
7393: Using Linux with WebSphere
Application Server in the Enterprise
Tips

Agenda

• Where to Look?

• How to Look?

• Tips for Common Things You‟ll Find

1

Where to Look?

2

Hardware

Virtualization

Linux

Java Virtual Machine

WebSphere

Application Server

Application

TCP

Linux

Linux

• High CPU: Tasks waiting in line

4

High

CPU

• Monitor:

• 100 - Idle CPU % > ~80%

• Run queue > # Core Threads

• Know your interval

• Example: If a monitoring

product interval is 15 minutes,

spikes might be averaged out

• Monitor per-CPU utilization

Tasks

(user%/
system%)

Disk

I/O

(wait %)

Virtualization

OverCommit
(steal %)

top -H

• Don‟t use ̀ top`; use `top -H`: CPU usage by thread
– top - 16:58:14 up 2 min, 5 users, load average: 1.34, 0.50, 0.18

Tasks: 799 total, 5 running, 792 sleeping, 0 stopped, 2 zombie

Cpu(s): 37.8%us, 0.2%sy, 0.0%ni, 61.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 15943268k total, 3366124k used, 12577144k free, 87824k buffers

Swap: 65532k total, 0k used, 65532k free, 1715160k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

6607 user1 20 0 1992m 18m 9164 R 100.1 0.1 0:20.67 WebContainer :

6730 user1 20 0 1992m 19m 9144 R 100.1 0.1 0:12.40 WebContainer :

6806 user1 20 0 1992m 27m 8900 R 99.8 0.2 0:07.38 WebContainer :

• Thread names may be cut off, but still often give a good idea

• Use ̀ ps -eLf` to find the parent PID (or type ̀ f` then ̀ b`)

• Type ̀ 1` to see per-CPU utilization

• Use ̀ -b` to write to a file with ̀ -d SECONDS` for interval

5

perf

• `perf top -z` gives a perspective from the kernel
– 35.60% perf-9978.map [.] 0x00007fa3093c27db

20.64% perf-9978.map [.] 0x00007fa3093c27d4

3.71% [kernel] [k] module_get_kallsym

2.30% perf [.] symbols__insert

1.26% [kernel] [k] kallsyms_expand_symbol

• Great for investigating if your “system %” CPU is high

• Requires kernel symbols

– Install at least kernel and glibc symbols on all machines (and perf,

gdb, and stap while you‟re at it)

• Flame Graphs

– Brendan Gregg

6

Page Cache

• Linux aggressively uses RAM to accelerate file I/O using the page

cache (a.k.a. filecache)

• When benchmarking, flush the cache before a run:
– sudo sync; echo 1 | sudo tee /proc/sys/vm/drop_caches

7

Program

RAM

Disk
File

Bytes

File I/O

pdflush (dirty data)

Linux

• Paging: RAM Overcommitted

• /proc/sys/vm/swappiness: 0-100

– Default 60

– Higher value: Prefer filecache

– Lower value: Prefer programs

– This means Linux may page even with

plenty of RAM potentially available
8

CPU
0xABAB

RAMX

Disk100,000X

• Monitor: Swap Space Usage

• Consider reducing swappiness for

Java workloads

• Monitor: Kernel messages for OOM

killer

OOM Killer

 “By default [/proc/sys/vm/overcommit_memory=0], Linux follows an optimistic

memory allocation strategy. This means that when malloc() returns non-NULL there is

no guarantee that the memory really is available. In case it turns out that the system

is out of memory, one or more processes will be killed by the OOM killer” (`man 3

malloc`).

 Watch your system logs for messages such as:

 kernel: Out of Memory: Killed process 123 (someprocess).

 Or set /proc/sys/vm/panic_on_oom=1 to cause a kernel panic instead

 Then use the `bt` command to see who requested memory and

how much and the ̀ ps` command to see what is using memory

top -H

• `top -H` shows Swap usage:
– top - 16:58:14 up 2 min, 5 users, load average: 1.34, 0.50, 0.18

Tasks: 799 total, 5 running, 792 sleeping, 0 stopped, 2 zombie

Cpu(s): 37.8%us, 0.2%sy, 0.0%ni, 61.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 15943268k total, 3366124k used, 12577144k free, 87824k buffers

Swap: 65532k total, 0k used, 65532k free, 1715160k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

6607 user1 20 0 1992m 18m 9164 R 100.1 0.1 0:20.67 WebContainer :

6730 user1 20 0 1992m 19m 9144 R 100.1 0.1 0:12.40 WebContainer :

6806 user1 20 0 1992m 27m 8900 R 99.8 0.2 0:07.38 WebContainer :

• If ̀ Mem free` is low, that might be okay as `buffers` and ̀ cached` can

be used if needed (depending on swappiness)

• If ̀ used` is greater 0, then monitor ̀ si/so` columns in `vmstat`

• Type ̀ M` to sort processes by memory used (RES)

• VmSwap in /proc/$PID/status to see swap usage by process
10

Networking

• Use ̀ netstat` for interface statistics and listing sockets
– $ netstat –i

Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg

eth0 1500 0 0 0 0 0 0 0 0 0 BMU

– $ sudo netstat –antop

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name Timer

tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN 3646/Xorg

tcp 0 0 1.2.3.4:46238 1.2.3.4:80 ESTABLISHED 4140/firefox

tcp 0 0 1.2.3.4:35370 1.2.3.4:443 TIME_WAIT - timewait..

• TIME_WAIT=60 seconds – required by TCP to reduce probability of

collisions. Use persistent connection pooling if possible.

• Use ̀ nfsstat` for NFS statistics

11

Networking

• The kernel auto-tunes TCP memory buffers. Test constraints based on

expected average bandwidth delay product

• Example in sysctl.conf
– net.core.rmem_default=1048576

net.core.wmem_default=1048576

net.core.rmem_max=16777216

net.core.wmem_max=16777216

net.ipv4.tcp_rmem=4096 1048576 16777216

net.ipv4.tcp_wmem=4096 1048576 16777216

• Running tcpdump:

– nohup tcpdump-nn -v -i any -B 4096 -s 0 -C 100 -W 10 -Z root -w capture`hostname`_`date
+"%Y%m%d_%H%M"`.pcap &

• Different TCP congestion control algorithms (default cubic) set with
net.ipv4.tcp_congestion_control

12

Other Linux Tips

• SystemTap is a wonderful, low-overhead kernel diagnostic tool:

– Take the time to learn it and try it

• Use ̀ iostat` to investigate I/O performance

• Pin processes to subsets of CPUs with ̀ taskset`

• You might see programs with massive virtual sizes (VIRT/VSZ). This is

often caused by glibc malloc‟s aggressive “arena” allocation since 2.11

– Performance implications inconclusive but should be small & positive

– Limit this with envar MALLOC_ARENA_MAX=N (e.g. 1 or 4)

13

How much virtual memory is used?

 Use ̀ ps` or similar tools to query user process virtual memory usage

(in KB):

 $ ps -o pid,vsz,rss -p 14062

PID VSZ RSS

14062 44648 42508

8

GB

0

16

EB

0

Process 1 Virtual Memory Usage

(VSZ)

8GB RAM

(Example)

How much virtual memory is used?

 Virtual memory is broken up into virtual memory areas (VMAs), the

sum of which equal VSZ and may be printed with:

 $ cat /proc/${PID}/smaps

00400000-0040b000 r-xp 00000000 fd:02 22151273 /bin/cat

Size: 44 kB

Rss: 20 kB

Pss: 12 kB...

 The first column is the address range of the VMA.

 The second column is the set of permissions (read, write, execute, private copy on write).

 The final column is the pathname if the VMA is a file mapping. If it's [heap], that's the
data segment (primary malloc arena).

 The Rss value shows how much of the VMA is resident in RAM.

 The Pss value divides Rss by the total number of processes sharing this VMA.

Symbols

 Symbols map virtual addresses to

human-understandable names

(functions, structures, etc.)

 Without symbols, you'll just get a

bunch of addresses

 “We recommend that you always

use „-g‟ whenever you compile a

program."

https://www.sourceware.org/gdb/c

urrent/onlinedocs/gdb.html

Source code

void foo(int bar)

Compiler

(e.g. gcc)

Binary

0x1234

Binary

0x1234

Symbol

0x1234 = foo

Binary

0x1234

Symbol

0x1234 = foo

https://www.sourceware.org/gdb/current/onlinedocs/gdb.html
https://www.sourceware.org/gdb/current/onlinedocs/gdb.html
https://www.sourceware.org/gdb/current/onlinedocs/gdb.html

User coredump ulimits

 Ensure process ulimits for coredumps (-c) and files (-f) are unlimited

 The coredump ulimit (-c) often defaults to 0, suppressing cores

 A coredump is a file so the file ulimit (-f) also applies

 Ulimits may be soft or hard

 Hard: the maximum value a non-root user can set

 Soft: Sets the current limit (must be <= hard for non-root)

 Ulimits for the current shell may be queried:

 $ ulimit -c -f
core file size (blocks, -c) 0
file size (blocks, -f) unlimited

 Or by process:

 $ cat /proc/${PID}/limits | grep -e Limit -e core -e "Max file size"

Limit Soft Limit Hard Limit Units
Max file size unlimited unlimited bytes

Max core file size 0 unlimited bytes

User Coredump Ulimits

 Ulimits may be set in limits.conf on a user or group basis.

 Commonly set in /etc/security/limits.conf or /etc/security/limits.d/99-

cores.conf

 The following example sets file and core soft and hard ulimits to unlimited

for all users

 * - core unlimited

* - file unlimited

 Alternatively, run the command `ulimit -c unlimited -f unlimited` in the shell

that launches the program

 systemd-started processes use LimitCORE/LimitFSIZE

Where is the user coredump?

 The coredump goes to core_pattern (see `man 5 core`):

 $ sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-coredump %p

%u %g %s %t %e

 The default is `core` (sometimes with %p) which writes a file named `core` to the

current directory of the PID

 May include a path to use a dedicated coredump directory

 If the value starts with a `|`, then the coredump bytes are piped to that program

 Often specified in /etc/sysctl.conf or {/etc/sysctl.d|/usr/lib/sysctl.d|/run/sysctl.d}/*.conf

systemd-coredump

 systemd-coredump is a common user coredump handler which handles

coredumps

 Configured in /etc/systemd/coredump.conf

 Defaults:

 Store coredumps in /var/lib/systemd/coredump/

 Use no more than 10% of that disk's space

 Ensures cores don't cause that disk's free space to go

below 15%

 systemd-tmpfiles may remove old cores

abrtd

 abrtd is an older user coredump handler

 Like systemd-coredump, modified core_pattern to something like:

 |/usr/libexec/abrt-hook-ccpp % s % c % p % u % g % t e

 Configured in /etc/abrt/abrt.conf

 Defaults:

 DumpLocation=/var/spool/abrt/

 MaxCrashReportsSize=1000M

Configure Kernel Coredumps

 Install ̀ kexec-tools`

 Add ̀ crashkernel=256M` to the kernel cmdline – This amount of RAM is no longer available to your live kernel

 grub2 example:

 Edit /etc/default/grub

 Add ̀ crashkernel=256M` to GRUB_CMDLINE_LINUX

 # grub2-mkconfig -o /boot/grub2/grub.cfg

 Reboot and verify with `cat /proc/cmdline`

 To customize kdump, edit /etc/kdump.conf

 For example, often useful to get user process data:

 core_collector makedumpfile -l --message-level 1 -d 23,31

 Enable and start the kdump service

 # systemctl enable kdump.service

 # systemctl start kdump.service

How to Create a Kernel Coredump?

 Once the kdump service is running, a kernel panic will automatically produce a kernel

coredump

 To manually produce a kernel coredump:

 Enable sysrq (`man 5 proc`):
 # echo 1 > /proc/sys/kernel/sysrq

 Emulate a crash:
 # echo c > /proc/sysrq-trigger

 kdump will dump the vmcore and reboot

Reading a Kernel Coredump

 Switch to the root user

 Kernel coredumps normally in /var/crash/

 Check the version of the core:

 # cd /var/carsh/${VMCORE_DIRECTORY}/

 # strings vmcore | grep "Linux version"
 Linux version 4.2.3-200.local.fc22.x86_64

 Install the kernel debuginfo/dbgsym packages matching the version of the vmcore

Reading a Kernel Coredump

 You may install the `crash` package, but best to compile from source:

 https://github.com/crash-utility/crash/releases

 $ tar xzf crash* && cd crash*

 Recent vmcores may be compressed with lzop so best to

compile in that support:
 Install lzo, lzo-devel and lzo-minilzo packages

 echo '-DLZO' > CFLAGS.extra

 echo '-llzo2' > LDFLAGS.extra

 $ make

 # make install

https://github.com/crash-utility/crash/releases
https://github.com/crash-utility/crash/releases
https://github.com/crash-utility/crash/releases
https://github.com/crash-utility/crash/releases

Reading a Kernel Coredump

 Run crash on the matching vmlinux file and vmcore

 crash ${PATH_TO_VMLINUX} ${PATH_TO_VMCORE}

 Example:
 $ crash /usr/lib/debug/lib/modules/4.2.3-200.local.fc22.x86_64/vmlinux /var/crash/*/vmcore

CPUS: 4

LOAD AVERAGE: 1.45, 0.72, 0.27

TASKS: 444

RELEASE: 4.2.3-200.local.fc22.x86_64

PANIC: "sysrq: SysRq : Trigger a crash"

PID: 12868

COMMAND: "bash"

CPU: 3

 Last few lines are the current context

Crash Commands

 Type ̀ help` for command list. `alias` to list aliases. `quit` to exit.

 Print the kernel log

 crash> dmesg

[90.266362] sysrq: SysRq : Trigger a crash

 Print processes

 crash> ps

PID PPID CPU TASK ST %MEM VSZ RSS COMM

> 0 0 0 ffffffff81c124c0 RU 0.0 0 0 [swapper/0]

 Change current context to another PID:

 crash> set 10042

PID: 10042

COMMAND: "gnome-terminal-"

TASK: ffff8800482c3b00 [THREAD_INFO: ffff880044d24000]

CPU: 3

STATE: TASK_RUNNING

 Change context to the task executing on CPU #N (0-based), or the panic'ed task:

 crash> set -c 0

 crash> set -p

 Print the stack trace of the current context:

 crash> bt -l

PID: 12868 TASK: ffff88007a0a0000 CPU: 3 COMMAND: "bash"

#0 [ffff88004832f9f0] machine_kexec at ffffffff8105802b

/usr/src/debug/kernel-4.2.fc22/linux-4.2.3-

200.local.fc22.x86_64/arch/x86/kernel/machine_kexec_64.c: 322

#1 [ffff88004832fa60] crash_kexec at ffffffff81127f42

/usr/src/debug/kernel-4.2.fc22/linux-4.2.3-200.local.fc22.x86_64/kernel/kexec.c: 1500

#2 [ffff88004832fb30] oops_end at ffffffff810180e6

/usr/src/debug/kernel-4.2.fc22/linux-4.2.3-200.local.fc22.x86_64/arch/x86/kernel/dumpstack.c: 232

...

Crash Commands

Crash Commands

 Print virtual memory areas of the current context

 crash> vm

PID: 12868 TASK: ffff88007a0a0000 CPU: 3 COMMAND: "bash"

MM PGD RSS TOTAL_VM

ffff880044d5d800 ffff88007b15b000 4816k 118400k

VMA START END FLAGS FILE

ffff880060b3eda8 55c1a01eb000 55c1a02e3000 8000875 /usr/bin/bash

 Print open files of the current context:

 crash> files
PID: 12868 TASK: ffff88007a0a0000 CPU: 3 COMMAND: "bash"
ROOT: / CWD: /root

FD FILE DENTRY INODE TYPE PATH
0 ffff88005518ba00 ffff88005170a000 ffff88007c6a1f10 CHR /dev/pts/0

Crash Commands

 Print general memory information:

 crash> kmem -i

PAGES TOTAL PERCENTAGE

TOTAL MEM 479480 1.8 GB ----

FREE 218470 853.4 MB 45% of TOTAL MEM

USED 261010 1019.6 MB 54% of TOTAL MEM

BUFFERS 8096 31.6 MB 1% of TOTAL MEM

CACHED 93047 363.5 MB 19% of TOTAL MEM

TOTAL SWAP 64511 252 MB ----

SWAP USED 0 0 0% of TOTAL SWAP

SWAP FREE 64511 252 MB 100% of TOTAL SWAP

COMMIT LIMIT 304251 1.2 GB ----

COMMITTED 828252 3.2 GB 272% of TOTAL LIMIT

 Print kernel memory slab information:

 crash> kmem -s

CACHE NAME OBJSIZE ALLOCATED TOTAL SLABS SSIZE

ffff88007d3c5e00 TCP 1984 30 32 2 32k

Crash Commands

 Print each CPU's run queue:

 crash> runq

CPU 0 RUNQUEUE: ffff88007fd967c0

CURRENT: PID: 12868 TASK: ffff88007a0a0000 COMMAND: "bash"

RT PRIO_ARRAY: ffff88007fd96960

[no tasks queued]

CFS RB_ROOT: ffff88007fd96860

[120] PID: 224 TASK: ffff880036939d80 COMMAND: "kworker/3:2"

[120] PID: 10042 TASK: ffff8800482c3b00 COMMAND: "gnome-terminal-"

 Print swap information:

 crash> swap

SWAP_INFO_STRUCT TYPE SIZE USED PCT PRI FILENAME

ffff880036629400 PARTITION 258044k 0k 0% -1 /dev/dm-0

 Display X bytes from a start address (in this example, 32 bytes):

 crash> rd -8 0xffffffff814821f6 32

ffffffff814821f6: c6 04 25 00 00 00 00 01 5d c3 0f 1f 44 00 00 55 ..%.....]...D..U

ffffffff81482206: 48 89 e5 53 8d 5f d0 48 c7 c7 60 48 a9 81 48 83 H..S._.H..`H..H.

Crash Commands

 Print stack contents for each frame:

 crash> bt -f

#11 [ffff880079d03de0] write_sysrq_trigger at ffffffff81482e98...

#12 [ffff880079d03e00] proc_reg_write at ffffffff81286f62

ffff880079d03e08: ffff8800420e3800 ffff880079d03f18

ffff880079d03e18: ffff880079d03ea8 ffffffff8121d8d7

 Print definition of something like a stack frame method:

 crash> whatis write_sysrq_trigger

ssize_t write_sysrq_trigger(struct file *, const char *, size_t, loff_t *);

 In this case, the four arguments to write_sysrq_trigger will be the four addresses at the top of the stack of the lower frame
(respectively, ffff8800420e3800, ffff880079d03f18, etc.)

 Since we know the first argument is a file, let's print its dentry struct and then from that its name:

 crash> struct file.f_path.dentry ffff8800420e3800

f_path.dentry = 0xffff880060a2d0c0

crash> struct dentry.d_name.name 0xffff880060a2d0c0

d_name.name = 0xffff880060a2d0f8 "sysrq-trigger"

Java Virtual Machine

Thread Dumps

• Always take thread dumps:

– kill -3 $PID

• If you know a unique string in the command line (e.g. server1):

– pkill -3 -f server1

• IBM Java: thread dumps are written to the current working directory

– cd /proc/$PID/cwd

– Oracle Java: thread dumps written to stdout

• Take multiple thread dumps and review in the IBM Thread and Monitor

Dump Analyzer

34

Other Java Tips

• For Java processes, ensure large ulimit for:

– processes/threads (-u): 131072

• Set in limits.conf, limits.d/*, or startNode.sh

• Consider disabling core processing programs such as ABRTD,

systemd-coredump

– Often managed poorly, unmonitored, constrained

• Use core dumps instead of heapdumps. Jextract not needed on recent

versions – just rename to .dmp and load in IBM Memory Analyzer

35

Other Java Tips

• Execute Linux commands on JVM events:

– -

Xdump:tool:events=systhrow,filter=java/lang/OutOfMemoryError,request=seri

al+exclusive+prepwalk,range=1..0,priority=999,exec="cat /proc/%pid/smaps

> smaps.%Y%m%d.%H%M%S.%pid.%seq.txt; cat /proc/meminfo >

meminfo.%Y%m%d.%H%M%S.%pid.%seq.txt“

• The Linux kernel does not provide an API to request a core dump, so

IBM Java forks itself and kills the forked process. Some things (like all

thread stacks) will be missing by IBM Java produced core dumps.

36

WebSphere Application Server

WAS Tips

• WAS Traditional can generate various diagnostics from the GUI:

38

WAS Tips

• From wsadmin:

– AdminControl.invoke(AdminControl.completeObjectName("type=JVM,proces

s=server1,*"), "dumpThreads")

– AdminControl.invoke(AdminControl.completeObjectName("type=JVM,proces

s=server1,*"), "generateSystemDump")

39

8x 1x4x

WAS product family – positioning summary

WAS Family Edition

Web, mobile, OSGi apps

(Web profile specification)

 Subset of Liberty profile

 Web, Java EE apps and

extensions

 Secure, high performance

transaction engine

+ High availability

+ Intelligent mgmt

+ High scalability

and more…

Liberty Core Base ND
Full profile Full profile

1 PVU of Family

Edition entitles:

1 PVU ND *or*

4 PVUs Base *or*

8 PVUs Liberty Core

OR mix & match

AND can redeploy

new mix over time

Notices and Disclaimers

41

Copyright © 2016 by International Business Machines Corporation (IBM). No part of this document may be reproduced or transmi tted in any form without written permission
from IBM.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM.

Information in these presentations (including information relating to products that have not yet been announced by IBM) has b een reviewed for accuracy as of the date of
initial publication and could include unintentional technical or typographical errors. IBM shall have no responsibility to up date this information. THIS DOCUMENT IS
DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IN NO EVENT SHALL IBM BE LIABLE FOR ANY DAMAGE ARISING FROM THE

USE OF THIS INFORMATION, INCLUDING BUT NOT LIMITED TO, LOSS OF DATA, BUSINESS INTERRUPTION, LOSS OF PROFIT OR LOSS OF OPPORTUNITY.
IBM products and services are warranted according to the terms and conditions of the agreements under which they are provided .

Any statements regarding IBM's future direction, intent or product plans are subject to change or withdrawal without notice.

Performance data contained herein was generally obtained in a controlled, isolated environments. Customer examples are prese nted as illustrations of how those customers
have used IBM products and the results they may have achieved. Actual performance, cost, savings or other results in other o perating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM intends to make such products, pro grams or services available in all countries in
which IBM operates or does business.

Workshops, sessions and associated materials may have been prepared by independent session speakers, and do not necessarily r eflect the views of IBM. All materials
and discussions are provided for informational purposes only, and are neither intended to, nor shall constitute legal or othe r guidance or advice to any individual participant or

their specific situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to obtain advice of competent legal counsel as to the identification and
interpretation of any relevant laws and regulatory requirements that may affect the customer’s business and any actions the customer may need to take to comply with such
laws. IBM does not provide legal advice or represent or warrant that its services or products will ensure that the customer is in compliance with any law

Notices and Disclaimers Con‟t.

42

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or othe r publicly available sources. IBM has not
tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or an y other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products. IBM does not warrant the quality of any third-party products, or the

ability of any such third-party products to interoperate with IBM’s products. IBM EXPRESSLY DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The provision of the information contained h erein is not intended to, and does not, grant any right or license under any IBM patents, copyrights, trademarks or other intellectual
property right.

IBM, the IBM logo, ibm.com, Aspera®, Bluemix, Blueworks Live, CICS, Clearcase, Cognos®, DOORS®, Emptoris®, Enterprise Documen t Management System™, FASP®,

FileNet®, Global Business Services ®, Global Technology Services ®, IBM ExperienceOne™, IBM SmartCloud®, IBM Social Business® , Information on Demand, ILOG,
Maximo®, MQIntegrator®, MQSeries®, Netcool®, OMEGAMON, OpenPower, PureAnalytics™, PureApplication®, pureCluster™, PureCoverag e®, PureData®,
PureExperience®, PureFlex®, pureQuery®, pureScale®, PureSystems®, QRadar®, Rational®, Rhapsody®, Smarter Commerce®, SoDA, SPSS, Sterling Commerce®,

StoredIQ, Tealeaf®, Tivoli®, Trusteer®, Unica®, urban{code}®, Watson, WebSphere®, Worklight®, X-Force® and System z® Z/OS, are trademarks of International Business
Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM

trademarks is available on the Web at "Copyright and trademark information" at: www.ibm.com/legal/copytrade.shtml.

http://www.ibm.com/legal/copytrade.shtml

Thank You
Your Feedback is Important!

Access the InterConnect 2016 Conference Attendee

Portal to complete your session surveys from your

smartphone,

laptop or conference kiosk.

Backup

44

Most Interactions with Core Dumps

Process

Crashes

Poof!

systemd-coredump

abrtd

core

Nobody

Looks

Kernel

Crashes

kdump not

configured
Poof!

What is a core dump?

 It's just a file that contains virtual memory contents, register values, and other meta-

data.

 User land core dump: Represents state of a particular process (e.g. from crash)

 Kernel core dump: Represents state of the kernel (e.g. from panic) and process

data

 ELF-formatted file (like a program)

Kernel

User Land

Process 1

User Land

Process N
core

vmcore

What is Virtual Memory?

 Virtual Memory is an abstraction over physical memory (RAM/swap)

 Simplifies programming

 User land: process isolation

 Kernel/processor translate virtual address references to physical memory

locations

8

GB

0

16

EB

0

64-bit Process Virtual Address

Space (16EB)

8GB RAM

(Example)

How much virtual memory is used?

 Use ̀ ps` or similar tools to query user process virtual memory usage

(in KB):

 $ ps -o pid,vsz,rss -p 14062

PID VSZ RSS

14062 44648 42508

8

GB

0

16

EB

0

Process 1 Virtual Memory Usage

(VSZ)

8GB RAM

(Example)

How much virtual memory is used?

 Virtual memory is broken up into virtual memory areas (VMAs), the

sum of which equal VSZ and may be printed with:

 $ cat /proc/${PID}/smaps

00400000-0040b000 r-xp 00000000 fd:02 22151273 /bin/cat

Size: 44 kB

Rss: 20 kB

Pss: 12 kB...

 The first column is the address range of the VMA.

 The second column is the set of permissions (read, write, execute, private copy on write).

 The final column is the pathname if the VMA is a file mapping. If it's [heap], that's the
data segment (primary malloc arena).

 The Rss value shows how much of the VMA is resident in RAM.

 The Pss value divides Rss by the total number of processes sharing this VMA.

glibc

How to request virtual memory?

 malloc: request process virtual address space

 May suffer fragmentation

 mmap (syscall): size rounded up to page size and zero'd

kernel

data segment

...

arenas

...

Program
size <

threshold

Free

Lists

Free

Lists

Linux 32-bit Virtual Memory Layout

 3GB user space

(2^^32), or 4GB if:

 32-bit process on

64-bit kernel

 32-bit hugemem

kernel

32-bit Process

0

3GB

Reserved for

Kernel

32-bit Kernel

4GB
32-bit Process

0
64-bit or hugemem Kernel

4GB

Mmap, shared

libraries, additional

thread stacks

Data Segment

Program

Mmap, shared

libraries, additional

thread stacks

Data Segment

Program

Mmap, shared

libraries, additional

thread stacks

Data Segment

Program

Linux 64-bit Virtual Memory Layout

 The x86_64 processor memory management

unit supports up to 48-bit virtual addresses

(256TB).

 https://www.kernel.org/doc/ols/2001/x86-64.pdf

 128TB for the program

 0x through 0x00007FFF'FFFFFFFF

 128TB for the kernel

 0xFFFF8000'00000000 through

0xFFFFFFFF'FFFFFFFF

 $ sudo ls -lh /proc/kcore

-r-------- 1 root root 128T /proc/kcore
0

128TB

Reserved for

Kernel

16EB

Mmap, shared

libraries, additional

thread stacks

Data Segment

Program

16EB-

128TB

https://www.kernel.org/doc/ols/2001/x86-64.pdf
https://www.kernel.org/doc/ols/2001/x86-64.pdf
https://www.kernel.org/doc/ols/2001/x86-64.pdf
https://www.kernel.org/doc/ols/2001/x86-64.pdf

Diving in!

 Before going through the boring

details of how to produce

coredumps, let's assume we have

one.

 Since it's an ELF-formatted file,
let's see the details:

 $ readelf -h core.14391.dmp

Class: ELF64

Type: CORE (Core file)...

 This confirms we've got a
coredump from a 64-bit process.

ELF File

Metadata (NOTE)

Virtual Memory Area (LOAD)

Virtual Memory Area (LOAD)

Virtual Memory Area (LOAD)

...

User Coredumps

 Next, we'll need to know which program crashed. This may be in

logs, but let's just read the notes:

 $ readelf -n core.14391.dmp
CORE 0x000001de NT_FILE (mapped files)

Start End Page Offset

0x400000 0x401000 0x00000000 /work/program/a.out …

 In this case, the program is /work/program/a.out

Debugging User Coredumps

 Now that we know the program that produced the coredump, simply load `gdb` with

the program and the coredump. For example:

 $ gdb /work/program/a.out core.14391.dmp

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0x00007f6526f1ec8a in strlen () from /lib64/libc.so.6

Missing separate debuginfos, use: debuginfo-install glibc-2.20-

8.fc21.x86_64

 The (gdb) prompt awaits instructions. Type `help` for a list of commands. Type `quit`

to exit.

Debugging User Coredumps

 If you're not a developer of the program, you'll just need to send

them the coredump, libraries, and a stacktrace

 (gdb) bt

 #0 0x00007f6526f1ec8a in strlen () from /lib64/libc.so.6

#1 0x00007f6526f03d3c in puts () from /lib64/libc.so.6

#2 0x0000000000400563 in main (argc=1, argv=0x7ffebc36a128)

at test.c:6

 Even better: all stacks

 (gdb) thread apply all bt

Symbols

 Symbols map virtual addresses to

human-understandable names

(functions, structures, etc.)

 Without symbols, you'll just get a

bunch of addresses

 -g doesn't affect optimizations.

“We recommend that you always

use „-g‟ whenever you compile a

program."

https://www.sourceware.org/gdb/c
urrent/onlinedocs/gdb.html

Source code

void foo(int bar)

Compiler

(e.g. gcc)

Binary

0x1234

Binary

0x1234

Symbol

0x1234 = foo

Binary

0x1234

Symbol

0x1234 = foo

https://www.sourceware.org/gdb/current/onlinedocs/gdb.html
https://www.sourceware.org/gdb/current/onlinedocs/gdb.html
https://www.sourceware.org/gdb/current/onlinedocs/gdb.html

Debugging User Coredumps

 It's best to load the coredump on the same machine where it was produced since gdb

will find the loaded shared libraries and any installed debuginfo symbols.

 If copying the coredump for processing on another machine, also copy the program,

all shared libraries in the NOTE section and expand those files into a similar folder

structure and point to that:

 $ gdb # no parameters

(gdb) set solib-absolute-prefix ./

(gdb) set solib-search-path .

(gdb) set debug-file-directory ./path_to_debug

(gdb) file ./path_to_program

(gdb) core-file ./path_to_coredump

GDB: Querying virtual memory

 gdb can query a core file and produce output about the virtual address space which is

similar to /proc/${PID}/smaps, although it is normally a subset of all of the VMAs:

 (gdb) info files

Local core dump file:

`core.16721.dmp', file type elf64-x86-64.

0x0000000000400000 - 0x0000000000401000 is load1

0x0000000000600000 - 0x0000000000601000 is load2

0x0000000000601000 - 0x0000000000602000 is load3

0x00007fe288ca5000 - 0x00007fe288ca6000 is load4a

0x00007fe288ca6000 - 0x00007fe288ca6000 is load4b

0x00007fe288e58000 - 0x00007fe288e58000 is load5...

GDB Details

 Switch to a frame (list threads with ̀ info thread` and switch threads with ̀ thread N`):

 (gdb) frame 2

#2 0x0000000000400563 in main (argc=3, argv=0x7ffd47508d18) at test.c:6

6 printf("%s\n", p);

 Check why the printf crashed:

 (gdb) print p

$10 = 0x0

 Understand the type of argv and then print string contents:

 (gdb) ptype argv

type = char **

(gdb) print argv[0]

$7 = 0x7ffd4750a17c "./a.out"

(gdb) print argv[1]

$8 = 0x7ffd4750a184 "arg1"

User coredump ulimits

 Ensure process ulimits for coredumps (-c) and files (-f) are unlimited

 The coredump ulimit (-c) often defaults to 0, suppressing cores

 A coredump is a file so the file ulimit (-f) also applies

 Ulimits may be soft or hard

 Hard: the maximum value a non-root user can set

 Soft: Sets the current limit (must be <= hard for non-root)

 Ulimits for the current shell may be queried:

 $ ulimit -c -f
core file size (blocks, -c) 0
file size (blocks, -f) unlimited

 Or by process:

 $ cat /proc/${PID}/limits | grep -e Limit -e core -e "Max file size"

Limit Soft Limit Hard Limit Units
Max file size unlimited unlimited bytes

Max core file size 0 unlimited bytes

User Coredump Ulimits

 Ulimits may be set in limits.conf on a user or group basis.

 Commonly set in /etc/security/limits.conf or /etc/security/limits.d/99-

cores.conf

 The following example sets file and core soft and hard ulimits to unlimited

for all users

 * - core unlimited

* - file unlimited

 Alternatively, run the command `ulimit -c unlimited -f unlimited` in the shell

that launches the program

 systemd-started processes use LimitCORE/LimitFSIZE

What produces a user coredump?

 When the kernel handles certain signals (`man 7 signal`):

 SIGQUIT (kill -3)

 SIGILL (kill -4)

 SIGABRT (kill -6)

 SIGGFPE (kill -8)

 SIGSEGV (kill -11)

 This is one of the most common causes of a crash when a program references invalid memory (e.g. NULL)

 Others: SIGBUS, SIGSYS, SIGTRAP, SIGXCPU, SIGXFSZ, SIGUNUSED

 Outside the kernel: use `gcore $PID` (part of gdb)

 Different code than the kernel: attaches gdb and dumps memory

 Non-destructive (i.e. process continues after detach)

Where is the user coredump?

 The coredump goes to core_pattern (see `man 5 core`):

 $ sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-coredump %p

%u %g %s %t %e

 The default is `core` (sometimes with %p) which writes a file named `core` to the

current directory of the PID

 May include a path to use a dedicated coredump directory

 If the value starts with a `|`, then the coredump bytes are piped to that program

 Often specified in /etc/sysctl.conf or {/etc/sysctl.d|/usr/lib/sysctl.d|/run/sysctl.d}/*.conf

What's in a user coredump?

 The memory dumped is controlled with a bit mask in /proc/$PID/coredump_filter (see

`man 5 core`)

 Inherited from parent process, so you may set in the script/shell

that starts the process. Example:
 $ echo 0x7F > /proc/self/coredump_filter

 Never dumped:

 Anything madvise'd with MADV_DONTDUMP

 Memory the process can't read (see the ̀ r` permission in `cat

/proc/$PID/smaps`)

 Memory-mapped I/O pages such as frame buffers

systemd-coredump

 systemd-coredump is a common user coredump handler which handles

coredumps

 Configured in /etc/systemd/coredump.conf

 Defaults:

 Store coredumps in /var/lib/systemd/coredump/

 Use no more than 10% of that disk's space

 Ensures cores don't cause that disk's free space to go

below 15%

 systemd-tmpfiles may remove old cores

abrtd

 abrtd is an older user coredump handler

 Like systemd-coredump, modified core_pattern to something like:

 |/usr/libexec/abrt-hook-ccpp % s % c % p % u % g % t e

 Configured in /etc/abrt/abrt.conf

 Defaults:

 DumpLocation=/var/spool/abrt/

 MaxCrashReportsSize=1000M

Read Memory in GDB

 Virtual memory may be printed with the ̀ x` command:

 (gdb) x/32xc 0x00007f3498000000

0x7f3498000000: 32 ' ' 0 '\000' 0 '\000' 28 '\034' 54 '6' 127 '\177' 0 '\000' 0 '\000'

0x7f3498000008: 0 '\000' 0 '\000' 0 '\000' -92 '\244' 52 '4' 127 '\177' 0 '\000' 0 '\000'...

 Another option is to dump memory to a file and then spawn an xxd process from within gdb to dump that file which is easier to

read (install package vim-common):

 (gdb) define xxd

>dump binary memory dump.bin $arg0 $arg0+$arg1

>shell xxd dump.bin

>shell rm -f dump.bin

>end

(gdb) xxd 0x00007f3498000000 32

0000000: 2000 001c 367f 0000 0000 00a4 347f 0000 ...6.......4...

0000010: 0000 0004 0000 0000 0000 0004 0000 0000

 For large chunks, these may be dumped to a file directly:

 (gdb) dump binary memory dump.bin 0x00007f3498000000 0x00007f34a0000000

 Large VMAs often have a lot of zero'd memory. A simple trick to filter those out is to remove all zero lines:

 $ xxd dump.bin | grep -v "0000 0000 0000 0000 0000 0000 0000 0000" > dump.bin.txt

Eye catchers

 Well written programs put eye catchers at the start of structures to make

finding problems easiers

 (gdb) xxd 0xF2E010 128
00000000: 4445 4144 4641 4444 0000 0000 0000 0000 DEADFADD........

00000010: 0000 0000 0000 0000 2100 0000 0000 0000 !.......
00000020: 4445 4144 4641 4444 0000 0000 7b00 0000 DEADFADD....{...
00000030: 0000 0000 0000 0000 2100 0000 0000 0000 !.......

00000040: 4445 4144 4641 4444 0000 0000 f600 0000 DEADFADD........
00000050: 0000 0000 0000 0000 2100 0000 0000 0000 !.......

00000060: 4445 4144 4641 4444 0000 0000 7101 0000 DEADFADD....q...
00000070: 0000 0000 0000 0000 2100 0000 0000 0000 !.......

Debugging glibc malloc

 (gdb) p mp_

 $5 = {trim_threshold = 4202496, top_pad = 131072, mmap_threshold = 2101248, arena_test = 0, arena_max = 1,

n_mmaps = 14, n_mmaps_max = 65536, max_n_mmaps = 16, no_dyn_threshold = 0, pagesize = 4096,
mmapped_mem = 18333696, max_mmapped_mem = 22536192, max_total_mem = 0, sbrk_base = 0xd83000 ""}

 (gdb) p main_arena

 $4 = {mutex = 0, flags = 3, fastbinsY = {...}, top = 0x7f650e165000, last_remainder = 0x7f65952d4740, bins = {...},

binmap = {...}, next = 0x368e58ee80, next_free = 0x368e58ee80, system_mem = 3022028800, max_system_mem =
3022028800}

 (gdb) p &main_arena

 $2 = (struct malloc_state *) 0x368e58ee80

 (gdb) p main_arena.next

 $3 = (struct malloc_state *) 0x368e58ff80

 (gdb) p *((struct malloc_state *) 0x368e58f f80)

 $4 = (struct malloc_state *) 0x368e58ee80

 (gdb) p *(mchunkptr) 0x10c5c90

 $5 = {prev_size = 0, size = 145, fd = 0x10c4030, bk = 0x312258fed8, fd_nextsize = 0x7fd3f0d5b000, bk_nextsize =
0x7fd3f0d5b4e8}

Configure Kernel Coredumps

 Install ̀ kexec-tools`

 Add ̀ crashkernel=256M` to the kernel cmdline – This amount of RAM is no longer available to your live kernel

 grub2 example:

 Edit /etc/default/grub

 Add ̀ crashkernel=256M` to GRUB_CMDLINE_LINUX

 # grub2-mkconfig -o /boot/grub2/grub.cfg

 Reboot and verify with `cat /proc/cmdline`

 To customize kdump, edit /etc/kdump.conf

 For example, often useful to get user process data:

 core_collector makedumpfile -l --message-level 1 -d 23,31

 Enable and start the kdump service

 # systemctl enable kdump.service

 # systemctl start kdump.service

How to Create a Kernel Coredump?

 Once the kdump service is running, a kernel panic will automatically produce a kernel

coredump

 To manually produce a kernel coredump:

 Enable sysrq (`man 5 proc`):
 # echo 1 > /proc/sys/kernel/sysrq

 Emulate a crash:
 # echo c > /proc/sysrq-trigger

 kdump will dump the vmcore and reboot

Reading a Kernel Coredump

 Switch to the root user

 Kernel coredumps normally in /var/crash/

 Check the version of the core:

 # cd /var/carsh/${VMCORE_DIRECTORY}/

 # strings vmcore | grep "Linux version"
 Linux version 4.2.3-200.local.fc22.x86_64

 Install the kernel debuginfo/dbgsym packages matching the version of the vmcore

Reading a Kernel Coredump

 You may install the `crash` package, but best to compile from source:

 https://github.com/crash-utility/crash/releases

 $ tar xzf crash* && cd crash*

 Recent vmcores may be compressed with lzop so best to

compile in that support:
 Install lzo, lzo-devel and lzo-minilzo packages

 echo '-DLZO' > CFLAGS.extra

 echo '-llzo2' > LDFLAGS.extra

 $ make

 # make install

https://github.com/crash-utility/crash/releases
https://github.com/crash-utility/crash/releases
https://github.com/crash-utility/crash/releases
https://github.com/crash-utility/crash/releases

Reading a Kernel Coredump

 Run crash on the matching vmlinux file and vmcore

 crash ${PATH_TO_VMLINUX} ${PATH_TO_VMCORE}

 Example:
 $ crash /usr/lib/debug/lib/modules/4.2.3-200.local.fc22.x86_64/vmlinux /var/crash/*/vmcore

CPUS: 4

LOAD AVERAGE: 1.45, 0.72, 0.27

TASKS: 444

RELEASE: 4.2.3-200.local.fc22.x86_64

PANIC: "sysrq: SysRq : Trigger a crash"

PID: 12868

COMMAND: "bash"

CPU: 3

 Last few lines are the current context

Crash Commands

 Type ̀ help` for command list. `alias` to list aliases. `quit` to exit.

 Print the kernel log

 crash> dmesg

[90.266362] sysrq: SysRq : Trigger a crash

 Print processes

 crash> ps

PID PPID CPU TASK ST %MEM VSZ RSS COMM

> 0 0 0 ffffffff81c124c0 RU 0.0 0 0 [swapper/0]

 Change current context to another PID:

 crash> set 10042

PID: 10042

COMMAND: "gnome-terminal-"

TASK: ffff8800482c3b00 [THREAD_INFO: ffff880044d24000]

CPU: 3

STATE: TASK_RUNNING

 Change context to the task executing on CPU #N (0-based), or the panic'ed task:

 crash> set -c 0

 crash> set -p

 Print the stack trace of the current context:

 crash> bt -l

PID: 12868 TASK: ffff88007a0a0000 CPU: 3 COMMAND: "bash"

#0 [ffff88004832f9f0] machine_kexec at ffffffff8105802b

/usr/src/debug/kernel-4.2.fc22/linux-4.2.3-

200.local.fc22.x86_64/arch/x86/kernel/machine_kexec_64.c: 322

#1 [ffff88004832fa60] crash_kexec at ffffffff81127f42

/usr/src/debug/kernel-4.2.fc22/linux-4.2.3-200.local.fc22.x86_64/kernel/kexec.c: 1500

#2 [ffff88004832fb30] oops_end at ffffffff810180e6

/usr/src/debug/kernel-4.2.fc22/linux-4.2.3-200.local.fc22.x86_64/arch/x86/kernel/dumpstack.c: 232

...

Crash Commands

Crash Commands

 Print virtual memory areas of the current context

 crash> vm

PID: 12868 TASK: ffff88007a0a0000 CPU: 3 COMMAND: "bash"

MM PGD RSS TOTAL_VM

ffff880044d5d800 ffff88007b15b000 4816k 118400k

VMA START END FLAGS FILE

ffff880060b3eda8 55c1a01eb000 55c1a02e3000 8000875 /usr/bin/bash

 Print open files of the current context:

 crash> files
PID: 12868 TASK: ffff88007a0a0000 CPU: 3 COMMAND: "bash"
ROOT: / CWD: /root

FD FILE DENTRY INODE TYPE PATH
0 ffff88005518ba00 ffff88005170a000 ffff88007c6a1f10 CHR /dev/pts/0

Crash Commands

 Print general memory information:

 crash> kmem -i

PAGES TOTAL PERCENTAGE

TOTAL MEM 479480 1.8 GB ----

FREE 218470 853.4 MB 45% of TOTAL MEM

USED 261010 1019.6 MB 54% of TOTAL MEM

BUFFERS 8096 31.6 MB 1% of TOTAL MEM

CACHED 93047 363.5 MB 19% of TOTAL MEM

TOTAL SWAP 64511 252 MB ----

SWAP USED 0 0 0% of TOTAL SWAP

SWAP FREE 64511 252 MB 100% of TOTAL SWAP

COMMIT LIMIT 304251 1.2 GB ----

COMMITTED 828252 3.2 GB 272% of TOTAL LIMIT

 Print kernel memory slab information:

 crash> kmem -s

CACHE NAME OBJSIZE ALLOCATED TOTAL SLABS SSIZE

ffff88007d3c5e00 TCP 1984 30 32 2 32k

Crash Commands

 Print each CPU's run queue:

 crash> runq

CPU 0 RUNQUEUE: ffff88007fd967c0

CURRENT: PID: 12868 TASK: ffff88007a0a0000 COMMAND: "bash"

RT PRIO_ARRAY: ffff88007fd96960

[no tasks queued]

CFS RB_ROOT: ffff88007fd96860

[120] PID: 224 TASK: ffff880036939d80 COMMAND: "kworker/3:2"

[120] PID: 10042 TASK: ffff8800482c3b00 COMMAND: "gnome-terminal-"

 Print swap information:

 crash> swap

SWAP_INFO_STRUCT TYPE SIZE USED PCT PRI FILENAME

ffff880036629400 PARTITION 258044k 0k 0% -1 /dev/dm-0

 Display X bytes from a start address (in this example, 32 bytes):

 crash> rd -8 0xffffffff814821f6 32

ffffffff814821f6: c6 04 25 00 00 00 00 01 5d c3 0f 1f 44 00 00 55 ..%.....]...D..U

ffffffff81482206: 48 89 e5 53 8d 5f d0 48 c7 c7 60 48 a9 81 48 83 H..S._.H..`H..H.

Crash Commands

 Print stack contents for each frame:

 crash> bt -f

#11 [ffff880079d03de0] write_sysrq_trigger at ffffffff81482e98...

#12 [ffff880079d03e00] proc_reg_write at ffffffff81286f62

ffff880079d03e08: ffff8800420e3800 ffff880079d03f18

ffff880079d03e18: ffff880079d03ea8 ffffffff8121d8d7

 Print definition of something like a stack frame method:

 crash> whatis write_sysrq_trigger

ssize_t write_sysrq_trigger(struct file *, const char *, size_t, loff_t *);

 In this case, the four arguments to write_sysrq_trigger will be the four addresses at the top of the stack of the lower frame
(respectively, ffff8800420e3800, ffff880079d03f18, etc.)

 Since we know the first argument is a file, let's print its dentry struct and then from that its name:

 crash> struct file.f_path.dentry ffff8800420e3800

f_path.dentry = 0xffff880060a2d0c0

crash> struct dentry.d_name.name 0xffff880060a2d0c0

d_name.name = 0xffff880060a2d0f8 "sysrq-trigger"

Live Kernel Debugging

 If proper symbols are installed, simply run the ̀ crash` command

without arguments to debug the live kernel

 # crash

OOM Killer

 “By default [/proc/sys/vm/overcommit_memory=0], Linux follows an optimistic

memory allocation strategy. This means that when malloc() returns non-NULL there is

no guarantee that the memory really is available. In case it turns out that the system

is out of memory, one or more processes will be killed by the OOM killer” (`man 3

malloc`).

 Watch your system logs for messages such as:

 kernel: Out of Memory: Killed process 123 (someprocess).

 Or set /proc/sys/vm/panic_on_oom=1 to cause a kernel panic instead

 Then use the `bt` command to see who requested memory and

how much and the ̀ ps` command to see what is using memory

swappiness

 Linux aggressively uses physical memory for transient data such as file

cache.

 $ free -m

total used free shared buffers cached

Mem: 15699 4573 11126 0 86 1963

-/+ buffers/cache: 2523 13176

 However, /proc/sys/vm/swappiness (default 60) controls how much the

kernel will prefer to page programs out rather than filecache

 Set lower (e.g. 0) to avoid paging out programs

Memory Leaks

 "Currently debugging native-memory leaks on Linux with the freely available tools is

more challenging than doing the same on Windows. Whereas UMDH allows native

leaks on Windows to be debugged in situ, on Linux you will probably need to do

some traditional debugging rather than rely on a tool to solve the problem for you."

http://www.ibm.com/developerworks/library/j-nativememory-linux/

 ltrace might help, but no stacks:

 $ ltrace -f -tt -p ${PID} -e malloc,free -o ltrace.out

 valgrind might work in a test environment, but not production

 mtrace overhead too high. SystemTap good option

 Find largest Rss VMAs in smaps and dump them in gdb

http://www.ibm.com/developerworks/library/j-nativememory-linux/
http://www.ibm.com/developerworks/library/j-nativememory-linux/
http://www.ibm.com/developerworks/library/j-nativememory-linux/
http://www.ibm.com/developerworks/library/j-nativememory-linux/
http://www.ibm.com/developerworks/library/j-nativememory-linux/
http://www.ibm.com/developerworks/library/j-nativememory-linux/

Summary

 Set ̀ core` (-c) and ̀ file` (-f) ulimits to unlimited for users or groups that run programs you're

concerned about.

 Either run `ulimit -c unlimited -f unlimited` in the shell or script that starts

the process, or set it globally in /etc/security/limits.conf or

/etc/security/limits.d/

 Confirm the ulimits are set correctly by running `cat /proc/$PID/limits`

 If using systemd-coredump, ensure enough disk space is available or modify the configuration

 If using abrtd, increase MaxCrashReportsSize or set to unlimited

 Install debuginfo/dbgsym packages for kernel* packages and all the programs you're concerned
about

Summary

 Monitor for coredumps

 Enable kdump and monitor for vmcores

 Don't be afraid to load cores and vmcores and review the stack traces

 Otherwise, report the issues to the owner(s) of the

code

Tips

• Review the size of thread stacks when investigating memory usage

• If using gcore, also gather /proc/$PID/smaps beforehand

• Creating coredumps is mostly disk I/O time, so if performance is important,

allocate additional RAM so that coredumps are written to filecache and

written out asynchronously

• If no memory leak, but RSS increases, may be fragmentation. Consider

MALLOC_MMAP_THRESHOLD_/MALLOC_MMAP_MAX_ and/or

MALLOC_ARENA_MAX=1

