
z/OS Communications Server

IPv6 Network and Application Design

Guide

Version 1 Release 8

SC31-8885-04

���

z/OS Communications Server

IPv6 Network and Application Design

Guide

Version 1 Release 8

SC31-8885-04

���

Note:

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

161.

Fifth Edition (September 2006)

This edition applies to Version 1 Release 8 of z/OS (5694-A01) and Version 1 Release 8 of z/OS.e (5655-G52) and to

all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You may send your comments to the following address.

 International Business Machines Corporation

 Attn: z/OS Communications Server Information Development

 Department AKCA, Building 501

 P.O. Box 12195, 3039 Cornwallis Road

 Research Triangle Park, North Carolina 27709-2195

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada):

1+919-254-4028

 Send the fax to “Attn: z/OS Communications Server Information Development”

Internet e-mail:

comsvrcf@us.ibm.com

World Wide Web:

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to

include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . ix

Tables . xi

About this document . xiii

Who should read this document . xiii

How this document is organized . xiii

How to use this document . xiv

Determining whether a publication is current . xiv

How to contact IBM service . xiv

Conventions and terminology used in this document . xv

Clarification of notes . xv

How to read a syntax diagram . xv

Symbols and punctuation . xvi

Commands . xvi

Parameters . xvi

Syntax examples . xvi

Prerequisite and related information . xix

Required information . xix

Related information . xix

How to send your comments . xxiii

Summary of changes . xxv

Part 1. IPv6 overview . 1

Chapter 1. Introduction . 3

Expanded routing and addressing . 4

Hierarchical addressing and routing infrastructure . 4

Simplified IP header format . 4

Improved support for options . 4

Address autoconfiguration . 5

New protocol for neighbor node interaction . 5

Comparison of IPv6 and IPv4 characteristics . 6

Dual-mode stack support . 7

Chapter 2. IPv6 addressing . 9

Textual representation of IPv6 addresses1 . 9

Textual representation of IPv6 prefixes1 . 10

IPv6 address space . 11

IPv6 addressing model . 11

Scope zones . 11

Categories of IPv6 addresses . 12

Unicast IPv6 addresses . 13

Multicast IPv6 Addresses . 17

Anycast IPv6 Addresses . 19

Typical IPv6 addresses assigned to a node . 19

IPv6 address states . 19

Tentative . 19

Deprecated . 20

Preferred . 20

Unavailable . 20

© Copyright IBM Corp. 2002, 2006 iii

||

Chapter 3. IPv6 protocol . 21

Extension headers . 21

Fragmentation in an IPv6 network . 21

Fragmentation and UDP/RAW . 22

Path MTU discovery . 22

IPv6 routing . 22

Router discovery . 23

ICMPv6 redirects . 23

Dynamic routing protocols . 24

Considerations for route selection . 26

Considerations for multipath routes . 26

How does a VARY TCPIP,,OBEYFILE command affect routes? 26

ICMPv6 . 26

Multicasting . 27

Multicast Listener Discovery (MLD) . 27

Neighbor discovery (ND) . 28

Router advertisements . 28

Redirect processing . 31

Duplicate Address Detection (DAD) . 32

Address resolution . 32

Neighbor unreachability detection . 33

Assigning IP addresses to interfaces . 33

Stateless address autoconfiguration . 33

IP address takeover following an interface failure . 34

How to get addresses for VIPAs . 35

Default address selection . 36

Default destination address selection . 36

Default source address selection . 38

Migration and coexistence . 39

Enabling IPv6 communication between IPv6 islands in an IPv4 environment 39

How to enable end-to-end communication between IPv4 and IPv6 applications 40

Considerations for configuring z/OS for IPv6 . 44

IPv6 stack support . 44

INET considerations . 45

IPv4-only stack . 45

Dual-mode IPv4/IPv6 stack . 46

Common INET considerations . 46

Enabling AF_INET6 support in a Common INET environment 46

Disabling AF_INET6 support in a Common INET environment 46

Supporting a mixture of dual-mode stacks and IPv4-only stacks 47

Configuring a common INET environment . 48

Part 2. IPv6 enablement . 49

Chapter 4. Configuring support for z/OS . 51

Ensure that important features are supported over IPv6 . 51

Assess automation and application impacts due to Netstat and message changes 51

Determine how remote sites connect to the local host . 51

SNA access . 52

Avoid using IP addresses for identifying remote hosts . 52

Considerations when using the BIND parameter on the PORT statement 53

Security considerations . 53

Application programming considerations . 54

Enabling IPv6 support . 54

Configuring z/OS IPv6 support . 55

Resolver processing . 56

Resolver configuration . 56

Resolver communications with the Domain Name System (DNS) 58

User exits . 58

Which applications started with inetd are IPv6 enabled? . 58

iv z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

||

Modifying inetd.conf . 58

How does IPv6 affect SMF records? . 59

How does IPv6 affect the Policy Agent? . 59

How does IPv6 affect SNMP? . 60

Monitoring the TCP/IP network . 60

How does IPv6 affect Netstat? . 60

How does IPv6 affect Ping and Traceroute? . 62

Diagnosing problems . 62

How does IPv6 affect IPCS? . 62

How does IPv6 affect packet and data tracing? . 62

Chapter 5. Configuration guidelines . 63

Connecting to an IPv6 Network . 63

IPv6 address assignment guidelines . 64

Updating DNS definitions . 66

Including static VIPAs in DNS . 66

Defining IPv4-only host names and IPv4/IPv6 host names 66

Using source VIPA . 66

Using OMPROUTE or define static routes to improve network selection 67

Connecting to non-local IPv4 locations . 68

IPv6-only application access to IPv4-only application . 68

Part 3. Application enablement . 69

Chapter 6. API support . 71

UNIX socket APIs . 71

z/OS UNIX Assembler Callable Services . 71

z/OS C sockets . 71

Native TCP/IP socket APIs . 72

Sockets Extended macro API . 72

Sockets Extended Call Instruction API . 72

REXX sockets . 72

CICS sockets . 72

IMS sockets . 72

Pascal API . 72

TCP/IP C/C++ Sockets . 73

Chapter 7. Basic socket API extensions for IPv6 75

Introduction . 75

Design considerations . 75

Protocol families . 75

Address families . 75

Special IP addresses . 76

Name and address resolution functions . 77

Protocol-independent nodename and service name translation 77

Socket address structure to host name and service name 82

Address conversion functions . 83

Address testing macros . 83

Interface identification . 84

Socket options to support IPv6 (IPPROTO_IPV6 level) . 84

Option to control sending of unicast packets . 85

Options to control sending of multicast packets . 85

Options to control receiving of multicast packets . 86

Socket option to control IPv4 and IPv6 communications 87

Socket options for SOL_SOCKET, IPPROTO_TCP and IPPROTO_IP levels 87

Chapter 8. Enabling an application for IPv6 . 89

Changes to enable IPv6 support . 89

Support for unmodified applications . 89

Contents v

Application awareness of whether system is IPv6 enabled 89

Socket address (sockaddr_in) structure changes . 92

Address conversion functions . 92

Resolver API processing . 92

Special IPv6 addresses . 93

Passing ownership of sockets across applications using givesocket and takesocket APIs 93

Using multicast and IPv6 . 94

IP addresses might not be permanent . 94

Including IP addresses in the data stream . 95

Example of an IPv4 TCP server program . 95

Example of the simple TCP server program enabled for IPv6 96

Chapter 9. Advanced socket APIs . 99

Controlling the content of the IPv6 packet header . 99

Socket options and ancillary data to support IPv6 (IPPROTO_IPV6 level) 100

Socket option to support ICMPv6 (IPPROTO_ICMPV6 level) 112

Using ancillary data on sendmsg() and recvmsg() . 113

Interactions between socket options and ancillary data . 114

Understanding hop limit options . 114

Understanding options for setting the source address . 115

Understanding options for specifying the outgoing interface 115

Why use RAW sockets? . 116

RAW protocol values . 116

Application visibility of IP headers . 116

ICMP considerations . 117

Checksumming data . 118

Part 4. Advanced topics . 119

Chapter 10. Advanced concepts and topics 121

Tunneling . 121

Configured tunnels . 122

Automatic tunnels . 123

6to4 addresses . 123

6over4 tunnels . 124

Application migration and coexistence overview . 125

Application migration approaches . 127

Translation mechanisms . 127

Chapter 11. IPv6 support tables . 131

Supported IPv6 standards . 131

z/OS-specific features . 131

Applications not enabled for IPv6 . 134

Part 5. Appendixes . 137

Appendix A. Related protocol specifications (RFCs) 139

Internet drafts . 154

Appendix B. Information APARs and technotes 155

Information APARs for IP documents . 155

Information APARs for SNA documents . 156

Other information APARs . 156

Appendix C. Accessibility . 159

Using assistive technologies . 159

Keyboard navigation of the user interface . 159

z/OS information . 159

vi z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Notices . 161

Trademarks . 169

Bibliography . 171

z/OS Communications Server information . 171

z/OS Communications Server library . 171

Index . 177

Communicating Your Comments to IBM . 181

Contents vii

viii z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Figures

 1. IPv6 address space . 4

 2. Unicast address format . 13

 3. Global unicast address format . 14

 4. Link-local address format . 14

 5. Link-local scope zones . 15

 6. IPv4-mapped IPv6 address . 16

 7. OSA-Express QDIO interface ID format . 16

 8. Multicast address format . 17

 9. Flags in multicast address . 17

10. Communicating between IPv6 islands in an IPv4 world 40

11. Communicating between IPv4 and IPv6 applications . 40

12. IPv6 application on dual-mode stack . 42

13. IPv4-only application on a dual-mode stack . 43

14. Mixing dual-mode and IPv4-only stacks . 48

15. z/OS socket APIs . 71

16. Example of protocol-independent client application . 91

17. IPv4 TCP server program . 96

18. Simple TCP server program enabled for IPv6 . 97

19. Tunneling . 122

20. 6to4 address format . 124

21. 6over4 address format . 125

22. Dual-mode stack IP host . 126

23. Application communication on a dual-mode host . 127

© Copyright IBM Corp. 2002, 2006 ix

x z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Tables

 1. IPv4/IPv6 comparison . 6

 2. Address types . 9

 3. Address type representation . 11

 4. Multicast scope field values . 17

 5. Source address selection . 39

 6. IPv6 support for different policy types . 59

 7. sockaddr format for AF_INET . 76

 8. sockaddr format for AF_INET6 . 76

 9. Special IP addresses . 76

10. Getaddrinfo application capabilities 1 . 79

11. Getaddrinfo application capabilities 2 . 80

12. Address conversion functions . 83

13. Address testing macros . 83

14. Function calls . 84

15. Socket options for getsockopt() and setsockopt() . 85

16. Using socket() to determine IPv6 enablement . 90

17. sockaddr structure changes . 92

18. Address conversion function changes . 92

19. Resolver API changes . 93

20. Special IPv6 address changes . 93

21. givesocket() and takesocket() changes . 93

22. Multicast options . 94

23. Sockets options at the IPPROTO_IPV6 level . 100

24. Ancillary data on sendmsg() (Level = IPPROTO_IPV6) 101

25. Ancillary data on recvmsg() (Level = IPPROTO_IPV6) 101

26. Sockets options at the IPPROTO_ICMPV6 level . 112

27. Macros used to manipulate filter value . 112

28. Supported IPv6 standards . 131

29. Link-layer device support . 132

30. Virtual IP Addressing support . 132

31. Sysplex support . 132

32. IP routing functions . 133

33. Miscellaneous IP/IF-layer functions . 133

34. Transport-layer functions . 133

35. Network management and accounting functions . 134

36. Security functions . 134

37. Applications not enabled for IPv6 . 134

38. IP information APARs for z/OS Communications Server 155

39. SNA information APARs for z/OS Communications Server 156

40. Non-document information APARs . 157

© Copyright IBM Corp. 2002, 2006 xi

||

||

xii z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

About this document

This document contains information relating to the IPv6 protocol and the

implementation of the protocol on z/OS® Communications Server Version 1

Release 8.

This document supports z/OS.e.

Who should read this document

The reader of this document should be familiar with the IPv6 protocol.

Part 1, “IPv6 overview,” on page 1, Part 2, “IPv6 enablement,” on page 49, and

Part 4, “Advanced topics,” on page 119 are intended for programmers and system

administrators who are familiar with TCP/IP, MVS™, and z/OS UNIX®.

Part 3, “Application enablement,” on page 69 is intended for application

programmers.

How this document is organized

This document contains the following parts and chapters:

v Part 1, “IPv6 overview,” on page 1, contains information about the IPv6

protocol. It contains the following chapters:

– Chapter 1, “Introduction,” on page 3 provides an introduction to IPv6 for

z/OS Communications Server Version 1 Release 8.

– Chapter 2, “IPv6 addressing,” on page 9 contains a discussion of the IPv6

addressing model and the different IPv6 address types.

– Chapter 3, “IPv6 protocol,” on page 21 provides a description of the z/OS

Communications Server Version 1 Release 8 implementation of the IPv6

protocol.
v Part 2, “IPv6 enablement,” on page 49, contains information about functions

specific to z/OS Communications Server Version 1 Release 8. It contains the

following chapters:

– Chapter 4, “Configuring support for z/OS,” on page 51 describes the IPv6

function provided in z/OS Communications Server Version 1 Release 8 and

how to enable it.

– Chapter 5, “Configuration guidelines,” on page 63 contains recommendations

and guidance information for implementing the IPv6 functions provided in

z/OS Communications Server Version 1 Release 8.
v Part 3, “Application enablement,” on page 69, contains information needed to

IPv6–enable applications. It contains the following chapters:

– Chapter 6, “API support,” on page 71 describes the various z/OS socket APIs

and the level of IPv6 present for each API.

– Chapter 7, “Basic socket API extensions for IPv6,” on page 75 describes basic

socket API changes that most applications would use.

– Chapter 8, “Enabling an application for IPv6,” on page 89 describes common

issues and considerations involved in enabling existing IPv4 socket

applications for IPv6 communications.
v Part 4, “Advanced topics,” on page 119 contains advanced topics and concepts.

© Copyright IBM Corp. 2002, 2006 xiii

v Part 5, “Appendixes,” on page 137 ″Appendixes″ provides information that you

might find helpful. This document contains the following appendixes:

– Appendix A, “Related protocol specifications (RFCs),” on page 139 lists the

related protocol specifications for TCP/IP.

– Appendix B, “Information APARs and technotes,” on page 155 lists

information APARs for IP and SNA documents.

– Appendix C, “Accessibility,” on page 159 describes accessibility features to

help users with physical disabilities.

– “Notices” on page 161 contains notices and trademarks used in this

document.

– “Bibliography” on page 171 contains descriptions of the documents in the

z/OS Communications Server library.

How to use this document

To use this document, you should be familiar with z/OS TCP/IP Services and the

TCP/IP suite of protocols.

Determining whether a publication is current

As needed, IBM® updates its publications with new and changed information. For

a given publication, updates to the hardcopy and associated BookManager®

softcopy are usually available at the same time. Sometimes, however, the updates

to hardcopy and softcopy are available at different times. The following

information describes how to determine if you are looking at the most current

copy of a publication:

v At the end of a publication’s order number there is a dash followed by two

digits, often referred to as the dash level. A publication with a higher dash level

is more current than one with a lower dash level. For example, in the

publication order number GC28-1747-07, the dash level 07 means that the

publication is more current than previous levels, such as 05 or 04.

v If a hardcopy publication and a softcopy publication have the same dash level, it

is possible that the softcopy publication is more current than the hardcopy

publication. Check the dates shown in the Summary of Changes. The softcopy

publication might have a more recently dated Summary of Changes than the

hardcopy publication.

v To compare softcopy publications, you can check the last two characters of the

publication’s file name (also called the book name). The higher the number, the

more recent the publication. Also, next to the publication titles in the CD-ROM

booklet and the readme files, there is an asterisk (*) that indicates whether a

publication is new or changed.

How to contact IBM service

For immediate assistance, visit this Web site: http://www.software.ibm.com/
network/commserver/support/

 Most problems can be resolved at this Web site, where you can submit questions

and problem reports electronically, as well as access a variety of diagnosis

information.

xiv z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

http://www.software.ibm.com/network/commserver/support/
http://www.software.ibm.com/network/commserver/support/

For telephone assistance in problem diagnosis and resolution (in the United States

or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV).

You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m.

– 5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative

or your authorized IBM supplier.

If you would like to provide feedback on this publication, see “Communicating

Your Comments to IBM” on page 181.

Conventions and terminology used in this document

Commands in this book that can be used in both TSO and z/OS UNIX

environments use the following conventions:

v When describing how to use the command in a TSO environment, the command

is presented in uppercase (for example, NETSTAT).

v When describing how to use the command in a z/OS UNIX environment, the

command is presented in bold lowercase (for example, netstat).

v When referring to the command in a general way in text, the command is

presented with an initial capital letter (for example, Netstat).

Samples used in this book might not be updated for each release. Evaluate a

sample carefully before applying it to your system.

For definitions of the terms and abbreviations used in this document, you can view

the latest IBM terminology at the IBM Terminology website.

Clarification of notes

Information traditionally qualified as Notes is further qualified as follows:

Note Supplemental detail

Tip Offers shortcuts or alternative ways of performing an action; a hint

Guideline

Customary way to perform a procedure

Rule Something you must do; limitations on your actions

Restriction

Indicates certain conditions are not supported; limitations on a product or

facility

Requirement

Dependencies, prerequisites

Result Indicates the outcome

How to read a syntax diagram

This syntax information applies to all commands and statements included in this

document that do not have their own syntax described elsewhere in this

document.

The syntax diagram shows you how to specify a command so that the operating

system can correctly interpret what you type. Read the syntax diagram from left to

right and from top to bottom, following the horizontal line (the main path).

About this document xv

|
|

|
|

|
|

|
|

|
|

http://www.ibm.com/ibm/terminology

Symbols and punctuation

The following symbols are used in syntax diagrams:

Symbol Description

�� Marks the beginning of the command syntax.

� Indicates that the command syntax is continued.

| Marks the beginning and end of a fragment or part of the

command syntax.

�� Marks the end of the command syntax.

You must include all punctuation such as colons, semicolons, commas, quotation

marks, and minus signs that are shown in the syntax diagram.

Commands

Commands that can be used in both TSO and z/OS UNIX environments use the

following conventions in syntax diagrams:

v When describing how to use the command in a TSO environment, the command

is presented in uppercase (for example, NETSTAT).

v When describing how to use the command in a z/OS UNIX environment, the

command is presented in bold lowercase (for example, netstat).

Parameters

The following types of parameters are used in syntax diagrams.

Required

Required parameters are displayed on the main path.

Optional

Optional parameters are displayed below the main path.

Default

Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. For the TSO and MVS console

commands, the keywords are not case sensitive. You can code them in uppercase

or lowercase. If the keyword appears in the syntax diagram in both uppercase and

lowercase, the uppercase portion is the abbreviation for the keyword (for example,

OPERand).

For the z/OS UNIX commands, the keywords must be entered in the case

indicated in the syntax diagram.

Variables are italicized, appear in lowercase letters, and represent names or values

you supply. For example, a data set is a variable.

Syntax examples

In the following example, the USER command is a keyword. The required variable

parameter is user_id, and the optional variable parameter is password. Replace the

variable parameters with your own values.

�� USER user_id

password
 ��

xvi z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

|

|
|

|
|

|
|

Longer than one line

If a diagram is longer than one line, the first line ends with a single arrowhead

and the second line begins with a single arrowhead.

�� The first line of a syntax diagram that is longer than one line �

� The continuation of the subcommands, parameters, or both ��

Required operands

Required operands and values appear on the main path line.

�� REQUIRED_OPERAND ��

You must code required operands and values.

Choose one required item from a stack

If there is more than one mutually exclusive required operand or value to choose

from, they are stacked vertically.

�� REQUIRED_OPERAND_OR_VALUE_1

REQUIRED_OPERAND_OR_VALUE_2
 ��

Optional values

Optional operands and values appear below the main path line.

��

OPERAND
 ��

You can choose not to code optional operands and values.

Choose one optional operand from a stack

If there is more than one mutually exclusive optional operand or value to choose

from, they are stacked vertically below the main path line.

��

OPERAND_OR_VALUE_1

OPERAND_OR_VALUE_2

 ��

Repeating an operand

An arrow returning to the left above an operand or value on the main path line

means that the operand or value can be repeated. The comma means that each

operand or value must be separated from the next by a comma. If no comma

appears in the returning arrow, the operand or value must be separated from the

next by a blank.

��

�

 ,

REPEATABLE_OPERAND

��

About this document xvii

Selecting more than one operand

An arrow returning to the left above a group of operands or values means more

than one can be selected, or a single one can be repeated.

��

�

,

REPEATABLE_OPERAND_OR_VALUE_1

REPEATABLE_OPERAND_OR_VALUE_2

REPEATABLE_OPER_OR_VALUE_1

REPEATABLE_OPER_OR_VALUE_2

 ��

Nonalphanumeric characters

If a diagram shows a character that is not alphanumeric (such as parentheses,

periods, commas, and equal signs), you must code the character as part of the

syntax. In this example, you must code OPERAND=(001,0.001).

�� OPERAND=(001,0.001) ��

Blank spaces in syntax diagrams

If a diagram shows a blank space, you must code the blank space as part of the

syntax. In this example, you must code OPERAND=(001 FIXED).

�� OPERAND=(001 FIXED) ��

Default operands

Default operands and values appear above the main path line. TCP/IP uses the

default if you omit the operand entirely.

��
 DEFAULT

OPERAND

��

Variables

A word in all lowercase italics is a variable. Where you see a variable in the syntax,

you must replace it with one of its allowable names or values, as defined in the

text.

�� variable ��

Syntax fragments

Some diagrams contain syntax fragments, which serve to break up diagrams that

are too long, too complex, or too repetitious. Syntax fragment names are in mixed

case and are shown in the diagram and in the heading of the fragment. The

fragment is placed below the main diagram.

�� Syntax fragment ��

xviii z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Syntax fragment:

 1ST_OPERAND,2ND_OPERAND,3RD_OPERAND

Prerequisite and related information

z/OS Communications Server function is described in the z/OS Communications

Server library. Descriptions of those documents are listed in “z/OS

Communications Server information” on page 171, in the back of this document.

Required information

Before using this product, you should be familiar with TCP/IP, VTAM®, MVS, and

UNIX System Services.

Related information

This section contains subsections on:

v “Softcopy information”

v “Other documents”

v “Redbooks” on page xx

v “Where to find related information on the Internet” on page xxi

v “Using LookAt to look up message explanations” on page xxii

v “Using IBM Health Checker for z/OS” on page xxiii

Softcopy information

Softcopy publications are available in the following collections:

 Titles Order

Number

Description

z/OS V1R7 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes

the libraries for z/OS V1R7, in both BookManager and PDF

formats.

z/OS Software Products

Collection

SK3T-4270 This CD includes, in both BookManager and PDF formats, the

libraries of z/OS software products that run on z/OS but are not

elements and features, as well as the Getting Started with Parallel

Sysplex® bookshelf.

z/OS V1R7 and Software

Products DVD Collection

SK3T-4271 This collection includes the libraries of z/OS (the element and

feature libraries) and the libraries for z/OS software products in

both BookManager and PDF format. This collection combines

SK3T-4269 and SK3T-4270.

z/OS Licensed Product Library SK3T-4307 This CD includes the licensed documents in both BookManager and

PDF format.

System Center Publication IBM

S/390 Redbooks Collection

SK2T-2177 This collection contains over 300 ITSO redbooks that apply to the

S/390® platform and to host networking arranged into subject

bookshelves.

Other documents

For information about z/OS products, refer to z/OS Information Roadmap

(SA22-7500). The Roadmap describes what level of documents are supplied with

each release of z/OS Communications Server, as well as describing each z/OS

publication.

About this document xix

Relevant RFCs are listed in an appendix of the IP documents. Architectural

specifications for the SNA protocol are listed in an appendix of the SNA

documents.

The following table lists documents that might be helpful to readers.

 Title Number

DNS and BIND, Fourth Edition, O’Reilly and Associates, 2001 ISBN 0-596-00158-4

Routing in the Internet , Christian Huitema (Prentice Hall PTR, 1995) ISBN 0-13-132192-7

sendmail, Bryan Costales and Eric Allman, O’Reilly and Associates, 2002 ISBN 1-56592-839-3

SNA Formats GA27-3136

TCP/IP Illustrated, Volume I: The Protocols, W. Richard Stevens, Addison-Wesley

Publishing, 1994

ISBN 0-201-63346-9

TCP/IP Illustrated, Volume II: The Implementation, Gary R. Wright and W. Richard

Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63354-X

TCP/IP Illustrated, Volume III, W. Richard Stevens, Addison-Wesley Publishing, 1995 ISBN 0-201-63495-3

TCP/IP Tutorial and Technical Overview GG24-3376

Understanding LDAP SG24-4986

z/OS Cryptographic Service System Secure Sockets Layer Programming SC24-5901

z/OS Integrated Security Services Firewall Technologies SC24-5922

z/OS Integrated Security Services LDAP Client Programming SC24-5924

z/OS Integrated Security Services LDAP Server Administration and Use SC24-5923

z/OS JES2 Initialization and Tuning Guide SA22-7532

z/OS Problem Management G325-2564

z/OS MVS Diagnosis: Reference GA22-7588

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

z/OS MVS Using the Subsystem Interface SA22-7642

z/OS Program Directory GI10-0670

z/OS UNIX System Services Command Reference SA22-7802

z/OS UNIX System Services Planning GA22-7800

z/OS UNIX System Services Programming: Assembler Callable Services Reference SA22-7803

z/OS UNIX System Services User’s Guide SA22-7801

z/OS XL C/C++ Run-Time Library Reference SA22-7821

System z9 and zSeries OSA-Express Customer’s Guide and Reference SA22-7935

Redbooks

The following Redbooks™ might help you as you implement z/OS

Communications Server.

 Title Number

Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 1: Base

Functions, Connectivity, and Routing

SG24-7169

Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 2: Standard

Applications

SG24-7170

Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 3: High

Availability, Scalability, and Performance

SG24-7171

xx z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

|||

|
|
|

|
|
|

|
|
|

Title Number

Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4: Policy-Based

Network Security

SG24-7172

IBM Communication Controller Migration Guide SG24-6298

IP Network Design Guide SG24-2580

Managing OS/390® TCP/IP with SNMP SG24-5866

Migrating Subarea Networks to an IP Infrastructure SG24-5957

SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements SG24–5631

SNA and TCP/IP Integration SG24-5291

TCP/IP in a Sysplex SG24-5235

TCP/IP Tutorial and Technical Overview GG24-3376

Threadsafe Considerations for CICS SG24-6351

Where to find related information on the Internet

z/OS

 This site provides information about z/OS Communications Server release

availability, migration information, downloads, and links to information

about z/OS technology

 http://www.ibm.com/servers/eserver/zseries/zos/

z/OS Internet Library

 Use this site to view and download z/OS Communications Server

documentation

 http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

IBM Communications Server product

 The primary home page for information about z/OS Communications

Server

 http://www.software.ibm.com/network/commserver/

IBM Communications Server product support

 Use this site to submit and track problems and search the z/OS

Communications Server knowledge base for Technotes, FAQs, white

papers, and other z/OS Communications Server information

 http://www.software.ibm.com/network/commserver/support/

IBM Systems Center publications

 Use this site to view and order Redbooks, Redpapers, and Technotes

 http://www.redbooks.ibm.com/

IBM Systems Center flashes

 Search the Technical Sales Library for Techdocs (including Flashes,

presentations, Technotes, FAQs, white papers, Customer Support Plans,

and Skills Transfer information)

 http://www.ibm.com/support/techdocs/atsmastr.nsf

RFCs

About this document xxi

||

|
|
|

||

||

||

||

||

||

||

||

||
|

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs

Search for and view Request for Comments documents in this section of

the Internet Engineering Task Force Web site, with links to the RFC

repository and the IETF Working Groups Web page

 http://www.ietf.org/rfc.html

Internet drafts

 View Internet-Drafts, which are working documents of the Internet

Engineering Task Force (IETF) and other groups, in this section of the

Internet Engineering Task Force Web site

 http://www.ietf.org/ID.html

Information about Web addresses can also be found in information APAR II11334.

DNS Web sites: For more information about DNS, see the following USENET

news groups and mailing addresses:

USENET news groups

comp.protocols.dns.bind

BIND mailing lists

http://www.isc.org/ml-archives/

BIND Users

v Subscribe by sending mail to bind-users-request@isc.org.

v Submit questions or answers to this forum by sending mail to

bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)

v Subscribe by sending mail to bind9-users-request@isc.org.

v Submit questions or answers to this forum by sending mail to

bind9-users@isc.org.

Note: Any pointers in this publication to Web sites are provided for convenience

only and do not in any manner serve as an endorsement of these Web sites.

 Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/OS elements and features, z/VM®, VSE/ESA™, and Clusters for AIX® and

Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations using LookAt from a TSO/E

command line (for example: TSO/E prompt, ISPF, or z/OS UNIX System

Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from

the z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection

(SK3T-4271) and use it from the resulting Windows graphical user interface

xxii z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html
http://www.isc.org/ml-archives/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

(GUI). The command prompt (also known as the DOS > command line) version

can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

with a handheld device that has wireless access and an Internet browser (for

example: Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or

Opera for Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from:

v A CD-ROM in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T-4271).

v The LookAt Web site (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in

the LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide

checks that take advantage of the IBM Health Checker for z/OS framework. This

book refers to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide. z/OS V1R4, V1R5, and V1R6 users

can obtain the IBM Health Checker for z/OS from the z/OS Downloads page at

http://www.ibm.com/servers/eserver/zseries/zos/downloads/.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

How to send your comments

Your feedback is important in helping to provide the most accurate and

high-quality information. If you have any comments about this document or any

other z/OS Communications Server documentation:

v Go to the z/OS contact page at:

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

There you will find the feedback page where you can enter and submit your

comments.

v Send your comments by e-mail to comsvrcf@us.ibm.com. Be sure to include the

name of the document, the part number of the document, the version of z/OS

Communications Server, and, if applicable, the specific location of the text you

are commenting on (for example, a section number, a page number or a table

number).

About this document xxiii

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html
http://www.ibm.com/servers/eserver/zseries/zos/downloads/
http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

xxiv z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Summary of changes

Summary of changes

for SC31-8885-04

z/OS Version 1 Release 8

 This document contains information previously presented (SC31-8885-03), which

supports z/OS Version 1 Release 7.

The information in this document includes descriptions of support for both IPv4

and IPv6 networking protocols. Unless explicitly noted, descriptions of IP protocol

support concern IPv4. IPv6 support is qualified within the text.

New information

v IPv6 support for IPSec:

– NAT traversal, see Table 36 on page 134

– Release-specific support, see “Extension headers” on page 21

– IP security for IPv6 configuration considerations, see “Multicast Listener

Discovery (MLD)” on page 27 and “Neighbor discovery (ND)” on page 28

– IPSec policies, “How does IPv6 affect the Policy Agent?” on page 59

Changed information

v Remove support for version 1 networking SLA MIB (pagtsnmp subagent):

– Network SLAPM2 subagent comment, see Table 35 on page 134
v IPv6 support for IPSec:

– Security function listings, see Table 36 on page 134

– OSPF routing protocol, “Authentication with the IPv6 OSPF routing protocol”

on page 25

Deleted information

v Remove support for version 1 networking SLA MIB (pagtsnmp subagent):

– Removed pagtsnmp, see Table 37 on page 134

– Removed RFC 2758, see Appendix A, “Related protocol specifications (RFCs),”

on page 139
v AnyNet® function is removed from the z/OS V1R8 Communications Server

product and therefore documentation describing AnyNet support has been

deleted.

v IPv6 Support for IPSec:

– TRMD, see Table 37 on page 134

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

You might notice changes in the style and structure of some content in this

document–for example, headings that use uppercase for the first letter of initial

words only, and procedures that have a different look and format. The changes are

ongoing improvements to the consistency and retrievability of information in our

documents.

© Copyright IBM Corp. 2002, 2006 xxv

Summary of changes

for SC31-8885-03

z/OS Version 1 Release 7

 This document contains information previously presented in SC31-8885-02, which

supports z/OS Version 1 Release 6.

This document refers to Communications Server data sets by their default SMP/E

distribution library name. Your installation might, however, have different names

for these data sets where allowed by SMP/E, your installation personnel, or

administration staff. For instance, this document refers to samples in SEZAINST

library as simply in SEZAINST. Your installation might choose a data set name of

SYS1.SEZAINST, CS390.SEZAINST or other high level qualifiers for the data set

name.

New information

v Enhancements to existing advanced socket APIs for z/OS UNIX Callable

Services and Language Environment® C/C++ to support RFC3542, see

Chapter 9, “Advanced socket APIs,” on page 99.

v IPv6 support for HiperSockets™, see “Connecting to an IPv6 Network” on page

63.

Changed information

v SNMP IPv6 UDP MIB support, see “How does IPv6 affect SNMP?” on page 60.

v Server-specific WLM for sysplex distribution, see “Considerations when using

the BIND parameter on the PORT statement” on page 53.

v Promotion of the use of IPv6 global unicast addresses

Site-local addresses were designed to use private address prefixes that could be

used within a site without the need for a global prefix. Until recently, the full

negative impacts of site-local address in the Internet were not fully understood.

The Internet Engineering Task Force (IETF) has deprecated the special treatment

given to this site-local prefix. Because of this, it is preferable to use global

unicast addresses. This means addresses and prefixes that use the site-local

prefix (fec0::/10) are being replaced with ones that use the global prefix for

documentation (2001:0DB8::/32).

Deleted information

v All OROUTED information.

v The following tables from Chapter 4, “Configuring support for z/OS,” on page

51:

– IPv6 supported features table

– IPv6 supported applications table.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

You might notice changes in the style and structure of some content in this

document–for example, headings that use uppercase for the first letter of initial

words only, and procedures that have a different look and format. The changes are

ongoing improvements to the consistency and retrievability of information in our

documents.

xxvi z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Summary of changes

for SC31-8885-02

z/OS Version 1 Release 6

 This document contains information previously presented in SC31-8885-01, which

supports z/OS Version 1 Release 5.

New information

v IPv6 OSPF support for OMPROUTE , see “Dynamic routing protocols” on page

24

v Sysplex distributor policy performance monitoring, see “How does IPv6 affect

the Policy Agent?” on page 59

v Sysplex enhancements, see Table 31 on page 132

v Select examples are enabled for z/OS library center advanced searches.

Changed information

v SNMP IPv6 MIBs, see “How does IPv6 affect SNMP?” on page 60

v OSPF support added to recommendations, see “Using OMPROUTE or define

static routes to improve network selection” on page 67

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Starting with z/OS V1R4, you may notice changes in the style and structure of

some content in this document–for example, headings that use uppercase for the

first letter of initial words only, and procedures that have a different look and

format. The changes are ongoing improvements to the consistency and

retrievability of information in our documents.

Summary of changes xxvii

xxviii z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Part 1. IPv6 overview

This section contains the following chapters:

Chapter 1, “Introduction,” on page 3 provides an introduction to IPv6 for z/OS

Communications Server.

Chapter 2, “IPv6 addressing,” on page 9 contains a discussion on the IPv6

addressing model and the different IPv6 address types.

Chapter 3, “IPv6 protocol,” on page 21 provides a description of the z/OS

Communications Server implementation of the IPv6 protocol.

© Copyright IBM Corp. 2002, 2006 1

2 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 1. Introduction

Internet Protocol Version 6 (IPv6) is the next generation of the Internet protocol

designed to replace the current version, Internet Protocol Version 4 (IPv4). Most of

today’s internets use IPv4, which is approximately 20 years old and is approaching

the end of its physical limits. The most significant issue surrounding IPv4 is the

growing shortage of IPv4 addresses. In theory, 32 bits allow over 4 billion nodes,

each with a globally unique address. In practice, the interaction between routing

and addressing makes it impossible to exploit more than a small fraction of that

number of nodes. Consequently, there is a growing concern that the continued

growth of the Internet might lead to the exhaustion of IPv4 addresses early in the

21st century.

IPv6 fixes a number of problems in IPv4, such as the limited number of available

IPv4 addresses. IPv6 uses 128-bit addresses, an address space large enough to last

for the foreseeable future. It also adds many improvements to IPv4 in areas such as

routing and network autoconfiguration. IPv6 is expected to gradually replace IPv4,

with the two coexisting for a number of years during a transition period.

IPv6 is an evolutionary step from IPv4. Functions that work well in IPv4 have been

kept in IPv6, and functions that did not work well in IPv4 have been removed.

z/OS Communications Server Version 1 Release 4 was the first release to

incorporate IPv6 features. z/OS Communications Server enables you to do the

following:

v Build an IPv6 network

v Start using IPv6-enabled applications

v Enable existing IPv4 applications to be IPv6 applications

v Access your SNA applications over an IPv6 network

Not all IPv6 features are supported. This document describes the support available

and how to implement it. This chapter discusses some of the major differences

between IPv4 and IPv6 and includes the following sections:

v “Expanded routing and addressing” on page 4

v “Hierarchical addressing and routing infrastructure” on page 4

v “Simplified IP header format” on page 4

v “Improved support for options” on page 4

v “Address autoconfiguration” on page 5

v “New protocol for neighbor node interaction” on page 5

v “Comparison of IPv6 and IPv4 characteristics” on page 6

v “Dual-mode stack support” on page 7

For more information about some of the features not yet supported, refer to Part 4,

“Advanced topics,” on page 119.

© Copyright IBM Corp. 2002, 2006 3

Expanded routing and addressing

IPv6 uses a 128-bit address space, which has no practical limit on global

addressability and provides 3.4 × 1050 unique addresses. This gives enough

addresses so that every person could have a single IPv6 network with many nodes,

and still the address space would be almost completely unused.

The greater availability of IPv6 addresses eliminates the need for private address

spaces, which in turn eliminates one of the needs for network address translators

(NATs) to be used between the private Intranet and the public Internet.

Hierarchical addressing and routing infrastructure

The use of hierarchical address formats is equally important as the expanded

address space. The IPv4 addressing hierarchy includes network, subnet, and host

components in an IPv4 address. With its 128-bit addresses, IPv6 provides globally

unique and hierarchical addressing based on prefixes rather than address classes,

which keeps routing tables small and backbone routing efficient.

The general format is as follows:

The global routing prefix is a value (typically hierarchically structured) assigned to

a site; the subnet ID is an identifier of a link within the site; and the interface ID is

a unique identifier for a network device on a given link (usually automatically

assigned).

Simplified IP header format

The IPv6 header has a fixed size and its format is more simplified than the IPv4

header. Some fields in the IPv4 header were dropped in IPv6 or moved to optional

IPv6 extension headers to reduce the common-case processing cost of packet

handling, as well as keep the bandwidth cost of the IPv6 header as low as possible

despite increasing the size of addresses. While the IPv6 address is four times the

size of the IPv4 address, the total IPv6 header size is only twice as large as the

IPv4 header size.

Improved support for options

Changes in the way IP header options are encoded allows for more efficient

forwarding, less stringent limits on the length of options, and greater flexibility for

introducing new options in the future. Optional IPv6 header information is

conveyed in independent extension headers located after the IPv6 header and

before the transport-layer header in each packet. In contrast to IPv4, most IPv6

extension headers are not examined or processed by intermediate nodes.

n bits m bits 128-(n+m)bits

interface IDglobal routing prefix subnet ID

Figure 1. IPv6 address space

4 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Address autoconfiguration

IPv6 provides for both stateless and stateful autoconfiguration. Stateless

autoconfiguration allows a node to be configured in the absence of any

configuration server. Stateless autoconfiguration also makes it possible for a node

to configure its own globally routable addresses in cooperation with a local IPv6

router, by combining the 48- or 64-bit MAC address of the adapter with network

prefixes that are learned from the neighboring router.

IPv6 allows the use of DHCPv6 for stateful autoconfiguration. DHCPv6 relies on a

configuration server that maintains static tables to determine the addresses that are

assigned to newly connected nodes. z/OS Communications Server does not

support DHCPv6.

Tip: Manual configuration of addresses can be used in environments where

complete local control is required (as with VIPA or additional LOOPBACK

addresses).

New protocol for neighbor node interaction

Neighbor Discovery (ND) corresponds to a combination of the IPv4 protocols ARP,

ICMP Router Discovery, and ICMP Redirect. Nodes (hosts and routers) use ND to

determine the link-layer addresses for neighbors known to reside on attached links

and to quickly purge cached values that become invalid. Hosts also use ND to find

neighboring routers that are able to forward packets on their behalf. ND also

defines a Neighbor Unreachability Detection algorithm. IPv4 does not contain a

generally agreed upon protocol for performing Neighbor Unreachability Detection,

although Dead Gateway Detection does address a subset of the problems that

Neighbor Unreachability Detection solves.

Neighbor Discovery is used to do the following:

v Obtain configuration information including:

Router Discovery

Defines how hosts can automatically locate routers that reside on an

attached link.

Prefix Discovery

Specifies how hosts discover the set of prefixes that are defined as being

on-link (IPv6 address prefixes that reside on the shared link, such as an

ethernet link), as well as those which are to be used when implementing

Stateless Address Autoconfiguration.

Parameter Discovery

Allows a host to learn link parameters, such as the link MTU, and IP

parameters, such as the hop limit to place in outgoing packets.
v Perform address resolution. Address resolution allows a node to determine the

link-layer address of an on-link destination given the destination’s IP address.

v Dynamically learn routes which can be used in next-hop determination. This

specifies the algorithm for mapping the IP destination address into the IP

address of the neighbor to which traffic should be sent. The next-hop can be

either a router or the destination itself. Next-hop determination uses the on-link

prefixes learned as part of Prefix Discovery to determine when the next hop is

the destination itself.

v Determine when a neighbor is no longer reachable using Neighbor

Unreachability Detection.

Chapter 1. Introduction 5

v Process Redirect messages. Routers use Redirect messages to notify a node that a

better next-hop node should be used when forwarding packets to a particular

destination. The new next-hop could be the actual destination, if the destination

is on-link, or a different router, if the destination is off-link.

Comparison of IPv6 and IPv4 characteristics

There are major differences between IPv4 and IPv6. Table 1 lists these differences:

 Table 1. IPv4/IPv6 comparison

IPv4 IPv6

Source and destination addresses are 32 bits

(4 bytes) in length.

Source and destination addresses are 128

bits (16 bytes) in length. For more

information, refer to Chapter 2, “IPv6

addressing,” on page 9.

Uses broadcast addresses to send traffic to

all nodes on a subnet.

There are no IPv6 broadcast addresses.

Instead, multicast scoped addresses are

used. For more information refer to

“Multicast scope” on page 17.

Fragmentation is supported at originating

hosts and intermediate routers.

Fragmentation is not supported at routers. It

is only supported at the originating host. For

more information refer to “Fragmentation in

an IPv6 network” on page 21.

IP header includes a checksum. IP header does not include a checksum.

IP header includes options. All optional data is moved to IPv6 extension

headers. For more information refer to

“Extension headers” on page 21.

IPSec support is optional. IPSec support is required in a full IPv6

implementation.

No identification of payload for QoS

handling by routers is present within the

IPv4 header.

Payload identification for QoS handling by

routers is included in the IPv6 header using

the Flow Label field. For more information

refer to “Option to provide QoS

classification data” on page 111.

ICMP Router Discovery is used to determine

the IPv4 address of the best default gateway

and is optional.

Uses ICMPv6 Router Solicitation and Router

Advertisement to determine the IPv6

address of the best default gateway and is a

required function. For more information,

refer to “Router advertisements” on page 28.

z/OS sends Router Solicitations and

processes Router Advertisements but does

not send Router Advertisements.

Address Resolution Protocol (ARP) uses

broadcast ARP Request frames to resolve an

IPv4 address to a link layer address.

Uses multicast Neighbor Solicitation

messages for address resolution. For more

information refer to “Address resolution” on

page 32.

Internet Group Management Protocol

(IGMP) is used to manage local subnet

group membership.

Uses Multicast Listener Discovery (MLD)

messages to manage local subnet group

membership. For more information refer to

“Multicast Listener Discovery (MLD)” on

page 27.

6 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Table 1. IPv4/IPv6 comparison (continued)

IPv4 IPv6

Addresses must be configured either

manually or through DHCP.

Addresses can be automatically assigned

using stateless address autoconfiguration,

assigned using DHCPv6, or manually

configured. DHCPv6 is not supported in

z/OS Communications Server V1R7.

Uses host address (A) resource records in

the Domain Name System (DNS) to map

host names to IPv4 addresses.

Uses host address (AAAA) resource records

in the Domain Name System (DNS) to map

host names to IPv6 addresses.

Uses pointer (PTR) resource records in the

IN-ADDR.ARPA DNS domain to map IPv4

addresses to host names.

Uses pointer (PTR) resource records in the

IP6.ARPA or IP6.INT DNS domain to map

IPv6 addresses to host names.

For QoS, IPv4 supports both differentiated

and integrated services.

Differentiated and integrated services are

both supported. In addition, IPv6 provides

flow label that can be used for more

granular treatment of packets.

Dual-mode stack support

z/OS Communications Server can be an IPv4-only stack or a dual-mode stack.

Dual-mode stack refers to a single TCP/IP stack supporting both IPv4 and IPv6

protocols at the same time.

Restriction: There is no support for an IPv6-only stack.

The following are several advantages of running in a dual-mode stack

configuration:

v IPv4 and IPv6 applications can coexist on a single dual-mode stack.

v Unmodified applications can continue to send data over an IPv4 network.

v A single IPv6-enabled application can communicate using IPv4 and IPv6.

v IPv4 and IPv6 can coexist in the same devices and networks.

Chapter 1. Introduction 7

8 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 2. IPv6 addressing

This chapter contains the following sections:

v “Textual representation of IPv6 addresses1”

v “Textual representation of IPv6 prefixes1” on page 10

v “Textual representation of IPv6 prefixes1” on page 10

v “IPv6 address space” on page 11

v “Scope zones” on page 11

v “Categories of IPv6 addresses” on page 12

v “Typical IPv6 addresses assigned to a node” on page 19

v “IPv6 address states” on page 19

Textual representation of IPv6 addresses1

IPv4 addresses are represented in dotted-decimal format. The 32-bit address is

divided along 8-bit boundaries. Each set of 8 bits is converted to its decimal

equivalent and separated by periods. In contrast, IPv6 addresses are 128 bits

divided along 16-bit boundaries. Each 16-bit block is converted to a 4-digit

hexadecimal number and separated by colons. The resulting representation is

called colon-hexadecimal.

The following are the three conventional forms for representing IPv6 addresses as

text strings:

v The preferred form is x:x:x:x:x:x:x:x, where the x’s are the hexadecimal values of

the eight 16-bit pieces of the address. For example:

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210

1080:0:0:0:8:800:200C:417A

Guideline: It is not necessary to write the leading zeros in an individual field,

but there must be at least one numeral in every field (except for the case

described in the following bullet).

v As a result of some methods of allocating certain styles of IPv6 addresses,

sometimes addresses contain long strings of zero bits. To make writing addresses

containing zero bits easier, a special syntax is available to compress the zeros. A

double colon (::) indicates multiple groups of 16 bits of zeros and can appear

only once in an address. The :: can also be used to compress both leading and

trailing zeros in an address.

For example the following addresses:

 Table 2. Address types

Address type Long from Compressed form

Unicast 2001:DB8:0:0:8:800:200C:417A 2001:DB8::8:800:200C:417A

Multicast FF01:0:0:0:0:0:0:101 FF01::101

Loopback 0:0:0:0:0:0:0:1 ::1

Unspecified 0:0:0:0:0:0:0:0 ::

v An alternative form that is sometimes more convenient when dealing with a

mixed environment of IPv4 and IPv6 nodes is x:x:x:x:x:x:d.d.d.d, where the x’s

are the hexadecimal values of the 6 high-order 16-bit pieces of the address, and

© Copyright IBM Corp. 2002, 2006 9

|
|
|
|
|
|

|

||

|||

|||

|||

|||

|||
|

|

the d’s are the decimal values of the 4 low-order 8-bit pieces of the address

(standard IPv4 representation). This is used for IPv4-compatible IPv6 addresses

and IPv4-mapped IPv6 addresses. These types of addresses are used to hold

embedded IPv4 addresses in order to carry IPv6 packets over IPv4 routing

infrastructure. The address can be expressed in the following manner:

0:0:0:0:0:0:13.1.68.3

0:0:0:0:0:FFFF:129.144.52.38

or in compressed form:

::13.1.68.3

::FFFF:129.144.52.38

Textual representation of IPv6 prefixes1

The text representation of IPv6 address prefixes is similar to the way IPv4 address

prefixes are written in Classless Inter-Domain Routing (CIDR) notation. An IPv6

address prefix is represented by the notation:

ipv6-address/prefix-length

where

ipv6-address

An IPv6 address in any of the notations listed above.

prefix-length

A decimal value specifying how many of the leftmost contiguous bits of

the address comprise the prefix.

For example, the following are legal representations of the 60-bit prefix

20010DB80000CD3 (hexadecimal):

2001:DB8:0000:CD30:0000:0000:0000:0000/60

2001:DB8::CD30:0:0:0:0/60

2001:DB8:0:CD30::/60

The following are not legal representations of the preceding prefix:

v 2001:DB8:0:CD3/60

Leading zeros might be dropped, but not trailing zeros, within any 16-bit chunk

of the address.

v 2001:DB8::CD30/60

Address to the left of the forward slash (/) expands to

2001:DB8:0000:0000:0000:0000:0000:CD30.

v 2001:DB8:0:CD3/60

Address to the left of the forward slash (/) expands to

2001:DB8:0000:0000:0000:0000:0000:0CD3.

When writing both a node address and a prefix of that node address (for example,

the node’s subnet prefix), the two can be combined as follows:

v Node address - 2001:DB8:0:CD30:123:4567:89AB:CDEF

1. Copyright (C) The Internet Society (1998). All Rights Reserved. This document and translations of it can be copied and furnished

to others, and derivative works that comment on or otherwise explain it or assist in its implementation can be prepared, copied,

published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this

paragraph are included on all such copies and derivative works. However, this document itself cannot be modified in any way,

such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed

for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards

process must be followed, or as required to translate it into languages other than English.

10 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|
|

|

|
|

|

|
|

|

|
|

|

v Subnet number - 2001:DB8:0:CD30::/60

v Combination of node address and subnet number -

2001:DB8:0:CD30:123:4567:89AB:CDEF/60

IPv6 address space

The type of a IPv6 address is identified by the high-order bits of the address as

shown in Table 3.

 Table 3. Address type representation

Address type Binary prefix IPv6 notation

Unspecified 00...0 (128 bits) ::/128

Loopback 00...1 (128 bits) ::1/128

Multicast 11111111 FF00::/8

Link-local unicast 1111111010 FE80::/10

Unassigned (formerly

Site-local unicast)

1111111011 FEC0::/10

Global unicast aggregatable (everything else)

Anycast addresses are taken from the unicast address spaces (of any scope) and are

not syntactically distinguishable from unicast addresses. Anycast is described as a

cross between unicast and multicast. Like multicast, multiple nodes might be

listening on an Anycast address. Like unicast, a packet sent to an Anycast address

is delivered to one (and only one) of those nodes. The exact node to which it is

delivered is based on the IP routing tables in the network.

For more information about different IPv6 addresses, refer to “Categories of IPv6

addresses” on page 12.

IPv6 addressing model

IPv6 unicast addresses of all types (excluding loopback and unspecified) can be

assigned to a node’s interfaces.

All physical interfaces (excluding VIPA and loopback) are required to have at least

one link-local unicast address. z/OS Communications Server only allows a single

link-local address per interface. Other platforms might have more than one. A

single interface can be assigned multiple unicast or anycast IPv6 addresses.

Multiple IPv6 multicast groups of any scope can be joined on a single interface. A

unicast address or a set of unicast addresses might be assigned to multiple

physical interfaces if the implementation treats the multiple physical interfaces as

one interface when presenting it to the Internet layer.

Currently, IPv6 continues the IPv4 model that a subnet prefix is associated with

one link. Multiple subnet prefixes can be assigned to the same link.

Scope zones

Each IPv6 address has a specific scope in which it is defined. A scope is a

topological area within which the IPv6 address can be used as a unique identifier

for an interface or a set of interfaces. The scope for an IPv6 address is encoded as

part of the address itself. A unicast address can have a link-local or global scope. A

multicast address supports the following:

Chapter 2. IPv6 addressing 11

|

|
|

v Interface-local

v Link-local

v Subnet-local

v Admin-local

v Site-local (has been deprecated)

v Organization-local

v Global scopes

See “Unicast IPv6 addresses” on page 13 and “Multicast IPv6 Addresses” on page

17 for more discussions about unicast and multicast scopes.

A scope zone is an instance of a given scope. For instance, a link and all directly

attached interfaces comprise a single link-local scope zone. A scope zone has the

following properties:

v A scope zone is comprised of a contiguous set of interfaces and the links to

which the interfaces are attached.

v An interface can belong to only one scope zone of each possible scope.

v A node can be connected to more than one scope zone of a given scope. For

instance, a node can be connected to multiple link-local scope zones if it is

attached to more than one LAN.

v The scope zone for an IPv6 address is not encoded within the address itself, but

is instead determined by the interface over which the packet is sent or received.

v There is a single scope zone for IPv6 addresses of global scope which comprises

all interfaces and links in the Internet.

v Packets that contain a source or destination address of a given scope can be

routed only within the same scope zone, and cannot be routed between different

scope zone instances.

v Addresses of a given scope can be reused in different scope zones.

v Scope zones associated with the inbound and intended outbound interfaces are

compared to determine whether packets containing a limited scope address (for

example, an address of scope other than global) can be successfully routed.

v Scope zone representations (zone indices) are valid only on the node where they

are defined. The same zone can have separate representations in each node that

belongs to that zone.

To identify a specific instance of a scope zone, a node assigns a unique scope zone

index to each scope zone of the same scope to which it is attached.

Categories of IPv6 addresses

An IPv6 address is identified by the high-order bits of the address. The following

categories of IP addresses are supported in IPv6:

Unicast

An identifier for a single interface. A packet sent to a unicast address is

delivered to the interface identified by that address. It can be link-local

scope, site-local scope, or global scope.

 Guideline: Do not use site-local addresses.

Multicast

An identifier for a group of interfaces (typically belonging to different

nodes). A packet sent to a multicast address is delivered to all interfaces

identified by that address.

12 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

|

Anycast

An identifier for a group of interfaces (typically belonging to different

nodes). A packet sent to an anycast address is delivered to the closest

member of a group, according to the routing protocols’ measure of

distance.

 Restriction: Although z/OS Communications Server can send or forward

datagrams to an anycast address, z/OS Communications Server does not

support functioning as an anycast endpoint.

There are no broadcast addresses in IPv6. Multicast addresses have superseded this

function.

Unicast IPv6 addresses

IPv6 unicast addresses are aggregatable with prefixes of arbitrary bit-length similar

to IPv4 addresses under Classless Interdomain Routing (CIDR).

There are several types of unicast addresses in IPv6:

v Global unicast

v Site-local unicast (has been deprecated)

Restriction: Although z/OS Communications Server can send or forward

datagrams to an anycast address, z/OS Communications Server does not

support functioning as an anycast endpoint.

v Link-local unicast

There are also some special-purpose subtypes of global unicast:

v IPv6 addresses with embedded IPv4 addresses

Additional address types or subtypes can be defined in the future.

A unicast address has the following format:

Aggregatable global addresses

Aggregatable global unicast addresses are equivalent to public IPv4 addresses.

They are globally routable and reachable on the IPv6 portion of the Internet.

A global unicast address has the following format:

Global routing prefix

Used to identify a specific customer site. The size of the field is 48 bits and

allows an ISP to create multiple levels of addressing hierarchy within the

network to both organize addressing and routing for downstream ISPs and

identify sites.

n bits 128-n bits

interface IDnetwork prefix

Figure 2. Unicast address format

Chapter 2. IPv6 addressing 13

|
|
|

|

|
|
|

Subnet ID

Used by an individual organization to identify subnets within its site. The

organization can use these 16 bits to create 65 536 subnets or multiple

levels of addressing hierarchy.

Interface ID

Indicates the interface on a specific subnet. The size of this field is 64 bits.

Local use addresses

There are two types of local-use unicast addresses defined:

v Link-local

v Site-local (has been deprecated)

The link-local address is for use on a single link.

Note: Site-local addresses were designed to use private address prefixes that could

be used within a site without the need for a global prefix. The IETF has

deprecated the special treatment given to the site-local prefix due to

numerous problems in the actual use and deployment of site-local

addresses. An IPv6 address constructed using a site-local prefix is now

treated as global unicast address. The site-local prefix can be reassigned for

other use by future IETF standards action.

Link-local addresses: Link-local addresses have the following format:

 Requirement: A link-local address is required on each physical interface.

Link-local addresses are designed to be used for addressing on a single link for

purposes such as automatic address configuration, neighbor discovery, or in the

absence of routers. It also can be used to communicate with other nodes on the

same link. A link-local address is automatically assigned.

Routers do not forward any packets with link-local source or destination addresses

to other links.

64 bits3 bits 45 bits 16 bits

interface ID001 global routing prefix subnet ID

Figure 3. Global unicast address format

10 bits 54 bits 64 bits

interface ID1111111010 0

Figure 4. Link-local address format

14 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

|

Figure 5 depicts two separate link-local scope zones. More than one interface can

be connected to the same link for fault tolerance or extra bandwidth. Some nodes

might allow the same link-local zone index to be assigned to each interface

connected to the same physical link, while others might assign a unique link-local

zone index to each interface even when more than one interface is connected to the

same physical link. z/OS Communications Server takes the latter approach,

assigning a unique link-local zone index to each physical interface.

Loopback address

The unicast address 0:0:0:0:0:0:0:1 is called the loopback address. It cannot be

assigned to any physical interface. It can be thought of as a link-local unicast

address assigned to a virtual interface (typically called the loopback interface) that

allows local applications to send messages to each other.

Restriction: The loopback address cannot be used as the source address in IPv6

packets that are sent outside of a node. An IPv6 packet with a destination address

of loopback cannot be sent outside of a node and be forwarded by an IPv6 router.

A packet received on an interface with destination address of loopback is dropped.

Unspecified address

The address 0:0:0:0:0:0:0:0 is called the unspecified address. It is not assigned to

any node. It indicates the absence of an address. One example of its use is in the

Source Address field of any IPv6 packets sent by an initializing host before it has

learned its own address.

Restriction: The unspecified address cannot be used as the destination address of

IPv6 packets or in IPv6 routing headers. An IPv6 packet with a source address of

unspecified cannot be forwarded by an IPv6 router.

IPv4-mapped IPv6 addresses

These addresses hold an embedded global IPv4 address. They are used to

represent the addresses of IPv4 nodes as IPv6 addresses to applications that are

enabled for IPv6 and are using AF_INET6 sockets. This allows IPv6-enabled

applications to always deal with IP addresses in IPv6 format regardless of whether

1

Link scope
zone

1

2

31

1 2 3

Link scope
zone

Figure 5. Link-local scope zones

Chapter 2. IPv6 addressing 15

the TCP/IP communications are occurring over IPv4 or IPv6 networks. The

dual-mode TCP/IP stack performs the transformation of the IPv4-mapped

addresses to and from native IPv4 format. IPv4-mapped addresses have the

following format:

 For example:

::FFFF:129.144.52.38

IPv6 interface identifiers

Interface identifiers in IPv6 unicast addresses are used to identify interfaces on a

link. They are required to be unique on that link. In some cases, an interface’s

identifier is derived directly from that interface’s link-layer address. z/OS

Communications Server does not allow two links to have the same local address.

Some implementations might allow the same interface identifier to be used on

multiple interfaces on a single node, as long as they are attached to different links.

z/OS Communications Server allows the interface identifier to be generated (the

default) or manually configured. When the interface ID is generated, then z/OS

builds the interface ID when the interface becomes active based on the interface

type as follows:

1. OSA-Express QDIO

2. OSA-Express returns the MAC address and a unique instance value during the

start of an interface.

3. z/OS builds the interface identifier by inserting the unique instance value into

the middle of the MAC address. This ensures that when multiple stacks share

an OSA, each stack gets a unique interface ID. If a virtual MAC address is

configured for this interface, then z/OS instead inserts the value ’FFFE’x into

the middle of the MAC address.

4. HiperSockets

For HiperSockets interfaces, the interface ID generation works the same as for

OSA-Express QDIO except that the HiperSockets device returns a 48-bit value

that is unique for the HiperSockets CHPID rather than a MAC address. This

ensures that when multiple stacks share a HiperSockets CHPID, each stack gets

a unique interface ID.

5. MPCPTP6

For MPCPTP6 interfaces, z/OS randomly generates an interface ID.

80 bits 16 32 bits

IPv4 address0000 0000 FFFF

Figure 6. IPv4-mapped IPv6 address

24bits 16bits 24bits

MAC addr (bytes 1-3) instance value MAC addr (bytes 4-6)

Figure 7. OSA-Express QDIO interface ID format

16 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

|

|
|
|
|
|

|

|
|
|
|
|

|

|

A node can choose to use a different algorithm available for generation of interface

identifiers for IPv6 addresses on a different platform.

Multicast IPv6 Addresses

An IPv6 multicast address is an identifier for a group of interfaces (typically on

different nodes). It is identified with a prefix of 11111111 or FF in hexadecimal

notation. It provides a way of sending packets to multiple destinations. An

interface can belong to any number of multicast groups.

Multicast address format

Binary 11111111 at the start of the address identifies the address as being a

multicast address. Multicast addresses have the following format:

flgs is a set of 4 flags:

v The 3 high-order flags are reserved, and must be initialized to 0.

v T = 0 indicates a permanently-assigned (well-known) multicast address, assigned

by the Internet Assigned Number Authority (IANA).

v T = 1 indicates a non-permanently assigned (transient) multicast address.

Scope is a 4-bit multicast scope value used to limit the scope of the multicast

group. Group ID identifies the multicast group, either permanent or transient,

within the given scope.

Multicast scope

The scope field indicates the scope of the IPv6 internetwork for which the

multicast traffic is intended. The size of this field is 4 bits. In addition to

information provided by multicast routing protocols, routers use multicast scope to

determine whether multicast traffic can be forwarded. For multicast addresses

there are 14 possible scopes (some are still unassigned), ranging from

interface-local to global (including both link-local and site-local).

Table 4 lists the defined values for the scope field:

 Table 4. Multicast scope field values

Value Scope

0 Reserved

1 Interface-local scope (same node)

112 bits8 4 4

group ID11111111 flgs scope

Figure 8. Multicast address format

0 0 0 T

Figure 9. Flags in multicast address

Chapter 2. IPv6 addressing 17

Table 4. Multicast scope field values (continued)

Value Scope

2 Link-local scope (same link)

3 Subnet-local scope

4 Admin-local scope

5 Site-local scope (same site)

8 Organization-local scope

E Global scope

F Reserved

Note: All other scope field values are currently undefined.

For example, traffic with the multicast address of FF02::2 has a link-local scope. An

IPv6 router never forwards this type of traffic beyond the local link.

Interface-local

The interface-local scope spans a single interface only. A multicast address

of interface-local scope is useful only for loopback delivery of multicasts

within a node, for example, as a form of interprocess communication

within a computer. Unlike the unicast loopback address, interface-local

multicast addresses can be joined on any interface.

Link-local

Link-local addresses are used by nodes when communicating with

neighboring nodes on the same link. The scope of the link-local address is

the local link.

Subnet-local

Subnet-local scope is given a different and larger value than link-local to

enable possible support for subnets that span multiple links.

Admin-local

Admin-local scope is the smallest scope that must be administratively

configured, that is, not automatically derived from physical connectivity or

other, non-multicast-related configuration.

Site-local

The scope of a site-local address is the site or organization internetwork.

Addresses must remain within their scope. A router must not forward

packets outside of its scope.

 Guideline: Site-local has been deprecated.

Organization-local

This scope is intended to span multiple sites belonging to a single

organization.

Global

Global scope is used for uniquely identifying interfaces anywhere in the

Internet.

Multicast groups

Group ID identifies the multicast group, either permanent or transient, within the

given scope. The size of this field is 112 bits. Permanently assigned groups can use

the group ID with any scope value and still refer to the same group. Transient

assigned groups can use the group ID in different scopes to refer to different

18 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

|

groups. Multicast addresses from FF01:: through FF0F:: are reserved, well-known

addresses. Use of these group IDs for any other scope values, with the T flag equal

to 0, is not allowed.

All-nodes multicast groups: These groups identify all IPv6 nodes within a given

scope. Defined groups include the following:

v Interface-local all-nodes group (FF01::1)

v Link-local all-nodes group (FF02::1)

All-routers multicast groups: These groups identify all IPv6 routers within a

given scope. Defined groups include the following:

v Interface-local all-routers group (FF01::2)

v Link-local all-routers group (FF02::2)

v Site-local all-routers group (FF05::2)

Solicited-node multicast group: For each unicast address which is assigned to an

interface, the associated solicited-node multicast group is joined on that interface.

The solicited-node multicast address facilitates the efficient querying of network

nodes during address resolution.

Anycast IPv6 Addresses

An IPv6 anycast address is an identifier for a set of interfaces (typically belonging

to different nodes). A packet sent to an anycast address is delivered to one of the

interfaces identified by that address (the nearest interface), according to the routing

protocols’ measure of distance. It uses the same formats as a unicast address, so

one cannot differentiate between a unicast and an anycast address simply by

examining the address. Instead, anycast addresses are defined administratively.

Typical IPv6 addresses assigned to a node

An IPv6 host is required to recognize the following addresses as identifying itself:

v Link-local address for each active IPv6 physical interface (cannot be manually

defined)

v Assigned unicast addresses (autoconfigured or manually defined)

v IPv6 loopback address (::1)

v All-nodes multicast address (interface-local and link-local)

v Solicited node multicast addresses for each of its assigned unicast and anycast

addresses

v Multicast addresses of all other groups to which the host belongs

IPv6 address states

An address state defines and controls how other algorithms work with a particular

address.

Tentative

An address whose uniqueness on a link is being verified, prior to its assignment to

an interface. A tentative address is not considered assigned to an interface in the

usual sense. An interface discards received packets addressed to a tentative

address, unless those packets are related to Duplicate Address Detection (DAD).

For more information on DAD, refer to “Duplicate Address Detection (DAD)” on

page 32.

Chapter 2. IPv6 addressing 19

Deprecated

An address assigned to an interface whose use is discouraged, but not forbidden.

Packets sent from or to deprecated addresses are delivered as expected. A

deprecated address continues to be used as a source address in existing

communications where switching to a preferred address would be disruptive.

Preferred

An address assigned to an interface whose use is unrestricted. Preferred addresses

can be used as the source or destination address of packets sent from or to the

interface, respectively.

Unavailable

An unavailable address is one that is not yet assigned to the interface.

20 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 3. IPv6 protocol

This chapter describes the IPv6 protocol implementation and contains the

following sections:

v “Extension headers”

v “Fragmentation in an IPv6 network”

v “Path MTU discovery” on page 22

v “IPv6 routing” on page 22

v “ICMPv6” on page 26

v “Multicasting” on page 27

v “Neighbor discovery (ND)” on page 28

v “Assigning IP addresses to interfaces” on page 33

v “Default address selection” on page 36

v “Migration and coexistence” on page 39

v “Considerations for configuring z/OS for IPv6” on page 44

v “IPv6 stack support” on page 44

v “INET considerations” on page 45

v “Common INET considerations” on page 46

Guideline: You should be familiar with the IPv6 protocol in general.

Extension headers

In IPv6, IP-layer options within a packet are encapsulated in independent headers

called extension headers. In contrast, IPv4 options are contained in the IP header

itself.

Restriction: Not all IPv6 extension headers are supported in z/OS

Communications Server.

The z/OS TCP/IP stack supports receipt of the following extension headers:

v Routing

v Fragmentation

v Hop-by-hop option

v Destination option

v Authentication (AH)

v Encapsulating Security Payload (ESP)

Fragmentation in an IPv6 network

Fragmentation is used by a source to send a packet larger than would fit in the

path MTU to its destination. In order to send packets larger than the link

minimum of 1280 bytes, a node must support determination of the minimum

supported MTU along the path between the source and destination. This is

accomplished by Path MTU discovery. For more information about path discovery,

see “Path MTU discovery” on page 22.

© Copyright IBM Corp. 2002, 2006 21

|
|

|

|

|

The IPv6 IP header does not contain information about fragments. The

fragmentation extension header carries this information. z/OS Communications

Server allows for 2048 active IPv6 reassemblies in progress at any given time. z/OS

Communications Server reassembly timeout for IPv6 reassemblies is 60 seconds.

These two values are not configurable.

Fragmentation and UDP/RAW

Intermediate routers cannot fragment packets and UDP/RAW transports do not

perform retransmission. To attempt to ensure that a UDP/RAW packet is not

dropped due to fragmentation, one of the following conditions can occur:

v z/OS Communications Server always sends the packet using the minimum MTU

(1280) unless the MTU for the destination is learned from an ICMPv6 Packet Too

Big message.

v An application sends a packet using the IPV6_DONTFRAG socket option.

For example, a situation can occur where the MTU was learned by way of Path

MTU discovery. In that case, the network topology changes, reducing the MTU to

this particular destination. UDP/RAW sends with the original learned MTU and

receives a Packet Too Big message. In this case, the packet is dropped, but

subsequent sends learn the changed MTU and send with the appropriate size.

Path MTU discovery

When one IPv6 node has a large amount of data to send to another node, the data

is transmitted in a series of IPv6 packets. It is preferable that these packets be of

the largest size that can successfully traverse the path from the source node to the

destination node. This packet size is referred to as the Path MTU (PMTU), and it is

equal to the minimum link MTU of all the links in a path. IPv6 provides PMTU

discovery as a standard mechanism for a node to discover the PMTU of an

arbitrary path.

For IPv6, intermediate routers cannot fragment packets. An implementation must

either support Path MTU discovery or send using IPv6 minimum link MTU. z/OS

Communications Server supports path MTU discovery.

Path MTU discovery supports multicast as well as unicast destinations. When

PMTU information is learned, it is cached for a period of time and then deleted in

order to learn of increases in the MTU value.

IPv6 routing

Both replaceable and non-replaceable IPv6 static routes are supported by using

BEGINROUTES profile statements.

Restriction: The GATEWAY statement in the TCP/IP profile does not support IPv6

static routes.

Dynamic routes for IPv6 are learned by:

v Router discovery

v ICMPv6 redirects

v Dynamic routing protocols

Replaceable static routes can be replaced by dynamic routes. If a replaceable static

route is replaced by a dynamic route, and that dynamic route is later deleted, the

replaceable static route is re-added.

22 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Router discovery

Hosts can learn the network prefixes for all directly attached links from the router

advertisements received from their routers. To determine if that host is on a

directly attached link or on a remote link, check to see if another host’s IPv6

address is constructed from a network prefix of one of the directly attached links.

If it is on a directly attached link, data can be sent directly to that host without

going through a router. Otherwise, it must be sent through some router using a

default route that can also be learned from router advertisements.

Router advertisements are not a replacement for dynamic routing protocols such as

IPv6 OSPF and IPv6 RIP. If a host is not using a dynamic routing protocol, some

limitations apply.

If the host has multiple interfaces attached to more than one link, it must decide

which interface to send the packet over. If there are multiple routers on the link

attached to the interface, it must decide to which router it should send the packet.

To make these decisions, it needs a route in its routing table. Without a dynamic

routing protocol, the host uses the default route when selecting which router on

which interface to send the packet. This behavior might not produce the desired

results.

In the case where there are multiple default routers on the same physical link, the

host might select a non–optimal router. This might not be a serious problem,

because that router can send an ICMP Redirect, allowing the host to update its

routing table and send subsequent packets to the correct router. If default routers

are on multiple physical links, that is more serious. A router on one link is not able

to redirect the host to use a different physical link. If the selected router cannot

reach the destination, attempts to send data fails, even if the destination could be

reached by a default router on another physical link. To resolve these limitations

when not using a dynamic routing protocol, static routes might be needed to direct

the traffic over the best interface using the appropriate router.

If a dynamic routing protocol is not used, routes to VIPAs cannot be advertised.

For this reason, use a network prefix defined as being on-link for the interfaces

which are associated with the VIPA. In this way, routers and hosts perceive that

the VIPA is on a physical interface and sends Neighbor Discovery messages (the

IPv6 equivalent of an ARP request) to get the MAC address of the interface. This is

not the typical way to set up VIPAs and is not the typical way to set up VIPAs if a

dynamic routing protocol is being used. Normally, they can be associated with

interfaces on different LANs. But without a dynamic routing protocol, you must

either take the suggested approach or define static routes at all routers on the same

links as the z/OS system.

ICMPv6 redirects

ICMPv6 redirects replace static routes regardless of whether or not they are

replaceable. Use the IGNOREREDIRECT keyword on the IPCONFIG6 statement in

the TCP/IP profile to prevent the stack from adding routes learned by ICMPv6

redirects.

Rule: ICMPv6 redirects are always ignored when an IPv6 dynamic routing

protocol is being used.

Chapter 3. IPv6 protocol 23

Dynamic routing protocols

The z/OS Communications Server OMPROUTE routing daemon supports the IPv6

OSPF and IPv6 RIP dynamic routing protocols. A host using one of these protocols

can learn, from adjacent routers that are also using that protocol, the network

prefixes and host addresses that can be reached.

IPv6 OSPF and IPv6 RIP can be used together with router discovery in the same

network. IPv6 OSPF allows the host to learn the network prefixes and host

addresses that can be reached indirectly by way of adjacent IPv6 OSPF routers

(including default routes), as well as the network prefixes that can be reached

directly on attached links in the IPv6 OSPF domain. IPv6 RIP allows the host to

learn the network prefixes and host addresses that can be reached indirectly by

way of adjacent IPv6 RIP routers (including default routes). Router discovery

allows the host to learn default routes by way of adjacent routers participating in

router discovery, as well as the network prefixes that can be reached directly on

attached links.

In addition, the network prefixes that can be reached directly on attached links can

be manually configured using the Prefix keyword on the IPv6_Interface,

IPv6_OSPF_Interface, or IPv6_RIP_Interface statements in the OMPROUTE

configuration file. When IPv6 OSPF or IPv6 RIP is used together with router

discovery, certain routes can be learned from both methods. These routes consist

of:

Default routes

Learned from both methods if adjacent routers are advertising themselves

as default routers using both IPv6 OSPF or IPv6 RIP and router discovery.

When this situation occurs, the default routes learned from IPv6 OSPF or

IPv6 RIP takes precedence and generates the default routes in the TCPIP

stack’s IPv6 route table. Any default routes learned from router discovery

are ignored as long as the default routes learned from IPv6 OSPF or IPv6

RIP exist.

Prefix routes

Learned from both router discovery and OMPROUTE under each of the

following conditions:

v A router is advertising by way of router discovery that the prefix is

on-link and the prefix is also manually configured to OMPROUTE using

the Prefix keyword on an IPv6_Interface, IPv6_OSPF_Interface, or

IPv6_RIP_Interface configuration statement.

Guideline: Use the Prefix keyword only when the prefix is not learned

dynamically (using router discovery or a dynamic routing protocol).

For example, if there is a need to supplement the list of prefixes being

advertised as on-link by the routers. If the same prefix is configured

using the Prefix keyword and learned from router discovery, the route in

the TCPIP stack’s route table is the route added by OMPROUTE as a

result of the Prefix keyword. Any route for the same prefix that is

learned from router discovery is ignored as long as the OMPROUTE

route exists.

Restriction: Prefixes learned from only OMPROUTE are not used for

address autoconfiguration. If a prefix is learned from both OMPROUTE

and router discovery, it can still be used for autoconfiguration even

though the route learned from OMPROUTE is the one in the TCPIP

stack route table.

24 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

v A router is advertising by way of router discovery that the prefix is

on-link and a router is also advertising by way of IPv6 OSPF that the

prefix is on-link.

In this case, the route in the TCPIP stack route table is the route added

by OMPROUTE as a result of the information received by way of IPv6

OSPF. Any route for the same prefix that is learned from router

discovery is ignored as long as the OMPROUTE route exists. As in the

previous condition, the prefix learned from router discovery can still be

used for address autoconfiguration.

v A router is advertising by way of router discovery that the prefix is

on-link and it is also learned, by way of IPv6 OSPF or IPv6 RIP, that the

prefix can be reached by way of an adjacent router.

In this case, the route in the TCPIP stack route table is the route added

as the result of router discovery. This occurs because the router

discovery information indicates that the prefix resides on a directly

attached link, while the IPv6 OSPF or IPv6 RIP information indicates

that the prefix can be reached indirectly, by way of the router from

which the IPv6 OSPF or IPv6 RIP information was received. Any route

for the prefix that is learned from IPv6 OSPF or IPv6 RIP is ignored as

long as the router discovery route exists.

Tip for IPv6 OSPF routing protocol addressing conventions

IPv6 OSPF is based on IPv4 OSPF and has many similar concepts and controls.

The primary difference between IPv6 OSPF and IPv4 OSPF is that for IPv6 OSPF,

IP addresses are not used to communicate topology information. For example, in

IPv4 OSPF, an interface is referred to by its IPv4 home address, but in IPv6 OSPF

an interface is not referred to by any of its IPv6 home addresses. Instead, it is

referred to by an integer interface ID. Similarly, IPv6 OSPF router IDs are not IPv6

home addresses; they are 32-bit integers written in IPv4-style dotted-decimal

notation. Area IDs in IPv6 OSPF are also 32-bit integers written in IPv4-style

dotted-decimal notation.

Guideline: Even though router IDs and area IDs in IPv6 OSPF are expressed

similarly to the IPv4 equivalents, they are not the same constants. A router can

have an IPv6 router ID which is different from its IPv4 router ID. If both IPv4 and

IPv6 OSPF are running simultaneously, the area topology of each IP version can be

completely different, with different area numbers and hierarchy.

Authentication with the IPv6 OSPF routing protocol

IPv4 OSPF includes authentication as part of the OSPF protocol. OMPROUTE

supports both password authentication and MD5 cryptographic authentication for

IPv4 OSPF. For IPv6 OSPF, authentication has been removed from OSPF itself.

Instead, IPv6 OSPF relies on IPSec to ensure integrity and authentication of routing

exchanges. As a result, OMPROUTE does not include any explicit authentication

support, but instead relies on the underlying support provided by the z/OS

TCP/IP stack.

To use IPSec to authenticate IPv6 OSPF routing exchanges on a link over which

OMPROUTE establishes adjacencies, you must create a single manual security

association (SA) for all traffic on that link, with corresponding filter definitions to

permit the OSPF traffic. Use the interface SECCLASS to define different security

associations for different links. This procedure is described in the IP security

information in z/OS Communications Server: IP Configuration Guide.

Chapter 3. IPv6 protocol 25

|

|
|
|
|
|
|

Considerations for route selection

Route precedence is as follows:

v Host route to the destination.

v Route for a prefix of the destination. If there are routes to multiple prefixes of

the destination, the route with the most specific prefix is chosen.

v Default route.

For IPv4, the concept exists of a special default multicast route with a destination

of 224.0.0.0 and a netmask of 255.255.255.255. For IPv6, there is no special default

multicast route. Because all IPv6 multicast addresses start with FF, the following

prefix route serves the same function as the default multicast route:

destination = FF00::/8

Considerations for multipath routes

Multiple routes to the same destination are considered multipath routes. Multipath

routes can be used for load balancing. Multipath route support for IPv6 is identical

to multipath route support for IPv4. Define the MULTIPATH keyword on the

IPCONFIG6 statement to control whether multiple routes are selected.

Guideline: If MULTIPATH is not enabled, the first active route added is selected.

When using a route that belongs to a multipath group , the MTU that is used is

the minimum MTU of all routes in the multipath group.

How does a VARY TCPIP,,OBEYFILE command affect routes?

When a VARY TCPIP,,OBEYFILE command is issued and the profile contains a

BEGINROUTES block, the following occurs:

v All static routes (both replaceable and non-replaceable) are deleted and replaced

by any static routes defined in the BEGINROUTES block.

v All routes learned by way of ICMPv6 redirects are deleted.

v Routes learned by way of router advertisements or a dynamic routing daemon

are not affected by the processing of the VARY TCPIP,,OBEYFILE command,

with the following exception:

– If the profile data set specified on the VARY TCPIP,,OBEYFILE command

contains a non-replaceable static route to the same destination for which a

route exists that was learned by way of router advertisements or a dynamic

routing daemon, the existing route is deleted and replaced by the

non-replaceable static route.

ICMPv6

The IP protocol moves data from one node to another. In order for IP to perform

this task successfully, there are many other functions that need to be carried out as

well, such as the following:

v Error reporting

v Route discovery

v Diagnostics

v Among others

In IPv6, all these tasks are carried out by the Internet Control Message Protocol

(ICMPv6).

26 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

In addition, ICMPv6 provides a framework for Multicast Listener Discovery (MLD)

and Neighbor Discovery (ND), which carry out the tasks of conveying multicast

group membership information (the equivalent of the IGMP protocol in IPv4) and

address resolution (performed by ARP in IPv4).

The following are types of ICMPv6 messages:

Error Report errors in the forwarding or delivery of IPv6 packets.

Informational

Provide diagnostic functions and additional host functionality such as

MLD and ND.

The following ICMPv6 messages are supported:

v Destination unreachable

v Packet too big

v Time exceeded (hop limit exceeded)

v Echo request/reply

v Parameter problem

v Multicasting messages:

– Group membership query

– Report

– Done
v Neighbor discovery:

– Router solicitation and advertisement

– Neighbor solicitation and advertisement

– Redirect

Guideline: Not all ICMPv4 messages have equivalents in ICMPv6.

Multicasting

In early IP networks, a packet could be sent to either a single device (unicast) or to

all devices (broadcast). A single transmission destined for a group of devices was

not possible.

IPv6 uses multicast for those purposes for which IPv4 used broadcast;

consequently, IPv6 does not support broadcast.

Applications can use multicast transmissions to enable efficient communication

between groups of devices. Data is transmitted to a single multicast IP address and

received by any device that needs to obtain the transmission.

Multicast Listener Discovery (MLD)

An IPv6 router uses MLD protocol to discover the following:

v The presence of multicast listeners (nodes wanting to receive multicast packets)

on its directly attached links

v Which multicast addresses are of interest to those listeners

This information is provided to whichever multicast routing protocol is being used

by the router. This ensures that multicast packets are delivered to all links where

there are interested receivers. MLD is derived from IGMPv2.

Chapter 3. IPv6 protocol 27

Guideline: One important difference is that MLD uses ICMPv6 message types,

rather than IGMP message types.

MLD has a router function and a listener function. The router function discovers

the presence of multicast listeners and ensures delivery of multicast packets to

listeners. The listener function informs routers when it starts and stops listening for

a multicast address and responds to queries about multicast addresses. z/OS

Communications Server V1R4 and above implement the listener function.

When a listener starts listening for a multicast address on an interface, it sends an

MLD report message for that address on that interface.

When a listener stops listening for a multicast address on an interface, it sends a

single MLD done message.

An MLD query message is sent by a router to query listeners about multicast

addresses. A specific query is sent to listeners for a specific multicast address on a

receiving interface. A general query is sent to listeners for all multicast addresses

on a receiving interface. These query messages contain a maximum response delay

(MRD) that causes listeners to delay report messages and not send them if another

listener reports first. If no reports for the address are received from the link after

the response delay of the last query has passed, the routers on the link assume that

the address no longer has any listeners there; the address is therefore deleted from

the list and its disappearance is made known to the multicast routing component.

If you configure IP security for IPv6, refer to special considerations in the z/OS

Communications Server: IP Configuration Guide for information about filter rules for

MLD packets.

Neighbor discovery (ND)

Neighbor discovery (ND) is an ICMPv6 function that enables a node to identify

other hosts and routers on its links. It corresponds to a combination of IPv4

protocols:

v ARP

v ICMP Router Discovery

v ICMP Redirect

It maintains routes, MTU, retransmit times, reachability time, and prefix

information based on information received from the routers. ND uses Duplicate

Address Detection (DAD) to verify the host’s home addresses are unique on the

LAN.

ND uses Address Resolution to determine the link-layer addresses for neighbors

on the LAN and Reachability Detection to determine neighbor reachability.

If you configure IP security for IPv6, refer to special considerations in the z/OS

Communications Server: IP Configuration Guide for information about filter rules for

neighbor discovery packets.

Router advertisements

Router advertisements are sent by routers to announce their availability. z/OS

Communications Server receives router advertisements, but it does not originate

them.

28 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|
|

|
|
|

If the router advertisement indicates that the sending router should be used as a

default router, a neighbor cache entry is created or updated for the sending router,

and the following occurs:

v IPv6 dynamic default route is added (if not added by a previous advertisement)

v Next hop of default route is the advertisement’s source address

v Interface of default route is the interface on which the advertisement was

received

v Length of time that route remains valid is set or reset using the Lifetime value

from the advertisement

A dynamic default route is not added due to the received router advertisement if

the following exists:

v A non-replaceable static default route

v An IPv6 OSPF default route

v An IPv6 RIP default route

If a replaceable static default route exists, the dynamic default route is added due

to the received router advertisement, replacing the replaceable route. The

replaceable static default route is reinstated if the dynamic default route is later

removed.

If the router advertisement indicates that the sending router should not be used as

a default router, the following occurs:

v If an IPv6 dynamic default route exists with the advertisement’s source as its

next hop and the receiving interface as its interface and that route was added

due to a received router advertisement (for example, not due to IPv6 OSPF or

IPv6 RIP), it is deleted.

v Any IPv6 dynamic indirect routes with the advertisement’s source as its next

hop and the receiving interface as its interface are deleted. Exceptions to this are

routes that were added due to a dynamic routing protocol such as IPv6 OSPF or

IPv6 RIP.

v A neighbor cache entry is created or updated for the sending router. The

neighbor cache entry contains data from the router advertisement such as the

following:

– Indication that neighbor is a router

– Indication that neighbor is not a default router

– Link-local and link-layer address of neighbor

A router advertisement can contain Prefix Information Options. These options

inform nodes of additional specific routes that are available to them, and indicate

prefixes for autoconfiguring addresses. A Prefix Information Option contains the

on-link and autonomous flags.

The on-link flag, when set, indicates that on-link processing needs to be performed

for the prefix on the shared link. When a prefix is on-link, the addresses in that

prefix can be reached on that link without going through a router. The autonomous

flag, when set, indicates that autoconfigure processing needs to be performed for

the prefix on the shared link. A Prefix Information Option can have just the on-link

flag set, just the autonomous flag set, or both flags set.

The sending router indicates that a prefix is on-link by setting the on-link flag and

specifying a nonzero Valid Lifetime value for the prefix. If the Prefix Information

Option indicates that the prefix is on-link, the following occurs:

Chapter 3. IPv6 protocol 29

v An IPv6 dynamic direct route is added (if not added by a previous

advertisement)

v The destination of the route is the prefix being processed

v The interface of the route is the interface on which the advertisement was

received

v The length of time that route remains valid is set or reset using the Valid

Lifetime value from the Prefix Information Option

If a non-replaceable static direct route exists to this prefix or if a direct route to the

prefix was added by OMPROUTE (due to the PREFIX parameter being specified

on the IPV6_INTERFACE, IPV6_OSPF_INTERFACE, orIPV6_RIP_INTERFACE

statement in the OMPROUTE configuration file or due to a router advertising by

way of IPv6 OSPF that the prefix is on-link), then the dynamic direct route is not

added. If a replaceable static direct route exists to this prefix, the dynamic direct

route is added, replacing the replaceable route. The replaceable static direct route is

reinstated if the dynamic direct route is later removed.

The sending router can indicate that a prefix is no longer on-link by setting the

on-link flag and specifying a zero Valid Lifetime value for the prefix. In this case, if

an IPv6 dynamic direct route exists with the prefix being processed as its

destination and the receiving interface as its interface, and that route was added

due to a received router advertisement (for example, not added by OMPROUTE),

it is deleted.

The sending router can indicate that a prefix is to be used for address

autoconfiguration by setting the autonomous flag and specifying a nonzero Valid

Lifetime value for the prefix. If the Prefix Information Option indicates that the

prefix should be used for address autoconfiguration, the following occurs:

v An IPv6 home address is added to the receiving interface for the autoconfigured

address (if not added by a previous advertisement)

v An IPv6 implicit route is added for the receiving interface and the

autoconfigured address (if not added by a previous advertisement)

v The length of time that home address and implicit route remain valid is set or

reset using Valid Lifetime value from the Prefix Information Option

v The length of time that home address remains preferred (not deprecated) is set

or reset using the Preferred Lifetime value from the Prefix Information Option

Restriction: Prefixes learned solely by using the Prefix parameter on the

OMPROUTE IPV6_INTERFACE, IPV6_OSPF_INTERFACE, or

IPv6_RIP_INTERFACE statement is never used for autoconfiguration.

If addresses are manually configured for an IPv6 interface by way of the

INTERFACE statement, autoconfiguration of addresses for that interface is

disabled. If a prefix is not 64 bits in length, it is not used for autoconfiguration of

addresses. Unlike the prefix route and default route, the implicit route and home

address cannot be deleted immediately. They must age out. If the Valid Lifetime

value is set to infinity, the implicit route and home address do not time out. For

more information about autoconfiguration, see “Stateless address

autoconfiguration” on page 33.

30 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Route timeouts

The valid lifetime for each type of route is updated (extending the life of the route)

by the periodic receipt of router advertisements as long as the sending router is

available and is not reconfigured relative to its defined prefixes or default router

status.

When a Prefix Information Option contains a Valid Lifetime value of infinity, the

associated implicit or prefix route is considered permanent and does not age unless

a future Prefix Information Option for the prefix contains a non-infinity Valid

Lifetime value.

Expiration of the valid lifetime for a default route is immediate if a future Router

Advertisement indicates that the sending router is no longer a default router.

Expiration of the valid lifetime for a prefix route is immediate if a future Prefix

Information Option for the prefix contains a zero Valid Lifetime value. Expiration

of the valid lifetime for an implicit route cannot be made immediate because the

minimum lifetime allowed is two hours. It must age out naturally.

VARY TCPIP,,OBEYFILE command rules

Rules: Observe the following rules for the VARY TCPIP,,OBEYFILE command:

v If a non-replaceable static route in the profile data set specified on the VARY

TCPIP,,OBEYFILE command has the same destination as an existing route that

was added due to a received Router Advertisement, the existing route is

replaced by the non-replaceable static route.

v If the profile data set specified on the VARY TCPIP,,OBEYFILE command

specifies a manually configured home address for an interface that already has

autoconfigured addresses, the autoconfigured addresses are deleted along with

their associated implicit routes.

With the exception of the two preceding rules, all autoconfigured home addresses

and routes added due to received Router Advertisements are maintained through

VARY TCPIP,,OBEYFILE command processing.

Redirect processing

A node can receive a Redirect message from an on-link router if the router

determines that the destination is on-link or if there is a better first-hop router for

the given destination. z/OS Communications Server can be configured to ignore

the IPv6 Redirects sent by routers by defining the IGNOREREDIRECT keyword on

the IPCONFIG6 statement. In addition, IPv6 Redirects are ignored if the IPv6 OSPF

or IPv6 RIP protocol of the OMPROUTE routing daemon is being used. If

processing of Redirect messages is enabled, z/OS Communications Server begins

using the new first-hop information which is identified in the Redirect message. A

router must use its link-local address as the source address in Redirects that it

originates. A received Redirect is only processed if the current route to the

destination in the IPv6 route table has the source address of the Redirect as its next

hop. Therefore, if Redirects are to be accepted, all static indirect routes must be

configured using the next-hop router’s link-local address. If the previous route to

the destination was a host route, it is deleted from the route table to keep it from

being used by Multipath processing.

If Redirect processing is disabled, z/OS Communications Server silently discards

the Redirect message.

Chapter 3. IPv6 protocol 31

Duplicate Address Detection (DAD)

DAD is used to verify that an IPv6 home address is unique on the LAN before

assigning the address to a physical interface (for example, QDIO). z/OS

Communications Server responds to other nodes doing DAD for IP addresses

assigned to the interface. DAD is not done for VIPAs or loopback addresses. DAD

for local addresses is performed for physical interfaces when one of the following

occurs:

v The interface is started (the autoconfigured link-local address and manually

configured addresses/prefixes are checked).

v A VARY TCPIP,,OBEYFILE command is issued for a profile data set containing

an INTERFACE ADDADDR for an already active interface.

v A Router Advertisement containing new prefix information and the autonomous

bit set is received on an interface enabled for stateless autoconfiguration.

To disable DAD checking, specify DUPADDRDET 0 on the INTERFACE statement.

Duplicate Address Detection processing involves the following steps:

1. The host joins a link-local all-nodes multicast group at interface start

processing.

2. The host joins a solicited-node group for the local address.

3. A neighbor solicitation is sent to the solicited-node multicast address with the

tentative address for which DAD is being performed.

4. The host waits for a neighbor response (neighbor advertisement or neighbor

solicitation) on the interface.

5. If no neighbor response is received within the specified retransmit time, the

address is considered unique on the LAN.

6. If a neighbor response is received within the specified time, the address is not

unique. The host leaves the solicited-node multicast group, issues a Duplicated

Address Detected console message, and marks the address unavailable due to a

duplicate address.

Unless DAD is disabled, the address is not considered assigned to an interface

until DAD is successfully completed for the local address. Packets can be received

for the all-nodes or solicited-node multicast groups, but there is no response

because the address is not yet assigned to the interface. If the local address is a

manually configured address, the addresses are displayed in a Netstat Home/-h

report as Unavailable (if the interface has not been started or if DAD failed).

In situations where DAD is not done for the IPv6 home address (by specifying

DUPADDRDET 0 on the INTERFACE statement or if it is a VIPA), the z/OS

Communications Server host still responds if another node is doing DAD for an

IPv6 address assigned to the interface or for IPv6 VIPAs when the interface is

assigned to handle VIPAs. Note that responses are not sent for loopback addresses.

Address resolution

Address resolution in IPv6 is similar to ARP processing in IPv4, except ICMP

neighbor solicitations, neighbor advertisements, router redirects, and router

advertisements are used to obtain the link-layer (MAC) address. The host sends a

neighbor solicitation to a solicited-node multicast address. It waits for a response

for a period of time (retransmit time). If one is received, then the link-layer address

contained in the neighbor advertisement is cached and any queued packets are

sent to the address. If there is no response, the host repeats this process up to three

times before it declares a neighbor unreachable.

32 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

A neighbor cache entry can also be built when a neighbor solicitation for a local

address is received and the solicitation contains the sender’s link-layer address

(and the source address is not the unspecified address, that is, the sender is not

performing DAD). The neighbor cache entry is built if it does not exist based on

the assumption that a packet is soon sent to this neighbor. Building the cache entry

reduces the overhead of having to perform the task of address resolution for the

neighbor at a later time.

Issue the Netstat ND/-n command to display information for a specific neighbor

or all neighbor cache entries. It displays the neighbor link-layer address, state,

whether the neighbor is a router or host, and if a router is a default router. The

following are possible neighbor states:

Incomplete

Address resolution is in progress.

Reachable

Positive confirmation of reachability was received.

Stale An unsolicited neighbor discovery message has updated the link-layer

address. Reachability is verified the next time the entry is used.

Delay More than reachable time has elapsed since last positive confirmation of

reachability. Default reachable time is 30 seconds. It can be overridden by

data provided by neighbor advertisements. A small delay is experienced

before starting a probe of neighbor (upper layers can provide

confirmation).

Probe Neighbor solicitations are sent to verify neighbor reachability.

Neighbor unreachability detection

Neighbor unreachability detection verifies that two-way communication with a

neighbor node exists. The host sends a neighbor solicitation to a node and waits

for a solicited neighbor advertisement. If a solicited neighbor advertisement is

received, the node is considered reachable. If there is no response, the host can

repeat this process before it declares a neighbor unreachable. If a neighbor is found

to be unreachable, the neighbor cache entry is deleted.

Assigning IP addresses to interfaces

Stateless address autoconfiguration is always used to generate and assign a

link-local address to a physical IPv6 interface. If it cannot assign a link-local

address, interface activation fails. No other addresses are assigned to the interface

(whether they are assigned using stateless address autoconfiguration or manual

configuration) until a link-local address has been successfully assigned. Link-local

addresses are not aged out.

Stateless address autoconfiguration

The larger address field of IPv6 solves a number of problems inherent in IPv4, but

the size of the address itself might be a potential problem for the TCP/IP

administrator. As a result, IPv6 has the capability to automatically assign an

address to an interface at initialization time. By doing this, a network can become

operational with minimal action on the part of the TCP/IP administrator. Stateless

autoconfiguration is supported for a physical interface (for example, QDIO) in

z/OS Communications Server if no manually configured addresses are defined on

Chapter 3. IPv6 protocol 33

the interface. Manual configuration of the host’s local addresses is not required

except for VIPA interfaces. Stateless address autoconfiguration consists of the

following steps:

1. During system startup, the host obtains an interface token from the interface

hardware to create an interface ID. It generates its own addresses using a

combination of router advertised prefixes and interface IDs.

2. Duplicate address detection is performed for the address. If a duplicate is not

detected or DAD is disabled for the interface (DUPADDRDET 0 specified on

the INTERFACE statement), the local address is added.

3. A stateless autoconfigured address is deleted when its valid lifetime expires or

when a manually defined address is added to the interface.

An IPv6 address generated using stateless address autoconfiguration has two

timers associated with it: a preferred lifetime and a valid lifetime. Router

Advertisements contain the valid lifetime and preferred lifetime for a prefix. An

IPv6 address goes through two phases to gracefully handle the address

expiration:

Preferred

Use is unrestricted.

Deprecated

In anticipation of the expiration of the leased period, use of the address

is discouraged.

When the preferred lifetime expires, the address created from the prefix is

deprecated. When the valid lifetime expires, the address created from the prefix

is deleted and an operator message is issued.

Autoconfiguration considerations

Consider the following during autoconfiguration:

v A manually configured address/prefix on an interface disables stateless

autoconfiguration for the interface.

v INTERFACE name DELADDR addr/prefix and INTERFACE name DEPRADDR

addr/prefix profile statements, activated by way of the VARY TCPIP,,OBEYFILE

command, are not valid for autoconfigured addresses.

v A VARY TCPIP,,OBEYFILE command whose profile contains ADDADDR or

DELADDR INTERFACE statements can affect stateless autoconfiguration:

– An INTERFACE name ADDADDR addr/prefix profile statement, activated by

way of the VARY TCPIP,,OBEYFILE, results in stateless autoconfigured

addresses on the interface to be deleted. Stateless autoconfiguration capability

is disabled.

– If the DELADDR removes the last manually configured address/prefix,

stateless autoconfiguration is enabled and subsequent router advertisements

can generate autoconfigured addresses.
v Autoconfigured addresses are not automatically added to DNS. Consider using

VIPA addresses in conjunction with autoconfigured addresses.

IP address takeover following an interface failure

The TCP/IP stack in z/OS Communications Server provides transparent

fault-tolerance for failed (or stopped) IPv6 interfaces, when the stack is configured

with redundant connectivity onto a LAN. This support is provided by the z/OS

Communications Server interface-takeover function and applies to the IPv6

IPAQENET6 interface type.

34 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

At device or interface startup time, TCP/IP dynamically learns of redundant

connectivity onto the LAN, and uses this information to select suitable backups in

the case of a future failure of the device/interface. This support makes use of

neighbor discovery flows for IPv6 interfaces, so upon failure (or stop) of an

interface, TCP/IP immediately notifies stations on the LAN that the original IPv6

address is now reachable by way of the backup’s link-layer (MAC) address. Users

targeting the original IP address see no outage due to the failure, and they are

unaware that any failure occurred.

Because this support is built upon neighbor discovery flows, no dynamic routing

protocol in the IP layer is required to achieve this fault tolerance. To enable this

support, you must configure redundancy onto the LAN by defining and activating

multiple INTERFACEs onto the LAN. Note that an IPv4 device cannot back up an

IPv6 interface, or vice versa.

The interface-layer fault-tolerance can be used in conjunction with VIPA addresses,

where applications can target the VIPA address, and any failure of the real LAN

hardware is handled by the interface-takeover function. This differs from

traditional VIPA usage, where dynamic routing protocols are required to route

around true hardware failures.

How to get addresses for VIPAs

Rule: All VIPAs must be manually configured.

VIPA interfaces are always active. IPv6 VIPAs can be site-local or global. Link-local

VIPAs are not allowed because link-local addresses are for use only on the

associated LAN and there is no VIPA LAN.

To globally enable SOURCEVIPA for IPv6, configure the SOURCEVIPA keyword

on the IPCONFIG6 statement. Then, to enable SOURCEVIPA for particular

interfaces, use the SOURCEVIPAINTERFACE parameter on the INTERFACE

statement for those interfaces. The SOURCEVIPAINTERFACE parameter allows for

the specification of the interface name of the VIRTUAL6 interface whose addresses

should be used as SOURCEVIPA addresses.

Unlike IPv4, where the source VIPA selected is based upon the ordering of the

HOME list, IPv6 SOURCEVIPA uses the addresses configured on the VIPA

INTERFACE statement referenced by the SOURCEVIPAINTERFACE keyword on

the INTERFACE statement for the outbound interface. When that VIPA interface

has multiple addresses configured, the default source address selection algorithm

selects among them. For detailed information about the algorithm, see “Default

source address selection” on page 38.

Guidelines: Observe the following VIPA guidelines:

v Use different prefixes for IPv6 static VIPAs and for the IPv6 addresses assigned

to real interfaces.

v Having static VIPAs configured with different prefixes than real addresses

reduces the likelihood of address collisions between the manually configured

VIPAs and the autoconfigured addresses of the real interfaces. This is also

necessary as Duplicate Address Detection (DAD) is not performed for VIPA

addresses.

v See 64 for information regarding static VIPAs.

Chapter 3. IPv6 protocol 35

Default address selection

IPv6 addressing architecture allows multiple unicast addresses to be assigned to

interfaces. These addresses might have different reachability scopes (link-local,

site-local, or global). These addresses can also be preferred or deprecated. Privacy

considerations have introduced the concepts of public addresses and temporary

addresses. The mobility architecture introduces home addresses and care-of

addresses. In addition, multihoming situations result in more addresses per node.

For example, a node can have multiple interfaces, some of them tunnels or virtual

interfaces, or a site can have multiple ISP attachments with a global prefix per ISP.

The end result is that IPv6 implementations are often faced with multiple possible

source and destination addresses when initiating communication. It is preferred to

have default algorithms, common across all implementations, for selecting source

and destination addresses so that developers and administrators can reason about

and predict the behavior of their systems.

Furthermore, dual-mode stack implementations, which support both IPv6 and

IPv4, very often need to choose between IPv6 and IPv4 when initiating

communication. For example, DNS name resolution might yield both IPv6 and

IPv4 addresses with the network protocol stack having both IPv6 and IPv4 source

addresses available. In these cases, a policy that always prefers IPv6 or always

prefers IPv4 might produce poor results. For example, if a DNS name resolves to a

global IPv6 address and a global IPv4 address. If the node has assigned a global

IPv6 address and a 169.254/16 autoconfigured IPv4 address, then IPv6 is the best

choice for communication because the global address has a similar scope; therefore,

a better chance of success. But if the node has assigned only a link-local IPv6

address and a global IPv4 address, then IPv4 is the best choice for communication

because the scope more closely matches the scope of the destination to which you

are communicating. The destination address selection algorithm solves this with a

unified procedure for choosing among both IPv6 and IPv4 addresses.

Source address selection and destination address selection are discussed separately,

but using a common framework enables the two algorithms together to yield

useful results. The algorithms attempt to choose source and destination addresses

of appropriate scope and configuration status (preferred or deprecated).

Default destination address selection

Resolver APIs have the capability to return multiple IP addresses as a result of a

host name query. However, many applications use only the first address returned

to attempt a connection or to send a UDP datagram. Therefore, sorting of these IP

addresses is performed by the default destination address selection algorithm.

Establishing connectivity can depend on whether an IPv6 address or an IPv4

address is selected, which makes this sorting function even more important.

Default destination address selection occurs only when the system is enabled for

IPv6 and the application is using the getaddrinfo() API to retrieve IPv6 and/or

IPv4 addresses.

The default destination address selection algorithm sorts a list of destination

addresses and generates a new list. The algorithm sorts together both IPv6 and

IPv4 addresses by a set of rules. Rules are applied, in order, to the first and second

address, choosing a best address. Rules are then applied to this best address and

the third address. This continues until rules have been applied to all addresses and

36 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

the entire list of addresses has been sorted. If one of the rules is able to select the

best address between two addresses, remaining rules are bypassed for those two

addresses. Subsequent rules act as tie-breakers for earlier rules. The destination

address selection algorithm attempts to predict what source address is selected by

TCP/IP when the application initiates an outbound connection or sends a

datagram using the destination address. This source address is used for some of

the destination address selection criteria rules. Source address prediction

processing assumes that the application itself does not explicitly specify a source IP

address (using bind or ipv6_pktinfo) when initiating a connection or sending a

datagram. If the application does explicitly specify a source address, then the

destination address selected by this algorithm might not be optimal. The decision

the application makes might assume that a different source address is used.

Rules: Observe the following rules:

Rule 1: Avoid unusable destinations.

If one address is reachable (the stack has a route to the particular address)

and the other is unreachable, then place the reachable destination address

prior to the unreachable address.

Rule 2: Prefer matching scope.

If the scope of one address matches the scope of its source address and the

other address does not meet this criteria, then the address with the

matching scope is placed before the other destination address.

 The scopes of the destination addresses and their associated source

addresses are determined by interrogating the high order bits of the

address. The destination address can be a multicast or unicast address.

Unicast Link-Local is mapped to multicast Link-Local, unicast Site-Local to

multicast Site-Local, and unicast Global scope to multicast Global scope.

Rule 3: Avoid deprecated addresses.

If one address is deprecated and the other is non-deprecated, then the

non-deprecated address is placed prior to the other address.

Rule 4: Prefer matching address formats.

If one address format matches its associated source address format and the

other destination does not meet this criteria, then place the destination

with the matching format prior to the other address.

Rule 5: Prefer higher precedence.

If the precedence of one address is higher than the precedence of the other

address, then the address with the higher precedence is placed before the

other destination address.

Rule 6: Use longest matching prefix.

If one destination address has a longer CommonPrefixLength with its

associated source address than the other destination address has with its

source address, then the address with the longer CommonPrefixLength is

placed before the other address.

Rule 7: Leave the order unchanged.

No rule selected a better address of these two; they are equally good.

Choose the first address as the better address of these two and the order is

not changed.

Chapter 3. IPv6 protocol 37

Default source address selection

When the application or upper-layer protocol has not selected a source address for

an outbound IPv6 packet (using bind or ipv6_pktinfo), the default source address

selection algorithm selects one.

The goal of default source address selection is to select the address that is most

likely to allow the packet to reach its destination and to support site renumbering.

The group of candidate addresses consists of the addresses assigned to the

outbound interface (both configured, dynamically generated, or both) or the

addresses configured for the outbound interface’s SOURCEVIPA interface. Any

address which is preferred or deprecated is included in the candidate list. The

algorithm is applied to the candidate address list to select the best source address

for the packet. If there is only one address in the list of candidate source addresses,

then that address is used. If there is more than one address in the candidate list,

one is selected by applying the algorithm’s rules to the addresses. Rules are

applied, in order, to the first and second address, choosing a best address. Rules

are then applied to this best address and the third address. This continues until

rules have been applied to all addresses. If one of the rules is able to select the best

address between two addresses, remaining rules are bypassed for those two

addresses. Subsequent rules act as tie-breakers for earlier rules.

Rules: Observe the following rules:

Rule 1: Prefer same address.

If either address is the destination address, choose that address as the

source address and terminate the entire algorithm.

Rule 2: Prefer appropriate scope.

If the scope of one address is preferable to the scope of the other address,

then the address with better scope is the better address of these two.

 As an example, how is the scope of one source address (SA) preferable to

the scope of another source address (SB) for the given destination address

(D)?

v If scope of SA < scope of SB: If scope of SA < scope of D then SB is the

best address of SA and SB; otherwise SA is the best address.

v If scope of SB < scope of SA: If scope of SB < scope of D then SA is the

best address of SA and SB; otherwise SB is the best address.

Rule 3: Avoid deprecated addresses.

If one address is deprecated and the other is preferred, then the preferred

address is the better address of these two.

Rule 4: Use longest matching prefix.

If one address has a longer CommonPrefixLength with the destination than

the other address, then the address with the longer CommonPrefixLength

is the better address of these two.

Rule 5: Leave the order unchanged.

No rule selected a better address of these two; they are equally good.

Choose the first address as the better address of these two.

VIPA considerations with source address selection

If SOURCEVIPA is configured for the outbound interface and the application has

not requested that SOURCEVIPA be ignored (by way of Ignore Source VIPA socket

option), the source address is selected from the SOURCEVIPA interface’s addresses.

Otherwise, source address is selected from the outbound interface’s addresses.

Note that selection of a Source VIPA address for IPv6 is done differently from IPv4.

38 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

It is determined by the SOURCEVIPAINTERFACE parameter configured on the

outbound interface, rather than the order of the HOME list.

When a socket is used to establish a TCP connection to an IPv6 destination or to

send a UDP or RAW IP datagram to an IPv6 destination, the local address of the

socket is determined based on the set of rules listed in Table 5:

 Table 5. Source address selection

Source address selection for communication to

IPv6 destinations TCP, UDP, and RAW

IPCONFIG6

NOSOURCEVIPA

1. Is the socket already

bound to a local IPv6

address?

Do not change the local address, use it

as it is.

2. Is the socket unbound

(bound to the unspecified

IP address)?

Use the IPv6 default source address

selection algorithm (selecting an IPv6

address on the physical interface over

which the IP packet is about to be sent).

IPCONFIG6

SOURCEVIPA

1. Is the socket already

bound to a local IPv6

address?

Do not change the local address, use it

as it is.

2. Has setsockopt() with the

NOSOURCEVIPA option

been issued for the socket?

Use the IPv6 default source address

selection algorithm (selecting an IPv6

address on the physical interface over

which the IP packet is about to be sent).

3. Is there a

SOURCEVIPAINTERFACE

option on the IPv6

INTERFACE definition over

which the IP packet is

about to be sent?

Use the IPv6 source address selection

algorithm to select an IPv6 VIPA

address from the IPv6 virtual interface

pointed to by the

SOURCEVIPAINTERFACE option.

4. Is there no

SOURCEVIPAINTERFACE

option on the IPv6

INTERFACE definition over

which the IP packet is

about to be sent?

Use the IPv6 default source address

selection algorithm (selecting an IPv6

address on the physical interface over

which the IP packet is about to be sent).

Migration and coexistence

Enabling IPv6 communication between IPv6 islands in an IPv4

environment

Figure 10 on page 40 illustrates communication between IPv6 islands in an IPv4

environment:

Chapter 3. IPv6 protocol 39

Tunneling

Tunneling provides a way to utilize an existing IPv4 routing infrastructure to carry

IPv6 traffic. IPv6 nodes (or networks) that are separated by IPv4 infrastructure can

build a virtual link by configuring a tunnel. IPv6-over-IPv4 tunnels are modeled as

single-hop. In other words, the IPv6 hop limit is decremented by 1 when an IPv6

packet traverses the tunnel. The single-hop model serves to hide the existence of a

tunnel. The tunnel is opaque to network and is not detectable by network

diagnostic tools such as traceroute.

z/OS Communications Server does not support being a tunnel endpoint. This

means that the z/OS Communications Server stack must have an IPv6 interface

connected to an IPv6 capable router. The router is relied upon to handle all

tunneling issues.

For more information, see “Tunneling” on page 121.

How to enable end-to-end communication between IPv4 and

IPv6 applications

Figure 11 illustrates communication between IPv4 and IPv6 applications:

Dual-mode stack

z/OS Communications Server can be an IPv4-only or dual-mode stack.

Restriction: There is no support for an IPv6-only stack.

IPv6

IPv4

IPv6

N N

?

Figure 10. Communicating between IPv6 islands in an IPv4 world

IPv6

IPv4

N

?

IPv6 Web Browser

IPv4 Web Server

Figure 11. Communicating between IPv4 and IPv6 applications

40 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

By default, IPv6-enabled applications can communicate with both IPv4 and IPv6

peers. A socket option makes an IPv6-enabled application require all peers to be

IPv6. See “Socket option to control IPv4 and IPv6 communications” on page 87 for

detailed information about the IPV6_V6ONLY socket option.

IPv6 application on a dual-mode stack: An IPv6 application on a dual-mode

stack can communicate with IPv4 and IPv6 partners as long as it does not bind to

a native IPv6 address. If it binds to a native IPv6 address, it cannot communicate

with an IPv4 partner because the native IPv6 address cannot be converted to an

IPv4 address.

If a partner is IPv6, all communication uses IPv6 packets.

If a partner is IPv4, the following occurs:

v Both source and destination are IPv4-mapped IPv6 addresses.

v On inbound, the transport protocol layer maps the IPv4 address to its

corresponding IPv4-mapped IPv6 address before returning to the application

with AF_INET6 addresses.

v On outbound the transport protocol layer converts the IPv4-mapped addresses

to native IPv4 addresses and send IPv4 packets.

Chapter 3. IPv6 protocol 41

IPv4 application on a dual-mode stack: An IPv4 application running on a

dual-mode stack can communicate with an IPv4 partner. The source and

destination addresses are native IPv4 addresses and the packet is an IPv4 packet.

If a partner is IPv6 enabled and running on an IPv6-only stack, then

communication fails. The partner only has a native IPv6 address (not an

IPv4-mapped IPv6 address). The native IPv6 address for the partner cannot be

converted into a form that the AF_INET application understands.

Dual mode z/OS IP Server Host

IPv4-only
Server

IPv6-enabled
Server

Transport Layer

IPv4 IPv6

Network
Interfaces

IPv4

IPv4

IPv4-only
IP host

IPv6

IPv6

IPv6-only
IP host

Figure 12. IPv6 application on dual-mode stack

42 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Application Layer Gateways (ALG) and protocol translation

When IPv6-only nodes begin to appear in the network, AF_INET6 applications on

these nodes might need to communicate with AF_INET applications. For a

multihomed dual-mode IP host, it is a likely that the host has both IPv4 and IPv6

interfaces over which requests for host-resident applications are received or sent.

IPv4-only (AF_INET sockets) applications are not generally able to communicate

with IPv6 partners, which means that only the IPv4 partners in the IPv4 network

can communicate with those applications; an IPv6 partner cannot.

As soon as IPv6-only hosts are being deployed in a network, applications on those

IPv6-only nodes cannot communicate with the IPv4-only applications on the dual

mode hosts, unless one of multiple migration technologies are implemented either

on intermediate nodes in the network or directly on the dual mode hosts.

Numerous RFCs describe solutions in this area. One solution is a SOCKS64

implementation that works as a SOCKS server that relays communication between

IPv4 and IPv6 flows. SOCKS is a well-known technology, and the issues around it

Dual mode z/OS IP Server Host

IPv4-only
Server

IPv6-enabled
Server

TCP, UDP,
and RAW

IPv4 IPv6

Network
Interfaces

IPv4

IPv4

IPv4-only
IP host

IPv6

IPv6

IPv6-only
IP host

Figure 13. IPv4-only application on a dual-mode stack

Chapter 3. IPv6 protocol 43

are familiar. Servers do not require any changes, but client applications (or the

stack on which the client applications reside) need to be socksified to be able to

reach out through a SOCKS64 server to an IPv4-only partner.

Other solutions are based on a combination of network address translation, IP-level

protocol translation, and DNS-flow catcher/interpreter. These solutions all have

problems with application-level IP address awareness and end-to-end security.

Network address translation: IPv4 NAT translates one IPv4 (private) address into

another IPv4 (external) address. IPv6 NAT-PT translates an IPv4 address into an

IPv6 address.

Rules: There are several limitations with NAT-PT:

v All requests and responses pertaining to a session must be routed through the

same NAT-PT translator.

v There is a protocol translation limitation because a number of IPv4 fields have

changed meaning in IPv6. Details of IPv4 to IPv6 protocol translation can be

found in the Stateless IP/ICMP Translation Algorithm (SIIT) RFC.

v If an application carries the IP address in the payload, ALGs must be

incorporated.

v Lack of end-to-end security. The two end nodes that seek IPSec network level

security must both use IPv4 or IPv6.

v DNS messages and DNSSEC translation. An IPv4 end-node that demands DNS

replies be signed rejects replies that have been tampered with by NAT-PT.

Restriction: z/OS Communications Server TCP/IP does not provide a SOCKS64

server and does not contain NAT-PT functionality. If an IPv6-only client requires

access to an IPv4-only server running on z/OS, an external SOCKS64 or NAT-PT

node is required to translate the IPv6 packet to a corresponding IPv4 packet and

vice versa.

Considerations for configuring z/OS for IPv6

This section describes some general considerations for configuring IPv6 on z/OS,

including cases where multiple types of TCP/IP stacks are present.

Guideline: In this section, stack or TCP/IP stack is used as a generic term to

describe a protocol stack that can be defined as a UNIX System Services AF_INET

Physical File System (PFS) in the BPXPRMxx parmlib member (for example, z/OS

CS TCP/IP).

IPv6 stack support

IPv4-only stack

Some TCP/IP stacks only support IPv4 interfaces and are only capable of sending

or receiving IPv4 packets. These TCP/IP stacks are generally referred to as

IPv4-only stacks, as they support IPv4 but do not support communication over

IPv6 networks.

An IPv4-only stack supports AF_INET socket applications, but does not support

AF_INET6 socket applications.

Restriction: z/OS Communications Server TCP/IP can be started as IPv4-only

stack.

44 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|

IPv6-only stack

An IPv6-only stack supports IPv6 interfaces, but it does not support IPv4

interfaces. These TCP/IP stacks support AF_INET6 sockets and applications that

use them, as long as the IP addresses that are used are not IPv4-mapped IPv6

addresses. They do not support AF_INET sockets. Applications can send and

receive IPv6 packets by way of an IPv6-only stack, but they cannot send and

receive IPv4 packets.

Restriction: z/OS Communications Server TCP/IP cannot be started as an

IPV6-only stack.

Dual-mode stack

Many IPv6 TCP/IP stacks support both IPv4 and IPv6 interfaces and are capable of

receiving and sending IPv4 and IPv6 packets over the corresponding interfaces.

These TCP/IP stacks are generally referred to as a dual-mode stack IP stacks. This

does not indicate that there are two separate TCP/IP stacks running on such a

node, but it does indicate that the TCP/IP stack has built-in support for both IPv4

and IPv6.

A dual-mode stack supports AF_INET and AF_INET6 socket applications.

AF_INET applications can communicate using IPv4 addresses. IPv6-enabled

applications that use AF_INET6 sockets can communicate using both IPv6

addresses and IPv4 addresses (using the IPv4-mapped IPv6 address format).

Guideline: z/OS Communications Server TCP/IP can be started as a dual-mode

stack.

INET considerations

This section describes the INET considerations for IPv4-only and dual-mode

IPv4/IPv6 stacks.

IPv4-only stack

An IPv4-only stack supports AF_INET applications, but it does not support

AF_INET6 applications. Start an IPv4-only stack in an integrated sockets

environment in one of the following ways:

v Do not code an AF_INET6 statement in BPXPRMxx. This method is the easier of

the two. When AF_INET6 is not enabled, the underlying TCP/IP stack is started

as an IPv4-only stack, even if it is capable of supporting IPv6.

Restriction: This is the only way to start z/OS Communications Server TCP/IP

as an IPv4-only stack in an integrated sockets environment.

v Run a TCP/IP stack that is not capable of supporting IPv6. When starting a

TCP/IP stack that does not support IPv6, the stack ignores any AF_INET6

definitions that might appear in BPXPRMxx. As a result, the stack is started as

an IPv4-only stack, even when AF_INET6 is coded in BPXPRMxx.

When a TCP/IP stack is started as an IPv4-only stack in an Integrated Sockets

environment, applications can open AF_INET sockets and can only send and

receive IPv4 packets over IPv4 interfaces. However, applications are unable to open

AF_INET6 sockets.

Chapter 3. IPv6 protocol 45

|
|

Dual-mode IPv4/IPv6 stack

When both AF_INET and AF_INET6 are coded in BPXPRMxx and a dual-mode

capable stack is started, both AF_INET and AF_INET6 sockets are supported by

the stack, and applications can send and receive IPv4 and IPv6 packets.

Requirements: To enable AF_INET6 support in an integrated sockets environment,

the following two conditions must exist:

v AF_INET6 must be configured in BPXPRMxx. Note that AF_INET6 support can

be dynamically enabled by configuring AF_INET6 in BPXPRMxx and then

issuing the SETOMVS RESET= command to activate the new configuration.

v A dual-mode capable stack must be started after AF_INET6 is configured in

BPXPRMxx. Note that if a dual-mode capable TCP/IP stack is started before

configuring BPXPRMxx, it remains an IPv4-only stack as long as it remains

active. However, if it is stopped and then restarted, it restarts as a dual-mode

TCP/IP stack if AF_INET6 is configured in BPXPRMxx at the time it is restarted.

Requirement: To enable AF_INET6 support for z/OS Communications Server

TCP/IP, z/OS Communications Server TCP/IP must be started as a dual-mode

stack. z/OS Communications Server TCP/IP does not support being started as an

IPv6-only stack. In other words, if AF_INET6 is coded in BPXPRMxx, AF_INET

must also be coded. If it is not, then the z/OS Communications Server TCP/IP

stack fails to initialize.

Common INET considerations

This section describes additional INET considerations.

Enabling AF_INET6 support in a Common INET environment

Requirements: To enable AF_INET6 support in a Common INET environment, the

following conditions must exist:

v AF_INET6 must be configured in BPXPRMxx. Note that AF_INET6 support can

be dynamically enabled by configuring AF_INET6 in BPXPRMxx and then

issuing the SETOMVS RESET= command to activate the new configuration.

v At least one dual-mode capable stack must be started after AF_INET6 is

configured in BPXPRMxx. Note that any dual-mode capable TCP/IP stack

started before configuring BPXPRMxx remains an IPv4-only stack as long as it

remains active. However, if it is stopped and then restarted, it restarts as a

dual-mode TCP/IP stack if AF_INET6 is configured in BPXPRMxx at the time it

is restarted.

Guideline: Do not start some z/OS CS TCP/IP stacks with AF_INET6 support and

some without AF_INET6 support. If AF_INET6 support is dynamically enabled,

you should stop and restart all TCP/IP stacks which were active when AF_INET6

support was enabled. This allows these TCP/IP stacks to become dual-mode

stacks. After this occurs, all applications which are capable of opening AF_INET6

sockets should be stopped and restarted. This allows the restarted applications to

communicate over IPv4 and IPv6 networks.

Disabling AF_INET6 support in a Common INET environment

Disable AF_INET6 support in a Common INET environment in one of the

following ways:

v Stop all active dual-mode TCP/IP stacks while IPv4-only stacks remain active.

Applications are no longer be able to open AF_INET6 sockets, although they can

46 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

continue to use any AF_INET6 sockets that are already open and not bound to

one of the stopped dual-mode TCP/IP stacks. However, applications are able to

open AF_INET sockets.

v Dynamically disable AF_INET6 in BPXPRMxx and stop all active dual-mode

TCP/IP stacks. When restarted, the dual-mode capable TCP/IP stacks start as

IPv4-only stacks. In effect, this is a subset of the previous case. To disable

AF_INET6 support, issue the SETOMVS RESET= command to set the AF_INET6

MAXSOCKETS value to 0.

Supporting a mixture of dual-mode stacks and IPv4-only

stacks

When AF_INET6 sockets are supported, an IPv6-enabled application can use an

AF_INET6 socket to send and receive data with both IPv4 and IPv6 partners.

When communicating with an IPv6 partner, a native IPv6 address is used. When

communicating with an IPv4 partner, the IPv4 address is encoded as an IPv4-

mapped IPv6 address. When an IPv4-mapped IPv6 address is used on an

AF_INET6 socket, a dual-mode TCP/IP stack realizes the partner is attached to the

IPv4 network and routes packets over IPv4 interfaces.

As long as all TCP/IP stacks started in a Common INET environment provide

native support AF_INET6 sockets, socket calls can be passed directly to the

underlying TCP/IP stack. However, when both dual-mode stacks and IPv4-only

stacks are started in a Common INET environment, the IPv4-only stacks are not

able to process the native AF_INET6 socket calls. As a result, an application which

uses IPv4-mapped IPv6 addresses on an AF_INET6 socket needs transformations

done by Common INET to communicate with partners over any active IPv4-only

stack.

Common INET provides AF_INET6 transformations that allow AF_INET6

applications to communicate with an IPv4 peer over IPv4-only stack. The

AF_INET6 transformations convert AF_INET6 socket calls to the corresponding

AF_INET socket calls before sending them to an IPv4-only stack and converts

AF_INET responses received from the IPv4-only stack to the corresponding

AF_INET6 responses before making them available to the AF_INET6 application.

Note that even with this transformation, AF_INET6 applications must use

IPv4-mapped IPv6 addresses to communicate with IPv4 applications.

Figure 14 on page 48 shows a mixture of dual-mode stacks and IPv4-only stacks:

Chapter 3. IPv6 protocol 47

Configuring a common INET environment

If a mixture of dual-mode capable stacks and IPv4-only stacks are started in a

Common INET environment, the default stack should be one of the dual-mode

capable stacks. Common INET routes certain requests to the default stack, and this

enables the stack with more functional capability to process these requests.

If AF_INET6 support is dynamically configured in BPXPRMxx, stop and restart all

dual-mode-capable TCP/IP stacks. After the TCP/IP stacks have been stopped and

restarted, stopped and restarted all IPv6-enabled applications.

AF_INET6
socket

AF_INET6 PFS AF_INET6 PFS AF_INET PFS AF_INET PFS

AF_INET
socket

AF_INET6
Transformations

LFS

CINET

IPv4 Routes

IPv6 Routes

TCP, UDP, and RAW TCP, UDP, and RAW TCP, UDP, and RAW

IPv6

IPv6-only stack
(not supported on z/OS
- at a minimum, an IPv4
loopback address will
always be configured)

Dual Mode z/OS TCP/IP
Stack

IPv4-only TCP/IP Stack
(OEM, ?)

IPv4 and IPv6 IPv4

Network Interfaces Network Interfaces Network Interfaces

Figure 14. Mixing dual-mode and IPv4-only stacks

48 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Part 2. IPv6 enablement

This section contains the following chapters:

Chapter 4, “Configuring support for z/OS,” on page 51 describes the IPv6 function

provided in z/OS Communications Server and how to enable it.

Chapter 5, “Configuration guidelines,” on page 63 contains recommendations and

guidance information for implementing the IPv6 functions provided in z/OS

Communications Server.

© Copyright IBM Corp. 2002, 2006 49

50 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 4. Configuring support for z/OS

This chapter describes the configuration support needed for z/OS and contains the

following sections:

v “Ensure that important features are supported over IPv6”

v “Assess automation and application impacts due to Netstat and message

changes”

v “Determine how remote sites connect to the local host”

v “Determine how remote sites connect to the local host”

v “SNA access” on page 52

v “Avoid using IP addresses for identifying remote hosts” on page 52

v “Considerations when using the BIND parameter on the PORT statement” on

page 53

v “Security considerations” on page 53

v “Application programming considerations” on page 54

v “Enabling IPv6 support” on page 54

v “Resolver processing” on page 56

v “User exits” on page 58

v “Which applications started with inetd are IPv6 enabled?” on page 58

v “How does IPv6 affect SMF records?” on page 59

v “How does IPv6 affect the Policy Agent?” on page 59

v “How does IPv6 affect SNMP?” on page 60

v “Monitoring the TCP/IP network” on page 60

v “Diagnosing problems” on page 62

Ensure that important features are supported over IPv6

See Chapter 11, “IPv6 support tables,” on page 131 to ensure all needed features

are supported over IPv6.

Assess automation and application impacts due to Netstat and

message changes

Netstat output for stacks that are IPv6-enabled has a different format in order to

accommodate the longer IPv6 address. This becomes an issue when applications

that parse Netstat output are used. The same considerations also apply to

applications which use IP addresses in their automation because IP addresses now

have a longer format.

Determine how remote sites connect to the local host

It is likely that clients that are not connected to a link that is directly attached to a

z/OS image require access to servers that run on that z/OS image. Because z/OS

provides a dual-stack implementation, z/OS can send IPv4 packets to partner

nodes that are connected to the IPv4 network and IPv6 packets to partner nodes

that are connected to the IPv6 network. If the client node is connected to the same

routing infrastructure as the z/OS node, traffic is routed between z/OS and the

client node by way of the native network transport.

© Copyright IBM Corp. 2002, 2006 51

|

|

In some cases, the two nodes might not be connected to the same routing

infrastructure. For instance, each node might be attached to distinct IPv6 networks

that are separated by an intermediate IPv4 network. When this occurs, tunneling

might be used to transmit the native IPv6 packets across the IPv4 network. This

allows nodes in the disjoint IPv6 networks to send packets to one another.

z/OS does not support functioning as an endpoint for this type of tunnel.

However, z/OS might route traffic over a tunnel in the intermediate network. In

this case, the tunnel endpoint used by z/OS would be an IPv6/IPv4 router in the

network that supports one of several tunneling protocols. The tunnel endpoint

used by z/OS might be attached to the same LAN to which z/OS attaches or

might be attached to a remote network link. In either case, the presence of the

tunnel endpoint is transparent to z/OS; from the z/OS perspective, traffic is routed

over the native IPv6 network.

SNA access

Both Enterprise Extender and TN3270 allow access to SNA applications over an

IPv6 network as well as an IPv4 network. For both protocols, it is possible to

simultaneously support connectivity over IPv4 and IPv6 networks. Enterprise

Extender uses separate path statements and connection networks for each protocol.

By assigning different weights to Transmission Groups that use different network

protocols, it is possible to have SNA traffic prefer being routed over the IPv6

network or the IPv4 network. For TN3270, the network protocol used is

determined by the remote TN3270 client.

Guideline: For Enterprise Extender and TN3270, use global unicast addresses.

While link-local addresses might work in certain configurations, they are not

suitable for use when connecting between partner companies. There are few, if any,

IPv6 NAT devices which can perform the necessary mappings between limited

scope addresses and globally routable addresses and, given the vast number of

globally unique IPv6 addresses available, are not necessary.

Avoid using IP addresses for identifying remote hosts

In IPv4 networks, some sites and applications attempt to use the remote IP address

to identify the client node which is connecting. In general, do not do this for IPv4,

because the client address can often be unpredictable, either due to the client using

DHCP to obtain its address or due to the client accessing the server from behind a

NAT (Network Address Translator) device.

In IPv6, the client address is likely to become even more volatile than it is in IPv4

networks. Using Stateless Address Autoconfiguration, a client’s address is

dynamically derived from the MAC address of the network adapter used for

connectivity. IPv6 also allows clients to pseudo-randomly generate IP addresses,

referred to as temporary addresses, which can be used for one or more

connections. These temporary addresses can be generated as frequently as the

client desires- once a day, once an hour, or even more frequently. In general, the

temporary addresses are not placed in the DNS, making it impossible to use DNS

to map the IP address to a host name.

Result: The client IP addresses are unpredictable and subject to frequent change. In

addition, it is possible, and even likely, that a server is unable to map the client

address to a host name. If a mechanism to identify the remote host is required,

then a different mechanism (client certificate, password, and so on) should be used

to identify the remote host. For example, this approach is used by Enterprise

52 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|
|
|
|
|
|
|

Extender. For IPv6, Enterprise Extender does not support configuring or passing

IPv6 addresses. Instead, it uses hostnames to identify Enterprise Extender nodes.

Considerations when using the BIND parameter on the PORT

statement

The PORT statement reserves a port for the use of a particular server. It normally

does not distinguish between IPv4 and IPv6; the port is reserved regardless of

which type of address the application uses. The BIND keyword on the PORT

statement allows you to force an INADDR_ANY listener to listen on a particular IP

address. You can now specify an IPv6 address on this keyword. INADDR_ANY

listeners are converted to an IPv4 address, but ignores an IPv6 address on the

BIND keyword. IN6ADDR_ANY listeners are converted to either an IPv4 address

(the IPv4-mapped form of that address) or an IPv6 address, depending on what is

specified with the BIND keyword.

If you use the BIND option, your server can listen only for IPv4 connections or

IPv6 connections, but not both. To have the same service serve both IPv4 and IPv6

clients, you might need to start two instances of it, one bound to an IPv4 address

and one to an IPv6 address.

With SHAREPORT or SHAREPORTWLM keyword, you can start multiple

instances of the server and have connections automatically load balanced between

them. This function is supported for TCP listeners only. All IPv4 connection

requests are load balanced between the set of IPv4 listeners (including AF_INET6

IN6ADDR_ANY listeners), while all IPv6 connection requests are load balanced

between the set of IPv6 listeners. See the z/OS Communications Server: IP

Configuration Reference for information about the load balancing algorithms used by

each of these parameters.

Security considerations

On z/OS Communications Server, not all security features that are supported over

an IPv4 transport are enabled when communicating by way of an IPv6 transport.

For instance, IPSec, Network Access Control, Stack and Port Access Control, TLS,

SSL, and Kerberos (Kerberos Version 5 and GSSAPIs) are enabled for both IPv4

and IPv6, whereas Intrusion Detection is enabled for IPv4 but not for IPv6. Refer to

Table 36 on page 134 for a list of features supported for IPv4 or IPv6.

When a security function is supported over IPv4 but not over IPv6, the security

feature is exercised when data is transmitted over the IPv4 transport. This is true

whether the application uses AF_INET or AF_INET6 sockets. However, when an

AF_INET6 socket application communicates over the IPv6 transport, security

features that are supported over IPv4 only are not exercised.

Result: For the same local application, some security features can be exercised

when communicating by way of IPv4, but not when communicating by way of

IPv6.

To avoid creating a potential security exposure, it is important to determine if any

important security features are supported over IPv4 but not over IPv6 prior to

enabling AF_INET6 on a given LPAR. If only a subset of applications utilize such a

security feature, then it is sufficient to ensure that those applications communicate

only over the IPv4 transport.

Chapter 4. Configuring support for z/OS 53

To ensure that the IPv4 transport is used, the following methods are available:

v Verify that the application uses AF_INET sockets. Applications that use AF_INET

sockets are able to communicate only by way of the IPv4 transport.

v Configure the application to bind to an IPv4 address. Applications that bind to

an IPv4 address are able to communicate using the IPv4 transport only.

v Use the BIND parameter on the PORT statement to cause the application to bind

to an IPv4 address.

Application programming considerations

Refer to Part 3, “Application enablement,” on page 69 for information about

application programming considerations.

Enabling IPv6 support

z/OS Communications Server can be run as an IPv4-only stack or as a dual-mode

stack (IPv4 and IPv6). The BPXPRMxx parmlib member determines which mode is

used. The following configurations are possible:

v INET IPv4 only

v INET IPv4/IPv6 dual-mode stack

v CINET IPv4 only

v CINET IPv4/IPv6 dual-mode stack

Restriction: After a stack has been started, you cannot change its mode without

stopping and restarting the stack.

You can configure either a single AF_INET or both AF_INET and AF_INET6.

Although coding AF_INET6 alone is not prohibited, TCP/IP does not start because

the master socket is AF_INET and the call to open it fails.

IPv4-only BPXPRMxx sample definition:

FILESYSTYPE Type(INET) Entrypoint(EZBPFINI)

NETWORK DOMAINNAME(AF_INET)

 DOMAINNUMBER(2)

 MAXSOCKETS(2000)

 TYPE(INET)

INET IPv4/IPv6 dual-mode stack BPXPRMxx sample definition:

Dual-mode stack support is defined by using two NETWORK statements (one for

AF_INET and one for AF_INET6) in the BPXPRMxx parmlib member. For example:

FILESYSTYPE Type(INET) Entrypoint(EZBPFINI)

NETWORK DOMAINNAME(AF_INET)

 DOMAINNUMBER(2)

 MAXSOCKETS(2000)

 TYPE(INET)

NETWORK DOMAINNAME(AF_INET6)

 DOMAINNUMBER(19)

 MAXSOCKETS(3000)

 TYPE(INET)

Separate MAXSOCKETS values are supported. The IPv6 default is the IPv4

specified value.

CINET IPv4-only BPXPRMxx sample definition:

54 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Multiple TCP/IP stacks in one MVS image or LPAR are only supported by using

Common INET (CINET). Each TCP/IP stack is defined in the BPXPRMxx parmlib

member using a SUBFILESYSTYPE statement. These definitions are identical to

what was used prior to IPv6 support. The following example shows the definitions

for three IPv4-only stacks:

FILESYSTYPE TYPE(CINET) ENTRYPOINT (BPXTCINT)

NETWORK DOMAINNAME(AF_INET)

 DOMAINNUMBER(2)

 MAXSOCKETS(2000)

 TYPE(CINET)

 INADDRANYPORT(20000)

 INADDRANYCOUNT(100)

SUBFILESYSTYPE NAME(TCPCS) TYPE(CINET) ENTRYPOINT(EZBPFINI)

SUBFILESYSTYPE NAME(TCPCS2) TYPE(CINET) ENTRYPOINT(EZBPFINI)

SUBFILESYSTYPE NAME(TCPCS3) TYPE(CINET) ENTRYPOINT(EZBPFINI)

CINET IPv4/IPv6 dual-mode stack BPXPRMxx sample definition:

Dual-mode stack (IPv4/IPv6) support is defined by using two NETWORK

statements in the BPXPRMxx member. Each TCP/IP stack is defined in the

BPXPRMxx parmlib member with SUBFILESYSTYPE. All z/OS Communications

Server stacks defined under the two NETWORK statements are IPv4 or IPv6

stacks. The following example shows the definitions for three dual (IPv4/IPv6)

stacks:

FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT)

NETWORK DOMAINNAME(AF_INET)

 DOMAINNUMBER(2)

 MAXSOCKETS(2000)

 TYPE(CINET)

 INADDRANYPORT(20000)

 INADDRANYCOUNT(100)

NETWORK DOMAINNAME(AF_INET6)

 DOMAINNUMBER(19)

 MAXSOCKETS(3000)

 TYPE(CINET)

SUBFILESYSTYPE NAME(TCPCS) TYPE(CINET) ENTRYPOINT(EZBPFINI)

SUBFILESYSTYPE NAME(TCPCS2) TYPE(CINET) ENTRYPOINT(EZBPFINI)

SUBFILESYSTYPE NAME(TCPCS3) TYPE(CINET) ENTRYPOINT(EZBPFINI)

Configuring z/OS IPv6 support

The following configuration statements enable IPv6 addresses to be configured.

Refer to the z/OS Communications Server: IP Configuration Reference for detailed

information on each of these statements.

BEGINROUTES

Code this statement to add static IPv6 routes to the IP routing table.

BEGINROUTES with IPv6 addresses coded is rejected if the stack is not

enabled for IPv6. The GATEWAY statement does not support IPv6 routes.

DELETE PORT (BIND IP address)

IPv6 must be enabled for IPv6 addresses to be coded on these

configuration statements.

INTERFACE

An IPv6-enabled stack still uses DEVICE and LINK to define IPv4

interfaces. However, you cannot use DEVICE and LINK to define IPv6

interfaces. You must use the INTERFACE statement to define IPv6

interfaces. The stack must be enabled for IPv6 to use this statement.

Chapter 4. Configuring support for z/OS 55

IPCONFIG

A FORMAT keyword has been added to control the format of the

command output if the stack is not enabled for IPv6.

IPCONFIG6

This statement is rejected if the stack is not enabled for IPv6. However, the

SOURCEVIPA option has a dependency on the INTERFACE statement. You

must specify the SOURCEVIPAINTERFACE keyword on the INTERFACE

statement for each interface on which you desire that SOURCEVIPA take

effect.

PKTTRACE

IPv6 must be enabled for IPv6 addresses to be coded on these

configuration statements.

PORT (BIND IP address)

IPv6 must be enabled for IPv6 addresses to be coded on these

configuration statements.

Resolver processing

IPv6 support introduces several changes to how host name and IP address

resolution is performed. These changes affect several areas of resolver processing,

including:

v New resolver APIs are introduced for IPv6 enabled applications. See “Name and

address resolution functions” on page 77 for more details.

v New DNS resource records are defined to represent hosts with IPv6 addresses;

therefore new, network flows between resolvers and name servers (in place of

DNS IPv4 A records).

v A new algorithm is defined to describe how a resolver needs to sort a list of IP

addresses returned for a multihomed host. See “Default destination address

selection” on page 36 for more information.

v New statements in the resolver configuration files are defined, and new search

orders are implemented for local host tables processing.

Resolver configuration

In order to avoid impacting existing IPv4 queries, the use of /etc/hosts,

HOSTS.LOCAL, HOSTS.SITEINFO, and HOSTS.ADDINFO files continue to be

supported for IPv4 addresses only. The HOSTS.SITEINFO and HOSTS.ADDRINFO

files continue to be generated from HOSTS.LOCAL file by way of the MAKESITE

utility.

ETC.IPNODES is a new local host file (in the style of /etc/hosts) that might

contain both IPv4 and IPv6 addresses. IPv6 addresses can be defined in

ETC.IPNODES only. The introduction of this file allows the administration of local

host files to more closely resemble that of other TCP/IP platforms and eliminates

the requirement of post-processing the files (specifically, MAKESITE).

The following new search order is used for selecting new ETC.IPNODES local host

files for IPv6 searches in MVS and UNIX environments:

1. GLOBALIPNODES

2. RESOLVER_IPNODES environment variable (UNIX only)

3. userid/jobname.ETC.IPNODES

4. hlq.ETC.IPNODES

5. DEFAULTIPNODES

56 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

6. /etc/ipnodes

IPv6 search order is simplified, but to minimize migration concerns, the IPv4

search order continues to be supported as in previous releases. The side effect of

this is that by default, you would be required to maintain two different local host

files (for example, IPv4 addresses in HOSTS.LOCAL, IPv6 and IPv4 addresses in

ETC.IPNODES) for your system.

An easier approach is to use the new COMMONSEARCH statement in the resolver

setup file. By specifying COMMONSEARCH, you indicate that only the new IPv6

search order should be used, regardless of whether the search is for IPv6 or IPv4

resources. This means that only one file (ETC.IPNODES) has to be managed for the

system, and that all the APIs utilize the same single file. The use of

COMMONSEARCH reduces IPv6 and IPv4 searching to a single search order, and

also reduces the z/OS UNIX and native MVS environments to a single search

order.

For detailed information about search orders, refer to z/OS Communications Server:

IP Configuration Guide.

IPv4-only configuration statements

Only IPv4 addresses can be specified on the NAMESERVER and NSINTERADDR

TCPIP.DATA statements. This implies that all resolver communications with a

name server occurs using AF_INET sockets, even when resource records related to

IPv6 addresses are being queried.

The other statement in the TCPIP.DATA data set that currently supports IP address

specification is the SORTLIST directive. SORTLIST is used for sorting IPv4

addresses only; the default destination address selection algorithm is used to sort

IPv6 addresses.

IPv6/IPv4 configuration statements

Use the following statements for IPv6/IPv4 configuration:

COMMONSEARCH/NOCOMMONSEARCH resolver setup statement

Use these statements when a common local host file search order is to be

used or not used. The COMMONSEARCH statement allows the same

search order of local host files be used for an IPv4 or a IPv6 query. It also

allows the same search order to be used in both the native MVS and z/OS

UNIX environments.

GLOBALIPNODES resolver setup statement

Use this statement to specify the global local host file.

DEFAULTIPNODES resolver setup statement

Use this statement to specify the default local host file.

Steps for implementing the resolver functions

Perform the following steps to implement the resolver functions

1. Add new resolver setup statements.

__

2. Create the IPNODES local host files.

__

3. Add IPv6 resource records to DNS.

__

Chapter 4. Configuring support for z/OS 57

For detailed information, refer to Understanding resolvers in the z/OS

Communications Server: IP Configuration Guide.

Resolver communications with the Domain Name System

(DNS)

To retrieve IPv6 data from the proper name server, you must ensure that the

resolver configuration data set points to name servers that can resolve the IPv6

queries. A resolver does not have to communicate with a name server over an IPv6

network in order to retrieve IPv6 data. The z/OS resolver can use only IPv4 to

communicate with a name server.

User exits

Several TCP/IP applications provide exit facilities that can be used for a variety of

purposes. Several of these exits include IP addresses or SOCKADDR structures as

part of the parameters passed to the exits.

The following exits are available to support IPv6 addresses or SOCKADDR

structures:

v FTP - All FTP exits have been enhanced to support IPv6 addresses except for

FTPSMFEX. Samples for these exits are provided in SEZAINST. Refer to z/OS

Communications Server: New Function Summary for more information on changes

to these exits:

– FTCHKCMD

– FTCHKCM1

– FTCHKCM2

– FTCHKJES

– FTCHKPWD

– FTPOSTPA

– FTPOSTPR
v The TSO remote execution server user exit - RXEXIT.

Which applications started with inetd are IPv6 enabled?

The following z/OS UNIX applications support IPv6 addresses:

v Internet daemon (inetd) server

v Remote execution (orexecd) server

v Remote shell (orshd) server

v Telnet server (otelnetd)

Modifying inetd.conf

The inetd.conf file must be modified to support the IPv6-enabled applications. In

order for the z/OS UNIX servers to support IPv6 connections, tcp6 must be

specified for the protocol of the service name in the inetd.conf file. When tcp6 is

defined, IPv4 clients are also supported.

The z/OS UNIX rsh server and Telnet server support Kerberos for IPv4

connections, but not for IPv6 connections.

58 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

How does IPv6 affect SMF records?

Most of the TCP/IP SMF records currently contain IP addresses as part of their

content. The data in these records is typically processed by programs, some of

which are real-time SMF exits and others that post-process the SMF records after

the records are created. In z/OS V1R2, a new type of TCP/IP SMF record, type

119, was introduced. The type 119 SMF records were created to provide a

standardized structure for all SMF records provided by TCP/IP. This included a

standard representation of IP addresses appearing across all type 119 records in

which IPv4 addresses appear in IPv4-mapped form and IPv6 addresses appear as

is.

Guideline: The type 119 records constitute a superset of the older type 118 records

in terms of data that is available. Users exploiting IPv6 should migrate to the SMF

119 record.

Type 118 FTP client and server transfer completion records are generated for IPv6

connections. In this case, the FTP records use IP addresses of 255.255.255.255 to

indicate that the address cannot be included. All other type 118 SMF records are

not generated for IPv6 connections.

For more information about SMF records, see the z/OS Communications Server: IP

Configuration Guide.

How does IPv6 affect the Policy Agent?

The Policy Agent supports IPv6 in the following ways:

v Table 6 lists the policy types that support IPv6.

v IPv6 XCF addresses can be specified in a sysplex distributor environment.

 Table 6. IPv6 support for different policy types

Policy type IPv6 supported?

IDS No

IPSec Yes

QoS Yes

AT-TLS Yes

When IPv6 addresses are used in policies for a given stack, as configured to Policy

Agent using the TcpImage configuration statement, the stack must be IPv6 enabled.

IPv6 policy is installed but is not enforceable in a stack that is not IPv6 enabled. If

the corresponding stack is recycled later with IPv6 enabled, all policies are read

and parsed again. At this point, any policies with IPv6 addresses are enforced.

The use of IPv6 interfaces in QoS policies is problematic, because such interfaces

can be assigned multiple IP addresses. As a result, the only way to specify IPv6

addresses in policies is by interface name. The interface name can also be used for

IPv4 interfaces, as well as the IPv4 address. The name specified in the policies for

IPv4 interfaces is the name specified on the LINK statement in the TCP/IP profile.

For IPv6 interfaces, it is the name specified on the INTERFACE statement. IPv6

interfaces can be specified for QoS policies and also for the SetSubnetPrioTosMask

statement or LDAP object.

Chapter 4. Configuring support for z/OS 59

|

|

||

||

||

||

||

||
|

To support sysplex distributor policy performance monitoring, as specified using

the PolicyPerfMonitorForSDR configuration statement, the Policy Agent needs to

establish TCP connections between the qosCollector threads that run on the

distributing stacks and the qosListener threads that run on the target stacks.

Depending on the sysplex configuration, either one or two connections between

these threads are established. One connection is established for all target stacks

that are configured using IPv4, and one connection is established for all target

stacks configured using IPv6. Because a given target can be configured using both

IPv4 and IPv6, it is possible that two connections are established between a given

qosCollector and qosListener thread. When this occurs, only information related to

distributed IPv4 DVIPAs flows over the IPv4 connection and likewise for the IPv6

connection.

How does IPv6 affect SNMP?

The following SNMP components operate over IPv6 networks and handle

IPv6-related management data.

Requirement: The TCP/IP stack on your system must support IPv6 networking to

take advantage of the IPv6 support offered by these components. If not, these

applications operate in IPv4 mode.

v SNMP agent

v z/OS UNIX snmp/osnmp command

v Trap Forwarder daemon

v Distributed Protocol Interface (DPI®)

v TN3270 Telnet subagent

The TCP/IP subagent supports IPv6 management data in the following MIB

modules:

v IF-MIB from RFC 2233 - Interface data

v IP-MIB from draft-ietf-ipv6-rfc2011-update-04.txt - IP and ICMP data

v IP-FORWARD-MIB from draft-ietf-ipv6-rfc2096-update-05.txt - Route data

v TCP-MIB from draft-ietf-ipv6-rfc2012-update-04.txt - TCP connection data

v UDP-MIB from draft-ietf-ipv6-rfc2013-update-03.txt - UDP endpoint data

v TCP/IP Enterprise-specific MIB (IBMTCPIPMVS-MIB)

Refer to Managing TCP/IP Network Resources with SNMP in z/OS Communications

Server: IP System Administrator’s Commands for more details regarding the TCP/IP

Subagent support.

Monitoring the TCP/IP network

This section describes how IPv6 affects reports.

How does IPv6 affect Netstat?

v In order to accommodate full IPv6 address information, Netstat reports have

been redesigned. If the TCP/IP stack is IPv6 enabled, reports are displayed in a

different format than with IPv4. This might impact applications that are used to

parse Netstat output. The same considerations apply to applications which use

IP addresses in their automation since IP addresses now have a longer size. If

60 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

the TCP/IP stack is not IPv6 enabled, the report format is unchanged unless the

FORMAT LONG parameter is specified on the Netstat command or on the

IPCONFIG PROFILE statement.

v IPv6 statistic information is added to the Netstat STATS/-S report.

v Information regarding whether the stack is IPv6 enabled or not is added to the

Netstat UP/-u report.

v For a server that opens an AF_INET6 socket, binds to IN6ADDR_ANY, and does

a socketopt with IPv6_V6ONLY against the socket, the local address information

in the connection related reports are contained the text (IPV6_ONLY).

Netstat ALLCONN/-a example on an IPv6 enabled stack:

 MVS TCP/IP NETSTAT CS V1R6 TCPIP NAME: TCPCS 17:40:36

 User Id Conn State

 ------- ---- -----

 FTPABC1 00000021 Listen

 Local Socket: 0.0.0.0..21

 Foreign Socket: 0.0.0.0..0

 FTPDV6 00000086 Listen

 Local Socket: ::..21 (IPv6_ONLY)

 Foreign Socket: ::..0

Control of output format

When the stack is IPv6-enabled, the report output is displayed in the new format,

which is referred to as long format.

In order to allow the stack to be configured for IPv4-only operation (not IPv6

enabled and short format displays), but still allow a developer who needs to

modify programs that rely on Netstat output to update and test new versions of

these programs with long format output from Netstat, the following output format

control options are available:

FORMAT SHORT

The output is displayed in the existing IPv4 format.

FORMAT LONG

The output is displayed in the format which supports IPv6 addresses.

A stack-wide output format parameter (FORMAT SHORT/LONG) can be specified

on the IPCONFIG profile statement. It instructs Netstat to produce output in one

of the above formats. FORMAT SHORT is only applicable when the stack is not

IPv6 enabled.

In addition to the stack-wide FORMAT parameter, a Netstat command line option

FORMAT/-M with keyword SHORT/LONG is supported to override the

stack-wide parameter. When a user specifies the Netstat command line format

option, it overrides the stack-wide format parameter on an IPv4-only stack.

What has changed?

All Netstat reports have been modified to support IPv6.

The following Netstat report is added to display Neighbor Discovery cache

information:

v Netstat ND/-n

Guideline: The Netstat GATE/-g is not enhanced to support IPv6 routes. Netstat

ROUTE/-r is the suggested alternative.

Chapter 4. Configuring support for z/OS 61

For more detailed information, refer to Netstat in z/OS Communications Server: IP

System Administrator’s Commands.

How does IPv6 affect Ping and Traceroute?

Ping and Traceroute provide the following support for IPv6:

v IPv6 IP addresses or host names that resolve to IPv6 IP addresses, can be used

for destinations.

v IPv6 IP addresses can be used as the source IP address for the command’s

outbound packets.

v IPv6 IP addresses or interface names can be used as the outbound interface.

v A new ADDRTYPE/-A command option can be specified to indicate whether an

IPv4 or IPv6 IP address should be returned from host name resolution.

v IPv4-mapped IPv6 IP addresses are not supported for any option value.

Diagnosing problems

This section describes IPv6 problem diagnosis considerations.

How does IPv6 affect IPCS?

IPCS formatting has been enhanced for IPv6 for TCPIPCS dump analysis and

CTRACE components SYSTCPIP and SYSTCPDA. For detailed information about

IPCS, refer to TCP/IP services traces and IPCS support in the z/OS Communications

Server: IP Diagnosis Guide.

How does IPv6 affect packet and data tracing?

Packet and data trace functions have been enhanced for IPv6 to allowing tracing of

IPv6 addresses. For detailed information about trace functions, refer to TCP/IP

services traces and IPCS support in z/OS Communications Server: IP Diagnosis Guide.

62 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 5. Configuration guidelines

This chapter describes IPv6 configuration guidelines and contains the following

sections:

v “Connecting to an IPv6 Network”

v “IPv6 address assignment guidelines” on page 64

v “Updating DNS definitions” on page 66

v “Using source VIPA” on page 66

v “Using OMPROUTE or define static routes to improve network selection” on

page 67

v “Connecting to non-local IPv4 locations” on page 68

v “IPv6-only application access to IPv4-only application” on page 68

Connecting to an IPv6 Network

z/OS Communications Server TCP/IP supports direct attachment to IPv6 networks

in the following ways:

IPAQENET6 interface type

TCP/IP attaches to an IPv6 LAN by way of OSA-Express in QDIO mode,

using either Fast Ethernet or Gigabit Ethernet. A single physical LAN can

carry both IPv4 and IPv6 packets over the same media. While the physical

network is shared, from a logical view there are two separate LANs, one

carrying IPv4 traffic and one carrying IPv6 traffic. A single OSA-Express

port can be used to carry both IPv4 and IPv6 traffic simultaneously.

MPCPTP6 interface type

TCP/IP can directly communicate with other IPv6 z/OS Communications

Server TCP/IP V1R5 (or later) images, using ESCON® Channel-to-Channel

Adapters, XCF connectivity (if the stacks are in the same sysplex), or the

IUTSAMEH facility (if the stacks are on the same LPAR).

IPAQIDIO6 interface type

TCP/IP can directly communicate with other IPv6 z/OS Communications

Server TCP/IP V1R7 (or later) images and z/Linux images using

HiperSockets connectivity. This applies only to stacks running on the same

central processor complex and running on a zSeries® server that supports

IPv6 HiperSockets .

Guideline: All three of these interface types can be used for LPAR-to-LPAR IPv6

communication, best performance is achieved by using the IPAQIDIO6 interface

type (if both stacks meet the criteria previously listed). The performance of the

other interface types varies with the speed of the underlying media.

For stack-to-stack communications within a single LPAR, the MPCPTP6 interface

type (using IUTSAMEH) provides the best performance.

To transport IPv6 traffic to another host, z/OS TCP/IP must send traffic using

native IPv6 packets. Note that when communicating with another IPv6 host, a

router within the network might tunnel the IPv6 packet across an IPv4 network to

a remote IPv6 LAN or host. However, z/OS Communications Server TCP/IP

© Copyright IBM Corp. 2002, 2006 63

|
|
|
|
|

cannot be the tunnel endpoint, and the tunneling by an intermediate router is

transparent to z/OS Communications Server TCP/IP.

IPv6 address assignment guidelines

This section provides IPv6 address assignment guidelines.

Avoid using site-local addresses

 Site-local addresses were designed to use private address prefixes that

could be used within a site without the need for a global prefix. Until

recently, the full negative impacts of site-local addresses in the Internet

were not fully understood. Due to problems in the use and deployment of

addresses constructed using a site-local prefix, the IETF has deprecated the

special treatment given to the site-local prefix. An IPv6 address constructed

using a site-local prefix is now treated as a global unicast address. The

site-local prefix can be reassigned for other use by future IETF standards

action.

 Guideline: Because of this, site-local unicast addresses should not be used.

Use global unicast addresses instead of site-local addresses.

Defining the interface ID for physical interfaces

If you do not manually configure the interface ID, the system selects an

interface ID for you, using a random value (on an MPCPTP6 interface), a

value derived from the MAC address (on an IPAQENET6 interface), or a

value derived from the IQD CHPID (on an IPAQIDIO6 interface). To

simplify the configuration effort, let the system select the interface ID. In

some cases, though, it is necessary or desirable to control all IPv6

addresses which are assigned to a physical adapter. This might be useful if

other IPv6 nodes need to define static routes to this host, or if you use

IPv6 addresses in Multi-Level Security policies.

Use stateless address autoconfiguration for physical interfaces

IPv6 addresses for physical interfaces can be manually defined or can be

automatically assigned by stateless address autoconfiguration. Use the

stateless address autoconfiguration for this assignment. Using stateless

address autoconfiguration reduces the amount of definition required to

enable IPv6 support, while making future site renumbering easier.

Use VIPAs

Using static VIPAs removes hardware as a single point of failure for

connections being routed over the failed hardware. If you are not using

dynamic routing, configure at least one static VIPA for each LAN to which

z/OS Communications Server TCP/IP is connected. Each VIPA configured

this way should be associated with all physical adapters connected to that

same LAN.

 Requirement: Static VIPAs must be manually configured; z/OS

Communications Server TCP/IP does not support stateless address

autoconfiguration for VIPAs.

 Dynamic VIPAs (DVIPAs) can also be used in an IPV6 network. The

decision to use DVIPAs in an IPv6 network is similar to the decision to use

DVIPAs in an IPv4 network. For detailed information, refer to Using

Dynamic VIPAs (DVIPAs) in the z/OS Communications Server: IP

Configuration Guide.

Selecting the network prefix

64 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

z/OS Communications Server TCP/IP does not perform duplicate address

detection for VIPAs, because they are not assigned to a physical interface

attached to the LAN.

 Guideline: To avoid possible address collisions, the network prefix used

for static VIPAs should be different from the network prefix used for

physical interfaces (either manually configured or autoconfigured using

stateless address autoconfiguration).

 If either the IPv6 OSPF or IPv6 RIP dynamic routing protocol of

OMPROUTE is being used, the network prefix for a static VIPA should not

be the same as any prefix defined as on-link on a physical link. The VIPA

can then be associated with interfaces attached to any physical link, thus

enabling maximum redundancy. This association between VIPAs and

interfaces attached to physical links is accomplished using the

SOURCEVIPAINTERFACE parameter of the INTERFACE statement for the

interface attached to the physical link.

 If IPv6 OSPF or IPv6 RIP dynamic routing protocol of OMPROUTE is not

being used, the network prefix for a static VIPA should be selected from

the set of prefixes which are advertised by way of router discovery by one

or more routers attached to the LAN. The prefix should be advertised as

on-link and not to be used for address autoconfiguration. By using an

on-link prefix, hosts and routers attached to the LAN use neighbor

discovery address resolution to obtain a link-layer address for the VIPA.

z/OS Communications Server TCP/IP selects a link-layer address of an

attached physical interface when responding to the query, and the attached

host or router forwards the packet to z/OS Communications Server

TCP/IP. This eliminates the need to define static routes for VIPAs at hosts

and routers attached to the same LAN as z/OS Communications Server

TCP/IP. By using a prefix that is not being used for address

autoconfiguration, the network prefix is not used by hosts for

autoconfiguring addresses for physical interfaces.

Selecting the interface identifier

 The VIPA interface identifier must be unique among all IP addresses that

are created using the combination of network prefix and interface

identifier. Any scheme can be used in generating the interface identifiers,

as long as they are unique. By using a network prefix that is not used by

stateless address autoconfiguration, it is only necessary to ensure the

interface identifier is unique among all VIPAs that are sharing the same

network prefix.

Effects of site renumbering on static VIPAs

 When renumbering a site, new network prefixes are assigned to

subnetworks. The existing network prefixes are marked as deprecated,

during which time either the new prefixes or the old, deprecated prefixes

can be used. After some time period, the deprecated network prefixes are

deleted, along with all IPv6 addresses which use the network prefix.

 For autoconfigured addresses, this process is automatically managed by

stateless address autoconfiguration algorithms. For manually defined

addresses, including all VIPAs, the process must be managed manually.

When a prefix is to be deprecated, addresses that use the prefix should be

deprecated using the INTERFACE DEPRADDR statement. After the prefix

has expired, addresses that use the prefix should be deleted using the

INTERFACE DELADDR statement.

Chapter 5. Configuration guidelines 65

Updating DNS definitions

This section describes considerations for updating DNS definitions.

Including static VIPAs in DNS

Include static VIPAs in DNS, in both the forward and reverse zones. If VIPAs are

used, it is unnecessary to include IPv6 addresses assigned to interfaces.

Requirement: IPv6 Enterprise Extender requires that hostname resolution be used

for the static VIPA. This hostname resolution can be from a DNS or a local hosts

file (/etc/ipnodes).

Defining IPv4-only host names and IPv4/IPv6 host names

In general, IPv6 connectivity between two hosts is preferred over IPv4 connectivity.

In many cases, IPv4 is used only if one of the nodes does not support IPv6. This

can lead to undesirable paths in the network being used for communication

between two hosts. For instance, when a native IPv6 path does not exist, data can

be tunneled over the IPv4 network, even when a native IPv4 path exists.

This can lead to longer connection establishment to an AF_INET application which

resides on a dual-stack host. The client first attempts to connect using each IPv6

address defined for the dual-stack host before attempting to connect with IPv4. A

well-behaved client cycles through all the addresses returned and ultimately,

connects using IPv4. However, this takes both time and network resources to

accomplish, and not all clients are well-behaved or bug-free.

To avoid undesirable tunneling, as well as other potential problems, configure two

host names in DNS. The existing host name should continue to be used for IPv4

connectivity, so as to minimize disruption when connecting to unmodified

AF_INET server applications. A new host name should also be defined, for which

both IPv4 and IPv6 should be configured. When connecting using the old host

name, AF_INET6 clients connect using IPv4. When connecting using the new host

name, AF_INET6 clients attempt to connect using IPv6 and, if that fails, falls back

and connects using IPv4.

Using two host names allows the client to choose the network path that is taken.

The client can route over IPv6 when the destination application is IPv6 enabled

and a native IPv6 path exists, or take an IPv4 path.

The use of distinct host names for IPv4 and IPv4/IPv6 addresses is not strictly

required. A single host name can be used to resolve to both IPv4 and IPv6

addresses. In addition, the use of distinct host names is only necessary during the

initial transition phase when native IPv6 connectivity does not exist and

applications have not yet been enabled for IPv6. After both of these occur, a single

host name can be used.

Using source VIPA

Use a VIPA, either static or dynamic, be used as the source IP address on IPv6

hosts. Using a VIPA allows an IPv6 address to be resolved to a host name,

assuming the guidelines in “Updating DNS definitions” are implemented. Define

the VIPA using any of the following available configuration statements:

v SOURCEVIPAINT parameter on the INTERFACE statement

v TCPSTACKSOURCEVIPA parameter on the IPCONFIG6 statement

66 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

v SRCIP statement

Refer to Virtual IP Addressing in the z/OS Communications Server: IP Configuration

Guide for additional information on choosing an appropriate method for specifying

a source VIPA.

Using OMPROUTE or define static routes to improve network selection

The IPv6 OSPF or IPv6 RIP dynamic routing protocol provided by the

OMPROUTE routing daemon should be used to provide information about the

IPv6 prefixes and hosts that can be accessed indirectly by way of adjacent routers.

IPv6 OSPF or IPv6 RIP can be used, either alone or together with IPv6 router

discovery, to provide complete routing information.

If the IPv6 OSPF or IPv6 RIP dynamic routing protocol of OMPROUTE is not

being used, the only routes that are learned (by way of router discovery) that can

be used to access hosts that are not on directly attached links are default routes.

Hosts can then use the default routes when sending packets to remote hosts. If a

host selects a non-optimal router when sending data, the router can redirect the

host to use a more optimal router when sending data to the remote host, as long as

the optimal router is on the same LAN as the original router.

When a host is connected to multiple LANs, this processing might result in the

following situations:

v A non-optimal router is used

v A router is used that cannot reach the final destination

For instance, if a host selects a router on one LAN, but the optimal router is on

another LAN, the router on the first LAN cannot redirect the host to the second

LAN. In this case, configure a static route to allow the host to initially select the

optimal network path.

Guidelines: When defining static routes, use the following guidelines:

Use subnet routes instead of host routes

 Remote IP addresses are difficult to predict. When using extensions to

stateless address autoconfiguration, some clients can change their IP

addresses on a routine basis, such as once an hour or once a day. In

addition, these addresses can be created using cryptographic algorithms,

making it difficult to impossible to predict which IP address a client might

use. Defining static host routes to be used when communicating with such

a client is equally as difficult or impossible.

 Instead of defining a host route, define subnet routes. The network prefixes

used in generating IPv6 addresses are much more stable than the interface

identifiers used by hosts, typically changing only when a site is

renumbered.

Use the link-local address of gateway router

When defining the gateway router for a static route, use the link-local

address for the router. Link-local addresses do not change as the result of

site renumbering, minimizing potential updates to the static routes. This is

required in order to honor and process an ICMPv6 redirect message.

Effects of site renumbering on static routes

When a remote site is renumbered, new network prefixes are defined for

the remote site and the old network prefixes are deprecated. After a time

period, the old network prefixes are deleted.

Chapter 5. Configuration guidelines 67

A static route to a remote subnet should be created when a prefix is

defined and should remain as long as the prefix is either preferred or

deprecated. Only when the remote prefix is deleted should the static route

be deleted.

Connecting to non-local IPv4 locations

If native IPv6 connectivity does not exist between two IPv6 sites, IPv6 over IPv4

tunneling can be used to provide IPv6 connectivity to the two sites. z/OS

Communications Server TCP/IP can make use of an IPv6 over IPv4 tunnel to send

packets to a remote site, but cannot be used as a tunnel endpoint itself. Instead, an

intermediate router which supports IPv6 over IPv4 tunneling must act as the

tunnel endpoint.

See “Enabling IPv6 communication between IPv6 islands in an IPv4 environment”

on page 39 for more information on IPv6 over IPv4 tunnels.

IPv6-only application access to IPv4-only application

When an IPv6-only application needs to communicate with an IPv4-only host or

application, some form of IPv6-to-IPv4 translation or application-layer gateway

must occur. If needed, an outboard protocol translator or application-layer gateway

component must be used, as z/OS Communications Server TCP/IP does not

include such support. There are various technologies which can be used, such as

NAT-PT or SOCKS64. See “Application Layer Gateways (ALG) and protocol

translation” on page 43 for more information.

68 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Part 3. Application enablement

Before reading this part, you should have a good understanding of the information

presented in Part 1, “IPv6 overview,” on page 1.

This section contains the following chapters:

Chapter 6, “API support,” on page 71 describes the various z/OS socket APIs and

the level of IPv6 present for each API.

Chapter 7, “Basic socket API extensions for IPv6,” on page 75 describes basic

socket API changes that most applications would use.

Chapter 8, “Enabling an application for IPv6,” on page 89 describes common issues

and considerations involved in enabling existing IPv4 socket applications for IPv6

communications.

Chapter 9, “Advanced socket APIs,” on page 99 discusses advanced IPv6 API

functions that can be used by specialized IP applications.

For detailed information on specific APIs, refer to the following documentation:

v TCP/IP socket APIs are defined in the z/OS Communications Server: IP Sockets

Application Programming Interface Guide and Reference.

v UNIX Language Environment C/C++ socket APIs are defined in the z/OS XL

C/C++ Run-Time Library Reference.

v UNIX System Services Callable APIs are defined in the z/OS UNIX System

Services Programming: Assembler Callable Services Reference.

© Copyright IBM Corp. 2002, 2006 69

70 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 6. API support

This chapter describes API support and contains the following sections:

v “Native TCP/IP socket APIs” on page 72

v “Native TCP/IP socket APIs” on page 72

z/OS provides a versatile and diverse set of socket API libraries to support the

various z/OS application environments. Figure 15 illustrates the relationship of the

various z/OS socket APIs and the level of IPv6 present for each API.

The following are the two main socket API execution environments in z/OS:

v UNIX [implemented by UNIX System Services (Language Environment)]

v Native TCP/IP (implemented by TCP/IP in z/OS CS)

UNIX socket APIs

This section contains information about UNIX socket APIs.

z/OS UNIX Assembler Callable Services

z/OS UNIX Assembler Callable Services is a generalized call-based interface to

z/OS UNIX IP sockets programming. This API supports both IPv4 and IPv6

communications. It includes support for the basic IPv6 API features and for a

subset of the advanced IPv6 API features. For more information, refer to the z/OS

UNIX System Services Programming: Assembler Callable Services Reference.

z/OS C sockets

z/OS UNIX C sockets is used in the z/OS UNIX environment. Programmers use

this API to create applications that conform to the POSIX or XPG4 standard (a

UNIX System Services Callable BPX Sockets

P
as

ca
l A

P
I

TCP, UDP, and RAW Transport Protocol Layer

IPv4 and IPv6 Networking Protocol Layer

Network Interface Layer

Legend

APIs that will likely not be enabled for IPv6

APIs that are not currently enabled for IPv6
but will likely be enabled in a future release

APIs that are enabled for IPv6

CICS
sockets

R
E

X
X

 S
o

ck
et

s IMS
sockets

Sockets Extended Call API

Sockets Extended Macro API (EZASMI)

CS TCP/IP
C Sockets

UNIX
Language

Environment
C/C++ Sockets

Application Programs and Subsystems

Figure 15. z/OS socket APIs

© Copyright IBM Corp. 2002, 2006 71

UNIX specification). This API supports both IPv4 and IPv6 communications. It

includes support for the basic IPv6 API features and for a subset of the advanced

IPv6 API features. For more information on this API, refer to the z/OS XL C/C++

Run-Time Library Reference.

Native TCP/IP socket APIs

The following TCP/IP Services APIs are included in this library. For more

information on these APIs (excluding CICS®), refer to z/OS Communications Server:

IP Sockets Application Programming Interface Guide and Reference.

Sockets Extended macro API

The Sockets Extended macro API is a generalized assembler macro-based interface

to IP socket programming. It includes support for IPv4 and for the basic IPv6

socket API functions.

Sockets Extended Call Instruction API

The Sockets Extended Call Instruction API is a generalized call-based interface to

IP sockets programming. It includes support for IPv4 and for the basic IPv6 socket

API functions.

REXX sockets

The REXX sockets programming interface implements facilities for IP socket

communication directly from REXX programs by way of an address rxsocket

function. It includes support for IPv4 and for the basic IPv6 socket API functions.

CICS sockets

The CICS socket interface enables you to write CICS applications that act as clients

or servers in a TCP/IP-based network. Applications can be written in C language,

using the C sockets programming interface, or they can be written in COBOL,

PL/I, or assembler, using the Extended Sockets programming interface. This API

supports TCP/IP communications over IPv4 and basic IPv6 socket API functions.

For more information, refer to the z/OS Communications Server: IP CICS Sockets

Guide.

IMS sockets

The Information Management System (IMS™) socket interface supports

development of client/server applications in which one part of the application

executes on a TCP/IP-connected host and the other part executes as an IMS

application program. The programming interface used by both application parts is

the socket programming interface. This API currently supports TCP/IP

communications over IPv4 only, but will probably support IPv6 communications in

a future release. For more information, refer to z/OS Communications Server: IP IMS

Sockets Guide.

Pascal API

The Pascal socket application programming interface enables you to develop

TCP/IP applications in the Pascal language. It only supports TCP/IP

communications over IPv4. It is unlikely that this API will be enhanced to support

IPv6 in the future. Applications using this API are encouraged to migrate their

application to one of the other socket APIs that are IPv6 enabled.

72 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

TCP/IP C/C++ Sockets

The C/C++ Socket interface supports IPv4 socket function calls that can be

invoked from C/C++ programs. This API is very similar to the UNIX C socket API

that is the recommended socket API for C/C++ application development on z/OS.

The TCP/IP C/C++ sockets API will not be enhanced for IPv6 support. Existing

applications that will be enabled for IPv6 should consider migrating to the UNIX C

socket API.

 There are several higher level C/C++ APIs that rely on the TCP/IP sockets for

communications over an IP network, including the following:

v Resource Reservation Setup Protocol API (RAPI)

v Sun and NCS Remote Procedure Call (RPC)

v X Window System and Motif

v X/Open Transport Interface (XTI)

These APIs do not support IPv6 communications.

Guideline: CICS programs written to use the IP CICS C Sockets API must use the

TCP/IP C headers. Include the following definition to expose the required IPv6

structures, macros, and definitions in the header files:

#define __CICS_IPV6

Refer to C Language application programming in the z/OS Communications Server:

IP CICS Sockets Guide for guidance on using the IP CICS C Sockets API.

Chapter 6. API support 73

74 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 7. Basic socket API extensions for IPv6

This chapter describes the basic extensions to the socket interface and new features

of IPv6 as described in the Internet Engineering Task Force (IETF) RFC 3493, Basic

Socket Interface Extensions for IPv6. and contains the following sections:

v “Introduction”

v “Design considerations”

v “Name and address resolution functions” on page 77

v “Interface identification” on page 84

v “Socket options to support IPv6 (IPPROTO_IPV6 level)” on page 84

Note: All examples in this chapter are shown using UNIX Language Environment

C; see z/OS XL C/C++ Run-Time Library Reference for details.

Introduction

IPv4 addresses are 32 bits long, but IPv6 interfaces are identified by 128-bit

addresses. The socket interface makes the size of an IP address visible to an

application; virtually all TCP/IP applications using sockets have knowledge of the

size of an IP address. Those parts of the API that expose the addresses must be

changed to accommodate the larger IPv6 address size. IPv6 also introduces new

features, some of which must be made visible to applications by way of the API.

Design considerations

The two main programming tasks associated with IPv6 exploitation involve

migrating existing application programs to support IPv6 and designing new

programs for IPv6. In both cases, the changed or new code should be designed so

that it is capable of using IPv4 or IPv6 addresses. Servers should be designed so

that they can communicate with both IPv4 and IPv6 clients. Existing IPv4 client

and server programs should continue to operate properly as long as only IPv4

connectivity is required between clients and servers.

The following sections describe key differences between IPv4 and IPv6.

Requirement: It is assumed that you have a basic knowledge of IPv4 socket

programming for clients and servers.

Protocol families

IPv4 socket applications use a AF_INET (equivalent to PF_INET) protocol family.

For IPv6, a new protocol family of AF_INET6 (equivalent to PF_INET6) has been

defined. The protocol family is the first parameter to the socket() function that is

used to obtain a socket descriptor. For most applications, an AF_INET6 socket can

be used to communicate with IPv4 and IPv6 clients.

Address families

Most socket functions require a socket descriptor and a generic socket address

structure called a sockaddr. The exact format of the sockaddr structure depends on

the address family. For IPv4 sockets, the sockaddr structure is sockaddr_in. For

IPv6, the sockaddr structure sockaddr_in6 is used.

© Copyright IBM Corp. 2002, 2006 75

The following socket functions have a sockaddr as one of their parameters:

bind()

connect()

sendmsg()

sendto()

accept()

recvfrom()

recvmsg()

getpeername()

getsockname()

The sockaddr structure that is used in these functions must be the proper structure

for the socket family.

For IPv4 (AF_INET), the sockaddr (sockaddr_in) contains the information shown in

Table 7.

 Table 7. sockaddr format for AF_INET

sockaddr length 1 byte Not used, should be set to 0

family 1 byte AF_INET

port 2 bytes TCP or UDP port number

IP address 4 bytes IPv4 IP address

reserved 8 bytes Not used

For IPv6 (AF_INET6), the sockaddr (sockaddr_in6) contains additional information.

Also, note that the IP address for IPv6 is 16 bytes long instead of 4 bytes long as in

IPv4.

 Table 8. sockaddr format for AF_INET6

sockaddr length 1 byte Not used, should be set to 0

family 1 byte AF_INET6

port 2 bytes TCP or UDP port number (same as v4)

flowinfo 4 bytes Flow information

IP address 16 bytes IPv6 IPaddress

scope ID 4 bytes Used to determine IP address scope

Special IP addresses

Like IPv4, IPv6 also defines loopback and wildcard (INADDR_ANY) addresses.

The differences are shown in Table 9.

 Table 9. Special IP addresses

IPv4 IPv6

Loopback address 127.0.0.1 ::1 (15 bytes of zeros, 1 byte of 1)

Wildcard address 0.0.0.0 :: (16 bytes of zeros)

Multicast address 224.0.0.1 - 239.255.255.255 Refer to “Multicast IPv6 Addresses”

on page 17

76 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Name and address resolution functions

IPv6 introduces new APIs for the Resolver function. These APIs allow applications

to resolve host names to IP addresses and vice versa. The primary new APIs are

getaddrinfo, getnameinfo, and freeaddrinfo. The APIs are designed to work with

both IPv4 and IPv6 addressing. The use of these new APIs should be considered if

an application is being designed for eventual use in an IPv6 environment.

The way in which hostname (getaddrinfo) or IP address (getnameinfo) resolution is

performed depends on the Resolver specifications contained in the Resolver setup

files and TCPIP.DATA configuration files. These specifications determine whether

the APIs query a name server first, then search the local host tables, or whether the

order is reversed, or even if one of the steps is eliminated completely. The

specifications also control, if local host tables have to be searched, which tables that

are accessed. For detailed information about Resolver setup, see “Resolver

configuration” on page 56.

Protocol-independent nodename and service name translation

Getaddrinfo is conceptually a replacement for the existing gethostbyname and

getservbyname APIs. Getaddrinfo takes an input hostname, or an input

servicename, or both, and returns (when resolution is successful) one or more

addrinfo structures. Getaddrinfo can also accept as input, a hostname or a

servicename in numeric form, and returns the same value in presentation form

using the addrinfo structure. An addrinfo structure contains the following output

information:

v Pointer to sockaddr_in or sockaddr_in6 structure containing an IP address and

service port

v Length of sockaddr structure and family type (AF_INET, AF_INET6) of the

sockaddr structure

v Socktype and protocol values usable with this sockaddr structure

v Pointer to canonical name associated with the input hostname (applicable only

in the first addrinfo structure)

v Pointer to next addrinfo structure (set to 0 in the last element of the chain)

The storage for the addrinfo structures is allocated by the Resolver from the

application’s address space, and the application should use the freeaddrinfo API to

release the addrinfo structures when the information is no longer required. The

application should not manipulate the chain of addrinfo structures returned by

way of getaddrinfo, but rather that the application simply return the entire chain,

as received, back to the Resolver by way of freeaddrinfo.

In addition to hostname or servicename, one of which must be present on a valid

getaddrinfo invocation, the application can specify additional input to the Resolver

on the getaddrinfo invocation. This input is optional, and if specified, is passed by

way of an input addrinfo structure. The input settings include the following

possibilities:

v Family type of sockaddr structure required on output.

v Socktype and protocol values for which the returned IP address and port

number must work. This would be used primarily for cases where a servicename

was being resolved, as might typically have been done previously by way of

getservbyname.

v Various input flag settings include the following:

– AI_ADDRCONFIG

Chapter 7. Basic socket API extensions for IPv6 77

– AI_ALL

– AI_CANONNAME

– AI_NUMERICHOST

– AI_NUMERICSERV

– AI_PASSIVE

– AI_V4MAPPED

In the absence of any specific input from the application, the Resolver assumes that

any sockaddr type is acceptable (that is, both IPv4 and IPv6 addresses) as output.

Thus, by default, the Resolver searches for both IPv6 and IPv4 address by way of

DNS or by way of local host files (such as /etc/hosts). Obviously, this might not

always be the best choice for the application issuing getaddrinfo. By using the

above input fields, an application issuing getaddrinfo() can influence the

processing performed by the Resolver function for that given request in the

following ways:

v The application can specify that the sockaddr returned by getaddrinfo should be

of family type AF_INET, AF_INET6 or AF_UNSPEC (meaning either family type

would be acceptable). For example, if AF_INET is specified, the Resolver does

not perform any searches for IPv6 addresses for hostname, because the output

requested must be an IPv4 address.

v The application can specify the following:

– Both IPv6 and IPv4 addresses should be returned

– IPv4 should be returned only if there are no IPv6 addresses resolved

– Only IPv6 addresses should be returned

– Only IPv4 addresses should be returned.

This information, indicated by the input combination of family type and the

AI_ALL and AI_V4MAPPED flags, to a large extent controls the types of

searches performed by the Resolver during the course of the processing.

v The application can specify that IPv6 addresses should be returned only when

the system has IPv6 interfaces defined and can specify that IPv4 addresses

should be returned only when IPv4 interfaces are defined. This preference,

indicated by way of the AI_ADDRCONFIG flag, allows the application to

eliminate resolution searches looking for addresses that cannot be used by the

application.

v The application can specify whether the sockaddr returned should contain an

address for passive (that is, the INADDR_ANY address) or active (that is, the

loopback address) socket activation. This choice is indicated by way of the

AI_PASSIVE flag, and is applicable only in the absence of an input hostname.

v The application can specify that only translation from presentation to numeric

format should be performed for hostname, or service name, or both. This option

is indicated by setting the AI_NUMERICHOST (for hostname) or

AI_NUMERICSERV (for servicename) flags, which indicate that the associated

input value must be in numeric format or the Getaddrinfo request should be

failed.

v The application can specify that only a given socktype or protocol value should

be used for looking up the port number associated with the input servicename,

or can request that all valid socktypes and protocols (TCP and UDP) be used for

the getservbyname processing. This preference is indicated by way of the

socktype and protocol settings.

78 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

With such a flexible interface, the application programmer must decide what

inputs are reasonable for the capabilities of the application being created or

modified. The most likely application uses are the following.

Table 10 shows the two most likely application usages and the suggested

getaddrinfo input settings that coincide with that functionality:

v IPv6-capable when the underlying system is IPv6 capable

v IPv4-capable only

 Table 10. Getaddrinfo application capabilities 1

Application

capabilities

Sockaddr

family to

request

Additional flags to

set Expected outputs

(IPv4 only)

Application is

pure IPv4 and

cannot handle

any IPv6

addresses.

AF_INET AI_ADDRCONFIG Getaddrinfo returns one or more

addrinfo structures, each pointing to

an IPv4 address saved in an

AF_INET sockaddr. No addrinfos are

returned if there is no IPv4 interfaces

defined on the system. No searches

of any kind are performed for IPv6

addresses as part of this request.

(IPv6 capable)

Application

wants all

known

addresses for

hostname, in

IPv6 format

when the

system

supports IPv6,

or in IPv4

format

otherwise.

AF_UNSPEC AI_ADDRCONFIG,

AI_ALL -or

-AI_ADDRCONFIG,

AI_V4MAPPED,

AI_ALL

Getaddrinfo returns one or more

addrinfo structures, each pointing to

a sockaddr structure. The sockaddrs

consists of one of the following sets:

v All AF_INET6 sockaddrs,

containing IPv6 or mapped IPv4

addresses, if the system supports

IPv6 processing (only when

AI_V4MAPPED coded).

v AF_INET6 sockaddrs, containing

IPv6 addresses, and AF_INET

sockaddrs, containing IPv4

addresses, if the system supports

IPv6 processing (only when

AI_V4MAPPED is NOT coded).

v All AF_INET sockaddrs, containing

IPv4 addresses, if the system does

not support IPv6 processing.

In all cases, the IPv6 addresses are

returned only if there is an IPv6

interface defined on the system, and

the IPv4 addresses are returned only

if there is an IPv4 interface defined.

An application with no interest in utilizing IPv6 wants to utilize the first entry in

Table 10. Otherwise, if there is some interest in utilizing IPv6 functionality, an

application would achieve the greatest flexibility by using the second table entry.

Using the IPv6 entry approach, the application places the burden of supplying a

workable sockaddr structure on the Resolver logic. If IPv6 is supported on the

system, the Resolver endeavors to return AF_INET6 sockaddrs to the application;

otherwise, the Resolver returns AF_INET sockaddrs to the application. The choice

of coding or not coding AI_V4MAPPED in this situation depends on the

Chapter 7. Basic socket API extensions for IPv6 79

application’s preference regarding receiving AF_INET6 sockaddrs: the more the

application wants to deal exclusively with AF_INET6 sockaddrs, the more reason

to code AI_V4MAPPED.

Table 10 on page 79 should be sufficient for most application usages. However,

there are other likely application capability models possible, and Table 11 provides

some guidance on how to code the Getaddrinfo invocations for those applications.

 Table 11. Getaddrinfo application capabilities 2

Application

capabilities

Sockaddr

family to

request

Additional flags to

set Expected outputs

Application is

pure IPv6 and

cannot handle

any mapped

IPv4 addresses.

AF_INET6 AI_ADDRCONFIG Getaddrinfo returns one or more

addrinfo structures, each pointing to

an IPv6 address saved in an

AF_INET6 sockaddr. No addrinfos is

returned if there is no IPv6 interfaces

defined on the system. No searches

of any kind are performed for IPv4

addresses as part of this request.

Application

prefers IPv6

addresses,

requires IPv6

address format,

but can handle

mapped IPv4

addresses if

necessary.

AF_INET6 AI_ADDRCONFIG,

AI_V4MAPPED

Getaddrinfo returns one or more

addrinfo structures, each pointing to

an AF_INET6 sockaddr. The

addresses within the sockaddrs

consists of one of the following sets:

v All IPv6 addresses, if there is an

IPv6 interface defined on the

system and IPv6 addresses exist

for hostname

v All mapped IPv4 addresses, if

there were no IPv6 addresses to be

returned for hostname and there

was an IPv4 interface defined for

the system

Application

prefers IPv6

addresses, but

can handle

native IPv4

addresses if

necessary.

AF_UNSPEC AI_ADDRCONFIG Getaddrinfo returns one or more

addrinfo structures, each pointing to

a sockaddr structure. The sockaddrs

consists of one of the following sets:

v All AF_INET6 sockaddrs,

containing IPv6 addresses, if there

is an IPv6 interface defined on the

system and IPv6 addresses exist

for hostname

v All AF_INET sockaddrs containing

IPv4 addresses, if there were no

IPv6 addresses to be returned for

hostname and there was an IPv4

interface defined for the system

80 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Table 11. Getaddrinfo application capabilities 2 (continued)

Application

capabilities

Sockaddr

family to

request

Additional flags to

set Expected outputs

Application

wants all

known

addresses for

hostname, in

IPv6 format.

AF_INET6 AI_ADDRCONFIG,

AI_V4MAPPED,

AI_ALL

Getaddrinfo returns one or more

addrinfo structures, each pointing to

an AF_INET6 sockaddr. The

addresses within the sockaddrs

consists of all IPv6 addresses, if there

is an IPv6 interface defined on the

system and mapped IPv4 addresses,

if there is an IPv4 interface defined

for the system, associated with

hostname.

Application

wants all

known

addresses for

hostname, in

native (IPv6 or

IPv4) format.

AF_UNSPEC AI_ADDRCONFIG,

AI_ALL

Getaddrinfo returns one or more

addrinfo structures, each pointing to

a sockaddr structure. The sockaddr

structures are a mixture of

AF_INET6 sockaddrs (each

containing an IPv6 address) and

AF_INET sockaddrs (each containing

an IPv4 address). The IPv6 addresses

are returned only if there is an IPv6

interface defined on the system, and

the IPv4 addresses are returned only

if there was an IPv4 interface

defined for the system.

Application

wants all

known

addresses for

hostname,

regardless of

system

connectivity, in

native format.

AF_UNSPEC AI_ALL Getaddrinfo returns one or more

addrinfo structures, each pointing to

a sockaddr structure. The sockaddr

structures can be a mixture of

AF_INET6 sockaddrs (each

containing an IPv6 address) or

AF_INET sockaddrs (each containing

an IPv4 address), depending on the

address resolution.

Default settings

when IPv6 is

enabled on the

system.

AF_UNSPEC NONE Getaddrinfo returns one or more

addrinfo structures, each pointing to

a sockaddr structure. The sockaddrs

consists of one of the following sets:

v All AF_INET6 sockaddrs,

containing IPv6 addresses, if there

is an IPv6 address defined for

hostname in any queried domain

name server or defined in a local

hosts table. No searches for IPv4

addresses are performed for

hostname.

v All AF_INET sockaddrs,

containing IPv4 addresses, if there

are no IPv6 addresses found for

hostname.

In either case, the actual availability

of IPv6 or IPv4 interfaces on the

system is not taken into

consideration.

Chapter 7. Basic socket API extensions for IPv6 81

Table 11. Getaddrinfo application capabilities 2 (continued)

Application

capabilities

Sockaddr

family to

request

Additional flags to

set Expected outputs

Default settings

when IPv6 is

not enabled on

the system.

AF_UNSPEC NONE Getaddrinfo returns one or more

addrinfo structures, each pointing to

a sockaddr structure. The sockaddr

structures can be a mixture of

AF_INET6 sockaddrs (each

containing an IPv6 address) or

AF_INET sockaddrs (each containing

an IPv4 address), depending on the

address resolution performed. The

actual availability of IPv6 or IPv4

interfaces on the system in not taken

into consideration.

Regardless of the application model in use, and because output from getaddrinfo

can be a chain of addrinfo structures, the application should attempt to use each

address, in the order received, to open a socket and connect or send a datagram to

the target host name until it is successful, versus simply using the first address and

stopping if a failure is encountered.

The application is now responsible for freeing the storage (addrinfo and sockaddr

structures, and so on) associated with the new resolver APIs. The new freeaddrinfo

API should be used to free this storage. If the application neglects to perform this

step, the resolver cleans up the storage when the process terminates, but storage

constraints might occur before termination if a large number of getaddrinfo APIs

are performed.

Socket address structure to host name and service name

Conceptually, Getnameinfo is a replacement for the existing gethostbyaddr and

getservbyport APIs. Getnameinfo takes an input IP address or an input port number,

or both, and returns (when resolution is successful) the host name or the service

location. These parameters are passed in a sockaddr structure that also contains the

address family.

In addition to IP address or port number, one of which must be present on a valid

getnameinfo invocation, the application can specify additional input to the

Resolver on the getnameinfo invocation. This input is optional. The input settings

include the following (various input flag settings can be specified):

NI_NOFQDN

Specifies that only the host name portion of the fully qualified domain

name (FQDN) is returned for local hosts.

NI_NUMERICHOST

Specifies that the numeric form of the host name, its IP address, is returned

instead of its name. No resolution takes place for the specified input if the

NI_NUMERICHOST flag is on.

NI_NUMERICSERV

Specifies that the numeric form of the service name, the port number, is

returned instead of the service name. No resolution takes place for the

specified input if the NI_NUMERICSERV flag is on.

82 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

NI_NAMEREQD

Specifies that an error is returned if the host name cannot be located. (If

NI_NAMEREQD is not specified, the numeric form of the host name, the

IP address, is returned).

NI_DGRAM

Specifies that the service is a datagram service (SOCK_DGRAM). The

default behavior assumes that the service is a stream service.

Address conversion functions

IP addresses often need to be given to a socket application in character (string)

format. It is also common for socket applications to need to display IP addresses in

string format. The following functions work for IPv4 and IPv6 addresses:

inet_ntop

Convert a binary IP address (either v4 or v6) into string format.

inet_pton

Convert an IP address in string format to binary format.

The functions inet_ntoa and inet_addr are still available, but they cannot be used

for IPv6 addresses.

 Table 12. Address conversion functions

Function

z/OS UNIX

Assembler

Callable

services

C/C++ using

Language

Environment

IP CICS C

sockets REXX

Socket Extended

macro/call

(includes CICS

EZASOKET)

inet_pton No Yes Yes No No

inet_ntop No Yes Yes No No

PTON No No No No Yes

NTOP No No No No Yes

Address testing macros

The macros listed in Table 13 can be used to test for special IPv6 addresses.

 Table 13. Address testing macros

Macros

Assembler

Callable

services

C/C++ using

Language

Environment

IP CICS

C sockets REXX

Socket

Extended

macro/call

(includes CICS

EZASOKET)

IN6_IS_ADDR_UNSPECIFIED No Yes Yes No No

IN6_IS_ADDR_LOOPBACK No Yes Yes No No

IN6_IS_ADDR_MULTICAST No Yes Yes No No

IN6_IS_ADDR_LINKLOCAL No Yes Yes No No

IN6_IS_ADDR_SITELOCAL No Yes Yes No No

IN6_IS_ADDR_V4MAPPED No Yes Yes No No

IN6_IS_ADDR_V4COMPAT No Yes Yes No No

IN6_IS_ADDR_MC_NODELOCAL No Yes Yes No No

IN6_IS_ADDR_MC_LINKLOCAL No Yes Yes No No

IN6_IS_ADDR_MC_SITELOCAL No Yes Yes No No

IN6_IS_ADDR_MC_ORGLOCAL No Yes Yes No No

IN6_IS_ADDR_MC_GLOBAL No Yes Yes No No

Chapter 7. Basic socket API extensions for IPv6 83

The macros function in the following ways:

v The first seven macros return true if the address is of the specified type, or false

otherwise.

v The last five macros test the scope of a multicast address and return true if the

address is a multicast address of the specified scope, or false if the address is

either not a multicast address or not of the specified scope.

v IN6_IS_ADDR_LINKLOCAL and IN6_IS_ADDR_SITELOCAL return true only

for the two types of local-use IPv6 unicast addresses (link-local and site-local),

and that by this definition, the IN6_IS_ADDR_LINKLOCAL macro returns false

for the IPv6 loopback address (::1). These two macros do not return true for IPv6

multicast addresses of either link-local scope or site-local scope.

Interface identification

IPv6 interfaces can have many different IP addresses. IPv6 allows a socket

application to specify an interface to use for sending data by specifying an

interface index. Certain socket options allow specification an interface index. Also,

socket options for IPv6 multicast join group and IPv6 multicast leave group allow

optional specification of an interface index.

The function, if_nameindex(), allows socket applications to obtain a list of interface

names and their corresponding index. Also, two functions, if_nametoindex() and

if_indextoname() allow translation of an interface name to its index and translation

of an interface index to an interface name. The function, if_freenameindex(), is

used to free dynamic storage allocated by the if_nameindex() function.

For non-C/C++ (Language Environment applications), a new ioctl function code

(SIOCGIFNAMEINDEX) is provided. Use Table 14 to determine which APIs

support this new ioctl.

 Table 14. Function calls

Function/IOCTL

z/OS UNIX

Assembler

Callable

services

C/C++ using

Language

Environment

IP CICS

C sockets REXX

Socket

Extended

macro/call

(includes CICS

EZASOKET)

if_nametoindex No Yes Yes No No

if_indextoname No Yes Yes No No

if_nameindex No Yes Yes No No

SIOCGIFNAMEINDEX Yes No No Yes Yes

if_freenameindex No Yes Yes No No

Socket options to support IPv6 (IPPROTO_IPV6 level)

A group of socket options is defined to support IPv6. They are defined with a level

of IPPROTO_IPV6. The individual options begin with IPV6_ .

Restriction: These options are only allowed on AF_INET6 sockets.

In most cases, an IPV6_xxx option can be set on an AF_INET6 socket that is using

IPv4-mapped IPv6 addresses but have no effect. For example, the

84 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

IPV6_UNICAST_HOPS socket option is used to set a hop limit value in the IPv6

header. Because IPv4 packets are used with IPv4-mapped IPv6 addresses, the hop

limit value is not used.

Guideline: The Sockets Extended macro/call APIs do not use level as an input to

getsockopt() and setsockopt(). However, other IPv6-enabled APIs do use level as

input. For detailed information about setsockopt() and getsockopt() input and

output, refer to the API-specific documentation.

 Table 15. Socket options for getsockopt() and setsockopt()

Socket options

getsockopt() setsockopt()

z/OS UNIX

Assembler

Callable

services

C/C++ using

Language

Environment

IP CICS

C

sockets REXX

Sockets

Extended

macro/call

(includes

CICS

EZASOKET)

IPV6_UNICAST_HOPS Yes Yes Yes Yes Yes

IPV6_MULTICAST_IF Yes Yes Yes Yes Yes

IPV6_MULTICAST_LOOP Yes Yes Yes Yes Yes

IPV6_MULTICAST_HOPS Yes Yes Yes Yes Yes

IPV6_JOIN_GROUP Yes Yes Yes Yes Yes

IPV6_LEAVE_GROUP Yes Yes Yes Yes Yes

IPV6_V6ONLY Yes Yes Yes Yes Yes

Option to control sending of unicast packets

Use the following option to control sending of unicast packets:

IPV6_UNICAST_HOPS

The IPv6 header contains a hop limit field that controls the number of

hops over which a datagram can be sent before being discarded. This is

similar to the TTL field in the IPv4 header. The IPV6_UNICAST_HOPS

socket option can be used to set the default hop limit value for an

outgoing unicast packet. The socket option value should be between 0 and

255 inclusive. A socket option value of -1 is used to clear the socket option.

This causes the stack default to be used.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been performed, the stack’s default value is returned.

 The HOPLIMIT parameter on the IPCONFIG6 statement influences the

default hop limit when this socket option is not set. An application must

be APF-authorized or have superuser authority to set this option to a value

greater than the value of HOPLIMIT on the IPCONFIG6 statement. Refer

to the z/OS Communications Server: IP Configuration Reference for more

information about the IPCONFIG6 statement.

 Tip: This function is similar to the IPv4 socket option IP_TTL.

Options to control sending of multicast packets

The following three options allow an application to control certain features in the

transmission of IPv6 multicast packets. These socket options do not have to be set

to send multicast packets. Supplying a multicast address as the destination address

is the only thing required to send an IPv6 multicast packet.

Chapter 7. Basic socket API extensions for IPv6 85

IPV6_MULTICAST_IF

This socket option allows an application to control the outgoing interface

used for a multicast packet. The socket option value is the interface index

of the interface to be used.

 A getsockopt() with this option returns the value set by setsockopt(). If a

setsockopt() has not been done, a value of 0 is returned.

 Tip: This function is similar to the IPv4 socket option IP_MULTICAST_IF.

IPV6_MULTICAST_HOPS

The IPv6 header contains a hop limit field that controls the number of

hops over which a datagram can be sent before being discarded. This is

similar to the TTL field in the IPv4 header. The IPV6_MULTICAST_HOPS

socket option can be used to set the default hop limit value for an

outgoing multicast packet. The socket option value should be between 0

and 255 inclusive. A socket option value of -1 is used to clear the socket

option. This causes the default value of 1 to be used.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been done, the default value of 1 is returned.

 The default value is 1. An application must be APF-authorized or have

superuser authority to set this option to a value greater than the value of

HOPLIMIT on the IPCONFIG6 statement. Refer to the z/OS Communications

Server: IP Configuration Reference for more information on the IPCONFIG6

statement.

 Tip: This function is similar to the IPv4 socket option

IP_MULTICAST_TTL.

IPV6_MULTICAST_LOOP

When a multicast packet is sent, if the sender belongs to the multicast

group to which the packet was sent, then this option controls whether the

sender receives a copy of the packet or not. If this option is enabled, then

the sender receives a copy of the packet. The socket option value should be

1 to enable the option, or 0 to disable the option.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been done, the default value of 1 (enabled) is returned.

 Tip: This function is similar to the IPv4 socket option

IP_MULTICAST_LOOP.

Options to control receiving of multicast packets

Use the following option to control receiving of multicast packets:

IPV6_JOIN_GROUP

This socket option allows an application to join a multicast group on a

specific local interface. The socket option data specifies an IPv6 multicast

address and an IPv6 interface index. IPv4-mapped IPv6 multicast addresses

are not supported. If an interface index of 0 is specified, the stack selects a

local interface. An application that wants to receive multicast packets

destined for a multicast group needs to join that group. It is not necessary

to join a multicast group to send multicast packets.

 Restriction: Getsockopt() does not support this option.

 Tip: This function is similar to the IPv4 socket option

IP_ADD_MEMBERSHIP.

86 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

IPV6_LEAVE_GROUP

This socket option is used by an application to leave a multicast group it

previously joined. The socket option data specifies an IPv6 multicast

address and an IPv6 interface index. If an interface index of 0 is used to

join a multicast group, an interface index of 0 must be used to leave the

group.

 Restriction: Getsockopt() does not support this option.

 Tip: This function is similar to the IPv4 socket option

IP_DROP_MEMBERSHIP.

Socket option to control IPv4 and IPv6 communications

Use the following option to control IPv4 and IPv6 communications:

IPV6_V6ONLY

An AF_INET6 socket can be used for IPv6 communications, IPv4

communications, or a mix of IPv6 and IPv4 communications. The

IPV6_V6ONLY socket option allows an application to limit an AF_INET6

socket to IPv6 communications only. A nonzero socket option value enables

the option; a value of 0 disables the option.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been done, the default value of 0 (disabled) is

returned.

 If an application wants to enable this option, the setsockopt() must be set

prior to binding the socket, connecting the socket, or sending data over the

socket. This option cannot be changed (either enabled or disabled) after the

socket has been bound. (An implicit bind is done for datagram sockets on

connect or send operations if the socket is not already bound.)

Socket options for SOL_SOCKET, IPPROTO_TCP and

IPPROTO_IP levels

Socket options at the SOL_SOCKET and IPPROTO_TCP levels are not dependent

on the IP layer being used. They are supported for both AF_INET and AF_INET6

sockets.

Socket options at the IPPROTO_IP level support IPv4. They are not supported on

AF_INET6 sockets.

Not all socket options at these levels are supported by all APIs. Check the API

specific documentation for information on a specific socket option.

Chapter 7. Basic socket API extensions for IPv6 87

88 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 8. Enabling an application for IPv6

This chapter describes how to enable an application for IPv6 and contains the

following sections:

v “Changes to enable IPv6 support”

v “Support for unmodified applications”

Changes to enable IPv6 support

Several coding changes are needed to enable an application for IPv6

communications. Chapter 7, “Basic socket API extensions for IPv6,” on page 75

describes the changes to the basic Socket APIs that most applications use.

Chapter 9, “Advanced socket APIs,” on page 99 describes the changes to advanced

functions (which are typically used by a small number of TCP/IP applications) of

the socket APIs that facilitate IPv6 communications. The sections in this chapter

describe some of the general considerations involved in enabling an application for

IPv6. Note that while many of the examples and references in this chapter assume

the use of C/C++ sockets supported by the Language Environment (LE), most of

the concepts (unless explicitly noted) apply to the other Socket API libraries that

support IPv6. For a more detailed description of the actual APIs, see Chapter 7,

“Basic socket API extensions for IPv6,” on page 75 and Chapter 9, “Advanced

socket APIs,” on page 99 and the documentation for the specific API you are using.

Guideline: You should be familiar with IPv6 in general and IPv6 support on z/OS

Communications Server.

Support for unmodified applications

During the transition period where networks, routers, and hosts are upgraded to

support IPv6, it is expected that most IPv6-enabled hosts also continue to have

IPv4 connectivity. This is accomplished with dual-mode stack support that allows a

single TCP/IP protocol stack to support both IPv4 and IPv6 communications.

TCP/IP on z/OS supports dual-mode stack operation. As a result, applications that

are not IPv6-enabled continue to function over an IPv4 network, without any

changes. However, at some point during the IPv6 deployment process, some IP

hosts might only have connectivity to IPv6 networks or have a TCP/IP protocol

stack that is capable of IPv6 communications only. Various migration and

coexistence techniques can be employed to allow IPv6-only hosts to communicate

with IPv4-only applications as described in “Migration and coexistence” on page

39. However, in the absence of these mechanisms, an application needs to be

enabled for IPv6 in order to allow for communications with IPv6-only hosts or

applications.

Application awareness of whether system is IPv6 enabled

A z/OS system might or might not be enabled for IPv6 communications. Enabling

a z/OS system for IPv6 support requires explicit configuration by the system

administrator to allow AF_INET6 sockets to be created. As a result, an application

cannot typically assume that IPv6 is enabled on the systems where the application

is running. Some exceptions do exist. For example, applications can run on a

limited number of systems that are known to be IPv6 enabled. However, in

general, most applications that are being enhanced to support IPv6 must first

perform a run-time test to determine whether IPv6 is enabled on the system where

© Copyright IBM Corp. 2002, 2006 89

they are executing. If the system is not enabled for IPv6, the application should

proceed with its existing IPv4 logic. If the system is enabled for IPv6, the

application can now use AF_INET6 sockets and features to communicate with both

IPv4 and IPv6 applications.

Determine if a system is enabled for IPv6 by attempting to create an AF_INET6

socket. If this operation is successful, the application can assume that IPv6 is

enabled. If the operation fails (with return code EAFNOSUPPORT) the application

should revert to its IPv4 logic and create an AF_INET socket.

 Table 16. Using socket() to determine IPv6 enablement

Affected socket

API call Changes required

socket() Specify AF_INET6 as the Address Family (or domain) parameter. This

API call fails if the system is not enabled for IPv6.

The getaddrinfo() API is an alternative mechanism that can be used by TCP/IP

client applications to determine whether IPv6 is enabled. This API is a replacement

for the gethostbyname() API and is typically used by TCP/IP client programs to

resolve a host name to an IP address. For example, a client application that

receives the server application’s host name or IP address (such as FTP) as input

can invoke the getaddrinfo() function prior to opening up a socket with a selected

set of options. This allows the application to receive a list of addrinfo structures

(one for each IP address of the destination host) that contain the following

information:

v The address family of the IP address (AF_INET or AF_INET6)

v A pointer to a socket address structure of the appropriate type (sockaddr_in or

sockaddr_in6) that is fully initialized (including the IP address and Port fields)

v The length of the socket address structure

A client application can be coded with this information in a manner that allows it

to be protocol-independent without having to perform specific run-time checks to

determine whether IPv6 is enabled or not and without having to have dual-path

logic (IPv4 versus IPv6). The following is an example of this approach:

90 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

When this example executes on a system where IPv6 is not enabled, only IPv4

addresses are returned in AF_INET format (in sockaddr_in structures). When this

int

myconnect(char *hostname)

{

 struct addrinfo *res, *aip;

 struct addrinfo hints;

 char buf[INET6_ADDRSTRLEN];

 static char *servicename = "21";

 int sock = -1;

 int error;

 /* Initialize the hints structure for getaddrinfo() call.

 This application can deal with either IPv4 or IPv6 addresses.

 It relies on getaddrinfo to return the most appropriate IP address

 and socket address structure based on the current configuration */

 bzero(&hints, sizeof (hints));

 hints.ai_socktype = SOCK_STREAM; /* Interested in streams sockets

 only */

 /* Note that we are asking for all IP addresses to be returned (IPv4

 or IPv6) based on the system connectivity. Also, note that we

 would prefer all addresses to be returned in sockaddr_in6 format

 if the system is enabled for IPv6. In addition, we also specify

 a numeric port using AI_NUMERICSERV so that the returned socket

 address structures are primed with our port number. */

 hints.ai_flags = AI_ALL | AI_V4MAPPED | AI_ADDRCONFIG |

 AI_NUMERICSERV;

 hints.ai_family = AF_UNSPEC;

 error = getaddrinfo(hostname, servicename, &hints, &res);

 if (error != 0) {

 (void) fprintf(stderr,

 "getaddrinfo: %s for host %s service %s\n",

 gai_strerror(error), hostname, servicename);

 return (-1);

 }

for (aip = res; aip != NULL; aip = aip->ai_next) {

/*

* Loop through list of addresses returned, opening sockets

* and attempting to connect()until successful. The

* The address type depends on what getaddrinfo()

* gave us.

*/

 sock = socket(aip->ai_family, aip->ai_socktype,

 aip->ai_protocol);

 if (sock == -1) {

 printf("Socket failed: %d\n",sock);

 freeaddrinfo(res);

 return (-1);

 }

 /* Connect to the host. */

 if (connect(sock, aip->ai_addr, aip->ai_addrlen) == -1) {

 printf("Connect failed, errno=%d, errno2=%08x\n",

 errno, __errno2());

 (void) close(sock);

 sock = -1;

 continue;

 }

 break;

}

 freeaddrinfo(res);

 return (sock);

}

Figure 16. Example of protocol-independent client application

Chapter 8. Enabling an application for IPv6 91

identical example executes on a IPv6-enabled system, both IPv4 and IPv6

addresses are returned, and the IPv4 addresses are returned in IPv4-mapped IPv6

address format (in sockaddr_in6 structures). Note that an AF_INET6 socket can be

used for the connection even when the address returned by getaddrinfo() is an

IPv4-mapped IPv6 address.

Socket address (sockaddr_in) structure changes

As mentioned in Chapter 7, “Basic socket API extensions for IPv6,” on page 75, the

socket address structure (sockaddr) is larger for IPv6 and has a slightly different

format. This structure is passed as input or output on several socket API calls. The

type of structure passed must match the address family of the socket being used

on the socket API call. As a result, application changes are necessary. Table 17

describes the necessary changes:

 Table 17. sockaddr structure changes

Affected Socket API calls Changes required

Bind(), connect(), sendmsg(),

sendto()

The length and type of sockaddr structure passed must

match the address family of the socket being used (structure

sockaddr_in or sockaddr_in6).

accept(), recvmsg(),

recvfrom(), getpeername(),

getsockname()

The sockaddr structure passed needs to be sufficiently large

for the address family of the socket being used on these

APIs. Note that the larger sockaddr_in6 structure can be

passed even for AF_INET sockets. However, the application

needs to be aware that the format of the sockaddr structure

returned depends on the address family of the input socket.

UNIX System Services

BPX1SRX (Send/Recv CSM

buffers using sockets)

The length and type of sockaddr structure passed must

match the address family of the socket being used (structure

sockaddr_in or sockaddr_in6).

Address conversion functions

Because IPv6 and IPv4 addresses have a different format and size, changes are

required when formatting these addresses for presentation purposes. Two utility

functions have been introduced for a selected set of socket APIs to help

applications perform this processing. A formatted IPv6 address uses significantly

more space than a formatted IPv4 address (46 bytes versus 16 bytes) and this

might affect the layout of any messages and displays that include an IP address.

 Table 18. Address conversion function changes

Affected API call Changes required

Translating an IP address from numeric form to

presentation form using inet_ntoa()

Convert to use inet_ntop() function. This

function can be used for both IPv4 and

IPv6 addresses.

Translating a presentation form IP address to

numeric form using inet_addr()

Convert to use inet_pton() function. This

function can be used for both IPv4 and

IPv6 addresses.

Resolver API processing

TCP/IP applications typically need to resolve a host name to an IP address and

sometimes need to resolve an IP address to a host name. Applications perform this

processing by invoking resolver APIs, such as gethostbyname() and

gethostbyaddr(). A new set of resolver APIs was introduced to support IPv6.

Applications that currently use resolver APIs need to be modified to use the new

92 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

APIs in order to be enabled for IPv6. The older resolver APIs continue to be

supported for IPv4 communications. For more information about resolver APIs,

refer to “Name and address resolution functions” on page 77.

 Table 19. Resolver API changes

Affected API call Changes required

gethostbyname() Use new getaddrinfo() API. These APIs can be used even if the system

is not IPv6 enabled. Note that the freeaddrinfo() API needs to be issued

to free up storage areas returned by the getaddrinfo() API.

gethostbyaddr() Use the new getnameinfo() API. This API can also be used on a system

that is not IPv6 enabled.

Special IPv6 addresses

IPv4 provides two IP addresses that have the following special meaning in the

context of socket programs:

v The Loopback Address, typically 127.0.0.1, allows applications to connect() to or

send datagrams to other applications on the same host.

v The INADDR_ANY address (0.0.0.0) allows TCP/IP server applications that

specify it on a bind() call to accept incoming connections or datagrams across

any network interface configured on the local host.

The concept of these special IPv4 addresses is also available in IPv6. The changes

are described in Table 20.

 Table 20. Special IPv6 address changes

Socket API calls Changes required

Binding a socket to the IPv4 wildcard address

(INADDR_ANY - 0.0.0.0)

Specify IPv6 IN6ADDR_ANY (::) in the

sockaddr_in6 structure.

Using LOOPBACK (127.0.0.1) on bind(),

connect(), sendto(), sendmsg()

Specify IPv6 Loopback address (::1) in the

sockaddr_in6 structure.

See Chapter 7, “Basic socket API extensions for IPv6,” on page 75 for details about

any constant definitions available for these special IPv6 addresses and the socket

API that you are using.

Passing ownership of sockets across applications using

givesocket and takesocket APIs

If your application is using the givesocket() and takesocket() APIs to pass

ownership of a socket from one program to another, some changes are necessary

for IPv6 enablement. The givesocket() and takesocket() APIs now support an

address family of AF_INET6 for the socket being given or taken. The address

family specified by the program performing the takesocket() must match the

address family specified by the program that performed the givesocket(). As a

result, care should be taken in coordinating the updates for IPv6 support across the

partner applications performing givesocket and takesocket processing.

 Table 21. givesocket() and takesocket() changes

Affected API call Changes required

givesocket() Specify AF_INET6 (Decimal 19) as the domain when giving an

AF_INET6 socket.

Chapter 8. Enabling an application for IPv6 93

Table 21. givesocket() and takesocket() changes (continued)

Affected API call Changes required

getclientid() Specify AF_INET6 as the domain when dealing with an

AF_INET6 socket.

takesocket() Specify AF_INET6 as the domain when taking an AF_INET6

socket.

Using multicast and IPv6

IPv6 provides enhanced support for multicast applications, including more

granularity in the scope of multicast addressing and new socket options to allow

an application to exploit this support. Table 22 lists IPv4 multicast setsockopt() and

getsockopt() options and the equivalent IPv6 multicast options.

 Table 22. Multicast options

Multicast function IPv4 IPv6

Level specified on

setsockopt()/getsockopt()

IP_PROTO IPPROTO_IPV6

Joining a multicast group IP_ADD_MEMBERSHIP IPV6_JOIN_GROUP

Leaving a multicast group IP_DROP_MEMBERSHIP IPV6_LEAVE_GROUP

Select outbound interface for

sending multicast datagrams

IP_MULTICAST_IF IPV6_MULTICAST_IF

Set maximum hop count IP_MULTICAST_TTL IPV6_MULTICAST_HOPS

Enabling multicast loopback IP_MULTICAST_LOOP IPV6_MULTICAST_LOOP

In addition to the changes in the setsockopt() and getsockopt() options, the input

and output parameters specified for these options are also changed when

compared to IPv4. For example, selecting an outgoing interface for sending

multicast IPv6 datagram involves passing an interface index that identifies the

interface versus passing the IP address of the interface. For a detailed description

of the IPv6 multicast options see “Options to control sending of multicast packets”

on page 85.

An important consideration in updating your multicast application for IPv6 is how

these changes are provided to the other partner applications participating in these

multicast operations. For example, if a partner application in the network that is

receiving these multicast packets is not updated, then the application sending the

multicast datagrams might need to send them twice, once to an IPv4 multicast

address and once to an IPv6 multicast address. Also, in order to perform this type

of processing the application needs to create two separate sockets, an AF_INET

socket and a AF_INET6 socket. There is no support equivalent to IPv4-mapped

IPv6 addresses that would allow an AF_INET6 socket to be used in sending IPv4

multicast packets. As an alternative solution, first enable all the receiver

applications for IPv6 and then enable the sender applications.

IP addresses might not be permanent

Long-term use of an address is discouraged as IPv6 allows for IP addresses to be

dynamically renumbered. Applications should rely on DNS resolvers to cache the

appropriate IP addresses and should avoid having IP addresses in configuration

files.

94 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Including IP addresses in the data stream

Applications that include IP addresses in the data they transmit over TCP/IP

require changes when enabling for IPv6, as the IPv6 addresses have a different

format from IPv4 addresses. The following options can be considered in dealing

with these changes:

v Determine whether IP addresses are really needed in the data exchanged by the

applications.

v Change the partner applications processing to always send IP addresses encoded

using IPv6 format. In the case where IPv4 addresses are being used, they can be

represented as IPv4-mapped IPv6 addresses.

v Include a version identifier that describes the format of the IP address being sent

(IPv4 or IPv6).

v Modify applications to use host names instead of IP addresses in the data

stream. This approach requires that the partner receiving the host name is able

to resolve it to an IP address. Also note that a single IP host can have multiple

IP addresses.

v In many cases, you might not be able to change all partner applications in your

network at the same time. As a result, determining the type of IP address to

send is a key consideration. Consider the following options when making this

decision:

– Determine the level of support when the connection is established by

exchanging version or supported functions.

– Encode the IPv6 addresses using new options. If the option is rejected by the

peer, then it does not support IPv6.

– Base the decision on the partner application’s IP address. If the partner’s

source IP address is an IPv4 address then only use IPv4 addresses; otherwise,

use an IPv6 address. This option can cause an IPv6-enabled partner

application to be treated as an IPv4 partner if that application uses an

IPv4-mapped IPv6 address to connect.

Example of an IPv4 TCP server program

The following example shows a simple IPv4 TCP server program written in C. The

program opens a TCP socket, binds it to port 5000, and then performs a listen()

followed by an accept() call. When a connection is accepted the server sends a

Hello text string back to the client and closes the socket. This sample program is

later shown with the changes required to make it IPv6 enabled.

Chapter 8. Enabling an application for IPv6 95

Example of the simple TCP server program enabled for IPv6

The simple TCP server program is now shown with the changes (in bold) that are

required to allow it to accept connections from IPv6 clients.

/* simpleserver.c

 A very simple TCP socket server

 */

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc,const char **argv)

{

 int serverPort = 5000;

 int rc;

 struct sockaddr_in serverSa;

 struct sockaddr_in clientSa;

 int clientSaSize;

 int on = 1;

 int c;

 int s = socket(PF_INET,SOCK_STREAM,0);

 rc = setsockopt(s,SOL_SOCKET,SO_REUSEADDR,&on,sizeof on);

 /* initialize the server’s sockaddr */

 memset(&serverSa,0,sizeof(serverSa));

 serverSa.sin_family = AF_INET;

 serverSa.sin_addr.s_addr = htonl(INADDR_ANY);

 serverSa.sin_port = htons(serverPort);

 rc = bind(s,(struct sockaddr *)&serverSa,sizeof(serverSa));

 if (rc < 0)

 {

 perror("bind failed");

 exit(1);

 }

 rc = listen(s,10);

 if (rc < 0)

 {

 perror("listen failed");

 exit(1);

 }

 rc = accept(s,(struct sockaddr *)&clientSa,&clientSaSize);

 if (rc < 0)

 {

 perror("accept failed");

 exit(1);

 }

 printf("Client address is: %s\n",inet_ntoa(clientSa.sin_addr));

 c = rc;

 rc = write(c,"hello\n",6);

 close (s);

 close (c);

 return 0;

}

Figure 17. IPv4 TCP server program

96 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

/*

 A very simple TCP socket server for v4 or v6

 */

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

int main(int argc,const char **argv)

{

 int serverPort = 5000;

 int rc;

 union {

 struct sockaddr_in sin;

 struct sockaddr_in6 sin6;

 } serverSa;

 union {

 struct sockaddr_in sin;

 struct sockaddr_in6 sin6;

 } clientSa;

 int clientSaSize = sizeof(clientSa);

 int on = 1;

 int family;

 socklen_t serverSaSize;

 int c;

 char buf[INET6_ADDRSTRLEN];

 int s = socket(PF_INET6,SOCK_STREAM,0);

 if (s < 0)

 {

 fprintf(stderr, "IPv6 not active, falling back to IPv4...\n");

 s = socket(PF_INET,SOCK_STREAM,0);

 if (s < 0)

 {

 perror("socket failed");

 exit (1);

 }

 family = AF_INET;

 serverSaSize = sizeof(struct sockaddr_in);

 }

 else /* got a v6 socket */

 {

 family = AF_INET6;

 serverSaSize = sizeof(struct sockaddr_in6);

 }

 printf("socket descriptor is %d, family is %d\n",s,family);

Figure 18. Simple TCP server program enabled for IPv6 (Part 1 of 2)

Chapter 8. Enabling an application for IPv6 97

rc = setsockopt(s,SOL_SOCKET,SO_REUSEADDR,&on,sizeof on);

 /* initialize the server’s sockaddr */

 memset(&serverSa,0,sizeof(serverSa));

 switch(family)

 {

 case AF_INET:

 serverSa.sin.sin_family = AF_INET;

 serverSa.sin.sin_addr.s_addr = htonl(INADDR_ANY);

 serverSa.sin.sin_port = htons(serverPort);

 break;

 case AF_INET6:

 serverSa.sin6.sin6_family = AF_INET6;

 serverSa.sin6.sin6_addr = in6addr_any;

 serverSa.sin6.sin6_port = htons(serverPort);

 }

 rc = bind(s,(struct sockaddr *)&serverSa,serverSaSize);

 if (rc < 0)

 {

 perror("bind failed");

 exit(1);

 }

 rc = listen(s,10);

 if (rc < 0)

 {

 perror("listen failed");

 exit(1);

 }

 rc = accept(s,(struct sockaddr *)&clientSa,&clientSaSize);

 if (rc < 0)

 {

 perror("accept failed");

 exit(1);

 }

 c = rc;

 printf("Client address is: %s\n",

 inet_ntop(clientSa.sin.sin_family,

 clientSa.sin.sin_family == AF_INET

 ? &clientSa.sin.sin_addr

 : &clientSa.sin6.sin6_addr,

 buf, sizeof(buf)));

 if(clientSa.sin.sin_family == AF_INET6

 && ! IN6_IS_ADDR_V4MAPPED(&clientSa.sin6.sin6_addr))

 printf("Client is v6\n");

 else

 printf("Client is v4\n");

 rc = write(c,"hello\n",6);

 close (s);

 close (c);

 return 0;

}

Figure 18. Simple TCP server program enabled for IPv6 (Part 2 of 2)

98 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 9. Advanced socket APIs

This chapter describes the advanced socket APIs and includes the following

sections:

v “Controlling the content of the IPv6 packet header”

v “Using ancillary data on sendmsg() and recvmsg()” on page 113

v “Interactions between socket options and ancillary data” on page 114

v “Why use RAW sockets?” on page 116

Before using advanced socket APIs in a multilevel security environment, refer to

Preparing for TCP/IP networking in a multilevel secure environment in z/OS

Communications Server: IP Configuration Guide. The advanced socket API for IPv6

support includes the following:

v IPv6 RAW socket support

v New socket options

v New ancillary data objects on sendmsg/recvmsg

v The ability to receive inbound packet information, including the following:

– Arriving interface index

– Destination IP address

– Hop limit

– Routing headers

– Hop-by-hop option

– Destination options

– Traffic class by way of ancillary data
v The ability to set outgoing packet information, including the following:

– Interface to use

– Source IP address

– Hop limit

– Next hop address

– Routing headers

– Hop-by-hop options

– Destination option

– Traffic class (This can be set by socket options or ancillary data with some

restrictions.)

z/OS UNIX C/C++ and z/OS UNIX Assembler Callable APIs support the

advanced socket API for IPv6. The advanced socket API for IPv6 is not

implemented in native TCP/IP socket APIs.

Controlling the content of the IPv6 packet header

This section contains information about socket options and how to control the

content of the IPv6 packet header.

© Copyright IBM Corp. 2002, 2006 99

Socket options and ancillary data to support IPv6

(IPPROTO_IPV6 level)

An application can use socket options to enable or disable a function for a socket.

An application can also provide a value to be used for a function with a socket

option. After an option is enabled, it remains in effect for the socket until it is

disabled.

An application can also use ancillary data on the sendmsg() API to enable a

function or provide a value for the packet being sent by way of sendmsg(). The

value of the ancillary data is in effect for that packet only. Note that the value of

the ancillary data can override a socket option value. For a detailed explanation of

ancillary data, see “Using ancillary data on sendmsg() and recvmsg()” on page 113.

An application can also receive ancillary data on the recvmsg() API. The returned

Ancillary data is enabled for any socket options that return data on recvmsg.

A group of advanced socket options and ancillary data is defined to support IPv6.

They are defined with a level of IPPROTO_IPV6 or IPPROTO_ICMPV6. The

individual options begin with IPV6_ and ICMP6_ respectively. These options are

only allowed on AF_INET6 sockets. In most cases, these options can be set on an

AF_INET6 socket that is using IPv4-mapped IPv6 addresses, but have no effect.

For example, the IPV6_HOPLIMIT ancillary data option is used to set a hop limit

value in the IPv6 header. Because IPv4 packets are used with IPv4-mapped IPv6

addresses, the hop limit value is not used. The following are the only advanced

socket options that have an effect on an AF_INET6 socket that is using

IPv4–mapped IPv6 addresses:

v IPV6_PKTINFO

v IPV6_RECVPKTINFO

v IPV6_TCLASS

v IPV6_RECVTCLASS

 Table 23. Sockets options at the IPPROTO_IPV6 level

Socket options

getsockopt()

setsockopt()

Assembler

Callable

Services

C/C++ using

Language

Environment REXX

Sockets

Extended

macro/call

IPV6_CHECKSUM Y Y N N

IPV6_DONTFRAG Y Y N N

IPV6_DSTOPTS Y Y N N

IPV6_HOPOPTS Y Y N N

IPV6_NEXTHOP Y Y N N

IPV6_PATHMTU[valid

only on getsockopt()]

Y Y N N

IPV6_PKTINFO Y Y N N

IPV6_RECVDSTOPTS Y Y N N

IPV6_RECVHOPLIMIT Y Y N N

IPV6_RECVHOPOPTS Y Y N N

IPV6_RECVPATHMTU Y Y N N

IPV6_RECVPKTINFO Y Y N N

IPV6_RECVRTHDR Y Y N N

100 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Table 23. Sockets options at the IPPROTO_IPV6 level (continued)

Socket options

getsockopt()

setsockopt()

Assembler

Callable

Services

C/C++ using

Language

Environment REXX

Sockets

Extended

macro/call

IPV6_RECVTCLASS Y Y N N

IPV6_RTHDR Y Y N N

IPV6_RTHDRDSTOPTS Y Y N N

IPV6_TCLASS Y Y N N

IPV6_USE_MIN_MTU Y using BPX1 Y N N

 Table 24. Ancillary data on sendmsg() (Level = IPPROTO_IPV6)

Ancillary data on

sendmsg()

Assembler

Callable

Services

C/C++ using

Language

Environment REXX

Sockets

Extended

macro/call

IP_QOS_

CLASSIFICATION2

Y Y N N

IPV6_DONTFRAG Y Y N N

IPV6_DSTOPTS Y Y N N

IPV6_HOPLIMIT2 Y Y N N

IPV6_HOPOPTS Y Y N N

IPV6_NEXTHOP Y Y N N

IPV6_PKTINFO2 Y Y N N

IPV6_RTHDR Y Y N N

IPV6_RTHDRDSTOPTS Y Y N N

IPV6_TCLASS Y Y N N

IPV6_USE_MIN_MTU Y Y N N

 Table 25. Ancillary data on recvmsg() (Level = IPPROTO_IPV6)

Ancillary data on

recvmsg()

Assembler

Callable

Services

C/C++ using

Language

Environment REXX

Sockets

Extended

macro/call

IPV6_DSTOPTS Y Y N N

IPV6_HOPLIMIT Y Y N N

IPV6_HOPOPTS Y Y N N

IPV6_PATHMTU Y Y N N

IPV6_PKTINFO Y Y N N

IPV6_RTHDR Y Y N N

IPV6_TCLASS Y Y N N

Options for path MTU discovery

Use the following options for MTU discovery:

2. This option is supported as ancillary data for UDP and RAW protocols. It is not possible to use ancillary data to transmit options

for TCP because there is not a one-to-one mapping between send operations and the TCP segments being transmitted.

Chapter 9. Advanced socket APIs 101

IPV6_USE_MIN_MTU (used with TCP, UDP and RAW applications)

For IPv6, only the endpoint nodes can fragment a packet. Path MTU

discovery determines the largest packet that can be sent to a destination

without requiring fragmentation by an intermediate node (because that is

not supported). In some cases, an application might not want to have the

overhead of path MTU discovery. All nodes in an IPv6 network are

required to support a minimum MTU of 1280 bytes. When an application

enables this option, path MTU discovery is bypassed. If a direct route to

the destination is not available, the minimum MTU size (1280 bytes) is

used to send packets that otherwise might require fragmentation. If a

direct route is available, the link’s MTU size is used, because path MTU

discovery is not needed when there are no intermediate nodes in the path.

 For unicast destinations, this option disabled (this is the default). This

avoids sending packets with the minimum MTU size. Instead, path MTU

discovery processing information is used.

 For multicast destinations, this option enabled (this is the default). This

prevents path MTU discovery information from being used. If a direct

route is not available, packets are sent with the minimum MTU size. If a

direct route is available, packets are sent using the link’s MTU, because no

intermediate nodes are in the path.

 This option can be enabled or disabled for the following:

v A socket with a setsockopt()

v A single send operation with ancillary data on the sendmsg()

A value of -1 passed on the set socket option causes the default values for

unicast and multicast destinations to be used.

 A value of 0 disables this option for both unicast and multicast

destinations. Path MTU discovery information is used to send packets

greater than the minimum MTU size.

 A value of 1 enables this option for unicast and multicast destinations. All

packets are sent without using path MTU discovery information, using the

minimum MTU size, unless a direct route is available to the destination.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been done, the default value of -1 (disabled for

unicast, enabled for mutlicast) is returned.

IPV6_DONTFRAG (used with UDP and RAW applications)

The IPV6_DONTFRAG option enables the application to indicate that the

packet should not be fragmented by the local z/OS host.

 This option is useful for applications that want to discover the actual path

MTU.

 Guideline: When using the IPV6_DONTFRAG socket option, use the

IPV6_RECVPATHMTU socket option also. Otherwise, packets are silently

discarded without any notification to the application.

 This option can be enabled or disabled for the following:

v A socket with a setsockopt()

v A single send operation with ancillary data on the sendmsg()

A value of 1 enables this option for unicast or multicast destinations.

102 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been performed, then getsockopt() returns a value of

0.

 If IPV6_DONTFRAG is specified along with IPV6_USE_MIN_MTU, the

IPV6_DONTFRAG setting is ignored, resulting in selection of the minimum

architected IPv6 MTU size (1280 bytes).

IPV6_RECVPATHMTU (used with UDP and RAW applications)

The IPV6_RECVPATHMTU option enables the application to receive

notifications about changes to the path MTU. This option notifies the

application about all path MTU changes for all destinations, not only the

ones initiated by this socket.

 When the IPV6_RECVPATHMTU socket option is enabled, the path MTU

is returned as ancillary data on the recvmsg() API (for an empty message)

whenever the path MTU changes. The path MTU can change if the

application sends a packet with the IPV6_DONTFRAG option and the

packet is larger than the current path MTU. The path MTU can also change

if the stack receives a corresponding ICMPv6 packet too big error. The

ancillary data level is IPPROTO_IPV6. The option name is

IPV6_PATHMTU. For a detailed explanation of ancillary data, see “Using

ancillary data on sendmsg() and recvmsg()” on page 113.

 This option can be enabled or disabled for a socket with a setsockopt().

 A value of 1 enables this option.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been performed, then getsockopt() returns a value of

0.

IPV6_PATHMTU (used with UDP and RAW applications)

The IPV6_PATHMTU option enables the application to retrieve the current

path MTU to a given destination for which it has done a connect().

 This option is useful for applications also using IPV6_RECVPATHMTU

that want to pick a good starting value.

 This option is valid only on a getsockopt(). It returns the MTU that the

stack uses on this connected socket.

Options to control the sending of packets

Some of these options add extension headers to outbound packets. z/OS TCP/IP

allows the application to specify a maximum of 512 bytes of extension headers for

an outbound packet. Additionally, for IPV6_RTHDR, z/OS TCP/IP allows the

application to specify a maximum of 8 intermediate addresses in the routing

header.

Use the following options to control the sending of packets:

IPV6_PKTINFO (used with UDP and RAW applications)

The IPV6_PKTINFO option enables the application to provide the

following pieces of information:

v The source IP address for an outgoing packet

v The outgoing interface for a packet

The option value contains a 16-byte IPv6 address and a 4-byte interface

index. An application can provide a nonzero value for one or both pieces

of information.

Chapter 9. Advanced socket APIs 103

To perform this operation, an application must meet one of the following

criteria:

v Be APF authorized

v Have superuser authority

v The SERVAUTH resource

EZB.SOCKOPT.sysname.tcpname.IPV6_PKTINFO must be defined and the

application must at least have READ access to it.

This option can be enabled or disabled for the following:

v A socket with a setsockopt()

v A single send operation with ancillary data on the sendmsg()

To disable the option, specify both the IPv6 address and the interface index

as 0 in the option value.

 A getsockopt() with this option returns the value set by setsockopt(). If a

setsockopt() has not been done, a value of 0 is returned.

 See “Understanding options for setting the source address” on page 115 for

a discussion of the interaction of socket options and ancillary data for the

setting of the source address. See “Understanding options for specifying

the outgoing interface” on page 115 for a discussion of the interaction of

socket options and ancillary data for determining the outgoing interface.

IPV6_HOPLIMIT (used with UDP and RAW applications)

The IPv6 header contains a hop limit field that controls the number of

hops over which a datagram can be sent before being discarded. This is

similar to the TTL field in the IPv4 header. The IPV6_HOPLIMIT option

can be used to set the hop limit value for an outgoing packet. The option

value should be between 0 and 255 inclusive. A value of -1 causes the

TCP/IP protocol stack default to be used.

 To perform this operation, an application must meet one of the following

criteria:

v Be APF authorized

v Have superuser authority

v The SERVAUTH resource

EZB.SOCKOPT.sysname.tcpname.IPV6_HOPLIMIT must be defined and

the application must at least have READ access to it

Note that the IPV6_UNICAST_HOPS socket option and the

IPV6_MULTICAST_HOPS socket option are available to set a hop limit

value also. See “Understanding hop limit options” on page 114 for a

discussion of the interaction of IPV6_UNICAST_HOPS,

IPV6_MULTICAST_HOPS and IPV6_HOPLIMIT.

IPV6_NEXTHOP (used with UDP and RAW applications)

The IPV6_NEXTHOP enables the application to specify the next hop

address for an outgoing packet. The option value contains a sockaddr_in6

socket address structure and must contain an IPv6 address.

 Restriction: This option does not support IPv4 mapped addresses.

 To perform this operation, an application must meet one of the following

criteria:

v Be APF authorized

104 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

v Have superuser authority

v The SERVAUTH resource

EZB.SOCKOPT.sysname.tcpname.IPV6_NEXTHOP must be defined and

the application must at least have READ access to it

This option can be enabled or disabled for the following

v A socket with a setsockopt()

v A single send operation with ancillary data on the sendmsg()

 Restriction: IPV6_NEXTHOP is valid only for unicast destinations.

 An option value with an optlen value of 0 disables IPV6_NEXTHOP. This

option does not have any meaning for multicast destinations and is

ignored for multicast.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been performed, then getsockopt() returns a value of 0

in optlen.

 See “Understanding options for specifying the outgoing interface” on page

115 for a discussion of the interaction of socket options and ancillary data

for determining the outgoing interface.

 Tips:

v If you use this socket option in a Common INET environment, establish

affinity to the desired stack to ensure predictable results (as not all

stacks might have a route to the specified next hop address).

v If you specify a link-local address as the next hop address, specify the

outgoing interface either on IPV6_PKTINFO or by using the scope

portion of the socket address structure.

 Rule: The next hop address cannot be a multicast address and must be a

neighbor (for example, the stack must have a direct route to the next hop

address).

IPV6_RTHDR (used with UDP and RAW applications)

The IPV6_RTHDR option enables the application to specify an IPv6 routing

header (as an extension header) for an outgoing packet. The option value

contains a type 0 routing header. An application can specify at most one

routing header. z/OS TCP/IP allows the application to specify a maximum

of eight IPv6 addresses in the routing header.

 To perform this operation, an application must meet one of the following

criteria:

v Be APF authorized

v Have superuser authority

v The SERVAUTH resource EZB.SOCKOPT.sysname.tcpname.IPV6_RTHDR

must be defined and the application must at least have READ access to

it

This option can be enabled or disabled for the following:

v A socket with a setsockopt()

v A single send operation with ancillary data on the sendmsg()

Chapter 9. Advanced socket APIs 105

A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been performed, then getsockopt() returns a value of 0

in optlen.

 Tip: If you use this socket option in a Common INET environment,

establish affinity to the desired stack to ensure predictable results (as not

all stacks might have a path to the destination starting with the first entry

in the specified routing header).

 A z/OS UNIX C/C++ application can use the following utilities to build

routing headers:

v inet6_rth_space() - return number of bytes required for routing header

v inet6_rth_init() - initialize buffer data for routing header

v inet6_rth_add() - add one IPv6 address to the routing header

Refer toz/OS XL C/C++ Run-Time Library Reference for a description of these

utilities.

 A z/OS UNIX Assembler Callable Services application needs to build the

routing headers explicitly. Refer to z/OS UNIX System Services Programming:

Assembler Callable Services Reference for information about z/OS UNIX

Assembler Callable Services and the data structures defined in the

BPXYSOCK macro.

IPV6_DSTOPTS (used with UDP and RAW applications)

The IPV6_DSTOPTS option enables the application to specify destination

options that get examined by the host at the final destination.

 The IPV6_DSTOPTS option can be used to set a destination options header

(as an extension header) for an outgoing packet. The option value contains

a destination options header.

 To perform this operation, an application must meet one of the following

criteria:

v Be APF authorized

v Have superuser authority

v The SERVAUTH resource

EZB.SOCKOPT.sysname.tcpname.IPV6_DSTOPTS must be defined and the

application must at least have READ access to it

This option can be enabled or disabled for the following:

v A socket with a setsockopt()

v A single send operation with ancillary data on the sendmsg()

A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been performed, then getsockopt() returns a value of 0

in optlen.

 A z/OS UNIX C/C++ application can use the following utilities to build

the following destination options headers:

v inet6_opt_init() - initialize buffer data for options header

v inet6_opt_append() - add one TLV option to the options header

v inet6_opt_finish() - finish adding TLV options to the option header

106 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

v inet6_opt_set_val() - add one component of the option content to the

option

Refer to z/OS XL C/C++ Run-Time Library Reference for a description of

these utilities.

 A z/OS UNIX Assembler Callable Services application needs to build the

options headers explicitly. Refer to z/OS UNIX System Services Programming:

Assembler Callable Services Reference for information about z/OS UNIX

Assembler Callable Services and the data structures defined in the

BPXYSOCK macro.

IPV6_RTHDRDSTOPTS (used with UDP and RAW applications)

The IPV6_RTHDRDSTOPTS option enables the application to specify

destination options that get examined by every IP host that appears in the

routing header.

 The IPV6_RTHDRDSTOPTS option can be used to set a destination options

header (as an extension header) for an outgoing packet. The option value

contains a destination options header. This option is ignored if the

application does not also use the IPV6_RTHDR option to specify a routing

header.

 To perform this operation, an application must meet one of the following

criteria:

v Be APF authorized

v Have superuser authority

v The SERVAUTH resource

EZB.SOCKOPT.sysname.tcpname.IPV6_RTHDRDSTOPTS must be defined

and the application must at least have READ access to it

This option can be enabled or disabled for the following:

v A socket with a setsockopt()

v A single send operation with ancillary data on the sendmsg()

A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been performed, then getsockopt() returns a value of 0

in optlen.

 A z/OS UNIX C/C++ application can use the following utilities to build

Destination options headers:

v inet6_opt_init() - initialize buffer data for options header

v inet6_opt_append() - add one TLV option to the options header

v inet6_opt_finish() - finish adding TLV options to the option header

v inet6_opt_set_val() - add one component of the option content to the

option

Refer to z/OS XL C/C++ Run-Time Library Reference for a description of

these utilities.

 A z/OS UNIX Assembler Callable Services application needs to build the

options headers explicitly. Refer to z/OS UNIX System Services Programming:

Assembler Callable Services Reference for information about z/OS UNIX

Assembler Callable Services and the data structures defined in the

BPXYSOCK macro.

Chapter 9. Advanced socket APIs 107

IPV6_TCLASS (used with TCP, UDP and RAW applications)

The IPv6 header contains a traffic class field that can be used to identify

and distinguish between different classes or priorities of IPv6 packets. This

is similar to the type of service (ToS) field in the IPv4 header. The

IPV6_TCLASS option can be used to set the traffic class value for an

outgoing packet. However, if a QoS policy that specifies a traffic class for

the packet is also in effect, then the stack ignores the value specified with

the IPV6_TCLASS option and uses the value specified by the QoS policy.

 To perform this operation, an application must meet one of the following

criteria:

v Be APF authorized

v Have superuser authority

v The SERVAUTH resource EZB.SOCKOPT.sysname.tcpname.IPV6_TCLASS

must be defined and the application must at least have READ access to

it

This socket option is also valid for an AF_INET6 socket that is using

IPv4-mapped IPv6 addresses.

 This option can be enabled or disabled for a socket with a setsockopt(). For

UDP and RAW, this option can be enabled or disabled for a single send

operation with ancillary data on the sendmsg().

 The option value should be in the range 0 - 255. A value of -1 causes the

TCP/IP to use the traffic class value specified by policy (if any) or the

default of 0.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been performed, then the stack returns the traffic class

value specified by policy (if any) or the default of 0.

Options to provide information about received packets

Use the following options to provide information about received packets:

IPV6_RECVPKTINFO (used with UDP and RAW applications)

The IPV6_RECVPKTINFO socket option allows an application to receive

the following pieces of information:

v The destination IP address from the IPv6 header

v The interface index for the interface over which the packet was received

When the IPV6_RECVPKTINFO socket option is enabled, the IP address

and interface index are returned as ancillary data on the recvmsg() API.

The ancillary data level is IPPROTO_IPV6. The option name is

IPV6_PKTINFO. For a detailed explanation of ancillary data, see “Using

ancillary data on sendmsg() and recvmsg()” on page 113.

 Restriction: This option can only be enabled or disabled with a

setsockopt(). IPV6_RECVPKTINFO is not valid as ancillary data on

sendmsg(). A nonzero option value enables the option; a value of 0

disables the option.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been done, the default value of 0 (disabled) is

returned.

108 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

IPV6_RECVHOPLIMIT (used with TCP, UDP and RAW applications)

The IPV6_RECVHOPLIMIT socket option allows an application to receive

the value of the hop limit field from the IPv6 header. When the

IPV6_RECVHOPLIMIT socket option is enabled, the hop limit is returned

as ancillary data on the recvmsg() API. The ancillary data level is

IPPROTO_IPV6. The option name is IPV6_HOPLIMIT. For a UDP or RAW

application, if this option is enabled, the IPV6_HOPLIMIT ancillary data is

returned with each recvmsg(). For a TCP application, if this option is

enabled, IPV6_HOPLIMIT ancillary data is only returned on recvmsg()

when the hop limit value being used has changed. For a detailed

explanation of ancillary data, see “Using ancillary data on sendmsg() and

recvmsg()” on page 113.

 This option can only be enabled or disabled with a setsockopt().

IPV6_RECVHOPLIMIT is not valid as ancillary data on sendmsg(). A

nonzero option value enables the option; a value of 0 disables the option.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been done, the default value of 0 (disabled) is

returned.

IPV6_RECVRTHDR (used with UDP and RAW applications)

The IPV6_RECVRTHDR socket option enables the application to receive a

routing header.

 When the IPV6_RECVRTHDR socket option is enabled, the routing header

is returned as ancillary data on the recvmsg() API. Each routing header is

returned as one ancillary data object. The ancillary data level is

IPPROTO_IPV6. The option name is IPV6_RTHDR. For a detailed

explanation of ancillary data, see “Using ancillary data on sendmsg() and

recvmsg()” on page 113.

 This option can be enabled or disabled only with a setsockopt().

IPV6_RECVRTHDR is not valid as ancillary data on sendmsg(). A nonzero

value enables the option; a value of 0 disables the option.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been performed, then getsockopt() returns a value of

0.

 A z/OS UNIX C/C++ application can use the following utilities to process

routing headers:

v inet6_rth_reverse() - reverse a routing header

v inet6_rth_segments() - return number of segments in a routing header

v inet6_rth_getaddr() - fetch one address from a routing header

Refer to z/OS XL C/C++ Run-Time Library Reference for a description of the

above utilities.

 A z/OS UNIX Assembler Callable Services application needs to build the

options headers explicitly. Refer to z/OS UNIX System Services Programming:

Assembler Callable Services Reference for information about z/OS UNIX

Assembler Callable Services and the data structures defined in the

BPXYSOCK macro.

IPV6_RECVHOPOPTS (used with UDP and RAW applications)

The IPV6_RECVHOPOPTS socket option enables the application to receive

hop-by-hop options.

Chapter 9. Advanced socket APIs 109

When the IPV6_RECVHOPOPTS socket option is enabled, the hop-by-hop

options are returned as ancillary data on the recvmsg() API. The ancillary

data level is IPPROTO_IPV6. The option name is IPV6_HOPOPTS. For a

detailed explanation of ancillary data, see “Using ancillary data on

sendmsg() and recvmsg()” on page 113.

 This option can be enabled or disabled only with a setsockopt().

IPV6_RECVHOPOPTS is not valid as ancillary data on sendmsg(). A

nonzero value enables the option; a value of 0 disables the option.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been performed, then getsockopt() returns a value of

0.

 A z/OS UNIX C/C++ application can use the following utilities to process

hop-by-hop options headers:

v inet6_opt_next() - extract the next option from the options header

v inet6_opt_find() - extract an option of a specified type from the header

v inet6_opt_get_val() - retrieve one component of the option content

Refer to z/OS XL C/C++ Run-Time Library Reference for a description of the

above utilities.

 A z/OS UNIX Assembler Callable Services application needs to build the

options headers explicitly. Refer toz/OS UNIX System Services Programming:

Assembler Callable Services Reference for information about z/OS UNIX

Assembler Callable Services and the data structures defined in the

BPXYSOCK macro.

IPV6_RECVDSTOPTS (used with UDP and RAW applications)

The IPV6_RECVDSTOPTS socket option enables the application to receive

destination options.

 When the IPV6_RECVDSTOPTS socket option is enabled, the destination

options are returned as ancillary data on the recvmsg() API. The

application can receive up to two destination options headers (one before a

routing header and one after a routing header). Each destination options

header is returned as one ancillary data object. The ancillary data level is

IPPROTO_IPV6. The option name is IPV6_DSTOPTS. For a detailed

explanation of ancillary data, see “Using ancillary data on sendmsg() and

recvmsg()” on page 113.

 This option can be enabled or disabled only with a setsockopt().

IPV6_RECVDSTOPTS is not valid as ancillary data on sendmsg(). A

nonzero value enables the option; a value of 0 disables the option.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been performed, then getsockopt() returns a value of

0.

 A z/OS UNIX C/C++ application can use the following utilities to process

destination options headers:

v inet6_opt_next() - extract the next option from the options header

v inet6_opt_find() - extract an option of a specified type from the header

v inet6_opt_get_val() - retrieve one component of the option content

Refer to z/OS XL C/C++ Run-Time Library Reference for a description of

these utilities.

110 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

A z/OS UNIX Assembler Callable Services application needs to build the

options headers explicitly. Refer to z/OS UNIX System Services Programming:

Assembler Callable Services Reference for information about z/OS UNIX

Assembler Callable Services and the data structures defined in the

BPXYSOCK macro.

IPV6_RECVTCLASS (used with TCP, UDP and RAW applications)

The IPV6_RECVTCLASS socket option enables the application to receive

the value of the traffic class field from the IPv6 header.

 When the IPV6_RECVTCLASS socket option is enabled, the traffic class is

returned as ancillary data on the recvmsg() API. The ancillary data level is

IPPROTO_IPV6. The option name is IPV6_TCLASS. For a UDP, or RAW

application, if this option is enabled, the IPv6_TCLASS ancillary data is

returned with each recvmsg(). For a TCP application, if this option is

enabled, IPV6_TCLASS ancillary data is only returned on recvmsg() when

the traffic class value being used has changed. For a detailed explanation

of ancillary data, see “Using ancillary data on sendmsg() and recvmsg()”

on page 113.

 This socket option is also valid for an AF_INET6 socket that is using

IPv4-mapped IPv6 addresses.

 This option can be enabled or disabled only with a setsockopt().

IPV6_RECVTCLASS is not valid as ancillary data on sendmsg(). A nonzero

value enables the option; a value of 0 disables the option.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been performed, then getsockopt() returns a value of

0.

Option to provide checksum processing for RAW applications

Use the following option to provide checksum processing for RAW applications:

IPV6_CHECKSUM (used with RAW applications)

The IPV6_CHECKSUM socket option can be used by a RAW application to

enable checksum processing to be done by the TCP/IP protocol stack for

packets on a socket. When enabled, the checksum is computed and stored

for outbound packets; the checksum is verified for inbound packets. Note

that this socket option is not applicable for ICMPv6 RAW sockets because

the TCP/IP protocol stack always provides checksum processing for them.

 This option can only be enabled or disabled with a setsockopt().

IPV6_CHECKSUM is not valid as ancillary data on sendmsg(). The option

value provides the offset into the user data where the checksum field

begins. The option value should be an even number between 0 -65534

inclusive. A value of -1 causes the option to be disabled.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been done, the value of -1 (disabled) is returned.

Option to provide QoS classification data

Use the following option to provide QoS classification data:

IP_QOS_CLASSIFICATION (used with TCP applications)

This option enables the application to provide QoS classification data. It is

a z/OS Communications Server-specific ancillary data type, and is not

associated with the IPv6 Advanced Socket API. It can be specified as

ancillary data on sendmsg() for AF_INET and AF_INET6 sockets. For

AF_INET sockets the level specified should be IPPROTO_IP; for AF_INET6

sockets the level specified should be IPPROTO_IPV6. For a detailed

Chapter 9. Advanced socket APIs 111

description of the function, refer to the programming interfaces in the z/OS

Communications Server: IP Programmer’s Guide and Reference for providing

classification data to be used in differentiated services policies.

Socket option to support ICMPv6 (IPPROTO_ICMPV6 level)

 Table 26. Sockets options at the IPPROTO_ICMPV6 level

Socket options

getsockopt()

setsockopt()

Assembler

Callable

Services

C/C++ using

Language

Environment REXX

Sockets

Extended

macro/call

ICMP6_FILTER N Y N N

Use the following socket option to support ICMPv6 (IPPROTO_ICMPV6 level):

ICMP6_FILTER (used with RAW applications)

The ICMP6_FILTER socket option can be used by a RAW application to

filter out ICMPv6 message types that it does not need to receive. There are

many more ICMPv6 message types than ICMPv4 message types. ICMPv6

provides function comparable to ICMPv4 plus IGMPv4 and ARPv4

functionality. An application might only be interested in receiving a subset

of the messages received for ICMPv6.

 This option is enabled or disabled with a setsockopt(). The option value

provides a 256-bit array of message types that should be filtered. To

disable the option, the setsockopt() should be issued with an option length

of 0. This causes the TCP/IP protocol stack’s default filter to be in effect.

 A getsockopt() with this option returns the value set by a setsockopt(). If a

setsockopt() has not been done, the TCP/IP protocol stack’s default filter is

returned. For more information on default filtering, refer to “ICMP

considerations” on page 117.

 Table 27 lists the macros that are provided in the Language Environment C/C++

environment to manipulate the filter value.

 Table 27. Macros used to manipulate filter value

Macro Description

void ICMP6_FILTER_SETPASSALL(struct

icmp6_filter *);

Specifies that all ICMPv6 messages are

passed to the application.

void ICMP6_FILTER_SETBLOCKALL(struct

icmp6_filter *);

Specifies that all ICMPv6 messages are

blocked from being passed to the

application.

void ICMP6_FILTER_SETPASS(int, struct

icmp6_filter *);

ICMPv6 messages of type specified in

int should be passed to the

application.

void ICMP6_FILTER_SETBLOCK(int, struct

icmp6_filter *);

ICMPv6 messages of type specified in

int should not be passed to the

application.

void ICMP6_FILTER_WILLPASS(int, const struct

icmp6_filter *);

Returns true if the message type

specified in int is passed to the

application by the filter pointed to by

the second argument.

112 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Table 27. Macros used to manipulate filter value (continued)

Macro Description

void ICMP6_FILTER_WILLBLOCK(int, const struct

icmp6_filter *);

Returns true if the message type

specified in int is not passed to the

application by the filter pointed to by

the second argument.

Using ancillary data on sendmsg() and recvmsg()

The sendmsg() API is similar to other socket APIs, such as send() and write() that

allow an application to send data, but also provides the capability of specifying

ancillary data. Ancillary data allows applications to pass additional option data to

the TCP/IP protocol stack along with the normal data that is sent to the TCP/IP

network.

The recvmsg() API is similar to other socket APIs, such as recv() and read(), that

allow an application to receive data, but also provides the capability of receiving

ancillary data. Ancillary data allows the TCP/IP protocol stack to return additional

option data to the application along with the normal data from the TCP/IP

network.

These sendmsg() and recvmsg() API extensions are only available to applications

using the following socket API libraries:

v z/OS IBM C/C++ sockets with the z/OS Language Environment(R). For more

information about these APIs, refer to the z/OS XL C/C++ Run-Time Library

Reference.

v z/OS UNIX Assembler Callable services socket APIs. For more information

about these APIs, refer to z/OS UNIX System Services Programming: Assembler

Callable Services Reference.

For the sendmsg() and recvmsg() APIs most parameters are passed in a message

header input parameter. The mapping for the message header is defined in

socket.h for C/C++ and in the BPXYMSGH macro for users of the z/OS UNIX

Assembler Callable services. For simplicity, only the C/C++ version of the data

structures are shown in the following section:

Notes:

1. The msg_name and msg_namelen parameters are used to specify the

destination sockaddr on a sendmsg(). On a recvmsg() the msg_name and

msg_namelen parameters are used to return the remote sockaddr to the

application.

2. Data to be sent using sendmsg() needs to be described in the msg_iov

structure. On recvmsg() the received data is described in the msg_iov structure.

3. The address of the ancillary data is passed in the msg_control field.

struct msghdr {

 void *msg_name; /* optional address */

 size_t msg_namelen; /* size of address */

 struct iovec *msg_iov; /* scatter/gather array */

 int msg_iovlen; /* # elements in msg_iov */

 void *msg_control; /* ancillary data */

 size_t msg_controllen; /* ancillary data length */

 int msg_flags; /* flags on received msg */

 };

Chapter 9. Advanced socket APIs 113

4. The length of the ancillary data is passed in msg_controllen. Note that if

multiple ancillary data sections are being passed, this length should reflect the

total length of ancillary data sections.

5. msg_flags is not applicable for sendmsg().

The msg_control parameter points to the ancillary data. This msg_control pointer

points to the following structure (C/C++ example shown below) that describes the

ancillary data (also defined in socket.h and BPXYMSGH respectively):

Notes:

1. The cmsg_len should be set to the length of the cmsghdr plus the length of all

ancillary data that follows immediately after the cmsghdr. This is represented

by the commented out cmsg_data field.

2. The cmsg_level should be set to the option level (for example, IPPROTO_IPV6).

3. The cmsg_type should be set to the option name (for example,

IPV6_USE_MIN_MTU).

Interactions between socket options and ancillary data

This section describes between socket options and ancillary data, included hop

limits.

Understanding hop limit options

The IPv6 header contains a hop limit field that controls the number of hops over

which a datagram can be sent before being discarded. This is similar to the TTL

field in the IPv4 header. An application can influence the value of the hop limit

field using the following options:

v IPV6_UNICAST_HOPS socket option (hop limit value to be used for unicast

packets on a socket)

v IPV6_MULTICAST_HOPS socket option (hop limit value to be used for multicast

packets on a socket)

v IPV6_HOPLIMIT ancillary data option on sendmsg() (hop limit value to be used

for single packet)

The hop limit value can also be influenced by a router advertised hop limit, as

well as the globally configured HOPLIMIT parameter value on the IPCONFIG6

statement.

For a unicast packet, the following precedence order is used to determine a

packet's hop limit value:

1. If IPV6_HOPLIMIT ancillary data is specified on sendmsg(), use its value.

2. If the IPV6_UNICAST_HOPS socket option is set, use its value.

3. If a router advertised hop limit is known, use its value.

4. If there is a globally configured IPv6 hop limit, use its value.

5. Use the IPv6 default unicast hop limit, 255.

struct cmsghdr {

 size_t cmsg_len; /* data byte count includes hdr */

 int cmsg_level; /* originating protocol */

 int cmsg_type; /* protocol-specific type */

 /* followed by u_char cmsg_data[]; */

 };

114 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

For a multicast packet, the following precedence order is used to determine the

packet's hop limit value:

1. If IPV6_HOPLIMIT ancillary data is specified on sendmsg(), use its value.

2. If the IPV6_MULTICAST_HOPS socket option is set, use its value.

3. Use the IPv6 default multicast hop limit, 1.

Understanding options for setting the source address

A UDP or RAW application can influence the setting of the source address with the

bind() IPv6 address or with the IPV6_PKTINFO option.

The following precedence order is used to determine the source IP address for a

packet:

1. If IPV6_PKTINFO ancillary data is specified on sendmsg() with a nonzero

source IP address, use its value. If the IPV6_PKTINFO ancillary data is

specified with a length of 0 or with a zero source IP address, go step to 3.

2. If the IPV6_PKTINFO socket option is set and contains a nonzero source IP

address, use its value.

3. If the application bound the socket to a specific address, use the Bind address.

4. The TCP/IP protocol stack selects a source address.

Understanding options for specifying the outgoing interface

A UDP or RAW application can influence the outgoing interface for a packet with

the IPV6_PKTINFO option, the IPV6_NEXTHOP option, or the

IPV6_MULTICAST_IF option. The scope ID field in the send operation’s

destination sockaddr can also affect the outgoing interface. The options field

contains an interface index. The scope ID field contains a zone index.

When responding to a peer, UDP and RAW applications should use the

sockaddr_in6 structure which they received, and should not zero out the scope ID

field. When sending an unsolicited packet (for example, not responding to one that

was received), the scope ID field should be zero, and UDP and RAW applications

should use the IPV6_PKTINFO, IPV6_NEXTHOP, or IPV6_MULTICAST_IF options

to select the outgoing interfaces.

The following precedence order is used to determine the outgoing interface for a

packet:

1. If the send operation specifies a destination sockaddr structure with a scope ID,

then the scope ID is used if valid (note that a scope ID should only be

provided with a link-local address).

2. If IPV6_PKTINFO ancillary data is specified on sendmsg() with a nonzero

interface index, use its value. If the IPV6_PKTINFO ancillary data is specified

with a length of 0 or with an interface index of 0, then skip to rule 4.

3. If the IPV6_PKTINFO socket option is set and contains a nonzero interface

index, use its value.

4. If this is a multicast packet and the IPV6_MULTICAST_IF socket option is set,

use its value.

5. If IPV6_NEXTHOP ancillary data is specified on sendmsg() with a nonzero

value, use the stack routing table to determine the interface to the next hop

address. If the IPV6_NEXTHOP ancillary data is specified with a length of 0, go

to step 7 on page 116.

Chapter 9. Advanced socket APIs 115

6. If the IPV6_NEXTHOP socket option is set and contains a nonzero value, use

the stack routing table to determine the interface to the next hop address.

7. The TCP/IP protocol stack uses the routing table to determine the interface to

the destination IP address.

Why use RAW sockets?

Consider the following factors for RAW sockets use:

v An application (for example, PING) can send and receive ICMPv6 messages.

v An application can send and receive datagrams with an IP protocol that the

TCP/IP stack does not support.

The external behavior of IPv6 RAW sockets differs significantly from that of IPv4

RAW sockets, specifically with regards to the following:

v RAW protocol values allowed

v Application visibility of IP headers

v ICMP considerations

v Checksumming data

RAW protocol values

Protocol values 0, 41, 43, 44, 50, 51, 59 and 60 are not allowed because they conflict

with the following IPv6 extension header types:

v IPPROTO_HOPOPTS (0)

v IPPROTO_IPV6 (41)

v IPPROTO_ROUTING (43)

v IPPROTO_FRAGMENT (44)

v IPPROTO_ESP (50)

v IPPROTO_AH (51)

v IPPROTO_NONE (59)

v IPPROTO_DSTOPTS (60)

Of the RAW protocol values listed, only the following correspond to well-known

IPv4 RAW protocols:

v IPPROTO_ESP (50)

v IPPROTO_AH (51)

Application visibility of IP headers

Applications do not see IP headers of incoming datagrams and cannot provide IP

headers with outgoing datagrams.

IPv6 RAW applications can get or set selected IP header information for incoming

and outgoing datagrams by way of socket options and ancillary data as follows:

v Applications can set the IPV6_RECVHOPLIMIT socket option in order to get the

hop limit for incoming datagrams in ancillary data. By default, this socket option

is set to off.

v Applications can set the IPV6_RECVPKTINFO socket option in order to get the

destination IP address and interface identifier for incoming datagrams in

ancillary data. By default, this socket option is set to off.

116 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

v Applications can set the IPV6_RECVRTHDR socket option in order to get the

routing header for incoming datagrams in ancillary data. By default, this socket

option is set to off.

v Applications can set the IPV6_RECVHOPOPTS socket option in order to get the

hop-by-hop options for incoming datagrams in ancillary data. By default, this

socket option is set to off.

v Applications can set the IPV6_RECVDSTOPTS socket option in order to get the

destination options for incoming datagrams in ancillary data. By default, this

socket option is set to off.

v Applications can set the IPV6_RECVTCLASS socket option in order to get the

traffic class for incoming datagrams in ancillary data. By default, this socket

option is set to off.

v Applications can set the IPV6_UNICAST_HOPS socket option in order to set the

hop limit for outgoing unicast datagrams. By default, this socket option is set to

off and the configured maximum hop limit or the default hop limit is used.

v Applications can set the IPV6_MULTICAST_HOPS socket option in order to set

the hop limit for outgoing multicast datagrams. By default, this socket option is

set to off and a hop limit of 1 is used.

v Applications can use the IPV6_HOPLIMIT ancillary data option to set the hop

limit for an outgoing datagram.

v Applications can use the IPV6_PKTINFO socket option and ancillary data option

to set the source address and interface identifier for outgoing datagrams. By

default, the socket option is set to off.

v Applications can use the IPV6_NEXTHOP socket option and ancillary data

option to set the next hop address for outgoing datagrams. By default, the socket

option is set to off.

v Applications can use the IPV6_RTHDR socket option and ancillary data option

to set the routing header for outgoing datagrams. By default, the socket option is

set to off.

v Applications can use the IPV6_HOPOPTS socket option and ancillary data

option to set the hop-by-hop options for outgoing datagrams. By default, the

socket option is set to off.

v Applications can use the IPV6_DSTOPTS socket option and ancillary data option

to set the destination options (that get examined by the host at the final

destination) for outgoing datagrams. By default, the socket option is set to off.

v Applications can use the IPV6_RTHDRDSTOPTS socket option and ancillary

data option to set the destination options (that get examined by every host that

appears in the routing header) for outgoing datagrams. By default, the socket

option is set to off.

v Applications can use the IPV6_TCLASS socket option and ancillary data option

to set the traffic class for outgoing datagrams. By default, the socket option is set

to off.

ICMP considerations

IPv6 RAW ICMPv6 applications can set the ICMP6_FILTER socket option to

specify which ICMPv6 message types the socket receives. By default, the following

message types are blocked (are not received):

v ICMP_ECHO

v ICMP_TSTAMP

v ICMP_IREQ

v ICMP_MASKREQ

Chapter 9. Advanced socket APIs 117

v ICMP6_ECHO_REQUEST

v MLD_LISTENER_QUERY

v MLD_LISTENER_REPORT

v MLD_LISTENER_REDUCTION

v ND_ROUTER_SOLICIT

v ND_ROUTER_ADVERT

v ND_NEIGHBOR_SOLICIT

v ND_NEIGHBOR_ADVERT

v ND_REDIRECT

Checksumming data

IPv6 RAW applications can set the IPV6_CHECKSUM socket option in order to

have TCP/IP calculate checksums for outgoing datagrams and verify checksums

for incoming datagrams. By default, this socket option is set to off.

118 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Part 4. Advanced topics

This section contains the following chapters:

Chapter 10, “Advanced concepts and topics,” on page 121 provides advanced IPv6

protocol information.

Chapter 11, “IPv6 support tables,” on page 131 contains tables with features and

applications that support IPv6.

© Copyright IBM Corp. 2002, 2006 119

120 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 10. Advanced concepts and topics

This chapter explains some of the advanced concepts and topics for IPv6

implementation and includes the following sections:

v “Tunneling”

v “Application migration and coexistence overview” on page 125

v “Application migration approaches” on page 127

Tunneling

When IPv6 or IPv6/IPv4 systems are separated from other similar systems that

they wish to communicate with by IPv4 networks, then IPv6 packets must be

tunneled through the IPv4 network. IPv6 packets are tunneled over IPv4 very

simply: the IPv6 packet is encapsulated in an IPv4 datagram, or in other words, a

complete IPv4 header is added to the IPv6 packet. The presence of the IPv6 packet

within the IPv4 datagram is indicated by a protocol value of 41 in the IPv4 header.

Restriction: z/OS Communications Server cannot function as an endpoint for this

type of tunnel.

While there are many tunneling protocols that can be used, all share the following

common features and processing characteristics:

v The source tunnel endpoint determines that an IPv6 packet needs to be tunneled

over an IPv4 network. This depends on the tunneling protocol that is used. After

this decision is made, the source tunnel endpoint adds an IPv4 header to the

IPv6 packet. The protocol value in the IPv4 header is set to 41. This indicates

that this is an IPv6 over IPv4 tunnel packet. The source and destination

addresses in the IPv4 header are set based on the tunneling protocol that is

used.

v At the destination tunnel endpoint, the IPv4 layer receives the IPv4 packet (or

packets, if the IPv4 datagram was fragmented). The IPv4 layer processes the

datagram in the normal way, reassembling fragments if necessary, and records

the protocol value of 41 in the IPv4 header. IPv4 security checks are made, and

the IPv4 header is removed, leaving the original IPv6 packet. The IPv6 packet is

processed as normal.

Figure 19 on page 122 shows a subset of the available tunneling protocols, with

descriptions of the more prevalent protocols. Others exist or are in the process of

being defined. Select one that is appropriate for your environment.

© Copyright IBM Corp. 2002, 2006 121

|
|

Configured tunnels

Configured tunneling refers to IPv6 over IPv4 tunneling, where the IPv4 tunnel

endpoint address is determined by configuration information on the encapsulating

node. The tunnels can be unidirectional or bidirectional. Bidirectional configured

tunnels act similarly as virtual point-to-point links. For each tunnel, the

encapsulating node must store the tunnel endpoint address. When an IPv6 packet

is transmitted over a tunnel, the tunnel endpoint address configured for that

tunnel is used as the destination address for the encapsulating IPv4 header.

Routing information on the encapsulating node usually determines which packets

to tunnel. This is typically done by way of a routing table, which directs packets

based on their destination address using the prefix mask and match technique.

Configured tunnels can be host-host, host-router, or router-router. Host-host

tunnels allow two IPv6/IPv4 nodes to send IPv6 packets directly to one another

without going through an intermediate IPv6 router. This can be useful if the

applications need to take advantage of IPv6 features that are not available in IPv4.

An IPv6/IPv4 host that is connected to datalinks with no IPv6 routers can use a

configured tunnel to reach an IPv6 router. This tunnel allows the host to

communicate with the rest of the IPv6 Internet. If the IPv4 address of an IPv6/IPv4

router bordering the IPv6 backbone is known, this can be used as the tunnel

endpoint address, and can be used as an IPv6 default route. This default route is

used only if a more specific route is not known.

Configured tunnels can also be used between routers, allowing isolated IPv6

networks to be connected by way of an IPv4 backbone. This connectivity can be

accomplished by arranging tunnels directly with each IPv6 site to which

connectivity is needed, but more typically it is done by arranging a tunnel into a

TCP, UDP, and RAW TCP, UDP, and RAW TCP, UDP, and RAW

IPv6 IPv4 and IPv6 IPv4 and IPv6

IPv6
Application

IPv6
Application

IPv6
Application

IPv6 Interface IPv4 Interface IPv4 Interface IPv4 Interface

IPv4 Network

Tunneling: encapsulate an IPv6
packet in an IPv4 packet and send
the IPv4 packet to the other tunnel
end-point IPv4 address

Network Interfaces Network Interfaces Network Interfaces

IPv6
Network

IPv4
Network

Figure 19. Tunneling

122 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

larger IPv6 routing infrastructure that can guarantee connectivity to all IPv6

end-user site networks. One example of this type of IPv6 routing infrastructure is

the 6bone.

When using configured tunnels, a peering relationship must be established

between the two IPv6 sites. This requires establishing a technical relationship with

the peer and working through the various low-level details of how to configure

tunnels between the two sites, including answering questions such as what peering

protocol is used (presumably, an IPv6-capable version of BGP4).

Automatic tunnels

Automatic tunnels provide a simple mechanism to establish IPv6 connectivity

between isolated dual-stack hosts and/or routers. In automatic tunneling, the IPv4

tunnel endpoint is determined from the IPv4 address embedded in the

IPv4-compatible destination address of the IPv6 packet being tunneled. If the

destination IPv6 address is IPv4-compatible, then the packet is sent by way of

automatic tunneling. If the destination is IPv6-native, the packet cannot be sent by

way of automatic tunneling. An IPv6-compatible address is identified by a ::/96

prefix and holds an IPv4 address in the low-order 32 bits. IPv4-compatible

addresses are assigned exclusively to nodes that support automatic tunneling. It is

globally unique as long as the IPv4 address is not from the private IPv4 address

space.

When an IPv6 packet is sent over an automatic tunnel, the IPv6 packet is

encapsulated within an IPv4 header as described in “Tunneling” on page 121. The

source IPv4 address is an address of the interface the packet is sent over, and the

destination IPv4 address is the low-order 32 bits of the IPv6 destination address.

The packet is always sent in this form, even if the tunnel endpoint is on an

attached link.

Automatic tunneling can be either host-host or router-host. A source host sends an

IPv6 packet to an IPv6 router if possible, but that router might not be able to do

the same and might have to perform automatic tunneling to the destination host

itself. Because of the preference for the use of IPv6 routers rather than automatic

tunneling, the tunnel is always as short as possible. However, the tunnel always

extends all the way to the destination host. In order to use a tunnel that does not

extend all the way to the recipient, another tunneling protocol must be used.

Guidelines: There are several issues to be aware of when using automatic tunnels.

v First, it does not solve the address exhaustion problem of IPv4, as it requires

each tunnel endpoint to have an IPv4 address from which the IPv6 compatible

address is created.

v Second, the use of IPv4 compatible addresses cause IPv4 addresses to be

included in the IPv6 routing table, which in turn can cause a dramatic increase

in the size of the IPv6 routing table.

Due to these concerns, use other tunneling protocols, such as 6to4 tunnels, in

preference to automatic tunnels.

6to4 addresses

The IANA has permanently assigned one 13-bit IPv6 Top Level Aggregator (TLA)

identifier under the IPv6 Format Prefix 001 for the 6to4 scheme. Its numeric value

is 0x2002, i.e., it is 2002::/16 when expressed as an IPv6 address prefix.

Chapter 10. Advanced concepts and topics 123

The format for a 6to4 address is shown in Figure 20:

Thus, this prefix has exactly the same format as normal /48 prefixes assigned

according to other aggregatable global unicast addresses. It can be abbreviated as

2002:V4ADDR::/48. Within the subscriber site it can be used exactly like any other

valid IPv6 prefix, for example, for automated address assignment and discovery

for native IPv6 routing, or for the 6over4 mechanism.

6to4 provides a mechanism to allow isolated IPv6 domains, attached to a wide area

network with no native IPv6 support, to communicate with other such IPv6

domains with minimal configuration. The idea is to embed IPv4 tunnel addresses

into the IPv6 prefixes so that any domain border router can automatically discover

tunnel endpoints for outbound IPv6 traffic.

The 6to4 transition mechanism advertises a site’s IPv4 tunnel endpoint (to be used

for a dynamic tunnel) in a special external routing prefix for that site. When one

site tries to reach another site, it discovers the 6to4 tunnel endpoint from a DNS

name to address lookup and use a dynamically built tunnel from site to site for

communication. The tunnels are transient in that there is no state maintained for

them, lasting only as long as a specified transaction uses the path.

A 6to4 site identifies one or more routers to run as a dual-mode stack and to act as

a 6to4 router. A globally routable IPv4 address is assigned to the 6to4 router. The

6to4 prefix, which has the 6to4 router’s IPv4 address embedded within it, is then

advertised by way of the Neighbor Discovery protocol to the 6to4 site, and this

prefix is used by hosts within the site to generate a global IPv6 address.

When one IPv6-enabled host at a 6to4 site tries to access an IPv6-enabled host by

domain name at another 6to4 site, the DNS returns the IPv6 IP address for that

host. The requesting host sends a packet to its nearest router, eventually reaching a

site’s 6to4 router. When the site’s 6to4 router receives the packet and sees that it

must send the packet to another site, and the next hop destination prefix is a

2002:://16 prefix, the IPv6 packet is encapsulated as described in “Tunneling” on

page 121. The source IPv4 address is the one in the requesting site’s 6to4 prefix

(which is the IPv4 address of an outgoing interface for one of the site’s 6to4

routers) and the destination IPv4 address is the one in the next hop destination

6to4 prefix of the IPv6 packet. When the destination site’s 6to4 router receives the

IPv4 packet, the IPv4 header is removed, leaving the original IPv6 packet for local

forwarding.

6over4 tunnels

The Interface Identifier of an IPv4 interface using 6over4 is the 32-bit IPv4 address

of that interface, padded to the left with 0s and is 64 bits in length. Note that the

Universal/Local bit is 0, indicating that the Interface Identifier is not globally

64 bits16 bits 32 bits 16 bits

Interface ID0x0002 V4ADDR Subnet
ID

Figure 20. 6to4 address format

124 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

unique. When the host has more than one IPv4 address in use on the physical

interface concerned, an administrative choice of one of these IPv4 addresses is

made.

The IPv6 Link-local address for an IPv4 virtual interface is formed by appending

the Interface Identifier, as defined above, to the prefix FE80::/64.

Site-local and global unicast addresses are generated by prepending a 64-bit prefix

to the 6over4 Interface Identifier. These prefixes can be learned in any of the

normal ways, for example, as part of stateless address autoconfiguration or by way

of manual configuration.

6over4 is a transition mechanism which allows isolated IPv6 hosts, located on a

physical link which has no directly connected IPv6 router, to use an IPv4 multicast

domain as their virtual local link. A 6over4 host uses an IPv4 address for the

interface in the creation of the IPv6 interface ID, placing the 32-bit IPv4 address in

the low order bits and padding to the left with 0’s for a total of 64 bits. The IPv6

prefix used is the normal IPv6 prefix, and can be manually configured or

dynamically learned by way of Stateless Address Autoconfiguration.

Because 6over4 creates a virtual link using IPv4 multicast, at least one IPv6 router

using the same method must be connected to the same IPv4 multicast domain if

IPv6 routing to other links is required.

When encapsulating the IPv6 packet, the source IP address for the IPv4 packet is

an IPv4 address from the sending interface of the 6over4 host. The destination IPv4

address is the low-order 32 bits of the IPv6 address of the next-hop for the packet.

Note that the final destination of the packet does not need to be a 6over4 host,

although it might be one.

Application migration and coexistence overview

Many IPv6 stacks support both IPv4 and IPv6 interfaces and are capable of

receiving and sending native IPv4 and IPv6 packets over the corresponding

interfaces. This type of TCP/IP stack is generally referred to as a dual-mode stack

IP node. This does not mean that there are two separate TCP/IP stacks running on

this type of node. It means that the TCP/IP stack has built-in support for both

IPv4 and IPv6. In this document, the term dual-mode stack or IP node is a TCP/IP

stack that supports both IPv4 and IPv6 protocols.

32 bits32 bits3 bits 45 bits 16 bits

IPv4 address0...........0001 Network Subnet

Figure 21. 6over4 address format

Chapter 10. Advanced concepts and topics 125

For a multihomed dual-mode IP host, it is a likely configuration that the host has

both IPv4 and IPv6 interfaces over which requests for host-resident applications

are received or sent. Older AF_INET applications are only able to communicate

using IPv4 addresses. IPv6-enabled applications that use AF_INET6 sockets can

communicate using both IPv4 and IPv6 addresses (on a dual-mode host). AF_INET

and AF_INET6 applications are able to communicate with one another, but only

using IPv4 addresses.

If the socket libraries on the IPv6-enabled host are updated to support IPv6 sockets

(AF_INET6), applications can be IPv6 enabled. When an application on a dual

mode stack host is IPv6 enabled, the application is able to communicate with both

Dual-mode stack IP Host

IPv4-only
Application

TCP, UDP, and RAW

IPv4 and IPv6

Network Interfaces

IPv4 Node IPv6 Node

IPv6-enabled
Application

IPv6
Network

IPv4
Network

Figure 22. Dual-mode stack IP host

126 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

IPv4 and IPv6 partners. This is true for both clients and server on a dual-mode

stack host.

IPv6-enabling both sockets libraries and applications on dual-mode hosts therefore

becomes a migration concern. As soon as IPv6-only hosts are being deployed in a

network, applications on those IPv6-only nodes cannot communicate with the

IPv4-only applications on the dual mode hosts, unless one of multiple migration

technologies are implemented either on intermediate nodes in the network or

directly on the dual mode hosts.

Application migration approaches

The ultimate and preferred migration approach for applications that reside on a

dual-mode TCP/IP host is to IPv6-enable the applications by migrating them from

AF_INET sockets to AF_INET6 sockets.

There are multiple reasons why this approach is not always applicable, such as the

following:

v No access to the source code (vendor product, or source no longer available).

v The sockets API implementation does not yet (or never does) support IPv6.

v Resource availability or prioritization dictates a phased IPv6-enabling where not

all applications can be available in an IPv6-enabled version at the same point in

time where the stack is IPv6-capable.

For those applications that are not or cannot be IPv6 enabled, an alternative

migration strategy is needed. The IETF has identified multiple approaches as

summarized in draft RFC, An Overview of the Introduction of IPv6 in the Internet.

Some of the technologies that are defined by the IETF are supposed to be

implemented on intermediate nodes that route traffic between IPv4 and IPv6

network segments. Other technologies are intended for implementation on the dual

mode IP nodes themselves.

Translation mechanisms

This section provides an introduction to a few transition mechanisms that can be

used when migrating to an IPv6 network.

The key to successful adoption and deployment of IPv6 is the transition from the

installed IPv4 base. The goal of all transition strategies is to facilitate the partial

and incremental upgrade of hosts, servers, routers, and network infrastructure.

There are many possible approaches, and some of the more likely approaches are

described below. The transition strategy a company chooses to take varies based on

the particular needs of that company.

Appl. on a dual mode host

IPv4-only partner

IPv4-only IPv6-enabled

IPv6-only partner

Figure 23. Application communication on a dual-mode host

Chapter 10. Advanced concepts and topics 127

Several migration issues must be addressed when the backbone routing protocol is

IPv4. First, a mechanism is needed to allow communication between islands of

IPv6 networks that are interconnected only using the IPv4 backbone. Tunneling of

IPv6 packets over the IPv4 network can be used to connect the clouds. Second,

end-to-end communication between IPv4 and IPv6 applications must be enabled.

Several approaches to accomplish this exist; Application Layer Gateways, NAT-PT,

and Bump-in-the-Stack are all possibilities. During the migration phase, it is likely

that a combination of one, multiple, or all of these transition mechanisms can be

used.

Application Layer Gateways (ALGs) allow an IPv6-only applications to

communicate to an IPv4-only peer. Using an ALG, the client connects to the ALG

using its native protocol (IPv4 or IPv6) and the ALG connects to the server using

the other protocol (IPv6 or IPv4, respectively).

SOCKS gateway

A SOCKS gateway is a method of providing an ALG. The SOCKS64

implementation works as a SOCKS server that relays communication between IPv4

and IPv6 flows. Servers do not require any changes, but client applications (or the

stack where the client applications reside) need to be socksified to be able to reach

out through a SOCKS64 server to an IPv6-only partner.

Proxy

Protocol translation involves converting IPv4 packets into IPv6 packets and vice

versa. This translation typically involves some form of network address translation

(NAT) in addition to the protocol translation (PT) function. It might execute in a

specialized node that resides between an IPv4 network and an IPv6 network, or it

might execute in the host that owns the IPv4 application.

Protocol Translation is useful when devices need to communicate but are not using

the same protocol, allowing IPv6-only devices to communicate with IPv4-only

devices. However, the following issues make a less-than ideal solution:

v Protocol translation is not foolproof. It is difficult to determine exactly how long

to keep the mappings between the real IPv6 address and the locally mapped

IPv4 address available. Eventually, an address is going to be reused before all

servers have stopped accessing the address.

v Some applications might use the remote IP address as a means of performing a

security check. Unless AH or an IPSec tunnel is used, then this method is not

foolproof, but it is still done. If the IPv4 address is a locally mapped address,

any checks such as this are broken.

v Displays and traces of the remote IP address are meaningless. Today, many

applications generate messages, traces, and so on containing the IP address of

the remote client.

v All DNS queries for the IPv4-mapped address must flow through the node that

performed the NAT function. The DNS resolver or name server at this node, as

well as the TCP/IP stack, must maintain a mapping between the IPv4 address

and IPv6 address.

v Not all IPv6 protocols have IPv4 equivalents and vice versa. As such, it might

not be possible to translate the contents of an IPv4 packet into an equivalent

IPv6 packet and vice versa.

Stateless IP/ICMP Translation Algorithm (SIIT)

This algorithm translates between IPv4 and IPv6 packet headers (including ICMP

headers) in separate translator boxes in the network without requiring any

128 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

per-connection state in those boxes. SIIT can be used as part of a solution that

allows IPv6 hosts, which do not have permanently assigned IPv4 addresses, to

communicate with IPv4-only hosts.

Network address translation - protocol translation (NAT-PT)

Protocol translation can occur at a specialized node that resides between IPv4 and

IPv6 networks. This node is typically referred to as a NAT-PT device because it

must translate between the IPv4 and IPv6 addresses, as well as between the IPv4

and IPv6 protocols.

An NAT-PT node plays a similar role to an ALG. Both nodes allow IPv4-only

applications to communicate with IPv6-only peers, and both reside in similar

places in the network. However, each takes a different approach to accomplish a

similar goal.

SOCKS64 is a proxy solution and requires client applications to be updated to use

SOCKS64. NAT-PT is not a proxy and requires no changes to either the client or

server. Based solely on this, NAT-PT might appear to be a superior solution.

However, due to the limitations of NAT-PT and familiarity with SOCKS, it is more

likely that SOCKS64 is used to allow IPv4-only applications to communicate with

IPv6-only peers.

Chapter 10. Advanced concepts and topics 129

130 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 11. IPv6 support tables

This appendix contains the IPv6 support tables and includes the following sections:

v “Supported IPv6 standards”

v “z/OS-specific features”

v “Applications not enabled for IPv6” on page 134

Supported IPv6 standards

Table 28 lists the supported IPv6 standards. RFCs are not implemented in their

entirety.

 Table 28. Supported IPv6 standards

Standard RFC or Internet Draft

DNS Extensions to support IP version 6 1886

Path MTU discovery 1981

RIPng for IPv6 2080

An IPv6 Aggregatable Global Unicast Address Format 2374

FTP Extensions for IPv6 and NATs 2428

Internet Protocol, Version 6 (IPv6) Specification 2460

Neighbor discovery for IP Version 6 (IPv6) 2461

IPv6 Stateless Address Autoconfiguration 2462

Internet Control Message Protocol (ICMPv6) for the

Internet Protocol Version 6 (IPv6) Specification

2463

Transmission of IPv6 Packets over Ethernet Networks 2464

Multicast Listener Discovery (MLD) for IPv6 2710

IPv6 Router Alert Option 2711

OSPF for IPv6 2740

DNS Extensions to Support IPv6 Address Aggregation

and Renumbering

2874

Default Address Selection for Internet Protocol Version

6 (IPv6)

3484

Basic Socket Interface Extensions for IPv6 3493

Internet Protocol Version 6 (IPv6) Addressing

Architecture

3513

Advanced Sockets Application Programming Interface

(API) for IPv6

3542

z/OS-specific features

The tables in this section summarize z/OS TCP/IP features and the level of

support provided in an IPv6 network. In the future, additional features are

projected for IPv6 support in subsequent releases of the z/OS Communications

Server.

© Copyright IBM Corp. 2002, 2006 131

Table 29 lists the link-layer device support.

 Table 29. Link-layer device support

Link-layer device support

IPv4

support

IPv6

support Comments

OSA-Express in QDIO

mode

Y Y Fast and Gigabit Ethernet support for

IPv6 traffic is configured by way of an

INTERFACE statement of type

IPAQENET6.

CTC Y N None

LCS Y N None

CLAW Y N None

CDLC (3745/3746) Y N None

SNALINK LU0 and LU6.2 Y N None

X.25 NPSI Y N None

NSC HyperChannel Y N None

MPC Point-Point Y Y Support is configured by way of an

INTERFACE statement of type

MPCPTP6.

ATM Y N None

HiperSockets Y Y Support is configured by way of an

INTERFACE statement of type

IPAQIDIO6 or dynamically configured

by way of the IPCONFIG6

DYNAMICXCF statement.

XCF Y Y Support is configured by way of an

INTERFACE statement of type

MPCPTP6 or dynamically configured

by way of the IPCONFIG6

DYNAMICXCF statement.

Table 30 lists virtual IP Addressing support.

 Table 30. Virtual IP Addressing support

Virtual IP Addressing

support IPv4 support IPv6 support Comments

Virtual Device/Interface

Configuration for static

VIPA

Y Y None

All sysplex functions support IPv6 except for those listed in Table 31.

 Table 31. Sysplex support

Sysplex support IPv4 support IPv6 support Comments

Sysplex distributor

integration with Cisco

MNLB

Y N None

Sysplex Wide Security

Associations (SWSA)

Y N None

132 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Table 32 lists IP routing functions.

 Table 32. IP routing functions

IP routing functions IPv4 support IPv6 support Comments

Dynamic Routing - OSPF Y Y None

Dynamic Routing - RIP Y Y None

Static Route Configuration

by way of BEGINROUTES

statement

Y Y None

Static Route Configuration

by way of GATEWAY

statement

Y N None

Multipath Routing Groups Y Y None

Table 33 lists miscellaneous IP/IF-layer functions.

 Table 33. Miscellaneous IP/IF-layer functions

Misc. IP/IF-layer functions IPv4 support IPv6 support Comments

Path MTU Discovery Y Y None

Configurable Device or

Interface Recovery Interval

Y Y None

Link-Layer Address

Resolution

Y Y None

ARP/Neighbor Cache

PURGE Capability

Y Y None

Datagram Forwarding

Enable/Disable

Y Y None

Hipersockets accelerator Y N Support is enabled by way

of the IQDIOROUTING

parameter on the IPCONFIG

statement.

Checksum offload Y N None

Segmentation offload Y N None

Table 34 lists transport-layer functions.

 Table 34. Transport-layer functions

Transport-layer functions IPv4 support IPv6 support Comments

Fast Response Cache

Accelerator

Y N None

Enterprise Extender Y Y IPv6 Enterprise Extender

support requires a virtual IP

address configured by way

of an INTERFACE statement

of type VIRTUAL6 and

IUTSAMEH configured by

way of an INTERFACE

statement of type MPCPTP6

or dynamically configured

by way of IPCONFIG6

DYNAMICXCF.

Chapter 11. IPv6 support tables 133

Table 34. Transport-layer functions (continued)

Transport-layer functions IPv4 support IPv6 support Comments

Server-BIND Control Y Y None

UDP Checksum

Disablement Option

Y N None

Table 35 lists network management and accounting functions.

 Table 35. Network management and accounting functions

Network management and

accounting Functions IPv4 support IPv6 support Comments

SNMP Y Y None

SNMP agent Y Y None

TCP/IP subagent Y Y No IPv6 UDP support

Network SLAPM2 subagent Y Y None

Distributed Protocol

Interface

Y Y None

OMPROUTE subagent Y N None

Trap forwarder daemon Y Y None

Policy-Based Networking Y Y None

SMF Y Y None

TN3270 subagent Y Y None

Table 36 lists security functions.

 Table 36. Security functions

Security functions IPv4 support IPv6 support Comments

IPSec Y Y None

IP filtering Y Y None

IKE daemon Y Y None

NAT traversal Y N None

Network Access Control Y Y None

Stack and Port Access

Control

Y Y None

Application Transparent TLS Y Y None

Intrusion Detection Services Y N None

Applications not enabled for IPv6

Some applications are not enabled for IPv6. These applications are listed in

Table 37.

 Table 37. Applications not enabled for IPv6

Server applications

IPv4

support

IPv6

support

SMTPPROC/NJE server Y N

134 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

|

|

|

||||

||||

Table 37. Applications not enabled for IPv6 (continued)

Server applications

IPv4

support

IPv6

support

Rlogind server Y N

MVS Miscellaneous server Y N

Popper Y N

NDB server Y N

MVS LPD server Y N

DHCPD server Y N

TIMED server Y N

NCS LLBD and GLBD servers Y N

ONC/RPC MVS portmapper Y N

ONC/RPC UNIX portmapper Y N

NCPROUTE Y N

NPF Y N

RSVP daemon Y N

UNIX named (BIND 4.9.3 based) Y N

Client applications

TSO TELNET client Y N

TSO LPR client Y N

Command-type applications

TSO NSLOOKUP Y N

UNIX nslookup (BIND 4.9.3-based) Y N

UNIX nsupdate (BIND 4.9.3-based) Y N

TSO LPRM Y N

TSO DIG Y N

UNIX dig Y N

TSO RPCINFO Y N

UNIX rpcinfo Y N

Chapter 11. IPv6 support tables 135

|

|

|

|

|

|

136 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Part 5. Appendixes

This section contains the following appendixes:

v Appendix A, “Related protocol specifications (RFCs),” on page 139 contains

related protocol specifications (RFCs).

v Appendix B, “Information APARs and technotes,” on page 155 lists information

APARs for IP and SNA documents.

v Appendix C, “Accessibility,” on page 159 describes accessibility features to help

users with physical disabilities.

v “Notices” on page 161 contains notices and trademarks used in this document.

v “Bibliography” on page 171 contains descriptions of the documents in the z/OS

Communications Server library.

© Copyright IBM Corp. 2002, 2006 137

138 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Appendix A. Related protocol specifications (RFCs)

This appendix lists the related protocol specifications for TCP/IP. The Internet

Protocol suite is still evolving through requests for comments (RFC). New

protocols are being designed and implemented by researchers and are brought to

the attention of the Internet community in the form of RFCs. Some of these

protocols are so useful that they become recommended protocols. That is, all future

implementations for TCP/IP are recommended to implement these particular

functions or protocols. These become the de facto standards, on which the TCP/IP

protocol suite is built.

You can request RFCs through electronic mail, from the automated Network

Information Center (NIC) mail server, by sending a message to

service@nic.ddn.mil with a subject line of RFC nnnn for text versions or a subject

line of RFC nnnn.PS for PostScript versions. To request a copy of the RFC index,

send a message with a subject line of RFC INDEX.

For more information, contact nic@nic.ddn.mil or at:

Government Systems, Inc.

Attn: Network Information Center

14200 Park Meadow Drive

Suite 200

Chantilly, VA 22021

Hard copies of all RFCs are available from the NIC, either individually or by

subscription. Online copies are available at the following Web address:

http://www.rfc-editor.org/rfc.html.

See “Internet drafts” on page 154 for draft RFCs implemented in this and previous

Communications Server releases.

Many features of TCP/IP Services are based on the following RFCs:

RFC Title and Author

RFC 652 Telnet output carriage-return disposition option D. Crocker

RFC 653 Telnet output horizontal tabstops option D. Crocker

RFC 654 Telnet output horizontal tab disposition option D. Crocker

RFC 655 Telnet output formfeed disposition option D. Crocker

RFC 657 Telnet output vertical tab disposition option D. Crocker

RFC 658 Telnet output linefeed disposition D. Crocker

RFC 698 Telnet extended ASCII option T. Mock

RFC 726 Remote Controlled Transmission and Echoing Telnet option J. Postel, D.

Crocker

RFC 727 Telnet logout option M.R. Crispin

RFC 732 Telnet Data Entry Terminal option J.D. Day

RFC 733 Standard for the format of ARPA network text messages D. Crocker, J.

Vittal, K.T. Pogran, D.A. Henderson

© Copyright IBM Corp. 2002, 2006 139

http://www.rfc-editor.org/rfc.html

RFC 734 SUPDUP Protocol M.R. Crispin

RFC 735 Revised Telnet byte macro option D. Crocker, R.H. Gumpertz

RFC 736 Telnet SUPDUP option M.R. Crispin

RFC 749 Telnet SUPDUP—Output option B. Greenberg

RFC 765 File Transfer Protocol specification J. Postel

RFC 768 User Datagram Protocol J. Postel

RFC 779 Telnet send-location option E. Killian

RFC 783 TFTP Protocol (revision 2) K.R. Sollins

RFC 791 Internet Protocol J. Postel

RFC 792 Internet Control Message Protocol J. Postel

RFC 793 Transmission Control Protocol J. Postel

RFC 820 Assigned numbers J. Postel

RFC 821 Simple Mail Transfer Protocol J. Postel

RFC 822 Standard for the format of ARPA Internet text messages D. Crocker

RFC 823 DARPA Internet gateway R. Hinden, A. Sheltzer

RFC 826 Ethernet Address Resolution Protocol: Or converting network protocol

addresses to 48.bit Ethernet address for transmission on Ethernet

hardware D. Plummer

RFC 854 Telnet Protocol Specification J. Postel, J. Reynolds

RFC 855 Telnet Option Specification J. Postel, J. Reynolds

RFC 856 Telnet Binary Transmission J. Postel, J. Reynolds

RFC 857 Telnet Echo Option J. Postel, J. Reynolds

RFC 858 Telnet Suppress Go Ahead Option J. Postel, J. Reynolds

RFC 859 Telnet Status Option J. Postel, J. Reynolds

RFC 860 Telnet Timing Mark Option J. Postel, J. Reynolds

RFC 861 Telnet Extended Options: List Option J. Postel, J. Reynolds

RFC 862 Echo Protocol J. Postel

RFC 863 Discard Protocol J. Postel

RFC 864 Character Generator Protocol J. Postel

RFC 865 Quote of the Day Protocol J. Postel

RFC 868 Time Protocol J. Postel, K. Harrenstien

RFC 877 Standard for the transmission of IP datagrams over public data networks

J.T. Korb

RFC 883 Domain names: Implementation specification P.V. Mockapetris

RFC 884 Telnet terminal type option M. Solomon, E. Wimmers

RFC 885 Telnet end of record option J. Postel

RFC 894 Standard for the transmission of IP datagrams over Ethernet networks C.

Hornig

RFC 896 Congestion control in IP/TCP internetworks J. Nagle

140 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 903 Reverse Address Resolution Protocol R. Finlayson, T. Mann, J. Mogul,

M. Theimer

RFC 904 Exterior Gateway Protocol formal specification D. Mills

RFC 919 Broadcasting Internet Datagrams J. Mogul

RFC 922 Broadcasting Internet datagrams in the presence of subnets J. Mogul

RFC 927 TACACS user identification Telnet option B.A. Anderson

RFC 933 Output marking Telnet option S. Silverman

RFC 946 Telnet terminal location number option R. Nedved

RFC 950 Internet Standard Subnetting Procedure J. Mogul, J. Postel

RFC 951 Bootstrap Protocol W.J. Croft, J. Gilmore

RFC 952 DoD Internet host table specification K. Harrenstien, M. Stahl, E.

Feinler

RFC 959 File Transfer Protocol J. Postel, J.K. Reynolds

RFC 961 Official ARPA-Internet protocols J.K. Reynolds, J. Postel

RFC 974 Mail routing and the domain system C. Partridge

RFC 1001 Protocol standard for a NetBIOS service on a TCP/UDP transport:

Concepts and methods NetBios Working Group in the Defense

Advanced Research Projects Agency, Internet Activities Board,

End-to-End Services Task Force

RFC 1002 Protocol Standard for a NetBIOS service on a TCP/UDP transport:

Detailed specifications NetBios Working Group in the Defense

Advanced Research Projects Agency, Internet Activities Board,

End-to-End Services Task Force

RFC 1006 ISO transport services on top of the TCP: Version 3 M.T. Rose, D.E.

Cass

RFC 1009 Requirements for Internet gateways R. Braden, J. Postel

RFC 1011 Official Internet protocols J. Reynolds, J. Postel

RFC 1013 X Window System Protocol, version 11: Alpha update April 1987 R.

Scheifler

RFC 1014 XDR: External Data Representation standard Sun Microsystems

RFC 1027 Using ARP to implement transparent subnet gateways S. Carl-Mitchell,

J. Quarterman

RFC 1032 Domain administrators guide M. Stahl

RFC 1033 Domain administrators operations guide M. Lottor

RFC 1034 Domain names—concepts and facilities P.V. Mockapetris

RFC 1035 Domain names—implementation and specification P.V. Mockapetris

RFC 1038 Draft revised IP security option M. St. Johns

RFC 1041 Telnet 3270 regime option Y. Rekhter

RFC 1042 Standard for the transmission of IP datagrams over IEEE 802 networks J.

Postel, J. Reynolds

RFC 1043 Telnet Data Entry Terminal option: DODIIS implementation A. Yasuda,

T. Thompson

Appendix A. Related protocol specifications (RFCs) 141

RFC 1044 Internet Protocol on Network System’s HYPERchannel: Protocol

specification K. Hardwick, J. Lekashman

RFC 1053 Telnet X.3 PAD option S. Levy, T. Jacobson

RFC 1055 Nonstandard for transmission of IP datagrams over serial lines: SLIP J.

Romkey

RFC 1057 RPC: Remote Procedure Call Protocol Specification: Version 2 Sun

Microsystems

RFC 1058 Routing Information Protocol C. Hedrick

RFC 1060 Assigned numbers J. Reynolds, J. Postel

RFC 1067 Simple Network Management Protocol J.D. Case, M. Fedor, M.L.

Schoffstall, J. Davin

RFC 1071 Computing the Internet checksum R.T. Braden, D.A. Borman, C.

Partridge

RFC 1072 TCP extensions for long-delay paths V. Jacobson, R.T. Braden

RFC 1073 Telnet window size option D. Waitzman

RFC 1079 Telnet terminal speed option C. Hedrick

RFC 1085 ISO presentation services on top of TCP/IP based internets M.T. Rose

RFC 1091 Telnet terminal-type option J. VanBokkelen

RFC 1094 NFS: Network File System Protocol specification Sun Microsystems

RFC 1096 Telnet X display location option G. Marcy

RFC 1101 DNS encoding of network names and other types P. Mockapetris

RFC 1112 Host extensions for IP multicasting S.E. Deering

RFC 1113 Privacy enhancement for Internet electronic mail: Part I — message

encipherment and authentication procedures J. Linn

RFC 1118 Hitchhikers Guide to the Internet E. Krol

RFC 1122 Requirements for Internet Hosts—Communication Layers R. Braden,

Ed.

RFC 1123 Requirements for Internet Hosts—Application and Support R. Braden,

Ed.

RFC 1146 TCP alternate checksum options J. Zweig, C. Partridge

RFC 1155 Structure and identification of management information for TCP/IP-based

internets M. Rose, K. McCloghrie

RFC 1156 Management Information Base for network management of TCP/IP-based

internets K. McCloghrie, M. Rose

RFC 1157 Simple Network Management Protocol (SNMP) J. Case, M. Fedor, M.

Schoffstall, J. Davin

RFC 1158 Management Information Base for network management of TCP/IP-based

internets: MIB-II M. Rose

RFC 1166 Internet numbers S. Kirkpatrick, M.K. Stahl, M. Recker

RFC 1179 Line printer daemon protocol L. McLaughlin

RFC 1180 TCP/IP tutorial T. Socolofsky, C. Kale

142 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 1183 New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann,

P.V. Mockapetris

RFC 1184 Telnet Linemode Option D. Borman

RFC 1186 MD4 Message Digest Algorithm R.L. Rivest

RFC 1187 Bulk Table Retrieval with the SNMP M. Rose, K. McCloghrie, J. Davin

RFC 1188 Proposed Standard for the Transmission of IP Datagrams over FDDI

Networks D. Katz

RFC 1190 Experimental Internet Stream Protocol: Version 2 (ST-II) C. Topolcic

RFC 1191 Path MTU discovery J. Mogul, S. Deering

RFC 1198 FYI on the X window system R. Scheifler

RFC 1207 FYI on Questions and Answers: Answers to commonly asked

“experienced Internet user” questions G. Malkin, A. Marine, J.

Reynolds

RFC 1208 Glossary of networking terms O. Jacobsen, D. Lynch

RFC 1213 Management Information Base for Network Management of

TCP/IP-based internets: MIB-II K. McCloghrie, M.T. Rose

RFC 1215 Convention for defining traps for use with the SNMP M. Rose

RFC 1227 SNMP MUX protocol and MIB M.T. Rose

RFC 1228 SNMP-DPI: Simple Network Management Protocol Distributed Program

Interface G. Carpenter, B. Wijnen

RFC 1229 Extensions to the generic-interface MIB K. McCloghrie

RFC 1230 IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

RFC 1231 IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker

RFC 1236 IP to X.121 address mapping for DDN L. Morales, P. Hasse

RFC 1256 ICMP Router Discovery Messages S. Deering, Ed.

RFC 1267 Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

RFC 1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P.

Gross

RFC 1269 Definitions of Managed Objects for the Border Gateway Protocol: Version

3 S. Willis, J. Burruss

RFC 1270 SNMP Communications Services F. Kastenholz, ed.

RFC 1285 FDDI Management Information Base J. Case

RFC 1315 Management Information Base for Frame Relay DTEs C. Brown, F.

Baker, C. Carvalho

RFC 1321 The MD5 Message-Digest Algorithm R. Rivest

RFC 1323 TCP Extensions for High Performance V. Jacobson, R. Braden, D.

Borman

RFC 1325 FYI on Questions and Answers: Answers to Commonly Asked ″New

Internet User″ Questions G. Malkin, A. Marine

RFC 1327 Mapping between X.400 (1988)/ISO 10021 and RFC 822 S.

Hardcastle-Kille

Appendix A. Related protocol specifications (RFCs) 143

RFC 1340 Assigned Numbers J. Reynolds, J. Postel

RFC 1344 Implications of MIME for Internet Mail Gateways N. Bornstein

RFC 1349 Type of Service in the Internet Protocol Suite P. Almquist

RFC 1350 The TFTP Protocol (Revision 2) K.R. Sollins

RFC 1351 SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

RFC 1352 SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

RFC 1353 Definitions of Managed Objects for Administration of SNMP Parties K.

McCloghrie, J. Davin, J. Galvin

RFC 1354 IP Forwarding Table MIB F. Baker

RFC 1356 Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A.

Malis, D. Robinson, R. Ullmann

RFC 1358 Charter of the Internet Architecture Board (IAB) L. Chapin

RFC 1363 A Proposed Flow Specification C. Partridge

RFC 1368 Definition of Managed Objects for IEEE 802.3 Repeater Devices D.

McMaster, K. McCloghrie

RFC 1372 Telnet Remote Flow Control Option C. L. Hedrick, D. Borman

RFC 1374 IP and ARP on HIPPI J. Renwick, A. Nicholson

RFC 1381 SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

RFC 1382 SNMP MIB Extension for the X.25 Packet Layer D. Throop

RFC 1387 RIP Version 2 Protocol Analysis G. Malkin

RFC 1388 RIP Version 2 Carrying Additional Information G. Malkin

RFC 1389 RIP Version 2 MIB Extensions G. Malkin, F. Baker

RFC 1390 Transmission of IP and ARP over FDDI Networks D. Katz

RFC 1393 Traceroute Using an IP Option G. Malkin

RFC 1398 Definitions of Managed Objects for the Ethernet-Like Interface Types F.

Kastenholz

RFC 1408 Telnet Environment Option D. Borman, Ed.

RFC 1413 Identification Protocol M. St. Johns

RFC 1416 Telnet Authentication Option D. Borman, ed.

RFC 1420 SNMP over IPX S. Bostock

RFC 1428 Transition of Internet Mail from Just-Send-8 to 8bit-SMTP/MIME G.

Vaudreuil

RFC 1442 Structure of Management Information for version 2 of the Simple

Network Management Protocol (SNMPv2) J. Case, K. McCloghrie, M.

Rose, S. Waldbusser

RFC 1443 Textual Conventions for version 2 of the Simple Network Management

Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1445 Administrative Model for version 2 of the Simple Network Management

Protocol (SNMPv2) J. Galvin, K. McCloghrie

RFC 1447 Party MIB for version 2 of the Simple Network Management Protocol

(SNMPv2) K. McCloghrie, J. Galvin

144 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 1448 Protocol Operations for version 2 of the Simple Network Management

Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1464 Using the Domain Name System to Store Arbitrary String Attributes R.

Rosenbaum

RFC 1469 IP Multicast over Token-Ring Local Area Networks T. Pusateri

RFC 1483 Multiprotocol Encapsulation over ATM Adaptation Layer 5 Juha

Heinanen

RFC 1497 BOOTP Vendor Information Extensions J. Reynolds

RFC 1514 Host Resources MIB P. Grillo, S. Waldbusser

RFC 1516 Definitions of Managed Objects for IEEE 802.3 Repeater Devices D.

McMaster, K. McCloghrie

RFC 1521 MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms

for Specifying and Describing the Format of Internet Message Bodies N.

Borenstein, N. Freed

RFC 1533 DHCP Options and BOOTP Vendor Extensions S. Alexander, R.

Droms

RFC 1534 Interoperation Between DHCP and BOOTP R. Droms

RFC 1535 A Security Problem and Proposed Correction With Widely Deployed

DNS Software E. Gavron

RFC 1536 Common DNS Implementation Errors and Suggested Fixes A. Kumar, J.

Postel, C. Neuman, P. Danzig, S. Miller

RFC 1537 Common DNS Data File Configuration Errors P. Beertema

RFC 1540 Internet Official Protocol Standards J. Postel

RFC 1541 Dynamic Host Configuration Protocol R. Droms

RFC 1542 Clarifications and Extensions for the Bootstrap Protocol W. Wimer

RFC 1571 Telnet Environment Option Interoperability Issues D. Borman

RFC 1572 Telnet Environment Option S. Alexander

RFC 1573 Evolution of the Interfaces Group of MIB-II K. McCloghrie, F.

Kastenholz

RFC 1577 Classical IP and ARP over ATM M. Laubach

RFC 1583 OSPF Version 2 J. Moy

RFC 1591 Domain Name System Structure and Delegation J. Postel

RFC 1592 Simple Network Management Protocol Distributed Protocol Interface

Version 2.0 B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters

RFC 1594 FYI on Questions and Answers— Answers to Commonly Asked ″New

Internet User″ Questions A. Marine, J. Reynolds, G. Malkin

RFC 1644 T/TCP — TCP Extensions for Transactions Functional Specification R.

Braden

RFC 1646 TN3270 Extensions for LUname and Printer Selection C. Graves, T.

Butts, M. Angel

RFC 1647 TN3270 Enhancements B. Kelly

Appendix A. Related protocol specifications (RFCs) 145

RFC 1652 SMTP Service Extension for 8bit-MIMEtransport J. Klensin, N. Freed,

M. Rose, E. Stefferud, D. Crocker

RFC 1664 Using the Internet DNS to Distribute RFC1327 Mail Address Mapping

Tables C. Allochio, A. Bonito, B. Cole, S. Giordano, R. Hagens

RFC 1693 An Extension to TCP: Partial Order Service T. Connolly, P. Amer, P.

Conrad

RFC 1695 Definitions of Managed Objects for ATM Management Version 8.0 using

SMIv2 M. Ahmed, K. Tesink

RFC 1701 Generic Routing Encapsulation (GRE) S. Hanks, T. Li, D. Farinacci, P.

Traina

RFC 1702 Generic Routing Encapsulation over IPv4 networks S. Hanks, T. Li, D.

Farinacci, P. Traina

RFC 1706 DNS NSAP Resource Records B. Manning, R. Colella

RFC 1712 DNS Encoding of Geographical Location C. Farrell, M. Schulze, S.

Pleitner D. Baldoni

RFC 1713 Tools for DNS debugging A. Romao

RFC 1723 RIP Version 2—Carrying Additional Information G. Malkin

RFC 1752 The Recommendation for the IP Next Generation Protocol S. Bradner, A.

Mankin

RFC 1766 Tags for the Identification of Languages H. Alvestrand

RFC 1771 A Border Gateway Protocol 4 (BGP-4) Y. Rekhter, T. Li

RFC 1794 DNS Support for Load Balancing T. Brisco

RFC 1819 Internet Stream Protocol Version 2 (ST2) Protocol Specification—Version

ST2+ L. Delgrossi, L. Berger Eds.

RFC 1826 IP Authentication Header R. Atkinson

RFC 1828 IP Authentication using Keyed MD5 P. Metzger, W. Simpson

RFC 1829 The ESP DES-CBC Transform P. Karn, P. Metzger, W. Simpson

RFC 1830 SMTP Service Extensions for Transmission of Large and Binary MIME

Messages G. Vaudreuil

RFC 1831 RPC: Remote Procedure Call Protocol Specification Version 2 R.

Srinivasan

RFC 1832 XDR: External Data Representation Standard R. Srinivasan

RFC 1833 Binding Protocols for ONC RPC Version 2 R. Srinivasan

RFC 1850 OSPF Version 2 Management Information Base F. Baker, R. Coltun

RFC 1854 SMTP Service Extension for Command Pipelining N. Freed

RFC 1869 SMTP Service Extensions J. Klensin, N. Freed, M. Rose, E. Stefferud,

D. Crocker

RFC 1870 SMTP Service Extension for Message Size Declaration J. Klensin, N.

Freed, K. Moore

RFC 1876 A Means for Expressing Location Information in the Domain Name

System C. Davis, P. Vixie, T. Goodwin, I. Dickinson

RFC 1883 Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

146 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

||
|

||

RFC 1884 IP Version 6 Addressing Architecture R. Hinden, S. Deering, Eds.

RFC 1886 DNS Extensions to support IP version 6 S. Thomson, C. Huitema

RFC 1888 OSI NSAPs and IPv6 J. Bound, B. Carpenter, D. Harrington, J.

Houldsworth, A. Lloyd

RFC 1891 SMTP Service Extension for Delivery Status Notifications K. Moore

RFC 1892 The Multipart/Report Content Type for the Reporting of Mail System

Administrative Messages G. Vaudreuil

RFC 1894 An Extensible Message Format for Delivery Status NotificationsK.

Moore, G. Vaudreuil

RFC 1901 Introduction to Community-based SNMPv2 J. Case, K. McCloghrie, M.

Rose, S. Waldbusser

RFC 1902 Structure of Management Information for Version 2 of the Simple

Network Management Protocol (SNMPv2) J. Case, K. McCloghrie, M.

Rose, S. Waldbusser

RFC 1903 Textual Conventions for Version 2 of the Simple Network Management

Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1904 Conformance Statements for Version 2 of the Simple Network

Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.

Waldbusser

RFC 1905 Protocol Operations for Version 2 of the Simple Network Management

Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1906 Transport Mappings for Version 2 of the Simple Network Management

Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1907 Management Information Base for Version 2 of the Simple Network

Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.

Waldbusser

RFC 1908 Coexistence between Version 1 and Version 2 of the Internet-standard

Network Management Framework J. Case, K. McCloghrie, M. Rose, S.

Waldbusser

RFC 1912 Common DNS Operational and Configuration Errors D. Barr

RFC 1918 Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D.

Karrenberg, G.J. de Groot, E. Lear

RFC 1928 SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D.

Koblas, L. Jones

RFC 1930 Guidelines for creation, selection, and registration of an Autonomous

System (AS) J. Hawkinson, T. Bates

RFC 1939 Post Office Protocol-Version 3 J. Myers, M. Rose

RFC 1981 Path MTU Discovery for IP version 6 J. McCann, S. Deering, J. Mogul

RFC 1982 Serial Number Arithmetic R. Elz, R. Bush

RFC 1985 SMTP Service Extension for Remote Message Queue Starting J. De

Winter

RFC 1995 Incremental Zone Transfer in DNS M. Ohta

RFC 1996 A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)

P. Vixie

Appendix A. Related protocol specifications (RFCs) 147

RFC 2010 Operational Criteria for Root Name Servers B. Manning, P. Vixie

RFC 2011 SNMPv2 Management Information Base for the Internet Protocol using

SMIv2 K. McCloghrie, Ed.

RFC 2012 SNMPv2 Management Information Base for the Transmission Control

Protocol using SMIv2 K. McCloghrie, Ed.

RFC 2013 SNMPv2 Management Information Base for the User Datagram Protocol

using SMIv2 K. McCloghrie, Ed.

RFC 2018 TCP Selective Acknowledgement Options M. Mathis, J. Mahdavi, S.

Floyd, A. Romanow

RFC 2026 The Internet Standards Process — Revision 3 S. Bradner

RFC 2030 Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI

D. Mills

RFC 2033 Local Mail Transfer Protocol J. Myers

RFC 2034 SMTP Service Extension for Returning Enhanced Error CodesN. Freed

RFC 2040 The RC5, RC5–CBC, RC-5–CBC-Pad, and RC5–CTS AlgorithmsR.

Baldwin, R. Rivest

RFC 2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format of

Internet Message Bodies N. Freed, N. Borenstein

RFC 2052 A DNS RR for specifying the location of services (DNS SRV) A.

Gulbrandsen, P. Vixie

RFC 2065 Domain Name System Security Extensions D. Eastlake 3rd, C.

Kaufman

RFC 2066 TELNET CHARSET Option R. Gellens

RFC 2080 RIPng for IPv6 G. Malkin, R. Minnear

RFC 2096 IP Forwarding Table MIB F. Baker

RFC 2104 HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M.

Bellare, R. Canetti

RFC 2119 Keywords for use in RFCs to Indicate Requirement Levels S. Bradner

RFC 2132 DHCP Options and BOOTP Vendor Extensions S. Alexander, R.

Droms

RFC 2133 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.

Bound, W. Stevens

RFC 2136 Dynamic Updates in the Domain Name System (DNS UPDATE) P.

Vixie, Ed., S. Thomson, Y. Rekhter, J. Bound

RFC 2137 Secure Domain Name System Dynamic Update D. Eastlake 3rd

RFC 2163 Using the Internet DNS to Distribute MIXER Conformant Global

Address Mapping (MCGAM) C. Allocchio

RFC 2168 Resolution of Uniform Resource Identifiers using the Domain Name

System R. Daniel, M. Mealling

RFC 2178 OSPF Version 2 J. Moy

RFC 2181 Clarifications to the DNS Specification R. Elz, R. Bush

148 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 2205 Resource ReSerVation Protocol (RSVP)—Version 1 Functional

Specification R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S.

Jamin

RFC 2210 The Use of RSVP with IETF Integrated Services J. Wroclawski

RFC 2211 Specification of the Controlled-Load Network Element Service J.

Wroclawski

RFC 2212 Specification of Guaranteed Quality of Service S. Shenker, C. Partridge,

R. Guerin

RFC 2215 General Characterization Parameters for Integrated Service Network

Elements S. Shenker, J. Wroclawski

RFC 2217 Telnet Com Port Control Option G. Clarke

RFC 2219 Use of DNS Aliases for Network Services M. Hamilton, R. Wright

RFC 2228 FTP Security Extensions M. Horowitz, S. Lunt

RFC 2230 Key Exchange Delegation Record for the DNS R. Atkinson

RFC 2233 The Interfaces Group MIB using SMIv2 K. McCloghrie, F. Kastenholz

RFC 2240 A Legal Basis for Domain Name Allocation O. Vaughn

RFC 2246 The TLS Protocol Version 1.0 T. Dierks, C. Allen

RFC 2251 Lightweight Directory Access Protocol (v3) M. Wahl, T. Howes, S. Kille

RFC 2253 Lightweight Directory Access Protocol (v3): UTF-8 String Representation

of Distinguished Names M. Wahl, S. Kille, T. Howes

RFC 2254 The String Representation of LDAP Search Filters T. Howes

RFC 2261 An Architecture for Describing SNMP Management Frameworks D.

Harrington, R. Presuhn, B. Wijnen

RFC 2262 Message Processing and Dispatching for the Simple Network

Management Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B.

Wijnen

RFC 2271 An Architecture for Describing SNMP Management Frameworks D.

Harrington, R. Presuhn, B. Wijnen

RFC 2273 SNMPv3 Applications D. Levi, P. Meyer, B. Stewartz

RFC 2274 User-based Security Model (USM) for version 3 of the Simple Network

Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 2275 View-based Access Control Model (VACM) for the Simple Network

Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 2279 UTF-8, a transformation format of ISO 10646 F. Yergeau

RFC 2292 Advanced Sockets API for IPv6 W. Stevens, M. Thomas

RFC 2308 Negative Caching of DNS Queries (DNS NCACHE) M. Andrews

RFC 2317 Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

RFC 2320 Definitions of Managed Objects for Classical IP and ARP Over ATM

Using SMIv2 (IPOA-MIB) M. Greene, J. Luciani, K. White, T. Kuo

RFC 2328 OSPF Version 2 J. Moy

RFC 2345 Domain Names and Company Name Retrieval J. Klensin, T. Wolf, G.

Oglesby

Appendix A. Related protocol specifications (RFCs) 149

||

RFC 2352 A Convention for Using Legal Names as Domain Names O. Vaughn

RFC 2355 TN3270 Enhancements B. Kelly

RFC 2358 Definitions of Managed Objects for the Ethernet-like Interface Types J.

Flick, J. Johnson

RFC 2373 IP Version 6 Addressing Architecture R. Hinden, S. Deering

RFC 2374 An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M.

O’Dell, S. Deering

RFC 2375 IPv6 Multicast Address Assignments R. Hinden, S. Deering

RFC 2385 Protection of BGP Sessions via the TCP MD5 Signature OptionA.

Hefferman

RFC 2389 Feature negotiation mechanism for the File Transfer Protocol P.

Hethmon, R. Elz

RFC 2401 Security Architecture for Internet Protocol S. Kent, R. Atkinson

RFC 2402 IP Authentication Header S. Kent, R. Atkinson

RFC 2403 The Use of HMAC-MD5–96 within ESP and AH C. Madson, R. Glenn

RFC 2404 The Use of HMAC-SHA–1–96 within ESP and AH C. Madson, R.

Glenn

RFC 2405 The ESP DES-CBC Cipher Algorithm With Explicit IV C. Madson, N.

Doraswamy

RFC 2406 IP Encapsulating Security Payload (ESP) S. Kent, R. Atkinson

RFC 2407 The Internet IP Security Domain of Interpretation for ISAKMPD. Piper

RFC 2408 Internet Security Association and Key Management Protocol (ISAKMP)

D. Maughan, M. Schertler, M. Schneider, J. Turner

RFC 2409 The Internet Key Exchange (IKE) D. Harkins, D. Carrel

RFC 2410 The NULL Encryption Algorithm and Its Use With IPsec R. Glenn, S.

Kent,

RFC 2428 FTP Extensions for IPv6 and NATs M. Allman, S. Ostermann, C.

Metz

RFC 2445 Internet Calendaring and Scheduling Core Object Specification

(iCalendar) F. Dawson, D. Stenerson

RFC 2459 Internet X.509 Public Key Infrastructure Certificate and CRL Profile R.

Housley, W. Ford, W. Polk, D. Solo

RFC 2460 Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFC 2461 Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark,

W. Simpson

RFC 2462 IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

RFC 2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol

Version 6 (IPv6) Specification A. Conta, S. Deering

RFC 2464 Transmission of IPv6 Packets over Ethernet Networks M. Crawford

RFC 2466 Management Information Base for IP Version 6: ICMPv6 Group D.

Haskin, S. Onishi

RFC 2476 Message Submission R. Gellens, J. Klensin

150 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 2487 SMTP Service Extension for Secure SMTP over TLS P. Hoffman

RFC 2505 Anti-Spam Recommendations for SMTP MTAs G. Lindberg

RFC 2523 Photuris: Extended Schemes and Attributes P. Karn, W. Simpson

RFC 2535 Domain Name System Security Extensions D. Eastlake 3rd

RFC 2538 Storing Certificates in the Domain Name System (DNS) D. Eastlake

3rd, O. Gudmundsson

RFC 2539 Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D.

Eastlake 3rd

RFC 2540 Detached Domain Name System (DNS) Information D. Eastlake 3rd

RFC 2554 SMTP Service Extension for Authentication J. Myers

RFC 2570 Introduction to Version 3 of the Internet-standard Network Management

Framework J. Case, R. Mundy, D. Partain, B. Stewart

RFC 2571 An Architecture for Describing SNMP Management Frameworks B.

Wijnen, D. Harrington, R. Presuhn

RFC 2572 Message Processing and Dispatching for the Simple Network

Management Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B.

Wijnen

RFC 2573 SNMP Applications D. Levi, P. Meyer, B. Stewart

RFC 2574 User-based Security Model (USM) for version 3 of the Simple Network

Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 2575 View-based Access Control Model (VACM) for the Simple Network

Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 2576 Co-Existence between Version 1, Version 2, and Version 3 of the

Internet-standard Network Management Framework R. Frye, D. Levi, S.

Routhier, B. Wijnen

RFC 2578 Structure of Management Information Version 2 (SMIv2) K.

McCloghrie, D. Perkins, J. Schoenwaelder

RFC 2579 Textual Conventions for SMIv2 K. McCloghrie, D. Perkins, J.

Schoenwaelder

RFC 2580 Conformance Statements for SMIv2 K. McCloghrie, D. Perkins, J.

Schoenwaelder

RFC 2581 TCP Congestion Control M. Allman, V. Paxson, W. Stevens

RFC 2583 Guidelines for Next Hop Client (NHC) Developers R. Carlson, L.

Winkler

RFC 2591 Definitions of Managed Objects for Scheduling Management Operations

D. Levi, J. Schoenwaelder

RFC 2625 IP and ARP over Fibre Channel M. Rajagopal, R. Bhagwat, W.

Rickard

RFC 2635 Don’t SPEW A Set of Guidelines for Mass Unsolicited Mailings and

Postings (spam*) S. Hambridge, A. Lunde

RFC 2637 Point-to-Point Tunneling Protocol K. Hamzeh, G. Pall, W. Verthein, J.

Taarud, W. Little, G. Zorn

RFC 2640 Internationalization of the File Transfer Protocol B. Curtin

Appendix A. Related protocol specifications (RFCs) 151

RFC 2665 Definitions of Managed Objects for the Ethernet-like Interface Types J.

Flick, J. Johnson

RFC 2671 Extension Mechanisms for DNS (EDNS0) P. Vixie

RFC 2672 Non-Terminal DNS Name Redirection M. Crawford

RFC 2675 IPv6 Jumbograms D. Borman, S. Deering, R. Hinden

RFC 2710 Multicast Listener Discovery (MLD) for IPv6 S. Deering, W. Fenner, B.

Haberman

RFC 2711 IPv6 Router Alert Option C. Partridge, A. Jackson

RFC 2740 OSPF for IPv6 R. Coltun, D. Ferguson, J. Moy

RFC 2753 A Framework for Policy-based Admission Control R. Yavatkar, D.

Pendarakis, R. Guerin

RFC 2782 A DNS RR for specifying the location of services (DNS SRV) A.

Gubrandsen, P. Vixix, L. Esibov

RFC 2821 Simple Mail Transfer Protocol J. Klensin, Ed.

RFC 2822 Internet Message Format P. Resnick, Ed.

RFC 2840 TELNET KERMIT OPTION J. Altman, F. da Cruz

RFC 2845 Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O.

Gudmundsson, D. Eastlake 3rd, B. Wellington

RFC 2851 Textual Conventions for Internet Network Addresses M. Daniele, B.

Haberman, S. Routhier, J. Schoenwaelder

RFC 2852 Deliver By SMTP Service Extension D. Newman

RFC 2874 DNS Extensions to Support IPv6 Address Aggregation and Renumbering

M. Crawford, C. Huitema

RFC 2915 The Naming Authority Pointer (NAPTR) DNS Resource Record M.

Mealling, R. Daniel

RFC 2920 SMTP Service Extension for Command Pipelining N. Freed

RFC 2930 Secret Key Establishment for DNS (TKEY RR) D. Eastlake, 3rd

RFC 2941 Telnet Authentication Option T. Ts’o, ed., J. Altman

RFC 2942 Telnet Authentication: Kerberos Version 5 T. Ts’o

RFC 2946 Telnet Data Encryption Option T. Ts’o

RFC 2952 Telnet Encryption: DES 64 bit Cipher Feedback T. Ts’o

RFC 2953 Telnet Encryption: DES 64 bit Output Feedback T. Ts’o

RFC 2992 Analysis of an Equal-Cost Multi-Path Algorithm C. Hopps

RFC 3019 IP Version 6 Management Information Base for The Multicast Listener

Discovery Protocol B. Haberman, R. Worzella

RFC 3060 Policy Core Information Model—Version 1 Specification B. Moore, E.

Ellesson, J. Strassner, A. Westerinen

RFC 3152 Delegation of IP6.ARPA R. Bush

RFC 3164 The BSD Syslog Protocol C. Lonvick

RFC 3291 Textual Conventions for Internet Network Addresses M. Daniele, B.

Haberman, S. Routhier, J. Schoenwaelder

152 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

||

RFC 3363 Representing Internet Protocol version 6 (IPv6) Addresses in the Domain

Name System R. Bush, A. Durand, B. Fink, O. Gudmundsson, T.

Hain

RFC 3390 Increasing TCP’s Initial Window M. Allman, S. Floyd, C. Partridge

RFC 3410 Introduction and Applicability Statements for Internet-Standard

Management Framework J. Case, R. Mundy, D. Partain, B. Stewart

RFC 3411 An Architecture for Describing Simple Network Management Protocol

(SNMP) Management Frameworks D. Harrington, R. Presuhn, B.

Wijnen

RFC 3412 Message Processing and Dispatching for the Simple Network

Management Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B.

Wijnen

RFC 3413 Simple Network Management Protocol (SNMP) Applications D. Levi, P.

Meyer, B. Stewart

RFC 3414 User-based Security Model (USM) for version 3 of the Simple Network

Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 3415 View-based Access Control Model (VACM) for the Simple Network

Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 3419 Textual Conventions for Transport Addresses M. Daniele, J.

Schoenwaelder

RFC 3484 Default Address Selection for Internet Protocol version 6 (IPv6) R.

Draves

RFC 3493 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.

Bound, J. McCann, W. Stevens

RFC 3513 Internet Protocol Version 6 (IPv6) Addressing Architecture R. Hinden,

S. Deering

RFC 3526 More Modular Exponential (MODP) Diffie-Hellman groups for Internet

Key Exchange (IKE) T. Kivinen, M. Kojo

RFC 3542 Advanced Sockets Application Programming Interface (API) for IPv6 W.

Richard Stevens, M. Thomas, E. Nordmark, T. Jinmei

RFC 3584 Coexistence between Version 1, Version 2, and Version 3 of the

Internet-standard Network Management Framework R. Frye, D. Levi, S.

Routhier, B. Wijnen

RFC 3602 The AES-CBC Cipher Algorithm and Its Use with IPsec S. Frankel, R.

Glenn, S. Kelly

RFC 3629 UTF-8, a transformation format of ISO 10646 R. Kermode, C. Vicisano

RFC 3658 Delegation Signer (DS) Resource Record (RR) O. Gudmundsson

RFC 3715 IPsec-Network Address Translation (NAT) Compatibility Requirements B.

Aboba, W. Dixon

RFC 3947 Negotiation of NAT-Traversal in the IKE T. Kivinen, B. Swander, A.

Huttunen, V. Volpe

RFC 3948 UDP Encapsulation of IPsec ESP Packets A. Huttunen, B. Swander, V.

Volpe, L. DiBurro, M. Stenberg

Appendix A. Related protocol specifications (RFCs) 153

||
|

||
|

||
|
|

||
|

||

Internet drafts

Internet drafts are working documents of the Internet Engineering Task Force

(IETF), its areas, and its working groups. Other groups may also distribute

working documents as Internet drafts. You can see Internet drafts at

http://www.ietf.org/ID.html.

Several areas of IPv6 implementation include elements of the following Internet

drafts and are subject to change during the RFC review process.

Draft Title and Author

draft-bivens-sasp-02

Server/Application State Protocol v1 A. Bivens

draft-ietf-ipngwg-icmp-v3-07

Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6

(IPv6) Specification A. Conta, S. Deering

draft-ietf-ipsec-esp-v3-10

IP Encapsulating Security Payload (ESP) S. Kent

draft-ietf-ipsec-rfc2402bis-11

IP Authentication Header S. Kent

draft-ietf-ipsec-rfc2401bis-06

Security Architecture for the Internet Protocol S. Kent, K. Seo

draft-ietf-ospf-ospfv3-auth-07

Authentication/Confidentiality for OSPFv3 M. Gupta, N. Melam

154 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|

|
|

|
|

|
|

|
|

http://www.ietf.org/ID.html

Appendix B. Information APARs and technotes

This appendix lists information APARs for IP and SNA documents.

Notes:

1. Information APARs contain updates to previous editions of the documents

listed in Table 38 and Table 39 on page 156. Documents updated for V1R7 are

complete except for the updates contained in the information APARs that might

be issued after V1R7 documents went to press.

2. Information APARs are predefined for z/OS V1R7 Communications Server and

might not contain updates.

3. Information APARs for z/OS documents are in the document called z/OS and

z/OS.e DOC APAR and PTF ++HOLD Documentation, which can be found at

http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/

BOOKS/ZIDOCMST/CCONTENTS.

Information APARs for IP documents

Table 38 lists information APARs for IP documents. For releases V1R7 and later,

updates are available as technotes, which can be found at http://www.ibm.com/
support/docview.wss?uid=swg21178966.

 Table 38. IP information APARs for z/OS Communications Server

Title V1R6 V1R5 V1R4

New Function Summary (both IP and SNA) II13824

Quick Reference (both IP and SNA) II13831 II13246

IP and SNA Codes II13842 II13254

IP API Guide II13844 II13577 II13255

II13790

IP CICS Sockets Guide II13578 II13257

IP Configuration Guide II13826 II13568 II13244

II13541

II13652

II13646

IP Configuration Reference II13827 II13569

II13789

II13245

II13521

II13647

II13739

IP Diagnosis II13836 II13571 II13249

II13493

IP Messages Volume 1 II13838 II13572 II13624

II13250

IP Messages Volume 2 II13839 II13573 II13251

IP Messages Volume 3 II13840 II13574 II13252

IP Messages Volume 4 II13841 II13575 II13253

II13628

IP Migration II13566 II13242

II13738

© Copyright IBM Corp. 2002, 2006 155

|
|
|
|

|
|
|

http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/support/docview.wss?uid=swg21178966

Table 38. IP information APARs for z/OS Communications Server (continued)

Title V1R6 V1R5 V1R4

IP Network and Application Design Guide II13825 II13567 II13243

IP Network Print Facility

IP Programmer’s Reference II13843 II13581 II13256

IP User’s Guide and Commands II13832 II13570 II13247

IP System Admin Commands II13833 II13580 II13248

II13792

Information APARs for SNA documents

Table 39 lists information APARs for SNA documents. For releases V1R7 and later,

updates are available as technotes, which can be found at http://www.ibm.com/
support/docview.wss?uid=swg21178966.

 Table 39. SNA information APARs for z/OS Communications Server

Title V1R6 V1R5 V1R4

New Function Summary (both IP and

SNA)

II13824

Quick Reference (both IP and SNA) II13831 II13246

IP and SNA Codes II13842 II13254

SNA Customization II13857 II13560 II13240

SNA Diagnosis II13558 II13236

II13735

SNA Diagnosis, Vol. 1: Techniques and

Procedures

II13852

SNA Diagnosis, Vol. 2: FFST Dumps and

the VIT

II13853

SNA Messages II13854 II13559 II13238

II13736

SNA Network Implementation Guide II13849 II13555 II13234

II13733

SNA Operation II13851 II13557 II13237

SNA Migration II13554 II13233

II13732

SNA Programming II13858 II13241

SNA Resource Definition Reference II13850 II13556 II13235

II13734

SNA Data Areas, Vol. 1 and 2 II13239

SNA Data Areas, 1 II13855

SNA Data Areas, 2 II13856

Other information APARs

Table 40 on page 157 lists information APARs not related to documents.

156 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|
|

http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/support/docview.wss?uid=swg21178966

Table 40. Non-document information APARs

Content Number

Index to APARs that list recommended VTAM maintenance II11220

Index to APARs that list trace and dump requests for VTAM problems II13202

Index of Communication Server IP information APARs II12028

MPC and CTC II01501

Collecting TCPIP CTRACEs II12014

CSM for VTAM II13442

CSM for TCP/IP II13951

DLUR/DLUS for z/OS V1R2, V1R4, and V1R5 II12986, II13456, and II13783

DOCUMENTATION REQUIRED FOR OSA/2, OSA EXPRESS AND OSA

QDIO

II13016

DYNAMIC VIPA (BIND) II13215

DNS — common problems and solutions II13453

Enterprise Extender II12223

FTPing doc to z/OS Support II12030

FTP problems II12079

Generic resources II10986

HPR II10953

iQDIO II13142

LPR problems II12022

MNPS II10370

NCPROUTE problems II12025

OMPROUTE II12026

PASCAL API II11814

Performance II11710

II11711

II11712

Resolver II13398

II13399

II13452

Socket API II11996

II12020

SMTP problems II12023

SNMP II13477

II13478

SYSLOGD howto II12021

TCPIP connection states II12449

Telnet II11574

II13135

TN3270 TELNET SSL common problems II13369

Appendix B. Information APARs and technotes 157

158 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Appendix C. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for information

about accessing TSO/E and ISPF interfaces. These guides describe how to use

TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF

keys). Each guide includes the default settings for the PF keys and explains how to

modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 2002, 2006 159

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

160 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Notices

IBM may not offer all of the products, services, or features discussed in this

document. Consult your local IBM representative for information on the products

and services currently available in your area. Any reference to an IBM product,

program, or service is not intended to state or imply that only that IBM product,

program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used

instead. However, it is the user’s responsibility to evaluate and verify the operation

of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2002, 2006 161

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Site Counsel

IBM Corporation

P.O. Box 12195

3039 Cornwallis Road

Research Triangle Park, North Carolina 27709-2195

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

162 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

IBM is required to include the following statements in order to distribute portions

of this document and the software described herein to which contributions have

been made by The University of California. Portions herein © Copyright 1979,

1980, 1983, 1986, Regents of the University of California. Reproduced by

permission. Portions herein were developed at the Electrical Engineering and

Computer Sciences Department at the Berkeley campus of the University of

California under the auspices of the Regents of the University of California.

Portions of this publication relating to RPC are Copyright © Sun Microsystems,

Inc., 1988, 1989.

Some portions of this publication relating to X Window System** are Copyright ©

1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the

Massachusetts Institute Of Technology, Cambridge, Massachusetts. All Rights

Reserved.

Some portions of this publication relating to X Window System are Copyright ©

1986, 1987, 1988 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute the M.I.T., Digital Equipment

Corporation, and Hewlett-Packard Corporation portions of this software and its

documentation for any purpose without fee is hereby granted, provided that the

above copyright notice appears in all copies and that both that copyright notice

and this permission notice appear in supporting documentation, and that the

names of M.I.T., Digital, and Hewlett-Packard not be used in advertising or

publicity pertaining to distribution of the software without specific, written prior

permission. M.I.T., Digital, and Hewlett-Packard make no representation about the

suitability of this software for any purpose. It is provided ″as is″ without express

or implied warranty.

Copyright © 1983, 1995-1997 Eric P. Allman

Copyright © 1988, 1993 The Regents of the University of California. All rights

reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.

Notices 163

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must

display the following acknowledgement:

This product includes software developed by the University of

California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be

used to endorse or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS

IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

This software program contains code, and/or derivatives or modifications of code

originating from the software program ″Popper.″ Popper is Copyright ©1989-1991

The Regents of the University of California, All Rights Reserved. Popper was

created by Austin Shelton, Information Systems and Technology, University of

California, Berkeley.

Permission from the Regents of the University of California to use, copy, modify,

and distribute the ″Popper″ software contained herein for any purpose, without

fee, and without a written agreement is hereby granted, provided that the above

copyright notice and this paragraph and the following two paragraphs appear in

all copies. HOWEVER, ADDITIONAL PERMISSIONS MAY BE NECESSARY

FROM OTHER PERSONS OR ENTITIES, TO USE DERIVATIVES OR

MODIFICATIONS OF POPPER.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY

PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THE

POPPER SOFTWARE, OR ITS DERIVATIVES OR MODIFICATIONS, AND ITS

DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE POPPER SOFTWARE PROVIDED HEREUNDER IS ON AN ″AS

IS″ BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS

TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR

MODIFICATIONS.

Copyright © 1983 The Regents of the University of California. All rights reserved.

164 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Redistribution and use in source and binary forms are permitted provided that the

above copyright notice and this paragraph are duplicated in all such forms and

that any documentation, advertising materials, and other materials related to such

distribution and use acknowledge that the software was developed by the

University of California, Berkeley. The name of the University may not be used to

endorse or promote products derived from this software without specific prior

written permission. THIS SOFTWARE IS PROVIDED ``AS IS’’ AND WITHOUT

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT

LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 1991, 1993 The Regents of the University of California. All rights

reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must

display the following acknowledgement:

This product includes software developed by the University of

California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be

used to endorse or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS

IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

Copyright © 1990 by the Massachusetts Institute of Technology

Export of this software from the United States of America may require a specific

license from the United States Government. It is the responsibility of any person or

organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this

software and its documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that both that

copyright notice and this permission notice appear in supporting documentation,

and that the name of M.I.T. not be used in advertising or publicity pertaining to

distribution of the software without specific, written prior permission. Furthermore

Notices 165

if you modify this software you must label your software as modified software and

not distribute it in such a fashion that it might be confused with the original M.I.T.

software. M.I.T. makes no representations about the suitability of this software for

any purpose. It is provided ″as is″ without express or implied warranty.

Copyright © 1998 by the FundsXpress, INC. All rights reserved.

Export of this software from the United States of America may require a specific

license from the United States Government. It is the responsibility of any person or

organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this

software and its documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that both that

copyright notice and this permission notice appear in supporting documentation,

and that the name of FundsXpress not be used in advertising or publicity

pertaining to distribution of the software without specific, written prior

permission. FundsXpress makes no representations about the suitability of this

software for any purpose. It is provided ″as is″ without express or implied

warranty.

THIS SOFTWARE IS PROVIDED ``AS IS’’ AND WITHOUT ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with

or without fee is hereby granted, provided that the above copyright notice and this

permission notice appear in all copies.

THE SOFTWARE IS PROVIDED ″AS IS″ AND INTERNET SOFTWARE

CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM

BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL

DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).

The implementation was written so as to conform with Netscape’s SSL.

This library is free for commercial and non-commercial use as long as the

following conditions are adhered to. The following conditions apply to all code

found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the

SSL code. The SSL documentation included with this distribution is covered by the

same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young’s, and as such any Copyright notices in the code are

not to be removed. If this package is used in a product, Eric Young should be

166 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

given attribution as the author of the parts of the library used. This can be in the

form of a textual message at program startup or in documentation (online or

textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must

display the following acknowledgement: ″This product includes cryptographic

software written by Eric Young (eay@cryptsoft.com)″. The word ’cryptographic’

can be left out if the routines from the library being used are not cryptographic

related.

4. If you include any Windows specific code (or a derivative thereof) from the

apps directory (application code) you must include acknowledgement:

″This product includes software written by Tim Hudson (tjh@cryptsoft.com)″

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS’’ AND ANY EXPRESS

OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

The license and distribution terms for any publicly available version or derivative

of this code cannot be changed. i.e. this code cannot simply be copied and put

under another distribution license [including the GNU Public License.]

This product includes cryptographic software written by Eric Young.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with

or without fee is hereby granted, provided that the above copyright notice and this

permission notice appear in all copies.

THE SOFTWARE IS PROVIDED ″AS IS″ AND INTERNET SOFTWARE

CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM

BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL

DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Notices 167

Copyright © 2004 IBM Corporation and its licensors, including Sendmail, Inc., and

the Regents of the University of California. All rights reserved.

Copyright © 1999,2000,2001 Compaq Computer Corporation

Copyright © 1999,2000,2001 Hewlett-Packard Company

Copyright © 1999,2000,2001 IBM Corporation

Copyright © 1999,2000,2001 Hummingbird Communications Ltd.

Copyright © 1999,2000,2001 Silicon Graphics, Inc.

Copyright © 1999,2000,2001 Sun Microsystems, Inc.

Copyright © 1999,2000,2001 The Open Group

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the ″Software″), to deal in the

Software without restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, provided that the

above copyright notice(s) and this permission notice appear in all copies of the

Software and that both the above copyright notice(s) and this permission notice

appear in supporting documentation.

THE SOFTWARE IS PROVIDED ″AS IS″, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE

FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL

DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used

in advertising or otherwise to promote the sale, use or other dealings in this

Software without prior written authorization of the copyright holder.

X Window System is a trademark of The Open Group.

If you are viewing this information softcopy, photographs and color illustrations

may not appear.

168 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 Advanced Peer-to-Peer Networking

 AFS

 AD/Cycle

 AIX

 AIX/ESA

 AnyNet

 APL2

 AS/400

 BookManager

 C/370

 CICS

 CICS/ESA

 C Set ++

 DB2

 DFSMSdfp

 DFSMShsm

 DPI

 ESCON

 eServer

 ES/9000

 ES/9370

 FFST

 FICON

 First Failure Support Technology

 GDDM

 IBM

 ibm.com

 IBMLink

 IMS

 IMS/ESA

 HiperSockets

 Language Environment

 Multiprise

 MVS

 MVS/DFP

 MVS/ESA

 MVS/SP

 MVS/XA

 NetView

 Network Station

 Nways

 OS/2

 OS/390

 Parallel Sysplex

 pSeries

 RACF

 Redbooks

 RETAIN

 RISC System/6000

 RMF

 RS/6000

 S/370

 S/390

 S/390 Parallel Enterprise Server

 SecureWay

 SiteCheck

 SQL/DS

 System/360

 System/370

 System/390

 System z

 System z9

 Tivoli

 VM/ESA

 VSE/ESA

 VTAM

 WebSphere

 z9

 z/Architecture

 z/OS

 z/VM

 z9

 zSeries

 400

The following terms are trademarks of other companies:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Notices 169

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United

States and other countries.

Other company, product or service names may be trademarks or service marks of

others.

170 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Bibliography

z/OS Communications Server information

This section contains descriptions of the documents in the z/OS Communications Server library.

z/OS Communications Server documentation is available:

v Online at the z/OS Internet Library web page at http://www.ibm.com/servers/eserver/zseries/zos/
bkserv

v In softcopy on CD-ROM collections. See “Softcopy information” on page xix.

z/OS Communications Server library

z/OS Communications Server documents are available on the CD-ROM accompanying z/OS (SK3T-4269

or SK3T-4307). Unlicensed documents can be viewed at the z/OS Internet library site.

Updates to documents are available on RETAIN® and in information APARs (info APARs). See

Appendix B, “Information APARs and technotes,” on page 155 for a list of the documents and the info

APARs associated with them.

Info APARs for z/OS documents are in the document called z/OS and z/OS.e DOC APAR and PTF

++HOLD Documentation which can be found at http://publibz.boulder.ibm.com:80/cgi-bin/
bookmgr_OS390/ BOOKS/ZIDOCMST/CCONTENTS.

Planning

 Title Number Description

z/OS Communications Server:

New Function Summary

GC31-8771 This document is intended to help you plan for new IP for SNA

function, whether you are migrating from a previous version or

installing z/OS for the first time. It summarizes what is new in

the release and identifies the suggested and required

modifications needed to use the enhanced functions.

z/OS Communications Server:

IPv6 Network and Application

Design Guide

SC31-8885 This document is a high-level introduction to IPv6. It describes

concepts of z/OS Communications Server’s support of IPv6,

coexistence with IPv4, and migration issues.

Resource definition, configuration, and tuning

 Title Number Description

z/OS Communications Server: IP

Configuration Guide

SC31-8775 This document describes the major concepts involved in

understanding and configuring an IP network. Familiarity with

the z/OS operating system, IP protocols, z/OS UNIX System

Services, and IBM Time Sharing Option (TSO) is recommended.

Use this document in conjunction with the z/OS Communications

Server: IP Configuration Reference.

© Copyright IBM Corp. 2002, 2006 171

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Title Number Description

z/OS Communications Server: IP

Configuration Reference

SC31-8776 This document presents information for people who want to

administer and maintain IP. Use this document in conjunction

with the z/OS Communications Server: IP Configuration Guide. The

information in this document includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v SMF records

v Protocol number and port assignments

z/OS Communications Server:

SNA Network Implementation

Guide

SC31-8777 This document presents the major concepts involved in

implementing an SNA network. Use this document in

conjunction with the z/OS Communications Server: SNA Resource

Definition Reference.

z/OS Communications Server:

SNA Resource Definition Reference

SC31-8778 This document describes each SNA definition statement, start

option, and macroinstruction for user tables. It also describes

NCP definition statements that affect SNA. Use this document in

conjunction with the z/OS Communications Server: SNA Network

Implementation Guide.

z/OS Communications Server:

SNA Resource Definition Samples

SC31-8836 This document contains sample definitions to help you

implement SNA functions in your networks, and includes

sample major node definitions.

z/OS Communications Server: IP

Network Print Facility

SC31-8833 This document is for system programmers and network

administrators who need to prepare their network to route SNA,

JES2, or JES3 printer output to remote printers using TCP/IP

Services.

Operation

 Title Number Description

z/OS Communications Server: IP

User’s Guide and Commands

SC31-8780 This document describes how to use TCP/IP applications. It

contains requests that allow a user to log on to a remote host

using Telnet, transfer data sets using FTP, send and receive

electronic mail, print on remote printers, and authenticate

network users.

z/OS Communications Server: IP

System Administrator’s Commands

SC31-8781 This document describes the functions and commands helpful in

configuring or monitoring your system. It contains system

administrator’s commands, such as TSO NETSTAT, PING,

TRACERTE and their UNIX counterparts. It also includes TSO

and MVS commands commonly used during the IP

configuration process.

z/OS Communications Server:

SNA Operation

SC31-8779 This document serves as a reference for programmers and

operators requiring detailed information about specific operator

commands.

z/OS Communications Server:

Quick Reference

SX75-0124 This document contains essential information about SNA and IP

commands.

172 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Customization

 Title Number Description

z/OS Communications Server:

SNA Customization

SC31-6854 This document enables you to customize SNA, and includes the

following:

v Communication network management (CNM) routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the CLU

search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

Writing application programs

 Title Number Description

z/OS Communications Server: IP

Sockets Application Programming

Interface Guide and Reference

SC31-8788 This document describes the syntax and semantics of program

source code necessary to write your own application

programming interface (API) into TCP/IP. You can use this

interface as the communication base for writing your own client

or server application. You can also use this document to adapt

your existing applications to communicate with each other using

sockets over TCP/IP.

z/OS Communications Server: IP

CICS Sockets Guide

SC31-8807 This document is for programmers who want to set up, write

application programs for, and diagnose problems with the socket

interface for CICS using z/OS TCP/IP.

z/OS Communications Server: IP

IMS Sockets Guide

SC31-8830 This document is for programmers who want application

programs that use the IMS TCP/IP application development

services provided by IBM’s TCP/IP Services.

z/OS Communications Server: IP

Programmer’s Guide and Reference

SC31-8787 This document describes the syntax and semantics of a set of

high-level application functions that you can use to program

your own applications in a TCP/IP environment. These

functions provide support for application facilities, such as user

authentication, distributed databases, distributed processing,

network management, and device sharing. Familiarity with the

z/OS operating system, TCP/IP protocols, and IBM Time

Sharing Option (TSO) is recommended.

z/OS Communications Server:

SNA Programming

SC31-8829 This document describes how to use SNA macroinstructions to

send data to and receive data from (1) a terminal in either the

same or a different domain, or (2) another application program

in either the same or a different domain.

z/OS Communications Server:

SNA Programmer’s LU 6.2 Guide

SC31-8811 This document describes how to use the SNA LU 6.2 application

programming interface for host application programs. This

document applies to programs that use only LU 6.2 sessions or

that use LU 6.2 sessions along with other session types. (Only

LU 6.2 sessions are covered in this document.)

z/OS Communications Server:

SNA Programmer’s LU 6.2

Reference

SC31-8810 This document provides reference material for the SNA LU 6.2

programming interface for host application programs.

z/OS Communications Server:

CSM Guide

SC31-8808 This document describes how applications use the

communications storage manager.

Bibliography 173

Title Number Description

z/OS Communications Server:

CMIP Services and Topology

Agent Guide

SC31-8828 This document describes the Common Management Information

Protocol (CMIP) programming interface for application

programmers to use in coding CMIP application programs. The

document provides guide and reference information about CMIP

services and the SNA topology agent.

Diagnosis

 Title Number Description

z/OS Communications Server: IP

Diagnosis Guide

GC31-8782 This document explains how to diagnose TCP/IP problems and

how to determine whether a specific problem is in the TCP/IP

product code. It explains how to gather information for and

describe problems to the IBM Software Support Center.

z/OS Communications Server:

SNA Diagnosis Vol 1, Techniques

and Procedures and z/OS

Communications Server: SNA

Diagnosis Vol 2, FFST Dumps and

the VIT

GC31-6850

GC31-6851

These documents help you identify an SNA problem, classify it,

and collect information about it before you call the IBM Support

Center. The information collected includes traces, dumps, and

other problem documentation.

z/OS Communications Server:

SNA Data Areas Volume 1 and

z/OS Communications Server:

SNA Data Areas Volume 2

GC31-6852

GC31-6853

These documents describe SNA data areas and can be used to

read an SNA dump. They are intended for IBM programming

service representatives and customer personnel who are

diagnosing problems with SNA.

Messages and codes

 Title Number Description

z/OS Communications Server:

SNA Messages

SC31-8790 This document describes the ELM, IKT, IST, ISU, IUT, IVT, and

USS messages. Other information in this document includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications Server: IP

Messages Volume 1 (EZA)

SC31-8783 This volume contains TCP/IP messages beginning with EZA.

z/OS Communications Server: IP

Messages Volume 2 (EZB, EZD)

SC31-8784 This volume contains TCP/IP messages beginning with EZB or

EZD.

z/OS Communications Server: IP

Messages Volume 3 (EZY)

SC31-8785 This volume contains TCP/IP messages beginning with EZY.

z/OS Communications Server: IP

Messages Volume 4 (EZZ, SNM)

SC31-8786 This volume contains TCP/IP messages beginning with EZZ and

SNM.

z/OS Communications Server: IP

and SNA Codes

SC31-8791 This document describes codes and other information that

appear in z/OS Communications Server messages.

APPC Application Suite

 Title Number Description

z/OS Communications Server:

APPC Application Suite User’s

Guide

SC31-8809 This documents the end-user interface (concepts, commands,

and messages) for the AFTP, ANAME, and APING facilities of

the APPC application suite. Although its primary audience is the

end user, administrators and application programmers may also

find it useful.

174 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Title Number Description

z/OS Communications Server:

APPC Application Suite

Administration

SC31-8835 This document contains the information that administrators

need to configure the APPC application suite and to manage the

APING, ANAME, AFTP, and A3270 servers.

z/OS Communications Server:

APPC Application Suite

Programming

SC31-8834 This document provides the information application

programmers need to add the functions of the AFTP and

ANAME APIs to their application programs.

Bibliography 175

176 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Index

A
accessibility 159

address assignment 64

address autoconfiguration 5

address resolution, in IPv6 32

address states
deprecated 20

preferred 20

tentative 19

unavailable 20

addressing 9

Advanced socket APIs 99

AF_INET socket applications
and dual-mode stack 45

and IPv4-only stack 44

AF_INET6 socket applications
and dual-mode stack 45

and IPv4-only stack 44

and IPv6-only stack 45

AF_INET6 support, enabling 55

aggregatable global addresses, unicast 13

ALG 43

ancillary data 100, 113, 114

APIs 71

APIs, advanced 99

Application Layer Gateway (ALG) 43

and z/OS CS TCP/IP 44

ARP, in IPv4 27

authentication, with IPv6 OSPF 25

autoconfiguration
stateful 5

stateless 5, 33

guidelines 64

steps 34

automatic tunnels 123

automation impacts
due to message changes 51

due to netstat changes 51

autonomous flag, in router advertisement 29

B
Basic socket API extensions for IPv6 75

address conversion functions 83

Address families 75

address testing macros 83

Design considerations 75

interface identification 84

name and address resolution functions 77

name translation 77

Protocol families 75

socket options 84

special IP addresses 76

BPXPRMxx
and enabling IPv6 support 54

CINET IPv4-only sample 54

CINET IPv4/IPv6 dual-mode sample 55

IPv4-only sample 54

IPv4/IPv6 dual-mode sample 54

broadcast 27

C
C sockets 71

checksum processing for RAW applications 111

CICS sockets 72

coexistence overview, application 125

Common INET
and AF_INET6 support 46

configuring 48

considerations 46

COMMONSEARCH statement, in resolver setup file 57

Communications Server for z/OS, online information xxi

configured tunnels 122

D
DAD 32

data stream, including IP addresses 95

data tracing 62

default address selection 36

default destination address selection 36

rules 36

default source address selection
rules 38

deprecated, address state 20

DHCPv6 5

diagnosing problems 62

disability 159

Distributed Protocol Interface (DPI) 134

DNS
and VIPAs, guidelines 66

DNS definitions, updating 66

DNS, guidelines 66

DNS, online information xxii

dual-mode stack 40

and IPv4 application 42

and IPv6 application 40

dual-mode stack support 7

Duplicate Address Detection (DAD) 32

and loopback addresses 32

and VIPA 32, 35

how to disable 32

processing steps 32

Dynamic routing protocols 24

E
exits 58

extension headers 21

F
fragmentation 21

support 6, 22

FTP exits 58

G
getaddrinfo 77

gethostbyaddr 82

© Copyright IBM Corp. 2002, 2006 177

gethostbyname 77

getnameinfo 82

getservbyname 77

getservbyport 82

H
header format 4

hierarchical addressing 4

hierarchical addressing and routing infrastructure 4

host names, defining 66

I
IBM Software Support Center, contacting xiv

ICMP considerations 117

ICMPv4 messages 27

ICMPv6 26

message types 27

IGMP, in IPv4 27

IMS sockets 72

INET
and dual-mode IPv4/IPv6 stack 46

and IPv4-only stack 45

inetd 58

configuration file 58

information APARs for IP-related documents 155

information APARs for non- document information 156

information APARs for SNA-related documents 156

interface ID
,defining for physical interfaces 64

interface identifiers, in IPv6 unicast address 16

Internet, finding z/OS information online xxi

IP addresses, impermanence 94

IP header format 4

IPAQENET6 interface type 63

IPCS 62

IPPROTO_IPV6 level 100

IPv4 TCP server program 95

IPv4-mapped IPv6 address 15

IPv6
address space 4

applications not enabled 134

Basic socket API extensions 75

expanded routing and addressing 4

supported standards 131

z/OS-specific features 131

IPv6 address
anycast 19

assigned to a node 19

categories 12

model 11

multicast 17

states 19

textual representation 9

types 11

global unicast aggregatable 11

link-local unicast 11

loopback 11

multicast 11

site-local unicast 11

unspecified 11

unicast 13

IPv6 address space 11

IPv6 and IPv4 characteristics, comparison 6

IPv6 header 4

IPv6 header (continued)
header options 4

IPv6 packet header 99

IPv6 prefix
textual representation 10

IPv6, enabling applications for 89

K
keyboard 159

L
license, patent, and copyright information 161

link-layer device support 131

local use address, unicast 14

LookAt message retrieval tool xxii

loopback address
and DAD 32

loopback address, unicast 15

M
message retrieval tool, LookAt xxii

migration and coexistence overview, application 125

migration approaches 127

migration overview, application 125

MLD 27

MPCPTP6 interface type 63

MTU discovery, options 101

multicast 17

groups
group ID 18

scope 17

multicast and IPv6, using 94

Multicast Listener Discovery
listener function 28

query message 28

router function 28

Multicast Listener Discovery (MLD) 27

multicasting 27

multipath routes, considerations 26

N
NAT 44

NAT-PT 129

native TCP/IP sockets 72

Neighbor Discovery (ND) 5, 27, 28

Address Resolution 28, 32

Duplicate Address Detection (DAD) 28

parameter discovery 5

prefix discovery 5

Reachability Detection 28

neighbor node interaction, protocol 5

neighbor unreachability detection 33

Netstat 60

Network address translation (NAT) 44

network prefix 65

Network SLAPM2 subagent 134

O
OMPROUTE 24

OMPROUTE subagent 134

178 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

OMPROUTE, guidelines 67

on-link flag, in router advertisement 29

options, support 4

orexecd 58

orshd 58

otelnetd 58

outgoing interface, specifying 115

P
packet header, controlling the content 99

packet tracing 62

packets, controlling sending 103

Pascal API 72

path MTU discovery 22

Ping 62

Policy Agent 59

preferred, address state 20

prefix information options
autonomous flag 29

on-link flag 29

proxy 128

Q
QoS

and flow label 7

QoS classification data 111

QoS policies 59

R
RAW applications, checksum processing 111

RAW sockets 116

received packets 108

redirect messages 6

redirect processing
IGNOREREDIRECT on IPCONFIG6 31

Resolver 56

and DNS 58

resolver API processing 92

Resolver configuration
files 56

search orders 56

REXX sockets 72

RFC (request for comments)
accessing online xxi

list of 139

route selection 26

router advertisements 28

prefix information options 29

autonomous flag 29

on-link flag 29

router discovery 23

routing 22

and VARY TCPIP,,OBEYFILE command 26

routing infrastructure 4

S
scope 11

multicast 17

scope zone 12

scope zone index 12

scope zones 11

security considerations 53

shortcut keys 159

SIIT 128

site-local addresses 64

SMF records 59

SNA application access
and EE 52

and TN3270 52

SNMP, agent 134

SNMP, subagents 134

DPI 134

Network SLAPM2 134

OMPROUTE 134

TCP/IP 134

socket APIs 71

and IPv6 support 71

socket APIs, advanced 99

socket options and ancillary data, interactions 114

sockets extended call instruction API 72

sockets extended macro API 72

SOCKS 43, 128

SOCKS server 43

SOCKS64 43, 128

source address, options 115

source VIPA, guidelines 66

SOURCEVIPA, for IPv6 35

special IPv6 addresses 93

static routes
BEGINROUTES profile statement 22

GATEWAY profile statement 22

static routes, guidelines 67

support tables 131

sysplex support 132

T
takeover function, interface 34

tasks
implementing the resolver functions

steps 57

TCP server program enabled for IPv6 96

TCP/IP
online information xxi

protocol specifications 139

TCP/IP, subagent 134

tentative, address state 19

textual representation
IPv6 addresses 9

IPv6 prefixes 10

TN3270
and SNA access 52

Traceroute 40, 62

tracing
data 62

packet 62

trademark information 169

translation mechanisms 127

NAT-PT 129

proxy 128

SIIT 128

SOCKS 128

Trap forwarder daemon 134

tunneling
6over4 tunnels 124

6to4 addresses 123

automatic tunnels 123

configured tunnels 122

Index 179

tunneling (continued)
overview 121

Tunneling 121

and z/OS/CS 40

U
unavailable, address state 20

unicast 13

unspecified address, unicast 15

user exits 58

V
VARY TCPIP,,OBEYFILE , and autoconfiguration 34

VARY TCPIP,,OBEYFILE command considerations, in router

advertisements 31

VIPA
and Duplicate Address Detection(DAD) 32, 35

and prefixes 35

and source address selection 38

how to get addresses 35

interface identifier
guidelines 65

network prefix
guidelines 65

static
guidelines 64

VTAM, online information xxi

Z
z/OS, documentation library listing 171

z/OS, listing of documentation available 155

zone index 12

180 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of

the methods listed below to send your comments to IBM. Whichever method you

choose, make sure you send your name, address, and telephone number if you

would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject

matter, or completeness of this document. However, the comments you send

should pertain to only the information in this manual and the way in which the

information is presented. To request additional publications, or to ask questions or

make comments about the functions of IBM products or systems, you should talk

to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate without incurring any

obligation to you.

Please send your comments to us in either of the following ways:

v If you prefer to send comments by FAX, use this number: 1+919-254-4028

v If you prefer to send comments electronically, use this address:

– comsvrcf@us.ibm.com.
v If you prefer to send comments by post, use this address:

International Business Machines Corporation

Attn: z/OS Communications Server Information Development

P.O. Box 12195, 3039 Cornwallis Road

Department AKCA, Building 501

Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:

v Title and publication number of this document

v Page number or topic to which your comment applies.

© Copyright IBM Corp. 2002, 2006 181

182 z/OS V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

����

Program Number: 5694–A01 and 5655–G52

Printed in USA

SC31-8885-04

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

z/
O

S
Co

m
m

un
ic

at
io

ns

Se

rv
er

z/
O

S
V

1R
8.

0
Co

m
m

Sr

v:

IP

v6

N

et
w

or
k

an
d

Ap
pl

D
es

ig
n

G
ui

de

Ve
rs

io
n

1
R

el
ea

se

8

	Contents
	Figures
	Tables
	About this document
	Who should read this document
	How this document is organized
	How to use this document
	Determining whether a publication is current
	How to contact IBM service

	Conventions and terminology used in this document
	Clarification of notes

	How to read a syntax diagram
	Symbols and punctuation
	Commands
	Parameters
	Syntax examples
	Longer than one line
	Required operands
	Choose one required item from a stack
	Optional values
	Choose one optional operand from a stack
	Repeating an operand
	Selecting more than one operand
	Nonalphanumeric characters
	Blank spaces in syntax diagrams
	Default operands
	Variables
	Syntax fragments

	Prerequisite and related information
	Required information
	Related information
	Softcopy information
	Other documents
	Redbooks
	Where to find related information on the Internet
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS

	How to send your comments

	Summary of changes
	Part 1. IPv6 overview
	Chapter 1. Introduction
	Expanded routing and addressing
	Hierarchical addressing and routing infrastructure
	Simplified IP header format
	Improved support for options
	Address autoconfiguration
	New protocol for neighbor node interaction
	Comparison of IPv6 and IPv4 characteristics
	Dual-mode stack support

	Chapter 2. IPv6 addressing
	Textual representation of IPv6 addresses1
	Textual representation of IPv6 prefixes1
	IPv6 address space
	IPv6 addressing model
	Scope zones
	Categories of IPv6 addresses
	Unicast IPv6 addresses
	Aggregatable global addresses
	Local use addresses
	Loopback address
	Unspecified address
	IPv4-mapped IPv6 addresses
	IPv6 interface identifiers

	Multicast IPv6 Addresses
	Multicast address format
	Multicast scope
	Multicast groups

	Anycast IPv6 Addresses

	Typical IPv6 addresses assigned to a node
	IPv6 address states
	Tentative
	Deprecated
	Preferred
	Unavailable

	Chapter 3. IPv6 protocol
	Extension headers
	Fragmentation in an IPv6 network
	Fragmentation and UDP/RAW

	Path MTU discovery
	IPv6 routing
	Router discovery
	ICMPv6 redirects
	Dynamic routing protocols
	Tip for IPv6 OSPF routing protocol addressing conventions
	Authentication with the IPv6 OSPF routing protocol

	Considerations for route selection
	Considerations for multipath routes
	How does a VARY TCPIP,,OBEYFILE command affect routes?

	ICMPv6
	Multicasting
	Multicast Listener Discovery (MLD)

	Neighbor discovery (ND)
	Router advertisements
	Route timeouts
	VARY TCPIP,,OBEYFILE command rules

	Redirect processing
	Duplicate Address Detection (DAD)
	Address resolution
	Neighbor unreachability detection

	Assigning IP addresses to interfaces
	Stateless address autoconfiguration
	Autoconfiguration considerations

	IP address takeover following an interface failure
	How to get addresses for VIPAs

	Default address selection
	Default destination address selection
	Default source address selection
	VIPA considerations with source address selection

	Migration and coexistence
	Enabling IPv6 communication between IPv6 islands in an IPv4 environment
	Tunneling

	How to enable end-to-end communication between IPv4 and IPv6 applications
	Dual-mode stack
	Application Layer Gateways (ALG) and protocol translation

	Considerations for configuring z/OS for IPv6
	IPv6 stack support
	IPv4-only stack
	IPv6-only stack
	Dual-mode stack

	INET considerations
	IPv4-only stack
	Dual-mode IPv4/IPv6 stack

	Common INET considerations
	Enabling AF_INET6 support in a Common INET environment
	Disabling AF_INET6 support in a Common INET environment
	Supporting a mixture of dual-mode stacks and IPv4-only stacks
	Configuring a common INET environment

	Part 2. IPv6 enablement
	Chapter 4. Configuring support for z/OS
	Ensure that important features are supported over IPv6
	Assess automation and application impacts due to Netstat and message changes
	Determine how remote sites connect to the local host
	SNA access
	Avoid using IP addresses for identifying remote hosts
	Considerations when using the BIND parameter on the PORT statement
	Security considerations
	Application programming considerations
	Enabling IPv6 support
	Configuring z/OS IPv6 support

	Resolver processing
	Resolver configuration
	IPv4-only configuration statements
	IPv6/IPv4 configuration statements
	Steps for implementing the resolver functions

	Resolver communications with the Domain Name System (DNS)

	User exits
	Which applications started with inetd are IPv6 enabled?
	Modifying inetd.conf

	How does IPv6 affect SMF records?
	How does IPv6 affect the Policy Agent?
	How does IPv6 affect SNMP?
	Monitoring the TCP/IP network
	How does IPv6 affect Netstat?
	Control of output format
	What has changed?

	How does IPv6 affect Ping and Traceroute?

	Diagnosing problems
	How does IPv6 affect IPCS?
	How does IPv6 affect packet and data tracing?

	Chapter 5. Configuration guidelines
	Connecting to an IPv6 Network
	IPv6 address assignment guidelines
	Updating DNS definitions
	Including static VIPAs in DNS
	Defining IPv4-only host names and IPv4/IPv6 host names

	Using source VIPA
	Using OMPROUTE or define static routes to improve network selection
	Connecting to non-local IPv4 locations
	IPv6-only application access to IPv4-only application

	Part 3. Application enablement
	Chapter 6. API support
	UNIX socket APIs
	z/OS UNIX Assembler Callable Services
	z/OS C sockets

	Native TCP/IP socket APIs
	Sockets Extended macro API
	Sockets Extended Call Instruction API
	REXX sockets
	CICS sockets
	IMS sockets
	Pascal API
	TCP/IP C/C++ Sockets

	Chapter 7. Basic socket API extensions for IPv6
	Introduction
	Design considerations
	Protocol families
	Address families
	Special IP addresses

	Name and address resolution functions
	Protocol-independent nodename and service name translation
	Socket address structure to host name and service name
	Address conversion functions
	Address testing macros

	Interface identification
	Socket options to support IPv6 (IPPROTO_IPV6 level)
	Option to control sending of unicast packets
	Options to control sending of multicast packets
	Options to control receiving of multicast packets
	Socket option to control IPv4 and IPv6 communications
	Socket options for SOL_SOCKET, IPPROTO_TCP and IPPROTO_IP levels

	Chapter 8. Enabling an application for IPv6
	Changes to enable IPv6 support
	Support for unmodified applications
	Application awareness of whether system is IPv6 enabled
	Socket address (sockaddr_in) structure changes
	Address conversion functions
	Resolver API processing
	Special IPv6 addresses
	Passing ownership of sockets across applications using givesocket and takesocket APIs
	Using multicast and IPv6
	IP addresses might not be permanent
	Including IP addresses in the data stream
	Example of an IPv4 TCP server program
	Example of the simple TCP server program enabled for IPv6

	Chapter 9. Advanced socket APIs
	Controlling the content of the IPv6 packet header
	Socket options and ancillary data to support IPv6 (IPPROTO_IPV6 level)
	Options for path MTU discovery
	Options to control the sending of packets
	Options to provide information about received packets
	Option to provide checksum processing for RAW applications
	Option to provide QoS classification data

	Socket option to support ICMPv6 (IPPROTO_ICMPV6 level)

	Using ancillary data on sendmsg() and recvmsg()
	Interactions between socket options and ancillary data
	Understanding hop limit options
	Understanding options for setting the source address
	Understanding options for specifying the outgoing interface

	Why use RAW sockets?
	RAW protocol values
	Application visibility of IP headers
	ICMP considerations
	Checksumming data

	Part 4. Advanced topics
	Chapter 10. Advanced concepts and topics
	Tunneling
	Configured tunnels
	Automatic tunnels
	6to4 addresses
	6over4 tunnels

	Application migration and coexistence overview
	Application migration approaches
	Translation mechanisms
	SOCKS gateway
	Proxy
	Stateless IP/ICMP Translation Algorithm (SIIT)
	Network address translation - protocol translation (NAT-PT)

	Chapter 11. IPv6 support tables
	Supported IPv6 standards
	z/OS-specific features
	Applications not enabled for IPv6

	Part 5. Appendixes
	Appendix A. Related protocol specifications (RFCs)
	Internet drafts

	Appendix B. Information APARs and technotes
	Information APARs for IP documents
	Information APARs for SNA documents
	Other information APARs

	Appendix C. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Trademarks

	Bibliography
	z/OS Communications Server information
	z/OS Communications Server library
	Planning
	Resource definition, configuration, and tuning
	Operation
	Customization
	Writing application programs
	Diagnosis
	Messages and codes
	APPC Application Suite

	Index
	Communicating Your Comments to IBM

