z/0S Communications Server

IPv6 Network and Application Design
Guide

Version 1 Release 8

<|ll

SC31-8885-04

z/0S Communications Server

IPv6 Network and Application Design
Guide

Version 1 Release 8

<|ll

SC31-8885-04

Note:
Before using this information and the product it supports, be sure to read the general information under

Fifth Edition (September 2006)

This edition applies to Version 1 Release 8 of z/OS (5694-A01) and Version 1 Release 8 of z/0OS.e (5655-G52) and to
all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You may send your comments to the following address.
International Business Machines Corporation
Attn: z/OS Communications Server Information Development
Department AKCA, Building 501
P.O. Box 12195, 3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada):
1+919-254-4028

Send the fax to “Attn: z/OS Communications Server Information Development”

Internet e-mail:
comsvrcf@us.ibm.com

World Wide Web:
[http:/ / www.ibm.com/servers/eserver /zseries/zos/webgs.html|

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to
include the following in your comment or note:

+ Title and order number of this document
* Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures. ix
Tables . Xi
About this document . Xiii
Who should read this document . . xiii
How this document is organized . . xiii
How to use this document . . .o . xiv

Determining whether a publication is current . xiv

How to contact IBM service . Xiv
Conventions and terminology used in thls document . XV

Clarification of notes . . XV
How to read a syntax diagram . . XV

Symbols and punctuation . xvi

Commands . . xvi

Parameters . Xvi

Syntax examples . . xvi
Prerequisite and related 1nforrnat10n . Xix

Required information . . xix

Related information . xix
How to send your comments. . xxiii
Summary of changes . . XXV
Part 1. IPv6 overview -1
Chapter 1. Introduction . 3
Expanded routing and addressing4
Hierarchical addressing and routing 1nfrastructure. .4
Simplified IP header format -4
Improved support for options .4
Address autoconfiguration. . .5
New protocol for neighbor node 1nteract10n .5
Comparison of IPv6 and IPv4 characteristics. . 6
Dual-mode stack support . .7

Chapter 2. IPv6 addressing
Textual representation of IPv6 addresses' .
Textual representation of IPv6 prefixes'
IPv6 address space .

IPv6 addressing model

Scope zones .

Categories of IPv6 addresses

Unicast IPv6 addresses

Multicast IPv6 Addresses .

Anycast IPv6 Addresses . .
Typical IPv6 addresses assigned to a node .
IPv6 address states . o

Tentative

Deprecated

Preferred .

Unavailable

© Copyright IBM Corp. 2002, 2006

G S U U |
OO VWONWNRRF~R~=ROoVv O

NN DN
o O O

iii

Chapter 3. IPv6 protocol .21
Extension headers . . .21
Fragmentation in an IPv6 network. .21
Fragmentation and UDP/RAW . .22
Path MTU discovery .22
IPv6 routing . .22
Router discovery .23
ICMPv6 redirects .23
Dynamic routing protocols .24
Considerations for route selection . . 26
Considerations for multipath routes . . . 26
How does a VARY TCPIP, OBEYFILE command affect routes7 . 26
ICMPv6 . 26
Multicasting . . .27
Multicast Llstener Dlscovery (MLD) .27
Neighbor discovery (ND). . 28
Router advertisements. . 28
Redirect processing . .31
Duplicate Address Detectlon (DAD) .32
Address resolution . .32
Neighbor unreachability detectlon . 33
Assigning IP addresses to interfaces . . 33
Stateless address autoconfiguration . .33
IP address takeover following an interface faﬂure . 34
How to get addresses for VIPAs . 35
Default address selection . . . 36
Default destination address selectlon . 36
Default source address selection . 38
Migration and coexistence . 39
Enabling IPv6 communication between IPV6 1slands in an IPV4 enV1ronment . 39
How to enable end-to-end communication between IPv4 and IPv6 applications . 40
Considerations for configuring z/OS for IPv6 . .44
IPv6 stack support . .44
INET considerations . 45
IPv4-only stack . . . 45
Dual-mode IPv4/IPv6 stack . 46
Common INET considerations . . . 46
Enabling AF_INET6 support in a Common INET enVlronment . 46
Disabling AF_INET6 support in a Common INET environment . . 46
Supporting a mixture of dual-mode stacks and IPv4-only stacks. .47
Configuring a common INET environment . . 48
Part2. IPv6 enablement 49
Chapter 4. Configuring support for z/OS . 51
Ensure that important features are supported over IPv6 . S . 51
Assess automation and application impacts due to Netstat and message Changes . . 51
Determine how remote sites connect to the local host . 51
SNA access . . . 52
Avoid using IP addresses for 1dent1fy1ng remote hosts . . .52
Considerations when using the BIND parameter on the PORT statement . 53
Security considerations . 53
Application programming con51derat10ns . 54
Enabling IPv6 support. . 54
Configuring z/OS IPv6 support . 55
Resolver processing. . 56
Resolver configuration. . 56
Resolver communications with the Domam Name System (DNS) . 58
User exits . . . 58
Which applications started w1th metd are IPV6 enabled7 . 58

iV z/0S VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Modifying inetd.conf . . . 58
How does IPv6 affect SMF records7 . 59
How does IPv6 affect the Policy Agent? . . 59
How does IPv6 affect SNMP? . 60
Monitoring the TCP/IP network . 60

How does IPv6 affect Netstat? . . . 60

How does IPv6 affect Ping and Traceroute7 . 62
Diagnosing problems . . 62

How does IPv6 affect IPCS" . 62

How does IPv6 affect packet and data ’cracmg7 . 62
Chapter 5. Configuration guidelines . . 63
Connecting to an IPv6 Network . 63
IPv6 address assignment guidelines . 64
Updating DNS definitions . 66

Including static VIPAs in DNS . . 66

Defining IPv4-only host names and IPv4/ IPV6 host names . 66
Using source VIPA . . . 66
Using OMPROUTE or define statlc routes to 1mprove network selectlon . . 67
Connecting to non-local IPv4 locations . . 68
IPv6-only application access to IPv4-only appl1cat1on . 68
Part 3. Application enablement69
Chapter 6. API support. . 7
UNIX socket APIs . .71

z/0S UNIX Assembler Callable Serv1ces .71

z/0S C sockets . . .71
Native TCP/IP socket APIs . .72

Sockets Extended macro API .72

Sockets Extended Call Instruction API .72

REXX sockets. .72

CICS sockets . .72

IMS sockets .72

Pascal API. .72

TCP/IP C/C++ Sockets .73
Chapter 7. Basic socket API extensions for IPv6. . 75
Introduction . . .75
Design considerations . .75

Protocol families. .75

Address families. .75

Special IP addresses . . . 76
Name and address resolution funct1ons . .77

Protocol-independent nodename and service name translatlon .77

Socket address structure to host name and service name .82

Address conversion functions . 83

Address testing macros . 83
Interface identification. . 84
Socket options to support IPv6 (IPPROTO IPV6 level) . 84

Option to control sending of unicast packets . 85

Options to control sending of multicast packets . 85

Options to control receiving of multicast packets . . 86

Socket option to control IPv4 and IPv6 communications . 87

Socket options for SOL_SOCKET, IPPROTO_TCP and IPPROTO IP levels . 87
Chapter 8. Enabling an appllcat|on for IPv6 . . 89
Changes to enable IPv6 support . 89
Support for unmodified applications . . 89

Contents V

Application awareness of whether system is IPv6 enabled . . 89
Socket address (sockaddr_in) structure changes .92
Address conversion functions .92
Resolver API processing . .92
Special IPv6 addresses. . . 93
Passing ownership of sockets across applrcatrons usrng grvesocket and takesocket APls . . 93
Using multicast and IPv6. .94
IP addresses might not be permanent. . 94
Including IP addresses in the data stream . 95
Example of an IPv4 TCP server program .95
Example of the simple TCP server program enabled for IPV6 . 96
Chapter 9. Advanced socket APIs . . 99
Controlling the content of the IPv6 packet header .99
Socket options and ancillary data to support IPv6 (IPPROTO IPV6 level) . 100
Socket option to support ICMPv6 (IPPROTO_ICMPV6 level) 112
Using ancillary data on sendmsg() and recvmsg() . 113
Interactions between socket options and ancillary data . 114
Understanding hop limit options . . . 114
Understanding options for setting the source address . . 115
Understanding options for specifying the outgoing interface. . 115
Why use RAW sockets? . . 116
RAW protocol values . . . 116
Application visibility of IP headers . . 116
ICMP considerations . .o . 117
Checksumming data . . 118
Part 4. Advanced topics. . 119
Chapter 10. Advanced concepts and topics . 121
Tunneling . . 121
Configured tunnels . 122
Automatic tunnels. . 123
6to4 addresses . . 123
6overd tunnels . e . 124
Application migration and Coex1stence overview . 125
Application migration approaches . 127
Translation mechanisms . . 127
Chapter 11. IPv6 support tables . . 131
Supported IPv6 standards . . . 131
z/OS-specific features . 131
Applications not enabled for IPV6 . 134
Part 5. Appendixes . . 137
Appendix A. Related protocol specmcatlons (RFCs) . 139
Internet drafts . . 154
Appendix B. Information APARs and technotes. . 155
Information APARs for IP documents .o . 155
Information APARs for SNA documents . 156
Other information APARs . . 156
Appendix C. Accessibility . . 159
Using assistive technologies . . 159
Keyboard navigation of the user 1nterface . 159
z/0S information . . 159

Vi z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Notices © & & i e . 2161
Trademarks L Lo s s s aed

Bibliography. L s e e e e e e e e e e e e 1T
z/0OS Communications Server information .1711

z/0S Communications Server library .1n

Index & . e TT

Communicating Your CommentstolBM.181

Contents Vil

viii z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Figures

NN NNRFR PR R R s
WNFEOWXRNUIE WM -

—_
CORPNT RN

IPv6 address space

Unicast address format.

Global unicast address format

Link-local address format .

Link-local scope zones .

IPv4-mapped IPv6 address . .
OSA-Express QDIO interface ID format .
Multicast address format . .
Flags in multicast address.

Communicating between IPv6 1slands in an IPV4 world.

Communicating between IPv4 and IPv6 applications.
IPv6 application on dual-mode stack .

IPv4-only application on a dual-mode stack.

Mixing dual-mode and IPv4-only stacks .

z/0S socket APIs . .
Example of protocol—mdependent chent apphcatlon .
IPv4 TCP server program . .
Simple TCP server program enabled for IPV6 .
Tunneling . . oo

6to4 address format

6over4 address format

Dual-mode stack IP host .

Application communication on a dual mode host

© Copyright IBM Corp. 2002, 2006

.13
.14
.14
.15
. 16
. 16
.17
.17
. 40
. 40
.42
.43
. 48
.71
.91
. 96
.97
. 122
. 124
. 125
. 126
. 127

ix

X z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Tables

B O WO W W W W WWWWNINNINDNNNNNNRERERFRRE R
SORISNEIN LSO RICAEINEO0RNS O RE BP0

—_
CORPNT RN

IPv4/IPv6 comparison .

Address types . .

Address type representation .

Multicast scope field values .

Source address selection .

IPv6 support for different policy types

sockaddr format for AF_INET .

sockaddr format for AF_INET6 .

Special IP addresses. .

Getaddrinfo application capablhtles 1.

Getaddrinfo application capabilities 2 .

Address conversion functions

Address testing macros

Function calls .

Socket options for getsockopt() and setsockopt()
Using socket() to determine IPv6 enablement
sockaddr structure changes .

Address conversion function changes .

Resolver API changes . .

Special IPv6 address changes.

givesocket() and takesocket() Changes

Multicast options.

Sockets options at the IPPROTO IPV6 level .
Ancillary data on sendmsg() (Level = IPPROTO IPV6)
Ancillary data on recvmsg() (Level = IPPROTO_IPV®6) .
Sockets options at the IPPROTO_ICMPV6 level .
Macros used to manipulate filter value .

Supported IPv6 standards

Link-layer device support

Virtual IP Addressing support

Sysplex support. .

IP routing functions . .

Miscellaneous IP/IF-layer functlons .

Transport-layer functions .
Network management and accountmg functlons
Security functions . .

Applications not enabled for IPV6 . .
IP information APARs for z/OS Commumcatlons Server .

SNA information APARs for z/OS Communications Server .

Non-document information APARs

© Copyright IBM Corp. 2002, 2006

.11
.17
. 39
. 59
. 76
. 76
. 76
.79
. 80
. 83
. 83
. 84
. 85
. 90
.92
.92
. 93
. 93
. 93
.. 9%
. 100
. 101
. 101
112
. 112
. 131
. 132
. 132
. 132
. 133
. 133
. 133
. 134
. 134
. 134
. 155
. 156
. 157

xi

xil z/0S VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

About this document

This document contains information relating to the IPv6 protocol and the
implementation of the protocol on z/OS® Communications Server Version 1
Release 8.

This document supports z/OS.e.

Who should read this document

The reader of this document should be familiar with the IPv6 protocol.

Part 1, “IPv6 overview,” on page 1}[Part 2, “IPv6 enablement,” on page 49] and
Part 4, “Advanced topics,” on page 119|are intended for programmers and system
administrators who are familiar with TCP/IP, MVS™, and z/0OS UNIX®.

[Part 3, “Application enablement,” on page 69 is intended for application
programmers.

How this document is organized

This document contains the following parts and chapters:

s [Part 1, “IPv6 overview,” on page 1)contains information about the IPv6
protocol. It contains the following chapters:

— [Chapter 1, “Introduction,” on page 3|provides an introduction to IPv6 for
z/0OS Communications Server Version 1 Release 8.

— [Chapter 2, “IPv6 addressing,” on page 9|contains a discussion of the IPv6
addressing model and the different IPv6 address types.

— |Chapter 3, “IPv6 protocol,” on page 21| provides a description of the z/OS
Communications Server Version 1 Release 8 implementation of the IPv6
protocol.

« [Part 2, “IPv6 enablement,” on page 49| contains information about functions
specific to z/OS Communications Server Version 1 Release 8. It contains the
following chapters:

— [Chapter 4, “Configuring support for z/OS,” on page 51| describes the IPv6
function provided in z/OS Communications Server Version 1 Release 8 and
how to enable it.

— [Chapter 5, “Configuration guidelines,” on page 63| contains recommendations
and guidance information for implementing the IPv6 functions provided in
z/0OS Communications Server Version 1 Release 8.

» |Part 3, “Application enablement,” on page 69,|contains information needed to
[Pvé6—enable applications. It contains the following chapters:

— [Chapter 6, “API support,” on page 71| describes the various z/OS socket APIs
and the level of IPv6 present for each APL

— [Chapter 7, “Basic socket API extensions for IPv6,” on page 75| describes basic
socket API changes that most applications would use.

— [Chapter 8, “Enabling an application for IPv6,” on page 89| describes common
issues and considerations involved in enabling existing IPv4 socket
applications for IPv6 communications.

« |Part 4, “Advanced topics,” on page 119|contains advanced topics and concepts.

© Copyright IBM Corp. 2002, 2006 xiii

* [Part 5, “Appendixes,” on page 137 "Appendixes” provides information that you
might find helpful. This document contains the following appendixes:

- |Appendix A, “Related protocol specifications (RFCs),” on page 139 lists the
related protocol specifications for TCP/IP.

— |Appendix B, “Information APARs and technotes,” on page 155|lists
information APARs for IP and SNA documents.

— |Appendix C, “Accessibility,” on page 159|describes accessibility features to
help users with physical disabilities.

— ["Notices” on page 161 contains notices and trademarks used in this
document.

— |“Bibliography” on page 171 contains descriptions of the documents in the
z/0S Communications Server library.

How to use this document

To use this document, you should be familiar with z/OS TCP/IP Services and the
TCP/IP suite of protocols.

Determining whether a publication is current

As needed, IBM® updates its publications with new and changed information. For
a given publication, updates to the hardcopy and associated BookManager®
softcopy are usually available at the same time. Sometimes, however, the updates
to hardcopy and softcopy are available at different times. The following
information describes how to determine if you are looking at the most current
copy of a publication:

¢ At the end of a publication’s order number there is a dash followed by two
digits, often referred to as the dash level. A publication with a higher dash level
is more current than one with a lower dash level. For example, in the
publication order number GC28-1747-07, the dash level 07 means that the
publication is more current than previous levels, such as 05 or 04.

* If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

* To compare softcopy publications, you can check the last two characters of the
publication’s file name (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

How to contact IBM service

For immediate assistance, visit this Web site: |attp:/ /www.software.ibm.com /|
inetwork /commserver /support /|

Most problems can be resolved at this Web site, where you can submit questions
and problem reports electronically, as well as access a variety of diagnosis
information.

Xiv z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

http://www.software.ibm.com/network/commserver/support/
http://www.software.ibm.com/network/commserver/support/

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV).
You will receive a return call within 8 business hours (Monday — Friday, 8:00 a.m.
- 5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

If you would like to provide feedback on this publication, seel“Communicatingl
[Your Comments to IBM” on page 181}

Conventions and terminology used in this document

Commands in this book that can be used in both TSO and z/0OS UNIX
environments use the following conventions:

* When describing how to use the command in a TSO environment, the command
is presented in uppercase (for example, NETSTAT).

* When describing how to use the command in a z/OS UNIX environment, the
command is presented in bold lowercase (for example, netstat).

* When referring to the command in a general way in text, the command is
presented with an initial capital letter (for example, Netstat).

Samples used in this book might not be updated for each release. Evaluate a
sample carefully before applying it to your system.

For definitions of the terms and abbreviations used in this document, you can view
the latest IBM terminology at [the IBM Terminology website}

Clarification of notes
Information traditionally qualified as Notes is further qualified as follows:

Note Supplemental detail
Tip Offers shortcuts or alternative ways of performing an action; a hint

Guideline
Customary way to perform a procedure

Rule Something you must do; limitations on your actions

Restriction
Indicates certain conditions are not supported; limitations on a product or
facility

Requirement
Dependencies, prerequisites

Result Indicates the outcome

How to read a syntax diagram

This syntax information applies to all commands and statements included in this
document that do not have their own syntax described elsewhere in this
document.

The syntax diagram shows you how to specify a command so that the operating
system can correctly interpret what you type. Read the syntax diagram from left to

right and from top to bottom, following the horizontal line (the main path).

About this document XV

http://www.ibm.com/ibm/terminology

xvi

Symbols and punctuation

The following symbols are used in syntax diagrams:

Symbol Description
>> Marks the beginning of the command syntax.
> Indicates that the command syntax is continued.

I Marks the beginning and end of a fragment or part of the
command syntax.

> Marks the end of the command syntax.

You must include all punctuation such as colons, semicolons, commas, quotation
marks, and minus signs that are shown in the syntax diagram.

Commands

Commands that can be used in both TSO and z/0OS UNIX environments use the
following conventions in syntax diagrams:

* When describing how to use the command in a TSO environment, the command
is presented in uppercase (for example, NETSTAT).

* When describing how to use the command in a z/OS UNIX environment, the
command is presented in bold lowercase (for example, netstat).

Parameters

The following types of parameters are used in syntax diagrams.
Required

Required parameters are displayed on the main path.
Optional

Optional parameters are displayed below the main path.
Default

Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. For the TSO and MVS console
commands, the keywords are not case sensitive. You can code them in uppercase
or lowercase. If the keyword appears in the syntax diagram in both uppercase and
lowercase, the uppercase portion is the abbreviation for the keyword (for example,
OPERand).

For the z/OS UNIX commands, the keywords must be entered in the case
indicated in the syntax diagram.

Variables are italicized, appear in lowercase letters, and represent names or values
you supply. For example, a data set is a variable.

Syntax examples

In the following example, the USER command is a keyword. The required variable
parameter is user_id, and the optional variable parameter is password. Replace the
variable parameters with your own values.

»>—USER—user_id «
I—passwor‘d—l

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Longer than one line
If a diagram is longer than one line, the first line ends with a single arrowhead
and the second line begins with a single arrowhead.

»—-I The first Tine of a syntax diagram that is longer than one line |-—>

>—-| The continuation of the subcommands, parameters, or both i »><

Required operands
Required operands and values appear on the main path line.

»»—REQUIRED_OPERAND

A\
A

You must code required operands and values.

Choose one required item from a stack
If there is more than one mutually exclusive required operand or value to choose
from, they are stacked vertically.

A\
A

REQUIRED_OPERAND OR_VALUE_1 :
REQUIRED_OPERAND OR _VALUE 2

Optional values
Optional operands and values appear below the main path line.

A\
A

[N
>p

|—OPERAND—|

You can choose not to code optional operands and values.

Choose one optional operand from a stack
If there is more than one mutually exclusive optional operand or value to choose
from, they are stacked vertically below the main path line.

i:OPERAND_OR_VALUE_l:‘
OPERAND_OR_VALUE_2

Repeating an operand

An arrow returning to the left above an operand or value on the main path line
means that the operand or value can be repeated. The comma means that each
operand or value must be separated from the next by a comma. If no comma
appears in the returning arrow, the operand or value must be separated from the
next by a blank.

»»—Y REPEATABLE_OPERAND ><

About this document ~ XVii

xviii

Selecting more than one operand
An arrow returning to the left above a group of operands or values means more
than one can be selected, or a single one can be repeated.

[N

v
A

Y __REPEATABLE_OPERAND_OR VALUE_1
REPEATABLE_OPERAND_OR_VALUE_2—
REPEATABLE_OPER OR VALUE 1——
REPEATABLE_OPER OR_VALUE_2——

Nonalphanumeric characters
If a diagram shows a character that is not alphanumeric (such as parentheses,

periods, commas, and equal signs), you must code the character as part of the
syntax. In this example, you must code OPERAND=(001,0.001).

»>—O0PERAND=(001,0.001) ><

Blank spaces in syntax diagrams
If a diagram shows a blank space, you must code the blank space as part of the
syntax. In this example, you must code OPERAND=(001 FIXED).

»>—O0PERAND=(001 FIXED)

A\
A

Default operands
Default operands and values appear above the main path line. TCP/IP uses the
default if you omit the operand entirely.

DEFAULT
S
|—OPERAND—|

Y
A

Variables

A word in all lowercase italics is a variable. Where you see a variable in the syntax,
you must replace it with one of its allowable names or values, as defined in the
text.

»>—variable >«

Syntax fragments

Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in mixed
case and are shown in the diagram and in the heading of the fragment. The
fragment is placed below the main diagram.

>>—] Syntax fragment i >

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Syntax fragment:

|—1$T_OPERAND,2ND_0PERAND,3RD_OPERAND I

Prerequisite and related information

z/0OS Communications Server function is described in the z/OS Communications
Server library. Descriptions of those documents are listed in

ICommunications Server information” on page 171in the back of this document.

Required information

Before using this product, you should be familiar with TCP/IP, VTAM®, MVS, and
UNIX System Services.

Related information

This section contains subsections on:

+ |“Softcopy information”]

[“Other documents”]

[“Redbooks” on page xx|

* [“Where to find related information on the Internet” on page xxil

* [“Using LookAt to look up message explanations” on page xxii

[“Using IBM Health Checker for z/OS” on page xxiii|

Softcopy information
Softcopy publications are available in the following collections:

Titles Order Description
Number

z/OS V1R7 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes
the libraries for z/OS V1R?7, in both BookManager and PDF
formats.

z/OS Software Products SK3T-4270 This CD includes, in both BookManager and PDF formats, the

Collection libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex® bookshelf.

z/OS VIR7 and Software SK3T-4271 This collection includes the libraries of z/OS (the element and

Products DVD Collection feature libraries) and the libraries for z/OS software products in
both BookManager and PDF format. This collection combines
SK3T-4269 and SK3T-4270.

z/OS Licensed Product Library | SK3T-4307 This CD includes the licensed documents in both BookManager and
PDF format.

System Center Publication IBM | SK2T-2177 This collection contains over 300 ITSO redbooks that apply to the

5/390 Redbooks Collection

S/390® platform and to host networking arranged into subject
bookshelves.

Other documents

For information about z/OS products, refer to [z/OS Information Roadmap|

(SA22-7500). The Roadmap describes what level of documents are supplied with
each release of z/OS Communications Server, as well as describing each z/OS
publication.

About this document XiX

Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA

documents.

The following table lists documents that might be helpful to readers.

Title

DNS and BIND, Fourth Edition, O’Reilly and Associates, 2001

Routing in the Internet , Christian Huitema (Prentice Hall PTR, 1995)

sendmail, Bryan Costales and Eric Allman, O'Reilly and Associates, 2002

SNA Formats

TCP/IP Illustrated, Volume I: The Protocols, W. Richard Stevens, Addison-Wesley
Publishing, 1994

TCP/IP Illustrated, Volume 1I: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Publishing, 1995

TCP/IP Illustrated, Volume III, W. Richard Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63495-3

TCP/IP Tutorial and Technical Ouverview

GG24-3376

Understanding LDAP

5G24-4986

|z/OS Cryptographic Service System Secure Sockets Layer Programming|

C24-590

|z/OS Integrated Security Services Firewall Technologies|

C24-592

[z/OS Integrated Security Services LDAP Client Programming|

C24-5924

|z/OS Inteqrated Security Services LDAP Server Administration and Use|

(C24-592

|z/OS JES?2 Initialization and Tuning Guide|

A22-753

|z/OS Problem Management]

325-2564

[z/0S MV'S Diagnosis: Reference]

A22-758

|z/OS MVS Diagnosis: Tools and Service Aidg

A22-758

Iz/0S MVS Using the Subsystem Interface|

A22-764

l-/OS Program Directory|

110-067!

o

lz/OS UNIX System Services Command Reference

A22-780

] SIS $) =

|z/OS UNIX System Services Planning|

[9)
o>
N
II\)
N
xR
(e}
o

|z/OS UNIX System Services Programming: Assembler Callable Services Reference|

A22-780

i
[68)

lz/OS UNIX System Services User’s Guide| SA22-7801
|z/OS XL C/C++ Run-Time Library Reference SA22-7821
|System z9 and zSeries OSA-Express Customer’s Guide and Referencd SA22-7935

Redbooks

The following Redbooks™" might help you as you implement z/OS

Communications Server.

Availability, Scalability, and Performance

Title Number
Communications Server for z/OS VIR7 TCP/IP Implementation, Volume 1: Base S5G24-7169
Functions, Connectivity, and Routing

Communications Server for z/OS VIR7 TCP/IP Implementation, Volume 2: Standard 5G24-7170
Applications

Communications Server for z/OS VIR7 TCP/IP Implementation, Volume 3: High 5G24-7171

XX z/0S VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Title Number
Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4: Policy-Based | SG24-7172
Network Security

IBM Communication Controller Migration Guide SG24-6298
IP Network Design Guide 5G24-2580
Managing 0S/390® TCP/IP with SNMP S5G24-5866
Migrating Subarea Networks to an IP Infrastructure 5G24-5957
SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements 5G24-5631
SNA and TCP/IP Integration 5G24-5291
TCP/IP in a Sysplex 5G24-5235
TCP/IP Tutorial and Technical Overview GG24-3376
Threadsafe Considerations for CICS 5G24-6351

Where to find related information on the Internet

z/0S

This site provides information about z/OS Communications Server release

availability, migration information, downloads, and links to information

about z/OS technology

http:/ /www.ibm.com/servers/eserver /zseries/zos/|

z/OS Internet Library

Use this site to view and download z/0OS Communications Server

documentation

http:/ /www.ibm.com/servers/eserver /zseries / zos /bkserv /|

IBM Communications Server product

The primary home page for information about z/OS Communications

Server

Ihttp: / /www.software.ibm.com/network/commserver/ |

IBM Communications Server product support

Use this site to submit and track problems and search the z/OS
Communications Server knowledge base for Technotes, FAQs, white
papers, and other z/OS Communications Server information

http:/ /www.software.ibm.com /network /commserver /support/|

IBM Systems Center publications

Use this site to view and order Redbooks, Redpapers, and Technotes

|http: / /www.redbooks.ibm.com/ |

IBM Systems Center flashes

Search the Technical Sales Library for Techdocs (including Flashes,

presentations, Technotes, FAQs, white papers, Customer Support Plans,

and Skills Transfer information)

http:/ /www.ibm.com /support/techdocs /atsmastr.nsf]

RFCs

About this document

xxi

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs

xxii

Search for and view Request for Comments documents in this section of
the Internet Engineering Task Force Web site, with links to the RFC
repository and the IETF Working Groups Web page

http:/ /www.ietf.org /rfc.html]|

Internet drafts

View Internet-Drafts, which are working documents of the Internet
Engineering Task Force (IETF) and other groups, in this section of the
Internet Engineering Task Force Web site

http:/ / www.ietf.org /ID.html|

Information about Web addresses can also be found in information APAR 1111334.

DNS Web sites: For more information about DNS, see the following USENET
news groups and mailing addresses:

USENET news groups
comp.protocols.dns.bind

BIND mailing lists
hhttp:/ /www.isc.org /ml-archives /|

BIND Users

* Subscribe by sending mail to bind-users-request@isc.org.

* Submit questions or answers to this forum by sending mail to
bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)
* Subscribe by sending mail to bind9-users-request@isc.org.

* Submit questions or answers to this forum by sending mail to
bind9-users@isc.org.

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

7/08S elements and features, z/VM®, VSE/ESA™, and Clusters for AIX® and

Linux':

e The Internet. You can access IBM message explanations directly from the LookAt
Web site at |http: //www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/ |

* Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e
systems to access IBM message explanations using LookAt from a TSO/E
command line (for example: TSO/E prompt, ISPF, or z/OS UNIX System
Services).

* Your Microsoft® Windows® workstation. You can install LookAt directly from

the z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection
(SK3T-4271) and use it from the resulting Windows graphical user interface

z/0S VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html
http://www.isc.org/ml-archives/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

(GUI). The command prompt (also known as the DOS > command line) version
can still be used from the directory in which you install the Windows version of
LookAt.

* Your wireless handheld device. You can use the LookAt Mobile Edition from
[http:/ /www.ibm.com/servers/eserver/ zseries/zos/bkserv /lookat /lookatm.html]
with a handheld device that has wireless access and an Internet browser (for
example: Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or
Opera for Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows
workstation from:

* A CD-ROM in the z/OS Collection (SK3T-4269).
* The z/OS and Software Products DVD Collection (SK3T-4271).

* The LookAt Web site (click Download and then select the platform, release,
collection, and location that suit your needs). More information is available in
the LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to
gather information about their system environment and system parameters to help
identify potential configuration problems before they impact availability or cause
outages. Individual products, z/OS components, or ISV software can provide
checks that take advantage of the IBM Health Checker for z/OS framework. This
book refers to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,
see [[BM Health Checker for z/OS: User’s Guidd z/OS V1R4, VIR5, and VIR6 users
can obtain the IBM Health Checker for z/OS from the z/OS Downloads page at
http:/ /www.ibm.com /servers/eserver /zseries / zos/downloads /|

SDSF also provides functions to simplify the management of checks. See
ISDSF Operation and Customization| for additional information.

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this document or any
other z/OS Communications Server documentation:

* Go to the z/OS contact page at:

[http:/ /www.ibm.com /servers/eserver/zseries /zos/ webgs.htmll

There you will find the feedback page where you can enter and submit your
comments.

* Send your comments by e-mail to comsvrcf@us.ibm.com. Be sure to include the
name of the document, the part number of the document, the version of z/OS
Communications Server, and, if applicable, the specific location of the text you
are commenting on (for example, a section number, a page number or a table
number).

About this document Xxxiii

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html
http://www.ibm.com/servers/eserver/zseries/zos/downloads/
http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

XXiV z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Summary of changes

Summary of changes
for SC31-8885-04
z/OS Version 1 Release 8

This document contains information previously presented (SC31-8885-03), which
supports z/OS Version 1 Release 7.

The information in this document includes descriptions of support for both IPv4
and IPv6 networking protocols. Unless explicitly noted, descriptions of IP protocol
support concern IPv4. IPv6 support is qualified within the text.

New information

* IPv6 support for IPSec:

NAT traversal, see [Table 36 on page 134

Release-specific support, see[“Extension headers” on page 21|

— IP security for IPv6 configuration considerations, see|“Multicast Listener|
[Discovery (MLD)” on page 27| and [“Neighbor discovery (ND)” on page 28§|

IPSec policies,|“How does IPv6 affect the Policy Agent?” on page 59|

Changed information

* Remove support for version 1 networking SLA MIB (pagtsnmp subagent):
- Network SLAPM2 subagent comment, see|Table 35 on page 134|

* IPv6 support for IPSec:

— Security function listings, see [Table 36 on page 134|

— OSPF routing protocol, [“Authentication with the IPv6 OSPF routing protocol”|

Deleted information

¢ Remove support for version 1 networking SLA MIB (pagtsnmp subagent):

— Removed pagtsnmp, see [Table 37 on page 134
- Removed RFC 2758, see |[Appendix A, “Related protocol specifications (RFCs),’]

+ AnyNet® function is removed from the z/OS V1R8 Communications Server

product and therefore documentation describing AnyNet support has been
deleted.

* IPv6 Support for IPSec:
— TRMD, see ITable 37 on page 1344

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

You might notice changes in the style and structure of some content in this
document—for example, headings that use uppercase for the first letter of initial
words only, and procedures that have a different look and format. The changes are
ongoing improvements to the consistency and retrievability of information in our
documents.

© Copyright IBM Corp. 2002, 2006 XXV

XXV1

Summary of changes
for SC31-8885-03
z/OS Version 1 Release 7

This document contains information previously presented in SC31-8885-02, which
supports z/OS Version 1 Release 6.

This document refers to Communications Server data sets by their default SMP/E
distribution library name. Your installation might, however, have different names
for these data sets where allowed by SMP/E, your installation personnel, or
administration staff. For instance, this document refers to samples in SEZAINST
library as simply in SEZAINST. Your installation might choose a data set name of
SYS1.SEZAINST, CS390.SEZAINST or other high level qualifiers for the data set
name.

New information

* Enhancements to existing advanced socket APIs for z/OS UNIX Callable
Services and Language Environment® C/C++ to support REC3542, see
[Chapter 9, “Advanced socket APIs,” on page 99)

e IPv6 support for HiperSocketsTM, see [“Connecting to an IPv6 Network” on pagd

Changed information
e SNMP IPv6 UDP MIB support, see [“‘How does IPv6 affect SNMP?” on page 60

s Server-specific WLM for sysplex distribution, see|“Considerations when using
[the BIND parameter on the PORT statement” on page 53.|

* Promotion of the use of IPv6 global unicast addresses

Site-local addresses were designed to use private address prefixes that could be
used within a site without the need for a global prefix. Until recently, the full
negative impacts of site-local address in the Internet were not fully understood.
The Internet Engineering Task Force (IETF) has deprecated the special treatment
given to this site-local prefix. Because of this, it is preferable to use global
unicast addresses. This means addresses and prefixes that use the site-local
prefix (fec0::/10) are being replaced with ones that use the global prefix for
documentation (2001:0DB8::/32).

Deleted information
* All OROUTED information.
* The following tables from [Chapter 4, “Configuring support for z/OS,” on page|

51}

— IPv6 supported features table

— IPv6 supported applications table.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

You might notice changes in the style and structure of some content in this
document—for example, headings that use uppercase for the first letter of initial
words only, and procedures that have a different look and format. The changes are
ongoing improvements to the consistency and retrievability of information in our
documents.

z/0S VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Summary of changes
for SC31-8885-02
z/OS Version 1 Release 6

This document contains information previously presented in SC31-8885-01, which
supports z/OS Version 1 Release 5.

New information

» IPv6 OSPF support for OMPROUTE , see [“Dynamic routing protocols” on page]

* Sysplex distributor policy performance monitoring, see |”H0w does IPv6 affect|
[the Policy Agent?” on page 59|

» Sysplex enhancements, see [Table 31 on page 132|

* Select examples are enabled for z/OS library center advanced searches.

Changed information
« SNIMP IPv6 MIBs, see [“How does IPv6 affect SNMP?” on page 60|

+ OSPF support added to recommendations, see|“Using OMPROUTE or defined
[static routes to improve network selection” on page 67

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R4, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and
format. The changes are ongoing improvements to the consistency and
retrievability of information in our documents.

Summary of changes xxvii

XXxviil z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Part 1. IPv6 overview

This section contains the following chapters:

Chapter 1, “Introduction,” on page 3|provides an introduction to IPv6 for z/OS
Communications Server.

(Chapter 2, “IPv6 addressing,” on page 9|contains a discussion on the IPv6
addressing model and the different IPv6 address types.

(Chapter 3, “IPv6 protocol,” on page 21|provides a description of the z/OS
Communications Server implementation of the IPv6 protocol.

© Copyright IBM Corp. 2002, 2006

2 z/0S VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 1. Introduction

Internet Protocol Version 6 (IPv6) is the next generation of the Internet protocol
designed to replace the current version, Internet Protocol Version 4 (IPv4). Most of
today’s internets use IPv4, which is approximately 20 years old and is approaching
the end of its physical limits. The most significant issue surrounding IPv4 is the
growing shortage of IPv4 addresses. In theory, 32 bits allow over 4 billion nodes,
each with a globally unique address. In practice, the interaction between routing
and addressing makes it impossible to exploit more than a small fraction of that
number of nodes. Consequently, there is a growing concern that the continued
growth of the Internet might lead to the exhaustion of IPv4 addresses early in the
21st century.

IPv6 fixes a number of problems in IPv4, such as the limited number of available
IPv4 addresses. IPv6 uses 128-bit addresses, an address space large enough to last
for the foreseeable future. It also adds many improvements to IPv4 in areas such as
routing and network autoconfiguration. IPv6 is expected to gradually replace IPv4,
with the two coexisting for a number of years during a transition period.

IPv6 is an evolutionary step from IPv4. Functions that work well in IPv4 have been
kept in IPv6, and functions that did not work well in IPv4 have been removed.

z/0S Communications Server Version 1 Release 4 was the first release to
incorporate IPv6 features. z/OS Communications Server enables you to do the
following:

* Build an IPv6 network

* Start using IPv6-enabled applications

* Enable existing IPv4 applications to be IPv6 applications

¢ Access your SNA applications over an IPv6 network

Not all IPv6 features are supported. This document describes the support available

and how to implement it. This chapter discusses some of the major differences
between IPv4 and IPv6 and includes the following sections:

« |"Expanded routing and addressing” on page 4|

* |"Hierarchical addressing and routing infrastructure” on page 4|

* [“Simplified IP header format” on page 4|

« |"Improved support for options” on page 4

* [“Address autoconfiguration” on page 5|

+ [“New protocol for neighbor node interaction” on page 5|

+ [“Comparison of IPv6 and IPv4 characteristics” on page €

* |“Dual-mode stack support” on page 7|

For more information about some of the features not yet supported, refer to
[“Advanced topics,” on page 119

© Copyright IBM Corp. 2002, 2006 3

Expanded routing and addressing

IPv6 uses a 128-bit address space, which has no practical limit on global
addressability and provides 3.4 x 10°° unique addresses. This gives enough
addresses so that every person could have a single IPv6 network with many nodes,
and still the address space would be almost completely unused.

The greater availability of IPv6 addresses eliminates the need for private address
spaces, which in turn eliminates one of the needs for network address translators
(NATs) to be used between the private Intranet and the public Internet.

Hierarchical addressing and routing infrastructure

The use of hierarchical address formats is equally important as the expanded
address space. The IPv4 addressing hierarchy includes network, subnet, and host
components in an IPv4 address. With its 128-bit addresses, IPv6 provides globally
unique and hierarchical addressing based on prefixes rather than address classes,
which keeps routing tables small and backbone routing efficient.

The general format is as follows:

n bits m bits 128-(n+m)bits

global routing prefix subnet ID interface ID

Figure 1. IPv6 address space

The global routing prefix is a value (typically hierarchically structured) assigned to
a site; the subnet ID is an identifier of a link within the site; and the interface ID is
a unique identifier for a network device on a given link (usually automatically
assigned).

Simplified IP header format

The IPv6 header has a fixed size and its format is more simplified than the IPv4
header. Some fields in the IPv4 header were dropped in IPv6 or moved to optional
IPv6 extension headers to reduce the common-case processing cost of packet
handling, as well as keep the bandwidth cost of the IPv6 header as low as possible
despite increasing the size of addresses. While the IPv6 address is four times the

size of the IPv4 address, the total IPv6 header size is only twice as large as the
IPv4 header size.

Improved support for options

4

Changes in the way IP header options are encoded allows for more efficient
forwarding, less stringent limits on the length of options, and greater flexibility for
introducing new options in the future. Optional IPv6 header information is
conveyed in independent extension headers located after the IPv6 header and
before the transport-layer header in each packet. In contrast to IPv4, most IPv6
extension headers are not examined or processed by intermediate nodes.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Address autoconfiguration

IPv6 provides for both stateless and stateful autoconfiguration. Stateless
autoconfiguration allows a node to be configured in the absence of any
configuration server. Stateless autoconfiguration also makes it possible for a node
to configure its own globally routable addresses in cooperation with a local IPv6
router, by combining the 48- or 64-bit MAC address of the adapter with network
prefixes that are learned from the neighboring router.

IPv6 allows the use of DHCPv6 for stateful autoconfiguration. DHCPv6 relies on a
configuration server that maintains static tables to determine the addresses that are
assigned to newly connected nodes. z/OS Communications Server does not
support DHCPv6.

Tip: Manual configuration of addresses can be used in environments where
complete local control is required (as with VIPA or additional LOOPBACK
addresses).

New protocol for neighbor node interaction

Neighbor Discovery (ND) corresponds to a combination of the IPv4 protocols ARP,
ICMP Router Discovery, and ICMP Redirect. Nodes (hosts and routers) use ND to
determine the link-layer addresses for neighbors known to reside on attached links
and to quickly purge cached values that become invalid. Hosts also use ND to find
neighboring routers that are able to forward packets on their behalf. ND also
defines a Neighbor Unreachability Detection algorithm. IPv4 does not contain a
generally agreed upon protocol for performing Neighbor Unreachability Detection,
although Dead Gateway Detection does address a subset of the problems that
Neighbor Unreachability Detection solves.

Neighbor Discovery is used to do the following;:
* Obtain configuration information including:

Router Discovery
Defines how hosts can automatically locate routers that reside on an
attached link.

Prefix Discovery
Specifies how hosts discover the set of prefixes that are defined as being
on-link (IPv6 address prefixes that reside on the shared link, such as an
ethernet link), as well as those which are to be used when implementing
Stateless Address Autoconfiguration.

Parameter Discovery
Allows a host to learn link parameters, such as the link MTU, and IP
parameters, such as the hop limit to place in outgoing packets.

e Perform address resolution. Address resolution allows a node to determine the
link-layer address of an on-link destination given the destination’s IP address.

* Dynamically learn routes which can be used in next-hop determination. This
specifies the algorithm for mapping the IP destination address into the IP
address of the neighbor to which traffic should be sent. The next-hop can be
either a router or the destination itself. Next-hop determination uses the on-link
prefixes learned as part of Prefix Discovery to determine when the next hop is
the destination itself.

* Determine when a neighbor is no longer reachable using Neighbor
Unreachability Detection.

Chapter 1. Introduction 5

* Process Redirect messages. Routers use Redirect messages to notify a node that a
better next-hop node should be used when forwarding packets to a particular
destination. The new next-hop could be the actual destination, if the destination
is on-link, or a different router, if the destination is off-link.

Comparison of IPv6 and IPv4 characteristics
There are major differences between IPv4 and IPv6. lists these differences:

6

Table 1. IPv4/IPv6 comparison

IPv4

IPveé

Source and destination addresses are 32 bits
(4 bytes) in length.

Source and destination addresses are 128

bits (16 bytes) in length. For more
information, refer to iChapter 2. “IPvé)|

|addressing,” on page 9.|

Uses broadcast addresses to send traffic to
all nodes on a subnet.

There are no IPv6 broadcast addresses.
Instead, multicast scoped addresses are
used. For more information refer to
[“Multicast scope” on page 17

Fragmentation is supported at originating
hosts and intermediate routers.

Fragmentation is not supported at routers. It
is only supported at the originating host. For
more information refer to[“Fragmentation in|
lan IPv6 network” on page 21/

IP header includes a checksum.

IP header does not include a checksum.

IP header includes options.

All optional data is moved to IPv6 extension
headers. For more information refer to
[“Extension headers” on page 21

IPSec support is optional.

IPSec support is required in a full IPv6
implementation.

No identification of payload for QoS
handling by routers is present within the
IPv4 header.

Payload identification for QoS handling by
routers is included in the IPv6 header using
the Flow Label field. For more information
refer to ["Option to provide QoS|
|classification data” on page 111

ICMP Router Discovery is used to determine
the IPv4 address of the best default gateway
and is optional.

Uses ICMPv6 Router Solicitation and Router
Advertisement to determine the IPv6
address of the best default gateway and is a
required function. For more information,
refer to ['Router advertisements” on page 28
z/0S sends Router Solicitations and
processes Router Advertisements but does
not send Router Advertisements.

Address Resolution Protocol (ARP) uses
broadcast ARP Request frames to resolve an
IPv4 address to a link layer address.

Uses multicast Neighbor Solicitation
messages for address resolution. For more
information refer to [“Address resolution” on|

Internet Group Management Protocol
(IGMP) is used to manage local subnet
group membership.

Uses Multicast Listener Discovery (MLD)
messages to manage local subnet group
membership. For more information refer to
“Multicast Listener Discovery (MLD)” onl
[page 27.|

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Table 1. IPv4/IPv6 comparison (continued)

IPv4

IPvé6

Addresses must be configured either
manually or through DHCP.

Addresses can be automatically assigned
using stateless address autoconfiguration,
assigned using DHCPv6, or manually
configured. DHCPV6 is not supported in
z/0S Communications Server VIR7.

Uses host address (A) resource records in
the Domain Name System (DNS) to map
host names to IPv4 addresses.

Uses host address (AAAA) resource records
in the Domain Name System (DNS) to map
host names to IPv6 addresses.

Uses pointer (PTR) resource records in the
IN-ADDR.ARPA DNS domain to map IPv4
addresses to host names.

Uses pointer (PTR) resource records in the
IP6.ARPA or IP6.INT DNS domain to map
IPv6 addresses to host names.

For QoS, IPv4 supports both differentiated
and integrated services.

Differentiated and integrated services are
both supported. In addition, IPv6 provides
flow label that can be used for more
granular treatment of packets.

Dual-mode stack support

z/0S Communications Server can be an IPv4-only stack or a dual-mode stack.
Dual-mode stack refers to a single TCP/IP stack supporting both IPv4 and IPv6

protocols at the same time.

Restriction: There is no support for an IPv6-only stack.

The following are several advantages of running in a dual-mode stack

configuration:

 IPv4 and IPv6 applications can coexist on a single dual-mode stack.

* Unmodified applications can continue to send data over an IPv4 network.

* A single IPv6-enabled application can communicate using IPv4 and IPv6.

e IPv4 and IPv6 can coexist in the same devices and networks.

Chapter 1. Introduction

7

8 2/0S VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 2. IPv6 addressing

This chapter contains the following sections:

“Textual representation of IPv6 addresses'”]

“Textual representation of IPv6 prefixes'” on page 10

“Textual representation of IPv6 prefixes'” on page 10

“IPv6 address space” on page 11

“Scope zones” on page 11

“Categories of IPv6 addresses” on page 12

“Typical IPv6 addresses assigned to a node” on page 19

“IPv6 address states” on page 19

Textual representation of IPv6 addresses’

IPv4 addresses are represented in dotted-decimal format. The 32-bit address is
divided along 8-bit boundaries. Each set of 8 bits is converted to its decimal
equivalent and separated by periods. In contrast, IPv6 addresses are 128 bits
divided along 16-bit boundaries. Each 16-bit block is converted to a 4-digit
hexadecimal number and separated by colons. The resulting representation is
called colon-hexadecimal.

The following are the three conventional forms for representing IPv6 addresses as
text strings:

The preferred form is xxx:x:ax:x:x:x:x, where the x’s are the hexadecimal values of
the eight 16-bit pieces of the address. For example:

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
1080:0:0:0:8:800:200C:417A

Guideline: It is not necessary to write the leading zeros in an individual field,
but there must be at least one numeral in every field (except for the case
described in the following bullet).

As a result of some methods of allocating certain styles of IPv6 addresses,
sometimes addresses contain long strings of zero bits. To make writing addresses
containing zero bits easier, a special syntax is available to compress the zeros. A
double colon (::) indicates multiple groups of 16 bits of zeros and can appear
only once in an address. The :: can also be used to compress both leading and
trailing zeros in an address.

For example the following addresses:

Table 2. Address types

Address type Long from Compressed form
Unicast 2001:DB8:0:0:8:800:200C:417A | 2001:DB8::8:800:200C:417A
Multicast FF01:0:0:0:0:0:0:101 FF01::101

Loopback 0:0:0:0:0:0:0:1 i1

Unspecified 0:0:0:0:0:0:0:0

© Copyright IBM Corp. 2002, 2006

An alternative form that is sometimes more convenient when dealing with a
mixed environment of IPv4 and IPv6 nodes is x:x:x:x:x:x:d.d.d.d, where the x’s
are the hexadecimal values of the 6 high-order 16-bit pieces of the address, and

the d’s are the decimal values of the 4 low-order 8-bit pieces of the address
(standard IPv4 representation). This is used for IPv4-compatible IPv6 addresses
and IPv4-mapped IPv6 addresses. These types of addresses are used to hold
embedded IPv4 addresses in order to carry IPv6 packets over IPv4 routing
infrastructure. The address can be expressed in the following manner:

0:0:0:0:0:0:13.1.68.3
0:0:0:0:0:FFFF:129.144.52.38

or in compressed form:

::13.1.68.3
::FFFF:129.144.52.38

Textual representation of IPv6 prefixes®

The text representation of IPv6 address prefixes is similar to the way IPv4 address
prefixes are written in Classless Inter-Domain Routing (CIDR) notation. An IPv6
address prefix is represented by the notation:

ipv6-address/prefix-length

where

ipv6-address
An IPv6 address in any of the notations listed above.

prefix-length
A decimal value specifying how many of the leftmost contiguous bits of
the address comprise the prefix.

For example, the following are legal representations of the 60-bit prefix
20010DB80000CD3 (hexadecimal):

2001:DB8:0000:CD30:0000:0000:0000:0000/60
2001:DB8::CD30:0:0:0:0/60
2001:DB8:0:CD30::/60

The following are not legal representations of the preceding prefix:
* 2001:DB8:0:CD3/60

Leading zeros might be dropped, but not trailing zeros, within any 16-bit chunk
of the address.

* 2001:DB8::CD30/60

Address to the left of the forward slash (/) expands to
2001:DB8:0000:0000:0000:0000:0000:CD30.

* 2001:DB8:0:CD3/60

Address to the left of the forward slash (/) expands to
2001:DB8:0000:0000:0000:0000:0000:0CD3.

When writing both a node address and a prefix of that node address (for example,
the node’s subnet prefix), the two can be combined as follows:

* Node address - 2001:DB8:0:CD30:123:4567:89AB:CDEF

1. Copyright (C) The Internet Society (1998). All Rights Reserved. This document and translations of it can be copied and furnished
to others, and derivative works that comment on or otherwise explain it or assist in its implementation can be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this
paragraph are included on all such copies and derivative works. However, this document itself cannot be modified in any way,
such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed
for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards
process must be followed, or as required to translate it into languages other than English.

10

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

e Subnet number - 2001:DB8:0:CD30::/60

¢ Combination of node address and subnet number -
2001:DB8:0:CD30:123:4567:89 AB:CDEF /60

IPv6 address space

The type of a IPv6 address is identified by the high-order bits of the address as

shown in .

Table 3. Address type representation

Address type Binary prefix IPv6 notation

Unspecified 00...0 (128 bits) /128
Loopback 00...1 (128 bits) :1/128
Multicast 11111111 FF00::/8
Link-local unicast 1111111010 FES80::/10
Unassigned (formerly 1111111011 FECO0::/10

Site-local unicast)

Global unicast aggregatable | (everything else)

Anycast addresses are taken from the unicast address spaces (of any scope) and are
not syntactically distinguishable from unicast addresses. Anycast is described as a
cross between unicast and multicast. Like multicast, multiple nodes might be
listening on an Anycast address. Like unicast, a packet sent to an Anycast address
is delivered to one (and only one) of those nodes. The exact node to which it is
delivered is based on the IP routing tables in the network.

For more information about different IPv6 addresses, refer to [‘Categories of IPvé|
laddresses” on page 12|

IPv6 addressing model

IPv6 unicast addresses of all types (excluding loopback and unspecified) can be
assigned to a node’s interfaces.

All physical interfaces (excluding VIPA and loopback) are required to have at least
one link-local unicast address. z/OS Communications Server only allows a single
link-local address per interface. Other platforms might have more than one. A
single interface can be assigned multiple unicast or anycast IPv6 addresses.
Multiple IPv6 multicast groups of any scope can be joined on a single interface. A
unicast address or a set of unicast addresses might be assigned to multiple
physical interfaces if the implementation treats the multiple physical interfaces as
one interface when presenting it to the Internet layer.

Currently, IPv6 continues the IPv4 model that a subnet prefix is associated with
one link. Multiple subnet prefixes can be assigned to the same link.

Scope zones

Each IPv6 address has a specific scope in which it is defined. A scope is a
topological area within which the IPv6 address can be used as a unique identifier
for an interface or a set of interfaces. The scope for an IPv6 address is encoded as
part of the address itself. A unicast address can have a link-local or global scope. A
multicast address supports the following;:

Chapter 2. IPv6 addressing 11

* Interface-local

* Link-local

* Subnet-local

* Admin-local

* Site-local (has been deprecated)
* Organization-local

* Global scopes

See [“Unicast IPv6 addresses” on page 13 and [“Multicast IPv6 Addresses” on page|
for more discussions about unicast and multicast scopes.

A scope zone is an instance of a given scope. For instance, a link and all directly
attached interfaces comprise a single link-local scope zone. A scope zone has the
following properties:

* A scope zone is comprised of a contiguous set of interfaces and the links to
which the interfaces are attached.

* An interface can belong to only one scope zone of each possible scope.

* A node can be connected to more than one scope zone of a given scope. For
instance, a node can be connected to multiple link-local scope zones if it is
attached to more than one LAN.

* The scope zone for an IPv6 address is not encoded within the address itself, but
is instead determined by the interface over which the packet is sent or received.

* There is a single scope zone for IPv6 addresses of global scope which comprises
all interfaces and links in the Internet.

* Packets that contain a source or destination address of a given scope can be
routed only within the same scope zone, and cannot be routed between different
scope zone instances.

¢ Addresses of a given scope can be reused in different scope zones.

* Scope zones associated with the inbound and intended outbound interfaces are
compared to determine whether packets containing a limited scope address (for
example, an address of scope other than global) can be successfully routed.

* Scope zone representations (zone indices) are valid only on the node where they
are defined. The same zone can have separate representations in each node that
belongs to that zone.

To identify a specific instance of a scope zone, a node assigns a unique scope zone
index to each scope zone of the same scope to which it is attached.

Categories of IPv6 addresses

12

An IPv6 address is identified by the high-order bits of the address. The following
categories of IP addresses are supported in IPv6:

Unicast
An identifier for a single interface. A packet sent to a unicast address is
delivered to the interface identified by that address. It can be link-local
scope, site-local scope, or global scope.

Guideline: Do not use site-local addresses.

Multicast
An identifier for a group of interfaces (typically belonging to different
nodes). A packet sent to a multicast address is delivered to all interfaces
identified by that address.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Anycast
An identifier for a group of interfaces (typically belonging to different
nodes). A packet sent to an anycast address is delivered to the closest
member of a group, according to the routing protocols” measure of
distance.

Restriction: Although z/OS Communications Server can send or forward
datagrams to an anycast address, z/OS Communications Server does not
support functioning as an anycast endpoint.

There are no broadcast addresses in IPv6. Multicast addresses have superseded this
function.

Unicast IPv6 addresses

IPv6 unicast addresses are aggregatable with prefixes of arbitrary bit-length similar
to IPv4 addresses under Classless Interdomain Routing (CIDR).

There are several types of unicast addresses in IPv6:
* Global unicast
e Site-local unicast (has been deprecated)

Restriction: Although z/0OS Communications Server can send or forward
datagrams to an anycast address, z/OS Communications Server does not
support functioning as an anycast endpoint.

¢ Link-local unicast

There are also some special-purpose subtypes of global unicast:
* IPv6 addresses with embedded IPv4 addresses

Additional address types or subtypes can be defined in the future.

A unicast address has the following format:

n bits 128-n bits

network prefix interface 1D

Figure 2. Unicast address format

Aggregatable global addresses
Aggregatable global unicast addresses are equivalent to public IPv4 addresses.
They are globally routable and reachable on the IPv6 portion of the Internet.

A global unicast address has the following format:

Global routing prefix
Used to identify a specific customer site. The size of the field is 48 bits and
allows an ISP to create multiple levels of addressing hierarchy within the
network to both organize addressing and routing for downstream ISPs and
identify sites.

Chapter 2. IPv6 addressing 13

14

Subnet ID
Used by an individual organization to identify subnets within its site. The
organization can use these 16 bits to create 65 536 subnets or multiple
levels of addressing hierarchy.

Interface ID
Indicates the interface on a specific subnet. The size of this field is 64 bits.

3 bits 45 bits 16 bits 64 bits

001 global routing prefix subnet ID interface 1D

Figure 3. Global unicast address format

Local use addresses
There are two types of local-use unicast addresses defined:

¢ Link-local

e Site-local (has been deprecated)

The link-local address is for use on a single link.

Note: Site-local addresses were designed to use private address prefixes that could
be used within a site without the need for a global prefix. The IETF has
deprecated the special treatment given to the site-local prefix due to
numerous problems in the actual use and deployment of site-local
addresses. An IPv6 address constructed using a site-local prefix is now
treated as global unicast address. The site-local prefix can be reassigned for
other use by future IETF standards action.

Link-local addresses: Link-local addresses have the following format:

10 bits 54 bits 64 bits

1111111010 0 interface 1D

Figure 4. Link-local address format

Requirement: A link-local address is required on each physical interface.

Link-local addresses are designed to be used for addressing on a single link for
purposes such as automatic address configuration, neighbor discovery, or in the
absence of routers. It also can be used to communicate with other nodes on the
same link. A link-local address is automatically assigned.

Routers do not forward any packets with link-local source or destination addresses
to other links.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Link scope
zone

1
Link scope
zone

Figure 5. Link-local scope zones

depicts two separate link-local scope zones. More than one interface can
be connected to the same link for fault tolerance or extra bandwidth. Some nodes
might allow the same link-local zone index to be assigned to each interface
connected to the same physical link, while others might assign a unique link-local
zone index to each interface even when more than one interface is connected to the
same physical link. z/OS Communications Server takes the latter approach,
assigning a unique link-local zone index to each physical interface.

Loopback address

The unicast address 0:0:0:0:0:0:0:1 is called the loopback address. It cannot be
assigned to any physical interface. It can be thought of as a link-local unicast
address assigned to a virtual interface (typically called the loopback interface) that
allows local applications to send messages to each other.

Restriction: The loopback address cannot be used as the source address in IPv6

packets that are sent outside of a node. An IPv6 packet with a destination address
of loopback cannot be sent outside of a node and be forwarded by an IPv6 router.
A packet received on an interface with destination address of loopback is dropped.

Unspecified address

The address 0:0:0:0:0:0:0:0 is called the unspecified address. It is not assigned to
any node. It indicates the absence of an address. One example of its use is in the
Source Address field of any IPv6 packets sent by an initializing host before it has
learned its own address.

Restriction: The unspecified address cannot be used as the destination address of
IPv6 packets or in IPv6 routing headers. An IPv6 packet with a source address of
unspecified cannot be forwarded by an IPv6 router.

IPv4-mapped IPv6 addresses

These addresses hold an embedded global IPv4 address. They are used to
represent the addresses of IPv4 nodes as IPv6 addresses to applications that are
enabled for IPv6 and are using AF_INET6 sockets. This allows IPv6-enabled
applications to always deal with IP addresses in IPv6 format regardless of whether

Chapter 2. IPv6 addressing 15

16

the TCP/IP communications are occurring over IPv4 or IPv6 networks. The
dual-mode TCP/IP stack performs the transformation of the IPv4-mapped
addresses to and from native IPv4 format. IPv4-mapped addresses have the
following format:

80 bits 16 32 bits

{01000 Y 0000 | FFFF IPv4 address

Figure 6. IPv4-mapped IPv6 address

For example:
::FFFF:129.144.52.38

IPv6 interface identifiers

Interface identifiers in IPv6 unicast addresses are used to identify interfaces on a
link. They are required to be unique on that link. In some cases, an interface’s
identifier is derived directly from that interface’s link-layer address. z/OS
Communications Server does not allow two links to have the same local address.
Some implementations might allow the same interface identifier to be used on
multiple interfaces on a single node, as long as they are attached to different links.

z/0S Communications Server allows the interface identifier to be generated (the
default) or manually configured. When the interface ID is generated, then z/OS
builds the interface ID when the interface becomes active based on the interface
type as follows:

1. OSA-Express QDIO

2. OSA-Express returns the MAC address and a unique instance value during the
start of an interface.

3. z/0S builds the interface identifier by inserting the unique instance value into
the middle of the MAC address. This ensures that when multiple stacks share
an OSA, each stack gets a unique interface ID. If a virtual MAC address is
configured for this interface, then z/OS instead inserts the value 'FFFE’x into
the middle of the MAC address.

4. HiperSockets
For HiperSockets interfaces, the interface ID generation works the same as for
OSA-Express QDIO except that the HiperSockets device returns a 48-bit value
that is unique for the HiperSockets CHPID rather than a MAC address. This
ensures that when multiple stacks share a HiperSockets CHPID, each stack gets
a unique interface ID.

5. MPCPTP6

For MPCPTP6 interfaces, z/OS randomly generates an interface ID.

24bits 16bits 24bits

MAC addr (bytes 1-3) instance value MAC addr (bytes 4-6)

Figure 7. OSA-Express QDIO interface ID format

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

A node can choose to use a different algorithm available for generation of interface
identifiers for IPv6 addresses on a different platform.

Multicast IPv6 Addresses

An IPv6 multicast address is an identifier for a group of interfaces (typically on
different nodes). It is identified with a prefix of 11111111 or FF in hexadecimal
notation. It provides a way of sending packets to multiple destinations. An
interface can belong to any number of multicast groups.

Multicast address format
Binary 11111111 at the start of the address identifies the address as being a
multicast address. Multicast addresses have the following format:

8 4 4 112 bits

11111111 flgs | scope group ID

Figure 8. Multicast address format

flgs is a set of 4 flags:

Figure 9. Flags in multicast address

* The 3 high-order flags are reserved, and must be initialized to 0.

e T = 0 indicates a permanently-assigned (well-known) multicast address, assigned
by the Internet Assigned Number Authority (IANA).

e T =1 indicates a non-permanently assigned (transient) multicast address.

Scope is a 4-bit multicast scope value used to limit the scope of the multicast
group. Group ID identifies the multicast group, either permanent or transient,
within the given scope.

Multicast scope

The scope field indicates the scope of the IPv6 internetwork for which the
multicast traffic is intended. The size of this field is 4 bits. In addition to
information provided by multicast routing protocols, routers use multicast scope to
determine whether multicast traffic can be forwarded. For multicast addresses
there are 14 possible scopes (some are still unassigned), ranging from
interface-local to global (including both link-local and site-local).

lists the defined values for the scope field:

Table 4. Multicast scope field values

Value Scope
0 Reserved
1 Interface-local scope (same node)

Chapter 2. IPv6 addressing 17

18

Table 4. Multicast scope field values (continued)

Value Scope

Link-local scope (same link)

Subnet-local scope

Admin-local scope

Organization-local scope

Global scope

2
3
4
5 Site-local scope (same site)
8
E
F

Reserved

Note: All other scope field values are currently undefined.

For example, traffic with the multicast address of FF02::2 has a link-local scope. An
IPv6 router never forwards this type of traffic beyond the local link.

Interface-local
The interface-local scope spans a single interface only. A multicast address
of interface-local scope is useful only for loopback delivery of multicasts
within a node, for example, as a form of interprocess communication
within a computer. Unlike the unicast loopback address, interface-local
multicast addresses can be joined on any interface.

Link-local
Link-local addresses are used by nodes when communicating with
neighboring nodes on the same link. The scope of the link-local address is
the local link.

Subnet-local
Subnet-local scope is given a different and larger value than link-local to
enable possible support for subnets that span multiple links.

Admin-local
Admin-local scope is the smallest scope that must be administratively
configured, that is, not automatically derived from physical connectivity or
other, non-multicast-related configuration.

Site-local
The scope of a site-local address is the site or organization internetwork.
Addresses must remain within their scope. A router must not forward
packets outside of its scope.

Guideline: Site-local has been deprecated.

Organization-local
This scope is intended to span multiple sites belonging to a single
organization.

Global
Global scope is used for uniquely identifying interfaces anywhere in the
Internet.

Multicast groups

Group ID identifies the multicast group, either permanent or transient, within the
given scope. The size of this field is 112 bits. Permanently assigned groups can use
the group ID with any scope value and still refer to the same group. Transient
assigned groups can use the group ID in different scopes to refer to different

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

groups. Multicast addresses from FF01:: through FFOF:: are reserved, well-known
addresses. Use of these group IDs for any other scope values, with the T flag equal
to 0, is not allowed.

All-nodes multicast groups: These groups identify all IPv6 nodes within a given
scope. Defined groups include the following:

* Interface-local all-nodes group (FF01::1)
* Link-local all-nodes group (FF02::1)

All-routers multicast groups: These groups identify all IPv6 routers within a
given scope. Defined groups include the following;:

¢ Interface-local all-routers group (FF01::2)
* Link-local all-routers group (FF02::2)
* Site-local all-routers group (FF05::2)

Solicited-node multicast group: For each unicast address which is assigned to an
interface, the associated solicited-node multicast group is joined on that interface.
The solicited-node multicast address facilitates the efficient querying of network
nodes during address resolution.

Anycast IPv6 Addresses

An IPv6 anycast address is an identifier for a set of interfaces (typically belonging
to different nodes). A packet sent to an anycast address is delivered to one of the
interfaces identified by that address (the nearest interface), according to the routing
protocols” measure of distance. It uses the same formats as a unicast address, so
one cannot differentiate between a unicast and an anycast address simply by
examining the address. Instead, anycast addresses are defined administratively.

Typical IPv6 addresses assigned to a node

An IPv6 host is required to recognize the following addresses as identifying itself:

* Link-local address for each active IPv6 physical interface (cannot be manually
defined)

* Assigned unicast addresses (autoconfigured or manually defined)
* IPv6 loopback address (::1)
* All-nodes multicast address (interface-local and link-local)

* Solicited node multicast addresses for each of its assigned unicast and anycast
addresses

* Multicast addresses of all other groups to which the host belongs

IPv6 address states

An address state defines and controls how other algorithms work with a particular
address.

Tentative

An address whose uniqueness on a link is being verified, prior to its assignment to
an interface. A tentative address is not considered assigned to an interface in the
usual sense. An interface discards received packets addressed to a tentative
address, unless those packets are related to Duplicate Address Detection (DAD).
For more information on DAD, refer to[“Duplicate Address Detection (DAD)” on|

Chapter 2. IPv6 addressing 19

Deprecated

An address assigned to an interface whose use is discouraged, but not forbidden.
Packets sent from or to deprecated addresses are delivered as expected. A
deprecated address continues to be used as a source address in existing
communications where switching to a preferred address would be disruptive.

Preferred

An address assigned to an interface whose use is unrestricted. Preferred addresses
can be used as the source or destination address of packets sent from or to the
interface, respectively.

Unavailable
An unavailable address is one that is not yet assigned to the interface.

20 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 3. IPv6 protocol

This chapter describes the IPv6 protocol implementation and contains the
following sections:

+ [“Extension headers”|

+ |“Fragmentation in an IPv6 network’|
* [“Path MTU discovery” on page 22|

+ [“IPv6 routing” on page 22|

* ["'ICMPv6” on page 26
* [“Multicasting” on page 27|

* |"Neighbor discovery (ND)” on page 2§

« |“Assigning IP addresses to interfaces” on page 33

+ |“Default address selection” on page 36|

* [“Migration and coexistence” on page 39|

+ |“Considerations for configuring z/OS for IPv6” on page 44|

+ |“IPv6 stack support” on page 44|

* [“INET considerations” on page 45

+ [“Common INET considerations” on page 46|

Guideline: You should be familiar with the IPv6 protocol in general.

Extension headers

In IPv6, IP-layer options within a packet are encapsulated in independent headers
called extension headers. In contrast, IPv4 options are contained in the IP header
itself.

Restriction: Not all IPv6 extension headers are supported in z/OS
Communications Server.

The z/OS TCP/IP stack supports receipt of the following extension headers:
* Routing

* Fragmentation

* Hop-by-hop option

* Destination option

* Authentication (AH)

* Encapsulating Security Payload (ESP)

Fragmentation in an IPv6 network

Fragmentation is used by a source to send a packet larger than would fit in the
path MTU to its destination. In order to send packets larger than the link
minimum of 1280 bytes, a node must support determination of the minimum
supported MTU along the path between the source and destination. This is
accomplished by Path MTU discovery. For more information about path discovery,
see [“Path MTU discovery” on page 22|

© Copyright IBM Corp. 2002, 2006 21

The IPv6 IP header does not contain information about fragments. The
fragmentation extension header carries this information. z/OS Communications
Server allows for 2048 active IPv6 reassemblies in progress at any given time. z/OS
Communications Server reassembly timeout for IPv6 reassemblies is 60 seconds.
These two values are not configurable.

Fragmentation and UDP/RAW

Intermediate routers cannot fragment packets and UDP/RAW transports do not
perform retransmission. To attempt to ensure that a UDP/RAW packet is not
dropped due to fragmentation, one of the following conditions can occur:

* z/0S Communications Server always sends the packet using the minimum MTU
(1280) unless the MTU for the destination is learned from an ICMPv6 Packet Too
Big message.

* An application sends a packet using the IPV6_DONTFRAG socket option.

For example, a situation can occur where the MTU was learned by way of Path
MTU discovery. In that case, the network topology changes, reducing the MTU to
this particular destination. UDP/RAW sends with the original learned MTU and
receives a Packet Too Big message. In this case, the packet is dropped, but
subsequent sends learn the changed MTU and send with the appropriate size.

Path MTU discovery

When one IPv6 node has a large amount of data to send to another node, the data
is transmitted in a series of IPv6 packets. It is preferable that these packets be of
the largest size that can successfully traverse the path from the source node to the
destination node. This packet size is referred to as the Path MTU (PMTU), and it is
equal to the minimum link MTU of all the links in a path. IPv6 provides PMTU
discovery as a standard mechanism for a node to discover the PMTU of an
arbitrary path.

For IPv6, intermediate routers cannot fragment packets. An implementation must
either support Path MTU discovery or send using IPv6 minimum link MTU. z/OS
Communications Server supports path MTU discovery.

Path MTU discovery supports multicast as well as unicast destinations. When
PMTU information is learned, it is cached for a period of time and then deleted in
order to learn of increases in the MTU value.

IPv6 routing

Both replaceable and non-replaceable IPv6 static routes are supported by using
BEGINROUTES profile statements.

Restriction: The GATEWAY statement in the TCP/IP profile does not support IPv6
static routes.

Dynamic routes for IPv6 are learned by:

* Router discovery

e ICMPv6 redirects

* Dynamic routing protocols

Replaceable static routes can be replaced by dynamic routes. If a replaceable static

route is replaced by a dynamic route, and that dynamic route is later deleted, the
replaceable static route is re-added.

22 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Router discovery

Hosts can learn the network prefixes for all directly attached links from the router
advertisements received from their routers. To determine if that host is on a
directly attached link or on a remote link, check to see if another host’s IPv6
address is constructed from a network prefix of one of the directly attached links.
If it is on a directly attached link, data can be sent directly to that host without
going through a router. Otherwise, it must be sent through some router using a
default route that can also be learned from router advertisements.

Router advertisements are not a replacement for dynamic routing protocols such as
IPv6 OSPF and IPv6 RIP. If a host is not using a dynamic routing protocol, some
limitations apply.

If the host has multiple interfaces attached to more than one link, it must decide
which interface to send the packet over. If there are multiple routers on the link
attached to the interface, it must decide to which router it should send the packet.
To make these decisions, it needs a route in its routing table. Without a dynamic
routing protocol, the host uses the default route when selecting which router on
which interface to send the packet. This behavior might not produce the desired
results.

In the case where there are multiple default routers on the same physical link, the
host might select a non—optimal router. This might not be a serious problem,
because that router can send an ICMP Redirect, allowing the host to update its
routing table and send subsequent packets to the correct router. If default routers
are on multiple physical links, that is more serious. A router on one link is not able
to redirect the host to use a different physical link. If the selected router cannot
reach the destination, attempts to send data fails, even if the destination could be
reached by a default router on another physical link. To resolve these limitations
when not using a dynamic routing protocol, static routes might be needed to direct
the traffic over the best interface using the appropriate router.

If a dynamic routing protocol is not used, routes to VIPAs cannot be advertised.
For this reason, use a network prefix defined as being on-link for the interfaces
which are associated with the VIPA. In this way, routers and hosts perceive that
the VIPA is on a physical interface and sends Neighbor Discovery messages (the
IPv6 equivalent of an ARP request) to get the MAC address of the interface. This is
not the typical way to set up VIPAs and is not the typical way to set up VIPAs if a
dynamic routing protocol is being used. Normally, they can be associated with
interfaces on different LANs. But without a dynamic routing protocol, you must
either take the suggested approach or define static routes at all routers on the same
links as the z/OS system.

ICMPvV6 redirects

ICMPv6 redirects replace static routes regardless of whether or not they are
replaceable. Use the IGNOREREDIRECT keyword on the IPCONFIG6 statement in
the TCP/IP profile to prevent the stack from adding routes learned by ICMPv6
redirects.

Rule: ICMPv6 redirects are always ignored when an IPv6 dynamic routing
protocol is being used.

Chapter 3. IPv6 protocol 23

24

Dynamic routing protocols

The z/0OS Communications Server OMPROUTE routing daemon supports the IPv6
OSPF and IPv6 RIP dynamic routing protocols. A host using one of these protocols
can learn, from adjacent routers that are also using that protocol, the network
prefixes and host addresses that can be reached.

IPv6 OSPF and IPv6 RIP can be used together with router discovery in the same
network. IPv6 OSPF allows the host to learn the network prefixes and host
addresses that can be reached indirectly by way of adjacent IPv6 OSPF routers
(including default routes), as well as the network prefixes that can be reached
directly on attached links in the IPv6 OSPF domain. IPv6 RIP allows the host to
learn the network prefixes and host addresses that can be reached indirectly by
way of adjacent IPv6 RIP routers (including default routes). Router discovery
allows the host to learn default routes by way of adjacent routers participating in
router discovery, as well as the network prefixes that can be reached directly on
attached links.

In addition, the network prefixes that can be reached directly on attached links can
be manually configured using the Prefix keyword on the IPv6_Interface,
IPv6_OSPF_Interface, or IPv6_RIP_Interface statements in the OMPROUTE
configuration file. When IPv6 OSPF or IPv6 RIP is used together with router
discovery, certain routes can be learned from both methods. These routes consist
of:

Default routes

Learned from both methods if adjacent routers are advertising themselves
as default routers using both IPv6 OSPF or IPv6 RIP and router discovery.
When this situation occurs, the default routes learned from IPv6 OSPF or
IPv6 RIP takes precedence and generates the default routes in the TCPIP
stack’s IPv6 route table. Any default routes learned from router discovery
are ignored as long as the default routes learned from IPv6 OSPF or IPv6
RIP exist.

Prefix routes
Learned from both router discovery and OMPROUTE under each of the
following conditions:

* A router is advertising by way of router discovery that the prefix is
on-link and the prefix is also manually configured to OMPROUTE using
the Prefix keyword on an IPv6_Interface, IPv6_OSPF_Interface, or
IPv6_RIP_Interface configuration statement.

Guideline: Use the Prefix keyword only when the prefix is not learned
dynamically (using router discovery or a dynamic routing protocol).

For example, if there is a need to supplement the list of prefixes being
advertised as on-link by the routers. If the same prefix is configured
using the Prefix keyword and learned from router discovery, the route in
the TCPIP stack’s route table is the route added by OMPROUTE as a
result of the Prefix keyword. Any route for the same prefix that is
learned from router discovery is ignored as long as the OMPROUTE
route exists.

Restriction: Prefixes learned from only OMPROUTE are not used for
address autoconfiguration. If a prefix is learned from both OMPROUTE
and router discovery, it can still be used for autoconfiguration even
though the route learned from OMPROUTE is the one in the TCPIP
stack route table.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

* A router is advertising by way of router discovery that the prefix is
on-link and a router is also advertising by way of IPv6 OSPF that the
prefix is on-link.

In this case, the route in the TCPIP stack route table is the route added
by OMPROUTE as a result of the information received by way of IPv6
OSPFE. Any route for the same prefix that is learned from router
discovery is ignored as long as the OMPROUTE route exists. As in the
previous condition, the prefix learned from router discovery can still be
used for address autoconfiguration.

* A router is advertising by way of router discovery that the prefix is
on-link and it is also learned, by way of IPv6 OSPF or IPv6 RIP, that the
prefix can be reached by way of an adjacent router.

In this case, the route in the TCPIP stack route table is the route added
as the result of router discovery. This occurs because the router
discovery information indicates that the prefix resides on a directly
attached link, while the IPv6 OSPF or IPv6 RIP information indicates
that the prefix can be reached indirectly, by way of the router from
which the IPv6 OSPF or IPv6 RIP information was received. Any route
for the prefix that is learned from IPv6 OSPF or IPv6 RIP is ignored as
long as the router discovery route exists.

Tip for IPvé OSPF routing protocol addressing conventions

IPv6 OSPF is based on IPv4 OSPF and has many similar concepts and controls.
The primary difference between IPv6 OSPF and IPv4 OSPF is that for IPv6 OSPE,
IP addresses are not used to communicate topology information. For example, in
IPv4 OSPF, an interface is referred to by its IPv4 home address, but in IPv6 OSPF
an interface is not referred to by any of its IPv6 home addresses. Instead, it is
referred to by an integer interface ID. Similarly, IPv6 OSPF router IDs are not IPv6
home addresses; they are 32-bit integers written in IPv4-style dotted-decimal
notation. Area IDs in IPv6 OSPF are also 32-bit integers written in [Pv4-style
dotted-decimal notation.

Guideline: Even though router IDs and area IDs in IPv6 OSPF are expressed
similarly to the IPv4 equivalents, they are not the same constants. A router can
have an IPv6 router ID which is different from its IPv4 router ID. If both IPv4 and
IPv6 OSPF are running simultaneously, the area topology of each IP version can be
completely different, with different area numbers and hierarchy.

Authentication with the IPv6é OSPF routing protocol

IPv4 OSPF includes authentication as part of the OSPF protocol. OMPROUTE
supports both password authentication and MD5 cryptographic authentication for
IPv4 OSPE. For IPv6 OSPF, authentication has been removed from OSPF itself.
Instead, IPv6 OSPF relies on IPSec to ensure integrity and authentication of routing
exchanges. As a result, OMPROUTE does not include any explicit authentication
support, but instead relies on the underlying support provided by the z/OS
TCP/IP stack.

To use IPSec to authenticate IPv6 OSPF routing exchanges on a link over which
OMPROUTE establishes adjacencies, you must create a single manual security
association (SA) for all traffic on that link, with corresponding filter definitions to
permit the OSPF traffic. Use the interface SECCLASS to define different security
associations for different links. This procedure is described in Ehe 1P securit;7|
linformation| in |/OS Communications Server: IP Configuration Guidd,

Chapter 3. IPv6 protocol 25

Considerations for route selection

Route precedence is as follows:
¢ Host route to the destination.

* Route for a prefix of the destination. If there are routes to multiple prefixes of
the destination, the route with the most specific prefix is chosen.

¢ Default route.

For IPv4, the concept exists of a special default multicast route with a destination
of 224.0.0.0 and a netmask of 255.255.255.255. For IPv6, there is no special default
multicast route. Because all IPv6 multicast addresses start with FF, the following
prefix route serves the same function as the default multicast route:

destination = FF00::/8

Considerations for multipath routes

Multiple routes to the same destination are considered multipath routes. Multipath
routes can be used for load balancing. Multipath route support for IPv6 is identical
to multipath route support for IPv4. Define the MULTIPATH keyword on the
IPCONFIG6 statement to control whether multiple routes are selected.

Guideline: If MULTIPATH is not enabled, the first active route added is selected.

When using a route that belongs to a multipath group , the MTU that is used is
the minimum MTU of all routes in the multipath group.

How does a VARY TCPIP,,OBEYFILE command affect routes?

When a VARY TCPIP,OBEYFILE command is issued and the profile contains a
BEGINROUTES block, the following occurs:

 All static routes (both replaceable and non-replaceable) are deleted and replaced
by any static routes defined in the BEGINROUTES block.

* All routes learned by way of ICMPv6 redirects are deleted.

* Routes learned by way of router advertisements or a dynamic routing daemon
are not affected by the processing of the VARY TCPIP, OBEYFILE command,
with the following exception:

— If the profile data set specified on the VARY TCPIP,OBEYFILE command
contains a non-replaceable static route to the same destination for which a
route exists that was learned by way of router advertisements or a dynamic
routing daemon, the existing route is deleted and replaced by the
non-replaceable static route.

ICMPv6

The IP protocol moves data from one node to another. In order for IP to perform
this task successfully, there are many other functions that need to be carried out as
well, such as the following;:

* Error reporting
* Route discovery
* Diagnostics

* Among others

In IPv6, all these tasks are carried out by the Internet Control Message Protocol
(ICMPvo).

26 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

In addition, ICMPv6 provides a framework for Multicast Listener Discovery (MLD)
and Neighbor Discovery (ND), which carry out the tasks of conveying multicast
group membership information (the equivalent of the IGMP protocol in IPv4) and
address resolution (performed by ARP in IPv4).

The following are types of ICMPv6 messages:
Error Report errors in the forwarding or delivery of IPv6 packets.

Informational
Provide diagnostic functions and additional host functionality such as
MLD and ND.

The following ICMPv6 messages are supported:
* Destination unreachable
* Packet too big
e Time exceeded (hop limit exceeded)
* Echo request/reply
* Parameter problem
* Multicasting messages:
— Group membership query
— Report
— Done
* Neighbor discovery:
— Router solicitation and advertisement
— Neighbor solicitation and advertisement
— Redirect

Guideline: Not all ICMPv4 messages have equivalents in ICMPv6.

Multicasting

In early IP networks, a packet could be sent to either a single device (unicast) or to
all devices (broadcast). A single transmission destined for a group of devices was
not possible.

IPv6 uses multicast for those purposes for which IPv4 used broadcast;
consequently, IPv6 does not support broadcast.

Applications can use multicast transmissions to enable efficient communication
between groups of devices. Data is transmitted to a single multicast IP address and
received by any device that needs to obtain the transmission.

Multicast Listener Discovery (MLD)

An IPv6 router uses MLD protocol to discover the following:

* The presence of multicast listeners (nodes wanting to receive multicast packets)
on its directly attached links

* Which multicast addresses are of interest to those listeners

This information is provided to whichever multicast routing protocol is being used
by the router. This ensures that multicast packets are delivered to all links where
there are interested receivers. MLD is derived from IGMPv2.

Chapter 3. IPv6 protocol 27

Guideline: One important difference is that MLD uses ICMPv6 message types,
rather than IGMP message types.

MLD has a router function and a listener function. The router function discovers
the presence of multicast listeners and ensures delivery of multicast packets to
listeners. The listener function informs routers when it starts and stops listening for
a multicast address and responds to queries about multicast addresses. z/OS
Communications Server V1R4 and above implement the listener function.

When a listener starts listening for a multicast address on an interface, it sends an
MLD report message for that address on that interface.

When a listener stops listening for a multicast address on an interface, it sends a
single MLD done message.

An MLD query message is sent by a router to query listeners about multicast
addresses. A specific query is sent to listeners for a specific multicast address on a
receiving interface. A general query is sent to listeners for all multicast addresses
on a receiving interface. These query messages contain a maximum response delay
(MRD) that causes listeners to delay report messages and not send them if another
listener reports first. If no reports for the address are received from the link after
the response delay of the last query has passed, the routers on the link assume that
the address no longer has any listeners there; the address is therefore deleted from
the list and its disappearance is made known to the multicast routing component.

If you configure IP security for IPv6, refer to [special considerations|in the |z/OS|
(Communications Server: IP Configuration Guidd for information about filter rules for
MLD packets.

Neighbor discovery (ND)

Neighbor discovery (ND) is an ICMPv6 function that enables a node to identify
other hosts and routers on its links. It corresponds to a combination of IPv4
protocols:

* ARP

* ICMP Router Discovery

e ICMP Redirect

It maintains routes, MTU, retransmit times, reachability time, and prefix
information based on information received from the routers. ND uses Duplicate

Address Detection (DAD) to verify the host’s home addresses are unique on the
LAN.

ND uses Address Resolution to determine the link-layer addresses for neighbors
on the LAN and Reachability Detection to determine neighbor reachability.

If you configure IP security for IPv6, refer to [special considerations|in the [z/0S|
\Communications Server: IP Configuration Guidd for information about filter rules for
neighbor discovery packets.

Router advertisements

Router advertisements are sent by routers to announce their availability. z/OS
Communications Server receives router advertisements, but it does not originate
them.

28 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

If the router advertisement indicates that the sending router should be used as a
default router, a neighbor cache entry is created or updated for the sending router,
and the following occurs:

* IPv6 dynamic default route is added (if not added by a previous advertisement)
* Next hop of default route is the advertisement’s source address

e Interface of default route is the interface on which the advertisement was
received

* Length of time that route remains valid is set or reset using the Lifetime value
from the advertisement

A dynamic default route is not added due to the received router advertisement if
the following exists:

* A non-replaceable static default route
* An IPv6 OSPF default route
e An IPv6 RIP default route

If a replaceable static default route exists, the dynamic default route is added due
to the received router advertisement, replacing the replaceable route. The
replaceable static default route is reinstated if the dynamic default route is later
removed.

If the router advertisement indicates that the sending router should not be used as
a default router, the following occurs:

* If an IPv6 dynamic default route exists with the advertisement’s source as its
next hop and the receiving interface as its interface and that route was added
due to a received router advertisement (for example, not due to IPv6 OSPF or
IPv6 RIP), it is deleted.

* Any IPv6 dynamic indirect routes with the advertisement’s source as its next
hop and the receiving interface as its interface are deleted. Exceptions to this are
routes that were added due to a dynamic routing protocol such as IPv6 OSPF or
IPv6 RIP.

* A neighbor cache entry is created or updated for the sending router. The
neighbor cache entry contains data from the router advertisement such as the
following:

— Indication that neighbor is a router
— Indication that neighbor is not a default router
— Link-local and link-layer address of neighbor

A router advertisement can contain Prefix Information Options. These options
inform nodes of additional specific routes that are available to them, and indicate
prefixes for autoconfiguring addresses. A Prefix Information Option contains the
on-link and autonomous flags.

The on-link flag, when set, indicates that on-link processing needs to be performed
for the prefix on the shared link. When a prefix is on-link, the addresses in that
prefix can be reached on that link without going through a router. The autonomous
flag, when set, indicates that autoconfigure processing needs to be performed for
the prefix on the shared link. A Prefix Information Option can have just the on-link
flag set, just the autonomous flag set, or both flags set.

The sending router indicates that a prefix is on-link by setting the on-link flag and
specifying a nonzero Valid Lifetime value for the prefix. If the Prefix Information
Option indicates that the prefix is on-link, the following occurs:

Chapter 3. IPv6 protocol 29

30

* An IPv6 dynamic direct route is added (if not added by a previous
advertisement)

* The destination of the route is the prefix being processed

¢ The interface of the route is the interface on which the advertisement was
received

* The length of time that route remains valid is set or reset using the Valid
Lifetime value from the Prefix Information Option

If a non-replaceable static direct route exists to this prefix or if a direct route to the
prefix was added by OMPROUTE (due to the PREFIX parameter being specified
on the IPV6_INTERFACE, IPV6_OSPF_INTERFACE, orIPV6_RIP_INTERFACE
statement in the OMPROUTE configuration file or due to a router advertising by
way of IPv6 OSPF that the prefix is on-link), then the dynamic direct route is not
added. If a replaceable static direct route exists to this prefix, the dynamic direct
route is added, replacing the replaceable route. The replaceable static direct route is
reinstated if the dynamic direct route is later removed.

The sending router can indicate that a prefix is no longer on-link by setting the
on-link flag and specifying a zero Valid Lifetime value for the prefix. In this case, if
an IPv6 dynamic direct route exists with the prefix being processed as its
destination and the receiving interface as its interface, and that route was added
due to a received router advertisement (for example, not added by OMPROUTE),
it is deleted.

The sending router can indicate that a prefix is to be used for address
autoconfiguration by setting the autonomous flag and specifying a nonzero Valid
Lifetime value for the prefix. If the Prefix Information Option indicates that the
prefix should be used for address autoconfiguration, the following occurs:

e An IPv6 home address is added to the receiving interface for the autoconfigured
address (if not added by a previous advertisement)

* An IPv6 implicit route is added for the receiving interface and the
autoconfigured address (if not added by a previous advertisement)

* The length of time that home address and implicit route remain valid is set or
reset using Valid Lifetime value from the Prefix Information Option

* The length of time that home address remains preferred (not deprecated) is set
or reset using the Preferred Lifetime value from the Prefix Information Option

Restriction: Prefixes learned solely by using the Prefix parameter on the
OMPROUTE IPV6_INTERFACE, IPV6_OSPF_INTERFACE, or
IPv6_RIP_INTERFACE statement is never used for autoconfiguration.

If addresses are manually configured for an IPv6 interface by way of the
INTERFACE statement, autoconfiguration of addresses for that interface is
disabled. If a prefix is not 64 bits in length, it is not used for autoconfiguration of
addresses. Unlike the prefix route and default route, the implicit route and home
address cannot be deleted immediately. They must age out. If the Valid Lifetime
value is set to infinity, the implicit route and home address do not time out. For
more information about autoconfiguration, see [“Stateless address|
lautoconfiguration” on page 33

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Route timeouts

The valid lifetime for each type of route is updated (extending the life of the route)
by the periodic receipt of router advertisements as long as the sending router is
available and is not reconfigured relative to its defined prefixes or default router
status.

When a Prefix Information Option contains a Valid Lifetime value of infinity, the
associated implicit or prefix route is considered permanent and does not age unless
a future Prefix Information Option for the prefix contains a non-infinity Valid
Lifetime value.

Expiration of the valid lifetime for a default route is immediate if a future Router
Advertisement indicates that the sending router is no longer a default router.
Expiration of the valid lifetime for a prefix route is immediate if a future Prefix
Information Option for the prefix contains a zero Valid Lifetime value. Expiration
of the valid lifetime for an implicit route cannot be made immediate because the
minimum lifetime allowed is two hours. It must age out naturally.

VARY TCPIP,,OBEYFILE command rules
Rules: Observe the following rules for the VARY TCPIP,OBEYFILE command:

* If a non-replaceable static route in the profile data set specified on the VARY
TCPIP, OBEYFILE command has the same destination as an existing route that
was added due to a received Router Advertisement, the existing route is
replaced by the non-replaceable static route.

* If the profile data set specified on the VARY TCPIP,,OBEYFILE command
specifies a manually configured home address for an interface that already has
autoconfigured addresses, the autoconfigured addresses are deleted along with
their associated implicit routes.

With the exception of the two preceding rules, all autoconfigured home addresses
and routes added due to received Router Advertisements are maintained through
VARY TCPIP,OBEYFILE command processing.

Redirect processing

A node can receive a Redirect message from an on-link router if the router
determines that the destination is on-link or if there is a better first-hop router for
the given destination. z/OS Communications Server can be configured to ignore
the IPv6 Redirects sent by routers by defining the IGNOREREDIRECT keyword on
the IPCONFIG6 statement. In addition, IPv6 Redirects are ignored if the IPv6 OSPF
or IPv6 RIP protocol of the OMPROUTE routing daemon is being used. If
processing of Redirect messages is enabled, z/OS Communications Server begins
using the new first-hop information which is identified in the Redirect message. A
router must use its link-local address as the source address in Redirects that it
originates. A received Redirect is only processed if the current route to the
destination in the IPv6 route table has the source address of the Redirect as its next
hop. Therefore, if Redirects are to be accepted, all static indirect routes must be
configured using the next-hop router’s link-local address. If the previous route to
the destination was a host route, it is deleted from the route table to keep it from
being used by Multipath processing.

If Redirect processing is disabled, z/OS Communications Server silently discards
the Redirect message.

Chapter 3. IPv6 protocol 31

32

Duplicate Address Detection (DAD)

DAD is used to verify that an IPv6 home address is unique on the LAN before
assigning the address to a physical interface (for example, QDIO). z/OS
Communications Server responds to other nodes doing DAD for IP addresses
assigned to the interface. DAD is not done for VIPAs or loopback addresses. DAD
for local addresses is performed for physical interfaces when one of the following
occurs:

* The interface is started (the autoconfigured link-local address and manually
configured addresses/prefixes are checked).

e A VARY TCPIP,OBEYFILE command is issued for a profile data set containing
an INTERFACE ADDADDR for an already active interface.

* A Router Advertisement containing new prefix information and the autonomous
bit set is received on an interface enabled for stateless autoconfiguration.

To disable DAD checking, specify DUPADDRDET 0 on the INTERFACE statement.

Duplicate Address Detection processing involves the following steps:

1. The host joins a link-local all-nodes multicast group at interface start
processing.

2. The host joins a solicited-node group for the local address.

3. A neighbor solicitation is sent to the solicited-node multicast address with the
tentative address for which DAD is being performed.

4. The host waits for a neighbor response (neighbor advertisement or neighbor
solicitation) on the interface.

5. If no neighbor response is received within the specified retransmit time, the
address is considered unique on the LAN.

6. If a neighbor response is received within the specified time, the address is not
unique. The host leaves the solicited-node multicast group, issues a Duplicated
Address Detected console message, and marks the address unavailable due to a
duplicate address.

Unless DAD is disabled, the address is not considered assigned to an interface
until DAD is successfully completed for the local address. Packets can be received
for the all-nodes or solicited-node multicast groups, but there is no response
because the address is not yet assigned to the interface. If the local address is a
manually configured address, the addresses are displayed in a Netstat Home/-h
report as Unavailable (if the interface has not been started or if DAD failed).

In situations where DAD is not done for the IPv6 home address (by specifying
DUPADDRDET 0 on the INTERFACE statement or if it is a VIPA), the z/OS
Communications Server host still responds if another node is doing DAD for an
IPv6 address assigned to the interface or for IPv6 VIPAs when the interface is
assigned to handle VIPAs. Note that responses are not sent for loopback addresses.

Address resolution

Address resolution in IPv6 is similar to ARP processing in IPv4, except ICMP
neighbor solicitations, neighbor advertisements, router redirects, and router
advertisements are used to obtain the link-layer (MAC) address. The host sends a
neighbor solicitation to a solicited-node multicast address. It waits for a response
for a period of time (retransmit time). If one is received, then the link-layer address
contained in the neighbor advertisement is cached and any queued packets are
sent to the address. If there is no response, the host repeats this process up to three
times before it declares a neighbor unreachable.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

A neighbor cache entry can also be built when a neighbor solicitation for a local
address is received and the solicitation contains the sender’s link-layer address
(and the source address is not the unspecified address, that is, the sender is not
performing DAD). The neighbor cache entry is built if it does not exist based on
the assumption that a packet is soon sent to this neighbor. Building the cache entry
reduces the overhead of having to perform the task of address resolution for the
neighbor at a later time.

Issue the Netstat ND/-n command to display information for a specific neighbor
or all neighbor cache entries. It displays the neighbor link-layer address, state,
whether the neighbor is a router or host, and if a router is a default router. The
following are possible neighbor states:

Incomplete
Address resolution is in progress.

Reachable
Positive confirmation of reachability was received.

Stale An unsolicited neighbor discovery message has updated the link-layer
address. Reachability is verified the next time the entry is used.

Delay More than reachable time has elapsed since last positive confirmation of
reachability. Default reachable time is 30 seconds. It can be overridden by
data provided by neighbor advertisements. A small delay is experienced
before starting a probe of neighbor (upper layers can provide
confirmation).

Probe Neighbor solicitations are sent to verify neighbor reachability.

Neighbor unreachability detection

Neighbor unreachability detection verifies that two-way communication with a
neighbor node exists. The host sends a neighbor solicitation to a node and waits
for a solicited neighbor advertisement. If a solicited neighbor advertisement is
received, the node is considered reachable. If there is no response, the host can
repeat this process before it declares a neighbor unreachable. If a neighbor is found
to be unreachable, the neighbor cache entry is deleted.

Assigning IP addresses to interfaces

Stateless address autoconfiguration is always used to generate and assign a
link-local address to a physical IPv6 interface. If it cannot assign a link-local
address, interface activation fails. No other addresses are assigned to the interface
(whether they are assigned using stateless address autoconfiguration or manual
configuration) until a link-local address has been successfully assigned. Link-local
addresses are not aged out.

Stateless address autoconfiguration

The larger address field of IPv6 solves a number of problems inherent in IPv4, but
the size of the address itself might be a potential problem for the TCP/IP
administrator. As a result, IPv6 has the capability to automatically assign an
address to an interface at initialization time. By doing this, a network can become
operational with minimal action on the part of the TCP/IP administrator. Stateless
autoconfiguration is supported for a physical interface (for example, QDIO) in
z/0S Communications Server if no manually configured addresses are defined on

Chapter 3. IPv6 protocol 33

34

the interface. Manual configuration of the host’s local addresses is not required
except for VIPA interfaces. Stateless address autoconfiguration consists of the
following steps:

1. During system startup, the host obtains an interface token from the interface
hardware to create an interface ID. It generates its own addresses using a
combination of router advertised prefixes and interface IDs.

2. Duplicate address detection is performed for the address. If a duplicate is not
detected or DAD is disabled for the interface (DUPADDRDET 0 specified on
the INTERFACE statement), the local address is added.

3. A stateless autoconfigured address is deleted when its valid lifetime expires or
when a manually defined address is added to the interface.

An IPv6 address generated using stateless address autoconfiguration has two
timers associated with it: a preferred lifetime and a valid lifetime. Router
Advertisements contain the valid lifetime and preferred lifetime for a prefix. An
IPv6 address goes through two phases to gracefully handle the address
expiration:

Preferred
Use is unrestricted.

Deprecated
In anticipation of the expiration of the leased period, use of the address
is discouraged.

When the preferred lifetime expires, the address created from the prefix is
deprecated. When the valid lifetime expires, the address created from the prefix
is deleted and an operator message is issued.

Autoconfiguration considerations
Consider the following during autoconfiguration:

* A manually configured address/prefix on an interface disables stateless
autoconfiguration for the interface.

* INTERFACE name DELADDR addr/prefix and INTERFACE name DEPRADDR
addr/prefix profile statements, activated by way of the VARY TCPIP,OBEYFILE
command, are not valid for autoconfigured addresses.

* A VARY TCPIP, OBEYFILE command whose profile contains ADDADDR or
DELADDR INTERFACE statements can affect stateless autoconfiguration:

— An INTERFACE name ADDADDR addr/prefix profile statement, activated by
way of the VARY TCPIP,,OBEYFILE, results in stateless autoconfigured
addresses on the interface to be deleted. Stateless autoconfiguration capability
is disabled.

— If the DELADDR removes the last manually configured address/prefix,
stateless autoconfiguration is enabled and subsequent router advertisements
can generate autoconfigured addresses.

* Autoconfigured addresses are not automatically added to DNS. Consider using
VIPA addresses in conjunction with autoconfigured addresses.

IP address takeover following an interface failure

The TCP/IP stack in z/OS Communications Server provides transparent
fault-tolerance for failed (or stopped) IPv6 interfaces, when the stack is configured
with redundant connectivity onto a LAN. This support is provided by the z/OS
Communications Server interface-takeover function and applies to the IPv6
IPAQENET®6 interface type.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

At device or interface startup time, TCP/IP dynamically learns of redundant
connectivity onto the LAN, and uses this information to select suitable backups in
the case of a future failure of the device/interface. This support makes use of
neighbor discovery flows for IPv6 interfaces, so upon failure (or stop) of an
interface, TCP/IP immediately notifies stations on the LAN that the original IPv6
address is now reachable by way of the backup’s link-layer (MAC) address. Users
targeting the original IP address see no outage due to the failure, and they are
unaware that any failure occurred.

Because this support is built upon neighbor discovery flows, no dynamic routing
protocol in the IP layer is required to achieve this fault tolerance. To enable this
support, you must configure redundancy onto the LAN by defining and activating
multiple INTERFACEs onto the LAN. Note that an IPv4 device cannot back up an
IPv6 interface, or vice versa.

The interface-layer fault-tolerance can be used in conjunction with VIPA addresses,
where applications can target the VIPA address, and any failure of the real LAN
hardware is handled by the interface-takeover function. This differs from
traditional VIPA usage, where dynamic routing protocols are required to route
around true hardware failures.

How to get addresses for VIPAs
Rule: All VIPAs must be manually configured.

VIPA interfaces are always active. IPv6 VIPAs can be site-local or global. Link-local
VIPAs are not allowed because link-local addresses are for use only on the
associated LAN and there is no VIPA LAN.

To globally enable SOURCEVIPA for IPv6, configure the SOURCEVIPA keyword
on the IPCONFIG6 statement. Then, to enable SOURCEVIPA for particular
interfaces, use the SOURCEVIPAINTERFACE parameter on the INTERFACE
statement for those interfaces. The SOURCEVIPAINTERFACE parameter allows for
the specification of the interface name of the VIRTUALS6 interface whose addresses
should be used as SOURCEVIPA addresses.

Unlike IPv4, where the source VIPA selected is based upon the ordering of the
HOMEE list, IPv6 SOURCEVIPA uses the addresses configured on the VIPA
INTERFACE statement referenced by the SOURCEVIPAINTERFACE keyword on
the INTERFACE statement for the outbound interface. When that VIPA interface
has multiple addresses configured, the default source address selection algorithm
selects among them. For detailed information about the algorithm, see
lsource address selection” on page 38.|

Guidelines: Observe the following VIPA guidelines:

* Use different prefixes for IPv6 static VIPAs and for the IPv6 addresses assigned
to real interfaces.

* Having static VIPAs configured with different prefixes than real addresses
reduces the likelihood of address collisions between the manually configured
VIPAs and the autoconfigured addresses of the real interfaces. This is also
necessary as Duplicate Address Detection (DAD) is not performed for VIPA
addresses.

* See |p4| for information regarding static VIPAs.

Chapter 3. IPv6 protocol 35

Default address selection

36

IPv6 addressing architecture allows multiple unicast addresses to be assigned to
interfaces. These addresses might have different reachability scopes (link-local,
site-local, or global). These addresses can also be preferred or deprecated. Privacy
considerations have introduced the concepts of public addresses and temporary
addresses. The mobility architecture introduces home addresses and care-of
addresses. In addition, multihoming situations result in more addresses per node.
For example, a node can have multiple interfaces, some of them tunnels or virtual
interfaces, or a site can have multiple ISP attachments with a global prefix per ISP.

The end result is that IPv6 implementations are often faced with multiple possible
source and destination addresses when initiating communication. It is preferred to
have default algorithms, common across all implementations, for selecting source
and destination addresses so that developers and administrators can reason about
and predict the behavior of their systems.

Furthermore, dual-mode stack implementations, which support both IPv6 and
IPv4, very often need to choose between IPv6 and IPv4 when initiating
communication. For example, DNS name resolution might yield both IPv6 and
IPv4 addresses with the network protocol stack having both IPv6 and IPv4 source
addresses available. In these cases, a policy that always prefers IPv6 or always
prefers IPv4 might produce poor results. For example, if a DNS name resolves to a
global IPv6 address and a global IPv4 address. If the node has assigned a global
IPv6 address and a 169.254/16 autoconfigured IPv4 address, then IPv6 is the best
choice for communication because the global address has a similar scope; therefore,
a better chance of success. But if the node has assigned only a link-local IPv6
address and a global IPv4 address, then IPv4 is the best choice for communication
because the scope more closely matches the scope of the destination to which you
are communicating. The destination address selection algorithm solves this with a
unified procedure for choosing among both IPv6 and IPv4 addresses.

Source address selection and destination address selection are discussed separately,
but using a common framework enables the two algorithms together to yield
useful results. The algorithms attempt to choose source and destination addresses
of appropriate scope and configuration status (preferred or deprecated).

Default destination address selection

Resolver APIs have the capability to return multiple IP addresses as a result of a
host name query. However, many applications use only the first address returned
to attempt a connection or to send a UDP datagram. Therefore, sorting of these IP
addresses is performed by the default destination address selection algorithm.

Establishing connectivity can depend on whether an IPv6 address or an IPv4
address is selected, which makes this sorting function even more important.

Default destination address selection occurs only when the system is enabled for
IPv6 and the application is using the getaddrinfo() API to retrieve IPv6 and/or
IPv4 addresses.

The default destination address selection algorithm sorts a list of destination
addresses and generates a new list. The algorithm sorts together both IPv6 and
IPv4 addresses by a set of rules. Rules are applied, in order, to the first and second
address, choosing a best address. Rules are then applied to this best address and
the third address. This continues until rules have been applied to all addresses and

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

the entire list of addresses has been sorted. If one of the rules is able to select the
best address between two addresses, remaining rules are bypassed for those two
addresses. Subsequent rules act as tie-breakers for earlier rules. The destination
address selection algorithm attempts to predict what source address is selected by
TCP/IP when the application initiates an outbound connection or sends a
datagram using the destination address. This source address is used for some of
the destination address selection criteria rules. Source address prediction
processing assumes that the application itself does not explicitly specify a source IP
address (using bind or ipv6_pktinfo) when initiating a connection or sending a
datagram. If the application does explicitly specify a source address, then the
destination address selected by this algorithm might not be optimal. The decision
the application makes might assume that a different source address is used.

Rules: Observe the following rules:

Rule 1: Avoid unusable destinations.
If one address is reachable (the stack has a route to the particular address)
and the other is unreachable, then place the reachable destination address
prior to the unreachable address.

Rule 2: Prefer matching scope.
If the scope of one address matches the scope of its source address and the
other address does not meet this criteria, then the address with the
matching scope is placed before the other destination address.

The scopes of the destination addresses and their associated source
addresses are determined by interrogating the high order bits of the
address. The destination address can be a multicast or unicast address.
Unicast Link-Local is mapped to multicast Link-Local, unicast Site-Local to
multicast Site-Local, and unicast Global scope to multicast Global scope.

Rule 3: Avoid deprecated addresses.
If one address is deprecated and the other is non-deprecated, then the
non-deprecated address is placed prior to the other address.

Rule 4: Prefer matching address formats.
If one address format matches its associated source address format and the
other destination does not meet this criteria, then place the destination
with the matching format prior to the other address.

Rule 5: Prefer higher precedence.
If the precedence of one address is higher than the precedence of the other
address, then the address with the higher precedence is placed before the
other destination address.

Rule 6: Use longest matching prefix.
If one destination address has a longer CommonPrefixLength with its
associated source address than the other destination address has with its
source address, then the address with the longer CommonPrefixLength is
placed before the other address.

Rule 7: Leave the order unchanged.
No rule selected a better address of these two; they are equally good.
Choose the first address as the better address of these two and the order is
not changed.

Chapter 3. IPv6 protocol 37

38

Default source address selection

When the application or upper-layer protocol has not selected a source address for
an outbound IPv6 packet (using bind or ipv6_pktinfo), the default source address
selection algorithm selects one.

The goal of default source address selection is to select the address that is most
likely to allow the packet to reach its destination and to support site renumbering.
The group of candidate addresses consists of the addresses assigned to the
outbound interface (both configured, dynamically generated, or both) or the
addresses configured for the outbound interface’s SOURCEVIPA interface. Any
address which is preferred or deprecated is included in the candidate list. The
algorithm is applied to the candidate address list to select the best source address
for the packet. If there is only one address in the list of candidate source addresses,
then that address is used. If there is more than one address in the candidate list,
one is selected by applying the algorithm’s rules to the addresses. Rules are
applied, in order, to the first and second address, choosing a best address. Rules
are then applied to this best address and the third address. This continues until
rules have been applied to all addresses. If one of the rules is able to select the best
address between two addresses, remaining rules are bypassed for those two
addresses. Subsequent rules act as tie-breakers for earlier rules.

Rules: Observe the following rules:

Rule 1: Prefer same address.
If either address is the destination address, choose that address as the
source address and terminate the entire algorithm.

Rule 2: Prefer appropriate scope.
If the scope of one address is preferable to the scope of the other address,
then the address with better scope is the better address of these two.

As an example, how is the scope of one source address (SA) preferable to

the scope of another source address (SB) for the given destination address

(D)?

¢ If scope of SA < scope of SB: If scope of SA < scope of D then SB is the
best address of SA and SB; otherwise SA is the best address.

* If scope of SB < scope of SA: If scope of SB < scope of D then SA is the
best address of SA and SB; otherwise SB is the best address.

Rule 3: Avoid deprecated addresses.
If one address is deprecated and the other is preferred, then the preferred
address is the better address of these two.

Rule 4: Use longest matching prefix.
If one address has a longer CommonPrefixLength with the destination than
the other address, then the address with the longer CommonPrefixLength
is the better address of these two.

Rule 5: Leave the order unchanged.
No rule selected a better address of these two; they are equally good.
Choose the first address as the better address of these two.

VIPA considerations with source address selection

If SOURCEVIPA is configured for the outbound interface and the application has
not requested that SOURCEVIPA be ignored (by way of Ignore Source VIPA socket
option), the source address is selected from the SOURCEVIPA interface’s addresses.
Otherwise, source address is selected from the outbound interface’s addresses.
Note that selection of a Source VIPA address for IPv6 is done differently from IPv4.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

It is determined by the SOURCEVIPAINTERFACE parameter configured on the
outbound interface, rather than the order of the HOME list.

When a socket is used to establish a TCP connection to an IPv6 destination or to
send a UDP or RAW IP datagram to an IPv6 destination, the local address of the
socket is determined based on the set of rules listed in :

Table 5. Source address selection

IPv6 destinations

Source address selection for communication to

TCP, UDP, and RAW

IPCONFIG6
NOSOURCEVIPA

1. Is the socket already
bound to a local IPv6
address?

Do not change the local address, use it
as it is.

2. Is the socket unbound
(bound to the unspecified
IP address)?

Use the IPv6 default source address
selection algorithm (selecting an IPv6
address on the physical interface over
which the IP packet is about to be sent).

IPCONFIG6
SOURCEVIPA

1. Is the socket already
bound to a local IPv6
address?

Do not change the local address, use it
as it is.

2. Has setsockopt() with the
NOSOURCEVIPA option
been issued for the socket?

Use the IPv6 default source address
selection algorithm (selecting an IPv6
address on the physical interface over
which the IP packet is about to be sent).

3. Is there a
SOURCEVIPAINTERFACE
option on the IPv6
INTERFACE definition over
which the IP packet is
about to be sent?

Use the IPv6 source address selection
algorithm to select an IPv6 VIPA
address from the IPv6 virtual interface
pointed to by the
SOURCEVIPAINTERFACE option.

4. Is there no
SOURCEVIPAINTERFACE
option on the IPv6
INTERFACE definition over
which the IP packet is
about to be sent?

Use the IPv6 default source address
selection algorithm (selecting an IPv6
address on the physical interface over
which the IP packet is about to be sent).

Migration and coexistence

Enabling IPv6 communication between IPv6 islands in an IPv4

environment

[Figure 10 on page 40| illustrates communication between IPv6 islands in an IPv4

environment:

Chapter 3. IPv6 protocol 39

Figure 10. Communicating between IPv6 islands in an IPv4 world

Tunneling

Tunneling provides a way to utilize an existing IPv4 routing infrastructure to carry
IPv6 traffic. IPv6 nodes (or networks) that are separated by IPv4 infrastructure can
build a virtual link by configuring a tunnel. [Pv6-over-IPv4 tunnels are modeled as
single-hop. In other words, the IPv6 hop limit is decremented by 1 when an IPv6
packet traverses the tunnel. The single-hop model serves to hide the existence of a
tunnel. The tunnel is opaque to network and is not detectable by network
diagnostic tools such as traceroute.

z/0S Communications Server does not support being a tunnel endpoint. This
means that the z/OS Communications Server stack must have an IPv6 interface
connected to an IPv6 capable router. The router is relied upon to handle all
tunneling issues.

For more information, see ["Tunneling” on page 121

How to enable end-to-end communication between IPv4 and
IPv6 applications
illustrates communication between IPv4 and IPv6 applications:

IPv6 Web Browser

Figure 11. Communicating between IPv4 and IPv6 applications

Dual-mode stack
z/0S Communications Server can be an IPv4-only or dual-mode stack.

Restriction: There is no support for an IPv6-only stack.

40 z/0S VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

By default, IPv6-enabled applications can communicate with both IPv4 and IPv6
peers. A socket option makes an IPv6-enabled application require all peers to be
IPv6. See [‘Socket option to control IPv4 and IPv6 communications” on page 87| for
detailed information about the IPV6_V60ONLY socket option.

IPv6 application on a dual-mode stack: An IPv6 application on a dual-mode
stack can communicate with IPv4 and IPv6 partners as long as it does not bind to
a native IPv6 address. If it binds to a native IPv6 address, it cannot communicate
with an IPv4 partner because the native IPv6 address cannot be converted to an
IPv4 address.

If a partner is IPv6, all communication uses IPv6 packets.

If a partner is IPv4, the following occurs:
* Both source and destination are IPv4-mapped IPv6 addresses.

* On inbound, the transport protocol layer maps the IPv4 address to its
corresponding IPv4-mapped IPv6 address before returning to the application
with AF_INET6 addresses.

* On outbound the transport protocol layer converts the IPv4-mapped addresses
to native IPv4 addresses and send IPv4 packets.

Chapter 3. IPv6 protocol 41

42

Dual mode z/OS IP Server Host

IPv4-only IPv6-enabled
Server Server

H
]
[

‘ H
[

H

'

1

i

Transgért Laye

I
.
1
I
I
1
1

IPv4 | 1Pve

Network
Interfaces

IPv4 / {IPve

/
-

IPv4-only IPv6-only
IP host IP host

Figure 12. IPv6 application on dual-mode stack

IPv4 application on a dual-mode stack: An IPv4 application running on a
dual-mode stack can communicate with an IPv4 partner. The source and
destination addresses are native IPv4 addresses and the packet is an IPv4 packet.

If a partner is IPv6 enabled and running on an IPv6-only stack, then
communication fails. The partner only has a native IPv6 address (not an
IPv4-mapped IPv6 address). The native IPv6 address for the partner cannot be
converted into a form that the AF_INET application understands.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Dual mode z/OS IP Server Host
IPv4-only IPv6-enabled
Server Server
-
b TCP, UDP,
5 » and RAW
Y e 1pve
“.‘ Network".‘
Interfaces',

IPv4-only IPv6-only
IP host IP host

Figure 13. IPv4-only application on a dual-mode stack

Application Layer Gateways (ALG) and protocol translation
When IPv6-only nodes begin to appear in the network, AF_INET6 applications on
these nodes might need to communicate with AF_INET applications. For a
multihomed dual-mode IP host, it is a likely that the host has both IPv4 and IPv6
interfaces over which requests for host-resident applications are received or sent.
IPv4-only (AF_INET sockets) applications are not generally able to communicate
with IPv6 partners, which means that only the IPv4 partners in the IPv4 network
can communicate with those applications; an IPv6 partner cannot.

As soon as IPv6-only hosts are being deployed in a network, applications on those
IPv6-only nodes cannot communicate with the IPv4-only applications on the dual

mode hosts, unless one of multiple migration technologies are implemented either
on intermediate nodes in the network or directly on the dual mode hosts.

Numerous RFCs describe solutions in this area. One solution is a SOCKS64
implementation that works as a SOCKS server that relays communication between

IPv4 and IPv6 flows. SOCKS is a well-known technology, and the issues around it

Chapter 3. IPv6 protocol 43

are familiar. Servers do not require any changes, but client applications (or the
stack on which the client applications reside) need to be socksified to be able to
reach out through a SOCKS64 server to an IPv4-only partner.

Other solutions are based on a combination of network address translation, IP-level
protocol translation, and DNS-flow catcher/interpreter. These solutions all have
problems with application-level IP address awareness and end-to-end security.

Network address translation: IPv4 NAT translates one IPv4 (private) address into
another IPv4 (external) address. IPv6 NAT-PT translates an IPv4 address into an
IPv6 address.

Rules: There are several limitations with NAT-PT:

* All requests and responses pertaining to a session must be routed through the
same NAT-PT translator.

* There is a protocol translation limitation because a number of IPv4 fields have
changed meaning in IPv6. Details of IPv4 to IPv6 protocol translation can be
found in the Stateless IP/ICMP Translation Algorithm (SIIT) RFC.

* If an application carries the IP address in the payload, ALGs must be
incorporated.

* Lack of end-to-end security. The two end nodes that seek IPSec network level
security must both use IPv4 or IPv6.

* DNS messages and DNSSEC translation. An IPv4 end-node that demands DNS
replies be signed rejects replies that have been tampered with by NAT-PT.

Restriction: z/OS Communications Server TCP/IP does not provide a SOCKS64
server and does not contain NAT-PT functionality. If an IPv6-only client requires
access to an IPv4-only server running on z/0OS, an external SOCKS64 or NAT-PT
node is required to translate the IPv6 packet to a corresponding IPv4 packet and
vice versa.

Considerations for configuring z/OS for IPv6

44

This section describes some general considerations for configuring IPv6 on z/OS,
including cases where multiple types of TCP/IP stacks are present.

Guideline: In this section, stack or TCP/IP stack is used as a generic term to
describe a protocol stack that can be defined as a UNIX System Services AF_INET
Physical File System (PFS) in the BPXPRMxx parmlib member (for example, z/OS
CS TCP/IP).

IPv6 stack support

IPv4-only stack

Some TCP/IP stacks only support IPv4 interfaces and are only capable of sending
or receiving IPv4 packets. These TCP/IP stacks are generally referred to as
IPv4-only stacks, as they support IPv4 but do not support communication over
IPv6 networks.

An IPv4-only stack supports AF_INET socket applications, but does not support
AF_INET6 socket applications.

Restriction: z/OS Communications Server TCP/IP can be started as IPv4-only
stack.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

IPv6-only stack

An IPv6-only stack supports IPv6 interfaces, but it does not support IPv4
interfaces. These TCP/IP stacks support AF_INET6 sockets and applications that
use them, as long as the IP addresses that are used are not IPv4-mapped IPv6
addresses. They do not support AF_INET sockets. Applications can send and
receive IPv6 packets by way of an IPv6-only stack, but they cannot send and
receive IPv4 packets.

Restriction: z/0OS Communications Server TCP/IP cannot be started as an
IPV6-only stack.

Dual-mode stack

Many IPv6 TCP/IP stacks support both IPv4 and IPv6 interfaces and are capable of
receiving and sending IPv4 and IPv6 packets over the corresponding interfaces.
These TCP/IP stacks are generally referred to as a dual-mode stack IP stacks. This
does not indicate that there are two separate TCP/IP stacks running on such a
node, but it does indicate that the TCP/IP stack has built-in support for both IPv4
and IPvé.

A dual-mode stack supports AF_INET and AF_INET6 socket applications.
AF_INET applications can communicate using IPv4 addresses. IPv6-enabled
applications that use AF_INET6 sockets can communicate using both IPv6
addresses and IPv4 addresses (using the IPv4-mapped IPv6 address format).

Guideline: z/0OS Communications Server TCP/IP can be started as a dual-mode
stack.

INET considerations

This section describes the INET considerations for IPv4-only and dual-mode
IPv4/IPv6 stacks.

IPv4-only stack

An IPv4-only stack supports AF_INET applications, but it does not support
AF_INET6 applications. Start an IPv4-only stack in an integrated sockets
environment in one of the following ways:

* Do not code an AF_INET6 statement in BPXPRMxx. This method is the easier of
the two. When AF_INET6 is not enabled, the underlying TCP/IP stack is started
as an IPv4-only stack, even if it is capable of supporting IPv6.

Restriction: This is the only way to start z/OS Communications Server TCP/IP
as an IPv4-only stack in an integrated sockets environment.

* Run a TCP/IP stack that is not capable of supporting IPv6. When starting a
TCP/IP stack that does not support IPv6, the stack ignores any AF_INET6
definitions that might appear in BPXPRMxx. As a result, the stack is started as
an IPv4-only stack, even when AF_INET6 is coded in BPXPRMxx.

When a TCP/IP stack is started as an IPv4-only stack in an Integrated Sockets
environment, applications can open AF_INET sockets and can only send and
receive IPv4 packets over IPv4 interfaces. However, applications are unable to open
AF_INET6 sockets.

Chapter 3. IPv6 protocol 45

Dual-mode IPv4/IPv6 stack

When both AF_INET and AF_INET6 are coded in BPXPRMxx and a dual-mode
capable stack is started, both AF_INET and AF_INET6 sockets are supported by
the stack, and applications can send and receive IPv4 and IPv6 packets.

Requirements: To enable AF_INET6 support in an integrated sockets environment,
the following two conditions must exist:

e AF_INET6 must be configured in BPXPRMxx. Note that AF_INET6 support can
be dynamically enabled by configuring AF_INET6 in BPXPRMxx and then
issuing the SETOMVS RESET= command to activate the new configuration.

* A dual-mode capable stack must be started after AF_INET6 is configured in
BPXPRMxx. Note that if a dual-mode capable TCP/IP stack is started before
configuring BPXPRMXxx, it remains an IPv4-only stack as long as it remains
active. However, if it is stopped and then restarted, it restarts as a dual-mode
TCP/IP stack if AF_INET6 is configured in BPXPRMxx at the time it is restarted.

Requirement: To enable AF_INET6 support for z/OS Communications Server
TCP/IP, z/OS Communications Server TCP/IP must be started as a dual-mode
stack. z/OS Communications Server TCP/IP does not support being started as an
IPv6-only stack. In other words, if AF_INET6 is coded in BPXPRMxx, AF_INET
must also be coded. If it is not, then the z/0OS Communications Server TCP/IP
stack fails to initialize.

Common INET considerations

46

This section describes additional INET considerations.

Enabling AF_INET6 support in a Common INET environment

Requirements: To enable AF_INET6 support in a Common INET environment, the
following conditions must exist:

* AF_INET6 must be configured in BPXPRMxx. Note that AF_INET6 support can
be dynamically enabled by configuring AF_INET6 in BPXPRMxx and then
issuing the SETOMVS RESET= command to activate the new configuration.

* At least one dual-mode capable stack must be started after AF_INET®6 is
configured in BPXPRMxx. Note that any dual-mode capable TCP/IP stack
started before configuring BPXPRMxx remains an IPv4-only stack as long as it
remains active. However, if it is stopped and then restarted, it restarts as a
dual-mode TCP/IP stack if AF_INET6 is configured in BPXPRMxx at the time it
is restarted.

Guideline: Do not start some z/OS CS TCP/IP stacks with AF_INET6 support and
some without AF_INET6 support. If AF_INET6 support is dynamically enabled,
you should stop and restart all TCP/IP stacks which were active when AF_INET6
support was enabled. This allows these TCP/IP stacks to become dual-mode
stacks. After this occurs, all applications which are capable of opening AF_INET6
sockets should be stopped and restarted. This allows the restarted applications to
communicate over IPv4 and IPv6 networks.

Disabling AF_INET6 support in a Common INET environment

Disable AF_INET6 support in a Common INET environment in one of the
following ways:

* Stop all active dual-mode TCP/IP stacks while IPv4-only stacks remain active.
Applications are no longer be able to open AF_INET6 sockets, although they can

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

continue to use any AF_INET6 sockets that are already open and not bound to
one of the stopped dual-mode TCP/IP stacks. However, applications are able to
open AF_INET sockets.

* Dynamically disable AF_INET6 in BPXPRMxx and stop all active dual-mode
TCP/IP stacks. When restarted, the dual-mode capable TCP/IP stacks start as
IPv4-only stacks. In effect, this is a subset of the previous case. To disable
AF_INET6 support, issue the SETOMVS RESET= command to set the AF_INET6
MAXSOCKETS value to 0.

Supporting a mixture of dual-mode stacks and IPv4-only
stacks

When AF_INET6 sockets are supported, an IPv6-enabled application can use an
AF_INET6 socket to send and receive data with both IPv4 and IPv6 partners.
When communicating with an IPv6 partner, a native IPv6 address is used. When
communicating with an IPv4 partner, the IPv4 address is encoded as an IPv4-
mapped IPv6 address. When an IPv4-mapped IPv6 address is used on an
AF_INET6 socket, a dual-mode TCP/IP stack realizes the partner is attached to the
IPv4 network and routes packets over IPv4 interfaces.

As long as all TCP/IP stacks started in a Common INET environment provide
native support AF_INET6 sockets, socket calls can be passed directly to the
underlying TCP/IP stack. However, when both dual-mode stacks and IPv4-only
stacks are started in a Common INET environment, the IPv4-only stacks are not
able to process the native AF_INET6 socket calls. As a result, an application which
uses IPv4-mapped IPv6 addresses on an AF_INET6 socket needs transformations
done by Common INET to communicate with partners over any active IPv4-only
stack.

Common INET provides AF_INET6 transformations that allow AF_INET6
applications to communicate with an IPv4 peer over IPv4-only stack. The
AF_INET6 transformations convert AF_INET6 socket calls to the corresponding
AF_INET socket calls before sending them to an IPv4-only stack and converts
AF_INET responses received from the IPv4-only stack to the corresponding
AF_INET6 responses before making them available to the AF_INET6 application.
Note that even with this transformation, AF_INET6 applications must use
IPv4-mapped IPv6 addresses to communicate with IPv4 applications.

[Figure 14 on page 48 shows a mixture of dual-mode stacks and IPv4-only stacks:

Chapter 3. IPv6 protocol 47

48

AF_INET6 AF_INET

socket socket
A A
| LFs
CINET _;
#i 1Pv4 Routes AF-INET6
1Pv6 Routes Transformations
| AF_INET6iPFS AF_INET6 PFS |i AF_INET PFS AF_INET PFS
v
TCP, UDP, and RAW TCP, UDP, and RAW TCP, UDP, and RAW
IPv6 IPv4 and IPv6 IPv4
Network Interfaces Network Interfaces Network Interfaces
IPv6-only stack Dual Mode z/OS TCP/IP IPv4-only TCP/IP Stack
(not supported on z/0S Stack (OEM, ?)

- at a minimum, an IPv4
loopback address will
always be configured)

Figure 14. Mixing dual-mode and IPv4-only stacks

Configuring a common INET environment

If a mixture of dual-mode capable stacks and IPv4-only stacks are started in a
Common INET environment, the default stack should be one of the dual-mode
capable stacks. Common INET routes certain requests to the default stack, and this
enables the stack with more functional capability to process these requests.

If AF_INET6 support is dynamically configured in BPXPRMxx, stop and restart all

dual-mode-capable TCP/IP stacks. After the TCP/IP stacks have been stopped and
restarted, stopped and restarted all IPv6-enabled applications.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Part 2. IPv6 enablement

This section contains the following chapters:

(Chapter 4, “Configuring support for z/OS,” on page 51|describes the IPv6 function
provided in z/OS Communications Server and how to enable it.

(Chapter 5, “Configuration guidelines,” on page 63 contains recommendations and
guidance information for implementing the IPv6 functions provided in z/OS
Communications Server.

© Copyright IBM Corp. 2002, 2006 49

50 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

. Chapter 4. Configuring support for z/OS

This chapter describes the configuration support needed for z/OS and contains the
following sections:

* [“Ensure that important features are supported over IPv6’]

* |“Assess automation and application impacts due to Netstat and message|
changes”|

¢ |“Determine how remote sites connect to the local host”

* |“Determine how remote sites connect to the local host”

* ["SNA access” on page 52

* [“Avoid using IP addresses for identifying remote hosts” on page 52|

+ |“Considerations when using the BIND parameter on the PORT statement” on|

[page 53|

* [“Security considerations” on page 53|

* [“Application programming considerations” on page 54|

* [“Enabling IPv6 support” on page 54|

+ |“Resolver processing” on page 56|

* |[“User exits” on page 58

* [“Which applications started with inetd are IPv6 enabled?” on page 5§
* [“How does IPv6 affect SMF records?” on page 59

+ |“How does IPv6 affect the Policy Agent?” on page 59|

* [“How does IPv6 affect SNMP?” on page 60|

* |“Monitoring the TCP/IP network” on page 60|

+ |“Diagnosing problems” on page 62|

Ensure that important features are supported over IPv6

See [Chapter 11, “IPv6 support tables,” on page 131| to ensure all needed features
are supported over IPv6.

Assess automation and application impacts due to Netstat and
message changes

Netstat output for stacks that are IPv6-enabled has a different format in order to
accommodate the longer IPv6 address. This becomes an issue when applications
that parse Netstat output are used. The same considerations also apply to
applications which use IP addresses in their automation because IP addresses now
have a longer format.

Determine how remote sites connect to the local host

It is likely that clients that are not connected to a link that is directly attached to a
z/0S image require access to servers that run on that z/OS image. Because z/OS
provides a dual-stack implementation, z/OS can send IPv4 packets to partner
nodes that are connected to the IPv4 network and IPv6 packets to partner nodes
that are connected to the IPv6 network. If the client node is connected to the same
routing infrastructure as the z/OS node, traffic is routed between z/OS and the
client node by way of the native network transport.

© Copyright IBM Corp. 2002, 2006 51

In some cases, the two nodes might not be connected to the same routing
infrastructure. For instance, each node might be attached to distinct IPv6 networks
that are separated by an intermediate IPv4 network. When this occurs, tunneling
might be used to transmit the native IPv6 packets across the IPv4 network. This
allows nodes in the disjoint IPv6 networks to send packets to one another.

z/0OS does not support functioning as an endpoint for this type of tunnel.
However, z/OS might route traffic over a tunnel in the intermediate network. In
this case, the tunnel endpoint used by z/OS would be an IPv6/IPv4 router in the
network that supports one of several tunneling protocols. The tunnel endpoint
used by z/OS might be attached to the same LAN to which z/OS attaches or
might be attached to a remote network link. In either case, the presence of the
tunnel endpoint is transparent to z/OS; from the z/OS perspective, traffic is routed
over the native IPv6 network.

SNA access

Both Enterprise Extender and TN3270 allow access to SNA applications over an
IPv6 network as well as an IPv4 network. For both protocols, it is possible to
simultaneously support connectivity over IPv4 and IPv6 networks. Enterprise
Extender uses separate path statements and connection networks for each protocol.
By assigning different weights to Transmission Groups that use different network
protocols, it is possible to have SNA traffic prefer being routed over the IPv6
network or the IPv4 network. For TN3270, the network protocol used is
determined by the remote TN3270 client.

Guideline: For Enterprise Extender and TN3270, use global unicast addresses.
While link-local addresses might work in certain configurations, they are not
suitable for use when connecting between partner companies. There are few, if any,
IPv6 NAT devices which can perform the necessary mappings between limited
scope addresses and globally routable addresses and, given the vast number of
globally unique IPv6 addresses available, are not necessary.

Avoid using IP addresses for identifying remote hosts

In IPv4 networks, some sites and applications attempt to use the remote IP address
to identify the client node which is connecting. In general, do not do this for IPv4,

because the client address can often be unpredictable, either due to the client using
DHCP to obtain its address or due to the client accessing the server from behind a

NAT (Network Address Translator) device.

In IPv6, the client address is likely to become even more volatile than it is in IPv4
networks. Using Stateless Address Autoconfiguration, a client’s address is
dynamically derived from the MAC address of the network adapter used for
connectivity. IPv6 also allows clients to pseudo-randomly generate IP addresses,
referred to as temporary addresses, which can be used for one or more
connections. These temporary addresses can be generated as frequently as the
client desires- once a day, once an hour, or even more frequently. In general, the
temporary addresses are not placed in the DNS, making it impossible to use DNS
to map the IP address to a host name.

Result: The client IP addresses are unpredictable and subject to frequent change. In
addition, it is possible, and even likely, that a server is unable to map the client
address to a host name. If a mechanism to identify the remote host is required,
then a different mechanism (client certificate, password, and so on) should be used
to identify the remote host. For example, this approach is used by Enterprise

52 2/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Extender. For IPv6, Enterprise Extender does not support configuring or passing
IPv6 addresses. Instead, it uses hostnames to identify Enterprise Extender nodes.

Considerations when using the BIND parameter on the PORT

statement

The PORT statement reserves a port for the use of a particular server. It normally
does not distinguish between IPv4 and IPv6; the port is reserved regardless of
which type of address the application uses. The BIND keyword on the PORT
statement allows you to force an INADDR_ANY listener to listen on a particular IP
address. You can now specify an IPv6 address on this keyword. INADDR_ANY
listeners are converted to an IPv4 address, but ignores an IPv6 address on the
BIND keyword. INGADDR_ANY listeners are converted to either an IPv4 address
(the IPv4-mapped form of that address) or an IPv6 address, depending on what is
specified with the BIND keyword.

If you use the BIND option, your server can listen only for IPv4 connections or
IPv6 connections, but not both. To have the same service serve both IPv4 and IPv6
clients, you might need to start two instances of it, one bound to an IPv4 address
and one to an IPv6 address.

With SHAREPORT or SHAREPORTWLM keyword, you can start multiple
instances of the server and have connections automatically load balanced between
them. This function is supported for TCP listeners only. All IPv4 connection
requests are load balanced between the set of IPv4 listeners (including AF_INET6
IN6ADDR_ANY listeners), while all IPv6 connection requests are load balanced
between the set of IPv6 listeners. See the [z/0S Communications Server: IP)|
[Configuration Referencd for information about the load balancing algorithms used by
each of these parameters.

Security considerations

On z/0S Communications Server, not all security features that are supported over
an IPv4 transport are enabled when communicating by way of an IPv6 transport.
For instance, IPSec, Network Access Control, Stack and Port Access Control, TLS,
SSL, and Kerberos (Kerberos Version 5 and GSSAPIs) are enabled for both IPv4
and IPv6, whereas Intrusion Detection is enabled for IPv4 but not for IPv6. Refer to
[Table 36 on page 134 for a list of features supported for IPv4 or IPvé6.

When a security function is supported over IPv4 but not over IPv6, the security
feature is exercised when data is transmitted over the IPv4 transport. This is true
whether the application uses AF_INET or AF_INET6 sockets. However, when an
AF_INET6 socket application communicates over the IPv6 transport, security
features that are supported over IPv4 only are not exercised.

Result: For the same local application, some security features can be exercised
when communicating by way of IPv4, but not when communicating by way of
IPve.

To avoid creating a potential security exposure, it is important to determine if any
important security features are supported over IPv4 but not over IPv6 prior to
enabling AF_INET6 on a given LPAR. If only a subset of applications utilize such a
security feature, then it is sufficient to ensure that those applications communicate
only over the IPv4 transport.

Chapter 4. Configuring support for z/OS 53

To ensure that the IPv4 transport is used, the following methods are available:

* Verify that the application uses AF_INET sockets. Applications that use AF_INET
sockets are able to communicate only by way of the IPv4 transport.

* Configure the application to bind to an IPv4 address. Applications that bind to
an IPv4 address are able to communicate using the IPv4 transport only.

* Use the BIND parameter on the PORT statement to cause the application to bind
to an IPv4 address.

Application programming considerations

Refer to[Part 3, “Application enablement,” on page 69| for information about
application programming considerations.

Enabling IPv6 support

54

z/0OS Communications Server can be run as an IPv4-only stack or as a dual-mode
stack (IPv4 and IPv6). The BPXPRMxx parmlib member determines which mode is
used. The following configurations are possible:

e INET IPv4 only

e INET IPv4/IPv6 dual-mode stack
e CINET IPv4 only

e CINET IPv4/IPv6 dual-mode stack

Restriction: After a stack has been started, you cannot change its mode without
stopping and restarting the stack.

You can configure either a single AF_INET or both AF_INET and AF_INET6.
Although coding AF_INET6 alone is not prohibited, TCP/IP does not start because
the master socket is AF_INET and the call to open it fails.

IPv4-only BPXPRMxx sample definition:

FILESYSTYPE Type(INET) Entrypoint(EZBPFINI)
NETWORK DOMAINNAME (AF_INET)

DOMAINNUMBER (2)

MAXSOCKETS (2000)

TYPE (INET)

INET IPv4/IPv6 dual-mode stack BPXPRMxx sample definition:

Dual-mode stack support is defined by using two NETWORK statements (one for
AF_INET and one for AF_INET6) in the BPXPRMxx parmlib member. For example:

FILESYSTYPE Type(INET) Entrypoint(EZBPFINI)
NETWORK DOMAINNAME (AF_INET)
DOMAINNUMBER (2)
MAXSOCKETS (2000)
TYPE (INET)
NETWORK DOMAINNAME (AF_INET6)
DOMAINNUMBER (19)
MAXSOCKETS (3000)
TYPE (INET)

Separate MAXSOCKETS values are supported. The IPv6 default is the IPv4
specified value.

CINET IPv4-only BPXPRMxx sample definition:

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Multiple TCP/IP stacks in one MVS image or LPAR are only supported by using
Common INET (CINET). Each TCP/IP stack is defined in the BPXPRMxx parmlib
member using a SUBFILESYSTYPE statement. These definitions are identical to
what was used prior to IPv6 support. The following example shows the definitions
for three IPv4-only stacks:
FILESYSTYPE TYPE(CINET) ENTRYPOINT (BPXTCINT)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)

MAXSOCKETS (2000)

TYPE(CINET)

INADDRANYPORT (20000)

INADDRANYCOUNT (100)
SUBFILESYSTYPE NAME(TCPCS) TYPE(CINET) ENTRYPOINT(EZBPFINI)
SUBFILESYSTYPE NAME(TCPCS2) TYPE(CINET) ENTRYPOINT(EZBPFINI)
SUBFILESYSTYPE NAME(TCPCS3) TYPE(CINET) ENTRYPOINT(EZBPFINI)

CINET IPv4/IPv6 dual-mode stack BPXPRMxx sample definition:

Dual-mode stack (IPv4/IPv6) support is defined by using two NETWORK
statements in the BPXPRMxx member. Each TCP/IP stack is defined in the
BPXPRMxx parmlib member with SUBFILESYSTYPE. All z/OS Communications
Server stacks defined under the two NETWORK statements are IPv4 or IPv6
stacks. The following example shows the definitions for three dual (IPv4/IPv6)
stacks:
FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT)
NETWORK DOMAINNAME (AF_INET)

DOMAINNUMBER(2)

MAXSOCKETS (2000)

TYPE(CINET)

INADDRANYPORT (20000)

INADDRANYCOUNT (100)
NETWORK DOMAINNAME(AF_INETB)

DOMAINNUMBER(19)

MAXSOCKETS (3000)

TYPE (CINET)
SUBFILESYSTYPE NAME(TCPCS) TYPE(CINET) ENTRYPOINT(EZBPFINI)
SUBFILESYSTYPE NAME(TCPCS2) TYPE(CINET) ENTRYPOINT(EZBPFINI)
SUBFILESYSTYPE NAME(TCPCS3) TYPE(CINET) ENTRYPOINT(EZBPFINI)

Configuring z/OS IPv6 support

The following configuration statements enable IPv6 addresses to be configured.
Refer to the [z/OS Communications Server: IP Configquration Reference for detailed
information on each of these statements.

BEGINROUTES
Code this statement to add static IPv6 routes to the IP routing table.
BEGINROUTES with IPv6 addresses coded is rejected if the stack is not
enabled for IPv6. The GATEWAY statement does not support IPv6 routes.

DELETE PORT (BIND IP address)
IPv6 must be enabled for IPv6 addresses to be coded on these
configuration statements.

INTERFACE
An IPv6-enabled stack still uses DEVICE and LINK to define IPv4
interfaces. However, you cannot use DEVICE and LINK to define IPv6
interfaces. You must use the INTERFACE statement to define IPv6
interfaces. The stack must be enabled for IPv6 to use this statement.

Chapter 4. Configuring support for z/OS 55

IPCONFIG
A FORMAT keyword has been added to control the format of the
command output if the stack is not enabled for IPv6.

IPCONFIG6
This statement is rejected if the stack is not enabled for IPv6. However, the
SOURCEVIPA option has a dependency on the INTERFACE statement. You
must specify the SOURCEVIPAINTERFACE keyword on the INTERFACE
statement for each interface on which you desire that SOURCEVIPA take
effect.

PKTTRACE
IPv6 must be enabled for IPv6 addresses to be coded on these
configuration statements.

PORT (BIND IP address)
IPv6 must be enabled for IPv6 addresses to be coded on these
configuration statements.

Resolver processing

56

IPv6 support introduces several changes to how host name and IP address

resolution is performed. These changes affect several areas of resolver processing,

including:

* New resolver APIs are introduced for IPv6 enabled applications. See
[address resolution functions” on page 77 for more details.

* New DNS resource records are defined to represent hosts with IPv6 addresses;
therefore new, network flows between resolvers and name servers (in place of
DNS IPv4 A records).

* A new algorithm is defined to describe how a resolver needs to sort a list of IP
addresses returned for a multihomed host. See [‘Default destination address|
[selection” on page 36 for more information.

* New statements in the resolver configuration files are defined, and new search
orders are implemented for local host tables processing.

Resolver configuration

In order to avoid impacting existing IPv4 queries, the use of /etc/hosts,
HOSTS.LOCAL, HOSTS.SITEINFO, and HOSTS.ADDINFO files continue to be
supported for IPv4 addresses only. The HOSTS.SITEINFO and HOSTS.ADDRINFO
files continue to be generated from HOSTS.LOCAL file by way of the MAKESITE
utility.

ETC.IPNODES is a new local host file (in the style of /etc/hosts) that might
contain both IPv4 and IPv6 addresses. IPv6 addresses can be defined in
ETC.IPNODES only. The introduction of this file allows the administration of local
host files to more closely resemble that of other TCP/IP platforms and eliminates
the requirement of post-processing the files (specifically, MAKESITE).

The following new search order is used for selecting new ETC.IPNODES local host
files for IPv6 searches in MVS and UNIX environments:

1. GLOBALIPNODES

RESOLVER_IPNODES environment variable (UNIX only)
userid /jobname. ETC.IPNODES

hlg. ETC.IPNODES

DEFAULTIPNODES

A S

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

6. /etc/ipnodes

IPv6 search order is simplified, but to minimize migration concerns, the IPv4
search order continues to be supported as in previous releases. The side effect of
this is that by default, you would be required to maintain two different local host
files (for example, IPv4 addresses in HOSTS.LOCAL, IPv6 and IPv4 addresses in
ETC.IPNODES) for your system.

An easier approach is to use the new COMMONSEARCH statement in the resolver
setup file. By specifying COMMONSEARCH, you indicate that only the new IPv6
search order should be used, regardless of whether the search is for IPv6 or IPv4
resources. This means that only one file (ETC.IPNODES) has to be managed for the
system, and that all the APIs utilize the same single file. The use of
COMMONSEARCH reduces IPv6 and IPv4 searching to a single search order, and
also reduces the z/OS UNIX and native MVS environments to a single search
order.

For detailed information about search orders, refer to z/OS Communications Server:|
[P Confiquration Guidel

IPv4-only configuration statements

Only IPv4 addresses can be specified on the NAMESERVER and NSINTERADDR
TCPIP.DATA statements. This implies that all resolver communications with a
name server occurs using AF_INET sockets, even when resource records related to
IPv6 addresses are being queried.

The other statement in the TCPIP.DATA data set that currently supports IP address
specification is the SORTLIST directive. SORTLIST is used for sorting IPv4
addresses only; the default destination address selection algorithm is used to sort
IPv6 addresses.

IPv6/IPv4 configuration statements
Use the following statements for IPv6/IPv4 configuration:

COMMONSEARCH/NOCOMMONSEARCH resolver setup statement
Use these statements when a common local host file search order is to be
used or not used. The COMMONSEARCH statement allows the same
search order of local host files be used for an IPv4 or a IPv6 query. It also
allows the same search order to be used in both the native MVS and z/0OS
UNIX environments.

GLOBALIPNODES resolver setup statement
Use this statement to specify the global local host file.

DEFAULTIPNODES resolver setup statement
Use this statement to specify the default local host file.

Steps for implementing the resolver functions
Perform the following steps to implement the resolver functions

1. Add new resolver setup statements.

2. Create the IPNODES local host files.

3. Add IPv6 resource records to DNS.

Chapter 4. Configuring support for z/OS 57

For detailed information, refer to|Understanding resolvers in the [z/OS|

(Communications Server: IP Configuration Guided,

Resolver communications with the Domain Name System

(DNS)

To retrieve IPv6 data from the proper name server, you must ensure that the
resolver configuration data set points to name servers that can resolve the IPv6
queries. A resolver does not have to communicate with a name server over an IPv6
network in order to retrieve IPv6 data. The z/OS resolver can use only IPv4 to
communicate with a name server.

User exits

Several TCP/IP applications provide exit facilities that can be used for a variety of
purposes. Several of these exits include IP addresses or SOCKADDR structures as
part of the parameters passed to the exits.

The following exits are available to support IPv6 addresses or SOCKADDR
structures:

* FTP - All FTP exits have been enhanced to support IPv6 addresses except for
FTPSMEEX. Samples for these exits are provided in SEZAINST. Refer to
[Communications Server: New Function Summary|for more information on changes
to these exits:

- FTCHKCMD
- FTCHKCM1
— FTCHKCM2
— FTCHKJES
- FTCHKPWD
— FTPOSTPA
— FTPOSTPR
* The TSO remote execution server user exit - RXEXIT.

Which applications started with inetd are IPv6 enabled?

The following z/OS UNIX applications support [Pv6 addresses:
* Internet daemon (inetd) server

* Remote execution (orexecd) server

* Remote shell (orshd) server

* Telnet server (otelnetd)

Modifying inetd.conf

The inetd.conf file must be modified to support the IPv6-enabled applications. In
order for the z/OS UNIX servers to support IPv6 connections, tcp6 must be
specified for the protocol of the service name in the inetd.conf file. When tcp6 is
defined, IPv4 clients are also supported.

The z/OS UNIX rsh server and Telnet server support Kerberos for IPv4
connections, but not for IPv6 connections.

58 2/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

How does IPv6 affect SMF records?

Most of the TCP/IP SMF records currently contain IP addresses as part of their
content. The data in these records is typically processed by programs, some of
which are real-time SMF exits and others that post-process the SMF records after
the records are created. In z/OS V1IR2, a new type of TCP/IP SMF record, type
119, was introduced. The type 119 SMF records were created to provide a
standardized structure for all SMF records provided by TCP/IP. This included a
standard representation of IP addresses appearing across all type 119 records in
which IPv4 addresses appear in IPv4-mapped form and IPv6 addresses appear as
is.

Guideline: The type 119 records constitute a superset of the older type 118 records
in terms of data that is available. Users exploiting IPv6 should migrate to the SMF
119 record.

Type 118 FIP client and server transfer completion records are generated for IPv6
connections. In this case, the FTP records use IP addresses of 255.255.255.255 to
indicate that the address cannot be included. All other type 118 SMF records are
not generated for IPv6 connections.

For more information about SMF records, see the /OS Communications Server: 1P|
(Confiquration Guidd

How does IPv6 affect the Policy Agent?

The Policy Agent supports IPv6 in the following ways:
. lists the policy types that support IPv6.

¢ IPv6 XCF addresses can be specified in a sysplex distributor environment.

Table 6. IPv6 support for different policy types

Policy type IPv6 supported?
IDS No
IPSec Yes
QoS Yes
AT-TLS Yes

When IPv6 addresses are used in policies for a given stack, as configured to Policy
Agent using the Tcplmage configuration statement, the stack must be IPv6 enabled.
IPv6 policy is installed but is not enforceable in a stack that is not IPv6 enabled. If
the corresponding stack is recycled later with IPv6 enabled, all policies are read
and parsed again. At this point, any policies with IPv6 addresses are enforced.

The use of IPv6 interfaces in QoS policies is problematic, because such interfaces
can be assigned multiple IP addresses. As a result, the only way to specify IPv6
addresses in policies is by interface name. The interface name can also be used for
IPv4 interfaces, as well as the IPv4 address. The name specified in the policies for
IPv4 interfaces is the name specified on the LINK statement in the TCP/IP profile.
For IPv6 interfaces, it is the name specified on the INTERFACE statement. IPv6
interfaces can be specified for QoS policies and also for the SetSubnetPrioTosMask
statement or LDAP object.

Chapter 4. Configuring support for z/OS 59

To support sysplex distributor policy performance monitoring, as specified using
the PolicyPerfMonitorForSDR configuration statement, the Policy Agent needs to
establish TCP connections between the qosCollector threads that run on the
distributing stacks and the qosListener threads that run on the target stacks.
Depending on the sysplex configuration, either one or two connections between
these threads are established. One connection is established for all target stacks
that are configured using IPv4, and one connection is established for all target
stacks configured using IPv6. Because a given target can be configured using both
IPv4 and IPv6, it is possible that two connections are established between a given
gosCollector and qosListener thread. When this occurs, only information related to
distributed IPv4 DVIPAs flows over the IPv4 connection and likewise for the IPv6
connection.

How does IPv6 affect SNMP?

The following SNMP components operate over IPv6 networks and handle
[Pv6-related management data.

Requirement: The TCP/IP stack on your system must support IPv6 networking to
take advantage of the IPv6 support offered by these components. If not, these
applications operate in IPv4 mode.

* SNMP agent

* z/0S UNIX snmp/osnmp command
* Trap Forwarder daemon

* Distributed Protocol Interface (DPI®)
e TN3270 Telnet subagent

The TCP/IP subagent supports IPv6 management data in the following MIB
modules:

e IF-MIB from RFC 2233 - Interface data

* IP-MIB from draft-ietf-ipv6-rfc2011-update-04.txt - IP and ICMP data

* IP-FORWARD-MIB from draft-ietf-ipv6-rfc2096-update-05.txt - Route data
e TCP-MIB from draft-ietf-ipv6-rfc2012-update-04.txt - TCP connection data
¢ UDP-MIB from draft-ietf-ipv6-rfc2013-update-03.txt - UDP endpoint data
» TCP/IP Enterprise-specific MIB (IBMTCPIPMVS-MIB)

Refer to|Managing TCP/IP Network Resources with SNMP|in |z/0S Communications|
[Server: IP System Administrator’s Commands|for more details regarding the TCP/IP
Subagent support.

Monitoring the TCP/IP network

60

This section describes how IPv6 affects reports.

How does IPv6 affect Netstat?

* In order to accommodate full IPv6 address information, Netstat reports have
been redesigned. If the TCP/IP stack is IPv6 enabled, reports are displayed in a
different format than with IPv4. This might impact applications that are used to
parse Netstat output. The same considerations apply to applications which use
IP addresses in their automation since IP addresses now have a longer size. If

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

the TCP/IP stack is not IPv6 enabled, the report format is unchanged unless the
FORMAT LONG parameter is specified on the Netstat command or on the
IPCONFIG PROFILE statement.

» IPv6 statistic information is added to the Netstat STATS/-S report.

* Information regarding whether the stack is IPv6 enabled or not is added to the
Netstat UP/-u report.

* For a server that opens an AF_INET6 socket, binds to INGADDR_ANY, and does
a socketopt with IPv6_V60ONLY against the socket, the local address information
in the connection related reports are contained the text (IPV6_ONLY).

Netstat ALLCONN/-a example on an IPv6 enabled stack:

MVS TCP/IP NETSTAT CS VIR6 TCPIP NAME: TCPCS 17:40:36
User Id Conn State

FTPABC1 00000021 Listen
Local Socket: 0.0.0.0..21
Foreign Socket: 0.0.0.0..0

FTPDV6 00000086 Listen
Local Socket: ::..21 (IPv6_ONLY)
Foreign Socket: ::..0

Control of output format
When the stack is IPv6-enabled, the report output is displayed in the new format,
which is referred to as long format.

In order to allow the stack to be configured for IPv4-only operation (not IPv6
enabled and short format displays), but still allow a developer who needs to
modify programs that rely on Netstat output to update and test new versions of
these programs with long format output from Netstat, the following output format
control options are available:

FORMAT SHORT
The output is displayed in the existing IPv4 format.

FORMAT LONG
The output is displayed in the format which supports IPv6 addresses.

A stack-wide output format parameter (FORMAT SHORT/LONG) can be specified
on the IPCONFIG profile statement. It instructs Netstat to produce output in one
of the above formats. FORMAT SHORT is only applicable when the stack is not
IPv6 enabled.

In addition to the stack-wide FORMAT parameter, a Netstat command line option
FORMAT/-M with keyword SHORT/LONG is supported to override the
stack-wide parameter. When a user specifies the Netstat command line format
option, it overrides the stack-wide format parameter on an IPv4-only stack.

What has changed?
All Netstat reports have been modified to support IPv6.

The following Netstat report is added to display Neighbor Discovery cache
information:

* Netstat ND/-n

Guideline: The Netstat GATE/-g is not enhanced to support IPv6 routes. Netstat
ROUTE/-r is the suggested alternative.

Chapter 4. Configuring support for z/OS 61

For more detailed information, refer to|Netstat|in |z/OS Communications Server: IP|
[System Administrator’s Commands|

How does IPv6 affect Ping and Traceroute?
Ping and Traceroute provide the following support for IPvé:

e IPv6 IP addresses or host names that resolve to IPv6 IP addresses, can be used
for destinations.

e IPv6 IP addresses can be used as the source IP address for the command’s
outbound packets.

e IPv6 IP addresses or interface names can be used as the outbound interface.

* A new ADDRTYPE/-A command option can be specified to indicate whether an
IPv4 or IPv6 IP address should be returned from host name resolution.

* IPv4-mapped IPv6 IP addresses are not supported for any option value.

Diagnosing problems

This section describes IPv6 problem diagnosis considerations.

How does IPv6 affect IPCS?

IPCS formatting has been enhanced for IPv6 for TCPIPCS dump analysis and
CTRACE components SYSTCPIP and SYSTCPDA. For detailed information about
IPCS, refer to [TCP/IP services traces and IPCS supporin the z/OS Communications|
[Server: IP Diagnosis Guidd,

How does IPv6 affect packet and data tracing?

Packet and data trace functions have been enhanced for IPv6 to allowing tracing of
IPv6 addresses. For detailed information about trace functions, refer to |TCP/ II5|
services traces and IPCS support] in [z/0S Communications Server: IP Diagnosis Guidd,

62 z/0S VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 5. Configuration guidelines

This chapter describes IPv6 configuration guidelines and contains the following
sections:

+ [“Connecting to an IPv6 Network”|

* |“IPv6 address assignment guidelines” on page 64
» [“Updating DNS definitions” on page 66|
* |“Using source VIPA” on page 66

» |“Using OMPROUTE or define static routes to improve network selection” on|
page 67
* [“Connecting to non-local IPv4 locations” on page 69|

. ‘”IPV6-OI’11V application access to IPv4-only application” on page 68|

Connecting to an IPv6 Network

z/0S Communications Server TCP/IP supports direct attachment to IPv6 networks
in the following ways:

IPAQENETS®6 interface type
TCP/IP attaches to an IPv6 LAN by way of OSA-Express in QDIO mode,
using either Fast Ethernet or Gigabit Ethernet. A single physical LAN can
carry both IPv4 and IPv6 packets over the same media. While the physical
network is shared, from a logical view there are two separate LANs, one
carrying IPv4 traffic and one carrying IPv6 traffic. A single OSA-Express
port can be used to carry both IPv4 and IPv6 traffic simultaneously.

MPCPTP6 interface type
TCP/IP can directly communicate with other IPv6 z/OS Communications
Server TCP/IP V1R5 (or later) images, using ESCON® Channel-to-Channel
Adapters, XCF connectivity (if the stacks are in the same sysplex), or the
IUTSAMEH facility (if the stacks are on the same LPAR).

IPAQIDIO6 interface type
TCP/IP can directly communicate with other IPv6 z/OS Communications
Server TCP/IP VIRY (or later) images and z/Linux images using
HiperSockets connectivity. This applies only to stacks running on the same
central processor complex and running on a zSeries® server that supports
IPv6 HiperSockets .

Guideline: All three of these interface types can be used for LPAR-to-LPAR IPv6
communication, best performance is achieved by using the IPAQIDIO6 interface
type (if both stacks meet the criteria previously listed). The performance of the
other interface types varies with the speed of the underlying media.

For stack-to-stack communications within a single LPAR, the MPCPTP6 interface
type (using IUTSAMEH) provides the best performance.

To transport IPv6 traffic to another host, z/OS TCP/IP must send traffic using
native IPv6 packets. Note that when communicating with another IPv6 host, a
router within the network might tunnel the IPv6 packet across an IPv4 network to
a remote IPv6 LAN or host. However, z/OS Communications Server TCP/IP

© Copyright IBM Corp. 2002, 2006 63

cannot be the tunnel endpoint, and the tunneling by an intermediate router is
transparent to z/OS Communications Server TCP/IP.

IPv6 address assignment guidelines

64

This section provides IPv6 address assignment guidelines.

Avoid using site-local addresses

Site-local addresses were designed to use private address prefixes that
could be used within a site without the need for a global prefix. Until
recently, the full negative impacts of site-local addresses in the Internet
were not fully understood. Due to problems in the use and deployment of
addresses constructed using a site-local prefix, the IETF has deprecated the
special treatment given to the site-local prefix. An IPv6 address constructed
using a site-local prefix is now treated as a global unicast address. The
site-local prefix can be reassigned for other use by future IETF standards
action.

Guideline: Because of this, site-local unicast addresses should not be used.
Use global unicast addresses instead of site-local addresses.

Defining the interface ID for physical interfaces

If you do not manually configure the interface ID, the system selects an
interface ID for you, using a random value (on an MPCPTP6 interface), a
value derived from the MAC address (on an IPAQENET6 interface), or a
value derived from the IQD CHPID (on an IPAQIDIOé6 interface). To
simplify the configuration effort, let the system select the interface ID. In
some cases, though, it is necessary or desirable to control all IPv6
addresses which are assigned to a physical adapter. This might be useful if
other IPv6 nodes need to define static routes to this host, or if you use
IPv6 addresses in Multi-Level Security policies.

Use stateless address autoconfiguration for physical interfaces

IPv6 addresses for physical interfaces can be manually defined or can be
automatically assigned by stateless address autoconfiguration. Use the
stateless address autoconfiguration for this assignment. Using stateless
address autoconfiguration reduces the amount of definition required to
enable IPv6 support, while making future site renumbering easier.

Use VIPAs

Using static VIPAs removes hardware as a single point of failure for
connections being routed over the failed hardware. If you are not using
dynamic routing, configure at least one static VIPA for each LAN to which
z/0S Communications Server TCP/IP is connected. Each VIPA configured
this way should be associated with all physical adapters connected to that
same LAN.

Requirement: Static VIPAs must be manually configured; z/OS
Communications Server TCP/IP does not support stateless address
autoconfiguration for VIPAs.

Dynamic VIPAs (DVIPAs) can also be used in an IPV6 network. The
decision to use DVIPAs in an IPv6 network is similar to the decision to use
DVIPAs in an IPv4 network. For detailed information, refer to |Using|
Dynamic VIPAs (DVIPAs)|in the ;/OS Communications Server: IP|
Configuration Guide,

Selecting the network prefix

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

z/0OS Communications Server TCP/IP does not perform duplicate address
detection for VIPAs, because they are not assigned to a physical interface
attached to the LAN.

Guideline: To avoid possible address collisions, the network prefix used
for static VIPAs should be different from the network prefix used for
physical interfaces (either manually configured or autoconfigured using
stateless address autoconfiguration).

If either the IPv6 OSPF or IPv6 RIP dynamic routing protocol of
OMPROUTE is being used, the network prefix for a static VIPA should not
be the same as any prefix defined as on-link on a physical link. The VIPA
can then be associated with interfaces attached to any physical link, thus
enabling maximum redundancy. This association between VIPAs and
interfaces attached to physical links is accomplished using the
SOURCEVIPAINTERFACE parameter of the INTERFACE statement for the
interface attached to the physical link.

If IPv6 OSPF or IPv6 RIP dynamic routing protocol of OMPROUTE is not
being used, the network prefix for a static VIPA should be selected from
the set of prefixes which are advertised by way of router discovery by one
or more routers attached to the LAN. The prefix should be advertised as
on-link and not to be used for address autoconfiguration. By using an
on-link prefix, hosts and routers attached to the LAN use neighbor
discovery address resolution to obtain a link-layer address for the VIPA.
z/0S Communications Server TCP/IP selects a link-layer address of an
attached physical interface when responding to the query, and the attached
host or router forwards the packet to z/OS Communications Server
TCP/IP. This eliminates the need to define static routes for VIPAs at hosts
and routers attached to the same LAN as z/OS Communications Server
TCP/IP. By using a prefix that is not being used for address
autoconfiguration, the network prefix is not used by hosts for
autoconfiguring addresses for physical interfaces.

Selecting the interface identifier

The VIPA interface identifier must be unique among all IP addresses that
are created using the combination of network prefix and interface
identifier. Any scheme can be used in generating the interface identifiers,
as long as they are unique. By using a network prefix that is not used by
stateless address autoconfiguration, it is only necessary to ensure the
interface identifier is unique among all VIPAs that are sharing the same
network prefix.

Effects of site renumbering on static VIPAs

When renumbering a site, new network prefixes are assigned to
subnetworks. The existing network prefixes are marked as deprecated,
during which time either the new prefixes or the old, deprecated prefixes
can be used. After some time period, the deprecated network prefixes are
deleted, along with all IPv6 addresses which use the network prefix.

For autoconfigured addresses, this process is automatically managed by
stateless address autoconfiguration algorithms. For manually defined
addresses, including all VIPAs, the process must be managed manually.
When a prefix is to be deprecated, addresses that use the prefix should be
deprecated using the INTERFACE DEPRADDR statement. After the prefix
has expired, addresses that use the prefix should be deleted using the
INTERFACE DELADDR statement.

Chapter 5. Configuration guidelines 65

Updating DNS definitions

This section describes considerations for updating DNS definitions.

Including static VIPAs in DNS

Include static VIPAs in DNS, in both the forward and reverse zones. If VIPAs are
used, it is unnecessary to include IPv6 addresses assigned to interfaces.

Requirement: IPv6 Enterprise Extender requires that hostname resolution be used
for the static VIPA. This hostname resolution can be from a DNS or a local hosts
file (/etc/ipnodes).

Defining IPv4-only host names and IPv4/IPv6 host names

In general, IPv6 connectivity between two hosts is preferred over IPv4 connectivity.
In many cases, IPv4 is used only if one of the nodes does not support IPv6. This
can lead to undesirable paths in the network being used for communication
between two hosts. For instance, when a native IPv6 path does not exist, data can
be tunneled over the IPv4 network, even when a native IPv4 path exists.

This can lead to longer connection establishment to an AF_INET application which
resides on a dual-stack host. The client first attempts to connect using each IPv6
address defined for the dual-stack host before attempting to connect with IPv4. A
well-behaved client cycles through all the addresses returned and ultimately,
connects using IPv4. However, this takes both time and network resources to
accomplish, and not all clients are well-behaved or bug-free.

To avoid undesirable tunneling, as well as other potential problems, configure two
host names in DNS. The existing host name should continue to be used for IPv4
connectivity, so as to minimize disruption when connecting to unmodified
AF_INET server applications. A new host name should also be defined, for which
both IPv4 and IPv6 should be configured. When connecting using the old host
name, AF_INET6 clients connect using IPv4. When connecting using the new host
name, AF_INET6 clients attempt to connect using IPv6 and, if that fails, falls back
and connects using IPv4.

Using two host names allows the client to choose the network path that is taken.
The client can route over IPv6 when the destination application is IPv6 enabled
and a native IPv6 path exists, or take an IPv4 path.

The use of distinct host names for IPv4 and IPv4/IPv6 addresses is not strictly
required. A single host name can be used to resolve to both IPv4 and IPv6
addresses. In addition, the use of distinct host names is only necessary during the
initial transition phase when native IPv6 connectivity does not exist and
applications have not yet been enabled for IPv6. After both of these occur, a single
host name can be used.

Using source VIPA

66

Use a VIPA, either static or dynamic, be used as the source IP address on IPv6
hosts. Using a VIPA allows an IPv6 address to be resolved to a host name,
assuming the guidelines in [‘Updating DNS definitions”|are implemented. Define
the VIPA using any of the following available configuration statements:

e SOURCEVIPAINT parameter on the INTERFACE statement
* TCPSTACKSOURCEVIPA parameter on the IPCONFIG6 statement

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

e SRCIP statement

Refer to|Virtual IP Addressing|in the [z/OS Communications Server: IP Configuration|
(Guide| for additional information on choosing an appropriate method for specifying
a source VIPA.

Using OMPROUTE or define static routes to improve network selection

The IPv6 OSPF or IPv6 RIP dynamic routing protocol provided by the
OMPROUTE routing daemon should be used to provide information about the
IPv6 prefixes and hosts that can be accessed indirectly by way of adjacent routers.
IPv6 OSPF or IPv6 RIP can be used, either alone or together with IPv6 router
discovery, to provide complete routing information.

If the IPv6 OSPF or IPv6 RIP dynamic routing protocol of OMPROUTE is not
being used, the only routes that are learned (by way of router discovery) that can
be used to access hosts that are not on directly attached links are default routes.
Hosts can then use the default routes when sending packets to remote hosts. If a
host selects a non-optimal router when sending data, the router can redirect the
host to use a more optimal router when sending data to the remote host, as long as
the optimal router is on the same LAN as the original router.

When a host is connected to multiple LANS, this processing might result in the
following situations:

* A non-optimal router is used
e A router is used that cannot reach the final destination

For instance, if a host selects a router on one LAN, but the optimal router is on
another LAN, the router on the first LAN cannot redirect the host to the second
LAN. In this case, configure a static route to allow the host to initially select the
optimal network path.

Guidelines: When defining static routes, use the following guidelines:
Use subnet routes instead of host routes

Remote IP addresses are difficult to predict. When using extensions to
stateless address autoconfiguration, some clients can change their IP
addresses on a routine basis, such as once an hour or once a day. In
addition, these addresses can be created using cryptographic algorithms,
making it difficult to impossible to predict which IP address a client might
use. Defining static host routes to be used when communicating with such
a client is equally as difficult or impossible.

Instead of defining a host route, define subnet routes. The network prefixes
used in generating IPv6 addresses are much more stable than the interface
identifiers used by hosts, typically changing only when a site is
renumbered.

Use the link-local address of gateway router
When defining the gateway router for a static route, use the link-local
address for the router. Link-local addresses do not change as the result of
site renumbering, minimizing potential updates to the static routes. This is
required in order to honor and process an ICMPv6 redirect message.

Effects of site renumbering on static routes
When a remote site is renumbered, new network prefixes are defined for
the remote site and the old network prefixes are deprecated. After a time
period, the old network prefixes are deleted.

Chapter 5. Configuration guidelines 67

A static route to a remote subnet should be created when a prefix is
defined and should remain as long as the prefix is either preferred or
deprecated. Only when the remote prefix is deleted should the static route
be deleted.

Connecting to non-local IPv4 locations

If native IPv6 connectivity does not exist between two IPv6 sites, IPv6 over IPv4
tunneling can be used to provide IPv6 connectivity to the two sites. z/OS
Communications Server TCP/IP can make use of an IPv6 over IPv4 tunnel to send
packets to a remote site, but cannot be used as a tunnel endpoint itself. Instead, an
intermediate router which supports IPv6 over IPv4 tunneling must act as the
tunnel endpoint.

See [“Enabling IPv6 communication between IPvé6 islands in an IPv4 environment’]
Ign page 39| for more information on IPv6 over IPv4 tunnels.

IPv6-only application access to IPv4-only application

68

When an IPv6-only application needs to communicate with an IPv4-only host or
application, some form of IPv6-to-IPv4 translation or application-layer gateway
must occur. If needed, an outboard protocol translator or application-layer gateway
component must be used, as z/OS Communications Server TCP/IP does not
include such support. There are various technologies which can be used, such as
NAT-PT or SOCKS64. See [“Application Layer Gateways (ALG) and protocoll
ftranslation” on page 43|for more information.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Part 3. Application enablement

Before reading this part, you should have a good understanding of the information
presented in |Part 1, “IPv6 overview,” on page l.|

This section contains the following chapters:

(Chapter 6, “API support,” on page 71| describes the various z/OS socket APIs and
the level of IPv6 present for each APL

(Chapter 7, “Basic socket API extensions for IPv6,” on page 75|describes basic
socket API changes that most applications would use.

(Chapter 8, “Enabling an application for IPv6,” on page 89| describes common issues
and considerations involved in enabling existing IPv4 socket applications for IPv6
communications.

(Chapter 9, “Advanced socket APIs,” on page 99| discusses advanced IPv6 API
functions that can be used by specialized IP applications.

For detailed information on specific APIs, refer to the following documentation:

+ TCP/IP socket APIs are defined in the /OS Communications Server: IP Sockets|
[Application Programming Interface Guide and Referencd

* UNIX Language Environment C/C++ socket APIs are defined in the
[C/C++ Run-Time Library Reference

+ UNIX System Services Callable APIs are defined in the|z/OS UNIX System|
[Services Programming: Assembler Callable Services Referencel

© Copyright IBM Corp. 2002, 2006 69

70 z/0S VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 6. API support

This chapter describes API support and contains the following sections:
* |“Native TCP/IP socket APIs” on page 72
* |“Native TCP/IP socket APIs” on page 72

z/0OS provides a versatile and diverse set of socket API libraries to support the
various z/OS application environments. illustrates the relationship of the
various z/OS socket APIs and the level of IPv6 present for each APIL.

Application Programs and Subsystems

IMS
sockets

CS TCP/IP

C Sockets

Pascal API

| TCP, UDP, and RAW Transport Protocol Layer |

| IPv4 and IPv6 Networking Protocol Layer |

| Network Interface Layer |

Legend
- APIs that are enabled for IPv6

APIs that are not currently enabled for IPv6
but will likely be enabled in a future release

- APIs that will likely not be enabled for IPv6
Figure 15. z/OS socket APIs

The following are the two main socket API execution environments in z/OS:
¢ UNIX [implemented by UNIX System Services (Language Environment)]
* Native TCP/IP (implemented by TCP/IP in z/OS CS)

UNIX socket APIs

This section contains information about UNIX socket APIs.

z/0OS UNIX Assembler Callable Services

z/0S UNIX Assembler Callable Services is a generalized call-based interface to
z/0OS UNIX IP sockets programming. This API supports both IPv4 and IPv6
communications. It includes support for the basic IPv6 API features and for a
subset of the advanced IPv6 API features. For more information, refer to the /O
[UNIX System Services Programming: Assembler Callable Services Referencd.

z/0OS C sockets

z/0S UNIX C sockets is used in the z/OS UNIX environment. Programmers use
this API to create applications that conform to the POSIX or XPG4 standard (a

© Copyright IBM Corp. 2002, 2006 71

UNIX specification). This API supports both IPv4 and IPv6 communications. It
includes support for the basic IPv6 API features and for a subset of the advanced

IPv6 API features. For more information on this API, refer to the [z/OS XL C/C+
[Run-Time Library Reference}

Native TCP/IP socket APIs

72

The following TCP/IP Services APIs are included in this library. For more
information on these APIs (excluding CICS®), refer to|z/OS Communications Server.1
[P Sockets Application Programming Interface Guide and Referencd

Sockets Extended macro API

The Sockets Extended macro API is a generalized assembler macro-based interface
to IP socket programming. It includes support for IPv4 and for the basic IPv6
socket API functions.

Sockets Extended Call Instruction API

The Sockets Extended Call Instruction API is a generalized call-based interface to
IP sockets programming. It includes support for IPv4 and for the basic IPv6 socket
API functions.

REXX sockets

The REXX sockets programming interface implements facilities for IP socket
communication directly from REXX programs by way of an address rxsocket
function. It includes support for IPv4 and for the basic IPv6 socket API functions.

CICS sockets

The CICS socket interface enables you to write CICS applications that act as clients
or servers in a TCP/IP-based network. Applications can be written in C language,
using the C sockets programming interface, or they can be written in COBOL,
PL/I, or assembler, using the Extended Sockets programming interface. This API
supports TCP/IP communications over IPv4 and basic IPv6 socket API functions.
For more information, refer to the g/OS Communications Server: IP CICS Socketd

IMS sockets

The Information Management System (IMS™) socket interface supports
development of client/server applications in which one part of the application
executes on a TCP/IP-connected host and the other part executes as an IMS
application program. The programming interface used by both application parts is
the socket programming interface. This API currently supports TCP/IP
communications over IPv4 only, but will probably support IPv6 communications in
a future release. For more information, refer to|z/OS Communications Server: IP IM9|

Pascal API

The Pascal socket application programming interface enables you to develop
TCP/IP applications in the Pascal language. It only supports TCP/IP
communications over IPv4. It is unlikely that this API will be enhanced to support
IPv6 in the future. Applications using this API are encouraged to migrate their
application to one of the other socket APIs that are IPv6 enabled.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

TCP/IP C/C++ Sockets

The C/C++ Socket interface supports IPv4 socket function calls that can be
invoked from C/C++ programs. This API is very similar to the UNIX C socket API
that is the recommended socket API for C/C++ application development on z/OS.
The TCP/IP C/C++ sockets API will not be enhanced for IPv6 support. Existing
applications that will be enabled for IPv6 should consider migrating to the UNIX C
socket APL

There are several higher level C/C++ APIs that rely on the TCP/IP sockets for
communications over an IP network, including the following:

* Resource Reservation Setup Protocol API (RAPI)
* Sun and NCS Remote Procedure Call (RPC)

* X Window System and Motif

* X/Open Transport Interface (XTI)

These APIs do not support IPv6 communications.

Guideline: CICS programs written to use the IP CICS C Sockets API must use the
TCP/IP C headers. Include the following definition to expose the required IPv6
structures, macros, and definitions in the header files:

#define _ CICS_IPV6

Refer to|C Language application programming| in the |z/OS Communications Server:]
[P _CICS Sockets Guidd for guidance on using the IP CICS C Sockets APL

Chapter 6. API support 73

74 z/0S VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 7. Basic socket API extensions for IPv6

This chapter describes the basic extensions to the socket interface and new features
of IPv6 as described in the Internet Engineering Task Force (IETF) RFC 3493, Basic
Socket Interface Extensions for IPv6. and contains the following sections:

. ”Introduction”l

* |“Design considerations”]

* [“Name and address resolution functions” on page 77

* |“Interface identification” on page 84
* |“Socket options to support IPv6 (IPPROTO_IPV6 level)” on page 84|

Note: All examples in this chapter are shown using UNIX Language Environment
C; seez/OS XL C/C++ Run-Time Library Reference| for details.

Introduction

IPv4 addresses are 32 bits long, but IPv6 interfaces are identified by 128-bit
addresses. The socket interface makes the size of an IP address visible to an
application; virtually all TCP/IP applications using sockets have knowledge of the
size of an IP address. Those parts of the API that expose the addresses must be
changed to accommodate the larger IPv6 address size. IPv6 also introduces new
features, some of which must be made visible to applications by way of the APL

Design considerations

The two main programming tasks associated with IPv6 exploitation involve
migrating existing application programs to support IPv6 and designing new
programs for IPv6. In both cases, the changed or new code should be designed so
that it is capable of using IPv4 or IPv6 addresses. Servers should be designed so
that they can communicate with both IPv4 and IPv6 clients. Existing IPv4 client
and server programs should continue to operate properly as long as only IPv4
connectivity is required between clients and servers.

The following sections describe key differences between IPv4 and IPv6.

Requirement: It is assumed that you have a basic knowledge of IPv4 socket
programming for clients and servers.

Protocol families

IPv4 socket applications use a AF_INET (equivalent to PF_INET) protocol family.
For IPv6, a new protocol family of AF_INET6 (equivalent to PF_INET6) has been
defined. The protocol family is the first parameter to the socket() function that is
used to obtain a socket descriptor. For most applications, an AF_INET6 socket can
be used to communicate with IPv4 and IPv6 clients.

Address families

Most socket functions require a socket descriptor and a generic socket address
structure called a sockaddr. The exact format of the sockaddr structure depends on
the address family. For IPv4 sockets, the sockaddr structure is sockaddr_in. For
IPv6, the sockaddr structure sockaddr_in6 is used.

© Copyright IBM Corp. 2002, 2006 75

The following socket functions have a sockaddr as one of their parameters:

bind()
connect()
sendmsg()
sendto()
accept()
recvirom()
recvmsg()
getpeername()
getsockname()

The sockaddr structure that is used in these functions must be the proper structure
for the socket family.

For IPv4 (AF_INET), the sockaddr (sockaddr_in) contains the information shown in

Table 7. sockaddr format for AF_INET

sockaddr length 1 byte Not used, should be set to 0
family 1 byte AF_INET

port 2 bytes TCP or UDP port number
IP address 4 bytes IPv4 IP address

reserved 8 bytes Not used

For IPv6 (AF_INETS6), the sockaddr (sockaddr_in6) contains additional information.
Also, note that the IP address for IPv6 is 16 bytes long instead of 4 bytes long as in

1Pv4.

Table 8. sockaddr format for AF_INET6

sockaddr length 1 byte Not used, should be set to 0
family 1 byte AF_INET6
port 2 bytes TCP or UDP port number (same as v4)
flowinfo 4 bytes Flow information
IP address 16 bytes IPv6 IPaddress
scope 1D 4 bytes Used to determine IP address scope

Special IP addresses

Like IPv4, IPv6 also defines loopback and wildcard (INADDR_ANY) addresses.
The differences are shown in

Table 9. Special IP addresses

IPv4 IPv6
Loopback address 127.0.0.1 ::1 (15 bytes of zeros, 1 byte of 1)
Wildcard address 0.0.0.0 i (16 bytes of zeros)
Multicast address 224.0.0.1 - 239.255.255.255 Refer to [“Multicast IPv6 Addresses”|
I(_)n page 12|

76 z/0S VI1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Name and address resolution functions

IPv6 introduces new APIs for the Resolver function. These APIs allow applications
to resolve host names to IP addresses and vice versa. The primary new APIs are
getaddrinfo, getnameinfo, and freeaddrinfo. The APIs are designed to work with
both IPv4 and IPv6 addressing. The use of these new APIs should be considered if
an application is being designed for eventual use in an IPv6 environment.

The way in which hostname (getaddrinfo) or IP address (getnameinfo) resolution is
performed depends on the Resolver specifications contained in the Resolver setup
files and TCPIP.DATA configuration files. These specifications determine whether
the APIs query a name server first, then search the local host tables, or whether the
order is reversed, or even if one of the steps is eliminated completely. The
specifications also control, if local host tables have to be searched, which tables that
are accessed. For detailed information about Resolver setup, see
lconfiguration” on page 56/

Protocol-independent nodename and service name translation

Getaddrinfo is conceptually a replacement for the existing gethostbyname and
getservbyname APIs. Getaddrinfo takes an input hostname, or an input
servicename, or both, and returns (when resolution is successful) one or more
addrinfo structures. Getaddrinfo can also accept as input, a hostname or a
servicename in numeric form, and returns the same value in presentation form
using the addrinfo structure. An addrinfo structure contains the following output
information:

* Pointer to sockaddr_in or sockaddr_in6 structure containing an IP address and
service port

* Length of sockaddr structure and family type (AF_INET, AF_INET6) of the
sockaddr structure

* Socktype and protocol values usable with this sockaddr structure

* Pointer to canonical name associated with the input hostname (applicable only
in the first addrinfo structure)

* Pointer to next addrinfo structure (set to 0 in the last element of the chain)

The storage for the addrinfo structures is allocated by the Resolver from the
application’s address space, and the application should use the freeaddrinfo API to
release the addrinfo structures when the information is no longer required. The
application should not manipulate the chain of addrinfo structures returned by
way of getaddrinfo, but rather that the application simply return the entire chain,
as received, back to the Resolver by way of freeaddrinfo.

In addition to hostname or servicename, one of which must be present on a valid
getaddrinfo invocation, the application can specify additional input to the Resolver
on the getaddrinfo invocation. This input is optional, and if specified, is passed by
way of an input addrinfo structure. The input settings include the following
possibilities:

¢ Family type of sockaddr structure required on output.

* Socktype and protocol values for which the returned IP address and port
number must work. This would be used primarily for cases where a servicename
was being resolved, as might typically have been done previously by way of
getservbyname.

* Various input flag settings include the following:

- AI ADDRCONFIG

Chapter 7. Basic socket API extensions for IPv6 77

78

- Al ALL

- AI_ CANONNAME
— AI NUMERICHOST
— AI NUMERICSERV
— AI_PASSIVE

- AI_V4AMAPPED

In the absence of any specific input from the application, the Resolver assumes that
any sockaddr type is acceptable (that is, both IPv4 and IPv6 addresses) as output.
Thus, by default, the Resolver searches for both IPv6 and IPv4 address by way of
DNS or by way of local host files (such as /etc/hosts). Obviously, this might not
always be the best choice for the application issuing getaddrinfo. By using the
above input fields, an application issuing getaddrinfo() can influence the
processing performed by the Resolver function for that given request in the
following ways:

* The application can specify that the sockaddr returned by getaddrinfo should be
of family type AF_INET, AF_INET6 or AF_UNSPEC (meaning either family type
would be acceptable). For example, if AF_INET is specified, the Resolver does
not perform any searches for IPv6 addresses for hostname, because the output
requested must be an IPv4 address.

* The application can specify the following:
Both IPv6 and IPv4 addresses should be returned
IPv4 should be returned only if there are no IPv6 addresses resolved

Only IPv6 addresses should be returned

Only IPv4 addresses should be returned.

This information, indicated by the input combination of family type and the
AI_ALL and AI_V4MAPPED flags, to a large extent controls the types of
searches performed by the Resolver during the course of the processing.

* The application can specify that IPv6 addresses should be returned only when
the system has IPv6 interfaces defined and can specify that IPv4 addresses
should be returned only when IPv4 interfaces are defined. This preference,
indicated by way of the AL ADDRCONFIG flag, allows the application to
eliminate resolution searches looking for addresses that cannot be used by the
application.

* The application can specify whether the sockaddr returned should contain an
address for passive (that is, the INADDR_ANY address) or active (that is, the
loopback address) socket activation. This choice is indicated by way of the
AI_PASSIVE flag, and is applicable only in the absence of an input hostname.

* The application can specify that only translation from presentation to numeric
format should be performed for hostname, or service name, or both. This option
is indicated by setting the Al NUMERICHOST (for hostname) or
AI_NUMERICSERV (for servicename) flags, which indicate that the associated
input value must be in numeric format or the Getaddrinfo request should be
failed.

* The application can specify that only a given socktype or protocol value should
be used for looking up the port number associated with the input servicename,
or can request that all valid socktypes and protocols (TCP and UDP) be used for
the getservbyname processing. This preference is indicated by way of the
socktype and protocol settings.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

With such a flexible interface, the application programmer must decide what
inputs are reasonable for the capabilities of the application being created or
modified. The most likely application uses are the following.

shows the two most likely application usages and the suggested
getaddrinfo input settings that coincide with that functionality:

* IPv6-capable when the underlying system is IPv6 capable

* IPv4-capable only

Table 10. Getaddrinfo application capabilities 1

addresses for
hostname, in
IPv6 format

AI_ALL

Sockaddr

Application family to Additional flags to

capabilities request set Expected outputs

(IPv4 only) AF_INET AI_ADDRCONFIG | Getaddrinfo returns one or more

Application is addrinfo structures, each pointing to

pure IPv4 and an IPv4 address saved in an

cannot handle AF_INET sockaddr. No addrinfos are

any IPv6 returned if there is no IPv4 interfaces

addresses. defined on the system. No searches
of any kind are performed for IPv6
addresses as part of this request.

(IPv6 capable) | AF_UNSPEC | Al_ADDRCONFIG, |Getaddrinfo returns one or more

Application AI_ALL -or addrinfo structures, each pointing to

wants all -AI_ADDRCONFIG, |a sockaddr structure. The sockaddrs

known AI_VAMAPPED, consists of one of the following sets:

» All AF_INET6 sockaddrs,
containing IPv6 or mapped IPv4
addresses, if the system supports

when the IPv6 processing (only when
system Pus AI_V4AMAPPED coded).
Z‘:Iiﬁci;t‘sﬂl Vo, * AF_INET6 sockaddrs, containing
format IPv6 addresses, and AF_INET
otherwise sockaddrs, containing IPv4

addresses, if the system supports
IPv6 processing (only when
AI_VAMAPPED is NOT coded).

* All AF_INET sockaddrs, containing
IPv4 addresses, if the system does
not support IPv6 processing.

In all cases, the IPv6 addresses are
returned only if there is an IPv6
interface defined on the system, and
the IPv4 addresses are returned only
if there is an IPv4 interface defined.

An application with no interest in utilizing IPv6 wants to utilize the first entry in
able 10, Otherwise, if there is some interest in utilizing IPv6 functionality, an

application would achieve the greatest flexibility by using the second table entry.
Using the IPv6 entry approach, the application places the burden of supplying a
workable sockaddr structure on the Resolver logic. If IPv6 is supported on the
system, the Resolver endeavors to return AF_INET6 sockaddrs to the application;
otherwise, the Resolver returns AF_INET sockaddrs to the application. The choice
of coding or not coding AI_V4MAPPED in this situation depends on the

Chapter 7. Basic socket API extensions for IPv6 79

80

application’s preference regarding receiving AF_INET6 sockaddrs: the more the
application wants to deal exclusively with AF_INET6 sockaddrs, the more reason
to code AI_V4AMAPPED.

[Table 10 on page 79 should be sufficient for most application usages. However,

there are other likely application capability models possible, and [Table 11| provides
some guidance on how to code the Getaddrinfo invocations for those applications.

Table 11. Getaddrinfo application capabilities 2

prefers IPv6
addresses, but
can handle
native IPv4
addresses if
necessary.

Sockaddr
Application family to Additional flags to
capabilities request set Expected outputs
Application is | AF_INET6 AI_ADDRCONEFIG | Getaddrinfo returns one or more
pure IPv6 and addrinfo structures, each pointing to
cannot handle an IPv6 address saved in an
any mapped AF_INET6 sockaddr. No addrinfos is
IPv4 addresses. returned if there is no IPv6 interfaces
defined on the system. No searches
of any kind are performed for IPv4
addresses as part of this request.
Application AF_INET6 AI_ADDRCONFIG, | Getaddrinfo returns one or more
prefers IPv6 AI_V4AMAPPED addrinfo structures, each pointing to
addresses, an AF_INET6 sockaddr. The
requires IPv6 addresses within the sockaddrs
address format, consists of one of the following sets:
but can handle e All IPv6 addresses, if there is an
mapped IP.V4 IPv6 interface defined on the
addresses if system and IPv6 addresses exist
necessary. for hostname
¢ All mapped IPv4 addresses, if
there were no IPv6 addresses to be
returned for hostname and there
was an IPv4 interface defined for
the system
Application AF_UNSPEC | AI_ ADDRCONFIG | Getaddrinfo returns one or more

addrinfo structures, each pointing to
a sockaddr structure. The sockaddrs
consists of one of the following sets:

* All AF_INET6 sockaddrs,
containing IPv6 addresses, if there
is an IPv6 interface defined on the
system and IPv6 addresses exist
for hostname

* All AF_INET sockaddrs containing
IPv4 addresses, if there were no
IPv6 addresses to be returned for
hostname and there was an IPv4
interface defined for the system

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Table 11. Getaddrinfo application capabilities 2 (continued)

Sockaddr

Application family to Additional flags to

capabilities request set Expected outputs

Application AF_INET6 AI_ADDRCONFIG, | Getaddrinfo returns one or more

wants all Al_VAMAPPED, addrinfo structures, each pointing to

known AI_ALL an AF_INET6 sockaddr. The

addresses for addresses within the sockaddrs

hostname, in consists of all IPv6 addresses, if there

IPv6 format. is an IPv6 interface defined on the
system and mapped IPv4 addresses,
if there is an IPv4 interface defined
for the system, associated with
hostname.

Application AF_UNSPEC | AI_ADDRCONEFIG, | Getaddrinfo returns one or more

wants all AI_ALL addrinfo structures, each pointing to

known a sockaddr structure. The sockaddr

addresses for structures are a mixture of

hostname, in AF_INET6 sockaddrs (each

native (IPvé6 or containing an IPv6 address) and

IPv4) format. AF_INET sockaddrs (each containing
an IPv4 address). The IPv6 addresses
are returned only if there is an IPv6
interface defined on the system, and
the IPv4 addresses are returned only
if there was an IPv4 interface
defined for the system.

Application AF_UNSPEC |AI_ALL Getaddrinfo returns one or more

wants all addrinfo structures, each pointing to

known a sockaddr structure. The sockaddr

addresses for structures can be a mixture of

hostname, AF_INET6 sockaddrs (each

regardless of containing an IPv6 address) or

system AF_INET sockaddrs (each containing

connectivity, in an IPv4 address), depending on the

native format. address resolution.

Default settings | AF_UNSPEC |NONE Getaddrinfo returns one or more

when IPv6 is
enabled on the
system.

addrinfo structures, each pointing to
a sockaddr structure. The sockaddrs
consists of one of the following sets:

¢ All AF_INET6 sockaddrs,
containing IPv6 addresses, if there
is an IPv6 address defined for
hostname in any queried domain
name server or defined in a local
hosts table. No searches for IPv4
addresses are performed for
hostname.

¢ All AF_INET sockaddrs,
containing IPv4 addresses, if there
are no IPv6 addresses found for
hostname.

In either case, the actual availability
of IPv6 or IPv4 interfaces on the
system is not taken into
consideration.

Chapter 7.

81

Basic socket API extensions for IPv6

82

Table 11. Getaddrinfo application capabilities 2 (continued)

Sockaddr
Application family to Additional flags to
capabilities request set Expected outputs
Default settings | AF_UNSPEC |NONE Getaddrinfo returns one or more
when IPv6 is addrinfo structures, each pointing to
not enabled on a sockaddr structure. The sockaddr
the system. structures can be a mixture of

AF_INET6 sockaddrs (each
containing an IPv6 address) or
AF_INET sockaddrs (each containing
an IPv4 address), depending on the
address resolution performed. The
actual availability of IPv6 or IPv4
interfaces on the system in not taken

into consideration.

Regardless of the application model in use, and because output from getaddrinfo
can be a chain of addrinfo structures, the application should attempt to use each
address, in the order received, to open a socket and connect or send a datagram to
the target host name until it is successful, versus simply using the first address and
stopping if a failure is encountered.

The application is now responsible for freeing the storage (addrinfo and sockaddr
structures, and so on) associated with the new resolver APIs. The new freeaddrinfo
API should be used to free this storage. If the application neglects to perform this
step, the resolver cleans up the storage when the process terminates, but storage
constraints might occur before termination if a large number of getaddrinfo APIs
are performed.

Socket address structure to host name and service name

Conceptually, Getnameinfo is a replacement for the existing gethostbyaddr and
getservbyport APIs. Getnameinfo takes an input IP address or an input port number,
or both, and returns (when resolution is successful) the host name or the service
location. These parameters are passed in a sockaddr structure that also contains the
address family.

In addition to IP address or port number, one of which must be present on a valid
getnameinfo invocation, the application can specify additional input to the
Resolver on the getnameinfo invocation. This input is optional. The input settings
include the following (various input flag settings can be specified):

NI_NOFQDN
Specifies that only the host name portion of the fully qualified domain
name (FQDN) is returned for local hosts.

NI_NUMERICHOST
Specifies that the numeric form of the host name, its IP address, is returned
instead of its name. No resolution takes place for the specified input if the
NI_NUMERICHOST flag is on.

NI_NUMERICSERV
Specifies that the numeric form of the service name, the port number, is
returned instead of the service name. No resolution takes place for the
specified input if the NI_NUMERICSERYV flag is on.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

NI_NAMEREQD

Specifies that an error is returned if the host name cannot be located. (If
NI_NAMEREQD is not specified, the numeric form of the host name, the

IP address, is returned).

NI_DGRAM

Specifies that the service is a datagram service (SOCK_DGRAM). The
default behavior assumes that the service is a stream service.

Address conversion functions

IP addresses often need to be given to a socket application in character (string)
format. It is also common for socket applications to need to display IP addresses in
string format. The following functions work for IPv4 and IPv6 addresses:

inet_ntop

Convert a binary IP address (either v4 or v6) into string format.

inet_pton
Convert an IP address in string format to binary format.

The functions inet_ntoa and inet_addr are still available, but they cannot be used

for IPv6 addresses.

Table 12. Address conversion functions

z/OS UNIX Socket Extended
Assembler C/C++ using macro/call
Callable Language IP CICS C (includes CICS
Function services Environment |sockets REXX EZASOKET)
inet_pton No Yes Yes No No
inet_ntop No Yes Yes No No
PTON No No No No Yes
NTOP No No No No Yes

Address testing macros

The macros listed in [Table 13| can be used to test for special IPv6 addresses.

Table 13. Address testing macros

Socket
Extended
Assembler | C/C++ using macro/call
Callable Language IP CICS (includes CICS
Macros services Environment | C sockets | REXX | EZASOKET)
IN6_IS_ADDR_UNSPECIFIED No Yes Yes No No
IN6_IS_ ADDR_LOOPBACK No Yes Yes No No
IN6_IS_ADDR_MULTICAST No Yes Yes No No
IN6_IS_ADDR_LINKLOCAL No Yes Yes No No
IN6_IS_ADDR_SITELOCAL No Yes Yes No No
IN6_IS_ADDR_V4MAPPED No Yes Yes No No
IN6_IS_ADDR_V4COMPAT No Yes Yes No No
IN6_IS_ADDR_MC_NODELOCAL | No Yes Yes No No
IN6_IS_ADDR_MC_LINKLOCAL No Yes Yes No No
IN6_IS_ADDR_MC_SITELOCAL No Yes Yes No No
IN6_IS_ADDR_MC_ORGLOCAL No Yes Yes No No
IN6_IS_ADDR_MC_GLOBAL No Yes Yes No No

Chapter 7. Basic socket API extensions for IPv6 83

The macros function in the following ways:

* The first seven macros return true if the address is of the specified type, or false
otherwise.

* The last five macros test the scope of a multicast address and return true if the
address is a multicast address of the specified scope, or false if the address is
either not a multicast address or not of the specified scope.

» IN6_IS_ADDR_LINKLOCAL and IN6_IS_ADDR_SITELOCAL return true only
for the two types of local-use IPv6 unicast addresses (link-local and site-local),
and that by this definition, the IN6_IS_ADDR_LINKLOCAL macro returns false
for the IPv6 loopback address (::1). These two macros do not return true for IPv6
multicast addresses of either link-local scope or site-local scope.

Interface identification

IPv6 interfaces can have many different IP addresses. IPv6 allows a socket
application to specify an interface to use for sending data by specifying an
interface index. Certain socket options allow specification an interface index. Also,
socket options for IPv6 multicast join group and IPv6 multicast leave group allow
optional specification of an interface index.

The function, if_nameindex(), allows socket applications to obtain a list of interface
names and their corresponding index. Also, two functions, if nametoindex() and
if_indextoname() allow translation of an interface name to its index and translation
of an interface index to an interface name. The function, if_freenameindex(), is
used to free dynamic storage allocated by the if nameindex() function.

For non-C/C++ (Language Environment applications), a new ioctl function code
(SIOCGIFNAMEINDEX) is provided. Use|[Table 14| to determine which APIs
support this new ioctl.

Table 14. Function calls

Socket

z/OS UNIX Extended

Assembler C/C++ using macro/call

Callable Language IP CICS (includes CICS
Function/IOCTL services Environment | C sockets | REXX | EZASOKET)
if_nametoindex No Yes Yes No No
if_indextoname No Yes Yes No No
if_nameindex No Yes Yes No No
SIOCGIFNAMEINDEX | Yes No No Yes Yes
if_freenameindex No Yes Yes No No

Socket options to support IPv6 (IPPROTO_IPV6 level)

84

A group of socket options is defined to support IPv6. They are defined with a level
of IPPROTO_IPV6. The individual options begin with IPV6_ .

Restriction: These options are only allowed on AF_INET6 sockets.

In most cases, an IPV6_xxx option can be set on an AF_INET6 socket that is using
IPv4-mapped IPv6 addresses but have no effect. For example, the

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

IPV6_UNICAST_HOPS socket option is used to set a hop limit value in the IPv6
header. Because IPv4 packets are used with IPv4-mapped IPv6 addresses, the hop
limit value is not used.

Guideline: The Sockets Extended macro/call APIs do not use level as an input to
getsockopt() and setsockopt(). However, other IPv6-enabled APIs do use level as
input. For detailed information about setsockopt() and getsockopt() input and
output, refer to the API-specific documentation.

Table 15. Socket options for getsockopt() and setsockopt()

Sockets
Extended
z/OS UNIX macro/call
Assembler C/C++ using |IP CICS (includes
Socket options Callable Language C CICS
getsockopt() setsockopt() |services Environment |sockets |REXX |EZASOKET)
IPV6_UNICAST_HOPS Yes Yes Yes Yes Yes
IPV6_MULTICAST_IF Yes Yes Yes Yes Yes
IPV6_MULTICAST_LOOP | Yes Yes Yes Yes Yes
IPV6_MULTICAST_HOPS | Yes Yes Yes Yes Yes
IPV6_JOIN_GROUP Yes Yes Yes Yes Yes
IPV6_LEAVE_GROUP Yes Yes Yes Yes Yes
IPV6_V60ONLY Yes Yes Yes Yes Yes

Option to control sending of unicast packets

Use the following option to control sending of unicast packets:

IPV6_UNICAST_HOPS
The IPv6 header contains a hop limit field that controls the number of
hops over which a datagram can be sent before being discarded. This is
similar to the TTL field in the IPv4 header. The IPV6_UNICAST_HOPS
socket option can be used to set the default hop limit value for an
outgoing unicast packet. The socket option value should be between 0 and
255 inclusive. A socket option value of -1 is used to clear the socket option.
This causes the stack default to be used.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, the stack’s default value is returned.

The HOPLIMIT parameter on the IPCONFIG6 statement influences the
default hop limit when this socket option is not set. An application must
be APF-authorized or have superuser authority to set this option to a value
greater than the value of HOPLIMIT on the IPCONFIG6 statement. Refer
to the [z/OS Communications Server: IP Configuration Referencd for more
information about the IPCONFIG6 statement.

Tip: This function is similar to the IPv4 socket option IP_TTL.

Options to control sending of multicast packets

The following three options allow an application to control certain features in the
transmission of IPv6 multicast packets. These socket options do not have to be set
to send multicast packets. Supplying a multicast address as the destination address
is the only thing required to send an IPv6 multicast packet.

Chapter 7. Basic socket API extensions for IPv6 85

86

IPV6_MULTICAST_IF

This socket option allows an application to control the outgoing interface
used for a multicast packet. The socket option value is the interface index
of the interface to be used.

A getsockopt() with this option returns the value set by setsockopt(). If a
setsockopt() has not been done, a value of 0 is returned.

Tip: This function is similar to the IPv4 socket option IP_ MULTICAST_IF.

IPV6_MULTICAST_HOPS

The IPv6 header contains a hop limit field that controls the number of
hops over which a datagram can be sent before being discarded. This is
similar to the TTL field in the IPv4 header. The IPV6_MULTICAST_HOPS
socket option can be used to set the default hop limit value for an
outgoing multicast packet. The socket option value should be between 0
and 255 inclusive. A socket option value of -1 is used to clear the socket
option. This causes the default value of 1 to be used.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the default value of 1 is returned.

The default value is 1. An application must be APF-authorized or have
superuser authority to set this option to a value greater than the value of
HOPLIMIT on the IPCONFIG6 statement. Refer to the f/OS Communications
[Server: IP Configuration Reference| for more information on the IPCONFIG6
statement.

Tip: This function is similar to the IPv4 socket option
IP_MULTICAST_TTL.

IPV6_MULTICAST_LOOP

When a multicast packet is sent, if the sender belongs to the multicast
group to which the packet was sent, then this option controls whether the
sender receives a copy of the packet or not. If this option is enabled, then
the sender receives a copy of the packet. The socket option value should be
1 to enable the option, or 0 to disable the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the default value of 1 (enabled) is returned.

Tip: This function is similar to the IPv4 socket option
IP_MULTICAST_LOOP.

Options to control receiving of multicast packets
Use the following option to control receiving of multicast packets:

IPV6_JOIN_GROUP

This socket option allows an application to join a multicast group on a
specific local interface. The socket option data specifies an IPv6 multicast
address and an IPv6 interface index. IPv4-mapped IPv6 multicast addresses
are not supported. If an interface index of 0 is specified, the stack selects a
local interface. An application that wants to receive multicast packets
destined for a multicast group needs to join that group. It is not necessary
to join a multicast group to send multicast packets.

Restriction: Getsockopt() does not support this option.

Tip: This function is similar to the IPv4 socket option
IP_ADD_MEMBERSHIP.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

IPV6_LEAVE_GROUP
This socket option is used by an application to leave a multicast group it
previously joined. The socket option data specifies an IPv6 multicast
address and an IPv6 interface index. If an interface index of 0 is used to
join a multicast group, an interface index of 0 must be used to leave the
group.
Restriction: Getsockopt() does not support this option.

Tip: This function is similar to the IPv4 socket option
IP_DROP_MEMBERSHIP.

Socket option to control IPv4 and IPv6 communications

Use the following option to control IPv4 and IPv6 communications:

IPV6_V60ONLY
An AF_INET6 socket can be used for IPv6 communications, IPv4
communications, or a mix of IPv6 and IPv4 communications. The
IPV6_V60ONLY socket option allows an application to limit an AF_INET6
socket to IPv6 communications only. A nonzero socket option value enables
the option; a value of 0 disables the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the default value of 0 (disabled) is
returned.

If an application wants to enable this option, the setsockopt() must be set
prior to binding the socket, connecting the socket, or sending data over the
socket. This option cannot be changed (either enabled or disabled) after the
socket has been bound. (An implicit bind is done for datagram sockets on
connect or send operations if the socket is not already bound.)

Socket options for SOL_SOCKET, IPPROTO_TCP and
IPPROTO_IP levels

Socket options at the SOL_SOCKET and IPPROTO_TCP levels are not dependent
on the IP layer being used. They are supported for both AF_INET and AF_INET6
sockets.

Socket options at the IPPROTO_IP level support IPv4. They are not supported on
AF_INET6 sockets.

Not all socket options at these levels are supported by all APIs. Check the API
specific documentation for information on a specific socket option.

Chapter 7. Basic socket API extensions for IPv6 87

88 2/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 8. Enabling an application for IPv6

This chapter describes how to enable an application for IPv6 and contains the
following sections:

+ [“Changes to enable IPv6 support’|

* |“Support for unmodified applications”|

Changes to enable IPv6 support

Several coding changes are needed to enable an application for IPv6
communications. [Chapter 7, “Basic socket API extensions for IPv6,” on page 75|
describes the changes to the basic Socket APIs that most applications use.

(Chapter 9, “Advanced socket APIs,” on page 99| describes the changes to advanced
functions (which are typically used by a small number of TCP/IP applications) of
the socket APIs that facilitate IPv6 communications. The sections in this chapter
describe some of the general considerations involved in enabling an application for
IPv6. Note that while many of the examples and references in this chapter assume
the use of C/C++ sockets supported by the Language Environment (LE), most of
the concepts (unless explicitly noted) apply to the other Socket API libraries that
support IPv6. For a more detailed description of the actual APIs, see thapter 7]
“Basic socket API extensions for IPv6,” on page 75 and [Chapter 9, “Advanced|
socket APIs,” on page 99|and the documentation for the specific API you are using.

Guideline: You should be familiar with IPv6 in general and IPv6 support on z/OS
Communications Server.

Support for unmodified applications

During the transition period where networks, routers, and hosts are upgraded to
support IPv6, it is expected that most IPv6-enabled hosts also continue to have
IPv4 connectivity. This is accomplished with dual-mode stack support that allows a
single TCP/IP protocol stack to support both IPv4 and IPv6 communications.
TCP/IP on z/OS supports dual-mode stack operation. As a result, applications that
are not IPv6-enabled continue to function over an IPv4 network, without any
changes. However, at some point during the IPv6 deployment process, some IP
hosts might only have connectivity to IPv6 networks or have a TCP/IP protocol
stack that is capable of IPv6 communications only. Various migration and
coexistence techniques can be employed to allow IPv6-only hosts to communicate
with IPv4-only applications as described in|“Migration and coexistence” on page|
However, in the absence of these mechanisms, an application needs to be
enabled for IPv6 in order to allow for communications with IPv6-only hosts or
applications.

Application awareness of whether system is IPv6 enabled

A z/0OS system might or might not be enabled for IPv6 communications. Enabling
a z/0OS system for IPv6 support requires explicit configuration by the system
administrator to allow AF_INET6 sockets to be created. As a result, an application
cannot typically assume that IPv6 is enabled on the systems where the application
is running. Some exceptions do exist. For example, applications can run on a
limited number of systems that are known to be IPv6 enabled. However, in
general, most applications that are being enhanced to support IPv6 must first
perform a run-time test to determine whether IPv6 is enabled on the system where

© Copyright IBM Corp. 2002, 2006 89

90

they are executing. If the system is not enabled for IPv6, the application should
proceed with its existing IPv4 logic. If the system is enabled for IPv6, the
application can now use AF_INET6 sockets and features to communicate with both
IPv4 and IPv6 applications.

Determine if a system is enabled for IPv6 by attempting to create an AF_INET6
socket. If this operation is successful, the application can assume that IPv6 is
enabled. If the operation fails (with return code EAFNOSUPPORT) the application
should revert to its IPv4 logic and create an AF_INET socket.

Table 16. Using socket() to determine IPv6 enablement

Affected socket
API call Changes required

socket() Specify AF_INET6 as the Address Family (or domain) parameter. This
API call fails if the system is not enabled for IPv6.

The getaddrinfo() API is an alternative mechanism that can be used by TCP/IP
client applications to determine whether IPv6 is enabled. This API is a replacement
for the gethostbyname() API and is typically used by TCP/IP client programs to
resolve a host name to an IP address. For example, a client application that
receives the server application’s host name or IP address (such as FIP) as input
can invoke the getaddrinfo() function prior to opening up a socket with a selected
set of options. This allows the application to receive a list of addrinfo structures
(one for each IP address of the destination host) that contain the following
information:

* The address family of the IP address (AF_INET or AF_INET6)

* A pointer to a socket address structure of the appropriate type (sockaddr_in or
sockaddr_in6) that is fully initialized (including the IP address and Port fields)

* The length of the socket address structure

A client application can be coded with this information in a manner that allows it
to be protocol-independent without having to perform specific run-time checks to
determine whether IPv6 is enabled or not and without having to have dual-path
logic (IPv4 versus IPv6). The following is an example of this approach:

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

int

myconnect (char xhostname)

{
struct addrinfo *res, *aip;
struct addrinfo hints;
char buf[INET6_ADDRSTRLEN];
static char *servicename = "21";
int sock = -1;
int error;

/* Initialize the hints structure for getaddrinfo() call.
This application can deal with either IPv4 or IPv6 addresses.
It relies on getaddrinfo to return the most appropriate IP address
and socket address structure based on the current configuration =/

bzero(&hints, sizeof (hints));
hints.ai_socktype = SOCK_STREAM; /* Interested in streams sockets
only */

/* Note that we are asking for all IP addresses to be returned (IPv4
or IPv6) based on the system connectivity. Also, note that we
would prefer all addresses to be returned in sockaddr_in6 format
if the system is enabled for IPv6. In addition, we also specify
a numeric port using AI_NUMERICSERV so that the returned socket
address structures are primed with our port number. */

hints.ai_flags = AI_ALL | AI_VAMAPPED | AI_ADDRCONFIG |
AI_NUMERICSERV;
hints.ai_family = AF_UNSPEC;
error = getaddrinfo(hostname, servicename, &hints, &res);
if (error != 0) {
(void) fprintf(stderr,
"getaddrinfo: %s for host %s service %s\n",
gai_strerror(error), hostname, servicename);
return (-1);
}
for (aip = res; aip != NULL; aip = aip->ai_next) {
/*
* Loop through 1ist of addresses returned, opening sockets
* and attempting to connect()until successful. The
* The address type depends on what getaddrinfo()
* gave us.
*/
sock = socket(aip->ai_family, aip->ai_socktype,
aip->ai_protocol);
if (sock == -1) {
printf("Socket failed: %d\n",sock);
freeaddrinfo(res);
return (-1);
}
/* Connect to the host. */
if (connect(sock, aip->ai_addr, aip->ai_addrlen) == -1) {
printf("Connect failed, errno=%d, errno2=%08x\n",
errno, __errno2());
(void) close(sock);

sock = -1;
continue;
}
break;

freeaddrinfo(res);
return (sock);

}

Figure 16. Example of protocol-independent client application

When this example executes on a system where IPv6 is not enabled, only IPv4
addresses are returned in AF_INET format (in sockaddr_in structures). When this

Chapter 8. Enabling an application for IPv6 91

92

identical example executes on a IPv6-enabled system, both IPv4 and IPv6
addresses are returned, and the IPv4 addresses are returned in IPv4-mapped IPv6
address format (in sockaddr_in6 structures). Note that an AF_INET6 socket can be
used for the connection even when the address returned by getaddrinfo() is an
IPv4-mapped IPv6 address.

Socket address (sockaddr_in) structure changes

As mentioned in |Chapter 7, “Basic socket API extensions for IPv6,” on page 75 the
socket address structure (sockaddr) is larger for IPv6 and has a slightly different
format. This structure is passed as input or output on several socket API calls. The
type of structure passed must match the address family of the socket being used
on the socket API call. As a result, application changes are necessary.
describes the necessary changes:

Table 17. sockaddr structure changes
Affected Socket API calls Changes required

Bind(), connect(), sendmsg(), | The length and type of sockaddr structure passed must
sendto() match the address family of the socket being used (structure
sockaddr_in or sockaddr_in6).

accept(), recvmsg(), The sockaddr structure passed needs to be sufficiently large
recvfrom(), getpeername(), | for the address family of the socket being used on these
getsockname() APIs. Note that the larger sockaddr_in6 structure can be

passed even for AF_INET sockets. However, the application
needs to be aware that the format of the sockaddr structure
returned depends on the address family of the input socket.

UNIX System Services The length and type of sockaddr structure passed must
BPX1SRX (Send/Recv CSM | match the address family of the socket being used (structure
buffers using sockets) sockaddr_in or sockaddr_in6).

Address conversion functions

Because IPv6 and IPv4 addresses have a different format and size, changes are
required when formatting these addresses for presentation purposes. Two utility
functions have been introduced for a selected set of socket APIs to help
applications perform this processing. A formatted IPv6 address uses significantly
more space than a formatted IPv4 address (46 bytes versus 16 bytes) and this
might affect the layout of any messages and displays that include an IP address.

Table 18. Address conversion function changes

Affected API call Changes required

Translating an IP address from numeric form to | Convert to use inet_ntop() function. This
presentation form using inet_ntoa() function can be used for both IPv4 and
IPv6 addresses.

Translating a presentation form IP address to | Convert to use inet_pton() function. This
numeric form using inet_addr() function can be used for both IPv4 and
IPv6 addresses.

Resolver API processing

TCP/IP applications typically need to resolve a host name to an IP address and
sometimes need to resolve an IP address to a host name. Applications perform this
processing by invoking resolver APIs, such as gethostbyname() and
gethostbyaddr(). A new set of resolver APIs was introduced to support IPvé6.
Applications that currently use resolver APIs need to be modified to use the new

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

APIs in order to be enabled for IPv6. The older resolver APIs continue to be
supported for IPv4 communications. For more information about resolver APIs,
refer to ["Name and address resolution functions” on page 77)

Table 19. Resolver API changes
Affected API call | Changes required

gethostbyname() | Use new getaddrinfo() API. These APIs can be used even if the system
is not IPv6 enabled. Note that the freeaddrinfo() API needs to be issued
to free up storage areas returned by the getaddrinfo() APIL.

gethostbyaddr() | Use the new getnameinfo() API. This API can also be used on a system
that is not IPv6 enabled.

Special IPv6 addresses

IPv4 provides two IP addresses that have the following special meaning in the
context of socket programs:

¢ The Loopback Address, typically 127.0.0.1, allows applications to connect() to or
send datagrams to other applications on the same host.

* The INADDR_ANY address (0.0.0.0) allows TCP/IP server applications that
specify it on a bind() call to accept incoming connections or datagrams across
any network interface configured on the local host.

The concept of these special IPv4 addresses is also available in IPv6. The changes
are described in [Table 20}

Table 20. Special IPv6 address changes

Socket API calls Changes required

Binding a socket to the IPv4 wildcard address | Specify IPv6 INGADDR_ANY (::) in the
(INADDR_ANY - 0.0.0.0) sockaddr_in6 structure.

Using LOOPBACK (127.0.0.1) on bind(), Specify IPv6 Loopback address (::1) in the
connect(), sendto(), sendmsg() sockaddr_in6 structure.

See [Chapter 7, “Basic socket API extensions for IPv6,” on page 75|for details about
any constant definitions available for these special IPv6 addresses and the socket
API that you are using.

Passing ownership of sockets across applications using
givesocket and takesocket APIs

If your application is using the givesocket() and takesocket() APIs to pass
ownership of a socket from one program to another, some changes are necessary
for IPv6 enablement. The givesocket() and takesocket() APIs now support an
address family of AF_INET6 for the socket being given or taken. The address
family specified by the program performing the takesocket() must match the
address family specified by the program that performed the givesocket(). As a
result, care should be taken in coordinating the updates for IPv6 support across the
partner applications performing givesocket and takesocket processing.

Table 21. givesocket() and takesocket() changes
Affected API call Changes required

givesocket() Specify AF_INET6 (Decimal 19) as the domain when giving an
AF_INET6 socket.

Chapter 8. Enabling an application for IPv6 93

94

Table 21. givesocket() and takesocket() changes (continued)

Affected API call Changes required

getclientid() Specify AF_INET6 as the domain when dealing with an
AF_INET6 socket.

takesocket() Specify AF_INET6 as the domain when taking an AF_INET6
socket.

Using multicast and IPv6

IPv6 provides enhanced support for multicast applications, including more
granularity in the scope of multicast addressing and new socket options to allow
an application to exploit this support. lists IPv4 multicast setsockopt() and
getsockopt() options and the equivalent IPv6 multicast options.

Table 22. Multicast options

Multicast function IPv4 IPv6

Level specified on IP_PROTO IPPROTO_IPV6
setsockopt() / getsockopt()

Joining a multicast group IP_ADD_MEMBERSHIP IPV6_JOIN_GROUP
Leaving a multicast group IP_DROP_MEMBERSHIP |IPV6_LEAVE_GROUP
Select outbound interface for IP_MULTICAST_IF IPV6_MULTICAST _IF
sending multicast datagrams

Set maximum hop count IP_MULTICAST_TTL IPV6_MULTICAST_HOPS
Enabling multicast loopback IP_MULTICAST_LOOP IPV6_MULTICAST_LOOP

In addition to the changes in the setsockopt() and getsockopt() options, the input
and output parameters specified for these options are also changed when
compared to IPv4. For example, selecting an outgoing interface for sending
multicast IPv6 datagram involves passing an interface index that identifies the
interface versus passing the IP address of the interface. For a detailed description
of the IPv6 multicast options see [“Options to control sending of multicast packets”]

An important consideration in updating your multicast application for IPv6 is how
these changes are provided to the other partner applications participating in these
multicast operations. For example, if a partner application in the network that is
receiving these multicast packets is not updated, then the application sending the
multicast datagrams might need to send them twice, once to an IPv4 multicast
address and once to an IPv6 multicast address. Also, in order to perform this type
of processing the application needs to create two separate sockets, an AF_INET
socket and a AF_INET6 socket. There is no support equivalent to IPv4-mapped
IPv6 addresses that would allow an AF_INET6 socket to be used in sending IPv4
multicast packets. As an alternative solution, first enable all the receiver
applications for IPv6 and then enable the sender applications.

IP addresses might not be permanent

Long-term use of an address is discouraged as IPv6 allows for IP addresses to be
dynamically renumbered. Applications should rely on DNS resolvers to cache the
appropriate IP addresses and should avoid having IP addresses in configuration
files.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Including IP addresses in the data stream

Applications that include IP addresses in the data they transmit over TCP/IP
require changes when enabling for IPv6, as the IPv6 addresses have a different
format from IPv4 addresses. The following options can be considered in dealing
with these changes:

Determine whether IP addresses are really needed in the data exchanged by the
applications.

Change the partner applications processing to always send IP addresses encoded
using IPv6 format. In the case where IPv4 addresses are being used, they can be
represented as IPv4-mapped IPv6 addresses.

Include a version identifier that describes the format of the IP address being sent
(IPv4 or IPv6).

Modify applications to use host names instead of IP addresses in the data
stream. This approach requires that the partner receiving the host name is able
to resolve it to an IP address. Also note that a single IP host can have multiple
IP addresses.

In many cases, you might not be able to change all partner applications in your
network at the same time. As a result, determining the type of IP address to
send is a key consideration. Consider the following options when making this
decision:

— Determine the level of support when the connection is established by
exchanging version or supported functions.

— Encode the IPv6 addresses using new options. If the option is rejected by the
peer, then it does not support IPv6.

— Base the decision on the partner application’s IP address. If the partner’s
source IP address is an IPv4 address then only use IPv4 addresses; otherwise,
use an IPv6 address. This option can cause an IPvé6-enabled partner
application to be treated as an IPv4 partner if that application uses an
IPv4-mapped IPv6 address to connect.

Example of an IPv4 TCP server program

The following example shows a simple IPv4 TCP server program written in C. The
program opens a TCP socket, binds it to port 5000, and then performs a listen()
followed by an accept() call. When a connection is accepted the server sends a
Hello text string back to the client and closes the socket. This sample program is
later shown with the changes required to make it IPv6 enabled.

Chapter 8. Enabling an application for IPv6 95

/* simpleserver.c
A very simple TCP socket server
*
/
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main(int argc,const char **argv)
{
int serverPort = 5000;
int rc;
struct sockaddr_in serverSa;
struct sockaddr_in clientSa;
int clientSaSize;
int on = 1;
int c;
int s = socket(PF_INET,SOCK_STREAM,0);
rc = setsockopt(s,SOL_SOCKET,SO_REUSEADDR,&on,sizeof on);
/* initialize the server's sockaddr =*/
memset (&serverSa,0,sizeof (serverSa));
serverSa.sin_family = AF_INET;
serverSa.sin_addr.s_addr = htonl(INADDR_ANY);
serverSa.sin_port = htons(serverPort);
rc = bind(s, (struct sockaddr *)&serverSa,sizeof(serverSa));

if (rc < 0)
perror("bind failed");
exit(1l);
rc = listen(s,10);
if (rc < 0)
{
perror("listen failed");
exit(1l);
rc = accept(s, (struct sockaddr x)&clientSa,&clientSaSize);
if (rc < 0)
{
perror("accept failed");
exit(1);
}
printf("Client address is: %s\n",inet_ntoa(clientSa.sin_addr));
c = rc;
rc = write(c,"hello\n",6);
close (s);
close (c);
return 0;

}
Figure 17. IPv4 TCP server program

Example of the simple TCP server program enabled for IPv6

The simple TCP server program is now shown with the changes (in bold) that are
required to allow it to accept connections from IPv6 clients.

96 z/0S VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

/*
A very simple TCP socket server for v4 or v6
*
/
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
int main(int argc,const char **argv)
{
int serverPort = 5000;
int rc;
union {
struct sockaddr_in sin;
struct sockaddr_in6 siné6;
} serverSa;
union {
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
} clientSa;

int clientSaSize = sizeof(clientSa);
int on = 1;

int family;

socklen_t serverSaSize;

int c;

char buf[INET6_ADDRSTRLEN];

int s = socket(PF_INET6,SOCK_STREAM,0) ;
if (s <0)
{
fprintf(stderr, "IPv6 not active, falling back to IPv4...\n");
s = socket(PF_INET,SOCK_STREAM,0);
if (s <0)
{
perror("socket failed");
exit (1);
}
family = AF_INET;
serverSaSize = sizeof(struct sockaddr_in);
}
else /* got a v6 socket */
{
family = AF_INET6;
serverSaSize = sizeof(struct sockaddr_in6);

printf("socket descriptor is %d, family is %d\n",s,family);

Figure 18. Simple TCP server program enabled for IPv6 (Part 1 of 2)

Chapter 8. Enabling an application for IPv6

97

rc = setsockopt(s,SOL_SOCKET,SO_REUSEADDR,&on,sizeof on);

/* initialize the server's sockaddr */
memset (&serverSa,0,sizeof (serverSa));
switch(family)

case AF_INET:
serverSa.sin.sin_family = AF_INET;
serverSa.sin.sin_addr.s_addr = htonl(INADDR_ANY);
serverSa.sin.sin_port = htons(serverPort);
break;

case AF_INET6:
serverSa.sin6.sin6_family = AF_INET6;
serverSa.sin6.sin6_addr = in6addr_any;
serverSa.sin6.sin6_port = htons(serverPort);

rc = bind(s, (struct sockaddr *)&serverSa,serverSaSize);
if (rc < 0)
{

perror("bind failed");
exit(1);

}

rc = listen(s,10);

if (rc < 0)

{
perror("listen failed");
exit(1l);
}
rc = accept(s, (struct sockaddr *)&clientSa,&clientSaSize);
if (rc < 0)

{
perror("accept failed");
exit(1);
}
c = rc;
printf("Client address is: %s\n",
inet_ntop(clientSa.sin.sin_family,
clientSa.sin.sin_family == AF_INET
? &clientSa.sin.sin_addr
: &clientSa.sin6.sin6_addr,
buf, sizeof(buf)));

if(clientSa.sin.sin_family == AF_INET6
&8 ! IN6_IS ADDR_VAMAPPED(&clientSa.sin6.sin6_addr))
printf("Client is v6\n");

else
printf("Client is v4\n");

rc = write(c,"hello\n",6);
close (s);
close (c);
return 0;

}
Figure 18. Simple TCP server program enabled for IPv6 (Part 2 of 2)

98 2/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 9. Advanced socket APIs

This chapter describes the advanced socket APIs and includes the following
sections:

“Controlling the content of the IPv6 packet header”|

“Using ancillary data on sendmsg() and recvmsg()” on page 113

“Interactions between socket options and ancillary data” on page 114]

“Why use RAW sockets?” on page 116|

Before using advanced socket APIs in a multilevel security environment, refer to

Preparing for TCP/IP networking in a multilevel secure environment|in [z/OS|

Communications Server: IP Configuration Guide The advanced socket API for IPv6

support includes the following:

IPv6 RAW socket support

New socket options

New ancillary data objects on sendmsg/recvmsg

The ability to receive inbound packet information, including the following;:
— Arriving interface index

— Destination IP address

— Hop limit

- Routing headers

— Hop-by-hop option

— Destination options

— Traffic class by way of ancillary data

The ability to set outgoing packet information, including the following:
— Interface to use

— Source IP address

- Hop limit

— Next hop address

— Routing headers

— Hop-by-hop options

— Destination option

— Traffic class (This can be set by socket options or ancillary data with some
restrictions.)

z/0S UNIX C/C++ and z/OS UNIX Assembler Callable APIs support the
advanced socket API for IPv6. The advanced socket API for IPv6 is not
implemented in native TCP/IP socket APIs.

Controlling the content of the IPv6 packet header

This section contains information about socket options and how to control the
content of the IPv6 packet header.

© Copyright IBM Corp. 2002, 2006 99

Socket options and ancillary data to support IPv6
(IPPROTO_IPV6 level)

An application can use socket options to enable or disable a function for a socket.
An application can also provide a value to be used for a function with a socket
option. After an option is enabled, it remains in effect for the socket until it is
disabled.

An application can also use ancillary data on the sendmsg() API to enable a
function or provide a value for the packet being sent by way of sendmsg(). The
value of the ancillary data is in effect for that packet only. Note that the value of
the ancillary data can override a socket option value. For a detailed explanation of
ancillary data, see ['Using ancillary data on sendmsg() and recvmsg()” on page 113/

An application can also receive ancillary data on the recvmsg() API. The returned
Ancillary data is enabled for any socket options that return data on recvmsg.

A group of advanced socket options and ancillary data is defined to support IPv6.
They are defined with a level of IPPROTO_IPV6 or IPPROTO_ICMPV6. The
individual options begin with IPV6_ and ICMP6_ respectively. These options are
only allowed on AF_INET6 sockets. In most cases, these options can be set on an
AF_INET6 socket that is using IPv4-mapped IPv6 addresses, but have no effect.
For example, the IPV6_HOPLIMIT ancillary data option is used to set a hop limit
value in the IPv6 header. Because IPv4 packets are used with IPv4-mapped IPv6
addresses, the hop limit value is not used. The following are the only advanced
socket options that have an effect on an AF_INET6 socket that is using
IPv4-mapped IPv6 addresses:

* IPV6_PKTINFO

* IPV6_RECVPKTINFO
* IPV6_TCLASS

* IPV6_RECVTCLASS

Table 23. Sockets options at the IPPROTO_IPV6 level

Socket options Assembler C/C++ using Sockets
getsockopt() Callable Language Extended
setsockopt() Services Environment | REXX macro/call
IPV6_CHECKSUM Y Y

IPV6_DONTFRAG Y Y N N
IPV6_DSTOPTS Y Y N N
IPV6_HOPOPTS Y Y N N
IPV6_NEXTHOP Y Y N N
IPV6_PATHMTUJvalid |Y Y N N

only on getsockopt()]

IPV6_PKTINFO Y Y N N
IPV6_RECVDSTOPTS |Y Y N N
IPV6_RECVHOPLIMIT |Y Y N N
IPV6_RECVHOPOPTS |Y Y N N
IPV6_RECVPATHMTU |Y Y N N
IPV6_RECVPKTINFO |Y Y N N
IPV6_RECVRTHDR Y Y N N

100 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Table 23. Sockets options at the IPPROTO_IPV6 level (continued)

Socket options Assembler C/C++ using Sockets
getsockopt() Callable Language Extended
setsockopt() Services Environment | REXX macro/call
IPV6_RECVTCLASS Y Y N N
IPV6_RTHDR Y Y N N
IPV6_RTHDRDSTOPTS |Y Y N N
IPV6_TCLASS Y Y N N
IPV6_USE_MIN_MTU |Y using BPX1 |Y N N
Table 24. Ancillary data on sendmsg() (Level = IPPROTO_IPV6)
Assembler C/C++ using Sockets

Ancillary data on Callable Language Extended
sendmsg() Services Environment | REXX macro/call
IP_QOS_ Y Y N N
CLASSIFICATION?
IPV6_DONTFRAG Y Y N N
IPV6_DSTOPTS Y Y N N
IPV6_HOPLIMIT? Y Y N N
IPV6_HOPOPTS Y Y N N
IPV6_NEXTHOP Y Y N N
IPV6_PKTINFO? Y Y N N
IPV6_RTHDR Y Y N N
IPV6_RTHDRDSTOPTS |Y Y N N
IPV6_TCLASS Y Y N N
IPV6_USE_MIN_MTU Y Y N N
Table 25. Ancillary data on recvmsg() (Level = IPPROTO_IPVE6)

Assembler C/C++ using Sockets
Ancillary data on Callable Language Extended
recvmsg() Services Environment |REXX macro/call
IPV6_DSTOPTS Y Y N
IPV6_HOPLIMIT Y Y N N
IPV6_HOPOPTS Y Y N N
IPV6_PATHMTU Y Y N N
IPV6_PKTINFO Y Y N N
IPV6_RTHDR Y Y N N
IPV6_TCLASS Y Y N N

Options for path MTU discovery
Use the following options for MTU discovery:

2. This option is supported as ancillary data for UDP and RAW protocols. It is not possible to use ancillary data to transmit options
for TCP because there is not a one-to-one mapping between send operations and the TCP segments being transmitted.

Chapter 9. Advanced socket APIs 101

102

IPV6_USE_MIN_MTU (used with TCP, UDP and RAW applications)

For IPv6, only the endpoint nodes can fragment a packet. Path MTU
discovery determines the largest packet that can be sent to a destination
without requiring fragmentation by an intermediate node (because that is
not supported). In some cases, an application might not want to have the
overhead of path MTU discovery. All nodes in an IPv6 network are
required to support a minimum MTU of 1280 bytes. When an application
enables this option, path MTU discovery is bypassed. If a direct route to
the destination is not available, the minimum MTU size (1280 bytes) is
used to send packets that otherwise might require fragmentation. If a
direct route is available, the link’s MTU size is used, because path MTU
discovery is not needed when there are no intermediate nodes in the path.

For unicast destinations, this option disabled (this is the default). This
avoids sending packets with the minimum MTU size. Instead, path MTU
discovery processing information is used.

For multicast destinations, this option enabled (this is the default). This
prevents path MTU discovery information from being used. If a direct
route is not available, packets are sent with the minimum MTU size. If a
direct route is available, packets are sent using the link’s MTU, because no
intermediate nodes are in the path.

This option can be enabled or disabled for the following;:

* A socket with a setsockopt()
* A single send operation with ancillary data on the sendmsg|()

A value of -1 passed on the set socket option causes the default values for
unicast and multicast destinations to be used.

A value of 0 disables this option for both unicast and multicast
destinations. Path MTU discovery information is used to send packets
greater than the minimum MTU size.

A value of 1 enables this option for unicast and multicast destinations. All
packets are sent without using path MTU discovery information, using the
minimum MTU size, unless a direct route is available to the destination.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the default value of -1 (disabled for
unicast, enabled for mutlicast) is returned.

IPV6_DONTFRAG (used with UDP and RAW applications)

The IPV6_DONTFRAG option enables the application to indicate that the
packet should not be fragmented by the local z/OS host.

This option is useful for applications that want to discover the actual path
MTU.

Guideline: When using the IPV6_DONTFRAG socket option, use the
IPV6_RECVPATHMTU socket option also. Otherwise, packets are silently
discarded without any notification to the application.

This option can be enabled or disabled for the following:

* A socket with a setsockopt()

* A single send operation with ancillary data on the sendmsg()

A value of 1 enables this option for unicast or multicast destinations.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of
0.

If IPV6_DONTFRAG is specified along with IPV6_USE_MIN_MTU, the
IPV6_DONTFRAG setting is ignored, resulting in selection of the minimum
architected IPv6 MTU size (1280 bytes).

IPV6_RECVPATHMTU (used with UDP and RAW applications)
The IPV6_RECVPATHMTU option enables the application to receive
notifications about changes to the path MTU. This option notifies the
application about all path MTU changes for all destinations, not only the
ones initiated by this socket.

When the IPV6_RECVPATHMTU socket option is enabled, the path MTU
is returned as ancillary data on the recvmsg() API (for an empty message)
whenever the path MTU changes. The path MTU can change if the
application sends a packet with the IP'V6_DONTFRAG option and the
packet is larger than the current path MTU. The path MTU can also change
if the stack receives a corresponding ICMPv6 packet too big error. The
ancillary data level is IPPROTO_IPV6. The option name is
IPV6_PATHMTU. For a detailed explanation of ancillary data, see
lancillary data on sendmsg() and recvmsg()” on page 113)

This option can be enabled or disabled for a socket with a setsockopt().
A value of 1 enables this option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of
0.

IPV6_PATHMTU (used with UDP and RAW applications)
The IPV6_PATHMTU option enables the application to retrieve the current
path MTU to a given destination for which it has done a connect().

This option is useful for applications also using IPV6_RECVPATHMTU
that want to pick a good starting value.

This option is valid only on a getsockopt(). It returns the MTU that the
stack uses on this connected socket.

Options to control the sending of packets

Some of these options add extension headers to outbound packets. z/OS TCP/IP
allows the application to specify a maximum of 512 bytes of extension headers for
an outbound packet. Additionally, for IPV6_RTHDR, z/OS TCP/IP allows the
application to specify a maximum of 8 intermediate addresses in the routing
header.

Use the following options to control the sending of packets:

IPV6_PKTINFO (used with UDP and RAW applications)
The IPV6_PKTINFO option enables the application to provide the
following pieces of information:

* The source IP address for an outgoing packet
* The outgoing interface for a packet
The option value contains a 16-byte IPv6 address and a 4-byte interface

index. An application can provide a nonzero value for one or both pieces
of information.

Chapter 9. Advanced socket APIs 103

To perform this operation, an application must meet one of the following
criteria:

* Be APF authorized
* Have superuser authority

¢ The SERVAUTH resource
EZB.SOCKOPT.sysname.tcpname IPV6_PKTINFO must be defined and the
application must at least have READ access to it.

This option can be enabled or disabled for the following;:
* A socket with a setsockopt()
* A single send operation with ancillary data on the sendmsg|()

To disable the option, specify both the IPv6 address and the interface index
as 0 in the option value.

A getsockopt() with this option returns the value set by setsockopt(). If a
setsockopt() has not been done, a value of 0 is returned.

See [“Understanding options for setting the source address” on page 115 for
a discussion of the interaction of socket options and ancillary data for the
setting of the source address. See [“Understanding options for specifying]
fthe outgoing interface” on page 115 for a discussion of the interaction of
socket options and ancillary data for determining the outgoing interface.

IPV6_HOPLIMIT (used with UDP and RAW applications)
The IPv6 header contains a hop limit field that controls the number of
hops over which a datagram can be sent before being discarded. This is
similar to the TTL field in the IPv4 header. The IPV6_HOPLIMIT option
can be used to set the hop limit value for an outgoing packet. The option
value should be between 0 and 255 inclusive. A value of -1 causes the
TCP/1IP protocol stack default to be used.

To perform this operation, an application must meet one of the following
criteria:

* Be APF authorized
* Have superuser authority
* The SERVAUTH resource

EZB.SOCKOPT.sysname.tcpname IPV6_HOPLIMIT must be defined and
the application must at least have READ access to it

Note that the IPV6_UNICAST_HOPS socket option and the
IPV6_MULTICAST_HOPS socket option are available to set a hop limit
value also. See [“Understanding hop limit options” on page 114{ for a
discussion of the interaction of IPV6_UNICAST _HOPS,
IPV6_MULTICAST_HOPS and IPV6_HOPLIMIT.

IPV6_NEXTHOP (used with UDP and RAW applications)
The IPV6_NEXTHOP enables the application to specify the next hop
address for an outgoing packet. The option value contains a sockaddr_in6
socket address structure and must contain an IPv6 address.

Restriction: This option does not support IPv4 mapped addresses.

To perform this operation, an application must meet one of the following
criteria:

e Be APF authorized

104 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

* Have superuser authority

¢ The SERVAUTH resource
EZB.SOCKOPT.sysname.tcpname.IPV6_NEXTHOP must be defined and
the application must at least have READ access to it

This option can be enabled or disabled for the following
* A socket with a setsockopt()
* A single send operation with ancillary data on the sendmsg()

Restriction: IPV6_NEXTHOP is valid only for unicast destinations.

An option value with an optlen value of 0 disables IPV6_NEXTHOP. This
option does not have any meaning for multicast destinations and is
ignored for multicast.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of 0
in optlen.

See [“Understanding options for specifying the outgoing interface” on page]
for a discussion of the interaction of socket options and ancillary data
for determining the outgoing interface.

Tips:

* If you use this socket option in a Common INET environment, establish
affinity to the desired stack to ensure predictable results (as not all
stacks might have a route to the specified next hop address).

* If you specify a link-local address as the next hop address, specify the
outgoing interface either on IPV6_PKTINFO or by using the scope
portion of the socket address structure.

Rule: The next hop address cannot be a multicast address and must be a
neighbor (for example, the stack must have a direct route to the next hop
address).

IPV6_RTHDR (used with UDP and RAW applications)
The IPV6_RTHDR option enables the application to specify an IPv6 routing
header (as an extension header) for an outgoing packet. The option value
contains a type 0 routing header. An application can specify at most one
routing header. z/OS TCP/IP allows the application to specify a maximum
of eight IPv6 addresses in the routing header.

To perform this operation, an application must meet one of the following
criteria:

* Be APF authorized

* Have superuser authority

¢ The SERVAUTH resource EZB.SOCKOPT.sysname.tcpname IPV6_RTHDR
must be defined and the application must at least have READ access to
it

This option can be enabled or disabled for the following:
* A socket with a setsockopt()

* A single send operation with ancillary data on the sendmsg|()

Chapter 9. Advanced socket APIs 105

106

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of 0
in optlen.

Tip: If you use this socket option in a Common INET environment,
establish affinity to the desired stack to ensure predictable results (as not
all stacks might have a path to the destination starting with the first entry
in the specified routing header).

A z/0S UNIX C/C++ application can use the following utilities to build
routing headers:

* inet6_rth_space() - return number of bytes required for routing header
* inet6_rth_init() - initialize buffer data for routing header
¢ inet6_rth_add() - add one IPv6 address to the routing header

Refer tdz/OS XL C/C++ Run-Time Library Reference|for a description of these
utilities.

A z/0S UNIX Assembler Callable Services application needs to build the
routing headers explicitly. Refer to z/OS UNIX System Services Programming]
|Assembler Callable Services Reference| for information about z/OS UNIX
Assembler Callable Services and the data structures defined in the
BPXYSOCK macro.

IPV6_DSTOPTS (used with UDP and RAW applications)

The IPV6_DSTOPTS option enables the application to specify destination
options that get examined by the host at the final destination.

The IPV6_DSTOPTS option can be used to set a destination options header
(as an extension header) for an outgoing packet. The option value contains
a destination options header.

To perform this operation, an application must meet one of the following
criteria:

* Be APF authorized

* Have superuser authority

¢ The SERVAUTH resource
EZB.SOCKOPT.sysname.tcpname IPV6_DSTOPTS must be defined and the
application must at least have READ access to it

This option can be enabled or disabled for the following;:
* A socket with a setsockopt()
* A single send operation with ancillary data on the sendmsg|()

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of 0
in optlen.

A z/0OS UNIX C/C++ application can use the following utilities to build
the following destination options headers:

* inet6_opt_init() - initialize buffer data for options header
* inet6_opt_append() - add one TLV option to the options header
* inet6_opt_finish() - finish adding TLV options to the option header

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

* inet6_opt_set_val() - add one component of the option content to the
option

Refer to[z/OS XL C/C++ Run-Time Library Reference| for a description of
these utilities.

A z/0S UNIX Assembler Callable Services application needs to build the
options headers explicitly. Refer to [z/0S UNIX System Services Programming]
|Assembler Callable Services Reference| for information about z/OS UNIX
Assembler Callable Services and the data structures defined in the
BPXYSOCK macro.

IPV6_RTHDRDSTOPTS (used with UDP and RAW applications)
The IPV6_RTHDRDSTOPTS option enables the application to specify
destination options that get examined by every IP host that appears in the
routing header.

The IPV6_RTHDRDSTOPTS option can be used to set a destination options
header (as an extension header) for an outgoing packet. The option value
contains a destination options header. This option is ignored if the

application does not also use the IPV6_RTHDR option to specify a routing
header.

To perform this operation, an application must meet one of the following
criteria:

* Be APF authorized
* Have superuser authority

* The SERVAUTH resource
EZB.SOCKOPT.sysname.tcpname IPV6_RTHDRDSTOPTS must be defined
and the application must at least have READ access to it

This option can be enabled or disabled for the following:
* A socket with a setsockopt()

* A single send operation with ancillary data on the sendmsg|()

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of 0
in optlen.

A z/0S UNIX C/C++ application can use the following utilities to build
Destination options headers:

* inet6_opt_init() - initialize buffer data for options header
* inet6_opt_append() - add one TLV option to the options header
* inet6_opt_finish() - finish adding TLV options to the option header

* inet6_opt_set_val() - add one component of the option content to the
option

Refer to [z/OS XL C/C++ Run-Time Library Reference for a description of
these utilities.

A z/0S UNIX Assembler Callable Services application needs to build the
options headers explicitly. Refer to [z/OS UNIX System Services Programming]
|Assembler Callable Services Reference|for information about z/OS UNIX
Assembler Callable Services and the data structures defined in the
BPXYSOCK macro.

Chapter 9. Advanced socket APIs 107

108

IPV6_TCLASS (used with TCP, UDP and RAW applications)

The IPv6 header contains a traffic class field that can be used to identify
and distinguish between different classes or priorities of IPv6 packets. This
is similar to the type of service (ToS) field in the IPv4 header. The
IPV6_TCLASS option can be used to set the traffic class value for an
outgoing packet. However, if a QoS policy that specifies a traffic class for
the packet is also in effect, then the stack ignores the value specified with
the IPV6_TCLASS option and uses the value specified by the QoS policy.

To perform this operation, an application must meet one of the following
criteria:

* Be APF authorized
* Have superuser authority

¢ The SERVAUTH resource EZB.SOCKOPT.sysname.tcpname IPV6_TCLASS
must be defined and the application must at least have READ access to
it

This socket option is also valid for an AF_INET6 socket that is using
IPv4-mapped IPv6 addresses.

This option can be enabled or disabled for a socket with a setsockopt(). For
UDP and RAW, this option can be enabled or disabled for a single send
operation with ancillary data on the sendmsgy().

The option value should be in the range 0 - 255. A value of -1 causes the
TCP/IP to use the traffic class value specified by policy (if any) or the
default of 0.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then the stack returns the traffic class
value specified by policy (if any) or the default of 0.

Options to provide information about received packets
Use the following options to provide information about received packets:

IPV6_RECVPKTINFO (used with UDP and RAW applications)

The IPV6_RECVPKTINFO socket option allows an application to receive
the following pieces of information:
* The destination IP address from the IPv6 header

* The interface index for the interface over which the packet was received

When the IPV6_RECVPKTINFO socket option is enabled, the IP address
and interface index are returned as ancillary data on the recvmsg() APL
The ancillary data level is IPPROTO_IPV6. The option name is

IPV6 PKTINFO. For a detailed explanation of ancillary data, see
lancillary data on sendmsg() and recvmsg()” on page 113}

Restriction: This option can only be enabled or disabled with a
setsockopt(). IPV6_RECVPKTINFO is not valid as ancillary data on
sendmsg(). A nonzero option value enables the option; a value of 0
disables the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the default value of 0 (disabled) is
returned.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

IPV6_RECVHOPLIMIT (used with TCP, UDP and RAW applications)
The IPV6_RECVHOPLIMIT socket option allows an application to receive
the value of the hop limit field from the IPv6 header. When the
IPV6_RECVHOPLIMIT socket option is enabled, the hop limit is returned
as ancillary data on the recvmsg() APL. The ancillary data level is
IPPROTO_IPV6. The option name is IPV6_HOPLIMIT. For a UDP or RAW
application, if this option is enabled, the IPV6_HOPLIMIT ancillary data is
returned with each recvmsg(). For a TCP application, if this option is
enabled, IPV6_HOPLIMIT ancillary data is only returned on recvmsg()
when the hop limit value being used has changed. For a detailed
explanation of ancillary data, see [“Using ancillary data on sendmsg() and|
recvmsg()” on page 113

This option can only be enabled or disabled with a setsockopt().
IPV6_RECVHOPLIMIT is not valid as ancillary data on sendmsg(). A
nonzero option value enables the option; a value of 0 disables the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the default value of 0 (disabled) is
returned.

IPV6_RECVRTHDR (used with UDP and RAW applications)
The IPV6_RECVRTHDR socket option enables the application to receive a
routing header.

When the IPV6_RECVRTHDR socket option is enabled, the routing header
is returned as ancillary data on the recvmsg() APL Each routing header is
returned as one ancillary data object. The ancillary data level is
IPPROTO_IPV6. The option name is IPV6_RTHDR. For a detailed
explanation of ancillary data, see [“Using ancillary data on sendmsg() and|
frecvmsg()” on page 113 .|

This option can be enabled or disabled only with a setsockopt().
IPV6_RECVRTHDR is not valid as ancillary data on sendmsg(). A nonzero
value enables the option; a value of 0 disables the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of
0.

A z/0S UNIX C/C++ application can use the following utilities to process
routing headers:

* inet6_rth_reverse() - reverse a routing header

* inet6_rth_segments() - return number of segments in a routing header

¢ inet6_rth_getaddr() - fetch one address from a routing header

Refer to|z/OS XL C/C++ Run-Time Library Reference for a description of the
above utilities.

A z/0S UNIX Assembler Callable Services application needs to build the
options headers explicitly. Refer to [z/0S UNIX System Services Programming]
|Assembler Callable Services Reference| for information about z/OS UNIX
Assembler Callable Services and the data structures defined in the
BPXYSOCK macro.

IPV6_RECVHOPOPTS (used with UDP and RAW applications)
The IPV6_RECVHOPOPTS socket option enables the application to receive
hop-by-hop options.

Chapter 9. Advanced socket APIs 109

110

When the IPV6_RECVHOPOPTS socket option is enabled, the hop-by-hop
options are returned as ancillary data on the recvmsg() API. The ancillary
data level is IPPROTO_IPV6. The option name is IPV6_HOPOPTS. For a
detailed explanation of ancillary data, see[“Using ancillary data on|
sendmsg() and recvmsg()” on page 113

This option can be enabled or disabled only with a setsockopt().
IPV6_RECVHOPOPTS is not valid as ancillary data on sendmsg(). A
nonzero value enables the option; a value of 0 disables the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of
0.

A z/0OS UNIX C/C++ application can use the following utilities to process
hop-by-hop options headers:

* inet6_opt_next() - extract the next option from the options header

* inet6_opt_find() - extract an option of a specified type from the header

* inet6_opt_get_val() - retrieve one component of the option content

Refer to|z/OS XL C/C++ Run-Time Library Reference for a description of the
above utilities.

A z/0S UNIX Assembler Callable Services application needs to build the
options headers explicitly. Refer tdz/OS UNIX System Services Programming]
[Assembler Callable Services Reference| for information about z/OS UNIX
Assembler Callable Services and the data structures defined in the
BPXYSOCK macro.

IPV6_RECVDSTOPTS (used with UDP and RAW applications)

The IPV6_RECVDSTOPTS socket option enables the application to receive
destination options.

When the IPV6_RECVDSTOPTS socket option is enabled, the destination
options are returned as ancillary data on the recvmsg() APIL. The
application can receive up to two destination options headers (one before a
routing header and one after a routing header). Each destination options
header is returned as one ancillary data object. The ancillary data level is
IPPROTO_IPV6. The option name is IPV6_DSTOPTS. For a detailed
explanation of ancillary data, see ["Using ancillary data on sendmsg() and|
frecvmsg()” on page 113.|

This option can be enabled or disabled only with a setsockopt().
IPV6_RECVDSTOPTS is not valid as ancillary data on sendmsg(). A
nonzero value enables the option; a value of 0 disables the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of
0.

A z/0OS UNIX C/C++ application can use the following utilities to process
destination options headers:

* inet6_opt_next() - extract the next option from the options header

* inet6_opt_find() - extract an option of a specified type from the header

* inet6_opt_get_val() - retrieve one component of the option content

Refer to|z/OS XL C/C++ Run-Time Library Reference| for a description of
these utilities.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

A z/0S UNIX Assembler Callable Services application needs to build the
options headers explicitly. Refer to [z/OS UNIX System Services Programming]
[Assembler Callable Services Reference|for information about z/OS UNIX
Assembler Callable Services and the data structures defined in the
BPXYSOCK macro.

IPV6_RECVTCLASS (used with TCP, UDP and RAW applications)
The IPV6_RECVTCLASS socket option enables the application to receive
the value of the traffic class field from the IPv6 header.

When the IPV6_RECVTCLASS socket option is enabled, the traffic class is
returned as ancillary data on the recvimsg() APL. The ancillary data level is
IPPROTO_IPV6. The option name is IPV6_TCLASS. For a UDP, or RAW
application, if this option is enabled, the IPv6_TCLASS ancillary data is
returned with each recvmsg(). For a TCP application, if this option is
enabled, IPV6_TCLASS ancillary data is only returned on recvmsg() when
the traffic class value being used has changed. For a detailed explanation

of ancillary data, see [“Using ancillary data on sendmsg() and recvmsg()”|

This socket option is also valid for an AF_INET6 socket that is using
IPv4-mapped IPv6 addresses.

This option can be enabled or disabled only with a setsockopt().
IPV6_RECVTCLASS is not valid as ancillary data on sendmsg(). A nonzero
value enables the option; a value of 0 disables the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of
0.

Option to provide checksum processing for RAW applications
Use the following option to provide checksum processing for RAW applications:

IPV6_CHECKSUM (used with RAW applications)
The IPV6_CHECKSUM socket option can be used by a RAW application to
enable checksum processing to be done by the TCP/IP protocol stack for
packets on a socket. When enabled, the checksum is computed and stored
for outbound packets; the checksum is verified for inbound packets. Note
that this socket option is not applicable for ICMPv6 RAW sockets because
the TCP/IP protocol stack always provides checksum processing for them.

This option can only be enabled or disabled with a setsockopt().
IPV6_CHECKSUM is not valid as ancillary data on sendmsg(). The option
value provides the offset into the user data where the checksum field
begins. The option value should be an even number between 0 -65534
inclusive. A value of -1 causes the option to be disabled.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the value of -1 (disabled) is returned.

Option to provide QoS classification data
Use the following option to provide QoS classification data:

IP_QOS_CLASSIFICATION (used with TCP applications)
This option enables the application to provide QoS classification data. It is
a z/0OS Communications Server-specific ancillary data type, and is not
associated with the IPv6 Advanced Socket APL It can be specified as
ancillary data on sendmsg() for AF_INET and AF_INET6 sockets. For
AF_INET sockets the level specified should be IPPROTO_IP; for AF_INET6
sockets the level specified should be IPPROTO_IPV6. For a detailed

Chapter 9. Advanced socket APIs 111

112

description of the function, refer to the programming interfaces in the

(Communications Server: IP Programmer’s Guide and Referencd for providing

classification data to be used in differentiated services policies.

Socket option to support ICMPv6 (IPPROTO_ICMPV6 level)

Table 26. Sockets options at the IPPROTO_ICMPV6 level

Socket options Assembler C/C++ using Sockets
getsockopt() Callable Language Extended
setsockopt() Services Environment |REXX macro/call
ICMP6_FILTER N Y N N

Use the following socket option to support ICMPv6 (IPPROTO_ICMPV6 level):
ICMP6_FILTER (used with RAW applications)

The ICMP6_FILTER socket option can be used by a RAW application to
filter out ICMPv6 message types that it does not need to receive. There are
many more ICMPv6 message types than ICMPv4 message types. ICMPv6
provides function comparable to ICMPv4 plus IGMPv4 and ARPv4
functionality. An application might only be interested in receiving a subset
of the messages received for ICMPv6.

This option is enabled or disabled with a setsockopt(). The option value
provides a 256-bit array of message types that should be filtered. To
disable the option, the setsockopt() should be issued with an option length
of 0. This causes the TCP/IP protocol stack’s default filter to be in effect.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the TCP/IP protocol stack’s default filter is

returned. For more information on default filtering, refer to

kconsiderations” on page 117

lists the macros that are provided in the Language Environment C/C++

environment to manipulate the filter value.

Table 27. Macros used to manipulate filter value

Macro

Description

void ICMP6_FILTER_SETPASSALL (struct
icmp6_filter *);

Specifies that all ICMPv6 messages are
passed to the application.

void ICMP6_FILTER_SETBLOCKALL(struct
icmp6_filter *);

Specifies that all ICMPv6 messages are
blocked from being passed to the
application.

void ICMP6_FILTER_SETPASS(int, struct
icmp6_filter *);

ICMPv6 messages of type specified in
int should be passed to the
application.

void ICMP6_FILTER_SETBLOCK(int, struct
icmp6_filter *);

ICMPv6 messages of type specified in
int should not be passed to the
application.

void ICMP6_FILTER_WILLPASS(int, const struct
icmp6_filter *);

Returns true if the message type
specified in int is passed to the
application by the filter pointed to by
the second argument.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Table 27. Macros used to manipulate filter value (continued)

Macro Description
void ICMP6_FILTER_WILLBLOCK(int, const struct | Returns true if the message type
icmp6_filter *); specified in int is not passed to the

application by the filter pointed to by
the second argument.

Using ancillary data on sendmsg() and recvmsg()

The sendmsg() API is similar to other socket APIs, such as send() and write() that
allow an application to send data, but also provides the capability of specifying
ancillary data. Ancillary data allows applications to pass additional option data to
the TCP/IP protocol stack along with the normal data that is sent to the TCP/IP
network.

The recvmsg() API is similar to other socket APIs, such as recv() and read(), that
allow an application to receive data, but also provides the capability of receiving
ancillary data. Ancillary data allows the TCP/IP protocol stack to return additional
option data to the application along with the normal data from the TCP/IP
network.

These sendmsg() and recvmsg() API extensions are only available to applications
using the following socket API libraries:

e 7z/0S IBM C/C++ sockets with the z/OS Language Environment(R). For more
information about these APIs, refer to the |z/OS XL C/C++ Run-Time Library|

» z/0S UNIX Assembler Callable services socket APIs. For more information
about these APIs, refer to [z/0S UNIX System Services Programming: Assembler]
[Callable Services Referencd

For the sendmsg() and recvmsg() APIs most parameters are passed in a message
header input parameter. The mapping for the message header is defined in
socket.h for C/C++ and in the BPXYMSGH macro for users of the z/0OS UNIX
Assembler Callable services. For simplicity, only the C/C++ version of the data
structures are shown in the following section:

struct msghdr {

void *MSg_name; /* optional address */
size_t msg_namelen; /* size of address */
struct jovec *msg_jov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* ancillary data */
size_t msg_controllen; /* ancillary data length */
int msg_flags; /* flags on received msg */
}s
Notes:

1. The msg_name and msg_namelen parameters are used to specify the
destination sockaddr on a sendmsg(). On a recvimsg() the msg_name and
msg_namelen parameters are used to return the remote sockaddr to the
application.

2. Data to be sent using sendmsg() needs to be described in the msg_iov
structure. On recvmsg() the received data is described in the msg_iov structure.

3. The address of the ancillary data is passed in the msg_control field.

Chapter 9. Advanced socket APIs 113

4. The length of the ancillary data is passed in msg_controllen. Note that if
multiple ancillary data sections are being passed, this length should reflect the
total length of ancillary data sections.

5. msg_flags is not applicable for sendmsgy().
The msg_control parameter points to the ancillary data. This msg_control pointer
points to the following structure (C/C++ example shown below) that describes the

ancillary data (also defined in socket.h and BPXYMSGH respectively):

struct cmsghdr {

size_t cmsg_len; /* data byte count includes hdr */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */

/* followed by u_char cmsg_data[]; */
1

Notes:

1. The cmsg_len should be set to the length of the cmsghdr plus the length of all
ancillary data that follows immediately after the cmsghdr. This is represented
by the commented out cmsg_data field.

2. The cmsg_level should be set to the option level (for example, IPPROTO_IPV6).

3. The cmsg_type should be set to the option name (for example,
IPV6_USE_MIN_MTU).

Interactions between socket options and ancillary data

114

This section describes between socket options and ancillary data, included hop
limits.

Understanding hop limit options

The IPv6 header contains a hop limit field that controls the number of hops over
which a datagram can be sent before being discarded. This is similar to the TTL
field in the IPv4 header. An application can influence the value of the hop limit
field using the following options:

e IPV6_UNICAST_HOPS socket option (hop limit value to be used for unicast
packets on a socket)

* IPV6_MULTICAST_HOPS socket option (hop limit value to be used for multicast
packets on a socket)

* IPV6_HOPLIMIT ancillary data option on sendmsg() (hop limit value to be used
for single packet)

The hop limit value can also be influenced by a router advertised hop limit, as
well as the globally configured HOPLIMIT parameter value on the IPCONFIG6
statement.

For a unicast packet, the following precedence order is used to determine a
packet's hop limit value:

1. If IPV6_HOPLIMIT ancillary data is specified on sendmsg(), use its value.
If the IPV6_UNICAST_HOPS socket option is set, use its value.

If a router advertised hop limit is known, use its value.

If there is a globally configured IPv6 hop limit, use its value.

Use the IPv6 default unicast hop limit, 255.

ok wn

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

For a multicast packet, the following precedence order is used to determine the
packet's hop limit value:

1. If IPV6_HOPLIMIT ancillary data is specified on sendmsg(), use its value.
2. If the IPV6_MULTICAST_HOPS socket option is set, use its value.
3. Use the IPv6 default multicast hop limit, 1.

Understanding options for setting the source address

A UDP or RAW application can influence the setting of the source address with the
bind() IPv6 address or with the IPV6_PKTINFO option.

The following precedence order is used to determine the source IP address for a
packet:

1. If IPV6_PKTINFO ancillary data is specified on sendmsg() with a nonzero
source IP address, use its value. If the IPV6_PKTINFO ancillary data is
specified with a length of 0 or with a zero source IP address, go step to

2. If the IPV6_PKTINFO socket option is set and contains a nonzero source IP
address, use its value.

3. If the application bound the socket to a specific address, use the Bind address.
4. The TCP/IP protocol stack selects a source address.

Understanding options for specifying the outgoing interface

A UDP or RAW application can influence the outgoing interface for a packet with
the IPV6_PKTINFO option, the IPV6_NEXTHOP option, or the
IPV6_MULTICAST_IF option. The scope ID field in the send operation’s
destination sockaddr can also affect the outgoing interface. The options field
contains an interface index. The scope ID field contains a zone index.

When responding to a peer, UDP and RAW applications should use the
sockaddr_in6 structure which they received, and should not zero out the scope ID
field. When sending an unsolicited packet (for example, not responding to one that
was received), the scope ID field should be zero, and UDP and RAW applications
should use the IPV6_PKTINFO, IPV6_NEXTHOP, or IPV6_MULTICAST_IF options
to select the outgoing interfaces.

The following precedence order is used to determine the outgoing interface for a

packet:

1. If the send operation specifies a destination sockaddr structure with a scope ID,
then the scope ID is used if valid (note that a scope ID should only be
provided with a link-local address).

2. If IPV6_PKTINFO ancillary data is specified on sendmsg() with a nonzero
interface index, use its value. If the IPV6_PKTINFO ancillary data is specified
with a length of 0 or with an interface index of 0, then skip to rule 4.

3. If the IPV6_PKTINFO socket option is set and contains a nonzero interface
index, use its value.

4. If this is a multicast packet and the IPV6_MULTICAST_IF socket option is set,
use its value.

5. If IPV6_NEXTHOP ancillary data is specified on sendmsg() with a nonzero
value, use the stack routing table to determine the interface to the next hop
address. If the IPV6_NEXTHOP ancillary data is specified with a length of 0, go
o step

Chapter 9. Advanced socket APIs 115

6. If the IPV6_NEXTHOP socket option is set and contains a nonzero value, use
the stack routing table to determine the interface to the next hop address.

7. The TCP/IP protocol stack uses the routing table to determine the interface to
the destination IP address.

Why use RAW sockets?

116

Consider the following factors for RAW sockets use:
* An application (for example, PING) can send and receive ICMPv6 messages.

* An application can send and receive datagrams with an IP protocol that the
TCP/IP stack does not support.

The external behavior of IPv6 RAW sockets differs significantly from that of IPv4
RAW sockets, specifically with regards to the following:

* RAW protocol values allowed

* Application visibility of IP headers
* ICMP considerations

* Checksumming data

RAW protocol values

Protocol values 0, 41, 43, 44, 50, 51, 59 and 60 are not allowed because they conflict
with the following IPv6 extension header types:

« IPPROTO_HOPOPTS (0)

- IPPROTO_IPV6 (41)

« IPPROTO_ROUTING (43)
« IPPROTO_FRAGMENT (44)
- IPPROTO_ESP (50)

« IPPROTO_AH (51)

« IPPROTO_NONE (59)

« IPPROTO_DSTOPTS (60)

Of the RAW protocol values listed, only the following correspond to well-known
IPv4 RAW protocols:

- IPPROTO_ESP (50)
« IPPROTO_AH (51)

Application visibility of IP headers

Applications do not see IP headers of incoming datagrams and cannot provide IP
headers with outgoing datagrams.

IPv6 RAW applications can get or set selected IP header information for incoming

and outgoing datagrams by way of socket options and ancillary data as follows:

* Applications can set the IPV6_RECVHOPLIMIT socket option in order to get the
hop limit for incoming datagrams in ancillary data. By default, this socket option
is set to off.

* Applications can set the IPV6_RECVPKTINFO socket option in order to get the
destination IP address and interface identifier for incoming datagrams in
ancillary data. By default, this socket option is set to off.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

* Applications can set the IPV6_RECVRTHDR socket option in order to get the
routing header for incoming datagrams in ancillary data. By default, this socket
option is set to off.

* Applications can set the IPV6_RECVHOPOPTS socket option in order to get the
hop-by-hop options for incoming datagrams in ancillary data. By default, this
socket option is set to off.

* Applications can set the IPV6_RECVDSTOPTS socket option in order to get the
destination options for incoming datagrams in ancillary data. By default, this
socket option is set to off.

* Applications can set the IPV6_RECVTCLASS socket option in order to get the
traffic class for incoming datagrams in ancillary data. By default, this socket
option is set to off.

* Applications can set the IPV6_UNICAST_HOPS socket option in order to set the
hop limit for outgoing unicast datagrams. By default, this socket option is set to
off and the configured maximum hop limit or the default hop limit is used.

* Applications can set the IPV6_MULTICAST_HOPS socket option in order to set
the hop limit for outgoing multicast datagrams. By default, this socket option is
set to off and a hop limit of 1 is used.

* Applications can use the IPV6_HOPLIMIT ancillary data option to set the hop
limit for an outgoing datagram.

* Applications can use the IPV6_PKTINFO socket option and ancillary data option
to set the source address and interface identifier for outgoing datagrams. By
default, the socket option is set to off.

* Applications can use the IPV6_NEXTHOP socket option and ancillary data
option to set the next hop address for outgoing datagrams. By default, the socket
option is set to off.

* Applications can use the IPV6_RTHDR socket option and ancillary data option
to set the routing header for outgoing datagrams. By default, the socket option is
set to off.

* Applications can use the IPV6_HOPOPTS socket option and ancillary data
option to set the hop-by-hop options for outgoing datagrams. By default, the
socket option is set to off.

* Applications can use the IPV6_DSTOPTS socket option and ancillary data option
to set the destination options (that get examined by the host at the final
destination) for outgoing datagrams. By default, the socket option is set to off.

* Applications can use the IPV6_RTHDRDSTOPTS socket option and ancillary
data option to set the destination options (that get examined by every host that
appears in the routing header) for outgoing datagrams. By default, the socket
option is set to off.

* Applications can use the IPV6_TCLASS socket option and ancillary data option
to set the traffic class for outgoing datagrams. By default, the socket option is set
to off.

ICMP considerations

IPv6 RAW ICMPv6 applications can set the ICMP6_FILTER socket option to
specify which ICMPv6 message types the socket receives. By default, the following
message types are blocked (are not received):

« ICMP_ECHO

« ICMP_TSTAMP
« ICMP_IREQ

« ICMP_MASKREQ

Chapter 9. Advanced socket APIs 117

* ICMP6_ECHO_REQUEST

* MLD_LISTENER_QUERY

* MLD_LISTENER_REPORT
 MLD_LISTENER_REDUCTION
* ND_ROUTER_SOLICIT

* ND_ROUTER_ADVERT

¢ ND_NEIGHBOR_SOLICIT

* ND_NEIGHBOR_ADVERT

* ND_REDIRECT

Checksumming data

IPv6 RAW applications can set the IPV6_CHECKSUM socket option in order to
have TCP/IP calculate checksums for outgoing datagrams and verify checksums
for incoming datagrams. By default, this socket option is set to off.

118 2/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Part 4. Advanced topics

This section contains the following chapters:

Chapter 10, “Advanced concepts and topics,” on page 121 provides advanced IPv6
protocol information.

(Chapter 11, “IPv6 support tables,” on page 131| contains tables with features and
applications that support IPvé.

© Copyright IBM Corp. 2002, 2006 119

120 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 10. Advanced concepts and topics

This chapter explains some of the advanced concepts and topics for IPv6
implementation and includes the following sections:

. ”Tunneling”l

» |“Application migration and coexistence overview” on page 125

» [“Application migration approaches” on page 127

Tunneling

When IPv6 or IPv6/IPv4 systems are separated from other similar systems that
they wish to communicate with by IPv4 networks, then IPv6 packets must be
tunneled through the IPv4 network. IPv6 packets are tunneled over IPv4 very
simply: the IPv6 packet is encapsulated in an IPv4 datagram, or in other words, a
complete IPv4 header is added to the IPv6 packet. The presence of the IPv6 packet
within the IPv4 datagram is indicated by a protocol value of 41 in the IPv4 header.

Restriction: z/OS Communications Server cannot function as an endpoint for this
type of tunnel.

While there are many tunneling protocols that can be used, all share the following
common features and processing characteristics:

* The source tunnel endpoint determines that an IPv6 packet needs to be tunneled
over an IPv4 network. This depends on the tunneling protocol that is used. After
this decision is made, the source tunnel endpoint adds an IPv4 header to the
IPv6 packet. The protocol value in the IPv4 header is set to 41. This indicates
that this is an IPv6 over IPv4 tunnel packet. The source and destination
addresses in the IPv4 header are set based on the tunneling protocol that is
used.

* At the destination tunnel endpoint, the IPv4 layer receives the IPv4 packet (or
packets, if the IPv4 datagram was fragmented). The IPv4 layer processes the
datagram in the normal way, reassembling fragments if necessary, and records
the protocol value of 41 in the IPv4 header. IPv4 security checks are made, and
the IPv4 header is removed, leaving the original IPv6 packet. The IPv6 packet is
processed as normal.

[Figure 19 on page 122 shows a subset of the available tunneling protocols, with
descriptions of the more prevalent protocols. Others exist or are in the process of
being defined. Select one that is appropriate for your environment.

© Copyright IBM Corp. 2002, 2006 121

122

IPv6 IPv6 IPv6

Application Application Application
TCP, UDP, and RAW TCP, UDP, and RAW TCP, UDP, and RAW

IPv6 IPv4 and IPv6 IPv4 and IPv6
Network Interfaces Network Interfaces Network Interfaces

A
IPv6 Interface IPv4 Interface 1 IPv4 Interface IPv4 Interface

IPv4 Network

IPv6

Network

Tunneling: encapsulate an IPv6
packet in an IPv4 packet and send
the IPv4 packet to the other tunnel
end-point IPv4 address

Figure 19. Tunneling

Configured tunnels

Configured tunneling refers to IPv6 over IPv4 tunneling, where the IPv4 tunnel
endpoint address is determined by configuration information on the encapsulating
node. The tunnels can be unidirectional or bidirectional. Bidirectional configured
tunnels act similarly as virtual point-to-point links. For each tunnel, the
encapsulating node must store the tunnel endpoint address. When an IPv6 packet
is transmitted over a tunnel, the tunnel endpoint address configured for that
tunnel is used as the destination address for the encapsulating IPv4 header.

Routing information on the encapsulating node usually determines which packets
to tunnel. This is typically done by way of a routing table, which directs packets
based on their destination address using the prefix mask and match technique.

Configured tunnels can be host-host, host-router, or router-router. Host-host
tunnels allow two IPv6/IPv4 nodes to send IPv6 packets directly to one another
without going through an intermediate IPv6 router. This can be useful if the
applications need to take advantage of IPv6 features that are not available in IPv4.

An IPv6/IPv4 host that is connected to datalinks with no IPv6 routers can use a
configured tunnel to reach an IPv6 router. This tunnel allows the host to
communicate with the rest of the IPv6 Internet. If the IPv4 address of an IPv6/IPv4
router bordering the IPv6 backbone is known, this can be used as the tunnel
endpoint address, and can be used as an IPv6 default route. This default route is
used only if a more specific route is not known.

Configured tunnels can also be used between routers, allowing isolated IPv6
networks to be connected by way of an IPv4 backbone. This connectivity can be
accomplished by arranging tunnels directly with each IPv6 site to which
connectivity is needed, but more typically it is done by arranging a tunnel into a

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

larger IPv6 routing infrastructure that can guarantee connectivity to all IPv6
end-user site networks. One example of this type of IPv6 routing infrastructure is
the 6bone.

When using configured tunnels, a peering relationship must be established
between the two IPv6 sites. This requires establishing a technical relationship with
the peer and working through the various low-level details of how to configure
tunnels between the two sites, including answering questions such as what peering
protocol is used (presumably, an IPv6-capable version of BGP4).

Automatic tunnels

Automatic tunnels provide a simple mechanism to establish IPv6 connectivity
between isolated dual-stack hosts and/or routers. In automatic tunneling, the IPv4
tunnel endpoint is determined from the IPv4 address embedded in the
[Pv4-compatible destination address of the IPv6 packet being tunneled. If the
destination IPv6 address is IPv4-compatible, then the packet is sent by way of
automatic tunneling. If the destination is IPv6-native, the packet cannot be sent by
way of automatic tunneling. An IPv6-compatible address is identified by a ::/96
prefix and holds an IPv4 address in the low-order 32 bits. IPv4-compatible
addresses are assigned exclusively to nodes that support automatic tunneling. It is
globally unique as long as the IPv4 address is not from the private IPv4 address
space.

When an IPv6 packet is sent over an automatic tunnel, the IPv6 packet is
encapsulated within an IPv4 header as described in [“Tunneling” on page 121 The
source IPv4 address is an address of the interface the packet is sent over, and the
destination IPv4 address is the low-order 32 bits of the IPv6 destination address.
The packet is always sent in this form, even if the tunnel endpoint is on an
attached link.

Automatic tunneling can be either host-host or router-host. A source host sends an
IPv6 packet to an IPv6 router if possible, but that router might not be able to do
the same and might have to perform automatic tunneling to the destination host
itself. Because of the preference for the use of IPv6 routers rather than automatic
tunneling, the tunnel is always as short as possible. However, the tunnel always
extends all the way to the destination host. In order to use a tunnel that does not
extend all the way to the recipient, another tunneling protocol must be used.

Guidelines: There are several issues to be aware of when using automatic tunnels.

* First, it does not solve the address exhaustion problem of IPv4, as it requires
each tunnel endpoint to have an IPv4 address from which the IPv6 compatible
address is created.

* Second, the use of IPv4 compatible addresses cause IPv4 addresses to be
included in the IPv6 routing table, which in turn can cause a dramatic increase
in the size of the IPv6 routing table.

Due to these concerns, use other tunneling protocols, such as 6to4 tunnels, in
preference to automatic tunnels.

6to4 addresses

The IANA has permanently assigned one 13-bit IPv6 Top Level Aggregator (TLA)
identifier under the IPv6 Format Prefix 001 for the 6to4 scheme. Its numeric value
is 0x2002, i.e., it is 2002::/16 when expressed as an IPv6 address prefix.

Chapter 10. Advanced concepts and topics 123

The format for a 6to4 address is shown in

16 bits 32 bits 16 bits 64 bits
0x0002 V4ADDR Subnet Interface ID
ID

Figure 20. 6to4 address format

Thus, this prefix has exactly the same format as normal /48 prefixes assigned
according to other aggregatable global unicast addresses. It can be abbreviated as
2002:V4ADDR::/48. Within the subscriber site it can be used exactly like any other
valid IPv6 prefix, for example, for automated address assignment and discovery
for native IPv6 routing, or for the 6over4 mechanism.

6to4 provides a mechanism to allow isolated IPv6 domains, attached to a wide area
network with no native IPv6 support, to communicate with other such IPv6
domains with minimal configuration. The idea is to embed IPv4 tunnel addresses
into the IPv6 prefixes so that any domain border router can automatically discover
tunnel endpoints for outbound IPv6 traffic.

The 6to4 transition mechanism advertises a site’s IPv4 tunnel endpoint (to be used
for a dynamic tunnel) in a special external routing prefix for that site. When one
site tries to reach another site, it discovers the 6to4 tunnel endpoint from a DNS
name to address lookup and use a dynamically built tunnel from site to site for
communication. The tunnels are transient in that there is no state maintained for
them, lasting only as long as a specified transaction uses the path.

A 6to4 site identifies one or more routers to run as a dual-mode stack and to act as
a 6to4 router. A globally routable IPv4 address is assigned to the 6to4 router. The
6to4 prefix, which has the 6to4 router’s IPv4 address embedded within it, is then
advertised by way of the Neighbor Discovery protocol to the 6to4 site, and this
prefix is used by hosts within the site to generate a global IPv6 address.

When one IPv6-enabled host at a 6to4 site tries to access an IPv6-enabled host by
domain name at another 6to4 site, the DNS returns the IPv6 IP address for that
host. The requesting host sends a packet to its nearest router, eventually reaching a
site’s 6to4 router. When the site’s 6to4 router receives the packet and sees that it
must send the packet to another site, and the next hop destination prefix is a
2002:://16 prefix, the IPv6 packet is encapsulated as described in [“Tunneling” on|
The source IPv4 address is the one in the requesting site’s 6to4 prefix
(which is the IPv4 address of an outgoing interface for one of the site’s 6to4
routers) and the destination IPv4 address is the one in the next hop destination
6to4 prefix of the IPv6 packet. When the destination site’s 6to4 router receives the
IPv4 packet, the IPv4 header is removed, leaving the original IPv6 packet for local
forwarding.

6over4 tunnels

The Interface Identifier of an IPv4 interface using 6over4 is the 32-bit IPv4 address
of that interface, padded to the left with Os and is 64 bits in length. Note that the
Universal/Local bit is 0, indicating that the Interface Identifier is not globally

124 2/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

unique. When the host has more than one IPv4 address in use on the physical
interface concerned, an administrative choice of one of these IPv4 addresses is
made.

The IPv6 Link-local address for an IPv4 virtual interface is formed by appending
the Interface Identifier, as defined above, to the prefix FE80::/64.

3 bits 45 bits 16 bits 32 bits 32 bits

001 Network Subnet | O........... 0 IPv4 address

Figure 21. 6over4 address format

Site-local and global unicast addresses are generated by prepending a 64-bit prefix
to the 6over4 Interface Identifier. These prefixes can be learned in any of the
normal ways, for example, as part of stateless address autoconfiguration or by way
of manual configuration.

6overd is a transition mechanism which allows isolated IPv6 hosts, located on a
physical link which has no directly connected IPv6 router, to use an IPv4 multicast
domain as their virtual local link. A 6over4 host uses an IPv4 address for the
interface in the creation of the IPv6 interface ID, placing the 32-bit IPv4 address in
the low order bits and padding to the left with 0’s for a total of 64 bits. The IPv6
prefix used is the normal IPv6 prefix, and can be manually configured or
dynamically learned by way of Stateless Address Autoconfiguration.

Because 6over4 creates a virtual link using IPv4 multicast, at least one IPv6 router
using the same method must be connected to the same IPv4 multicast domain if
IPv6 routing to other links is required.

When encapsulating the IPv6 packet, the source IP address for the IPv4 packet is
an IPv4 address from the sending interface of the 6over4 host. The destination IPv4
address is the low-order 32 bits of the IPv6 address of the next-hop for the packet.
Note that the final destination of the packet does not need to be a 6over4 host,
although it might be one.

Application migration and coexistence overview

Many IPv6 stacks support both IPv4 and IPv6 interfaces and are capable of
receiving and sending native IPv4 and IPv6 packets over the corresponding
interfaces. This type of TCP/IP stack is generally referred to as a dual-mode stack
IP node. This does not mean that there are two separate TCP/IP stacks running on
this type of node. It means that the TCP/IP stack has built-in support for both
IPv4 and IPv6. In this document, the term dual-mode stack or IP node is a TCP/IP
stack that supports both IPv4 and IPv6 protocols.

Chapter 10. Advanced concepts and topics 125

126

Dual-mode stack IP Host

IPv4-only IPv6-enabled
Application Application

X x4

TCP, UDP, arid RAW

IPv4 ang IPV6;

Network _fnterfaq:es

/

APva
~Network’

o
o
.
o
o
.
.
.
.
o

IPv4 Node IPv6 Node

Figure 22. Dual-mode stack IP host

For a multihomed dual-mode IP host, it is a likely configuration that the host has
both IPv4 and IPv6 interfaces over which requests for host-resident applications
are received or sent. Older AF_INET applications are only able to communicate
using IPv4 addresses. IPv6-enabled applications that use AF_INET6 sockets can
communicate using both IPv4 and IPv6 addresses (on a dual-mode host). AF_INET
and AF_INET6 applications are able to communicate with one another, but only
using IPv4 addresses.

If the socket libraries on the IPv6-enabled host are updated to support IPv6 sockets
(AF_INETS), applications can be IPv6 enabled. When an application on a dual
mode stack host is IPv6 enabled, the application is able to communicate with both

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

IPv4 and IPv6 partners. This is true for both clients and server on a dual-mode

stack host.
Appl. on a dual mode host
IPv4-only IPv6-enabled
IPv4-only partner v v
IPv6-only partner v

Figure 23. Application communication on a dual-mode host

IPv6-enabling both sockets libraries and applications on dual-mode hosts therefore
becomes a migration concern. As soon as IPv6-only hosts are being deployed in a
network, applications on those IPv6-only nodes cannot communicate with the
IPv4-only applications on the dual mode hosts, unless one of multiple migration
technologies are implemented either on intermediate nodes in the network or
directly on the dual mode hosts.

Application migration approaches

The ultimate and preferred migration approach for applications that reside on a
dual-mode TCP/IP host is to IPv6-enable the applications by migrating them from
AF_INET sockets to AF_INET6 sockets.

There are multiple reasons why this approach is not always applicable, such as the
following:

* No access to the source code (vendor product, or source no longer available).
¢ The sockets API implementation does not yet (or never does) support IPvé6.

* Resource availability or prioritization dictates a phased IPv6-enabling where not
all applications can be available in an IPv6-enabled version at the same point in
time where the stack is IPv6-capable.

For those applications that are not or cannot be IPv6 enabled, an alternative
migration strategy is needed. The IETF has identified multiple approaches as
summarized in draft REC, An Overview of the Introduction of IPv6 in the Internet.

Some of the technologies that are defined by the IETF are supposed to be
implemented on intermediate nodes that route traffic between IPv4 and IPv6
network segments. Other technologies are intended for implementation on the dual
mode IP nodes themselves.

Translation mechanisms

This section provides an introduction to a few transition mechanisms that can be
used when migrating to an IPv6 network.

The key to successful adoption and deployment of IPv6 is the transition from the
installed IPv4 base. The goal of all transition strategies is to facilitate the partial
and incremental upgrade of hosts, servers, routers, and network infrastructure.
There are many possible approaches, and some of the more likely approaches are
described below. The transition strategy a company chooses to take varies based on
the particular needs of that company.

Chapter 10. Advanced concepts and topics 127

128

Several migration issues must be addressed when the backbone routing protocol is
IPv4. First, a mechanism is needed to allow communication between islands of
IPv6 networks that are interconnected only using the IPv4 backbone. Tunneling of
IPv6 packets over the IPv4 network can be used to connect the clouds. Second,
end-to-end communication between IPv4 and IPv6 applications must be enabled.
Several approaches to accomplish this exist; Application Layer Gateways, NAT-PT,
and Bump-in-the-Stack are all possibilities. During the migration phase, it is likely
that a combination of one, multiple, or all of these transition mechanisms can be
used.

Application Layer Gateways (ALGs) allow an IPv6-only applications to
communicate to an IPv4-only peer. Using an ALG, the client connects to the ALG
using its native protocol (IPv4 or IPv6) and the ALG connects to the server using
the other protocol (IPv6 or IPv4, respectively).

SOCKS gateway

A SOCKS gateway is a method of providing an ALG. The SOCKS64
implementation works as a SOCKS server that relays communication between IPv4
and IPv6 flows. Servers do not require any changes, but client applications (or the
stack where the client applications reside) need to be socksified to be able to reach
out through a SOCKS64 server to an IPv6-only partner.

Proxy

Protocol translation involves converting IPv4 packets into IPv6 packets and vice
versa. This translation typically involves some form of network address translation
(NAT) in addition to the protocol translation (PT) function. It might execute in a
specialized node that resides between an IPv4 network and an IPv6 network, or it
might execute in the host that owns the IPv4 application.

Protocol Translation is useful when devices need to communicate but are not using
the same protocol, allowing IPv6-only devices to communicate with IPv4-only
devices. However, the following issues make a less-than ideal solution:

* Protocol translation is not foolproof. It is difficult to determine exactly how long
to keep the mappings between the real IPv6 address and the locally mapped
IPv4 address available. Eventually, an address is going to be reused before all
servers have stopped accessing the address.

* Some applications might use the remote IP address as a means of performing a
security check. Unless AH or an IPSec tunnel is used, then this method is not
foolproof, but it is still done. If the IPv4 address is a locally mapped address,
any checks such as this are broken.

* Displays and traces of the remote IP address are meaningless. Today, many
applications generate messages, traces, and so on containing the IP address of
the remote client.

* All DNS queries for the IPv4-mapped address must flow through the node that
performed the NAT function. The DNS resolver or name server at this node, as
well as the TCP/IP stack, must maintain a mapping between the IPv4 address
and IPv6 address.

* Not all IPv6 protocols have IPv4 equivalents and vice versa. As such, it might
not be possible to translate the contents of an IPv4 packet into an equivalent
IPv6 packet and vice versa.

Stateless IP/ICMP Translation Algorithm (SIIT)

This algorithm translates between IPv4 and IPv6 packet headers (including ICMP
headers) in separate translator boxes in the network without requiring any

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

per-connection state in those boxes. SIIT can be used as part of a solution that
allows IPv6 hosts, which do not have permanently assigned IPv4 addresses, to
communicate with IPv4-only hosts.

Network address translation - protocol translation (NAT-PT)
Protocol translation can occur at a specialized node that resides between IPv4 and
IPv6 networks. This node is typically referred to as a NAT-PT device because it
must translate between the IPv4 and IPv6 addresses, as well as between the IPv4
and IPv6 protocols.

An NAT-PT node plays a similar role to an ALG. Both nodes allow IPv4-only
applications to communicate with IPv6-only peers, and both reside in similar
places in the network. However, each takes a different approach to accomplish a
similar goal.

SOCKS64 is a proxy solution and requires client applications to be updated to use
SOCKS64. NAT-PT is not a proxy and requires no changes to either the client or
server. Based solely on this, NAT-PT might appear to be a superior solution.
However, due to the limitations of NAT-PT and familiarity with SOCKS, it is more
likely that SOCKS64 is used to allow IPv4-only applications to communicate with
IPv6-only peers.

Chapter 10. Advanced concepts and topics 129

130 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 11. IPv6 support tables

This appendix contains the IPv6 support tables and includes the following sections:
+ [“Supported IPv6 standards’]
* |“z/OS-specific features’

» [“Applications not enabled for IPv6” on page 134|

Supported IPv6 standards

lists the supported IPv6 standards. RFCs are not implemented in their
entirety.

Table 28. Supported IPv6 standards

Standard RFC or Internet Draft
DNS Extensions to support IP version 6 1886
Path MTU discovery 1981
RIPng for IPv6 2080
An IPv6 Aggregatable Global Unicast Address Format |2374
FTP Extensions for IPv6 and NATs 2428
Internet Protocol, Version 6 (IPv6) Specification 2460
Neighbor discovery for IP Version 6 (IPv6) 2461
IPv6 Stateless Address Autoconfiguration 2462

Internet Control Message Protocol (ICMPv6) for the 2463
Internet Protocol Version 6 (IPv6) Specification

Transmission of IPv6 Packets over Ethernet Networks |2464

Multicast Listener Discovery (MLD) for IPv6 2710
IPv6 Router Alert Option 2711
OSPF for IPv6 2740

DNS Extensions to Support IPv6 Address Aggregation | 2874
and Renumbering

Default Address Selection for Internet Protocol Version | 3484

6 (IPv6)

Basic Socket Interface Extensions for IPv6 3493
Internet Protocol Version 6 (IPv6) Addressing 3513
Architecture

Advanced Sockets Application Programming Interface |3542
(API) for IPv6

z/OS-specific features

The tables in this section summarize z/OS TCP/IP features and the level of
support provided in an IPv6 network. In the future, additional features are
projected for IPv6 support in subsequent releases of the z/OS Communications
Server.

© Copyright IBM Corp. 2002, 2006 131

132

lists the link-layer device support.

Table 29. Link-layer device support

IPv4 IPv6

Link-layer device support |support |support Comments

OSA-Express in QDIO Y Y Fast and Gigabit Ethernet support for

mode IPv6 traffic is configured by way of an
INTERFACE statement of type
IPAQENETS.

CTC Y N None

LCS Y N None

CLAW Y N None

CDLC (3745/3746) Y N None

SNALINK LUO and LU6.2 |Y N None

X.25 NPSI Y N None

NSC HyperChannel Y N None

MPC Point-Point Y Y Support is configured by way of an
INTERFACE statement of type
MPCPTP6.

ATM Y N None

HiperSockets Support is configured by way of an
INTERFACE statement of type
IPAQIDIO6 or dynamically configured
by way of the IPCONFIG6
DYNAMICXCF statement.

XCF Y Y Support is configured by way of an
INTERFACE statement of type
MPCPTP6 or dynamically configured
by way of the IPCONFIG6
DYNAMICXCEF statement.

lists virtual IP Addressing support.

Table 30. Virtual IP Addressing support

Virtual IP Addressing

support IPv4 support |IPv6 support |Comments
Virtual Device/Interface Y Y None
Configuration for static

VIPA

All sysplex functions support IPv6 except for those listed in [Table 31

Table 31. Sysplex support

Sysplex support

IPv4 support

IPv6 support | Comments

Associations (SWSA)

Sysplex distributor Y N None
integration with Cisco

MNLB

Sysplex Wide Security Y N None

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

lists IP routing functions.

Table 32. IP routing functions

IP routing functions IPv4 support |IPv6 support |Comments

Dynamic Routing - OSPF Y Y None

Dynamic Routing - RIP Y Y None

Static Route Configuration |Y Y None

by way of BEGINROUTES

statement

Static Route Configuration |Y N None

by way of GATEWAY

statement

Multipath Routing Groups |Y Y None

lists miscellaneous IP/IF-layer functions.

Table 33. Miscellaneous IP/IF-layer functions

Misc. IP/IF-layer functions |IPv4 support |IPv6 support |Comments

Path MTU Discovery Y Y None

Configurable Device or Y Y None

Interface Recovery Interval

Link-Layer Address Y Y None

Resolution

ARP/Neighbor Cache Y Y None

PURGE Capability

Datagram Forwarding Y Y None

Enable/Disable

Hipersockets accelerator Y N Support is enabled by way
of the IQDIOROUTING
parameter on the IPCONFIG
statement.

Checksum offload Y N None

Segmentation offload Y N None

lists transport-layer functions.

Table 34. Transport-layer functions

Transport-layer functions IPv4 support |IPv6 support |Comments

Fast Response Cache Y N None

Accelerator

Enterprise Extender Y Y IPv6 Enterprise Extender

support requires a virtual IP
address configured by way
of an INTERFACE statement
of type VIRTUAL6 and
IUTSAMEH configured by
way of an INTERFACE
statement of type MPCPTP6
or dynamically configured
by way of IPCONFIG6
DYNAMICXCE

Chapter 11. IPv6 support tables

133

Table 34. Transport-layer functions (continued)

Transport-layer functions IPv4 support |IPv6 support |Comments

Server-BIND Control Y Y None

UDP Checksum Y N None
Disablement Option

lists network management and accounting functions.

Table 35. Network management and accounting functions

Network management and

accounting Functions IPv4 support |IPv6 support |Comments
SNMP Y Y None
SNMP agent Y Y None
TCP/IP subagent Y Y No IPv6 UDP support
Network SLAPM2 subagent |Y Y None
Distributed Protocol Y Y None
Interface

OMPROUTE subagent Y N None

Trap forwarder daemon Y Y None
Policy-Based Networking Y Y None

SMF Y Y None
TN3270 subagent Y Y None
lists security functions.

Table 36. Security functions

Security functions IPv4 support |IPv6 support |Comments
IPSec Y Y None

IP filtering Y Y None

IKE daemon Y Y None
NAT traversal Y N None
Network Access Control Y Y None
Stack and Port Access Y Y None
Control

Application Transparent TLS | Y Y None
Intrusion Detection Services |Y N None

Applications not enabled for IPv6

Table 37

Table 37. Applications not enabled for IPv6

Some aiplications are not enabled for IPv6. These applications are listed in

IPv4 IPve6
Server applications support support
SMTPPROC/NJE server Y N

134 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Table 37. Applications not enabled for IPv6 (continued)

Server applications

IPv4
support

IPvé
support

Rlogind server

MVS Miscellaneous server

Popper

NDB server

MVS LPD server

DHCPD server

TIMED server

NCS LLBD and GLBD servers

ONC/RPC MVS portmapper

ONC/RPC UNIX portmapper

NCPROUTE

NPF

RSVP daemon

UNIX named (BIND 4.9.3 based)

<|=l=l=<=<=<[=<[=<][=<][=<]=<]=<]=<]=

Z|\z|Z\|Z|z|z|Z|z|z|Z|Z|Z2|Z

Client applications

TSO TELNET client

=

TSO LPR client

<

Command-type applications

TSO NSLOOKUP

UNIX nslookup (BIND 4.9.3-based)

UNIX nsupdate (BIND 4.9.3-based)

TSO LPRM

TSO DIG

UNIX dig

TSO RPCINFO

UNIX rpcinfo

<|=I=]==<]=<]=]~

Z|\z|z\|Z|z|z|Z|Z

Chapter 11. IPv6 support tables

135

136 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Part 5. Appendixes

This section contains the following appendixes:

Appendix A, “Related protocol specifications (RFCs),” on page 139| contains
related protocol specifications (RFCs).

Appendix B, “Information APARs and technotes,” on page 155|lists information
APARs for IP and SNA documents.

» |Appendix C, “Accessibility,” on page 159 describes accessibility features to help
users with physical disabilities.

“Notices” on page 161| contains notices and trademarks used in this document.

“Bibliography” on page 171 contains descriptions of the documents in the z/OS
Communications Server library.

© Copyright IBM Corp. 2002, 2006 137

138 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Appendix A. Related protocol specifications (RFCs)

This appendix lists the related protocol specifications for TCP/IP. The Internet
Protocol suite is still evolving through requests for comments (RFC). New
protocols are being designed and implemented by researchers and are brought to
the attention of the Internet community in the form of RFCs. Some of these
protocols are so useful that they become recommended protocols. That is, all future
implementations for TCP/IP are recommended to implement these particular
functions or protocols. These become the de facto standards, on which the TCP/IP
protocol suite is built.

You can request RFCs through electronic mail, from the automated Network
Information Center (NIC) mail server, by sending a message to
service@nic.ddn.mil with a subject line of RFC nnnn for text versions or a subject
line of RFC nnnn.PS for PostScript versions. To request a copy of the RFC index,
send a message with a subject line of RFC INDEX.

For more information, contact nic@nic.ddn.mil or at:

Government Systems, Inc.

Attn: Network Information Center
14200 Park Meadow Drive

Suite 200

Chantilly, VA 22021

Hard copies of all RFCs are available from the NIC, either individually or by
subscription. Online copies are available at the following Web address:
http:/ /www.rfc-editor.org / rfc.html}

See ["Internet drafts” on page 154 for draft RFCs implemented in this and previous
Communications Server releases.

Many features of TCP/IP Services are based on the following RFCs:

RFC Title and Author

RFC 652 Telnet output carriage-return disposition option D. Crocker

RFC 653 Telnet output horizontal tabstops option D. Crocker

RFC 654 Telnet output horizontal tab disposition option D. Crocker

RFC 655 Telnet output formfeed disposition option D. Crocker

RFC 657 Telnet output vertical tab disposition option D. Crocker

RFC 658 Telnet output linefeed disposition D. Crocker

RFC 698 Telnet extended ASCII option T. Mock

RFC 726 Remote Controlled Transmission and Echoing Telnet option]. Postel, D.
Crocker

RFC 727 Telnet logout option M.R. Crispin

RFC 732 Telnet Data Entry Terminal option].D. Day

RFC 733 Standard for the format of ARPA network text messages D. Crocker, J.

Vittal, K.T. Pogran, D.A. Henderson

© Copyright IBM Corp. 2002, 2006 139

http://www.rfc-editor.org/rfc.html

140

RFC 734
RFC 735
RFC 736
RFC 749
RFC 765
RFC 768
RFC 779
RFC 783
RFC 791
RFC 792
RFC 793
RFC 820
RFC 821
RFC 822
RFC 823
RFC 826

RFC 854
RFC 855
RFC 856
RFC 857
RFC 858
RFC 859
RFC 860
RFC 861
RFC 862
RFC 863
RFC 864
RFC 865
RFC 868
RFC 877

RFC 883
RFC 884
RFC 885
RFC 894

RFC 896

SUPDUP Protocol M.R. Crispin

Revised Telnet byte macro option D. Crocker, R.H. Gumpertz
Telnet SUPDUP option M.R. Crispin

Telnet SUPDUP—Output option B. Greenberg

File Transfer Protocol specification J. Postel

User Datagram Protocol J. Postel

Telnet send-location option E. Killian

TFTP Protocol (revision 2) K.R. Sollins

Internet Protocol]J. Postel

Internet Control Message Protocol]J. Postel

Transmission Control Protocol J. Postel

Assigned numbers J. Postel

Simple Mail Transfer Protocol]J. Postel

Standard for the format of ARPA Internet text messages D. Crocker
DARPA Internet gateway R. Hinden, A. Sheltzer

Ethernet Address Resolution Protocol: Or converting network protocol
addresses to 48.bit Ethernet address for transmission on Ethernet
hardware D. Plummer

Telnet Protocol Specification J. Postel,]. Reynolds
Telnet Option Specification]. Postel, J. Reynolds

Telnet Binary Transmission J. Postel,]. Reynolds
Telnet Echo Option]. Postel, J. Reynolds

Telnet Suppress Go Ahead Option]. Postel, J. Reynolds
Telnet Status Option]. Postel,]. Reynolds

Telnet Timing Mark Option]. Postel,]. Reynolds
Telnet Extended Options: List Option]J. Postel, J. Reynolds
Echo Protocol J. Postel

Discard Protocol J. Postel

Character Generator Protocol]J. Postel

Quote of the Day Protocol J. Postel

Time Protocol J. Postel, K. Harrenstien

Standard for the transmission of IP datagrams over public data networks
]J.T. Korb

Domain names: Implementation specification P.V. Mockapetris
Telnet terminal type option M. Solomon, E. Wimmers
Telnet end of record option J. Postel

Standard for the transmission of IP datagrams over Ethernet networks C.
Hornig

Congestion control in IP/TCP internetworks J. Nagle

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 903

RFC 904
RFC 919
RFC 922
RFC 927
RFC 933
RFC 946
RFC 950
RFC 951
RFC 952

RFC 959
RFC 961
RFC 974
RFC 1001

RFC 1002

RFC 1006

RFC 1009
RFC 1011
RFC 1013

RFC 1014
RFC 1027

RFC 1032
RFC 1033
RFC 1034
RFC 1035
RFC 1038
RFC 1041
RFC 1042

RFC 1043

Reverse Address Resolution Protocol R. Finlayson, T. Mann, J. Mogul,
M. Theimer

Exterior Gateway Protocol formal specification D. Mills
Broadcasting Internet Datagrams]. Mogul

Broadcasting Internet datagrams in the presence of subnets J. Mogul
TACACS user identification Telnet option B.A. Anderson

Output marking Telnet option S. Silverman

Telnet terminal location number option R. Nedved

Internet Standard Subnetting Procedure J. Mogul,]J. Postel
Bootstrap Protocol W.]. Croft, J. Gilmore

DoD Internet host table specification K. Harrenstien, M. Stahl, E.
Feinler

File Transfer Protocol]J. Postel,].K. Reynolds
Official ARPA-Internet protocols]. K. Reynolds, J. Postel
Mail routing and the domain system C. Partridge

Protocol standard for a NetBIOS service on a TCP/UDP transport:
Concepts and methods NetBios Working Group in the Defense
Advanced Research Projects Agency, Internet Activities Board,
End-to-End Services Task Force

Protocol Standard for a NetBIOS service on a TCP/UDP transport:
Detailed specifications NetBios Working Group in the Defense
Advanced Research Projects Agency, Internet Activities Board,
End-to-End Services Task Force

ISO transport services on top of the TCP: Version 3 M. T. Rose, D.E.
Cass

Requirements for Internet gateways R. Braden, J. Postel
Official Internet protocols]. Reynolds, J. Postel

X Window System Protocol, version 11: Alpha update April 1987 R.
Scheifler

XDR: External Data Representation standard Sun Microsystems

Using ARP to implement transparent subnet gateways S. Carl-Mitchell,
J. Quarterman

Domain administrators guide M. Stahl

Domain administrators operations guide M. Lottor

Domain names—concepts and facilities P.V. Mockapetris

Domain names—implementation and specification P.V. Mockapetris
Draft revised IP security option M. St. Johns

Telnet 3270 regime option Y. Rekhter

Standard for the transmission of IP datagrams over IEEE 802 networks J.
Postel, J. Reynolds

Telnet Data Entry Terminal option: DODIIS implementation A. Yasuda,
T. Thompson

Appendix A. Related protocol specifications (RFCs) 141

142

RFC 1044

RFC 1053
RFC 1055

RFC 1057

RFC 1058
RFC 1060
RFC 1067

RFC 1071

RFC 1072
RFC 1073
RFC 1079
RFC 1085
RFC 1091
RFC 1094
RFC 1096
RFC 1101
RFC 1112
RFC 1113

RFC 1118
RFC 1122

RFC 1123

RFC 1146
RFC 1155

RFC 1156

RFC 1157

RFC 1158

RFC 1166
RFC 1179
RFC 1180

Internet Protocol on Network System’s HYPERchannel: Protocol
specification K. Hardwick, J. Lekashman

Telnet X.3 PAD option S. Levy, T. Jacobson

Nonstandard for transmission of IP datagrams over serial lines: SLIP].
Romkey

RPC: Remote Procedure Call Protocol Specification: Version 2 Sun
Microsystems

Routing Information Protocol C. Hedrick
Assigned numbers]. Reynolds, J. Postel

Simple Network Management Protocol].D. Case, M. Fedor, M.L.
Schoffstall, J. Davin

Computing the Internet checksum R.T. Braden, D.A. Borman, C.
Partridge

TCP extensions for long-delay paths V. Jacobson, R.T. Braden

Telnet window size option D. Waitzman

Telnet terminal speed option C. Hedrick

ISO presentation services on top of TCP/IP based internets M.T. Rose
Telnet terminal-type option]. VanBokkelen

NEFS: Network File System Protocol specification Sun Microsystems
Telnet X display location option G. Marcy

DNS encoding of network names and other types P. Mockapetris
Host extensions for IP multicasting S.E. Deering

Privacy enhancement for Internet electronic mail: Part I — message
encipherment and authentication procedures J. Linn

Hitchhikers Guide to the Internet E. Krol

Requirements for Internet Hosts—Communication Layers R. Braden,
Ed.

Requirements for Internet Hosts—Application and Support R. Braden,
Ed.

TCP alternate checksum options]. Zweig, C. Partridge

Structure and identification of management information for TCP/IP-based
internets M. Rose, K. McCloghrie

Management Information Base for network management of TCP/IP-based
internets K. McCloghrie, M. Rose

Simple Network Management Protocol (SNMP) J. Case, M. Fedor, M.
Schoffstall, J. Davin

Management Information Base for network management of TCP/IP-based
internets: MIB-II M. Rose

Internet numbers S. Kirkpatrick, M.K. Stahl, M. Recker
Line printer daemon protocol L. McLaughlin

TCP/IP tutorial T. Socolofsky, C. Kale

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 1183

RFC 1184
RFC 1186
RFC 1187
RFC 1188

RFC 1190
RFC 1191
RFC 1198
RFC 1207

RFC 1208
RFC 1213

RFC 1215
RFC 1227
RFC 1228

RFC 1229
RFC 1230
RFC 1231
RFC 1236
RFC 1256
RFC 1267
RFC 1268

RFC 1269

RFC 1270
RFC 1285
RFC 1315

RFC 1321
RFC 1323

RFC 1325

RFC 1327

New DNS RR Definitions C.E. Everhart, L.A. Mamakos, R. Ullmann,
P.V. Mockapetris

Telnet Linemode Option D. Borman
MD4 Message Digest Algorithm R.L. Rivest
Bulk Table Retrieval with the SNMP M. Rose, K. McCloghrie,]. Davin

Proposed Standard for the Transmission of IP Datagrams over FDDI
Networks D. Katz

Experimental Internet Stream Protocol: Version 2 (ST-1I) C. Topolcic
Path MTU discovery]. Mogul, S. Deering
FYT on the X window system R. Scheifler

FYT on Questions and Answers: Answers to commonly asked
“experienced Internet user” questions G. Malkin, A. Marine, J.
Reynolds

Glossary of networking terms O. Jacobsen, D. Lynch

Management Information Base for Network Management of
TCP/IP-based internets: MIB-II K. McCloghrie, M.T. Rose

Convention for defining traps for use with the SNMP M. Rose
SNMP MUX protocol and MIB M.T. Rose

SNMP-DPI: Simple Network Management Protocol Distributed Program
Interface G. Carpenter, B. Wijnen

Extensions to the generic-interface MIB K. McCloghrie

IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker
IP to X.121 address mapping for DDN L. Morales, P. Hasse
ICMP Router Discovery Messages S. Deering, Ed.

Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

Application of the Border Gateway Protocol in the Internet Y. Rekhter, P.
Gross

Definitions of Managed Objects for the Border Gateway Protocol: Version
3 S. Willis, J. Burruss

SNMP Communications Services F. Kastenholz, ed.
FDDI Management Information Base]. Case

Management Information Base for Frame Relay DTEs C. Brown, F.
Baker, C. Carvalho

The MD5 Message-Digest Algorithm R. Rivest

TCP Extensions for High Performance V. Jacobson, R. Braden, D.
Borman

FYT on Questions and Answers: Answers to Commonly Asked "New
Internet User" Questions G. Malkin, A. Marine

Mapping between X.400 (1988)/I1SO 10021 and RFC 822 S.
Hardcastle-Kille

Appendix A. Related protocol specifications (RFCs) 143

144

RFC 1340
RFC 1344
RFC 1349
RFC 1350
RFC 1351
RFC 1352
RFC 1353

RFC 1354
RFC 1356

RFC 1358
RFC 1363
RFC 1368

RFC 1372
RFC 1374
RFC 1381
RFC 1382
RFC 1387
RFC 1388
RFC 1389
RFC 1390
RFC 1393
RFC 1398

RFC 1408
RFC 1413
RFC 1416
RFC 1420
RFC 1428

RFC 1442

RFC 1443

RFC 1445

RFC 1447

Assigned Numbers J. Reynolds,]J. Postel

Implications of MIME for Internet Mail Gateways N. Bornstein
Type of Service in the Internet Protocol Suite P. Almquist

The TFTP Protocol (Revision 2) K.R. Sollins

SNMP Administrative Model]. Davin,]. Galvin, K. McCloghrie
SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

Definitions of Managed Objects for Administration of SNMP Parties K.
McCloghrie, J. Davin, J. Galvin

IP Forwarding Table MIB F. Baker

Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A.
Malis, D. Robinson, R. Ullmann

Charter of the Internet Architecture Board (IAB) L. Chapin
A Proposed Flow Specification C. Partridge

Definition of Managed Objects for IEEE 802.3 Repeater Devices D.
McMaster, K. McCloghrie

Telnet Remote Flow Control Option C. L. Hedrick, D. Borman
IP and ARP on HIPPI J. Renwick, A. Nicholson

SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker
SNMP MIB Extension for the X.25 Packet Layer D. Throop
RIP Version 2 Protocol Analysis G. Malkin

RIP Version 2 Carrying Additional Information G. Malkin

RIP Version 2 MIB Extensions G. Malkin, F. Baker
Transmission of IP and ARP over FDDI Networks D. Katz
Traceroute Using an IP Option G. Malkin

Definitions of Managed Objects for the Ethernet-Like Interface Types F.
Kastenholz

Telnet Environment Option D. Borman, Ed.
Identification Protocol M. St. Johns

Telnet Authentication Option D. Borman, ed.
SNMP over IPX S. Bostock

Transition of Internet Mail from Just-Send-8 to 8bit-SMTP/MIME G.
Vaudreuil

Structure of Management Information for version 2 of the Simple
Network Management Protocol (SNMPv2)]. Case, K. McCloghrie, M.
Rose, S. Waldbusser

Textual Conventions for version 2 of the Simple Network Management
Protocol (SNMPuv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

Administrative Model for version 2 of the Simple Network Management
Protocol (SNMPv2) J. Galvin, K. McCloghrie

Party MIB for version 2 of the Simple Network Management Protocol
(SNMPv2) K. McCloghrie, J. Galvin

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 1448

RFC 1464

RFC 1469
RFC 1483

RFC 1497
RFC 1514
RFC 1516

RFC 1521

RFC 1533

RFC 1534
RFC 1535

RFC 1536

RFC 1537
RFC 1540
RFC 1541
RFC 1542
RFC 1571
RFC 1572
RFC 1573

RFC 1577
RFC 1583
RFC 1591
RFC 1592

RFC 1594

RFC 1644

RFC 1646

RFC 1647

Protocol Operations for version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

Using the Domain Name System to Store Arbitrary String Attributes R.
Rosenbaum

IP Multicast over Token-Ring Local Area Networks T. Pusateri

Multiprotocol Encapsulation over ATM Adaptation Layer 5 Juha
Heinanen

BOOTP Vendor Information Extensions J. Reynolds
Host Resources MIB P. Grillo, S. Waldbusser

Definitions of Managed Objects for IEEE 802.3 Repeater Devices D.
McMaster, K. McCloghrie

MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms
for Specifying and Describing the Format of Internet Message Bodies N.
Borenstein, N. Freed

DHCP Options and BOOTP Vendor Extensions S. Alexander, R.
Droms

Interoperation Between DHCP and BOOTP R. Droms

A Security Problem and Proposed Correction With Widely Deployed
DNS Software E. Gavron

Common DNS Implementation Errors and Suggested Fixes A. Kumar, J.
Postel, C. Neuman, P. Danzig, S. Miller

Common DNS Data File Configuration Errors P. Beertema
Internet Official Protocol Standards J. Postel

Dynamic Host Configuration Protocol R. Droms

Clarifications and Extensions for the Bootstrap Protocol W. Wimer
Telnet Environment Option Interoperability Issues D. Borman
Telnet Environment Option S. Alexander

Evolution of the Interfaces Group of MIB-II K. McCloghrie, E
Kastenholz

Classical IP and ARP over ATM M. Laubach
OSPF Version 2]. Moy
Domain Name System Structure and Delegation]. Postel

Simple Network Management Protocol Distributed Protocol Interface
Version 2.0 B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters

FYT on Questions and Answers— Answers to Commonly Asked "New
Internet User" Questions A. Marine, J. Reynolds, G. Malkin

T/ITCP — TCP Extensions for Transactions Functional Specification R.
Braden

TN3270 Extensions for LUname and Printer Selection C. Graves, T.
Butts, M. Angel

TN3270 Enhancements B. Kelly

Appendix A. Related protocol specifications (RFCs) 145

146

RFC 1652

RFC 1664

RFC 1693

RFC 1695

RFC 1701

RFC 1702

RFC 1706
RFC 1712

RFC 1713
RFC 1723
RFC 1752

RFC 1766
RFC 1771
RFC 1794
RFC 1819

RFC 1826
RFC 1828
RFC 1829
RFC 1830

RFC 1831

RFC 1832
RFC 1833
RFC 1850
RFC 1854
RFC 1869

RFC 1870

RFC 1876

RFC 1883

SMTP Service Extension for 8bit-MIMEtransport J. Klensin, N. Freed,
M. Rose, E. Stefferud, D. Crocker

Using the Internet DNS to Distribute RFC1327 Mail Address Mapping
Tables C. Allochio, A. Bonito, B. Cole, S. Giordano, R. Hagens

An Extension to TCP: Partial Order Service T. Connolly, P. Amer, P.
Conrad

Definitions of Managed Objects for ATM Management Version 8.0 using
SMIv2 M. Ahmed, K. Tesink

Generic Routing Encapsulation (GRE) S. Hanks, T. Li, D. Farinacci, P.
Traina

Generic Routing Encapsulation over IPv4 networks S. Hanks, T. Li, D.
Farinacci, P. Traina

DNS NSAP Resource Records B. Manning, R. Colella

DNS Encoding of Geographical Location C. Farrell, M. Schulze, S.
Pleitner D. Baldoni

Tools for DNS debugging A. Romao
RIP Version 2—Carrying Additional Information G. Malkin

The Recommendation for the IP Next Generation Protocol S. Bradner, A.
Mankin

Tags for the Identification of Languages H. Alvestrand
A Border Gateway Protocol 4 (BGP-4) Y. Rekhter, T. Li
DNS Support for Load Balancing T. Brisco

Internet Stream Protocol Version 2 (ST2) Protocol Specification—Version
ST2+ L. Delgrossi, L. Berger Eds.

IP Authentication Header R. Atkinson
IP Authentication using Keyed MD5 P. Metzger, W. Simpson
The ESP DES-CBC Transform P. Karn, P. Metzger, W. Simpson

SMTP Service Extensions for Transmission of Large and Binary MIME
Messages G. Vaudreuil

RPC: Remote Procedure Call Protocol Specification Version 2 R.
Srinivasan

XDR: External Data Representation Standard R. Srinivasan
Binding Protocols for ONC RPC Version 2 R. Srinivasan

OSPF Version 2 Management Information Base F. Baker, R. Coltun
SMTP Service Extension for Command Pipelining N. Freed

SMTP Service Extensions J. Klensin, N. Freed, M. Rose, E. Stefferud,
D. Crocker

SMTP Service Extension for Message Size Declaration J. Klensin, N.
Freed, K. Moore

A Means for Expressing Location Information in the Domain Name
System C. Davis, P. Vixie, T. Goodwin, 1. Dickinson

Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 1884
RFC 1886
RFC 1888

RFC 1891
RFC 1892

RFC 1894

RFC 1901

RFC 1902

RFC 1903

RFC 1904

RFC 1905

RFC 1906

RFC 1907

RFC 1908

RFC 1912

RFC 1918

RFC 1928

RFC 1930

RFC 1939
RFC 1981
RFC 1982
RFC 1985

RFC 1995
RFC 1996

IP Version 6 Addressing Architecture R. Hinden, S. Deering, Eds.
DNS Extensions to support IP version 6 S. Thomson, C. Huitema

OSI NSAPs and 1Pv6]. Bound, B. Carpenter, D. Harrington, J.
Houldsworth, A. Lloyd

SMTP Service Extension for Delivery Status Notifications K. Moore

The Multipart/Report Content Type for the Reporting of Mail System
Administrative Messages G. Vaudreuil

An Extensible Message Format for Delivery Status NotificationsK.
Moore, G. Vaudreuil

Introduction to Community-based SNMPv2 J. Case, K. McCloghrie, M.
Rose, S. Waldbusser

Structure of Management Information for Version 2 of the Simple
Network Management Protocol (SNMPuv2) J. Case, K. McCloghrie, M.
Rose, S. Waldbusser

Textual Conventions for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

Conformance Statements for Version 2 of the Simple Network
Management Protocol (SNMPv2)]. Case, K. McCloghrie, M. Rose, S.
Waldbusser

Protocol Operations for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

Transport Mappings for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

Management Information Base for Version 2 of the Simple Network
Management Protocol (SNMPv2)]. Case, K. McCloghrie, M. Rose, S.
Waldbusser

Coexistence between Version 1 and Version 2 of the Internet-standard
Network Management Framework J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

Common DNS Operational and Configuration Errors D. Barr

Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D.
Karrenberg, G.J. de Groot, E. Lear

SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D.
Koblas, L. Jones

Guidelines for creation, selection, and registration of an Autonomous
System (AS)]. Hawkinson, T. Bates

Post Office Protocol-Version 3 J. Myers, M. Rose
Path MTU Discovery for IP version 6 J. McCann, S. Deering, J. Mogul
Serial Number Arithmetic R. Elz, R. Bush

SMTP Service Extension for Remote Message Queue Starting J. De
Winter

Incremental Zone Transfer in DNS M. Ohta

A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)
P. Vixie

Appendix A. Related protocol specifications (RFCs) 147

RFC 2010 Operational Criteria for Root Name Servers B. Manning, P. Vixie

RFC 2011 SNMPv2 Management Information Base for the Internet Protocol using
SMIv2 K. McCloghrie, Ed.

RFC 2012 SNMPv2 Management Information Base for the Transmission Control
Protocol using SMIv2 K. McCloghrie, Ed.

RFC 2013 SNMPv2 Management Information Base for the User Datagram Protocol
using SMIv2 K. McCloghrie, Ed.

RFC 2018 TCP Selective Acknowledgement Options M. Mathis,]. Mahdavi, S.
Floyd, A. Romanow

RFC 2026 The Internet Standards Process — Revision 3 S. Bradner

RFC 2030 Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI
D. Mills

RFC 2033 Local Mail Transfer Protocol J. Myers

RFC 2034 SMTP Service Extension for Returning Enhanced Error CodesN. Freed

RFC 2040 The RC5, RC5-CBC, RC-5-CBC-Pad, and RC5-CTS AlgorithmsR.
Baldwin, R. Rivest

RFC 2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format of

Internet Message Bodies N. Freed, N. Borenstein

RFC 2052 A DNS RR for specifying the location of services (DNS SRV) A.
Gulbrandsen, P. Vixie

RFC 2065 Domain Name System Security Extensions D. Eastlake 3rd, C.
Kaufman

RFC 2066 TELNET CHARSET Option R. Gellens

RFC 2080 RIPng for IPv6 G. Malkin, R. Minnear

RFC 2096 IP Forwarding Table MIB F. Baker

RFC 2104 HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M.
Bellare, R. Canetti

RFC 2119 Keywords for use in RFCs to Indicate Requirement Levels S. Bradner

RFC 2132 DHCP Options and BOOTP Vendor Extensions S. Alexander, R.
Droms

RFC 2133 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.
Bound, W. Stevens

RFC 2136 Dynamic Updates in the Domain Name System (DNS UPDATE) P.
Vixie, Ed., S. Thomson, Y. Rekhter, J. Bound

RFC 2137 Secure Domain Name System Dynamic Update D. Eastlake 3rd

RFC 2163 Using the Internet DNS to Distribute MIXER Conformant Global
Address Mapping (MCGAM) C. Allocchio

RFC 2168 Resolution of Uniform Resource Identifiers using the Domain Name
System R. Daniel, M. Mealling

RFC 2178 OSPF Version 2]J. Moy

RFC 2181 Clarifications to the DNS Specification R. Elz, R. Bush

148 2/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 2205

RFC 2210
RFC 2211

RFC 2212

RFC 2215

RFC 2217
RFC 2219
RFC 2228
RFC 2230
RFC 2233
RFC 2240
RFC 2246
RFC 2251
RFC 2253

RFC 2254
RFC 2261

RFC 2262

RFC 2271

RFC 2273
RFC 2274

RFC 2275

RFC 2279
RFC 2292
RFC 2308
RFC 2317
RFC 2320

RFC 2328
RFC 2345

Resource ReSerVation Protocol (RSVP)—Version 1 Functional
Specification R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S.
Jamin

The Use of RSVP with IETF Integrated Services]. Wroclawski

Specification of the Controlled-Load Network Element Service J.
Wroclawski

Specification of Guaranteed Quality of Service S. Shenker, C. Partridge,
R. Guerin

General Characterization Parameters for Integrated Service Network
Elements S. Shenker, J. Wroclawski

Telnet Com Port Control Option G. Clarke

Use of DNS Aliases for Network Services M. Hamilton, R. Wright

FTP Security Extensions M. Horowitz, S. Lunt

Key Exchange Delegation Record for the DNS R. Atkinson

The Interfaces Group MIB using SMIv2 K. McCloghrie, F. Kastenholz
A Legal Basis for Domain Name Allocation O. Vaughn

The TLS Protocol Version 1.0 T. Dierks, C. Allen

Lightweight Directory Access Protocol (v3) M. Wahl, T. Howes, S. Kille

Lightweight Directory Access Protocol (v3): UTF-8 String Representation
of Distinguished Names M. Wahl, S. Kille, T. Howes

The String Representation of LDAP Search Filters T. Howes

An Architecture for Describing SNMP Management Frameworks D.
Harrington, R. Presuhn, B. Wijnen

Message Processing and Dispatching for the Simple Network
Management Protocol (SNMP)]. Case, D. Harrington, R. Presuhn, B.
Wijnen

An Architecture for Describing SNMP Management Frameworks D.
Harrington, R. Presuhn, B. Wijnen

SNMPuv3 Applications D. Levi, P. Meyer, B. Stewartz

User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

View-based Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

UTE-8, a transformation format of ISO 10646 F. Yergeau

Advanced Sockets API for IPv6 W. Stevens, M. Thomas

Negative Caching of DNS Queries (DNS NCACHE) M. Andrews
Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

Definitions of Managed Objects for Classical IP and ARP Over ATM
Using SMIv2 (IPOA-MIB) M. Greene, J. Luciani, K. White, T. Kuo

OSPF Version 2]. Moy

Domain Names and Company Name Retrieval]J. Klensin, T. Wolf, G.
Oglesby

Appendix A. Related protocol specifications (RFCs) 149

150

RFC 2352
RFC 2355
RFC 2358

RFC 2373
RFC 2374

RFC 2375
RFC 2385

RFC 2389

RFC 2401
RFC 2402
RFC 2403
RFC 2404

RFC 2405

RFC 2406
RFC 2407
RFC 2408

RFC 2409
RFC 2410

RFC 2428

RFC 2445

RFC 2459

RFC 2460
RFC 2461

RFC 2462
RFC 2463

RFC 2464
RFC 2466

RFC 2476

A Convention for Using Legal Names as Domain Names O. Vaughn
TN3270 Enhancements B. Kelly

Definitions of Managed Objects for the Ethernet-like Interface Types J.
Flick, J. Johnson

IP Version 6 Addressing Architecture R. Hinden, S. Deering

An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M.
O’Dell, S. Deering

IPv6 Multicast Address Assignments R. Hinden, S. Deering

Protection of BGP Sessions via the TCP MD5 Signature OptionA.
Hefferman

Feature negotiation mechanism for the File Transfer Protocol P.
Hethmon, R. Elz

Security Architecture for Internet Protocol S. Kent, R. Atkinson
IP Authentication Header S. Kent, R. Atkinson
The Use of HMAC-MD5-96 within ESP and AH C. Madson, R. Glenn

The Use of HMAC-SHA-1-96 within ESP and AH C. Madson, R.
Glenn

The ESP DES-CBC Cipher Algorithm With Explicit IV C. Madson, N.
Doraswamy

IP Encapsulating Security Payload (ESP) S. Kent, R. Atkinson
The Internet IP Security Domain of Interpretation for ISAKMPD. Piper

Internet Security Association and Key Management Protocol (ISAKMP)
D. Maughan, M. Schertler, M. Schneider, J. Turner

The Internet Key Exchange (IKE) D. Harkins, D. Carrel

The NULL Encryption Algorithm and Its Use With IPsec R. Glenn, S.
Kent,

FTP Extensions for IPv6 and NATs M. Allman, S. Ostermann, C.
Metz

Internet Calendaring and Scheduling Core Object Specification
(iCalendar) F. Dawson, D. Stenerson

Internet X.509 Public Key Infrastructure Certificate and CRL Profile R.
Housley, W. Ford, W. Polk, D. Solo

Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark,
W. Simpson

IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

Internet Control Message Protocol (ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification A. Conta, S. Deering

Transmission of IPv6 Packets over Ethernet Networks M. Crawford

Management Information Base for IP Version 6: ICMPv6 Group D.
Haskin, S. Onishi

Message Submission R. Gellens, J. Klensin

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 2487
RFC 2505
RFC 2523
RFC 2535
RFC 2538

RFC 2539

RFC 2540
RFC 2554
RFC 2570

RFC 2571

RFC 2572

RFC 2573

RFC 2574

RFC 2575

RFC 2576

RFC 2578

RFC 2579

RFC 2580

RFC 2581
RFC 2583

RFC 2591

RFC 2625

RFC 2635

RFC 2637

RFC 2640

SMTP Service Extension for Secure SMTP over TLS P. Hoffman
Anti-Spam Recommendations for SMTP MTAs G. Lindberg
Photuris: Extended Schemes and Attributes P. Karn, W. Simpson
Domain Name System Security Extensions D. Eastlake 3rd

Storing Certificates in the Domain Name System (DNS) D. Eastlake
3rd, O. Gudmundsson

Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D.
Eastlake 3rd

Detached Domain Name System (DNS) Information D. Eastlake 3rd
SMTP Service Extension for Authentication J. Myers

Introduction to Version 3 of the Internet-standard Network Management
Framework J. Case, R. Mundy, D. Partain, B. Stewart

An Architecture for Describing SNMP Management Frameworks B.
Wijnen, D. Harrington, R. Presuhn

Message Processing and Dispatching for the Simple Network
Management Protocol (SNMP)]. Case, D. Harrington, R. Presuhn, B.
Wijnen

SNMP Applications D. Levi, P. Meyer, B. Stewart

User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

View-based Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

Co-Existence between Version 1, Version 2, and Version 3 of the
Internet-standard Network Management Framework R. Frye, D. Levi, S.
Routhier, B. Wijnen

Structure of Management Information Version 2 (SMlv2) K.
McCloghrie, D. Perkins, J. Schoenwaelder

Textual Conventions for SMIv2 K. McCloghrie, D. Perkins, J.
Schoenwaelder

Conformance Statements for SMIv2 K. McCloghrie, D. Perkins, J.
Schoenwaelder

TCP Congestion Control M. Allman, V. Paxson, W. Stevens

Guidelines for Next Hop Client (NHC) Developers R. Carlson, L.
Winkler

Definitions of Managed Objects for Scheduling Management Operations
D. Levi,]J. Schoenwaelder

IP and ARP over Fibre Channel M. Rajagopal, R. Bhagwat, W.
Rickard

Don’t SPEW A Set of Guidelines for Mass Unsolicited Mailings and
Postings (spam*) S. Hambridge, A. Lunde

Point-to-Point Tunneling Protocol K. Hamzeh, G. Pall, W. Verthein, J.
Taarud, W. Little, G. Zorn

Internationalization of the File Transfer Protocol B. Curtin

Appendix A. Related protocol specifications (RFCs) 151

RFC 2665 Definitions of Managed Objects for the Ethernet-like Interface Types]J.
Flick, J. Johnson

RFC 2671 Extension Mechanisms for DNS (EDNSO0) P. Vixie

RFC 2672 Non-Terminal DNS Name Redirection M. Crawford

RFC 2675 IPv6 Jumbograms D. Borman, S. Deering, R. Hinden

RFC 2710 Multicast Listener Discovery (MLD) for IPv6 S. Deering, W. Fenner, B.
Haberman

RFC 2711 IPv6 Router Alert Option C. Partridge, A. Jackson

RFC 2740 OSPF for IPv6 R. Coltun, D. Ferguson,]J. Moy

RFC 2753 A Framework for Policy-based Admission Control R. Yavatkar, D.

Pendarakis, R. Guerin

RFC 2782 A DNS RR for specifying the location of services (DNS SRV) A.
Gubrandsen, P. Vixix, L. Esibov

RFC 2821 Simple Mail Transfer Protocol J. Klensin, Ed.

RFC 2822 Internet Message Format P. Resnick, Ed.

RFC 2840 TELNET KERMIT OPTION]. Altman, F. da Cruz

RFC 2845 Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O.
Gudmundsson, D. Eastlake 3rd, B. Wellington

RFC 2851 Textual Conventions for Internet Network Addresses M. Daniele, B.
Haberman, S. Routhier, J. Schoenwaelder

RFC 2852 Deliver By SMTP Service Extension D. Newman

RFC 2874 DNS Extensions to Support IPv6 Address Aggregation and Renumbering
M. Crawford, C. Huitema

RFC 2915 The Naming Authority Pointer (NAPTR) DNS Resource Record M.
Mealling, R. Daniel

RFC 2920 SMTP Service Extension for Command Pipelining N. Freed

RFC 2930 Secret Key Establishment for DNS (TKEY RR) D. Eastlake, 3rd

RFC 2941 Telnet Authentication Option T. Ts’o, ed., J. Altman

RFC 2942 Telnet Authentication: Kerberos Version 5 T. Ts’o

RFC 2946 Telnet Data Encryption Option T. Ts’o

RFC 2952 Telnet Encryption: DES 64 bit Cipher Feedback T. Ts’o

RFC 2953 Telnet Encryption: DES 64 bit Output Feedback T. Ts’o

RFC 2992 Analysis of an Equal-Cost Multi-Path Algorithm C. Hopps

RFC 3019 IP Version 6 Management Information Base for The Multicast Listener
Discovery Protocol B. Haberman, R. Worzella

RFC 3060 Policy Core Information Model—Version 1 Specification B. Moore, E.
Ellesson, J. Strassner, A. Westerinen

RFC 3152 Delegation of IP6.ARPA R. Bush

RFC 3164 The BSD Syslog Protocol C. Lonvick

RFC 3291 Textual Conventions for Internet Network Addresses M. Daniele, B.

Haberman, S. Routhier, J. Schoenwaelder

152 2/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 3363

RFC 3390

RFC 3410

RFC 3411

RFC 3412

RFC 3413

RFC 3414

RFC 3415

RFC 3419

RFC 3484

RFC 3493

RFC 3513

RFC 3526

RFC 3542

RFC 3584

RFC 3602

RFC 3629
RFC 3658
RFC 3715

RFC 3947

RFC 3948

Representing Internet Protocol version 6 (IPv6) Addresses in the Domain
Name System R. Bush, A. Durand, B. Fink, O. Gudmundsson, T.
Hain

Increasing TCP’s Initial Window M. Allman, S. Floyd, C. Partridge

Introduction and Applicability Statements for Internet-Standard
Management Framework J. Case, R. Mundy, D. Partain, B. Stewart

An Architecture for Describing Simple Network Management Protocol
(SNMP) Management Frameworks D. Harrington, R. Presuhn, B.
Wijnen

Message Processing and Dispatching for the Simple Network
Management Protocol (SNMP)]. Case, D. Harrington, R. Presuhn, B.
Wijnen

Simple Network Management Protocol (SNMP) Applications D. Levi, P.
Meyer, B. Stewart

User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

View-based Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

Textual Conventions for Transport Addresses M. Daniele, J.
Schoenwaelder

Default Address Selection for Internet Protocol version 6 (IPv6) R.
Draves

Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.
Bound, J. McCann, W. Stevens

Internet Protocol Version 6 (IPv6) Addressing Architecture R. Hinden,
S. Deering

More Modular Exponential (MODP) Diffie-Hellman groups for Internet
Key Exchange (IKE) T. Kivinen, M. Kojo

Advanced Sockets Application Programming Interface (API) for IPv6 W.
Richard Stevens, M. Thomas, E. Nordmark, T. Jinmei

Coexistence between Version 1, Version 2, and Version 3 of the
Internet-standard Network Management Framework R. Frye, D. Levi, S.
Routhier, B. Wijnen

The AES-CBC Cipher Algorithm and Its Use with IPsec S. Frankel, R.
Glenn, S. Kelly

UTF-8, a transformation format of ISO 10646 R. Kermode, C. Vicisano
Delegation Signer (DS) Resource Record (RR) O. Gudmundsson

IPsec-Network Address Translation (NAT) Compatibility Requirements B.
Aboba, W. Dixon

Negotiation of NAT-Traversal in the IKE T. Kivinen, B. Swander, A.
Huttunen, V. Volpe

UDP Encapsulation of IPsec ESP Packets A. Huttunen, B. Swander, V.
Volpe, L. DiBurro, M. Stenberg

Appendix A. Related protocol specifications (RFCs) 153

Internet drafts

Internet drafts are working documents of the Internet Engineering Task Force
(IETF), its areas, and its working groups. Other groups may also distribute
working documents as Internet drafts. You can see Internet drafts at

Ihttp:/ /www.ietf.org /ID.htmi]

Several areas of IPv6 implementation include elements of the following Internet
drafts and are subject to change during the RFC review process.

Draft Title and Author

draft-bivens-sasp-02
Server/Application State Protocol vl A. Bivens

draft-ietf-ipngwg-icmp-v3-07
Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification A. Conta, S. Deering

draft-ietf-ipsec-esp-v3-10
IP Encapsulating Security Payload (ESP) S. Kent

draft-ietf-ipsec-rfc2402bis-11
IP Authentication Header S. Kent

draft-ietf-ipsec-rfc2401bis-06
Security Architecture for the Internet Protocol S. Kent, K. Seo

draft-ietf-ospf-ospfv3-auth-07
Authentication/Confidentiality for OSPFv3 M. Gupta, N. Melam

154 2/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

http://www.ietf.org/ID.html

Appendix B. Information APARs and technotes

This appendix lists information APARs for IP and SNA documents.

Notes:

1. Information APARs contain updates to previous editions of the documents

listed in [Table 38|and [Table 39 on page 156] Documents updated for VIR7 are

complete except for the updates contained in the information APARs that might
be issued after VIR7 documents went to press.

2. Information APARs are predefined for z/OS VIR7 Communications Server and
might not contain updates.

3. Information APARs for z/OS documents are in the document called z/OS and

z/0S.e DOC APAR and PTF ++HOLD Documentation, which can be found at

http:/ /publibz.boulder.ibm.com:80/ cgi-bin/bookmer 0S390/|

BOOKS/ZIDOCMST/CCONTENTS

Information APARs for IP documents

lists information APARs for IP documents. For releases V1R7 and later,

updates are available as technotes, which can be found at fhttp:/ /www.ibm.com /|

lsupport/docview.wss?uid=swg21178966.]

Table 38. IP information APARs for zZOS Communications Server

Title V1R6 VIR5 V1R4

New Function Summary (both IP and SNA) 1113824
Quick Reference (both IP and SNA) 1113831 1113246
IP and SNA Codes 1113842 1113254
IP API Guide 1113844 1113577 1113255
1113790
IP CICS Sockets Guide 1113578 1113257
IP Configuration Guide 1113826 1113568 1113244
1113541
1113652
1113646
IP Configuration Reference 1113827 1113569 1113245
1113789 1113521
1113647
1113739
IP Diagnosis 1113836 1113571 1113249
1113493
IP Messages Volume 1 1113838 1113572 1113624
1113250
IP Messages Volume 2 1113839 1113573 1113251
IP Messages Volume 3 1113840 1113574 1113252
IP Messages Volume 4 1113841 1113575 1113253
1113628
IP Migration 1113566 1113242
1113738

© Copyright IBM Corp. 2002, 2006

155

http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/support/docview.wss?uid=swg21178966

Table 38. IP information APARs for zZOS Communications Server (continued)

Title V1R6 V1R5 V1R4
IP Network and Application Design Guide 1113825 1113567 1113243
IP Network Print Facility
IP Programmer’s Reference 1113843 1113581 1113256
IP User’s Guide and Commands 1113832 1113570 1113247
IP System Admin Commands 1113833 1113580 1113248
1113792

Information APARs for SNA documents

lists information APARs for SNA documents. For releases VIR7 and later,
updates are available as technotes, which can be found at fhttp:/ /www.ibm.com /|
lsupport/docview.wss?uid=swg21178966.

Table 39. SNA information APARs for zZOS Communications Server

Title V1R6 V1R5 V1R4

New Function Summary (both IP and 1113824

SNA)

Quick Reference (both IP and SNA) 1113831 1113246

IP and SNA Codes 1113842 1113254

SNA Customization 1113857 1113560 1113240

SNA Diagnosis 1113558 1113236
1113735

SNA Diagnosis, Vol. 1: Techniques and | 1113852

Procedures

SNA Diagnosis, Vol. 2: FEST Dumps and | 113853

the VIT

SNA Messages 1113854 1113559 1113238
1113736

SNA Network Implementation Guide 1113849 1113555 1113234
1113733

SNA Operation 1113851 1113557 1113237

SNA Migration 1113554 1113233
1113732

SNA Programming 1113858 1113241

SNA Resource Definition Reference 1113850 1113556 1113235
1113734

SNA Data Areas, Vol. 1 and 2 1113239

SNA Data Areas, 1 1113855

SNA Data Areas, 2 1113856

Other information APARs

[Table 40 on page 157 lists information APARs not related to documents.

156 2/0S VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/support/docview.wss?uid=swg21178966

Table 40. Non-document information APARs

Content Number
Index to APARs that list recommended VTAM maintenance 1111220
Index to APARs that list trace and dump requests for VTAM problems 1113202
Index of Communication Server IP information APARs 1112028
MPC and CTC 1101501
Collecting TCPIP CTRACEs 1112014
CSM for VTAM 1113442
CSM for TCP/IP 1113951

DLUR/DLUS for z/OS VIR2, VIR4, and V1R5

1112986, 1113456, and 1113783

DOCUMENTATION REQUIRED FOR OSA /2, OSA EXPRESS AND OSA
QDIO

1113016

DYNAMIC VIPA (BIND) 1113215
DNS — common problems and solutions 1113453
Enterprise Extender 1112223
FTPing doc to z/OS Support 1112030
FTP problems 1112079
Generic resources 1110986
HPR 1110953
iQDIO 1113142
LPR problems 1112022
MNPS 1110370
NCPROUTE problems 1112025
OMPROUTE 1112026
PASCAL API 1111814
Performance 1111710

11711

111712
Resolver 1113398

1113399

1113452
Socket API 1111996

1112020
SMTP problems 1112023
SNMP 1113477

1113478
SYSLOGD howto 1112021
TCPIP connection states 1112449
Telnet 1111574

1113135
TN3270 TELNET SSL common problems 1113369

Appendix B. Information APARs and technotes

157

158 2/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Appendix C. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

* Use assistive technologies such as screen readers and screen magnifier software
* Operate specific or equivalent features using only the keyboard
* Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPE. Refer to |z/OS TSO/El
IPrimer e/OS TSO/E User’s Guidd, and [z/OS ISPF User’s Guide Vol Il for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

z/0S information

z/0OS information is accessible using screen readers with the BookServer/Library
Server versions of z/OS books in the Internet library at:

[www.ibm.com/servers/eserver/zseries/zos/bkserv/|

© Copyright IBM Corp. 2002, 2006 159

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

160 2z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Notices

IBM may not offer all of the products, services, or features discussed in this
document. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2002, 2006 161

162

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel

IBM Corporation

P.O. Box 12195

3039 Cornwallis Road

Research Triangle Park, North Carolina 27709-2195
US.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

IBM is required to include the following statements in order to distribute portions
of this document and the software described herein to which contributions have
been made by The University of California. Portions herein © Copyright 1979,
1980, 1983, 1986, Regents of the University of California. Reproduced by
permission. Portions herein were developed at the Electrical Engineering and
Computer Sciences Department at the Berkeley campus of the University of
California under the auspices of the Regents of the University of California.

Portions of this publication relating to RPC are Copyright © Sun Microsystems,
Inc., 1988, 1989.

Some portions of this publication relating to X Window System** are Copyright ©
1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the
Massachusetts Institute Of Technology, Cambridge, Massachusetts. All Rights
Reserved.

Some portions of this publication relating to X Window System are Copyright ©
1986, 1987, 1988 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute the M.LT., Digital Equipment
Corporation, and Hewlett-Packard Corporation portions of this software and its
documentation for any purpose without fee is hereby granted, provided that the
above copyright notice appears in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
names of M.L.T.,, Digital, and Hewlett-Packard not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior
permission. M.LT., Digital, and Hewlett-Packard make no representation about the
suitability of this software for any purpose. It is provided "as is” without express
or implied warranty.

Copyright © 1983, 1995-1997 Eric P. Allman

Copyright © 1988, 1993 The Regents of the University of California. All rights
reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

Notices 163

164

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS " AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This software program contains code, and/or derivatives or modifications of code
originating from the software program "Popper.” Popper is Copyright ©1989-1991
The Regents of the University of California, All Rights Reserved. Popper was
created by Austin Shelton, Information Systems and Technology, University of
California, Berkeley.

Permission from the Regents of the University of California to use, copy, modify,
and distribute the "Popper” software contained herein for any purpose, without
fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in
all copies. HOWEVER, ADDITIONAL PERMISSIONS MAY BE NECESSARY
FROM OTHER PERSONS OR ENTITIES, TO USE DERIVATIVES OR
MODIFICATIONS OF POPPER.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THE
POPPER SOFTWARE, OR ITS DERIVATIVES OR MODIFICATIONS, AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE POPPER SOFTWARE PROVIDED HEREUNDER IS ON AN "AS
IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS
TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

Copyright © 1983 The Regents of the University of California. All rights reserved.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Redistribution and use in source and binary forms are permitted provided that the
above copyright notice and this paragraph are duplicated in all such forms and
that any documentation, advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed by the
University of California, Berkeley. The name of the University may not be used to
endorse or promote products derived from this software without specific prior
written permission. THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 1991, 1993 The Regents of the University of California. All rights
reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS " AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright © 1990 by the Massachusetts Institute of Technology

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of MLLT. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. Furthermore

Notices 165

166

if you modify this software you must label your software as modified software and
not distribute it in such a fashion that it might be confused with the original M.L.T.
software. M.L.T. makes no representations about the suitability of this software for
any purpose. It is provided "as is” without express or implied warranty.

Copyright © 1998 by the FundsXpress, INC. All rights reserved.

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of FundsXpress not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior
permission. FundsXpress makes no representations about the suitability of this
software for any purpose. It is provided "as is” without express or implied
warranty.

THIS SOFTWARE IS PROVIDED " AS IS” AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS” AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscape’s SSL.

This library is free for commercial and non-commercial use as long as the
following conditions are adhered to. The following conditions apply to all code
found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the
SSL code. The SSL documentation included with this distribution is covered by the
same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young’s, and as such any Copyright notices in the code are
not to be removed. If this package is used in a product, Eric Young should be

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

given attribution as the author of the parts of the library used. This can be in the
form of a textual message at program startup or in documentation (online or
textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgement: "This product includes cryptographic
software written by Eric Young (eay@cryptsoft.com)”. The word ’cryptographic’
can be left out if the routines from the library being used are not cryptographic
related.

4. If you include any Windows specific code (or a derivative thereof) from the
apps directory (application code) you must include acknowledgement:

"This product includes software written by Tim Hudson (tjh@cryptsoft.com)”

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG AS IS” AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The license and distribution terms for any publicly available version or derivative
of this code cannot be changed. i.e. this code cannot simply be copied and put
under another distribution license [including the GNU Public License.]

This product includes cryptographic software written by Eric Young.
Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS” AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Notices 167

168

Copyright © 2004 IBM Corporation and its licensors, including Sendmail, Inc., and
the Regents of the University of California. All rights reserved.

Copyright © 1999,2000,2001 Compaq Computer Corporation
Copyright © 1999,2000,2001 Hewlett-Packard Company
Copyright © 1999,2000,2001 IBM Corporation

Copyright © 1999,2000,2001 Hummingbird Communications Ltd.
Copyright © 1999,2000,2001 Silicon Graphics, Inc.

Copyright © 1999,2000,2001 Sun Microsystems, Inc.

Copyright © 1999,2000,2001 The Open Group

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, provided that the
above copyright notice(s) and this permission notice appear in all copies of the
Software and that both the above copyright notice(s) and this permission notice
appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in this
Software without prior written authorization of the copyright holder.

X Window System is a trademark of The Open Group.

If you are viewing this information softcopy, photographs and color illustrations
may not appear.

z/0OS VIR8.0 Comm Srv: IPv6 Network and Appl Design Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

Advanced Peer-to-Peer Networking
AFS
AD/Cycle
AIX
AIX/ESA
AnyNet
APL2

AS/400
BookManager
C/370

CICS
CICS/ESA

C Set ++

DB2
DFSMSdfp
DFSMShsm
DPI

ESCON
eServer
ES/9000
ES/9370

FFST

FICON

First Failure Support Technology
GDDM

IBM

ibm.com
IBMLink

IMS
IMS/ESA
HiperSockets
Language Environment
Multiprise
MVS
MVS/DFP
MVS/ESA
MVS/SP

MVS/XA
NetView
Network Station
Nways

0Ss/2

0S/390

Parallel Sysplex
pSeries

RACF
Redbooks
RETAIN

RISC System/6000
RMF

RS/6000

S/370

S/390

5/390 Parallel Enterprise Server
SecureWay
SiteCheck
SQL/DS
System /360
System /370
System /390
System z
System z9
Tivoli

VM/ESA
VSE/ESA
VTAM
WebSphere

z9

z/ Architecture
z/0S

z/VM

z9

zSeries

400

The following terms are trademarks of other companies:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Notices 169

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.

Other company, product or service names may be trademarks or service marks of
others.

170 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Bibliography

z/0OS Communications Server information

This section contains descriptions of the documents in the z/OS Communications Server library.

z/0OS Communications Server documentation is available:

* Online at the z/OS Internet Library web page at |ttp:/ /www.ibm.com/servers/eserver/zseries/zos/|

* In softcopy on CD-ROM collections. See [‘Softcopy information” on page xix/

z/OS Communications Server library

z/0S Communications Server documents are available on the CD-ROM accompanying z/OS (SK3T-4269
or SK3T-4307). Unlicensed documents can be viewed at the z/OS Internet library site.

Updates to documents are available on RETAIN® and in information APARs (info APARs). See
[Appendix B, “Information APARs and technotes,” on page 155|for a list of the documents and the info
APARs associated with them.

Info APARs for z/OS documents are in the document called z/OS and z/OS.e DOC APAR and PTF
++HOLD Documentation which can be found at fhttp:/ /publibz.boulder.ibm.com:80/cgi-bin /|
[bookmegr 0S390/ BOOKS/ZIDOCMST /CCONTENTY

Planning

Title Number Description

z/OS Communications Server:| GC31-8771 This document is intended to help you plan for new IP for SNA

New Function Summary function, whether you are migrating from a previous version or
installing z/OS for the first time. It summarizes what is new in
the release and identifies the suggested and required
modifications needed to use the enhanced functions.

2/OS Communications Server:) [sC31-8885| This document is a high-level introduction to IPv6. It describes

1Pv6 Network and Application] concepts of z/OS Communications Server’s support of IPv6,

Desion Guide| coexistence with IPv4, and migration issues.

Resource definition, configuration, and tuning

Title Number Description
[z/OS Communications Server: IP| |SC31-8775 This document describes the major concepts involved in
|Confiquration Guide] understanding and configuring an IP network. Familiarity with

the z/OS operating system, IP protocols, z/OS UNIX System

Services, and IBM Time Sharing Option (TSO) is recommended.
Use this document in conjunction with the [z/OS Communications|
[Server: IP Confiquration Referencd

© Copyright IBM Corp. 2002, 2006 171

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Title Number Description

[z/0S Communications Server: IP| |SC31-8776 This document presents information for people who want to

|Configuration Reference administer and maintain IP. Use this document in conjunction
with the |z/0S Communications Server: IP Configuration Guide The
information in this document includes:
* TCP/IP configuration data sets
* Configuration statements
* Translation tables
* SMF records
* Protocol number and port assignments

z/OS Communications Server: SC31-8777 This document presents the major concepts involved in

SNA Network Implementation| implementing an SNA network. Use this document in

Guidd conjunction with the|z/OS Communications Server: SNA Resourcd
|Definition Referencd

z/OS Communications Server:| SC31-8778 This document describes each SNA definition statement, start

SNA Resource Definition Reference| option, and macroinstruction for user tables. It also describes
NCP definition statements that affect SNA. Use this document in
conjunction with the|z/OS Communications Server: SNA Network
|Implementation Guide|

z/OS Communications Server:) SC31-8836 This document contains sample definitions to help you

SNA Resource Definition Samples| implement SNA functions in your networks, and includes
sample major node definitions.

z/OS Communications Server: IP| | SC31-8833 This document is for system programmers and network

Network Print Facility| administrators who need to prepare their network to route SNA,
JES2, or JES3 printer output to remote printers using TCP/IP
Services.

Operation

Title Number Description

2/0S Communications Server: IP| | SC31-8780 This document describes how to use TCP/IP applications. It

User’s Guide and Commands| contains requests that allow a user to log on to a remote host
using Telnet, transfer data sets using FTP, send and receive
electronic mail, print on remote printers, and authenticate
network users.

2/OS Communications Server: IP| | SC31-8781 This document describes the functions and commands helpful in

System_Administrator’s Commands| configuring or monitoring your system. It contains system
administrator’s commands, such as TSO NETSTAT, PING,
TRACERTE and their UNIX counterparts. It also includes TSO
and MVS commands commonly used during the IP
configuration process.

2/0S Communications Server:| SC31-8779 This document serves as a reference for programmers and

SNA Ogemtior_zl operators requiring detailed information about specific operator
commands.

|z/OS Communications Server:| SX75-0124 This document contains essential information about SNA and IP

|§ Juick Reterence|
L

commands.

172 2/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Customization

Title

Number

Description

2/0S Communications Server:|
SNA Customization|

SC31-6854

This document enables you to customize SNA, and includes the
following:

¢ Communication network management (CNM) routing table
* Logon-interpret routine requirements

* Logon manager installation-wide exit routine for the CLU
search exit

* TSO/SNA installation-wide exit routines

* SNA installation-wide exit routines

Writing application programs

I|CSM Guide|

Title Number Description

z/OS Communications Server: IP| |SC31-8788 This document describes the syntax and semantics of program

Sockets Application Programming] source code necessary to write your own application

Interface Guide and Reference| programming interface (API) into TCP/IP. You can use this
interface as the communication base for writing your own client
or server application. You can also use this document to adapt
your existing applications to communicate with each other using
sockets over TCP/IP.

[z/OS Communications Server: IP| |SC31-8807 This document is for programmers who want to set up, write

ICICS Sockets Guide] application programs for, and diagnose problems with the socket
interface for CICS using z/OS TCP/IP.

z/OS Communications Server: IP| | SC31-8830 This document is for programmers who want application

IMS Sockets Guide| programs that use the IMS TCP/IP application development
services provided by IBM’s TCP/IP Services.

z/OS Communications Server: IP| | SC31-8787 This document describes the syntax and semantics of a set of

Programmer’s Guide and Reference| high-level application functions that you can use to program
your own applications in a TCP/IP environment. These
functions provide support for application facilities, such as user
authentication, distributed databases, distributed processing,
network management, and device sharing. Familiarity with the
z/0OS operating system, TCP/IP protocols, and IBM Time
Sharing Option (TSO) is recommended.

2/0S Communications Server:] SC31-8829 This document describes how to use SNA macroinstructions to

SNA Programming send data to and receive data from (1) a terminal in either the
same or a different domain, or (2) another application program
in either the same or a different domain.

2/OS Communications Server:]| SC31-8811 This document describes how to use the SNA LU 6.2 application

SNA Programmer’s LU 6.2 Guidd programming interface for host application programs. This
document applies to programs that use only LU 6.2 sessions or
that use LU 6.2 sessions along with other session types. (Only
LU 6.2 sessions are covered in this document.)

2/0OS Communications Server:| SC31-8810 This document provides reference material for the SNA LU 6.2

SNA Programmer’s LU 6.2] programming interface for host application programs.

Reference|

|z/0S Communications Server:| SC31-8808 This document describes how applications use the

communications storage manager.

Bibliography 173

Title Number Description
lz/OS Communications Server:| SC31-8828 This document describes the Common Management Information
[CMIP Services and Topology] Protocol (CMIP) programming interface for application
[Agent Guide| programmers to use in coding CMIP application programs. The
document provides guide and reference information about CMIP
services and the SNA topology agent.
Diagnosis
Title Number Description
z/OS Communications Server: IP| | GC31-8782 This document explains how to diagnose TCP/IP problems and
Diagnosis Guide| how to determine whether a specific problem is in the TCP/IP
product code. It explains how to gather information for and
describe problems to the IBM Software Support Center.
z/OS Communications Server:| GC31-6850 These documents help you identify an SNA problem, classify it,
SNA Diagnosis Vol 1, Techniguies| and collect information about it before you call the IBM Support
and Procedures|and /09 G(C31-6851 Center. The information collected includes traces, dumps, and
Communications Server: SNA| other problem documentation.
Diagnosis Vol 2, FFST Dumps and)|
the VIT|
z/OS Communications Server:| GC31-6852 These documents describe SNA data areas and can be used to
SNA Data Areas Volume 1] and read an SNA dump. They are intended for IBM programming
z/OS Communications Server:| GC31-6853 service representatives and customer personnel who are
SNA Data Areas Volume 2| diagnosing problems with SNA.
Messages and codes
Title Number Description
z/OS Communications Server:| SC31-8790 This document describes the ELM, IKT, IST, ISU, IUT, IVT, and
SNA Messages USS messages. Other information in this document includes:
* Command and RU types in SNA messages
* Node and ID types in SNA messages
* Supplemental message-related information
z/OS Communications Server: IP| SC31-8783 This volume contains TCP/IP messages beginning with EZA.
Messages Volume 1 (EZA)|
2/0S Communications Server: IP| | SC31-8784 This volume contains TCP/IP messages beginning with EZB or
(Messages Volume 2 (EZB, EZD)| EZD.
z/OS Communications Server: IP| | SC31-8785 This volume contains TCP/IP messages beginning with EZY.
[Messages Volume 3 (EZY)
2/OS Communications Server: IP| |SC31-8786 This volume contains TCP/IP messages beginning with EZZ and
[Messages Volume 4 (EZZ, SNM) SNM.
2/0S Communications Server: IP| | SC31-8791 This document describes codes and other information that
and SNA Codes| appear in z/OS Communications Server messages.
APPC Application Suite
Title Number Description
z/OS Communications Server: SC31-8809 This documents the end-user interface (concepts, commands,

APPC Application Suite User’s
Guide

and messages) for the AFTP, ANAME, and APING facilities of
the APPC application suite. Although its primary audience is the
end user, administrators and application programmers may also
find it useful.

174 2/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Title Number Description

z/OS Communications Server: SC31-8835 This document contains the information that administrators
APPC Application Suite need to configure the APPC application suite and to manage the
Administration APING, ANAME, AFTP, and A3270 servers.

z/OS Communications Server: SC31-8834 This document provides the information application

APPC Application Suite
Programming

programmers need to add the functions of the AFTP and
ANAME APIs to their application programs.

Bibliography 175

176 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Index
A

accessibility 159
address assignment 64
address autoconfiguration 5
address resolution, in IPv6 32
address states

deprecated 20

preferred 20

tentative 19

unavailable 20
addressing 9
Advanced socket APIs 99
AF_INET socket applications

and dual-mode stack 45

and IPv4-only stack 44
AF_INET6 socket applications

and dual-mode stack 45

and IPv4-only stack 44

and IPv6-only stack 45
AF_INET6 support, enabling 55
aggregatable global addresses, unicast 13
ALG 43
ancillary data 100, 113, 114
APIs 71
APIs, advanced 99
Application Layer Gateway (ALG) 43

and z/0OS CS TCP/IP 44
ARP, in IPv4 27
authentication, with IPv6 OSPF 25
autoconfiguration

stateful 5

stateless 5, 33

guidelines 64
steps 34

automatic tunnels 123
automation impacts

due to message changes 51

due to netstat changes 51
autonomous ﬂag, in router advertisement 29

Basic socket API extensions for IPv6 75
address conversion functions 83
Address families 75
address testing macros 83
Design considerations 75
interface identification 84
name and address resolution functions 77
name translation 77
Protocol families 75
socket options 84
special IP addresses 76

BPXPRMxx
and enabling IPv6 support 54
CINET IPv4-only sample 54
CINET IPv4/IPv6 dual-mode sample 55
[Pv4-only sample 54
IPv4/IPv6 dual-mode sample 54

broadcast 27

© Copyright IBM Corp. 2002, 2006

C

C sockets 71
checksum processing for RAW applications 111
CICS sockets 72
coexistence overview, application 125
Common INET

and AF_INET6 support 46

configuring 48

considerations 46

COMMONSEARCH statement, in resolver setup file 57

Communications Server for z/OS, online information
configured tunnels 122

D

DAD 32

data stream, including IP addresses 95
data tracing 62

default address selection 36

default destination address selection 36

rules 36
default source address selection
rules 38
deprecated, address state 20
DHCPv6 5

diagnosing problems 62
disability 159
Distributed Protocol Interface (DPI) 134
DNS
and VIPAs, guidelines 66
DNS definitions, updating 66
DNS, guidelines 66
DNS, online information xxii
dual-mode stack 40
and IPv4 application 42
and IPv6 application 40
dual-mode stack support 7
Duplicate Address Detection (DAD) 32
and loopback addresses 32
and VIPA 32, 35
how to disable 32
processing steps 32
Dynamic routing protocols 24

E

exits 58
extension headers 21

F

fragmentation 21
support 6, 22
FTP exits 58

G

getaddrinfo 77
gethostbyaddr 82

xxi

177

gethostbyname 77
getnameinfo 82
getservbyname 77
getservbyport 82

H

header format 4

hierarchical addressing 4

hierarchical addressing and routing infrastructure 4
host names, defining 66

IBM Software Support Center, contacting xiv
ICMP considerations 117
ICMPv4 messages 27
ICMPv6 26
message types 27
IGMP, in IPv4 27
IMS sockets 72
INET
and dual-mode IPv4/IPv6 stack 46
and IPv4-only stack 45
inetd 58
configuration file 58
information APARs for IP-related documents 155
information APARs for non- document information 156
information APARs for SNA-related documents 156
interface ID
,defining for physical interfaces 64
interface identifiers, in IPv6 unicast address 16
Internet, finding z/OS information online xxi
IP addresses, impermanence 94
IP header format 4
IPAQENETS6 interface type 63
IPCS 62
IPPROTO_IPV6 level 100
IPv4 TCP server program 95
IPv4-mapped IPv6 address 15
IPv6
address space 4
applications not enabled 134
Basic socket API extensions 75
expanded routing and addressing 4
supported standards 131
z/0OS-specific features 131
IPv6 address
anycast 19
assigned to a node 19
categories 12
model 11
multicast 17
states 19
textual representation 9
types 11
global unicast aggregatable 11
link-local unicast 11
loopback 11
multicast 11
site-local unicast 11
unspecified 11
unicast 13
IPv6 address space 11
IPv6 and IPv4 characteristics, comparison 6
IPv6 header 4

IPv6 header (continued)
header options 4
IPv6 packet header 99
IPv6 prefix
textual representation 10
IPv6, enabling applications for 89

K

keyboard 159

L

license, patent, and copyright information 161
link-layer device support 131
local use address, unicast 14
LookAt message retrieval tool xxii
loopback address
and DAD 32
loopback address, unicast 15

M

message retrieval tool, LookAt xxii
migration and coexistence overview, application 125
migration approaches 127
migration overview, application 125
MLD 27
MPCPTP6 interface type 63
MTU discovery, options 101
multicast 17

groups

group ID 18

scope 17
multicast and IPv6, using 94
Multicast Listener Discovery

listener function 28

query message 28

router function 28
Multicast Listener Discovery (MLD) 27
multicasting 27
multipath routes, considerations 26

N

NAT 44
NAT-PT 129
native TCP/IP sockets 72
Neighbor Discovery (ND) 5, 27, 28
Address Resolution 28, 32
Duplicate Address Detection (DAD) 28
parameter discovery 5
prefix discovery 5
Reachability Detection 28
neighbor node interaction, protocol 5
neighbor unreachability detection 33
Netstat 60
Network address translation (NAT) 44
network prefix 65
Network SLAPM2 subagent 134

)

OMPROUTE 24
OMPROUTE subagent 134

178 2/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

OMPROUTE, guidelines 67

on-link flag, in router advertisement 29
options, support 4

orexecd 58

orshd 58

otelnetd 58

outgoing interface, specifying 115

P

packet header, controlling the content 99
packet tracing 62
packets, controlling sending 103
Pascal APT 72
path MTU discovery 22
Ping 62
Policy Agent 59
preferred, address state 20
prefix information options
autonomous flag 29
on-link flag 29
proxy 128

Q

QoS

and flow label 7
QoS classification data 111
QoS policies 59

R

RAW applications, checksum processing 111
RAW sockets 116
received packets 108
redirect messages 6
redirect processing

IGNOREREDIRECT on IPCONFIG6 31
Resolver 56

and DNS 58
resolver API processing 92
Resolver configuration

files 56

search orders 56
REXX sockets 72
RFC (request for comments)

accessing online xxi

list of 139
route selection 26
router advertisements 28

prefix information options 29

autonomous flag 29
on-link flag 29

router discovery 23
routing 22

and VARY TCPIP,OBEYFILE command 26
routing infrastructure 4

S

scope 11

multicast 17
scope zone 12
scope zone index 12
scope zones 11

security considerations 53
shortcut keys 159
SIIT 128
site-local addresses 64
SMF records 59
SNA application access
and EE 52
and TN3270 52
SNMP, agent 134
SNMP, subagents 134
DPI 134
Network SLAPM2 134
OMPROUTE 134
TCP/IP 134
socket APIs 71
and IPv6 support 71
socket APIs, advanced 99
socket options and ancillary data, interactions 114
sockets extended call instruction API 72
sockets extended macro API 72
SOCKS 43, 128
SOCKS server 43
SOCKS64 43, 128
source address, options 115
source VIPA, guidelines 66
SOURCEVIPA, for IPv6 35
special IPv6 addresses 93
static routes
BEGINROUTES profile statement 22
GATEWAY profile statement 22
static routes, guidelines 67
support tables 131
sysplex support 132

T

takeover function, interface 34
tasks

implementing the resolver functions

steps 57

TCP server program enabled for IPv6 96
TCP/IP

online information xxi

protocol specifications 139
TCP/IP, subagent 134
tentative, address state 19
textual representation

IPv6 addresses 9

IPv6 prefixes 10
TN3270

and SNA access 52
Traceroute 40, 62
tracing

data 62

packet 62
trademark information 169
translation mechanisms 127

NAT-PT 129

proxy 128

SIIT 128

SOCKS 128
Trap forwarder daemon 134
tunneling

6overd tunnels 124

6to4 addresses 123

automatic tunnels 123

configured tunnels 122

Index

179

tunneling (continued)
overview 121
Tunneling 121
and z/0OS/CS 40

U

unavailable, address state 20
unicast 13

unspecified address, unicast 15
user exits 58

\'

VARY TCPIP,OBEYFILE , and autoconfiguration 34
VARY TCPIP,OBEYFILE command considerations, in router
advertisements 31
VIPA
and Duplicate Address Detection(DAD) 32, 35
and prefixes 35
and source address selection 38
how to get addresses 35
interface identifier
guidelines 65
network prefix
guidelines 65
static
guidelines 64
VTAM, online information xxi

V4

z/0S, documentation library listing 171
z/0S, listing of documentation available 155
zone index 12

180 2z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of
the methods listed below to send your comments to IBM. Whichever method you
choose, make sure you send your name, address, and telephone number if you
would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject
matter, or completeness of this document. However, the comments you send
should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk
to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Please send your comments to us in either of the following ways:
* If you prefer to send comments by FAX, use this number: 1+919-254-4028
* If you prefer to send comments electronically, use this address:
- comsvrcf@us.ibm.com.
* If you prefer to send comments by post, use this address:

International Business Machines Corporation

Attn: z/0S Communications Server Information Development
P.0. Box 12195, 3039 Cornwallis Road

Department AKCA, Building 501

Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:
+ Title and publication number of this document
* Page number or topic to which your comment applies.

© Copyright IBM Corp. 2002, 2006 181

182 z/0S V1R8.0 Comm Srv: IPv6 Network and Appl Design Guide

Program Number: 5694—A01 and 5655-G52

Printed in USA

SC31-8885-04

8 9SeIpY IpIn<) :wﬂmwﬂ JOAIIG suoneIuNuWIuio”) §()/z

| uotsiop [ddy pue spomioN 9AJ] :AIg wwor) (YA SO/Z

:uoLjewaojul autdg

	Contents
	Figures
	Tables
	About this document
	Who should read this document
	How this document is organized
	How to use this document
	Determining whether a publication is current
	How to contact IBM service

	Conventions and terminology used in this document
	Clarification of notes

	How to read a syntax diagram
	Symbols and punctuation
	Commands
	Parameters
	Syntax examples
	Longer than one line
	Required operands
	Choose one required item from a stack
	Optional values
	Choose one optional operand from a stack
	Repeating an operand
	Selecting more than one operand
	Nonalphanumeric characters
	Blank spaces in syntax diagrams
	Default operands
	Variables
	Syntax fragments

	Prerequisite and related information
	Required information
	Related information
	Softcopy information
	Other documents
	Redbooks
	Where to find related information on the Internet
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS

	How to send your comments

	Summary of changes
	Part 1. IPv6 overview
	Chapter 1. Introduction
	Expanded routing and addressing
	Hierarchical addressing and routing infrastructure
	Simplified IP header format
	Improved support for options
	Address autoconfiguration
	New protocol for neighbor node interaction
	Comparison of IPv6 and IPv4 characteristics
	Dual-mode stack support

	Chapter 2. IPv6 addressing
	Textual representation of IPv6 addresses1
	Textual representation of IPv6 prefixes1
	IPv6 address space
	IPv6 addressing model
	Scope zones
	Categories of IPv6 addresses
	Unicast IPv6 addresses
	Aggregatable global addresses
	Local use addresses
	Loopback address
	Unspecified address
	IPv4-mapped IPv6 addresses
	IPv6 interface identifiers

	Multicast IPv6 Addresses
	Multicast address format
	Multicast scope
	Multicast groups

	Anycast IPv6 Addresses

	Typical IPv6 addresses assigned to a node
	IPv6 address states
	Tentative
	Deprecated
	Preferred
	Unavailable

	Chapter 3. IPv6 protocol
	Extension headers
	Fragmentation in an IPv6 network
	Fragmentation and UDP/RAW

	Path MTU discovery
	IPv6 routing
	Router discovery
	ICMPv6 redirects
	Dynamic routing protocols
	Tip for IPv6 OSPF routing protocol addressing conventions
	Authentication with the IPv6 OSPF routing protocol

	Considerations for route selection
	Considerations for multipath routes
	How does a VARY TCPIP,,OBEYFILE command affect routes?

	ICMPv6
	Multicasting
	Multicast Listener Discovery (MLD)

	Neighbor discovery (ND)
	Router advertisements
	Route timeouts
	VARY TCPIP,,OBEYFILE command rules

	Redirect processing
	Duplicate Address Detection (DAD)
	Address resolution
	Neighbor unreachability detection

	Assigning IP addresses to interfaces
	Stateless address autoconfiguration
	Autoconfiguration considerations

	IP address takeover following an interface failure
	How to get addresses for VIPAs

	Default address selection
	Default destination address selection
	Default source address selection
	VIPA considerations with source address selection

	Migration and coexistence
	Enabling IPv6 communication between IPv6 islands in an IPv4 environment
	Tunneling

	How to enable end-to-end communication between IPv4 and IPv6 applications
	Dual-mode stack
	Application Layer Gateways (ALG) and protocol translation

	Considerations for configuring z/OS for IPv6
	IPv6 stack support
	IPv4-only stack
	IPv6-only stack
	Dual-mode stack

	INET considerations
	IPv4-only stack
	Dual-mode IPv4/IPv6 stack

	Common INET considerations
	Enabling AF_INET6 support in a Common INET environment
	Disabling AF_INET6 support in a Common INET environment
	Supporting a mixture of dual-mode stacks and IPv4-only stacks
	Configuring a common INET environment

	Part 2. IPv6 enablement
	Chapter 4. Configuring support for z/OS
	Ensure that important features are supported over IPv6
	Assess automation and application impacts due to Netstat and message changes
	Determine how remote sites connect to the local host
	SNA access
	Avoid using IP addresses for identifying remote hosts
	Considerations when using the BIND parameter on the PORT statement
	Security considerations
	Application programming considerations
	Enabling IPv6 support
	Configuring z/OS IPv6 support

	Resolver processing
	Resolver configuration
	IPv4-only configuration statements
	IPv6/IPv4 configuration statements
	Steps for implementing the resolver functions

	Resolver communications with the Domain Name System (DNS)

	User exits
	Which applications started with inetd are IPv6 enabled?
	Modifying inetd.conf

	How does IPv6 affect SMF records?
	How does IPv6 affect the Policy Agent?
	How does IPv6 affect SNMP?
	Monitoring the TCP/IP network
	How does IPv6 affect Netstat?
	Control of output format
	What has changed?

	How does IPv6 affect Ping and Traceroute?

	Diagnosing problems
	How does IPv6 affect IPCS?
	How does IPv6 affect packet and data tracing?

	Chapter 5. Configuration guidelines
	Connecting to an IPv6 Network
	IPv6 address assignment guidelines
	Updating DNS definitions
	Including static VIPAs in DNS
	Defining IPv4-only host names and IPv4/IPv6 host names

	Using source VIPA
	Using OMPROUTE or define static routes to improve network selection
	Connecting to non-local IPv4 locations
	IPv6-only application access to IPv4-only application

	Part 3. Application enablement
	Chapter 6. API support
	UNIX socket APIs
	z/OS UNIX Assembler Callable Services
	z/OS C sockets

	Native TCP/IP socket APIs
	Sockets Extended macro API
	Sockets Extended Call Instruction API
	REXX sockets
	CICS sockets
	IMS sockets
	Pascal API
	TCP/IP C/C++ Sockets

	Chapter 7. Basic socket API extensions for IPv6
	Introduction
	Design considerations
	Protocol families
	Address families
	Special IP addresses

	Name and address resolution functions
	Protocol-independent nodename and service name translation
	Socket address structure to host name and service name
	Address conversion functions
	Address testing macros

	Interface identification
	Socket options to support IPv6 (IPPROTO_IPV6 level)
	Option to control sending of unicast packets
	Options to control sending of multicast packets
	Options to control receiving of multicast packets
	Socket option to control IPv4 and IPv6 communications
	Socket options for SOL_SOCKET, IPPROTO_TCP and IPPROTO_IP levels

	Chapter 8. Enabling an application for IPv6
	Changes to enable IPv6 support
	Support for unmodified applications
	Application awareness of whether system is IPv6 enabled
	Socket address (sockaddr_in) structure changes
	Address conversion functions
	Resolver API processing
	Special IPv6 addresses
	Passing ownership of sockets across applications using givesocket and takesocket APIs
	Using multicast and IPv6
	IP addresses might not be permanent
	Including IP addresses in the data stream
	Example of an IPv4 TCP server program
	Example of the simple TCP server program enabled for IPv6

	Chapter 9. Advanced socket APIs
	Controlling the content of the IPv6 packet header
	Socket options and ancillary data to support IPv6 (IPPROTO_IPV6 level)
	Options for path MTU discovery
	Options to control the sending of packets
	Options to provide information about received packets
	Option to provide checksum processing for RAW applications
	Option to provide QoS classification data

	Socket option to support ICMPv6 (IPPROTO_ICMPV6 level)

	Using ancillary data on sendmsg() and recvmsg()
	Interactions between socket options and ancillary data
	Understanding hop limit options
	Understanding options for setting the source address
	Understanding options for specifying the outgoing interface

	Why use RAW sockets?
	RAW protocol values
	Application visibility of IP headers
	ICMP considerations
	Checksumming data

	Part 4. Advanced topics
	Chapter 10. Advanced concepts and topics
	Tunneling
	Configured tunnels
	Automatic tunnels
	6to4 addresses
	6over4 tunnels

	Application migration and coexistence overview
	Application migration approaches
	Translation mechanisms
	SOCKS gateway
	Proxy
	Stateless IP/ICMP Translation Algorithm (SIIT)
	Network address translation - protocol translation (NAT-PT)

	Chapter 11. IPv6 support tables
	Supported IPv6 standards
	z/OS-specific features
	Applications not enabled for IPv6

	Part 5. Appendixes
	Appendix A. Related protocol specifications (RFCs)
	Internet drafts

	Appendix B. Information APARs and technotes
	Information APARs for IP documents
	Information APARs for SNA documents
	Other information APARs

	Appendix C. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Trademarks

	Bibliography
	z/OS Communications Server information
	z/OS Communications Server library
	Planning
	Resource definition, configuration, and tuning
	Operation
	Customization
	Writing application programs
	Diagnosis
	Messages and codes
	APPC Application Suite

	Index
	Communicating Your Comments to IBM

