with the DISPLAY UTILITY command

Use the DB2 DISPLAY UTILITY command to check the current status of online
utilities.

GUPL~ The following figure shows an example of the output that the DISPLAY

UTILITY command generates.

DSNU10OI - DSNUGDIS - USERID = SAMPID
E MEMBER = DB1G
UTILID = RUNTS
PROCESSING UTILITY STATEMENT 1
UTILITY = RUNSTATS
PHASE = RUNSTATS [@ COUNT =
NUMBER OF OBJECTS IN LIST
LAST OBJECT STARTED = m
STATUS = STOPPED
JOBNAME = STATSJOB
TIME STARTED = 2014-01-09-10:26:03
DSN9022I - DSNUGCC '-DISPLAY UTILITY' NORMAL COMPLETION

0
=n

GHIZTO™MOO

Figure 6. DISPLAY UTILITY command sample output

The items in the example output are described in the following table.

Description

The member name.

The utility identifier.

Item

(A

(B

The utility name.
D)

(£

The utility phase.

The number of pages or records that are processed by the utility. In a data
sharing environment, the number of records is current when the command is
issued from the same member on which the utility is executing. When the
command is issued from a different member, the count might lag substantially.
For some utilities in some build phases, the count number is not updated when
the command is issued from a different member.

The number of objects in the list.

The last object that started.

The utility status.

The job name for the job that invoked the utility.

(<l -H=H=H]

The date and time when the job originally started.

The output might also report additional information about an executing utility,
such as log phase estimates or utility subtask activity.

© Copyright IBM Corp. 1983, 2013 33

Determining the status of a utility

To determine the status of an online utility, look at the status part ([f]) of the
DISPLAY UTILITY output. An online utility can have one of these statuses:

Status Description

Active The utility has started execution.

Stopped The utility has abnormally stopped executing before completion, but the table
spaces and indexes that were accessed by the utility remain under utility
control. To make the data available again, you must take one of the following
actions:

* Correct the condition that stopped the utility, and restart the utility so that it
runs to termination.

* Terminate the utility with the DB2 TERM UTILITY command.

Terminated The utility has been requested to terminate by the DB2 TERM UTILITY
command. If the utility has terminated, no message is issued.

Determining which utility phase is currently executing

DB2 online utility execution is divided into phases. Each utility starts with the
UTILINIT phase, which performs initialization and set up. Each utility finishes
with a UTILTERM phase, which cleans up after processing has completed. The
other phases of online utility execution differ, depending on the utility. See the
“Execution Phases” information in the descriptions of each utility. To determine
which utility phase is currently executing, look at the output from the DISPLAY
UTILITY command. The example output in the figure above shows the current

phase (B

Determining why a utility failed to complete

If an online utility job completes normally, it issues return code 0. If it completes
with warning messages, it issues return code 4. Return code 8 means that the job
failed to complete. Return code 12 means that an authorization error occurred.

To determine why a utility failed to complete, consider the following problems that
can cause a failure during execution of the utility:

* Problem: DB2 terminates the utility job step and any subsequent utility steps.

Solution: Submit a new utility job to execute the terminated steps. Use the same
utility identifier for the new job to ensure that no duplicate utility job is running.

* Problem: DB2 does not execute the particular utility function, but prior utility
functions are executed.

Solution: Submit a new utility step to execute the function.
e Problem: DB2 places the utility function in the stopped state.

Solution: Restart the utility job step at either the last commit point or the
beginning of the phase by using the same utility identifier. Alternatively, use a
TERM UTILITY (uid) command to terminate the job step and resubmit it.

* Problem: DB2 terminates the utility and issues return code 8.
Solution: One or more objects might be in a restrictive or advisory status.

Alternatively, a DEADLINE condition in online REORG might have terminated
the reorganization.

GUPI

34 Utility Guide and Reference

Related concepts:

[‘Termination of an online utility with the TERM UTILITY command” on page 36|
Related tasks:
[‘Repairing DBDs” on page 668|

Related reference:
(Chapter 24, “REORG INDEX,” on page 499|

Traces for monitoring processor use by utilities

You can run traces to collect data about the amount of processor time that is used
by online utilities.

When you run a trace that writes IFCID 0025 trace records, you can collect data on
processor use by utilities.

The types of information that are collected are:
* Whether DFSORT or DB2SORT were invoked
* The number of parallel data or index sorts that were performed
* The amounts of time that a utility job used:
— Total elapsed time
— Total CPU time
— Total zIIP time (if an accounting class 1 trace is also activated)
— CPU time for sorts
— zIIP time for sorts (if the sort program provided this value)

Running utilities concurrently

Some online utilities allow other utilities and SQL statements to run concurrently
on the same target object.

To determine if utilities can be run concurrently, look in the compatibility and
concurrency topic for each online utility. Each concurrency and compatibility topic
includes the following information:

* For each target object on which the utility acts, the topic outlines the claim
classes that the utility must claim or drain. The topic also outlines the restrictive
state that the utility sets on the target object.

 For other online utilities, the topic summarizes the compatibility of the utility
with the same target object. If two actions are compatible on a target object, they
can run simultaneously on that object in separate applications. If compatibility
depends on particular options of a utility, that dependency is also shown.

If the utility supports parallelism, it can use additional threads to support the

parallel subtasking. Consider increasing the values of subsystem parameters that
control threads, such as MAX BATCH CONNECT and MAX USERS.

Chapter 4. Monitoring and controlling online utilities 35

Related concepts:

[[Claims and drains (DB2 Performance)]
Related reference:

[[Thread management panel 1: (DB2 Installation and Migration)|

Online utilities

in a data sharing environment

You can run online utilities in a data sharing environment.
Submission of online utility jobs in a data sharing environment

When you submit a utility job, you must specify the name of the DB2 subsystem to
which the utility is to attach or the group attachment name or subgroup
attachment name. If you do not use the group attachment name or subgroup
attachment name, the utility job must run on the z/OS system where the specified
DB2 subsystem is running. Ensure that the utility job runs on the appropriate z/OS
system. You must use one of several z/OS installation-specific statements to make
sure this happens. These include:

 For JES2 multi-access spool (MAS) systems, insert the following statement into
the utility JCL:
/*JOBPARM SYSAFF=cccc

* For JES3 systems, insert the following statement into the utility JCL:
//*MAIN SYSTEM=(main-name)

Your installation might have other mechanisms for controlling where batch jobs
run, such as by using job classes.

Stop and restart of utilities in a data sharing environment

In a data sharing environment, you can terminate an active utility by using the
TERM UTILITY command only on the DB2 subsystem on which it was started. If a
DB2 subsystem fails while a utility is in progress, you must restart that DB2
subsystem, and then you can terminate the utility from any system.

You can restart a utility only on a member that is running the same DB2 release
level as the member on which the utility job was originally submitted. The same
utility ID (UID) must be used to restart the utility. That UID is unique within a
data sharing group. However, if DB2 fails, you must restart DB2 on either the same
or another z/OS system before you restart the utility.

Related reference:

[DD statement (MVS JCL Reference)|

Termination of

an online utility with the TERM UTILITY command

You can terminate online utilities with the TERM UTILITY command.

GUPI Uge the TERM UTILITY command to terminate the execution of an active

utility or to release the resources that are associated with a stopped utility.

Restriction: If the utility was started in a previous release of DB2, issue the TERM
UTILITY command from that release.

36 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_claimsdrans4concurrency.htm#db2z_claimsdrans4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntipe.htm#db2z_dsntipe
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b6b1/12.0?DN=SA22-7597-16&DT=20120814180937&SHELF=&CASE=&PATH=/bookmgr/

After you issue the TERM UTILITY command, you cannot restart the terminated
utility job. The objects on which the utility was operating might be left in an
indeterminate state. In many cases, you cannot rerun the same utility without first
recovering the objects on which the utility was operating. The situation varies,
depending on the utility and the phase that was in process when you issued the
command. These considerations about the state of the object are particularly
important when terminating the COPY, LOAD, and REORG utilities.

In a data sharing environment, TERM UTILITY is effective for active utilities when
the command is submitted from the DB2 subsystem that originally issued the
command. You can terminate a stopped utility from any active member of the data
sharing group.

Restriction: In a data sharing coexistence environment, you can terminate a utility
only on the same release in which the utility was started.

If the utility is active, TERM UTILITY terminates it at the next commit point. It then
performs any necessary cleanup operations.

You might choose to put TERM UTILITY in a conditionally executed job step; for
example, if you never want to restart certain utility jobs. the following figure
shows a sample job stream.

//TERM EXEC PGM=IKJEFTO1,COND=((8,GT,S1),EVEN)

/1%
//**
//* IF THE PREVIOUS UTILITY STEP, S1, ABENDS, ISSUE A

//* TERMINATE COMMAND. IT CANNOT BE RESTARTED.
//**
/1%

//SYSPRINT DD SYSOUT=A

//SYSTSPRT DD SYSOUT=A

//SYSOUT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSTSIN DD =*

DSN SYSTEM(DSN)

-TERM UTILITY(TEMP)

END

/*

Figure 7. Example of conditionally executed TERM UTILITY

Alternatively, consider specifying the TIMEOUT TERM parameter for some online
REORG situations. GUP!

Subsystem parameters for refining DFSMSdss COPY operation with

utilities

You can use subsystem parameters to control whether utilities that invoke
DFSMSdss COPY use FlashCopy technology.

The utilities that invoke DFDSMSdss COPY are:

* CHECK DATA with SHRLEVEL CHANGE

 CHECK INDEX with SHRLEVEL CHANGE

* CHECK LOB with SHRLEVEL CHANGE

* COPY with FLASHCOPY YES or FLASHCOPY CONSISTENT
* LOAD with FLASHCOPY YES or FLASHCOPY CONSISTENT

Chapter 4. Monitoring and controlling online utilities 37

* REBUILD INDEX with FLASHCOPY YES or FLASHCOPY CONSISTENT

* RECOVER with FLASHCOPY YES or FLASHCOPY CONSISTENT

* REORG INDEX with FLASHCOPY YES or FLASHCOPY CONSISTENT

* REORG TABLESPACE with FLASHCOPY YES or FLASHCOPY CONSISTENT

The subsystem parameters are:

FLASHCOPY_PPRC
Specifies the behavior for DFSMSdss FlashCopy requests when the target disk
storage volume is the primary device in a peer-to-peer remote copy (Metro
Mirror) relationship:
* Whether DFSMSdss preserves mirroring while processing a DB2 utilities
request

* Whether the target device pair is allowed to go to duplex pending state

FLASHCOPY_PPRC applies to the CHECK DATA, CHECK INDEX, CHECK
LOB, COPY, REORG TABLESPACE, REORG INDEX, REBUILD INDEX, LOAD,
and RECOVER utilities.

CHECK_FASTREPLICATION
Specifies whether the CHECK utilities direct DFSMSdss COPY to use
FlashCopy as the preferred for copying objects to shadow data sets, or as the
only method for copying objects to shadow data sets.

REC_FASTREPLICATION
Specifies how the RECOVER utility directs DFSMSdss COPY to restore an
image copy that was created with FlashCopy. REC_FASTREPLICATION directs
DESMSdss COPY to use FlashCopy as the preferred method, as the only
method, or not to use FlashCopy.

The parameters that DFSMSdss COPY specifies for the CHECK utilities depend on
the combination of values for FLASHCOPY_PPRC and
CHECK_FASTREPLICATION that you specify, as shown in the following table.

Table 2. FLASHCOPY_PPRC and CHECK_FASTREPLICATION values and resulting DFSMSdss COPY parameter
values for CHECK ultilities

FLASHCOPY PPRC CHECK_FASTREPLICATION value

value PREFERRED REQUIRED

blank FASTREP(PREF) FASTREP(REQ)

NONE FASTREP(PREF) FASTREP(REQ)
FCTOPPRCP(PresMirNone) FCTOPPRCP(PresMirNone)

PREFERRED FASTREP(PREF) FASTREP(REQ)
FCTOPPRCP(PresMirPref) FCTOPPRCP(PresMirPref)

REQUIRED FASTREP(PREF) FASTREP(REQ)
FCTOPPRCP(PresMirReq) FCTOPPRCP(PresMirReq)

The parameters that DFSMSdss COPY specifies for the RECOVER utility depend
on the combination of values for FLASHCOPY_PPRC and
CHECK_FASTREPLICATION that you specify, as shown in the following table.

38 Utility Guide and Reference

Table 3. FLASHCOPY_PPRC and CHECK_FASTREPLICATION values and resulting DFSMSdss COPY parameter
values for the RECOVER utility

FLASHCOPY_PPRC

REC_FASTREPLICATION value

value NONE PREFERRED REQUIRED

blank FASTREP(NONE) FASTREP(PREF) FASTREP(REQ)

NONE FASTREP(NONE) FASTREP(PREF) FASTREP(REQ)
FCTOPPRCP(PresMirNone) FCTOPPRCP(PresMirNone)

PREFERRED FASTREP(NONE) FASTREP(PREF) FASTREP(REQ)
FCTOPPRCP(PresMirPref) FCTOPPRCP(PresMirPref)

REQUIRED FASTREP(NONE) FASTREP(PREF) FASTREP(REQ)
FCTOPPRCP(PresMirReq) FCTOPPRCP(PresMirReq)

Related reference:

[[FAST REPLICATION field (CHECK _FASTREPLICATION subsystern]
[parameter) (DB2 Installation and Migration)|

[[FLASHCOPY PPRC field (FLASHCOPY _PPRC subsystem parameter) (DB2]
[Installation and Migration)|

[[FAST RESTORE field (REC_FASTREPLICATION subsystem parameter) (DB2]
[[nstallation and Migration)|

Restart of an online utility

If a utility finishes abnormally, you might be able to restart it.

With the autonomic restart procedure, you avoid repeating much of the work that
the utility has already done.

Before you restart a job, correct the problem that caused the utility job to stop.
Then resubmit the job. DB2 recognizes the utility ID and restarts the utility job if
possible. DB2 retrieves information about the stopped utility from the SYSUTIL
directory table.

Do not reuse the utility ID of a stopped utility that has not yet been terminated,
unless you want to restart that utility. If you do use the same utility ID to invoke a
different utility, DB2 tries to restart the original stopped utility with the
information that is stored in the SYSUTIL directory table.

Two different methods of restart are available:

* You can do a phase restart from the beginning of the phase that was being
processed. This method is indicated by the value RESTART(PHASE).

* You can do a current restart from the last checkpoint that was taken during the
execution of the utility phase. If the utility phase does not take any checkpoints
or has not reached the first checkpoint, current restart is equivalent to phase
restart. This method is indicated by the value RESTART or
RESTART(CURRENT).

For each utility, DB2 uses the default RESTART value that is specified in the

following table. For a complete description of the restart behavior for an individual
utility, including any phase restrictions, refer to the restart topic for that utility.

Chapter 4. Monitoring and controlling online utilities 39

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_checkfastreplication.htm#db2z_ipf_checkfastreplication
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_checkfastreplication.htm#db2z_ipf_checkfastreplication
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_flashcopypprc.htm#db2z_ipf_flashcopypprc
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_flashcopypprc.htm#db2z_ipf_flashcopypprc
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_recfastreplication.htm#db2z_ipf_recfastreplication
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_recfastreplication.htm#db2z_ipf_recfastreplication

You can override the default RESTART value by specifying the RESTART
parameter in the original JCL data set. DB2 ignores the RESTART parameter if you
are submitting the utility job for the first time. For instructions on how to specify
this parameter, see the following table.

Table 4. Default RESTART values for each utility

Utility Default RESTART value
BACKUP SYSTEM RESTART(CURRENT)
CATMAINT No restart

CHECK DATA RESTART(CURRENT)
CHECK INDEX RESTART(CURRENT)
CHECK LOB RESTART(CURRENT)
COPY RESTART(CURRENT)
COPYTOCOPY RESTART(CURRENT)
DIAGNOSE Restarts from the beginning
EXEC SQL Restarts from the beginning
LISTDEF Restarts from the beginning
LOAD RESTART(CURRENT) or RESTART(PHASE)*
MERGECOPY RESTART(PHASE)
MODIFY RECOVERY RESTART(CURRENT)
MODIFY STATISTICS RESTART(CURRENT)
OPTIONS Restarts from the beginning
QUIESCE RESTART(CURRENT)
REBUILD INDEX RESTART(PHASE)
RECOVER RESTART(CURRENT)

REORG INDEX

RESTART(CURRENT) or RESTART(PHASE)'

REORG TABLESPACE

RESTART(CURRENT) or RESTART(PHASE)'

REPAIR No restart

REPORT RESTART(CURRENT)
RESTORE SYSTEM RESTART(CURRENT)
RUNSTATS RESTART(CURRENT)
STOSPACE RESTART(CURRENT)
TEMPLATE Restarts from the beginning
UNLOAD RESTART(CURRENT)
Note:

1. The RESTART value that DB2 uses for these utilities depends on the situation.
Refer to the restart topic for each utility for a complete explanation.

If you cannot restart a utility job, you might have to terminate it to make the data
available to other applications. To terminate a utility job, issue the DB2 TERM
UTILITY command. Use the command only if you must start the utility from the

beginning.

40 Utility Guide and Reference

Restarting hints

The following guidelines provide additional information about restarting utilities:

* If the data set is not dynamically allocated, ensure that the DD name that is
specified in the restart JCL matches the DD name for the original job. Do not
change DD names on a restart job. If the LOAD utility is restarted with a
different SYSREC data set from the SYSREC data set for the initial invocation,
the data set characteristics (DCB) must be the same as the SYSREC data set
characteristics for the initial invocation. RESTART(PHASE) is recommended.
RESTART(CURRENT) might have unpredictable results because data set
checkpoint information is not used during restart processing.

If the data set is dynamically allocated, the file sequence numbers must match
for the restart and the original run.

In either case, if the data set is not cataloged, any explicit specification of
VOLSERs must match for the restart and the original job. If you copy a work
data set, such as SYSUT1, after an ABENDB37, and the number of volumes
changes, do not specify RESTART(CURRENT). If you do, ABEND 413-1C occurs.
To prevent this abend, start the utility in RESTART(PHASE).

* When restarting a utility with cataloged data sets, do not specify VOLSER. Let
DB2 determine the VOLSER of the data sets from the system catalog.

* Do not change the utility function that is currently stopped and the DB2 objects
on which it is operating. However, you can change other parameters that are
related to the stopped step and to subsequent utility steps.

* Do not specify z/OS automatic step restart.

e If a utility is restarted in the UTILINIT phase, it is re-executed from the
beginning of the phase.

* Run the RUNSTATS utility after the completion of a restarted LOAD, REBUILD
INDEX, or REORG job with the STATISTICS option. When you restart these jobs,
DB2 does not collect inline statistics. The exception is REORG UNLOAD PAUSE;
when restarted after the pause, REORG UNLOAD PAUSE collects statistics.

* Ensure that the required data sets are properly defined.

Recommendation: Allocate the data sets by using TEMPLATE statements that
do not specify the DISP and SPACE parameter values. When these parameters
are not specified, DB2 determines the correct disposition and size of these data
sets.

* When using the DSNUTILS stored procedure, specify NONE or ANY for the
utility-name parameter. These values suppress the dynamic allocation that is
normally performed by DSNUTILS. You can then specify TEMPLATE statements
(in the utstmt parameter) to allocate the necessary data sets.

Restart is not always possible. The restrictions applying to the phases of each
utility are discussed under the description of each utility.

Using the RESTART parameter
You can use the RESTART parameter to override the default RESTART value.

About this task

You do not need to use the RESTART parameter to restart a utility job. When you
resubmit a job that finished abnormally and has not been terminated, DB2
automatically recognizes the utility ID from the SYSUTIL directory table and
restarts the utility job if possible. However, if you want to override the default

Chapter 4. Monitoring and controlling online utilities 41

RESTART value, you can update the original JCL data set by adding the RESTART
parameter. Any RESTART values that you specify always override the default
values. DB2 ignores the RESTART parameter if you are submitting the utility job
for the first time.

Procedure

To add the RESTART parameter, use one of the following methods:
* Use DB2IL
1. Access the DB2 Utilities panel.

2. Complete the panel fields, as documented in [Figure 2 on page 19} except for
field 5.

3. Change field 5 to CURRENT or PHASE, depending on the method of restart that
you want.

4. Press Enter.

¢ Use the DSNU CLIST command. When you invoke the DSNU CLIST command,
change the value of the RESTART parameter by specifying either RESTART,
RESTART (CURRENT), or RESTART(PHASE).

* Create your own JCL. If you create your own JCL, you can specify RESTART
(CURRENT) or RESTART(PHASE) to override the default RESTART value. You
must also check the DISP parameters on the DD statements. For example, for
DD statements that have DISP=NEW and need to be reused, change DISP to
OLD or MOD. If generation data groups (GDGs) are used and any (+1)
generations were cataloged, ensure that the JCL is changed to GDG (+0) for such
data sets.

Automatically generated JCL normally has DISP=MOD. DISP=MOD allows a
data set to be allocated during the first execution and then reused during a
restart.

When restarting a job that involves templates, DB2 automatically changes the
disposition from NEW to MOD. Therefore, you do not need to change template
specifications for restart.

Related tasks:

[“Invoking a DB2 utility by using the DSNU CLIST command in TSO” on page 20|

[‘Using the DB2 Utilities panel in DB2I” on page 17]

Related reference:

[[SYSIBM.SYSUTIL table (DB2 SQL)|

Adding or deleting utility statements

During restart processing, DB2 remembers the relative position of the stopped
utility statement in the input stream. Therefore, you must include all the original
utility statements when restarting any online utility. However, you can add or
delete DIAGNOSE statements.

Modifying utility control statements

When restarting a utility job, do not change any EXEC SQL or OPTIONS utility
control statements that have been executed prior to the stopped utility, if possible.
If you must change these utility control statements, use caution; any changes can
cause the restart processing to fail. For example, if you specify a valid OPTIONS
statement in the initial invocation, and then on restart, specify OPTIONS
PREVIEW, the restart fails.

42 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysutiltable.htm#db2z_sysibmsysutiltable

About this task

Use caution when changing LISTDEF lists prior to a restart. When DB2 restarts list
processing, it uses a saved copy of the list. Modifying the LISTDEEF list that is
referred to by the stopped utility has no effect. Only control statements that follow
the stopped utility are affected.

Do not change the position of any other utilities that have been executed.

Restarting after the output data set is full

You can restart a job at the last commit point after the output data set is full.
About this task

If a utility job terminates with an out-of-space condition on the output data set you
might need to restart the job at the last commit point.

Procedure

To restart the job at the last commit point:

1. Copy the output data set to a temporary data set. Use the same DCB
parameters. Use z/OS utilities that do not reblock the data set during the copy
operation (for example, DFSMSdss ADRDSSU or DFSORT ICEGENER). Avoid
using the IEBGENER or ISPF 3.3 utilities.

2. Delete or rename the output data set. Ensure that you know the current DCB
parameters, and then redefine the data set with additional space. Use the same
VOLSER (if the data set is not cataloged), the same DSNAME, and the same
DCB parameters.

3. Copy the data from the temporary data set into the new, larger output data set.
Use z/0S utilities that do not reblock the data set during the copy operation
(for example, DFSMSdss ADRDSSU or DFSORT ICEGENER).

Restarting with templates

Unlike most other utility control statements, TEMPLATE control statements can be
modified before restarting a utility, and, in some cases, they must be modified in
order to correct a prior failure.

About this task

Use caution when modifying templates. In some cases, modifications can cause
restart processing to fail. For example, if you change the template name of a
temporary work data set that was opened in an earlier phase and closed but is to
be used later, restart processing fails.

TEMPLATE allocation during a restart automatically adjusts data set dispositions
to reallocate the data sets from the prior execution. No modification to the
TEMPLATE DISP is required. If the prior failure was due to space problems on a
data set, the same restart considerations apply as if DD statements were being
used. If the prior failure was due to insufficient space on a volume, you can alter
the TEMPLATE statement. How the TEMPLATE statement needs to be altered
depends on whether the SPACE keyword was specified. If SPACE was specified,
specify a different volume or alter the primary and secondary space quantities. If
SPACE was not specified, specify a different volume or add the PCTPRIME and
NBRSECND keywords. Lower PCTPRIME to decrease the size of the primary

Chapter 4. Monitoring and controlling online utilities 43

allocation, and increase NBRSECND to decrease the size of the secondary
allocation. DB2 takes checkpoints for the values that are used for TEMPLATE DSN
variables, and the old values are reused on restart.

How utilities restart with lists

Lists are defined by the LISTDEF utility. Unlike other utility control statements,
LISTDEF control statements can be modified before restarting a utility. However,
the modification does not affect the currently running utility. The changed list
affects only those utility control statements that follow the stopped utility.

To determine whether the utility that you are restarting is processing a list or the
size of the list that the utility is processing, issue the DISPLAY UTILITY command.
If a list is being used, the size is reported in message DSNU100 or DSNU105 in the
DISPLAY UTILITY output.

When you originally submit a utility control statement that references a list, DB2
expands the contents of the list and saves the list before executing the utility. DB2
uses this saved list to restart the utility at the point of failure. After LISTDEF
repositions in the list at the point of failure, individual utility restart processing is
invoked. This restart behavior varies by utility. After the utility is successfully
restarted, the LISTDEEF list is re-expanded before it is used by subsequent utilities
in the same job step.

Related concepts:

[“Restart of an online utility” on page 39

Related reference:
(Chapter 15, “LISTDEF,” on page 207|

[# [DISPLAY UTILITY (DB2) (DB2 Commands)|
Related information:

[# [DSNU100I (DB2 Messages)|

44 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_displayutility.htm#db2z_cmd_displayutility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu100i.htm#dsnu100i

Chapter 5. BACKUP SYSTEM

The online BACKUP SYSTEM utility invokes z/OS DFSMShsm (Version 1 Release
7 or above) to copy the volumes on which the DB2 data and log information
resides. This function can be done for either a DB2 subsystem or data sharing

group.

You can use BACKUP SYSTEM to copy all data for a single application (for
example, when DB2 is the database server for a resource planning solution). All
data sets that you want to copy must be SMS-managed data sets. You can later run
the RESTORE SYSTEM utility to recover the entire system.

In a data sharing environment, if any failed or abnormally quiesced members exist,
the BACKUP SYSTEM request fails.

The BACKUP SYSTEM utility uses copy pools. A copy pool is a defined set of
storage groups that contain data that DFSMShsm can back up and recover
collectively.

Each DB2 subsystem can have up to two copy pools, one for databases and one for
logs. BACKUP SYSTEM copies the volumes that are associated with these copy
pools at the time of the copy.

With the BACKUP SYSTEM utility, you can manage the dumping of system-level
backups (copy of the database, the log copy pools, or both) to tape. To use this
functionality, you need to have z/OS DFSMShsm V1R8 or above.

To use the DISPLAY UTILITY command for BACKUP SYSTEM on a data sharing
group, issue the command from the member on which the BACKUP SYSTEM
utility is invoked. Otherwise, the current utility information is not displayed.

Output

The output for BACKUP SYSTEM is the copy of the volumes on which the DB2
data and log information resides. The BACKUP SYSTEM history is recorded in the
bootstrap data sets (BSDSs).

In all migration modes, RBA and LRSN values are displayed in 10-byte format.
This 10-byte display is unrelated to migration of the catalog or directory,
conversion of individual objects to EXTENDED format, or BSDS conversion. For
recovery purposes, this 10-byte format is the preferred input format for DB2. When
10-byte RBA or LRSN values are specified as input to DB2, conversion to 6-byte
format is performed internally as needed.

Even before the BSDS is converted to Version 11 format on all data sharing
members or the catalog and directory are migrated, 10-byte LRSN values might be
displayed with non-zero digits in the low order 3 bytes. LRSN values captured
before the BSDS is converted continue to be displayed as they were saved until
they are no longer available for display (for example, deleted by MODIFY
RECOVERY). This behavior is normal and to be expected, given the many ways
LRSN values are generated, stored, and handled in DB2. If these LRSN values are
specified as input to DB2, specify them as shown. If the LRSN value contains

© Copyright IBM Corp. 1983, 2013 45

non-zero digits in the low order 3 bytes, do not remove them. Any conversion that
might be required takes place inside DB2.

Authorization required

To execute this utility, you must use a privilege set that includes SYSCTRL or
SYSADM authority.

Execution phases of BACKUP SYSTEM

The BACKUP SYSTEM utility operates in these phases:
Phase Description

UTILINIT
Performs initialization and setup

COPY Copies data

UTILTERM
Performs cleanup

Related concepts:

[[Point-in-time recovery with system-level backups (DB2 Administration Guide)|

Related reference:
(Chapter 28, “RESTORE SYSTEM,” on page 711|
Related information:

(& [Defining Copy Pools (DFSMSdfp Storage Administration)|

Syntax and options of the BACKUP SYSTEM control statement

The BACKUP SYSTEM utility control statement, with its multiple options, defines
the function that the utility job performs.

Use the ISPF/PDF edit function to create a control statement and to save it in a
sequential or partitioned data set. When you create the JCL for running the job, use
the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

When you specify BACKUP SYSTEM, you can specify only the following
statements in the same step:

* DIAGNOSE

* OPTIONS PREVIEW

* OPTIONS OFF

* OPTIONS KEY

* OPTIONS EVENT WARNING

In addition, BACKUP SYSTEM must be the last statement in SYSIN.

46 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_recovertotimeusingbackupsystem.htm#db2z_recovertotimeusingbackupsystem
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2s2a1/10.0?ACTION=MATCHES&REQUEST=defining+copy+pools&TYPE=FUZZY&SHELF=&DT=20120126150025&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

Syntax diagram

FULL

»>—BACKUP SYSTEM >
|—DATA ONLY— i:ESTABLISH FCINCREMENTAL—

END FCINCREMENTAL

Yy
v
A

FORCE
DUMP
L‘ dumpclass-spec ’J |—FORCE—|
DUMPONLY |_ J
TOKEN— (X 'byte-string') |—‘ dumpclass-spec ’J
dumpclass-spec:
»>—DUMPCLASS— (—Y——dc1) >

dc2
dc3
dc4
dch

Option descriptions

FULL
Indicates that you want to copy both the database copy pool and the log copy
pool.

You must ensure that the database copy pool is set up to contain the volumes
for the databases and the associated integrated catalog facility (ICF) catalogs.
You must also ensure that the log copy pool is set up to contain the volumes
for the BSDSs, the active logs, and the associated catalogs.

Use BACKUP SYSTEM FULL to allow for recovery of both data and logs. You

can use the RESTORE SYSTEM utility to recover the data. However, RESTORE
SYSTEM does not restore the logs; the utility only applies the logs. If you want
to restore the logs, you must use another method to restore them.

DATA ONLY
Indicates that you want to copy only the database copy pool. You must ensure
that the database copy pool is set up to contain the volumes for the databases
and the associated ICF catalogs.

ESTABLISH FCINCREMENTAL
Specifies that a persistent incremental FlashCopy relationship is to be
established, if none exists, for source copy volumes in the database copy pool.
Use this keyword once to establish the persistent incremental FlashCopy

Chapter 5. BACKUP SYSTEM 47

relationships. Subsequent invocations of BACKUP SYSTEM (without this
keyword) will automatically process the persistent incremental FlashCopy
relationship.

END FCINCREMENTAL
Specifies that a last incremental FlashCopy be taken and for the persistent
incremental FlashCopy relationship to be withdrawn for all of the volumes in
the database copy pool. Use this keyword only if you do not want further
incremental FlashCopy backups of the database copy pool.

FORCE
Indicates that you want to overwrite the oldest DFSMShsm version of the fast
replication copy of the database copy pool. You can overwrite these copy pools
even if the dump to tape or the copy pool's DESMShsm dump classes have
been initiated, but are only partially completed.

You should only use the FORCE option if it is more important to take a new
system-level backup than to save a previous system-level backup to tape.

DUMP
Indicates that you want to create a fast replication copy of the database copy
pool and the log copy pool on disk and then initiate a dump to tape of the fast
replication copy. The dump to tape begins after DB2 successfully establishes
relationships for the fast replication copy.

The BACKUP SYSTEM utility does not wait for the dump processing to
complete.

This option requires z/OS Version 1.8.

DUMPCLASS
Indicates the DFSMShsm dump class that you want to use for the dump
processing. You can specify up to five dump classes. If you do not specify a
dump class, DB2 uses the default dump classes that are defined for the copy
pools.

DUMPONLY
Indicates that you want to create a dump on tape of an existing fast replication
copy (that is currently residing on the disk) of the database copy pool and the

log copy pool. You can also use this option to resume a dump process that has
failed.

The BACKUP SYSTEM utility does not wait for the dump processing to
complete.

This option requires z/OS Version 1.8.

TOKEN (X'byte-string')
Specifies which fast replication copy of the database copy pool and the log
copy pool to dump to tape.

The token is a 36 digit or 44 digit hexadecimal byte string that uniquely
identifies each system-level backup and is reported in the DSNJU0004 job
output. For a data sharing system, run DSNJU0004 with the MEMBER option
so that the system-level backup information is displayed for all members.
Backups that are taken before the BSDS is converted to 10-byte extended
format are identified with 36-digit tokens. Backups that are taken after the
BSDS is converted to 10-byte extended format are identified with 44-digit
tokens. If specified, the token must be in the correct format for the system-level
backup.

48 Utility Guide and Reference

If you do not specify TOKEN, the most recent fast replication copy of the copy
pools is dumped to tape.

Before running BACKUP SYSTEM

Certain activities might be required before you run the BACKUP SYSTEM utility,
depending on your situation.

To run BACKUP SYSTEM, ensure that the following conditions are true:

The data sets that you want to copy are SMS-managed data sets.
You are running z/OS V1R7 or above.

You are running z/OS V1R8 or above if both of the following conditions are
true:

- You want to use the DUMP, DUMPONLY, or FORCE options.

— You want the RECOVER utility to be able to use system-level backups for
object-level recoveries.

You have disk control units that support ESS FlashCopy.

A copy pool is defined for your database data, and that definition includes the
ICF catalog names. (You can add the ICF catalog names to the database copy
pool definition by altering the copy pools.) If you plan to also copy the logs,
define another copy pool for your logs. Use the DB2 naming convention for both
of these copy pools.

The ICF catalog for the data must be on a separate volume than the ICF catalog
for the logs.

An SMS backup storage group is defined for each storage group in the copy
pools.

Use the following DB2 naming convention when you define the required copy
pools:

DSN$locn-name$cp-type

The variables that are used in this naming convention have the following
meanings:

DSN The unique DB2 product identifier.

$

A delimiter. You must use the dollar sign character ($).

locn-name

The DB2 location name.

cp-type The copy pool type. Use DB for database and LG for log.

Related information:

[[Defining Copy Pools (DFSMSdfp Storage Administration)|

[[Defining Storage Group Attributes (DFSMSdfp Storage Administration)

[[Altering copy pool (DFSMSdfp Storage Administration)|

Data sets that BACKUP SYSTEM uses
The BACKUP SYSTEM utility uses a number of data sets during its operation.

Chapter 5. BACKUP SYSTEM 49

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2s2a1/10.0?ACTION=MATCHES&REQUEST=defining+copy+pools&TYPE=FUZZY&SHELF=&DT=20120126150025&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2s2a1/4.4?ACTION=MATCHES&REQUEST=defining+storage+group+attributes&TYPE=FUZZY&SHELF=&DT=20120126150025&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2s2a1/13.4.6?ACTION=MATCHES&REQUEST=altering+copy+pool&TYPE=FUZZY&SHELF=&DT=20120126150025&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

The following table lists the data sets that the BACKUP SYSTEM utility uses. The
table lists the DD name that is used to identify the data set, a description of the
data set, and an indication of whether it is required. Include statements in your
JCL for each required data set

Table 5. Data sets that BACKUP SYSTEM uses

Data sets Description Required?

SYSIN An input data set that contains the utility Yes
control statement

SYSPRINT An output data set for messages Yes

Concurrency and compatibility for BACKUP SYSTEM

The BACKUP SYSTEM utility has certain concurrency and compatibility
characteristics associated with it.

The BACKUP SYSTEM utility can run concurrently with any other utility; however,
it must wait for the following DB2 events to complete before the copy can begin:

* Extending of data sets

* Writing of 32-KB pages

* Writing close page set control log records (PSCRs)

* Creating data sets (for table spaces, indexes, and so forth)

* Deleting data sets (for dropping tables spaces, indexes, and so forth)

* Renaming data sets (for online reorganizing of table spaces, indexes, and so
forth during the SWITCH phase)

Only one BACKUP SYSTEM job can be running at one time.

BACKUP SYSTEM cannot run concurrently with utilities that use FlashCopy to
create data sets in the database copy pool. For example, suppose that CHECK
INDEX SHRLEVEL CHANGE does a FlashCopy from a source object to a shadow
data set. The disk volume where the shadow data set resides becomes the target in
a FlashCopy relationship. If this disk volume is in the database copy pool,
BACKUP SYSTEM cannot copy it.

For the CHECK INDEX, CHECK DATA, and CHECK LOB utilities, you can use
subsystem parameter UTIL_TEMP_STORCLAS to specify an alternative storage
class that contains volumes that are not in the database copy pool. When
UTIL_TEMP_STORCLAS is specified, the CHECK utilities use the alternative
storage class to create the shadow data sets. Therefore, volumes that are targets in
a FlashCopy relationship after the CHECK utilities run are not in the database

copy pool.

Dumping a fast replication copy to tape

With the BACKUP SYSTEM online utility, you can dump a fast replication copy of
a system-level backup to tape. You can then manage the available disk space,
retain the system-level backups, and provide a means of recovery after a media
failure.

50 Utility Guide and Reference

Procedure

To dump a fast replication copy of a system-level backup to tape that was taken
without the DUMP option, or to re-initiate dump processing that has failed:

1. Identify the token (a 36 digit or 44 digit hexadecimal byte string) in the
DSNJU004 output.

2. Create and run your utility control statement with the DUMPONLY option.
Specify the token if the system-level backup is not the most recent system-level
backup taken.

Restriction: Do not dump system-backups to the same tape that contains
image copies or concurrent copies because the RECOVER utility requires access
to both

3. Run the DFSMShsm command LIST COPYPOOL with the ALLVOLS option to
verify that the dump to tape was successful. The BACKUP SYSTEM utility
issues the DFSMShsm command to initiate a dump, but it does not wait for the
dump to be completed.

Backups of log copy pools

If you take backups of both the log and database copy pool, you can use the
backups to restore the log copy pool.

When you use backups to restore the log copy pool, if the active log data sets are
stripped, or if the log copy pool is for a data sharing environment, you must
specify the data complete LRSN during the conditional restart in the following
scenarios:

* You are cloning a DB2 system by using a system-level backup as the source. In
this case, conditionally restart DB2 with an ENDRBA or ENDLRSN that is equal
to the data complete LRSN of the system-level backup.

* You are performing a system-level point-in-time recovery. In this case,
conditionally restart DB2 with the log truncation point equal to or less than the
data complete LRSN of the system-level backup. Use the data complete LRSN as
the CRESTART ENDRBA, ENDLRSN, or SYSPITR log truncation point.

You can determine the data complete LRSN from the following places:

* Message DSNU16141, which is generated when BACKUP SYSTEM completes
successfully

* The report generated by the print log map utility (DSNJU004)

Chapter 5. BACKUP SYSTEM 51

Related concepts:
[‘Before running RESTORE SYSTEM” on page 714

[[Conditional restart with system-level backups (DB2 Administration Guide)|
Related reference:

(Chapter 38, “DSNJU004 (print log map),” on page 903|

Related information:

[# [DSNU1614I (DB2 Messages)|

Termination or restart of BACKUP SYSTEM

You can terminate BACKUP SYSTEM by using the TERM UTILITY command.
BACKUP SYSTEM checks for the TERM UTILITY command before the call to copy
data. TERM UTILITY deletes the copy that is being created through the BACKUP
SYSTEM utility.

To use TERM UTILITY to terminate BACKUP SYSTEM on a data sharing group,
you must issue the command from the member on which the BACKUP SYSTEM
utility is invoked.

You can restart a BACKUP SYSTEM utility job, but it starts from the beginning
again.

Sample BACKUP SYSTEM control statements

Use sample control statements as models for developing your own BACKUP
SYSTEM control statements.

Example 1: Creating a full backup of a DB2 subsystem or data
sharing group.

The following control statement specifies that the BACKUP SYSTEM utility is to
create a full backup copy of a DB2 subsystem or data sharing group. The full
backup includes copies of both the database copy pool and the log copy pool. In
this control statement, the FULL option is not explicitly specified, because it is the

default.

//STEP1 EXEC DSNUPROC,TIME=1440,
// UTPROC="",

// SYSTEM="DSN'

//SYSIN DD *
BACKUP SYSTEM
/*

Example 2: Creating a data-only backup of a DB2 subsystem or
data sharing group.

The following control statement specifies that BACKUP SYSTEM is to create a
backup copy of only the database copy pool for a DB2 subsystem or data sharing

group.

//STEP1 EXEC DSNUPROC,TIME=1440,
// UTPROC="",

// SYSTEM="DSN'

//SYSIN DD *
BACKUP SYSTEM DATA ONLY
/*

52 Utility Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_conditionalrestartwithslb.htm#db2z_conditionalrestartwithslb
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnu1614i.htm#dsnu1614i

Example 3: Creating a fast replication copy of the database copy
pool and dumping the copy to tape.

The following control statement specifies that BACKUP SYSTEM is to create a fast
replication copy of the database copy pool and initiate a dump to tape of the fast
replication copy.

//SYSOPRB JOB (ACCOUNT), 'NAME',CLASS=K
//UTIL EXEC DSNUPROC,SYSTEM=V91A,UID='TEMB',UTPROC=""
/1*
/1%
//DSNUPROC.SYSUT1 DD DSN=SYSOPR.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384, (20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD =

BACKUP SYSTEM DATA ONLY DUMP
/*

Example 4: Creating a fast replication copy of the database copy
pool, dumping the copy to tape, and allowing oldest copy to be
overwritten.

The following control statement specifies that BACKUP SYSTEM is to create a fast
replication copy of the database copy pool, initiate a dump to tape of the fast
replication copy, and allow the oldest fast replication copy to be overwritten.

//SYSOPRB JOB (ACCOUNT), 'NAME',CLASS=K
//UTIL EXEC DSNUPROC,SYSTEM=V91A,UID='TEMB',UTPROC=""
/1*
/1%
//DSNUPROC.SYSUT1 DD DSN=SYSOPR.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384, (20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD =

BACKUP SYSTEM DATA ONLY DUMP FORCE
/*

Example 5: Dumping an existing fast replication copy to tape.

The following control statement specifies that BACKUP SYSTEM is to dump the
existing fast replication copy X'ESFOF1C1BD1909683AA8A1A600000E6962DE' to
tape, using the DB2STGD2 dump class.

//SYSOPRB JOB (ACCOUNT), 'NAME',CLASS=K
//UTIL EXEC DSNUPROC,SYSTEM=V91A,UID="'TEMB',UTPROC=""
/1%
/1%
//DSNUPROC.SYSUT1 DD DSN=SYSOPR.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384, (20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC. SYSIN DD =

BACKUP SYSTEM DATA ONLY DUMPONLY

TOKEN (X'E5F9F1C1BD1909683AA8A1A600000E6962DE ")
DUMPCLASS (DB2STGD2)

Chapter 5. BACKUP SYSTEM 53

54 Utility Guide and Reference

Chapter 6. CATENFM

The CATENFEM online utility enables a DB2 subsystem to enter DB2 Version 11
enabling-new-function mode and Version 11 new-function mode. It also enables a
DB2 subsystem to return to enabling-new-function mode from new-function mode.

All new Version 11 functions are unavailable when the subsystem is in conversion
mode or enabling-new-function mode.

Output

Output from the CATENFM utility consists of:

* If you specify the CONVERT option, the CATENFM utility converts table spaces
during the enabling-new-function mode process.

* If you specify the ALTER option, some objects in the DB2 catalog are altered or
created.

* For other options, there is no output.

Authorization required

The required authorization for CATENFM is installation SYSADM.
Execution phases of CATENFM

The CATENFM utility operates in these phases:
Phase Description

UTILINIT
Performs initialization and setup

UTILTERM
Performs cleanup

Syntax and options of the CATENFM control statement

The CATENFM utility control statement, with its multiple options, defines the
function that the utility job performs.

The CATENFM utility is invoked by jobs DSNTIJEN, DSNTIJNF, DSNTIJES, and
DSNTIJCS.

Syntax diagram

»>—CATENFM START
COMPLETE
ENFMON
CMON
CONVERT—INPUT—table-space-name—

A\
A

© Copyright IBM Corp. 1983, 2013 55

Option descriptions

START
Invokes the CATENFM utility and indicates the start of enabling-new-function
mode processing. No start processing is done if CATENFM START was run
previously; however, you can run the CATENFM utility as many times as
needed.

COMPLETE
Checks if the DB2 subsystem has completed enabling-new-function mode
processing. If the subsystem has completed this processing, the CATENFM
utility returns 0, and the subsystem enters new-function mode.

ENFMON
Returns DB2 to enabling-new-function mode. If the subsystem is currently in
enabling-new-function mode, no change occurs. If the subsystem has been to
new-function mode, ENFMON returns it to enabling-new-function* mode.
New Version 11 functions are not available in Version 11 enabling-new-function
mode.

CMON
Returns DB2 to conversion mode. If the system is currently in conversion
mode, no change occurs. If the system has been to enabling-new-function
mode or new-function mode, CMON returns it to conversion* mode.
Conversion* mode is similar to conversion mode, but the * indicates that at
one time the system was in enabling-new-function mode or new-function
mode. You can still access objects that were created in enabling-new-function
mode or new-function mode. Data sharing groups cannot have any Version 10
members. You cannot fall back to Version 10 from conversion* mode or coexist
with a Version 10 system.

CONVERT
Starts enabling-new-function mode processing for the table space that is listed
after the INPUT keyword.

INPUT table-space-name
Specifies the table space for which enabling-new-function mode processing
should begin.

table-space-name
The name of the table space for which enabling-new-function mode
processing should begin.

Before converting the catalog

Certain activities might be required before you run the CATMAINT utility,
depending on your situation.

Before you run the CATENFM utility to convert the catalog, take image copies of
all catalog and directory objects and save your entire subsystem.

To convert the catalog, you must run the DSNTIJEN job.

Data sets that CATENFM uses when converting the catalog
The CATENEFM utility uses a number of data sets during its operation.

A CATENFM job allocates all of the data sets that it needs. CATENFM uses data
sets only when the CONVERT option is specified.

56 Utility Guide and Reference

The following table lists the data sets that CATENFM uses during conversion. The
table lists the DD name that is used to identify the data set, a description of the
data set, and an indication of whether it is required.

Table 6. Data sets that CATENFM uses during conversion

Data set Description Required?

SYSIN Input data set that contains the utility Yes
control statement.

SYSPRINT Output data set for messages. Yes

Concurrency and compatibility for CATENFM

The CATENFM utility has certain concurrency and compatibility characteristics
associated with it.

Certain catalog and directory objects are not available during some of the
CATENEFM phases. The objects that are unavailable vary based on the CATENFM
option that you specify. The unavailability of these objects can cause other jobs to
time out with message DSNT3761 or DSNT5011. You cannot run CATENFM when
the DB2 catalog or directory are in UT status.

Converting to new-function mode

The DB2 subsystem leaves conversion mode and enters enabling-new-function
mode when you invoke CATENFM START by running the DSNTIJEN job.

About this task

When you migrate to DB2 Version 11, the DB2 subsystem enters conversion mode.
In conversion mode, the DB2 subsystem can coexist with other data sharing
members that are at either Version 10 or Version 11 conversion mode.

Procedure
To convert to DB2 Version 11 new-function mode:

Invoke CATENFM START by running the DSNTIJEN job.

The subsystem cannot begin enabling-new-function mode processing if any Version
10 members are active in the data sharing group. All members, including members
that are not converting to Version 11 new-function mode, must be running Version
11 when the subsystem enters enabling-new-function mode. Note that when a
member starts enabling-new-function mode, the group enters enabling-new-
function mode.

After enabling-new-function mode completes, the DB2 subsystem can enter Version
11 new-function mode. All new Version 11 functions are unavailable until the DB2
subsystem enters new-function mode.

The DSNTIJEN job runs CATENFM START, which causes the DB2 subsystem to
enter enabling-new-function mode. Run CATENFM START only when you are
ready to begin the enabling-new-function mode conversion process.

Termination or halt of CATENFM
You can terminate CATENFM by using the TERM UTILITY command.

Chapter 6. CATENFM 57

You can stop the enabling-new-function mode processing by specifying CATENFM
HALTENFM or by running job DSNTIJNH. Either action stops the
enabling-new-function mode processing at the completion of the step that is
currently executing.

CATENFM CONVERT cannot be restarted. If you attempt to restart CATENFM
CONVERT, you receive message DSNU191I, which states that the utility cannot be
restarted. You must terminate the job, and rerun job DSNTIJEN from the beginning
to convert the catalog.

58 Utility Guide and Reference

Chapter 7. CATMAINT

The CATMAINT online utility updates the catalog; run this utility during
migration to a new release of DB2 or when IBM Software Support instructs you to
do so.

Output

Output for CATMAINT UPDATE is the updated catalog.
Authorization required

The required authorization for CATMAINT is installation SYSADM.
Execution phases of CATMAINT

The CATMAINT utility operates in these phases:
Phase Description

UTILINIT
Performs initialization

UTILTERM
Performs cleanup

If the catalog contains plans or packages that were bound with
DBPROTOCOL(PRIVATE), the CATMAINT utility executes successfully; however,
plans and packages that were bound with DBPROTOCOL(PRIVATE) and access
remote locations cannot execute in DB2 for z/OS Version 10 and later. To enable
the plans or packages to execute, convert them to use the DRDA® protocol by
rebinding them. Use the DSNTP2DP to determine which packages need to be
rebound.

Syntax and options of the CATMAINT control statement

The CATMAINT utility control statement, with its multiple options, defines the
function that the utility job performs.

Use the ISPF/PDF edit function to create a control statement and to save it in a
sequential or partitioned data set. When you create the JCL for running the job, use
the SYSIN DD statement to specify the name of the data set that contains the
utility control statement.

© Copyright IBM Corp. 1983, 2013 59

Syntax diagram

»»—CATMAINT—UPDATE

».

SCHEMA—Y—SWITCH (schema-name,new-schema-narne)L

B

OWNER—FROM— (—Y—owner-name——)—T0 ROLE

|—UTI LX BASI CjJ
EXTENDED
VCAT—SWITCH(vcat-name ,new-vcat-name)

Option descriptions
UPDATE

Indicates that you want to update the catalog. Run this option only when you
migrate to a new release of DB2 or when IBM Software Support instructs you
to do so.

SCHEMA SWITCH(schema-name,new-schema-name)

Changes the owner, creator, and schema of database objects. The schema is not
changed for views, materialized query tables, SQL scalar function, triggers, and
native SQL procedures. The authorization IDs of the creator or owner for plans
and packages that use the objects are not changed.

schema-name is a string that identifies the existing owner, creator, or schema to
be changed. It will be ignored if it does not identify any owner, creator, or
schema names.

schema-name cannot identify a schema or qualifier of an object on which any of
the following objects depend:

* Triggers

* Views

* SQL functions

* Materialized query tables

* Native SQL procedures

* Expression-based indexes

¢ Column masks

* Row permissions

schema-name cannot be referenced in a check condition in any check constraints.
Ownership of objects will not be changed if the owner is a role.

new-schema-name specifies the new name for the owner, creator, or schema. The
name cannot be a schema that qualifies existing objects.

OWNER FROM(owner-name) TO ROLE

Changes the ownership of objects from a user to a role. A trusted context must
have been created for INSTALL SYSADM before CATMAINT UPDATE
OWNER can run. The authorization IDs of the creator or owner for plans and
packages that use the objects are not changed.

owner-name specifies the current owner of the object. You can specify multiple
owners.

60 Utility Guide and Reference

VCAT SWITCH(vcat-name,new-vcat-name)
Changes the catalog name that is used by storage groups, user indexes, and
table spaces.

vcat-name identifies the integrated catalog facility catalog that is currently used
by user-managed data sets for indexes, table spaces, and storage groups.

new-vcat-name specifies the new integrated catalog facility catalog that is to be
used by user-managed data sets for indexes, table spaces, and storage groups.

To specify any non-alphanumeric characters, enclose each name in single
quotes.

UTILX
Reinitializes the DSNDBO01.SYSUTILX directory table space. Reinitialize this
table space in any of the following situations:

* You cannot successfully run the DISPLAY UTILITY and TERMINATE
UTILITY commands.

* You want to change the page between basic 6-byte format and extended
10-byte format.

After running this statement, DSNDB01.SYSUTILX is reset to an empty state,
and the previous contents are lost. If there were active or stopped utilities at
that time, their tracking information is lost and the subsystem might
experience unpredictable results. It is important that all utilities be terminated
before running UPDATE UTILX.

BASIC
Initializes SYSUTILX and its indexes to basic 6-byte RBA format.

EXTENDED
Initializes SYSUTILX and its indexes to extended 10-byte RBA format.

Because DSNDB01.SYSUTILX contains information about active and
outstanding utilities, the process of reinitializing this table space involves
determining which objects have a utility in progress and resolving any pending
states to make the object available for access.

Related tasks:
[‘Reinitializing DSNDBO01.SYSUTILX” on page 477

Before running CATMAINT

Certain activities might be required before you run the CATMAINT utility,
depending on your situation.

During migration, the work file database is used for CATMAINT sorting. If you
are migrating from a previous version, calculate the size of the work file database.

Data sets that CATMAINT uses

The CATMAINT utility uses a number of data sets during its operation.

Include DD statements for all data sets that your job uses. The following table lists
the data sets that CATMAINT uses. The table lists the DD name that is used to
identify the data set, a description of the data set, and an indication of whether it
is required.

Chapter 7. CATMAINT 61

Table 7. Data sets that CATMAINT uses

Data set Description Required?

SYSIN An input data set that contains the utility Yes
control statement

SYSPRINT An output data set for messages Yes

Concurrency and compatibility for CATMAINT

The CATMAINT utility has certain concurrency and compatibility characteristics
associated with it.

Many catalog and directory indexes are not available while CATMAINT is
running. The unavailability of these indexes can cause other jobs to time out with
message DSNT318I, DSNT3761 or DSNT5011.

Updating the catalog for a new release

When you install or migrate to a new release of DB2, you must update the catalog
for the prior release to the new version.

About this task

The DSNTIJTC job runs CATMAINT UPDATE to update the catalog. DB2 displays
migration status message DSNU777I at several points during CATMAINT
execution.

If an abend occurs during migration processing, message DSNU7761 or DSNU7781
can give you information about the problem.

Renaming the owner, creator, and schema of database objects

You can rename the owner, creator, and schema of database objects.
Procedure
To rename the owner, creator, and schema of database objects:

Run the CATMAINT utility with the SCHEMA SWITCH options. This process
updates every owner, creator or schema name in the catalog and directory that
matches the schema_name value. All grants that were made by or received by the
original owner are changed to the new owner. You can change multiple names by
repeating the SWITCH keyword, but you can not specify the same name more
than once. The names cannot be longer than 8 bytes in EBCDIC representation.
'SYSIBM' is not allowed as a schema_name or new_schema_name. OWNER FROM
and SCHEMA SWITCH are mutually exclusive. You cannot specify both clauses in
the same CATMAINT UPDATE statement.

Changing the ownership of objects from an authorization ID to a role

With the CATMAINT online utility, you can change the ownership of objects from
an authorization ID to a role.

62 Utility Guide and Reference

Procedure
To change the ownership of objects from an authorization ID to a role:

Run CATMAINT OWNER FROM owner_name TO ROLE.

You must be running under a trusted context with a role to run this utility. The
current role will become the owner. Privileges held on the object will be transferred
from the original owner to the role. The original user can be the grantor or grantee,
and the original owner does not have any privileges to the object after the utility
completes. You can change multiple object owners by specifying multiple
owner_name, but you can not specify the same name more than once. If the
owner_name does not own any objects, it is ignored. 'SYSIBM' is not allowed as an
owner_name.

Ownership of roles is changed like other objects. However, if the associated trusted
context role is owned by the owner_name, the ownership of the role will not be
changed because a role cannot be owned by itself.

OWNER FROM and SCHEMA SWITCH are mutually exclusive. You cannot specify
both clauses in the same CATMAINT UPDATE statement.

Changing the catalog nhame used by storage groups or index spaces
and table spaces

You can use the CATMAINT online utility to change the catalog name that is used
by storage groups or by index spaces and table spaces.

Procedure

To change the catalog name that is used by storage groups or index spaces and
table spaces:

Run the CATMAINT VCAT SWITCH utility. The VCAT SWITCH option is similar
to the ALTER TABLESPACE USING VCAT statement for changing the catalog
name. You need to move the data for the affected indexes or table spaces to the
data set on the new catalog in a separate step. You can change multiple names by
repeating the SWITCH keyword, but you cannot specify the same name more than
once. The names cannot be longer than 8 bytes in EBCDIC representation. The
VCAT SWITCH option has no effect on the system indexes and table spaces in
DSNDB06/DSNDBO1 because the catalog name is maintained in the parameter.

Identifying invalidated packages after the owner, creator, or schema
name of an object is renamed

When the schema name of an object is changed, any packages that are dependent
on the object are invalidated. Automatic rebind occurs when the invalidated
package is executed.

About this task
Rebind might not be successful if the object is referenced in the application

explicitly with the original schema name. In this case, you need to modify the
application. The following queries identify the packages that will be invalidated:

GUPI

Chapter 7. CATMAINT 63

SELECT DISTINCT COLLID, NAME

FROM SYSIBM.SYSPACKDEP, SYSIBM.SYSPACKAGE

WHERE BQUALIFIER IN (schema_namel, schema name2...)
ORDER BY COLLID, NAME;

GUPI

Termination or restart of CATMAINT

You can terminate CATMAINT by using the TERM UTILITY command, but the
termination might leave some indexes in REBUILD-pending status.

CATMAINT cannot be restarted. If you attempt to restart CATMAINT, you receive
message DSNU191I, which states that the utility cannot be restarted. You must
terminate the job with the TERM UTILITY command, and rerun CATMAINT from
the beginning.

64 Utility Guide and Reference

Chapter 8. CHECK DATA

The CHECK DATA online utility checks table spaces for violations of referential
and table check constraints, and it reports information about violations that it
detects. CHECK DATA checks for consistency between a base table space and the
corresponding LOB or XML table spaces.

CHECK DATA does not check LOB table spaces. The utility does not check
informational referential constraints.

Run CHECK DATA after a conditional restart or a point-in-time recovery on all
table spaces where parent and dependent tables might not be synchronized or
where base tables and auxiliary tables might not be synchronized.

Run CHECK DATA to check the integrity of XML documents and their related
node ID indexes.

Run CHECK DATA to verify data consistency in hash access tables.

Restriction: Do not run CHECK DATA on encrypted data. Because CHECK DATA
does not decrypt the data, the utility might produce unpredictable results.

Output

CHECK DATA SHRLEVEL REFERENCE optionally copies rows and optionally
deletes those rows that violate referential or table check constraints. CHECK DATA
SHRLEVEL REFERENCE copies each row that violates one or more constraints to
an exception table. If a row violates two or more constraints, CHECK DATA
SHRLEVEL REFERENCE copies the row only once. For SHRLEVEL CHANGE,
CHECK DATA generates REPAIR statements that you can run to delete the rows.

If the utility finds any violation of constraints, the table space that is checked is not
put into the CHECK-pending status. You can force the prior behavior, that a table
space is put into CHECK-pending status when violations or constraints are
detected, by specifying CHECK_SETCHKP=Y on the CHECK_SETCHKP system
parameter.

CHECK DATA SHRLEVEL REFERENCE resets CHECK-pending status if it finds
no errors or if all rows that contain violations were copied to exception tables and
deleted.

CHECK DATA SHRLEVEL CHANGE operates on shadow copies of the table space
and generates the corresponding REPAIR statements.

Authorization required

To execute this utility, you must use a privilege set that includes one of the

following authorities:

* STATS privilege for the database

* DBADM, DBCTRL, or DBMAINT authority for the database. If the object on
which the utility operates is in an implicitly created database, DBADM authority
on the implicitly created database or DSNDB04 is required.

* DATAACCESS authority

© Copyright IBM Corp. 1983, 2013 65

* SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute CHECK DATA.
However, you cannot use SYSOPR authority to execute CHECK DATA on any
object except SYSUTILX in database DSNDBO1.

If you are using SHRLEVEL CHANGE, the batch user ID that invokes COPY with
the CONCURRENT option must provide the necessary authority to execute the
DFSMSdss COPY command. DFSMSdss will create a shadow data set with the
authority of the utility batch address space. The submitter should have an RACF
ALTER authority, or its equivalent, for the shadow data set.

If you specify the DELETE option, the privilege set must include the DELETE
privilege on the tables that are being checked. If you specify the FOR EXCEPTION
option, the privilege set must include the INSERT privilege on any exception table
that is used.If you specify the AUXERROR INVALIDATE or the XMLERROR
INVALIDATE option, the privilege set must include the UPDATE privilege on the
base tables that contain LOB columns.

Execution phases of CHECK DATA

Phase Description

UTILINIT
Performs initialization

CHECKXML
Performs XML structure checking for all XML table spaces specified by
INCLUDE XML TABLESPACES.

SCANTAB
Extracts foreign keys; uses an index if the index contains the same columns
or a superset of the columns in the foreign key; otherwise scans the table

SORT Sorts foreign keys if they are not extracted from the foreign key index

CHECKDAT
Looks in primary indexes for foreign key parents, checks XML schema
validations, checks XML structure, and issues messages to report detected
errors

REPORTCK
Copies error rows into exception tables, and delete them from source table
if DELETE YES is specified

UTILTERM
Performs cleanup

Syntax and options of the CHECK DATA control statement

The CHECK DATA utility control statement, with its multiple options, defines the
function that the utility job performs.

You can create a control statement with the ISPF/PDF edit function. After you
create it, save it in a sequential or partitioned data set. When you create the JCL
for running the job, use the SYSIN DD statement to specify the name of the data
set that contains the utility control statement.

66 Utility Guide and Reference

Syntax diagram

»»—CHECK—DATA—Y—table-space-spec B] >
PART—integer

SHRLEVEL—REFERENCE—

| 2 >

ALL |—CLONEJ |—SHRLEVEL—CHANGE—
[

|:me -spec:|

LI NCLUDE—XML—TABLESPACES

(1)
|—SCOPE—PENDING— |—AUXERROR—REPORT
»—drain-spec |_ |_ >
SCOPE AUXONLY AUXERROR—INVALIDATE——
ALL
REFONLY——
XMLSCHEMAONLY—
|—LOBERROR—REPORT— |—XMLERROR—REPORT—
|—LOBERROR—INVALIDATE— |—XMLERROR—INVALIDATE—
—DELETE—NO

Yy
\{

LOG—VYES
—DELETE—VYES |_ —l

|—LOG—NOJ

L_FOR—EXCEPTION—YIN—table-namel—USE—tab le-nameZL

—EXCEPTIONS—0———— |—ERRDDN—SYS ERR—l |—WORKDDN—SYSUT1—,—SYSUT2

\

v

EXCEPTIONS—integer— |—ERRDDN—ddname—| |—WORKDDN——ddnameI—,—ddnameZ

,—SYSUT2
—ddnamel |_ —l

SYSUT1
J_——I—,—ddnamez—

Y
v
A

L SYSPUNCH] |—SORTDEVT—device—typeJ |—SORTNUM—integer‘J
PUNCHDDN ddname

Notes:

1 If you specify AUXERROR and LOBERROR or XMLERROR, the options for the keywords
(REPORT and INVALIDATE) must match.

xml-spec:

Chapter 8. CHECK DATA 67

»»—(—Y——table-space-spec) <
|:xml-column-specJ |—XMLS(:HEMA—|

xml-column-spec:

»»>—TABLE |_ _| table-name—XMLCOLUMN—co lumn-name ><
schema-name
table-space-spec:
»»>—TABLESPACE _| table-space-name ><
I—database-name .

drain-spec:

DRAIN WAIT—integer RETRY—integer RETRY DELAY—integer
[oRAI i 9] [RETRY]

v
v

\4
A

Option descriptions

DATA
Indicates that you want the utility to check referential and table check
constraints. CHECK DATA does not check informational referential constraints.

TABLESPACE database-name.table-space-name
Specifies the table space to which the data belongs. You can specify base table
spaces or, if TABLESPACE is specified as a part of the INCLUDE XML
TABLESPACES option, XML table spaces. TABLESPACE cannot be used to
specify LOB table spaces.

database-name is the name of the database and is optional. The default value is
DSNDBO04.

table-space-name is the name of the table space.

PART integer
Identifies which partition to check for constraint violations.

integer is the number of the partition and must be in the range from 1 to the
number of partitions that are defined for the table space. The maximum is
4096.

68 Utility Guide and Reference

INCLUDE XML TABLESPACES
Indicates that CHECK DATA is to perform consistency checks on the specified
XML table spaces and related node ID indexes.

By default, the utility checks only the XML table spaces and their related node
ID indexes. If an XML type modifier exists for an XML column and xml-spec is
specified, XML documents can also be checked against the stored XML
schemas. Specify XMLSCHEMA on the xml-spec option to enable the check
against stored XML schemas.

The consistency checks enabled by INCLUDE XML TABLESPACE are
performed in addition to the existing checks specified by the SCOPE keyword.

XML indexes that are associated with the XML table spaces that are checked
are not verified. Run the CHECK INDEX utility separately on those indexes.

The following checks are performed:

The XML table space is checked to ensure that all rows of each XML
document are present in the XML table space and that the XML document is
structurally intact.

All entries in the node ID index are checked against the rows in the XML
table space. Each index entry must have a corresponding row in the XML
table space, and vice versa. This functionality is equivalent to running the
CHECK INDEX utility on the node ID index.

All values in the document ID column are checked against the node ID
index. Each document ID value must have matching entries in the node ID
index. Each node ID index value must also have a document ID value.

If XMLSCHEMA is specified, CHECK DATA validates documents that are
stored in that column. When a document is validated, the base table row is
updated with the validated document that is returned when SHRLEVEL
REFERENCE and XMLERROR INVALIDATE or AUXERROR INVALIDATE
are specified.

ALL

Checks all XML table spaces that are related to the base table spaces that
are identified by the table-space-spec. Specifying ALL is equivalent to
explicitly specifying all the XML column identifiers.

xml-spec

Checks only those XML table spaces and related node ID indexes that are
identified by either the XML column of a table or by the explicit table
space name.

Each XML column has a single XML table space that is associated with it.
Therefore, an XML table space can be identified either by the XML column
of the base table or by the explicit table space name.

If an XML column identifier is used, the utility finds the name of the XML
table space in the DB2 catalog or the database directory.

table-space-spec
Identifies an XML table space to check. The XML table space
specification must identify an XML table space that has a
corresponding column in a base table. The base table must reside in
the table space that is identified by the table-space-spec option of the
main CHECK DATA control statement.

xml-column-spec
Identifies an XML table space to check by the XML column of the XML
table space in a base table. An XML column identifier consists of the

Chapter 8. CHECK DATA 69

CLONE

fully qualified table name and the name of the XML column. An XML
column identifier must reference a table in any one of the base table
spaces that are to be checked.

XMLSCHEMA
Specifies that if the XML columns have an XML type modifier, the
CHECK DATA utility checks the XML documents against the stored
XML schema.

Indicates that CHECK DATA is to check the clone table in the specified table
space. Because clone tables cannot have referential constraints, the utility
checks only constraints for inconsistencies between the clone table data and the
corresponding LOB data. If you do not specify CLONE, CHECK DATA
operates against only the base table.

SHRLEVEL
Indicates the type of access that is to be allowed for the index, table space, or
partition that is to be checked during CHECK DATA processing.

REFERENCE

Specifies that applications can read from but cannot write to the index,
table space, or partition that is to be checked.

The CHECK DATA utility can write changes to the table space, index
space, or partition during processing.

Restriction: You cannot run CHECK DATA with the SHRLEVEL
REFERENCE option on a table space that contains an archive-enabled table
or system-period temporal table when one of the following options is also
specified:

* DELETE YES

* LOBERROR INVALIDATE

¢ AUXERROR INVALIDATE

* XMLERROR INVALIDATE

CHANGE

70 Utility Guide and Reference

Specifies that applications can read from and write to the index, table
space, or partition that is to be checked.

The CHECK DATA utility operates on shadow copies only and does not
change the table space, index space, or partition during processing.
REPAIR statements are generated for any changes to be made and are
written to the data set that is indicated in the PUNCHDDN option.
CHECK DATA does not generate REPAIR statements for inconsistencies
that it finds in compressed rows if you specify SHRLEVEL CHANGE and
one of the following options:

* AUXERROR INVALIDATE

* LOBERROR INVALIDATE

* XMLERROR INVALIDATE

If you specify SHRLEVEL CHANGE, DB2 performs the following actions:

* Drains all writers and forces the buffers to disk for the specified object
and all of its indexes

* Invokes DFSMSdss to copy the specified object and all of its indexes to
shadow data sets

* Enables read /write access for the specified object and all of its indexes

* Runs CHECK INDEX on the shadow data sets

By default, DEFSMSdss uses FlashCopy to copy DB2 objects to shadow data
sets, if FlashCopy is available. If DFSMSdss cannot use FlashCopy,
DFSMSdss uses a slower method. As a result, creating copies of objects
might take a long time, and the time during which the data and indexes
have read-only access might increase. You can set the
CHECK_FASTREPLICATION subsystem parameter to REQUIRED to force
the CHECK utility to use only FlashCopy. If FlashCopy is not available, the
CHECK utility fails.

DRAIN_WAIT

Specifies the number of seconds that CHECK DATA is to wait when it drains
the table space or index. The specified time is the aggregate time for objects
that are to be checked. This value overrides the values that are specified by the
IRLMRWT and UTIMOUT subsystem parameters.

integer can be any integer from 0 to 1800. If you do not specify DRAIN_WAIT
or specify a value of 0, CHECK DATA uses the value of the lock timeout
subsystem parameter IRLMRWT.

RETRY integer

Specifies the maximum number of retries that CHECK DATA is to attempt.

integer can be any integer from 0 to 255. If you do not specify RETRY, CHECK
DATA uses the value of the utility multiplier system parameter UTIMOUT.

Specifying RETRY can increase processing costs and result in multiple or
extended periods during which the specified index, table space, or partition is
in read-only access.

RETRY_DELAY integer

Specifies the minimum duration, in seconds, between retries. integer can be any
integer from 1 to 1800.

If you do not specify RETRY_DELAY, CHECK DATA uses the smaller of the
following two values:

 DRAIN_WAIT value x RETRY value

* DRAIN_WAIT value x 10

SCOPE

Limits the scope of the rows in the table space that are to be checked.

PENDING
Indicates that the only rows that are to be checked are those rows that are
in table spaces, partitions, or tables that are in CHECK-pending (CHKP)
status. The referential integrity check, constraint check, and the LOB and
XML checks are all performed.

If you specify SCOPE PENDING for a table space that is not in
CHECK-pending status, CHECK DATA does not check the table space. The
utility does not issue an error message.

Checking XML columns verifies the relationship between the node ID
index and the values in the XML indicator column in the base table space.
If INCLUDE XML TABLESPACES is specified, schema validation is done
for all specified XML table spaces that satisfy both of the following
conditions:

e Are in CHKP status

* Reference a table in any of the base table spaces to be checked

Chapter 8. CHECK DATA 71

AUXONLY
Indicates that only the LOB column and the XML column check are to be
performed for table spaces that have tables with LOB columns or XML
columns. The referential integrity and constraint checks are not performed.

Checking XML columns verifies only the relationship between the node ID
index and the values in the XML indicator column in the base table space.

ALL
Indicates that all dependent tables in the specified table spaces are to be
checked. The referential integrity check, constraints check, LOB check, and
XML checks are performed.

If INCLUDE XML is specified in the TABLESPACES keyword, the
associated XML table space and node ID index are checked for structural
defects and inconsistencies.

REFONLY
Indicates the same behavior as the ALL option, except that the LOB
column check and the XML column check are not performed.

XMLSCHEMAONLY
Indicates that only the XML schema validation is to be performed on the
XML objects that are specified by the INCLUDE XML TABLESPACE
keyword. XML and LOB integrity checks and the referential integrity and
constraints checks are not performed.

AUXERROR
Specifies the action that CHECK DATA is to perform when it finds a LOB or
XML column check error.

REPORT
A LOB or XML column check error is reported with a warning message.
The base table space is set to the auxiliary CHECK-pending (ACHKP)
status.

Note: CHECK DATA sets the base table space to ACHKP status if
SHRLEVEL REFERENCE is specified. If SHRLEVEL CHANGE is specified,
CHECK DATA does not change the status of the base table space.

INVALIDATE
A LOB or XML column check error is reported with a warning message.
The base table LOB or XML column is set to an invalid status. A LOB or
XML column with invalid status that is now correct is set valid. This action
is also reported with a message. The base table space is set to the auxiliary
warning (AUXW) status if any LOB column remains in invalid status.

If SHRLEVEL REFERENCE is specified, CHECK DATA sets the base table
of a LOB or XML column to an invalid status and the base table space to
AUXW status. If SHRLEVEL CHANGE is specified, CHECK DATA does
not change the status of the base table space or a LOB or XML column.

If SHRLEVEL REFERENCE and INCLUDE XML TABLESPACES are
specified, CHECK DATA deletes corrupted XML documents and the
associated node ID index entries. If the node ID index is not consistent
with the content in the XML table, CHECK DATA corrects the node ID
index.

Restrictions: You cannot run CHECK DATA SHRLEVEL REFERENCE with
AUXERROR INVALIDATE on the following objects:

* A table or a history table that is defined with data versioning

72 Utility Guide and Reference

* A table space that contains an archive-enabled table

Before you use CHECK DATA to check a LOB or XML column, take the
following actions:

1. Run CHECK LOB to ensure the validity of the LOB table space.

2. Run REBUILD INDEX or CHECK INDEX on the index on the auxiliary
table to ensure its validity.

3. Run REBUILD INDEX or CHECK INDEX on the NODE ID index on the
XML table space to ensure its validity.

LOBERROR
Specifies the action that CHECK DATA is to perform when it finds a LOB
column check error. Do not specify LOBERROR if AUXERROR is specified. If
both are specified, the keywords must match. LOBERROR is ignored for
SCOPE XMLONLY since LOB checking is not being performed.

REPORT
A LOB column check error is reported with a warning message. The base
table space is set to the auxiliary CHECK-pending (ACHKP) status.

If AUXERROR is not specified, the default value is REPORT.

INVALIDATE
A LOB column check error is reported with a warning message. The base
table LOB column is set to an invalid status. A LOB column with invalid
status that is now correct is set valid. The base table space is set to the
auxiliary warning (AUXW) status if any LOB column remains in invalid
status.

Restrictions: You cannot run CHECK DATA with LOBERROR
INVALIDATE on the following objects:

* A table or a history table that is defined with data versioning

* A table space that contains an archive-enabled table if SHRLEVEL
REFERENCE is also specified

XMLERROR
Specifies the action that CHECK DATA is to perform when it finds an XML
column check error. Do not specify XMLERROR if AUXERROR is specified. If
both are specified, the keywords must match. XMLERROR is ignored for
SCOPE XMLONLY since LOB checking is not being performed.

REPORT
An XML column check error is reported with a warning message. The base
table space is set to the auxiliary CHECK-pending (ACHKP) status.

If AUXERROR is not specified, the default value is REPORT.

Note: CHECK DATA sets the base table space to ACHKP status if
SHRLEVEL REFERENCE is specified. If SHRLEVEL CHANGE is specified,
CHECK DATA does not change the status of the base table space.

INVALIDATE
An XML column check error is reported with a warning message. The base
table XML column is set to an invalid status. An XML column with invalid
status that is now correct is set valid. The base table space is set to the
auxiliary warning (AUXW) status if any LOB column remains in invalid
status.

Chapter 8. CHECK DATA 73

CHECK DATA sets the base table of a LOB or XML column to an invalid
status and the base table space to AUXW only if SHRLEVEL REFERENCE
is specified. If SHRLEVEL CHANGE is specified, CHECK DATA does not
change the status of the base table space or a LOB or XML column.

If SHRLEVEL REFERENCE and INCLUDE XML TABLESPACES are
specified, CHECK DATA deletes corrupted XML documents and the
associated node ID index entries. If the node ID index is not consistent
with the content in the XML table, CHECK DATA corrects the node ID
index.

Restrictions: You cannot run CHECK DATA SHRLEVEL REFERENCE with
XMLERROR INVALIDATE on the following objects:

* A table or a history table that is defined with data versioning

* A table space that contains an archive-enabled table

FOR EXCEPTION

Indicates that any row that is in violation of referential or table check
constraints is to be copied to an exception table. Although this keyword does
not apply to the checking of LOB or XML columns, rows with LOB or XML
columns are moved to the exception tables. If you specify AUXONLY for LOB
and XML checking only, the FOR EXCEPTION option is ignored.

If any row violates more than one constraint, that row is included only once in
the exception table. CHECK DATA includes checking for XML schema
violations and XML structure checking.

This option is ignored when SHRLEVEL CHANGE is specified.

If you run CHECK DATA on a base table with XML columns, the
EXCEPTIONS keyword has an effect only if the INCLUDE XML
TABLESPACES option is also specified.

IN table-namel
Specifies the table (in the table space that is specified on the TABLESPACE
keyword) from which rows are to be copied.

table-namel is the name of the table.

USE table-name2
Specifies the exception table into which error rows are to be copied.

table-name? is the name of the exception table and must be a base table; it
cannot be a view, synonym, or alias.

For both table-namel and table-name2, enclose the table name in quotation
marks if the name contains a blank or a special character. (A special character is
any character other than a letter or a digit.)

DELETE
Indicates whether rows that are in violation of referential or table check
constraints are to be deleted from the table space.

NO Indicates that error rows are to remain in the table space. Primary errors in
dependent tables are copied to exception tables.

If DELETE NO and SHRLEVEL REFERENCE are specified, and constraint
violations are detected, CHECK DATA places the table space in the
CHECK-pending status.

74 Utility Guide and Reference

LOG

YES

Indicates that error rows are to be deleted from the table space.

You can specify DELETE YES only if you specify the FOR EXCEPTION
clause. When you specify FOR EXCEPTION, deleted rows from both
dependent and descendant tables are placed into exception tables.

If you specity SHRLEVEL REFERENCE, error rows are deleted from the
table space. If you specify SHRLEVEL CHANGE, CHECK DATA generates
REPAIR LOCATE DELETE statements that you can run to delete the rows.
These statements are written to the PUNCHDDN data set.

Important: Check any generated REPAIR statements after you run CHECK
DATA SHRLEVEL CHANGE on tables that have data versioning activated
or on history tables. Historic information could be deleted.

If you delete rows from a table space that is not logged, the table space is
placed in informational COPY-pending (ICOPY) status.

Restrictions: You cannot run CHECK DATA with DELETE YES on the
following objects:

* A table or a history table that is defined with data versioning

* A table space that contains an archive-enabled table if SHRLEVEL
REFERENCE is also specified

Specifies the logging action that is to be taken when records are deleted.

YES

NO

Logs all records that are deleted during the REPORTCK PHASE.
If the table space has the NOT LOGGED attribute, LOG YES is ignored.

Does not log any records that are deleted during the REPORTCK phase. If
any rows are deleted, CHECK DATA places the table space in
COPY-pending status and any indexes with the COPY YES attribute in
informational COPY-pending status. If rows are deleted from a table space
that is not logged, the table space is marked informational COPY-pending.

Attention: Use the LOG NO option with caution because its use limits
your ability to recover data by using the log. For example, suppose that
you issue a CHECK DATA DELETE YES LOG NO statement at particular
log RBA. You can recover data that exists on the log before that point in
time or after the point on the log at which the utility execution completes.

EXCEPTIONS integer

Specifies the maximum number of exceptions, which are reported by messages
only. CHECK DATA terminates in the CHECKDATA phase when it reaches the
specified number of exceptions; if termination occurs, the error rows are not
written to the EXCEPTION table.

Only records that contain primary referential integrity errors or table check
constraint violations are applied toward the exception limit. The number of
records that contain secondary errors is not limited.

integer is the maximum number of exceptions. The default value is 0, which
indicates no limit on the number of exceptions.

Chapter 8. CHECK DATA 75

This keyword does not apply to LOB table spaces or base table spaces that
contain XML columns.

ERRDDN ddname
Specifies a DD statement for an error processing data set.

ddname is either a DD name or a TEMPLATE name specification from a
previous TEMPLATE control statement. If utility processing detects that the
specified name is both a DD name in the current job step and a TEMPLATE
name, the utility uses the DD name. The default value isSYSERR.

WORKDDN (ddnamel ,ddname?)
Specifies the DD statements for the temporary work file for sort input and the
temporary work file for sort output. A temporary work file for sort input and
output is required.

You can use the WORKDDN keyword to specify either a DD name or a
TEMPLATE name specification from a previous TEMPLATE control statement.
If utility processing detects that the specified name is both a DD name in the
current job step and a TEMPLATE name, WORKDDN uses the DD name.

ddnamel is the DD name of the temporary work file for sort input. The default
is SYSUT1.

ddname? is the DD name of the temporary work file for sort output. The
default is SORTOUT.

PUNCHDDN ddname
Specifies the DD statement for a data set that is to receive the REPAIR utility
control statements that CHECK DATA SHRLEVEL CHANGE generates.

ddname is the DD name.
The default value is SYSPUNCH.

The PUNCHDDN keyword specifies either a DD name or a TEMPLATE name
specification from a previous TEMPLATE control statement. If utility
processing detects that the specified name is both a name in the current job
step and a TEMPLATE name, the utility uses the DD name.

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically
allocated by a sort program. You can specify any disk device type that is
acceptable to the DYNALLOC parameter of the SORT or OPTION control
statement for the sort program.

Do not use a TEMPLATE specification to dynamically allocate sort work data
sets. The presence of the SORTDEVT keyword controls dynamic allocation of
these data sets.

device-type is the device type. If you omit SORTDEVT and a sort is required,
you must provide the DD statements that the sort program requires for the
temporary data sets.

SORTNUM integer
Specifies the number of temporary data sets that are to be dynamically
allocated by the sort program.

integer is the number of temporary data sets that can range from 2 to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and
omit SORTNUM, no value is passed to the sort program; the sort program uses
its own default.

76 Utility Guide and Reference

You need at least two sort work data sets for each sort. The SORTNUM value
applies to each sort invocation in the utility.

Important: The SORTNUM keyword is not considered if subsystem parameter
UTSORTAL is set to YES and IGNSORTN is set to YES.

Related concepts:

“Subsystem parameters for refining DESMSdss COPY operation with utilities” on|

page 32]

Related reference:
(Chapter 31, “TEMPLATE,” on page 775|

Before running CHECK DATA

Certain activities might be required before you run the CHECK DATA utility,
depending on your situation.

For a table with no LOB columns

Before running CHECK DATA, you should run CHECK INDEX on primary key
indexes and foreign key indexes to ensure that the indexes that CHECK DATA
uses are valid. This action is especially important before using CHECK DATA with
the DELETE YES or PART options.

For a table with LOB columns

If you plan to run CHECK DATA on a base table space that contains at least one
LOB column, complete the following steps prior to running CHECK DATA:

1. Run CHECK LOB on the LOB table space.

2. Run CHECK INDEX on the index on the auxiliary table to ensure the validity
of the LOB table space and the index on the auxiliary table.

3. Run CHECK INDEX on the indexes on the base table space.
The relationship between a base table with a LOB column and the LOB table space

is shown in the following figure. The LOB column in the base table points to the
auxiliary index on the LOB table space, as illustrated in the figure.

Chapter 8. CHECK DATA 77

Auxiliary

Index (1) index (A1)
A A
A 4 A 4
ci c2 c3
LOB
Row ID LOB table space
column (L1)

Figure 8. Relationship between a base table with a LOB column and the LOB table space

If the LOB table space is in either the CHECK-pending or RECOVER-pending
status, or if the index on the auxiliary table is in REBUILD-pending status, CHECK
DATA issues an error message and fails.

Complete all LOB column definitions. You must complete all LOB column
definitions for a base table before running CHECK DATA. A LOB column
definition is not complete until the LOB table space, auxiliary table, and index on
the auxiliary table have been created. If any LOB column definition is not
complete, CHECK DATA fails and issues error message DSNUO075E.

For an XML table space

Before running CHECK DATA, run CHECK INDEX on the node ID index of each
XML column. If you need to determine the XML objects, query the SYSXMLRELS
catalog table.

Data sets that CHECK DATA uses

The CHECK DATA utility uses a number of data sets during its operation.

The following table lists the data sets that CHECK DATA uses. The table lists the
DD name that is used to identify the data set, a description of the data set, and an
indication of whether it is required. Include statements in your JCL for each
required data set and any optional data sets that you want to use.

Table 8. Data sets that CHECK DATA uses

Data set Description Required?

SYSIN An input data set that contains the utility Yes
control statement.

SYSPRINT An output data set for messages. Yes

Work data sets Two temporary data sets for sort input and Yes

sort output. Specify the DD names by using
the WORKDDN option of the utility control
statement. The default ddname for sort input
is SYSUT1. The default ddname for sort
output is SORTOUT.

78 Utility Guide and Reference

Table 8. Data sets that CHECK DATA uses (continued)

Data set Description Required?

Error data set An output data set that collects information Yes
about violations that are encountered during
the CHECKDAT phase for referential
constraints or the SCANTAB phase for check
constraints. Specify the DD name by using
the ERRDDN parameter of the utility control
statement. The default ddname is SYSERR.

UTPRINT A data set that contains messages from the Yes
sort program (usually, SYSOUT or
DUMMY).

The following objects are named in the utility control statement and do not require
DD statements in the JCL:

Table space
Object that is to be checked. (If you want to check only one partition of a
table space, use the PART option in the control statement.)

Exception table
Table that stores rows that violate any referential constraints. For each table
in a table space that is checked, specify the name of an exception table in
the utility control statement. Any row that violates a referential constraint
is copied to the exception table.

Sort work data sets cannot span volumes. Smaller volumes require more sort work
data sets to sort the same amount of data; therefore, large volume sizes can reduce
the number of needed sort work data sets. It is recommended that at least 1.2
times the amount of data to be sorted be provided in sort work data sets on disk.

Related reference:

 Ezsod

Related information:

[+ [DESORT Application Programming Guide]

Defining work data sets

Three sequential data sets are required during execution of CHECK DATA. Two
work data sets and one error data set are described by DD statements in the
WORKDDN and ERRDDN options.

Procedure

To define work data sets:
1. Find the approximate size, in bytes, of the WORKDDN data set:

Option Description

If a table space has a LOB column Count a total of 70 bytes for the LOB
column and multiply the sum by the
number of keys and LOB columns that are
checked.

Chapter 8. CHECK DATA 79

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.cnk.doc.ug/cnkhome.htm
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ice1ca61/CONTENTS?DN=SC26-7523-07&DT=20111118120619&SHELF=&CASE=&PATH=/bookmgr/

Option Description

If a table space does not have a LOB Add 18 to the length of the longest foreign
column key.

For nonpadded indexes, the length of the
longest foreign key is the maximum possible
length of the key with all varying-length
columns in the key padded to their
maximum length, plus 2 bytes for each
varying-length column.

2. Create the ERRDDN data set so that it is large enough to accommodate one
error entry (length=60 bytes) per violation that CHECK DATA detects.

Shadow data sets
When you execute the CHECK DATA utility with the SHRLEVEL CHANGE
option, the utility uses shadow data sets.

If a table space, partition, or index resides in DB2-managed data sets and shadow
data sets do not already exist when you execute CHECK DATA, DB2 creates the
shadow data sets. At the end of CHECK DATA processing, the DB2-managed
shadow data sets are deleted.

For user-managed data sets, DFSMSdss can create, or scratch and re-create, the
required shadow data sets as needed. When the CHECK DATA utility completes
the processing of user-managed data sets, the shadow data sets are not
automatically scratched.

If you do not want the shadow data sets to be allocated in the same storage class
as the production data sets, set the UTIL_TEMP_STORCLAS system parameter to
specify the storage class for the shadow data sets.

Shadow data set names
Each shadow data set must have the following name:
catname. DSNDBx.dbname.psname.y000z.Lnnn

In the preceding name, the variables have the following meanings:

variable
meaning

catname
The VSAM catalog name or alias

X CorD

dbname
Database name

psname
Table space name or index name

Y Tor]J
z 1or2

Lnnn Partition identifier. Use one of the following values:
¢ A001 through A999 for partitions 1 through 999

80 Utility Guide and Reference

B000 through B999 for partitions 1000 through 1999
+ C000 through C999 for partitions 2000 through 2999
* D000 through D999 for partitions 3000 through 3999
E000 through E996 for partitions 4000 through 4096

GUPI - T determine the names of existing data sets, execute one of the following
queries against the SYSTABLEPART or SYSINDEXPART catalog tables:
SELECT DBNAME, TSNAME, IPREFIX

FROM SYSIBM.SYSTABLEPART

WHERE DBNAME = 'dbname'
AND TSNAME = 'psname';

SELECT DBNAME, IXNAME, IPREFIX
FROM SYSIBM.SYSINDEXES X, SYSIBM.SYSINDEXPART Y
WHERE X.NAME = Y.IXNAME
AND X.CREATOR = Y.IXCREATOR
AND X.DBNAME = 'dbname'
AND X.INDEXSPACE = 'psname';

GUPI

For a partitioned table space, DB2 returns rows from which you select the row for
the partitions that you want to check.

Defining shadow data sets

For a partitioned table space, DB2 returns rows from which you select the row for
the partitions that you want to check.

Consider the following actions when you preallocate the data sets:

* Allocate the shadow data sets according to the rules for user-managed data sets.

¢ Define the shadow data sets as LINEAR.

* Use SHAREOPTIONS(3,3).

* Define the shadow data sets as EA-enabled if the original table space or index
space is EA-enabled.

 Allocate the shadow data sets on the volumes that are defined in the storage
group for the original table space or index space.

If you specify a secondary space quantity, DB2 does not use it. Instead, DB2 uses
the SECQTY value for the table space or index space.

Recommendation: Use the MODEL option, which causes the new shadow data set
to be created like the original data set. This method is shown in the following
example:
DEFINE CLUSTER +

(NAME (' catname.DSNDBC.dbname.psname.x0001.L001"') +

MODEL (' catname.DSNDBC.dbname.psname.y0001.L001")) +

DATA +

(NAME (' catname.DSNDBD.dbname.psname.x0001.L001") +

MODEL (' catname.DSNDBD.dbname.psname.y0001.L001'))

Creating shadow data sets for indexes

When you preallocate shadow data sets for indexes, create the data sets as follows:

Chapter 8. CHECK DATA 81

* Create shadow data sets for the partition of the table space and the
corresponding partition in each partitioning index and data-partitioned
secondary index.

* Create a shadow data set for logical partitions of nonpartitioned secondary
indexes.

Use the same naming scheme for these index data sets as you use for other data
sets that are associated with the base index, except use J0001 instead of 10001.

Estimating the size of shadow data sets

If you have not changed the value of FREEPAGE or PCTFREE, the amount of
required space for a shadow data set is comparable to the amount of required
space for the original data set.

Concurrency and compatibility for CHECK DATA

The CHECK DATA utility has certain concurrency and compatibility characteristics
associated with it.

DB2 treats individual data and index partitions as distinct target objects. Utilities
that operate on different partitions of the same table space or index space are
compatible.

Claims and drains

The following table shows which claim classes CHECK DATA claims and drains
and any restrictive status that the utility sets on the target object. The legend for
these claim classes is located at the bottom of the table.

Table 9. Claim classes of CHECK DATA operations

CHECK DATA CHECK DATA
CHECK DATA CHECK DATA PART DELETE PART DELETE

Target objects DELETE NO DELETE YES NO YES

Table space or partition DW/UTRO DA/UTUT DW/UTRO DA/UTUT
Partitioning index or DW/UTRO DA/UTUT DW/UTRO DA/UTUT
index partition

Secondary index DW/UTRO DA/UTUT none DR

Logical partition of none none DW/UTRO DA/UTUT
index

Primary index DW/UTRO DW/UTRO DW/UTRO DW/UTRO
RI dependent and none DA/UTUT none DA/UTUT

descendent table spaces
and indexes

RI exception table DA/UTUT DA/UTUT DA/UTUT DA/UTUT
spaces and indexes

(FOR EXCEPTION

only)

82 Utility Guide and Reference

Table 9. Claim classes of CHECK DATA operations (continued)

CHECK DATA CHECK DATA
CHECK DATA CHECK DATA PART DELETE PART DELETE
Target objects DELETE NO DELETE YES NO YES

Legend:

* DA: Drain all claim classes, no concurrent SQL access

¢ DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers
* DW: Drain the write claim class, concurrent access for SQL readers

* UTUT: Utility restrictive state, exclusive control

* UTRO: Utility restrictive state, read-only access allowed

* none: Object not affected by this utility

* RI: Referential Integrity

The following table shows claim classes on a LOB table space and an index on the
auxiliary table.

Table 10. Claim classes of CHECK DATA operations on a LOB table space and index on the
auxiliary table

CHECK DATA DELETE CHECK DATA DELETE

Target objects NO YES

LOB table space DW/UTRO DA/UTUT
Index on the auxiliary table DW/UTRO DA/UTUT
Legend:

* DW: Drain the write claim class, concurrent access for SQL readers
* DA: Drain all claim classes, no concurrent SQL access

¢ UTRO: Utility restrictive state, read-only access allowed

e UTUT: Utility restrictive state, exclusive control

The following table shows claim classes of XML objects.

Table 11. Claim classes of XML objects

CHECK DATA DELETE CHECK DATA DELETE

Target objects NO YES

XML table space DW/UTRO DA/UTUT
document ID and node ID indexes DW/UTRO DA/UTUT
XML index DW/UTRO DA/UTUT
Legend:

* DW: Drain the write claim class, concurrent access for SQL readers
* DA: Drain all claim classes, no concurrent SQL access

* UTRO: Utility restrictive state, read-only access allowed

e UTUT: Utility restrictive state, exclusive control

When you specify CHECK DATA AUXERROR INVALIDATE, a drain-all is
performed on the base table space, and the base table space is set UTUT.

Compatibility

The following utilities are compatible with CHECK DATA and can run
concurrently on the same target object:

* DIAGNOSE

* MERGECOPY

* MODIFY

Chapter 8. CHECK DATA 83

e REPORT
* STOSPACE
* UNLOAD (when CHECK DATA DELETE NO)

SQL operations and other online utilities are incompatible.

To run on DSNDBO01.SYSUTILX, CHECK DATA must be the only utility in the job
step and the only utility that is running in the DB2 subsystem.

The index on the auxiliary table for each LOB column inherits the same
compatibility and concurrency attributes of a primary index.

Exception tables for the CHECK DATA utility

An exception table is a user-created table that duplicates the definition of a
dependent table. The CHECK DATA utility checks the number of columns in the
dependent table. The CHECK DATA utility also copies the deleted rows from the
dependent table to the exception table.

The following table describes the contents of an exception table. This table lists the
columns, a description of the column content, whether or not the column is
required, the data type and length of the column value, and whether or not the
column has the NULL attribute.

Table 12. Contents of exception tables

Data type and

Column Description Required? length NULL attribute
lton Corresponds to columns in the table Yes The same as the The same as the
that is being checked. These corresponding corresponding
columns hold data from table rows columns in the columns in the
that violate referential or table check table that is being table that is being
constraints. checked. checked.
n+1 Identifies the RIDs of the invalid No CHAR(4); Anything
rows of the table that is being CHAR(5)' for
checked. table spaces that
are defined with
LARGE or DSSIZE
options
n+2 Indicates the starting time of the No TIMESTAMP Anything
CHECK DATA utility.
z n+2 Additional columns that the No Anything Anything
CHECK DATA utility does not use.
Note:

1. You can use CHAR(5) for any type of table space, but you must use it for table spaces that are defined with the
LARGE or DSSIZE options.

If you delete rows by using the CHECK DATA utility with SCOPE ALL, you must
create exception tables for all tables that are named in the table spaces and for all
their descendents. All descendents of any row are deleted.

When creating or using exception tables, be aware of the following guidelines:

* The exception tables should not have any unique indexes or referential or table
check constraints that might cause errors when CHECK DATA inserts rows into

them.

84 Utility Guide and Reference

* You can create a new exception table before you run CHECK DATA, or you can

use an existing exception table. The exception table can contain rows from
multiple invocations of CHECK DATA.

* If column n+2 is of type TIMESTAMP, CHECK DATA records the starting time.
Otherwise, it does not use column 7n+2.

* You must have DELETE authorization on the dependent table that is being
checked.

* You must have INSERT authorization on the exception table.
¢ Column names in the exception table can have any name.

* Any change to the structure of the dependent table (such as a dropped column)
is not automatically recorded in the exception table. You must make that change
in the exception table.

Related reference:

[[CREATE TABLE (DB2 SQL)|

Exception processing for tables with auxiliary columns

CHECK DATA writes constraint violations to exception tables. The exception table
for the base table must have a similar auxiliary column and an auxiliary table
space for each auxiliary column.

If an exception is found, DB2 moves the base table row with its auxiliary column
to the exception table. If you specify DELETE YES, DB2 deletes the base table row
and the auxiliary column.

An auxiliary table cannot be an exception table. A LOB column check error is not
included in the exception count. A row with only a LOB column check error does
not participate in exception processing.

Specifying the

scope of CHECK DATA

Running CHECK DATA with SCOPE PENDING is normally sufficient. DB2 records
which data rows must be checked to ensure the referential integrity of the table
space.

About this task

You can find inconsistencies in the XML table space, the node ID index, or in the
relationship between the document ID column and the node ID index by running
the CHECK DATA utility.

Running CHECK DATA with SCOPE ALL or SCOPE AUXONLY and specifying
INCLUDE XML TABLESPACES enables the XML structure checking of the
specified XML table spaces and consistency checking of the XML columns in the
base table and their associated node ID indexes. Specifying XMLSCHEMAONLY
with INCLUDE XML TABLESPACES limits the CHECK DATA scope to only XML
schema validation for the XML columns.

Procedure

To specify the scope of CHECK DATA:

Use one of the following approaches:

Chapter 8. CHECK DATA 85

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable

* If the scope information is in doubt, run the utility with the SCOPE ALL option.
The scope information is recorded in the DB2 catalog. The scope information can
become indoubt whenever you start the target table space with
ACCESS(FORCE), or when the catalog is recovered to a point in time.

* If you want to check only the tables with LOB columns, specify the AUXONLY
option. If you want to check all dependent tables in the specified table spaces
except tables with LOB columns, specify the REFONLY option.

How violations are identified

CHECK DATA issues a message for every row that contains a referential constraint
violation or table check constraint violation.

The violation is identified by:

e The RID of the row

¢ The name of the table that contains the row

e The name of the constraint that is being violated

The following figure shows an example of messages that CHECK DATA issues.

DSNUG501 DSNUGUTC - CHECK DATA TABLESPACE DBJM1203.TLJM1203
TABLESPACE DBJM1203.TPJM1204
FOR EXCEPTION IN TLJM1203.TBJM1203 USE ADMFOO1.EXCPT3
IN TPJM1204.TBJIM1204 USE ADMFOO1.EXCPT4 DELETE YES
DSNU7271 = DSNUKINP - TABLESPACE 'DBJM1203.TLJM1203' IS NOT CHECK PENDING

DSNU7301 DSNUKDST - CHECKING TABLE TPJM1204.TBJM1204
DSNUG421 DSNUGSOR - SORT PHASE STATISTICS -

NUMBER OF RECORDS=4

ELAPSED TIME=00:00:00
DSN07331 DSNUKERK - ROW (RID=X'000000020B') HAS NO PARENT FOR
TPJM1204.TBJM1204 . TABFK
DSN07331 DSNUKERK - ROW (RID=X'0010000201') HAS NO PARENT FOR
TPJM1204.TBJM1204 . TABFK
DSN07331 DSNUKERK - ROW (RID=X'002000020B') HAS NO PARENT FOR
TPJM1204.TBJIM1204.TABFK
DSNO7331 DSNUKERK - ROW (RID=X'0030000201') HAS NO PARENT FOR
TPJM1204.TBJM1204.TABFK
DSNU7391 DSNUKDAT - CHECK TABLE TPJM1204.TBJM1204 COMPLETE, ELAPSED
TIME=00:00:00
DSNU7411 = DSNUKRDY - 4 ROWS DELETED FROM TABLE TPJM1204.TBJM1204
DSNU5681 = DSNUGSRX - INDEX TPJM1204.IPJM1204 IS IN INFORMATIONAL COPY PENDING
DSNU5681 = DSNUGSRX - INDEX TPJM1204.IXJM1204 IS IN INFORMATIONAL COPY PENDING
DSNU7491 DSNUKOO1 - CHECK DATA COMPLETE,ELAPSED TIME=00:00:02
DSNU010T DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=4

Figure 9. Example of messages that CHECK DATA issues

Detection and correction of constraint violations

You can avoid problems by running CHECK DATA with DELETE NO to detect
violations before you attempt to correct the errors.

If required, use DELETE YES after you analyze the output and understand the
errors.

You can automatically delete rows that violate referential or table check constraints

by specifying CHECK DATA with DELETE YES. However, you should be aware of
the following possible problems:

86 Utility Guide and Reference

* The violation might be created by a non-referential integrity error. For example,
the indexes on a table might be inconsistent with the data in a table.

* Deleting a row might cause a cascade of secondary deletes in dependent tables.
The cascade of deletes might be especially inconvenient within referential
integrity cycles.

* The error might be in the parent table.

CHECK DATA uses the primary key index and all indexes that exactly match a

foreign key. Therefore, before running CHECK DATA, ensure that the indexes are
consistent with the data by using the CHECK INDEX utility.

CHECK DATA XML error detection

Run CHECK DATA with the INCLUDE XML TABLESPACES option to verify the
consistency of the XML table space and the node ID index.

The following checks are performed:

* Verify that all rows that comprise an XML document exist in the XML table
space and that all nodes in that XML document are structurally intact.

* Verify that the node ID index is consistent with the content in the XML table
space. No index entries must exist without an associated XML document and
each XML document in the XML table space must have corresponding entries in
the node ID index.

* Verify that the references from the base table space ID column contains only
entries that can be found in the node ID index in the XML table space. Also
verify that the node ID index does not contain any entries for which no
matching value in the document ID column in the base table space can be
found.

Any inconsistencies found are reported as errors. All remaining parts of corrupted
XML documents will be deleted from the XML table space. All the associated node
ID index entries for the affected XML document will be deleted and the XML
column in the base table will be set to an invalid status.

When running with SHRLEVEL CHANGE, CHECK DATA operates on shadow
copies of the table spaces to be checked, corresponding REPAIR statements are
generated. These generated statements must be executed by the REPAIR utility to
perform the mandatory actions which CHECK DATA has identified.

Two REPAIR statements are generated.

* One statement deletes the corrupted XML document and its associated node ID
index entries.

¢ The other REPAIR statement sets the XML column in the base table to an invalid
status.

Correcting XML data after running CHECK DATA
After you run the CHECK DATA utility, you might need to correct XML data.

Procedure
To correct XML data after running CHECK DATA:
Based on the CHECK DATA output, perform one of the following actions:

Chapter 8. CHECK DATA 87

Problem Action

Problem with corrupted XML data REPAIR statements are generated to delete
each corrupted XML document from the
XML table space and its associated node ID
index entry.

Problem with document ID index Run generated REPAIR LOCATE
TABLESPACE control statements.
Problem with node ID index Run generated REPAIR LOCATE

TABLESPACE control statements.

Problem with integrity of XML column in
the base table and the node ID index

Resetting CHECK-pending status

If a table space has a status of CHECK-pending, you can remove the
CHECK-pending status by correcting the error and running a utility job. You can
either rerun the CHECK DATA utility with SHRLEVEL REFERENCE specified or
you can run the REPAIR utility.

Procedure

To remove CHECK-pending status by running the CHECK DATA utility, use the
following approaches:

e Use the DELETE NO option if no tables contain rows that violate referential or
table check constraints. If referential or table check constraint violations are
found, the table space or partition is placed in CHECK-pending status.

* Use the DELETE YES option to remove all rows that violate referential or table
check constraints.

Related reference:
[‘CHECK-pending status” on page 1085

LOB column errors

If you run CHECK DATA on a base table space that contains at least one LOB
column, you might receive an error on the LOB column.

If you specify CHECK DATA AUXERROR REPORT, AUXERROR INVALIDATE,
LOBERROR REPORT, or LOBERROR INVALIDATE and a LOB column check error
is detected, DB2 issues a message that identifies the table, row, column, and type
of error. Any additional actions depend on the option that you specify for the
AUXERROR or LOBERROR parameter:

When you specify the AUXERROR REPORT or LOBERROR REPORT option
DB2 sets the base table space to the auxiliary CHECK-pending (ACHKP)
status. If CHECK DATA encounters only invalid LOB columns and no
other LOB column errors, the base table space is set to the auxiliary
warning (AUXW) status.

When you specify the AUXERROR INVALIDATE or LOBERROR INVALIDATE

option DB2 sets the base table LOB columns that are in error to an invalid status.
DB2 resets the invalid status of LOB columns that have been corrected. If
any invalid LOB columns remain in the base table, DB2 sets the base table
space to auxiliary warning (AUXW) status. You can use SQL to update a

88 Utility Guide and Reference

LOB column that is in the AUXW status; however, any other attempt to
access the column results in a -904 SQL return code.

If you run CHECK DATA AUXERROR REPORT or INVALIDATE on a base table
space that contains at least one LOB column, the following errors might be
reported:

Orphan LOBs

An orphan LOB column is a LOB that is found in the LOB table space but that is
not referenced by the base table space. If an orphan error is the only type of error
reported by CHECK DATA, the base table is considered correct.

An orphan can result from the following situations:

* You recover the base table space to a point in time prior to the insertion of the
base table row.

* You recover the base table space to a point in time prior to the definition of the
LOB column.

* You recover the LOB table space to a point in time prior to the deletion of a base
table row.

* A base record ROWID is incorrect, which results in an orphan LOB column error
message and a missing LOB column error message. The missing LOB column
error message identifies the ROWID, VERSION and row in error. The missing
LOB column is handled depending on the value that you specify for the
AUXERROR or LOBERROR parameter.

Missing LOBs

A missing LOB column is a LOB that is referenced by the base table space but that

is not in the LOB table space. A missing LOB can result from the following

situations:

* You recover the LOB table space to a point in time prior to the first insertion of
the LOB into the base table.

* You recover the LOB table space to a point in time when the LOB column is null
or has a zero length

Out-of-synch LOBs

An out-of-synch LOB error is a LOB that is found in both the base table and the
LOB table space, but the LOB in the LOB table space is at a different level. A LOB
column is also out-of-synch if the base table is null or has a zero length, but the
LOB is found in the LOB table space. An out-of-synch LOB can occur anytime you
recover the LOB table space or the base table space to a prior point in time.

Invalid LOBs

An invalid LOB is an uncorrected LOB column error that is found by a previous
execution of CHECK DATA AUXERROR INVALIDATE.

Chapter 8. CHECK DATA 89

Related reference:

[Appendix C, “Advisory or restrictive states,” on page 1083

Resetting auxiliary CHECK-pending status

A table space with LOB or XML columns can be recovered to a point in time. In
this case, RECOVER TABLESPACE sets the auxiliary CHECK-pending (ACHKP)
status on the table space. You can remove the auxiliary CHECK-pending status if
DB2 does not find any inconsistencies.

About this task

Use one of the following actions to reset auxiliary CHECK-pending status:
Procedure

To reset auxiliary CHECK-pending status:

Take one of the following actions:

* Use the SCOPE(ALL) option to check all dependent tables in the specified table
space. The checks include referential integrity constraints, table check
constraints, and the existence of LOB and XML columns.

* Use the SCOPE(PENDING) option to check table spaces or partitions with
CHKRP status. The checks include referential integrity constraints, table check
constraints, and the existence of LOB and XML columns.

* Use the SCOPE(AUXONLY) option to check for LOB and XML columns.
Results

If you specified the AUXERROR(INVALIDATE), LOBERROR(INVALIDATE) or
XMLERROR(INVALIDATE) option and DB2 finds inconsistencies, it places the
table space in AUXW status.

Related reference:

[Appendix C, “Advisory or restrictive states,” on page 1083]

Termination and restart of CHECK DATA
You can terminate and restart the CHECK DATA utility.

When you terminate CHECK DATA, table spaces remain in the same
CHECK-pending status as they were at the time the utility was terminated. The
CHECKDAT phase places the table space in the CHECK-pending status when
CHECK DATA detects an error; at the end of the phase, CHECK DATA resets the
CHECK-pending status if it detects no errors. The REPORTCK phase resets the
CHECK-pending status if you specify the DELETE YES option.

You can restart a CHECK DATA utility job, but it starts from the beginning again.

90 Utility Guide and Reference

Related concepts:

[‘Restart of an online utility” on page 39
[‘Termination of an online utility with the TERM UTILITY command” on page 36|

Sample CHECK DATA control statements

Use sample control statements as models for developing your own CHECK DATA
control statements.

Example 1: Copying violations into exception tables

The control statement specifies that the CHECK DATA utility is to check for and
delete any rows that violate referential and table check constraints in table spaces
DSN8D11A.DSN8S11D and DSN8D11A.DSN8S11E. CHECK DATA copies any rows
that violate these constraints into the exception tables that are specified in the FOR
EXCEPTION clause. For example, CHECK DATA is to copy the violations in table
DSN8810.DEPT into table DSN8810.EDEPT.

//STEP1 EXEC DSNUPROC,UID="IUIQU1UQ.CHK1"',

// UTPROC="",

// SYSTEM="DSN'

//SYSUT1 DD DSN=IUIQU1UQ.CHK3.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(8000, (200,20),,,ROUND)

//SYSERR DD DSN=IUIQUIUQ.CHK3.SYSERR,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(6000, (20,20),,,ROUND)

//SORTOUT DD DSN=IUIQU1UQ.CHK3.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(6000, (20,20),,,ROUND)

//SYSIN DD *
CHECK DATA TABLESPACE DSN8D11A.DSN8S11D
TABLESPACE DSN8D11A.DSN8S11E

FOR EXCEPTION IN DSN8B10.DEPT USE DSN8B10.EDEPT
IN DSN8B10.EMP USE DSN8B10.EEMP
IN DSN8B10.PROJ USE DSN8B10.EPROJ

IN DSN8B10.PROJACT USE DSN8B10.EPROJACT
IN DSN8B10.EMPPROJACT USE DSN8B10O.EEPA
DELETE YES
/1%

Example 2: Creating an exception table for the project activity
table

You can create an exception table for the project activity table by using the

following SQL statements: ' GUP!

EXEC SQL

CREATE TABLE EPROJACT
LIKE DSN8B10.PROJACT
IN DATABASE DSN8D11A

ENDEXEC

EXEC SQL

ALTER TABLE EPROJACT
ADD RID CHAR(4)

ENDEXEC

EXEC SQL
ALTER TABLE EPROJACT

ADD TIME TIMESTAMP NOT NULL WITH DEFAULT
ENDEXEC

Chapter 8. CHECK DATA 91

GUPl| The first statement requires the SELECT privilege on table
DSN8B10.PROJACT and the privileges that are usually required to create a table.

Table EPROJACT has the same structure as table DSN8B10.PROJACT, but it can
have two extra columns. The columns in EPROJACT are:

e Its first five columns mimic the columns of the project activity table; they have
exactly the same names and descriptions. Although the column names are the
same, they do not need to be. However, the rest of the column attributes for the
initial columns must be same as those of the table that is being checked.

e The next column, which is added by ALTER TABLE, is optional; CHECK DATA
uses it as an identifier. The name “RID” is an arbitrary choice; if the table
already has a column with that name, use a different name. The column
description, CHAR(4), is required.

* The final timestamp column is also optional. If you define the timestamp
column, a row identifier (RID) column must precede this column. You might
define a permanent exception table for each table that is subject to referential or
table check constraints. You can define it once and use it to hold invalid rows
that CHECK DATA detects. The TIME column allows you to identify rows that
were added by the most recent run of the utility.

Eventually, you correct the data in the exception tables, perhaps with an SQL
UPDATE statement, and transfer the corrections to the original tables by using

statements that are similar to those in the following example: el

INSERT INTO DSN8B10.PROJACT
SELECT PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE
FROM EPROJACT
WHERE TIME > CURRENT TIMESTAMP - 1 DAY;

GUPI

Example 3: Running CHECK DATA on a table space with LOBs

Assume that table space DBIQUQO01.TPIQUO1 contains LOB columns. In the

following control statement, the SCOPE ALL option indicates that CHECK DATA is

to check all rows in all dependent tables in table space DBIQUQO01.TPIQUO1 for

the following violations:

* Violations of referential constraints

* Violations of table check constraints

* Inconsistencies between the base table space and the corresponding LOB table
space.

The AUXERROR INVALIDATE option indicates that if the CHECK DATA utility
finds a LOB column error in this table space, it is to perform the following actions:
* Issues a warning message

* Sets the base table LOB column to an invalid status

* Sets the base table to auxiliary warning (AUXW) status

//STEP11 EXEC DSNUPROC,UID='IUIQUIUQ.CHK2',

// UTPROC="",

// SYSTEM="SSTR'

//SYSUT1 DD DSN=IUIQU1UQ.CHK2.STEP5.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE= (4000, (20,20),,,ROUND)

//SORTOUT DD DSN=IUIQU1UQ.CHK2.STEP5.SORTOUT,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000, (20,20),,,ROUND)

//SYSERR DD DSN=IUIQU1UQ.CHK2.SYSERR,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000, (20,20),,,ROUND)

92 Utility Guide and Reference

//SYSIN DD *
CHECK DATA TABLESPACE DBIQUQO1.TPIQUQO1 SCOPE ALL
AUXERROR INVALIDATE
/*

Example 4: Specifying the maximum number of exceptions

The control statement specifies that the CHECK DATA utility is to check all rows
in partition number 254 in table space DBNC0216.TPNC0216. The EXCEPTIONS 1
option indicates that the utility is to terminate when it finds one exception. Any
exceptions are to be reported by messages only.

//CKDATA EXEC DSNUPROC,UID='L450TST3.CHECK',

/] UTPROC="",

/1l SYSTEM="'SSTR"

//SYSERR DD DSN=L450TST3.CHECK.STEP1.SYSERR,DISP=(MOD,DELETE,CATLG),
/] UNIT=SYSDA, SPACE=(2000, (20,20), , ,ROUND)

//SYSUT1 DD DSN=L450TST3.CHECK.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
/] UNIT=SYSDA, SPACE= (4000, (20,20), , ,ROUND)

//SORTOUT DD DSN=L450TST3.CHECK.STEPL.SORTOUT,

/1l DISP=(MOD,DELETE,CATLG) ,UNIT=SYSDA,

/! SPACE=(4000, (20,20), , ,ROUND)

//SYSIN DD *
CHECK DATA TABLESPACE DBNC0216.TPNCO216 PART 254
SCOPE ALL EXCEPTIONS 1
/*

Example 5: Running CHECK DATA on a clone table

The control statement specifies that the CHECK DATA utility is to check the clone
table in the specified table space.

CHECK DATA TABLESPACE DBNIO101.TSNIO10P CLONE SCOPE ALL
ERRDDN SYSERR

Example 6: Running CHECK DATA SHRLEVEL CHANGE

The control statement specifies that the CHECK DATA utility is to specifies that
applications can read from and write to the table space that is to be checked.

CHECK DATA TABLESPACE DBNIO101.TSNIO1OP SHRLEVEL CHANGE
Example 7: Checking several table spaces

To check several table spaces, you can specify more than one table space in a
CHECK DATA control statement. This technique is useful for checking a complete
set of referentially related table spaces. The following example shows a CHECK
DATA control statement that lists more than one table space.
CHECK DATA

TABLESPACE DBJM1203.TLJM1203

TABLESPACE DBJM1203.TPJM1204
FOR EXCEPTION IN TLJM1203.TBJM1203 USE ADMFOO1.EXCPT3
IN TPJM1204.TMBJM1204 USE ADMFOO1.EXCPT4
DELETE YES

Example 8:
The control statement specifies how to include consistency checking of XML
columns in a base table with the associated node ID indexes. Specify

XMLSCHEMAONLY with INCLUDE XML TABLESPACES to limit the CHECK
DATA scope to only XML schema validation for the XML columns.

Chapter 8. CHECK DATA 93

CHECK DATA TABLESPACE DBNIO101.TSNIO1OP INCLUDE XML TABLESPACES
SCOPE XMLSCHEMAONLY AUXONLY

94 Utility Guide and Reference

Chapter 9. CHECK INDEX

The CHECK INDEX online utility tests whether inde